
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2000

A Path-based network policy language.

Stone, Gary N.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/32965

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

A PATH-BASED NETWORK POLICY LANGUAGE

by

Gary N. Stone

September 2000

Dissertation Supervisors: Bert Lundy
Geoffrey Xie

Approved for public release; distribution is unlimited.

20001128 095

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington

headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 2000 Doctoral Dissertation

j4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A PATH-BASED NETWORK POLICY LANGUAGE Order# G417

6. AUTHOR(S)

Stone, Gary N.

!7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
8. PERFORMING ORGANIZATION

!Naval Postgraduate School
REPORT NUMBER

!Monterey, CA 93943-5000

~· SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING I MONITORING

DARPA/ITO AGENCY REPORT NUMBER

3701 Fairfax Drive
Arlington, VA 22203-1714

~1. SUPPLEMENTARY NOTES

lfhe views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense

pr the U.S. Governmen.t.

~2a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

~pproved for public release; distribution is unlimited.

~3. ABSTRACT (maximum 200 words)
Network policies are "traffic regulations" for the networks which make up the Internet. These are necessary for managing the flow

of data, for access control to the network, and for managing the network to achieve other types of quality of service goals. However,

with the myriad of different policies and networks, all with varying needs, conflicts can arise between network policies. Detecting and

~orrecting these conflicts can be quite difficult for human administrators. Thus, there is a need for a theoretically sound method for

specifying policy and for automatically detecting policy conflicts.
This dissertation presents a path-based policy language that is more comprehensive than earlier languages for describing network

!Policy. The Path-based Policy Language (PPL) is a formal language for constructing models of Internet service and access control. This

!Path-based language is extensible and allows for an unambiguous representation of network policies based on both the static and

ldynamic attributes oftoday's networks. To support this language, both a compiler and policy conflict tester were developed. These tools

jaccept network policies specified in PPL, translate them into formal logic, and using a theorem prover to test for policy conflicts. PPL

jallows for the efficient representation of large networks with its abbreviated path format. This path format allows multiple paths to be

epresented with one statement.
14. SUBJECT TERMS 15. NUMBER OF PAGES
!Policy Language, Path-Based , Network Management, Conflict Detection, Conflict Resolution 190

16. PRICE CODE

17. SECURITY CLASSIFICATION
18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFI· CATION

20. LIMITATION OF

OF REPORT
THIS PAGE OF ABSTRACT

ABSTRACT

Unclassified
Unclassified Unclassified UL

SN 7540-01·280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

- -

11

Approved for public release; distribution is unlimited

A PATH-BASED NETWORK POLICY LANGUAGE

Gary N. Stone
B.S., State University ofNew York at Buffalo, 1987

M.S., Johns Hopkins University, 1990

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

Author:

Approved by:

Approved by:

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Bert Lundy
Professor of Science Professor of Computer Science
Dissertation Supervisor

Bret Michael
Professor of Computer Science

Murali Tummala
Professor of Electrical En.gineermg

iii

iv

ABSTRACT

Network policies are ''traffic regulations" for the networks which make up the Internet.

These are necessary for managing the flow of data, for access control to the network, and for

managing the network to achieve other types of quality of service goals. However, with the

myriad of different policies and networks, all with varying needs, conflicts can arise between

network policies. Detecting and correcting these conflicts can be quite difficult for human

administrators. Thus, there is a need for a theoretically sound method for specifying policy and

for automatically detecting policy conflicts.

This dissertation presents a path-based policy language that is more comprehensive than

earlier languages for describing network policy. The Path-based Policy Language (PPL) is a

formal language for constructing models of Internet service and access control. This path-based

language is extensible and allows for an unambiguous representation of network policies based

on both the static and dynamic attributes of today's networks. To support this language, both a

compiler and policy conflict tester were developed. These tools accept network policies specified

in PPL, translate them into formal logic, and using a theorem prover to test for policy conflicts.

PPL allows for the efficient representation of large networks with its abbreviated path format.

This path format allows multiple paths to be represented with one statement.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION .. l

II. RELATED WORK .. 9

A. POLICY-BASED ROUTING PROTOCOLS•.....................•... 9

1. Border Gateway Protocol ... 9
2. Inter-Domain Routing Protocol .. 1 0
3. Inter-Domain Policy Routing (/DPR) ... 11

B. NETWORK POLICY LANGUAGES ... 12

1. Clark's Policy Term .. 12
2. Policy Framework Definition Language (PFDL) ... 15
3. RPSL- Routing Policy Specification Language 18

C. TRAFFIC FLOW LANGUAGES•..•........................ 20

1. PAX Pattern Description Language (PDL) .. 20
2. Simple Ruleset Language (SRL) ... 22

3. Summary of Network Policy Languages ... 23
D. LoGIC REPRESENTATION OF POLICIES ..•..•... .25

1. Analyzing Consistency ofSecurity Policies .. 25
2. On the Axiomatization of Security Policies: Some Tentative Observations About Logic
Representation ... 26
3. Policy Hierarchies for Distributed Systems Management .. 27
4. Conflicts in Policy-based Distributed Systems Management ... 27
5. A Formal Process for Testing the Consistency of Composed Security Policies 29

E. CHAPTER SUMMARY ...•... 29

III. PATH-BASED POLICY LANGUAGE (PPL) ... 31

A. INTRODUCTION•... 31

B. GOALS31

1. Path & Non-Path Based Traffic Flows ... 31
2. Abstract .. 32
3. Unambiguous Policies .. 32
4. Detect & Resolve Conflicts ... 32
5. Dynamic Policies .. 33

C. POLICIES•............•...•.................•........•.••...............•... 33

1. Support of Integrated Services ... 33
2. Support of Di.fferentiated Services .. 37
3. Support ofMPLS .. 38
4. Support of Static Policies ... 38

D. MESSAGES39

E. PPL POLICY FORMAT .. 40

F. CHAPTER SUMMARY .. .42

IV. POLICY CONFLICT DETECTION AND RESOLUTION ... 43

A. INTRODUCTION .. .43
B. DETECTING CONFLICTS .. .46

1. Basic Conjlicts .. 47
2. Expanding Paths ... 48
3. Conditional Overlaps ... 49

4. Find Overlapping Paths using Expanded Path and Conditional Elements 59

vii

5. Expanding Target Elements with Consideration of Action ltemsoo59
C. RESOLVING CONFLICTS ... 00 ••••••••••••••• 00 ••••••••••••• 00 61
D. PERFORMANCE .. oo oo oo 62
E. CHAPTER SUMMARY ... 00 .. 63

V. CASE STUDY ... 65

A. A I 0 NODE SIMULATED NETWORK .. 00 00 •• 65
B. NETWORK MODELING AND USER DEFINED DATA oo oo .. oo .. oooo 66
C. NETWORK POLICIES ... 00 •• 69
D. DETECTED CONFLICTS .. 71
E. CHAPTER SUMMARY oo ... oo oo oo oo .. 78

VI. CONCLUSIONS .. 79
A. CASE STUDY CONCLUSIONS .. 00 00 00 .. 79
B. CONTRIBUTIONS ... 79
C. LIMITATIONS .. 80
D. FUTURE DIRECTIONS .. 81

APPENDIX A. PATH-BASED POLICY LANGUAGE (PPL) .. 85

1. Keywords.oo.oo•····•oooo••oo·········oo .. oo oooooo oo·······oo•oooooo•oo•oo·oo·· .. oo•oooo .. oo .. oo ooooo•oo···oo 85
2. Define Statements oo.ooooooOOOOooooo•oo··•oooo oooo.oo oo.ooooooo·oo·•oo•oo•oo•oo••oooooooo ... oo ooooooo •• oo ••••••• 86

3. Policy JD •• oo.oo•·····oooo•oo·• .. oo oo.oooo oo oooo•oo•oo•oo···oo·ooooooo·oo oo.oo oo •• oo.oooo•· 86

4. User /Doo •• oo oo .. oooo•oo·····oooo.oo·oo····· .. oo·oo ooooooooooooooooooooooooo.oo•oo•oo ... oo.ooooooooooo.oo •• oooo •• oo.oooooo ... 86

5. Paths oo oo.oo oo oo .. ··oo·oo ·oo·····oooooooo•·····•ooooooooooooooo··oo·oo .. ooooooooooooo··········oooooooo 86
6. Target ... 87

7. Conditions oo •••• oooooo•oo········ooooooo•oo··oo····oo·· oo oooo ••••• oo.oooooooo•OOoo•oo··········oo·oo·········oo·oo·•00 00 87

8. Action ltemsoo.·oo····oo•oooo .. oo.oo··•oooo····oooooooooooooooooo··oo•oo····oooo .. oo.oo•oo•·oo··oo•oooo•·oo··oo··oo···oo·•oo•oo .. oo 87
9. Legal Variables .. oo ••••• oo.oooooo•·•oooo····oooo····oooo··oo····ooooo·oo·oo·····oo··oooooo•oo····oo···oooooo·····oo·····oooo ••••••••• oo •• 87

10. Dot Quad notation.oooo .. oo .. oo.ooooooo•oo·····oo···oo••oooooo oo .. oo ... oo.oooo••oo•ooooooooooooooo .. oo ooooooooooooooooooo.87
11. Reserved Symbols. oo• 00 00 •••• oo. 00000 ••• 00 •• 00 000 000 ••••• 00 •• 00 00 00 00 ••••• 0000 00 0000 000.00 •• 000 00 oo· 00 00 •• oo• 000 •• 000.00 ••• 0000 00 ••••••• 88
12. Comments .. oo,ooooooooo·oo•oo•oo oooo••••oooo···•oooooooooooo•·oo·····oo•·oo•oo••ooooooooooooo•···oo•oooo•····oooooo•··ooooooo········88

13. Formal Grammar ooooooooooooooooooooo •• ooooooooo•oo················oooo•··oooo•oo• .. ·oo····oo.oooooo·······oo··········oo·····•ooooooo.88

APPENDIX B. POLICY RULE INPUT FILE OF CASE STUDY .. 93

APPENDIX C. POLICY RULE OUTPUT FILE FOR CASE STUDY .. 97

APPENDIX D. PPL PARSER SOURCE CODE .. 103

APPENDIX E. PROLOG CONFLICT DETECTION CODE ... 123

LIST OF REFERENCES .. 171

INITIAL DISTRIBUTION LIST ... 175

viii

ACKNOWLEDGEMENTS

This research was supported in part by DARPA under the Next Generation Internet Program (Order#

0417), a grant from NASA Ames Research Center, and a fellowship from SPA WAR San Diego.

ix

X

I. INTRODUCTION

Millions of dollars are lost, a company folds, and thousands of employees are let go,

throwing a community into economic chaos. These events could result from discontinued

funding from Silicon Valley investors who became aware of continued reports of poor QoS,

security problems, and the inability for clients to access the company's web sites. This ingenious

company was the first to integrate voice, video, and data all on the same network based on a

company's policies. The company's untimely demise was the result of conflicting network

policies that were disseminated automatically throughout the network's policy servers causing

erratic network performance. This scenario, although extreme, shows the importance of being

able to represent the network policy goals of a company while simultaneously verifying that

those goals do not conflict with each other.

To understand how policy can play a role in managing a network, policy must be defined

and applied to communication networks. The Internet Engineering Task Force (IETF) has

proposed an Internet-draft of terminology for describing network policy [29] and provides many

of the definitions used throughout this paper.

A policy is formally defined "as an aggregation of policy rules. Each policy rule is

comprised of a set of conditions and a corresponding set of actions. The conditions define when

the policy rule is applicable. Once a policy rule is so activated, one or more actions contained by

that policy rule may then be executed. These actions are associated with either meeting or not

meeting the set of conditions specified in the policy rule" [29]. In other words, a policy specifies

what action(s) must be taken when a set of associated conditions are met.

A simple view of policy in regards to networks is that policy constrains communication.

Specifically, network policy defines the relationship between clients using network resources and

those network elements that provide those resources. A client in this case refers to users as well

· as applications and services.

Network policy allows administrators to manage network elements to provide service to

a set of clients. If every system were permitted to communicate with all other systems without

restriction, then there would be no need for network policies. Increasingly, networks that once

only supported best-effort traffic are now integrating voice and data as well. Without a means for

network managers to control the use of the network, mission-critical applications and general

1

network performance is going to suffer and there will be little hope of supporting future real-time

applications.

Network policies are grouped into three general areas:

1. how the policy is used

2. how the policy is triggered

3. what level the policy is applied

A usage policy describes what services will be used to maintain the current state of the

network or to transition to a new state. Services which may be available in the network are

differentiated service classes, virtual private networks, encryption capability, etc. A usage policy

also describes how those services will be used. For example the ability to differentiate the

handling of separate flows of traffic based on the service class they reside in, or which virtual

channel they belong to, describes how a service is used.

Policies can be triggered in two ways, either statically or dynamically. "Static policies

apply a fixed set of actions in a pre-determined way according to a set of pre-defined parameters

that determine how the policy is used"[29]. Examples of static policies are:

• transit traffic in not permitted during normal working hours

• Internet radio is only permitted after 4:00PM

• for security reasons certain network addresses are denied access to network resources

Dynamic policies are only enforced when needed, and are based on changing conditions

of the network such as congestion, packet loss, or the loss of a network router. To support the

dynamic and sometimes unexpected nature of the network, actions can be triggered when an

event causes a policy condition to be met. Examples of dynamic polices are:

• when the network gets congested, streaming video traffic is disallowed;

• when gold class user is utilizing the network, lower best-effort traffic to only 25% of link

capacity.

The level of the policy can also be applied as a category. These policies are differentiated

by their granularity, such as the application level, user level, class level, or service level. For

example a mission critical application may be given priority over all other network traffic, or all

users in the silver class (differentiated service) have priority over the bronze class but must

succumb to the gold class.

2

In this thesis, a network policy language based on path is introduced. Path-based policy

is defined to be a policy were all attributes associated with the policy, which include the service

type of the traffic, conditions used to trigger the policy, and the actions executed when the policy

is triggered, are all bound to a predefined path. Using path as the fundamental building block of a

policy statement provides great control and flexibility. The ability to specify an explicit path,

which represents each node from source to destination, enables us to create virtual channels

where resources are reserved to support real time applications. These paths can either be

specified by a user or by a network administrator. If a path had the restriction of always including

each node in the path, then the number of unique paths needed to support a network could soon

become over whelming. This is why a path may include wild card characters, and thus adds great

flexibility to the way policies are specified. The use of a wild card character allows for path

aggregation which greatly reduces the number of paths that have to be specified, and at the

extreme one path statement can specify all possible paths under an administrator's control.

Policy-based networking - the ability to control a networking environment by specifying

and enforcing policies - is gaining increased interest among the network community. Policy­

based networking helps manage user and applications priority, quality of service and security

rights, based on management policies. Because of an increasing industry trend to deploy business

applications over the network and the convergence of voice, video and data applications on the

same network, major network vendors such as Cisco, Nortel, and Lucent Technologies are

developing products to support network management. These products allow network managers to

create and implement policies that can prioritize the use of network resources by different

network applications so that bandwidth will be guaranteed to the most business-critical

applications during times of network congestion. For example, a company which offers IP

telephony - which has strict timing requirements - must not permit a large data file transfer to

interfere. Network management also provides the ability to restrict the use of network segments

by denying access of unwanted and perhaps malicious traffic. The ability to create and enforce

network policies adds intelligence to a network that was previously based only on best-effort

packet traffic. Rather than adding more bandwidth, which is expensive and time consuming, to

solve existing network congestion, companies can use network policies to allow for important

applications and user groups to receive network priority over secondary network users.

3

Many aspects of policy-based networking are being addressed such as policy storage

structures, policy servers, and protocols to deliver translated policies to enforcement points. One

aspect of policy-based networking that does not seem to be receiving much attention is the

verification of policies that are going to be applied to the network. Consistent enforcement of

network policies, often specified by different people at different times, is impossible if those

policies conflict with each other. Thus, a method is needed to detect and deal with conflicting

policies before they are distributed throughout the network to the policy enforcement points.

IETF Policy Framework Core Information Model

With the emergence of service models such as Differentiated Services (DS) [25,37],

Integrated Services (IS) [25,37], and Multiprotocol Label Switching (MPLS) [36,37], the IETF

has published a working draft for terminology to describe network policies and services [29].

This draft attempts to develop a scalable framework for policy administration and distribution of

network policies across multiple devices and multiple vendors. A key to this framework is a

common language to represent and provide a consistent implementation of policy.

An underlying assumption of this draft is that policies are stored in a centralized

repository. The policy repository is one of three important entities of the model. The other

entities are the Policy Enforcement Points (PEP) and Policy Decision Point (PDP).

The PEP is a component of a network node (e.g., a router, switch, or hub) where the

policy decisions are actually enforced. When the PEP requires a policy decision about a new

flow of traffic, or authentication for example, the PEP will send a request to a PDP.

The PDP is the entity in the network where policy decisions are made. This PDP, which

may reside on a remote server, will make policy decisions using information retrieved from

policy repositories.

Communication is needed to and from the policy repository as well as between the PDP

and the PEP. In many proposals the policy repository is a directory and therefore the appropriate

access protocol would be the Lightweight Directory Access Protocol (LDAP). Examples of a

policy protocol, which is used to request and reply to policy decisions, could be the Common

Open Policy Service protocol (COPS) [3] and the Simple Network Management Protocol

(SNMP) [5].

4

Figure 1 shows the components of a generic policy-based network management

architecture. Although each ofthe components are displayed separately in the figure, they do not

have to necessarily be implemented this way.

Management Tool

Repository Client

...
Policy Repository

(Directory Server,
Database, etc.)

...
Repository Client

Policy Decision
Point (PDP)

...

Policy Enforcement
Point(PEP)

--
Repository Access Protocol

(e.g.IDAP)

Repository Access Protocol
(e.g.IDAP)

Policy Protocol
(e.g. COPS or SNMP)

Figure 1. Generic Policy Based Architecture. After [29]

Since the PEPs can potentially be from multiple vendors, a common policy language is

needed to support the dissemination of policy information to these devices. In the Policy

Framework Core Information Model [32], policy is defined as an aggregation of policy rules.

Each of these policy rules is composed of a set of conditions and a set of actions to perform if the

conditions are met. The general form of these conditional statements is shown below.

IF <condition 1> AND <condition 2> ... AND <condition N>

THEN <action 1> ... AND <action N>

5

The policy representation includes a means to prioritize and order both the conditional
statements as well as the policy actions. This is crucial when multiple policies exist and these
policies conflict. A conflict occurs when the conditions of at least two policies are
simultaneously satisfied, but the actions of at least one of the policies can not be simultaneously

executed. For example, a router may have two access control rules where their conditions are

simultaneously satisfied, but one contains that action deny, the other permit. For example:

access-list 1 permit 131.1.30.0 0.0.0.255

access-list 1 deny 131.1.0.0 0.0.255.255

The first permits traffic with IP addresses beginning with 131.1.30 to pass. The second

rule conflicts with the previous one by denying traffic with any IP address beginning with 131.1.

The first rule in an access list that satisfies the conditional requirement is executed. This

procedure resolves conflicts but puts the onus on the operator to enter the rules in the correct
order.

It was hypothesized that it is possible to detect conflicting network policies when those

policies are specified using an unambiguous language. To support this hypothesize, a language
was designed that can represent network policies in an abstract and unambiguous way. Using
formal methods a compiler was implemented that can detect conflicts between multiple network
policies. It was also hypothesized that it is possible to resolve some policy conflicts
automatically. This resolution is done with a limited scope, but the concept can be expanded to
support other conflict resolution schemes.

It is envisioned that the Path-based Policy Language (PPL) compiler and conflict tester

will be utilized in a network such as depicted in Figure 2. A secure user interface will be needed
to control access to the PPL configuration file, which contains network connectivity information
as well as the policies used to regulate the network. A cycle should develop as the network
policies are created and modified until when composed together, they no longer generate
conflicts. Once a conflict free set of policies has been specified, they will be distributed to a
policy server where they can be used to regulate the network. It is expected that network devices
will provide information about the current state of the network, such as delay, loss_rate, etc., and
this information along with the specified policies will be used to response to requests made for

6

network resources. A protocol such as the Simple Network Management Protocol (SMTP) could

be used to provide status about the current state of network, which then could be used in the

decision making process of allocating resources.

Existing protocols such as the Resource Reservation Protocol (RSVP), could be used to

make requests to the policy server in order to reserve network resources. The policy server would

then apply network policies, as well as the current state of the network to the decision making

process. New initiatives such as the Server and Agent based Active network Management

(SAAM) [38] project, could also utilize this technology. SAAM makes efficient use of network

resources in the support Integrated Services. The ability to extract the complex decision making

process from overtaxed routers, and place it into a small number of dedicated servers, fits very

well into the SAAM architecture.

PPL Compiler &
Conflict Tester

User Interface

0

PPL Configuration
File

Figure 2. Network Configuration Utilizing PPL

7

The rest of this thesis is organized as follows:

Chapter II reviews work related to the representation of network policies, as well as the
use of formal logic to detect conflicting security and management policies. These representations
of network policy are based on different levels of abstraction. These levels are policy-based
routing protocols, high level representations without low-level details, and languages based on
the representation of patterns that can be used in the selection of network traffic. A lot of early
work on the use of policies in networks occurred in the context of these network policy

representations. The formal logic section reviews previous efforts of using formal logic to

determine consistency between policies.

Chapter III introduces the Path-based Policy Language (PPL). The goal was to represent

network policies at an abstract level in order to support heterogeneous networks, while also

providing the translation of those policies into formal logic. Having policies represented in logic
will provide the ability for a compiler, which uses the Pro log (PROgramming in LOGic)
language, to detect conflicting network policies.

Chapter IV presents a formal process for testing the consistency of multiple network
policies applied to the same network segment.

Chapter V represents the formal process of detecting, and the possible resolution of
conflicting network policies applied to multiple case studies.

Chapter VI presents the conclusions, contributions, limitations, and future direction of
network policy representation and conflict detection using PPL.

8

II. RELATED WORK

A. POLICY-BASED ROUTING PROTOCOLS

In this section three policy-based routing protocols are reviewed. These routing protocols

provided a lot of early work on the use of policies in networks. All of these protocols enable

policies to be enforced based on the elements of an explicit path through the network.

1. Border Gateway Protocol

Lougheed and Rekhter define an inter-autonomous routing protocol, Border Gateway

Protocol (BGP) [13, 14, 15], where routers share reachability information by passing

Autonomous System l(AS) information between neighbors. This exchange of routing

information contains full AS paths that the traffic will transit to reach a distant network. Path

information is not only useful in removing loops in the network, but also allows policy decisions

to be made at the AS level. Policy enforcement is not part of the protocol itself but instead is

manually configured at each BGP router.

Policy decisions made by BGP [16, 9] are based on configuration information manually

configured into each router by an AS administrator. The enforcement of policies is accomplished

in two ways. The first is by specifying the procedure by the AS router itself to select the best

paths, and the second is by controlling the redistribution of routing information to neighboring

ASs.

Policy decisions can be based on various preferences and constraints. Since the complete

AS path is advertised to neighboring routers, particular paths can be rejected based on an AS that

is contained in the path. The reasons a particular path are rejected vary. For example a particular

AS whose control is under that of a major competitor may want to be avoided, causing one or

more paths that include this AS to be eliminated from consideration. Performance information

can also be used to eliminate paths from consideration. If an AS has access to metrics related to

1 Autonomous System (AS), Administrative Region (AR) are a set of routers under a single

technical administration, using one or more interior gateway protocols to route packets within the

AS, and using an exterior gateway protocol to route packets to other ASs[n3].

9

performance such as link speed, delay, or capacity, then these measurements can be used to rate

multiple paths for selection.

BGP allowing an AS to control redistribution of routing information is the means by

which an AS can enforce policies on others. For example, if an AS does not want to be used for

transit traffic, then it does so by not advertising routes to networks other than those directly

connected to it.

Fundamentally BGP is a distance vector protocol, but instead of maintaining just the cost

to each destination, BGP keeps track of the exact path used. As mentioned earlier policies are not

part of the BGP protocol itself and therefore each AS may have its own means for evaluating

paths. Each router contains a module for examining paths to a given destination and scores them.

This scoring mechanism, which may include local policy information, is then used to choose the

best path to a destination.

BGP routers can only advertise paths that itself uses. This prevents an AS from sending

datagrams to a distant network using one path, but advertising an alternative path for others to

use. This "hop-by-hop" routing paradigm which is generally used by the current Internet prevents

the support of source routing.

2. Inter-Domain Routing Protocol

Kunzinger and Thomas describe the Inter-Domain Routing Protocol (IDRP) [10, 34],

which is the International Standards Organization's (ISO) protocol for routing between

Autonomous Systems. Just as in BGP, IDRP supports policy-based routing, but is not concerned

with the implementation details of those policies. Policy-based routing can restrict access, and

therefore enforce policy, by controlling the distribution of routing information to neighboring

routers. This selective distribution of information can enable the AS to deny all transit traffic, or

may deny access to only certain network paths.

The IDRP router accepts router information from neighboring routers, which express

their views of the network, and uses this gathered information to construct it's own view of the

network. The IDRP router at this point can use local policy information to select or reject routes

accordingly. The IDRP router advertises it's view of the network with internal gateway protocols

such as Open Shortest Path First (OSPF) or Routing Information Protocol (RIP) so that all

routers within the AS have a consistent view of the network.

10

Just as autonomous systems were used to refer to an entire set of IP networks, IDRP

supports a concept call routing confederations. A routing confederation is a grouping of

autonomous systems to make managing the Internet more manageable. As the Internet has grown,

the number of autonomous systems has also grown making it's management less efficient. These

routing confederations are quite flexible in that they can be subsets of each other, and can even

overlap each other.

IDRP uses path vector routing to propagate routing information. Path vector routing, like

BGP, explicitly lists the entire path to each destination. This concept can alleviate network loops

as well as enforce policy constraints based on the autonomous systems or confederations that

comprise the path.

Another feature supported in IDRP is the ability to reduce the number of path vectors by

using route aggregation. Route aggregation lets an IDRP routers combine multiple IP address

prefixes, destinations, to create a single advertisement for them all. This feature greatly reduces

the number of individual destinations a router must support as well as reducing the amount of

data that has to be sent during the advertising phase.

3. Inter-Domain Policy Routing (IDPR)

Steenstrup presents a set of protocols [28] and an architecture in [27] for Inter-Domain

Policy Routing (IDPR). IDPR is a routing protocol that provides policy routing among

Administrative Domains (ADs)2. The primary objective ofiDPR is to provide traffic with routes

that satisfy the users' service requirements while respecting the service providers' service

restrictions [26]. Source policies represent the users' requirements and can consist of parameters,

such as throughput, acceptable delay, cost of session, domains to avoid, etc. Service providers

specify transit policies which specify offered services and the conditions of their use.

During route generation and selection, routes are filtered out which are not consistent

with both the source and transit policies. Route generation is inherently complex and the most

computationally intensive part of IDPR. The general policy route generation problem involves a

2 Administrative domain (AD) refers to any collection of contiguous networks, gateways, links,
and hosts governed by a single administrative authority who selects the intra-domain routing
procedures and addressing schemes, specifies service restrictions for transit traffic, and defines
service requirements for locally generated traffic.

11

combination of service constraints. For example, finding a route that generates minimum-delay

and least-cost. Trying to calculate such a route is an NP-complete problem.

To transport data along a selected route, a hop-by-hop or source specific method can be

used. With hop-by-hop forwarding, each router makes an independent forwarding decision based

on its forwarding information database. If all the routers have consistent information then the

result is the same as source specific. With source specific, the source domain dictates the data
message forwarding decisions to the routing entities in each intermediate domain, which then
forward data messages according to the source specification.

To reduce the size of the link-state database, IDRP supports the ability to group ADs into

super domains. The existence of super domains imposes a domain hierarchy within the network.

With a hierarchical approach only domain level information is needed to construct routes. This

greatly reduces the information needed to be maintained by a route server. The size of the

database will now depend on the number of domains and the policies associated with each.

A variant of Clark's policy term, Section B.l, was chosen to represent policies in [28].
This variant allows for policies to be associated with a set of network elements that represents a
path. A policy based on path is a great asset to policy-based r~uting protocols.

B. NETWORK POLICY LANGUAGES

In this section all the major policy languages are discussed. These languages are used to
represent varying types of network policies such as routing, access, and QoS.

1. ·Clark's Policy Term

Seeing the importance of using network resources differently and more efficiently, Clark

proposed a template to represent network policies [7]. This template, called a Policy Term, was
designed to enable a wide range of network policies to be represented. The work is based on the
fundamental assumption that Internet resources are grouped into Administrative Regions (ARs).
ARs resources included such items as networks, links, routers, and gateways. The format of a

Policy Term is shown in Figure 3.

The first two "elements" of the Policy Term represent the source and destination points

respectively. Each of these two points consist of three parts which provide for a wide range of

12

granularity while specifying the end points. To show the granularity available with this schema,

here are some examples of source and destination points that could be represented with the

diagram in Figure 4. These source and destination points use the special characters "*" and"-".

The"*" represents the wild-card

((Hs,ARs,ARent), (Hd,ARd,ARexit), UCI, Cg)
where:

Hs is the source host address
ARs is the source AR
ARent is the entry AR (previous hop)
Hd is the destination host address
ARd is the destination AR
ARexit is the exit (last hop)
UCI is the User Class Id (e.g. Gold, Silver Bronze service levels)
Cg are any global conditions

Figure 3. Policy Term. After [7]

match and the"-" is used to make sure the AR entry or AR exit fields match the source

AR or destination AR respectively. These examples could be applied to AR 2.

(*, *, *) (*,*,*)

No restrictions, allow all traffic flows to traverse without restriction.

(*, 36, -) (*, 12,*)

Allow all hosts directly attached to AR 36 to pass if their destination goes through AR 12
(e.g., host 131.120.1.13 may communicate with 216.34.20.1)

(131.120.1.13, 36, -) (216.32.74.53, 2,-)

The host with IP address 131.120.1.13 in AR 36 may communicate with the host with IP
address 216.32.74.53 in the AR 2.

As the reader can see, the end points can be as explicit as specifying a host or generic

enough to allow all Internet traffic. Although the use of these first two elements provides for a

13

flexible way to permit traffic flow, it can become cumbersome at times. If, for example, the

reader wanted to allow only traffic from universities to flow across an AR, it could be

accomplished by creating many policy terms, one for each university. This list of policy terms

could become quite large, so the third "element" of the policy term, UCI, can be used to make the

implementation of this policy more manageable. A policy term that would only allow university

traffic to flow across an AR could be represented like this:

((*,*,*),(*,*,*),University,*)

The end points are such that if the UCI element was not used, then all traffic would flow
across the AR. Using the UCI as a filter, only traffic marked with a University tag would
be permitted to pass.

The last element field of the policy term, Cg, is used for global conditions. Examples of

information that might be held in this field are, "unauthenticated UCI", "no-per-packet charge",

and "limited ton% of available bandwidth".

((*,*,*),(*,*,*),University, {unauthenticated UCI})

This would allow only traffic marked as University to flow through the AR. There is no
need to verify that the packet traffic was really from a university host.

IP = 216.34.20.1

IP = 216.32.74.53

IP = 131.120.1.13

IP = 216.32.74.50

Figure 4. Sample Network Diagram

14

Although this was a good start for an abstract network policy representation, which is

needed for heterogeneous environments, it has limitations. The first limitation is that there is no

ability to represent explicit paths formed by a sequence of ARs as part of the term. Only single

ARs and the wild card character "*" are allowed. Without this capability, support of Integrated

Services requires several network policies distributed throughout the network to be combined for

verification of a path. Consequently, there is no ability to exclude a set of ARs from a term to

which a general policy is applied. Lastly, it may be desirable to represent a policy that is

directional, so that a connection can be opened in one direction that has different conditions than

the reverse flow. As defined in the language policy terms are bi-directional.

2. Policy Framework Definition Language (PFDL)

Strassner and Schliemier define the language PFDL [31] that provides a mapping of

network service requirements from a business specification to a vendor- and device- independent

format. The benefits of such a language is that network policy can exist in a heterogeneous

environment of devices that support policy enforcement.

With the development of standards to provide QoS, like integrated services with RSVP3

and differentiated services, the IETF working group on Policy Management has proposed this

language. The belief is that without a means for representing, administrating, and distributing

consistent policy information, these QoS standards that classify and give preferential treatment to

certain types of traffic flows will not see wide-scale deployment.

In this first release of the draft, the grammar was only available in Backus-Naur Form

(BNF) and no explicit examples were presented. Attributes the authors believe should be

supported by the language are discussed. As with many of these efforts to represent policy, the

authors believe that having a language that will support multiple network devices and vendors is

the key to successful policy deployment.

The design of PFDL is based on the Common Information Model (CIM) [32] being

designed by the Distributed Management Task Force (DMTF). This model defines a hierarchy of .
object classes that can be used to represent policy information.

3 Resource Reservation Protocol defines how applications can place reservations, and how they
can relinquish those resources once their need ends.

15

The class and relationship hierarchy of the CIM model are used to help define the

structure of the PFDL grammar, see Figure 5. The basic premise is that a policy is an

aggregation4 of policy rules. A policy rule defines a sequence of actions to be initiated when a

corresponding set of conditions is satisfied. Five classes defined to support the CIM are the

ComplexPolicy class, SimplePolicy class, PolicyRule class, PolicyCondition class, and the

PolicyAction class. Their relationship to each other is shown in Figure 5. A PolicyRule contains a

set of PolicyConditions and a set of PolicyActions. When the set of PolicyConditions are meet,

the set of PolicyActions will be executed.

A PolicyConditionStatement is composed of a category and value pair. These two

components are specific to a particular knowledge domain, whether the domain be QoS, security,

or any other domain. Providing conditions and actions for a given knowledge domain

accommodates the interoperability requirement for the language. It will provide the means for

multiple vendors to supply components to a general policy architecture.

A PolicyAction is a class in the PFDL model that consists of an action or a list of actions

that will be executed when the conditions associated with a policy are evaluated to true. These

actions can either be executed in a specific order, or any order which is the default. Along with

the ordering of policy actions, the ability exists for the conditional execution of one or more

actions based on the results of previous actions. The reader can see from Figure 5. that the

hierarchy of the Policy Actions class is similar to the PolicyConditions class.

With possibly hundreds, perhaps thousands of policies to be supported in a network, the

ability to detect conflicting policies is crucial. The authors ofPFDL are aware of the need to both

detect as well as support facilities to resolve conflicts. This proposal groups policy conflicts into

two different categories, intra-policy and inter-policy conflicts.

Intra-policy conflicts are caused when the conditions of at least two policies are

simultaneous satisfied, but the execution of the actions of these policies cannot be executed at

the same time. Inter-policy conflicts are described as two or more policies that, when applied to

the network, result in conflicting configuration commands to be specified for one or more

network devices. In this case, the conflict exists when the policy is applied to a specific network

or device(s). An example given in the proposal is when two policies are executed such that the

4 An aggregation is a string form of an association. An aggregation is usually used to represent a
"whole-part" relationship.

16

number of queues in one network device is such that it does not match the number of queues

allocated in a second device supporting the same traffic flow.

Once conflicting policies are detected, they may be resolved in several different ways.

The most obvious would be to modify the conditions or actions of the policies to remove the

conflict. If this cannot be accomplished and the conflicting policies must exist in the system,

there are three different ways to resolve them:

l..n

Policy Rules

Policy Action Value

Figure 5. PFDL Hierarchy. After [32]

1. Resolve the conflict by only executing the first policy in the conflicting set.

2. Use a priority scheme where only the highest priority policy in a conflicting situation will be

executed.
3. Use some type ofmetadata to determine which rule should be applied. The difference

between this and straight priority is that priority is inherently linear, whereas metadata
enables non-linear solutions, such as branching, to be used.

17

PFDL does not support path-based policies. A Path-based capability aids in initiatives

such as Integrated Services [25, 37] and SAAM (Server and Agent based Active network

Management) [38]. PFDL is a nice high-level framework, but lots of details need to be filled in.

3. RPSL - Routing Policy Specification Language

One of the activities of the Routing Policy System working group of the IETF is to

develop a language for describing routing policy constraints. Alaettinolgu, Meyer et. al. provide a

reference for the language [1] and a guide on how to use the language [19]. RPSL is a

replacement for RIPE-81, the first language deployed in the Internet for specifying routing

policies, and is the current Internet policy specification language. Specifying policies in RPSL

allows a network operator to specify routing policies in the Internet Routing Registry (IRR), so

that policies and announcements can be checked for consistency. The IRR stores the object­

oriented policies of authorized organizations so that they can be queried by others using the

whois5 service. Each object which contributes to a policy stores pieces of information regarding

the policy. Each object used to represent the policies contains attributes referred to as keys, that

can either be mandatory or optional. RPSL is designed so that router configurations can be

generated from the policies described with the language.

Figure 6 is an example from [19] that represents a common but perhaps simple policy.

The aut-num represents the Autonomous System number, in this case AS2 represents

autonomous system 2. The as-name and descr attributes are the Autonomous System's name and

description, respectively. The most important attributes of this aut-num are the import and export

policies. The import clause specifies the import policies, while the export clause specifies export

policies.

5 WHO IS is used to look up records in a Who is database. Each record has a "handle", a unique
identifier assigned to it by the Network Information Center (NIC). Each whois record will also
have a name, a record type, and various other fields of information, all depending on the type of
whois record

18

aut-num:AS2

as-name:CA T -NET

descr: Catatonic State University

import: from AS I accept ANY

import: from AS3 accept <AAS3+$>

export: to AS3 announce ANY

export: to AS I announce AS2 AS3

admin-c: A036-RIPE

tech-c: COI9-RIPE

mnt-by: OPS4-RIPE

changed: orange@ri);1e.net

source: RIPE

Figure 6. RPSL Diagram and Policy Example. From [19]

In this example, the import policy of "from AS 1 accept ANY" indicates that AS2 will

accept any announcements that AS 1 sends. The second import policy states that AS2 only

accepts announcements from AS3 which originated in A~3 and have paths composed of only

AS3's.

The export policy of "to AS3 announce ANY" indicates that any route that AS2 has in its

routing table will be passed on to AS3. The second export will allow the announcements of all

routes from AS2 or routes learned from AS3 to be sent to AS 1.

The admin-c (administrative), tech-c (technical), mnt-by (maintained by), and changed

(last changed by), are attributes that contain contact information. The values assigned to these

19

attributes are handles that uniquely identity the person responsible for the attribute. The sour.

entry indicates that this object belongs to the RIPE6 registry.

RPSL represents routing policies well, but was not intended for supporting polici(·

regarding QoS or general access control mechanisms.

C. TRAFFIC FLOW LANGUAGES

This section discusses languages that are used in the selection of network traffic in the

conditional section of a policy. At a lower level than the languages in Section 2, these languages

can be used for pattern matching in network devices.

1. PAX Pattern Description Language (PDL)

Nossik, Welfeld, and Richardson describe PAX [23], a special purpose language used for

defining pattern matching criteria in policy-based networking devices. PAX was intended

primarily for data communications networks, but is also generic enough to be used for any kind

of pattern recognition.

The language itself was designed to be much like that of the C programming language.

Viewing the code of a PAX program, the reader will see features similar to C such as comments,

preprocessing directives, source file inclusion, conditional compilation, import and export

statements, and the use of defines and macros.

The basic concept in PAX is the pattern, with simple patterns being combined to form

more complex patterns. The use of field concatenation, field combination, and the ability to name

patterns leads to a flexible and powerful language for describing patterns in data communication.

Examples from [23] will provide the reader with a quick idea of the syntax and features

of the language. Two built-in fields used in the following examples are BIT and UINT and are

used to create the simplest of patterns.

6 The RIPE Network Coordination Centre acts as the Regional Internet Registry (RIR) for
Europe and surrounding areas

20

BIT 16 - matches any 16 bits in the input
UINT 4 - matches any 4 bits and value of those bits are converted to an unsigned
numeric field

Figure 7 illustrates a pattern to match IP version 4 headers of TCPIIP non-fragmented

packets without IP options. This figure shows how simple patterns can be concatenated together

to form more complex patterns. This pattern matches the input only when the 4 bit "version"

element is equal to decimal 4, the next element "ihl" equals the decimal value 5, and the

subsequent simple patterns are all successfully matched.

{

}

version UINT 4 = = 4;
ihl UINT 4 = = 5;
typeOfService UINT 8;
totalLength UINT 16;
identification UINT 16;
flagReserved BIT 1 = = 0;
flagDontFragment BIT 1;
flagMoreFragments BIT 1 = = 0;
fragmentOffset UINT 13 = = 0;
timeToLive UINT 8;
protocol BIT 8 = = 6;
headerChecksum BIT 16;
sourceAddress BIT 32;
destinationAddress BIT 32;

I* IP version 4 packet *I
I* length = 5 : no options *I

I* last fragments only *I
I* first fragments only *I

I* Next protocol TCP *I

Figure 7. PAX Pattern to Match 1Pv4 Header. From [23]

Figure 8 represents two more features of the PAX language. The first being the ability to

name the pattern for inclusion in other more complex patterns, in the case the name being

IEEE_ 802 _ 2 _ LLC. The second feature illustrated here is the use of a conditional field.

Conditional fields are used to describe patterns with varying layouts depending on previous

fields. In this case when the Control1 field is equal to Ob 11, the next 6 bits are used to create a

field called ShortControl. When the value ofControll is not equal to Ob11, then the next 14 bits

are used to create a field called LongControl.

21

PATTERN IEEE_802_2_LLC {

}

DSAP BIT 8 <> OxFF; /*Destination SAP not broadcast*/
SSAP BIT 8 <> OxFF; I* Source SAP not broadcast*/
Control! BIT 2;
LongControl BIT 14 WHEN Controll <> Obll;
ShortControl BIT 6 WHEN Control I = = Ob 11;

Figure 8. PAX Pattern with Conditional Field. From [23]

2. Simple Ruleset Language (SRL)

Brownlee describes the Simple Ruleset Language (SRL) [4], as a procedural language for

creating rulesets for Realtime Traffic Flow Measurement (RTFM). These rulesets, which specify

the flows to be measured and how much information should be collected for each, are

downloaded to RTFM meters. The RTFM meters use a pattern matching engine to match the

downloaded rulesets against attributes extracted from traffic flows to select which flows to

monitor. The attributes applied to the traffic flows are specific to network traffic and map to such

things as source and destination addresses, port numbers, etc. SRL is not restricted to just traffic

metering, but can be useful in any application that involves selecting traffic flows from a stream

of packets.

There are two goals of SRL rulesets, which are to identify network packets that are a part

of the flow of interest, and then to take some action as a result of the match. The identification of

packets is done using IF statements. Actions that are available include the ability to save flow

identification attributes, and to keep statistical data about the attributes that are saved.

Figure 9 is an example that counts only TCPIIP packets were the destination port is telnet

while saving the source and destination address pair for each packet.

22

Classify IP port numbers

define lpv4 = 1;

define telnet = 23;

defme tcp = 6;

Address Family number from RFC 1700

#Well-known Port numbers from RFC 1700

Protocol numbers from RCF 1700

if SourcePeerType = Ipv4 save;

else ignore; # Not an Ipv4 packet

if (SourceTransType = tcp && DestTransAddress = telnet)

save, store FlowKind := 'T';

save SourcePeerAddress /32;

save DestPeerAddress /32;

count

Figure 9. SRL Ruleset to Identify and Count Telnet Packets. After [4]

3. Summary of Network Policy Languages

Table 1 summarizes the languages from Sections 3 and 4 that are used to represent

network policies or support mechanisms for enforcing policies. Policy-based routing protocols

from Section 2 are also represented in the table. The columns of this table represent criteria

believed to be useful in comparing the various languages. The "Support Automated Conflict

Detection" column refers to the ability to recognize different types of policy conflict as well as

the ability to provide a flexible means to resolve conflicts. The column labeled "Suitable for

Integrated Services" takes into account the ability to efficiently support Integrated Services. An

entry with a "Medium" value signifies that the language can represent a path through the

network, but that multiple polices have to be combined to do so. If a column had received a

"High" value, then the policy language can represent a path in a direct and intuitive manner, and

a policy can be applied directly to that path. The benefits of a "High" value are that policies that

23

must be associated with all the nodes along a path can be represented with just one statement.

This greatly reduces the number of policies statements that a domain must maintain. The

"Suitable for Access Control" column refers to the ability to permit or deny access based on

policy. The capacity to establish a path through a network and restrict access to that path, is of

great importance from a security point of view. The column labeled "Target Architecture" refers

to the storage location of the polices. A "Distributed" value means that policies are stored

throughout the network, perhaps on individual devices. A centralized value refers to one, or just a

few locations where all the policies are located. Having a "Centralized" location is beneficial

when trying to detect conflicting policies. The last column, "Ease of Representing Network

Policies", takes into account the ability of a user to intuitively represent a policy with the

language. Targeting the Path-based Policy Language (PPL) to the group of individuals

responsible for representing policies defined with natural language and entering them into a

central repository, the author believes the more abstract and closer to natural language, the easier

they will be understood. Although these individuals may be versed in formal logic representation,

it is believed the majority will be more comfortable with an abstract rule-based language. The

more abstract the language and closer to a natural languag~ the higher the value in the column.

The greater number of details that have to be specified, the lower the value assigned

Language Support Suitable for Suitable for Target Ease of

Automated Integrated Access Architecture Representing

Conflict Services Control Network

Detection Policies

Policy Term Low Medium High Distributed High

PFDL Medium Medium High Centralized High

RPSL Low Low High Centralized Medium

PAX Low Low High Distributed Low

SRL Low Low High Distributed Low

Policy-based --- High High Distributed -
Routing

Table 1. Summary of Languages that Represent or Support Network Policies

24

Although the languages represented in table 1 contain many features, none of these

languages individually contain all the features provided with PPL. Two major features not

adequately addressed by any of these languages are the ability to specify a complete path through

a network, and the automatic detection of conflicting policies. The policy-based routing

protocols, which are summarized in Section 2, are not concerned with the language used to

represent network policies, but instead concentrate on supporting policy-based routing. As a

result, columns that have no relevance to these protocols are filled with a"--".

D. LOGIC REPRESENTATION OF POLICIES

This section discusses research using formal logic to represent and detect conflicting

policies. The policies represented in this section are more general and involve the use of natural

languages, which tend to be ambiguous, to represent policies ranging from management to

security.

There has been a great deal of research on the topic of formal representation of policies.

Much of this research has been in the area of representing security policies, and the more general

problem of translating ambiguous natural language policies into some type of formal

representation. Creating an unambiguous language to represent network policies avoids the

problems associated with natural languages. PPL focuses on the grammar needed to represent a

wide range of network policies while still being manageable enough to provide a process for

automatic conversion into a logical representation. Once the policies are in a logical

representation, the utilization of methods already developed from research in this area are used to

provide a means for checking the consistency of multiple policies.

1. Analyzing Consistency of Security Policies

In Analyzing Consistency of Security Policies[6], the development of a methodology for

reasoning about properties of security policies is discussed. The authors view a security policy as

a specific case of regulation, where a regulation defines what actions an agent is permitted,

obliged or forbidden to perform. With this methodology a system is made up of agents which can

perform some actions on some objects. The main focus in this paper is the ability to perform

25

consistency checks (e.g., check for conflicting situations) on the system, and to have the ability to

query a regulation to know which norms apply in a given situation.

To create an unambiguous representation of security polices, the authors use formal

logic. According to Chovly and Cuppens the advantage of a representation based on formal logic

is the ability to precisely define the axioms 7 to reason about a regulation. With policies defined

by axioms, tools can now be developed to check the system regulation for consistency.

Rather than associating norms (i.e., permissions, obligations, and prohibitions) with

individuals, roles are created with these attributes and then individuals are associated with these

roles. The individual inherits the norms associated with a role when the individual is playing that

role. A conflict can only exist when an individual is playing different roles at the same time,

because of an assumption in their research that norms within a role are conflict free.

To resolve conflicts when an individual is playing multiple roles, an ordering is applied

when roles are merged. The order represents a priority between them and the order is assumed to

be total.

Tools written in Prolog were developed which checked the consistency of the security

policies as well as an algorithm for solving conflicts when an individual is playing different roles

at the same time. These tools designed to generate consequences of a given set of clauses which

belong to a given language and which satisfy a given condition.

2. On the Axiomatization of Security Policies: Some Tentative
Observations About Logic Representation

In [20], Michael et. al. add an intermediate step to ~e traditional approach of translating

natural language security policies into their axiom representation. Once the policies are in axiom

representation, automated reasoning systems are used for the detection of conflicts. Errors in the

translation into axiom form can lead to unidentified conflicts, and incorrect proofs when indeed

there is a conflict.

An object-oriented approach is introduced to model the security policies using extended

entity-relationship (EER) diagrams. The final axioms of the security polices are then derived

from the diagrams rather than directly from the natural language representation. The premise was

7 A proposition deemed to be self-evident and assumed without proof

26

that overall logic rule formulation is simplified in a model-based approach by capturing many of

the rules in the structural model.

A case study comparing the two different approaches, model-based and no pre­

structuring, produced results that appear to support a premise that fewer structuring errors are

made with the model-based approach. A limitation of the model-based approach is that potential

queries which might reveal conflicting security polices may be prevented.

3. Policy Hierarchies for Distributed Systems Management

In [22], a policy hierarchy is formed by refining general high-level policies into a number

of more specific management policies. This derivation can be performed by refining the goals,

partitioning the targets that the policies affect, or delegating the responsibility to another

manager. The main motivation for understanding hierarchical relationships between policies is to

determine what is required for the satisfaction of policies. If a high-level policy is defined or

changed, it should be possible to decide what lower-level policies must be created or changed.

The ultimate goal in [22] is to be able to specify high-level policies and automatically generate

the lower-level ones.

The goal of policy hierarchy analysis is to determine whether:

• The collected lower-level objectives will completely achieve the higher-level
objective which they purport to refine.

• There is conflict between the objectives.

• There is a imperatival policy, with a subject, for each objective. An imperatival
policy gives an agent the imperative to carry out an action. In most cases this implies
obligation.

• There is an authority policy which empowers the subject to achieve the objective. An
authority policy provides an agent with the legitimate power to perform an action.

4. Conflicts in Policy-based Distributed Systems Management

In [17], policies are used as a means to specify the management behavior of a system,

without coding the behavior into the manager agents. Lupu and Sloman focus on techniques and

tool support for off-line policy conflict detection and resolution. Two types of policies,

authorization and obligation, are addressed in this research. Authorization policy specifies what

27

activities a manger is permitted or forbidden to perform on a set of target objects. Obligation

policies specify what activities a manager must or must not do to a set of target objects and

essentially defines the duties of a manager.

Conflicts can arise in a set of policies, but it is not always desirable to eliminate the

conflicts by rewriting the policies or changing the membership of the domains to which policies

apply. As automated managers cannot enforce conflicting policies, Lupu and Sloman suggest a

precedence relationship must be established between the polices in order to resolve the conflicts.

Four types of policy's priority are addressed:

• Negative policies always have priority : negative policies take precedence over
positive ones.

• The assignment of explicit priorities : policy 1 has priority over policy 2 which has
priority over policy 3 ... etc.

• Distance between a policy and the managed objects : priority is given to the policy
applying to the closer class in an inheritance hierarchy. For example, a computer
science (CS) department is a subclass of a university. If a student is in the CS
department, policies of the CS department will override those of the university when
a conflict exists.

• Specificity related to domain nesting : a particular case of distance between policies,
this principle is that a more specific policy (i.e., a policy applying to a sub-domain)
refers to fewer objects so overrides more general policies applying to an ancestor
domain.

Lupu and Sloman developed a prototype conflict detection tool that currently detects

overlaps between policies and optionally applies domain nesting precedence. The function of the

detection tool which is analogous to compile-time type checking for a programming language in

that it reduces run-time errors and detects specification errors.

A notation is used to represent policies that is precise and can be analyzed for conflicts

using automated tools, but it is not based on a well-known logic. In this system an administrator

creates and modifies policies using a policy editor. Checks are made for conflicts, and if

necessary policies are modified to remove the conflicts.

28

5. A Formal Process for Testing the Consistency of Composed Security

Policies

In [21], Michael presents a formal process for testing the logical consistency of

composed security policies. The introduction of a strUctural model is made to represent

relationships between security policies, and axiomatizes the policies so that relationships

constructed in the model are preserved and made explicit in a logic model. This logic model is

then used for deductive proofs of policy consistency. Michael states that problems arise in

col!ectly defining, evaluating, and mapping policies onto procedures and that a structural model

reduces these types of gaps.

OTTER, an automated first-order resolution-style theorem prover is used to detect

logical contradictions between the axioms in the logic model.

E. CHAPTERS~Y

In this chapter, several policy languages were reviewed, as well as techniques used in

policy conflict detection and resolution.

The policy languages fell into two major categories: the abstract network policy

languages and bit-level traffic flow languages. Each of these languages were designed to address

particular areas of network policy. Among these areas are:

• Differentiated Services

• Integrated Services

• Quality of Service

• Traffic Identification

The techniques reviewed for policy conflict detection are not focused on network policy, and

address the difficult problem of translating ambiguous natural language policies into a formal

representation. It is clear that there is a need for network policy conflict detection, evident in the

fact that many of the network policy languages surveyed have features to resolve conflicts once

they are detected. What is lacking is an automatic method for checking individual network

policies that are composed together to satisfy an overall goal.

The Path-based Policy Language (PPL) introduced in this thesis encompasses as many of the

features addressed in the previous languages as possible, as well as providing a means for testing

policies for consistency. Table 2 states the major goals in developing a network policy language,

29

which is more suited toward what network policy implementers are accustomed to: a rule-based

representation more closely associated with a computer programming language. Taking a path­

based approach will enable us to establish policies that will be based on path, like Integrated

Services, as well as non-path based policies which are more suited toward Differentiated

Services. The use of a wild card character enables us to describe policies based on the concepts

of Differentiated Services or best-effort traffic.

30

III. PATH-BASED POLICY LANGUAGE (PPL)

A. INTRODUCTION

This chapter will introduce the Path-based Policy Language (PPL). This new language, is

intended to solve and/or alleviate many of the deficiencies of the languages which were

discussed in the previous chapter. PPL has the ability to represent network policies

unambiguously, providing support to heterogeneous networks for which the networks are

controlled using explicit policies. Policies required by both path and non-path based traffic flows

are supported with PPL as well the ability to support conflict detection and resolution with the

use of formal logic.

B. GOALS

PPL is designed to support policies that can be applied to Differentiated Service,

Integrated Service as well as Multiprotocol Label Switching models proposed by the IETF. Table

2 states the goals that PPL had strove to attain.

PPLGoals

1 create a path-based representation of policies flexible enough to support both path and

non-path based traffic flows.
2 represent network policies in an unambiguous way

3 be abstract enough to cross device and manufacturer boundaries

4 detect and resolve conflicts between polices

5 support the dynamic aspect of networks

Table 2. Summary of the goals of PPL

1. Path & Non-Path Based Traffic Flows

To support models such as Integrated Services (path based) as well as Differentiated

Services (which may not be path-based) PPL must be flexible. Providing an absolute path

consisting of the links the traffic must take will provide greater control over traffic flows and

provide easier support to integrated services. A less specific policy may only need to provide

31

source and destination nodes in its configuration, or perhaps just the specification that all traffic

of lets say file transfers, must be forwarded through a specific node acting as a firewall in an

edge router.

At the same time PPL will have to support non-path based policies such those associated

with best effort service and possibly differentiated services. These types of flows classify and

forward packets through the network based on the classification the packet receives. This enables

preferential treatment to be given to particular service classes of data on a per node basis.

2. ~bstract

Our language is abstract enough to support multiple vendors and devices. Providing a

language that is too specific will demand constant updates to the language, as well as to software

on the vendor's devices. The way these policies are enforced with a vendor's equipment is not as

important as the fact that they can be enforced. Each specific device should be able to implement

the policy rule without specifying the exact details.

3. Unambiguous Policies

Our path-based language represents network policies in an unambiguous way. This

feature allows us to detect policies that are in conflict as well as create a stable network

environment. A policy that can be interpreted multiple ways will prevent a clear understanding of

the network configuration and can potentially hide conflicting policies from the network

manager.

4. Detect & Resolve Conflicts

Several languages summarized in the previous chapter provide features that support the

ability to resolve policy conflicts, but fall short in providing a mechanism to detect such

conflicts. PPL provides the ability to detect and resolve conflicts between policies using the

translation of policy rules into formal logic. The compiler which works hand and hand with the

Prolog programming language interpreter, evaluates the network policies and returns information

about which policies are in conflict.

32

5. Dynamic Policies

The state of a network is rarely constant and therefore a policjr language should be able

to represent network policies based on dynamic factors as well as constant ones. PPL not only

supports static policies such as attributes based on traffic class or network address, but also

policies based on dynamic factors such as packet delay and packet loss rate.

To support a dynamic network, PPL provides the ability to react to dynamic conditions

of the network. For example, rather than just denying or permitting network traffic on a link that

is suffering network delay, perhaps it would be better to compromise and lower the priority of a

traffic class while the delay is occurring. Once the problem in the network delay is resolved, a

second policy might support the upgrading of the priority of that same traffic class. This is all

possible by allowing the policy maker to specify which messages, detailing the current state of

the network, to collect and react to.

C. POLICIES

1. Support of Integrated Services

Integrated services provide QoS assurances on a per-flow basis. This per-flow concept

allows for the allocation and reservation of enough resources along a path to support a QoS

request for a flow of packets. Integrated services using a signaling protocol such as RSVP can

request resources along a path in a dynamic nature. If a path can not support the QoS demands of

a request, then the particular path will be rejected.

This ability to reserve and control the amount of resources allocated along a path through

the network, or more importantly not to over allocate resources on the path, provides a great

advantage when trying to support QoS.

The importance of this per-flow concept is why PPL was based on the concept of path.

The third element in a policy rule represents the path(s) effected by the policy. This path attribute

has many flexible and powerful features.

• Multiple paths: Assigning the same policy to multiple paths in the network is easily
accomplished with PPL. This is carried out with a comma separated list as the third
argument. The policy below demonstrates this feature by assigning the same policy
which denies access to a block ofiP network addresses to multiple paths.

33

Policyl net_manager {pathl, path2}{*}{host1P = 161.1.*.*}{DENY}

• Wildcard character support: The path argument in a PPL policy also supports the
wildcard character. This is extremely useful when you have a policy that should be
applied to all the paths in your network. One example would be to assign a maximum
hopcount value to packets in your network. The policy below shows such a policy.

Policy2 net_manager {*} {*} {hopcount> 19}{DENY}

• Path: PPL supports the defining of paths and assigning attributes to these paths such
as bandwidth capacity and dynamic messages supported. Once a path is defined, it's
name can be used in the path argument of a PPL policy as shown in the following
example.

define path example_path {Node_l, Node_2, Node_3};
Policy3 Net_manager {example_path} {*} {*}{permit};

• Link: A link is defined in PPL by identifying the two nodes of the network that
create the link. Since a link is a simple path of just two nodes, it can also be used in
the path argument of a PPL policy, as the following example demonstrates.

define link example_link <Node_l, Node_2>;
Policy3 Net_manager {example_link} {*} {*}{permit};

• Node: Typically a single node would not be considered a path or link, but to support
scalability, PPL provides the ability to assign a policy to a node. This concept is
better demonstrated using Figure 1. At level 2 the network is not concerned with the
details of the Naval Postgraduate School or the DARPA networks from level 1. All
that is of concern are the policies that are supported in those lower level networks.
This allow policies to be assigned to nodes representing networks to support QoS
efforts at a higher more abstract level.

For clarity, there is a difference between a path defined as { <* ,NPS, *>} and the path
{NPS}. The first represents all possible paths that include the node NPS at some
point. The second represents just the node NPS, which again might represent an
entire sub-net at a different level in the network hierarchy. The following is an
example of a policy rule that is expressed over a node.

define path example_ node Node_l;
Policy3 Net_manager {example_ node} {*} {*}{permit};

34

Naval Postgraduate School

DARPA

Router3 Router4

DARPA
NODE

Figure 10. Node Representing Sub-Network

Levell
Networks

Levell
Network

Integrated services are not only based on a path through the network, but certain

conditions must also be provided along the path to be acceptable. To accommodate this feature

PPL provides a conditions argument in a policy statement which maps to the fifth element of the

policy rule. All the conditions listed in a policy rule must be met before the actions associated

with the policy are executed. The following examples show how the conditions argument can be

used.

Policy6 net_manager {path!} {traffic_class ={video} }{time>= 0800, time <=1600}
{DENY};

Policy? net_ manager {path! }{traffic_class ={video}}
{jitterO < 3 msec, delayQ < 2 msec}{PERMIT};

35

Policy6 represents a policy that denies the use of a path to video traffic between the

hours of 8:00am and 4:00pm, normal working hours.

Policy7 represents a policy that permits video traffic over a path as long as the jitter()

and delay() on the path are acceptable. In this example jitter() and delay() are messages that

provide dynamic feedback on the current conditions of the path.

Action _items is the last element of a PPL policy rule. Typically this parameter will either

DENY or PERMIT packets of a traffic flow depending on the type of traffic contained in that

flow, or as a reaction to dynamic feedback from network devices. For example, policy 8 below

will DENY packets originating from the IP network 141.1. *. * on the link between NPS and

DARPA.

Policy8 net_ manager {NPS_DARPA}{*} {hostiP = 141.1.* .*} {DENY};

Policy 9 below will also DENY traffic, but this time as a result of network delay.

Although the policy is reacting to the dynamic nature of the network and may even eliminate the

current network delay, it is reacting in a very rigid manner. Rather than denying all video traffic,

perhaps a better solution would be to lower the priority of the other traffic types.

Policy9 net_ manager {NSP _DARPA} {traffic_class ={video} }{delay()> 20 ms} {DENY};

This action _items element can be also used to dynamically compromise on a network

flow's requirements if so desired. For example, instead of totally denying a traffic flow

containing video data, perhaps a better solution would be to lower the priority of the video

traffic. In this way non-video traffic could be provided better service while the video traffic is

still allowed to flow, but at a degraded rate. This feature provides the ability for a network flow

to throttle back for the general good of the network. The following policy represents such a

requirement.

PolicylOnet_manager {DARA_SPAWAR} {traffic_class= {video}}
{loss_rate() > 20%} {priority:= 20};

36

2. Support of Differentiated Services

In differentiated services, packets are marked differently to create several packet classes.

Packets in different classes receive different services[3 7]. This concept allows for preferential

treatment of organizations who are willing to pay more for a particular service class. This

classification of traffic may be a single service class, for an individual company for example, or

may contain several classes which differing requirements. A telephony application will require a

class of traffic that can provide low-delay and low-jitter whereas an email service does not

require such timely delivery.

Differentiated services is essentially a relative-priority scheme where individual packets

are classified and marked for forwarding. The handling of packets based on its classification

marking can provide several classes of traffic in a network.

To support policies based on differentiated services, a PPL policy rule contains a target

field represented by the fourth element in the policy statement. To utilize this field, a traffic class

has to be created prior to its use in a policy. Some examples of defined classes of traffic are

given below.

define class traffic_class {data, video, voice};

define class traffic _priority {high, med, low};

define class user {faculty, student, staff};

In these defined classes, traffic _class, traffic _priority, and user, predefined values are

assigned to each class. For example if a path supported t;raffic_class, then acceptable classes on

that path would be data, voice, and video. A policy may be defined to support multiple classes of

traffic on a path. When such a situation is desired a list of classes is presented in the policy

statement. When more than one class is given in a statement the effected path will support any of

the provided classes. For example, consider the following policy.

Policyl net_manager {*} {traffic_class ={data}, {traffic _priority= {high, med, low}}

{*} {PERMIT};

The fourth element representing the classes of traffic permitted, indicate that data traffic

is permitted, as well as either high, med, or low priority traffic. When multiple classes of traffic

37

are presented in a policy statement as a comma separated list, the classes are logically OR'd
together.

3. Support of MPLS

Multi-Protocol Label Switching (MPLS)[36,37] is a forwarding scheme that provides
fast packet classification as well as the ability to support efficient tunneling. At the edge router of
a MPLS-capable domain the network protocol packets are classified and routed based on the
information of their network headers as well as routing information stored at the label-switching

routers. To make the forwarding efficient, an MPLS header is inserted between the link layer and

network layer of every packet traversing the MPLS domain. The MPLS header contains a 20-bit

label, a 3-bit Class of Service field, a 1-bit label stack indicator, and an 8-bit Time to Live field.
The MPLS header allows label-switched routers within a domain, to examine only the label in
forwarding the packet. When the packet leaves the MPLS domain, the inserted header is
removed. These features make MPLS very useful for traffic engineering.

One of the most useful features of MPLS is the ability to specify an explicit route
through the MPLS domain, in essence set up a path. Since PPL establishes a path through a
network based on a policy describing the network, it naturally supports MPLS as well. The target

and conditions fields of a PPL policy rule can be used to do the classification of the packet, and
the path associated with the policy can be used to establish routing information in the label­

switched routers.

4. Support of Static Policies

Policies based on static information can be easily represented with PPL. These policies
are based on information contained in the network packets themselves and do not rely on the
dynamic aspects of the network such as delay, jitter, and loss rate. Static policies are essential
and can be used to establish classes of traffic as seen in differentiated services, or in establishing
a path through the network as is seen with integrated services and MPLS. Examples of policies
based on static information are given below.

Policy! net_ manager {linkl} {hostiP = 206.3.4.*} {DENY};

38

This policy will deny packets from a particular network address (206.3.4.*) to pass

through linkl.

define path video_path {<nodel,node2,node3>};

Policy2 stone {video _path} {traffic_ type= {video, voice}} {*} {PERMIT};

Policy2 establishes a path through a network that permits both video and voice traffic. If

no other policies are associated with the nodes that make up this link, then video and voice are

the only types of traffic that are permitted. This result is because PPL implements a default

action of 'deny' unless explicitly 'permitted'.

D. MESSAGES

Dynamic policies require feedback from network devices to keep apprised of the current

state of the network. To support dynamic policies in PPL, the concept of messages was

introduced. A message is used to transcend the issues associated with platform-dependent

network technology, allowing us to specify functionality rather than deal with implementation

details. A message represents an information update about some measurable attribute of a

network. For example a message identified as delayO might provide the time required to travel

from point A to point B in a network in milliseconds. To maintain abstract, PPL, is not concerned

with the definition of the message, just that the message will be supported on the path, and used

consistently. Below is an example of a policy that supports dynamic feedback with the use of a

message. Before the policy can use the message, it has to be associated previously with the path.

The define path_param statement associates the delayO message with the path NPSJNTERNET,

as well as defining the bandwidth associated with the link. The policy statement itself uses the

delayO message as an argument in the conditions element of the policy to deny access to video

traffic when the delayO is too great.

define path_param NPS_INTERNET {BW := 500 MBPS, delayO};

Policy3 net_manager {NPS_INTERNET}{traffic_class ={voice}}
{delayO > 20 ms} {DENY};

39

During the policy testing phase of the PPL compiler, a policy utilizing the feedback of a

message will also be tested for conflicts. This test involves the verification that all links required

to compose the path(s) associated with a policy, also support the message.

E. PPL POLICY FORMAT

The format of PPL is summarized in Figure 11. A policy rule consists of six elements.

The formal definition of the grammar is defined in appendix A.

PolicyiD useriD {paths} {target} {conditions} {action_items}

policy!D- unique policy identification token

user!D - user ID of policy creator

paths -network paths the policy affects

target -target class of network traffic (items are OR'ed)

conditions -any global conditions (items are AND'ed)

action_items -for setting parameters (e.g., policy priority), explicit deny or permit, etc.

Figure 11. Summary ofPPL format

We illustrate the capabilities of PPL through the use of several examples below.

Example 1 shows the ability to specify an explicit path for a traffic flow. Examples 2, 3, 4, 6, and

7 use the wild card character'*' to specify partial paths for traffic flows. In example 6, the use of

'*' places no restrictions on the path the traffic may take.

In example 4 a policy is represented that will make a compromise when certain network

conditions are met. This compromise feature provides the ability to throttle back network flows

for the general good of the network.

Example 1: Policy 1 net_ manager {<1,2,5>} {class= {faculty}} {*} {priority:= 1};

This is a rule which states that the path starting at node 1, traversing to node 2, and
ending at node 5 will provide high priority for faculty users.

Example 2: Policy2 stone {<*,2,*>, <*,4,*>} {*}time>= 1600, time<= 0800} {deny};

40

This rule states that all traffic will be allowed to traverse through nodes 2 and 4 during
non-working hours. Unless granted by another policy, traffic will not be able to traverse
through nodes 2 and 4 during working hours.

Example 3: Policy3 net_manager {<*,5,*> {*} {hostiP = 131.1.*.*} {permit};

All hosts with a network address starting with 13 1.1 will be permitted to traverse node 5.
Having the ability to restrict groups of network addresses as well as individual network
addresses is also a part of PPL.

Example 4: Policy4 xie{<1,*,2,*,5>}
{traffic_class ={video, voice}}{ used_bwO <= allotted_bwQ,
allotted_bwO = 50MBPS, Ioss_rate 0 > 40%} {allotted_bw := 40MBPS};

This policy shows the ability for compromise. Voice and Video traffic are provided with
an allotted bandwidth of 50 Mb/s, but when the network loss rate is greater than 40%, a
compromise will be made to lower the allotted bandwidth to 40 Mb/s.

Example 5: Policy5 net_manager {*} {traffic_ class= {data}} {*} {priority :=10};

All data traffic will be assigned a priority level of 10. Assume that there are three classes
of traffic for this example, voice, video, and data. This allows for providing higher or
lower priority to certain classes of traffic. In this case the priority might affect the order
of packets being dropped from queues at network devices during times of congestion.

Example 6: Policy6 Betty {<1,*,5>} {traffic_ class= {accounting},
day!= Friday} {*}{priority:= 5};

On all paths from node 1 to node 5, accounting class traffic will be lowered to priority 5
unless it is a Friday. In this policy the action_items field is used with temporal
information to influence the priority of a class of traffic. It might make sense to have this
feature when departments of a company need more network resources to accomplish
their jobs.

Example 7: Policy7 net_manager {<1,*,5>} {traffic_ class= {student},
useriD =Gary} {*}{deny};

On all paths from node 1 to node 5, deny access to network traffic from user Gary who is
in the student traffic class. This policy shows that PPL can provide control at a very
small granularity level. In this case the policy affects only a single user in a particular

41

class of network traffic. It could have easily been modified to provide certain time~
the days when it was in effect as well.

F. CHAPTER SUMMARY

In this chapter, the format and features of the Path-based Policy Language (PPL) were

introduced. The six element policy rule supports the combined features of previous network

policy languages as well as well as the following new features:

• Path-based representation

• Support of both static and dynamic policies

• Support of future traffic classes

• "Message" support for existing and new network measurements

• Ability to scale well in large networks

• Policy conflict detection

Several policy examples were presented to show the power and flexibility ofPPL, and to

demonstrate the usefulness of such a language by expressing realistic network policies.

42

IV. POLICY CONFLICT DETECTION AND RESOLUTION

A. INTRODUCTION

One major contribution PPL makes is the ability to detect and resolve policy conflicts.

Having conflicting policies without the means to detect and resolve them is probably worse than

having no policies at all. An obvious example involves security access policies. Having policies

defined to restrict access to network resources can build a false sense of security, when a rogue

policy conflicts with existing policies to provide access to those same restricted resources.

Believing that the restrictive policies are working may prevent network administrators or security

personal from verifying the protection, which can have very serious consequences.

As was reported in chapter II, formal logic has been used in previous efforts such as with

security policies and general management policies to detect conflicts between composed policies.

One of the major problems with these previous efforts has been the ability to translate the natural

language policies into their formal logic equivalent representation. Efforts were made during the

creation of PPL to represent network policies without the inherent ambiguity of a natural

language.

Once the language (PPL) was created, it was then possible to develop a compiler that

would parse the network policies and verify their correctness according to the grammar specified

in appendix A. If all the policies were both syntactically and semantically correct, then a formal

logic representation of those policies was created.

Figure 12 shows the overall process flow starting at the acceptance of a PPL

configuration file, which contains network construction information and network policies, to the

fmal output file which contains a list of policies which created conflicts. Once the PPL compiler

verifies the syntax and semantics of the input configuration file, an output file consisting of

logical facts is generated from the configuration file. This logic file is the starting point of a three

stage process that manipulates and refines the data that eventually results in the final conflict file.

Although the three stages could have been accomplished in just one stage, multiple stages

provided an incremental means to verify correctness during development.

To create the compiler for PPL, tools designed to aid in the construction of compilers

were used. Flex, a tool for creating a scanner for a language, was used to scan and return the

43

tokens required during the parsing phase of the compiler. Bison, a tool for writing a parser for a

language, was used to create the parser that verified the correctness of PPL network policy rules.

Correctness in this sense, refers to policy rules that are both syntactically and semantically

correct as specified in the PPL grammar.

PPL
Configuration

File

0
PPL Compiler

0
Network Con figuration

&. Policies

Logic Code
Stage 1

NetWilrk Configuratioa
& Policies

Logic Code
Stage 2

Network Configuration
& Policies

Logie Code
Stage 3

Figure 12. Overall Process Flow

Policy Connicts

Once the correctness of the PPL policy statements were verified, an output file with

Pro log statements that represented the physical description of the network, such as network links,

capacity, etc. was created. In Prolog these type of statements are called facts and are used to

prove the validity of questions presented to the language interpreter. The actual PPL policy rules

were then converted and represented in Prolog and appended to the output file as facts and rules.

A rule in Prolog declares things that are true depending on a given condition. Prolog

44

(programming in logic), is a programming language based on first-order predicate logic. The

advantage of using Prolog is that what constitutes a conflict can be represented, and then

questions can be proposed to the interpreter as to whether a conflict existed. Using mechanisms

such as pattern matching, tree-based data structuring, and automatic backtracking, the Prolog

program can return a truth value representing an answer to a question, in the case of PPL's

conflict tester, "Are there conflicts between any network policies?".

When policy conflicts are detected, a PPL build-in support mechanism will be used in an

attempt to resolved the conflict. The support mechanism utilizes the creators of each policy to

check for a possible precedence relationship. Both resolved and unresolved conflicts are

presented to the operator for their review.

The development and test platform used to build the supporting compiler and policy

conflict tester, was a Media On Pentium II computer running the Microsoft Windows 98

operating system. Although the underlying operating system was Windows 98, the actually

development environment was the BASH programming shell provided by Cygwin. Cygwin tools

are ports of the popular GNU development tools and utilities for Windows 95, 98, and NT. They

function by using the Cygwin library which provides a UNIX-like API on top of the Win32 API.

The Prolog compiler used was SWI-Prolog, developed at the University of Amsterdam, and is

targeted primarily at research and education. The details of the hardware and software used are

listed below.

Hardware Description

• CPU: 300 MHz Pentium II-MMX

• RAM: 64MB SDRAM

Software Description

• Operating System: Microsoft Windows 98

• Shell: GNU BASH version 2.01.1(2)-release (i386-pc-cygwin32)

• C Compiler: Cygnus gee version 2.7-B19

• Flex: GNU flex version 1.25

• Bison: Cygnus bison version 2.5-B19

• File Utilities: GNU fileutils 3.16

• Pro log: SWI-Prolog (Version 2.8.2)

45

- -------- - ---- -------- - - --.

The source code for the PPL parser, written in Bison with imbedded "C", is listed in

appendix D. Appendix E contains the Prolog source code for the three stages of conflict

detection and resolution.

B. DETECTING CONFLICTS

There are multiple elements to a PPL policy rule and consequently there are multiple

types of conflicts that can exist. The key to all conflicts is the path or paths associated with a

policy rule. PPL is based on path, and this path is used as the first step in identifying a conflict.

Without the overlap of at least one path segment between policies, there will be no conflict.

In PPL a conflict is defined as follows:

Given a set of policies P, a conflict exists if for any 2 policies r, s E P, all of the

following hold:

1. Physical paths of r and s overlap on at least one path segment;
2. Time and network conditions specified in the conditions elements of r and s overlap;
3. There is a target a which is permitted in r, but denied ins (or conversely).

Based on the definition above, the following general steps are implemented and used in

the conflict detection process of the PPL policy tester.

1. Find all policies that contain overlapping paths (physical).
2. Prune the results from step 1 to only contain those paths that also have overlapping conditions

(timing, network conditions, etc.)
3. Use the target & action_item elements to determine if a conflict exists

Each path associated with a policy rule specifies the nodes and links the traffic will

follow, but the conditions of the policy rule can restrict that flow of traffic to a particular day of

the week, hour ofthe day, etc. This combination of path and conditions can allow voice traffic on

the same path that a second policy has denied without conflict, as long as the day and time do not

overlap.

When there are indeed overlapping paths in a network, the target and action _items will

determine if there is truly a conflict. The target specifies the class of traffic that is allowed on the

specified path, and the action item, among other things will either permit or deny that traffic.

This ability to either permit or deny traffic is what leads to the fundamental conflict between

policy rules.

46

The remaining sections of this chapter expand on the steps used to detect conflicts with

PPL defined network elements and policies.

1. Basic Conflicts

Even before policy rules are processed for conflicting targets, conditions, and actions, a

conflict can exist. When nodes, links, and paths are being defined for use in the policy rules,

attributes about those elements are specified. These attributes consist of bandwidth capacity and

the messages that will be supported on the path. Bandwidth conflicts are handled by the PPL

compiler in the following fashion It is obvious in Figure 13, that when the links Link_l and

Link _2 are defined with a bandwidth of 100 Mbps each, that there is no way Path _1 can produce

can be defined with a 500 Mbps connection, therefore a conflict exists. This is the most basic

conflict based on path and is easily identified.

defme link Unk_1 <Node_1, Node_2>;
defme link Link_2 <Node_2, Node_3>;
define path Path_1 {Link_1, Unk_2};
defme link_param Link_1 {BW := 100 :MBPS};
define link_param Link_2 {BW := 100 :MBPS};
define path _param Path _1 · {BW := 500 :MBPS};

Figure 13. Bandwidth Conflict

Message conflicts are based on the same premise as bandwidth conflicts. When a policy

rule utilizes a message in the conditional element, the paths associated with this policy must

provide the required message feedback. The message conflict detection phase, verifies that every

link needed to construct the effected paths, provides the proper message support.

47

2. Expanding Paths

Paths can be specified explicitly listing each node and link along the path from source to

destination. When this happens, the path is associated with the Policy/D and stored as a fact in

prolog. Facts about the network representation and policy rules are used to answer questions

about policy conflicts in later stages of the compiler.

The use of the wildcard character '*' has many benefits in the representation of a path as

discussed in earlier. These compressed representations of paths must be expanded to check for

overlapping paths. Figure 14 represents a limited view of a network. When a user wants to

represent all paths from node 1 to node 4, rather than listing two separate paths, <1, 2, 4> and

<1, 3, 4>, the user may instead represent both paths with the single path <1,*,4>. This

compacted representation helps save space in policy databases. The savings are even greater

when there are more than two paths from node 1 to node 4. During the process of conflict

detection, the path <1,*,4> will indeed be expanded temporarily to search for overlapping path

segments.

Figure 14. Network View

The path element of the policy rule supports the listing of several paths independently,

as well multiple paths with wildcard characters. Examples include { <1, 2, 4>, <* ,3>} and { <*, 2,

*>, <1, 3, 4>}. In all these path representations, each path has to be expanded and associated

with the policy/D of the rule. These expanded paths are used in conjunction with other policy

rule elements such as, the conditional element, target class, and action items, to identify conflicts

between PPL policies.

48

3. Conditional Overlaps

The conditional element of a policy rule provides a way to further isolate a path

associated with that rule. It is possible that two policies apply to the same path segment in a

network and that the actions of those policies will cause a conflicting situation. The conditional

element of the policy rule can further specify attributes such as time of day, day of the week, a

particular user, etc. The conditional element may allow two seemingly conflicting policies based

solely on their paths, to co-exist without conflict. When several attributes are listed in the

conditional field, the result will be the concatenation of each. For example, when both time of

day and particular user are specified in the conditional element, both have to be true to validate

the policy. In other words all the attributes in the conditional element are AND'd together. The

process of expanding conditional elements is discussed below. The discussion also includes how

the comparison of conditional elements from different policy rules may lead to overlapping

conditions. An overlapping condition exists if the attributes of a conditional element provide

some intersection in their values. For example, if a conditional element for a policy specifies that

it will only be enforced on week days, and a second policy specifies it will only apply be

enforced on Tuesdays, then an overlap occurs on Tuesday. This information about overlapping

conditions along with the expanded path information is used in future steps of the conflict

detection process, which include the target and action items of the policy rule.

Time is represented with a 24 hour clock in PPL and is used in the conditional section of

a policy rule to constrain when the rule will be applied. Like all conditional elements used in

PPL, an overlap of time between two policies indicates that there is a potential for .a conflict to

exist. Only two conditional operators are used when representing a time constraint, >= and <=.

These two symbols are sufficient to represent the most common planed usage of time, which is

specifying ranges of time the policy covers, such as between 0400 hours and 0800 hours. The use

of<= and>= can also be used to simulate other comparison operators such as=, !=,<,and>. For

example, if a policy was only to be enforced at one instance in time such as 0400, this can be

specified with the two conditions,>= 0359:59 & <= 0400:01. PPL does not limit the number of

occurrences of time in the conditional section of the policy rule and therefore several time ranges

can be applied to the same policy. Table 3 represents the logical outcome used by the PPL

compiler to determine if a time overlap exists. When more than one time is specified in a policy

statement, each of those specific time entries will be compared against all the time entries in the

49

second policy. For example, one scenario represented in the table below is: Policy A applies
between the hours of 0400 and 2359, and Policy B applies to the hours between 0300 and 0700.
The result of combining these two constraints is that there is indeed an overlap in time,
specifically between 0400 and 0700. There is no need to have an exact overlap in time, as long as
there is a partial overlap in time the potential exists for a conflict. Also note that Policy A does
not explicitly identify 23 59 as the ending time of the condition, but whenever there is no upper or
lower limited identified, a default value of 0000 or 2359 is implied. Specifying only the time >=
0400, therefore implies an upper limit of the 24th hour of the day.

TimeRliDg~ ,, .. ~rum%" '" · · :·R.esuit 6'f'comhined' ·
-,,. :.x :·,:::i ~: ,, ,· ;:.: "· -··.·::> <:'

: . :Poli~y ~ . · ·. ~·icy·~.· /·;· ;·-_,··;:::.;;,::;? ·t~~~~g~·· ,<' ' ~ ' ' ' ' (~;~:~--·: :· .· :· .,. ·:.: "

>= 0400 <=0700 - Overlap

>= 0400 >= 0700 - Overlap

<=0400 <=0700 - Overlap

<=0400 >=0700 - No Overlap

>= 0700 <=0400 - No Overlap

>= 0700 >=0400 - Overlap

<=0700 <=0400 - Overlap

<=0700 >=0400 - Overlap

>= 0400 >=0300 <=0700 Overlap

<=0400 >=0300 <=0700 Overlap

>=0400 <=0300 >=0700 No Overlap

<=0400 >=0300 <=0700 Overlap

>=X <=X - Overlap

>=X >=X - Overlap

<=X <=X - Overlap

<=X >=X - Overlap

- * * Overlap

- - - Overlap

Table 3. Conditional Time Overlap

50

Also displayed in the table are entries that indicate that when the time values are exactly the

same, represented with an X, there is by default overlap because the equivalence that occurs with

the >= and <= operations. As with all the conditional elements, when no time is explicitly

declared, it implies that the policy will be active 24 hours a day and therefore will overlap with

any other policy rule. An '-' entry in the table below indicates that no time was explicitly

indicated, and the use of the'*' symbol represents any time may be applied.

The built-in user attribute can also be used in the conditional section of a policy rule to

place constraints on a rule. The user attribute allows another way to segregate network traffic.

The user represents an identifier that uniquely identifies a particular user on the network. For

example, the policy below indicates that data traffic will be denied if the user associated with the

traffic is equal to gnstone.

Policy_user net_ manager{*} {traffic_class ={data}} {user= gnstone} {deny}

When two policies are being compared where at least one of those policy rules contains

the user attribute, there is a chance of an overlap of coverage between those policies and

continued conditional comparisons are warranted to verify consistency. Table 4 represents the

results of the evaluation of user attributes. The only operators allowed with the user attribute are

the comparison operators= and!=. Since no ranges or ordering are allowed with users, the use

of the operators <, >, and all variations of those operators· are meaningless. When no user is

specified in the conditional element of a policy rule, the default action is to allow all users. When

only one of those policies contains the user attribute, then again there exists an overlap. This is a

result of the fact that no user restriction on a rule implies all users are specified. In Table 4 two

comparison results are also marked with an asterisk. The asterisk is used to identify that fact that

more than two users are assumed to exist on the network. For example, if one policy specified

user!= gnstone and a second policy specified user!= Iundy, then the comparison will identify an

overlap. Assuming there are other users besides gnstone and Iundy, this is the proper action. If

this is not the case and only those two users exist in the network, then the policies are

meaningless because neither will ever be enforced because the condition will never be satisfied.

51

=gnstone != Iundy Overlap

=gnstone != gnstone Conflict

=gnstone - lundy No Overlap

=gnstone = gnstone Overlap

!= gnstone != Iundy Overlap*

!= gnstone != gnstone Overlap

!= gnstone Overlap*

- gnstone Overlap

Overlap

Table 4. Conditional User ID Overlap

The address attribute used in PPL is based on the format of the Internet Protocol (IP)

used today in the Internet. Other address formats could also be added in the future, including IP

version 6. During the comparison of the address attributes, two separate evaluations are

performed. The first is whether an overlap exists between the addresses represented, and the

second is whether the use of the operators '<=' and '>=' applied with the first decision result in

an overlap.

An IP address is usually written, and is represented in PPL with dotted decimal notation.

In this format, four decimal values ranging from 0 to 255 ·are concatenated together using a '.' as

a separator. An IP address contains both a network part and a host part with some number of bits

used to identify the network, and the remaining number of bits used to identify the host. This

subdivision of bits will vary depending on the class of the address, but there is no real need to

totally understand how the addressing works to proceed. The idea is that different granularities

can be used to isolate network traffic. It was documented earlier how an explicit individual can

be isolated using the user attribute. The address attribute allows for the enforcement of policies

at the individual machine level, or specifying a group of devices for enforcement. A typical IP

address will look like 131.120.10.104. To implement a range ofiP addresses, PPL implemented a

52

simple pattern matching scheme using the '*' character. For example, 131.120.10.* would

indicate the inclusion of all hosts with IP addresses between 131.120.10.0 and 131.120.10.255.

When comparing two addresses in PPL for overlap, there has to be an exact match to the

end of the address, or until the first'*' is reached. For example 131.120.*.* would include all

machines specified by the address 131.120.10. *,and therefore an overlap would exist.

The first evaluation of address overlap was the pattern matching scheme just discussed.

The second evaluation for overlap of address space is based on Table 5. This evaluation takes

into account the operators that can be used in specifying address ranges, namely== and !=. In

this table, addresses are represented by either an X or Y. When the letters match between the two

columns representing Address A and Address B, this indicates the addresses themselves include

at least one host in common. With the example stated earlier, one policy rule specified

131.120.*.* and the second rule specified 131.120.10.*, would result in an overlap of all

addresses beginning with 131.120.10.*. Since the addresses have a range in common the same

letter would appear in both columns. Ifthe two addresses being compared were rather 131.*.*.*

and 141. *. *. *, then according to PPL there would be no overlap in address space and a lookup

into the table would only consider those columns with both an X andY.

h'',, ··:,):::;"\';;~';:

=X Overlap

=X =Y No Overlap

=X !=X Conflict

=X !=Y Overlap

!=X !=X Overlap

!=X !=Y Overlap

=Y Overlap

=X Overlap

Overlap

Table 5. Conditional Address Overlap

53

In general, the results of comparisons in Table 5 are similar to other conditional

attributes discussed in this chapter. The result can be any of three values, conflict, overlap, or no

overlap. Because multiple addresses can be specified, each address grouping has to be compared.

If any of the comparisons result in a conflict, then there is no hope of overlap and no need for

continued overlap checking. When a no overlap is returned, this only indicates that although

there is no overlap between two particular address groupings, there is still a potential for overlap

with other addresses specified in the conditional section of the rule. In this case, if no overlap

status is returned, then the result is no pverlap and there is no chance for a conflict between the

two policy rules. When an overlap status is returned and no conflict is returned, the potential for

policy conflict does exist, and further evaluation is necessary. When an address specification is

not included in a policy rule, the default assumption is all addresses are effected by the policy

rule, and therefore an overlap exists. No address specification is represented in the table by the '­

' character.

To provide support for future expansion, PPL allows user defined types to be included in

the conditional section of a policy rule. This type feature allows for further granularity of policy

specification. In the following tables a type of day will be used and defined as:

define type day {Sun, Moo, Tue, Wed, Thu, Fri, Sat};

Day is defined to be a set containing seven elements which represent the days of the

week. An order is implied with these elements, so the use of operators '<=" and '>=' as well as

'=' and '!=' are allowed. When multiple days are to be associated with a policy, then each will

be specified as needed. For example, if a user wanted to limit traffic to Wednesday and Thursday

only, the following condition list could be given: {day == Wed, day == Thu}. If a policy was

only needed during the normal work week then the following condition list could be used: {day

!=Sat, day!= Sun}.

Table 6 represents the expansion that takes place during the conflict checking phase of

the compilation. This expansion is strait forward, if a day is associated with the equality operator

then that day is added to the expanded list. When a non equality operator is used, then that day is

taken away from the expanded list. If multiple days are denied in the conditional section of the

policy rule, then an intersection of the possible days is made with each day denied, see third row

of Table 6. The results of the expansion will always be a list of elements were the '=' symbol is

54

assumed to apply. For example, when the policy specifies {day<= Wed}, the result will be {day

==Sun, day == Mon, day == Tue, day == Wed}.

day= Sat. Sat.

day!= Sat. Sun, Mon, Tue, Wed, Thu, Fri

day != Sat, day != Sun Mon, Tue, Wed, Thu, Fri

day<=Wed Sun, Mon, Tue, Wed,

Table 6. Conditional Expansion of Type

Table 7 represents the logic used in the determination of overlap in an expansion of a

user defined type statement. As mentioned earlier the only operator that needs to be considered

after a type expansion is the '=' operator. As a result, the only time an overlap condition will

exist for a user defined type, is when the values specified contain at least comparison were the

values are equal.

X y No Overlap

X X Overlap

Any Value Overlap

Overlap

Table 7. Conditional Type Overlap

Priority can be assigned to network traffic as well in PPL policy rules. The use of

priority can give preferential treatment to certain types of traffic. For example, voice

transmission over the network could be given preferential treatment over normal data traffic

because of the QoS demands needed to support voice transmission. Table 8 shows the logic used

to compare two priority values for an overlapping condition. The operators '<=' and '>=' are the

only allowed in specifying a priority conditional attribute. Priority values are numeric and

55

therefore can be ordered for comparison with these operators. An exact priority can be iss1. ec

with the combination of both an '<=' and '>=' operators. For example, when network traffic is

allowed only with a priority of 10, this can be represented with the following conditioned

statement: {priority >=10, priority <=10}. Conjunction is used with all conditional statements

therefore all the statements have to evaluate to true for an overlap. In Table 1 an '*' symbol in

the operator column allows either'<=' or'>=' symbols to be used. A '*' symbol in the priority

value, field implies any numeric value can be used. To represent the same numeric value an 'X'

symbol is used in the priority value field. Because of the equality in both priority operators,

whenever the value of the priorities being compared are equal, there is an overlap. The numbers

1 and 2 are used to represent that fact that one value is greater than another. In reality these

values can be any numbers that preserve this feature. When an '-' symbol is used in the table

below it represents the fact that no priority attribute was explicitly represented in a policy rule.

The assumption is that when no priorities are stated, then all priorities are allowed.

. ' ,IrJ . ·.r:::~ ; ; i~~ .. <., i'f; ;.;;':. ~~ i ·!~,
.j· .• :

.•.. > . Re5iiltofCombined .,;

:.~:.cj.,:~t· :·' ;·~
< >: '"' ecce ;. .,,..,.

; ' ,; ·:;~;.:, .. · .. •:. .· ~: :f:~~rity~esol~~o~ ••. ·, ·' .. L ;: ·;: : ·;,

>= * >= * Overlap

<= * <= * Overlap

* X * X Overlap

>= 1 <= 2 Overlap

>= 2 <= 1 No Overlap

<= 2 >= 1 Overlap

<= 1 >= 2 No Overlap

- - * * Overlap

* * - - Overlap

- - - - Overlap

Table 8. Conditional Priority Overlap

To prevent data packets from looping for infinity through a network, a hop count can be

associated with a packet which represents the packet's maximum lifetime. PPL enables a

hopcount attribute to be used in the conditional section of a policy rule to support the limiting of

56

a packets lifetime. This hop count is decremented each time the packet passes through a router.

When the hop count reaches zero, the packet is dropped from the network. Using the operators

'<=' and '>=',two policy rules can be checked for overlapping conditions. Table 9 represents the

logical relationship used by the PPL compiler to determine if an overlapping condition exists,

and therefore the possibility for conflict. In the table, an '*'symbol represents any numeric value

when placed in the hopcount value field, and either of the hop count conditional operators when

placed in the operator field. An '-' symbol represents that fact that no hopcount attribute was

specified for policy rule and therefore will support all values. The numbers 1 and 2 are again

used represent that the caparison is being made between two values where one is possible greater

than the other. An 'X' symbol is used to represent the fact that two hopcounts are exactly the

same.

·.· .. ·.. .. ••·· ·0 ':";:~~· ·:' ·• ~i~;~ ~.· · ·, : f~lY.~~~ JtMm:~ri·i ..
>= * >= * Overlap

<= * <= * .Overlap

* X * X Overlap

>= 1 <= 2 Overlap

>= 2 <= 1 No Overlap

<= 2 >= 1 Overlap

<= 1 >= 2 No Overlap

* * Overlap

* *
Overlap

Overlap

Table 9. Conditional Hopcount Overlap

Bandwidth is the term used in PPL to represent the data rate of traffic in units/sec. The

units can very from gigabits, megabits, kilobits, and bits. During the compilation all units are

converted to megabits, to provide a common base for comparison. Bandwidth is used to

determine conflicts in two possible ways. During the establishment of links in a PPL policy file,

each link is specified with a supporting bandwidth. When no bandwidth is specified, a zero

57

bandwidth is assumed. The first check of conflicting bandwidths is during the establishment of
paths through the network. Each network link along a longer path must be able to support the
total bandwidth requirement of that longer path.

The second use of bandwidth for detecting conflicts is in the determination of overlap in
the conditional section of the policy rule. During the earlier conflict detection process the
operator '=' is exclusively used to represent the bandwidth parameters. In the conditional
section the operators '<=' and '>="are used for comparison. These bandwidth requirements are
used to check for minimal bandwidth performance levels. An example of two bandwidth
statements being compared can be seen in the following two PPL policy rules.

Policy_bandwidth_l net_manager {*} {traffic_class ={data}} {bandwidth>= 20 MBPS}
{deny}

Policy_bandwidth_2 net_manager {*} {traffic_class ={data}} {bandwidth>= 40 MBPS}
{permit}

In this case each policy is specifying data network traffic bandwidth requirements that
are above 20 and 40 Mbps respectively. The bandwidth comparison made during the conditional
phase of the compiler would determine that there is an overlapping bandwidth requirement,
namely when the bandwidth requirement is above 40 Mbps. This overlapping condition will lead
to the detection of conflicting policy rules where one rule denies traffic above 40 Mbps and the
other permits it. Table I 0 represents the logic used in the PPL compiler to determine if an
overlap of bandwidth requirements exist. As with the other tables in this chapter the '*' symbol
represents any valid value for that column, and the '-' symbol represents that fact that no
bandwidth attribute was specified in the conditional element of the policy rule. The 'X' symbol
is used to relate the fact that both values are equal and the numbers I and 2 are used to indicate
that one value is greater than the other.

58

>= * >= * Overlap

<= * <= * Overlap

X X Overlap

>= 1 <= 2 Overlap

>= 2 <= 1 No Overlap

<= 2 >= 1 Overlap

<= 1 >= 2 No Overlap

* * Overlap

* * Overlap

Overlap

Table 10. Conditional Bandwidth Overlap

4. Find Overlapping Paths using Expanded Path and Conditional
Elements

The process of finding overlapping paths is straight forward yet tedious. After the

expansion of any path containing wildcard characters, each path is compared against one another

other for an overlapping path segment. That overlapping path segment could be either one node

or one link between the two paths. When a common path segment is found, the· conditional

elements of each policy are compared using Table 3 though Table 10 to determine if the

overlapping path segments can co-exist because of further granularity; see Section 3 for details.

If the paths are not from the same policy rule, using the policy!D to determine this, then two

policy rules have a potential for conflict and are marked for the verification of conflict using the

target and action items elements, details are described below.

5. Expanding Target Elements with Consideration of Action Items

To help detect conflicting policies, the target element does not support implicit permits.

An action element value of 'permit' allows the situation described by the combination of targets,

conditions, and paths, to exist. The use of implicit policies can lead to ambiguity in expressing

59

network policies. If there are to be implicit actions, then the action should be on the side of

denial rather than permission. PPL supports implicit denies, but not implicit permits. As a result,

when a user wants traffic to be permitted on a path, they must explicitly state this fact, or permit

all traffic with the '*' symbol as the only target attribute. For example, a class called

"traffic_ class" is defined below.

define class traffic_class {data, video, voice};

This class is a set that contains three values: data, video, and voice. Table 11 shows the

logical results enforced by the PPL compiler with the combination of target information and

action items using the defined traffic_ class.

'<~

! .J'3}1g~~ .• >:· ;, .• ,. ; ' ..., ..
····•······· ..:; :::.•·· ':' . ;"•::•:. ·••••:I;!·_··· .J •. : '\ •; ... :::<'ll'·:·· !.' : i ·.

• •: H•':•• .: :, ·:·••; ;;: •: . .:::···:j: :· i ·' ·, '!';.i i:•:·•. ; •::. .:: · ·: · .. ~·-

traffic_class ={voice} permit explicit permit: voice

implicit deny: data, video

traffic_class ={voice} deny explicit deny: voice

implicit deny: data, video

traffic_class !={voice} permit explicit permit: data, video

implicit deny: voice

traffic class != {voice} deny double negative: There is no explicit permit.

explicit deny: data, video

implicit deny: voice

* permit Explicit permit on all classes of defined traffic, all

elements of the set

* deny Explicit deny of all targets

explicit deny: data, video, voice

Table 11. Target and Action Combination

The results of the combination of target elements and actions are associated with the

policy ID from the policy rule. When overlapping paths are detected between two policy rules,

the results of the expansion of the target elements are used to determine if a conflict exists.

The action item can contain more than just the two values, permit and deny. The other

action items are to control the dynamic aspects of the network. The keywords priority and

60

hopcount can be used to change values associated with the keywords when the network reaches

the state which is described by the combination of path, target, and conditions. For example, if

the loss rate of voice data reaches a certain level, the priority of this voice traffic may be

increased in an attempt to provide better QoS to users using voice over the Internet. When the

keywords hopcount or priority are used in the action items element, the implicit action is

'permit'. When the action item value is 'deny', then no other action item elements can exist in

the list. The compiler will catch this type of conflict, both permit and deny within the same

policy rule, and flag it as a syntax error. The following policy rule explicitly denies the data

traffic_ class on the NPS path.

policy5 net_ manager {NPS} {traffic_ class= {data}{*} {DENY};

It is possible to have multiple permit actions, such as changing the priority of the traffic

described by the policy rule as well as changing the hopcount associated with the policy rule.

C. RESOLVING CONFLICTS

The PPL compiler supports the automatic resolution of conflicting policies with the use

of policy !D. The policy ID, is the element of the policy rule that identifies the creator of the rule.

The policy ID field maps to an integer value, which permits the comparison of two policy ID 's to

determine if one is greater than the other. When two policy rules have the same creator, or when

each of the creators has the same priority level, automatic conflict resolution may not be

possible. By default the conflict tester will not resolve conflicts between policies created by the

same user or precedence level. As will be covered later in this chapter, a class of traffic not

explicitly permitted, is implicitly denied in PPL. There may exist a situation when a single user

creates several policy rules to create an overall network policy. Rather than explicitly listing all

classes of effected traffic in each incremental policy rule, a compiler option may be used to

alleviate this inconvenience. This option informs the policy tester to ignore conflicts that exist

because of implicit denies between policy rules created by the same user. For example, take the

following two policies:

Policy! net_ manager {Pathl} {class= {faculty}}{*}{permit};

Policy2 net_manager {Pathl} {class= {student}}{*} {deny};

61

With the default option of the compiler, these two policy rules would produce a conflict,

since faculty traffic is permitted by Policy] on Pathl, but implicitly denied by Policy2. Using the

"-no_implicit_deny" option during compilation, this conflict will be ignored since it was

produced as a result of an implicit deny between two policies created by the same user.

When a conflict does exist between two policy rules, and the ID values are not equal,

then the higher value of the two ID's will have priority and in a sense deactivate the lower

priority policy rule. The PPL compiler will advise the user which policy rules were resolved and

how. The policy ID will allow a user to implement their own local policy rules, but when in

conflict with a higher ID, the network administrator for example, the local policy rule will be

overridden.

In its current state, the PPL compiler accepts a configuration file that is created with an

ordinary text editor. There is no control over its creation or the information entered into it. A

mechanism must be created that prevents unauthorized access to this file, or the

misrepresentation of network policy creators. One means to accomplish this would be to

establish an interface that prevents direct access to the configuration file. This interface would

allow policies to be created by password protected accounts, were only the current user's

identifier would be associated with a policy rule. Accounts to the interface would be established

that assign a priority level to each user. The priority levels are not required to be unique, but

when multiple users are assigned the same priority level, there is a potential for an unresolved

conflict to exist.

Although the current PPL compiler only supports policy ID for conflict resolution, in

theory there is no reason that further means cannot be implemented in the future.

D. PERFORMANCE

Performance was not emphasized during the implementation of the compiler and policy

tester. More important was the ability to correctly detect conflicts between network policies. The

detection of network policy conflicts is envisioned as an offline process that is executed before

the policies are actually implemented in the network. Basing network size on a typical

autonomous system of 40 nodes, network simulations were run. The results of three simulated

networks are provided in Table 12 providing time estimates to process and test for conflicting

policies. The three networks varied the number of nodes comprising each network at 10, 30, and

62

40. Analysis of the results confirmed that performance is directly related to the number of

network paths that need to be generated for wildcard matching. The flexibility of the path

representation provided by PPL, is also a performance bottleneck.

PPL provides the use of wildcards in representing network paths to support aggregation.

When a policy must be applied to all possible paths from node 1 to node 20 for example, it can

be represented by <Node!, *, Node20>. Rather than listing all the paths explicitly, which in

some cases may be hundreds, this representation allows one statement to represent them all. Path

aggregation allows for smaller policy databases, as well as requiring less bandwidth to transmit

path information to network enforcement points. The down side, is that the policy tester will

generate all possible paths through the network as part of the path expansion process.

To improve time performance, a flag can be used to inform the compiler that all policies

represented in the data file explicitly list each node, and that no path expansion is required. Table

12 displays the time required and the number of paths generated both with, and without the

compilation flag. The network consisting of 10 nodes includes paths the contain wildcard

characters, and therefore could not use the "no wildcard" flag.

. .
:,',,,, ''"'""''

W;jldcards

!i " 10':, -'-···· 11 377 0:15
.;; ·_.

''30 10 1449 6:09 0:09 37
' '

20 2271 18:35 0:09 126

Table 12. Simulation Results

E. CHAPTER SUMMARY

A major contribution made by PPL is the ability to test for conflicting network policies

before they are disseminated throughout the network. This chapter discusses the formal logic

representation of the network policies, and the incremental steps taken to detect conflicts using

63

the Prolog Interpreter. Tables are presented throughout this chapter to state the logical

consequence of comparison operations between policy rules. The chapter is concluded with a

discussion of the method used for resolving conflicts by using the identifier of the policy's

creator.

64

V. CASE STl.JDY

As a proof of concept, a case is presented in which network policies, represented in PPL,

are tested using formal methods to determine the consistency of those policies. To demonstrate

this procedure, network policies are presented which apply to the network represented by Figure

15.

A. A 10 NODE SIMULATED NETWORK

Suppose that ten organizations, which are represented in Figure 15, are connected

together as represented by this diagram. These organizations wish to apply policies to control

NPS NA.SA

CERT

SPA WAR NSF

U.N

Figure 15. Case Study Network Diagram

65

the performance and access to their network. Using the Path-based Policy Language (PPL),

network's connectivity is defined using nodes and links and entered into a configuration f

This configuration file also contains user defined classes of traffic, data types, paramete

applied to the nodes and links, as well as the network policies and the paths they apply to. Thl

full configuration file can be found in appendix B. In the next few sections the elements of the

configuration file will be discussed and explained. Although small, perhaps '14 the number of

nodes associated with a typical Autonomous System, this network will allow us to demonstrate

the features of PPL and the ability for conflict detection between policies. The benefit of a

smaller network diagram, is the ability of not overwhelming the reader with too much

complexity.

B. NETWORK MODELING AND USER DEFINED DATA

The first step in modeling a network is to define the nodes available for creating the links

and paths for which network policies will be applied. This is done with simple define statement

identifying a name with a node in a network. The nodes in this network reflect real world

organizations, but the connectivity of this organizations in the real world is not implied. The

nodes can be defined with one or more statements as a comma separated list of names. The

following statements define the I 0 nodes that comprise the network.

define node NPS, DARPA, SPA WAR, NSF, IETF, NASA;

define node FDA, NATO, UN, CERT;

The connectivity of the network is represented by defining the links between nodes.

Although the link define statements imply a direction associated with the link, the PPL compiler

and conflict detection process ignore direction apply bi-directional communication. The

following list of define statements represent the eleven links that create the network. The ability

to list several links with the same define statement is a time and space saver that again can be

used with the definition of links.

define linkNPS_DARPA <NPS, DARPA>, NPS_NASA <NPS, NASA>;

define linkDARPA_IETF <DARPA, IETF>, DARPA_NSF <DARPA, NSF>;

define linkDARPA_SPAWAR <DARPA, SPA WAR>;

define link DARPA_ CERT <DARPA, CERT>;

define link NASA_IETF <NASA, IETF>;

66

define linkiETF_FDA <IETF, FDA>;

define link SPA WAR _NSF <SPA WAR, NSF>;

define link SPA W AR_NATO <SPAW AR, NATO>;

define link NSF _NATO <NSF, NATO>;

define link UN_NATO <UN, NATO>;

All paths must be defined before they can be referenced by a PPL policy rule. This

definition of paths, allows for attributes to be associated with those paths. These attributes

include the bandwidth requirement for the path, and the messages required to support policies

based on dynamic features of the network such as delay, jitter, and data loss. A path can be

represented by an explicit listing of nodes required to construct the path, or may also include the

wild card character '*' which expands to match all possible paths. The following define

statements were used in the configuration file to define the paths and the attributes associated

with the paths, links and nodes that comprise the network.

define path NPS_CERT {<NPS, *, CERT>};

define path NPS_NSF {<NPS, DARPA, NSF>};

define path NASA_SPAWAR {<NASA,IETF,DARPA,SPAWAR>};

define path UN_NPS {<UN,*,NPS>};

define path ALL{*};

define link_param NPS_DARPA {BW := 100MBPS, delayQ, loss_rateO};

define path _param NPS _ CERT {BW := 100 MBPS, jitterO};

define path_param NPS_NSF {BW := 100 MBPS, jitterQ};

The path statements defined vary from the very specific, listing every node and the order

which it will appear, to the path defined as ALL, which represents all possible paths in the

network. The ALL path, is useful when you want to apply a single policy over the entire network.

The path labeled NPS _ CERT represented as <NPS, *, CERT>, is used to identified all valid

paths in the network that have a source ofNPS and a destination ofCERT. The use of the term

valid path, implies the path are loop-free.

Parameters are associated with the links and paths using the appropriate define

statement, either link _param, or path _par am. The parameters associated with the link

NPS_DARPA are that a bandwidth of 100 Mbps is supported, as well the messages delayO, and

loss _rateO. As mentioned earlier, these messages support dynamic policies where periodic input

67

about the state of the network is required. These messages are simple identified, not defined in

any rigid sense. The idea is that the policy has no need to know what information is passed in

these messages or the format of that information. This allows network policies to utilize user

defined messages, which required no changes to the formal PPL grammar. Although there must

be an agreement between the policy server and other devices on exactly what information is to be

carried by the message and the format.

Other than the policies themselves, the remaining information that is entered into the

configuration file are the user defined elements which will be used to construct the network

policies. Every policy has a creator, so all the valid users who may create policies must be listed

with their associated priority. The priority is used during the conflict resolution phase to negate a

policy when created by a user with a lower priority. The highest priority is 1, and in this case

only the network manager is assigned this value. The valid users and their priorities for this

network scenario are listed below.

define policy_maker Net_Manager(l), Xie(3), Lundy(3), Stone(4);

Traffic types that are used throughout the network policies are listed below. The user

may add, delete, or modify these classes to support their own needs. In this case defined six

classes of traffic. Each traffic class contains all the valid values that may be used when referring

to this class.

define class traffic_type {research, university};

define class traffic_class {data, video, voice};

define class traffic_security {Private, Public};

define class traffic _priority {High, Med, Low};

define class user {faculty, student, staff, accounting};

define class node_traffic {NPS, DARPA, SPA WAR, NSF, IETF, NASA, FDA,
NATO, UN, CERT};

The user may also define types as well. Types are similar to the user defined classes in

that they are assigned a label and are associated with a list of valid values. Classes are used in the

target element of a policy rule, and types are used in the conditional element of a policy. There is

an ordering associated with the values of a type, so the comparison operators '<=', '>=', '=',

and '!=' may all be used. A type defined and used in the network policies is listed below. This

type is used to represent the seven days of the week.

68

define type day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday};

C. NETWORK POLICIES

The policies which are applied to the network represented by Figure 15, are also entered

into the configuration file and described below.

Policy1 was created by the network manager and applies to the path

NPS-+DARPA-+NSF. This policy permits research traffic to and from the nodes NPS and NSF.

A further restriction is placed on this traffic to only allow it between the hours of 0800 and

1200, Monday through Friday.

Policyl Net_Manager {NPS_NSF}
{traffic_ type= {research}, node_traffic = {NPS, NSF}}
{day!= Saturday, day!= Sunday, time>= 0800, time<= 1200}
{permit};

Policy2 was created by the user Stone and applies to the path

NASA -+IETF -+DARPA -+SPA WAR. The user Stone has a priority level of 4, which is the lowest

of all defined users. This policy denies traffic from the NSF to flow along this path.

Policy2 Stone {NASA_SPAWAR} {node_traffic= {NSF}}{*} {deny};

Policy3 was created by the user Lundy and applies to all paths between the nodes NPS

and CERT. The wildcard character was used in the definition of this path and when expanded

represents two paths through the network. The first is NP S -+DARPA -+CERT, and the second is

NPS-+NASA-+IETF-+DARPA-+CERT. Although there are other possible paths between NPS

and CERT, these two are the only ones that are free of loops. Loops in a network are not

desirable, and are not considered valid during the expansion process. This policy permits all

traffic without restriction to flow over this path.

Policy3 Lundy {NPS_CERT} {*}{*}{permit};

Policy4 was created by the network manager and applies to link between the nodes

NASA and IETF. This policy permits all traffic without restriction to flow on this link.

Policy4 Net_ Manager {NASA_IETF} {*}{*}{permit};

Policy5 was created by the network manager and applies to link between the nodes NPS

and DARPA. This policy denies university traffic from passing over this link after 1100.

69

Policy5 Net_Manager {NPS_DARPA}
{traffic_type = {university}}
{time>= 1100}
{deny};

Policy6 was created by the network manager and applies to the same link as Policy5, the

link between the nodes NPS and DARPA. This policy denies university traffic from passing over

this link after 13 00 each day.

Policy6 Net_ Manager {NPS_DARPA}
{traffic_type ={university}}
{time >= 1300}
{deny};

Policy? applies to the node NSF. As mentioned earlier, the ability to specify policies that

apply to nodes, provides the ability to scale well in larger networks. In this case NSF represents a

sub-network that denies all traffic with a host address starting with 131.

Policy7 Net_ Manager {NSF}{*} {hostiP = 131.*.*.*} {deny};

Policy8 applies to multiple paths as did Policy3, in this case when the path is expanded

as a result of the wildcard used in it's declaration, eight paths are effected. These eight unique

paths permit all traffic which match the host addresses of 153.20.8 or 131.40. *.*to flow through

the paths.

Policy8 Xie {UN_NPS} {*} {hostiP = 153.20.8.*, hostiP = 131.40.*.*} {permit};

Policy9 applies to the link connecting the nodes NPS and DARPA. Before the hour of

0800, video traffic is permitted on the link and is assigned apriority of3.

Policy9 Net_ Manager {NPS_DARPA} {traffic_ class= {video}}
{time <=0759:59} {priority := 3};

PolicylO also applies to the link connecting the nodes NPS and DARPA. This policy

denies video traffic between hours of 0800 and 1600 everday.

Policy10 Net_Manager {NPS_DARPA} {traffic_class ={video}}
{time >=0800, time <=1600} {deny};

Policyll again applies to the link connecting the nodes NPS and DARPA. This policy

permits video traffic after the hour 1600, but lowers the priority to 5.

Policyll Net_Manager {NPS_DARPA} {traffic_class ={video}}
{time >=1601} {priority:= 5};

70

D. DETECTED CONFLICTS

Once the information required to model the network and represent the network policies is

entered into the configuration file, the next step is to compile the file. This compilation phase

parses the configuration data, including the network policies, to validate its representation is

correct. The output of the compilation is automatically fed into a theorem prover based on formal

logic. In this case the theorem prover is a program written in Prolog that defines a conflict, and

along with the data extracted from the configuration file, is used to verify policy consistency.

The results of the compilation and theorem proving phase are described below. There were a

total of 7 conflicts that could not be resolved, and 22 conflicts which were resolved. The creator

of the policy was used as a means of precedence to nullify policies of lower priority users, and

therefore resolve certain conflicts. The complete results of the conflict detection process are

listed in appendix C. The number of conflicts both resolved and not resolved can be a little

misleading. The fact that one policy may be applied to multiple paths at the same time requires

each path to be verified individually. For example, suppose that there are two policies defined for

a network, policy! and policy2. Policy! applies to two paths through the network, but policy2

only effects one link of network. During the conflict detection phase, one of the paths associated

with policy I was determined to conflict with the single link of policy2, but the second path of

policy I did not conflict with the link of policy2. For completeness, every path effected by the

conflict is listed separately. This allows the user to identify which path of the network is

effected. But when both paths of policy! are in conflict with the single link of policy2, two

conflicts are listed. This may be a little misleading, in that the conflict between policy! and

policy 2 is listed twice, once for each path. This is exactly what happened in this case study.

There were 7 conflicts listed which could not be resolved, but there were actually only 5

conflicts between policy rule pairings. The 22 non-resolved conflicts were reduced to only 8

unique policy rule pairings. The 13 policy conflicts are represented in Table 13. Each of these 13

conflicts are addressed individually below.

71

Policy 10 Policy 1

2 Policy 5 Policy 11

3 Policy 5 Policy 1

4 Policy 6 Policy 11

5 Policy 7 Policy 1

Policy 10 Policy 8

7 Policy 10 Policy 3

8 Policy 4 Policy 2

9 Policy 5 Policy 8

10 Policy 5 Policy 3

11 Policy 6 Policy 8

12 Policy 6 Policy 3

13 Policy 7 Policy 8

Table 13. Policy Conflicts

Conflict 1: Policy 10 specifies that video traffic is denied between the hours of 0800 and

1600 on the link between NPS and DARPA. Policy 1 applies to a path between NPS and NSF,

specifically NPS-;DARPA-;NSF. Both these policies share the link NPS-;DARPA, but Policy 1

permits video traffic between 0800 and 1200 on all days except Saturday and Sunday. The

conflict process starts with the fact that two policies both permit and deny the same traffic class

on a common link. To verify the conflict, the conditional elements were compared for overlap.

The fact that the conditions of Policy 10 did not mention which days applied to the policy,

implied that all days were covered. The result was an overlap of the days Monday, Tuesday,

Wednesday, Thursday, and Friday. The remaining conditional element of these two policies was

the time specified. When compared, there was also an overlap of the hours between 0800 and

1200. This information confirmed that a conflict existed, but the creators of these two policies

may be used to resolve the conflict by nullifying the policy created by the lower priority user. In

this case both policies were created by the network manager, and thus can not be resolved.

72

Conflict 2: Policy 11 and Policy 5 both apply to the same link, NPS _DARPA. Policy 11

assigns a priority to video traffic after 1600 each day. When an action such as assigning a

priority is used, there is a default action of permit also implied. Policy 5 makes no reference to

video traffic and therefore a denial of this traffic is implied. Unless a traffic class is explicitly

permitted in a policy rule, the default action is to deny it. Policy 11 permits video traffic after

1600 each day and Policy 5 denies video traffic after 1100 each day. The hours conditions from

these two policies form an overlap anytime after 1600. This causes a policy conflict, and since

each policy was created by the network manager, no resolution is possible with the default

options. Using the "-no_ implicit_ deny" option discussed in section C titled "Resolving

Conflicts", this conflict would be avoided because it was caused by an implicit deny.

The fact that Policy 5 explicitly denies university traffic has no effect on the conflicting

situation, since the university traffic is not addressed in Policy 11, it is implicitly denied.

Conflict3: The third conflict identified was between Policy 5 and Policy 1. Policy 1

applies to the path NPS-+DARPA-+NSF, and Policy 5 applies to the link NPS-+DARPA. These

two paths overlap on the NPS to DARPA link. Policy 1 permitted research class traffic as well as

NPS and NSF traffic on this path during non-working hours. Policy 5 explicitly denies university

class traffic after the hour of 1100, and since no mention of research, NSP or NSF is made in the

target element of the policy rule, they are implicitly denied. These two policies conflict in the

fact that research, NPS, and NSF is permitted in Policy 1, and denied in Policy 5. The

conditional element of the policy rules overlap between the hours of 1100 and 1200, Monday

through Friday. This conflict can not be resolved using default options again, since both were

created by the network manager. As mentioned in Conflict 2, the "-no_implicit_deny" option

would also have resolved this conflict.

Conflict 4: Policy 6 and Policy 11 are both applied to the NPS-+DARPA link of the

network. Policy 11 permits video traffic on the link after the hour of 1600 each day. Policy 6

makes no mention of video traffic in it's policy rule and therefore an implicit deny of video

traffic is applied. Policy 6 in enforced after the hour of 1300 each day, leaving an overlap of

hours between 1300 and 1600 each day. Without the use of the "-no_implicit_deny" option, this

conflict can not be resolved by the policy's creator since the network manager was the creator in

both policies.

73

Conflict 5: The last conflict that can not be resolved using the policy's creator, we..:

between Policy 1 and Policy 7. Policy 1 applied to the path NPS-:>DARPA-:>NSF, and Policy·,

applied to the NSF node itself. When policies are applied to a node, this indicates that the nod-.c

represents a subnet itself. The overlap between these two paths is obviously the NSF node.

Policy 1 permits research, NPS and NSF traffic during certain times of the day. Policy 7 denies

university traffic and with no mention of research, NPS, or NSF traffic, these are implicitly

denied as well. The denial of research, NPS, and NSF traffic of Policy 7 is applied to any

network address beginning with 131. The support of addresses beginning with 131 is implied in

Policy 1, therefore a contradiction occurs with regards to the common traffic classes. Again, both

policies were created by the same user, causing no automatic resolution to be possible.

Conflict 6: This conflict is between Policy 8 and Policy 10. Policy 8 applies to a path

that utilizes the wild card character'*' in its definition. The path is defined as CERT -:>'* '-:>NPS

and includes all possible paths between the nodes CERT and NPS, which do not include loops.

This wild card matching provided in this definition provides eight unique paths which are listed

below.

UN~NATO~NSF~DARPA~NPS

UN~NATO~SPA W AR~DARP A~NPS
UN~NATO~NSF~SPAWAR~DARPA~NPS

UN~NATO~SPA W AR~NSF~DARPA~NPS

UN~NATO~NSF~DARPA~IETF~NASA~NPS

UN~NATO~SPA WAR~DARPA~IETF~NASA~NPS

UN~NATO~NSF~SPAWAR~DARPA~IETF~NASA~NPS

UN~NATO~SPAW AR~NSF~DARPA~IETF~NASA~NPS

The first four paths include an overlapping link, DARPA-:>NPS, with Policy 10. The last

four paths of Policy 8 do not overlap with Policy 10, and therefore can not cause a conflict. The

results of the conflict detection phase identified four conflicts between these policies as a result

of the four unique paths which overlapped with Policy 10. Solid links in Figure 16 show the links

that are covered by the eight expanded possible paths of Policy 8. The links not effected by

Policy 8 are indicated with dashed lines. As a result of this coverage, Policy 8 has a great change

of overlapping with other policies, and therefore may result in a greater number of conflicts.

74

NPS

/
/ --CERT

U.N

/
/

NASA

--/ FDA

1ETF

1:\'SF

Figure 16. Link Coverage from Policy 8

Policy 8 permits all traffic classes that have a source or destination address beginning

with 153.20.8 or 131.40 to flow over that path. Policy 10 denies video traffic on the

DARPA-+NPS link between the hours of 0800 and 1600 regardless of the address. These two

policies create a conflict were video traffic is denied, by Policy 10, and permitted by Policy 8.

There is a time overlap of the hours 0800 through 1600, and as a result of not specifying

addresses in the conditional element of Policy 10, all addresses are permitted, causing a conflict

between the policies.

Policy 8 was created by the user Xie and has precedence of 3. Policy 10 was created by

the network manager and has a precedence level of 1. As a result of these differing precedence,

the conflict can be resolved by nullifying the policy enforcement of the 4 overlapping paths

75

specified by Policy 8. The four remaining paths that did not include the DARPA-+NPS link will

be able to support Policy 8.

Conflict 7: This conflict is between Policy 3 and Policy I 0. Policy 3 also utilizes a path

that was defined with the wild card character'*', namely NPS-+*-+CERT. When expanded, this

path produces two unique paths through the network that are loop free. These paths are

NPS-+DARPA-+CERT and NPS-+NASA-+IETF-+DARPA-+CERT. The first path overlaps with

link that Policy 10 applies to, NPS-+DARPA.

Policy 3 permits all traffic to flow with no conditions. Policy 10 denies video traffic

during certain times of the day. The deny creates a conflict with the open policy of 3. This

conflict is resolved by the fact that policy was created by the user Lundy and has a precedence of

3, where Policy 10 was created by the network manager and has a precedence of 1. This results

in the fact that Policy 3 is applied to only one of the paths generated from the expanded target

element, namely NPS-+NASA-+IETF-+DARPA-+CERT. The overlapping path of Policy 3 which

is in conflict with Policy 3, is not allowed to carry all traffic.

Conflict 8: The paths specified in Policy 2 and Policy 4 have an overlapping link of

NASA -+lETF which produces a conflict. The common link is permitted to carry all traffic classes

of data with no restrictions from Policy4, at the same time not permitted to carry NSF traffic.

This produces a conflict that can not be resolved with the conditions element of the policy rules.

The creator of Policy 2 is the user Stone and has a precedence of 4, Policy 4 is created by the

network manager and has the highest precedence, 1. This resolution of the conflict will nullify

the Policy 2 in favor of Policy 4.

Conflict 9: As explained with conflict 6, Policy 8 applies to 8 different paths through the

network. This policy conflicts with that of Policy 5, which shares a common link of

NPS-+DARPA. Policy 8 permits all traffic from two address groupings. Policy 5 denies

university traffic, no matter what the address, after the hour of 1100. This produces a conflict by

permitting and denying university traffic after the hour of 1100, for the address groupings

153.20.8. *and 131.40. *. *.

The conflict is resolved by disallowing Policy 8 to be enforced on 4 of the paths that it

applies to. Policy 5 was given precedence over Policy 8 as a result of the different users creating

the policies.

76

Conflict 10: One of the paths applying Policy 3 is in conflict with the link

NPS~DARPA ofPolicy 5. The overlappingpaths provide a conflict because Policy 3 permits all

traffic unconditionally, and Policy 5 restricts traffic by not allowing university traffic after 1300.

The creator of Policy 3 has a lower precedence than the network manager who created Policy 5.

The conflict resolution disallows Policy 3 to be enforced on the path NPS~DARPA--X;ERT, but

will be allowed on the path NPS~NASA~IETF~DARPA--X;ERT, which was also specified in

Policy 3.

Conflict 11: Policy 8 produces 8 paths, 4 of which overlap and produce a policy conflict

with the link NPS~DARPA, specified in Policy 6. Policy 8 permits all traffic classes of data as

long as they are from a selected list of host addresses. Policy 6 in tum denies university traffic

for all host addresses after the hour of 1300. This produces a policy conflict that results in the 4

overlapping paths specified in Policy 8 from being enforced. The remaining 4 paths of Policy 8

produce no conflict with Policy 6 and therefore are allowed to co-exist in the network. The

resolution of this policy conflict was a result that Policy 3 was created by a user with a lower

precedence. The first 4 paths listed below will not enforce Policy 3. The remaining 4 paths do not

produce a conflict and will be allowed.

UN~NATO~NSF~DARPA~NPS

UN~NATO~SPAWAR~DARPA~NPS

UN~NATO~NSF~SPAWAR~DARPA~NPS

UN~NATO~SPAWAR~NSF~DARPA~NPS

UN~NATO~NSF~DARPA~IETF~NASA~NPS

UN~NATO~SPAWAR~DARPA~IETF~NASA~NPS

UN~NATO~NSF~SPAW AR~DARPA~IETF~NASA~NPS

UN~NATO~SPA W AR~NSF~DARPA~IETF~NASA~NPS

Conflict 12: Policy 3 and Policy 6 produce a conflict as a result of a overlapping link

which both permits and denies the same traffic. This overlapping link is NPS~DARPA, and is

specified in Policy 6. One of the two paths specified in Policy 3, namely NPS~DARPA~ CERT

utilizes the same NPS~DARPA link. Policy 3 allows unconditional passage of all traffic, where

Policy 6 denies university traffic after the hour of 1300. This produces a conflict that is resolved

by not permitting Policy 3 to be enforced on the overlapping path segment listed above, but will

allow Policy 3 to be enforced on the path NPS~NASA~IETF~DARPA--X;ERT. The automatic

resolution is a result of the fact that a lower precedence user created Policy 3.

77

Conflict 13: The last policy conflict detected was between Policy 7 and Policy 8. As
explained earlier, particularly with conflict 6, the expansion of the path specified in Policy 8
covers a majority of the links in the network by producing 8 unique paths through the network.
Policy 7 is specified on a single node (NSF) in the network, and as can be seen in paths listed
below overlaps with six paths covered by Policy 8.

UN~NATO~NSF~DARPA~NPS
UN~NATO~NSF~SPAWAR~DARPA~NPS
UN~NATO~SPAWAR~NSF~DARPA~NPS
UN~NATO~NSF~DARPA~IETF~NASA~NPS
UN~NATO~NSF~SPA WAR~DARPA~IETF~NASA~NPS
UN~NATO~SPA WAR~NSF~DARPA~IETF~NASA~NPS

UN~NATO~SPA WAR~DARPA~NPS
UN~NATO~SPA WAR~DARPA~IETF~NASA~NPS

The two policies conflict because of the fact that Policy 8 permits all traffic when from a
particular address grouping of hosts. The addresses permitted can begin with either 153.20.8, or
131.40. Policy 7 in tum denies all traffic from a host that has an address beginning with 131.
This address selection specified in the conditional element of the policy rule causes an overlap
whenever the address belongs to 131, since any address starting with 131.40 also starts with 131.
This is direct conflict and forces the 6 paths that include the node NSF to not enforce Policy 8.
This results with only 2 of the 8 paths specified in Policy 8 to actually support the policy of
permitting traffic. The creator of Policy 8 has a precedence lower than that of the network
manager, who created Policy 7, resulting in the automatic resolution ofthis conflict.

E. CHAPTERSU~Y

In this chapter, a case study is presented as a proof of concept that network policies can
be represented in PPL, and with the aid of formal logic, conflicts between network policies can
be identified. Eleven policies are applied to the ten node network with varying degrees of overlap
between those policies. Twenty-nine conflicts where identified between the policies and each
conflict is examined in detail.

78

VI. CONCLUSIONS

A. CASE STUDY CONCLUSIONS

The case study demonstrated that an unambiguous language which supports both path

and non-path network policies could indeed represent the structure of a network, as well as the

policies to control the operations of that network. It was demonstrated that this can be used to

specify static as well as dynamic policies, both of which are needed to support the changing

policies of today's networks. Network policies frequently change in response to new

requirements, and therefore require continuously re-testing. This need to specify new policies

and test their consistency is the reason PPL and the policy tester were developed.

In addition, when multiple network policies were composed together, the result of the

compilation was output indicating policies that if implemented would produce conflicting results.

The ability to provide a network administrator with information about conflicting policies as

early as possible is a major goal of the research in this thesis, and influenced the design ofPPL.

Policies were applied to simulated networks varying from 10 to 40 nodes providing

feedback to the feasibility of using PPL to support the representation and conflict detection of

network policies. The use of a wildcard character in the representation of policy paths had a

tremendous impact on the performance of the simulations. When wildcards are present, all

possible paths in the network are generated to support the expansion of wildcard paths. The time

to process policies for a 10 node network averaged 15 seconds, and for a 40 node network, 27

minutes and 24 seconds. To make the conflict detection process more efficient when wildcard

characters are not used, a compilation flag was implemented, "-nowild", that would only include

paths explicitly represented by the user. This dropped the compilation time for a 40 node network

from over 27 minutes to 7 seconds.

B. CONTRIBUTIONS

While languages have been developed to support specific aspects of network policy, such

as Integrated Service, Differentiated Service, and Policy Routing, PPL includes much if not all of

the functionality of these specialized languages. PPL represents network policies in an abstract

and unambiguous manor. The abstract nature of PPL transcends the issues associated with

79

platform-dependent network technology, allowing us to specify functionality rather than
implementation detail. The benefit of a unambiguous language is that there is no question as to
the meaning of the policy's goal.

PPL also provides for the support of static as well as dynamic policies. This enables
traffic belonging to certain classes to flow through a network segment, or to provide higher
priority to certain types of traffic, such as voice or video. The dynamic aspect of PPL will

support the fluctuation oftoday's network traffic measured by such functions as data loss, jitter,
and delay. PPL provides for specifying network policies based on the feedback of such

measurements, and controls the tuning of a network as it progresses from state to state. PPL also
provides for the user to specify other measurement functions as needed, to enhance the PPL
language's power.

It is critical that a network perform in a predictable manor. The ability to detect specific

network policies that are in conflict with each other greatly aids in this goal. Although conflict
testing is not part of a formal language specification, PPL was designed with conflict detection in
mind. A supporting compiler was developed which provides policy testing by utilizing a program
written in the Prolog programming language. After parsing the network policies for correctness,

the compiler translates the network policies into formal logic, and utilizing the Pro log interpreter,
detects conflicts between policies. This feedback can then be utilized by a network administrator
to modify the conflicting policies before they are implemented in the network.

The PPL compiler also utilizes the creator of the policy to try and resolve any policy
conflicts that have been detected. The allows conflicting policies to co-exist in the specification,
but only the higher priority policy will be implemented in the network. The policies that are
automatically resolved will also be presented to the user at the end of the compilation process.
This feedback provides a sanity check by a human before the policies are implemented
throughout the network.

C. LIMITATIONS

Although the PPL language provides the ability to support user-defined types, classes,
and messages, there are limitations to predefined attributes. In particular the host/P attribute used
in the conditions element of a policy rule. Host/P is intended to represent an IP address used in
the Internet today. Although the dot quad notation used for the hostiP attribute is of similar

80

representation to real IP addressing scheme, it is not complete. The wild carding is limited, and

there is no support for subnetting or netmasks. The larger issue is that only the IP version for

address schema is supported. There is a need for user defined addresses schemes as well.

The support of dynamic policies is realized with PPL by allowing for user-defmed

measurement functions for each link, as well as the message that will provide the information.

Currently a message is defined by providing a name that it can be identified with. There is no

sense of contents of the message, and no way to represent the possible formats.

Another limitation is with the conflict detection process. In its current state, only the

static aspects of network policies are used. This shows that the concept of network policy

conflict detection is possible, but is limited until the support of the dynamic aspects of the PPL

language are enhanced, specifically messages. To support conflict detection with messages, a

define statement will need to be implemented in the PPL language that allows for the declaration

of the return value type and units associated with the message. For example, delay()<= 20% or

available_bandwidth() = 24Mbps. Once the value type and unit of measurements are known, a

decision table can be implemented and associated with the decision process.

D. FUTURE DIRECTIONS

The PPL language and compiler provides for the representation, verification and conflict

detection of network policies. To actually implement the network policies, the various network

devices must be instructed on what aspects of the policies they are to support. Future work could

provide tasking files which contain the setup information necessary to program the device. The

idea ofPPL was to develop an abstract language to support multiple vendors. This trend could be

continued with the setup files. Only high-level details of the device setup could be provided.

These high level setup instructions might be created using the category of device as a guide. For

example, the setup files could be created based on the functions of the device, router, filter,

firewall, etc. The setup files for routers would contains the information necessary to create

routing tables, but not the manufacturers exact commands.

The approach used to design PPL was that all the network policies are known ahead of

time, and that a network administrator would be able to compile and test for consistency before

the policies were implemented. A slight modification could be made to accept new network

policies and determine if they should be implemented dynamically. For example, in today's

81

network, resource reservation messages such as RSVP, are used to request resources dynamicaL.

as needed. To create a policy engine that is always available to request the implementation of

new policy rules is another possible consideration. The policy engine would provide feedback to

the requestor if the policy creates a conflicting situation in the network, is denied because of

limited resources, and could generate the setup files needed to dynamically reprogram network

devices to support the request.

The next logical step would be to specify and enforce network policies represented in

PPL using a testbed network. A network such as SAAM[38], being developed at the Naval

Postgraduate School, would be ideal. The SAAM effort is being developed to support QoS in the

Next Generation Internet (NGI). A path-based approach is being explored to support the end-to­

end QoS needs of today's networks, and would provide an ideal match for PPL. A policy

server/engine could be designed based on the research of this dissertation to accept path-based

requests, and provide feedback based on the policies applying to the network.

A more user friendly means of creating network policies may also be developed.

Currently PPL policy rules are typed into a data file and compiled with a command line interface.

The PPL grammar is provided in appendix A, and would provide an excellent starting point for a

Graphical User Interface (GUI) tool kit. The tool kit might have a natural field-by-field interface

that would provide a syntax-free policy rule. Using input from previous fields of a policy rule,

only valid choices would be presented to the user for completion of the policy rule.

A user interface would also provide a security mechanism that would disallow direct

manipulation of the PPL configuration file. If the interface was password protected, policies

could only be associated with the user currently logged o~. This would prevent an ordinary user

from assigning the "network managers" identifier to a policy in hopes of guaranteeing its

implementation.

Providing a means for the user to order and view existing policies would also be useful.

The ordering may provide a view based on the policy creator, or perhaps all the policies that

effect a particular network segment. When a policy is applied to several network paths, there is

always a chance that a sub-set of paths conflict with other policies, while the remaining paths are

conflict free. Providing a means to visualize this information would also be useful feature.

Network managers and planners utilize network simulation tools to predict network

performance. If a policy module were developed that could be incorporated in to such tools,

82

network policies could be applied to network simulations in an attempt to verify network security

and performance.

83

TillS PAGE INTENTIONALLY LEFT BLANK

84

APPENDIX A. PATH-BASED POLICY LANGUAGE (PPL)

1. Keywords

The following identifiers are reserved for use as keywords, and may not be used

otherwise:

ALLOW
BITES
BPS
BW
BYTES
CLASS
DEFINE
DENY
GBPS
HOPCOUNT
HOSTIP
KBPS
LINK
LPARAM
MBPS
MBYTES
MESSAGE
MSEC
NODE
NPARAM
PACKETS
PATH
PERMIT
POLICY_MAKER
PPARAM
PRIORITY
SEC
TIME
TYPE
USEC
USE RID

These keywords are represented in upper case, but are not case sensitive.

85

2. Define Statements

To make the language as dynamic as possible, the ability has been provided to the user to

expand the functionality of the language with the use of define statements. Define statements

such as node and link are also used as basic building blocks of language. As graph theory uses

vertices and edges to define a graph, PPL used node and link to define the network that policies

are to be applied to.

define node

define link

define path

define policy _maker

define class

define type

define node _param

define link _param

define path _param

3. Policy ID

Policy identifiers are legal variables that identify polices. They are required to be unique

and are used to identify policies that are in conflict.

4. User ID

User identifiers are used to identify the creators of policies. They must be unique and be

legal variables. These identifiers can be used to prioritize policies that are in conflict. Enabling

prioritization is one way to resolve conflicts in network policy.

5. Paths

Paths are the component of policies in PPL that conditions, restrictions, and actions are

based on. Paths are composed of at least two nodes in a network that are connected by one or

more links. A path can be represented by a list of nodes, a link, a list of links, or a composition of

nodes and links. For example, below are valid representations of paths. Assume that nodel,

node2, and node3 are valid nodes in the network. Also assume that linkl is a link between node2

and node3.

{nodel,node2}

86

{linkl}

{nodel,linkl}

Nodes may also include wildcard characters. This allows for the representation of

multiple paths with a single path statement. For example, the path {*, nodel, *} represents all

possible paths in the network that traverse the node labeled node].

6. Target

The target field of a policy is used to identify a class of traffic. This allows a flow of

packets to be identified by a label and is critical for the implementation of differentiated services.

Below are examples of how the target component can be used:

{traffic_class ={video, voice}}

{traffic_type ={research}}

7. Conditions

The conditions field is to represent how global conditions can be used to effect a policy.

The conditions can either be language defined or user defined. For example time is a language

defined condition that can be used to restrict a policy to hours between 8:00 am and 4:00pm:

{time>= 0800, time<= 1600}

Conditions can also be user defined, for example let us suppose the user defines a class

called day, which consists of the names of the days of the week. Then a condition that restricts a

policy to weekdays can be represented by:

{day>= Monday, day<= Friday}

8. Action Items

The action item field is used to represent actions that should be taken if the target and

condition fields are satisfied. Action items might be used to set or reset a priority on a traffic

class, declaring compromises, and explicit deny actions.

9. Legal Variables

In PPL legal variables are made up of letters, digits and the underscore character. All

variables must start with a letter.

10. Dot Quad notation

Dot quad notation is used to represent IP addresses or IP networks that a policy effects.

Examples of dot quad notation that can be used are below:

87

131.*.*.*

131.1.*.*

131.1.20.'*

131.1.20.24

11. Reserved Symbols

The following are reserved symbols that can be used m class membership and

conditional statements.

">="

"<="

"!="

":="

"="

12. Comments

Comments are used to make the program more understandable by allowing the writer to

explain briefly what the program does. Comments are any characters between character

sequences/* and */, and are ignored by the compiler. For example:

I* This is a comment*/

/*
* This is also a comment
*I

13. Formal Grammar

<system _policy>

<define _list>

<define_ type>

:= <define _list> I <policy _list> I <define _list> <policy _list>

:= <define_ type> I <define _list> <policy _list>

:= DEFINE <class_ define _list> I
DEFINE <type_define_list> I

DEFINE <path_define_list> I
DEFINE <node_ define _list> I

88

<class_ define _list>

DEFINE <link_define_list> I

DEFINE <user_ define _list>

DEFINE <param _define _list>

:= <class_ define _section>

I <class_ define _list> <class_ define _section>

<class_define_section> :=CLASS <legal_var> { <class_element_list>};

<class_element_list> := <class_element> l<class_element_list>, <class_element>

<class element> := <legal_var>

<function_ define _list> := <function_ define_ section>

I <function_ define _list> <function_ define _section>

<type _define _list> := <type_ define _section>

I <type_ define _list> <class_ define _section>

<type_define_section> :=TYPE <legal_var> { <type_element_list>};

<type_ element _list> := <type_ element>

<type_ element>

<path_ define _list>

I <type_element_list>, <type_element>

:= <legal_ var>

:= <path_ define _section>

I <;path_ define _list> <path_ define _section>

<path_define_section> :=PATH <legal_var> { <define_yath_list>};

<define _path _list> := <define _path>

<define _path>

I <define _path _list>, <define _path>

:=<*>I* I< <define_yath_element_list> >

<define _path_ element _list> := <define _path_ element> , <define _path_ element>

<define_yath_element_list>, <define_yath_element>

<define _path_ element> := <define _path_ element> , <define _path_ element>

I <define _path_ element _list> , <define _path_ element>

<define_yath_element> := <legal_var> I*

<node_define_list>

<node list>

<node>

<link_ define _list>

:= NODE <node _list> ;

:= <node> I <node _list> , <node>

:= </egal_var>

:=LINK <link_list>;

89

<link list> :=<link> I <link_list>, <link>

<link> := <legal_var> < <legal_var>, <legal_var> >

<user_ define _list> :=POLICY_ MAKER <user _list> ;

<user list> := <define_ user> I <user _list> , <define _user>

<define_user> := <legal_var> (<integer>)

<param_define_list> := NODE_PARAM <legal_var> {<param_list>};

LIST_PARAM <legal_var> {<param_list>};

PATH_PARAM <legal_var> {<param_list>};

<param _element>

<param_list>

<policy _list>

<policy>

<policy!D>

<user!D>

<path _list>

<defined _yath>

<target _list>

<target>

<target_ element _list>

<target_ element>

<target _symbol>

<condition list>

<condition>

:= BW := <integer> <bw _unit>

I <legal_ var> ()

:= <param_element>

I <param _list> , <param _element>

:= <policy> I <policy _list> <policy>

:= <policy!D> <user!D>

{ <path _list> }

{ <target _list> }

{ <condition _list> }

{ <action _list> } ;

:= <legal_ var>

:= <legal_ var>

:= <defined_yath> I <path_list>, <defined_yath>

:= < legal_ var >

:= <target> I <target _list> , <target> I *
:= <legal_var> <target_symbol> { <target_element_list>}

:= <target_ element> !<target_ element _list> , <target_ element>

:= <legal_ var>

:==i!=

:= * I <condition> I <condition _list> , <condition>

:= PRIORITY <= <integer>

I PRIORITY>= <integer>

I HOPCOUNT >= <integer>

90

I HOPCOUNT <= <integer>

I TIME •<= <time>

I TIME >= <time>

I HOSTIP =<quad _dot>

I HOSTIP != <quad_dot>

I <bandwidth _symbol> >= <number_ bw _units>

I <bandwidth_symbol> <=<number _bw _units>

I <legal_ var> <conditional_ defined_ operations>

<conditional_defined _operations> := <conditional_ operations>

I () <conditional_symbol> <number _units>

<conditional_ symbol> := GTEQ I LSEQ I NTEQ I EQUAL I< I>

<bandwidth_symbol> := BW

<conditional_ operations> := <conditional_ symbol> <legal_ var>

<action _list> :=DENY

I <action> I <action _list> , <action>

. <action> := <action _Jeserved _word>

I <action _Jeserved _word> := <number_ units>

<action_Jeserved_ word> :=PRIORITY I PERMIT I HOPCOUNT

<bw _unit> := GBPS I MBPS I KBPS I BPS

<time>

<number _units>

<number>

<number_ bw _units>

<output_ number>

<quad_dot>

<unit>

:=<integer> I <integer>: <integer>

:= <number> I <number> <unit>

:= <integer> I <float>

:= <output_ number> <bw _unit>

:= <integer> I <float>

:= <quad_ dot _1> I
<quad_ dot _1> I
<quad_dot_3> I
<quad_ dot_ 4>

:= MBYTES I BYTES I BITES I SEC I

MSECIUSECIPACKETS

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

APPENDIX B. POLICY RULE INPUT FILE OF CASE STUDY

I*
* Defme the nodes of the network
*I
defme node NPS, DARPA, SPA WAR, NSF, IETF, Internet_linkl, Internet_link2;

I*
* Define the links of the network
*I
define link NPS_DARPA <NPS, DARPA>, NPS_NASA <NPS, NASA>;
define link DARPA_IETF <DARPA, IETF>, DARPA_NSF <DARPA, NSF>;
define link DARPA_SPAWAR <DARPA, SPA WAR>, DARPA_CERT <DARPA, CERT>;
define link NASA_ IETF <NASA, IETF>;
define link IETF _FDA <IETF, FDA>;
define link SPAWAR_NSF <SPA WAR, NSF>, SPAWAR_NATO<SPAWAR, NATO>;
define link NSF _NATO <NSF, NATO>;
define link UN_NATO <UN, NATO>;

I*
* Defme the paths used in the network policies
*I

define path NPS _ CERT { <NPS, *, CERT>};
defme path NPS_NSF {<NPS, DARPA, NSF>};
defme path NASA_ SPA WAR { <NASA,IETF ,DARPA, SPA WAR>};
define path UN_NPS {<UN,*,NPS>};
define path ALL{*};

I*
* Define the users who can create policies
*I

define policy_ maker Net_ Manager(1), Xie(3), Lundy(3), Stone(5);

I*
*User defined classes of traffic which can be used
* in the target element of policy rules
*I
defme class traffic_ type {research, university};
defme class traffic_ class {data, video, voice};
defme class traffic_ security {Private, Public};
defme class traffic _priority {High, Med, Low};
define class user {faculty, student, staff, accounting} ;
define class node_traffic {NPS, DARPA, SPAW AR, NSF, IETF, Internet_linkl, Internet_link2};

93

/*
*User defined type that can be used in the conditional element
* of a policy rule.
*I

define type day {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday};

/*
* Paramaters associated with links and paths
*I

define link_param NPS_DARPA {BW := 100MBPS, delay(), loss_rate()};
define path_param NPS_CERT {BW := 100 MBPS,jitter()};
define path_param NPS_NSF {BW := 100 MBPS,jitter()};

/*
*Format of Policy Term:
* PolicyiD UseriD {paths} {target} {conditions} {action_items};
*I

/*
* Permit research, NPS and NSF traffic Monday - Friday
*between the hours of0800 and 1200
*I

Policy1 Net_Manager {NPS_NSF}

/*

{traffic_type ={research}, node_traffic = {NPS, NSF}}
{day!= Saturday, day!= Sunday, time>= 0800, time<= 1200}
{permit};

* Deny all traffic from NSF on the link between NASA and SPA WAR
*I

Policy2 Stone {NASA_SPAWAR} {node_traffic= {NSF}}{*} {deny};

/*
* Permit all traffic unconditionally on the two paths
*specified with the NPS_CERT path definition
*I

Policy3 Lundy {NPS_CERT} {*} {*} {permit};

/*
* Permit all traffic unconditionally on the NASA->IETF link
*I

Policy4 Net_Manager {NASA_IETF} {*} {*} {permit};

94

I*
* Deny all university traffic after 1100 on the
* NPS->DARPA link
*I
Policy5 Net_ Manager {NPS_DARPA}

{traffic_ type = {university}}
{time>= 1100}
{deny};

I*
* Deny university traffic after 1300 on the
* NPS->DARP A link
*I

Policy6 Net_ Manager {NPS_DARPA}
{traffic_ type = {university}}
{time>= 1300}
{deny};

I*
* Deny all traffic from hosts with and address beginning
*with 131.
*I
Policy7Net_Manager {NSF}{*} {hostiP= 131.*.*.*} {deny};

I*
* Permit all traffic from hosts whos addresses begin with
*either 153.20.8 or 131.40.
*I
Policy8 Xie {UN_NPS} {*} {hostiP = 153.20.8.*, hostiP = 131.40.*.*} {permit};

I*
* Permit and assign a priority of 3 to video traffic before the hour
* of0800, on the NPS->DARPA link
*I

Policy9 Net_Manager {NPS_DARPA} {traffic_class ={video}}
{time <=0759} {priority:= 3};

I*
*Deny video traffic on the NPS->DARPA link between the hours of0800 and 1600

*I
Policy10 Net_Manager {NPS_DARPA} {traffic_class ={video}}

{time >=0800, time <=1600} {deny};

95

/*
* Permit and assign a priority of 5 to video traffic after the hour
*of 1600 on the NPS->DARPA link
*I

Policy11 Net_ Manager {NPS_DARPA} {traffic_class ={video}}
{time >=1601} {priority:= 5};

96

APPENDIX C. POLICY RULE OUTPUT FILE FOR CASE STUDY

Print Unresolved conflicts

Conflict PolicylO < > Policyl
PolicylO Path= [NPS,DARPA]
PolicylO Targets: deny traffic_class=[video]
Policyl Path= [NPS,DARPA,NSF]
Policyl Targets: permit traffic_type=[research], permit node_traffic=[NPS], permit

node_ traffic=[NSF]
Target Conflicts: node_traffic = [NPS], node_traffic =[NSF], traffic_type =[research]

Conflict Policy5 < > Policyll
Policy5 Path = [DARP A,NPS]
Policy5 Targets: deny traffic_type=[university]
Policyll Path= [DARPA,NPS]
Policyll Targets: permit traffic_class=[video]
Target Conflicts: traffic_class =[video]

Conflict Policy5 < >Policy!
Policy5 Path= [NPS,DARPA]
Policy5 Targets: deny traffic_ type=[university]
Policyl Path= [NPS,DARPA,NSF]
Policy I Targets: permit traffic_type=[research], permit node_traffic=[NPS], permit

node_ traffic= [NSF]
Target Conflicts: node_traffic = [NPS], node_traffic =[NSF], traffic_type =[research]

Conflict Policy5 < > Policyll
Policy5 Path= [NPS,DARPA]
Policy5 Targets: deny traffic_type=[university]
Policyll Path= [NPS,DARPA]
Policyll Targets: permit traffic_class=[video]
Target Conflicts: traffic_class =[video]

Conflict Policy6 < > Policyll
Policy6 Path = [DARP A,NPS]
Policy6 Targets: deny traffic_type=[university]
Policyll Path= [DARPA,NPS]
Policyll Targets: permit traffic_class=[video]
Target Conflicts: traffic_class =[video]

Conflict Policy6 < > Policyll

97

Policy6 Path= [NPS,DARPA]
Policy6 Targets: deny traffic_type=[university]
Policy II Path= [NPS,DARPA]
Policy II Targets: permit traffic_class=[video]
Target Conflicts: traffic_class =[video]

Conflict Policy?< >Policy I
Policy? Path = [NSF]
Policy? Targets: []
Policy! Path= [NPS,DARPA,NSF]
Policy I Targets: permit traffic_type=[research], permit node_traffic=[NPS], permit

node_ traffic= [NSF]
Target Conflicts: node_traffic = [NPS], node_traffic =[NSF], traffic_type =[research]

Print Resolved conflicts

Conflict PolicylO < > Policy8
PolicylO Path= [DARPA,NPS]
Policy I 0 Targets: deny traffic_ class=[video]
Policy8 Path= [UN,NATO,NSF,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: PolicylO(Priority =I) overrides=> Policy8(Priority = 3)

Conflict PolicylO < > Policy8
PolicylO Path= [DARPA,NPS]
PolicylO Targets: deny traffic_class=[video]
Policy8 Path= [UN,NATO,NSF,SPA W AR,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 = [permit_all]
Resolved: Policy I O(Priority = I) overrides=> Policy8(Priority = 3)

Conflict PolicylO < > Policy8
PolicylO Path= [DARPA,NPS]
PolicylO Targets: deny traffic_class=[video]
Policy8 Path = [UN,NATO,SPA W AR,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: PolicylO(Priority = I) overrides=> Policy8(Priority = 3)

Conflict Policy I 0 <=> Policy8
PolicylO Path= [DARPA,NPS]
PolicylO Targets: deny traffic_class=[video]
Policy8 Path= [UN,NATO,SPAW AR,NSF,DARPA,NPS]
Policy8 Targets: []

98

Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy10(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy10 < > Policy3
Policy10 Path= [NPS,DARPA]
Policy10 Targets: deny traffic_class=[video]
Policy3 Path= [NPS,DARPA,CERT]
Policy3 Targets: []
Target Conflicts: Policy3 = [permit_ all]
Resolved: Policy10(Priority = 1) overrides=> Policy3(Priority = 3)

Conflict Policy4 < > Policy2
Policy4 Path = [NASA,IETF]
Policy4 Targets: []
Policy2 Path= [NASA,IETF,DARPA,SPAW AR]
Policy2 Targets: deny node_traffic=[NSF]
Target Conflicts: Policy4 =[permit_ all]
Resolved: Policy4(Priority = 1) overrides=> Policy2(Priority = 4)

Conflict Policy5 < > Policy8
Policy5 Path = [DARP A,NPS]
Policy5 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,NSF,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy5(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy5 < > Policy8
Policy5 Path = [DARP A,NPS]
Policy5 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,NSF,SPAWAR,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy5(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy5 < > Policy8
Policy5 Path = [DARP A,NPS]
Policy5 Targets: deny traffic_type=[university]
Policy8 Path = [UN,NATO,SPA W AR,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy5(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy5 < > Policy8
Policy5 Path= [DARPA,NPS]
Policy5 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,SPAWAR,NSF,DARPA,NPS]

99

Policy8 Targets: []
Target Conflicts: Policy8 = [permit_ all]
Resolved: Policy5(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy5 < > Policy3
Policy5 Path= [NPS,DARPA]
Policy5 Targets: deny traffic_type=[university]
Policy3 Path= [NPS,DARPA,CERT]
Policy3 Targets: []
Target Conflicts: Policy3 = [permit_all]
Resolved: Policy5(Priority = 1) overrides=> Policy3(Priority = 3)

Conflict Policy6 < > Policy8
Policy6 Path = [DARP A,NPS]
Policy6 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,NSF,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy6(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy6 <-> Policy8
Policy6 Path = [DARP A,NPS]
Policy6 Targets: deny traffic_type=[university]
Policy8 Path = [UN,NA TO,NSF ,SPA W AR,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 = [permit_ all]
Resolved: Policy6(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy6 < > Policy8
Policy6 Path = [DARP A,NPS]
Policy6 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,SPA W AR,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 = [permit_ all]
Resolved: Policy6(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy6 < > Policy8
Policy6 Path = [DARP A,NPS]
Policy6 Targets: deny traffic_type=[university]
Policy8 Path= [UN,NATO,SPAW AR,NSF,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy8 =[permit_ all]
Resolved: Policy6(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy6 < > Policy3
Policy6 Path= [NPS,DARPA]

100

Policy6 Targets: deny traffic_type=[university]
Policy3 Path= [NPS,DARPA,CERT]
Policy3 Targets: []
Target Conflicts: Policy3 =[permit_ all]
Resolved: Policy6(Priority = 1) overrides=> Policy3(Priority = 3)

Conflict Policy? < > Policy8
Policy? Path = [NSF]
Policy? Targets: []
Policy8 Path = [UN,NA TO,NSF ,DARP A,IETF ,NASA,NPS]
Policy8 Targets: []
Target Conflicts: Policy? = [deny _all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy? < > Policy8
Policy? Path = [NSF]
Policy? Targets: []
Policy8 Path = [UN,NATO,NSF ,DARP A,NPS]
Policy8 Targets: []
Target Conflicts: Policy?= [deny_all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy? < > Policy8
Policy? Path = [NSF]
Policy? Targets: []
Policy8 Path= [UN,NATO,NSF,SPA WAR,DARP A,IETF,NASA,NPS]
Policy8 Targets: []
Target Conflicts: Policy?= [deny_all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy? < > Policy8
Policy? Path = [NSF]
Policy? Targets: []
Policy8 Path= [UN,NATO,NSF,SPAWAR,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy?= [deny_all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

Conflict Policy? < > Policy8
Policy? Path= [NSF]
Policy? Targets: []
Policy8 Path= [UN,NATO,SPAW AR,NSF,DARPA,IETF,NASA,NPS]
Policy8 Targets: []
Target Conflicts: Policy?= [deny_all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

101

Conflict Policy? < > Policy8
Policy? Path = [NSF]
Policy? Targets: []
Policy8 Path= [UN,NATO,SPAWAR,NSF,DARPA,NPS]
Policy8 Targets: []
Target Conflicts: Policy? = [deny_ all]
Resolved: Policy7(Priority = 1) overrides=> Policy8(Priority = 3)

102

APPENDIX D. PPL PARSER SOURCE CODE

/*INCLUDE SECTION*/

%{
#include "symbol.h"
#include <stdio.h>
#include <string.h>

I* Function prototype to print out the
* compiler user options
*I

void print_ usage();

/*
*Text string passed in by flex
*I

extern char *yytext;

/*
* Pointer to output file created to contain
* formal logic statements
*I

FILE *logic_out;

/*
* Variables used record the compiler options
* entered by the user
*I
int no_ wild = 0;
int no_implicit_deny = 0;
extern int verbose;

/*
* Temporary Pointers to entries in Symbol Table
*I
struct symtab *class_ id = 0;
struct symtab *function_id = 0;
struct symtab *type_id = 0;
struct symtab *path_id = 0;
struct symtab *param _id = 0;
struct symtab *policy_id = 0;
struct symtab *link_name = 0;
struct symtab *link_nodel = 0;

103

struct symtab *link_node2 = 0;

I* Return value from symbol lookup function *I
int class _found;

I* Flag to indicate the first time in the loop *I
int first_ time;

I*
* Flag to indicate if defined type is to be
* represented in formal logic, and output to file.
*I
int output_ flag= 0;

I* Number of policies processed *I
int policy_ count= 0;

I*
* Flag to indicate messages supported on network links
* are to output to the file.
*I

int message_ flag = 0;

I* Count to uniquely identified defined types internally *I
int type_ count = 0;

I*
* Variables to hold clock times convertd from strings to
*integers
*I

int clock_time, clock_timel, clock_time2;

%}

I* DEFINITION SECTION *I

I*
*Union to hold possible symbol types
*I

%union {

}

struct symtab *symp;
char *string;

I* Define the following Variables as type string *I
%token <string> LEGAL V AR
%token <string> INTEGER

104

%token <string> FLOAT
%token <string> QUAD_DOT_l
%token <string> QUAD_DOT_2
%token <string> QUAD_DOT_3
%token <string> QUAD_DOT_4

I*
* Reserved Symbols
*I

%token GTEQ LSEQ NTEQ ASSIGN EQUAL CR WILDCARD

I*
* Reserved Words
*I

%token DENY PRIORITY ALLOW PERMIT HOPCOUNT HOSTIP USERID
%token TIME DAY DEFINE CLASS MESSAGE TYPE PATH NODE LINK
POLICY _MAKER
%token NP ARAM LP ARAM PPARAM
%tokenBW

I*
* Measurement Units
*I

%token MBYTES BYTES GBPS MBPS KBPS BITES BPS SEC MSEC USEC PACKETS

I* RULES SECTION *I
%%

system _policy: define _list
I policy _list
I define_list policy_list

I*
* Rules to allow user defined classes, messages, types, paths,
* nodes, links, and users
*I

define _list: define_ type
I define _list define_ type

defme _type: DEFINE class_ define _list
I DEFINE type_define_list
I DEFINE path_define_list
I DEFINE node_define_list
I DEFINE link_defme_list

105

I DEFINE user_define_list
I DEFINE param_define_list

I*
* Rules for defining parameters associated with nodes, links, and paths
*I

param define list: - -

param list:

param _element:

NPARAM LEGAL V AR
{if(sym_look ($2,DEFINED_NODE) != FOUND_ENTRY)

{yyerror ("Unknown NODE");}
else {param_id = sym_tab_ref($2, DEFINED_NODE);

message_flag = 0;};}
'{' param_Iist'}' ';'
LPARAM LEGALVAR
{if (sym_look ($2,DEFINED _LINK) !=FOUND _ENTRY)

{yyerror ("Unknown LINK ");}
else {param_id = sym_tab_ref($2, DEFINED_LINK);

message_flag = 1;};}
'{' param_list '}' ';'
PPARAM LEGAL V AR
{if(sym_look ($2,DEFINED_PATH) != FOUND_ENTRY)

{yyerror ("Unknown PATH");}
else {param_id = sym_tab_ref($2, DEFINED_PATH);

message_flag = 0;};}
'{' param_list '}' ';'

param _element
param_Iist ',' param_element

BW ASSIGN INTEGER
{ fprintf(logic _out, "path _param(\'%s\', \'BW\',

\' \',%s",(param_id)->name,$3);}
bw_unit
{fprintf(logic_out,").\n");}
LEGALVAR
{if(sym_look ($1,DEFINED_MESSAGE) != FOUND_ENTRY){

sym_add($1 ,DEFINED _MESSAGE);}
if(sym_tab_entry_lookup(param_id, $1) = NO_ENTRY){

sym_tab_entry_add (param_id, $1);};
if (message_ flag)

'(' ')'

fprintf(logic _out, "path_ message(\'%s\', \'%s\').\n",
(param_id)->name,$1);}

106

/*
* Rules for defining users who can make policies

*I

user define list: - -

user_list:

define_ user:

/*

POLICY_MAKER user_list ';'

define_ user
user_list ',' define_user

LEGALVAR
{if(sym_look ($1,DEFINED_USER) = FOUND_ENTRY)

{yyerror ("Re-definition of USER");}
else {class_id = sym_add($1, DEFINED_USER);};}

'('INTEGER
{ sym_ tab_ entry _add(class _id, $4);}

')'

* Rules for defining links in the network

*I

link_ define _list:

link_list:

link:

LINK link list '·' - '

link
link _list ',' link

LEGALVAR
{if(sym_look ($1,DEFINED_LINK) = FOUND_ENTRY)

{yyerror ("Re-definition of Link");}
else {link_name = sym_add($1, DEFINED_LINK);};}

'<LEGALVAR
{if ((sym_look ($4,DEFINED _NODE)) !=FOUND _ENTRY)

{yyerror ("Unknown Node in Link");};
link_node1 = sym_tab_ref($4, DEFINED_NODE);}

','LEGALVAR
{if((sym_look ($7,DEFINED_NODE)) != FOUND_ENTRY)

{yyerror ("Unknown Node in Link");};
link_node2 = sym_tab_ref($7, DEFINED_NODE);}

'>'
{fprintf(logic_out,"link(\'%s\',\'%s\',\'%s\').\n",

(link_ name)->name,(link _node 1)->name, (link_ node2)->name);
fprintf(logic_out,"link(\'%s\',\'%s\',\'%s\').\n",

(link_ name)->name,(link _ node2)->name,(link _node 1)->name);

}

107

I*
* Rules for defining nodes in the network
*I

node_ define _list: NODE node_list';'

node list: node
node_list ','node

node: LEGAL V AR
{if((class_found = sym_look ($1,DEFINED_NODE)) = FOUND_ENTRY)

{yyerror ("Re-definition ofNode ");}
else {class_id = sym_add($1, DEFINED_NODE);};}

I*
* Rules for defining paths in the network
*I

path_ define _list:

I

path_ define_ section:

define _path _list:

I

define _path:

path_ define_ section
path_ define _list path_ define_ section

PATHLEGALVAR
{if ((sym _look ($2,DEFINED _PATH))= FOUND _ENTRY)

{yyerror ("Re-definition of Path");}
else {class_id = sym_add($2, DEFINED_PATH);

fprintf (logic_ out, "path _links(\'%s\',[" ,$2);};}
'{' define_path_list '}' ';' {fprintf(logic_out,"]).\n");}

define _path
define_path_list ',' {fprintf(logic_out,11

,
11
);} define _path

'<'WILDCARD'>' {fprintf(logic_out,"'*"');}
WILDCARD { fprintf (logic_ out,"'*"');}
'<' define_path_element_list '>'

define _path_ element_ list:
define _path_ element

define _path_ element ',' { fprintf(logic _out, 11
,

11
);}

I define _path_ element_ list ',' { fprintf(logic _out, 11
, ");}

define _path_ element

define _path_ element: LEGALVAR
{if(sym_look ($1, DEFINED_NODE) != FOUND_ENTRY)

108

/*

{yyerror ("Invalid Path (Node not defined)");}
else { fprintf (logic_ out, "'%s"' ,$1); } ; }
WILDCARD { fprintf (logic_ out,"'*"');}

* Rules for defining traffic classes to be used in the network
*I

class_ define _list: class_ define_ section
class_ define _list class_ define_ section

class_ define_ section: CLASS LEGAL V AR
{if((sym_look ($2,DEFINED_CLASS)) = FOUND_ENTRY)

{yyerror ("Re-definition of Class ");}
else {class_id = sym_add($2, DEFINED_CLASS);};}
'{' class_element_list '}' ';';

class_ element_ list: class_ element
I class_element_list ',' class_element

class element: LEGALV AR {sym_tab_entry_add(class_id, $1);};

/*
* Rules for defming types to be used in the network
*I

type_ define _list:

I

type_ define_ section:

type_element_list:

I

type_ define_ section
type_ define _list class_ define_ section

TYPE LEGAL V AR
{type_count = 0;
if((sym_look ($2, DEFINED_TYPE)) = FOUND_ENTRY)

{yyerror ("Re-defmition of Class ");}
else {class_id = sym_add($2, DEFINED_TYPE);};}
'{' type_element_list '}' ';';

type_ element
type_element_list ',' type_element

type_ element: LEGAL V AR
{ sym _tab_ entry_ type _add(class _id, $1, type_ count);type _count++;};

109

/*
*Syntax for Policy Term
* policyiD <useriD> {paths} {target} {conditions} {action_items}
* - policyiD - unique policy identification token
* - useriD - user ID of policy creator
* - paths - network paths the policy effects
* - target - target class of network traffic
* - conditions - any global conditions (items are AND'ed)
* - action_items- for setting parameters (e.g. policy priority),
* declaring compromises and explicit deny, etc.
*I

/*
* Rules for defining policies
*I

policy_list: policy

I policy _list policy

policy: policyiD useriD '{' path_list '}' '{'
{ fprintf (logic_ out, "policy _targets(\'%s\',[" ,(policy _id)->name); }
target_list
{ fprintf (logic_ out, "]).\n ");}
'}' '{' condition_list '}' '{' action_list '}' ';'

policyiD: LEGALVAR
{if(sym_look ($1, POLICYID) = FOUND_ENTRY)

{yyerror ("Re-definition of Policy ID ");}
else {policy_id = sym_add($1, POLICYID);};policy_count++;}

useriD: LEGAL V AR
{if(sym_look($1, DEFINED_USER) != FOUND_ENTRY)

{yyerror ("UNKNOWN user");}
else

{ fprintf (logic_ out, "policy_ owner(\'%s\', \'%s\').\n" ,(policy_ id)->name, $1); } ; }

/*
* Syntax for Path Component
*I

path_list: defined _path

I path _list ',' defmed _path

defined _path: LEGAL V AR

110

/*

{if((sym_look ($1,DEFINED_PATH) != FOUND_ENTRY) &&
(sym_look ($1,DEFINED_LINK) != FOUND_ENTRY) &&
(sym_look ($1,DEFINED_NODE) != FOUND_ENTRY)){

yyerror ("Unknown DEFINED element ");}
else{ fprintf(logic _out, "policy _path(\'%s\',\'%s\').\n" ,(policy_ id)->name,$1);} ;}

* Syntax for Target Component
*I

target_list:

I
I

target{}
target_list ',' {fprintf(logic_out,",");} target
WILDCARD
{ fprintf(logic _out,"'*','*',[]");
sym _ add((policy _id)->name, TARGET _ALL);}

target: LEGAL V AR
{if(sym_look($1, DEFINED_CLASS) = FOUND_ENTRY)

{class_id = sym_tab_ref($1, DEFINED_CLASS);
fprintf(logic _out, "'%s"' ,$1); }

else yyerror ("Invalid Class");}
target_symbol '{'
{ fprintf(logic _out,"[");}
target_ element_ list
{ fprintf(logic _out,"]");}
'}'

target_ element_list: target_ element {}

I

,

target_element_list ',' {fprintf(logic_out,",");}
target_ element

target_ element: LEGAL V AR

'

{if (sym _tab_ entry _look((class _id)->name,$1,
DEFINED_ CLASS)= NO _ENTRY)

{yyerror ("Invalid Class Entry");}
fprintf(logic _out, "'%s"' ,$1); }

target_symbol: EQUAL {fprintf(logic_out,",'=',");}
I NTEQ {fprintf(logic_out,",'!=',");}

/*
* Syntax for Conditions Component

*I

condition _list: WILDCARD { fprintf(logic _out, "no_ conditions(\'%s\').\n" ,(policy _id)->name);}

111

condition:

{class_id = function_id = type_id = (struct symtab *) -1;}
condition {}
condition_list ',' {class_id = function_id = type_id = (struct symtab *) -1;}
condition {}

PRIORITY LSEQ INTEGER
{ fprintf(logic _out, "condition _path(\'%s\',priority, <=, %s).\n ",

(policy _id)->name,$3); }
PRIORITY GTEQ INTEGER
{ fprintf(logic _out, "condition _path(\'%s\',priority,>=, %s).\n",

(policy_ id)->name,$3); }
HOPCOUNT GTEQ INTEGER
{ fprintf(logic _out, "condition _path(\'%s\',hopcount,>=, %s).\n",

(policy_ id)->name,$3); }
HOPCOUNT LSEQ INTEGER
{ fprintf(logic _out, "condition _path(\'%s\' ,hopcount,>=, %s). \n",

(policy_ id)->name,$3); }
TIME LSEQ { fprintf(logic _out, "condition _path(\'%s\',time, <=, ",

(policy_ id)->name); } time
TIME GTEQ {fprintf(logic_out,"condition_path(\'%s\',time,>=,",

(policy_ id)->name); } time
HOSTIP EQUAL
{ fprintf(logic _out," condition _path(\'%s\', \'host_ id\', \' \', ",

(policy_ id)->name); }
quad_dot
{fprintf(logic_out,").\n");}
HOSTIPNTEQ
{ fprintf(logic _out, "condition _path(\'%s\' ,\'host_ id\', \'!=\',",
(policy_id)->name);}
quad_dot
{fprintf(logic_out,").\n");}
bandwidth_symbol GTEQ
{fprintf(logic_out,"condition_path(\'%s\',\'BW\',>=,[",(policy_id)->name);}
number_ bw _units
{fprintf(logic_out,"]).\n");}
bandwidth_symbol LSEQ
{ fprintf(logic _out, "condition _path(\'%s\',\'BW\', <=,[",(policy_ id)->name); }
number bw units
{fprintf(logic_out,"]).\n");}

USERID EQUAL LEGALVAR
{ fprintf(logic _out, "condition _path(\'%s\',\'user _id\',\' \',\'%s\').\n",
(policy_id)->name,$3);}
USERID NTEQ LEGALV AR
{fprintf(logic_out,"condition_path(\'%s\',\'user_id\',\'!=\',\'%s\').\n",
(policy_ id)->name,$3); }
LEGALVAR

112

{ if(sym_look ($1, DEFINED_MESSAGE) = FOUND_ENTRY){
function_id = sym_tab_ref($1, DEFINED_MESSAGE);
fprintf(logic_out,"policy_message(\'%s\',\'%s\').\n",

(policy _id)->name,$1);
};
if(sym_look ($1, DEFINED_TYPE) = FOUND_ENTRY){

type_id = sym_tab_ref($1, DEFINED_TYPE);
output_flag = 1;

};
if(class_id = (struct symtab *) -1 &&

function_id ==(struct symtab *) -1 &&
type_ id = (struct symtab *) -1){
yyerror ("Unknown DEFINED element ");

};}
conditional_ defined_ operations {}

time: INTEGER
{clock_time = atoi($1);
if(clock_time >= 0 && clock_time < 2400){

}

if (clock_ time < 1 0){ fprintf(logic _out, "000%d00).\n ",clock_ time);}
else if(clock_time < 100){fprintf(logic_out,"OO%d00).\n",clock_time);}
else if(clock_time < 1000){fprintf(logic_out,"O%d00).\n",clock_time);}
else {fprintf(logic_out,"%d00).\n",clock_time);}

else {yyerror ("Invalid Time: range 0000-2359 ");}}
I INTEGER':' INTEGER

{clock_timel = atoi($1);
clock_time2 = atoi($3);
if(clock_timel >= 0 && clock_time1 < 2400){

}

if(clock_time1 < 10){fprintf(logic_out,"OOO%d",clock_time1);}
else if(clock_time1 < 100){fprintf(logic_out,"OO%d",clock_time1);}
else if (clock _time 1 < 1 000){ fprintf(logic _out, "O%d" ,clock_ time 1); }
else { fprintf(logic _out, "%d" ,clock_ time 1); }

else {yyerror ("Invalid Time: range 0000:00-2359:59 ");}
if(clock_time2 >= 0 && clock_time2 <=59){

if(clock_time2 < 10){fprintf(logic_out,"O%d).\n",clock_time2);}
else {fprintf(logic_out,"%d).\n",clock_time2);}

}
else {yyerror ("Invalid Time X:Y :X range 0000-2359, Y range 00-59");}}

conditional_ defined_ operations: conditional_ operations
I '(' ')'

113

{if(function_id = (struct symtab *) -1) {
yyerror ("Unknown Message");};}

conditional_symbol number_units

conditional_ operations: {if (output_ flag) {
fprintf(logic _out, "condition _path(\'%s\', \ '%s\', ",

(policy_ id)->name,(type _ id)->name);
};}
conditional_ symbol LEGAL V AR
{if(class_id = (struct symtab *) -1 &&

}

type_id = (struct symtab *) -1){
yyerror ("Invalid CLASS/TYPE");

if(class_id != (struct symtab *)-I)

}

{if(sym _tab_ entry _look((class_ id)->name,$3,
DEFINED_CLASS) = NO_ENTRY){

yyerror ("Invalid CLASS Member");
}

if(type_id != (struct symtab *) -1) {
if(sym_tab_entry_look((type_id)->name,$3,

DEFINED _TYPE)= NO _ENTRY){
yyerror ("Invalid TYPE member");

};}

}
else{

}
fprintf(logic _out, ",\'%s\').\n",$3);

number_ bw _units: output_number bw _unit;

bw unit:

I
I
I

number units:

GBPS { fprintf(logic _out,", \'GBPS\"');}
MBPS { fprintf(logic _out, 11

, \'MBPS\"');}
KBPS { fprintf(logic _out, 11 ,\'KBPS\"');}
BPS {fprintf(logic_out, 11,\'BPS\"');}

number
number unit

conditional_ symbol: GTEQ {if(output_flag) {fprintf(logic_out,"\'>=\"'); output_ flag= 0;};}
LSEQ {if(output_flag) {fprintf(Iogic_out,"\'<=\"');output_flag = 0;};}
NTEQ {if (output_ flag) { fprintf(logic _out, "\'!=\"');output_ flag = 0;};}

I
I

114

EQUAL
{if(output_flag) {fprintf(logic_out,"\' \"');output_flag = 0;};}
'>'
{if(type_id != (struct symtab *) -l){yyerror ("Invalid Type Operator");}
if (output_ flag){ fprintf(logic _out, "\'>\"');output_ flag = 0;};}
'<
{if(type_id != (struct symtab *) -1){yyerror ("Invalid Type Operator");}
if (output_ flag) { fprintf(logic _out,"\'<\"'); output_ flag = 0;};}

bandwidth_symbol: BW {}

number: INTEGER{}
FLOAT{}

output_ number: INTEGER { fprintf(logic _out, "%s" ,$1); }
I FLOAT {fprintf(logic_out,"%s",$1);}

quad_dot: QUAD_DOT_l {replace_dots($1); fprintf(logic_out,"[%s]",$1);}
QUAD_DOT_2 {replace_dots($1); fprintf(logic_out,"[%s]",$1);}
QUAD_DOT_3 {replace_dots($1); fprintf(logic_out,"[%s]",$1);}
QUAD _DOT_ 4 {replace_dots($1); fprintf(logic_out,"[%s]",$1);}

I
I
I

unit: '%'

I*

JMBYTES
JBYTES
I BITES
JSEC
JMSEC
JUSEC
I PACKETS

* Syntax for Action Items Component
*I

action_list:

action:

DENY
{ fprintf(logic _out, "policy_ action('%s',deny).\n",(policy _id)->name);
if(sym_look ((policy_id)->name, TARGET_ALL) = FOUND_ENTRY)

{fprintf(logic_out,"target('%s',deny_all).\n",(policy_id)->name);};}
action
action_list ','action

action _reserved_ word

115

action _reserved_ word ASSIGN number_ units

action _reserved_ word: PRIORITY
{fprintf(logic_out,"policy_action('%s',permit).\n",(policy_id)->name);
if (sym _look ((policy _id)->name,

%%

TARGET _ALL)= FOUND _ENTRY)
{ fprintf(logic _out, "target('%s' ,permit_ all). \n" ,(policy_ id)->name); } ; }
PERMIT
{ fprintf(logic _out, "policy_ action('%s',permit).\n",(policy _id)->name);
if(sym_look ((policy_id)->name,

TARGET_ALL) = FOUND_ENTRY)
{ fprintf(logic _out, "target('%s',permit_ all).\n ",

(policy _id)->name); } ; }
HOPCOUNT
{ fprintf(logic _out, "policy_ action('%s' ,permit).\n" ,(policy_ id)->name);
if(sym_Iook ((policy_id)->name,

TARGET_ALL) = FOUND_ENTRY)
{ fprintf(logic _out, "target('%s',permit_all).\n",(policy _id)->name); } ; }

extern FILE *yyin;
extern FILE *logic_out;

main(int ac, char **av)
{

FILE *prologrules; /* Input files ofProLog policy rules */
int ij,count,c,first_time; /*Loop counters and flags*/
/*
* File to contain Prolog Facts from PPL Configuration File
* and the ProLog policy rules
*I

char *logic_file_name;

/*
* Scan the arguments passed in with the compile statement.
* Set the appropriate flags according to the user's request
*I

while (-ac > 0){
/*User wanted the Symbol Tables Dumped after parse*/
if(strcmp (av[ac],"-v") = 0){

verbose= 1;
}
/*User requests no wild card expansion*/
else if(strcmp (av[ac],"-no_wild") = 0){

116

}

I*

no wild= 1· - '
}
I*
* Do not implicit denies in the conflict detection
*phase if the policy's creater are the same.
*I

else if(strcmp (av[ac],"-no_implicit_deny") = 0){
no_implicit_deny = 1;

}
I* Test the input configuration file *I
else {

}

if((yyin=fopen(av[ac], "r"))=NULL) {
perror (av[ac]);
exit(1);

}
logic_file_name =(char *)malloc ((size_t)15);
sprintf (logic _file_ name, "ppll.txt");

if((logic_out = fopen(logic_file_name, "w")) =NULL) {
perror (logic_file_name);
exit(1);

}

* If the input file was not specified or invalid,
* print compiler usage to the user
*I
if (yyin =NULL){

print_ usage();
exit(l);

}

I* Provide parsing output and number of policies parsed *I
if (!yyparse()){

}
else

printf ("\nParse worked\n");
if (policy_ count = 0){

}
else

printf(''No policies specified\n\n");
exit(O);

printf("%d policies scanned\n\n",policy_count);

printf ("\nParse failed\n\n");

117

/*
* Loop thru the symbol table to create ProLog facts about
* the nodes used to construct the network.
*I

count= 0;
for (i = 0; i < MAXSYMBOLS; i++){

if(symtable[i].name =NULL)
break;

}

/*

switch (symtable[i].type) {

}

case DEFINED _NODE:
fprintf (logic_ out, "node _label('%s', %i). \n ",

symtable[i] .name,count++);
break;

* Loop thru the symbol table to create ProLog facts about
* user defined classes of traffic.
*I

count= 0;
for (i = 0; i < MAXSYMBOLS; i++){

if(symtable[i].name =NULL)
break;

}

/*

switch (symtable[i].type) {

}

case DEFINED_ CLASS:
first_time = 1;
fprintf (logic_ out, "class('%s',[", symtable[i].name);
for G = 0; j < MAXCLASSENTRIES; j++){

}

if (class_ entries[j] .name = NULL)
break;
if (class_entries[j].class_reference = &(symtable[i])){

if (first_ time){

}

}
else

fprintf (logic_ out, "'%s"', class_ entries[j] .name);
first_time = 0;

fprintf (logic_ out,", '%s"', class_ entries[j] .name);

fprintf (logic_out, "]).\n");
break;

118

* Loop thru the symbol table to create ProLog facts about
* user defined types to be used in conditional statements,
* and users defined who can create network policies.
*I
count= 0;
for (i = 0; i < MAXSYMBOLS; i++){

}

I*

if (symtable[i] .name = NULL)
break;

switch (symtable[i].type) {
case DEFINED_ TYPE:

}

for G = 0; j < MAXCLASSENTRIES; j++){
if (class_entries[j].name =NULL)
break;
if (class_ entries [j] .class _reference = &(symtable[i])) {

fprintf(logic_out,"type(\'%s\',\'%s\',%d).\n",
symtable[i] .name,class _ entries[j] .name, class_ entries[j]. value);

}
}
break;

case DEFINED_ USER:
for G = 0; j < MAXCLASSENTRIES; j++){

if (class_ entries U].name = NULL)
break;

}
break;

if (class_entries[j].class_reference = &(symtable[i])){
fprintf (logic_ out, "user(\'%s\' ,\'%s\').\n",

symtable[i].name,class_entries[j].name);
}

* Output dummy facts to keep ProLog interpreter from choking when
* referencing facts that do not exist.
*I

fprintf (logic_ out,"no _ conditions(\'_null_ \').\n");
fprintf (logic_ out, "target(\'_ null_\',\'_ null_ \').\n");
fprintf (logic_out, "path_message(\'_null_ \',\'_null_ \').\n");
fprintf (logic_ out, "policy_ message(\'_ null_\',\'_ null_ \').\n");
fprintf (logic_ out," condition _path(\'_ null_\',\'_ null_\',\'_ null_\',\'_ null_ \').\n ");

I*
* Set flag in Pro log to allow wild card characters to be expanded
* or not, depending on the user's direction
*I

119

if (no_ wild)
fprintf (logic_ out, "wild(\'no\').\n");

else
fprintf (logic_ out, "wild(\'yes\').\n");

/*
* Set flag in Pro log to allow implicit denies between
* policies created by the same user to be ignored.
*I
if (no _implicit_ deny)

fprintf (logic_ out, "user _implicit_ deny(\'no\').\n ");
else

fprintf (logic_ out, "user _implicit_ deny(\'yes\').\n ");

/*
* Create and run the first stage of the conflict detection
* process. This involves sorting the facts just created by
* the parsing process. The sorting is needed only to stop
* Pro log from issuing warnings about facts not being contiguous
* in the file. Add to the end of the file, the Prolog rules that
* are to be applied to the facts entired from the prologrulesl.txt file.
*Then execute the Prolog program by calling the Prolog command
* line interface with input file.
*I

fclose(logic _out);
system("sort ppll.txt > ppll.pl ");

if((logic_out = fopen("ppll.pl", "a"))= NULL) {
perror ("ppll.pl");
exit(I);

}

if((prologrules = fopen("prologrulesl.txt", "r")) =NULL) {
perror (av[1]);
exit(I);

}

while ((c = getc(prologrules)) != EOF)
putc(c,logic _out);

fclose(prologrules);
fclose(logic _out);

/*If the user asked for verbose mode, dump the symbol tables. */
if (verbose){

dump_ tables();
}

120

system("pl/bin/plcon.exe -fppll.pl -t stagel");

/*
* Stage two of the conflict detection takes the modified facts
*generated by stagel, and adding the rules to be applied together
* in a file named ppl2.pl.
* The Pro log interpreter then executes this next stage. Stage two like
* stage one manipulates the facts from stage to stage in a progressive
* fashion. One stage could have been used, but would be complicated to
* follow and debug.
* For efficiency, the combining of stages should be considered.
*I

system(" sort ppl2.txt > ppl2.pl");
if ((logic_ out= fopen("ppl2.pl", "a")) =NULL) {

perror ("ppl2.pl");
exit(l);

}
if((prologrules = fopen("prologrules2.txt", "r")) =NULL) {

perror (av[l]);
exit(l);

}

while ((c = getc(prologrules)) != EOF)
putc(c,logic _out);

fclose(prologrules);

fclose(logic _out);

system("pl/bin/plcon.exe -f ppl2.pl -t stage2");

I*
*Stage three is the final stage of the conflict detection and
*resolution phase of the compiler. The modified facts from
* stage two are used and applied with the Prolog rules from
*the file "prologrules3.txt".
*Final output is created in "scan_out.txt".
*I

system("sort ppl3.txt > ppl3.pl");

if((logic_out=fopen("ppl3.pl", "a"))=NULL) {
perror ("ppl3.pl");
exit(I);

}
if ((prologrules = fopen("prologrules3.txt", "r")) =NULL) {

perror (av[1]);
exit(I);

121

}

I*

}

while ((c = getc(prologrules)) != EOF)
putc(c,logic _out);

fclose(prologrules);
fclose(logic _out);

system("pllbin/plcon.exe -f ppl3 .pl -t stage3 ");

printf("\n\n Policy Conflict results written to \"scan_out.txt\"\n\n");

* Print_ usage outputs the options available to the user trying to compile
* PPL configuration file.
*I

void print_ usage()
{

printf("\n\n Usage: Scan [-v -wild -no_implicit_deny] <filename>\n");
printf("\t -v :Verbose mode, dump symbol tables\n");
printf("\t -no_ wild : Do not support wild cards in paths\n ");
printf("\t -no_implicit_deny: If policy creators are the same betweeen\n");
printf("\t a conflict, do not enforce implicit deny\n");
printf("\t filename :Filename ofPPL configuration file\n");
printf("\n\n ");

}

122

APPENDIX E. PROLOG CONFLICT DETECTION CODE

% Stage 1 is the first step in determining policy conflicts.
% Steps: * Open "ppl2.txt" file for policy conflict information
% * Print all the possible paths thru the network,
% This is needed for matching paths represented with
% wild cards.
% * Print the association between policy labels and
% policy targets.
% * Print the association between policy labels and
% policy conditions.
% * Copy all other neccesary facts from stage one to
% the file that will be used in stage two.
% * Close the output file
%
stagel :-

%
% Open the file ppl2.txt to place the modified ProLog facts
%to be used in stage two.
%
open('ppl2.txt', write, output),
set_ output(output),

%
% Output paths & all the posible nodes that can be used
% to create the path.
%
setof(Policy_Path,paths_in_nodes(Policy_Path),Policy_Paths),

not(print _policy _list(Policy _Paths)),

%
% Create an association between a policy and the targets
% it supports.
%
not(create _paths),!,
setof(Target_ List,policy _ target_Iist(Target_ List), Target_ Lists),
not(print _ target_list(T arget_ Lists)),

%
% Create a list of conditions and associate them with policies

%
not(print_ condition _list),

%

123

%Forward the facts of users, bandwidth, no_conditions, actions and types
% to the file for stage two.
%
not(explicit_ nodes),
not(print_ no_ conditions),
print_implicit_ deny,
not(print_path _params),
not(print_ users),
not(print_ actions),
not(print_ types),
not(print _target_ all),
not(print_policy _owner),
not(print_nodes),
not(print_links),
not(print_path _messages),
not(print_policy _messages),

%
% Close the output file
%
set_ output(user_ output),
close(output),
write('Stage 1 complete'),nl,nl.

%==
% Generate the paths required to detect policy conflicts
% If no wild card characters were used:
% then print just the paths explicitly listed
% and all the links that create the network
% else print out all possible paths through the
% network so that wild card matching can be done
%
create _paths:-

wild('no'),
not(explicit_paths),!,
not(explicit_links),!,fail.

create _paths:­
wild('yes'),
findall(Node,node _label(Node,_),Nodes), ! ,
create _paths(N odes),! ,fail.

%.==
% Return all possible paths incrementally by
% taking each node pair in the network and
% generating all possible paths between those

124

%to nodes.
%
create _paths([]):-fail,!.

create _paths(LI []]):-fail,! .

create _paths([Node1 ,Node2 1Tail]):­
not(create_paths_helper([Node1,Node21Tail])),!,
not(create _paths([Node21Tail])),! .

%=======================================
%Find all possible paths between two nodes
% in the network
%
create _paths_ helper([]):-fail,!.

create_paths_helper(LIO]):-fail,!.

create _paths_ helper([N ode 1 ,Node2 !Tail]):­
not(all_paths(Node 1 ,Node2)), !,
not(all _paths(Node2,Node 1)), !,
not(create _paths_ helper([N ode 11Tail])),fail,!.

%=======================================
% Print all paths explicitly listed by the user
%
explicit_paths:- setof(Path, path_links(_, Path), Paths),

print _path _list(Paths),fail.

%,=======================================
% Print all possible links in the network
%
explicit_links:- findall(Link, link(Link,_,_), Links),!,

remove_ dups(Links, Links _nod up),!,
print_link_list(Links_nodup),!,fail.

%,=======================================
% Print all the nodes in the network
%
explicit_nodes:- setof(Node, node_label(Node,_), Nodes),

print_ node _list(N odes),fail.

%=======================================
% Print out nicely all the possible paths of a network
% of length 2 or more. The atom's are quoted.

125

all_paths(A, Z) :- setof(Path, pathl(A, [Z], Path), Paths),
print _path _list(Paths),fail.

%=======================================
% Helper function to "all _paths". Determines
% if two nodes in the network are directly connected.
%
pathl(A, [A I Pathl], [A I Pathl]).

pathl(A, [YIPathl], Path):- adjacent(X, Y),
not(member(X, Pathl)),
pathl(A, [X, Y I Pathl], Path).

%==
% Print out the paths associated with each policy
%
paths:- setof(Path,paths _in _nodes(Path),Paths),

qsort(Paths,Sorted),
not(print_list(Sorted)).

%=======================================
% Print out a node list nicely formatted
%
write _path([]):- write(']').

write _path([XI[]]):- term_ to_ atom(X,X _atom),
write(X_atom),

. (']') I write ,.,true.

write _path([XjTail]):- term_ to_ atom(X,X_atom),
write(X _atom),
write(','),
write _path(Tail).

%=======================================
% Print out a path represented as a list of nodes
%
print_node _list([]):-fail.

print_ node _list([LinkiTail]):­
node _label(Link,_),
write('path(['),
term_ to_ atom(Link,Link _atom),
write(Link _atom),
write(']). '),nl,
print_ node _list(Tail),fail.

126

%,=====================================
% Print out all the links in the network
% nicely formatted.
%
print_link_list([]):-fail.

print_link _list([LinkiTail]):­
link(Link,Src,Dst),!,
term_ to _atom(Src,Src _atom),
term_ to _atom(Dst,Dst_ atom),
write(' path(['),
write(Src_atom),
write(','),
write(Dst_ atom),
write(']).'),nl,
write('path(['),
write(Dst_atom),
write(','),
write(Src _atom),
write(']). '),nl,
print_link_list(Tail),!,fail.

%=====================================
% print_path_list:
% Output a list of lists, where each
% list is on a line by itself and
% all the atoms are quoted.

print __path _list([]):- fail.

print_path_list([Path I Tail]) :­
not(eq 1 (Path)),
write('path(['),
write __path(Path),
write(').'), nl, print__path_list(Tail).

print__path_list([[XIY] I Tail]):­
eq1([XIY]},
print __path _list(Tail).

print__path_list([[XIY] I Tail]):­
eq 1 ([XIY]},
node _label(X,.J,
write('path(['),
term_to_atom(X,X_atom),
write(X _atom),
write(']).'),nl,

127

print_path_list(Tail).

%===
% print_policy _list:
% Output nicely for each policy the paths
% associated with the that policy

print _policy _list([]):- fail.
print_policy _list([[Labeli[Path]] I Tail]):­

write('policy _path('),
term_to_atom(Label,Label_atom),
write(Label_ atom),
write(',['),
write _path(Path),
write(').'), nl, print_policy _list(Tail).

%===
%Print out a list of targets associated with a policy
%
write_ target_path([XI []]):- term_ to_ atom(X,X _atom),

write(X_atom),!,true.

write_ target_path([XITail]):- term _to_ atom{X,X_ atom),
write(X _atom),
write(','),
write_ target_path(Tail).

%,==
% Print out the association between a policy
% and its targets
%
print_target_list([[LabeliTargets] I Tail]):­

write('policy _target('),
term_ to_ atom(Label,Label_ atom),
write(Label_ atom),
write(','),
write_ target_path(Targets),
write(').'), nl,
print_ target_list(Tail).

%====================================
%Given a Policy _Label a list will be returned
% with the first element being the Label, and
% the second element being the path associated
%with that label
%ex: ['Policy I ',['NPS','IETF']]

128

~---------------------------------------

paths_in_nodes([Policy_Labeli[Expanded_Path]]):­
path _links(Path,Path _List),
policy _path(Policy _Label,Path),
path_ in_ nodes(Path _ List,Expanded _Path).

paths_in_nodes([Policy_Labeli[Expanded_Path]]):­
link(Path,_,_),
policy _path(Policy _Label,Path),
path _in_ nodes([Path],Expanded _Path).

paths_in_nodes([Policy_Labeli[Expanded_Path]]):­
node _label(Path,_),
policy _path(Policy _Label, Path),
path _in_ nodes([Path],Expanded _Path).

%=====================================
% Take a path with link elements, and return a path
% with those links expanded into its node
%components: wildcard characters are left
% untouched.
%
%Given: ['NPS_DARPA','DARPA_SPAWAR']
%Returns: ['NPS', 'DARPA', 'SPA WAR']

path_in_nodes([X],[Nl,N2]):-link(X,Nl,N2).

path_ in_ nodes([X],[X]):- node _label(X,_).

path_in_nodes([X],[X]):- X='*'.

path_in_nodes([XITail],[XIPath]):­
node _label(X,_),
path_ in_ nodes(Tail,Path).

path _in_ nodes([XITail],[XIPath]):-
X='*',
path_in_nodes(Tail,Path).

%=====================================
%Print a list.
%
print_list([]):- fail.
print_list([X I Tail]) :- write(X), nl, print_list(Tail).

%,=====================================
%Use quicksort to sort a list of lists by the

129

% number of elements in each list
qsort([], []).

qsort([X I Tail], Sorted) :-
split(X, Tail, Small, Big),
qsort(Small, SortedSmall),
qsort(Big, SortedBig),
cone(SortedSmall, [X I SortedBig], Sorted).

%,=======================================
% Helper function to qsort, splits one list
% into two parts
%
split(_, [], [], []).

split(X, [Y I Tail], [Y I Small], Big) :­
gt(X, Y),!,
split(X, Tail, Small, Big).

split(X, [Y I Tail], Small, [Y I Big]) :­
split(X, Tail, Small, Big).

%=======================================
% Is X is greater than Y
%
gt(X, Y) :-length(X, Xlen), length(Y, Ylen), Xlen > Ylen.

%,=======================================
% Return the first element of a list
%
first([],[]).
first(X, [X I_]).

%=======================================
% Given list of traffic classes, expand list
% by assigning action and operation, to
% each class in the list.
%
expand_ value _list(_,Action,Class,Op,List,[Expanded _List]):­

expand _list(Action,Class, Op,List,Expanded _List).

%,=======================================
%Helper to "expand_value_list"
% Assign action, and opertion to each value
% defined for the traffic class.
%
expand _list(_,_,_,[],[]).

130

expand _list(Action,Ciass,Op,[XITail], [Action,Class,Op,XIResults]):­
expand _list(Action,Class,Op, Tail,Results).

%==
% Remove duplicates from a list
%
remove_ dups([],[]).

remove_ dups([HeadiTail],List):­
member(Head, Tail),
remove_ dups(Tail,List).

remove_ dups([HeadiTail],[HeadiList]):­
not(member(Head,Tail)),
remove_ dups(Tail,List).

%,==
% Create a list of targets assocatied with a policy
%
policy_ target_list([Labell [Results]]):­

policy_ targets(Label, Targets),
create_ target _list(Label, Targets, Target _list),
remove_dups(Target_list,Unique_Target_List),
flatten(Unique _Target_ List, Results).

%==
% Given a label to identify a policy, create
% a list of target traffic classes that the
% policy applies to.
%
create_ target_list(_,[],[]).

create_target_list(Labei,L,'!=',JTail],Results_of_Tail):­
policy _ action(Label, 'deny'),
create_ target_list(Label, Tail,Results _of_ Tail).

create_target_list(Label,L'*',JTail],Results_of_Tail):­
policy _ action(Label,_),
create_ target_list(Label, Tail,Results _of_ Tail).

create_target_list(Label,[Class,'=',Target_ListiTail],[[Results_of_expand]IResults_of_Tail]):­
policy _ action(Label,Action),
remove_ dups(T arget_ List, Unique_ Target_ List),
expand_ value _list(Labei,Action,Class, '=',Unique_ Target_ List,Results _of_ expand),
create_ target_list(Label, Tail,Results _of_ Tail).

131

%==
% Create a list of conditions that must be met

% in order for the policy to be executed.

%
list_of_conditions(Policy,_,[Policy,permit,Attribute,Op,Value]):-

condition _path(Policy,Attribute,Op,Value),

not(Op = '!='),
not(type(Attribute,_,_)).

list_of_conditions(Policy,_,[Policy,permit,Attribute,'!=',Value]):­

condition_path(Policy,Attribute,'!=',Value),

not(type(Attribute,_,_)).

%,===
% Create a list conditions that are composed

% of user defined types.
%
list_of_type_conditions(Policy,_,[Policy,permit,Type,'=',Value]):-

condition_path(Policy,Type,'=',Value).

list_of_type_conditions(Policy,_,[Policy,permit,Type,'=',Type_Element]):­

condition _path(Policy, Type,'!=',_),

type(Type, Type_ Element,_),
setof(Values,condition_path(Policy,Type,'!=',Values),Value_Set),

not(member(Type_Element,Value_Set)).

list_of_type_conditions(Policy,_,[Policy,permit, Type,'=',Element2]):­

condition _path(Policy, Type,'<=' ,Element),

type(Type,Element, Value),
type(Type,Element2, Value2),

Value2 =<Value.

list_ of_ type_ conditions(Policy,_, [Policy ,permit, Type,'=' ,Element2]):­

condition _path(Policy, Type,'>=' ,Element),

type(Type,Element, Value),
type(Type,Element2, Value2),

V alue2 >= Value.

%====================================
% Print the conditions that must be meet to

% execute the policy
%
output_ conditions([]):-fail.

output_conditions([[Policy,Action,Attribute,Operator,Value]JTail]):­

not(Attribute = 'BW'),
write('policy _condition('),

132

term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
write(Action),
write(','),
term_ to_ atom(Attribute,A _Attribute), write(A_ Attribute),
write(','),
term_ to_ atom(Operator,A _Operator), write(A_ Operator),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write(').'),nl,
output_ conditions(Tail).

output_ conditions([[Policy,Action,Attribute, Operator, Value]ITail]):­
Attribute = 'BW',
write('policy _condition('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
write(Action),
write(','),
term _to_ atom(Attribute,A _Attribute), write(A_ Attribute),
write(','),
term _to_ atom(Operator,A _Operator), write(A_ Operator),
write(','),
convert_ bw(Value,New _Value),
write(New_ Value),
write('). '),nl,
output_ conditions(Tail).

%·==

output_no _ conditions(O):-fail.

output_ no_ conditions([PolicyiTail]):-
write('no _conditions('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(').'),nl,
output_no _ conditions(Tail).

%==
% When no conditions are associated with a
% policy, make note of it.
%
print_ no_ conditions:-

setof(Policy,no _ conditions(Policy),No_ Conditions),
output_ no_ conditions(No _Conditions),
true.

%==

133

% Print out the fact if implicit denies are
% to applied to conflict detection when both
% policies are created by the same user
%
print_ implicit_ deny:-

%

user _implicit_ deny(Option),
write('user _implicit_ deny('),
write(Option),
write('). '),nl,
true.

% Print out a user defined type
%Helper to "print_ types"
%
output_ types([]):-fail.

output_ types([[Type,Element,Value]!Tail]):­
write('type('),
term_ to_ atom(Type,A _Type), write(A_ Type),
write(','),
term_ to_ atom(Element,A _Element), write(A_ Element),
write(','),
write(V alue),
write(').'),nl,
output_ types(Tail).

%·====================================
% Print out all user defined types
%
print_ types:­

setof([Type,Element,Value],type(Type,Element,Value),Types),
output_ types(Types),
true.

%,==
%For each policy, print out the target classes
% effected by it.
%
print_ target_ all:-

setof(Policy ,target(Policy ,_),Policies),
output_ target_ all(Policies),
true.

%==
%Print out the class of traffic effected by a policy
%
output_ target_ all([]):-fail.

134

output_ target_ all([Po licyjTail]):-
target(Policy,Value),
write('target('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
term_ to_ atom(V alue,A _Value), write(A _Value),
write(').'),nl,
output_target_all(Tail).

%,==
%Print out facts about the creator/owner of
% each policy to be applied to the network.
%
print _policy_ owner:-

setof(Policy,policy _ owner(Policy,_),Policies),
output _policy_ owner(Policies),
true.

%=======================================
% Output the owner for a policy
%
output _policy _owner([]):-fail.

output _policy_ owner([Policy!Tail]):­
policy_owner(Policy,Value),
write('policy _owner(')~
term_to_atom(Policy,A_Policy),write(A_Policy),
write(',~,

term_to_atom(Value,A_ Value),write(A_ Value),
write(').'),nl,
output_policy _ owner(Tail).

%,==
% Print out all the nodes of the network.
%
print_nodes:-

setof(Label,node _label(Label,_),Labels),
output_ nodes(Labels),
true.

%==
% Output a fact for each node in the network
% These facts are used in the conflict
% decision process.
%
output_nodes([]):-fail.

135

output_nodes([Label!Tail]):­
node _label(Label, Value),
write('node _label('),
term_ to_ atom(Label,A _Label), write(A_ Label),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write('). '),nl,
output_ nodes(Tail).

%==
% Print out all the "messages" assciated with a
%link.
%
print _path_ messages:-

setof(Link,path _ message(Link,_),Links),
output _path _messages(Links),
true.

%==
% Print the messages associated with a policy
%
print_policy _messages:-

setof(Policy,policy _ message(Policy,_),Policies),
· output _policy_ messages(Policies),
true.

%,==
% Output the "message" associated with a path
%
output _path_ messages([]):-fail.

output _path_ messages([Link!Tail]):-
path _ message(Link,Message),
write(' path_ message('),
term_to_atom(Link,A_Link),write(A_Link),
write(','),
term_ to_ atom(Message,A _Message), write(A_ Message),
write('). '),nl,
output _path_ messages(Tail).

%==
% Output the "message" associated with a policy
%
output_policy_messages([]):-fail.

output_policy _ messages([Policy!Tail]):-
policy _ message(Policy,Message),
write('policy _message('),
terrn_to_atom(Policy,A_Policy),write(A_Policy),

136

write(','),
term_ to _atom(Message,A _Message}, write(A _Message},
write(').'},nl,
output _policy _messages(Tail).

%,=====================================
% Print out all the links of the network
%
print_links:-

findall(Link,link(Link,_,_),Links), ! ,
remove_ dups(Links, Links_ nod up},!,
output_links(Links _nod up),!,
true.

%·=======================================
% Output a link of the network
%
output_links([]):-fail.

output_links([LinkjTail]):­
link(Link,Src,Dst),!,
term_to_atom(Src,Src_atorn),
term_ to_ atom(Dst,Dst_ atom),
term _to_ atom(Link,Link _atom),
write(' link('),
write(Link _atom),
write(','},
write(Src _atom),
write(','),
write(Dst_atom),
write(').'),nl,
write(' link('),
write(Link _atom),
write(','),
write(Dst_ atom),
write(','),
write(Src atom),
write(').'),nl,
output_links(Tail),!,fail.

%=======================================
% Output a user that is allowed to create
%policies.
%
output_ users([]):-fail.

output_ users([U serjTail]):-

137

user(User,Level),
write('user('),
term_ to_ atom(User,A _User), write(A_ User),
write(','),
term_to_atom(Level,A_Level),write(A_Level),
write('). '),nl,
output_ users(Tail).

%==
% Output all the actions associated with each policy
%
output_ actions([]):-fail.

output_ actions([Policy!Tail]):-
policy_ action(Policy,Action),
write('policy _action('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
term_to_atom(Action,A_Action),write(A_Action),
write('). '),nl,
output_ actions(Tail).

%,==
% Print all the users that are allowed to
% create policies.
%
print_users:-

setof(User,user(User,_), User_list),
output_ users(U ser _list),
true.

%,==
print_ actions:-

setof(Policy,policy _action(Policy,_), Action _list),
output_ actions(Action _list),
true.

o/o=======================================
% Output the parameters associated with a path
% this includes bandwidth.
%
output_params([]):-fail.

output_params([Path!Tail]):­
path_param(Path,Att,Op,Value,Unit),
write('path _param('),
term_ to_ atom(Path,A _Path), write(A_ Path),
write(','),

138

term_to_atom(Att,A_Att),write(A_Att),
write(','),
term _to _atom(Op,A _ Op),write(A_ Op),
write(','),
convert_ unit(Value, Unit,New _Value),
term_to_atom(New_ Value,A_ Value),write(A_ Value),
write(','),
term_to_atom('MBPS',A_Unit),write(A_Unit),
write(').'),nl,
output_params(Tail).

%·==
% Print out all the paramaters associated with
%each path
%
print _path _params:-

setof(Path, path _param(Path,_,_,_,_),Paths),
output_params(Paths),
true.

%,==
% Print out the conditions of all policies
%
print_ condition _list:-

setof(Condition _Set, list_ of_ conditions(_,_, Condition_ Set), Conditions),
output_ conditions(Conditions),
true.

%·==
%Print out the user defined types involved in the
% conditions of all policies
%
print_condition_list:-

setof(Condition _ Set,list_ of_ type_ conditions(_,_, Condition_ Set), Conditions),

output_ conditions(Conditions),
true.

%.==
% Convert Bandwidth unit to a uniform Mbps for
% comparison reasons
%
convert_bw([Value,Unit],New_ Value):­

convert _ unit(V alue, Unit,New _Value).

%,==
convert_unit(Old_ Value,'MBPS',Old_ Value).

139

convert_unit(Old_ Value,'GBPS',New_ Value):­
New Value is Old Value * I 024. - -

convert_unit(Old_ Value,'KBPS',New_ Value):­
New Value is Old Value I 1024. - -

convert_unit(Old_ Value,'BPS',New_ Value):­
New_ Value is (Old_ Value I 1024)/1024.

%========== :======================================
%True ifthere is an link from X->Y or Y->X (undirected link)
%
adjacent(X, Y) :-link(_,X,Y); link(_,Y,X).

%=======================================
% Concat two lists together
%
cone([] ,L,L).
cone([X I L1], L2, [X I L3]) :- conc(Ll,L2,L3).

%=======================================
% Is the list of size 1?
%
eq1(LI[]]).

140

% Stage2 is the second step in determining policy conflicts.
% Steps: * Open "ppl3.txt" file for policy conflict information
% * Print all paths in the next that are associated with
% policies being applied to the network.
% * Copy all other neccesary facts from stage two to
% the file that will be used in third and final stage three.
% *Close the output file
%
stage2:- open('ppl3.txt',write,output),

set_ output(output),

% From all possible paths in the network, print
% only those associated with policies after the
% expansion of all wild card characters.
not(all _policy _paths),

% Print all necessary facts for use in stage three
not(print_ no_ conditions),
not(print_path _params),
not(print_ users),
print_ implicit_ deny,
not(print_ types),
not(print _actions),
not(print_ target_all),
not(print_policy _owner),
not(print_ nodes),
not(print_links),
not(print_path _messages),
not(print_policy _messages),
write(' condition(_ null,_ null,_null,_ null,_ null,_ null).'),nl,

set_ output(user_ output),
close(output),
write('Stage 2 complete'),nl,nl.

%==
% Print all paths associated with policies
%
all _policy _paths:-

policy _path(Pol_Label,Pol_ Path),
path(Pos_Path),
setof(Policy _Path, policy _paths(Pol_ Label,Pol_Path,Pos _Path,Policy _Path),Policy _Paths

),
not(print_path _list(Policy _Paths)),
print_conditions(Policy_Paths).

%==

141

% Match wild card paths, with their expanded paths
%
policy _paths(Policy _Label, Policy _Path, Possible _Path,[Policy _Label\Possible _Path]):-

match(Policy _Path,Possible _Path).

%==
% Does a given list with or without wildcard
% characters match another one?
%
match([X\Taill],[X\Tail2]):- match(Taill ,Tail2).

match(['*','*'\Tail],Path):- match(['*'\Tail],Path).

match(['*' ,X\Taill],[X\Tail2]):- match(Taill, Tail2).

match(['*',XITaill],[YITail2]):- not(X =Y), match(['*',XITaill],Tail2).

match([],[]).

match(L_,_j,[]):- fail.
match(L_,_j,U):- fail.

match(['*'],_).

%==
% print_path_list:
% Output a list of lists, where each
% list is on a line by itself and
% all the atoms are quoted.
%
print_path_list([]):- fail.

print_path_list([[Policy_LabeljPath] I Tail]):­
policy_ target(Policy _ Label,Policy _Targets),
not(eql([Policy_Label\Path])),
write('path('),
term _to _atom(Policy _ Label,Policy _atom),
write(Policy _atom),
write(',['),
write _path(Path),
write(',['),
write _path(Policy _Targets),
write(').'), nl, not(print_path_list(Tail)),fail.

print_path_list([[Policy_Label\Path] I Tail]):­
not(policy _ target(Policy _Label,_)),
not(eq 1 ([Policy_ Label!Path])),

142

write(' path('),
term_ to _atom(Policy _ Label,Policy _atom),
write(Policy _atom),
write(',['),
write _path(Path),
write(',[]).'), nl,not(print_path _ Iist(Tail)),fail.

%,==
% Print the conditions associated with every policy
%
print_ conditions([]):- fail.

print_ conditions([[Policy _LabeliPath] I Tail]) :-
policy_ condition(Policy _ Label,Action,Att,Op, Value),
not(eq 1 ([Policy_ LabeliPath])),
write(' condition('),
term_ to_ atom(Policy _ Label,Policy _ atom),write(Policy _atom),
write(',['),
write _path(Path),
write(','),
term_to_atom(Action,Action_atom),write(Action_atom),
write(','),
term to atom(Att,Att atom),write(Att atom), -- - -
write(','),
term_to_atom(Op,Op_atom),write(Op_atom),
write(','),
term_ to_ atom(Value, Value _atom),write(V alue _atom),
write(').'), nl, print_path_list(Tail).

print_conditions([[Policy_LabeliPath] I Tail]):­
not(policy _ condition(Policy _Label,_,_,_,_)),
not(eq 1 ([Policy_ Labell Path])),
print_path_list(Tail).

%,==
%Helper function used by print_path_list to output
% a list with all the atoms quoted.

write _path([]):- write(']').

write_path([XI[]]):- term_to_atom(X,X_atom),
write(X _atom),

. (']') I write ,.,true.

write _path([XITail]):- term_ to_ atom(X,X _atom),
write(X _atom),
write(','),

143

write _path(Tail).

%==
% Is the list of size 1?
eql(LJ[]]).

%,==================================
% Print a user defined type
%
output_ types([]):-fail.

output_ types([[Type,Element, Value] IT ail]):­
write('type('),
term_ to_ atom(Type,A _Type), write(A_ Type),
write(','),
term_ to_ atom(Element,A _Element), write(A_ Element),
write(','),
write(V alue),
write('). '),nl,
output_ types(Tail).

%==
% Print all the user defined types
%
print_ types:-

setof([Type,Element, Value],type(Type,Element, Value), Types),
output_ types(Types),
true.

%,==
% Print a policy that has no conditions
% associated with it.
%
output_ no_ conditions([]):-fail.

output_ no_ conditions([PolicyiTail]):-
write('no _conditions('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(').'),nl,
output_ no_ conditions(Tail).

%===
% Print all the policies that have no conditions
% associated with them.
%
print_ no_ conditions:-

setof(Policy ,no_ conditions(Policy),No_ Conditions),
not(No _Conditions = []),

144

output_ no_ conditions(No _Conditions),
true.

%====================================
% Print the owners of all the policies
%
print _policy_ owner:-

setof(Policy,policy _ owner(Policy ,_),Policies),
output _policy_ owner(Policies),
true.

%,==
% Print the owner of a policy
%
output_policy_owner([]):-fail.

output _policy_ owner([PolicylTail]):­
policy_owner(Policy,Value),
write('policy _owner('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write('). '),nl,
output_policy _ owner(Tail).

%==
% Print the nodes of the network.
%
print_ nodes:-

setof(Label,node _label(Label,_),Labels),
output_ nodes(Labels),
true.

%,==
% Print out a node of the network
%
output_ nodes([]):-fail.

output_ nodes([LabellTail]):-
node _label(Label, Value),
write('node _label('),
term_to_atom(Label,A_Label),write(A_Label),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write('). '),nl,
output_ nodes(Tail).

%,==

145

% Print out all the links of the network
%
print_links:-

findall(Link,link(Link,_,_j,Links), ! ,
remove_ dups(Links, Links_ nod up),!,
output_links(Links_nodup),!,
true.

%===
% Print out a link in the network.
%
output_links([]):-fail.

output_links([Link!Tail]):­
link(Link,Src,Dst),!,
term_to_atom(Src,Src_atom),
term_ to_ atom(Dst,Dst_ atom),
term_ to_ atom(Link,Link _atom),
write('link('),
write(Link _atom),
write(','),
write(Src _atom),
write(','),
write(Dst_ atom),
write(') .'),nl,
write('link('),
write(Link _atom),
write(','),
write(Dst_ atom),
write(','),
write(Src _atom),
write(').'),nl,
output_links(Tail),!,fail.

%,==
% Print out messages associated with each path
%
print _path_ messages:-

setof(Link,path _ message(Link,_j,Links),
output _path_ messages(Links),true,!.

%===
% Print the messages associted with each policy
%
print_policy_messages:-

setof(Policy,policy _ message(Policy ,_],Policies),
output_policy _ messages(Policies), true,!.

146

%======================================
% Print the messages associated with a path

%
output _path _messages([]):-fail.

output _path_ messages([Link!Tail]):­
path _ message(Link,Message),
write('path _message('),
term_ to_ atom(Link,A _ Link),write(A _Link),

write(','),
term_ to _atom(Message,A _Message), write(A_ Message),

write(').'),nl,
output _path_ messages(Tail),!.

o/o==:;
% Print the messages assocaited with a path

%
output _policy_ messages([]):-fail.

output _policy_ messages([Policy!Tail]):-
policy _message(Policy,Message),
write('policy _message('),
term_to_atom(Policy,A_Policy),write(A_Policy),

write(','),
term_ to _atom(Message,A _Message), write(A _Message),

write(') .'),nl,
output _policy _messages(Tail),!.

%==:;
% Print out the users who can created policies

%
output_ users([]):-fail.

output_ users([User!Tail]):-
user(User,Level),
write('user('),
term_to_atom(User,A_User),write(A_User),
write(','),
write(Level),
write(').'),nl,
output_ users(Tail).

%==:;
% Print the actions associated with policy

%
output_ actions([]):-fail.

output_actions([Policy!Tail]):-

147

policy_ action(Policy,Action),
write('policy _action('),
term_to_atom(Policy,A_Policy),write(A_Policy),
write(','),
term_to_atom(Action,A_Action),write(A_Action),
write('). '),nl,
output_ actions(T ail).

%==
% Print the paramaters associated with a path
%
output_params([]):-fail.

output_params([Path!Tail]):-

%

path _param(Path,Att,Op, Value, Unit),
write(' path _param('),
term_ to_ atom(Path,A _Path), write(A_ Path),
write(','),
term_ to_ atom(Att,A _ Att), write(A_ Att),
write(','),
term_ to_ atom(Op,A _ Op), write(A_ Op),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write(','),
term_to_atom(Unit,A_Unit),write(A_Unit),
write('). '),nl,
output_params(Tail).

% Print the parameters of each path
%
print _path _params:-

setof(Path, path _param(Path,_,_,_,_),Paths),
output_params(Paths),
true.

%==
% Print the flag identifing whether implicit
% denies are to be ignored between policies
% created by the same user
%
print_ implicit_ deny:-

user _implicit_ deny(Option),
write('user _implicit_ deny('),
write(Option),
write(').'),nl,
true.

148

%==
% Print all the user who can create a policy
%
print_users:-

setof(U ser, user(U ser ,_), User _list),
output_ users(U ser _list),
true.

%=======================================
% Print out all the actions for each policy
%
print_ actions:-

setof(Policy,policy_action(Policy,_), Action_list),
output_ actions(Action _list),
true.

%==
% Print the targets for each policy
%
print_ target_ all:­

setof(Policy,target(Policy,_),Policies),
output_ target_ all(Policies),
true.

%,==
% Print the target for a policy
%
output_target_all([]):-fail.

output_ target_ all([Po licyjTail]):-
target(Policy, Value),
write('target('),
term_to_atom(Policy,A_Policy),write(A_policy),
write(','),
term_to_atom(Value,A_ Value),write(A_ Value),
write(').'),nl,
output_ target_ all(Tail).

%,======================================
% Remove duplicate items from a list
%
remove_ dups([],[]).

remove_ dups([HeadjTail],List):­
member(Head,Tail),
remove_ dups(Tail,List).

149

remove_dups([HeadjTail],[HeadjList]):­
not(member(Head, Tail)),
remove_ dups(Tail,List).

150

% Stage3 is the fmal step in determining policy conflicts.
%Steps: *Open "scan_out.txt" file for policy conflict information
% * Find all policies with overlapping paths
% * Determine policies in conflict
% * Print the policy conflicts that could not be resolved
% * Print the policy conflicts that COULD be resolved
% * Print out the policies that contain "message" conflicts
% * Close the output file
%
stage3:- open(' scan_ out. txt', write, output),

set_ output(output),

%Find all policies expressed over links and nodes
% that are sub-paths of other policies.
%
find_ all_ subpaths(Subpaths),

% Take the list of policies that have overlapping
% paths and check for permit conflicts
%
permit_ conflicts(Subpaths,Permit_ Conflicts),

% Print out policy conflicts that can not be
%resolved using the "Id" of the creator
%
write(' Print Unresolved Conflicts'),nl,
write(' '),nl,
print_ unresolved_ conflict_list(Permit_ Conflicts),

% Print out the policy conflicts than CAN be resolved
%using the "ld" of the policy creator
%
nl,nl,nl, write(' Print Resolved Conflicts'),nl,
write(' ============'),nl,
print_resolved _ conflict_list(Permit_ Conflicts),

% Print out the policies that require "message" support on a
%path, but all the links of the path do not support that "message"
%
nl,nl,nl,write(' Message Conflicts'),nl,
write(' =========''),nl,nl,
not(print_ message_ conflict_ list),

%
set_ output(user_ output),
close(output),

151

write('Stage 3 complete'),nl,nl.

%,==
%
% Return set of all policies that contain overlapping
%paths.
%
find_ all_ subpaths(Subpaths):-

setof(Subpath, find_ subpaths(Subpath),Subpaths).

find_ all_ subpaths([]):-
not(setof(Subpath, find_ subpaths(Subpath),_)).

%==
%
% Return all Policy/Path pairs were a policy specified
% over on a link or node, is a sub list of policies
% based on either nodes, links, or user defined paths.
%
find_subpaths([Policyl,Pathl,Targetl,Policy2,Path2,Target2]):-

path(Policyl,Pathl,Targetl),
link(_,From, To),
[From, To]= Pathl,
path(Policy2,Path2, Target2),
sublist(Path 1 ,Path2).

find_subpaths([Policy1,Path1,Target1,Policy2,Path2,Target2]):­
path(Policy1,Pathl,Target1),
node _label(Label,_),
[Label]= Path1,
path{Policy2,Path2, Target2),
sublist(Path 1 ,Path2).

%,==
% Take a list of policy pairs that contain overlapping paths.
% Check each policy pair for overlapping conditions.
% If the conditions do overlap, then check the classes of
% of traffic that are permitted on each to determine
% if a conflict exists.
%
permit_ conflicts([[Policyl,Path 1, Targetl ,Policy2,Path2, Target2]1Tail],

ts),

[[Policy1,Path1,Targetl,Policy2,Path2,Target2,Conflicts]IPermit_Conflicts]):­
not(Policyl = Policy2),
conditional_ overlap(Policyl ,Policy2,_,No _Overlap),
No_ Overlap = [],
setof(Conflict,conflict_permit_targets(Policyl,Policy2,Target2,Targetl,Conflict),Conflic

152

not(Conflicts = [[]]),
permit_ conflicts(Tail,Permit_ Conflicts).

permit_ conflicts([[Policy 1 ,Path 1, Target 1 ,Policy2,Path2, Target2]JTail],
[[Policyl,Path1,Targetl,Policy2,Path2,Target2,[[Policyl,Value]]]JPermit_Conflicts]):­

not(Policyl = Policy2),
conditional_ overlap(Policyl ,Policy2,_,No _Overlap),
No_ Overlap= 0,
(
(target(Policyl, permit_ all),
policy_action(Policy2,deny));
(target(Policy1, deny_all),
policy_ action(Policy2,permit))
),
target(Policy 1, Value),
permit_ conflicts(Tail,Permit_ Conflicts).

permit_ conflicts([[Policy 1 ,Path I, Target 1 ,Po licy2,Path2, Target2] JTail],

%

[[Policy 1 ,Path 1, Target 1 ,Policy2,Path2, T arget2, [[Policy2, Value]]] !Permit_ Conflicts]):­
not(Policy1 = Policy2),
conditional_ overlap(Policyl,Policy2,_,No _Overlap),
No_Overlap = [],
(
(target(Policy2, permit_all),
policy_action(Policyl,deny));
(target(Policy2, deny_all),
policy_action(Policyl,permit))
),
target(Policy2, Value),
permit_ conflicts(Tail,Permit_ Conflicts).

% If there are no conflicts between two paths, then skip and continue to check
% other over laping paths.
%
permit_ conflicts([[Policy 1 ,_,Target 1 ,Po licy2,_, T arget2] JTail] ,Permit_ Conflicts):­

not(Policy1 = Policy2),
setof(Conflict,conflict_permit_ targets(Policy 1 ,Policy2, Target2, Target1 ,Conflict),Conflic

ts),
Conflicts = [[]],
permit_ conflicts(Tail,Permit_ Conflicts).

%
% If the same policy is being checked, skip it and check the rest of the list
% of over laping paths.
%
permit_ conflicts([L,_,_,_,_,_]JTail], Permit_ Conflicts):-

153

permit_ conflicts(Tail,Pennit_ Conflicts).

%
% If no sub-paths, then no conflicts
%
permit_ conflicts([],[]).

%===
% Compare a target class element for conflicts with all
% the target elements of a second policy
%
conflict _permit_ targets(_,_,[],_,[]).

conflict_permit_targets(Policyl,Policy2,[A1,C,_,VLJ,Targets,Results):­
conflict_permit_ target(Policy 1 ,Policy2,[A 1 ,C, V], Targets,Results),
not(empty(Results)).

conflict _permit_ targets(Policy 1 ,Policy2,L,_,_,_ITail], Targets,Results):­
conflict_permit_ targets(Policy 1 ,Policy2, Tail, Targets,Results),
not(empty(Results)).

%,===
% Compare the target class and action between two
% two target elements.
%
conflict_permit_target(Policy1,Policy2,rpermit',C,V],[],[C,V]):-

policy_owner(Policy1, Creator!),
policy_ owner(Policy2, Creator2),
Creator! = Creator2,
user _implicit_ deny('no'),
fail.

conflict _permit_ target(_,_,['permit' ,C, V],[],[C,V]):­
user _implicit_ deny('yes').

conflict _permit_ target(_,_,[' deny',_,_],[],[]).

conflict_permit_ target(_,_,[],_,[]).

conflict_permit_target(_,_,[Al,C,Value],[A2,C,_, ValueLJ,[C,Value]):­
not(Al = A2),!.

conflict _permit_ target(_,_,[A,C,Value],[A,C,_, Valuel_],[]):-!.

conflict_permit_target(Policyl,Policy2,[Al,Cl,Valuel],L,_,_,_ITail],Results):­
conflict_permit_target(Policyl,Policy2,[Al,Cl,Valuel],Tai1,Results).

154

%,===
% Determine if a conditional overlap exists by testing each
% type of condition.
%
conditional_ overlap(P 1 ,P2,['priority'j0ver],No_ Over):­

priority _ overlap(P 1 ,P2),
conditional_ overlap 1 (P 1 ,P2,0ver,No _Over),!.

conditional_overlap(P1,P2,0ver,['priority'INo_Over]):­
not(priority _ overlap(P 1 ,P2)),
conditional_ overlap 1 (P 1 ,P2,0ver,No _Over),!.

conditional_overlap1{P1,P2,['time'l0ver],No_Over):­
time _ overlap(P 1 ,P2),
conditional_overlap2{P1,P2,0ver,No_Over),!.

conditional_overlap1{P1,P2,0ver,['time'INo_Over]):­
not(time _ overlap(P 1 ,P2)),
conditional_ overlap2{P 1 ,P2,0ver,No _Over),!.

conditional_ overlap2(P 1 ,P2,['hopcount'j0ver],No_ Over):­
hopcount_overlap(P1,P2),
conditional_ overlap3(P1 ,P2,0ver,No _Over),!.

conditional_ overlap2(P1 ,P2,0ver,['hopcount'!No _Over]):­
not(hopcount_ overlap(P 1 ,P2)),
conditional_ overlap3(P1 ,P2,0ver,No _Over),!.

conditional_ overlap3{P1 ,P2,['bandwidth'j0ver],No_ Over):­
bw _ overlap{P1,P2),
conditional_ overlap4{P 1 ,P2,0ver,No _Over),!.

conditional_ overlap3{P1 ,P2,0ver,['bandwidth'INo _Over]):­
not(bw _ overlap(P1 ,P2)),
conditional_ overlap4{P 1 ,P2,0ver,No _Over),!.

conditional_overlap4{P1,P2,['user'l0ver],No_Over):­
user _ overlap(P1 ,P2),
conditional_overlap5{P1,P2,0ver,No_Over),!.

conditional_ overlap4(P 1 ,P2,0ver,['user'INo _Over]):­
not(user_ overlap(P 1 ,P2)),
conditional_overlap5(P1,P2,0ver,No_Over),!.

conditional_ overlap5{P1 ,P2,['host'j0ver],No _Over):­
host_ overlap(P1 ,P2),
conditional_overlap6(P1,P2,0ver,No_Over),!.

155

conditional_ overlap5(P1 ,P2, Over,['host'jNo _Over]):­
not(host_overlap(P1,P2)),
conditional_ overlap6(P 1 ,P2,0ver,N o _Over),!.

conditional_ overlap6(P 1 ,P2,['type'j0ver],No_ Over):­
not(overlap_ types(P 1 ,P2,_)),
conditional_overlap7(P1,P2,0ver,No_Over),!.

conditional_ overlap6(P 1,P2,0ver,['type'INo _Over]):­
overlap_ types(P 1 ,P2,_),
conditional_ overlap 7(P 1 ,P2,0ver,No _Over),!.

conditional_ overlap 7 (_,_, [], []).

%===
% Determine if there is an overlap between
% user defined types.
%
overlap_types(Policy1, Policy2, Type):­

type(Type,_,_),
setof(Element,condition(Policy 1 ,_,_, Type,_,Element),Elements 1),
setof(Element,condition(Policy2,_,_, Type,_,Element),Elements2),
not(Elements 1 = []),

not(Elements2 = []),
intersection(Elements 1 ,Elements2,1),
I=[]. .

%===
% Determine if a priority overlap exists
%
priority_ overlap(Policy 1 ,Policy1).

priority_ overlap(Policy1,Policy2):­
not(Policy1 = Policy2),
(not(setof([Op 1 ,Value 1],condition(Policy 1 ,_,_, 'priority',Op 1, Value 1),_));
not(setof([Op2,Value2],condition(Po1icy2,_,_,'priority',Op2,Value2),_))).

priority_ overlap(Policy1 ,Po1icy2):­
not(Policy1 = Policy2),
setof([Op 1, Value 1],condition(Policy 1 ,_,_,'priority' ,Op 1 ,Value 1),Values 1),
setof([Op2, V alue2],condition(Po1icy2,_,_, 'priority',Op2, V alue2), V alues2),
overlap(Values 1, Values2).

%,===
% Determine if a hopcount overlap exists
%

156

hopcount_ overlap(Policy 1 ,Policy 1).

hopcount_ overlap(Policy 1 ,Policy2):­
not(Policy1 = Policy2),
(not(setof([Op 1 ,Value1],condition(Policy1,_,_, 'hopcount',Op 1 ,Value 1),_));

not(setof([Op2,Value2],condition(Policy2,_,_,'hopcount',Op2,Value2),_))).

hop count_ overlap(Policy 1 ,Policy2):­
not(Policy1 = Policy2),
setof([Op 1, Value 1],condition(Policy 1 ,_,_,'hopcount' ,Op 1 ,Value 1), Values 1),

setof([Op2, V alue2],condition(Policy2,_,_,'hopcount',Op2,V alue2),Values2),

overlap(V alues 1, Values2).

%,==
% Determine if a bandwidth overlap exists

%
bw_overlap(Policy1,Policy1).

bw _ overlap(Policy1 ,Policy2):-
not(Policy1 = Policy2),
(not(setof([Op1,Value1],condition(Policy1,_,_,'BW',Op1,Value1),_));

not(setof([Op2,Value2],condition(Policy2,_,_, 'BW' ,Op2,V alue2),_))).

bw _ overlap(Policy1 ,Policy2):-
not(Policy1 = Policy2),
setof([Op1,Value1],condition(Policy1,_,_,'BW',Op1,Value1),Values1),

setof([Op2, Value2],condition(Policy2,_,_, 'BW' ,Op2, Value2), Values2),

overlap(V alues 1, Values2).

%,==
% Determine if a time overlap exists
%
time_ overlap(Policy 1 ,Policy 1).

time_ overlap(Policy 1 ,Policy2):-
not(Policy1 = Policy2),
(not(setof([Op1,Time1],condition(Policy1,_,_,'time',Op1,Time1),_));

not(setof([Op2, Time2],condition(Policy2,_,_, 'time' ,Op2, Time2),_))).

time_ overlap(Policy 1 ,Policy2):-
not(Policyl = Policy2),
setof([Op1,Time1],condition(Policy1,_,_,'time',Op1,Time1),Timesl),

setof([Op2, Time2],condition(Policy2,_,_,'time' ,Op2, Time2), Times2),

overlap(Times 1, Times2).

%==
% An overlap exists if ALL elements of a condition

157

% overlap. The overlap rule uses the operator and value
% of two conditional elements to determine if overlaps
%exist
%
overlap([],LLJ).

overlap(U_j,[]).

overlap([[Op 1, Value 1]1Tail1],[[Op2,Value2]1Tail2]):­
not([[Op2,Value2]1Tail2] = []),
not([[Op1,Value1]1Taill] = []),
overlap 1 (Value I, Op 1, V alue2,0p2),
overlap(Tail1 ,[[Op2,Value2]1Tail2]),
overlap([[Op 1 ,Value I]1Tail1], Tail2).

%===
%Helper rule to "overlap" above.
% Detemines if an overlap exists between
% two conditional elements.
%
overlap 1 (Value 1 ,_,Value 1 ,_).

overlap I(_,'>=',_,'>=').

overlap I (Value 1 ,'>=', V alue2,'<='):­
Value1 < Value2.

overlap I(_,'<=',_, '<='):-true.

overlap I (Value 1 ,'<=', V alue2, '>='='):­
Value1 > Value2.

%==
% Determines if there is an overlap between
%users. Each user in the conditional element
% list is checked, and if any user
% overlap exists, then the policy contains a
%user overlap.
%
user_overlap(Policy1,Policy1).

user_ overlap(Policy 1 ,Policy2):­
not(Policy1 = Policy2),
(not(setof([Op 1 ,User 1],condition(Policyl ,_,_,'user _id',Op 1 ,User1),_));
not(setof([Op2, U ser2],condition(Policy2,_,_,'user _id' ,Op2, U ser2),_))).

user_ overlap(Policy 1 ,Policy2):-

158

not(Policy1 = Policy2),
setof([Op 1 ,User 1],condition(Policy1 ,_,_,'user_id',Op 1 ,User 1),Users 1),
setof([Op2,User2],condition(Policy2,_,_,'user_id',Op2,User2),Users2),
user_ overlap 1 (Users I, U sers2,Results),
flatten(Results,Flat_ Results),
not(member('conflict',Flat_ Results)),
member('overlap',Flat_ Results),
true.

user_overlap(Policy1,Policy2):­
not(Policy1 = Policy2),
setof([Op 1 ,User!],condition(Policy1 ,_,_,'user _id',Op 1 ,User!),Users 1),
setof([Op2, U ser2],condition(Policy2,_,_, 'user _id', Op2, U ser2), U sers2),
user_ over lap 1 (Users 1, U sers2,Results),
flatten(Results,Flat_ Results),
member('conflict',Flat_ Results),
fail.

%==
%Helper rule to "user_overlap" above.
% Determines if user element lists overlap
% with at least one common user
%
user_ overlap 1 ([],LLJ,[]).

user_overlap1(U_],[],[]).

user_overlap1([[0p1,Value1]JTai11],[[0p2,Value2]JTail2],[Result1,Result2,Result3]):­
not([[Op2,Value2]JTail2] = []),

not([[Op1,Value1]JTaill] = []),
user_ overlap2(V alue 1 ,Op 1, V alue2,0p2,Resultl),
user_overlap1(Tail1,[[0p2,Value2]JTail2],Result2),
user_overlapl([[Op1,Value1]JTaill],Tail2,Result3).

user_overlapl([[Op1,Value1]JTaill],[[Op2,Value2]JTail2],[Result2,Result3]):­
not([[Op2,Value2]JTail2] = []),
not([[Opi,Valuel]JTaill] = []),
not(user_ overlap2(V alue I ,Op 1, Value2,0p2,_)),
user_overlapi(Taili,[[Op2,Value2]JTail2],Result2),
user_ overlap 1 ([[Op l,Value 1]JTaill], Tail2,Result3).

%~==

% Helper rule to "user_ overlap I" above
% Determines if two user values overlap
%Can return "No overlap", "Overlap", or "Conflict"
%
user_ overlap2(V alue,Op,Value,Op,'overlap').

159

user_ overlap2(Value 1 ,'=', Value2,'=','nooverlap'):­
not(Value1 = Value2).

user_overlap2(Value1,'=',Value2,'!=','overlap'):­
not(Value1 = Value2).

user_overlap2(Value1,'=',Value1,'!=','conflict').

% This makes an assumption that there are many/infinite users
%If there were limited user, then maybe they should be a "type" instead.
%
user_ overlap2L,'!=' ,_,'!=','overlap').

%·===
% Determines if there is an overlap in host identifiers
%
host_ overlap(Policy1 ,Policy I).

host_ overlap(Policy 1 ,Policy2):-
not(Policy1 = Policy2),
(not(setof([Opl,Addl],condition(Policyl,_,_,'host_id',Op1,Add1),_));
not(setof([Op2,Add2],condition(Policy2,_,_, 'host_id',Op2,Add2),_))).

host_ overlap(Policy1 ,Policy2):­
not(Policyl = Policy2),
setof([Op 1 ,Add 1],condition(Policy 1 ,_,_,'host_id',Op 1 ,Add 1),Addresses 1),
setof([Op2,Add2],condition(Policy2,_,_,'host_ id' ,Op2,Add2),Addresses2),
host_ overlap 1 (Addresses 1 ,Addresses2,Results),
flatten(Results,Flat_ Results),
not(member('conflict' ,Flat_ Results)),
member(' overlap' ,Flat_ Results),
true.

host_ overlap(Policy 1 ,Policy2):-
not(Policy1 = Policy2),
setof([Op1,Add1],condition(Policy1,_,_,'host_id',Op1,Addl),Addresses1),
setof([Op2,Add2],condition(Policy2,_,_,'host_id',Op2,Add2),Addresses2),
host_ overlap 1 (Addresses 1 ,Addresses2,Results),
flatten(Results,Flat_ Results),
member('conflict',Flat_ Results),
fail.

%=================================== =======
%Helper rule to "host_ overlap" above
% Progresses through the list of host addresses from
% two policies looking for an overlap

160

%
host_ overlap 1 ([],U_],[]).

host_overlap1(U_],[],[]).

host_ overlap 1 ([[Op 1 ,Value 1]!Tail1],[[Op2,Value2]1Tail2],[Result1 ,Result2,Result3]):­
not([[Op2,Value2]1Tail2] = []),
not([[Op1,Value1]1Taill] = []),
not(address_ overlap(V alue 1, Value2) },
host_ overlap2(0p 1, 'X' ,Op2,'Y',Result1),
host_overlap1(Tail1,[[0p2,Value2]1Tail2],Result2},
host_overlapl([[Op1,Value1]1Tail1],Tail2,Result3).

host_overlap1([[0pl,Value1]1Taill],[[Op2,Value2]1Tail2],[Resultl,Result2,Result3]):­
not([[Op2,Value2]1Tail2] = []),
not([[Opl,Value1]1Taill] = []),
address_ overlap(V alue 1, Value2),
host_ overlap2(0p 1 ,'X' ,Op2,'X',Resultl),
host_overlapl(Tail1,[[0p2,Value2]1Tail2],Result2),
host_ overlap 1 ([[Op 1 ,Value1]!Taill], Tail2,Result3).

host_ overlap 1 ([[Op 1, Value 1]!Tail1],[[Op2,Value2]1Tail2],[Result2,Result3]):­
not([[Op2,Value2]1Tail2] = []),
not([[Op1,Value1]1Taill] = []),
address_ overlap(V alue 1, Value2),
not(host_ overlap2(0p 1 ,'X' ,Op2,'X',_)),
host_ overlap 1 (Tail1 ,[[Op2,Value2]1Tail2],Result2),
host_ overlap l([[Op 1 ,Value1]1Tail1], Tail2,Result3).

host_overlap1([[0p1,Value1]1Tail1],[[0p2,Value2]1Tail2],[Result2,Result3]):­
not([[Op2,Value2]1Tail2] = []),
not([[Op1,Value1]1Taill] = []),
not(address_ overlap(V alue 1, Value2)),
not(host_ overlap2(0p 1 ,'X' ,Op2, 'Y' ,_)),
host_overlap1(Tail1,[[0p2,Value2]1Tail2],Result2),
host_ overlap 1([[0p 1 ,Value 1]IT ail I],Tail2,Result3).

%==
%Helper rule to "host_overlap1" above
% Determines if two host values overlap using
% the specified comparison operator
%
host_ overlap2('=' ,X,'=',X, 'overlap').

host_overlap2('=',X,'=',Y,'nooverlap'):- not(X = Y).

host_overlap2('=',X,'!=',X,'conflict').

161

host_overlap2('=',X,'!=',Y,'overlap'):- not(X = Y).

host_ overlap2('!=',X, '=',X, 'conflict').

host_overlap2('!=',X,'=',Y,'overlap'):- not(X = Y).

host_ overlap2('!=' ,X,'!=' ,X, 'overlap').

host_overlap2('!=',X,'!=',Y,'overlap'):- not(X = Y).

%===
% Determines if IP protocol addresses overlap
%
address_overlap([DotliTaill],[Dot21Tail2]):-

Dotl = Dot2,
address_overlap(Taill,Tail2).

address_ overlap([Dotl LJ,[Dot2LJ):­
Dotl = '*';
Dot2 = '*'.

address_overlap([],[]).

%==
% Determines if message specified for a policy path
% is supported by each link that composes the path
%
message_conflict(Policy,[Policy,Results]):-

path(Policy,_,_),
setof(Link, message_conflict_helper(Policy,L,Link]), Links),
flatten(Links,Flattened _Links),
generate _list_pairs(Flattened _Links, List_ of_ Pairs),
remove_ dups(List_ of _Pairs,Results).

message_ conflict(Policy ,[]):­
path(Policy,_,_),
not(setof(Link, message_ conflict_ helper(Policy ,L,Link]), _)).

%===
% Given a policy, return a list of links that do
%NOT support the needed "messages"
%
message_conflict_helper(Policy,[Policy,Results]):-

path(Policy,Path,_),
policy_ message(Policy ,Message),

162

message_ supported(Path,Message,Results),
not(Results = []).

%===
% Create a list of link, message pairs such that
% the pairs returned do NOT support the needed "message"

%
message_ supported([],_,[]).

message_ supported([Src,Dst],Message,[Link,Message]):­

link(Link,Src,Dst),
not(path _ message(Link,Message)).

message_ supported([Src,Dst],Message, []):­
link(Link,Src,Dst),
path _message(Link,Message).

message _supported([Src,DstJTail], Message, Results):­
link(Link,Src,Dst),
path_ message(Link,Message),
message_ supported([DstJTail], Message,Results).

message_ supported([Src,DstJTail], Message, [Link,MessageJResults]):­

link(Link,Src,Dst),
not(path _ message(Link,Message)),
message_ supported([DstJTail], Message,Results).

%===
% Modify a given list of items into a list of
% pairs, taking two elements at time to form
%the pairs.
%
generate _list_pairs([],[]).

generate _list_pairs([Node,MessageJTail],[[Node,Message]!Tail_ Results]):­

generate _list_pairs(Tail, Tail_ Results).

%,===
% Remove duplicate items from a list
%
remove_ dups([],[]).

remove_ dups([HeadJTail],List):­
member(Head, Tail),
remove_ dups(Tail,List).

remove_ dups([HeadJTail],[HeadJList]):­
not(member(Head, Tail)),

163

remove_ dups(Tail,List).
%==
% Concat two lists together
%
conc([],L,L).
cone([X ILl], L2, [X I L3]) :- conc(Ll,L2,L3).

%,==
% Is a list empty
%
empty([]):-true.
empty(LI_]):-fail.

%,===
% Is S a sub list of L
%
sublist(S,L):-

conc(_,L2,L),
conc(S,_,L2).

%,===
% print_ conflict_list:
% Output nicely each policy conflict that could not
% be resolved using the ID of policy's creator

print_ unresolved_ conflict_ list([]).

print_ unresolved_ conflict_list([L_,_,_,_,_,[]]ITail]):­
print_ unresolved_ conflict_list(Tail).

print_unresolved_conflict_list([[Policyl,Pathl,Targetl,Policy2,Path2,Target2,Permit_results]ITa
il]) :-

policy_owner(Policyl,Ownerl),
policy_ owner(Policy2,0wner2),
user(Ownerl,Valuel),
user(Owner2, Value2),
Value 1 = V alue2,
nl,nl,write('Conflict '),
write(Policy 1),
write(' < > '),
write(Po licy2),nl,
write(' '),
write(Policy 1),
write(' Path = ['),
write _path(Path 1),nl,
write(' '),
write(Policyl),

164

write(' Targets:'),
write_ targets(T arget 1),nl,
write(' '),
write(Policy2),
write(' Path = ['),
write _path(Path2),nl,
write(' '),
write(Policy2),
write(' Targets:'),
write_ targets(Target2),nl,
write(' '),
write('Target Conflicts:'),
print_list(Pennit_ results),nl,
print_unresolved_conflict_list(Tail).

print_ unresolved_ conflict_list([[Policy 1 ,_,_,Policy2,_,_,_]1Tail]) :­
policy_owner(Policy1,0wner1),
policy_ owner(Policy2,0wner2),
user(Owner1,Value1),
user(Owner2, Value2),
not(Value1 = Value2),
print_ unresolved_ conflict_list(Tail).

%===
% print_conflict_list:
% Output nicely policy conflicts that could be
%resolved using the ID of the policy's creator
%
print _resolved_ conflict_list([]).

print_reso lved _ conflict_list([L_,_,_,_,_,[]] IT ail]):­
print_resolved _ conflict_list(Tail).

print_resolved_conflict_list([[Policy1,Path1,Target1,Policy2,Path2,Target2,Pennit_results]ITail]

) :-
policy_ owner(Policy 1 ,Owner 1),
policy_ owner(Policy2,0wner2),
user(Owner 1 ,Value 1),
user(Owner2, Value2),
not(V alue 1 = Value2),
nl,nl, write('Conflict '),
write(Policy 1),
write(' < > '),
write(Policy2),nl,
write(' '),
write(Policy 1),
write(' Path = ['),

165

write _path(Path 1),nl,
write(' '),
write(Policy 1),
write(' Targets: '),
write_ targets(Target1),nl,
write(' '),
write(Policy2),
write(' Path = ['),
write _path(Path2),nl,
write(' '),
write(Policy2),
write(' Targets:'),
write_ targets(Target2),nl,
write(' '),
write('Target Conflicts: '),
print _list(Pennit _results),nl,
print_how_resolved(Policyl,Valuel,Policy2,Value2),
print _resolved_ conflict_list(Tail).

print _resolved_ conflict_list([[Policy 1 ,_,_,Policy2,_,_,_]1Tail]) :­
policy_owner(Policyl,Owner1),
policy_ owner(Policy2,0wner2),
user(Owner1,Value1),
user(Owner2,Value2),
Value1 = Value2,
print_resolved _ conflict_list(Tail).

%===
% Print nicely the how the a policy conflict was resolved
%
print_how_resolved(Policyl,Value1,Policy2,Value2):-

Value1 < Value2,
write(' '),
write('Resolved: '),
write(Policy 1),
write('(Priority = '),

write(V alue 1),
write(')'),
write(' overrides=> '),
write(Policy2),
write('(Priority = '),
write(Value2),
write(') '),nl.

print_how _resolved(Policy1, Value I ,Policy2,Value2):­
Value2 < Value1,
write(' '),

166

write('Resolved: '),
write(Policy2),
write('(Priority = '),
write(V alue2),
write(')'),
write(' overrides=> '),
write(Policy 1),
write('(Priority = '),
write(V alue 1),
write(') '),nl.

%==
% Print nicely a list of elements
%
print_ list([]).

print_list([[CIV] I Tail]):­
not(empty(Tail)),
write(C),
write(' = '),
write(V),
write(', '),
print _list(Tail).

print_list([[CIV] I Tail]):­
empty(Tail),
write(C),
write(' = '),
write(V).

%==
%write _path:
% is a helper function used to output
% a list with all the atoms quoted.

write _path([]):- write(']').

write _path([XI[]]):-
write(X),
write(']'),!,true.

write _path([X!Tail]):­
write(X),
write(','),
write _path(Tail).

%,==

167

% write nicely the target list of a policy
%
write_ targets([]):- write('[]').

write_targets([A,C,_,Vj[]]):­
write(A),
write(''),
write(C),
write('=['),
write(V),

. (']') ' wrtte ,.,true.

write_ targets([A,C,_,VjTail]):­
write(A),
write(''),
write(C),
write('=['),
write(V),
write('], '),
write_ targets(Tail).

% ===
% Print out any message conflicts beween a path
% and the links used to compose it.
% First step is to generate the list of conflicts
% step 2 is to output a list if not empty
%
print_ message_ conflict_list:-

not(setof(Link _Message, print_ message_ conflict_ list_ helper(Link _Message),_)),fail.

print_message _ conflict_list:­
setof(Link _Message,

print_ message_ conflict_ list_ helper(Link _Message),Message_ Conflicts),
write_ message_ conflicts(Message _Conflicts),fail.

%===
% Return a list of links and nodes that do not support
%the "messages" require by a policy path
%
print_ message_ conflict_ list_ helper(Message _Conflicts):­

path(Policy,_,_),
setof(Link _Message, message_ conflict(Policy ,Link_ Message),Message_ Conflicts).

%,===
% Print nicely all the policies that contain message conflicts
%
write_ message_ conflicts([]).

168

write_ message_ conflicts([Message _ ConflictjTail]):­
write _message_ conflict(Message _ Conflict),nl,
write_ message_ conflicts(Tail).

%===
% Write out a individual message conflict for a policy
%
write_ message_ conflict([]).

write_message_conflict([[Policy, Message_list] I Policy_Message_Tail]) :­
write(Policy),write(' requires message support on the following links'),nl,
write_ message_ conflict_ helper 1 (Message _list),
write_ message_ conflict(Policy _Message_ Tail).

%,===
% Print each link that does not support the "message" on the path
%
write_ message_ conflict_ helper 1 ([]).

write_message_conflict_helper1([[Link,Message] jTail]):­
write(' '),
write('link "'),write(Link),write("' requires support for message

"'), write(Message), write(""),nl,
write_ message_ conflict_ helper 1 (Tail).

169

TillS PAGE INTENTIONALLY LEFT BLANK

170

LIST OF REFERENCES

[1] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D. Karrenberg,

and M. Terpstra, "Routing Policy Specification Language (RPSL)," Internet Engineering

Task Force Internet Draft draft-ietf-rps-rpsl-v2-03.tx.t, April6, 1999.

[2] M. Blaze, J. Feigenbaum, J. Joannidis, and A. Keromytis, "The KeyNote Trust-Management

System Version 2," Internet Engineering Task Force: Network Working Group Request for

Comments: 2704, September 1999.

[3] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Raja, and A. Sastry, "The COPS (Common

Open Policy Service) Protocol", Internet Engineering Task Force, Internet Draft draft-ietf­

rap-cops-05.tx.t, December 1998.

[4] N. Brownleee, "SRL: A Language for Describing Traffic Flows and Specifying Actions for

Flow Groups," Internet Engineering Task Force, Internet Draft draft-ietf-rtfm-ruleset­

language-07.tx.t, August 1999.

[5] J. Case, M. Fedor, M. Schoffstall, J. Davin, "A Simple Network Management Protocol

(SNMP)," Internet Engineering Task Force: Network Working Group Request for

Comments: 1157, May 1990.

[6] L. Cholvy and F. Cuppens, "Analyzing consistency of security policies," presented at 1997

IEEE Symposium on Security and Privacy, 1997.

[7] D. Clark, "Policy Routing in Internet Protocols," Internet Engineering Task Force: Network

Working Group Request for Comments: 1102, May 1989.

[8] A. Guillen, R.N. Kia, and B. Sales, "An architecture for virtual circuit/QoS routing,"

presented at 1993 International Conference on Network Protocols, 1993.

[9] J. Honig, D. Katz, M. Mathis, Y. Rekhter, and J. Yu, "Application of the Border Gateway

Protocol in the Internet," Internet Engineering Task Force: Network Working Group Request

for Comments: 1164, June 1990.

[10] C. Kunzinger, "Protocol for the Exchange of Inter-Domain routing Information among

Intermediate Systems to Support Forwarding ofiSO 8473," Internet Engineering Task

Force: working draft ISO 10747, April1994.

[11] J. Kurose and K. Ross, Computer Networking A Top-Down Approach Featuring the

Internet, Addison-Wesley, 2000, pp. 152-153.

[12] B. Leiner, "Policy Issues in Interconnecting Networks," Internet Engineering Task Force:

Network Working Group Request for Comments: 1124, September 1989.

171

[13] K. Lougheed andY. Rekhter, "A Border Gateway Protocol (BGP)," Internet Engineering
Task Force: Network Working Group Request for Comments: 1105, May 1989.

[14] K. Lougheed andY. Rekhter, "A Border Gateway Protocol (BGP)," Internet Engineering

Task Force: Network Working Group Request for Comments: 1163, June 1990.

[15] K. Lougheed andY. Rekhter, "A Border Gateway Protocol3 (BGP-3)," Internet
Engineering Task Force: Network Working Group Request for Comments: 1267, October
1991.

[16] Y. Rekhter, T. Watson and P. Gross, "Application of the Border Gateway Protocol in the

Internet," Internet Engineering Task Force: Network Working Group Request for

Comments: 1268, October 1991.

[17] E. Lupu and M. Sloman, "Conflicts in Policy-based Distributed Systems Management," To

appear in IEEE Transactions on Software Engineering- Special Issue on Inconsistency,

1999.

[18] H. Mahon, "Requirements for a Policy Management System," Internet Engineering Task
Force, Internet Draft draft-ietf-policy-req-OO.txt, September 1999.

[19] D. Meyer, J. Schmitz, C. Orange, M. Prior, and C. Alaettinoglu, "Using RPSL in Practice,"
Internet Engneering Task Force: Network Working Group Request for Comments: 2650,
August 1999.

[20] J. B. Michael, E. H. Sibley, R. Baum, and F. Li, "On the Axiomatization of Security Policy:

Some Tentative Observations About Logic Representation," presented at Database Security,

VI: Status and Prospects, 1992.

[21] J. B. Michael, "A Formal Process for Testing the Consistency of Composed Security
Policies," in Department oflnformation and Software Systems Engineering. Fairfax: George
Mason University, 1993.

[22] J. Moffett and M. Sloman, "Policy Hierarchies for Distributed Systems Management," IEEE
Journal on Selected Areas in Communications, vol. 11, pp. 1404-1414, 1993.

[23] M. Nossik, F. Welfeld, and M. Richardson, "PAX PDL- a non-procedural packet
description language," http://www.solidum.com/paoers/pax-pdel/pax-pdl-OO.html, September

30, 1998.

[24] The PAIR Project: Policy Analysis oflnternet Routing, http://www.rsng.net/pair/, 1999

[25] R. Rajan, S. Kamat, J. C. Martin, M. See, R. Chaudhury, D. Verma, G. Powers, and R.
Yavatkar, "Policy Action Classes for Differentiated Services and Integrated Services,"
Internet Engineering Task Force, Internet Draft draft-rajan-policy-qosschema-0 l.txt, 5 April
1999.

172

[26] M. Steenstrup, "IDPR: An Approach to Policy Routing in Large Diverse Internetworks",

Journal ofHigh Speed Networks, 1994, pp. 81-105.

[27] M. Steenstrup, "An Architecture for Inter-Domain Policy Routing", Internet Engineering

Task Force: Network Working Group Request for Comments:1478, June 1993.

[28] M. Steenstrup, "Inter-Domain Policy Routing Protocol Specification: Version 1 ", Internet

Engineering Task Force: Network Working Group Request for Comments: 1479, July 1993.

[29] J. Strassner and E. Ellesson, "Terminology for describing network policy and services,"

Internet Engineering Task Force, Internet Draft draft-strasner-policy-terms-Ol.txt, 1998.

[30] J. Strassner, and E. Ellesson, "Terminology for describing middleware for network policy

and services," Internet Engineering Task Force Internet Draft draft-aiken-middleware­

reqndef-OO.txt, April 30, 1999.

[31] J. Strassner and S. Schleimer, "Policy Framework Definition Language," Internet

Engineering Task Force, Internet Draft draft-ietf-policy-framework-pfdl-OO.txt, 17 November

1998.

[32] J. Strassner, E. Ellesson, and B. Moore. (editor), "Policy Framework Core Information

Model," Internet Engineering Task Force: Network Working Group, Internet Draft draft-ietf­

policy-core-schema-02.txt, February 1999.

[33] G. Stone, "Path-based Policy Language", Naval Postgraduate School, Monterey, CA,

Manuscript in preparation, August 2000.

[34] S. Thomas, IPng and the TCPIIP Protocols, Wiley Computer Publishing, 1996, pp. 319-350.

[35] C. Villamizar, C. Alaettinoglu, and D. Meyer, "Routing Policy System Replication,"

Internet Engineering Task Force, Internet Draft draft-ietf-rps-dist-04.txt, September 28, 1999.

[36] X. Xiao, A. Hanan, B. Bailey, and L.Ni, "Traffic Engineering with MPLS in the Internet,"

IEEE Network, Vol. 14 No.2, pp 28-33, March!April2000.

[37] X. Xiao and L. Ni, "Internet QoS: A Big Picture," IEEE Network, Vol. 13 No.2, pp. 8-18,

1999.

[38] G. G. Xie, D. Hensgen, T. Kidd, and J. Yarger, "SAAM: An integrated network architecture

for integrated services," presented at Proceedings of 6th IEEEIIFIP International Workshop

on Quality of Service, Napa, CA, 1998.

[39] R. Yavatkar, D. Pendarakis, and R. Guerin, "A Framework for Policy-based Admission

Control," Internet Engineering Task Force, Internet Draft draft-ietf-rap-framework-Ol.txt,

November 1998.

173

THIS PAGE INTENTIONALLY LEFT BLANK

174

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virgina 22060-6218

2. Dudley Knox Library .. 2
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS!
Naval Postgraduate School
Monterey, CA 93943

4. Professor Bert Lundy, Code CS .. 1
Naval Postgraduate School
Monterey, CA 93943

5. Professor Geoff Xie, Code CS ... 1
Naval Postgraduate School
Monterey, CA 93943

6. Professor Bret Michael, Code CS ... 1
Naval Postgraduate School
Monterey, CA 93943

7. Professor John McEachen, Code EC 1
Naval Postgraduate School
Monterey, CA 93943

8. Professor Murali Tummala, Code EC 1
Naval Postgraduate School
Monterey, CA 93943

9. Communications and Information Systems Department1
Space and Naval Warfare Systems Center
Attn: Mr. Mike Harrison
53560 Hull Street
San Diego, CA 92152-5001

175

10. Computational Sciences Division ... 1
NASA Ames Research Center
Attn: Marjori Johnson, Senior Scientist
MS 269-2 Moffett Field, CA 94035-1000

11. DARPA I ITO .. 1
Attn: Dr. Mari Maeda
3701 Fairfax Drive
Arlington, VA 22203-1714

12. Directory, National Security Agency .. .1
Attn: S353 I Ms. Jan Huff
Fort George G. Meade, 20755-6000

13. Gary Stone .. 2
1026 Upper Mountain Road
Lewiston, NY 14092

176

