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ABSTRACT 

The purpose of this research was to investigate the effects that stress training has 

on stressful flight operations to mitigate the human factors preconditions to aircraft 

accidents.  In addition, stress training implementation strategies were investigated in 

order to develop pedagogy pertinent to stress training.  A series of three empirical 

experiments were performed to test the transfer of both human emotional states and task 

skills from a virtual environment to subsequent test scenarios.  Results indicated that 

stress training improved performance, decreased physiological responses to stress, and 

decreased subjective appraisals of stress in a simulator criterion session.  A second 

experiment tested the generalization of these results to a novel, real-world stressor.  In 

this study, stress training in a flight simulator was found to enhance performance and 

moderate the adverse effects of stress when piloting an aircraft in a stressful flight 

environment.  A third empirical study tested the transfer of flight simulator skills to a 

real-world flying task.  Flight simulator training improved the performance of a training 

group when compared to a no-training, control group.  This line of research demonstrates 

stress training as a viable approach for preparing trainees for stressful flight environments 

and stress in general. 
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I. INTRODUCTION  

Anxiety never disappears in a human being in an airplane — it merely 
remains dormant when there is no cause to arouse it. Our challenge is to 

keep it forever dormant. 

— Harold Harris, Vice President, Pan American World Airways, 1950 

A. THESIS STATEMENT 

Piloting an aircraft is stressful.  Exorbitant costs, highly critical missions, and 

human lives often depend on one or few pilots.  Unlike operators of ground vehicles or 

sea vessels, aircraft pilots cannot stop in place, exhaustively analyze a situation, and 

methodically take action.  In the event of an emergency situation, pilots must act and they 

must act immediately.  This responsibility and time pressure places an enormous amount 

of stress on pilots, and it is imperative that pilots take correct and swift actions during 

these times of high stress. 

As long as humans are responsible for piloting aircraft, "the human element will 

be crucial in the response to emergency and abnormal situations" (Burian, Dismukes, & 

Barshi, 2003, p. 7).  Although moderating stress within the cockpit through the 

implementation of automation, procedures, technology, and system reliability is one 

approach to preventing aircraft accidents, another method for alleviating the adverse 

affects of stress is through training.  Stress training has shown promise in a number of 

different disciplines, and now with the promulgation of virtual environments (VEs) for 

training, stress training can be tested and implemented in a much more reliable, 

controlled, and efficient manner. 

This thesis addresses stress training as a method for moderating stress and 

enhancing performance in a stressful flight environment.  In addition, the generalization  
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of stress training in a VE to other real-world stressors is addressed.  These two thesis 

statements constitute the empirical experiments in this research project and their 

supporting literature. 

B. PROBLEM STATEMENT 

Stress is prevalent in modern military training.  When a new military recruit 

enters basic training, cadres quickly surround the trainee and apply high levels of stress 

through yelling, physical activity, and mental tests, to name a few.  During field exercises 

for ground troops, ordinance, live rounds, and other simulations of combat’s chaos are 

often implemented.  During shipboard firefighting exercises, sounds, smells, and, often, 

actual fires that mimic the severity of a shipboard fire are used to train firefighters.  

During the start of each day, military student pilots often undergo “stand-up” exercises 

where students are chosen at random to recite emergency procedures in the presence of 

their instructors and classmates.  Each of these training scenarios (among many other 

military examples) are performed for the purpose, at least partly, of  introducing stress in 

training. 

The need for stress training is not new.  The first two years of World War II saw 

over 400,000 neuropsychiatric patients admitted to Army hospitals, with a rate of over 

100 neuropsychiatric "casualties" per 1,000 troops drafted (Bourne, 1970).  These stress-

induced illnesses of World War II were not limited to ground troops; psychiatric 

casualties were common occurrences in fighter and bomber pilots (Hastings, Wright, & 

Clueck, 1944).  As Bourne points out, "much of this attrition might have been avoided 

had the military been better prepared" (1970, p. 72). 

Stress is often introduced in training so that real-world stress is more familiar and 

easily mitigated.  Stress training relies on transfer-of-training research including Osgood's 

(1949) similar elements theory, indicating that training should share elements with the 

transfer task in order for the training to be effective, or as the military often refers to as 

“train how you fight.” Therefore, to train for a stressful task, a stressful training 

environment often is utilized.  Stress training also relies on Overton's (1964) state-
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dependent learning where retention and retrieval are dependent on a person's emotional, 

physiological, and mental states during both training and recall. 

Although stress has been introduced into training since the beginning of a modern 

military, very little empirical evidence for its effectiveness, implementation, and 

pedagogy exists.  For example, when should stress be introduced during training?  How 

much stress should a trainee be exposed to?  How should stress training be paired with 

skills training for a particular task?  The current military training model often includes 

introducing as much stress as possible, so that a combat experience is mundane by 

comparison.  However, as the United States Marine Corps recently found, inappropriate 

stress training can result in both physical injury and post-traumatic stress disorder before 

any combat time is experienced (Army Times, 2007). 

Modern advancements in virtual reality (VR) provide a controlled medium for the 

introduction of stress training.  One current application of VEs relevant to stress is the 

treatment of post-traumatic stress disorder patients (Rizzo, Morie, Williams, Pair, & 

Buckwalter, 2005).  In this type of treatment, patients are presented with highly 

controlled and regimented levels of stress exposure.  These exposure treatments coupled 

with methodical counseling sessions teach patients how to psychologically mediate the 

discomfort they have with past experiences.  These treatments continue to  show promise 

for such patients.  If VEs are proven to be effective for treating patients with stress-

related disorders, then they may also show promise for trainees that are preparing to 

undergo stressful experiences. 

One particularly stressful domain that often incorporates VEs in training is 

aviation.  The aviation domain also is inherently unforgiving to errors, attention deficits, 

and failures in standard procedures—all circumstance that stress can propagate.  In 

Reason's (1990) Human Error, a theoretical framework for the aetiology of complex 

technological system accidents is presented in order to illuminate production system 

access points and hazard safeguards for accident mediation.  This model (see Figure 1.1) 

defines the antecedents to an accident that begins with organizational deficiencies in the 

form of decision and management latent failures (see "Organizational Influences" and 

"Line Management" in Figure 1.1) followed by preconditions to an unsafe act.  In order 
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to alleviate unsafe acts, Reason recommends that, first, the preconditions to an unsafe act 

must be eliminated to the extent possible.  In the form of stress, this approach suggests 

that excessive stress must be designed out of a system.  However, Reason's second 

approach to alleviating accidents is accepting that unsafe acts and system failures will 

occur, and, therefore, defenses are needed to intervene between an unsafe act and its 

adverse consequences.  One potential safeguard to prevent unsafe acts from propagating 

into accidents includes training that prepares operators to respond to stressful abnormal 

situations. 

 

Organizational
Influences

Line
Management

Preconditions

Unsafe Acts (Active Failures)

Inputs

Aircraft Accident

Latent Failures

Inadequate Defenses

Window of Accident
Opportunity

 

Figure 1.1. Accident causal chain for production systems (adapted from Reason, 1990) 

 

In a new DoD-directed reorganization of aircraft accident analyses, the Human 

Factors Analysis and Classification System (HFACS) was instituted to help mitigate 

human factors hazards in the aviation community (see Figure 1.2).  This hierarchical 

approach to aircraft accident investigations expands on Reason's (1990) model by 
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identifying specific Human Factors antecedents to aircraft accidents.  Although 

organizational influences and supervision can certainly impart undue stress on flight 

operations, the human factors pertaining to accidents (see "Preconditions" in Figure 1.2) 

are most heavily associated with stress.  Environmental factors, personnel factors, and 

conditions of individuals are all subject to stress and often are preconditions to aircraft 

accidents (Gibb & Olson, 2005). 

 

 

Figure 1.2  DoD HFACS (In Gibb & Olson, 2005) 
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The human ability to perform under overly stressful situations is often hindered.  

However, "the aviation industry lacks substantive human performance guidelines for 

designing, validating, certifying, and training procedures for emergency and abnormal 

situations" where stress is most prevalent (Burian, Dismukes, & Barshi, 2003, p. 1).  In 

an attempt to address these concerns, the NASA emergency and abnormal situations 

project has set an overriding goal to "develop guidance for procedure and checklist 

development and certification, training, crew coordination, and situation management 

based on knowledge of the operational environment, human performance limitations and 

capabilities, and cognitive vulnerabilities in real-world emergency and abnormal 

situations" (Burian, Dismukes, & Barshi, 2003, p. 1).  Their work suggest that stress and 

time pressure has undeniable effects on attention, memory retrieval, and problem solving, 

although the specific nature of these effects in the aviation domain is still under 

investigation. 

Stress training is one approach to optimizing performance in adverse situations.  

Empirical evidence presented in Chapter II indicates that stress training is both effective 

and efficient when properly paired with task training (Driskell, Johnston, & Salas, 2001; 

Friedland & Keinan, 1992; Johnston & Cannon-Bowers, 1996; Keinan, Friedland, & 

Sarig-Naor, 1990; Meichenbaum, 1993).  Other research presented indicates the potential 

for stress training to generalize to novel tasks and novel stressors (Driskell, Copper, & 

Moran, 1994; Driskell, Johnston, & Salas, 2001; Saunders, Driskell, Hall, & Salas, 1996; 

Thorndike & Woodworth, 1901). 

The present research project expands on these findings to further empirically 

define stress training's efficacy.  In addition, this research project examines the efficacy 

of VEs for introducing stress training and imparting flying skills.  This project tests the 

following three research questions: 

(1) Does stress training in VE transfer to a stressful simulator criterion session? 

(2) Does VE training generalize to a novel task and a novel stressor in the real 

physical world? 

(3) Do task skills learned in a VE transfer to a real world task? 
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These three research questions were tested (1) in an aviation context, (2) using 

relatively long-term acute stressors, (3) using an operational task, (4) using operational 

performance measures, (5) including expert performance evaluations, (6) measuring 

human physiological stress responses, (7) evaluating subjective appraisals of stress, and 

(8) presenting training in a low fidelity VE. 

C. CONTRIBUTIONS 

One potential general finding from these experiments is the gained knowledge 

and emphasis on training pedagogy.  Most researchers and learning theorists agree that 

the learning pedagogy, training development and implementation, and accomplishment of 

learning objectives are of utmost importance when considering a training system's 

efficacy (Caird, 1996; Clark, 2001).  For many years, researchers and engineers have 

attempted to enhance training by incorporating technology and, more specifically, 

increasing simulator fidelity.  Many current military and commercial flight simulators 

have convincing graphics, physics, and motion platforms with little empirical evidence 

for these technologies' training efficacy.  The National Research Counsel (Druckman & 

Swets, ed., 1988) states that "effective instruction is the result of such factors as the 

quality of instruction, practice of study time, motivation of the learner, and the matching 

of the training regiment to the job demand."  This thesis addresses some of these 

components of effective instruction. 

This research also provides insight into stress in general.  Very little is known 

regarding the effects that stressors have on human capabilities, moderation of stress, 

causes of stress, etc.  The generalization portion of the proposed research (see Chapter 

IV) sheds light onto the cognitive constituents of stress.  This research supports the 

notion that stress has structural characteristics separate from the surface characteristics 

(i.e., domain, individual differences, etc.) for which they interact.  More concerning this 

topic can be found in Chapter II. 

Most importantly, this research introduces new approaches to preparing combat 

troops for the inherently stressful environments they will surely face.  Machines are 

immune to emotional stressors, but as long as humans are asked to participate in combat, 
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the human entity will be a primary factor contributing to combat outcomes.  If 

combatants can focus all of their cognitive abilities to the tasks at hand while 

simultaneously imposing stress on the adversary, then training can impart an advantage to 

our troops before they even step on the battlefield. 

1. The "Sam-to-Sully" Paradigm 

On 15 January 2009, Captain Chesley "Sully" Sullenberger flawlessly piloted an 

Airbus 320, US Airways Flight 1549, carrying 155 people to a water ditching in the 

Hudson River.  The aircraft "Sully" was piloting struck a flock of large birds shortly after 

departure from New York's LaGuardia airport, resulting in the first ever commercial 

airliner water ditching with no fatalities.  His calm and controlling demeanor in the face 

of a highly stressful flight environment presents a case study for how to prepare someone 

for a stressful situation.  First, a review is needed of what skills, attributes, and training 

led to such a momentous accomplishment.  The laborious path between a young, novice 

(called “Sam”) to a highly skilled practitioner ("Sully") is then investigated and future 

considerations for streamlining this path are considered. 

Captain Sullenberger was possibly the most qualified person on the planet to pilot 

an Airbus 320 without engine power.  In an interview with Katie Couric, Captain 

Sullenberger stated, "in many ways as it turned out my entire life up to that moment had 

been a preparation for that moment" (Sullenberger, 2009, February 5).  He is a graduate 

of the United States Air Force Academy where he was a glider instructor and received the 

coveted Outstanding Cadet in Airmanship Award.  Following the Academy he excelled 

in pilot training, graduating first in his class and becoming an F-4 Phantom pilot.  After 

the Air Force, Captain Sullenberger was hired as a pilot for US Airways where he 

remained for 29 years.  In total, Captain Sullenberger has accumulated over 19,000 hours 

and over 40 years of flying experience. 

He also has contributed significantly to the field of Aviation Safety as a safety 

chairman for the Air Line Pilots Association and through participation on numerous Air 

Force and FAA aircraft accident investigations.  Captain Sullenberger was instrumental  
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in the creation of the FAA Advisory Circular, developed the cockpit resource 

management course at U.S. Airways and has co-authored NASA technical papers on 

error. 

There is no dispute that Captain Sullenberger was well prepared for the situation 

encountered on 15 January 2009—in fact, there is little else the passengers of that flight 

could have requested in a pilot that day.  Captain Sullenberger achieved a level of 

expertise throughout his career that can be described as "experienced-based expertise.” 

In contrast, “Sam” is a fictitious Senior in High School.  Sam has never flown an 

aircraft, but is capable, willing, and eager to learn.  As an aviation community, the best 

way to prepare Sam for a stressful situation like a water ditching of an Airbus 320 with 

155 people on-board is through experience-based expertise.  However, experience-based 

expertise is incredibly inefficient and impracticable.  It is costly and logistically 

impossible to train all pilots to this level of proficiency.  Therefore, the Sam-to-Sully 

paradigm encourages us to explore other alternatives to experience-based expertise.  This 

research project considers the feasibility of compartmentalizing the skill and emotional 

constituents of a stressful situation, followed by carefully and methodically merging these 

two elements in a total training system.  We explore the efficacy of training pedagogy 

that considers these constituents to more efficiently and effectively prepare “Sam” for the 

stressful situation in which Captain “Sully” found himself. 
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II. BACKGROUND AND RELATED WORK 

The alleviation of human error, whether design or intrinsically human, 
continues to be the most important problem facing aerospace safety. 

— Jerome Lederer 

Training in VEs is not a new concept.  The military has trained pilots in VEs for 

almost eighty years.  Surprisingly, VE training pedagogy is still misunderstood and the 

current VE training practices are mostly warranted by rule-of-thumb and status quo.  The 

primary reason for a dearth in VE and transfer research in general is the required cost and 

resources to perform such studies.  However, VEs have the potential to provide extensive 

long-term cost savings, more efficient training, and safer training, among many other 

advantages.  The empirical experiments presented in this thesis test the feasibility of VEs 

for introducing stress into training.  Therefore, in the first section of this chapter (Section 

A), VEs are defined and further advantages for using VEs in training are provided.  

Given the aviation context of this thesis, a brief history of the use of VEs in flight training 

is then provided.  These sections provide the support necessary to warrant VE flight 

training research and suggest benefits of such research. 

The experiments conducted in this thesis explore the transfer of training from a 

VE to a stressful transfer task.  Transfer of training is addressed in Section B of this 

chapter beginning with the definition and measurement of transfer of training.  Although 

training transfer is critical to the development and testing of any training system, such 

research is not always performed; the following sub-sections address why transfer 

research is scarce and suggests alternatives to transfer research for determining training 

efficacy.  The final subsection, "VE Factors Affecting Transfer of Training," assimilates 

Sections A and B to determine what features and components of VEs are pivotal to 

proper transfer of training research.  This final sub-section will shed light on the areas of 

VE transfer of training that are lacking empirical evidence, one of which is stress training 

in VEs. 
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The experiments presented in Chapters III and IV explore the efficacy and 

feasibility of incorporating stress in training.  Therefore, in an attempt to better 

understand the human responses to stress, Section C first defines stress.  A historical 

review of stress examines early pioneering work in stress up to and including recent 

stress discoveries.  Section D then explores various approaches to preparing trainees for 

stressful situations by introducing stress into training.  Finally, similar to the previous 

section, a model of stress training in VEs is presented and an analysis of factors that can 

affect stress within VEs is conducted. 

A. TRAINING IN VIRTUAL ENVIRONMENTS 

Virtual reality is defined as "a high-end user-computer interface that involves 

real-time simulation and interactions through multiple sensorial channels" (Burdea & 

Coiffet, 2003).  The synthetic environment in which VR takes place is referred to as a 

virtual environment, or an organization of sensory information that leads to perceptions 

of a synthetic environment and its contents as being non-synthetic (Bailenson, Yee, 

Blascovich, Lundblad, & Jin, 2007; Blascovich, 2002).  Blascovich (2002) further defines 

an Immersive Virtual Environment (IVE) as a VE that is arranged in such as a way as to 

"create a psychological state in which the individual perceives himself or herself as 

existing within the VE" (p. 129).  An example of an IVE is a flight simulator that enables 

a trainee to feel as if they are actually flying an aircraft (independent of how accurately it 

represents an aircraft).  The perception of immersion can be experienced in a full-motion, 

highly realistic flight simulator, or an IVE can also occur in mental rehearsal without any 

software or hardware implementation at all.  These two examples of immersion points out 

the reliance of immersion within a VE on the psychological state of the user, as opposed 

to the training system itself. 

There are two defining features unique to VEs.  First, a VE can be explored in real 

time, similar to real-world exploration.  Real-time exploration requires that as control 

inputs are made, the virtual system quickly translates inputs and the environment reacts 

appropriately.  The second characteristic of VEs is that a user may interact with objects 

and events in the simulation (Cobb & Fraser, 2005).  These objects may be other people 
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and objects, or it may simply be navigation within the environment.  According to these 

two features, a cinema experience is not a VE as the user passively watches scripted 

events unfold.  However, Blascovich (2002) may disagree with this assertion, again 

placing emphasis on the user's psychological state—if a participant feels immersed, then 

that alone qualifies any experience (e.g., books, dreams, movies, etc.) as an IVE 

experience.  Blascovich's definition further identifies the existence of a VE not within the 

technology, but rather the psyche of an individual. 

Presence is another concept that is relevant to VR.  Presence is described as the 

"[psychological] sense of being in the virtual, as opposed to the real environment" 

(Meehan, 2002, p. 645).  Presence is the primary measure for development of VR 

systems.  For example, a new, technologically advanced, and expensive VR training 

system has little value if it provides little presence to the user.  Blascovich (2002) defines 

social presence as a "psychological state in which the individual perceives himself or 

herself as existing within an interpersonal environment" (p. 130), further removing 

emphasis from technology to the individual user.  Despite the apparent importance of 

presence on VR design, there is still controversy surrounding the definition and 

measurement of presence.  Nash, Edwards, Thompson, and Barfield (2000) provide a 

review of both subjective and objective measures used to evaluate presence within VEs. 

Another important component of VEs is system fidelity, or the "extent to which 

the VE and interactions with it are indistinguishable from the participant's observations 

with a real environment" (Waller, Hunt, & Knapp, 1998, p. 130).  Fidelity can be parsed 

into three different types: equipment, environment, and psychological.  Equipment 

fidelity is the extent to which a training system physically represents a real world system.  

In the case of flight simulators, equipment fidelity is how realistic the physical cockpit, 

controls, and displays represent a real aircraft.  Environment fidelity refers to the 

situational cues a trainee receives from a training system.  In a flight simulator, the 

realism of external air traffic control communications in addition to other aircraft, 

weather, flight physics, and specific training scenarios can all be considered 

environmental fidelity.  Finally, psychological fidelity is the cognitive appraisal of a 

training system's realism, and is theoretically independent of the equipment and 
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environmental fidelity.  For example, a static aircraft mock-up may be very low in 

equipment and environmental fidelity; however, if a trainee considers it very realistic 

and/or past experience allows missing information to be cognitively "filled in,” then 

psychological fidelity can still be relatively high. 

Fidelity does not have to refer to an entire training system.  In fact, designing 

virtual training systems that are nearly identical to the real world, especially in the case of 

complex systems, can over saturate a trainee, quickly overloading human information-

processing capabilities.  In these situations, part-task training can be utilized to train 

specific elements of a system separate from other components.  Only once the 

subcomponents are learned and practiced to a certain level of proficiency, they are 

combined.  Other approaches increase total system fidelity as a trainee progresses in 

order to reduce overall complexity (Regian, Shebilske, & Monk, 1992).  Simplification, 

guiding, and adaptive training are other examples of altering fidelity to enhance training 

efficacy (Wickens, Lee, Liu, & Becker, 2004). 

1. Advantages and Applications of Virtual Environments 

Virtual Environments were chosen as a training medium in this thesis due to the 

number of advantages VEs have over traditional training systems.  The following section 

explores some of these advantages and applications of VEs.   

Virtual environments are particularly attractive for real world situations that are 

impractical because they are inherently dangerous (e.g., firefighting, surgery, etc.), too 

remote (e.g., planetary exploration/training, remote military regions, etc.), too small to 

enter (e.g., atomic structures, molecular studies, etc.), logistically difficult (e.g., network 

centric warfare, collaborative operations, etc.), unduly expensive (e.g., flight training, 

space operations, etc.), too difficult to control (e.g., social research) or non-existent (e.g., 

future systems; Caird, 1996; Péruch, Belingard, & Thinus-Blanc, 2000; Rose, Attree, 

Brooks, Parslow, Penn, & Ambihaipahan, 2000; Witmer & Singer, 1998).  In addition, 

VR is particularly attractive for training, because VR preserves "(a) visual-spatial 

characteristics of the simulated world, and (b) the linkage between motor actions of the 

student and resulting effects in the simulated world" (Regian, Shebilske, & Monk, 1992). 
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Related to learning, Saba Software, Inc. (2001) provides a review of e-Learning 

for training within a management domain.  They define e-Learning as "the creation, 

delivery, and management of learning using Internet tools and technology" (p. 2) 

including simulations and VEs.  They provide a number of advantages for implementing 

e-Learning including: e-Learning can take place anytime, anywhere allowing quick, 

convenient training especially at remote locations; learners can choose the mode that they 

prefer; e-Learning can provide monetary advantages over often costly classroom time; 

media content can be recycled cheaply with very low monetary and time costs; and 

training can be dispersed and used immediately. 

There is some disagreement about the effects that VEs, and media training in 

general, has on trainee motivation.  Some research indicates that media may not motivate 

users, and that "enhancing" training by incorporating technology can actually overload 

working memory (Clark, 2001).  However, VEs may prove beneficial in especially 

mundane tasks, where three-dimensional interaction may engage a trainee.  Salzman, 

Dede, and Bowen-Loftin (1999) found that IVE technology can be more motivating than 

traditional, two-dimensional training by utilizing multisensory cues to direct trainee 

attention.  Training media can also be applied dynamically using VEs for tasks like air 

traffic control, where controllers experience periods of overload/stress followed by 

periods of monotony. 

Wickens et al. (2004) provide many further advantages for implementing 

technology in training.  Traditional training systems using computer-based training, 

lecture-style presentation of information, or low fidelity simulations may only utilize one 

or two sensory modes, while IVEs can incorporate various mediums that can exploit the 

multiple resource theory by incorporating parallel processing into training.  Training 

technologies can also provide (1) immediate, timely feedback, (2) active problem solving 

support, (3) adaptive training by utilizing scaffolding, and (4) individually tailored 

training (e.g., intelligent tutoring systems). 

Finally, VEs are particularly attractive to researchers because virtual experimental 

manipulations are relatively easy and experiments are more easily controlled, all but 

eliminating confounding variables (Hoyt, Blascovich, & Swinth, 2003, p. 184; Péruch, 
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Belingard, & Thinus-Blanc, 2000).  For example, social psychologists are able to test 

psychological constructs that are nearly impossible to test in the real world, providing a 

medium for presenting participants with many various experimental illusions (Loomis, 

Blascovich, & Beal, 1999).  Similarly, VEs provide the "ability to implement contexts 

and relationships not possible to achieve in a traditional learning setting" (Bailenson, 

Yee, Blascovich, Lundblad, & Jin, 2007).  However, this advantage comes at a cost, as 

VEs rarely perfectly represent the physical world that they represent.  As VE technology 

improves, researchers are able to present participants with various modalities of precise 

information, alleviating any shortcomings in immersion.  Another solution to the fidelity 

problem is to improve psychological fidelity using creative experimental methodologies 

or isolating sensory channels of interest.  For example, VEs allow the continuous and 

precise tracking of participant location and behavior that is available for data collection. 

Given the current technological training capabilities, it is important to 

reemphasize the importance of training pedagogy first and foremost before the 

implementation of media and technology.  A sound training system construction, design, 

test, and evaluation is most important.  However, there are some tasks that are best suited 

for the implementation of media, making the implementation of virtual training systems 

task dependent.  Following are some examples of tasks that are best suited for the 

application of VEs. 

— In an inherently difficult task or long training program, embodied agents that 

teach and learn can be used adaptively to optimize a training system. This technique 

allows a learner to progress through an adaptive training system at his/her own pace. This 

can ultimately save time in the long run, and prevent negative transfer from students who 

learn at a slower pace. 

— In learning tasks where students learn together, some trainees are motivated by 

the performance of others. New research is showing that virtual co-learners can be used 

to enhance training (Bailenson, Yee, Blascovich, Lundblad, & Jin, 2007). These agents' 

behaviors can be manipulated to improve a learner's performance. 
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— Some tasks are very dynamic and spatial in nature. For example, flight 

simulations, architecture/engineering, and navigation tasks require an immense amount of 

spatial learning. Media and the use of visualizations can enhance training for these tasks. 

— Tasks that require real-time data analysis, and advanced/sophisticated data 

analysis techniques may be better served by media training due to their ease and 

capability of complex data analysis. 

— Tasks that are dangerous and/or expensive are better served by learning from 

media. 

— Tasks that require some level of social interaction may be better served by 

media, especially if they are remotely located away from other learners. An example of 

this is language or cultural education for military members. 

Despite these advantages and possible applications for VEs in training, Péruch et 

al. (2000) point out that there are also several drawbacks to the use of VEs including a 

"lack of realistic environmental modeling, slow image generation and rendering, narrow 

field of view, optical distortions, poor spatial resolution, etc." (p. 255).  As most of these 

drawbacks are technology-dependent, they are quickly being overcome by advancements 

in VE technology. 

Caird (1996) also stresses that VEs are only one of many ways to train people, 

and it is important to point out potential disadvantages of VEs.  First, VEs can be 

relatively expensive in the short-term.  A new VE built from the ground-up can consume 

exorbitant costs.  Building on existing technologies (e.g., the use of games for training), 

collaborative efforts, and life-cycle planning are alleviating some of these costs.  

Immersive VEs are also oftentimes unfamiliar to the general public, requiring basic VE 

training before system training can commence.  Continued VE proliferation is exposing 

the public to innovative training technologies making VEs more commonplace in the near 

future.  In the past, VE systems were notoriously unreliable, but as the field develops 

these shortcomings are being overcome, especially in terms of system interoperability 

and networking.  Given the before mentioned importance on fidelity, VE systems' display 

and interaction limitations are still far from the physical world.  As technologies and 
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implementation methodologies improve, physical and psychological fidelity likewise are 

improving, bridging the gap between the real world and VEs. 

This section provides many advantages and applications for training in VEs.  

Given the benefits of training in VEs, the research project in this thesis will primarily 

train participants in a low-fidelity flight simulator.  However, there is little empirical 

basis for VE implementation in aviation.  Given the aviation relevance of this thesis, VEs 

as a means for introducing flight training is reviewed in the following section. 

2. Virtual Environments for Flight Training 

The use of VEs for flight training is not a new concept.  The first flight simulators 

were introduced in the 1920s and were relatively rudimentary with no visual displays.  

The Link trainer is most often synonymous with the birth of flight simulators, and it 

featured a motion platform and working instruments to train students on instrument 

procedures.  Following the introduction of analog computers, the aircraft flight models, 

flight instruments, and simulators themselves were all driven by computers.  Limitations 

in simulator visual displays were quickly overcome with digital-processing, and 

simulators incorporated increasing levels of visual fidelity.  The advent of sophisticated 

simulator motion platforms were first introduced to train student pilots to utilize their 

vestibular senses in instrument conditions.  However, shortly after the vestibular system 

shortcomings were realized, motion platforms were utilized to introduce conflicting 

motion and visual cues to train non-reliance on the vestibular system.  A current 

movement is flight training is concerned with the use of PC-based flight simulators for 

flight training.  Currently all U.S. military flight training incorporates simulator training 

into its syllabus to some extent (Koonce & Bramble, 1998). 

The FAA currently defines a flight simulator as a device that— 

 (i) is a full-size aircraft replica; 

(ii) includes the hardware and software necessary to represent the aircraft in 

ground operations and flight operations; 
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(iii) uses a force cueing system that provides cues at least equivalent to those cues 

provided by a 3 degree freedom of motion system; 

(iv) uses a visual system that provides at least a 45 degree horizontal field of view 

and a 30 degree vertical field of view simultaneously for each pilot; and 

(v) has been evaluated, qualified, and approved by the Administrator. (ASA, 

2008) 

This definition places a large importance on simulator fidelity, and is mostly 

unsubstantiated by empirical research.  Both of these issues will be discussed in Section 

B below. 

Flight simulators are unquestionably beneficial for training flight skill and 

enhancing flight safety (McCauley, 2006).  Flight simulators are also an attractive 

alternative to aircraft flight time due to their significantly lower purchase price, lower 

operation cost, and increased safety (Salas, Bowers, & Rhodenizer, 1998).  Smode, Hall, 

and Meyer (1966) reviewed early flight simulator research to determine the efficacy and 

proper implementation of simulators.  They concluded that the effectiveness of simulator 

training was "as much a function of the way in which simulator is used for training as it is 

a function of degree and fidelity of simulation" (p. 146).  In a more recent literature 

review of 247 flight simulator studies, Hays, Jacobs, Prince, and Salas (1992) found that 

90% of their reviewed studies favored flight training combined with simulator training to 

flight training alone.  Further reviews of research pertaining to the transfer of skills and 

knowledge from flight simulators to aircraft is presented in the following section.  

B. TRANSFER OF TRAINING 

One of the most crucial yet challenging aspects of training development is the 

evaluation of training efficacy.  Training evaluation is the process of determining the 

extent to which knowledge, skills, and abilities developed in a training task are utilized in 

their intended environment, or transfer of training.  Transfer of training has been 

empirically studied for over 100 years by researchers in various fields including 

engineering psychology, human factors, learning theory, and management, to name a 
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few.  As Salas, Bowers, and Rhodenizer (1998) point out, due to the interdisciplinary 

nature of this line of research, an open dialog is required between these various 

disciplines.  The following review examines research from each of these disciplines to, 

first, further define transfer of training.  Secondly, common transfer or training 

measurement techniques are presented.  Lastly, factors that affect training transfer are 

presented.  The background presented in the last section is essential for determining the 

skills that may be transferred from a VE flight simulator to a stressful transfer task. 

Many researchers from various disciplines have attempted to define transfer of 

training.  Following are definitions from a variety of different disciplines: 

Does it train as well as, or perhaps, better than some other way we could use it? 

(Orlansky, String, & Chatelier, 1979) 

Degree to which learning one task is facilitated or hindered by prior or 

interpolated learning of another. (Roscoe & Williges, 1980) 

The degree to which trainees effectively apply knowledge, skills, and attitudes 

gained in a training context to the job (Baldwin & Ford, 1988) and subsequently 

maintain them over a period of time (Cheng & Ho, 1999) 

When learning in one context or with one set of materials impacts on performance 

in another context or with other related materials. (Perkins & Salomon, 1992) 

The effect that practice on one task will have on the performance of another task.  

(Abel & Merryman, 1987) 

Whether or not training carried out in a training environment transfers to the 

equivalent real world situation (Rose, Attree, Brooks, Parslow, Penn, & 

Ambihaipahan, 1998) 

The extent to which learning a new skill, or a skill in a new environment, 

capitalizes on what has been learned before.  (Wickens & Hollands, 2000) 

How skills and knowledge acquired in one domain transfer to another. (Wickens 

& Hollands, 2000) 
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Although some definitions generalize to imply an advantageous transfer of skills, 

transfer of training can result in a decrease in performance if negative transfer occurs.  As 

Osgood (1949) points out, when two tasks share the same stimuli or responses, transfer 

can occur (Roscoe, 1971); however, when two tasks share the same stimulus elements, 

but require different response mapping, the similarity paradox occurs (Osgood, 1949), 

and transfer will be negative.  The similarity paradox is especially prevalent if there is 

incompatibility between the new and old responses (Annett, 1998; Wickens & Hollands, 

2000).  Negative transfer is a very real concern in the case of military training.  For 

example, a motion simulator for flight training that gives a very real, yet slightly 

inaccurate representation of motion may result in an increase in simulator performance 

(i.e., both training and transfer tasks exist within the simulator, therefore they are 

identical and invariably share stimuli and responses).  However, when the trainee is 

transitioned to a real aircraft that behaves in a slightly different manner than the 

simulator, the stimuli and responses now differ resulting in negative transfer.  Training 

fidelity is an apparent remedy for negative transfer, but as shown in the below literature 

review (see "VE Factors Effecting Transfer of Training"), fidelity may not always be the 

solution and other safeguards may need to be employed. 

1. Transfer of Training Measurement 

"The ultimate purpose of asking the training effectiveness question is to improve 

training" (Blaiwes, Puig, & Regan, 2001), and as Roscoe and Williges (1980) and 

Wickens and Hollands (2000) point out, training effectiveness can be quantitatively 

measured using three different methods: percent transfer, transfer effectiveness ratio, and 

training cost ratio.  These three methods are instrumental for determining stress training 

efficacy in this thesis.  Therefore, each of these methods will be described here. 

Percent Transfer  

The first measurement technique, percent transfer, simply tells how much 

information is learned in a training system when compared to a group that receives no 

training (see Figure 2.1).  The computation is: 
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where: 

Yo = time, trails, or errors required by a control group to reach a performance 

criterion after zero training units on a prior or interpolated task (i.e., "control 

time," Wickens & Hollands, 2000; see "Control Group" in Figure 2.1); 

Yx  = corresponding value for an experiment transfer group having received X 

training units (i.e., "transfer time," Wickens & Hollands, 2000; see "Training 

Group" in Figure 2.1). 

     (Roscoe & Williges, 1980) 

 

 

Figure 2.1  Transfer of training measurement 

For example, consider the following flight training context: a group of novice 

students receives a predetermined and controlled amount of simulation training (say 10 

hours), and then following a retention interval their time to reach a performance criterion 

(like hours to solo in an aircraft) is measured (e.g., Yx = 12 hours).  Another group of 

novice students receives no simulation training time, and their time to solo also is 

measured (e.g., Yo = 20 hours).  The percentage of transfer, or savings, for this example 

is: 
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In other words, 40% of the training that the simulation group received was 

transferred and utilized in the real world, flying task; or those students that participated in 

simulation training were able to solo in 40% the time of those with no training.  It is 

important to point out that percent transfer can also express negative transfer if a training 

system results in a decrease in transfer performance.  For example, if the flight simulator 

in the above example resulted in a mean solo time of 28 hours (Yx = 28 hours), then the 

percent transfer would be -40%. 

However, as Roscoe and Williges (1980) note, percentage of transfer calculations 

provide no insight into the amount of practice on the training task (see "Training Period" 

in Figure 2.1) and, therefore, provide no conclusions about transfer effectiveness and 

training efficiency.  Looking at the example above, if the same results were observed 

after students were required to invest an exorbitant amount of training time (e.g., 40 

hours of simulation time), a positive percentage of transfer of 40% would still be 

observed. 

Transfer Effectiveness Ratio 

The transfer effectiveness ratio (TER) takes into consideration the amount of time 

spent in training, and is expressed in the following equation: 

 

 

 

 

 

 



 24

programtrainingintimegrouptransfer
savingsofamount

X
YY

TER xo =
−

=     (Equation 2) 

where: 

Yo = see Equation 1 above; 

Yx  = see Equation 1 above; 

X  = time, trials, or errors by an experimental transfer group during prior or 

interpolated practice on another task (i.e., "time in training," Wickens & Hollands, 

2000).  

      (Roscoe & Williges, 1980) 

 

Given the flight training example above, if the transfer group spends 10 hours in 

the simulator training, 
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In other words, for each hour spent in training, .8 hours are saved in transfer.  

Comparing this to the hypothetical situation where trainees spend 40 hours in the 

simulator, 
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A clear reduction in transfer effectiveness is observed.  Also notice that if the time 

in training is equal to or less than the amount of savings (e.g., X ≤ 8 in the above 

example), then TER ≥ 1.  If the TER is less than 1, the training system is less efficient 
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than no training at all.  Although Wickens and Hollands (2000) note, a TER of less than 1 

may still be advantageous if (1) the training system is safer, and (2) the training system is 

cheaper. 

Training Cost Ratio 

"The effectiveness of training cannot be addressed meaningfully without also 

considering its cost" (Orlansky, String, & Chatelier, 1979).  The training cost ratio (TCR) 

is used to determine the cost effectiveness of a training system, and is calculated as 
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)(argcos
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(Wickens & Hollands, 2000) 

 

The cost effectiveness of a training system is then determined by multiplying TER 

by TCR.  A program is cost effective if TER x TCR > 1 (Wickens & Hollands, 2000).  

However, even if a training program is considered cost ineffective there may still be 

advantages of implementing such a program, as is shown previously regarding the 

advantages of virtual training systems. 

Up until now, transfer of training has been discussed in general terms, using 

"training systems" to describe training in the real world (e.g., classroom training), 

simulation training (e.g., flight simulators), computer based training, etc.  However, as 

mentioned previously, a recent trend in training system development is the utilization of 

VEs to provide training.  Even given recent applications of this technology to training, 

very little is understood concerning the efficacy of virtual training systems measured in 

terms of transfer of training.  The following section will address this current research 

deficit.  
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2. Barriers to Transfer of Training 

There is an empirical vacuum in the literature on transfer of training.  One 

motivation for conducting the empirical research in this thesis is to contribute to an 

empirical foundation for transfer of training.  Despite the widespread use of VEs for 

training purposes, Caird (1996) points out that this empirical vacuum is "exacerbated by 

studies that have used poor experimental designs, small sample sizes, or suffer from 

multiple confounding variables" (p. 127).  In addition, "there have been relatively few 

attempts to investigate empirically the virtual to real transfer process in terms of what sort 

of training shows transfer, in what conditions, to what extent, and how robust the 

transferred training proves to be" (Rose, Attree, Brooks, Parslow, Penn, & 

Ambihaipahan, 1998, p. 69).  Some researchers have provided potential reasons for the 

lack of transfer or training research (Blaiwes, Puig, & Regan, 2001; Caird, 1996; Darken, 

2009), and a summary of these reasons follows.    

—Research has shown that training fidelity can enhance transfer of training.  

Increasing training fidelity is typically limited by technology and system cost, and 

surplus system costs are typically spent on operational systems as opposed to their 

training systems. Therefore, the fidelity required to enhance transfer of training and, thus, 

conduct a transfer of training study is typically not available. 

—Although training fidelity can enhance transfer of training, no research has 

conclusively shown that the medium of a training program impacts learning outcomes.  

The lack of empirical evidence linking medium with training efficacy has decreased the 

motivation for performing future transfer of training studies.  Until novel alternatives to 

fidelity are researched for enhancing transfer of training, future transfer of training 

studies may be infeasible. 

—Although physical fidelity is directly observable, evaluated, and analyzed, 

psychological fidelity is not. A system can look and feel exactly like the system it is 

meant to train, but if the user does not perceive it to be the same, then there can be a loss 

in simulation effectiveness. The difficulty in observing psychological fidelity places 

speculation on transfer of training results.  Psychological fidelity also emphasizes the 
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individual confounds in transfer research—two individuals may judge the psychological 

fidelity of a training system very differently. 

—Liability of end users is a concern in transfer of training studies.  To perform a 

true transfer of training study, the training effectiveness must be measured in the real 

world.  To do so, a participant must be trained in the new and often unverified training 

platform, and then allowed to operate the real system.  If the alternate training system is 

inadequate, or negative training occurs, the end user could be at risk.  

—Transfer of training studies have been performed inappropriately in the past, 

decreasing the general validity of these types of studies to system owners.  “Studies that 

have used poor experimental designs, small sample sizes, or suffering from multiple 

confounding variables” (Caird, 1996) have contributed to this impression.  For example, 

Tate, Sibert, and King (1997) conducted a transfer of training study to determine the 

efficacy of VE training for shipboard firefighting.  They trained Navy firefighters in an 

IVE training program and compared their performance (time to locate fire, number of 

wrong turns finding the fire, time to fight the fire, and anecdotal evaluations) in an actual 

shipboard firefighting task to trainees who received traditional Navy firefighting training 

(mission review, study of ship maps, etc.)  Data trends indicated that VE training resulted 

in lower elapsed time to locate the fire and put it out, less wrong turns, increased 

confidence, and better ability to concentrate.  However, statistical analyses were 

inconclusive, because only 12 participants were recruited, which were then assigned to 

one of the two training groups. 

—To adequately test a system it is essential that representative operators are used 

for testing, and "access to an appropriate community of trainees is often problematic" 

(Darken, 2009). This is due to either the unavailability or exclusivity of trainees.  The 

sample size quandary also often results in the exclusion of a control group.  As Roscoe 

and Williges (1980) point out, at least two groups are required for proper transfer studies: 

"an experimental group previously trained on another, usually similar, task is compared 

with the learning performances of a control group having no special previous training" (p. 

182). 
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—A proper transfer of training study should at some point involve subject matter 

experts either for the study's design, implementation, or analysis. Similar to trainees, the 

availability of specialized experts often is limited.  Subject matter experts also introduce 

subjective measures to a transfer study.  Although subjective measures do provide insight 

into trainee preferences, they seldom provide any indication of training efficacy.  Case in 

point, there is virtually no empirical proof for the benefit of motion-based flight 

simulators, although many researchers have been able to indicate pilots' preference for 

such trainers (McCauley, 2006).  

 —There are a large number of training systems to be evaluated, and this 

magnitude prevents the use of transfer of training studies for all of them (especially 

considering the previously mentioned technology, trainee and SME availability 

constraints). Therefore, proper transfer of training studies are often reserved for high-

profile projects, or programs with larger budgets. 

—A transfer of training study requires measurement of performance in a real-

world setting.  Field research like this often provides difficulty when collecting objective 

data.  Alternatively, subjective (and arguably less descript) data is often collected.  Worse 

still, in many cases no performance measures are taken in the field at all, making the 

efficacy of a training system entirely speculative.  

—Transfer of training studies not only cost a lot financially, but they consume 

large amounts of time and resources.  Similarly, within a VE training system, a world 

model must be developed before a transfer of training study is conducted. These models 

can be very costly and time consuming to construct before the training system is even 

tested and approved. 

—Because of the cost of transfer of training studies, many organizations can not 

afford to produce/design their own unique training system. Therefore, many 

organizations purchase existing generic training systems which have not been validated 

for their specific needs. 

—Technological limitations hinder proper transfer of training research.  Kozak, 

Hancock, Arthur, and Chrysler (1993) conducted a study to determine the amount of VE 
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transfer on a spatial pick and place task.  They concluded that “learning did not transfer 

to the real-world task” (p. 782), and what was learned in the VE was “specific only to the 

context of virtual reality” (p. 782).  However, each participant was given 20 minutes of 

individual instruction and practice with a VE system (unrelated to the research task), 

indicating a general unfamiliarity with VR and/or a counterintuitive VE design.  It is 

unknown how much this apparent counterintuitive training environment affected the 

amount of transfer.  The VR system also incorporated no tactile feedback, which is very 

beneficial for picking and placing of objects in a VE, and there was a noticeable lag 

within the VE training system.  These shortcomings are certainly a result of the VR 

technology available in 1993, and accordingly the results should be interpreted with some 

reservation. 

—Transfer of training studies are very susceptible to confounding variables and 

individual differences.  Given trainee and SME availability issues, studies typically have 

small sample sizes greatly exacerbating exasperating these influences. Similarly, 

technological capabilities can affect transfer of training studies, as different systems 

introduce differential amounts of system and task error. 

—"Transfer studies are rarely part of the system design or integration cycle," 

(Darken, 2009) decreasing the likelihood that program managers will spend superfluous 

funds on them. 

—As Darken (2009) points out, the most critical reason why transfer of training 

studies are not as common is the current cultural view of training. "The training 

community still views training as a 'thing', not an outcome," and decision makers 

typically get influenced by technological capabilities before consideration is put on the 

human design of training systems. 

—Studies typically are performed with college students performing a specialized, 

and typically non-stressful task,  preventing  generalization  of  results  (Bliss, Tidwell, & 

Guest, 1997).  As Baldwin and Ford (1988) point out, representative samples  

may be vital to transfer of training research. 
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—Some relevant transfer of training studies are 'lost' in other fields where they are 

considered "learning" or "education" (Kort, Reilly, & Picard, 2001).  Inconsistent 

definitions of both transfer of training and VEs also exist in other fields of research.  For 

example, Wagner and Campbell (1994), in a management context, use "virtual 

environments" to refer to an "outdoor-based experiential training program" in which 

participants practice leadership and management skills in an outdoor environment (e.g., 

"ropes course").  Furthermore, they refer to transfer of training from a VE as the skills 

learned in outdoor training transferring to a work situation.  Finally, they provide 

guidelines for the implementation of such "virtual reality activities" without mention of 

any technology associated with typical VR apparatuses.  These definitions are 

inconsistent with commonly used definitions presented above. 

—Results of transfer of training studies are often task dependent, although 

Driskell et al. (2001) provide evidence that learning can transfer to novel tasks. 

The research presented in this thesis attempts to learn from the difficulties 

encountered in past research on training transfer.  This project's experiment designs were 

constructed keeping these barriers to transfer of training in mind. 

3. Alternatives to Transfer of Training Research 

In order to alleviate some of the above barriers to transfer research, alternatives to 

traditional transfer of training studies have been proposed and empirically evaluated.  

Two of these alternative methods, pseudo-transfer and backwards transfer, are discussed 

here. 

Pseudo-Transfer 

Some VE transfer of training studies measure transfer performance in a simulator 

rather than the real world.  Pseudo-transfer studies are mostly done for systems in which 

real-world performance measures are either impractical or too costly.  Aviation is one 

discipline in which pseudo-transfer research is prevalent due to the danger of practicing 

some abnormal or emergency scenarios in a real aircraft, and the cost associated with 

flight time.  For example, Lintern and colleagues performed a series of pseudo-transfer 

studies to test the effects that flight simulators have on both air-to-ground attack and 
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landing performance (Lintern, Sheppard, Parker, Yates, & Nolan, 1989; Lintern, Sivier, 

& Roscoe, 1990; Lintern, Taylor, Koonce, Kaiser, & Morrison, 1997; Lintern, Thomley-

Yates, Nelson, & Roscoe, 1987).  In these studies, participants were first trained in 

simulators varying in physical fidelity, scene detail, field of view, and augmented 

feedback.  Following their simulator training, trainee's performance was tested in the 

simulator. 

Another approach to pseudo-transfer research is exemplified by Loftin and 

Kenney (1994) to assess the “first large-scale implementation of VE technology for 

training personnel for a ‘real’ [space] mission” (p. 2).  They performed an actual space 

mission following VE training of over 105 controllers and operators.  However, they 

were unable to collect any empirical measures in the transfer task (repairing the Hubble 

space telescope), and measured the efficacy of their training using subjective 

questionnaires. 

In pseudo-transfer studies, positive transfer does indicate that information was 

learned in the simulator.  However, these results should be interpreted with some 

reservation, as the transfer performance gives no definitive indication of transfer to the 

real-world task.  For this reason, there are many oppositions to pseudo-transfer studies.  

Salas, Bowers, and Rhodenizer (1998) point out "the determination that the training is 

effective should come from the trainee's performance rather than the performance of the 

simulation" (p. 203).  Further, the trainee's performance should be observed in the 

transfer task with representative participants.  Only when transfer research is conducted 

in this manner, can the efficacy of a simulator be definitively defined. 

Pseudo-transfer research may be appropriate for exploring empirical relationships 

prior to conducting more elaborate and costly true transfer research.  For this reason, this 

thesis utilizes a pseudo-transfer study (see Chapter III) to test relationships between stress 

and transfer of training prior to testing these effects in flight. 

Backwards Transfer 

Another alternative to traditional transfer research is backwards transfer, where 

participants are first trained in the real world and then tested in a training system (Adams 
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& McAbee, 1961).  The backwards transfer  approach is much more feasible for a system 

in which users are already proficient, and a new training system is implemented (e.g., 

flight simulators).  The backwards transfer paradigm relies on Osgood's (1949) similar 

elements theory, indicating that regardless of the direction of transfer, if two tasks share 

similar elements then training will occur and the training system will be effective for 

those tasks.  Therefore, if an expert operator performs adequately in a simulator (i.e., 

positive backwards transfer), then the simulator may be sufficient, and transfer from the 

simulator to the real world also is expected.  However, if the similar elements paradox 

occurs and the training system is not congruent with the real-world task, negative 

backwards transfer will occur evidenced by a decrease in simulator performance when 

compared to real-world performance.  The decrease in simulator performance is thought 

to be an indication of an inappropriate or ineffective simulator. 

Few empirical studies have validated the backwards transfer paradigm.  Kaempf, 

Cross, and Blackwell (1989) used a backwards transfer study to evaluate an AH-1 flight 

simulator for training emergency touchdown maneuvers (ETMs).  Instructor pilots that 

were highly proficient in ETMs performed the maneuver in the AH-1 simulator.  Results 

found negative backwards transfer, with an unsatisfactory SME rating of 82%, and 53% 

of simulated EMTs resulting in a crash.  These findings in addition to unsatisfactory 

subjective participant evaluations resulted in the authors determining the simulator 

unsuitable for training ETMs. 

Stewart (1994) conducted a similar study where 10 experienced AH-64 pilots 

performed simulator missions with no preflight orientation or warm-up.  For the most 

part, the pilots were able to meet performance criteria for a variety of flying tasks in the 

simulator.  Backwards transfer, in conjunction with mostly positive subjective ratings, 

provides insight about the efficacy of this particular flight simulator. 

As Adams and McAbee (1961) and Stewart (1994) point out, backwards transfer 

studies are not limited to highly experienced, expert operators.  In fact, by manipulating 

the level of operator experience, correlations can be determined between experience and 

trainer performance, although there is little research in this area.  In addition, in terms of 

flight simulators, these researchers suggest that total flight time rather than time in type 
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be used as a measure of pilot expertise.  Total time measures determine likelihood of 

general piloting skills transferring to the simulator rather than skills in the particular 

airframe of interest. 

4. VE Factors Affecting Transfer of Training 

There are many factors that may affect transfer of training.  Baldwin and Ford 

(1988) present a model of the transfer process that concisely outlines the relationships 

between training inputs, training outputs, and transfer of training (see Figure 2.2).  

Although their model is a management training approach to transfer, it provides a useful 

framework for the definition of transfer of training in general.  Baldwin and Ford also 

present three categories of training inputs in their transfer process: training design, trainee 

characteristics, and training environment.  Given that a training system's efficacy is 

reliant on its inputs, these three levels of analysis were used for the construction of the 

empirical research conducted in this thesis.  Following is a review of training transfer 

research using these three inputs as levels of analysis.  
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Figure 2.2  A model of the transfer process (adapted from Baldwin & Ford, 1988) 

 

Training Design 

Training design is the most thoroughly researched input for training transfer.  

Similar to Osgood (1949), Thorndike and Woodworth (1901) first demonstrated that 

training systems and the real world must share identical elements in order for positive 

transfer to occur.  They asserted that, even if the training and transfer tasks differed 

somewhat, positive transfer would occur if the two tasks shared some identical elements.  

Transfer of training was further found to be dependent on the number of sensory and 

motor elements shared between the training and transfer task (Rose, Attree, Brooks, 

Parslow, Penn, & Ambihaipahan, 2000; Thorndike & Woodworth, 1901). 

When designing training systems, it is imperative to first evaluate the cognitive, 

physical, and emotional elements of the real world task.  Darken (2006) recommends 

accomplishing this by first conducting a cognitive task analysis of the task to be trained 

followed by a human ability inventory.  By comparing these two products and pairing 
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human abilities to training tasks, deficiencies in a training system's design can be 

determined.  Using Darken's approach, the training for this research project was 

constructed by, first, considering the elements of the transfer task.  The training was then 

constructed to incorporate these tasks.  Finally, session dry runs were conducted to ensure 

that participants could accomplish the tasks given the training they received. 

Another important question is how closely should a training system represent the 

real world transfer task?  When considering fidelity for training design, most learning 

theorists agree that the learning pedagogy, training development and implementation, and 

accomplishment of learning objectives are of utmost importance for a training system's 

efficacy (Caird, 1996; Clark, 2001; Cobb & Fraser, 2005; Salas, Bowers, & Rhodenizer, 

1998), although little empirical evidence supports these claims.  The National Research 

Council (Druckman & Swets, ed., 1988) states that "effective instruction is the result of 

such factors as the quality of instruction, practice of study time, motivation of the learner, 

and the matching of the training regiment to the job demand"—not necessarily on the 

incorporation of fidelity.  Furthermore, design should be directed by pedagogy, not 

technology—training systems should be constructed with a clear view of how they 

support learning and ensure that learning requirements are foremost (Mayer, 2005; 

Moshell & Hughes, 2002).  Other researchers have gone so far as to say "the closer the 

similarity—the fidelity between the simulator and the aircraft—the more effective the 

instruction" (Dion, Smith, & Dismukes, 1996, p. 38).  Following is research supporting 

these two different arguments. 

In two quasi-transfer studies conducted by Lintern and colleagues (Lintern, 

Roscoe, Koonce, & Segal, 1990; Lintern, Sivier, & Roscoe, 1990) students were trained 

landing skills in low-fidelity flight simulators.  They found that students soloed in less 

time than control conditions (i.e., no training) after as little as two hours of simulator 

training.  They also found that, for low-fidelity simulator transfer, pictorial displays were 

more effective than symbolic displays.  Lastly, transfer was further enhanced by 

supplementing low-fidelity simulators with augmented reality.  Both studies conclude 

that fidelity has no effect on skill transfer.  In addition, by adhering to specific principles 

of augmented feedback, reducing simulator fidelity may actually aid in training. 
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Taylor and colleagues (Taylor, Lintern, Koonce, Jefferson, Kaiser, & Morrison, 

1991; Taylor, Lintern, Koonce, Kunde, Tschopp, & Talleur, 1993) not only found that 

low-fidelity simulators were suitable for training, but low-fidelity simulators actually out-

performed higher-fidelity simulators.  Taylor et al. (1991) taught landing skills to flight 

students in either a low-scene or a moderate-scene detail simulator and transfer 

performance was assessed in an aircraft.  Students trained in the low-scene condition 

outperformed the moderate group in the number of aircraft landing training sessions 

required and instrument pattern performance.  Taylor et al. (1993) also taught participants 

takeoff, closed patterns, and ILS procedures in simulators varying in scene detail and 

field-of-view.  After measuring aircraft transfer performance, they concluded that a low-

detail scene and a wide field-of-view was superior to the other combinations. 

Waller, Hunt, and Knapp (1998) performed a study to test the effects that the VE 

interface (physical fidelity) has on the transfer of navigation skills.  During the training 

phase of their study, their participants explored a 14-foot x 18-foot maze using their 

respective training method—a real world group explored the real test maze, a map group 

studied a map of the maze, a desktop group explored a model of the maze on a 21-inch 

color monitor, and an IVE group explored the same model using an HMD.  During six 

different test trials, participants navigated the real maze blindfolded, attempting to follow 

the same predetermined route that they experienced in training.  Transfer of training was 

measured as time to navigate the maze (touching predetermined waypoints along the 

way) and errors while navigating (hitting walls and following an incorrect path).  Finally, 

in an integration task using the same waypoint locations, two walls of the maze were 

moved and blindfolded participants were asked to navigate the waypoints in a slightly 

different order than before; a true/false test was given to test their acquisition of new 

maze knowledge.  Waller et al. found that, in general, participants that trained in the real 

world had superior performance to all other training conditions for early test trials.  

Further, participants in all VR conditions performed worse during these initial trials than  
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those in both the real world and map conditions.  However, the IVE-trained participants' 

performance drastically improved during later test trials (see Trainee Characteristics 

below). 

Péruch, Belingard, and Thinus-Blanc (2000) performed two transfer experiments 

in a natural environment using a college campus as their test environment.  In the first 

study, rather than manipulating the physical fidelity (Waller, Hunt, & Knapp, 1998), they 

manipulated the environment fidelity, using a rich, medium, or poor VE model of the 

college campus.  They allowed three groups of 30 participants to explore the three 

different VEs and subsequently measured their ability to indicate the direction, travel 

distance, and direct distance to target objects in the real environment.  They determined 

that the rich and medium groups outperformed the poor-fidelity group in direction and 

travel distance performance, indicating a possible reliance on an environment grid (the 

poor model did not incorporate campus roads) for spatial knowledge transfer.  In their 

second experiment, they compared real world training to VE training using a high fidelity 

model of the same campus as the previous study.  Two groups of sixteen participants 

were allowed to explore their respective training environment, and were tested using the 

same dependent measures as the previous study.  Although they found the real 

environment training more conducive to transfer of training, they did observe transfer 

from the VE group. 

Wilson, Foreman, and Tlauka (1997) attempted to test the efficacy of a low-

fidelity computer-based simulation for spatial knowledge transfer to an office building 

that was trained by either real exploration or on a computer-based simulation.  Their VE 

was not highly immersive, but it was interactive and modeled to-scale.  A control group 

that received no training also was used.  The real exploration group was allowed to freely 

explore the building while experimenters pointed out six target objects (e.g., specific 

doors, fire alarms, etc.)  The computer group explored the building using the VE and the 

same virtual targets were identified.  Each exploration group (including the control 

group) was then further divided into two test groups: either real building testing or virtual 

testing.  Testing included (1) a pointing task that required Euclidean distance estimations 

to the obstructed target objects, (2) a route estimation task that required a distance 
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estimation of a provided route through the building, and (3) a freehand drawing of the 

building.  Depending on the perspective building floor that was tested, the real training, 

in general, resulted in better transfer of spatial knowledge than the VE training, and the 

VE training resulted in better transfer than the control group.  

In summary, many studies have shown effective transfer of training from low-

fidelity simulators.  Despite these findings, many designers are over-reliant on high-

fidelity simulation and customers also demand such systems.  This situation has led to the 

increasing misuse of simulation to enhance learning of complex skills.  Given the 

empirical evidence supporting transfer from low-fidelity simulators, the research 

apparatus in this project incorporates a low fidelity flight simulator.  Low-fidelity 

simulators also introduce a certain level of experiment control into a research design.  By 

limiting the simulator's displays and controls to only what is needed for the given tasks, 

research participants are less distracted by irrelevant information.  For this reason, the 

simulator in this research project was simplified to include only pertinent information for 

the task (see Chapters III and IV). 

Trainee Characteristics 

Baldwin and Ford's (1988) transfer model also identifies trainee characteristics as 

an important training input (see Figure 2.2).  The first trainee characteristic that is 

apparent when designing a training system is the trainee skill level, differentiated by 

Dreyfus' (2002) stages of learning: novice, advanced beginner, competence, proficient, 

and expertise learners.  Each of these learner types can respond to a training system 

differently.  For example, a high fidelity trainer for a complex system (e.g., a modern 

flight simulator) may be inappropriate for a novice learner as their information processing 

capabilities are quickly surpassed with a surplus of new information and stimuli.  

Likewise, an expert learner (e.g., a highly experienced aircraft pilot) may quickly become 

complacent in a classroom setting discussing basic flight information. 

Darken and Banker (1998) tested the effects that trainee ability (beginner, 

intermediate, or advanced) has on VE navigation training transfer.  Fifteen participants 

were recruited to test transfer of training from a high fidelity VE of a 1200x700 m2 area 
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in an outdoor, natural environment, sport orienteering course.  All of the participants 

were trained using a map in addition to the VE, the real environment, or using a map 

only.  After exploring the environment with their respective training method, participants 

were tested in a sport orienteering task that requires navigation through a natural 

environment using a map and compass to find natural landmark waypoints in a prescribed 

sequence.  Task performance was measured as deviations from the route, distance off the 

path when a deviation occurs, and the number of times the map and/or compass are 

referenced.  Their results indicate that the ability level of the participants was more 

important to navigation performance than the training method with the intermediate users 

benefiting from the VE training method more than the advanced or beginner users. 

Hays et al. (1992) meta-analysis also investigated skill level and reported that 

flight simulator training that allowed trainees to progress at their own pace was found to 

be advantageous.  A customized approach like this supports the assertion that individual 

differences are certainly a factor that affects transfer of training from VEs.  Given the 

effects that skill level has on transfer performance, skill level was controlled in the 

current thesis research.   In addition, objectively defining skill levels can be problematic 

(e.g., what constitutes an "expert" pilot?).  Therefore, novice participants, which are 

easily defined as having no experience, are exclusively used in this research project. 

Another factor that may vary between trainees is the amount of exposure to a 

training system.  In their review of flight simulator studies, Carretta and Dunlap (1998) 

found that real world performance improved as the number of simulator sorties increased, 

although this gain leveled off after approximately 25 simulator missions.  Lintern and 

colleagues (Lintern, Sheppard, Parker, Yates, & Nolan, 1989) found similar results, 

concluding that little additional benefit was found from simulator training after 24 

training trials.  In Waller et al., (1998) navigation study (see above) a sixth condition, 

IVE-long, was added where participants trained in the VE for longer than the other 

training groups.  By the sixth test trial, the long VE training group's performance equaled 

the real world group, and was better than the other training groups (map, desktop, and 

VE).  These results can not be attributed to learning during the test trials, as the control 

group was far worse than all other groups for all test trials.  Waller et al. (1998) conclude 
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that "when participants are allowed only short exposures, VE training may be no more 

effective than training with a map, and immersive VE training may be no more effective 

than a desktop VE."  However, with more exposure, VE training may equal or even 

surpass map and real world training. 

These two apparent conflicting views on simulator exposure present an interesting 

property of training in VEs.  Due to relative unfamiliarity with VEs (when compared to 

the real, physical world) users may require sufficient training trials to become familiar 

with the VE (see Figure 2.3, A).  However, once VE familiarity is achieved, as Waller et 

al. indicated (1998), VE training can quickly equal or surpass other training methods 

including real world training (B).  After all of the possible skills and requisites are 

obtained from the simulator, relatively low fidelity may deter from further retention and 

real-world training may be required for subsequent skills acquisition (see C; Carretta & 

Dunlap, 1998; Lintern, Sheppard, Parker, Yates, & Nolan, 1989). 
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Figure 2.3  VE training exposure model 

The theoretical model presented in Figure 2.3 has important implications for the 

research in this thesis.  The VE flight training provided in this thesis can be represented 

by the dashed line.  The participants in this research performed VE training until reaching 
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criterion level is reached, this model indicates that a learning curve may still be achieved 

during the real-world transfer task (after C). 

A final factor concerning trainee characteristics is gender differences.  Very little 

research has investigated gender differences pertaining to transfer from VEs, but Waller 

et al. (1998) found that women performed consistently worse than men on transfer of  

navigation skills from VEs.  More research is needed to determine gender difference for 

VE transfer.  This research project evaluates gender as a covariate in statistical modeling 

(see Chapters III, IV, and V). 

Other trainee characteristics such as ability, personality, motivation, and other 

individual differences still require attention regarding transfer of training research.  As 

transfer of training is better understood with sound empirical research, these 

characteristics will eventually need to be addressed to better understand and enhance 

training efficacy. 

Training Environment 

Training environment is an important training input (Baldwin and Ford, 1988; see 

Figure 2.2).  Related to environmental factors, many researchers are finding that transfer 

of training is very task dependent.  For example, fidelity may be more crucial for highly 

dynamic, visual-spatial tasks (e.g., an aircraft pilot) than for more mundane, cognitive 

tasks (e.g., a flight engineer).  Although there may be underlying training constructs that 

equally effect many different domains, the task for which a training system is developed 

and its associated, unique training requirements should not be overlooked. 

Given the aviation context of this thesis, it is important to explore research 

relevant to the transfer of flying skills from flight simulators.  Four comprehensive 

reviews spanning 59 years have evaluated transfer of training research pertaining to 

aviation.  First, Orlansky, String, and Chatelier (1979) surveyed 34 studies from 1939 to 

1977 that addressed transfer of flying skills from flight simulators.  Their review found a 

median TER of 0.48 and determining that "pilots trained in simulators needed less time in 

aircraft to perform acceptably than pilots trained only in aircraft" (p. 101).  Hays, Jacobs, 

Prince, and Salas (1992) performed a meta-analysis of 26 flight simulator transfer studies 
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from 1957-1986.  They found that "90% of the experimental comparisons favored 

simulator and aircraft training over aircraft training alone" (p. 73).  They also found little 

support for the implementation of motion systems for flight training, a finding that other 

researchers have observed (Bürki-Cohen, Soja, & Longridge, 1998; Hays, Jacobs, Prince, 

& Salas, 1992; McCauley, 2006; Salas, Bowers, & Rhodenizer, 1998; Vaden & Hall, 

2005).  Finally, Carretta and Dunlap (1998) reviewed 13 flight simulator transfer studies 

and found that simulators facilitated the training of landing skills, bombing accuracy, and 

instrument and flight control.  

Bell and Waag (1998) performed a literature review of 17 studies evaluating the 

effectiveness of flight simulators for training combat skills, and organized their review 

according to three general combat tasks.  First, they reviewed literature that suggests that 

flight simulators are effective at transferring air-to-ground, conventional weapons 

delivery skills.  Bell and Waag found insufficient data pertaining to interdiction and close 

air support missions, which prevents transfer determinations to be made for these tasks.  

However, more recent demonstrations have shown that "there is significant training 

potential for simulation training for both the ground attack and air-to-air environments" 

(p. 229).  Transfer of training research regarding air combat maneuvering were 

contradictory, potentially attributed to inconsistent and possibly insensitive measures of 

performance in the transfer tasks. 

Other transfer of training research has demonstrated effective transfer of spatial 

skills (Clawson, Miller, Knott, & Sebrechts, 1998; Péruch, Belingard, & Thinus-Blanc, 

2000; Wilson, Foreman, & Tlauka, 1997; Witmer, Bailey, & Knerr, 1996), motor skills 

(Kozak, Hancock, Arthur, & Chrysler, 1993; Rose, Attree, Brooks, Parslow, Penn, & 

Ambihaipahan, 1998; Rose, Attree, Brooks, Parslow, Penn, & Ambihaipahan, 2000), and 

laparoscopic surgery skills (Seymour, Gallagher, Roman, O'Brien, Bansal, Andersen, & 

Satava, 2002).  In some instances, VE training can even equal real-world training transfer 

performance (Clawson, Miller, Knott, & Sebrechts, 1998; Darken & Banker, 1998; 

Waller, Hunt, & Knapp, 1998) making the previously mentioned advantages of VEs even 

more appealing. 
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Aside from meta-analyses that explore transfer in different domains, very little 

research empirically and directly compares the effects of specific environmental 

characteristics on transfer of training.  Given the apparent effects that a training 

environment has on information processing, it is not inconceivable that there are many 

environmental factors that may conversely either facilitate or inhibit transfer (Baldwin & 

Ford, 1988).  One of these factors, stress and its associated levels of arousal, has been 

addressed in regard to training and is shown to be a critical factor in the transfer of 

knowledge and skills (Blascovich, 2007; Driskell, Johnston, & Salas, 2001; Friedland & 

Keinan, 1992; Kort, Reilly, & Picard, 2001; Overton, 1964; Prather, 1971; Rizzo, Morie, 

Williams, Pair, & Buckwalter, 2005; Saunders, Driskell, Hall, & Salas, 1996).  Stress, 

and the human body's response to stress, is central to this research project.  The following 

section will address stress and its effects on performance.  

C. STRESS 

There is great disparity surrounding the concept of stress due to its "exceedingly 

broad and poorly defined" nature (Berntson & Cacioppo, 2004, p. 59).  Stress can be 

defined as when “the perceived demands of a situation tax or exceed the perceived 

resources of the system (individual, group, community) to meet those demands, 

especially when the system’s well-being is at stake” (Lazarus & Folkman, 1984, p. 8).  

Early stress researcher, Hans Selye, contemplated if stress is "effort, fatigue, pain, fear, 

the need for concentration, the humiliation of censure, the loss of blood, or even an 

unexpected great success which requires complete reformation of one's entire life?" 

(1974, p. 12).  Therefore, stress is often defined in terms of the environmental stressors 

that evoke stress and the human responses to stressors. 

Selye (1974) proposes that there are three different responses to environmental 

stressors.  First, from a biological standpoint an organism can exhibit a catatoxic response 

to stressors in which a fight response attempts to actively eliminate a stressor.  This 

response can be either impossible or very taxing on an organism.  In a combat context, 

fighting peripheral stressors (e.g., heat, radio noise, ambushing enemy troops, etc.) often 

distracts from the operational mission.  A second response to stressors is the flee response 
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in which an organism attempts to remove itself from a stressor.  In a combat context, this 

response is typically infeasible short of retreat or aircraft rejection (which presents other 

stressors!)  Finally, and often the most plausible response to stressors as defined by Selye, 

is a syntoxic response in which an organism learns to co-exist with stress.  It is this 

coping mechanism that allows an organism to exhibit goal-seeking behaviors in the 

presence of stressors—this behavior is most favored in a combat setting and is the 

premise for this research endeavor. 

Stress can have a profound effect on performance, but this effect is not always 

detrimental.  This interaction is demonstrated by the Yerkes-Dodson Law (Broadhurst, 

1957; Yerkes & Dodson, 1908; see Figure 2.4).  An optimum amount of cortical arousal 

corresponds to the highest performance for a given task.  Further, as more stress is 

introduced, resulting in heightened arousal and an appraisal of more demands than 

resources, performance will deteriorate.  The same is true for low levels of stress (and 

associated arousal) in which boredom and/or complacency can result and performance 

suffers again. 
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Figure 2.4  Yerkes-Dodson Law 

It is important to emphasize the task dependency of the Yerkes-Dodson Law;  

simple cognitive tasks, which may insinuate relatively low attention and cognitive 

requirements, may be subject to higher levels of stress before optimum cortical arousal is 
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achieved (dashed line in Figure 2.4).  The inverse is true for difficult cognitive tasks that 

quickly saturate cognitive and attention capabilities.  The Yerkes-Dodson Law also is 

subject to individual differences—novices may be quickly inundated with stress; experts 

may not only successfully moderate the effects of stress but they may require higher 

levels of stress to prevent complacency and optimize performance.  Individual differences 

can refer to innate personality characteristics and coping strategies employed by different 

people. (Matthews, Davies, Westerman, & Stammers, 2000) 

Some research criticizes the simplicity of the Yerkes-Dodson Law, indicating that 

the quality of performance is unknown; if performance diminishes during times of over-

arousal, what types of errors will prevail?  Welford (1973) suggests the signal detection 

theory a better vehicle for describing the relationship between stress and performance.  

He suggests that the response criterion equally divides noise and signal curves during 

times of optimum cortical arousal, thus equally distributing the probabilities of hits, false-

positives, false-negatives, and correct rejections (see Figure 2.5, A).  Likewise, during 

times of under-arousal and complacency, the response criterion shifts left, decreasing the 

probability of false-negatives, but also increasing the probability of false-positives (B).  

During these times, a person is underactive and errors of omission are more probable. 

Conversely, under high levels of cortical arousal and strain, the probability of false-

negatives increases while the probability of false positives decreases (C).  During these 

times, over activity increases the likelihood of errors of commission. 
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Figure 2.5  Signal Detection Theory 

As the preceding discussion may indicate, "stress is neither a characteristic of the 

environment alone nor a characteristic of the person alone.  Instead, stress is defined as a 

particular type of relationship between the person and the environment, in which the 

individual perceives the adaptive demands as taxing or exceeding available coping 

resources" (Meichenbaum, 1993, p. 382).  In Beck's (1993) cognitive model of stress, 

Meichenbaum's person-environment relationship is further expanded:  "The construction 

of a situation (cognitive set) is an active, continuing process that includes successive 

appraisals of the external situation and the risks, costs, and gains of a particular response.  

When the individual's vital interests appear to be at stake, the cognitive process provides 

a highly selective conceptualization" (p. 333). 

There also is an apparent relationship between stress and motivation (Welford, 

1973).  Blascovich (2007) uses this relationship to differentiate between the type of 

physiological response to a particular stressor as either challenge or threat.  He defines a 

challenge response as one in which an individual's evaluated resources outweigh 

situational demands; likewise, a threat response occurs when the evaluated situational 

demands outweigh an individual's resources.  This model relies on goal relevancy (i.e., an 

individual is only motivated to act towards desired goals), situational demands (i.e., what 
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the situation requires of the individual), and coping resources (i.e., the individual 

evaluation of required resources, or preparedness to act).  For example, if a pilot's goal is 

to accomplish a combat mission safely, and during that mission an emergency situation 

arises for which the pilot perceives to be ill-prepared, a threat response to the emergency 

situation will result.  However, given the same scenario, if the pilot appraises her 

available resources (i.e., previous training) as adequate, then a challenge response may 

result.  This research project focuses on providing resources to trainees so that a 

challenge response results.  Both stress training and skill training are utilized to 

accomplish a challenge response.  

The challenge and threat model of stress response incorporates three levels of 

analysis: biological, psychological, and social psychological.  First, the biological model 

focuses on how the cardiovascular system is affected by the interplay between autonomic 

and endocrine influences.  Next, the psychological level refers to the evaluative process 

resulting from cognitive and affective influences.  Lastly, the social psychological level 

integrates intraindividual, interindividual, and environmental influences.  These three 

levels of analysis interact: "challenge and threat represent person/situation-evoked 

motivational states with affective, cognitive, and physiological antecedents and 

consequences" (Blascovich, 2007, p. 5).  Blascovich (2007) has demonstrated a reliable 

and sensitive measurement of challenge and threat responses to stress as an alternative to 

the often disputed measures of arousal.  A challenge response accurately indicates when a 

person perceives to have adequate resources for a situation, and is a reliable indication of 

performance in that situation.  The converse is true for threat responses. 

Critical to this research project is the effect that stress and subsequent emotional 

responses have on learning.  Kort, Reilly, and Picard (2001) propose a model of 

emotional learning that they assert may be used for the development of customized, 

dynamic learning based on the tracking of affective learner states.  A preliminary 

emotional set is proposed that admittedly may be incomplete and varies greatly between 

individuals.  However, this model still provides some insight into the relationship 

between emotions and learning. 
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Figure 2.6  Emotion sets possibly relevant to learning (Kort, Reilly, & Picard, 2001) 

As can be seen in Figure 2.6, these emotional states may be relevant to stress.  For 

example, comparing the Kort et al. emotional set to the Yerkes-Dodson Law, boredom 

may result in low cortical arousal and a decrease in performance (i.e., learning).  

However, one criticism of the Kort et al. emotional set is the exclusion of the over-

arousing, upper half of the Yerkes-Dodson Law inverse-U curve (e.g., an extreme 

positive rating on the Boredom-Fascination axis results in Intrigue, not inundation), and it 

is this over-aroused state that stress training attempts to alleviate.  

Kort et al. (2001) further attempt to interweave their emotion axes (Figure 2.6) 

with the cognitive dynamics of the learning process (see Figure 2.7).  In their model, the 

horizontal axis represents the emotional sets, and the vertical axis represents amount of 

learning or un-learning.  For the purposes of the current research topic, if the learning 

axis is thought of as information learned in training, a third axis can be imagined 

extending from the page that represents performance in a transfer task—as positive affect 

and constructive learning are optimized, performance also is optimized (e.g., quadrant I). 
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Figure 2.7  Emotional-learning model (Kort, Reilly, & Picard, 2001) 

 

Although arousal often is used to describe the human response to stress, as 

Mullen, Bryant, and Driskell (1997) point out, "a major difficulty in the theoretical use of 

arousal has been the failure to develop a clear and unequivocal definition of this 

ubiquitous yet fuzzy construct" (p. 55).  Therefore, arousal often is operationally defined 

in terms of its measurement (a thorough review of arousal measurement methods are 

reviewed in Chapter III, Section C).  

For the purpose of this research review, arousal refers to the body’s physiological 

response to a stressor, and stress will primarily be limited to short-term, or acute, stress 

(as opposed to long-term chronic stress).  

D. STRESS  TRAINING 

Stress undoubtedly affects performance.  In addition, many work environments 

are prone to high levels of performance-altering stressors.  In an attempt to alleviate 

individual workload and stress, many attempts have been made to introduce automation, 

technologies, intuitive controls/displays, etc., although these approaches are often very 

costly, have theoretical limitations, and, in some cases, can actually increase stress.  
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Another approach to alleviate stress is the introduction of stress management into 

training.  However, introducing stress training can often result in two counterproductive 

results: (1) high levels of anxiety that inhibit both training and post-training performance, 

and (2) stress that interferes with the acquisition of skills and knowledge for which the 

training is designed to promote (Friedland & Keinan, 1992).  In an attempt to (1) 

effectively impart skills and knowledge on trainees, (2) expose and inoculate trainees to 

real-world levels of stress, and (3) alleviate the before mentioned shortcomings, 

Friedland and Keinan (1992) present three approaches to training for stress: graduated-

intensity training, customized training, and phased training.  These three approaches and 

associated research are presented here in order to develop a stress training protocol for 

the research in this thesis. 

1. Graduated-intensity Training 

One common problem with stress exposure training is that trainees are never 

provided a vehicle for becoming comfortable with the sudden onset of stress.  A sudden, 

intense, and prolonged exposure to stress can, aside from being traumatic, be detrimental 

to performance.  Graduated stress exposure also can decrease trainee confidence and give 

unreal expectations of a highly stressful and unmanageable real-world environment.  A 

graduated-intensity approach to stress training attempts to alleviate these problems by 

slowly “inoculating” trainees with a progressive training protocol while theoretically not 

impeding task acquisition.  While graduated-intensity training can provide trainees with a 

heightened sense of control and competency, the gradual introduction of stress can breed 

unrealistically low expectations about transfer task stress levels. 

In a series of experiments, Friedland and Keinan (Friedland & Keinan, 1982; 

Keinan & Friedland, 1984) were able to empirically evaluate the effectiveness of 

graduated-intensity training and develop a set of implementation techniques.  First, 

graduated-intensity stress training proved more beneficial than constant intensity training.  

However, this result was only true if the trainees knew the maximum stress level, or 

ceiling, of training.  Training without a ceiling resulted in learned helplessness as trainees 

never knew when stress intensity (in this case electric shocks) would cease to increase.  
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They also showed that, as expected, stress training is no more effective, and sometimes 

inferior to control, no-stress conditions if the transfer task was not stressful.  These results 

indicate that stress training can impose on skill acquisition.  Finally, a graduated-intensity 

approach to training is most beneficial when trainees believe the stressors are contingent 

on their performance.  This approach provides trainees with a locus of control that 

constant intensity trainees did not have.  This last finding also reemphasizes a reoccurring 

trend in stress literature: stress is an individual’s appraisal of a situation given the 

resources they have.  

2. Customized Training 

Due to the individual differences associated with stress, another potential 

approach to stress training is adapting the training to an individual’s needs.  By tailoring 

stress training to each individual, a training system can ensure that (1) appropriate levels 

of stress exposure are met that are congruent with a particular transfer task, and (2) 

specified criterion levels are met during task acquisition.  One feasible customized 

approach to stress training is the incorporation of the challenge and threat model 

mentioned above (Blascovich, 2007).  Given that model's reliance on individual 

differences, a trainee can undergo stress training while carefully monitoring the 

physiological responses to stress.  If transfer task levels of stress are presented in a 

training context, then stress exposure training can be implemented until a challenge 

response is indicated.  The challenge response would imply that the trainee perceives to 

have adequate resources to accomplish the transfer task under the projected levels of 

stress.  However, this method relies on the trainee's subjective perception of resources, 

and may not always indicate proficiency for the task at hand. 

Friedland and Keinan (1992) tested the effectiveness of customized training by 

first administering a confidence expectancy questionnaire to 297 male infantry soldiers.  

The questionnaire measures the generalized expectation about the risk of sustaining 

physical injury in dangerous situations, and can be likened to the challenge-threat 

response when confronted with danger.  For example, an individual characterized by a 

high confidence expectancy will generally respond to a stressful situation with challenge 
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as opposed to threat.  Friedland and Keinan theorize that these individuals (i.e., high 

confidence expectance) may benefit more from stress exposure training when compared 

to individuals characterized by a low confidence expectancy.  The training consisted of 

moving down a fortified trench in a crouch while shooting targets along their path with 

an assault rifle.  Half of the participants performed the training in a stressful condition in 

which live rounds were believed to be fired over the trench and an abundance of medical 

provisions were on-hand.  The non-stressful training group performed the same task in 

the absence of live rounds and medical provisions.  Both groups performed a transfer task 

in the stressful setting. 

Friedland and Keinan (1992) found that participants who scored high in 

confidence expectancy benefited the most from the high-stress training condition (i.e., 

they performed the best in the stressful transfer task after stressful training).  This study 

provides further evidence that the stressful training task provoked a challenge response 

and allowed the high confidence expectancy soldiers to efficiently acquire task skills 

while simultaneously benefiting from stress exposure.  This study also emphasizes the 

importance of addressing individual differences and the potential for customized stress 

training. 

3. Phased Training 

A final training approach for moderating stress while ensuring skill acquisition is 

to follow a phased approach to stress training.  Friedland and Keinan (1992) defined and 

tested the interplay between three elementary phases of training: task acquisition (TA), 

stress exposure (SE), and practice under stress (PUS).  Agreeing on the importance of 

task acquisition and the development of skills prior to any stress exposure, Friedland and 

Keinan tested five different training regiments: TA, PUS, TA/SE/PUS, TA/SE, and 

TA/PUS.  Figure 2.8 illustrates the TA/PUS training regime. 
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Figure 2.8  TA/PUS training regime  

When performing a stressful target detection transfer task, they found that (1) the 

TA training protocol is the least effective, (2) the PUS protocol shows relatively poor 

criterion performance, and (3) the TA/PUS and TA/SE/PUS protocols are superior to the 

other three approaches (see Figure 2.9).  These result emphasizes the importance of both 

skill acquisition and stress training when training for a stressful transfer task.  These 

findings are promising for the future development of stress training.  First, a phased 

approach to training is both effective and efficient (the total training time was controlled).  

Secondly, task acquisition is of foremost importance in any training program.  Without 

the proper development of skills, transfer performance will suffer.  Lastly, complete 

compartmentalization of stress exposure or skill acquisition (e.g., the TA/SE training 

protocol) is insufficient for a transfer task that incorporates both—rather, they both must 

be integrated into a total training plan.  Training of the transfer task under stress is 

essential for transfer to a stressful task.   
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Figure 2.9  Criterion performance for target detection following five different phased 

training approaches (Friedland & Keinan, 1992) 

 

One important observation from Figure 2.9 is the increase in performance 

between training trials and the criterion trial.  As mentioned earlier regarding transfer of 

training measurement, two different methods may be employed during task training.  As 

opposed to a criterion-based approach, Friedland and Keinan controlled for training time 

which may explain learning during the criterion trial (i.e., participants did not reach 

asymptote during training trials). This technique also may explain the discrepancy 

between their results and the theoretical model of their TA/PUS regime presented above 

(see Figure 2.8).  Controlling for training time also may introduce more variance from 

individual differences unless a predetermined average time-to-criterion is established for 

a particular training task. 

Following Friedland and Keinan’s (1992) support for a phased stress training 

approach, many authors have expanded on the specific design and implementation of 

phased training.  Most notably, Johnston and Cannon-Bowers (1996) provide guidance 
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for Stress Exposure Training (SET) which evolved from three main objectives: building 

skills that promote effective performance under stress, building performance confidence, 

and enhancing familiarity with the stress environment.  Similar to SET, stress inoculation 

training (SIT) is a phased training approach that has been applied in a mostly clinical 

context.  As Meichenbaum (1993) points out, the primary notion of SIT is that 

"bolstering an individual's repertoire of coping responses to milder stressors can serve to 

defuse maladaptive responses or susceptibility to more severe  forms of distress and 

persuasion" (p. 378).  Both SET and SIT consist of three phases.  The first stage entails 

conceptualization or education of work under stress and promotes the development of this 

requisite knowledge.  Trainees are provided with knowledge of typical stress reactions 

and develop the know-how for dealing with stressors.  As Meichenbaum points out, a 

critical outcome of this stage is a trainee understanding that they do not react to a 

stressor, rather their response is the result of their appraisal of the situation.  For example, 

a pilot undergoing SET will first learn the physiological and psychological effects of 

working under stress to include increased temperature and sweating, difficulty in problem 

solving, and deficiencies in memory recall. 

The second phase of SET is skilled practice with feedback which is similar to the 

second phase of SIT, skill acquisition and rehearsal.  Skilled practice with feedback is 

similar to the task acquisition stage presented by Keinan, Friedland, and Sarig-Naor 

(1990) where trainees undergo task training in the absence of stress until a specified 

performance criterion is met.  In the piloting example, if a pilot is performing SET for 

learning emergency procedures, a simulator (either static or dynamic) may be used to 

acquire the skills needed for aircraft recovery in the event of an emergency procedure.  

Criterion can be determined using one of two methods: (1) based on historical data, an 

average time may be determined for which most trainees will reach asymptotic 

performance, or (2) an adaptive approach may be employed where each trainee performs 

until asymptotic performance, or a performance criterion, is achieved.  Given the 

inclusion of feedback, the outcomes of this phase as described by Johnston and Cannon-

Bowers (1996) are (1) reduced negative attitudes towards self and stressors, (2) increased 

use of positive thoughts and behaviors, (3) reduced blood pressure, heart rate, and 
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increased psychomotor steadiness, and (4) successful coping skill performance.  Figure 

2.8 illustrates phase 2 of the SET process as “Task Acquisition.” 

The third SET phase, skill practice with stressors, is likened to Keinan et al.'s 

(1990) performance under stress where the skills learned in phase two are practiced under 

transfer equivalent stressors.  Returning to the above example, now that the emergency 

procedures are learned and rehearsed to proficiency, stress is introduced.  A significant 

decrease in task performance should be observed at the beginning of this phase due to the 

introduction of  stress (see Figure 2.8, "Performance Under Stress").  However, the 

training should continue (potentially requiring multiple exposures/trials) until 

performance returns to the phase two asymptote.  Using this criterion level of 

performance should imply that the task can be performed under stress without any 

noticeable hindrance of stress, suggesting that cognitive capabilities are fully utilized.  

In a meta-analysis of 37 studies testing the effectiveness of a three-phased 

approach to stress training (i.e., SET or SIT), Johnston and Cannon-Bowers (1996) 

determined that 67% of studies demonstrated that stress training significantly improved 

performance.  In their meta analysis, Saunders, Driskell, Hall, and Salas (1996) 

determined that stress training was effective in reducing performance anxiety, reducing 

state anxiety, and enhancing performance under stress.  They further analyzed their 

results by various stress moderators, and these analyses will be reviewed in the following 

section where appropriate. 

Comparing the three training approaches above reveals that phased training is the 

most effective for imparting skills and introducing stress mitigation techniques.  

Following on work by Friedland and Keinan (Friedland & Keinan, 1982, 1992; Keinan & 

Friedland, 1984; Keinan, Friedland, & Sarig-Naor, 1990) and other phased-training 

research  (Johnston & Cannon-Bowers, 1996; Meichenbaum, 1993; Saunders, Driskell, 

Hall, & Salas, 1996), a three-phased training protocol is developed for this research 

project and presented in Chapter III. 
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4. Factors Affecting Stress Exposure Training 

There are numerous models addressing stress in training.  The transactional theory 

defines the human reaction to stress as a product of the human-environment interactions.  

Hancock, Ward, Szalma, and Ganey (2002) propose a 3-dimensional descriptive 

framework for the transactional theory.  They propose that moderators of stress, 

information processing, and sources of stress are all critical components of the appraisal 

of stress.  When reviewing the before-mentioned VE factors affecting transfer of training 

(see Figure 2.2; Baldwin & Ford, 1988), Hancock et al. matrix is congruent with training 

design, trainee characteristics, and training environment, respectively, and it is apparent 

that these same three levels of analysis are useful for understanding the implementation 

of stress training. 

Johnston and Cannon-Bowers (1996) suggest a systems-theory orientation for 

modeling stress exposure training that specifies inputs, throughputs, outputs, and 

feedback loops.  Beck (1993) defines a cognitive model of stress from a clinical 

perspective that includes eleven principles affecting human stress responses.  Finally, in 

addition to a systems-theory approach not unlike Johnston and Cannon-Bowers (1996), 

Saunders, Driskell, Hall, and Salas (1996) present seven effects of moderators when 

measuring the effects of SIT. 

In an attempt to better understand the relationships between VR technologies, 

stress training, and transfer performance in stressful situations, Figure 2.10 provides a 

model of stress training.  In the following discussion, this model is further defined using 

the following VE variables that affect stress training: training design, training 

environment, cognitive appraisal, trainee characteristics, stress type, and training 

outcomes.  This analysis will determine what factors are important to consider when 

developing a stress training protocol for this research project. 

 



 58

Real World Training
Design

Training

Environment

Simulation

Trainee

Characteristics

Cog.
Appraisal

Training
Output

Stress Stress

 

Figure 2.10  Model of stress training in VEs 

Training Design 

As demonstrated above concerning transfer of training, the training system design 

is paramount for effective stress training outcomes.  A notable component of training 

pedagogy is Driskell et al.’s (2001) reference to structural and surface features.  In an 

attempt to explain the generalization of stress training to various transfer stressors, they 

go beyond Thorndike and Woodworth’s (1901) identical elements theory to emphasize 

the features relevant to both the training and transfer tasks.  Structural features refer to 

“the underlying principles imparted in training,” while surface features refer to “domain-

specific characteristics such as the specific training examples used and the specific 

attributes of training context” (p. 108).  For example, in an aviation context, their 

research suggests that a pilot will benefit from stress training even if the context (surface 

features) for which he received the stress training (i.e., a low-fidelity flight simulator) is 

different from the transfer task (i.e., an aircraft).  In this case, the stress training itself is 

thought of as a structural feature, and in their study “it is likely that the stress training 
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resulted in positive transfer to novel settings [and novel stressors] because the underlying 

principles in training were structurally consistent with the transfer environment” (p. 109). 

In their meta-analysis of stress inoculation training, Saunders et al. (1996) provide 

further empirical evidence of the importance of structural features by comparing the 

setting in which trainees received stress training.  By comparing stress training that was 

conducted in either a laboratory or field setting, they found both contexts effective for 

reducing performance anxiety and state anxiety. 

Regarding stress training design, Saunders et al. (1996) also investigated the issue 

of how many stress training sessions and how long each session should be for effective 

transfer to occur.  They found a negative correlation between the amount of stress 

training received and the transfer task anxiety, meaning as participants receive more 

stress training, their transfer anxiety decreased.  They also found a reduction in task 

anxiety after as little as one stress training session. 

Driskell, Copper, and Moran (1994) provide encouraging support for the use of 

VEs and simulators for stress training in their review of mental practice effects on 

performance.  They found that, although not as effective as actual physical practice, 

mental rehearsal is an effective training approach.  Saunders et al. (1996) further found 

that imagery practice was more effective than real-world practice for reducing transfer 

anxiety, although real-world practice of these stress reducing skills was more effective 

for enhancing transfer performance. 

The above training design literature has important implications for the empirical 

work in this thesis.  Given that training context is a surface feature, the research 

objectives in this thesis will be tested using a low fidelity flight simulator in a laboratory 

setting.  In light of Saunders et al. (1996) results, the training in this thesis will also be 

introduced using a minimal number of training sessions.  Finally, given the efficacy of 

mental rehearsal, SE will be used as part of the phased training protocol.  Chapter III 

describes how the SE session capitalizes on mental rehearsal while exposed to stress. 

As the current model depicts (see Figure 2.10), training design also is influenced 

by trainee characteristics.  For example, given a target population of pilots, certain stress 
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management skills may be assumed.  Trainee characteristics are a crucial design 

consideration for training design and are discussed in the following sub-section.  

Trainee Characteristics and Cognitive Appraisal 

There is little doubt that different individuals respond to stressors in different 

ways, and "the autonomous and sociotopic personality types differ in the kind of stressors 

to which they are sensitive" (Beck, 1993, p. 345).  Therefore, the reaction that an 

individual has to a stressor is largely contingent on the specific vulnerabilities of a certain 

personality, among other factors.  Individual differences in response to stress are evident 

when reviewing transcripts and cockpit recordings from emergency and abnormal 

situations.  For example, on December 6, 1999 a runway incursion occurred at Theodore 

Francis Green State Airport, near Providence, Rhode Island where the crew of United 

Flight 1448 became disoriented while taxing in instrument meteorological conditions 

(dense fog and one-quarter-mile visibility).  Following is the transcript from the ground 

controller's communications: 

United 1448 stand by, please. DON’T' TALK! I have other things I need 
to do! … US Air 2998 isn't going yet, because I have a United that doesn't 
know where the hell he is… stop all traffic until advised, please. United 
has no idea where they are. (NTSB, 2000) 

The unnerved and stern voice portrayed in this recording is further evidence that this 

controller responded to a stressful situation in an atypical fashion. 

Parsa and Kapadia (1997) investigated the effects of stress on military participants 

by comparing stress levels of five different fighter pilot squadrons.  The Beck Depression 

Inventory was administered to pilots and used as an indicator of stress during high tempo 

operations.  Four of the five squadrons were assigned to an overseas air base with 

contingency operations and consisted of (1) a relatively successful permanently assigned 

unit, (2) an unsuccessful permanently assigned unit with a recent member death, (3) a 

temporary duty unit, and (4) a reserve unit, recently assigned.  Finally, a fifth squadron 

consisted of stateside, non-combatant military pilots.  The unsuccessful permanent 

squadron demonstrated higher stress levels than the successful squadron.  In addition, 

combined active duty squadrons (1, 2, and 3 above) demonstrated higher stress levels 
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compared to the reserve unit.  Finally, there was no overall significant difference between 

combatant and stateside units.  These results present evidence that both individuals and 

circumstances can greatly affect stress levels of military aviators. 

In a review of research addressing stress coping in Vietnam veterans, Bourne 

(1970) attempted to find what solider attributes and characteristics allowed them to cope 

in the presence of stress.  He found that "all of the subjects, using a wide range of 

defenses, were able to psychologically restructure their perception of reality in such a 

way that they avoided facing the danger and at the same time enhanced their own sense 

of immortality and invulnerability" (p. 78).  Therefore, it is possible that stress training, 

rather than imparting skills, alters trainees’ psyches—a certain amount of placebo effect 

makes trainees feel invulnerable to stress. 

Further research addresses the relationship between experience and stress levels.  

Otsuka, Onozawa, and Miyamoto (2006) measured the ratios of stress hormones 

(catecholamine and cortisol) in both student and instructor pilots before and following 

training missions.  They tested students and instructors in both preliminary and advanced 

flight training, and found that students in advanced flight training had lower levels of 

stress hormone than students in preliminary flight training.  In addition, instructors had 

lower levels of stress hormone following preliminary flight training missions when 

compared to students, but this difference was not observed for advanced flight training.  

The difference effects that skill level has on stress indicates the adaptive nature of stress 

coping mechanisms.  Although no formal stress training was provided in this study, the 

mere exposure to stressors (i.e., flight experience) reduced the body's sympathetic 

responses to stress.  In addition, the relatively quick adaptation to stress is interesting—

the advanced students had between 130-160 flight hours, while the advanced instructors 

had a mean 1,901 hours, yet they reported the same hormone levels following missions. 

 Beck's (1993) cognitive model of stress accounts for various cognitive 

constellations and suggests that these constellations are "chained" to specific stimuli.  

"This paring constitutes the specific sensitivity of a given individual and prepares the way 

for inappropriate or excessive reactions" (p. 342).  Beck's approach explains why what is 
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stressful for one individual may be benign for another, and provides support for both the 

customized stress training and the challenge-threat theory presented above. 

Given that individual differences has a considerable affect on stress, the research 

presented in this thesis attempts to control the effects of individual differences using three 

different techniques.  First, the sampling frame for selecting research participants was 

limited to decrease the amount of individual differences within the participant pool.  

Second, many efforts were made to control both the laboratory and flight research 

environments.  Lastly, data analysis techniques measured dependent variables as a 

function of individual baseline or asymptotic measurements.  These three techniques are 

discussed more in Chapters III, IV, V, and VI.. 

Training Environment 

In response to the above research indicating the effectiveness of stress training, 

Saunders et al. (1996) question the generalization of these results to field settings outside 

of a controlled laboratory setting.  Their meta-analysis revealed that stress exposure 

training was equally effective at reducing performance anxiety and state anxiety in both 

laboratory and field settings.  Although their results indicate that SIT performed in a 

laboratory setting was effective for enhancing performance in a stressful transfer task, 

there were not enough hypothesis tests in field settings to draw a conclusive comparison.  

The research presented in this thesis addresses if stress training generalizes outside of a 

laboratory setting to a real-world stressor. 

Meehan, Insko, Whitton, and Brooks (2002) demonstrated the effects that VE 

presence, as a result of the virtual training environment, can have on arousal.  The authors 

hypothesized that "to the degree that a VE seems real, it will evoke physiological 

responses similar to those evoked by the corresponding real environment, and that greater 

presence will evoke a greater response" (p. 645).  To prove this hypothesis, the 

researchers conducted a study in a VE with a Pit Room which incorporated a virtual 

unguarded hole in the middle of the floor that dropped 20 ft below to another virtual 

room.  The within subject design had participants navigate the room while walking on a  
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real, flat laboratory floor in one condition, and in the other condition by using a 1.5 inch 

platform on the laboratory floor to indicate where the virtual hole was  (see Figure 2.11; 

Meehan et al., 2002). 

 

 

Figure 2.11  A participant in the platform condition (Meehan et al., 2002) 

 

Experimenter observations indicated a much more immersive experience when 

participants neared the edge of the virtual hole when using the platform.  Participants 

were reported as feeling frightened, experiencing vertigo, and some participants asked to 

terminate the study immediately.  Statistical results indicated that an increase in 

simulation fidelity (using the platform) increased both subjective measures of presence 

and physiological indications of arousal using heart rate variability (HRV).  However, the 

authors admit that this study used a relatively stressful environment, and both the 

subjective presence ratings and physiological measurements of arousal may be attributed 

to the simulation's stressful nature.  Further research is needed to measure the effect that 

presence has on arousal in more mundane tasks (Meehan et al., 2002). 

Regarding this thesis research, the training context (a surface feature) is not 

expected to affect transfer of skills or stress coping (structure features).  However, a 
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certain amount of VE presence is desired to facilitate task acquisition.  Realistic controls 

and displays in addition to an aviation headset are incorporated in the experiment design 

to enhance presence within a low fidelity flight simulator (see Chapters III, IV, and V). 

Training Output 

As Figure 2.10 demonstrates, and as most systems theories indicate, system 

output and feedback are essential to system performance.  Training feedback also has 

been shown to enhance trainee performance (Goldstein, 1993).  Prather (1971) 

distinguishes between stress training with and without feedback as trail-and-error and 

errorless, respectively.  In order to test the importance of feedback obtained in trial-and-

error stress training, he conducted a study in which pilots judged target distance in 

simulated combat strafing runs.  Pilots who were trained using trial-and-error were 

provided electric shocks for errors in their distance judgments.  Errorless pilots were 

presented with a light that cued them when they were the appropriate distance from the 

target (without electric shock feedback).  Following initial training, both groups received 

stress training similar to the trial-and-error initial training phase.  The two groups were 

then tested in the same range estimation task both with and without stress.  Results 

indicate that the trial-and-error training resulted in superior transfer of training (no stress) 

and superior transfer performance under stress.  This study emphasizes the importance of 

a closed feedback-loop in training for stress exposure to be effective. 

Prather's (1971) results beg the question, why does stressful feedback enhance 

transfer performance both with and without stress?  One explanation is that stressful 

feedback can improve performance confidence, or self-efficacy, which will provoke a 

challenge response and further improve performance.  This improvement in performance 

further decreases stress feedback and, in turn, increases self-efficacy.  However, there are 

two precautions that should be taken when providing trial-and-error stress training.  First, 

if a trainee's performance does not improve, the increasing levels of stress feedback can 

result in a threat response and a subsequent decrease in performance.  Similarly, as 

Friedland and Keinan (1992) point out, if a feedback ceiling is not identified and 

communicated to the trainee, learned helplessness can occur which also decreases 

training efficacy and transfer performance. 
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Given the effects that performance feedback can have on performance, it is 

important to control for performance feedback when testing other research objectives.  

Therefore, in this thesis research, performance feedback was strictly controlled.  During 

both training and transfer sessions, participants were never provided clues to their 

performance.  In an attempt to increase individual performance confidence and self-

efficacy, research participants, in general, often ask how they are performing.  This 

information must be withheld to control for performance feedback effects. 

Stress Type 

As research progresses towards understanding stress training, the specific method 

for introducing stress needs to be addressed.  Researchers have attempted to introduce 

stress in training using various stressors.  A summary of stressor types used in empirical 

research is reported in Table 1. 

 

Table 1.   Empirically tested training stressors 

Type of Stress Exposure Reference 

Amphetamine (Hockey, 1984) 

Cold (Friedland & Keinan, 1992; Kanfer & Seidner, 1973; 

Rosenbaum, 1980) 

Electrical Shock (Friedland & Keinan, 1992; Prather, 1971) 

Heat (Pepler, 1958) 

Incentive (Hockey, 1984) 

Noise (Broadbent, 1958; Driskell, Johnston, & Salas, 2001; 

Klonowicz, 1989) 

Prolonged work (Hockey, 1984) 

Sleeplessness (Hockey, 1984) 

Time pressure (Driskell, Johnston, & Salas, 2001) 
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Although the research presented in Table 1 introduces a variety of stressors into 

training, there is little empirical evidence that training under one stressor will generalize 

to a novel stressor.  Hans Selye (1936) first explored the notion that humans respond in a 

generalized biological manner to various types of stress.  He found that regardless of 

what type of stress a person (or rat in early studies) was exposed to, the same autonomic 

nervous system responses resulted.  This generalization of stress responses, or the general 

adaptation syndrome, allows a trainee to benefit from stress training even in the presence 

of a novel stress. 

Driskell, Johnston, and Salas (2001) attempted to test this theory by, first, training 

participants to perform a computer-based task under either time pressure or auditory 

distraction (noise stress).  Following a familiarization phase (under stress), the 

participants were subjected to a regimented SET intervention that included further 

practice under the same stressor.  During a final phase, participants performed the same 

task under a novel stressor (i.e., the stressor they were not trained on).  Performance was 

measured as accuracy of performance on the computer-based task and self-reported 

stress.  Driskell et al. found that SET did generalize to a novel stressor (i.e., performance 

under a novel stressor improved following SET on a different stressor), although they 

found the greatest generalization (i.e., lowest self-reported stress) when trainees received 

SET under the time pressure condition. 

The fact that stress training may generalize to novel stressors is most intriguing 

when viewed in light of Thorndike and Woodworth’s (1901) identical elements theory.  

As Driskell et al. (2001) suggest, their results indicate the relative importance of training 

structure features versus domain-specific surface features.  Furthermore, these results 

indicate the promise for training stress exposure in a VE as long as the structure features 

of the VR training to include the expected stress levels are congruent with the real-world 

task(s). 

The preceding literature review provides the premise for conducting three 

empirical experiments described in the following chapters.  In general, the three 

experiments will test (1) the efficacy of stress training to mitigate the strain of stressors  
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and improve performance during a stressful simulator criterion task, (2) the transfer of 

stress training to a flight environment, and (3) the transfer of skills from a VE to a flight 

environment. 

These experiments were performed over the course of 12 months.  The schedule 

for this research endeavor is provided in Appendix A.  The following three chapters 

provide the detailed methods for each experiment.  
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III. EXPERIMENT 1: STRESS TRAINING EFFICACY 

There is nothing training cannot do. Nothing is above its reach. 
 

— Mark Twain 

A. OVERVIEW 

As seen in Chapter II, transfer of training can be enhanced if the training protocol 

includes elements of the transfer task.  One of the elements that may be included in 

training are the mental, emotional, and physiological states of the transfer task.  These 

states can be considered structure features and have the greatest effect on transfer.  One 

emotional state synonymous with aviation is stress, and this experiment addresses the 

efficacy of introducing stress into flight training.  The purpose of stress training is to 

produce a syntoxic biological response in the trainee, which, in turn, may improve 

performance in a stressful transfer task. 

Experiment 1 utilizes Friedland and Keinan's three-phased stress training 

approach to determine if stress training in a flight simulator transfers to a stressful 

simulator criterion session.  This experiment is a validation of Friedland and Keinan 

(1992) with many important distinctions.  First, this experiment explores the three-phased 

stress training approach in an aviation context using an operational task and operational 

performance measures.  This experiment also considers longer stress exposures 

(approximately 10 minutes) which are more congruent with real-world acute stressors 

found in an aviation context.  During this experiment, human physiological and 

subjective measures of stress are used to determine responses to stress (i.e., strain).  

Finally, this experiment uses a VE as a vehicle for testing this research question.  

B. METHODOLOGY AND EXPERIMENT DESIGN 

Equipment 

The tasks in this experiment were conducted using a desktop PC-based flight 

simulator (see Figure 3.1). 
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Figure 3.1  Research apparatus 

 The participants’ virtual environment consisted of a desktop computer, a visual 

display, a flight yoke control input, and an audio headset.  In addition, the experimenter 

workstation had a second display of the flight environment including other real-time data 

(i.e., audio recordings, physiology, etc.)  A schematic of this equipment is presented in 

Figure 3.2 with a description of each component following. 
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Figure 3.2  Flight simulator equipment 

 The Precision Flight Instruments Cirrus yoke was the only participant control 

input for the simulator.  The rudder (yaw) controls were coupled to the yoke and the 

throttle was set at a constant setting by the experimenter.  This task simplification was to 

limit the amount of training required before testing the applicable research questions. 

 The X-Plane® v8.0 flight simulator ran on a Monarch Computing Systems Antec 

PC.  The X-Plane® simulator was chosen for its ability to customize the flight display, 

create unique scenarios, and easily customize the data output stream.  All tests used a 

Cessna 172 flight model and instrument panel (see Figure 3.3).  The simulator outside 

view was replaced with instrument meteorological conditions (IMC; i.e., visibility less 

than one nautical mile) so that only instruments were used for the flying tasks. 
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Figure 3.3  Simulator display 

Simulator audio output consisted of the simulator audio feedback (i.e., engine and 

wind noise), air traffic control (ATC) instructions (provided by the experimenter), ATC 

"chatter" (described below), and experimenter/participant voice (see Figure 3.4).  These 

sources of information were synthesized using a Behringer® MX802A 12-channel audio 

mixing board and presented to the participant at set, calibrated sound levels via a David 

Clark® H10-30 aviation headset.  The passive noise canceling headset and mixing board 

set-up allowed the audio environment to be controlled, and allowed for consistent noise 

levels across participants.  The experimenter also heard the synthesized information, and 

this information was sent digitally to a PC for recording using the Audacity® audio 

recorder. 
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Figure 3.4  Audio information 

The physiological data collection equipment consisted of the Thought 

Technologies Ltd. ProComp Infinity™ Biofeedback System using both 

electrocardiogram (EKG; see Figure 3.5) and Skin Conductance (SC; see Figure 3.6) 

sensors.  The BioGraph Infinity 4.0® software was used to collect and analyze the 

physiological data.  Skin Conductance and subsequent extrapolations from EKG data (see 

Chapter IV) have been shown as sensitive and reliable indicators of stress (Hoover & 

Muth, 2004; Perala & Sterling, 2007; Sloan, Shapiro, Bagiella, Boni, Paik, Bigger, 

Steinman, & Gorman, 1994). 
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Figure 3.5  Thought Technology EKG sensors 

 

 

Figure 3.6  Thought Technology SC sensor 
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These physiological measures were used to determine the arousal responses, or 

strain, to various stressors.  The data management, conversions, and analysis of these 

measures is discussed below.  The stressors for the pilot study and experiment are 

described below. 

Participants 

Twenty two participants were recruited for Experiment 1 from a pool of NPS 

students.  Participants ranged in age from 25 to 39 years and all were in good health.  The 

same survey as in the pilot study (see Appendix B) assessed recruits' qualification for 

participation.  All participants had 20/20, or corrected to normal, vision and personal 

computer experience.  None of the participants had flying or air traffic control 

experience.  Similar to Friedland and Keinan (1992), participants were randomly 

assigned to either a stress-trained treatment group (N=11) or a control group (N=11). 

Procedure 

The procedures for Experiment 1 followed the schedule presented in Table 2.  

Participants first arrived at the MOVES Virtual Environment and Training Laboratory 

and heard a short welcome and description of the experiment.  Next, participants 

completed the Informed Consent Form (see Appendix C1).  If they declined participation 

at any time they could be excused from further participation.  Participants were then 

given the Participant Survey, which acquired their personal information and their 

experience with flight simulator-related apparatus (see Appendix B).  The physiological 

equipment was then connected and tested for accuracy. 
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Table 2.   Training Protocol 

 

The participants then completed the Cohen Perceived Stress Scale (CPSS; Cohen, 

Kamarck, & Mermelstein, 1983; see Appendix D).  The CPSS is a global measure of 

perceived stress and was used to further determine potential outliers due to adverse 

chronic life stress.  

The first part of the experiment design involved verbal instructions regarding 

aircraft navigation.  With the participant sitting at the simulator, the experimenter (a 

licensed pilot) provided instructions on the use of the aircraft instruments for navigation.  

A dialog of the verbal instructions can be found in Appendix E1.  All of the instruction 

provided in this study was generated, in part, from Jeppesen and U.S. DoT training 

materials (ASA, 2008; Department of Transportation, 2001; Jeppesen Sanderson Inc., 

1996, 2006a, 2006c).  Following the verbal instructions, a short verbal quiz was  

 

Event Duration 

Administrative (Participant Survey, Informed Consent, etc.) 5 min. 

Physiological Equipment Hook-up 10 min. 

Verbal Instructions 10 min. 

Baseline Video 5 min. 

Practical Instructions 12 min. 

Task Acquisition 12 min. 

Stress Training (for treatment group) 5 min. 

Task Acquisition 2 (control) or Performance Under Stress (treatment) 12 min. 

Criterion Trial (Performance Under Stress) 12 min. 

Exit Administrative 7 min. 

Total 90 min 



 77

administered to test the participant's knowledge of the provided information (see 

Appendix E1).  If an answer was incorrect, more instruction was provided about that 

particular part of the task. 

Following the verbal instructions, the laboratory lights were turned off and a short 

professional instructional film about aircraft navigation was shown to the participants 

(Jeppesen Sanderson Inc., 2006b).  The film was presented on the same simulator screen 

with the simulator instruments in view for reference.  The purpose of this film was two-

fold: (1) the professional knowledge provided further instructed the participants on 

aircraft navigation while adding credibility to the training protocol, and (2) the video 

provided an environment conducive to relaxation in order to collect accurate baseline 

physiological data.  As Perala and Sterling (2007) suggest, the anticipation associated 

with attaching physiological measures to a research participant and knowledge of 

imminent experiment trials can greatly skew baseline physiological data. 

During the practical instructions, the participant applied the knowledge learned 

thus far to simulated flight in the simulator.  The flight maneuvers included: level turns to 

a heading, climbs and descends to an altitude, climbing turns, and descending turns.  

Participants wore an aviation headset with microphone, and they were instructed that they 

must maintain criterion values of heading, bank, pitch, and altitude.  A detailed account 

of the instructions can be found in Appendix E1. 

The knowledge and practical experience given to the participants up to this point 

was not comprehensive (i.e., asymptote performance was not yet achieved).  This ensured 

that learning could be observed and compared between groups in the following training 

and criterion sessions (see Table 2 and Figure 2.8).  Following the practical instruction, 

the participants were asked if they had any questions. 

Once the instruction phases of the pilot study were completed and the participant 

demonstrated practical knowledge of the test task, the training portion of the study began 

with the Task Acquisition phase (see Figure 3.7).  During this phase, the participants 

communicated with a simulated air traffic controller.  The controller gave the participants 

heading and altitude directions (i.e., clearances).  Participants were then required to 
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respond quickly and accurately to the commands given to them by the controller.  The 

pilot study also was used to determine the length of time for Task Acquisition to reach 

mean performance criterion levels (i.e., asymptotic performance).  See Appendix E1 for 

an account of the Task Acquisition session. 

 

 

Figure 3.7  Experiment 1 design 

Following the initial Task Acquisition session, the participants randomly assigned 

to the PUS group were given a short stress exposure protocol.  During this training, the 

participants were first familiarized with the stressor to be used (i.e., ice water).  The 

stressor was then applied to the participants followed by a series of relaxation techniques 

including controlled breathing, focused attention, and performance enhancement 

strategies (Meichenbaum, 1993).  The participants were then given a short break. 
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Participants then performed either a second Task Acquisition session or the 

Performance Under Stress session, depending on which group the participants were 

assigned.  This session's task was identical to the first Task Acquisition session, although 

the clearances (i.e., specific heading and altitude directions) were changed.  Although 

different clearances were used for subsequent sessions, the total heading and altitude 

change was controlled for all sessions.  The PUS group also performed this session under 

the cold pressor stress described above.  During this session, all participants were asked 

every other maneuver to answer a Subjective Arousal Assessment similar to Perala and 

Sterling (2007, see Appendix F).   

The final experiment session was the criterion trial.  All participants performed 

the session under stress similar to the PUS session above.  The only difference was the 

actual clearances provided. 

After all sessions, the participants were thanked for their participation.  They were 

given a short survey to ensure that they were not ill or otherwise adversely affected by the 

simulator or stressor (see Appendix G1). 

Variables 

The independent variable in this Experiment 1 was the training protocol that the 

participants received with two levels: stress training and no stress training.  Dependent 

measures can be divided into two different categories: performance measures and 

physiological, or arousal, measures.  The measures are described further in the analysis 

section below. 

Hypotheses 

As Friedland and Keinan (1992) showed, a performance enhancement was 

expected during stressful criterion tasks for participants who received a stress training 

protocol.  In addition, an arousal decrement was expected for the stress-trained 

participants as they learned coping strategies for mitigating stress.  These two hypotheses 

are described below. 
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where, 

 pT:  criterion performance of stress-trained treatment group 

 pC:  criterion performance of no-stress-training control group 

 aT:  criterion arousal of stress-trained treatment group 

 aC:  criterion arousal of no-stress-training control group 

These hypotheses are reflected in Figure 3.7.  This research validates stress 

training procedures discussed in Chapter II, and demonstrates their effectiveness and 

feasibility in an aviation task. 

C. DATA ANALYSIS 

Experiment 1 followed a between-subject design with each participant randomly 

assigned to either a treatment or control group.  Blocking was performed on gender in an 

attempt to evenly distribute variance due to these factors between the two groups.  Unless 

otherwise stated, an Analysis of Variance (ANOVA) was conducted on all performance, 

physiology, and subjective stress rating response measures with "condition" used as a 

predictor variable (IV).  An alpha level of 0.05 was used to identify any significant effect 

of condition.  The two groups were compared and found to have equal variance, therefore 

the ANOVA's equal variance assumption applies. 

Power analyses also were conducted for all statistical tests to provide some 

evidence of whether the sample size was appropriate.  The β values, or probability of a 

type-II error, are reported for each statistical test along with the test statistics and 

significance levels.  Power values are also reported for specific insignificant results that 

were counter to expectations. 

The following sections provide descriptions of the measures used, the collection 

and aggregation of the data for each of those measure, and the data analysis.  In addition, 
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an approach for determining appropriate physiological measures is presented.  The 

methods described in this chapter were developed during the Experiment 1 pilot study. 

1. Performance Measures 

The aircraft trajectory data was downloaded from the simulator and analyzed 

according to the following procedures. 

Aircraft Performance 

Data was first separated into maneuvering and straight/level phases of flight.  

Two and a half seconds were removed from the beginning and end of each flight phase to 

account for transitions between phases. 

Straight and level error is defined as a participant's ability to maintain the 

assigned trajectory based on provided clearances.  For example, if a participant was asked 

to fly at a heading of 330 and 7200 feet, their ability to maintain that heading and altitude 

was determined once they arrived at that clearance.  Any deviation from the assigned 

heading and altitude was determined to be an error. 

Maneuvering error was determined in a similar manner except pitch and bank 

angles were used as performance measures during maneuvering portions of flight (i.e., 

transitions between clearances).  Any deviation from 20 degrees of bank and 10 degrees 

of pitch during maneuvering portions of flight was determined to be error.  These 

performance parameters were explained clearly in training and reiterated before each 

session (see Appendices E1 and E2).  A participant may have completed the 

climbing/descending portion of a maneuver before the turning portion, or vice-versa.  For 

this reason, both turning and climb/descent maneuvers were tracked separately and 

analyzed accordingly. 

The Root Mean Square Error (RMSE) was used to calculate error during both 

straight/level and maneuvering segments of flight (Jagacinski & Flach, 2003; see 

Equation 4).  The error was then analyzed for (1) each minute of task acquisition to 

indicate learning effects, (2) the beginning of the criterion session to determine stress 

training efficacy for the onset of stress, and (3) the total criterion session to indicate 

overall stress training efficacy. 
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21        (Equation 4) 

Where: 

XRMSE = RMSE for performance variable X 

Xi = the observed performance values for time i 

Ti = the target performance value for time i   

n = number observations  

Figure 3.8 provides a sample depiction of straight/level error (i.e., heading and 

altitude) within a trial for a treatment group participant.  The graph indicates (1) a 

decrement in performance (increased error) as difficulty increases during practice, (2) an 

improvement in performance during task acquisition as performance approaches 

asymptote (learning effect), (3) a decrement in performance during stress onset of the 

PUS session, (4) an improvement in performance during PUS (main effect), and (5) an 

improvement in the criterion trial when compared to the PUS trial (main effect). 
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Figure 3.8  Sample performance error 
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Two approaches were used to determine main effects in the presence of individual 

differences.  First, the performance measures were calculated as a function of each 

participant's asymptotic performance (e.g., the last three minutes of task acquisition) and 

total task acquisition performance.  Second, step-wise regressions were performed on the 

performance measures to determine significant covariates in a statistical model.  The 

following variables were added to test effects: condition, gender, age, gaming experience, 

computer experience, flying experience, air traffic control experience, task acquisition 

total performance, and task acquisition asymptote. 

Transfer Effectiveness Ratio 

The percent transfer and transfer effectiveness ratio were computed for all 

performance variables as described in Chapter II (see Equations 1 and 2).  To illustrate 

how this was performed, data from Experiment 2 aircraft performance is provided (see 

Figure 3.9).  To determine criterion performance, the control group mean performance 

was first visually inspected to determine at what time into a session the performance 

stabilized/optimized (1).  This point was then traced forward or backward to determine at 

which point the treatment group's performance reached that same level (2).  Finally, the 

time at which the treatment group reached this level of performance was determined (3). 
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Figure 3.9  Experiment 2 transfer normal acceleration variance 

In the Figure 3.9 example, the time for the control group to reach criterion 

performance was 6.1 minutes, and the treatment group took 2.5 minutes to reach the same 

level of proficiency.  Substituting for Yo and Yx, the percent transfer can be calculated as: 
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Considering that the mean time spent in the stress exposure was 4 minutes, this 

was the only additional training time that the treatment groups received in both 

Experiment 1 and 2.  Therefore, the TER can be calculated as (see Equation 2): 
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These results can be interpreted to mean that 59% of the stress training the 

treatment group received transferred to the flight.  In addition, for every hour spent in 

stress training, 0.9 hours are saved in the transfer task (flight). 

2. Physiological Measures 

The autonomic nervous system (ANS) is responsible for regulating physiological 

responses to external stressors and maintaining homeostasis within the body as a result of 

stress.  The ANS works in conjunction with the endocrine system and its associated 

endocrine glands to secrete corticoids and adrenalin, among other chemicals, to maintain 

homeostasis.  The ANS consists of two different branches, the parasympathetic nervous 

system (PNS) and the sympathetic nervous system (SNS), which collectively maintain 

balance within the body.  In response to a stressor, increased SNS activation, often called 

a "fight-or-flight" response (Cannon, 1915), stimulates physiological reactions such as 

increased heart rate, strengthened cardiac contraction, increased breathing and lung 

capacity, sweating, increased temperature, pupil dilation, etc.  The PNS branch of the 

ANS is responsible for homeostasis, or returning the body to "rest.”  Specific PNS 

activity includes a reduction in heart rate, decreased contraction of arterial muscle, 

increased delay between atrial and ventricular contraction, decreased blood flow, etc.  

(Berntson & Cacioppo, 2004; Friedman & Thayer, 1998; Hoover & Muth, 2004; 

Kroemer, Kroemer, & Kroemer-Elbert, 1986; Selye, 1956, 1974) 

The predictable and reliable responses of the SNS and PNS allow accurate 

inference about stress levels based on physiological responses.  Although there are many 

physiological measures of stress (e.g., temperature, respiration, electroencephalograph, 

etc.) the most common measures are based on electrocardiogram (EKG) and 

electrodermal response data.  These two measures and their uses in this study are 

described below. 

Electrocardiogram 

Many physiological measures of stress are derived from an electrocardiogram 

(EKG), or the measure of heart activity.  Not unlike an electromyography (EMG) which 

measures the action potential of a large muscle group, an EKG measures the action 
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potential of the largest muscle group in the human chest, the heart.  There are many 

advantages to performing EKG-based measures of stress including their ease of use, 

noninvasiveness, and reproducibility (van Ravenswaaij-Arts, Kollee, Hopman, Stoelinga, 

& van Geijn, 1993). 

An EKG trace is comprised of three primary components which are instrumental 

in identifying EKG-based physiology measures (see Figure 3.10).  The first process in an 

EKG trace is the P wave, which is primarily associated with atrial activity.  During this 

phase, blood is drawn into the heart through the atrium and then into the ventricle.  This 

blood flow is associated with a decrease in pulmonic and aortic pressures, while the 

pressures within the atria and ventricles rise slightly (Fox, 1993; Kroemer, Kroemer, & 

Kroemer-Elbert, 1986; Ricci, 1967). 

 

 

Figure 3.10  A typical EKG trace 

The systolic phase follows and is a highly complex combination of vagal activity 

that is associated with the audible heart beat.  The first QRS process of the systolic phase 

begins with an increase in intra-atrial pressure as blood is pumped from the atriums to the 

ventricles.  Depolarization of the ventricles then occurs in conjunction with closing of the 

atrioventricle valves followed by an increase in ventricle pressure.  Finally, the T wave 

represents maximum ventricular contraction and repolarization as the ventricles force 

blood into the aorta and pulmonary arteries (Fox, 1993; Kroemer, Kroemer, & Kroemer-

Elbert, 1986; Ricci, 1967).  
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Following the T wave is the diastolic phase marked by decreases in aorta,  

pulmonary artery, and ventricle pressures as the heart returns to a resting state.  The 

diastolic phase ends at the completion of the P wave. 

Heart rate is the first general measure of vagal activity derived from EKG data 

and it often used as a measure of pilot workload (Hart & Hauser, 1987; Kalsbeek & 

Ettema, 1963; Metalis, Bieferno, & Corwin, 1989).  Hasbrook and Rasmussen (1970) 

effectively used heart rate as a measure of stress in an aircraft instrument flying task.  

Their study asked experienced pilots (600-12,271 total flight hours; 60-3,057 total 

instrument hours) to perform ten Instrument Landing System (ILS) approaches under 

simulated instrument conditions.  They found that pilot stress (heart rate) increased as (1) 

the aircraft descended closer to the ground, and, at the same time, (2) the ILS sensitivity 

increased.  In addition, they also found lower stress levels for subsequent approaches. 

Although heart rate can be measured as a rate (commonly beats per minute), the 

distance in time between heart beats, or inter-beat-interval (IBI), is most often used to 

determine the speed at which the heart is beating.  Landmarks on the EKG trace must be 

used to mark heart beats and measure IBI.  Most often, the R wave of the QRS process is 

used as a landmark for its ability to saliently mark a heart beat in the presence of noise.  

However, the P wave also is used for its computational simplicity following the relative 

inactivity of the diastolic phase (see Figure 3.11). 
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Figure 3.11  Deriving IBI from EKG 

(Pfieper & Hammill, 1995) 

 

Not only is a decrease in IBI expected during stressful events when compared to 

baseline or non-stressful periods, but a decrease in the variability of IBI also is expected, 

or heart rate variability (HRV).  Heart rate variability is commonly described by "the 

standard deviation of intervals between successive R waves (SDRR) of the cardiac cycle" 

(Dishman, Nakamura, Garcia, Dunn, & Blair, 2000, p. 122), although other 

nomenclatures and IBI landmarks may be used (e.g., SDAN, rMSSD, pNN50, etc.) 

Aside from the previously mentioned time domain, HRV may also be expressed 

within a frequency domain.  A power spectral density (PSD) defines the frequency 

content of a time-based stochastic process by performing a Fourier transformation of the 

time domain data: 
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∫ −= dtetfvF ivtπ2)()(    (Equation 5) 

where: 

t = time 

v = real number i in ordinary frequency (Hz). 

"The main advantage of spectral analysis of signals is the possibility to study their 

frequency-specific oscillations" (van Ravenswaaij-Arts, Kollee, Hopman, Stoelinga, & 

van Geijn, 1993, p. 437).  Power spectral density analysis provides the ability to 

distinguish between different frequency spectra and associated types of vagal activity, or 

autonomic heart rate modulation (Dishman, Nakamura, Garcia, Dunn, & Blair, 2000).  

The physiological basis for the high frequency spectrum (HF; 0.15-0.5Hz), or 

parasympathetically mediated respiratory sinus arrhythmia (RSA), "is well known and 

many studies have validated the use of various RSA measures as indexes of PNS 

activity" (Hoover & Muth, 2004, p. 198; Pfieper & Hammill, 1995).  The low frequency 

spectrum (LF; 0.05-0.15 Hz) is derived from both parasympathetic and sympathetic 

activity, and is "believed to be vagally controlled" (Dishman, Nakamura, Garcia, Dunn, 

& Blair, 2000, p. 122).  Finally, the very low frequency (VLF; 0.0033-0.05 Hz) is less 

understood but is believed to be indicative of sympathetic activity.  Physiological 

responses to stress often include an increase in LF power, a decrease in HF power, and an 

increase in the LF/HF ratio (Berntson & Cacioppo, 2004; Pfieper & Hammill, 1995; see 

Figure 3.12). 
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Figure 3.12  Deriving VLF (1), LF (2), and HF (3) PSD from IBI 

(Pfieper & Hammill, 1995) 
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One common difficulty with collecting and interpreting EKG-based measures of 

physiology is unwanted noise, or artifact data.  Artifact data can be produced by electrical 

interference, incorrect electrode placement, subject movement (e.g, sneeze, scratching, 

etc.), and tensing of abdominal muscles.  During the aggregation of IBI data, artifact data 

can (1) introduce erroneous heartbeats, drastically decreasing the IBIs, (2) mask EKG 

signals, drastically increasing the IBIs, or (3) both.  The removal of artifact data is 

accomplished by either automatic or manual means.  All data for this research was 

filtered using a technique and computer script developed by the author.  The filtering 

technique included three steps: (1) the data was sampled every 60 seconds, (2) the mean 

and standard deviation IBI of each sample were calculated, then (3) any IBI that was 3.5 

standard deviations or more from the sample mean was removed. 

 Determination of appropriate measures 

Given the prominence of many different EKG-based physiological measures, for 

the purposes of this research the author analyzed the efficacy of 38 different measures 

produced by BioGraph®.  This analysis was performed during a prior pilot study and 

determined six measures that were (1) sensitive to mental state changes, (2) sensitive to 

physical stressors, and (3) reliable within/between participants within the tested 

simulation.  The 38 measures tested are listed in Table 3 with a short description of each: 
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Table 3.   BioGraph® EKG-based measures 
Measure Description (units) 
Raw EKG Raw EKG voltage produced by the heart (mV) 
IBI Distance between heart beats (ms) 
HR from IBI The rate of heart beats derived from IBI (bps) 
HR (smoothed) Damper filter and smoothing average of heart rate 
IBI peak frequency Moment-to-moment peak frequency of IBI using power 

spectrum 
VLF % power 
LF % power 
HF % power 

Moment-to-moment percent of total power spectrum 
represented by a user-defined or default constant within 
the spectrum 

VLF total power 
LF total power 
HF total power 

Moment-to-moment total amplitude of the power 
spectrum for a given frequency band 

HR epoch mean Average heart rate for a given period (epoch) 
IBI epoch SD IBI standard deviation for a given period (epoch) 
VLF % power epoch mean 
LF % power epoch mean 
HF % power epoch mean 

Mean percent of total power spectrum represented by a 
user-defined or default constant within the spectrum for 
a given period (epoch) 

VLF total power epoch mean 
LF total power epoch mean 
HF total power epoch mean 

Total amplitude of the power spectrum for a given 
frequency band for a given period (epoch) 

LF/HF (epoch mean) Average LF/HF ratio for a given period (epoch) 
HR mean (beats/min) Average heart rate in beats per minute 
HR SD Moment-to-moment heart rate standard deviation 
EKG peak frequency mean Moment-to-moment peak frequency of EKG using 

power spectrum 
IBI SD (SDRR) Standard deviation of IBI using R-wave landmarks 
VLF % power mean 
LF % power mean 
HF % power mean 

Moment-to-moment mean percent of total power 
spectrum represented by a user-defined or default 
constant within the spectrum 

VLF total power mean 
LF total power mean 
HF total power mean 

Moment-to-moment total amplitude of the power 
spectrum for a given frequency band 

LF/HF (means) Overall running average of LF/HF 
IBI peak amplitude Moment-to-moment peak IBI recorded 
IBI peak amplitude maximum Overall running maximum IBI recorded 
IBI peak frequency trigger 
IBI peak amplitude trigger 

Boolean function of maximum values recorded given 
user-defined or default trigger 

IBI NN intervals Time interval between consecutive normal heart beats 
IBI pNN intervals Number of instances two R-R intervals differ by user-

defined or default constant 
IBI pNN intervals (%) Percent of instances which differ by above difference 
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Preliminary analyses compared all raw measures across trials.  Figure 3.13 shows 

all 38 measures for a pilot study participant in the control condition (i.e., no stress 

training, TA and TA2 are identical, and no stress exposure until criterion).  There are 

many difficulties when comparing raw measures in this manner.  First, dissimilar units 

between the 38 measures make comparing the measures difficult.  In addition, presenting 

the data as in Figure 3.13 places emphasis on larger magnitude response units as they 

become more salient.  Finally, comparing raw measures of stress neglects the variance of 

each measure.  A measure that has very little variance, but is very sensitive to state 

changes may not appear as a large spike in the figure below. 
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Figure 3.13  EKG-based measures for control condition (various units) 

An alternative approach the author proposes to determine which of many response 

measures are sensitive and reliable indicators of stress is a variance/baseline-based 

analysis of multiple measures, or VBA.  The first step in performing VBA is to compute 

the variance, or standard deviation, of each measure.  Second, the measures are plotted as 

the number of standard deviations from the baseline for each segment of the trial.  In this 

case, the baseline is the physiological response while participants were viewing the video.  
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Preliminary analysis determined this to be an effective measure of baseline.  Each 

segment represents either a transition from straight/level flight to maneuvering flight or a 

transition between experiment sessions (e.g., Practice, TA, Criterion, etc.)  The final step 

in the VBA examines known periods of mental and physical stress to determine 

sensitivity to state changes (e.g., transitions from straight/level to maneuvering, cold 

pressor, etc.)  Figure 3.14 shows the same control participant as in Figure 3.13 after 

performing the VBA, and indicates the most reliable and sensitive measures resulting 

from the VBA analysis.  Similar to the RMSE analysis above, this analysis and these 

variables indicated emotional state changes both between different sessions and within a 

session. 
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Figure 3.14  Variance/Baseline analysis 

 The VBA identified eight variables that were sensitive to experiment state 

changes using a criterion of 2 or more SDs from baseline: VLF, LF, and HF Total Power; 

VLF, LF, and HF Total Power Epoch Mean; and IBI Peak Amplitude.  The only measure 
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chosen that did not meet the 2 SD criteria was LF/HF Epoch Mean.  However, this 

measure was chosen due to its high sensitivity to simulation state changes (i.e., 

straight/level vs maneuvering flight).  These eight variables will be used as indications of 

stress during experiments. 

Electrodermal Response 

Another physiological correlate of human emotion is electrodermal response.  The 

relationship between emotions and properties of the skin has been studied for over a 

century.  One form of measuring electrodermal response is skin resistance, or "the 

electrical resistance of the skin to the flow of electromotive current and it is measured in 

ohms" (Grossman, 1967, p. 504).  The reciprocal of skin resistance, skin conductance 

(SC; measured in micro-Siemens, μS) is "a method of capturing the autonomic nerve 

response as a parameter of the sweat gland function" (Perala & Sterling, 2007, p. 2), and, 

thus, allows inference regarding emotions.  Galvanic skin response and psychogalvanic 

reflex are other terminology for SC (Grossman, 1967). 

Unlike EKG data, SC is a relative measure, meaning only an increase or decrease 

in individual SC relative to a baseline can indicate a heightened level of emotional 

arousal.  In addition, "although there is a relationship between sympathetic activity and 

emotional arousal, determining the specific emotion being elicited is difficult" (Perala & 

Sterling, 2007, p. 2)—anxiety, fear, anger, and sexual feelings all elicit the same SC 

response.  Sample SC recordings can be found in Chapter V.  

Subjective Queries 

As mentioned in Chapter II (Section C.1), stress is an individual's appraisal of a 

situation given the resources that person perceives, and subjective measures of stress 

have been shown to indicate changes in stress levels (Johnston & Cannon-Bowers, 1996; 

Sloan, Shapiro, Bagiella, Boni, Paik, Bigger, Steinman, & Gorman, 1994).  Subjective 

queries were analyzed in an attempt to portray this information.  Similar to performance 

data analysis described above, subjective queries were aggregated for each session to  
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determine main effects, and data was analyzed within sessions to determine learning 

effects.  Finally, a linear regression determined the relationships between subjective and 

physiological measures.  

D. RESULTS 

This section provides the results obtained from Experiment 1 using the data 

analysis described above.  Chapter VI further describes the applicability of these results 

to the research objectives. 

Two outliers were removed from the following results.  The first outlier's time to 

complete the task practice was 4.4 standard deviations greater than the mean completion 

time implying a general misunderstanding of the task, a disproportionate amount of 

practice, or both.  The second outlier exhibited very erratic performance and 

physiological recordings as he continually asked what the manipulation in the study was, 

such as, "What are you changing back there?"  This participant's performance was often 2 

or more standard deviations from the mean.  Following the exclusion of these two 

participants, the total sample size was 20 and there was an equal distribution of 

participants to the control and treatment conditions. 

The 20 participants included 16 males and 4 females, and their age ranged from 

25 to 39 years old with a mean age of 32.5.  In addition, mean ratings for gaming 

experience, personal computer experience, flying experience, and air traffic control 

experience were 2.6, 4.6, 1.3, and 1.1, respectively (see Appendix B). 

1. Performance Measures 

Individual differences are accounted for using both a measure-based technique 

and a statistical model approach.  The results of these two methods are presented below.  

In addition, training effectiveness ratios are computed in this section. 

For all performance variables (altitude, heading, pitch and roll), no significant 

difference was found between the control and treatment groups for practice and task 

acquisition performance (p>0.05).  In addition, when comparing the final minutes of the 
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third (TA2/PUS) and fourth (Cr) sessions the treatment group had a decrease in error and 

the control group had an increase in error for every variable.  This difference in 

performance indicates general anecdotal evidence of the stress training's efficacy, and is 

represented by theoretical performance curves in Figure 3.7. 

Measures Analysis 

The performance data was analyzed, first, comparing each variable separately.  

Next, the straight and level variables (altitude and heading) and the maneuvering 

variables (pitch and roll) were combined to draw inference concerning these two portions 

of flight.  Finally, all data was combined to indicate main effects. 

Separate Variable Analyses 

The following measures were used to compare control and treatment groups for 

each of the four dependent variables (altitude, heading, pitch and roll): 

Cr/TA: Mean criterion performance divided by mean task acquisition 
 performance 

Cr/TAend: Mean criterion performance divided by task acquisition asymptote 

CrBeg/TAend: Early criterion performance (stress onset, the first three minutes) 
divided by task acquisition asymptote 

CrBeg-TAend: The difference between task acquisition asymptote and early 
 criterion performance 

Any results found using the Cr/TA measure were expected to be compelling 

evidence of stress training efficacy, as the variance of the entire session (TA and Cr) is 

included in this calculation.  For example, if stress training is only effective for 

improving performance during the onset of stress (CrBeg), then the converging 

performance of the control and treatment groups may null these differences in a total Cr-

based measure.  Likewise, other individual differences within the task acquisition session 

(e.g., initial performance, time to reach asymptote, slope of the learning curve, etc.) are 

all incorporated into the mean task acquisition measure. 

Using Cr/TA as a measure of performance, all four variables indicated higher 

control group error compared to the treatment group.  The difference between groups was 
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significant when measuring altitude (F(1,18)=4.90, p=0.04, β=0.45), while heading 

(β=0.65), pitch (β=0.76), and roll (β=0.88) were all found insignificant (see Figure 3.15).  

These results provide compelling evidence that throughout the entire criterion session 

altitude performance is enhanced with stress training. 
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Figure 3.15  Cr/TA analysis  

The Cr/TAend measure removes some of the variance from the task acquisition 

measure, but showed similar results for both altitude (p=0.05, β=0.48) and heading 

(p=0.07, β=0.66).  However, the pitch (p=0.09, β=0.62) and roll (p=0.08, β=0.59) p-

values, though still insignificant, decreased substantially.  Again, the variable trends were 

all as expected  (see Figure 3.16). 
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Figure 3.16  Cr/TAend analysis  

The CrBeg/TAend tests the efficacy of stress training to improve performance for 

the onset of stress—this measure only indicates if stress training improved a participant's  

initial performance in the early minutes of the Cr session.  The treatment group again 

indicated lower error compared to the control group for all variables with a significant 

difference when measuring pitch (F(1,18)=7.04, p=0.016, β=0.29).  Altitude (β=0.63), 

heading (β=0.50), and roll (β=0.72) were all found insignificant (see Figure 3.17). 
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Figure 3.17  CrBeg/TAend analysis  

Finally, using CrBeg-TAend as a measure, there was a significant difference 

between the control and treatment groups when measuring both heading (F(1,18)=5.01, 

p=0.038, β=0.44) and pitch (F(1,18)=7.69, p=0.012, β=0.25).  Altitude (β=0.68) and roll 

(β=0.75) were found insignificant, although all variables showed differences in the 

expected direction.  The two groups' altitude was not significantly different given the 

substantial trend data seen in Figure 3.18.  Although the two groups appear to have much 

different mean data, the overall mean (-7.6 feet) and standard deviation (19.6 feet) of 

altitude for this measure indicates a very high variance in the group as a whole. 
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Figure 3.18  CrBeg-TAend analysis  

Combined Variable Analyses 

The straight/level (altitude and heading) and maneuvering (pitch and roll) 

variables were then combined using the below Euclidean transformation of the data: 

 

22 yxc +=                           (Equation 6) 

where: 

c = combined data 

x, y = straight/level (altitude, heading) or maneuvering (pitch, roll) variables. 

 

There were no significant findings for the CrBeg/TAend and CrBeg-TAend 

measures (p>0.05).  Stress training did significantly improve the performance of the 

treatment group for straight/level portions of flight (F(1,18)=4.76, p=0.043, β=0.44) and 

total performance (F(1,18)=4.87, p=0.041, β=0.44) when using the Cr/TA measure (see 

Figure 3.19).  Stress training also improved the treatment group's performance for 

maneuvering portions of flight (F(1,18)=4.43, p=0.049, β=0.48) and total performance 

(F(1,18)=4.87, p=0.041, β=0.44) when using the Cr/TAend measure (see Figure 3.20).   
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Figure 3.19  Cr/TA analysis for combined data 
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Figure 3.20  Cr/TAend analysis for combined data 
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Variance Analyses 

In addition to the performance measurements used above, variability within each 

measurement was collected and analyzed.  As Jagacinski and Flach (2003) point out, 

variability is a particularly useful measure of performance if the target is difficult to 

decipher or easily forgotten.  Participants were required to remember target altitudes, 

headings, pitch, and bank in addition to ranges of acceptable performance.  Although the 

specific performance tolerances (e.g., 20-degrees of bank, plus or minus 5 degrees; see 

Appendices E1 and E2) were not used for analysis, they were given to provide a 

performance goal.  However, participants often asked to have these re-read, and it is 

possible that these tolerances made the target performance confusing.  Given this 

potential confusion, performance variance was explored as a measure of performance. 

A variance-based measure has been shown effective at measuring performance 

within a driving context (Mackie & Miller, 1978; Marcotte, Roberts, Rosenthal, Heaton, 

Bentley, Grant, & Group, 2003; Wylie, Shultz, Miller, Mitler, & Mackie, 1996).  The 

method pioneered by Mackie and Miller (1978), called the "standard deviation of lane 

position" (SDLP), measures the amount a driver weaves within a lane. 

For the purposes of this analysis, variance was used to determine how much a 

participant varied regardless of the assigned clearance.  Variance was used, rather than 

standard deviation, to retain the normal distribution properties of the data for subsequent 

ANOVAs.  Chapter VI uses Experiment 1 data to demonstrate why using a variability-

based measure of performance is preferred in an aviation context compared to RMSE. 

Data were sampled once every six seconds; variance was calculated for each 

sample, and then averaged across sessions.  Six seconds was determined a sufficient 

sample size to allow (1) short enough samples that large heading and/or altitude changes 

did not adversely effect error scores, and (2) long enough that error was sensitive to the 

manipulation. 
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The control group indicated higher variance for all four dependent variables using 

the Cr/TAend measure.  The difference in performance was statistically significant when 

measuring heading (F(1,18)=11.08, p<0.01, β=0.22) and pitch (F(1,18)=5.60, p=0.029, 

β=0.39; see Figure 3.21). 
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Figure 3.21  Cr/TAend variance analysis 

The variance analysis also indicated significant differences between groups when 

measuring CrBeg/TAend.  The control group showed higher variance error for both 

heading (F(1,18)=5.17, p=0.03, β=0.42) and pitch (F(1,18)=4.67, p=0.04, β=0.47; see 

Figure 3.22). 
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Figure 3.22  CrBeg/TAend variance analysis  

The variance analysis also indicated a significant difference between groups 

during the criterion session (Cr and CrBeg) without normalizing the data using the TA 

asymptote.  The treatment group showed a significantly lower variance error than the 

control group for both the beginning of the criterion session (CrBeg;  F(1,18)=5.33, 

p=0.03, β=0.41) and the total criterion session (Cr; F(1,18)=6.36, p=0.02, β=0.33).  This 

finding in the presence of individual differences suggests that the variance method may 

be more sensitive than traditional performance measures like RMSE in an aviation 

context. 

Statistic Modeling Analysis 

A step-wise regression was performed for each variable to determine other 

covariate factors other than condition.  For the altitude performance variable, condition 

(C; t(18)=7.04, p=0.016) and mean task acquisition performance (TA; t(18)=10.18, 

p<0.01) explained a significant proportion of the variance in mean criterion error (Cr; 

R2=0.47, F(2,18)=7.85, p<0.01): 

Cr = 16.39 + 5.05C + 0.48TA + ε 
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Heading analysis determined that condition (C; t(18)=1.90, p=0.074) and 

asymptote performance (TAend; t(18)=3.13, p<0.01), explained a significant proportion 

of the variance in mean criterion performance (Cr; R2=0.43, F(2,18)=6.31, p<0.01): 

 

Cr = 2.06 + 0.71C + 0.65TAend + ε 

 

Pitch analysis determined that condition (C; t(18)=1.49, p=0.153) and mean task 

acquisition performance (TA; t(18)=5.01, p<0.01) explained a significant proportion of 

the variance in mean criterion performance (Cr; R2=0.60, F(2,18)=13.32, p<0.01): 

 

Cr = 2.08 + 0.22C + 0.60TA + ε 

 

Roll analysis determined that condition (C; t(18)=1.43, p=0.17) and asymptote 

performance (TAend; t(18)=7.92, p<0.01), explained a significant proportion of the 

variance in mean criterion performance (Cr; R2=0.79, F(2,18)=31.36, p<0.01): 

 

Cr = 0.086 + 0.54C + 0.93TAend + ε 

 

The results of these models indicate that individual performance differences 

measured using mean task acquisition (TA) and asymptote performance (TAend) are the 

only contributing covariates to the dependent variable (criterion performance; Cr).   

Therefore, the dependent measures used in the above ANOVA analyses (Cr/TA, 

Cr/TAend, CrBeg/TAend, and CrBeg-TAend) are sufficient for determining main effects 

between groups. 
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Transfer Effectiveness Ratio 

The variance measures were used to calculate the percent transfer and TER for 

each variable.  Table 4 shows these results: 

 
Table 4.   Experiment 1 transfer effectiveness 

 

 

 

 

 

 

These results are consistent with Orlansky et al. (1979) meta analysis reported in 

Chapter II.  When measuring the transfer of flying skills from flight simulators they 

reported a median TER of 0.48. 

2. Physiological Measures 

Electrocardiogram 

The only significant EKG finding for the practice or task acquisition sessions was 

an unexpected higher control group VLF compared to the treatment group during task 

acquisition (F(1,18)=7.28, p=0.015, β=0.27).  There were no other significant EKG 

findings during these practice and task acquisition sessions (p>0.05).  There also was a 

surprising lack of significant difference between the groups' HRV during the third 

TA2/PUS session (p>0.05).  To reiterate, during this time the control group was 

performing the task without the cold pressor exposure and the treatment group was 

performing the task under stress of the cold pressor. 

When comparing overall mean session HRV, an ANOVA determined that during 

the criterion session, the control group had a higher mean LF PSD compared to the 

treatment group (F(1,18)=7.74, p=0.012, β=0.25).  This significant difference in LF PSD 

Variable % Transfer TER 

Altitude -12.5% -0.075 

Heading 32.1% 0.23 

Pitch 38.5% 0.25 

Roll 81.5% 0.55 
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indicates that the treatment groups' stress training significantly improved the participants' 

ability to mitigate the stress of the cold pressor in a stressful criterion task (see Figure 

3.23). 

 

Mean Criterion HRV Results
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Figure 3.23  Mean criterion results for each PSD band 

Given these results and prior research emphasizing the importance of LF PSD as a 

measure of stress response, the mean LF PSD between the two groups throughout the 

criterion session is presented in Figure 3.24.  This figure demonstrates the treatment 

group's relatively quick mitigation of the criterion session stress with an abrupt drop in 

LF response.  The treatment group's LF response then stabilizes around the same level 

this group reported in the baseline measurement.  Conversely, the control group's LF PSD 

never stabilizes and indicates between one and four times this group's baseline LF 

response. 
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LF (0.05-0.15 Hz ) Criterion Means
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Figure 3.24  Mean LF criterion results during session 

In an attempt to determine if stress training is effective for mitigating stress 

during both straight/level and maneuvering portions of flight these periods were analyzed 

separately.  The treatment group had significantly lower LF PSD during both overall 

straight/level (F(1,18)=6.00, p=0.025, β=0.36) and maneuvering (F(1,18)=9.57, p<0.01, 

β=0.16) portions of the criterion session (see Figure 3.25).  When each segment of flight 

was analyzed separately, the treatment group demonstrated lower LF PSD for six of the 

eight maneuvers, but only two of the eight straight and level portions (p<0.05).  The 

different results for these two different portions of the flying task indicates that stress 

training may be more effective for decreasing strain only for portions of a task that are 

inherently stressful to begin with (i.e., maneuvers). 

 



 110

LF (0.05-0.15 Hz ) Criterion Means
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Figure 3.25  Mean LF criterion results for straight and maneuver portions 

Electrodermal Response 

After review of the SC data, one participant's data indicated erroneous 

conductance readings (~90 standard deviations from baseline).  After removing this 

participant (N=19), trends indicated a decrease in electrodermal response for the 

treatment group during the TA2/PUS and criterion sessions (see Figure 3.26).  
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Figure 3.26  Mean SC results 
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Further ANOVAs indicated no significant differences for the practice, task 

acquisition, and TA2/PUS sessions (p>0.05), and a significant difference between groups 

for the final criterion session (F(1,17)=4.61, p=0.047, β=0.48).  Further analysis of the 

criterion session indicated a significant difference for only the first portions of the session 

(see Table 5). 

 

Table 5.   Criterion SC ANOVA results 

 

 

 

 

 

 

Subjective Queries 

Initial analysis compared subjective query responses as a function of each 

individual participant's baseline.  Each response (five per session) ratio was analyzed 

separately, and mean responses for each session also were analyzed.  A baseline 

subjective query was not collected for one of the participants, therefore this participant 

was not included in the subjective query analysis (N=19). 

There was no significant difference between groups for the baseline query 

(p>0.05).  During task acquisition, there was an unexpected significant difference 

between groups for the fourth query (F(1,17)=7.94, p=0.011, β=0.24) and the overall 

session mean (F(1,20)=4.76, p=0.044, β=0.46; see Figure 3.27).  

 

Event ANOVA Result 

Straight and level 1 F(1,17)=6.62, p=0.02, β=0.32 

Maneuver 1 F(1,17)=4.77, p=0.043, β=0.46 

Straight and level 2 F(1,17)=4.64, p=0.046, β=0.47 

Maneuver 2 F(1,17)=5.35, p=0.033, β=0.41 

Straight and level 3 F(1,17)=5.49, p=0.032, β=0.40 

Maneuver 3 F(1,17)=4.47, p=0.049, β=0.48 
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Baseline Subjective Stress
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Figure 3.27  Trial subjective query results 

 There is no explanation for any significant differences between groups during the 

task acquisition session given that the two sessions, and the methods leading up to the 

task acquisition sessions, were identical.  Similar to the performance analysis, a step-wise 

regression was performed to determine other covariate factors (including baseline) that 

may significantly influence the mean task acquisition raw stress ratings (no ratio 

measures).  The regression determined that condition (C; t(16)=1.64, p=0.12) and 

baseline (B; t(16)=5.18, p<0.01) were the only covariates that explained a significant 

proportion of the variance in task acquisition ratings (TA; R2=0.63, F(2,16)=13.61, 

p<0.01): 

 
TA = 1.39 + 0.42C + 0.78B + ε 

 
During the second test session (where control is a second task acquisition session 

and treatment is performance under stress), the control group unexpectedly indicated 

significant  higher stress levels as a function of their baseline during the fourth query  
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compared to the treatment group (F(1,20)=5.95, p=0.026, β=0.37).  A step-wise 

regression did not determine condition to significantly contribute to the participants' 

responses during this session (p>0.05). 

As expected, analysis of the final criterion session revealed significantly higher 

anxiety for the control group during the first (F(1,20)=13.93, p<0.01, β=0.06), second 

(F(1,20)=13.13, p<0.01, β=0.07), third (F(1,20)=6.49, p=0.021, β=0.33), and fourth 

(F(1,20)=4.60, p=0.046, β=0.47) queries in addition to the overall session average 

(F(1,20)=8.00, p=0.011, β=0.24; see Figure 3.27). 

Again, a step-wise regression was performed to determine other covariate factors 

(including baseline) that may significantly influence the mean criterion raw stress ratings 

(no ratio measures).  The regression determined that condition (C; t(18)=2.43, p=0.028) 

and the second test session mean (M; t(18)=7.85, p<0.01) explained a significant 

proportion of the variance in mean criterion ratings (Cr; R2=0.80, F(2,18)=44.32, 

p<0.01): 

 
Cr = 0.28 + 0.51C + 1.00M + ε 

 

Correlations Analysis 

A multivariate analysis was performed between the subjective queries and both 

EKG and SC.  The analysis determined relatively low correlations between subjective 

scores and physiological measures (see Table 6).  Lack of high correlation values is not 

surprising given the different insight subjective and physiological measures provide—

subjective queries indicate a participant's appraisal of a situation given their available 

resources (i.e., threat), where physiological measures provide actual human responses to 

a stressful situation. 
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Table 6.   Correlations between physiological measures and subjective queries 
 

EKG  

VLF LF HF SC 

TA .41 .13 .55 .07 

TA2/PUS .17 .22 .33 .02 

Cr .22 .12 .34 .28 

 

These findings may appear surprising in light of research that found physiological 

measures sensitive to variations in workload (Berntson & Cacioppo, 2004; Pfieper & 

Hammill, 1995).  However, it is important to point out that stress, as a subjective 

measure, is fundamentally different from workload—stress is a psychological state where 

workload is a more concrete construct comparing available resources to task 

requirements.  Therefore, empirical workload findings should not always be generalized 

to stress.  In addition, the subjective stress tool used in this research is not an empirically 

tested and proven tool.  The tool used in this research, and subjective appraisal of stress 

in general, requires further investigation. 

E. EXPERIMENT 1 CONCLUSIONS 

The results of Experiment 1 indicate that, in an aviation context, when performing 

a stressful virtual environment criterion trial, stress training (1) improved performance, 

(2) decreased physiological responses to stress, and (3) decreased subjective appraisals of 

stress.  In addition, stress training was more effective for more difficult portions of the 

flying task (i.e., maneuvers) and the onset of stress (i.e., the beginning of the criterion 

session).  Experiment 1 validates the findings by Friedland and Keinan (1992) in an 

aviation context and using operational measures. 

These results also support theories by Thorndike & Woodworth (1901) and 

Osgood (1949) reaffirming that a training program must share elements with the transfer 
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task.  Experiment 1 also empirically verifies that retention and retrieval is dependent on 

an individual's emotional, physiological, and mental states during both training and recall 

(Overton, 1964). 

However, as pointed out in Chapter II, there are many oppositions to pseudo-

transfer studies, and the results of Experiment 1 should be interpreted with some 

reservation.  These results provide no definitive indication that stress training in a flight 

simulator will transfer to a stressful flying task.  Therefore, a second experiment was 

devised to test the transfer and generalization of Experiment 1 results to the real world. 
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IV. EXPERIMENT 2: STRESS TRAINING TRANSFER 

Wars may be fought with weapons, but they are won by men. 

— General George S. Patton, Jr. 

A. OVERVIEW 

Numerous studies have found that fight simulator skills will transfer to flight 

(Taylor, Lintern, Koonce, Jefferson, Kaiser, & Morrison, 1991; Taylor, Lintern, Koonce, 

Kunde, Tschopp, & Talleur, 1993; Smode, Hall, & Meyer, 1966; Carretta and Dunlap, 

1998; Lintern, Sheppard, Parker, Yates, & Nolan, 1989; Hays, Jacobs, Prince, & Salas, 

1992; Orlansky, String, and Chatelier, 1979; Bell & Waag, 1998).  However, little is 

known regarding the transfer of emotional states from flight simulators to aircraft.  Given 

inherent stress levels associated with real flight, Overton's (1964) state-dependent 

learning suggests that flight training also should be stressful. 

The general adaptation syndrome (Selye, 1936) suggests that stress training may 

benefit pilots in a stressful flight environment even if the stress exposure in training is not 

congruent with flight.  Generalization from incongruent stressors also relies on Driskel et 

al.'s (2001) distinction between structure and surface features.  If the generalized 

biological response to stress is thought of as a structure feature, and the type of stress is 

thought of as a surface feature, then positive transfer should be observed between 

incongruent stressors. 

As reviewed in Chapter II, Driskel et al. (2001) empirically demonstrated the 

generalization of stress training to novel stressors.  Experiment 2 of this thesis expands 

on these findings in an aviation context, using a VE flight simulator, and measuring stress 

responses using subjective and physiological measures. 

B. METHODOLOGY AND EXPERIMENT DESIGN 

Experiment 2 used a between-subject experiment  design with training (stress 

training vs. no stress training) as the manipulation (see Figure 3.7).  However, in 
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Experiment 2, the criterion session was replaced with a transfer task in a flight 

environment.  Other differences between the two experiments are noted below. 

Equipment 

The transfer task took place in a 2006 Piper Archer owned and operated by the 

Travis Air Force Base Aero Club (see Figures 4.1 and 4.2).  This aircraft provided the 

capability to download telemetry data following each flight from the primary flight 

display (PFD). 

 

 

Figure 4.1  Transfer aircraft 
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Figure 4.2  Transfer session 

The same virtual environment and experiment apparatus was used as in 

Experiment 1.  However, the simulator display was a representation of the transfer 

aircraft PFD—an Avidyne 10.4-inch, full color, flat panel, liquid-crystal display (LCD; 

see Figure 4.3).  The simulated display filled the entire simulator screen with no outside 

view.   

 

Figure 4.3  Avidyne PFD 
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Participants 

Thirty-two participants were recruited from the pool of active duty military 

members at both the Naval Postgraduate School and the Defense Language Institute, 

Monterey, California.  Research volunteers were randomly assigned to either a control 

(no stress training) or a stress-trained treatment group.  The same surveys and 

requirements as in Experiment 1 were used.  However, Experiment 1 analysis determined 

a potential influence of the informed consent—the control group may have expected the 

ensuing stress exposure, and this may have influenced physiology results.  Therefore, for 

Experiment 2, the treatment and control group received slightly different informed 

consent forms.  The control group, which did not have any stress exposure in training, 

received an informed consent absent of any reference to the cold pressor or "stress" (see 

Appendix C2).  The treatment group received a similar informed consent to the 

Experiment 1 form (see Appendix C3).  In addition, participants were asked to rate their 

susceptibility to fear of heights, fear of flying, and motion sickness (see Appendix G2).  

No participants were found highly susceptible to any of these conditions (greater than 5 

on a 10-point scale).  These responses also were used as statistical covariates (see 

Results).  

Procedure 

The Experiment 2 procedures followed the same schedule as described in Table 2 

and Figure 3.7 above, and similar instructions were read (see Appendix E2).  However, 

the criterion session was replaced by an approximately 60-minute flight including a 15-

minute transfer task.  All procedures prior to the flight were identical to Experiment 1, 

except (1) they were conducted at the Monterey Navy Flying Club (MNFC) located at the 

Monterey Airport, (2) a different baseline training video was used that was relevant to the 

Avidyne PFD (Dishman, Nakamura, Garcia, Dunn, & Blair, 2000), and (3) a "Transfer 

Task Prep" section was added after all training to prepare participants for the flight 

operations (see Appendix E2).  In addition, no altitude changes were used for the flying 

task because dry-runs determined this to be too difficult for a novice in conjunction with 

turns in a real flight environment.  Therefore, all procedures in Experiment 2 tested level 

turns only.  Following the Task Acquisition 2 (control)/Practice Under Stress (treatment) 
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session, the participants were escorted to the transfer task aircraft.  Figure 4.4 and 4.5 

show the participant and experimenter simulator consoles, respectively. 

 

 
Figure 4.4  Participant console 

 

 
Figure 4.5  Experimenter console 
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Prior to the participant's arrival at the aircraft, a certified pilot performed a pre-

flight inspection, calculate weight and balance, and reviewed current and forecasted 

weather.  The participant was then assisted into the front-left seat, the experimenter sat in 

the rear-right seat, and a certified flight instructor (CFI) sat in the front-right seat of the 

aircraft (see Figure 4.6).  The participant was given an FAA-compliant safety briefing 

during aircraft taxi. 

 
Figure 4.6  Aircraft seating arrangement 

(P = participant, CFI= certified flight instructor, E = Experimenter) 

 

The two CFIs were FAA-licensed flight instructors with instrument instructor 

ratings (CFII).  The two CFIs combined had more than 19,000 flight hours and over 50 

years of flying experience.  In addition, they were both instrument instructors—they are 

experts at evaluating a student's flying experience during instrument maneuvers.  

Therefore, the CFIs were subject matter experts. 

Their job was to safely fly the aircraft to and from the training area.  On the short 

flight to the training area, the participant wore a pair of glasses that blinded the view of 

the controls and instruments.  The blinders prevented the participant from gaining any 

further knowledge about the controls and displays in route to the training area.  However, 

the outside view was still visible to prevent motion sickness and undue discomfort.  Upon 

P CFI 

E  

Front 
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arrival at the training area, the participant dawned a second set of blinders that shielded 

the outside view and all instruments other than the PFD.  These blinders ensured that only 

the skills learned in training (instrument flying) were used during the transfer task. 

The CFI then aligned the aircraft with the starting heading and altitude.  Session 

instructions were read by the experimenter and aircraft control was transferred to the 

participant.  The experimenter then provided clearances following the same procedures 

from the VE training.  In the event that an unusual attitude was obtained (greater than 60 

degrees of bank, greater than 20 degrees of pitch, or less than 20 degrees of pitch), the 

CFI recovered the aircraft.  The recovery procedure was practiced in the simulator and 

during taxi; this procedure is familiar to all CFIs and is a required part of their 

certification.  Other than these duties, the CFI was not allowed to interact with or instruct 

the student in any way until after the transfer task was completed. 

The experimenter ensured a sterile cockpit environment—prior to and during the 

transfer task, communications within the aircraft were limited.  Only necessary 

communication for flight safety and for the experiment were allowed.  In addition, the 

aircraft was equipped with split communications capability.  This feature allowed the CFI 

to communicate with air traffic controllers in isolation from the participant and 

experimenter. 

The experiment officially concluded after all clearances were accomplished.  At 

this point, the CFI resumed control and returned the aircraft to the airport.  Upon arrival 

back at the Monterey Navy Flying Club, the experimenter debriefed the participant (see 

Appendix G2).  See Figure 4.2 for a trial in progress. 

Variables 

The same variables and analysis were used as in Experiment 1 with the following 

exceptions: 

—The aircraft location and performance measures were collected using primary 

flight display telemetry data.  Data were extracted and then analyzed similar to 

Experiment 1. 
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—During each of the in-flight subjective stress queries, the CFIs were required to 

rate the participants' performance on a 10-point scale (see Appendix H).   

—The physiology data was recorded on a Compact Flash using the ProComp 

Infinity encoder (see Figure 4.7).  After each trial, data was uploaded to a PC for analysis.  

A button switch was used to mark events during trials. 

 

 
Figure 4.7  ProComp Infinity encoder with compact flash drive 

 
—Audio recordings were used by connecting an Olympus digital voice recorder 

(VN-3100PC; see Figure 4.8) to the empty intercom jack (rear left seating position) in the 

aircraft.  This data also was uploaded to a PC following each trial. 

 

 
Figure 4.8  Olympus audio recorder 

 
Data synchronization took place prior to each take-off.  During this time, (1) the 

PFD altitude and heading bugs were set to 10,000 feet and the participant ID, 
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respectively; (2) the audio recording was started; and (3) a unique key press was 

performed on the physiology button switch.  This synchronization allowed all three data 

formats to later be compared at any specific time within a trial. 

Hypotheses 

The Experiment 2 hypotheses are as follows: 
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where, 

 pT:  transfer performance of stress-trained treatment group 

 pC:  transfer performance of no-stress-training control group 

 aT:  transfer arousal of stress-trained treatment group 

 aC:  transfer arousal of no-stress-training control group 

C. DATA ANALYSIS 

The same data analyses were performed as in Experiment 1.  Due to a more 

diverse sample of participants from the Monterey military population, blocking for 

Experiment 2 was performed on both gender and military rank.  In addition, participants 

were equally distributed between the two CFIs to control for the amount of variance 

between the two CFI's ratings.  As in Experiment 1, ANOVAs with an alpha level of 0.05 

were conducted on all performance, physiology, and subjective stress rating response 

measures with "condition" used as a predictor variable (IV). 

D. RESULTS 

Two outliers were removed from the Experiment 2 results.  The first outlier 

became airsick during the flight, and the experiment was terminated approximately half 

way into the transfer task.  Another outlier was removed due to a nine day delay between 

the simulator training and the transfer task.  This delay was due to inclement weather 
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following the simulator portion of the trial.  These two outliers resulted in a sample size 

of 32 with an equal distribution of participants to both groups (16). 

The 32 participants included 28 males and 4 females, and their ages ranged from 

18 to 37 years old with a mean age of 27.1.  In addition, mean ratings for gaming 

experience, personal computer experience, fear of heights, fear of flying, and motion 

sickness were 2.10, 4.4, 2.0, 1.5, and 1.6, respectively (see Appendix B and G2). 

A preliminary analysis was performed to determine if the flight environment was 

indeed perceived as stressful by participants.  This analysis was important for 

determining if stress training was viable in this context—if the flying task was not 

stressful then it should not benefit from stress training.  For this analysis, subjective stress 

ratings were compared between the Experiment 1 control group criterion session and the 

Experiment 2 control group transfer session (see Figure 3.7).  These two groups were 

similar other than the actual stress they were exposed to during these sessions: cold 

pressor versus flight. 

First, an ANOVA of the first two sessions' (TA and TA/PUS) queries was 

performed to ensure that this was a fair comparison between groups.  No significant 

differences were found (p>0.05) suggesting that the stress responses during these 

sessions were similar between the two experiments (see Figure 4.9 Task Acquisition and 

TA/PUS).  Subjective stress scores during the final transfer session determined that the 

two groups perceived to be equally strained when exposed to their respective stressor 

(p>0.05).  In other words, as reported by these participants, flying an aircraft is as 

stressful as putting your foot in a bucket of ice water.  This analysis determined that the 

instrument flying task is stressful for a novice and may benefit from stress training. 
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Figure 4.9  Experiments 1 and 2 subjective stress comparison 

1. Performance Measures 

Aircraft Telemetry Data 

Given the success of the Experiment 1 variance analysis, the Experiment 2 

analysis exclusively used variance as a measure of performance.  (See Chapter VI for a 

discussion regarding the effectiveness of this measure in an aviation context.)  Given the 

large effect sizes and performance significance (p<0.05) observed in the following 

variance analysis, measures that account for individual differences were not needed—the 

two groups' total mean transfer performance were compared absent of simulator 

performance. 

There were problems with comparing the two groups' performance using both the 

altitude and heading measures as used in Experiment 1.  In Experiment 1, the task 

clearances were carefully selected so that no participants traveled through a heading of 

due North.  Computing performance measures of a flying task as the heading transitions 

from 359-degrees to 1-degree, or visa-versa, can present erroneous error scores.  The 

operational constraints associated with Experiment 2's flying task prevented this control.  
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In addition, the experiment aircraft's telemetry data did not provide indicated altitude.  

Rather, it provided true altitude which varies from the indicated altitude due to 

temperature and barometric pressure variations.  As outside temperature and pressure are 

constantly changing, true altitude becomes an unreliable measure of flying 

performance—the reading on the display (i.e., indicated altitude) can have zero variance 

while the true altitude is constantly changing.  For these two reasons, heading and altitude 

were not used in this analysis. 

The aircraft's telemetry data did provide some variables that allow for very 

accurate inferences regarding pilot performance, foremost being the acceleration and rate 

variables.  The telemetry data included directional acceleration in the lateral (side-to-

side), longitudinal (forward-to-back), and normal (up and down) aircraft axes in addition 

to rotational rates due to roll (roll rate) and pitch (pitch rate).  These measures are direct, 

objective measures of how smoothly the aircraft is flying.  Also included in this analysis 

are bank and pitch angles. 

Using variance as a measure of performance (see above) there was not a 

significant difference between the control and treatment groups for the total transfer task 

mean using the pitch and roll variables (p>0.05).  The trends are in the expected direction 

(see Figure 4.10). 
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Figure 4.10  Total pitch and roll variance analysis 
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The variance analysis did indicate significant differences between groups when 

measuring the total transfer task mean acceleration variables.  The control group showed 

higher variance error for lateral (F(1,28)=5.52, p=0.026, β=0.38), longitudinal 

(F(1,28)=6.34, p=0.008, β=0.32), and normal (F(1,28)=6.18, p=0.019, β=0.33)  

acceleration (see Figure 4.11). 
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Figure 4.11  Total acceleration variance analysis  

The control group also showed higher variance error for roll rate (F(1,28)=5.42, 

p=0.027, β=0.39) and pitch rate (F(1,28)=5.68, p=0.024, β=0.37) when computing total 

transfer task mean variance (see Figure 4.12). 
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Figure 4.12  Total rate-or-rotation variance analysis  

A separate variance analysis was performed to determine the efficacy of stress 

training to enhance performance during the onset of stress in a transfer task.  To this end, 

the average variance was computed for the first three minutes of the transfer task.  This 

analysis indicated a significant difference between groups using the roll variable 

(F(1,28)=4.98, p=0.033, β=0.43; see Figure 4.13). 
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Figure 4.13  Initial pitch and roll variance Analysis 
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When measuring initial transfer task variance, the two groups also were 

significantly different using the lateral (F(1,28)=5.46, p=0.027, β=0.38), longitudinal 

(F(1,28)=6.12, p=0.019, β=0.34), and normal (F(1,28)=5.25, p=0.029, β=0.39) 

acceleration variables (see Figure 4.14). 
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Figure 4.14 Initial acceleration variance analysis  

Finally, during the onset of stress, the two groups were significantly different 

using the variance in roll rate (F(1,28)=5.14, p=0.031, β=0.41) and pitch rate 

(F(1,28)=5.50, p=0.026, β=0.39; see Figure 4.15). 
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Figure 4.15 Initial rate-of-rotation variance analysis  

CFI Performance Evaluations 

As stated above, the CFIs in this study were SMEs.  In addition, an ANOVA 

determined that there was no significant difference between the two CFIs ratings 

(p>0.05) implying that they reliably and consistently rated participants' performance.  

The treatment group performed significantly better than the control group for all five 

queries and the overall session average (see Figure 4.16): 

Query 1: F(1,28)=5.03, p=0.033, β=0.42 

Query 2: F(1,28)=6.20, p=0.019, β=0.33 

Query 3: F(1,28)=6.42, p=0.017, β=0.32 

Query 4: F(1,28)=5.79, p=0.023, β=0.36 

Query 5: F(1,28)=5.81, p=0.023, β=0.36 

Average: F(1,28)=7.47, p=0.011, β=0.25 
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Figure 4.16  CFI performance evaluations 

Transfer Effectiveness Ratio 

Again, the variance measures were used to calculate the percent transfer and TER 

for each variable.  Table 7 shows these results: 

 
Table 7.   Experiment 2 TER 

 

 

 

 

 

 

 

 

Variable % Transfer TER 

Pitch 18.3% .28 

Roll 50.0% .53 

Pitch Rate 59.7% .93 

Roll Rate 96.7% 1.5 

Lateral Acceleration 84.4% 1.35 

Longitudinal Acceleration 49.2% .78 

Normal Acceleration 59.0% .90 
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2. Physiological Measures 

 Electrocardiogram 

Two participants' physiology data was lost during flight due to a failure in the 

encoder/recorder.  The removal of these two participants in addition to the two previously 

removed participants resulted in a sample size of 28.  As a reference for HRV throughout 

the entire flight, Figure 4.17 shows the two groups' combined LF PSD. 
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Figure 4.17  Entire flight LF PSD 

There was no significant difference between groups when measuring criterion 

HRV relative to each individual's baseline HRV (p>0.05, see Figure 4.18). 
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Figure 4.18  Mean transfer results for each PSD band 

A step-wise regression was performed to determine other covariate factors other 

than condition that may be influencing HRV in the transfer task.  Condition (C; t(24)=     

-2.16, p=0.041), baseline VLF PSD (B; t(24)=2.72, p=0.01), and gender  (G; t(24)=2.39, 

p=0.02) explained a significant proportion of the variance in transfer VLF PSD (VLF; 

R2=0.43, F(3,24)=5.94, p<0.01): 

 
VLF = 514.23 - 107.40C + 0.23B + 193.47G +  ε 

 

A step-wise regression also determined that a significant proportion of the 

variance in transfer LF PSD (LF; R2=0.47, F(3,24)=7.01, p<0.01) was attributed to 

condition (C; t(24)=1.96, p=0.062), baseline LF PSD (B; t(24)=3.12, p<0.01), and gender  

(G; t(24)=2.63, p=0.01): 

 

LF = 1023.49 - 219.52C + 0.61B + 476.69G +  ε 
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Electrodermal Response 

No significant differences were found between the two experiment groups when 

using SC as a measure of stress (p>0.05).  A step-wise regression was performed to 

determine if other covariate factors other than condition influenced SC in the transfer 

task.  The model indicated that baseline SC (B; t(24)=4.39, p<0.01), video gaming 

experience (VG; t(24)=2.84, p<0.01), and fear of flying (FoF; t(24)=1.46, p<0.01) all 

explained a significant proportion of the variance in transfer SC (R2=0.55, F(3,24)=9.58, 

p<0.01): 

 
SC = 7.21 + 0.73B - 0.78VG - 1.45FoF +  ε 

 

Subjective Queries 

There was no significant difference between groups for the baseline query 

(p>0.05).  The control group indicated a higher subjective stress than the treatment group 

throughout the entire transfer task (see Figure 4.19), although these differences were not 

statistically significant (p>0.05).  The stress reported by the control group was at times 

more than two times the stress reported during the baseline. 
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Figure 4.19  Average subjective stress scores for all three sessions 
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E. EXPERIMENT 2 CONCLUSIONS 

The results of Experiment 2 indicate that VE stress training does generalize to a 

novel task and novel stressor.  The novice participants in this study benefited from the 

artificial, incongruent stressor received in training while exposed to the real-world stress 

associated with flying an aircraft for the first time in simulated instrument conditions.  

These results empirically validates Overton's (1964) state-dependent learning theory—

introducing stress in training improved performance in a stressful transfer task. 

The incongruence between the training and transfer stress also reaffirm Han 

Selye's (1936) general adaptation syndrome.  The participants in Experiment 2 benefitted 

from cold pressor strain because they produced the same generalized biological responses 

to both the cold pressor and the strain of flight.  Selye's general adaptation syndrome and 

the supporting Experiment 2 empirical data suggests that trainees can benefit from any 

stressor applied in training if the transfer task also is stressful. 

Finally, these results suggest that the biological responses to stress can be thought 

of as structure features and the flying context (simulator versus flight) can be considered 

a surface feature (Driskel et al. 2001).  Experiment 2 determined that the context of a 

training program is not nearly as important as the underlying training principles and 

pedagogy. 

Experiment 1 and 2 results indicate that the stress training presented in these 

studies did transfer to their respective transfer tasks.  However, without manipulating the 

task training in these experiments, it is still largely unknown to what extent the task skills 

transferred from the flight simulator to the transfer tasks.  Therefore, a third empirical 

study was devised to test the transfer of task skills from a non-stressful VE flight 

simulator to flight. 
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V. EXPERIMENT 3: TRANSFER OF VE FLIGHT TRAINING 

Failure occurs in the context of an overall, national debacle, caused by 
systemic problems that fall into three distinct but related categories: 

failure to anticipate, failure to learn and failure to adapt. 

— General T. Michael Moseley, USAF Chief of Staff 

A. OVERVIEW 

A dearth of literature investigates true transfer of training from virtual 

environments to the real, physical world.  As Rose et al. (1998) point out in Chapter II, 

few studies have empirically determined "what sort of training shows transfer, in what 

conditions, to what extent, and how robust the transferred training proves to be" 

(Dishman, Nakamura, Garcia, Dunn, & Blair, 2000, p. 122).  Even less empirical 

evidence exists for the efficacy of flight simulators to the extent that they prepare pilots 

for in-flight procedures.  Therefore, a third study investigated how much a short exposure 

to a flight simulator prepares a novice student pilot for piloting an aircraft. 

The results of Experiment 3 fill a critical void in flight simulator transfer research.  

Although there is little doubt that flight simulators can prepare a student for flight, 

whether or not a short, 40 minute exposure will affect both performance, physiology, and 

subjective appraisal of stress in a transfer task is unknown.  In addition, modern aircraft 

"glass panel" displays make the construction of realistic flight simulators more feasible—

however, the transfer of training from these simulators to flight is largely unknown. 

A group of participants was recruited and assigned to a "no training" group (no 

simulator training) and compared to the control group in Experiment 2 (simulator training 

but no stress training).  To prevent confusion, the Experiment 3 control group that 

received no training will be referred to as the "no-training" group in text and figures; the 

Experiment 2 control group will continue to be called "control.” 
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B. METHODOLOGY AND EXPERIMENT DESIGN 

Participants 

Twelve participants were recruited from the pool of active duty military members 

at both the Naval Postgraduate School and the Defense Language Institute, Monterey, 

California.  The same surveys and requirements as in Experiment 2 were used. 

Procedure 

The Experiment 2 procedures were followed including the video (see Appendix 

E2).    Both groups were given instruction regarding the simulator controls and displays.  

The no-training group did not receive any flight simulator time while the control group 

followed the Experiment 2 simulator training protocol (see Appendix E2).  The two 

groups then performed the same flying transfer task as in Experiment 2. 

Hypotheses 

The Experiment 3 hypotheses are as follows: 
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where, 

 pT:  transfer performance of VE training group 

 pC:  transfer performance of no-training group 

 aT:  transfer arousal of VE training group 

 aC:  transfer arousal of no-training group 

C. DATA ANALYSIS 

The same data analyses were performed as in Experiments 1 and 2.  Blocking was 

not performed during Experiment 3 due to logistical constraints (see Results).  ANOVAs 

with an alpha level of 0.05 were conducted on all performance, physiology, and 

subjective stress rating response measures with "condition" used as a predictor variable 

(IV). 
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D. RESULTS 

One outlier was removed from the Experiment 3 results.  This participant was the 

same outlier from Experiment 2 who was removed due to a nine day delay between the 

simulator training and the transfer task.  The total sample size was 27, with 15 in the 

control group and 12 in the no-training group. 

 The 27 participants included 22 males and 5 females, and their ages ranged from 

19 to 37 years old with a mean age of 25.7.  Mean ratings for gaming experience, 

personal computer experience, fear of heights, fear of flying, and motions sickness were 

2.9, 4.3, 2.2, 1.4, and 1.9, respectively. 

There are some characteristics of the Experiment 3 design that need to be noted.  

Due to logistical and financial constraints, Experiment 3 was given a lower priority than 

the other two experiments.  Therefore, data collection for the Experiment 3 no-training 

group did not commence until all Experiment 2 data was collected.  Thus, the 12 recruits 

in the no-training group were not randomly assigned their condition; rather, they were the 

last 12 volunteers for the entire series of experiments.  Furthermore, recruitment for 

Experiments 2 and 3 initially began on the Naval Postgraduate School campus—a 

population with a large concentration of military officers.  Towards the end of the three 

months of data collection, a disproportionate number of younger enlisted Defense 

Language Institute students volunteered as word spread throughout that campus regarding 

the study.  Although no significant age or rank differences were found between the 

control and no-training group (p>0.05), the two groups do appear demographically 

different (see Figure 5.1).  Due to the above constraints, many of the following 

insignificant results did show significant regressions with many contributing covariates 

other than condition. 
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Figure 5.1  Age distribution of participants 

1. Performance Measures 

Aircraft Telemetry Data 

The only telemetry variable that resulted in significant findings was total transfer 

task mean heading variance (F(1,25)=6.37, p=0.018, β=0.33).  The no-training group 

demonstrated significantly more mean transfer heading error than the control group.  All 

other telemetry variables showed no difference between the control and no-training 

groups (p>0.05). 

CFI Performance Evaluations 

There was no significant difference between the two groups for any of the five 

CFI performance queries nor the overall average evaluation (p>0.05). 
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2. Physiological Measures 

Electrocardiogram 

As mentioned in Experiment 2 results, two participants' physiology data was lost 

during flight due to a failure in the encoder/recorder.  The removal of these two 

participants in addition to the previously removed participant resulted in a sample size of 

25.  The no-training group had a significantly lower LF/HF ratio than the control group 

for the mean of the entire flight (F(1,23)=5.15, p=0.032, β=0.42). 

No significant findings were found for the transfer task itself. 

Electrodermal Response 

The no-training group had a significantly higher SC compared to the control 

group during the total mean transfer task (F(1,23)=5.94, p=0.023, β=0.36).  The no-

training group's average transfer SC was nearly twice the SC observed during their 

baseline, while the control group's SC was 1.5 times their baseline. 

The no-training group also had a significantly higher mean SC for the entire flight 

(F(1,23)=5.82, p=0.024, β=0.37).  Figure 5.2 shows the skin conductance throughout the 

entire flight for Experiment 2 and 3 participants. 
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Figure 5.2  SC measures for entire flight 

Subjective Queries 

The no-training group reported higher subjective stress scores for all six queries 

compared to the control group, although these differences were not significant (see 

Figure 5.3).  The stress reported by the no-training group was at times more than 2.5 

times the stress reported during their baseline. 
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Figure 5.3  Mean subjective stress scores for all subjective stress queries 

E. EXPERIMENT 3 CONCLUSIONS 

Despite the experiment design limitations in Experiment 3, a slight performance 

difference can be gleaned from these results—the Experiment 2 control group performed 

slightly better during the transfer task than the no-training group.  These findings are 

consistent with other training transfer work presented in Chapter II. 

The group that received fight simulator training also recorded lower physiological 

and subjective stress responses during an in-flight transfer task.  As pointed out in 

Chapter II, stress is often defined as the interaction between an individual's perceived 

resources and the demands of a situation (Beck, 1993; Lazarus & Folkman, 1984; 

Meichenbaum, 1993; Blascovich, 2007).  While Experiments 1 and 2 determined that 

these perceived resources can be imparted using stress training, Experiment 3 results 

indicate that perceived resources can also be imparted using skill training.  These results  
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support work by Friedland and Keinan (1982, 1984, 1992) which advocates the 

methodical pairing of both task skill training and stress training in preparation for a 

stressful transfer task.   

The total flight SC results reported in Figure 5.2 along with Experiment 2 HRV 

results (see Figure 4.17) support work by Hasbrook and Rasmussen (1970).  They found 

that pilots' heart rate increased as they flew closer to the ground on an instrument 

approach to an airport.  Experiment 2 and 3 results confirm these findings using other 

measures of strain. 
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VI. DISCUSSION 

Knowledge isn't a final destination — something we 'get' and hold on to 
forever — but is instead a never-ending pursuit. 

— General William R. Looney III, Commander, Air Education and 
Training Command 

Following the data analysis from each of the three experiments, there are findings 

that are general to all three experiments.  These findings are presented in the following 

sections, and are organized into both performance and physiology findings.  The results 

of this research also contribute greatly to the development of training pedagogy, and 

these implications are presented in this chapter.  Chapter II describes the relationship 

between arousal and performance (Yerkes & Dodson, 1908), and results from this 

research project which contribute to this literature are then presented.  Statistical 

modeling in the three experiments found covariates which effected performance and 

stress responses other than the experiment condition.  Some of these covariates are 

presented, followed by caveats to the findings in this research project.  Finally, future 

implications and direction for this research project are provided. 

A. PERFORMANCE FINDINGS 

1. Initial and Total Performance Comparison 

The Experiments 1 and 2 performance analyses found similarities between initial 

transfer performance (criterion and transfer beginning) and total transfer performance.  

Stress training was effective at improving transfer performance during both the initial 

onset of stress and throughout the entire transfer task.  These results are highly 

compelling evidence for stress training's efficacy—stress training is not only effective, 

(1) it works immediately during stress onset, and (2) its advantages stay with a trainee 

throughout a transfer task.  Further research investigating the appropriate duration of 

stress training in an operational context is needed.  Research also is needed that 

investigates the long-term effects of stress training. 
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2. CFI Performance Evaluations 

Experiments 2 and 3 also explored the effectiveness and feasibility of SME 

ratings in determining performance.  These ratings were sensitive to the research 

manipulation and were congruent with the objective performance analyses.  Trend 

indications also indicated the measure's sensitivity to a learning curve (see Figure 4.16), 

although this improvement in performance could be indicative of SME ratings' 

limitations pointed out in Chapter III (i.e., self-fulfilling prophecy). 

3. Variance Measurement in an Aviation Context 

Experiment 1 performance results suggests that variance as a performance 

measure may show promise in an aviation context.  These findings also indicate the 

different effects that stress training may have on both precision and accuracy.  The 

measures using RMSE indicate the treatment group's superior ability to maintain an 

accurate altitude and heading when compared to the control group.  Likewise, the 

participants that received stress training were better able to precisely maneuver between 

clearances when under stress.  This finding is not only pivotal for the current research, 

but it also provides evidence for the use of variance in an aviation context in general.  

The aviation domain presents many unique challenges to performance evaluation which 

support the use of a variance measure.  These challenges, and justifications for a variance 

measure, are further discussed here. 

One such challenge involves communication breakdowns including incorrect 

assignment compliance.  While piloting an aircraft, and particularly while under 

instrument flight rules (e.g., radar vectors to a final approach course), controllers 

continually give course guidance in the form of heading and altitude assignments.  

Although these assignments are often misinterpreted, errors are often corrected during 

assignment read-back.  If the error is not corrected during read-back, the aircraft's 

trajectory on a controller's radarscope indicates noncompliance. 

In the case of Experiment 1, novice participants were not familiar with reading 

back clearances (a read-back was not required).  In addition, task saturation while 
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complying with simultaneous heading and altitude changes often hindered assignment 

recall.  As Figure 2.5 (and its corresponding discussion in Chapter II) suggests, the stress 

introduced in these studies also may have increased the probability of a participant 

missing a clearance assignment (i.e., false negative).  Therefore, research participants 

occasionally flew an incorrect heading and/or altitude, or they may have missed an 

assignment altogether.  In these cases, the experimenter reiterated the correct assignment 

and waited for correction.  Using a RMSE-based measure of performance, these incorrect 

assignment headings/altitudes were considered error.  Furthermore, the amount of error 

was dependent, not on performance, but on their displacement from the correct 

assignment. 

To illustrate, Figure 6.1 shows two subjects who were both assigned a heading of 

270 and 8100 feet.  Subject 1 incorrectly maintained a heading of 210 at 8100 feet, while 

Subject 2 attempted to maintain the correct assignment.  Although Subject 1 will produce 

more error, it appears as if this individual is actually doing a better job of maintaining the 

incorrect assignment.  A variance measure considers performance independent of the 

assignment, and will score Subject 1 as performing better than Subject 2.  However, in 

the context of this research's objectives (i.e., mitigation of stress following stress 

training), flying an incorrect heading/altitude may be an indication of stress effects on 

performance.  Assignment noncompliance was not collected, but this could be an 

effective performance matrix for future stress research.  
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Figure 6.1  Two research participants from Experiment 1 

Another challenge of measuring performance in an aviation context is the visual 

errors presented by analog aviation instruments.  These instruments, unlike more modern 

digital displays, are three dimensional—their needles and icons lay a small distance from 

the surface of the instrument.  This characteristic makes measurement of performance 

reliant on a viewer's location relative to the instrument.  This error is most prominent in 

the attitude indicator which has a small aircraft icon on top of a moving horizon.  The 

aircraft icon is adjustable and must be set appropriately for the height and distance of the 

pilot.  The variance measure accounts for this error by measuring error from the origin 

viewed by each individual participant. 

Error in the data that is presented by the instruments also is troublesome.  For 

example, the directional gyro precession requires occasional adjustment to the magnetic 

compass or a GPS receiver.  If this and other instruments are not continually monitored 

for accuracy, the pilot may be receiving inaccurate data from the instruments leading to 

further performance error.  This error is exasperated if the pilot's performance is gathered 
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from independent telemetry data.  For example, the altitude that is read on a typical 

barometric altimeter can be grossly different from true GPS altitude—the altimeter is set 

to the atmospheric pressure present in a large area of airspace (communicated to a pilot 

by controllers).  The Federal Aviation Regulations require that the altimeter read within 

50 feet of the actual airport elevation before take-off.  Flying 50 vertical feet from an 

assigned altitude using the RMSE measure of performance can accumulate an enormous 

amount of error over time.  The variance measure of performance is an effective measure 

of pilot performance in the presence of the above instrumentation errors. 

B. PHYSIOLOGICAL FINDINGS 

1. Informed Consent Effects 

One unexpected result in Experiment 1 was the significantly higher reported 

stress by the control group compared to the treatment group during the second task 

acquisition session.  During this session, the treatment group performed the task while 

exposed to the cold pressor.  One possible explanation for this insignificance is the 

effectiveness of the stress exposure (compared to performance under stress).  The stress 

coping strategies and exposure to the stressor gained during this session may have 

substantially prepared the participants physiologically for the following PUS session.  

This finding is consistent with other findings that indicate mental rehearsal is an effective 

training approach and imagery practice for stress training is effective at reducing 

performance anxiety (Driskell, Copper, & Moran, 1994).  Friedland and Keinan's (1992) 

TA/SE group further supports this explanation with a quick rise in that group's training 

performance (see Figure 2.9). 

The control group's anxiety in the second task acquisition session may also be 

explained by the informed consent form.  Having read the form which described being 

subjected to stress, the control group experienced an anticipatory stress response prior to 

stress exposure.  This theory is best demonstrated by an increase in the control group's 

subjective stress scores throughout the second task acquisition session and a significant 

difference for the fourth query (see Figure 3.27).  In other words, the thought of being 
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subjected to a stressor was more stressful than the actual stressor itself.  Due to these 

observations, the informed consent forms were changed for the following experiments.  

This change was to prevent the knowledge gained in these forms from affecting 

experiment trial stress levels, particularly in the control conditions. 

In Experiment 2, the treatment and control groups received two different informed 

consent forms (see Appendices C2 and C3).  The only difference in these two forms was 

that the treatment group was informed they would be subjected to stress, while the 

control group was not.  Even the title of the experiment was changed on the two forms, so 

the control group did not know that the study pertained to stress in any way.  The two 

groups then followed identical research procedures leading up to and including the 

baseline physiological recording (video), the subjective stress baseline query, and the task 

acquisition session.  This circumstance allowed the opportunity to perform an empirical 

analysis comparing the effects of informed consent. 

When comparing the two Experiment 2 groups, baseline SC was not effected by 

the informed consent form (p>0.05).  Lack of findings when comparing SC baselines is 

not surprising given the individual differences associated with EDR measures; these 

measures must be normalized to each individual’s baseline, and this analysis attempts to 

directly compare the actual baselines.  During the baseline video, the treatment group did 

indicate higher HRV in all three PSD bands, although these differences were not 

statistically significant (p>0.05, see Figure 6.2). 
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Figure 6.2  Informed consent HRV analysis 

 Multivariate analyses indicated that video game experience, personal computer 

experience, age, and rank were all predictors (p<0.05) of both baseline VLF (R2=0.46, 

F(4,22)=4.86, p<0.01) and baseline LF (R2=0.48, F(4,22)=5.28, p<0.01) HRV.   Rank 

and age were predictors (p<0.01) of baseline HF (R2=0.34, F(2,24)=6.43, p<0.01).  This 

analysis indicates that in addition to informed consent, random assignment and blocking 

are important considerations when measuring HRV. 

The subjective stress baseline query did not indicate a difference between the 

treatment and control group (p>0.05), although a power analysis indicated an inadequate 

sample size to test this manipulation (β=0.94).  Trend data indicated a slightly higher 

baseline score for the treatment group compared to the control group (see Figure 6.3).  

The identical task acquisition session also indicated higher reported stress scores for the 

treatment group, although these differences were not significant (p>0.05).  Further 

research is needed to address the importance of informed consent verbiage, in addition to 

any other prior knowledge. 
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Figure 6.3  Informed consent subjective stress analysis 

The subjective stress ratings provide further findings which provide evidence of 

the general anticipatory response to participating in the study.  During the baseline query, 

participants were asked to rate their current stress level.  Most participants took this query 

seriously and thought momentarily how they felt before giving a rating.  During the first 

minute of the Experiment 1 task acquisition session participants were asked again to rate 

their stress level.  Eighty six percent of participants reported either the same or lower 

stress rating.  This drop in subjective reports indicates that the participants experienced 

more strain while waiting for the experiment to begin than actually performing in the 

experiment. 

2. Sampling Effects on Stress Results 

One aspect of all three experiments that may have decreased overall effect sizes is 

the eagerness of volunteers to participate.  In order to entice a relatively large sample 

size, attractive recruitment flyers were both posted and distributed electronically (see 

Appendix I).  These flyers described the experiment as "Fun" and "Free.”  Therefore, 



 155

research volunteers may not have been intimidated or stressed by the idea of piloting an 

aircraft.  In fact, the flyer required that volunteers not have severe fear of flying—this 

verbiage was used for safety reasons. 

3. Electrodermal Response as a Measure of Stress 

There was a relative lack of significant findings for SC in all three experiments.  

As mentioned in Chapter V, one reason for this may be the insensitivity of EDR when the 

stressor is a cold pressor as the cold pressor may be counterproductive to the sweat 

glands' productivity.  Another plausible explanation is the relatively slow response of the 

electrodermal system making it insensitive to relatively brief state changes such as acute 

stressors. 

C. TRAINING PEDAGOGY 

Comparing the Experiment 2 and Experiment 3 results provides informative 

overall findings.  The Experiment 2 results provide much more compelling evidence of 

that study’s training protocol effectiveness compared to Experiment 3.  Previous research 

presented in Chapter II suggests the importance of pairing both task acquisition and stress 

training to optimize a training program’s efficacy (Rose, Attree, Brooks, Parslow, Penn, 

& Ambihaipahan, 1998, p. 69).  However, in the case of training novices for a stressful 

flight environment, this study suggests that stress training may actually be more 

important than the task training itself.  This theory is surely task dependent, and the 

results suggest the intuitive nature of flying an aircraft—especially considering the 

commonalities between flying and driving a car (e.g., turn the control left to go left).  

These results are further explained by the simplification of the flying task in this study—

no rudder pedals were used, only three instruments were taught, and other important 

flying tasks (communication, navigation, engine monitoring, etc.) were not required.  

This simplification of the task was to decrease the training time and efficiently test the 

research objectives. 
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D. RELATIONSHIP BETWEEN AROUSAL AND PERFORMANCE 

The results of the first two experiments provide evidence of the syntoxic response 

suggested by Selye (1974).  The stress-trained participants learned to exhibit goal-seeking 

behaviors (increased performance) in the presence of stressors associated with flying an 

aircraft.  These results also indicate that the structure features trained in a simulator 

(stress and flight training) generalized to a novel task and stressor (flying an aircraft). 

Experiment 3 provided a surprising result with the simulator-trained group 

showing higher HRV during the transfer task than the no-training group (see Figure 

4.18).  Conversely, this group demonstrated lower heading error compared to the no-

training group.  These results demonstrate the intricate balance between cortical arousal 

and performance as defined by Yerkes and Dodson (1908; see Figure 2.4).  For unknown 

reasons, the no-training group reported relatively low HRV, which may have moved their 

performance left of optimum on the Yerkes-Dodson curve.  The cortical arousal recorded 

for the simulator-trained group may have provided enough arousal to optimize 

performance. 

E. INDIVIDUAL DIFFERENCES AND OTHER COVARIATES 

The participants in this study were inexperienced (zero time piloting an aircraft).  

As the Yerkes-Dodson Law (1908) suggests, novices may be quickly inundated with 

stress increasing the efficacy of stress training observed in this study.  However, experts 

may both moderate the effects of stress and require some stress to prevent complacency 

(see Chapter II, Section C).  More research to test the effects of this research on an expert 

pilot sample is needed. 

To reiterate from Chapter II, "the autonomous and sociotopic personality types 

differ in the kind of stressors to which they are sensitive" (Beck, 1993, p. 345).  Given the 

individual differences associated with stress training, the generalization of results should 

be limited.  Within this current research, individual differences may have limited 

significant findings.  As mentioned in Chapter II, what is stressful for one individual may 

not be stressful for another. 
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Other covariates presented also contributed to statistical models.  Least surprising 

was the extent that fear of flying predicted SC measures in Experiment 2.  This finding 

provides further evidence of not only individual differences, but also the task dependency 

of stress training.  Other covariates commonly found in statistical models included 

gender, age, and military rank.  Due to these findings, further research is needed that 

quantifies the effects these groups have on performance in a stressful environment. 

F. CAVEATS 

All research participants were military members and relatively young (19-37 

years old).  This sampling frame was chosen purposely to decrease the variability and 

individual differences introduced into the experiment design.  These demographics are 

representative of the research target population (military members and aviators).  

However, for this reason the results of this work should not be generalized to the general 

population.  Further research is needed to address task training and stress training affects 

on other populations. 

In addition, this thesis addressed the feasibility of training novices for stressful 

situations.  Therefore, the affects that stress training may have on experienced operators 

is unknown.  The extent to which stress training should be paired with skill acquisition is 

unknown and further research in this area is needed. 

This research also explored only one stress training protocol.  The three-phased 

stress training approach presented in this work was developed and validated by Friedland 

and Keinan (1992).  However, the effectiveness of other stress training protocols for 

preparing aviators for stressful flight environments is unknown. 

The flying task used in this research was a very simplified aviation task.  Throttle 

control, rudder control, and many other flying sub-tasks (e.g., radio communication, 

navigation, decision making, regulation adherence, etc.) were not included in the flight 

simulator or transfer task.  This simplification of the task was so that novices could be 

trained quickly, and research questions could be addressed efficiently.  The extent to 

which these results apply to more realistic and difficult flying tasks is unknown. 
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The stressful flying task used in Experiments 2 and 3 was relatively benign 

compared to real-world stressful flight environments.  For example, an engine failure or 

electrical fire may evoke much higher stress responses than the task presented in these 

experiments.  However, conducting highly stressful flight research while ensuring the 

safety of research participants is a very difficult methodological quandary.  One approach 

to overcome this barrier is simulating unexpected, stressful situations.  For example, a 

highly stressful environment can be created if a research participants is led to believe 

there is a system malfunction.  This predicament ensures a participant's physical safety, 

although their psychological welfare is still jeopardized. 

G. FUTURE RESEARCH 

The research presented in this thesis is predicated on the notion that task training 

is of utmost importance in any training protocol (Caird, 1996; Clark, 2001; Johnston & 

Cannon-Bowers, 1996).  Optimal performance can not be observed in a transfer task if 

the task skills are not learned in the first place.  Only when sufficient skill training is 

accomplished should other peripheral emotional state training, such as stress training, be 

incorporated (Friedland & Keinan, 1992; Keinan & Friedland, 1984; Keinan, Friedland, 

& Sarig-Naor, 1990).  However, the literature presented in Chapter II and the 

experiments conducted in this thesis are simplified partial tasks.  These tasks are 

developed and tested to empirically evaluate specific research questions. 

Partial tasks, such as the one tested in this thesis, rarely exist within a training 

vacuum.  These partial tasks are often part of a much larger total training program.  For 

example, student pilots learn many more flying tasks other than navigation during 

instrument meteorological conditions.  This one part-task is paired with many other tasks 

like landing, take-offs, weather interpretation, communications, etc.  Furthermore, a more 

holistic perspective can be used to view pilot training as a small part-task within the 

lifecycle of a pilot.  Other continuation training, military exercises, and overseas 

deployments can all be viewed as other part-tasks. 

When viewing an entire training program, such as training a pilot, from a global 

perspective, it is important to determine how stress training should be paired with part-
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task training.  Should it be introduced early as skills are acquired, or should it be 

introduced prior to known stressful situations (e.g., military deployments)?  How should 

stress training be utilized throughout an entire training lifecycle?  How well is stress 

training retained, and when should reoccurring stress training be provided?  These are 

some of the important operational questions that must be tested prior to the development 

of affective stress training pedagogy. 

There are certain cultural barriers to stress training that also must be addressed.  

The idea of trainees putting their feet in buckets of ice water will likely not be taken 

seriously in both current civilian and military communities.  Therefore, alternative 

stressors must be explored which adhere to cultural norms while still effectively 

introducing stress training. 

We need to test other stressors for stress training.  Relying on the generalization 

of stress training literature presented in this thesis (Driskell, Johnston, & Salas, 2001; 

Selye, 1936, 1956), the actual stressor (i.e., surface features) is not as important as the 

underlying training principles (i.e., structure features).  Therefore, when preparing 

trainees for stressful events, any stressor introduced in training should theoretically show 

promise.  The degree to which different stressors improve performance and anxiety in 

transfer tasks is unknown, and more research addressing the effectiveness and feasibility 

of various stressors is needed. 

As seen in this thesis, stress training efficacy also is mediated by individual 

differences.  Although this is a challenge for the development of training pedagogy, some 

demographic groups seem to respond to stress and stress training in different ways.  

Chapter II provides evidence that stress response and appraisal are highly reliant on 

confidence expectancy, organizational success, experience, and anxiety traits attributes 

(Beck, 1993; Friedland & Keinan, 1992; Meichenbaum, 1993; Otsuka, Onozawa, & 

Miyamoto, 2006; Parsa & Kapadia, 1997; Saunders, Driskell, Hall, & Salas, 1996).  

Results from this thesis also determined that gender, fear of flying, and video gaming 

experience contributed to variance in stress responses during a stressful transfer task (see 

Chapters IV and V).  Further defining demographic groups that respond differently to 

stress training is needed to develop appropriate training pedagogy. 
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More work is needed to determine the efficacy of stress training in different 

contexts.  Driskel et al. (2001) point out that the training context can be considered a 

surface feature and not as important as structure features.  However, some transfer 

contexts are more stressful than others, and also present different emotional and cognitive 

demands on operators.  Therefore, we need to explore the efficacy of stress training in 

other stressful contexts such as ground combat, firefighting, and air traffic control. 

Stress training is presented in this thesis as an alternative to experience-based 

expertise.  By pairing task skill training with stress training, expert performance may be 

demonstrated in a stressful situation.  This high level of performance may be achieved 

much more efficiently than experience-based expertise.  A stress-trained individual may 

also be better prepared for an unexpected, untrained stressful event than traditional 

experience-based training approaches.  Future work is needed to empirically determine 

how to optimize stress-training techniques.  
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VII. CONCLUSIONS 

There are two critical points in every aerial flight—its beginning and its 
end. 

— Alexander Graham Bell, 1906 

The data from this series of experiments provides compelling evidence for the 

efficacy of stress training.  Related to training transfer definitions presented in Chapter II, 

Experiment 1 measured how "learning in one context or with one set of materials impacts 

performance in another context or with other related materials" (Perkins & Salomon, 

1992).  Experiment 1 determined that stress training in a VE improved trainees' 

performance in a stressful VE criterion session.  The stress training also decreased 

trainees' physiological response to stressors and decreased their subjective appraisal of 

stress.  This research validated Friedland and Keinan's (1992) stress training protocol in 

an aviation context. 

Experiment 2 expanded on findings regarding the generalization of stress training 

(Driskell, Johnston, & Salas, 2001; Selye, 1936, 1956, 1974).  This experiment answered 

"whether or not training carried out in a training environment transfers to the equivalent 

real world situation" (Rose, Attree, Brooks, Parslow, Penn, & Ambihaipahan, 1998).  

Stress-trained participants in Experiment 2 indicated superior performance and decreased 

strain during both a novel task and during exposure to a novel stressor compared to a 

control group.  These results are the first evidence that links stress training of this kind to 

an applicable real-world transfer task. 

Finally, Experiment 3 fills a critical void in true transfer-of-training research by 

testing the extent to which skills transfer from a VE to a real-world task.  This experiment 

answered "how skills and knowledge acquired in one domain transfer to another" 

(Wickens & Hollands, 2000). 

Furthermore, the results from these experiments indicate that stress training is 

effective at increasing performance and mitigating the adverse effects of stress during 
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both the onset of stress and throughout a transfer task.  Given these two results, effects of 

stress training are not limited to only certain portions of a task. 

The Sam-to-Sully training paradigm presented in Chapter I explores how expert 

performance can be gained in a more efficient manner compared to experience-based 

expertise.  Recent media attention has focused on aircraft accidents piloted by relatively 

inexperienced crews (Chernoff & Laura, 2009), and often these accidents result from 

inadequate reactions to stressful aircraft situations.  The research presented in this thesis 

presents one potential solution for preparing relatively inexperienced operators for 

stressful situations by efficiently and effectively bridging the gap between "Sam" and 

"Sully." 
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APPENDIX B:  PARTICIPANT SURVEY 

 
 
 
 
 
 
 
For the following questions, use this scale: 
 

1  2  3  4  5 
None   Occasional   Frequent 

 
 
1.  Rate your video gaming experience:  

 
 

2.  Rate your PC experience:  
 
 
3.  Rate your flying experience:  
  
 If you answered anything other than "1" for "flying experience,” please explain:    

  _______________________________________ 
   _______________________________________ 
   _______________________________________ 
    
4.  Rate your Air Traffic Control experience:  
  
 If you answered anything other than "1" for "ATC experience,” please explain: 
      _______________________________________ 
   _______________________________________ 
   _______________________________________ 
    
5.  Rate your overall health (check one): 

__ Very Good 
__ Good 
__ Average 
__ Poor 
__ Very Poor 

 
6.  Do you have any heart conditions?  If yes, explain: 
 _______________________________________________________________ 
 _______________________________________________________________ 
 _______________________________________________________________

Experimenter Use    
 
Ex.:     ID: 
 
Cond.:     Gender:  M / F 
 
C.V.A.:   L 20/          Handedness:  L / R 
 
   R 20/          Age: 
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APPENDIX C1:  INFORMED CONSENT FORM (EXPERIMENT 1) 

Introduction.  You are invited to participate in a study entitled Stress Effects on Transfer 
from Virtual Environment Flight Training to Stressful Flight Environments.   
 
Procedures.  The purpose of this research is to investigate the effects that stress training 
has on stressful flight operations in order to mitigate the human factors preconditions to 
aircraft accidents.  Stress training implementation strategies are also investigated in order to 
develop pedagogy pertinent to stress training.  Participants will be asked to perform real 
flying tasks in a virtual flight simulator while under the stress of cold.  The cold stressor 
will be applied to participants' feet. 
 
My participation in this experiment will last approximately one and a half hours.  The 
experiment will consist of verbal instructions, practical instructions, training sessions, and a 
final criterion trial.  During stress exposure, my foot will be submerged in 3 inches of cold 
water. 
 
I understand that prior to my participation, physiological sensors will be connected to my 
body.  These sensors will measure my body's responses to the tasks I will perform.  The 
data collected by these sensors will not be analyzed for any purpose other than this study, 
and any findings in this study can in no way disqualify me for military service. 
 
Due to the immersive nature of the simulator which may introduce slight simulator sickness 
and the discomfort associated with the cold stressor, I will be asked before, during and after 
the experiment if I feel ill in any way.  Potential illnesses I may experience include nausea, 
dizziness, headache, numbing of the limbs, and skin discomfort.  If at any time I experience 
any of these symptoms, I will notify the experimenter immediately.   
 
Risks and Benefits.  In addition to the risks mentioned above, this study will include no 
more risks than those associated with using a computer or playing a computer-based video 
game.  I am aware of these risks, and I will receive no benefits for participating in this 
study other than gaining knowledge concerning piloting an aircraft.  
 
Compensation.  I understand that no tangible compensation will be given.  I understand 
that a copy of the research results will be available at the conclusion of the experiment by 
contacting the PI (memccaul@nps.edu, 831-656-2191) or the experimenter 
(ckmccler@nps.edu, 719-649-3062). 
 
Confidentiality & Privacy Act.  I understand that all records of this study will be kept 
confidential and that my privacy will be safeguarded.  No information will be publicly 
accessible which could identify me as a participant. I will be identified only as a code 
number on all research forms/data bases. My name on any signed document will not be  
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paired with my code number in order to protect my identity. I understand that records of 
my participation will be maintained by NPS for three years, after which they will be 
destroyed.   
 
Voluntary Nature of the Study.  I understand that my participation is strictly voluntary, 
and if I agree to participate, I am free to withdraw at any time without prejudice.  If I am 
uncomfortable participating at any time during the experiment I may withdraw without any 
retribution. 
 
Points of Contact.  I understand that if I have any questions or comments regarding this 
project upon the completion of my participation, I should contact the Principal Investigator, 
Dr. Michael McCauley, 831-656-2191, memccaul@nps.edu.  Any medical questions 
should be addressed to Col George Patrin, MD, USA, (CO, POM Medical Clinic), (831) 
242-7550, george.patrin@us.army.mil.  Any other questions or concerns may be addressed 
to the IRB Chair, LT Brent Olde, 656-3807, baolde@nps.edu. 
 
Statement of Consent. I have been provided with a full explanation of the purpose, 
procedures, and duration of my participation in this research project. I understand how 
my identification will be safeguarded and have had all my questions answered.  I have 
been provided a copy of this form for my records and I agree to participate in this study. I 
understand that by agreeing to participate in this research and signing this form, I do not 
waive any of my legal rights. 
 
 
________________________________________  __________________ 
Participant’s Signature     Date 
 
________________________________________  __________________ 
Researcher’s Signature     Date 
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APPENDIX C2:  INFORMED CONSENT FORM (EXP 2, CONTROL) 

Introduction.  You are invited to participate in a study entitled Training Transfer from 
Virtual Environment Flight Training to Flight Environments.   
 
Procedures.  The purpose of this research is to investigate the effects that training has on 
flight operations in order to mitigate the human factors preconditions to aircraft accidents.  
Participants will be asked to perform flying tasks in a virtual flight simulator, followed by 
performing similar flying tasks in a real aircraft. 
 
My participation in this experiment will last approximately two hours.  The experiment will 
consist of verbal instructions, practical instructions, training sessions, and an aircraft flight. 
 
I understand that prior to my participation, physiological sensors will be connected to my 
body.  These sensors will measure my body's responses to the tasks I will perform.  The 
data collected by these sensors will not be analyzed for any purpose other than this study, 
and any findings in this study can in no way disqualify me for military service. 
 
I may experience slight simulator sickness due to the immersive nature of the simulator and 
disorientation during flight. I will be asked before, during and after the experiment if I feel 
ill in any way.  Potential illnesses I may experience include nausea, dizziness, headache, 
and skin discomfort.  If at any time I experience any of these symptoms, I will notify the 
experimenter immediately.   
 
Risks and Benefits.  In addition to the risks mentioned above, this study includes the risks 
associated with using a computer or playing a computer-based video game.  I will also 
operate a general aviation aircraft under the supervision of a certified flight instructor.  To 
mitigate some of the risks associated with piloting an aircraft, I will not be allowed to 
manipulate the aircraft's controls below 2,000 feet above the ground (including take-offs 
and landings).  In addition, if at any time the aircraft approaches an unsafe attitude, the 
instructor will immediately regain control.  The benefits of my participation include 
receiving both ground and flight aircraft training. 
 
Compensation.  I understand that no tangible compensation will be given.  The flight 
training I receive is valued at approximately $100.  I understand that a copy of the research 
results will be available at the conclusion of the experiment by contacting the PI 
(memccaul@nps.edu, 831-656-2191) or the experimenter (ckmccler@nps.edu, 719-649-
3062). 
 
Confidentiality & Privacy Act.  I understand that all records of this study will be kept 
confidential and that my privacy will be safeguarded.  No information will be publicly 
accessible which could identify me as a participant. I will be identified only as a code 
number on all research forms/data bases. My name on any signed document will not be  
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paired with my code number in order to protect my identity. I understand that records of 
my participation will be maintained by NPS for three years, after which they will be 
destroyed.   
 
Voluntary Nature of the Study.  I understand that my participation is strictly voluntary, 
and if I agree to participate, I am free to withdraw at any time without prejudice.  If I 
withdraw from the experiment while in flight, the instructor will immediately return to the 
airport.  If I am uncomfortable participating at any time during the experiment I may 
withdraw without any retribution. 
 
Points of Contact.  I understand that if I have any questions or comments regarding this 
project upon the completion of my participation, I should contact the Principal Investigator, 
Dr. Michael McCauley, 831-656-2191, memccaul@nps.edu.  Any medical questions 
should be addressed to Col George Patrin, MD, USA, (CO, POM Medical Clinic), (831) 
242-7550, george.patrin@us.army.mil.  Any other questions or concerns may be addressed 
to the IRB Chair, LCDR Paul O'Connor, 656-3864, peoconno@nps.edu. 
 
Statement of Consent. I have been provided with a full explanation of the purpose, 
procedures, and duration of my participation in this research project. I understand how 
my identification will be safeguarded and have had all my questions answered.  I have 
been provided a copy of this form for my records and I agree to participate in this study. I 
understand that by agreeing to participate in this research and signing this form, I do not 
waive any of my legal rights. 
 
 
________________________________________  __________________ 
Participant’s Signature     Date 
 
________________________________________  __________________ 
Researcher’s Signature     Date 
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APPENDIX C3:  INFORMED CONSENT FORM (EXP 2, 
TREATMENT) 

Introduction.  You are invited to participate in a study entitled Stress Training Transfer 
from Virtual Environment Flight Training to Stressful Flight Environments.   
 
Procedures.  The purpose of this research is to investigate the effects that stress training 
has on stressful flight operations in order to mitigate the human factors preconditions to 
aircraft accidents.  Stress training implementation strategies are also investigated in order to 
develop pedagogy pertinent to stress training.  Participants will be asked to perform flying 
tasks in a virtual flight simulator while under the stress of cold.  The cold stressor will be 
applied to participants' feet. Participants will then be asked to perform similar flying tasks 
in a real aircraft. 
 
My participation in this experiment will last approximately two hours.  The experiment will 
consist of verbal instructions, practical instructions, training sessions, and an aircraft flight.  
During stress exposure, my foot will be submerged in 3 inches of cold water. 
 
I understand that prior to my participation, physiological sensors will be connected to my 
body.  These sensors will measure my body's responses to the tasks I will perform.  The 
data collected by these sensors will not be analyzed for any purpose other than this study, 
and any findings in this study can in no way disqualify me for military service. 
 
I may experience (1) slight simulator sickness due to the immersive nature of the simulator, 
(2) discomfort associated with the cold stressor, and (3) disorientation during flight. I will 
be asked before, during and after the experiment if I feel ill in any way.  Potential illnesses 
I may experience include nausea, dizziness, headache, numbing of the limbs, and skin 
discomfort.  If at any time I experience any of these symptoms, I will notify the 
experimenter immediately.   
 
Risks and Benefits.  In addition to the risks mentioned above, this study includes the risks 
associated with using a computer or playing a computer-based video game.  I will also 
operate a general aviation aircraft under the supervision of a certified flight instructor.  To 
mitigate some of the risks associated with piloting an aircraft, I will not be allowed to 
manipulate the aircraft's controls below 2,000 feet above the ground (including take-offs 
and landings).  In addition, if at any time the aircraft approaches an unsafe attitude, the 
instructor will immediately regain control.  The benefits of my participation include 
receiving both ground and flight aircraft training. 
 
Compensation.  I understand that no tangible compensation will be given.  The flight 
training I receive is valued at approximately $100.  I understand that a copy of the research 
results will be available at the conclusion of the experiment by contacting the PI 
(memccaul@nps.edu, 831-656-2191) or the experimenter (ckmccler@nps.edu, 719-649-
3062). 
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Confidentiality & Privacy Act.  I understand that all records of this study will be kept 
confidential and that my privacy will be safeguarded.  No information will be publicly 
accessible which could identify me as a participant. I will be identified only as a code 
number on all research forms/data bases. My name on any signed document will not be 
paired with my code number in order to protect my identity. I understand that records of 
my participation will be maintained by NPS for three years, after which they will be 
destroyed.   
 
Voluntary Nature of the Study.  I understand that my participation is strictly voluntary, 
and if I agree to participate, I am free to withdraw at any time without prejudice.  If I 
withdraw from the experiment while in flight, the instructor will immediately return to the 
airport.  If I am uncomfortable participating at any time during the experiment I may 
withdraw without any retribution. 
 
Points of Contact.  I understand that if I have any questions or comments regarding this 
project upon the completion of my participation, I should contact the Principal Investigator, 
Dr. Michael McCauley, 831-656-2191, memccaul@nps.edu.  Any medical questions 
should be addressed to Col George Patrin, MD, USA, (CO, POM Medical Clinic), (831) 
242-7550, george.patrin@us.army.mil.  Any other questions or concerns may be addressed 
to the IRB Chair, LCDR Paul O'Connor, 656-3864, peoconno@nps.edu. 
 
Statement of Consent. I have been provided with a full explanation of the purpose, 
procedures, and duration of my participation in this research project. I understand how 
my identification will be safeguarded and have had all my questions answered.  I have 
been provided a copy of this form for my records and I agree to participate in this study. I 
understand that by agreeing to participate in this research and signing this form, I do not 
waive any of my legal rights. 
 
 
________________________________________  __________________ 
Participant’s Signature     Date 
 
________________________________________  __________________ 
Researcher’s Signature     Date 
 



 181

APPENDIX D:  COHEN PERCEIVED STRESS SCALE 

The questions in this scale ask you about your feelings and thoughts during the last month. In 
each case, you will be asked to indicate how often you felt or thought a certain way.  
Although some of the questions are similar, there are differences between them and you 
should treat each one as a separate question. The best approach is to answer each question 
fairly quickly. That is, don't try to count up the number of times you felt a particular way, but 
rather indicate the alternative that seems like a reasonable estimate. 
  
 For each question choose from the following alternatives: 
   0 = Never 
   1 = Almost Never 
   2 = Sometimes 
   3 = Fairly Often 
   4 = Very Often 
 
 
1. In the last month, how often have you been upset because of 
something that happened unexpectedly?  
 
2. In the last month, how often have you felt that you were unable 
to control the important things in your life? 
 
3. In the last month, how often have you felt nervous and “stressed”? 
 
4. In the last month, how often have you felt confident about your 
ability to handle your personal problems? 
 
5. In the last month, how often have you felt that things 
were going your way? 
 
6. In the last month, how often have you found that you could not 
cope with all the things that you had to do? 
 
7. In the last month, how often have you been able 
to control irritations in your life? 
 
8. In the last month, how often have you felt that you were on top of 
things? 
 
9. In the last month, how often have you been angered 
because of things that were outside of your control? 
 
10. In the last month, how often have you felt difficulties 
were piling up so high that you could not overcome them? 

 
0 1 2 3 4 

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
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APPENDIX E1:  EX. 1 PARTICIPANT INSTRUCTIONS 

VERBAL INSTRUCTIONS 
 

Experiment checklist COMPLETE. 
Welcome participant (note time). Encourage them to use the restroom. 
 
1. Cell phones OFF. 
 
2. Read/complete the Informed Consent Form. 
 
3. Complete the Participant Survey, Cohen Stress Scale, and Enter Survey. 
 
4. Hook up physiological measures and test. 
 
Following are the verbal instructions which will be read to the participant. 
 
 
INTRODUCTION: 
We are about to begin the first training phase of the experiment. During this time you will 
be read instructions regarding the use of the provided flight controls and instruments for 
aviation navigation.  The aircraft you will be flying in this experiment is a Cessna 172, 
and the instruments will look and act like a real Cessna 172. 
 
 
CONTROLS: 
The aircraft you will be flying will be controlled with the yoke.  Please practice as I 
describe each control input.  To climb, gently pull back on the yoke.  To descend gently 
push forward on the yoke.  To turn right, gently turn the yoke to the right.  And to turn 
left, gently turn the yoke to the left.  A banked aircraft produces less lift, and the yoke 
must also be pulled back slightly to maintain level flight in a turn.  To descend during a 
turn, you may find that the yoke does not need to be pulled back at all, or very little.  To 
climb during a turn, you will need to pull back on the yoke more than a level turn.  Please 
practice these actions now. 
 
Un-pause sim and let them practice on their own for 1 minute.(NO HEADSET.) 
 
After, Sim —> Session. 
 
Do you have any questions regarding the flight controls? 
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INSTRUMENTS: 
The primary flight instruments include the attitude indicator, altimeter, and heading 
indicator.  You will uses these three instruments for the navigation tasks.  Let us take 
time to learn the functions of each instrument.  Following this short instruction, you will 
take a quiz to test you knowledge of this information. 
 
Attitude Indicator:  The attitude indicator is your primary reference for changes in pitch 
and bank.  Degrees of pitch are marked on the center of the attitude indicator.  The first 
long line with a number next to it is 10-degrees of pitch, and the next longer line with a 
number is 20-degrees of pitch.  For the purposes of these simulated flights, any pitch 
change should occur at 10-degrees-up to climb, or 10-degrees-down to descend.  The 
attitude indicator also depicts bank angle using the peripheral marks.  The first, small 
mark is 10-degrees of bank, the second small mark is 20-degrees of bank, and the third 
mark which is bold is 30-degrees of bank.  For the purpose of your flights, you will be 
asked to maintain 20-degrees of bank for all turns.  During all level flight, you will be 
required to maintain 0-degrees of pitch and bank.  Do you have any questions about using 
the attitude indicator? 
 
Altimeter:  The altimeter will accurately indicate the altitude you will be flying at.  The 
small hand indicates thousands of feet, and the large hand indicates hundreds of feet.  The 
current altitude on the altimeter is 7000 feet.  During your flights you will be asked to 
climb or descend to specific altitudes.  When told to do so, climb or descend at 10-
degrees of pitch to the specified altitude.  During all other phases of flight, you must 
maintain your assigned altitude.  For these level portions of flight, the altimeter will be 
your primary source of pitch information.  Do you have any questions about using the 
altimeter? 
 
Heading Indicator:  The heading indicator provides your aircraft’s heading relative to the 
cardinal directions: North, East, South, West (pointing to each).  This is your primary 
instrument for maintaining level bank—if you drift from an assigned heading, you are 
turning and you must correct.  During your flights, you will be instructed to turn a 
direction (left or right) to a specified heading.  For example, “Turn right heading 300.”  
This clearance asks you to turn to the right until you are aligned with the numbers "3-0" 
on the heading indicator—notice that the last zero is removed from headings on the 
indicator.  During level flight, you must maintain your assigned heading; for these level 
portions of flight, the heading indicator will be your primary source of bank information.  
Do you have any question about the heading indicator? 
 
Do you have any questions regarding the instruments? 
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RECAP: 
 
To recap, during straight and level flight, the altimeter and heading indicator are your 
primary instruments for maintaining pitch and bank, and the yoke will be relatively 
neutral (although small inputs may be needed).  For climbs and descents, use the attitude 
indicator to maintain 10-degrees of pitch and the altimeter to judge reference to your 
target altitude while pushing or pulling the yoke in the correct direction.  For turns, use 
the attitude indicator to maintain 20-degrees of bank and the heading indicator to judge 
reference to your target heading while gently turning the yoke as needed.  However, do 
keep in mind that all three instruments will need to be referenced for all portions of flight. 
 
Do you have any questions regarding the controls, instruments, or how you will use 
them? 
 
Headsets On. 
 
QUIZ: 
You will now take a short quiz regarding the training you just received. 
 
During turns, which instrument will primarily be used to maintain bank? 
Attitude Indicator 
 
How many degrees of bank must you maintain during turns? 
20 
 
During climbs, which instrument will primarily be used to maintain pitch? 
Attitude Indicator 
 
How many degrees of pitch must you maintain during climbs? 
10 
 
During straight and level flight, which instrument will primarily be used to maintain 
pitch? 
Altimeter 
 
During straight and level flight, which instrument will primarily be used to maintain 
bank? 
Heading Indicator 
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VIDEO: 
BioGraph RECORD 
 
You will now watch a short film describing the functions of the instruments I just 
described to you.  The video will also address some instruments and procedures which 
you have not learned and you are not expected to use for this experiment—keep in mind 
during the video the three instruments which you have learned, and pay particularly close 
attention to the operations pertaining to only those three instruments.  Please reference 
your instruments as needed during the film. 
 
BioGraph "V.” Play video (:28-5:00). Turn off lamp. 
 
BioGraph "E.”  Do you have any questions concerning the video?
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PRACTICAL INSTRUCTIONS 
 

Audacity — RECORD. 
 
You have now learned about the flight instruments and how they will be used.  During 
this practice session, I will give you heading and altitude instructions similar to what you 
will receive during the test events.  During your maneuvers you are required to maintain 
the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
During climbs: 
10-degrees pitch +/- 3 degrees 
 
If you have any questions during this phase of training feel free to ask. 
 
The simulator will begin at a heading of 180 and 7000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  "1" 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — "E,” Sim — PAUSE. 
 
This concludes your training.  Do you have any questions regarding these navigation 
tasks? 
 
SUBJECTIVE RATING ASSESSMENT: 
During the following sessions, you will also be asked to rate your stress levels during 
sessions using a 10-point scale.  "1" is not stressed at all, similar to a peaceful, relaxing 
afternoon.  "10" is the most possible stress you can withstand; for this experiment that 
would be the stress you can withstand before asking to terminate the experiment.  The 
queries will refer to the most recent maneuver that you flew.  Please now answer the 
following sample query for your current stress level: 
 
"Rate your stress on a scale from 1 to 10." 
 
Do you have any questions concerning the stress queries? 
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TASK ACQUISITION 
 

You are about to begin the first test session.  This session will be similar to the previous 
training session you just accomplished, and it will last approximately 10 minutes.  You 
may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very 
confused, or need to stop for any other reason. 
 
To review, you are required to maintain the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
During climbs: 
10-degrees pitch +/- 3 degrees 
 
Do you have any questions before we begin? 
 
The simulator will begin at a heading of 180 and 7000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  "2" 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — "E,” Sim — PAUSE. 
 
This concludes the first test session.  Do you need a break before we proceed with the 
next session? 
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STRESS EXPOSURE 
 

For participants in the treatment group, PAUSE BioGraph, have them remove their left 
shoe/sock, check temperature, relocate the bucket, and UNPAUSE BioGraph, and read 
the following instructions. 
 
For the following test session, you will be asked to perform the flying task during 
exposure to a stressful cold pressor.  The cold pressor will be a cold bucket of ice water 
that you will put your left foot into.  During exposure to the cold pressor, or any stress, it 
is important to, first, maintain your normal breathing as best as possible.  This will help 
calm and relax you.  Next, attempt to focus on the task at hand, and ignore the 
distractions of the stressor.  Finally, pay especially close attention to the performance 
parameters which you are asked to fly.  These will be read to you again. 
 
Now, please place your left foot in the ice water. 
 
"I.”  Wait one minute. 
 
Notice how your breathing has increased.  For the next few minutes focus on slowing and 
regulating your breathing while attempting to relax. 
 
Wait one minute. 
 
Now, attempt to ignore the stress of the cold and focus your attention on the flying task 
you have been taught.  Please reference your flight instruments as you attempt to do this. 
 
Wait one minute. 
 
Finally, visualize the performance parameters you will have to maintain during the next 
session. They are: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
During turns: 
20-degrees bank +/- 5 degrees 
During climbs: 
10-degrees pitch +/- 3 degrees 
 
Wait one minute. 
 
You may now remove your foot from the ice water and dry it off. 
 
BioGraph — "E,” PAUSE.  Allow 5 min. for their foot to return to normal temperature. 
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TA2/PUS 
 

You are about to begin the second test session.  This session will be similar to the 
previous test session you just accomplished, and it will last approximately 10 minutes.  
You may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very 
confused, or need to stop for any other reason. 
 
To review, you are required to maintain the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
During climbs: 
10-degrees pitch +/- 3 degrees 
 
Do you have any questions before we begin? 
 
If a participant is in the treatment group, UNPAUSE BioGraph, and apply the cold 
pressor now. 
 
The simulator will begin at a heading of 180 and 7000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  "3" 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — "E,” Sim — PAUSE. 
 
This concludes the second test session.  Please take a short brake and relax. 
 
BioGraph — PAUSE. 
 
Allow a treatment group participant 5 min. to warm their foot. 
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CRITERION 
 

If participant is in control group, have them remove their left shoe/sock, and move the 
bucket closer. 
UNPAUSE BioGraph for anticipatory response. 
 
You are about to begin the third and final test session.  This session will be similar to the 
previous test sessions you have accomplished, and it will last approximately 10 minutes.  
You may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very 
confused, or need to stop for any other reason. 
 
To review, you are required to maintain the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
During climbs: 
10-degrees pitch +/- 3 degrees 
 
Do you have any questions before we begin? 
 
Apply the cold pressor now. 
 
The simulator will begin at a heading of 180 and 7000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  "4" 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — "E,” "STOP" 
Sim — PAUSE 
Audacity — STOP 
 
This concludes the experiment. 
 
Help participant with foot, headset, and electrodes. Read de-brief. 
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APPENDIX E2:  EX. 2 & 3 PARTICIPANT INSTRUCTIONS 

Experiment 3 no-training group does not receive the marked training 

 

VERBAL INSTRUCTIONS 
 

Experiment checklist COMPLETE. 
Welcome participant (note time). 
 
1. Cell phones OFF. 
 
2. Read/complete the Informed Consent Form, Participant Survey, Audio Recording, and 
Entry Survey. 
 
3. Hook up physiological measures. 
 
Following are the verbal instructions which will be read to the participant. 
 
Open calibration screen in x-plane. Set neutral yoke setting. 
 
 
INTRODUCTION: 
We are about to begin the first training phase of the experiment. During this time you will 
be read instructions regarding the use of the provided flight controls and instruments for 
aviation navigation.  The aircraft you will be flying in this experiment is a Piper Archer, 
and the instruments will look and act like a real Piper Archer. 
 
 
CONTROLS: 
The aircraft you will be flying will be controlled with the yoke.  Please practice as I 
describe each control input.  To climb, gently pull back on the yoke.  To descend gently 
push forward on the yoke.  To turn right, gently turn the yoke to the right.  And to turn 
left, gently turn the yoke to the left.  A banked aircraft produces less lift, and the yoke 
must also be pulled back slightly to maintain level flight in a turn.  To descend during a 
turn, you may find that the yoke does not need to be pulled back at all, or very little.  To 
climb during a turn, you will need to pull back on the yoke more than a level turn. 
 
Please practice these actions now using the full range of motion. 
 
Set neutral yoke setting. Un-pause sim and let them practice on their own for 1 minute. 
(NO HEADSET.) 
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After, Sim —> Instructions 
 
Do you have any questions regarding the flight controls? 
 
INSTRUMENTS: 
The primary flight instruments include the attitude indicator, altimeter, and heading 
indicator.  You will uses these three instruments for the navigation tasks.  Let us take 
time to learn the functions of each instrument.  Following this short instruction, you will 
take a quiz to test your knowledge of this information. 
 
Attitude Indicator:  The attitude indicator is your primary reference for changes in pitch 
and bank.  Degrees of pitch are marked on the center of the attitude indicator.  The first 
long line with a number next to it is 10-degrees of pitch, and the next long line with a 
number is 20-degrees of pitch.  For the purposes of these simulated flights you will 
attempt to maintain zero degrees of pitch at all times.  The attitude indicator also depicts 
bank angle using the peripheral marks.  The first, small mark is 10-degrees of bank, the 
second small mark is 20-degrees of bank, and the third longer mark is 30-degrees of 
bank.  For the purpose of your flights, you will be asked to maintain 20-degrees of bank 
for all turns.  During all level flight, you will be required to maintain 0-degrees of pitch 
and bank.  Do you have any questions about using the attitude indicator? 
 
Altimeter:  The altimeter will accurately indicate the altitude you will be flying at.  The 
strip indicates your relative altitude and the window indicates your specific altitude.  
During your flights you will be asked to maintain a specific altitude, and you will use the 
altimeter to do so.  Do you have any questions about using the altimeter? 
 
Heading Indicator:  The heading indicator provides your aircraft’s heading relative to the 
cardinal directions: North, East, South, West (pointing to each).  This is your primary 
instrument for maintaining level bank—if you drift from an assigned heading, you are 
turning and you must correct.  During your flights, you will be instructed to turn a 
direction (left or right) to a specified heading.  For example, “Turn left heading 300.”  
This clearance asks you to turn to the left until you are aligned with the numbers "3-0" on 
the heading indicator—notice that the last zero is removed from headings on the 
indicator.  A pink "bug,” currently located on North, will indicate your target heading.  
During level flight, you must maintain your assigned heading; for these level portions of 
flight, the heading indicator will be your primary source of bank information.  Do you 
have any question about the heading indicator? 
 
Do you have any questions regarding the instruments? 
 
RECAP: 
To recap, during straight and level flight, the altimeter and heading indicator are your 
primary instruments for maintaining pitch and bank, and the yoke will be relatively 
neutral (although small inputs may be needed).  For turns, use the attitude indicator to 
maintain 20-degrees of bank and the heading indicator to judge reference to your target 
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heading while gently turning the yoke as needed.  However, do keep in mind that all three 
instruments will need to be referenced for all portions of flight. 
 
Do you have any questions regarding the controls, instruments, or how you will use 
them? 
 
Headsets On. 
Audio — Connect to mixer. 
 
QUIZ: 
You will now take a short quiz regarding the training you just received. 
 
During turns, which instrument will primarily be used to maintain bank? 
Attitude Indicator 
 
How many degrees of bank must you maintain during turns? 
20 
 
During straight and level flight, which instrument will primarily be used to maintain 
pitch? 
Altimeter 
 
During straight and level flight, which instrument will primarily be used to maintain 
bank? 
Heading Indicator 
 
VIDEO: 
BioGraph — Turn ON 
 
You will now watch a short film showing the instruments I just described to you.  The 
video addresses some instruments and procedures which you have not learned and you 
are not expected to use for this experiment—keep in mind during the video the three 
instruments which you have learned, and pay particularly close attention to the operations 
pertaining to only those three instruments. 
 
BioGraph Mark. Play video. Turn off lamp. 
 
BioGraph Mark.  Do you have any questions concerning the video? 
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PRACTICAL INSTRUCTIONS 
 

You have now learned about the flight instruments and how they will be used.  During 
this practice session, I will give you heading instructions similar to what you will receive 
during the test events.  You will also receive altitude instructions to prepare you for 
maintaining pitch control.  During your maneuvers you are required to maintain the 
following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
 
If you have any questions during this phase of training feel free to ask. 
 
The simulator will begin at a heading of 360 and 5000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  MARK 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — MARK, Sim — PAUSE. 
 
This concludes your training.  Do you have any questions regarding these navigation 
tasks? 
 
Sim —> Experiment2 
 
SUBJECTIVE RATING ASSESSMENT: 
During the following sessions, you will also be asked to rate your stress levels during 
sessions using a 10-point scale.  "1" is not stressed at all, similar to a peaceful, relaxing 
afternoon.  "10" is the most possible stress you can withstand; for this experiment that 
would be the stress you can withstand before asking to terminate the experiment.  The 
queries will refer to the most recent maneuver that you flew.  Please now answer the 
following sample query for your current stress level: 
 
"Rate your stress on a scale from 1 to 10." 
 
Do you have any questions concerning the stress queries? 
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TASK ACQUISITION 
 

Sim —> Add "chatter" 
EFIS —> Add BRG 
 
You are about to begin the first test session.  This session will be similar to the previous 
training session you just accomplished, and it will last approximately 10 minutes.  You 
may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very 
confused, or need to stop for any other reason. 
 
To review, you are required to maintain the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
 
Do you have any questions before we begin? 
 
The simulator will begin at a heading of 180 and 5000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  MARK 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — MARK, Sim — PAUSE. 
 
This concludes the first test session.  Do you need a break before we proceed with the 
next session? 
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STRESS EXPOSURE 
 

For participants in the treatment group, PAUSE BioGraph, have them remove their left 
shoe/sock, check temperature, relocate the bucket, and UNPAUSE BioGraph, and read 
the following instructions. 
 
For the following test session, you will be asked to perform the flying task during 
exposure to a stressful cold pressor.  The cold pressor will be a cold bucket of ice water 
that you will put your left foot into.  During exposure to the cold pressor, or any stress, it 
is important to, first, maintain your normal breathing as best as possible.  This will help 
calm and relax you.  Next, attempt to focus on the task at hand, and ignore the 
distractions of the stressor.  Finally, pay especially close attention to the performance 
parameters which you are asked to fly.  These will be read to you again. 
 
Now, please place your left foot in the ice water. 
 
BioGraph —  MARK 
 Wait one minute. 
 
Notice how your breathing has increased.  For the next few minutes focus on slowing and 
regulating your breathing while attempting to relax. 
 
Wait one minute. 
 
Now, attempt to ignore the stress of the cold and focus your attention on the flying task 
you have been taught.  Please reference your flight instruments as you attempt to do this. 
 
Wait one minute. 
 
Finally, visualize the performance parameters you will have to maintain during the next 
session. They are: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
Wait one minute. 
 
You may now remove your foot from the ice water and dry it off. 
 
BioGraph — MARK.  Allow 5 min. for their foot to return to normal temperature. 
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TA2/PUS 
 

You are about to begin the second test session.  This session will be similar to the 
previous test session you just accomplished, and it will last approximately 10 minutes.  
You may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very 
confused, or need to stop for any other reason. 
 
To review, you are required to maintain the following parameters: 
 
During level flight: 
+/- 50 feet altitude 
+/- 5 degrees heading 
 
During turns: 
20-degrees bank +/- 5 degrees 
 
 
Do you have any questions before we begin? 
 
If a participant is in the treatment group, apply the cold pressor now. 
 
The simulator will begin at a heading of 180 and 5000 feet.  Are you ready? 
 
1.)  Maintain straight and level flight. 
 
BioGraph —  MARK 
Sim — UNPAUSE 
Read the clearances from the collection sheet. 
BioGraph — MARK, Sim — PAUSE. 
 
This concludes the second test session. 
 
BioGraph — PAUSE. 
 
Allow treatment group to put on sock and shoe. 
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TRANSFER TASK PREP 
 

We are now ready to begin the transfer task in the aircraft. 
 
This session will be similar to the previous test sessions you just accomplished, although it 
will take place in a real aircraft. 
 
Now we will review some of the operations regarding the aircraft. 
 
During your flight, you will sit in the front left seat with a yoke in front of you similar to 
what is in front of you now.  A pilot will sit to your right.  I will be in the back seat of the 
aircraft.  Do not engage in any conversation with either the pilot or me until after the test 
session.  During the session, you will be read clearances similar to the previous sessions.  
You may ask to have a clearance re-read.  Please wait to ask any other questions you may 
have until after the session, although do let me know if you become ill, are very confused, or 
need to stop for any other reason. 
 
It is important that we practice positive change of aircraft control during your flight.  While 
we are en route to the practice area, you must place your hands in your lap.  When aircraft 
control is given to you, the pilot will say, "You have the aircraft," at which time you must 
repeat, "I have the aircraft" and place your hands on the yoke.  Likewise, if the pilot regains 
control of the aircraft at any time, he will say "I have the aircraft," at which point you must 
immediately place your hands in your lap and say "You have the aircraft."   
 
Let's practice now: 
Place your hands in your lap. 
 
You have the aircraft. 
 
Participant must state "I have the aircraft" and place their hands on the yoke 
I have the aircraft. 
 
Participant must state "You have the aircraft" and place their hands on the yoke 
 
On the way to the practice area you will dawn glasses which will prevent you from seeing the 
instrument panel.  Please focus your attention outside the aircraft and do not attempt to view 
any of the aircraft instruments.  After approximately 10 minutes, we will arrive at the practice 
area where you will be given a second set of glasses which will restrict your vision to a 
screen identical to the one you have been trained on. Please focus your attention on this 
display, and do not attempt to view any other instruments or the outside view. 
 
Do you have any questions regarding the flight operations? 
1. Pause BioGraph, collect electrodes 
2. MNFC Covenant not to Sue, AF 1585, FIF 
3. Follow experimenter checklist 
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APPENDIX F:  SUBJECTIVE AROUSAL ASSESSMENT 
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APPENDIX G1:  PARTICIPANT EXIT SURVEY (EXPERIMENT 1) 
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APPENDIX G2:  PARTICIPANT EXIT SURVEY (EXP. 2 & 3) 
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APPENDIX H:  CFI EVALUATION 
 

ID:  _____      Date: __________ 
 

CFI Evaluation 
 
During each session, the student will be asked to rate their current stress levels.  At this time, rate the student's performance 
using the below scale.  If any additional information is needed for a query (e.g., Student was throwing up), indicate that in the 
notes section.  Following each session, rate the student's overall performance, and provide any overall comments if needed.  
Please do not let the student see this evaluation form. 
 

1         2         3         4         5         6         7         8         9         10 
      Very                  Average                   Very 
      Poor        Good 
 
        Score               Notes   
 
 
Query 1 

 

Query 2 

 

Query 3 

 

Query 4 

 

Query 5 

 

Query 6 

 
 
Overall Session Performance:  
 
Comments: 
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APPENDIX I:  RECRUITMENT FLYER 
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