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ABSTRACT

Adaptive arrays are highly versatile sensors employed in modern wireless communication

systems to combat interference and multi-path fading and thereby increase system capacity. In

adaptive processing, weights are attached to the incoming signal at each element to produce nulls

in the directions of interferers. However, mutual coupling is normally ignored in such processing.

Instead, the principle of pattern multiplication is used, where the assumption is that the radiation

pattern of an array is the individual radiation pattern of the elements multiplied by an array

factor. This assumption ignores mutual coupling and the error can be significant under certain

conditions. This work begins by setting up the scenario of an adaptive array in a mobile

communications scenario in a scattering environment. Following that, we introduce the theories

of mutual coupling and beam-forming. Expressions for the optimum solutions and the signal-to-

interference-plus-noise ratio are then derived based on the preceding discussions. Subsequently,

we show the effects of mutual coupling and the conditions under which the effect is significant.

In addition, we will examine various parameters involved in our scenario and how they affect the

performance of the adaptive array.
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I. INTRODUCTION

Array antennas are well known for their versatility in many areas, not least of

which in point-to-point communication. By a process of beam-forming, an array antenna

can steer its main beam in the direction of its intended transmitter or receiver while

simultaneously pointing its nulls to cancel interference sources. Furthermore, adaptive

algorithms have been introduced [Ref. 1 : p586 - 591] to infer and respond to the

directions of these (desired and interference) sources, the positions of which change with

time. There is currently a lot of interest in using adaptive antennas in mobile

communications to increase systems capacity or reduce interference.

However, the effect of mutual coupling has received little attention in the adaptive

array processing community. It is often assumed that the beam pattern of an array is the

individual pattern of an element multiplied by an array factor, in which mutual coupling

is ignored. In this work, we will show that this error is significant under certain

conditions and examine the effect mutual coupling has on the performance of array

antennas.

We begin in Chapter II by describing the scenario of mobile communications on

which this work is based, followed by theoretical discussions on mutual coupling and

beam-forming. Finally, we shall derive useful expressions for optimum adaptive solutions

and for the signal-to-interference-plus-noise ratio (SENR), which will serve as the

yardstick for measuring the performance of an array antenna.

In Chapter HI, we will show the effect of mutual coupling and the conditions

under which this effect is significant. In addition, we will examine various parameters

involved in our scenario and how they affect the performance of the adaptive array.





II. THEORY

In this work we will look at the effect of element mutual coupling on the signal-

to-interference-plus-noise ratio (SINR) of an adaptive array whose design is based on the

minimum mean square error algorithm. The elements of the array are assumed to be

dipoles and the analysis will be carried out in terms of the array mutual impedance. A

variable number of sources of interference as well as variable inter-element spacing will

be considered in the study.

A. DESCRIPTION OF THE PROBLEM

We consider the case of K+l transmitters (one desired and K interference) all

radiating narrowband signals to a receiver at the same carrier frequency. The scenario is

illustrated in Fig 2.1. The transmitters (also referred to as sources) are all embedded in a

scattering environment. The scatterers, which could represent reflecting obstacles

surrounding the source, are assumed to be distributed uniformly around each source over

a circular region of radius r^ We assume single bounce scattering of waves, meaning that

waves reach the receiver via single scattering off the obstacles. We further assume a 2D

situation where waves travel only in the azimuthal (horizontal) plane. Because of the

presence of scatterers, waves will not arrive just from a single direction for each source

but from an angular region determined by r^ and the distance Rk between the k
th

source

and the receiver. The receiving antenna is assumed to be an N-element linear array with

an inter-element spacing d. The elements are assumed to be center-fed half wave dipoles

oriented along the z axis, so the pattern of an isolated element in the azimuth plane is

constant. The mean directions of the desired source (k=0) and the k
th

interferer (k=l to K)



are denoted by O and^ respectively. Let (j)k be the angle from any scatterer around the k
th

source to the array and c& =
(fa

-
<Pk , as shown. The angle of arrival c& is then measured

from the mean direction (j>k
for each source.

scatterer around desired source

desired sisnal source

k interference signal source

scatterer around
i th
k source

array elements

FiR 2.1 Wireless Communication Scenario

Because of the multi-path phenomenon, the amplitude, phase and angle of arrival

of waves from each source will be random variables. The mterferers are assumed to be

arbitrarily located about the receiver. The purpose of the array is two-fold:

i) the array weights are chosen to produce nulls in the direction of the

interferers, and thereby reduce their influence on the received signal, and

ii) if N > K+l, to provide diversity gain against multi-path fading.



The weights of the array are continually changed depending on the location of the

interferers. Such an array is termed as adaptive array or smart antenna. The situation

considered above may well pertain to the case of wireless network in a tactical battlefield

or to the case of mobile cellular radio where K+l co-channel mobiles send signals to a

base-station receiver. We have assumed thus far that the mean directions of the desired

source and the interferers are known a priori. This is seldom the case in reality. In a

practical mobile situation, the sources move around in space and their directions are not

known precisely. In such a case, the weights are determined by means of either the Least

Mean Square (LMS) or Recursive Least Square (RLS) algorithm. However the present

case is still of interest in applications such as wireless local loops where wireless service

is provided to fixed subscribers and the directions of subscribers available from a

previously compiled data base.

Since the calculation of optimum weights requires the covariance matrix of the

received signal vector, we would like to know the probability density function (pdf) of the

angle of arrival. For a uniform density of scatterers about the source, the pdf of the angle

of arrival with respect to the mean direction is given as [Ref. 2 : p24-25] :

p(ock) = —L cosak
-y/l - b

k

2
sin

2 a
k

\a
k \<£k ( 1

)

where bk = Rk / fk (2)

and ^k is the maximum angle of arrival from the k* scattering region, given by

bksin^k = 1

For subsequent analysis, it is simpler to express the pdf in terms of a new angle Yk

defined by sinyk = bksinctk ; then



cos Tic cty; = bk cos o^ dak

Using this transformation of variable [Ref. 3 : pl22], the pdf of Tk is:

(3)

P(7k) = p(Ok)
da k

2
= —cos'"Tk — <yk

<—
2 2

(4)

This will be applied in Section ID when the expressions for optimum weights and SINR

are derived.

The mean value of Ok is a
k
= and its variance a

k
for bk»l is approximately

given as [Ref. 4] :

CXi
- r 2

K
(5)

( \

1

2b,
^ k )

2

I
2

J

The root mean square (rms) value of the angular spread is then —±-
. For example, with rk

= 100 m and Rk = 1 km, £k = 5.7° and 6L =2.85°.

B. MUTUAL COUPLING

In an array of electrically identical antenna elements, it is common to assume the

total radiation pattern to be the product of the array factor and the radiation pattern of the

individual elements, i.e., total radiation pattern = (array factor) x (element radiation

pattern). Implicit in this formulation is the assumption that the individual radiation



patterns remain the same even when placed in proximity of each other when mutual

electromagnetic interaction exists. However, such an assumption is erroneous in view of

element mutual coupling. When an antenna array is designed to provide diversity gain,

mutual coupling will disturb the spatial correlation of signals received by the array. In this

thesis, we will examine the effect of mutual coupling on the performance of the array.

The input impedance of an isolated antenna is simply the ratio of the voltage

applied (at its terminals) to the resulting terminal current. This is known as the self-

impedance and is, in general, a complex value as both voltage and current are of different

phases. When two antennas are located in close proximity, the current distribution (and

hence the radiation pattern) on one is affected by the field radiated from the other. This is

known as mutual coupling. To account for the mutual coupling effect, extra impedance

terms called mutual impedances are needed.

In general, the solution to the mutual impedance for dipoles can be accomplished

by way of coupled integral equations. Apart from its dependence on physical dimensions

and separation distance between the elements, the mutual impedance also changes with

the number of antenna elements. For an array of N elements, the impedance matrix can be

written as Zmn
[N]

, denoting the mutual impedance on the mth
element induced by the n*

element in an N-element array. The details of mutual impedance calculation are not

within the scope of this paper; we are interested in the effects it has on array antennas. We

will use results from simulation programs or from analytical expressions. As mentioned

earlier, for the sake of simplicity, we shall only concern ourselves with half wavelength

dipoles of small thickness. Even though Zmn
tN]

varies with N, we will assume Znu,
[N] =

Zmn
[2]

; actual computation of Znm
[4] and Z,™^ show them to be very close to Zmn

[2]
- (The



superscript
[2]

is subsequently dropped.) Z™, the mutual impedance between two side-by-

side dipoles, each of length L and separated by a distance d, is given by [Ref. 5: p265] :

Z12 = 30{2Ei (-jk d) - Ej [-jk (Vd
2 + L2 + L)] - E

f
[-jk (Vd

2 + L2 - L)]} (6)

where k = 2nlX is the wavenumber in free space, and

Ei(±jy) = Q(y)±jS i(y)

C,(y) = cosine integral

Sj(y) = sine integral

It is obvious that the inter-element spacing d has an influence on Z™,; as the

distance apart increases, one can expect the contribution from other array elements to be

reduced and hence Zmn (m * n) diminishes. The resultant impedance matrix Z is then

almost diagonal and mutual coupling can be ignored.

C. BEAM-FORMING ALGORITHM

Consider an arrangement of N elements spaced d apart (Fig 2.2). An

electromagnetic wave arriving from bearing (j) induces an open circuited voltage Vn
oc
on

the n
th

element. The open circuited voltage depends on the incident field and the

orientation of the dipoles with respect to the incoming wave. The coupling between the

elements is governed by the impedance matrix Z. It is assumed that the adaptive

processor presents load impedance (Zl) (n=l, 2, ... N) at each element. The terminal

voltage and current at the n
th

port are denoted by Vn and In respectively. It is clear that V=

-ZlI, where V is a vector of voltages presented to the adaptive processor and Zl is the

diagonal matrix = diag(Zu , ZL2 , ... , ZLN).



Fig 2.2 Array of N elements

The terminal voltage is related to the open circuited voltage by means of the

impedance matrix as :

V^ZhIj+Z^ + ZisIs + .-.+ZwIn + V!
00

V2 = Z21I1 + Z22I2 + Z23I3 + . . . + Z2nIn + V

2

V3 = Z31I, + Z32I2 + Z33I3 + . . . + Z3NIn + V3

0C

Vn - ZniIi + ZN2I2 + ZN3I3 + • • • + ZnnIn + Vn

or equivalently,

V = ZI + vc

(7)

For a dipole antenna the open circuited voltage can be obtained from the effective

length of the antenna by



incVn
ot =h«Er (8)

th
where h = vector effective length of n element

Ejf = incident electric field on n
th
element.

For dipoles of length L, oriented along the z-axis and having a sinusoidal

distribution I(z) = Io sin{k (L/2-lzl)}, the effective length is

h = e^^L- (9)

where 8 is the usual polar coordinate in the spherical coordinate system and

cos(-^— cos 6) - cos(-^-)

f (9) = 2 2—
sin0

is the radiation pattern of the dipole.

The electric field incident on the n
th
dipole is of the form,

ginc_
qE e

Jk d(n-l)cos<(>

In the present case, = n/2 and the radiation pattern of the dipole reduces to

f(6) = (l -cos -si)

. l-cos(^)
Therefore, Vn

oc = -E ^_ e
JM(n-l)cos<|> = ^jMCn-Dcoscf, (1Q)

sm(—

)

where V = —°-tan(-2-)
71 4

Using (10) in (7) and substituting V = -ZL I , we get

V = Zc V
oc

(11)

10



where Zc — Zl Z
-1

(12)

and Z = (ZL + Z) (13)

It is this voltage vector V and not Voc
that is available for array processing. It is

seen that the effect of mutual coupling is to couple the open circuited voltages induced at

each element. Thus mutual coupling will affect the spatial correlation between the

element signals and hence affect the diversity gain of the antenna.

In the presence of thermal noise, the total voltage input to the adaptive processor

is

V t = Zc V
oc
+ N(t) (14)

where N(t) = column vector of thermal noise.

With this input signal vector Vt , the adaptive processor attaches a weight wn (* is

the complex conjugate operator) to each (V,)n as shown in Fig 2.3, and produces a

combined output S r .

Fig 2.3 Adaptive Processor

1

(V
t)i (V

t) 2

r

|(V
t)N

1

^ M rtr r

E) 4—W2

*')- 4

JL ^ *

^ w
i ^—-J

Qp <4 wn

1 f

s r

In mathematical terms, the array response is

S r = wj Vi + wt V2+.... + WN Vn

= wH V
t (15)

11



where denotes the Hermitian operator (transpose and conjugate).

By varying the weighting vector w, up to N-l nulls can be steered in any direction.

For example, in the absence of mutual coupling and scattering, and using a 4-element

array, if the nulls are desired at (Jh , fo and fo we choose the weights according to

'vtO

2 2 2

v
3

y
?

2 v
3

3

VV3

w,

-1

V"
1

;

(16)

v • J

where Vk = e
jk °d(n V cos^

f
k _ 12 ,3. For (fo

= 45°, fc = 90°,
(fe

= 135° and d = A/2,

we get —^- = 0.21 14, —^ = —0.21 14 and — = 1. The array response to a plane wave
w, w, w.

arriving from angle
(J)

is plotted in Fig 2.4.

4 elements, each 0.5 X apart.

60 80 100 120 140

Angle of Arrival (in degrees)

180

Fig 2.4 Beam pattern of a 4 element array, intended nulls at
<J)
= 45°, 90° and 135°

12



1. Criteria for Optimum Weight

It was shown in the preceding paragraphs that, by using an appropriate weighting

vector, one is able to direct the nulls towards the direction of interference sources, thereby

cancelling them out. How does one choose the weights in the presence of noise and

scatterers?

The choice of the weighting function is based on the statistics of the total signal

received (desired + interference). Basically, the objective is to optimize the beam towards

the desired signal according to a prescribed criterion, of which there are several. It has

been shown [Ref. 5: p41] that the various criteria (including the Minimum Mean Square

Error (MMSE) and the Maximum SMR criteria) converge to the same Wiener solution,

differing only by a trivial scalar factor. Since the solutions are all the same, we shall use

the MMSE criterion. In the MMSE algorithm, the weights are chosen to minimize the

error, defined as:

error = <
|
Ar(t) - S r(t)

|

2
> (17)

where < > is the expectation operator. The weights that minimize the error are shown to

be of the form [Ref. 6: p39] :

w0pt = O-
1

S (18)

where $ = covariance matrix = <Vt Vt > (19)

S = <Ar
H Vt> (20)

A r
= reference signal = aoexp[j((jot + (3 )]

13



2. Choice of inter-element spacing d

Before proceeding to the calculation of the weight vectors, it would be instructive

to consider the effect the separation distance between array elements on the input signal.

Suppose there were no mutual coupling, no thermal noise (N(t)=0) and all loads are

y
identical (hence Zc = zcU , where U is an NxN identity matrix and zc

= ). Then
Zl+Zh

using (10) - (14), the input signal to the array processor is :

(V
t)n = z c V eJk °d(n

- 1)cos « (21)

Suppose the weights are all equal, i.e. w n = w for all n, then

\v*z
c
V £e jk °d(D - 1)cos

1

1 ^ jNk n d cos <(»

w*z
c
V i^-^ (22)

1 _ e Jk odcos <t>

The maxima are obtained at cos (|> = ± n (—) .
(n=0,l,2...) where the denominator

d

becomes zero. In general, there is the desired major lobe and other major lobes called

grating lobes. To avoid these grating lobes, one chooses —> 1, so that the above equation
d

will have only one maximum corresponding to n=0. Therefore in this paper, we shall be

primarily considering values of d up to 1A, for most results.

14



The nulls of S r((J))
occur when the numerator alone goes to zero, i.e., whenever

e
jNk dcos

<i) _ ^ assuming k d cos<() * 27in. This means cos
(J)
= ± m ( ) , where m is

Nd

any integer. As such, for _ < 1 , there are several solutions for (j) and m, which implies the
d

presence of multiple nulls, which might dramatically affect the SINR if they coincide

with the direction of the desired source. The above example assumed equal weights and

the absence of noise and mutual coupling. If these were taken into consideration, the extra

lobes would, in general still be present, albeit shifted.

D. EXPRESSIONS FOR Wopt AND SINR

With the results of the first three sections, we are now ready to proceed to derive

the expressions for the optimum weighting vector (wopt) and the signal-to-interference-

plus-noise ratio (SINR).

To begin with, let the desired signal be of the form Ao(t) V oc
and the interference

signal be of the form Ak(t) Vk°
c
where

A (t) = aoexp|j(G)t + po)] (23)

Ak(t) = ak exp[j(cot + p\)] (24)

(V
0C

)n = V exp[i(ko d (n-1) cos <&,)] (25)

(Vk
oc

)n = V exp[j(k d (n-1) cos (j*)] (26)

ao , ak = amplitudes of signals

Po * Pk = phases of signals

15



Then the input signal to the adaptive processor is

Vt=Zc V
oc + N(t)

= Zc (Ao V 0C + £ Ak Vk
oc

) + N(t) (27)
*=i

1

.

Optimum Weight wopt

We now attempt to find a convenient expression for the covariance matrix O.

Using equation (19) :

o = <vt V t

H >

= < (Zc V
oc
+ N) (Zc Voc

+ N)
H
>

= Zc < V
oc VocH > ZC

H
+ < N VocH > ZC

H

+ Zc < V
oc NH > + < N NH >

The following assumptions are made :

i) The noise voltage at each port is independent of the each other and of the

signals; its pdf is assumed to be zero mean Gaussian.

ii) The open circuited desired signal is assumed to be independent of the open

circuited interfering signals.

iii) The open circuited interfering signals are assumed to be independent of

one another.

iv) The amplitude, phase and angle of arrival of the signal from each source

vary independently of each other.

It is shown in Appendix A that this eventually reduces to :

<D = v£ + vj zc ^ c ZC

H + vj zc s ^k Ck Zc
H

= V
/
;[U + Zc ^ CoZc

H +Zc I^k Ck Zc
H

] (28)

16



where V^ = mean square noise voltage at each port

U is the N x N identity matrix

Zc = as defined in eqn (12)

(

2Ji

\C 1 - P
jk d(m-n)cos<j) k

k d(m-n)sin(()j
c
rk

k d(m-n)sin(t)ic
r]

<

.

, k = 0,1,2,.. .K (29)

£,o = input signal (desired source) to thermal noise ratio =
Vq < »d

>

V^ < 3} >
^k = input interference (k interfering source) to thermal noise ratio = —

Ji (.) = Bessel's function of the first kind of order one

It is also shown in Appendix A that

:

S = <Ar Vt>

— *n So Zc *-s (30)

where

[C s ]m=e-'
kod(m~1)cos(

')o

k d(m-l)sin({) r

Rq
_

k d(m-l)sin(fr r

R n

(31)

Substituting eqns (30) and (31) into eqn (18)

wopt =<E>-
1
S

- ao q [U + Zc ^ C Zc + Zc X s\Ck Zc ] Zc Cs

where ao £, is a trivial constant factor and is subsequently dropped.

(32)
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2. Signal-to-Interference-Plus-Noise Ratio

With the weight thus calculated, we can proceed to evaluate the SINR, which

gives a measure of the effectiveness of the array :

Power Received from desired signal
SINR —

Noise Power + Interference Power

Po

K

Pn + XPr
k=l

where, from Appendix B,

and

(33)

P = < (w
H Zc A V 0C

) (w
H Zc Ao V

0C
)

H >

= V„
2 ^wH Zc C Zc

H w (34)

Pk = < (w
H Zc Ak Vk

oc
) (w

H Zc Ak Vk
oc

)

H
>

= Vi wH Zc ^Ck Zc

H w (35)

PN = < (W
H
N) (w

H
N)

H
> = V 2 wH w (36)

Therefore, SINR = - ^o w Z c C Z c w
(3?)

w Hw + wH Z c X^ kC k Z"w
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III. RESULTS, OBSERVATIONS AND DISCUSSIONS

This chapter discusses the results obtained and presents explanations of these

observations. We first start by asking whether mutual coupling is at all significant and

then proceed to look at how separation distance, noise level, scatterer radius and number

of interference sources affect the performance of the array.

A. SPATIAL CROSS CORRELATION

The first question we need to ask is whether the effect of mutual coupling is at all

significant to an adaptive array? The importance of mutual coupling to diversity arrays

has been addressed in [Ref. 7]. The parameter of interest is the spatial correlation of the

field. It is an indication of the correlation of the voltage received between the elements of

an array. One of the benefits of an array is to provide diversity; this means that while one

element may be in the deep fade of the received signal pattern, hopefully another would

still be in a position to receive the signal. For this to be true, the elements have to be

relatively uncorrelated - hence a small value of spatial correlation means greater

diversity.

Consider a two element array, distance d apart. In the absence of thermal noise,

the voltage equations from (14) becomes :

V
1
=ZC i,V 1

oc + Zci 2 V2
oc

V2 = Zc 21 V 1 + Zc 22 ^2

Then the spatial cross correlation of the received electric field is defined as :

P = < Vj V2
* > = Zcil Zci2 * <Vi°

C
V!°

C *> + Zc 11 ZC 22
* <V! 0C V2

0C *>

+ Zc 12 Zc2i* <V2
0C
V,

oc *> + Zc 12 ZC 22* <V2
0C V2

0C *> (38)
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<vr Vi
00

> = <v2

oc
" v2

'* > = i

-cV" V2

'x *> = ^j01
V," *> = J„ (kod)

Zcil=Zc22 , Zci2 — Zc21

J (.) = Bessel's function of first kind, order zero.

(39)

(40)

(41)

and <V 1

ot V2

(X
> = <V2

oc
Vi°

c
> = J (kod) [Ref. 4]

where

Thus

p = (Zc U Zcn* + ZcnZcu) + (ZcnZcu+ZcnZcn)L(Kd) (42)

Extracting the common factor and substituting for Zc , the spatial cross correlation

of the electric field for a two element array terminated in ZL = Zn* is given by [Ref. 4] :

P = P<

l
12

(

R, 1 +

2 A
(43)

4/?r,

where pa = Jo(kod) is the correlation in the absence of mutual coupling, and Rn and Ri 2

are the real parts of ZH and Zn respectively. Fig 3.1 below shows the spatial cross

correlation vs separation distance d between two half-wavelength dipoles.

0.35

0.3

0.25 "

0.2 "

Spatial Cross Correlation of a 2 element array

With Mutual Couplinc
Without Mutual Couplinc

4 6

distance apart d/X

Fig 3. 1 Spatial Cross Correlation of a 2 element array
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As expected, at longer separation, the effect of mutual coupling is diminished and

the two curves converge. However, there is a marked difference for d<A,, which indicates

the significance of including mutual coupling.

Another way to interpret spatial cross correlation is to examine the normalized

spatial cross correlation (Fig 3.2). For reference, we have indicated the correlation values

of 0.7 and 0.3 (Table 3. 1). It is seen that for this example the effect of mutual coupling is

to decorrelate the signals initially but correlate them more for larger values of spacing d.

Normalised Spatial Cross Correlation of a 2 elemert array

With Mutual Coupling
Without Mutual Coupling

Fig 3.2 Normalized Spatial Cross Correlation Electric Field in a 2 element array

Values of d/A

Without mutual coupling With mutual coupling

p < 0.3 > 1.1201 > 3.0701

p < 0.7 > 0.1801 > 0.0901

Table 3.1 Values of spacing d for p <0.3 and 0.7
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While both curves fall rapidly below the upper level of 0.7, there is a large

difference in the lower level of 0.3; without mutual impedance, the arrays have minimal

spatial cross correlation (<0.3) for d>1.12X, whereas with mutual coupling, this occurs

only after d>3.07A. What this means is that in the presence of mutual coupling, the array

diversity will be generally reduced.

B. EFFECT OF MUTUAL COUPLING ON WEIGHTING VECTOR

Another effect of mutual coupling is in the resultant weights. Using (18), we

observe that we get different weighting functions when considering and ignoring the

effects of mutual impedance (Table 3.2). The weights are normalized such that wH w = 1.

Number of elements N = 4

Separation between elements d = A/4

Number of interference sources K = 3

Direction of desired source Z = 90
Directions of interference sources — _„„ ,„ t/> _

<pk
= 30 , 60 , 120

Scatter radii
ro=rk =

Consider mutual coupling

w (normalized)

Ignore mutual coupling

Wo(normalized)

Deterministic case

wd(normalized)

0.2624-0. 1203i 0.391 1+0.026H 0.3300

-0.4627-0.2327i -0.3631-0.463H -0.5357-0.3227i

0.4330+O.5600i 0.2335+0.5445i 0.4275+O.4564i

0.2102-0.321 li 0.1704-0.3530i -0.0689-0.3227i

Table 3.2 Weights for adaptive MMSE and deterministic cases

Table 3.2 also shows the weights wd calculated in the deterministic case, that is,

where it is assumed that the directions of the interference sources are known and the

weights calculated such that nulls are steered in the directions of the interferences. Since
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the weighting vectors are all different, we would expect different beam patterns using

these 3 solutions, as shown in Fig 3.3 below. Values of the corresponding SINR are

indicated in the inset.

Note : In Fig 3.3 and subsequent plots, the blue curve corresponds to adaptive (MMSE)

solution using eqn (18) , with mutual coupling considered. This means that the off

diagonal terms of Z are non-zero and are given by (6). The red curve corresponds to

adaptive solution also given by (18), this time ignoring mutual coupling (Z in (13) is

diagonal). The green curve corresponds to the solution in the deterministic case,

calculated without mutual coupling. Moreover, the direction of the desired source is

maintained at
(f>

=90° (unless otherwise specified) and is denoted by a blank circle on the

abcissa. Pink asterisks (*) denote the directions of the interference sources.

Weights normalised. N= 4. d= 0.25A, K = 3, r
Q
/R = 0, r

k
/R = 0, ^ o

= 20dB, B,
k
= 20dB

1

0.9|-

0.8

0.7

£ 0.6
<DC
CO

°- 0.5 "

E
a
d>

m 0.4

0.3

0.2

0.1

WrthMC, SINR= 8 6dB
Ignonng MC. SINRo = 6 1dB
Deterministc. SINRd = 3.0dB

20 40 60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.3 Beam pattern for adaptive solutions considering and

ignoring mutual impedance and deterministic weights.

All weights normalized such that wH
w=l, beam pattern not normalized.
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In Fig 3.3, it is seen that although nulls are steered in the directions of the

interference sources in the deterministic case (green), it does not provide the best SINR.

This is because in the other cases (adaptive solutions - blue and red), the gain in the

direction of the desired signal is higher than the deterministic case (which does not take

into account direction of desired signal), thereby contributing to a higher desired signal

power received, Pc in (34). This thus gives rise to higher SINR.

Fig 3.3 shows the beam pattern (un-normalized) using weights calculated.

However, it is often the normalized beam pattern that is more suitable for comparison

between the three solutions; in Fig 3.4 and subsequent graphs, the beam patterns are

normalized to the maximum gain.

N= 4, d= 025k, K - 3, r
Q
/R = 0, r

k
/R = 0, t,

o
= 20dB, £ k

= 20dB

1

0.9

0.8

0.7

0.6

With MC, SINR = 8.6dB
Ignoring MC, SINRo = 6.1dB
Deterministc, SINRd = 3.0dB

20 40 60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.4 Beam pattern (normalized to max gain) lor adaptive solutions considering and

ignoring mutual impedance and using deterministic weights

Fig 3.3 and Fig 3.4 are essentially the same beam patterns, though in Fig 3.4 the

adaptive, no-mutual-coupling solution (red) seems to have a higher gain in the direction of

the desired source (0O
= 90°) than the mutual coupling case (blue). As such, one might be
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lulled into expecting the red curve to have a higher SINR; it should be borne in mind that

the graph shows relative gains only. For a true value of the SINR values, one should

always refer to the values displayed in the inset rather than to the heights of the curves.

The previous two sections show that mutual coupling does have an effect on the

performance of adaptive array antennas. This effect obviously diminishes as the physical

separation between the elements increases.

C. EFFECT OF ELEMENT SEPARATION

An interesting comparison would be how the SINR is affected by varying the

separation distance d between elements. Fig 3.5 below shows the SINR vs d plot for a 4-

element array antenna in a 3 interference situation (no scatterers).

N= 4, K = 3, r
o
/R = 0, r

k
/R = 0, ^ o

= 20dB, ^ k
= 20dB. <|>

k
= (30°, 60°, 1 20°)

25

0.5 1 1.5

Distance between elements (in terms of X)

Fig 3.5 SINR vs d
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It is seen that the SINRs with and without mutual coupling do show differences for

small values of d (less than IX), sometimes by as much as 3dB (e.g. at d=0.75A,). At

higher separations, they are about the same, as expected since mutual coupling effect is

diminished. In all cases, the SINR using the adaptive solution (no mutual coupling) is

consistently higher than that using the deterministic weights. At the same time, there are

differences between the adaptive solutions with and without mutual coupling (blue and red

curves in Fig 3.5). The exact difference is difficult to quantify as it is case specific: in Fig

3.5 above, the situation is for a 4 element array in a 3 interference environment (</>k
= 30°,

60° and 120°) with ^ = ^k = 20dB.

An interesting feature is the fact that the SINR drops drastically near d=1.15A,.

This is shown in Fie 3.6 below.
N= 4, d= 1 .1 5X. K = 3. r

Q
/R = 0, r^/R = 0, ^o

= 20dB, ^ k
= 20dB

1 1 TYT-

WithMC, SINR= 3dB
Ignoring MC SINRo = 4dB
Determimstc SINRd= -10 1dB

20 40 60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.6 Beam pattern for d = 1.1 5 A,

A closer examination reveals that this drop is due to the rather low angular

response of the array in the direction of the main source. Therefore, in practical design of

array antennas, it would be wise not to exceed d=AV2 unless we impose an additional
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constraint that the pattern not go to zero in the direction of the desired source. In this

paper, we shall continue to study the cases for d up to \X.

D. EFFECT OF NOISE

From (18) and (14), we have :

wopt =0>
1

S

= [ U + Zc ^o C Zc + Zc X ^ Ck Zc ] Zc Cs

and Vt = Zc Voc
+ N(t)

In the situation where ^ » 1, ^k» 1, we get IV^I » IN(t)l so

wopt -[Zc (^ C )Zc
H +Zc (X^Ck)Zc

H
r

1 Zc Cs (44)

and V, - ZcV
00

(45)

The resultant signal is

= {[ Zc ^ C Zc
11
+ Ze Z ^k Ck Zc

11

J'

1 ^ CS}
H
Z. V™

= CS

H
Ze

11

{[ Zc ^ C + 2 ^ Ck Zc
11

J"

1}" Zc V~

= CS

H
Zc

11

{(Zc
11

)"
1 & C + 2 Sk CO'

1

Zc
1

}

H
Zc V~

= CS
H
Zc

H
(Zc"

1

)
H

[(^o Co + 2 & CO 1

]

11
[(Zc

11

)
1

]

H
Zc V~

= CS

H
(Zc^Zc)

11

[(^o Co + I Sk CO"
1

]

11

[Zc
H
(Zc")

1

]

11v*

= CS

H
[(So Co + 2 Sk CO"

1

]

11r (46)
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which turns out to be independent of Zc . Since the effect of mutual interference is in the

impedance matrix Zc, it is predicted that when ^, , ^k is large (>40dB), the effect of mutual

impedance is reduced and the two adaptive solutions (blue and red in Fig 3.7) converge.

(Recall that ^ = input signal (desired source) to thermal noise ratio and %k = input

interference (k^ interfering source) to thermal noise ratio )

N= 4, d= 025X, K = 3, r
Q
/R = 0, r^R = 0, £o

= 20dB, ^k
= 20dB

(a)

1

0.8 1-

0.6

With Ma SNR= 8.6dB
Ignoring MC, SINRo = 6.1dB
Oeletministc, SINRd = 3.0dB

20 40 60 80 100 120 140 160 180

N= 4, d= 025X, K = 3, r
Q
/R = 0, r^R = 0, Z,

o
= 40dB, ^ k

= 40dB

1

0.8 h

(b)

With MC, SINR = 27.4dB
Ignoring MC, SINRo = 23.0dB
Deterministc. SINRd = 23.0dB

60 80 100 120

Angle of Arrival (in degrees)

160 180

Fig 3.7 Comparison of the effect of noise

Fig 3.7a shows the beam patterns using the different weights when ^ = ^k = 20dB.

However, when signal-to-noise-ratio t, and interference-to-noise-ratio %k are increased (to

40dB) as in Fig 3.7b, one can easily observe that the solutions (with and without mutual

coupling) converge, as predicted. It is important to note that though the normalized beam

patterns in Fig 3.7b are similar, the weights and terminal voltages with and without mutual

coupling are not the same. This is evident in the fact that the SINR values with and

without mutual coupling differ by as much as 4dB in Fig 3.7b. This is because the noise

levels in the three cases are different relative to the output signal.
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E. EFFECT OF SCATTERER RADII r , rk

Recall that in our model outlined in Section 2A that the desired and interference

sources are at distance Rk from the array. In addition, each source is embedded in a

scattering environment, in which the scatterers are assumed to be distributed uniformly

around each source over a circular region of radius rk (k=0,l,....K). Here we take Rk = 1

_hkm and vary the values of r^ (k=0,l,....K); ultimately, it is the ratio b
k
=— that is

R

significant in the calculations.

It was found that the effect of the scatterer radii rG and rk depend on the input

signal to noise ratios %„ and ^k . First we compare the effect of increasing scatterer radius

r while maintaining rk = 0. For illustration, a 4-element array with A./2 spacing is used in a

3 interference situation (<pk
= 30 , 45 , 60 ). Fig 3.8 below shows the resultant normalized

beam pattern.

(a)

(b)

N= 4, d= O.Sk, K = 3, r /R = 0, r„/R = 0, E = "lOdB, E. = 10dB

£
0.8

S
*g0.6
Q-

§0.4
0)m
02

WithMC, SINR= 11.(KB
Ignoring MC, SINRo = 10.4dB
Deterministc. SINRd = 7.0dB

120 140 160 180

N= 4, d= 0.5X, K = 3, r/R = 0.1 , r
k
/R = 0, 1 = 1 0dB, L = 10dB

With MC. SINR = 10.6dB
Ignoring MC, SINRo = 10.0dB
Deterministc, SINRd = 7. 1dB

60 80 100 120

Angle of Arrival (in degrees)

180
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In Fig 3.8a, there are no scatterers around the desired source (rc = 0) whereas in

Fig3.8b, scatterers are present (ro/R = 0.1). We can see that the weights and (hence) beam

patterns are changed slightly, and that with scatterers (Fig 3.8b) the resultant SINR values

are slightly reduced. The light blue column shows the extent of the angular spread of the

desired signals; hence the area in the column under each curve would represent the

amount of power arriving from the source. In the calculation of SINR, this area is divided

by the angular spread to give an average value of the signal. Whether this average value is

greater or smaller than the SINR in the no-scatterer case obviously depends on the shape

of the curve. In Fig 3.8 above, it is observed that though the average SINR values for

adaptive solutions are smaller, the deterministic solution actually shows an improvement in

the averaged case.

Nonetheless, it is important to note that the adaptive solutions (blue and red) still

give greater SINR than the deterministic case (green). This is in accordance with our

conjecture that the adaptive MMSE solution also leads to the Maximum SINR solution. It

has been shown in [Ref. 4] that the SINR without mutual coupling and no scatterers

around the desired source is always better than the detenriinistic case. No such conclusion

can be drawn when mutual coupling is taken into account.

Next we investigate the situation when ^ and t^ are increased to 20dB (Fig 3.9);

comparing the 4 cases (in Fig 3.8 and Fig 3.9), the deterministic case remains the same

since the deterministic weights do not depend on r , rk , ^, nor £,k . The adaptive solutions

change accordingly - most surprising is the fact that for Tc/R = 0.1, rk/R = 0, ^ = ^ =

20dB (Fig 3.9b), the adaptive solutions (both with and without mutual coupling) give
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SINR values smaller than the deterministic case. This is in contrast to the no-scatterer case

where the adaptive (MMSE) solutions always give the maximum SINR.

N= 4, d= 0.5X, K = 3, r /R = 0, r„/R = 0, E = 20dB, E. = 20dB

(a)

1

£
0.8

S0.6

§0.4
a)m 02

WithMC, SINR= 19.1dB
Ignonng MC, SINRo = 18.5dB
Deterministc. SINRd = 17.0dB

20 40 60 80 100 120 140 160 180

N= 4, d= 0.5A., K = 3, r /R = 0.1 , r„/R = 0, E = 20dB, E L
= 20dB

' o ' k ' ^o ' ^k

(b)

1

£
0.8

a>

13 0.6
a.

|0.4
a>

CD
02

WithMC, SINR= 15.7dB
Ignoring MC, SINRo = 15.4dB
Deterministc, SINRd = 17.ldB

40 60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.9 Effect of scatterer radius r„ (^ and %k = 20dB)

Next we examine the effect of increasing the scatterer radius rk while maintaining

r =0. In Fig 3.10 below, the columns in magenta represent the angular spread of the

interference signal from the interference sources. The increment of rk again reduces the

SINR but not as much as in the case of scatterers around the desired source. The decrease

in SINR is expected since scatterers increase the directions from which the interference

signals can now reach the array, thereby increasing the interference power received. In this

case the increment of rk does not change the fact that adaptive solutions still give greater

SINR than the deterministic case.
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(a)

(b)

N= 4, d= 0.5A., K = 3, r /R = 0, r. /R = 0, t = 20dB, E, = 20dB

WrthMC, SINR= 19.1dB
Ignoring MC, SINRo = 18.5dB
Deterministc, SINRd= 17.0dB

120 140

N= 4, d= 0.5A., K = 3, r /R = 0, r/R = 0.1 , t, = 20dB, %. = 20dB
' o k ' ^o ^k

180

0.8

0.6-

0.4
-

2 -

With MC, SINR= 18.4dB
Ignoring MC, SINRo = 18.0'

Deterministc, SINRd= 16.9dB

20 120 140 180

Angle of Arrival (in degrees)

Fig 3.10 Effect of scatterer radius rk (£,„ and %k = 2()dB)

F. EFFECT OF NUMBER OF INTERFERENCE SOURCES K

Another variable parameter is K, the number of interference sources. In Fig 3.11

below, a 4-element array (N=4) is placed in an environment where there are no scatterers

around any of the sources (r„ = rk = 0).
N= 4, d= 0.SX, K = 3, r /R = 0, r/R = 0, E = 20dB. E. =

1

(a)

(b)

20dB

m

£
0.8

§0.6
3.

£o.4

0.2

1

£
0.8

CD

a 0.6
2.

£0.4

(1?

WrthMC SINR = 21 6dB
Ignoring MC SINRo = 21 1dB
Deterministc, SINRd = 21 1dB

20 40 60 80 100 120 140

N= 4, d= 0.5X, K = 4, r /R = 0, r/R = 0, E = 20dB, E. =

160 180

20dB

m

WrthMC SINR= 11 3dB
Ignonng MC, SINRo = 11 2dB
Deterministc. SINRd = 7 5dB

f V

- /
//

="--. II
\
\ / ^

—

.,

.—-«— \—-* 1 ^ty >——e

—

>- -&—-*
"~>^

—

20 40 60 80 100 120

Angle of Arrival (in degrees)

140 160 180

Fig 3.1 1 Effect of Number of Interference Sources K (K>N-1)
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In Fig 3.11a, 3 interference sources (K=3) have been specified in the directions

k
= 30°, 60°, 1 20°. The adaptive solutions and the deterministic solution are similar and all

steer nulls in the directions 30°, 60°, 120° that effectively cancel out the interference

sources. The resultant SINRs for all 3 cases are therefore very close. In Fig 3.11b, an

additional interference source has been added (at (j)k
= 140°). With the deterministic

weights, a maximum of N- 1 nulls can be chosen; this means we can (arbitrarily) choose

only 3 of the 4 interference sources to cancel. With the adaptive solutions specified by

(18), the weights are altered to give a different beam pattern as shown. Though none of

the nulls is exactly in the direction of the interference sources, the 'spreading' of the

pattern is such that the resultant SINR is greater than that given by the deterministic case.

In Fig3.12 below, the same situations are compared, this time with scatterers

around all sources.

(a)

N= 4, d= 0.5A., K = 3, r/R = 0.1 , r./R = 0.1 , t = 20dB, L = 20dB
o K ^o ^k

: z~z—

i

1 1 > v i 1 1 1

WithMC, SINFU 15.2dB
Ignoring MC, SINRo = 15.1dB
Deterministc, SINRd = 15.4dB

(b)

1

E
0.8

a 0.6
0_

I 0.4
<D

CD
0.2

20 40 60 80 100 120 140 160 180

N= 4, d= 0J5X, K = 4, r /R = 0.1 , r./R =0.1, £ = 20dB, t = 20dB'o ' k ' ^o ' ^k

WithMC, SINFU 10.2dB
Ignoring MC, SINRo = 10.1dB
Determmistc. SINRd = 7.0dB

60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.12 Effect of Number of Interference Sources K (K>N-1)
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In Fig3.12a, we note that the deterministic SINR is better than for the adaptive

cases (as discussed previously in Section E). However, with the addition of a fourth

interferer at (j)k
= 140°, the adaptive cases actually perform better than the deterministic

solution in terms of SINR. This emphasizes the flexibility of the adaptive solution in

encountering more than N- 1 inteference sources.

At the other extreme, we would like to examine the situations where the number of

inteferers K is less than the number of array elements N. To illustrate, we consider N=6

and 8 in an environment with only 3 interference sources. Fig 3.13 below shows the

resultant normalized beam patterns.

N= 6, d= 0.5X, K = 3, r /R = 0.1 , r. /Ft = 0.1

,

1 = 20dB, %h
= 20dB

With MC, SINR= 15.9dL,
Ignoring MC, SlNRo = Tb.7dB

(a)

120 140 160 180

N= 8, d= 0.5k, K = 3, r /R = 0.1 , r„/R = 0.1 , £, = 20dB, \. = 20dB
' o ' k ^o ^k

(b)

60 80 100 120 140 160 180

Angle of Arrival (in degrees)

Fig 3.13 Effect of Number of Interference Sources K (K<N-1)

It is seen that when K < N-l ("there are more than enough array elements to go

around"), the SINR using the adaptive solutions are improved. Table 3.3 below shows

these values for N=4,6,8,10 and 30 (K=3 in all cases).
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K = 3 d = X/2 ^-Zl-oi £o = k = 20dB

R R

N=4 N=6 N=8 N=10 N=30

SINR (with mutual coupling) 15.4dB 15.9dB 17.8dB 18.2dB 18.5dB

SINR (ignore mutual coupling) 15.2dB 15.7dB 17.4dB 17.7dB 18.0dB

SINR (deterministic case based on N=4) 16.9dB 16.9dB 16.9dB 16.9dB 16.9dB

Table 3.3 Comparison of SINR

As is obvious from the table, as the number of array elements (N) increases, the

SINR increases as well for the adaptive cases. Of course, the deterministic case does not

change since it is dependent only on the direction of the interferers. Initially, we note that

SINR (deterministic) is greater than SINR(adaptive) - this was discussed in Section 3E as

being due to scatterers around the desired source. However, for higher values of N (N> 8

in this example), we find that the SINR of the adaptive solutions actually increases to

greater than that offered by the deterministic case. Beyond a certain value of N, this

increment becomes insignificant or non-efficient (c.f. SINR for N=10 and 30).

Nonetheless, this is another indication of the ability of the adaptive algorithm in making

full use of its elements to find the best solution.

G. ANGULAR RESOLUTION OF SOURCES

Our next area of interest is in examining if the use of an adaptive array is effective

when the various sources are closely spaced. Consider the situation where one of the

interferers is very close to the desired source :
<f>

= 90°, <pk
- 90°-2.85° = 87.15° (2.85°
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T T
was chosen as it is the rms value of angular spread for -£-=-£-= 0.1 as in eqn (5) ). This

R R

is shown in Fig 3.14.

N= 4, d= 0.5X, K = 3, r /R = 0, r /R = 0, t = 10dB, L = 10dB

(a)
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3.14 Effect of Interference Source close to Desired Source (^ and ^k = lOdB)

Fig 3.14a shows the situation where there are no scatterers around any of the

sources. It is seen that the close proximity of a null near the desired source lowers the

SINR in the deterministic case drastically, whereas for the adaptive solutions, the nulls are

actually steered away so as to give a significantly better SINR. In Fig 3.14b, the presence

of scatterers does affect the performance of the adaptive solutions, but it is seen that the

adaptive solutions still give better SINR values.

Fig3.15a and b below shows the same situations with % and ^k increased to 40dB.

As discussed in Section D, high values of t, and ^k mean that the solutions all converge to

the deterministic case. However, in the presence of interference close to the desired

source, the solutions are different. More significantly, the SINR from the adaptive
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solutions in this case is lower than that from the deterministic case - again, this is due to

the presence of scatterers around the desired source.

N= 4, d= 0.5X, K = 3, r /Ft = 0, r. /R = 0, 1 = 40dB, I. = 40dB

(a)

(b)

1

E
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With MC, SINR = 2.6dB
Ignoring MC, SINRo = 2.6dB
^eterministc, SINRd= 3.1dB
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Angle of Arrival (in degrees)

180

3.15 Effect of Interference Source close to Desired Source (c; and c^ = 4()dB)

What happens when an interference source, initially remote from the desired

source, is moved close to it? In Fig 3.16a below, <j>k
= 30°, 45° and 60° while in Fig 3.16b,

the interference source at </>k
= 45° is moved to 87.15°.
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N= 4, d= 0.5X., K = 3, r /R = 0.1 , r. /R = 0.1

,

1 = 20dB, c. = 20dB
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Fig 3.16 Effect of Interference Source close to Desired Source (£<, and %k = 20dB)

In a previous section, it was shown that when there are scatterers around the

desired source, the deterministic solution gives a greater SINR than the adaptive solution,

as shown in Fig 3.16a. However, this is reversed when one of the interference sources is

moved close to the desired (Fig 3.16b). This shows that when an interference source is

close to the desired source, the adaptive solution performs better than the deterministic

one, even when there are scatterers around the desired source.
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IV SUMMARY AND CONCLUSIONS

A. SUMMARY

Through the series of results obtained, the effect of mutual coupling on the

performance of adaptive array antennas was studied by varying several parameters. These

can be summarized as follows:

1. Effect of Mutual Coupling on Spatial Cross Correlation

The effect of mutual coupling is to reduce the spatial cross correlation initially

(for d < IX) but to increase it for larger values of inter-element spacing d.

2. Effect of Separation Distance d

For d>lA, there is practically no difference on the SFNR obtained with and

without considering mutual coupling. At lesser separation, however, the difference is

significant and can be as much as 3dB.

3. Effect of Noise

When the signal-to-noise-ratios £, and t^ are high (>40dB), it was found that the

solutions obtained with and without considering mutual coupling are very close, and

converge to the deterministic solution (provided number of interference K < number of

array elements N).

4. Effect of Scatterer Radii r and r^

When the scatterer radii r and rk are increased, in general, the SINR of the

solutions are reduced, This is expected as it represents uncertainty in the directions of

arrival of the sources.
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When the scatterer radius r is increased, at a critical £o, 4k level, the adaptive

MMSE solutions cease to give Maximum SINR. This is in contradiction to the conjecture

that MMSE and Maximum SINR solutions are equivalent [Ref. 6: p41].

On the other hand, increasing the scatterer radius rk alone does not 'invert' this

trend of MMSE solution giving max SINR.

5. Effect of Number of Interference Sources K

When the number of interferers K > the number of array elements N, the

deterministic solution can do no better than pointing N-l nulls towards the interferers.

The adaptive solutions, however, seeks to minimize the error and generally gives a

greater SINR than the deterministic case.

When the number of interferers K < the number of array elements N, it was found

that the adaptive algorithm makes use of this fact to improve the SINR. Hence even with

scatterers around the desired source (as in the previous section), with a sufficient number

of array elements, the adaptive solution will give an SINR greater than that in the

deterministic case.

6. Angular Resolution of Sources

In cases where one of the interferers is very close to the desired source, it was

found that adaptive solutions perform better than deterministic one. This includes the

situation where there are scatterers around the desired source and demonstrates the

excellent angular resolution offered by adaptive arrays.
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B. CONCLUSIONS

We have examined the effect of mutual coupling on the performance of an

adaptive array in a realistic communications environment, where the desired and

interference sources are embedded in an area of scattering objects. Expressions for the

MMSE solutions and SINR were derived for this scenario. These were subsequently

used to show the effect of mutual coupling, in particular in array where the element

separation was less than \X. The effects of the other parameters in the system were also

discussed, including conditions under which the MMSE solution does not give rise to

Maximum SINR.
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APPENDIX A : EXPRESSIONS FOR O AND S

A. EXPRESSION FOR O

From (15),

covariance matrix <I> = <V t V t >

= < (Zc V
oc + N) (Zc V

oc
+ N)

H >

= Zc < Voc Voc H > ZC

H
+ Zc < V

oc NH > (Al)

+ < N Voc H > ZC

H + < N NH >

Now, consider the terms separately :

(i) Second and third terms :

Assuming noise is zero mean and uncorrelated with signal,

then < ao e
" j(C0° t+P ° } N(t) > °c < N(t) > =

(A2)

so < V,
oc NH > = < Vt

oc ><NH > =0 = <NVt

ocH > (A3)

(ii) Fourth term :

Assuming noises at the ports are uncorrelated with each other

<NNH >mn = 5mn v£

(A4)

where VN = root mean square noise voltage

(iii) First term :

< V t

oc V t

oc H > = < [aod^ ' V 0C + I ak e
J(w,+pk) Vk

oc
]

. [ao e-
J((m+Po) V 0C H + X a, e

-J(cot+pi)
V,

oc H
] >

= < ao
2 V 0C

(V
0C

)

H > + I < ao ake^

"

Po) Vk
oc
(V

oc
)

H
> (A5)
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+1 < ao ak^°
- pk) V 0C

(Vk
oc

)

H
> +X2 < ak a, e^"

"

pi) Vk
oc

(V,
oc

)

H
>

Now < ao
2 V 0C

(V
oc

)

H
> = < ao

2 > <V 0C
(V

0C
)

H > (A6)

(assuming magnitudes of narrowband signals are uncorrected to the angles of arrivals)

Also, assuming the interfering signals are uncorrected with the desired signal,

then <a<,ak> = <ao> <ak> =

since the phase [3 is assumed uniform over (0, 2k). So

< ^ ak eJ(Pk
" Po) Vk

oc
(V

0C
)

H > = <ao> <ak> <ejf3k > < ^°> <Vk
ocxV oc H> (A7)

=

and < ak a, ei(Pk
" pi) Vk

oc
(V,

oc
)

H
> = ^ < ak

2 Vk
oc
(Vk

oc
)

H >

= 6k,<ak
2xVk

0C
(Vk

0C
)

H > (A8)

Now consider <Vk
0C
(Vk

0C
)

H > = V 2 < e Jk °d(m-n)cos<}>k >

= V 2 < e Jk od (m- n ){ cos <i>k
cosa k -sin <j)k sin

a

k } >

.k d(m-n) - f~T~2 • 7 ^
J {cosct)k Vb k -x -sin(|>kx}

= V 2 < e
bk >

where x = —L sin or, (A9)

h

.k d(m-n)
f

- /~1 1 T ,

, j {cos<(>k Vb k -x -sin<))kx} 2
,

=V 2
e

b * -Vl-x2
dx

.k d(m-n) - \TT~3.
, f

i k d(m-n) - J Z
cos^Vb k -x

2
r-

=V 2
[ cos(-^ -xsin<j)k )e

bk -Vl-x
J-l bi, K

4>kVb7^
2
dx
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Let us now assume that b|< » V10 =>bk
2 » 10, so that ^bj, -x = b k ,then

<Vk
0C
(Vk

0C
)

H > .Vo
2 eJk od (m-n)cos0k 2 rl ^7^MOm-n^

^
^

- ^
71

2J

= yo
2
e
Jk d(m-n)cos(})k

- Vx,

(k d(m-n)sin(j)k
—-

-)
R k

- Tv
(k d(m-n)sm(j>k —-)

R k .

= Vo
2
e
Jk d(m-n)cos^

kfm_n(kodsin^ 5rk7Rk) (A10)

where fm_n (k d sin <j)k , rk , R k )

f k d(m-n)sin(|)k rk
^

R k _
k d(m - n) sin ())k rk

Rw

(All)

and Ji = Bessel's function of the 1
st

kind, of order 1.

Substituting (A9) into (A4),

< Vt

oc V t

ocH >™ = V 2
{ <ao

2 > eJk od(m-n)cos^ fm_n(kodsin(|)o5ro5Ro)

+ L<ak
2 > eJk od (m-n ) C0S^fm_n (k dsm4,rk ,R k ) }

~> , ?
Therefore, < V t

oc V
t

oc H > = V<f { <a
z> C + I (<ak"> Ck) } (A12)
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where [Ck]mn = e Jk ° d(m - n)cos ^
r

r k d(m-n)sin(|)k rk
A

k d(m-n)sin(l)k rk

Rv

(A13)

Finally, O = Zc< Vt

oc Vt

oc H >ZC

H + < N V
t

oc H > ZC

H + Zc < Vt

oc NH > + < N NH >

= V 2 + V 2 Zc { <ao
2> C + I (<ak

2
> Ck) } ZC

H

\2 . w2 H , Trl= % + VfJ Zc & C„) ZC
H + Vfi Zc (I ^ Ck ) z

= v£ [U + Zc (^C )Zc
H + Zc (l5k Ck)Zc

H
] (A14)

2 2

where ^ = — is the input signal to thermal noise ratio

vN
2

(A 15)

^ =
V 2 <a k

2 >

'N

is the input interference to thermal noise ratio

B. EXPRESSION FOR S

(A16)

From (16) S = <A r

H Vt>

where A r (reference signal) takes the form aoVoe-1^ ^o) (A17)

K
then S = < ao V e

-j(t0°t+P ° }
{

Z

c [ao e
j(t0°t+P °

> V 0C
+ £ ake

j((0°t+^ } Vk
oc

] + N(t) } >

l

= V Zc < a.
2
(V

OC
) + I (ao ak eP"

"

Po) Vk
oc

) >

+ V <ao e-j((0°t+P ° ) N(t)>

(A18)

<V 0C >n = vo <e
jk °d(n

-1)cos<t)o>
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= V eJ
k od(n

- 1)cos^fn_l(kodsin(t) ,r ,R ) (A19)

Lastly, < a. ake^

'

M Vk
oc
> = < a,, ak > <e,(Pk " Po) > <Vk

0C
> = (A20)

where < ao ak > = 0.

Therefore, using (A20), (A23) and (A24),

S =V 2 <a 2>Zc [fn. 1 (k d,r ,Ro)]

= V^ ZC CS (A21)

where

_ 2J
1
(k d(m-l)sin^ -^)

[Cs ]m=e
jk

°d(m-1)cos^ ^5_ (A22)

(k od(m-l)sin0o ^-)

47



48



APPENDIX B : EXPRESSIONS FOR P AND Pk

From (32), we have

P = < (w
H Zc A Vo

0C
) (w

H Zc A Vo
0c

)

H >

= <ao
2> wH Zc <

V

oc V oc H
> Zc

Hw

= V£ ^wH Zc C Zc
H w (Bl)

From (33), we have

Pk = < (w
H Zc Ak Vk

oc
) (w

H Zc Ak Vk
0C

)

H >

= <ak
2> wH Zc <Vk

0C Vk
oc H> Zc

Hw

= V£ wH Zc (I^k Ck)Zc
H w (B2)

where Vn = root mean square noise voltage

^o , ^k as defined in (A16) and (A 17)
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