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While heterogeneity in social behaviour has been described in
many human contexts it is often assumed to be less common
in the animal kingdom even though scale-free networks are
observed. This homogeneity raises the question of whether
the patterns of behaviour necessary to account for scale-
free social contact networks, where the degree distribution
follows a power law, i.e. a few individuals are very highly
connected but most have only a few connections, occur in
animals, or whether other mechanisms are needed to produce
realistic contact network architectures. We develop a space-
utilization model for individual animal behaviour to predict
the individuals’ social contact network. Using basic properties
of the χ2 distribution we present a simple analytical result that
allows the model to give a range of predictions with minimal
computational effort. The model results are tested on data
collected in New Zealand for the social contact networks of
the wild brushtail possum (Trichosurus vulpecula). Our model
provides a better prediction of network architecture than other
simple models, including a scale-free model.

1. Introduction
The social behaviour of animals can have a dramatic effect on the
architecture of their contact networks. For example, controlling
the transmission of disease on scale-free or clustered networks
requires different strategies than when control is applied to a
more homogeneous network [1]. It has long been recognized that
the simple and analytically attractive random Erdős–Rényi (ER)
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network [2] is a poor description of many real-world, in particular social contact, networks [3]. Modern
theory has popularized the scale-free (SF) network with its power-law degree distributions, which has
given rise to many useful and accurate predictions about social networks [4]. However, the premise
for a scale-free network is that individuals behave in remarkably different ways, with some exhibiting
highly sociable behaviour with a vast number of friends or contacts, while others prefer a more solitary
lifestyle. While such heterogeneity has been described in many human contexts, including disease
transmission [5], behaviour is often assumed to be more homogeneous in the animal kingdom [6], even
though scale-free networks are still observed [7]. This raises the question of whether the patterns of
behaviour necessary to account for scale-free social contact networks occur in animals, or whether we
need other mechanisms to produce realistic contact network architectures.

When a social network has been observed it is not ‘the’ network, but rather an example of a large
number of possible networks that could have been observed depending on the exact observational
circumstances [8]. To this end it is useful to develop models that can create suites of networks that all
share similar properties. Statistical techniques can then be used to determine if an observed network
could plausibly have been derived from that particular class of model. An ER network can be derived
from the premise that any two individuals on the network have an equal chance of being in contact [2].
One mechanism that can be used to explain the patterns seen in a SF network is that when a new
individual joins the network they are more likely to contact individuals who already have a large number
of contacts, i.e. the rich get richer and the poor get poorer [4].

Here, we use social-contact data collected as part of a research project investigating disease
transmission among wild free-living brushtail possums (Trichosurus vulpecula) [9] and a model based
on home-ranges to create example contact networks. The brushtail possum has the widest native
distribution of any Australasian marsupial, and is one of the most adaptable species in its native
range [10]. Outside of its native range, in New Zealand, it is a major pest impacting native
biodiversity [11], and is the primary wildlife reservoir of bovine tuberculosis (TB) [12]. Possums in
New Zealand occur in densities ranging from 0.4 to 12 per hectare, depending on the habitat type [13],
with reasonably well-defined home-ranges of a size negatively correlated with density [14]. For example,
home-range area is commonly between 0.5 and 2 hectares in high density populations in native forest,
but can reach up to 100 ha in generally low-density populations in more open pasture areas [15],
with variation also driven by other factors including sex and age [16]. Wild possums are traditionally
considered largely solitary animals [17]; however, with no social groupings, they often have widely
overlapping home-ranges (both between and within sexes), in which interactions among individuals
occur [18].

In our model of home-range areas, we assume possums have well-defined home-ranges centred at a
random point in space. Individuals move within their home-range following an uncorrelated random
walk and by chance come into contact with other individuals. We use this space-utilization model to
define a contact network between individuals within a given area. We test the efficacy of our model by
comparing the architecture of the home-range model with homogeneous (ER) and scale-free models and
also a swap randomization scheme [19]. Our model is not without precedent. For example, Ramsey &
Efford [20] used a similar but far more complex model to study the spread of TB through a possum
population. Formica et al. [21] used a similar technique based on home-range data to investigate social-
contact networks of forked fungus beetles, but their study again was fundamentally numerical and
used a more complex methodology. Our approach differs significantly, in that we employ a simplified
model in which a range of powerful analytic techniques can be employed to give estimates of biological
parameters over wide ranges. In contrast to generating numerical simulations for each case of interest,
this analytical approach allows exploration of a wider range of network properties and paves the way for
more in-depth exploration of network dynamics and their underpinning mechanisms in future analyses.

2. Data collection
The study population inhabits a 1200 ha research area in the Orongorongo Valley (lower North Island,
New Zealand (lat. −41°21′; long. 174°58′)). The site, made up of mixed native broadleaf-conifer forest, is
a long-term study site for the management of TB in possums [22], and supports moderately high possum
densities (approx. 7 ha−1) [16]. Each of four study sites (A, B, C and D) consisted of a ca 13 ha trapping
grid, made up of 100 traps at 40 m spacing. The traps used were Grieve wire cage traps (60 × 26 × 28 cm)
with spring-assisted folding doors triggered by a pendulum bait hook [23]. Traps were set on the ground,
and baited each morning with apple sprinkled with powdered sugar and flour lured with anise oil.
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Monthly trapping sessions were conducted every four weeks during the study period (April–November
2012), each session consisting of traps being opened and checked for four consecutive nights at each
site (with sprung traps reset, and possums recaptured during a trapping session only identified and
released). When first captured, possums were anaesthetized by intra-muscular injection of Zoletil 100

®

(Virbac New Zealand Ltd, Auckland, New Zealand) [24], weighed to the nearest 25 g, sexed, ear-tagged
with a numbered metal tag on each ear (National Band & Tag Co. size 3, Kentucky, USA), and released
at the point of capture. During initial capture months, up to 40 adult possums (20 male and 20 female)
on each trapping grid were fitted with a Sirtrack™ encounter proximity radio-collar that had combined
VHF and UHF components and weighed 45 g. Juvenile possums were still growing, and thus not collared
for animal ethics reasons. Collars were programmed to detect and record other collars within 1 m (collar
identification code, and time and length of interaction), with a separation time of 1 s (i.e. an interaction
ended if the collars were more than 1 m apart for more than 1 s).

For the first occasion of each monthly trapping session, each recaptured collared possum was
anaesthetized as before, had collar information downloaded on site via cable connection to a notebook
computer, and then released. Collars that did not function correctly were replaced. Data consisted of
a separate file for each individual on a trapping grid, with each record in a file representing a contact
between that individual and another individual at the same site. Each record contained the ID of the
individual encountered, the time at which the encounter occurred, and the length of the encounter.
In theory, every encounter should have been recorded twice (i.e. once in the file of each interacting
individual); however, in practice only 60% of pairs had fully consistent records for both individuals.
Inconsistent records are frequently generated by differing alignments of proximity collars to one another
(unpublished data). When a contact was logged by a single collar in an interacting pair, the data from
the single collar was used. When a contact was logged by both collars, but encounter lengths differed, an
average value was used. All contact records from sites B and D were useable. At sites A and C, 34% and
3% of records respectively were discarded as either corrupt or because the encounter length was longer
than 1000 min. Self-contacts (two individuals at site D) were also discarded.

3. Network construction
The period of time when a particular individual was collared we refer to as the collar time, and is defined
as the period between the first and last recorded contacts with any other individual. Collar times varied,
so some individuals had less time in which to record contacts than others. To account for this, we define
the total available time for each pair of individuals in contact as the intersection of the collar times of
the pair. The contact time for each pair of individuals is the sum of the durations of their encounters
in the available time. Finally, we combine these last two measurements to give the dimensionless
variable, relative contact time Tij, the fraction of the total available time during which two individuals are
in contact:

Tij = contact time
available time

,

where Tij is the proportion of time individual i was in contact with individual j, and T is the matrix
defining the contact network. (Note that T is a symmetric matrix in which Tii = 0 for all i as self-contacts
have been discarded). This definition gives four separate contact networks for this study, one for each site.
Note that these are contact networks with edges weighted by the relative amount of time two individuals
are in contact.

The four empirical networks, the contact networks of the possums at the four sites, are shown in
figure 1, and several summary statistics are given in table 1. At each site there were approximately
40 individuals. At two sites (B and C) there were no individuals with zero network connections (i.e.
all individuals were in contact with at least one other individual), while there were one and two
unconnected individuals at sites A and D respectively. The expected proportion of individuals to which
another individual is connected is commonly referred to as the connectance of the network. Note that in
graph theory this is more usually termed the graph density but, in an ecological context, density is more
often used to describe the number of individuals in a given area. We therefore use connectance to avoid
confusion. The degree of an individual is the number of individuals to which it is connected. Site B has
the lowest connectance; on average an individual has degree 4.2, giving a connectance of 0.11. Site C has the
highest connectance, 0.37, and the average degree of an individual is 14.4.
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Figure 1. A visual representation of the social network at each site. Each point is an individual, lines between individuals show that those
two individuals had a contact during the observational period. Note that the position of each individual does not represent their actual
location at the site.

Table 1. Summary statistics for the architecture of the empirical network at each of the four field sites. Estimates of home-range radius
and area are based on Poisson distributed individuals within a square region, and a threshold contact time of 5× 10−8.

site
network
size connectance

mean
degree

unconnected
individuals

length-3-
cycles

estimated
home-range
radius (m)

estimated
home-range
area (ha)

A 40 0.232 9.1 1 296 59.5 1.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B 41 0.105 4.2 0 47 36.0 0.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 40 0.368 14.4 0 884 81.7 2.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 39 0.161 6.1 2 126 46.9 0.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Spatial model
We assume that each individual follows a mean reversion random walk. This results in each individual
occupying a circular territory or home-range and moving only within this home-range. As the individual
strays toward the edge of the home-range, the probability of the next movement being directed towards
the centre of the home-range is increased. This is an Ornstein–Uhlenbeck process and can be described
by the stochastic differential equation

dXt = −α(Xt − X0) dt + β dWt.

The parameter α governs the strength of the ‘pull’ the individual feels back towards the centre of its
home-range, and β governs the role of noise in the system (i.e. an individual with large β will move with
a more random appearance). When applied to a two-dimensional walk with centre (x0, y0), the stationary
(i.e. long-term) solution for this equation is the two-dimensional Gaussian probability distribution:

f (x, y) = α

πβ2 exp

(
−α((x − x0)2 + (y − y0)2)

β2

)
.

This distribution has mean μ = (x0, y0) and variance σ 2 = β2/2α. We define the home-range radius, H, of
an individual to be H = 4σ . Using this definition, an individual will be within a distance H of the centre
of the home-range for approximately 95% of the time [25].
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Figure 2. An example of the spatial model for possum contacts. (a) Each of 40 individuals (red crosses) are located within the region
(black circle) and ascribed a home-range area (grey dashed circles). (b) The distance between neighbours determines the contact time
(weight of network edge). (c) The cumulative distribution of contact times for all pairs of individuals on the network, as calculated by
simulating the random walk for each individual (black line), using the integral of equation (4.2) (blue dashed line) and theχ 2 method
(red dot-dashed line).

4.1. An individual-based approach
In the individual-based model, networks were created to resemble those in the data by positioning N
individuals within a region of area A, giving a spatial density of ρ = N/A. The ith individual on the
network has home-range radius Hi, where Hi is taken from a normal distribution N(H, 0.1H), i.e. home-
ranges have mean H and coefficient of variation 10%.

A contact is defined as two individuals coming within distance R of each other. Using the positions
of each pair of individuals and their home-ranges, a matrix of interaction times T can be found where
Tij is the proportion of time that individuals i and j are in contact with each other, i.e. the relative contact
time defined in §3 (Network construction). Sample networks and a distribution for Tij can be found by
running repeated simulations where N individuals with randomly assigned home-ranges are placed
within the region using a spatial Poisson process.

Figure 2a shows the results from an example simulation with 40 individuals placed in a circular region
with a 150 m radius. Each individual has an expected home-range radius of 40 m. The resulting network
of interactions is shown in figure 2b, where the weighting of the network edges indicates the relative
contact time between individuals. Figure 2c (solid black line) shows the cumulative frequency distribution
of contact times. The simulation was run for 1000 time units with time steps of 0.01. Hence relative contact
times below 10−6 are not possible.

4.2. Analytical results for relative contact times
As the position of each individual is defined by a normal distribution, the difference in their positions
is also normally distributed. Without loss of generality we assume that individual i is centred at (0, 0)
with home-range Hi (i.e. variance σ 2 = H2

i /16) and individual j is centred at (x0, 0) with home-range
Hj. Therefore, the distance between them is normally distributed with mean (x0, 0) and variance σ 2 =
(H2

i + H2
j )/16. The proportion of time they are in contact, Tij, is the probability that the distance between

them is less than the contact distance R, and

Tij =
∫∫

C

1

πσ 2
2

exp

(
− ((x − x0)2 + y2)

σ 2
2

)
dx dy, (4.1)

where C is the circle of radius R centred at (0, 0). While this integral is not wholly analytically tractable, it
can be simplified to a single integral and solved numerically using standard quadrature methods, albeit
with strict tolerances required to give a desired level of accuracy. Figure 2c (blue dashed line) shows the
cumulative distribution of contact times in the example simulation found using this integral.
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A more useful analytical solution is to approach the problem using the non-central χ2 distribution.

This distribution gives the sum of the squares of normally distributed random numbers with non-zero
means and unit variance (i.e. for the sum of two numbers, this is a Euclidian distance squared). If we
assume that both individuals have the same home-range, and rescale the problem so that the movement
distributions have unit variance, we find that Tij is given by

Tij ≈ P

(
Y <

R2

σ 2

)
where

Y2

σ 2 ∼ χ2
(

2,
x0

σ 2

)
, (4.2)

where χ2(k, λ) is the non-central χ2 distribution. This assumes that there is no correlation between the
x and y position distributions of each individual, and in our spatial model individuals are moving in a
‘Brownian motion’ manner, so this lack of correlation is a valid assumption. Figure 2c (red dot-dashed
line) shows the cumulative distribution of contact times in the example simulation found using this
method. This analytical solution has the significant advantage of being highly amenable to numerical
and analytic methods.

4.3. Quantifying the effect of sampling effort
Theoretically, under this model all pairs of individuals will be in contact with each other for a non-zero
amount of time. However, pairs of individuals that are far apart have very low relative contact times and
are very unlikely to be observed to meet in a finite observation period. To quantify this effect of sampling
effort we assume that all values of Tij < ε are zero. This assumption changes the model output from a
fully connected network where every individual is predicted to meet every other individual—albeit with
some very short contact times (i.e. very low edge weights)—to a partially connected network where some
individuals are not connected.

In the case where each individual’s position follows a spatial Poisson process (i.e. they are equally
likely to be placed at any point in the region), the density of individuals does not affect the distribution
of distances between pairs of individuals. Hence the distribution of interaction times is independent of
population density, and theoretically only depends on the size of the region and each individual’s home-
range. In practice, if the home-ranges are small in comparison to the region, then only the home-range
area has an impact on the distribution of interaction times. This is because interactions between pairs of
individuals over large spatial distances become so small that they are discarded when the assumption
that small interaction times (Tij < ε) are zero is applied.

Once a minimum contact time ε has been established, either theoretically or from data, we can use the
χ2 method to calculate the maximum distance between the centres of two individual’s home-ranges that
would allow them to be observed to be in contact during the observational period for any given home-
range area. Figure 3a shows this maximum distance for the scenario in figure 2, with a minimum relative
contact time of 10−6 (i.e. as a proportion of the entire observation period) for a variety of home-ranges. As
an example, the results in figure 2 predict that if we consider just those individuals with a home-range of
130 m who reside in a region of radius 300 m, then any given individual will be in contact with half of the
other individuals. Furthermore, if individuals’ home-ranges increase to 290 m, then all the individuals
in the region will be in contact with each other. This calculation is not possible with the exact integral
formulation as the tolerances required for the quadrature are numerically intolerable.

4.4. Predicting network connectance
If the distribution of distances between home-range centres is known, it can be used to predict the
probability that any two individuals in the network have a contact time greater than the required
minimum (i.e. the density of the network). For the example case in figure 2, we use the probability
density function for the distance x0 between Poisson distributed points in a circle of radius a [26]

f (x0) = 8x0

πa

(
cos−1 x0

2a
− x0

2a

(
1 −

(x0

2a

)2
)1/2

)
. (4.3)

For a given home-range, we then calculate the probability that a pair of individuals have home-range
centres close enough to observe a contact (i.e. the network connectance). For the example in figure 2 this
is shown in figure 3b, predicting that if individuals with a home-range of 300 m are placed randomly
within a circle of 150 m radius, the resulting network will be fully connected (i.e. every individual will
be in contact with every other). Note that this result is independent of the spatial density of individuals.
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Figure 3. The spatial model can be used to predict the home-range radius of individuals on the network given the network connectance.
Analytical results for the example network described in figure 1. (a) Given the home-range radius of two individuals, the maximum
distance between their home-range centres such that they would be in contact for at least 10−16 of the observation period. (b) The
relationship predicted by the spatial model between network connectance, i.e. the proportion of other individuals at the site (in this case
a circle of radius 150 m) that an individual is likely to come into contact with, and the average radius of an individual’s home-range.

4.5. Model summary
We have presented a model that uses the location of individuals and information about their movement
patterns to determine whether those individuals are in contact. Although the model is based on a
stochastic process that is expensive to compute, we have also given a quick analytical solution that
accurately predicts the proportion of time that two individuals will be in contact with each other. This
can be used to generate example networks that represent the social interaction between individuals.

5. Results
To judge the efficacy of our spatial model, we use it to generate a number of outcomes that we compare
with the empirical data.

5.1. Home-range prediction
Our first comparison is a simple one. As shown in figure 3b, assuming individuals with a given home-
range are placed according to a Poisson process on a known region, the model predicts the connectance
of the resulting network. Conversely, if the network connectance is known, we can predict the average
home-range area of the individuals involved. As far as we are aware, this estimate of home-range area
from network connectance is a novel one and is only made possible by using an analytical solution to the
individual-based model such as the χ2 solution described here [27].

Our threshold contact time, ε = 5 × 10−8, was chosen because this is twice the smallest contact time
observed in the data. It corresponds approximately to one second in eight months (the study period). We
assume that all individuals have the same home-range H. An equivalent figure to figure 3b was produced
by calculating the minimum distance between home-range centres that would result in a contact time
above the threshold for a range of home-range areas. The data observed individuals on a square region
and there is no simple analytical equivalent of the Hammersley result, which uses a circular region.
However, it is a simple matter to approximate this distribution numerically. Pairs of individuals (Poisson
distributed) were chosen from a square region 300 × 300 m, and the proportion of pairs that were closer
than the minimum distance needed for contact was calculated. This was conducted for a number of
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home-ranges and the predicted home-range for each study site was interpolated from these reference
points. Table 1 shows the predicted home-range for each of the four sites. The predicted home-ranges
have radii from 36 m to 82 m, equivalent to 0.4–2.1 ha.

5.2. Network architecture
To assess the power of the spatial model as a predictor of the architecture of the network (i.e. the structure
but not the weight of the edges), it is necessary to have a null model for comparison. In network
theory the choice of a null model is not always immediately obvious [28]. To this end we use three
null models for comparison of the network architecture: a simple Erdős–Rényi (ER) randomization, a
scale-free (SF) algorithm, and an algorithm that preserves degree distribution. All of the null models
generate comparison networks that are the same size and, probabilistically, have the same connectance, as
the empirical comparison network.

The ER null model generates a network where connections between individuals are assigned
randomly, with all connections being as likely as all others. While the ER null model is pleasing in its
simplicity, it is often criticized for ignoring any structure contained in the network. It has also long
been discredited as a reasonable model for most real-world situations [3]. Our second null model is the
scale-free model popularized by Barabasi et al. [29], as implemented by Newman [30]. This has received
much attention since its inception and is considered a good model for social networks of many different
types [4]. Our third null model produces networks with a given degree distribution and is based on the
algorithm of Molloy & Reed [31]. This algorithm constructs a network by inserting connections randomly
between individuals within the constraints of a given degree distribution. To allow fairer comparison
between the model results and the data and randomizations, we carry out a separate comparison for
each of the four empirical contact networks. For the spatial model we use the connectance of the data
to estimate the home-range of individuals in the network as described above, and generate a suite of
comparison networks with this connectance.
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Table 2. Summary statistics of degree distribution for comparisons between the empirical networks and the model realizations. The
closest standard deviation and smallest Kolmogorov–Smirnov statistic (KS) and root-mean-square error (RMSE) are highlighted for each
empirical comparison. Italics denote the model with the closest fit as judged by that statistic. Judging by standard deviation, there is no
conclusive ‘best’ model. However, both the KS statistic and RMSE suggest that the spatial model produces degree distributions that are
closer to those of the empirical networks than either the scale-free or ER models.

degree distribution

site model mean s.d.
KS comparison (empirical
model) KS (p)

RMSE (empirical
model)

A data 9.1 4.1 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spatial 3.6 0.11 (0.66) 0.035
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ER 2.6 0.20 (0.07) 0.047
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SF 4.6 0.17 (0.17) 0.051
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B data 4.2 1.9 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spatial 2.1 0.10 (0.79) 0.034
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ER 1.9 0.11 (0.64) 0.040
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SF 3.2 0.18 (0.13) 0.048
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C data 14.4 5.6 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spatial 4.9 0.10 (0.74) 0.036
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ER 3.0 0.19 (0.1) 0.045
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SF 5.7 0.21 (0.05) 0.045
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D data 6.1 3.3 — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

spatial 2.5 0.10 (0.81) 0.039
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ER 2.3 0.11 (0.69) 0.041
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SF 3.8 0.22 (0.04) 0.071
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The model results (either spatial or the null models) were all taken from 1000 model realizations,
and either by summarizing the results in the case of distributions or taking the expected result. To
compare the accuracy of the spatial model in describing the architecture of the data, we calculated
two different architecture metrics (degree distribution and number of cycles of length 3) and compared
the predictions of the spatial model and the null models against the data. It is worth mentioning that
in these comparisons simple p-value and confidence intervals are often meaningless. The comparison
models are generated from stochastic realizations and, subject to time constraints, we can generate as
many of these as we care to. As more realizations are generated, p-values and confidence intervals
may become smaller and smaller. In preference to these measures, we use statistics that are robust to
the number of realizations, such as the Kolmogorov–Smirnov or KS-statistic, inter-quartile range and
standard deviation of distributions.

5.3. Degree distribution
Degree distribution is widely accepted as an important metric in real-world networks [32]. An Erdős–
Rényi network gives a degree distribution that follows a Poisson distribution, while a network created
using preferential attachment will have a degree distribution that follows a power law. We compare
the degree distribution of the four empirical contact networks with the expected degree distribution
from each of the comparison models. The given degree distribution randomization of Molloy &
Reed [31] was excluded in this comparison, as it is designed to reproduce the degree distribution of the
empirical contact networks. Each empirical contact network was compared separately with the model
networks, and the expected degree distributions of each model were found by amalgamating the degree
distributions from 100 model realizations.

The models produced networks with the same connectance (probabilistically), and hence the same
average degree, as the empirical contact network. Table 2 shows the results of the comparisons, and
figure 4 shows the degree distributions. When the standard deviation of the model degree distributions
is considered, none of the models conclusively stand out as a candidate for closest model. However,
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Figure 5. The number of 3-cycles seen in the empirical network data is best reproduced by the spatial model. Each box plot shows
the distribution of cycles of length 3 seen in 100 realizations of each model. For three of the four sites, the number of 3-cycles seen in
the empirical network falls within the interquartile range (box) of the spatial model prediction. The fourth site (B) is still within the 99%
limit (whiskers) of the predicted distribution. Conversely, the ER, swap and SFmodels all significantly underpredict the number of 3-cycles
observed.

when the KS-statistic and root-mean-square error (RMSE) are used to measure the closeness of the model
predicted degree distributions to the empirical data, the spatial model provides the best fit for all four
study sites.

5.4. Number of cycles
It is well known that two networks can have the same degree distribution but still be markedly
different [3,4]. To this end, other network metrics have been developed that can be used to quantify
the properties of a network. A simple metric used in graph theory as an indicator of network structure is
the number of cycles of length 3. A length-3-cycle occurs when individual A is connected to individual
B, who is then connected to individual C, who in turn is connected to individual A. The number of
length-3-cycles in each empirical network is shown in table 1. Figure 5 shows a box plot representing the
distribution of the number of 3-cycles in each of the null models when compared with each of the four
empirical networks. The box plot displays median, interquartile range, 99th percentile, and outliers. In
three of four cases (sites A, C and D) the number of 3-cycles in the empirical contact networks is within
the interquartile range of the spatial model distribution; for the fourth site (B) the data lie easily within
the 99th percentile range. In contrast, the other three null models demonstrate markedly fewer 3-cycles
than the empirical contact networks, and in no case does the number observed empirically fall inside the
99th percentile range. When the same analysis is conducted with the number of cycles of length 4, we see
an almost identical pattern. This similarity in results for 3- and 4-cycles is not unexpected as the number
of each of these is known to be strongly linked in most random graphs.

6. Discussion
We have presented a space-utilization model of animal behaviour that has been used to generate contact
networks of individuals. These networks can be generated from either direct numerical simulation or
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from an analytical result based on the χ2 distribution. We have used connectance, a network characteristic,
to estimate the size of the individual’s home-range (i.e. 0.4–2.1 ha), which is realistic compared with the
observed average home-ranges for possums at our study area of 1.3 ha and 1.8 ha for females and males
respectively [16]. We have generated a suite of random networks and compared their characteristics
to empirical data. The spatial model is a more plausible fit to the data than three other null models
presented, including the popular scale-free model.

Scale-free networks have been widely and successfully used as models of social contact for a range of
subjects [4]. They predict heavy-tailed degree distributions where the majority of individuals have only
a few contacts but some individuals have many. They have underlying mechanisms that mimic real-
world behaviour, e.g. preferential attachment, that add to their appeal as models. We have presented a
real-world situation where the arising networks are not well described by a scale-free model. In fact they
appear to be dominated by a scale that is fixed by the behaviour of an individual, i.e. its home-range. The
space-utilization model presented here results in networks that are not scale-free as individuals with a
very large number of contacts are unlikely to arise. Neither are they similar to the small-world networks
put forth by Watts & Strogatz [33]. These networks are characterized by short path lengths between any
two individuals on the network. It is clear that the space-utilization model will result in very long path
lengths between individuals when the home-ranges are small and the spatial region is large. In particular
it does allow the formation of ‘short-cuts’ between groups of individuals that are characteristic of small
world networks.

A limitation of our individual-based model is the use of a spatial Poisson process to define the
locations of individuals. On a large scale this process results in a homogeneous distribution of individuals
but in each realization of the process there will be local areas of space with very few individuals and some
areas with a higher local density (see for example figure 3a). In some respects this heterogeneity could
be seen to be analogous of many landscapes where some areas offer better habitat for individuals than
others. However, on the scale of the data collected here, it is more likely that individuals self-organize to
use the space more uniformly. In this case we would expect the resulting degree distributions to have
a lower variance than those predicted with the spatial Poisson process used here as all individuals
become more similar. This would result in degree distributions which were even less similar to a
scale-free distribution, which already has a higher variance than that predicted by the spatial model
(table 2). However, network architecture is reliant on more than just degree distribution. Our results also
show even when two networks have the same degree distribution they can still differ greatly even in
basic metrics [34] such as the number of cycles measured here. Again, the spatial model gives a better
prediction of the cycles metric than the other candidate network models. Variance between individuals
will also be seen due to their spatial location at the field site, individuals at the edge will have fewer
observed contacts than those at the centre. However the model does account for this as locations were
spatially distributed within a square region.

We would expect intrinsic attributes of the species in question (e.g. sex, age, body weight, phylopatry
behaviour, movements, etc.) to affect the social network [34] and consequently the architecture metric.
Also females tend to settle near their maternal home-range resulting in adjacent females having a higher
probability of being closely related. In the particular case of brushtail possums, we dealt with a solitary
species whose contacts are primarily associated with mating (i.e. March and April, [23]) and less frequent
at other times [35]. This work was part of a wider study [36] on how TB persists across the year, and
thus was undertaken primarily outside the mating season. It is also known that there are differences
in home-range area between males and females, juveniles and adults [16], and between populations
inhabiting different habitats [13,15,16]. In particular juveniles have smaller home-ranges which are
generally within the maternal home-range. For ethics reasons, juveniles could not be included in this
study. The networks simulated here by the space-utilization model are limited to the more homogeneous
case where all individuals have the same home-range. The analytical solution presented here, based
on the non-central χ2 distribution, is strictly only valid when individuals have the same size home-
ranges. However, numerical explorations show that the non-central χ2 distribution is still an excellent
approximation when the home-ranges are allowed to vary by up to 10%. The results from the networks
with this more varied behaviour are almost identical but computationally far more expensive as they
must be generated from first principles rather than using the analytical results.

The spatial modelling of TB in possums used to underpin management actions in New Zealand has
recently been made more realistic through the inclusion of metrics of home-range overlap [37], indicating
that the network details elicited here do have real-world implications. Incorporating the network model
we developed into management models is thus likely to further improve their accuracy. An obvious next
step for this work is to use the χ2 distribution to predict the amount of time that two individuals spend
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in contact. However, we expect this to be less successful as the amount of time two individuals spend
together is most likely dictated by the behaviour of individuals. For example when two animals meet
they may fight, mate or simply run away, and these behavioural choices are less successfully modelled
with a naive random walk. It will be interesting to see if once this aspect of behaviour is considered, the
resulting networks may have some scale-free characteristics, particularly in the edge weights rather than
the edge architecture.
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