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ABSTRACT

A microprocessor controlled prototype robot was designed

and built to perform as an autonomous sentry and serve as a

test vehicle for evaluation of appropriate sensors and their

associated interface circuits

.

A ten channel near-infrared proximity detection system

was developed for use in collision avoidance, with moderate

range navigational planning incorporated through use of a

sonar system operating in conjunction with a long range near-

infrared detector.

The system was provided with a means of locating and

connecting with a free standing recharging station when

internal sensors detected a low battery condition.

A software structure was created to provide supervisory

control of the prototype and produce a reasonably intelli-

gent process of goal achievement through execution of

ordered sequences, with provision to deal with unexpected

events of higher priority.
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I. INTRODUCTION

The application of a microprocessor as a dedicated con-

troller for a complex mechanical system eventually leads

those concerned with the initial design or operation of the

end result into the rapidly growing and not always under-

stood field of robotics. This venture may be very brief,

or considerably involved, depending both on the desired

system capabilities, and the willingness of the designer

to commit more and more functions to computer control. As

required human intervention decreases, the machine's abili-

ties must simultaneously increase, giving rise to what is

commonly referred to as 'artificial' intelligence. There

exists at the one end simply a pre-programmed dedicated

controller able to repeatedly execute the most complex of

instructions and effect the motion of actuators, valve posi-

tions, motor speeds, etc. On the other end of the spectrum,

however, there are evolving machines that can function on

their own, evaluating their changing environment, and react-

ing as needed to carry out their intended tasks with no human

intervention in such a way that they truly appear 'intelligent'.

The obvious question arising is "At what point do these

machines become robots?". Unfortunately, there is no con-

cise, universally agreed upon definition of a robot, or a

means of identifying the transition point. No attempt will





be made to add another definition to the many already in

existence, as no purpose would be served in so doing, and it

is doubtful that there will exist any confusion associated

with the use of the term robot in the following pages .

The research presented in this thesis required the con-

struction of a microprocessor controlled mechanical system

to serve as a development and demonstration platform, and an

actual robot was desired to fill this role because of its

obvious impact already felt in many areas . Therefore such

a system was designed and constructed to be used strictly

as a learning tool, with no attempt to provide the proto-

type with an outer protective skin. All circuits and inter-

faces as well as the mechanical parts were to remain as open

and accessible as possible without degradation of performance

or risk of physical damage. For purposes of illustration

this robot was given the assigned task of serving as a home

sentry, patrolling in a normal household environment without

human intervention. It was to be equipped to detect poten-

tial dangers such as smoke, fire, toxic gas, flooding con-

ditions, or intrusion, and then effect the necessary response

The system was not intended to be completely autonomous at

first, but to evolve to that stage over a period of time as

new techniques were developed, additional sensors added,

and the concepts of artificial intelligence explored by the

designer

.
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Once the decision is made as to the overall task (or com-

bination of several smaller tasks) a robot is to perform,

the actuators must then be provided to enable it to mechan-

ically accomplish that task. The next step involves selec-

tion of the microprocessor( s ) which will provide the control,

and the sensors required to furnish the microprocessor with

its needed information. As the design considerations begin

to materialize the question of how much human interaction is

needed or desired must be readdressed, and then attention

turns to which points internal to the system must be moni-

tored, such as voltage levels, temperatures, current flow,

etc. The design can then be successively improved through

an iterative process until a reasonable solution is reached

for implementation on the prototype

.

If the robot is to carry its own power source then energy

conservation becomes critical in order to achieve a practical

duty cycle relative to the time required to recharge the

battery pack. Circuits which are powered down when not

needed often will affect other systems which are still ener-

gized and any interconnection must take this into account.

Backup or supplementary systems must be structured so as not

to provide conflicting information to the microprocessor,

and any change-over must be smooth and orderly. Individual

tasks must be prioritized to allow those of greater urgency

to interrupt the less important routines which may be in pro-

gress, in such a way that the CPU can pick up where it left

11





off or cancel the remainder upon return, as appropriate.

Collision avoidance routines must be set up so as to maximize

the use of the available sensory information, and provision

must be made to react to impending collisions that arise as

a result of evasive action initiated by a previous threat of

collision. The concept of interrupts must be thoroughly

understood by the designer, with much attention given to the

details as applicable to the microprocessor chosen if the

system's capabilities are to be utilized in the most effec-

tive manner.

A. DESIGN CONSIDERATIONS

As indicated, the primary purpose of this robot is to

serve as a mobile platform for research and experimentation

in the areas of artificial intelligence, computer interface

techniques, speech synthesis and recognition, and mechanical

and electrical design. The initial design provided for the

following

:

1. Chassis and body framework with a tricycle wheelbase

featuring a driven steerable front wheel.

2. A rotating head assembly mounted on the body trunk,

positionable up to 100 degrees either side of centerline

.

3. Speech synthesis for communications with operator.

4. Optical photocell array located in head for locating

and tracking homing beacon on recharging station.

5

.

Single transducer SONAR system for determining range

to obstacles in immediate Dath.

12





5. Multi-element near-infrared collision avoidance system

for object detection in first and fourth quadrants rela-

tive to centerline .

7. Contact bumpers and feelers for collision detection.

8. Numerous sensors for intrusion detection and home

surveillance

.

9

.

Complete software development system with hardcopy

printer

.

10. Provision to allow operator to request control from

CPU for performance of trouble shooting routines or to

request a specific behavior pattern subroutine

.

The size of the prototype was arrived at through consider-

ation of several design requirements . The overall height was

chosen so as to allow the machine to 'see' over most obstruc-

tions likely to be encountered in a home environment, to

facilitate location of the recharging station, yet not so

high as to preclude the fabrication of two uprights from a

standard six foot length of aluminum angle stock. A body

trunk height of 36 inches, with an additional 2 inches for

floor clearance, effectively situates the optical photocell

array at 44 inches above the floor (see Figure 1). The addi-

tional sensors mounted on top of the head extend the height

to 57 inches, and the receiving whip antenna reaches up to

a total system height of 62 inches.

The width of the base was set at 15 inches to allow suf-

ficient room for the drive motors attached to either side of





Figure 1. Photo of the Prototype Robot ROBART
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the front wheel, and to provide a stable foundation for the

body trunk. The two rear wheels are recessed into the side

of the rectangular base to provide a smooth side panel rela-

tively free of protrusions which would enhance the possibility

of impact with surrounding objects. The base length is 26

inches from front to rear bumper, and the relatively narrow

profile allows for easy navigation between obstacles and

through doors. The tricycle wheelbase provides a minimum

turn radius of twelve inches measured to the drive wheel of

the vehicle, which translates to a required free radius of

21 inches in which to perform a turn without impact. The

maximum turn angle is 30 degrees either direction.

The tricycle wheel base was chosen for use on this robot

primarily for comparison with a system employed on a previous

prototype, which consisted of two separately controlled drive

motors attached ro the rear wheels, and caster type idlers

used in front. The reader should not assume that the steer-

able driven front wheel is preferred over alternative methods

( see Section V)

.

B. iMICROPROCESSOR SELECTION

Two microprocessors are used on the prototype robot, one

to provide supervisory control and another totally dedicated

to speech synthesis. The first of these, a 6502 micropro-

cessor, is located on a SYM-1 single board computer manu-

factured by Synertek Incorporated of Santa Clara, CA . A

15





functional block diagram of the SYM-1 computer is shown in

Figure 2 . The SYM was chosen as the primary controller for

the prototype due to the extensive hardware made available

on a single board, the availability of a superb Assembler/

Editor for software development, and a relatively low total

package price.

The 5502 utilizes a 15-bit address bus and an S-bit data

bus, and provision is made to utilize 4 Kilobytes of Random

Access Memory (RAM) on board, as well as 2 3 Kilobytes of

Read Only Memory (ROM). Three 652 2 Versatile Interface

Adapters (VIA) and one 6 5 32 Peripheral Interface Adapter

(PIA) are available on-board and together provide a total

of 71 Input/Output (I/O) lines, making the SYM ideal for

robotic applications. Throughout the rest of the text, the

three Versatile Interface Adapters will be referred to as

6522-1, 6522-2, and 6522-3. Their respective port assign-

ments are given in Appendix A. Off-board expansion is pro-

vided for through a 44-pin Expansion Connector, and 32

Kilobytes of additional RAM are incorporated through the

addition of Beta Computer Devices 32K PAM Expansion Board.

The SYM-1 computer is mounted at mid-height on the

front of the prototype, forming the heart of the electronics.

It functions primarily as a dedicated controller, but can be

borrowed for interface to a Synertek KTM-2 terminal through

an RS-2 32 connection, thus greatly expanding the practicality

of the overall setup. The robot remains motionless beside

16
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the terminal stand while the SYM is under KTM control, and in

exchange receives supplemental power over the same DB-25 con-

nector that provides the RS-232 link. Once released by the

operator, the CPU first verifies that this circuit has been

disconnected, and then the robot proceeds under its own con-

trol on battery power. In the event the connecting cable has

not been removed, operator assistance will be requested

through speech synthesis

.

Speech synthesis is implemented through National Semi-

conductor's Digitalker DT1050 synthesizer chip, with two

sets of vocabulary instructions stored on EPROMs fcr a total

vocabulary of 2 80 words. (A third set will soon be avail-

able.) A fixed vocabulary was preferred over an unlimited

vocabulary created through repeated use of phonemes due to

the greatly decreased demand on the host microprocessor in

terms of both execution time and memory space. This also

reduces the complexity of voice outputting a response to

changing conditions as encountered by the robot when operat-

ing under its own control. These considerations are espe-

cially important when designing a system that is based

around a single microprocessor. The SYM-1 CPU is inter-

faced to the Digitalker DT1050 through two parallel I/O

ports, one of which supplies the EPROM starting address for

the instructions needed to generate the desired word. The

EPROMs are addressed by the DT1050 and do not take up address

space of the SYM-1. A portion of the second I/O port is used

13





to initiate the speech output, and to detect completion of

each word. The SYM-1 essentially just instructs the syn-

thesizer to speak a particular word, and then checks later

to see if the speech is complete before requesting the next

word

.

The Subroutines Voxl and Vox2 request words from vocabu-

lary lists 1 and 2, respectively, just as Vox3 will deal with

those words on list 3 when its associated EPROMs become

available. The hex address of the desired word is first

loaded into the X Register of the SYM-1, and then the appro-

priate subroutine called (Voxl or Vox2 ) . After the desired

word is identified, Subroutine Talk is called which manipu-

lates the control lines to the DT1050 to initiate the speech,

and then waits for the busy signal on FB7 of 6522-1 to clear.

Subroutines Voxld and Vox2d can be called if a slight delay

is desired before outputting the word specified, for spacing

between words in a sentence

.

C. INTERFACE LAYOUT

When used as a dedicated controller, the SYM-1 micro-

computer communicates with the outside world through its

three 6522 Versatile Interface Adapters and the 65 32

Peripheral Interface Adapter. These each contain two par-

allel eight-bit input/output ports (Port A and Port 3),

which can be used to read sensory information or send com-

mands to external circuitry. Each 6522 contains a total of

19





sixteen internal eight-bit data registers, and is structured

as shown in Figure 3. The organization of the 6 5 32 is very

similar. For the purposes of this discussion the differences

are insignificant and will not be addressed.

As configured on the SYM, all sixteen registers appear

to the CPU as specific memory locations within the 64 kilo-

byte address space. The CPU reads or writes data from these

registers on the VIAs as it would frcm any memory location.

The assigned address locations for the specific registers in

each of the four input/output devices are given in the SYM-1

Reference Manual [Ref. 1]

.

For both Port A and Port B there is associated an eight-

bit register referred to as the Input/Output Register, and

it is this register that the CPU actually reads from or

writes to when communicating with the outside world. Each

of its eight bits is directly associated with a hardware con-

nection to one of the expansion plugs on the SYM-1 board.

In the output mode, data can be loaded into this register,

and these associated lines will assume the TTL logic level

dictated by the subsequent register contents. For each bit

that is high, the output line will go high, whereas each low

bit will cause its associated line to go low, as shown in

Figure 4. These registers can be incremented, decremented,

or rotated by assembly language instructions, with the

voltage levels on the output lines reacting accordingly.

20
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These output lines can be directly interfaced to control

solenoids, motors, lamps, etc., according to preprogrammed

instructions executed by the 6502.

In the input model the TTL voltage levels present on the

lines associated with the Input/Output Register dictate the

individual bit values within the register. Thus the state

of a line can be determined by reading the register, and

masking off all but the desired bit with logical operations

performed within the accumulator by appropriate 6502 commands.

The two Data Direction Registers associated with each 6522

VIA determine the mode of operation for each individual bit in

the Input/Output Registers. If the processor writes a into

a particular bit of the Data Direction Register, that same bit

will be configured as an input on the Input/Output register

of the same port (see Figure 4). Conversely, writing a 1 will

cause the pin associated with that bit to act as an output.

Any combination of inputs and outputs is possible on the same

port

.

The remaining registers used on the 6522 VIAs are con-

cerned with shift register operation, event timers, and inter-

rupt processing, and an adequate discussion is not possible

here. The reader is referred to Scanlon, "6502 Software

Design" [Ref. 2], and Zaks , "6502 Applications Book" [Ref.

3] for excellent coverage of these details.

As the initial design of the prototype begins to mater-

ialize, it soon becomes acparent that the 71 I/O lines
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available on the SYM-1 microcomputer are insufficient, due to

the vast number of inputs and outputs needed for autonomous

control of a mobile system. Thirteen I/O lines are needed for

communication with the speech synthesis microprocessor alone,

eight for head and drive wheel position control, five for an

operator control interface, and sixteen for tactile sensors,

to name but a few

.

Therefore a four line address bus was created to serve the

six interface boards which connect the CPU to the various sen-

sors and outputs under its control. This address bus is driven

by PBO - PB3 of 5522-1 (see Appendix A), and in turn drives

three 74150 sixteen-input Data Selectors, two 74154 sixteen-

output Data Distributors, and one 74 75 four-bit latch (see

Figure 5). This yields an additional 34 I/O lines, but at

the expense of 10 of the original 71 I/O lines. If needed,

additional groups of 16 lines each could be added at a cost

of 1 original I/O line per group.

The three Data Selectors are simultaneously driven by the

four line address as the CPU sets PBO - PB3, with the comple-

ment of the selected input appearing on the selector output,

pin 10. A detailed description of 74150 and 74154 operation

is given by Lancaster in his "TTL Cookbook" [Ref. 4]. For

ease in programming, the selector outputs are again inverted

before being read by appropriate inputs on the 6522 VIAs , so

that the VIA sees the same logic level (high or low) as seen

by the selector input. This inversion is done by a spare
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comparator on the quad LM339, used to implement a sixteen

input NOR gate. A schematic of Data Selector A is shown in

Figure 6 .

The CPU therefore must set the value of the desired input

number onto the four line address, and then read the appro-

priate selector output over the corresponding 6 522 VIA input

(see Appendix A). As an example, to read the Target Input

used in homing on the recharging station, the CPU must set

the address lines to binary 0101 to select input number 5

on all three Data Selectors, and then read the output of

Data Selector C over PA6 on 652 2-3. Subroutines ReadA,

ReacB , and ReadC take care of manipulating the address and

data lines for ease in programming, with the desired input

number loaded into the X Register before the appropriate

subroutine is called.

Data Selector A is entirely dedicated to tactile and

proximity sensors, and is interrupt capable (see Section

II-3). Data Selector 3 also is interrupt capable, and

handles all alarms and internal circuitry check points .

Data Selector C is used to read miscellaneous inputs and

has no interrupt capability. A listing of all selector

inputs is given in Appendix 3

.

The two sixteen-output 74154- data distributors are also

driven by the four line address bus, but require three addi-

tional control lines, referred to as Data 1, Data 2, and

Data 3 (see Appendix A). These three lines are normally
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maintained in the high state . Data 1 and Data 2 provide the

inputs to Data Distributor A and Data Distributor 3, respec-

tively. These lines can be sent low to pull down the desired

distributor output. All sixteen outputs are normally high,

except the selected output, which follows the applied input.

Thus if the inputs are kept high, no outputs will change state

regardless of the status of the four line address. This is

important as this address also services other devices.

If the CPU desires to momentarily pull low an output on

Distributor 3, it first sets the appropriate binary value

on the four line address bus (0011 for output number 3, for

example), and then momentarily sends Data 2 low. Output 3

on Distributor 3 will also go low, but output 3 on Distri-

butor A, although selected, will be unaffected, since it

follows Data 1. It is important to note, however, that this

system can only be used to strobe outputs on Selector 3,

and that they cannot be held low for any length of time

without tying up the CPU. Therefore these outputs are used

only as negative-going triggers to initiate timing sequences

or actions subsequently controlled by other circuitry.

The third control line is used with Distributor A to

overcome this problem and provide a means for latching the

output high or low. As shown in Figure 7, each output on

Distributor A is used to clock a positive-edge-clocked D-type

flip-flop. These flip-flops all have their D inputs commonly

connected to Data 3. The output of any flip-flop will
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therefore assume the logic level of Data 3 if and only if

that flip-flop is clocked by Distributor A. The clocking

sequence involves setting the appropriate address to select

the desired flip-flop, with Data Lines 1-3 high. Data 3 is

then set to the desired output logic level (high or low) .

Data 1 is then strobed to clock the flip-flop, and its out-

put assumes and holds the desired state dictated by Data 3.

No other flip-flops will change state, as only the selected

flip-flop was clocked. For a complete description of the

7474 flip-flop operation, the reader is again referred to

the "TTL Cookbook" [Ref. 4].

This rather complicated manipulation of address and con-

trol lines is all done by Subroutines Pin. hi and Pin.lo,

which respectively set the address according to the contents

of the X Register and then send the appropriate output high

or low. For example, to turn on the robot's spotlights, the

programmer would merely load the X Register with hex 01,

and then call Subroutine Pin. hi, which would set flip-flop

number 1 output to high, enabling the spotlights. A listing

of all Distributor Outputs is given in Appendix 3.

The final device serviced by the four line address bus

is a 7475 quad latch, used to store a four bit command for

head positioning circuitry to be discussed later. This latch

is level sensitive, and controlled by PB7 of 6522-2, referred

to as Latch Enable. When this line is high, the latch con-

tents will reflect the value of the four line address bus
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and subsequently hold that value when Latch Enable goes low.

Thus any four-bit number can be latched into the register as

a head position command.

D. DRIVE AND STEERING CONTROL

The prototype robot is propelled by two surplus gear

motors originally designed for use as valve actuators. Each

has a separate forward and reverse winding, with a permanent

magnet field. Output shaft speed at 12 volts DC is 10 RPM

under full load, yielding a forward velocity of approximately

16 feet per minute. The two drive motors are mounted on

either side of a single front wheel, attached to what will

be referred to as the drive wheel support cage . This cage

in turn is supported by a vertical steering column and thrust

bearing in such a way as to be positionable by a steering

motor up to 80 degrees either side of centerline . The entire

drive assembly thus pivots around the steering column. Posi-

tion is sensed by a belt driven potentiometer mounted directly

to the rear of the column. The steering motor is identical

to the two motors used for propulsion.

The sensing potentiometer used for position feedback is

wired as a voltage divider across a carefully regulated 5V

supply, and positioned so as to provided a linear output

ranging from 0V to 3.7V, as the wheel turns from right to

left. This voltage is fed to an operational amplifier for

isolation purposes, and the amplifier output applied across
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a 25 K potentiometer used to set the maximum output to 2.5

volts (wheel full left). The output from this second poten-

tiometer is fed directly to a National Semiconductor ADC080M-

analog to digital convertor (see Figure 3) located on Inter-

face 3oard Number 2 . This A/D converter is supplied in a 20

pin package, and in this application operates in the free

running mode, with eight bits of resolution in a parallel

output . The chip is designed for an input voltage swing of

0V to 5V, and so the most significant bit is not used. This

in effect creates an A/D converter with a range of 0V to 2.5V,

but with only seven bits of resolution. The unused bit should

remain low during normal operation, and is wired to generate

an interrupt if it ever goes high, indicating the system is

no longer correctly calibrated, resulting in an A/D overflow.

Due to monetary constraints, a rather simple positioning

control system was chosen for use on the prototype, with sub-

stitution of a more sophisticated version easily achievable

if later desired. This simple control system required only

four bits of resolution, effectively creating 15 discrete

position points throughout the range of motor travel, approx-

imately every 10 degrees. Therefore, the three least signi-

ficant bits of the ADC0 804 are not used.

The four bits from the A/D converter are fed to the B

inputs of a 7M-85 four-bit magnitude comparator, as shown in

Figure 8. The desired steering position is fed to the A

inputs directly from 5 5 22-2, PAO - PAS. The comparator
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compares the two numbers and indicates via its digital out-

puts if they are equal, or else which is the larger. The

steering motor can be directly controlled by these same out-

puts, as was done by DaCosta [Ref. 5 ] in a similar arrange-

ment which served as the basis for this design. The steering

motor is energized as long as the actual position is not equal

to the deisred position, and its direction is determined by

which of the two is greater.

As pointed out, this is a relatively crude positioning

scheme, with very coarse resolution, and no velocity control.

Nevertheless it proved more than adequate for use in the

homing and navigational routines presented later. Consider-

able improvement could be obtained by ganging together two

7484 comparators, and picking up the additional three bits

available from the A/D convertor, for a total of 12 3 discrete

positions as opposed to merely 16 . The upper two most signi-

ficant bits could be monitored with Exclusive-Or logic gates

to control the speed of the motor as well, causing it to slow

down to a reduced RPM when the upper two bits matched, stop-

ping altogether when all bits matched. A proposed schematic

is shown in Figure 9

.

A considerable amount of frictional damping is inherently

present in this positioning system, which decreases the

chances of overshoot, especially for the case of only sixteen

discrete positions. As the resolution is increased, however,

overshoot becomes a significant problem, and some form of

34





7485

/C_AO_

>
A2

Q
<

10

12

13

15

7 6

9

I I

14

o

o

CO
t—

t

CO
o
a.

O

Ll.

( A<B)

7485

A3

A4

A5

A6

V
l

( A>B)

2 3 4

10 9

12 I I

13 14

15 I

7 6

ANALOG
SIGNAL
v

ADC0804
ANALOG/DIGITAL

C0NVERT0R

DBO

OB

0B2

DB3

DB4

n
0B5

DB6

DB7

7

18

17

16

15

14

13

12

A/D OVERFLOW

TO STEERING POWER RELAY ( ON/OFF)

TO RIGHT DIRECTION RELAY (LEFT/RIGHT)

7486

7432

TO STEERING

VELOCITY CONTROL

RELAY (FAST/SLOW)

Figure 9 . Improved Design for Steering Control

35





velocity control becomes essential for stability. The ideal

solution would perhaps be to use a small dedicated micropro-

cessor to compare the desired position with the actual posi-

tion, and control the motor velocity accordingly with pulse

width modulation; continuously decreasing the motor speed as

a function of position error. Single board systems suitable

for this application are available for less than $100

.

The tandem drive motors used for propulsion are wired in

parallel to drive the steerable front wheel, and can operate

in either forward or reverse directions. Due to their slow

maximum speed, no attempt was made to provide velocity control

These motors were selected for their extremely low cost and

high torque, and will be replaced by faster versions in a

follow on robot to be built based on experiences gained

through this development. The drive motors are energized by

a relay controlled by PAM- of 6522-2, and their direction is

similarly controlled by FA5 of the same port.

E. INTERRUPT ROUTINES

The software structure for the prototype robot utilizing

the Synertek Systems SYM-1 microcomputer as a controller can

be broken down into three general areas . In addition to the

main code which handles overall system control, there are

two sections which deal with interrupts: the Non-Maskable

Interrupts (NMD and the maskable Interrupt Request (IRQ).

Coordination among these three areas is made possible by
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dedicating certain register locations in page zero (memory

address locations $0000 - $00ff) for information transfer,

and also by the fact that input/output devices can be accessed

from all three areas, not just the main code. A brief intro-

duction to the concept of interrupts is required before pre-

senting an explanation of the two types utilized on the

prototype

.

An interrupt is an event whose occurrence is hardwired to

force the processor to drop what it was doing and service the

cause of the interrupt. No polling of devices is required

until an interrupt is detected. This leads to much more

efficient operation, as the CPU need not concern itself with

any interrupt sources until such time as they actually require

attention. The CPU is alerted to this condition by special

input lines connected to the hardware that it services -

6522 Versatile Interface Adapters in the case of the SYM-1

single board computer.

There are two interrupt input lines to the 6 502 micro-

processor. Each can be used to halt temporarily the program

under execution and cause a branch to a different location

in memory. The processor then executes the program listed

at this new location, which is referred to as the interrupt

service routine . This action by the processor is termed

responding to an interrupt. Quite often the processor

branches to a specific location that contains the starting

address of the interrupt service routine, and then branches
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again to that starting address . This allows the service

routine to be located anywhere in memory, rather than being

restricted to a specific address . This concept is referred

to as 'vectored' interrupts, and the specific address where

the processor goes to fetch the service routine starting

address is known as the interrupt vector location.

Two types of interrupts are possible with the 5 50 2 micro-

processor: the Non-Maskable Interrupt (NMD and the Interrupt

Request (IRQ). The Non-Maskable Interrupt can override the

lower priority Interrupt Request, and will occur whenever the

NMI line (pin 6) is pulled low on the 6502. It is edge sensi-

tive, occurring on the high to low transition of pin 6, and

cannot be internally masked by the processor. An Interrupt

Request, however, occurs when the IRQ line (pin 4) goes low.

Unlike the NMI, the IRQ is level sensitive, which means that

the processor will be interrupted as long as pin 4 on the 5502

is held low. A second difference is that Interrupt Requests

can be temporarily disabled by setting a flag within the

processor, called the interrupt disable bit. This bit can

be set through software, and when set, causes all subsequent

Interrupt Requests to be ignored. (The Assembly Language

command to set this bit is SEI , and it is cleared with the

command CLI . ) It is important to note that this' bit is set

automatically by the processor when responding to an IRQ,

and cleared automatically when returning from interrupt

(RTI). The programmer has the option of changing its status





as he so desires either within the interrupt service routine,

or external to it. In any event, the condition causing the

interrupt must first be dealt with before interrupts are re-

enabled, or another interrupt will immediately occur, and an

endless loop will result. The programmer has two options:

1) Provide for eliminating the source of the interrupt

through action initiated in the interrupt service routine,

verify elimination, and then return from interrupt. 2) An

alternate method would be to disable the device reading the

interrupt (i.e., the hardware between the source and the 6502

CPU) , then return from interrupt and attend to the source

.

Once the condition has been cleared, the hardware which

alerts the CPU to an interrupt condition can be re-enabled

for future use . 3oth methods are used in the prototype as

presented later in the text.

When a Non-Maskable Interrupt occurs , the processor will

complete the instruction currently being executed before

recognizing the interrupt, and then store the contents of

the Program Counter and the Processor Status Register on

the stack. The processor then goes to a specific address in

memory ($A6 7A) and fetches the starting address of the Non-

Maskable Interrupt routine software . In this manner the

processor can be halted, the required information saved on

the stack to allow a return, and then vectored to a new set

of instructions . Upon completion of these instructions , the

processor can return and pick up where it left off, until

interrupted again.
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When an Interrupt Request occurs
,
provided the Interrupt

Disable Bit is clear, the current instruction is again com-

pleted, the Disable 3it is set, and the Program Counter and

Status Register saved on the stack. The processor then

branches to a different address in memory ($A6 73) for the

starting address of the Interrupt Request Service Routine

,

and subsequently jumps to that indicated portion of memory

for execution of the instructions which deal with Interrupt

Requests

.

After the interrupt has been serviced, whether MMI or

IRQ, the processor returns to the location of the next in-

struction to have been executed had the interrupt not

occurred. This is termed a Return from Interrupt (RTI),

and is accomplished by pulling the Program Counter and Pro-

cessor Status Register off the Stack, where they were pre-

viously stored. Execution then begins where the processor

left off. Therefore, when routines are in progress where

timing is critical, such as while waiting for a sonar echo,

the Interrupt Disable bit should be set to prevent a lengthy

interruption at a critical point, and then cleared upon com-

pletion of the routine . Any interrupts which may have

occurred while the Disable Bit was set will be serviced as

soon as the bit is cleared, as the IRQ line is level sensitive.

The NMI line cannot be ignored by the processor under any

conditions , and so NMI service routines should be kept as

short as possible where there is a chance they could interfere
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with other routines in progress . The Non-Maskable Interrupt

is therefore used to keep track of the time, incrementing the

hours, minutes, and seconds registers as appropriate. Since

it cannot be masked out, and has priority over Interrupt

Requests, the accuracy of these registers is assured, and

service time is kept at a minimum. These interrupts are

caused by hardware circuitry located on the Clock/Calendar

Board, as discussed elsewhere in the text.

The IRQ line connected to pin 4 of the 6502 CPU can be

pulled low by either of the three 6 522 Versatile Interface

Adapters, or the 5532 RAM I/O Timer (RIOT). Only one of

these devices is used for interrupt handling on the proto-

type robot, however, namely 6522-2. Each 6522 VIA has seven

potential interrupt sources: four control lines, two timers,

and one shift register. Only two sources are used: inter-

rupts generated by Data Selector A (IRO-A) are fed in on

control line CA2 via AA Connector pin M- , and interrupts gen-

erated by Data Selector B (IRQ-B) are fed in on control line

CB-2 via AA Connector pin 5 . These are referred to as Inter-

rupt Channel A and Interrupt Channel B, respectively. Data

Selector C has no interrupt capability.

Each Data Selector has the capability to handle sixteen

different inputs, any one of which can generate an interrupt.

Diode jumpbers are installed on each selector input where an

interrupt is required, as shown in Figure 6, Section I-C.

Data Selector A utilizes all sixteen inputs to monitor the

impact sensor switches and the near-infrared proximity
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detectors used for collision avoidance. All inputs are

junroered to cause an interrupt, but the four infrared inputs

can be disabled at the infrared driver board so as to be ig-

nored, by calling Subroutine I/Rdis. Selector A interrupts

can be collectively disabled, without affecting Selector A

inputs, by calling Subroutine IROAdis, and enabled with Sub-

routine IRQAen. Selector A is polled by Subroutine IRQA

once an interrupt is detected. Data Selector 3 is used to

monitor internal circuitry check points , and not all inputs

cause interrupts . Examples of those that do are the low

battery condition, analog to digital overflow, smoke alarm,

fire alarm, and power distribution bus inputs. Selector B

is polled by Subroutine IRQB, for branching to the appro-

priate service routine after returning from interrupt. (See

sections on Behavior Selection and Alarms.)

The Interrupt Request Service Routine first saves all

primary registers on the stack. Next the Return Register

is cleared, and the drive is stopped with the old command

stored for later use. Subroutine IRQA is called for polling

Data Selector A, with Q (the IRQ index counter) initialized

to start with input 4- . The structure of Subroutine IRQA is

such that it will not return until all inputs on Selector A

are low (see Figure 10). Thus the individual service sub-

routines called by Subroutine IRQA must clear the cause of

the interrupt, or no return is possible.
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Since Selector A reads collision related inputs generated

by either tactile sensors or the close-in proximity detectors,

the service subroutines called must react by energizing the

drive wheel to move the platform away from the object sensed.

When all inputs have been restored to a low state, Subroutine

IRQA returns to the Interrupt Request Routine , which then

calls Subroutine IRQB. Subroutine IRQB polls all inputs on

Selector B in a similar fashion before returning, after which

the Interrupt Request Routine restores the old drive commands,

recalls the primary registers, and returns from interrupt.

In addition to effecting drive motor responses within

itself, the IRQ Service Routine also causes actions to be

performed after return by setting certain registers before

returning from interrupt . Register Return will cause a

return from interrupt even though all inputs on Selector A

are not low, if set by Subroutine IRQA. Register Homing, if

set, will cause Skirt to be activated during docking with the

charger. A side impact at close range to the charging sta-

tion will set Register Realign, causing Subroutine Align to

be called when docking. These registers are predominantly

addressed by Interrupt Channel A related software concerned

with collision avoidance. As further examples, Register

Exit can be set to ensure termination of a Behavior Subroutine

in progress, and Register Next can be set to pick the subse-

quent 3ehavior Subroutine. This technique is used to process

and react to the alarm conditions generated by Interrupt

Channel B

.
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II. THE AUTONOMOUS ROBOT SENTRY

With the daily passage of time industry and the general

public are becoming more acutely aware of the emergence and

potential of the robot. From the vague definition of "machines

that think" there are evolving a multitude of very sophistic-

ated and practically proven assembly line robots, and a back-

ward glance at progress over just the past few years yields

awesome visions of what the future may soon hold. With speech

synthesis now an easily achieved reality, and speech recogni-

tion showing much promise of the same , the potential of the

robot to serve as a valuable assistant to man in areas beyond

the scooe of a controlled assembly line environment is becom-

ing more and more apparent. The relatively new field of art-

ificial intelligence is now the subject of extensive and

rewarding research. Robots which can function on their own,

converse with humans , and move about performing tasks in

toxic or radioactive areas otherwise inaccessible, are no

longer merely conjecture but reality, and their numbers can

be expected to swell at a staggering rate.

In the development of an autonomous system, the designer

must address several fundamental areas after the initial

decisions are made with regard to CPU selection, drive

mechanisms, and structural framework. Of primary importance

should be the question of control. Very few systems will be
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brought up on line with no human intervention whatsoever,

particularly in the initial stages of development and up

through preliminary tests of the resultant product. Exactly

how much human interaction is needed and how it should be

implemented are questions that need to be resolved early.

An intelligent mobile platform obviously needs to be

provided with a real time reference to assist in the per-

formance of its behavior routines , and various means are

available through which both time and date information can

be made available to the CPU.

As a prototype begins to take shape from these meager

beginnings the need for automatic replenishment of its

energy store quickly surfaces . As battery power is cur-

rently viewed as the most practical supply for indoor

operation, this usually requires the development of a

tracking system to locate an available battery charging

station, and a means of effecting the proper connection.

Since the platform must move about in the performance

of its duties and, to ensure survival, an ability to navigate

and avoid collisions with surrounding objects is crucial.

This is perhaps one of the larger areas of concern, and

involves careful selection and placement of sensors as well

as effective data utilization within the software.

Once the capability to maneuver safely has been added,

the refinement of the machine's ability to accomplish its

overall objective becomes the dominant issue. In the
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prototype robot ROBART this objective is to serve as an auto-

nomous sentry in a standard home environment. Therefore con-

siderable attention must be paid to methods of intrusion

detection, as well as means to indicate the presence of smoke,

fire, toxic gas, flooding, and other unwanted conditions,

and the development of software routines to deal with each

situation

.

Up until now the software associated with the concerns

discussed could conceivably consist of reactionary subrou-

tines which detect a condition and respond accordingly after

polling a few appropriate inputs which dictate the response

.

As complexity grows, however, this means of control becomes

severely limited, and unable to deal with unforeseen problems

the machine is likely to encounter. A hardware and software

structure for controlling the robot's actual motions must be

developed that can support a higher level program tasked with

determining what the machine's responses should actually be.

At that point the device is ready to be provided with its

own artificial, or machine, intelligence.

In the following sections each of these fundamental areas

will be addressed as implemented on the prototype. The dev-

elopment of the operator/machine interface is explained,

followed by a description of the system's real time reference.

The sophistication of the machine increases as the ability to

locate and connect with a free standing recharging station is

added, as well as collision avoidance capability. The
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discussion concludes after examining the prototype's means of

intrusion detection and the manner in which behavior routines

are requested and subsequently performed.

A. OPERATOR CONTROL

Control shift between the CPU and the system operator is

handled by the Subroutine Control, which when called checks

the external input switches 1 through 4. If any of these

switches is up, the CPU will initiate procedures to turn

over control to the operator, otherwise the subroutine

returns with no action taken.

The control shift procedure must make provision for

several things

:

1) An effective yet simple method for determining if
the operator desires to take control, or return control
to the CPU.

2) The passing of control at the appropriate points in
the program flow, so as not to disrupt the completion
of events which should be terminated before other events
are begun.

3) An efficient method to determine which routine the
operator wants to perform or request.

4) A means for inputting parameters or data needed to
execute or clarify the chosen routine.

If control is requested, Subroutine Control will perform

all these functions , interacting with the operator through

voice instructions . This makes the process fairly easy to

follow, and requests are handled in a clear and orderly

fashion. The CPU will first set the IRQ interrupt disable

flag, stop the drive wheel, store the old drive command in
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Register Dri.com, indicate that control is being passed to

the operator, and then request the 'Service Select Entry'.

This is a four bit control code entered via the external

input switches . The operator will be instructed to set the

switches and then to press the ENTER button.

Pressing ENTER triggers a 5 55 monostable multivibrator

locaxed immediately behind the switch panel, and the ENTER

LED goes high. The 555 effectively debounces the push-

botton, holds the ENTER signal high long enough to be read

(two seconds), and then resets. Meanwhile, the CPU calls

Subroutine Ent.chk (entry check) to read the ENTER signal

on PA7 of 6 52 2-3. This subroutine assigns the value of hex

10 to Register Count ($06). It then reads PA7 every half

second, looking for a high, and decrementing Count each time

If PA7 goes high, or the Count register reaches zero, the

subroutine returns. On return, if Count equals zero, there

was no entry, and the request to enter is repeated. If

Count is non-zero the CPU then reads the entry switches
,

which by this time have settled and thus require no de-

bouncing. The four bit code just read determines which

service the operator is requesting, and is stored for the

time being in Register Ser.cd ($09). The CPU then requests

the 'Control Code Entry', which is inputted in a similar

fashion and stored in Register Con.cd ($10). The Sub-

routine Op. exec (operation execute) is then called to
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perform the required service based on the contents of Register

Ser.cd, subject to the constraints represented by the contents

of Register Con.cd.

There are fifteen Service Routines which the operator can

request, and on the prototype robot these are primarily used

for trouble shooting the system or modifying its behavior.

As an example , Service Routine Number 1 can be called to

cycle Data Selector A and report by voice the input state

as seen by the CPU. The 'Control Entry' (contents of Register

Con.cd) entered by the operator specifies the starting input

for the test. Upon completion, the CPU will instruct the

operator to enter any desired changes in the 'Control Entry'.

The 'Control Entry' will then be read and the original re-

quested service again performed subject to the new constraints

This process will continue until the control code of zero is

entered, which signals passing control back to the CPU. The

control shift is announced, and Subroutine Pl.dri (pull drive)

is called which fetches the old drive command from Register

Dr.com ($11) where it was saved, IRQ interrupts are re-

enabled, and the CPU resumes where it left off before shift-

ing to operator control.

B. REAL TIME CLOCK

The real time clock used by the system is implemented

through software but derives its timing pulses from hard-

ware circuitry located on the clock calendar board in the
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head. Here a National Semiconductor Clock/Temperature module

is driven by a quartz oscillator via a seventeen stage divider

(MM5369) which produces a precise 60 Hertz reference square

wave. When its display is activated by the 3 volt DC supply,

this module will display the time in hours and minutes on its

own seven segment display. The temperature in either Celsius

or Fahrenheit can also be displayed, as well as seconds and

alarm setting. The module provides only one digital output:

AM/PM. This signal is used to drive a binary counter which

counts from zero to six, and then resets. This count is

displayed on a single seven segment LED located on the Clock/

Calendar Board, and represents the day of the week (Sunday =

Q). The count is also parallel fed to Data Selector C for

use by the CPU. The CPU has no direct way of reading the

internal clock module registers to ascertain the hours,

minutes, and seconds, however.

To get around this problem, the 60 Hertz reference is

fed to a divide by 60 counter, to produce a one Hertz square

wave . This in turn is applied to the Non-Maskable Interrupt

input on the CPU, and generates an interrupt once a second.

The NMI Routine then increments the Seconds , Minutes , and

Hours Registers in the appropriate fashion to duplicate the

internal registers in the clock module. If the CPU registers

are first set to the time on the module display at system

start up, the NMI routine will ensure that the registers

hold the accurate time, available for subsequent use by the
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software . The Non-Maskable Interrupt routine also clears

Register IRQ.fre, which is used to keep track of the number

of maskable interrupts per minute, each time Register Minute

is incremented. This provides a useful piece of information

for the collision avoidance routines as discussed later.

The one Hertz square wave is essentially symmetrical with

a 50 percent duty cycle, and its state (high or low) can be

read by the CPU over Data Selector C , as a more or less ran-

dom variable for logical decisions throughout the software.

An example is the random deletion of the word 'is' in the

voice output generated by Subroutine Time to avoid constant

repetition of the same phrase as discussed below.

Subroutine Time is a speech synthesis program which out-

puts the time in hours and minutes when called. The design

intent was for speech output on the hour and half hour, with-

out interruption of critical routines which may have been in

progress. Speech output is of the form: "The correct time

is hours and minutes". A second consideration was

cancellation of voice output after such time as the house-

hold retired for the night. These two objectives are handled

by Subroutine Clock. First, the NMI Routine, upon detection

of either a 'zero' or a 'thirty' in the Minute Register ($01)

will assign the appropriate speech synthesis address for

that quantity to Register Timeflag ($04) (i.e., zero will be

$lf, thirty will be $15, on V0X1). The NMI Routine takes no

other action, besides periodically clearing Register IRQ.fre,
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and keeping an accurate count in the time registers . Thus

,

the time required to service -a MMI interrupt is kept as short

as possible

.

Subroutine Clock can now be called at appropriate times

in the main program flow, when voice output of the time does

not interfere with other routines . This subroutine first

checks the Timeflag Register, and returns with no action

taken if the register contents are hex zero ($00). If either

of the aforementioned speech synthesis addresses is encoun-

tered, however, it is time to voice output the hours and

minutes . Data Selector B is first read for ambient light

conditions, and if the room is dark, no output takes place,

and the subroutine clears the Timeflag Register and then

returns .

If the room is not dark, Subroutine Clock then calls Sub-

routine Time which outputs the hours and minutes . The speech

synthesis address for hours is read directly from the Hour

Register ($00). Since this register value is in decimal,

a conversion to hex must be made for ten, eleven, and twelve

o'clock, for the speech synthesis Subroutine Voxld to function

correctly. The address for the tens of minutes is read dir-

ectly from the Timeflag register, where it was stored by the

NMI Routine. Units, up to nine, are read directly from the

lower four bits of Register Minute. Upon return to Subroutine

Clock, the Timeflag Register is then cleared, and Clock returns

to the main program.
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Subroutine Clock can be called from any appropriate point

in the main program flow or in selected subroutines. Sub-

routine Belay2c, used to create delays between routines,

calls Clock about once every half second throughout the

delay period. The end result is that the NMI Routine is

freed of all constraints addressed by Clock and Time, and

the time registers will remain accurate. Additionally,

speech output is net triggered directly by the interrupt,

and therefore will not occur in the middle of a program

routine already in progress . In most cases , the actual

delay thus created between setting the Timeflag Register

and the actual recognition and speech output of the time

will not be more than a few seconds . Since seconds are not

output, no error will be noticed between the voice output

and that of the LED Display on the clock module in the

robot's head.

As a further refinement, Subroutine Time checks the

actual seconds count in the Seconds Register ($02), and if

more than 15 seconds have elapsed, the word 'correct' is

deleted from the speech output. This also helps reduce con-

stant repetition of the same phrase every 30 minutes . How-

ever, if ten or more minutes have elapsed since the setting

of Register Timeflag by the Non-Maskable Interrupt routine

,

the time is not announced, and Subroutine Time clears

Register Timeflag and then returns

.
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C. AUTOMATIC RECHARGING CAPABILITY

For a machine of this type to be useful operating in

environments hazardous to humans , it not only must be immune

to the hazards , but also able to support itself to a large

degree. Of prime consideration will be the ability to re-

charge itself when a low battery condition -is imminent, thus

freeing itself of the hindrance of an attached cable to ensure

adequate power levels. Detection of the need to recharge is

easily implemented, and the problem becomes one of how to

locate and connect to a centrally located charging station

(or stations). An extremely reliable process is required,

one which is not rendered ineffective by unforeseen obstacles

or changes in the robot's environment, and whose complexity

does not overshadow the primary function for which the device

is employed. A self-sustaining robot becomes truly an asset

when properly equipped with the required hardware and soft-

ware to perform needed tasks in isolated reactor compartments

,

on unmanned offshore oil platforms , and at contamination

sites, to name but a few examples.

The requirements of simplicity and reliability effectively

rule out the standard approach to the problem: trying to

align a special plug on the robot with a mating receptacle

on the charger. While this can be done, it requires rather

complicated hardware as well as software, and is by nature

susceptible to complications. What is needed is a method of

locating the charger and making contact that is independent
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of the direction of approach, requires no complicated align-

ment procedures, and provides a good electrical connection

every time. While this sounds like a tall order, a very

effective solution can be realized quite simply.

1 . Automatic Scan and Track System

Location of the charging station by the robot can be

accomplished by any of several methods, but the requirement

for high resolution with short range needs makes an optical

tracking system a prudent choice. A visual homing beacon

can be attached to the charging station in such a fashion as

to be 'detectable' when activated by the robot via a radio

link, as depicted in Figure 11. This beacon can consist of

an ordinary incandescent lamp situated at the same height

as the photocell detector sensors on the robot or, better,

a pulsed infrared source that can be distinguished through

its unique repetition frequency by a tone decoder in the

detection circuitry. The pulsed source eliminates the need

for a verification step in the software to allow the robot

to ascertain it is indeed looking at the correct light if

an incandescent beacon is used. Since its light is invisible,

a near-infrared beacon could be continuously energized, and

so the radio link could be eliminated. Having located the

charger, by whatever means, the robot must be capable of

tracking the beacon while moving towards it

.

In the prototype robot tracking is implemented as an

integral part of the hardware circuitry which controls the
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Figure 11. Free Standing Recharging Station. Beacon at top

of pole is controlled by robot via radio link.
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head position, located primarily on the Optical Board and

Interface Board Number 5 . The head positioning motor is

directly controlled by the Optical Board, and Interface

Board Number 5 evaluates the CPU commands in conjunction

with other inputs to determine the control mode. This cir-

cuitry (Figure 12) allows for three different schemes to

control the motion or position of the head, referred to as:

1) scan mode, 2) track mode, 3) position mode. The control-

ling mode is selected by setting the appropriate levels

(high or low) on the Scan Enable, Track Enable, and Position

Enable lines, and special subroutines are provided to do

this. A brief explanation of these three control modes

follows

.

In the scan mode the head sweeps back and forth be-

tween full right and full left positions, 100 degrees either

side of centerline. This action is controlled by the scan

flip-flop on the Optical Board Inside the robot's head.

This flip-flop is set and reset by limit switches at both

extremities of head travel, causing the motor to reverse

direction each time, and the head to scan the other way.

This mode is selected by Subroutine Scan which sets the

Scan Enable line high, and the other two control lines low.

When the Scan Enable line goes low, the head will be immo-

bilized, provided the Position Enable line is also low.

All three lines are set low by Subroutine Scanoff.
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Figure 12 . Interface 3oard Number 5 . Determines control
mode for Optical Board as requested by CPU.
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If the Position Enable line is high, however, the head

will seek the position stored by the CPU in the 7475 four-bit

latch on Interface Board Number 5. A 74 85 four-bit comparator

compares the command stored in the latch with the output of

the head position A/D convertor, and positions the head accord-

ingly, in the same way similar circuitry on Interface Board

Number 2 positions the drive wheel. This head positioning

circuitry is automatically gated out whenever the Scan Enable

line goes high. The latch is loaded from the interface four

line address bus, and enabled by PB7 on 6522-2 (orb2). These

operations are automatically performed by Subroutine Latch,

which takes the desired position command from the Y register.

Thus the head can be made to center itself after a scan oper-

ation, or to seek any of sixteen fixed positions on command.

If both Track Enable and Scan Enable are high with

Position Enable low, then the system functions in the track-

ing mode, and the head looks for, locks on to, and follows

the homing beacon situated on the recharging tower. (The

system will actually track any bright light source, and it

is up to the software to ensure that this source is the

beacon.) The tracking sensors consist of three photocells

arranged in a horizontal array on the head, each with a

half-inch diameter collimating pick up tube 12 inches long.

The tubes are arranged in a diverging configuration (5 degrees

between tube axis centerlines ) , with the center tube parallel

to the forward axis of the head. The three tubes are shown

at beacon level in Figure 13.
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Figure 13. Photo of Robot and Recharging Station. Collimat-
ing pickup tubes for photocell array are located at beacon
height on front of head assembly, shown here turned slightly
towards beacon.

51





The Optical Board provides three digital outputs per-

tinent to the tracking process: 1) Target Output, 2) Point

Source Output, 3) Range Output (see Figure 14). The Optical

Board Target Output goes high if any of the three comparators

associated with the photocell array goes high, while the Point

Source Output reflects the status of the center photocell com-

parator only. The Range Output indicates relative distance

from the homing beacon, as discussed later. Thus the CPU

communicates with the hardware tasked with tracking the beacon

with a total of six lines: three control and three output.

The tracking process is initiated automatically by a

low battery condition through alteration of the 3ehavior

Selection procedure in such a way as to terminate the routine

in progress . When the batterv condition goes low and remains

below the set point for more than 5 seconds , a flip-flop on

the Monitor Board changes state and triggers an interrupt.

The IRQ routine which handles the Channel B interrupts dis-

ables the low battery interrupt, and sets Register Next to

select the docking routine (see section on Behavior Selection

and Alarms). The transmitter which turns on the homing bea-

con is activated, and the CPU enables the Automatic Scan and

Tracking circuitry, while sending the Position Enable line

low. The head begins to scan left and right, seeking a point

source of light of sufficient intensity to trigger the photo-

cell comparators. This action continues as long as Scan

Enable and Track Enable are held high by rhe CPU, and no
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Figure 14. Optical 3oard Circuitry Schematic. Controls head
position in one of three modes as determined by Interface
Board Number 5 (Figure 12).
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light source is detected. If any of the three optical com-

parators goes high, indicating acquisition, the scan flip-

flop is gated out automatically, and the tracking inputs take

over control of the head positioning motor.

The tracking inputs to the optical board circuitry

come from the left and right photocells in the array. Their

respective comparator outputs (Figure 14) indicate a greater

light intensity either side of center, referenced to the

center photocell output. The appropriate positioning motor

winding is energized, and the head turns to regain maximum

intensity at the center photocell, thus tracking the source.

(If by chance both left and right photocells showed intensi-

ties greater than center, both inputs are gated out and the

head remains motionless.) All this haDDens only if at least

one of the photocell outputs is above the adjustable set

point provided by the Background Light Bias Circuitry on

the Optical Board, otherwise the system reverts to the scan

mode and searches for a bright light source . Any comparator

output signalling intensity above the set point gates out

the automatic scan, and the tracking inputs take over. When

the array outputs indicate the head is correctly positioned

(pointing at the source) , the motor windings will be

de-energized

.

The three collimating tubes limit the photocell fields

of view to relatively small regions, and the beacon is situ-

ated at just the right height so as to be centered vertically
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within the detection zone when one of these tubes is pointed

at the recharging station. This results in a relatively high

signal to noise ratio as the head scans back and forth in

search of the beacon, as shown in the stripchart recording of

Figure 15 . The sharp peaks resulting from beacon acquisition

readily stand out over the signal produced by ambient light-

ing during the sweep.

The Background Light 3ias circuitry is tasked with

providing the comparators with a reference voltage above

which photocell output is probably due to a point source of

sufficient intensity to possibly be the homing beacon. The

initial design provided for a bias potentiometer to manually

set the reference level. This proved inadequate due to over-

sensitivity in close to the beacon. If the bias threshold

was set low enough to allow detection of the beacon at long

range, then the system saturated in close and all comparators

went high when the pickup tubes were pointed in the general

direction of the light . What was needed was a means of re-

ducing the sensitivity from that needed for long range detec-

tion, as the robot approached the recharging station, to a

level yielding good bearing resolution in close, where

accuracy became critical.

The circuitry employed on the prototype basically

provides for two manually set reference points, one to allow

sufficient sensitivity for long range detection and a second

with greatly reduced sensitivity for short range use, to
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TIME

Figure 15. Photocell Output During Automatic Scan Sequence.
Upper plot represents analog signal from head position sensing
potentiometer. Lower plot indicates center photocell output,
with peaks resulting from beacon acquisition at ranges of 3,

6, 9/ 12 , and 15 feet.
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force the tracking system to point the head directly at the

light. This provides much more accurate bearings to the bea-

con for the purpose of docking with the recharger. A fourth

comparator monitors the center photocell voltage output and

effects the changeover when its output signals the robot is

within three feet of the beacon, based solely on the perceived

light intensity (Figure 16). This comparator output is also

made available to the CPU (Range Output), and is used in many

software routines to determine relative range (near or far)

to the charging station.

Once the CPU ascertains that the head has a lockon

(the Target Output goes high), it must interrogate the source

to verify that it is indeed the beacon. Verification is

accomplished by setting the Scan Enable low, and then turning

off the beacon with the radio transmitter, observing to see

if the Target Output line went low. An incorrect source will

keep the Target Output high. The Scan Enable is set low so

the head will not start scanning again if the source does go

out, and the Position Enable must also be low so the head

will not seek the position dictated by the contents of the

7475 latch when the Scan is set low. If the source is not

the beacon, the CPU sends the Track Enable line low so the

source will be ignored, sends Scan Enable high to reinitiate

the scan, and waits as the head turns for the incorrect

source to clear (Target Output goes low). As soon as this

happens, Track Enable is sent high again, and a new source
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Figure 16. Background Light 3ias Circuitry Schematic.
Range Output is used to indicate relative distance to beacon
(near or far) . Bias to three optical comparators changes as
robot approaches recharger, thus decreasing system sensiti-
vity and preventing saturation in close .
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is sought. The process repeats until the correct source is

found, until three incorrect sources have been interrogated,

or until a specified time limit has elapsed. The latter

two indicate that the beacon is not in the immediate scan

field (first and fourth quadrants relative to centeriine),

and the robot will perform a Y-turn and check the other side.

Once the beacon has been located and its bearing and

relative range announced through speech synthesis, the robot

begins to home in on the recharger. The CPU repeatedly reads

the head position, representative of the bearing to the charger,

and sends an identical command to the steering motor via

Interface 3oard Number 2 . As the robot turns , the head auto-

matically tracks the source, and the relative bearing to the

beacon decreases . The CPU therefore is subsequently decreas-

ing the turn angle , until eventually the source is directly

in front of the platform, and the drive wheel is centered.

A four-bit analog to digital conversion of the poten-

tiometer output voltage which represents the head position

yields sixteen possible head positions, evenly distributed

around the 200 degree arc of scan. This produces cone shaped

sectors every 12.5 degrees, and this resolution is far too

coarse to precisely fix the beacon position as required for

successful docking with the charger. Therefore the potentio-

meter output was conditioned to yield the modified output

shown in Figure 17, which in effect compresses the resolution

into the center of potentiometer travel, where the head is
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pointing directly ahead. The output of the signal conditioner

remains at zero volts until the sensing potentiometer voltage

exceeds 1.0 volts, at which time it increases linearly with

the input voltage from the pot. The output voltage is clipped

at 4.0 volts, and remains constant as the input voltage con-

tinues to increase. This output voltage is then attenuated

to exactly 2.5 volts at maximum output and applied to the

A/D convertor, which produces a binary output ranging from

to 15 (0000 to 1111) .

As a result of this conditioning any head position

from extreme right to 45 degrees right is seen as position

0, and similarly any position from 45 degrees left to full

left is read as position 15 . The other 14 sectors are evenly

distributed over the remaining 90 degrees , 45 degrees either

side of centerline . This greatly improves the resolution in

the center of the scan where accuracy is needed for homing on

the charger.

2 . Docking System

The task of making contact with the recharger can be

greatly simplified if the circuitry involved is restricted

to that associated with the battery voltage , 12 volts for

example, as opposed to the more dangerous 117 volts of a

normal AC distribution system. The lower voltage level

allows for contact surfaces to be exposed with no elecrrical

shock hazard. If these exposed contact surfaces are made axi-

symmetrical with respect to the vertical pole which supports
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the visual homing beacon, they will present the same target

to the mating contacts on the approaching robot, regardless

of the direction of approach. Thus the need for a critical

alignment to ensure contact is eliminated.

Two connections must made to complete the recharge

circuit, and will be referred to as HOT and GND. For reli-

ability the connecting or mating actions of the two should be

independent of each other. This can be accomplished by

making their respective contact axis lines perpendicular tc

each other, analogous to the orthogonal cutting directions

used to isolate two channels in recording a stereo disk.

For example, the contacts associated with the GND leg are

brought together by a relative movement in the horizontal

plane, whereas these associated with the HOT leg are brought

together by a relative movement in the vertical plane . Thus

the first set of contacts to meet does not impede the motion

required to close the gap at the other set, and chances of a

good connection at both points are greatly increased. This

being the concept, a slight modification (discussed below)

will preserve the required independence while requiring

movement in the horizontal direction only, which need be

only the inherent motion of the robot as it closes on the

recharging beacon.

In the actual construction of a test prototype for

this concept, the metal pole supporting the optical homing

beacon served as the point of contact for the GND leg, its
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respective mating surface being the front bumper of the robot

chassis (see Figure 13). This front bumper was spring loaded

to allow it to absorb impact and make possible the closure of

numerous microswitches used as sensory inputs for collision

detection. This already present spring action serves to keep

the aluminum bumper in tight contact with the vertical pole

once the two come together, compressing the springs. Once

the bumper springs are thus compressed, horizontal motion of

the robot must be halted. This condition is indicated to

the controlling microprocessor by closure of the contact

sensing microswitches activated by the front bumper, in

conjunction with the signal indicating that recharging power

is sensed on board.

The connection for the HOT leg of the recharge circuit

is made through the mating of a circular aluminum plate at

the base of the beacon tower and a set of spring probes

attached to the front drive wheel support cage on the robot

.

The aluminum plate is electrically insulated from the ver-

tical pole which serves as the GND connection by a plexi-

glass insulator between the plate and the half-inch pipe

flange into which the upright pole is screwed. The spring

probes which mate with the circular plate are vertically

oriented in such a way as to extend downward from a small box

situated immediately behind the front bumper. As the bumper

passes over the plate moving toward the pole, the spring

probes are brought into contact with the aluminum plate

,
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and contact is maintained as the motion continues toward bumper

impact. As soon as the bumper contacts the upright pole, the

circuit is completed, and recharge current flows to the bat-

tery. An electrical relay is connected across the circuit on

the roboT so as to de-energize the forward windings of the

drive motors when final connection is made . This serves as a

backup for the software which also de-energizes the drive wheel

when the recharge probe potential goes high with respect to

electrical ground.

The configuration of the two necessary contacts for

the recharge circuit thus ensures the required independence

while requiring motion in only one plane, and the use of mul-

tiple spring pick-up probes in the HOT leg ensures a good

connection with low current density at the mating surfaces.

The software can monitor the probes as well as the battery

level while the system is recharging, and should electrical

contact be lost, effect the necessary forward motion to re-

establish the connection. In extensive testing of the proto-

type, this has not been necessary to date, primarily because

the spring loaded bumper provides the necessary force to

keep the surfaces pressed tightly together. The geometry of

the configuration is such that the probes will be in contact

with the plate as long as the front bumper is touching the

vertical pole, and since the front bumper for the prototype

is 14 inches wide, considerable margin for error is allowed

the tracking system which brings the robot into contact with
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the beacon tower. Even a very simple and inexpensive photo-

electric tracking system homing in on an ordinary 75 watt

light bulb produced final impacts within two inches either

side of centerline in repeated testing (over 200 computer

controlled dockings to date).

3 . Recharging System

There are two power supplies associated with the re-

charging station itself. A relatively low power twelve volt

source remains energized at all times, and supplies the re-

ceiver and decoder circuitry which activates the beacon on

demand from the robot. It also energizes the aluminum base

plate through a resistor capacitor network to a peak poten-

tial of 15.5 volts, which acts as the 'sensing' voltage for

the pickup probe , allowing the microprocessor to know when

the recharge circuit has been completed. As soon as the

battery has been connected as a load on this supply, this

voltage level will drop to just slightly over the battery

voltage (around twelve volts). This voltage drop is sensed

by detection circuitry on the recharging station, which in

turn activates the high power battery charging supply,

located just below the receiver board. This second supply

furnishes the current required to recharge the battery, and

is automatically shut off when the robot disconnects and

the load is no longer sensed. The robot can deactivate the

beacon via the radio link once initial contact has been made

and the recharging process initiated, without affecting the

recharger supply.
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The robot's battery voltage is monitored by an LM339

comparator, which sets a flip-flop after a five second delay

when the voltage falls below an adjustable set point (see

Figure 19). The delay is used to ensure the battery voltage

was not momentarily pulled low by a stalling • drive or steer-

ing motor. When the flip-flop changes state, an interrupt is

generated which is read by IRQ Channel 3. The interrupt

routine subsequently gates out the flip-flop output, and

selects the docking routine (see section II-F)

.

The battery voltage is also monitored by an LM3914 Dot

Display Driver, which drives 10 LEDs to give a visual indica-

tion of the battery charge. The upper LED in this display

drives another comparator which subsequently changes state

when the battery is fully charged, as indicated by the dis-

play. This upper set point is also adjustable (see Figure 19)

This entire concept has been tested throughout various

stages of completion over the last twelve months, and is cur-

rently operational in a fully computerized robot system fea-

turing automatic battery level monitoring, station location

and tracking, and subsequent recharging. The system has

proven an extremely reliable and easily implemented solution

to a problem that must be dealt with if computer controlled

robots are to achieve the degree of freedom necessary to

perform tasks in isolated or dangerous environments

.
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D. COLLISION AVOIDANCE

The prototype robot makes use of a six level scheme of

proximity and impact detection, implemented through numerous

sensors installed at appropriate points on the chassis struc-

ture. An active source near-infrared parabolic dish detector

mounted on the head provides reliable detection of objects

out to a range of five feet, with good bearing resolution

(two inches of arc at maximum range). Additional long range

information is provided by a forward looking sonar and a ten

channel active near-infrared proximity detection system pro-

vides close-in protection (out to about eighteen inches).

Tactile sensors consisting of projecting feelers at critical

points around the base periphery sense impending collisions,

and contact bumpers situated all around the base and body

trunk alert the CPU to an actual impact. As a final backup,

the drive motor current is continuously monitored for an over'

load condition, indicative of a stalled motor.

The software dealing with all of this sensor data is

currently divided into two basic groups , IRQ interrupt rou-

tines, and the main program. The main program handles the

navigational control of the robot and it is here that the

actual planning takes place as required to proceed from

place to place in the accomplishment of a desired task or

goal. All information available from whatever source is

used to this end, and navigational routines are written in

loop form to facilitate repetitive polling, sonar activation,
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and delay timing, with the appropriate exit requirements built

into the loop. Loops can be cascaded as needed in the execu-

tion of complex navigational routines. Conversely, the soft-

ware associated with the collision avoidance interrupt

routines deals primarily with the sensor data depicting the

robot's immediate or close-in environment (such as short

range proximity detectors, feeler probes, and impact sensors)

and minimal planning is involved. The contents of certain

registers can be changed by the interrupt routines, however,

to alter the planning processes of the main program after a

return from interrupt (RT1). This provides the necessary

link for communication between the interrupt routines and the

main program and leads toward a more intelligent means of

navigation

.

The ideal situation would be to have the long range plan-

ning executed by the navigational loop be so effective as to

make interrupt generation by close-in contacts a rare occur-

rence, but this would require more numerous long range sen-

sory inputs than currently affordable on this prototype

.

It is not meant to imply that this method of data analysis

for collision avoidance is preferable or recommended for

implementation on other systems of greater sophistication:

it merely lends itself well to low budget applications in-

volving a minimal number of microprocessors

.

The six methods of detection can be broken down into

three basic categories: 1) ranging, 2) tactile, and 3) internal.
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Category 1 inputs are read by the software making up the

navigational loop being executed with the resultant data

used to alter course in a planned fashion. Examples are the

sonar and the long range near-infrared parabolic dish detector

on the head. Also in Category 1 would be the numerous short

range infrared proximity detectors , but their inputs are used

to generate IRQ interrupts to which the vehicle responds in a

preprogrammed reactionary fashion designed to clear the de-

tected obstruction, based on the obstruction location. These

responses are implemented within the interrupt routine, upon

completion of which control is passed back to the navigational

loop, but with the robot hopefully now clear of the obstruction

Category 2 includes the feelers and contact bumpers, and

these also generate interrupts which move the vehicle away

from the impacted object.

The drive motor overload sensor falls into Category 3 and

serves as a last resort detector, generating an interrupt

which reverses the drive wheel and assigns a random steering

command to the motor, in hopes of clearing the obstruction.

Upon completion of the appropriate pre-programmed interrupt

routines, the original drive motor command is restored to the

controlling circuitry, and the robot proceeds as before.

The original collision avoidance system consisted of a

sonar operating at 2 1 KHz, built up around National Semi-

conductor's LM1812 monolithic sonar transceiver chip as

shown in Figure 20 . Circuit operation is described in
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detail by Frederiksen and Howard [Ref. 6], This sonar pro-

vided range information to objects directly in the robot's

intended path of travel, and was backed up only by the con-

tact bumper system for impact detection. Initial tests

quickly showed the need for greater awareness of the path

environment than that provided by sonar data alone, as the

LM1812 system was somewhat limited. Although large objects

such as walls and furniture were reliably detected, smaller

objects often passed unnoticed below the beam pattern.

Additionally, no information was provided as to which direc-

tion was preferable for a course alteration, since the sonar

transducer was mounted to the chassis in a fixed orientation,

with no capability to scan back and forth.

The first attempt to gather additional information in-

volved the installation of numerous feeler probes around the

perimeter of the robot base, each extending out six to eight

inches , and configured so as to provided a normally high

TTL compatible output, which went low if deflection was

sensed in any direction. These units were constructed from

ordinary automobile curb feelers and were flexible so as not

to cause damage to either the chassis or objects encountered.

The intent was to provide advanced indication of an impact

in time to alter course, supplementing the data obtained

from the forward looking sonar, and indeed it did provide

much improvement, although still crude. Some problems arose,

however, from the inertia of the feelers themselves causing
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false activation of the detection circuitry as they were jarred

during vehicle motion and acceleration. The original software

was set up in the form of a loop which activated the sonar for

transmission, timed the returning echo for object range, and

then polled the feelers and bumper switches one at a time for

contact, taking evasive action if called for.

A further refinement came with the installation of four

near-infrared transmitter/receiver units for proximity detec-

tion, oriented so as to provide information on obstacles

directly in front of, behind, and to either side of the

vehicle, but only within their limited areas of protection.

(Each sensor covered a cone shaped region roughly twelve

inches out, with a base diameter at maximum range of approxi-

mately six inches.) Nevertheless, these sensors proved to

be extremely effective in detecting objects within their

field of view, and their relative simplicity and low cost

made it possible to add six additional units to increase the

coverage area. This at the same time increased environmental

awareness by better establishing an object's location, as

opposed to merely detecting its presence. Nine of the ten

units were placed in the first and fourth quadrants relative

to the vehicle centerline, for forward protection, as the

majority of motion is in the forward direction. Additionally,

when collision avoidance routines do call for reverse motion,

the vehicle backs into space just previously vacated, and

so the odds of a rear impact are greatly reduced.
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Improvements to the original detection circuitry ulti-

mately provided an increase in maximum range from twelve

inches to thirty inches, and attenuators were added to each

detector to allow setting individual ranges and for balanc-

ing with other units. Circuit operation is explained in

Appendix D. Detectors mounted in a vertical row for the

purpose of increasing their field of coverage are simply

hardwired to the same input in an OR configuration, while

those that provide horizontal resolution of the object loca-

tion are kept separate from each other and read individually

or as vertical groups. These devices performed so well that

many of the tactile feelers were no longer needed and were

subsequently removed.

The availability of this new sensor information to the

CPU made possible more intelligent reactions to impending

collisions, but at the same time rendered the polling rou-

tine too cumbersome and slow to be practical. At this stage

of development Interface Board Number 2 was completed to

allow the generation of two channels of interrupts , with

up to sixteen inputs each, referred to as IRQ Channel A and

IRQ Channel 3. Data Selector A which read the inputs asso-

ciated with Channel A was totally dedicated to collision

avoidance devices (see Section I-E) . The software was re-

structured around the interrupt concept, leaving the CPU

more time for long range planning.
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The forward looking proximity detectors are set for a

maximum range of about eighteen inches to give sufficient

time for course correction, while the side sensors can see

out to a distance of only twelve inches, since less time is

needed to react should they detect a return. The design

goal was to keep the protection envelopes as small as pos-

sible without compromising performance, to allow passage

down narrow hallways and between obstructions . Too great a

detection range substantially reduces the vehicle's per-

ceived clear space wherein it can navigate, with the result

that much time is spent turning circles in the center of

the room, unable to exit via a doorway. Even with reduced

ranges, situations are sometimes encountered which leave the

robot 'boxed in', finding itself trapped between two obstacles

and perhaps an adjacent wall. Interrupts generated by in-

frared returns detected from several sides at once can

essentially hinder an orderly exit from this predicament,

and what is needed is a means of drawing in the protected

envelope until out of this tight spot. There are a number

of ways this can be done and the simplest solution was

chosen for implementation on the prototype: simply ignore

the near-infrared proximity detectors . An even better plan

would call for reducing the receiver sensitivity by a factor

of two to draw in the envelope as a first step, followed by

disabling the receivers altogether as a final resort. This

could be easily implemented as a minor hardware change to

the threshold detector circuitry.

86





Less obvious is the problem of how to detect that the

situation exists in the first place; i.e., how does the

robot know that it is boxed in? The information needed to

make this decision can be extracted from data that is already

available in memory by appropriate software . The first in-

dication of a problem of this type would be an excessive

number of interrupts within a given time frame, say 30 seconds,

triggered by infrared returns, feeler and possibly bumper

impacts. This is easily calculated by incrementing a regis-

ter (register irq.fre) each time a collision avoidance re-

lated interrupt occurred, and repeatedly clearing this

register at specified intervals in real time. (This register

clearing is done automatically by the Mon-Maskable Interrupt

(NMD routine each time the minutes register is incremented.)

Thus, if the register value ever exceeds a specified limit,

then the interrupt frequency has exceeded that same limit,

since the register is reset to zero every sixty seconds .

This register can be checked by the IRQ interrupt service

routine each time called.

A second piece of information is needed to verify that a

problem does indeed exist, as an excessive interrupt fre-

quency could arise when the robot is navigating a hallway

merely from the side returns , without the vehicle actually

being boxed in. It was found that tight situations almost

invariably were accompanied by rear bumper impacts, which

otherwise seldom occurred, as the majority of motion is in
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the forward direction. So a combination of too many inter-

rupts plus rear bumper contacts is used as the governing

criterion and the IRQ service routine responds by disabling

the near-infrared proximity detectors . This allows the

robot more manuevering room free of interrupts , and thus it

frees itself from the trap, relying on tactile sensors alone

for guidance. The infrared sensors are later re-enabled by

the navigation loop under execution, after a precalculated

delay

.

An improvement to this scheme would consist of disabling

only the interrupt generating capability of the infrared re-

ceivers, rather than collectively disabling the receivers

themselves. This would allow the sensor data to still be

available to assist in a non-interrupt controlled decision

as to which direction was best suited for an exit. That

this feature would be desired was not clear at the time

Interface Board Number 3 was constructed, and the modifica-

tion was deferred to a later date

.

The collision avoidance interrupt software must take into

account the overall goal of the navigational routine under

execution when taking evasive action to avoid an impact.

When docking with the recharging station, for example, this

evasive action should not cause the robot to lose sight of

the homing beacon. The robot must also be able to tell when

a return from a forward looking proximity detector is due to
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the presence of the recharging station itself, so that the

interrupt software does not try to steer the platform away

from the battery charger with which it is trying to connect

.

The docking routine therefore sets Register Homing to

indicate that a docking is in progress , and this register is

first checked by the interrupt routines before a response is

made. Subroutine Skirt can then be activated by the inter-

rupt routines to effect obstacle avoidance and subsequent

realignment with the beacon by the navigational routine

itself, rather than by the interrupt routines. When sub-

routine Skirt is activated, the robot responds by backing

away from the charger, and turning until the beacon is

positioned 90 degrees right of the forward axis . Then for

a predetermined time the platform moves forward, adding hex

7 to the beacon position as seen by the head, and using the

result as a steering command for the drive motors . This

results in maintaining the beacon at right angles to the

direction of travel, in position 0, and the robot moves

around the charger to a slightly different position but

roughly the same distance away. With the obstacle hopefully

now clear, Subroutine Align then realigns the robot with the

beacon, and docking continues.

E. INTRUSION DETECTION

The robot's utility begins to develop with the addition

of means to detect intruders and unwanted conditions such as
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fire, smoke and toxic gas. The effectiveness of these

detection sensors, their hardware interface, and the corre-

sponding software plays a major role in the determination of

the robot's actual worth as an autonomous sentry. The devel-

ODment of increasingly sophisticated but cost effective detec-

tion methods which can operate from a moving platform has

become a vital area of concern.

On the prototype sentry ROBART, the software maintains

the detection and interface systems in one of two modes of

operation: Alert Mode or Passive Mode. In the passive mode

the majority of sensors are enabled, but a good deal of the

interface and drive control circuitry is powered down to

conserve the battery charge . The robot mainly relies on

passive infrared motion detection, visual motion detection,

and hearing to detect an intruder, while at the same time

monitoring for vibration (earthquake), fire, smoke, toxic

gas, and flooding, etc. Some of these inputs are hardwired

to cause an alert (switch from Passive Mode to Active Mode),

whereas others must be evaluated first by software , which

then may trigger an alert if required. In the Alert Mode,

all distribution buses are powered up, and the platform is

ready to respond to input conditions, prosecute an intruder,

or go on patrol. Either mode can be in effect while recharging

and recharging can be temporarily suspended if conditions warrant.

The first intrusion detection system implemented on the

prototype involved discriminatory hearing. A bandpass filter
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is employed to selectively pass along to an audio amplifier

those sounds likely to be produced during a forced entry,

such as breaking glass, sawing or filing noises, etc. More

common household noises, such as those produced by a furnace,

air conditioner, or refrigerator, are greatly attenuated by

the filter, and therefore do not reach the threshold required

to trigger the detector. The detector is hardwired to force

the robot from the- Passive Mode into the Active Mode if

triggered, and this transition is subsequently detected by

the software . Directional hearing sensors could also be em-

ployed to assist in establishing the location of a detected

disturbance, requiring only minor changes to the existing

circuitry

.

The forward looking sonar used for collision avoidance

can also be used in an intrusion detection mode when the

platform is not moving by simply recording the range to the

nearest obstacle. If an intruder subsequently walks through

the sonar field of view and decreases this range, the soft-

ware can respond accordingly.

The addition of an optical motion detection system to the

prototype provided even more capability. Three National Semi-

conductor type D-10 72 integrated circuits are employed to

detect changes in ambient light level. These are special

purpose chips incorporating a built in photodiode and plastic

lens, and are completely passive, requiring no external light
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source . The cone shaped detection zone created by the lens

covers a two foot circle at approximately eight feet, and con-

siderable range ' is possible, depending on background lighting

conditions . The device is capable of operating over the range

of 0.1 candlepower to 100 candlepower [Ref. 7].

The sensors are situated with their detection fields

oriented so as to cover three slightly overlapping regions,

left, right, and straight ahead with respect to the robot

head position. This provides a broader detection field, and

since the sensor outputs are read independently by Data Sel-

ector C, some rough information as to disturbance orientation

is available as well.

These optical motion detectors are effective only if the

vehicle is stationary, and are automatically disabled when

the platform is in motion. Cnce motion ceases and the soft-

ware secures the system from an Alert status, the detectors

are re-enabled after a short delay to allow them to reset

to ambient room lighting. The number of sensor units can be

increased to six for 360 degree coverage, as planned for the

follow on version to this prototype.

As the software is developed for the overall intrusion

detection scheme employed by the robot, it soon becomes

apparent that in most environments confirming indication

from other sensors should be obtained to minimize false

alarms . Since the optical motion detectors must be sensi-

tive enough to respond to light level changes resulting
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from a person merely walking through the field of view, they

are by nature susceptible to false triggering. When incor-

porated in a fixed alarm system, these sensors may be mounted

in locations chosen to prevent exposure to rapidly changing

light conditions which might arise from sources other than

an intrusion. When mounted on a mobile platform, however,

they often may end up pointed directly at a window. In this

orientation, it is quite conceivable that the detector could

be tripped by the headlights of a passing automobile, or

flashes of lightning, for example.

Similarly, overhead flight of propellor aircraft can

sometimes intefere with the operation of ultrasonic trans-

ducers . Hearing sensors might inadvertently respond to

claps of thunder, or sudden noise generated in an apartment

overhead by the dropping of an object onto the floor. The

robot must be able to distinguish these incidents from a

real intrusion situation. If the response to the initial

indication is used to direct the attention of all sensors

to a possible alarm condition, perhaps through movement of

the vehicle to a better vantage point, then all sensors can

be polled for secondary indications confirming the likeli-

hood of an intrusion.

A third means of Intrusion detection or confirmation is

incorporated through use of the parabolic near-infrared sen-

sor described in Section II-D. Mounted on the head, this

active sensor was originally intended for locating obstructions
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around the robot out to a maximum range of six feet for colli-

sion avoidance purposes. While this range is rather limited,

by positioning itself in the center of an average nine by

twelve foot room, the robot can perform a sweep of its head

and cover a substantial area. Should a return be present

that was not previously there, the possibility of an intruder

arises . This sensor is primarily used to confirm a presence

previously detected by another sensor, because of its high

resolution and maneuverability, and not as a primary detector

due to its short range

.

The most sophisticated sensor for intrusion detection

used on the prototype is a passive true infrared detector

sensitive to body heat. This is an off-the-shelf unit manu-

factured by Colorado Electro-Optics, and has a maximum range

of fifty feet. The device is sensitive to any temperature

gradient occurring within its field of view such as that

created by an intruder walking through the area under surveil-

lance. The detection zone fans out to a width of twenty feet

at maximum range

.

This unit is intended to be mounted in a stationary posi-

tion, but was found to be stable enough in an average house-

hold temperature environment to operate when the vehicle was

in motion, due to the low speed of advance associated with

the prototype. A passive infrared sensor, in general, is

most sensitive to cross-walk and least sensitive to distant

objects moving directly towards or away from the unit [Ref.8]
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Figure 21. Photo Depicting Sensor Location. Passive infrared
detector is visible in white enclosure at top center. Directly
below this can be seen the near-infrared parabolic proximity
detector. Microphones for discriminatory hearing are located
on left and right sides immediately above plexiglass dome.
Three optical motion detector chips are mounted directly
above the three photocell collimating tubes, inside dome at
top center. Speaker is for speech synthesis output.
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If the head is turned to one side as the vehicle is moving,

the presence of an intruder on that side will be detected

due to relative motion with respect to the vehicle. An

obvious advantage would therefore be realized by mounting

a detector on each side of the vehicle, in addition to the

one mounted on the head.

In addition to remaining motionless while the platform

is moving, the head can be slowly turned while the vehicle

is stationary, scanning a circle of fifty foot radius. This

would allow the prototype to enter a doorway and stop, and

from this position scan the room one time by merely turning

its head. An intruder present would be instantly detected,

even if able to remain motionless during the sweep.

The use of this infrared sensor in non-stationary appli-

cations as described above will vary somewhat with back-

ground temperature. Under reasonably cool (65 to 70 degrees

F) ambient conditions, the human body, being an excellent

emitter of infrared energy, will produce a striking tempera-

ture gradient. If vehicle velocity and the rotational speed

of the head are kept relatively low, false triggering of the

sensor can be minimized. Since the robot reacts to this

triggering by merely stopping its motion and bringing other

sensors to bear for confirming indications, one or two false

alarms create no real problem. After a brief period of

waiting the robot will conclude there was nothing there,

and resume the patrol.
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In the event confirmation of an intrusion occurs , the

robot warns the intruder to leave the area through speech

synthesis . The software can be structured accordingly to

effect whatever action is desired by the operator, but on

the prototype version a siren was set off if the intruder

was still present after a ten second wait. Exactly what an

autonomous sentry should do in this situation depends greatly

on the application. A central monitoring station could be

alerted via a digitally coded radio transmission that an

intruder had been detected, subsequently setting off the

building security alarm, and possibly notifying police.

This monitoring station could perhaps keep track of sev-

eral robots patrolling on different floors, or in different

areas of a large industrial plant. Each robot could period-

ically transmit its location and status, thus providing a

means for the central station to be alerted should a robot

become disabled. Human guards or other robots could then

be dispatched to the scene to evaluate the situation.

In this regard it would probably be more cost effective

to provide two robots , one for each floor of a two story

building, rather than attempt to create a single robot cap-

able of climbing stairs and intended to patrol both floors

.

In industrial applications, elevators are likely to be em-

ployed within the building anyway, and relatively simple

radio links would place these within the robot's control

if situations warranted traversing between floors

.
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F. BEHAVIOR SELECTION AND ALARMS

Once the mechanical functions of a prototype robot have

been implemented and interfaced to the microprocessor in

such a way that they can be controlled, attention must turn

to the software which will dictate the actions of the entire

system. Thus far only specific subroutines which manipulate

control lines to perform given functions, such as drive wheel

positioning, tracking, docking, etc., have been discussed.

What is needed now is an overall operating system to call

these subroutines in the proper order to accomplish complete

tasks, as required by conditions internal or external to the

system.

In addressing this need a means should be provided to

take into account the priority of the task being performed,

and allow termination of that task and substitution of another

of higher priority if conditions so dictate. Additionally,

in the event no conditions are present which would require

action, what then should the robot's behavior consist of?

Clearly, to have the prototype continue moving about in a

random fashion would be a great waste of battery power, and

possibly annoying as well.

In a more sophisticated machine, these problems would be

solved as a normal consequence of the software which made up

the machine's "artificial intelligence," with a goal oriented

program in execution that allowed for recognizing needs
,
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and planning ways in which to satisfy those needs. An elab-

orate model would be constructed of the machine's perceived

environment, as well as its own condition, and through vari-

ous means the system goals could be broken down into achiev-

able subgoals , with alternate schemes tested first within the

model itself, until a workable solution was reached. The

train of correct choices which arrived at the desired end

point and fulfilled the goal would then be used as a con-

trolling program, and only at this point would it be exe-

cuted, hopefully meeting with the same success as when the

actions were only simulated within the model.

In a system designed around a single microprocessor,

however, this is not always possible, unless the number of

actions and sensory inputs is kept small enough to allow the

program to fit in the available memory space. It was not

the purpose of this prototype to serve as a demonstration

platform for a very sophisticated AI program, but rather as

a test vehicle for different type sensors , their Interface

circuits, and lower level assembly language routines to

serve these sensors . As a natural next step a follow-on

robot will be constructed to utilize these already developed

concepts, with a more powerful host computer directing the

actions of several microprocessors

.

Therefore a means was implemented in assembly language

software to provide supervisory control of the prototype, to

yield a reasonably intelligent process of goal achievement
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through execution of ordered sequences , each controlled by

its own subroutine . Just as the system is equipped with a

library of specific subroutines, it is now provided with a

set of predetermined behavior routines , each made up of the

appropriate subroutines, arranged in the proper order to

accomplish a certain task.

The software is structured around one main loop which

controls branching to the various behavior routines . These

routines each have their own exit requirements , which when

met allow return to the main loop, at which point the next

routine will be selected. The same routine will not be

selected twice in succession, and certain sensory inputs

can alter the probability of a routine being chosen. This

main loop is first entered via the Cold Start Initialization

routine (see Figure 2 2) when the system is brought on line

by the operator.

During this startup voice output is used to announce

status as individual systems are energized and tested by

the CPU. The operator will be instructed to correct any

discrepancies that are detected, such as Enable/Disable

switches in the wrong position. Any system failures will

cause the CPU to initiate shutdown procedures . Once the

startup sequence has been satisfactorily completed, the

main loop is entered and a behavior routine selected for

execution

.
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Figure 22. Software Structure for Prototype Robot ROBART

.

Interrupt Requests (IRQ) deal with all alarms and collision
avoidance sensors. The Non-Maskable Interrupt routine is
used to implement a real time clock. The main code initial-
izes the system, powers up and checks interface circuitry,
and handles behavior routine selection.
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While these behavior routines are not in themselves re-

cursive, each does have the ability to call within itself any

of the others, which then appear to that routine only as big-

ger subroutines. In addition, provision is made to call rou-

tines in a given sequence . This sequence could possibly have

been determined by some goal oriented program which selects

a succession of behavior routines, each designed to accom-

plish an intermediate task required for the achievement of

some ultimate goal. The system is always aware of the last

routine executed, any routine that was interrupted by one of

higher priority, and the next one for execution, if appro-

priate. If the next routine is not specified, then one is

chosen at random, but within the constraints dictated by

internal and external conditions. (As an example, non-

critical routines involving speech are not chosen if the

room is dark, indicating that the household has retired for

the night .

)

The behavior selection process (performed by the software

commencing at label beh.sel) chooses a routine according to

an elaborate scheme designed to provide the needed control

features previously discussed. Upon initial startup, the

first routine is randomly chosen from a possible range of

to 15 . This range is further decreased to include only

routines through 7 if the Drive Power switch is in the off

position, as routines 3 through 15 involve vehicle motion.
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The number of the chosen routine is stored in Register Last,

and the routine is performed until its exit requirements are

met. The system is then returned to standard conditions

(Passive versus Alert status, with drive system secured, and

Interrupt Channel A disabled) . If the randomly chosen rou-

tine turned out to be unsuitable for performance at the time

chosen, as in the case of the example above involving the

darkened room, it would not be performed. In any event, the

software then loops back for selection of the next routine.

Operator Control Service Number 6 can be used to allow

the operator to manually set the contents of Register Next,

and thus specify the next routine , within the range 1 to 15

.

In the selection process (see Figure 23), Register Next is

first checked to see if a choice has been specified by this

or some other source. If not, then Register String, the

first of sixteen consecutive registers, is checked to see if

a series of subsequent behavior patterns has been requested.

If Register String is not set, then the Hostile/Friendly

switch on the prototype front panel is checked. If this

switch is in the up position, it will force the selection

of Behavior Routine Number 1, which monitors for intrusion

(see Section II-E) . If none of the above three sources

specifies the next routine, however, a random choice is

again made, compared with Register Last to ensure no back-

to-back duplication, and then performed (see Figure 2 3).
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If Register Next had been set, the routine number con-

tained therein would have been chosen immediately. Alterna-

tively, if Register String had been non-zero, its value

would have become the next routine, and each register value

shifted down one location in the sixteen consecutive regis-

ters beginning with String. (That is, Register String would

take on the value of Register String + 1, String + 1 the

value of String + 2, etc.) The last entry in the list of

routines to be performed must be zero, and obviously only

fifteen routines can be specified at a time. Each time a

value is taken from the Register String, the other register

contents each move down one to replace it, until finally

String takes on the value of zero ($00) and is no longer

set

.

The termination of any routine in operation before its

normal completion point is a desired feature in this behavior

selection process, whether requested by the software itself,

or externally requested by an operator. This is implemented

through Subroutine Termin, which checks the external ENTRY

button and sets Register Exit if the button has been pressed.

Register Exit is then checked, and if non-zero, having been

set by Subroutine Termin or elsewhere in the software, the

current routine is terminated.

When a critical routine is terminated by Subroutine Termin

to allow a higher priority routine to take place, provision

must be made to allow for resumDtion of the original routine
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upon completion of the substituted routine. This is accom-

plished by saving the interrupted routine number in Register

String, and is done by Subroutine Ph.strg. This subroutine

manipulates the sixteen consecutive registers beginnings at

String so as to provided a stack external to the 6502 in

which information can be saved. Just as the register con-

tents move down as routine numbers are taken from String,

they move up one register location each time a routine number

is saved. This stack is limited in that if more than fifteen

routines are saved, the original numbers fall off the end of

the stack and are lost. The sixteenth register contents are

always maintained at zero to flag the string end.

While the random selection process is limited to routines

through 15 , the total number of performable routines is

limited only by available memory space. The randomly sel-

ected routines are designed to produce behavior actions

during periods where specific routines, such as recharging,

are not needed, and sixteen routines are more than enough

for this category. The routines above 15 deal with specific

situations requiring definite action on the part of the

robot, and can be neither randomly chosen nor selected by

Operator Control.

The first of these, Behavior Routine Number 16, deals

with all alarm conditions. High priority alarms, such as

smoke, fire, flooding, A/D overflow, etc., all cause inter-

rupts via Interrupt Channel 3. However, the interrupt

106





routine which polls Channel B takes no action other than to

set Register Next to 16, set Register Exit to terminate the

current routine in execution, and then disable Interrupt

Channel 3 before returning from the interrupt. Upon return

from interrupt, Subroutine Termin in the routine under ex-

ecution will detect the fact that Register Exit is set, and

terminate the routine. Since Next was set to 16, Behavior

Routine Number 16 immediately follows, and it decides the

appropriate subsequent Behavior Routine to deal with the

alarm condition. This choice is based on the value of the

interrupt index, Register Q, which was set in the original

interrupt polling routine for Channel 3 . As an example

,

a low battery condition will cause an interrupt read on

input 1 of Data Selector 3. With the interrupt index Q

set to 1, Behavior Routine 15 will announce the low battery

condition through speech synthesis, and then set Next to 17.

Behavior Routine 17 then follows, and consists of the beacon

acquisition and tracking subroutines, which are used to dock

the robot at the recharging station.

It is important to keep in mind that all Channel 3

Interrupts are disabled by the interrupt polling routine if

any of the Channel B interrupt lines go high. Behavior

Routine 16 , which deals with these interrupts , must either

eliminate the interrupt source, or individually disable the

input if another routine is going to be called to deal with

the source. An example of this latter case is the low
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battery interrupt. Since the last action taken by Behavior

Routine 16 is to re-enable Channel B Interrupts, the low

battery interrupt must be gated out first so that it will

be ignored while Routine 17 is selected to effect recharging

or another interrupt would occur first and recharging could

never take place. This is done by hardware circuitry on the

Monitor Board. As an alternative example, the smoke detector

interrupt is handled by Behavior Routine 16 by simply announc-

ing that the smoke alarm has tripped, and advising personnel

to evacuate the room. Behavior Routine 16 then re-enables

Interrupt Channel B and returns, and if the detector is

still in an alarm state , another interrupt occurs , and the

process repeats. If the process repeats more than four

times, a siren is activated as a secondary alarm.

Additional routines above 17 can similarly be employed

to accomplish specific tasks, just as 17 is responsible for

docking with the charger. It should be noted that Routine

17 assumes the robot is in the room with the charger.

Another desirable task therefore could consist of going

to the room with the charger in it. This theoretically

could be preceded by the task of determining where the

room with the charger was . These three task numbers could

then be loaded into the stack created at Register String for

performance in the proper sequence to locate and dock with

the charger. If any of these tasks had to be interrupted

to deal with a higher priority need, its number would be
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placed back into String, so that it could be reinitiated when

needed, preserving the validity of the sequence. A necessary

point to make is that each intermediate task must always be

aware of when its particular sub-goal has been reached, and

structured so that if a task is scheduled to achieve a result

that has already been achieved, the next task will be called.

It should be apparent that this arrangement has a great deal

of flexibility and potential as a first step in providing

realistic supervisory control for a single microprocessor

system. The actual Behavior Routines themselves could be

stored on a floppy disk, and read in one at a time as needed

by the robot as it moved about. This would allow for easy

modification and addition of new routines by simply changing

the disk

.

The stack created at Register String works like a con-

ventional CPU stack from the standpoint that data is always

placed on the bottom of the stack, and likewise removed from

the bottom of the stack, in a "last in, first out" sequence.

However, it would be advantageous in this application to be

able to add data to the other end or top of the stack.

Routine numbers thus inserted would be performed at the

end of the already specified sequence, rather than inter-

rupting it. This is relatively easy to accomplish through

a subroutine that merely adds data to the first clear regis-

ter encountered in the group beginning at String, and in
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fact the number of registers can be increased if desired to

provide for a bigger stack. Considerable sophistication

could be achieved with 32 registers

.

Now let's assume that there is a separate program in

operation, whether on the same or a different computer.

This program could be tasked with constantly monitoring the

robot's environment and internal conditions, and assigning

appropriate goals for achievement accordingly. As previously

discussed, it could then work backwards from the desired

goal, and establish the required sequence of subgoals , being

aware of the Behavior Routines that it has in its inventory

and what particular subgoal each was designed to achieve.

In a very sophisticated system these Behavior Routines could

be theoretically tested first in a system model to ascertain

their actual effect. In any event, once the correct sequence

of Behavior Routines was determined, their associated Routine

Numbers could then simply be placed into the Stack set up at

Register String, and they would subsequently be called and

performed in the appropriate order to achieve the desired

goal. While the Behavior Routines themselves represent

canned solutions to specific problems, the sequence in which

they are performed is determined by the robot based on the

overall objective. It was the purpose of the first phase of

this prototype development to provide the means to implement

the chosen sequence, while the supervisory program which

determines the sequence is to be developed at a later date.
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G. NAVIGATIONAL PLANNING

The ten near-infrared proximity detectors described in

Section II-D are sufficient in themselves to allow the vehicle

to make random patrols of a household. The navigational loop

simply instructs the prototype to move directly forward as

long as no obstructions are detected, and the collision avoid-

ance system takes over to avoid obstacles as they come into

view of the sensors. The resulting motions of the vehicle

will eventually carry it from room to room, but in a totally

unpredictable and extremely inefficient fashion.

Obviously a robot intended to serve in a security role

must be provided with an intelligent means of navigating,

if for no other reason than to minimize drive and steering

motor power consumption. It would be no great challenge to

outsmart a mechanical sentry that relied on random motion

to carry it from place to place. Therefore the development

of a more sophisticated means of determining the vehicle's

course becomes an important milestone in its evolution

toward true autonomy

.

The most effective approach to solving this problem in-

volves the development of a memory map wherein the machine

can encode information about its environment as it moves

about. A simple way to do this would be to assign a single

byte in memory to each square foot of floor space, as pre-

sented by Weinstein in the book "Android Design" [Ref. 9].
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An average room ten feet by twelve feet would require only

120 bytes, and thus an array representing an entire house-

hold floorplan could reside in less than 2 kilobytes of

memory space. Over a period of time the robot could fill

in the originally blank map with probability codes reflect-

ing the chances of finding an object in a particular square.

For example, a code of zero could indicate that there has

never been an object detected in that location. Code 1 might

mean there was once, but not always, code 2 indicating there

probably is, and code 3 meaning there always is an object in

that square . The robot can reassign probability codes as

conditions change over a period of time . A special code

could be preassigned by the system programmer to indicate

areas the robot must never traverse, if so desired.

'With a memory map of this type algorithms could be devel-

oped similar to those used in computer games (such as Othello)

to locate clear pathways through a room full of obstructions

.

The geographical position of the recharging station could be

recorded, as well as door openings and hallways. Planned

routes for patrolling could be preprogrammed, or generated

by the software.

The main hurdle to the implementation of a scheme of

this sort results from the fact that this concept requires

the machine to know its location at all times , as well as

its orientation in that spot. There presently exists no
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inexpensive way to provide this capability. Various means

have been suggested, such as using sonar to establish the

minimum range (and hence a perpendicular line) to each wall,

and through geometry calculate position in terms of memory

map coordinates. While this sounds plausible in theory, a

glance around the average room reveals a significant number

of drawbacks in the form of doorways, windows, and upright

furniture which would invalidate the sonar data and greatly

complicate the needed software

.

Therefore, as a first step the prototype was given the

ability to create a relative rather than absolute model of

the objects around it. 3y turning its head and recording

the position of obstructions within the field of view of

sensors mounted on the head, as it rotates from side to

side, the robot can then examine this much less sophistic-

ated memory map for information previously unavailable.

This allows the vehicle to navigate in a far more effective

manner while efforts continue to develop hardware to assist

in absolute position referencing.

This relative model requires only 16 bytes of memory

space, one for each of the points of resolution of the head

position A/D converter. Since each byte consists of eight

bits, eight pieces of information can be stored for each

pie shaped sector of the robot's perceived world (Figure 24)

The most obvious piece of information needed would be

the presence of a near-infrared return as detected by the
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Figure 2 4. Relative Model of Robot's Perceived Environment
A specific location in memory is assigned to each of the
sixteen sectors within the field of view of head mounted
sensors

.
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parabolic dish sensor, mentioned in Section II-D, which has

a range of six feet. Any object out to that distance would

be recorded by setting the designated bit in the memory

location assigned to that specific head position, say bit

. Bit 1 could represent the presence of a bright light

source when set, bit 2 could be set if the infrared heat

detector output went high, bit 3 could represent a sonar

return from a transducer mounted on the head, and so on.

To avoid confusing the issue, in the following discus-

sion only two pieces of information will be considered: a

near-infrared return from the parabolic sensor, represented

by setting the lower four bits, and the presence of a bright

light source, represented by setting the upper four bits

of the appropriate memory location.

The first step in the implementation of navigational

planning based on this relative model involves writing a

subroutine (Subroutine Survey) to turn the head to position

zero (full right) or position fifteen (full left), whichever

is closer. The head is then swept once through the full

range of positions, and the software polls the appropriate

sensors in a repeating loop until the sweep is complete

(3.5 seconds). If any sensor output is found to be high,

the head position is read, and the appropriate bits set in

the corresponding memory location. Upon completion of the

sweep the data in memory can be used in decision making sub-

routines that ultimately dictate the robot's actions.

115





One such subroutine is Subroutine Sort, which runs

through the memory locations and determines the starting

and ending boundaries of any obstacle-free zones, expressed

in terms of head position. This can be followed by Sub-

routine Choose, which selects the largest free zone, and

Subroutine Center, which calculates its midpoint. This re-

sulting value can be used as a steering command, maneuvering

the vehicle into uncluttered space away from obstructions

.

It is also very useful in locating doorways

.

Figure 25 shows a sample printout of a test harness

written during the development of these subroutines . The

register contents following a sweep of the head under control

of Subroutine Survey are listed, and immediately below are

shown the starting and ending boundaries of the two largest

obstacle-free sectors. The larger of these sectors is then

chosen and its midpoint subsequently calculated, as marked

on the figure

.

While the time required to update the contents of this

relative memory map is only 3.5 seconds, it is still long

enough to allow the robot's position and orientation to

change considerably. Changes in position have minimal

effect on the validity of data obtained while the vehicle

is in motion due to its very low speed of advance (.26 feet

per second). Changes in orientation can be significant,

however, due to the sharp turning angles possible (up to
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OUTPUT DATA FROM TEST ROUTINE >9 JULY 32

Test of relative model data aquisition
Model contained in registers $Z0 - $3f

run test .'-•run te <=, t

00 00 00 OF
01 00 01 OF
02 00 02 OF
03 00 03 OF
04 00 04 OF
05 00 05 OF
06 00 06 OF _
07 00 07 00
08 00 08 00
09 00 09 00
OA 00 OA 00
OB 00 OB OF
OC 00

00
OC
OD

OF
FFOD

OE 00 OE FF _
OF 00 OF FO

00

00

OF

OF

00 00

07

07 OB

OB

00 00

V / u c
-
}

in test >ri

^T L~J

>n .in test
00 00 00 00
01 00 1 00
02 00 02 OF
03 00 03 OF
04
05

00 04 OF
OF00 U5

06 00 06 OF
07 00 07 OF
08 00 08 OF _
09 00 09 00
OA 00 OA 00
OB 00 OB 00
OC 00 OC FO
OD FO

FO
OD
OE

FO
FOOE

OF FO OF FO .

00 OF 00 00 00 02 09 OF

00 OF 07 09 OF OC

Sector Obstructed

Sector Obstructed

Center of Largest
Free Zone

Largest Free Zone

'Sector Obstructed

Bright Light Source

Center of Free
Zone (09 - OF)

Figure 25. Sample Output of Test Harness
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80 degress). The problem is further complicated as the sweep

could be in the direction of the turn, or opposite to the

turning direction. The result is invalid data in either case,

An additional complication can arise if an interrupt

should occur during the sweep. The head is turning under

hardware control, and will continue to do so even if the CPU

is called away to service an interrupt. Interrupts cannot

be disabled during the sweep because the close-in collision

avoidance strategy is built up around the near-infrared prox-

imity detectors which all generate interrupts . Therefore

there exists the very likely prospect that regions free of

obstacles could be recorded which did not really exist, simply

because the CPU was busy with an interrupt and did not get

around to polling the sensor. Since only 250 milliseconds

are available during the sweep for processing information on

each pie shaped sector of the model, as compared with the

five or six seconds needed to execute some collision avoid-

ance interrupt sequences, the problem is significant.

The first problem arises due to the length of time in-

volved if the head must sweep out the entire domain of six-

teen sectors . A more practical approach would be to limit

the sweep to those sectors directly in the intended path.

Since the sweep limits are determined by software, this is

easily implemented. Subroutine Radar sweeps the head back

and forth between sectors 6 and 9 , and the robot moves for-

ward as long as no objects are detected. If an object comes
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into view on the left, the course is adjusted slightly to

the right, and vice versa. Should the entire four sector

region become blocked, then the vehicle comes to a halt and

performs a complete sweep in an attempt to locate a clear

path .

Since the total time required to update this abbreviated

model is significantly less than 3.5 seconds, and since turn-

ing angles are kept within 40 degrees as opposed to 30 , the

chances of loading invalid data are greatly reduced. There

remains only the task of integrating this long range naviga-

tional planning process with the close range collision avoid-

ance system.

Essentially what is needed is a means for the navigational

loop to know when an interrupt has occurred, so that the data

in the model can be ignored, and the model updated. Since

this requirement was anticipated at the time the interrupt

routines were written, the solution is relatively simple.

Register IRQ.num keeps track of the number of collision

avoidance related interrupts, incremented each time by the

IRQ routine itself. Therefore, if this register is checked

at the beginning of an abbreviated sweep, and its value is

the same upon completion of the sweep, then the data recorded

during the sweep is valid, as no interrupt occurred to dis-

tract the CPU. If the value is not the same then the model

is cleared, and reflects no obstructions present.
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This may indeed not be the case, but the situation will

be remedied quickly as the next sweep is performed, provided

another interrupt does not take place to invalidate it also.

The robot moves straight ahead during the interim. If an-

other interrupt does occur, however, the collision avoidance

routine takes over anyway, and so the robot responds under

interrupt control to move away from the obstruction. Once

clear, the software returns to the navigational loop and the

sweep resumes

.

Subroutine Radar can be called while the vehicle is in

motion, for advanced information on what's out ahead. Inter-

rupts are noi disabled during the sweep, but rather given

priority, with the sweep information ignored if an interrupt

occurs. Subroutine Survey, on the other hand, is called

only when the platform is stationary, for a complete picture

of the surroundings , and interrupts are disabled for the

3.5 seconds required for the full sweep. This approach

allows the two systems to work together without conflict,

the longer range infrared sensor yielding to the close

range proximity detectors when a collision threatens.

The robot now has the ability to look out and see

obstacles four to five feet in front of it, and subsequently

alter course so as to pass to one side. Should it become

boxed in, it has the ability to stop and scan through the

entire range of head positions for a clear zone . This
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offers a great improvement over the purely random motion of

before, but still leaves a lot desired, if patrols are to be

made in an orderly fashion.

Again, what is needed is a means of determining absolute

position and orientation. Until such time as this can be

practically implemented, the robot must make do with the

information it has available. For a start, it can always

reference off the position of its recharging station, which

it can locate and positively identify. Secondly, hallways,

being long and narrow, are relatively easy to recognize.

If the household floorplan allows for positioning the re-

charging station where it can be used to advantage in locat-

ing the hallway entrance then the robot can systematically

find the hallway and proceed down it, stopping at each

doorway to check adjoining rooms while on patrol. The

robot can determine its orientation in the hallway if told

beforehand which direction affords a view of the beacon on

the recharging station. With prior knowledge of where the

rooms are with respect to the hallway, the robot can pro-

ceed accordingly.
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III. HIGH LEVEL LANGUAGE FOR ROBOT CONTROL

A mobile robot or platform is inherently more flexible

than a physically restrained intelligent machine of the kind

typically found in industrial applications. This is not to

imply mobility is more desirable, and in fact in many appli-

cations it would unduly complicate things rather than improve

them. For this reason, almost all research to date has been

addressed towards fixed location devices and the control of

their attached manipulators and end effectors . Here industry

provides an immediate market and subsequently motivation for

research aimed at improvements in design and application.

In response to this stimulus high level languages for robot

control have emerged. These, although still primitive and

not altogether general, have indeed simplified control and

programming in the systems for which they were written.

While there exists a multitude of applications for

mobile robots , the very nature of mobility dictates the use

of greatly expanded sensory input, particularly in the case

of a fully autonomous machine operating in unknown or even

changing environments. Our present technology offers no

cost effective means of implementing these sensory systems

except where operation in hazardous environments intolerable

to humans can be used to justify the extremely high costs.
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As a result, fewer systems are in use and development

lags those areas offering immediate monetary return.

It soon becomes obvious that the inherent flexibility

of a mobile system should not be compromised by the lack of

a high level language to support it. Operations and func-

tions performed by the system can best be implemented, ter-

minated, or alrered by either an operator, a programmer,

or the system itself when the specifics involved are not

addressed. For example, it should only be of concern

that a left turn is called for, and not which values need

be assigned to what registers, I/O ports, and data dis-

tributors to effect that turn. Nor should the actuator

control system that maintains the steering wheel in the

position called for come into play, whether it be imple-

mented in hardware or software. All these details should

be buried in the lower levels of the hierarchy, invisible

at the top where decisions are made.

For reasons mentioned earlier, a universal high level

language strictly for mobile robot control does not exist.

To support the work reported here, a high level language

was developed for control of the demonstration platform,

the prototype robot nicknamed ROBART. Due to time and

monetary restraints, and anticipated generalizations of

the language , no attempt has yet been made to write a com-

piler. Instead, its use is simulated through subroutines
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acting on previously loaded registers in such a way that only

minor changes need be made to make use of a compiler or in-

terpreter should one be developed.

It should be noted, however, that compiling a language

for robot control is somewhat more involved with system

specifics than is immediately apparent. Compilers for con-

ventional computer languages can be somewhat generalized by

structuring in such a way that only the input/output addresses

need be changed to adapt from one type of computer to another.

As a simplified example, the command PRINT is universally

used to take information from a buffer and output it to an

external device. Only the buffer location and the output

port address will change from one system to another, and

methods exist to facilitate handling that change . In a

robotics application, the computer to hardware interface

must deal with much more than just a printer, keyboard,

CRT, and mass memory, and so there are many more possibili-

ties for change. One arm alone, for instance, can have six

or more actuators , not to mention the sensory inputs needed

for its operation. Additionally, the hardware now addressed

is much less standardized than conventional computer system

hardware. Most printers, for instance, have either a paral-

lel interface or a serial interface for data transfer, and

are often directly interchangeable. Such is not the case

with robotics hardware. The use of stepper motors to posi-

tion an arm requires an entirely different scheme of control
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than does an arm designed around DC servomotors, and there-

fore the command RAISE ARM must result in completely unre-

lated sections of code for the two systems. The question

must also be addressed as to whether the controlling computer

is talking directly to the arm positioning motors , or perhaps

to a dedicated microprocessor which in turn then talks to

the motors, i.e., an 'intelligent' arm. The net result may

very well be that while the language itself could be stand-

ardized, the invididual compilers would have to be unique

for their own particular application. A way around this

would be ro have the language address only the controlling

computer, and standardize the controlling computer's inter-

face to its dedicated microprocessors for input and output.

This would not be cost effective for small systems , and is

not likely to happen anyway.

This robot control language in its preliminary stage of

development consists of operators designed to perform a

particular function, usually discernible from the operator

name. For example, the operator STOP terminates a process

previously begun. Exactly which process depends on the

parameter or group of parameters (not to exceed three) fol-

lowing STOP. These parameters can be variables or constants,

and are not needed for all operators . A list of operators

and their associated parameters, if any, is given in

Appendix E.
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Operators can be listed sequentially as statements in a

program which in turn controls the motions of the robot.

This program should not be confused with the high level

artificial intelligence program which ultimately decides

the behavior of the robot , and for which languages already

exist, such as LISP or ADA.

126





V. CONCLUSIONS

The prototype robot ROBART, begun in August 19 80 and

completed in September 19 82, was intended to function as a

development platform for an autonomous robot sentry, with

emphasis on testing appropriate sensors and their assoc-

iated interface circuitry and software . The physical

structure of the prototype therefore was chosen to allow

easy access to internal components and circuitry, and con-

sequently is not suitable for extended unsupervised opera-

tion in a normal home environment. A body design hardened

for survivability and free of external projections likely

to snare on or be damaged by nearby objects is needed before

a follow-on version of this prototype can be practically

employed

.

The behavior selection process discussed in Section II-F

provides the means for execution of the end results of some

goal oriented artificial intelligence program which in fact

could be running on a separate computer. This higher level

program could be tasked with evaluating the robot's environ-

ment and needs, establishing goals, and then creating a

software model in which to test the primitives represented

in the various behavior routines . Each of these routines

would be designed to allow achievement of a specific subgoal
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under given entry conditions. When an appropriate sequence

is found which reaches the desired goal, the corresponding

routine numbers are pushed onto the stack and then performed

in sequence . Since no higher level artificial intelligence

program for determining sequences has yet been implemented

on the prototype, the routine numbers are specified by in-

terrupt service routines, based on the nature of the

interrupt

.
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V. RECOMMENDATIONS

The development of this first generation model resulted

in a fairly sophisticated single-microprocessor robot.

However, results clearly indicate the need for future ver-

sions to employ additional microprocessors to allow the

controlling CPU more time to devote to overall coordination

and planning. The specific functions of head positioning

as well as steering and drive control currently implemented

through rather limited logic circuitry could be better per-

formed by individual dedicated microprocessors . This would

allow a full eight-bit resolution analog to digital conver-

sion fcr the head position, resulting in 256 discrete posi-

tion increments , more than enough accuracy for processing

information from head-mounted sensors. In addition, precise

position error feedback would make velocity control of the

head possible during positioning.

With a microprocessor dedicated to head positioning, the

circuitry contained on the Optical 3oard and Interface Board

Number 5 could be upgraded to make use of eight-bit analog

to digital converters to monitor each photocell output from

the optical array, as well as the ambient light photocell

output. The eight channel National ADC0 80 8 A/D converter

would be ideal for this application, with four channels
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left over for other uses. A tracking system comparing digit-

ized photocell output to keep the head centered on the beacon

would yield accuracy far greater than that achievable with

the current circuitry.

For the second generation prototype a steering and drive

system utilizing two independently driven center wheels will

be employed, with caster-type idlers at front and rear. This

will eliminate the need for a separate steering motor and its

associated position sensing A/D converter. Motor direction

as well as individual motor speed can be precisely controlled

through pulse width modulation circuitry, allowing an almost

infinite range of turning radii for use in navigational and

docking routines. A separate microprocessor specifically

tasked with controlling the pulse width modulation and mon-

itoring the actual motor speed could provide precise turn

radius, advance and transfer information to other dedicated

microprocessors as well as to the controlling computer.

An additional microprocessor assigned the task of deter-

mining vehicle location could also maintain an updated

memory map of the surroundings, noting the locations of The

battery recharging station, doorways, and other relevant

items, in addition to obstructions. Dead reckoning infor-

mation could be obtained from the drive and steering con-

troller and combined with actual position information taken

in by sensors and appropriate hardware. These memory maps

could be down-loaded onto an onboard 5 1/4" disk when the
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robot left the area represented. As it moved into a new

space a previously stored map of the new area could be sub-

stituted. In this manner an entire floorplan could be repre-

sented by a set of easily manipulated rectangular map arrays

.

The development of cost effective hardware to precisely

determine position and orientation remains a crucial first

step towards this end.

The same disk storage device could also be employed to

store all or at least some of the behavior routines or prim-

itives . This would make considerably more routines available

for the robot's use, and at the same time separate the pro-

gramming requirements for the routines themselves from that

of the software which implements the routines . Behavior

routines could be added or deleted by changing the software

on the disk only, with no modifications to the robot opera-

ting system software which loads and executes the routines

.

The routine numbers specified by either interrupt routines

or a high level artificial intelligence program would cor-

respond to the file numbers of the routine software as

loaded on the disk. The sequence of files to be loaded and

executed would be stored in the stack created at Register

String as discussed.

For maximum efficiency the collision avoidance strategy

in its entirety could be delegated to the supervision of a

separate processor. A multitude of information from tactile
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and proximity sensors could be preprocessed before being

passed on to the controlling computer for integration with the

navigational planning software. In the prototype it was found

that excellent protection could be obtained with the majority

of near-infrared detectors oriented for forward coverage.

Sensors situated at 6, 13, and 2 3 inches from the floor in

a vertical column proved very adequate for obstacle detection.

Columns situated as depicted in Figure 26 would give excel-

lent coverage of the platform's surroundings with sufficient

resolution of a detected object's location for appropriate

evasive reaction.

It was found that these near-infrared proximity detectors

are better suited to this collision avoidance application

than ultrasonic sonar units . The divergence of an acoustical

beam by far exceeds the narrow cone of radiation from the

high powered LEDs , and focusing or collimating devices can

be employed to further increase the resolution of the near-

infrared detectors. Additionally, false triggering of

these devices seldom occurs, whereas more sophisticated

circuitry is required to eliminate reactions to spurious

signals with conventional acoustical transducers . The

directional characteristics of these infrared sensors make

it possible to operate numerous devices in proximity to

each other without cress coupling, which is again much

harder to eliminate with multiple sonar units. The sim-

plicity and low cost of the near-infrared sensors makes
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Figure 26 . Infrared Proximity Detector Sensor Arrangement
Top view of robot depicting cone-shaped areas of coverage
for vertical columns of proximity detectors, with majority
of sensors oriented for forward Drotection.
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possible peripheral coverage to whatever extent desired for en-

vironmental awareness with regard to surrounding obstructions

.

A proposed block diagram for this mul"ci-microprocessor

system is shown in Figure 27. Assembly language programming

is well suited to the needs of the individual dedicated con-

trollers, yielding fast and efficient code for the direct

manipulation of output control lines and/or the reading of

sensory inputs . The controlling microprocessor could also

be programmed in assembly language, or even a robot control

language as discussed in Section IV. This intermediate

microprocessor would serve as an interface between the

robot's subsystems and an eventual goal oriented artificial

intelligence program written in ADA or LISP.
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Figure 27. Proposed Layout of Multi-microprocessor System.
Individual dedicated microprocesscrs would be assigned speci-
fic tasks such as drive and steering control, head position
control, memory mapping, etc.
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APPENDIX A

INPUT/OUTPUT PORT ASSIGNMENTS

6522-2 Versatile Interface Adaptor

ora2 AA Conn Function

PAO OD BO steering command

PA1 3 31 steering command

PA2 0C B2 steering command

PA3 12 B3 steering command

PA4 ON Drive Power Relay (1 = on)

PA5 11 Drive Direction Relay (1 = forward)

PAO 0M Data read B (yellow)

PA7 10 Data read A (red)

orb2 AA Conn Function

0L CO selector address (yellow)

09 CI selector address (red)

OK C2 selector address (green)

OB C3 selector address (white)

0J Data Write 1

7 Data Write 2 (white)

OH Data Write 3 (green)

06 Head Dosition latch enable

PB0

P31

PB2

PBS

PB4

PB5

PB6

PB7
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6522-1 Versatile Interface Adaptor

oral

PAO

PA1

?A2

PA3

PA4

PA 5

PA6

PA7

A Conn

14

04

03

02

05

06

07

08

Function

Sonar B0 address

Sonar Bl address

LED for sonar echo

unused

CPU power switch verify

RS-2 32 connection verify

Printer busy signal

Sonar receiver (goes low on echo)

orbl

PB0

PB1

P32

PB3

PB4

PB5

PB6

PB7

A Conn Function

9 unused

10 unused

11 Speech synthesis Chip Select
(CS active low)

12 Speech synthesis trigger (R/W)

13 Al speech synthesis address

16 A2 speech synthesis address

not available

15 Speech Synthesis Busy (1 = busy)
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6522-3 Versatile Interface Adaptor

ora3

PAO

PA1

PA 2

PA 3

PA4

PA5

PA6

PA7

AA Conn Function

OV Write protect Monitor RAM

OW DO head position (white)

OX Dl head position (green)

13 D2 head position (white)

19 D3 head position (red)

20 Interface power up (1 = off)

17 Data read C

0U ENTER input (red)

orb

PBO

PB1

PB2

PB3

PB4

P35

PB6

P37

AA. Conn

16

0T

15

OS

0Y

21

OZ

22

Function

30 switch 1 (yellow)

31 switch 2 (white)

32 switch 3 (green)

33 switch 4 (red)

(B)

(B)

(3)

(B)
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6522 Peripheral Interface Adaptor

ora^

PAO

PA1

PA 2

PA 3

PA4

PA5

PA6

PA7

A Conn Function

21 DO speech word

19 Dl speech word

OY D2 speech word

22 D3 speech word

20 D4 speech word

13 D5 speech word

OW D6 speech word

17 D7 SDeech word

orb 4

?B0

PB1

PB2

PB3

PB4

PB5

PB6

PB7

A Conn

OK

0L

0M

ON

OP

0T

N/C

N/C

Function

13 address select line

Tape audio in

Tape audio out (LO)

RCN-1 (1)

Tape audio out (HI)

TTY KB RTN ( + )
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APPENDIX B

SELECTOR AMD DISTRIBUTOR PIN ASSIGNMENTS

DATA SELECTOR A

Input 00 - I/R proximity detector, left front

Input 01 - I/R proximity detector, right front

Input 02 - I/R proximity detector, left side

Input 03 - I/R proximity detector, right side

Input 04 - bumper impact, left front

Input 5 - bumper impact

Input 06 - bumper impact

Input 07 - bumper impact

Input 03 - feeler impact

Input 09 - feeler impact

Input 10 - bumper impact

Input 11 - bumper impact

Input 12 - drive overload monitor

Input 13 - not used

Input 14 - I/R proximity detector, center front

Input 15 - I/R proximity detector, center rear

right front

left side

right side

left side

right side

left rear

risht rear
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DATA SELECTOR B

Input 00 - ambient light

Input 01 - battery charge status

Input 02 - A/D overflow alarm

Input 03-9 volt bus monitor

Input 4-5 volt bus monitor

Input 05 - flooding alarm

Input 6 - smoke alarm

Input 07 - fire alarm

Input 08 - drive power switch monitor

Input 09 - selector check low

Input 10 - selector check high

Input 11 - vibration alarm

Input 12 - toxic gas alarm

Input 13 - approaching storm alarm

Input 14 - not used

Input 15 - not used
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DATA SELECTOR C

Input 00 - random digit

Input 01 - hostile/friendly switch

Input 02 - alert verify

Input 03 - recharge monitor

Input U - I/R motion detector

Input 5 - optical target

Input 8 - optical range status

Input 07 - recharge probe status

Input 08 - center visual motion detector

Input 09 - right visual motion detector

Input 10 - left visual motion detector

Input 11 - bit 2 day of week

Input 12 - bit 1 day of week

Input 13 - bit day of week

Input 14 - AM/PM status

Input 15 - parabolic I/R sensor
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DATA DISTRI3UT0R A

Output 00 - not used

Output 01 - continuous spot enable

Output 02 - transmitter enable

Output 03 - alert and hold enable

Output 04 - I/R interrupt enable

Output 05 - strobe enable

Output 06 - not used

Output 07 - not used

Output 08 - drive power relay

Output 9 - not used

Output 10 - low battery interrupt enable

Output 11 - infrared motion detector enable

Output 12 - visual motion detector enable

Output 13 - position enable

Output 14 - track enable

Output 15 - scan enable
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DATA DISTRIBUTOR B

Output 00 - not used

Output 01 - flood light timer trigger

Output 02 - not used

Output 03 - not used

Output 04 - not used

Output 05 - not used

Output 6 - not used

Output 07 - not used

Output 08 - not used

Output 3 - not used

Output 10 - not used

Output 11 - siren mode A trigger

Output 12 - siren mode B trigger

Output 13 - siren mode C trigger

Output 14 - net used

Ourput 15 - not used
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APPENDIX C

INPUTS AVAILABLE TO CPU

AM/PM - 1 bit signal from a National Semiconductor Time/

Temperature Module (MA10 26) indicates AM or PM . Also

used to drive day of week counter.

Day of Week - a three bit binary code from counter, allow-

ing CPU to establish what day it is (Sunday = 0, Monday = 1,

etc.) for subsequent modification of behavior patterns.

Ambient light - signal from photocell on top of head which

indicates if room is light or dark.

Temperature - sensing probe alerts CPU if ambient tempera-

ture exceeds or falls below adjustable set points.

Smoke - photoelectric smoke detection system.

Toxic gas - Figaro toxic gas detector.

Fire - infrared fire detector with backup mechanical heat

sensor

.

Vibration - seismic monitor indicates presence of vibration

above an adjustable set point. Used for detection of earth-

quakes and/or physical contact from external source . This

function gated out when robot is in motion.
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Visual Motion Detection - three National Semiconductor

D-1072 optical motion . detection chips signal the CPU if

ambient light levels increase or decrease more than 0.1

percent

.

Infrared Motion Detection - Colorado Electro-Optics sensor

mounted on the head detects changes in heat energy radiated

by surroundings

.

Optical Vision - a three photocell array mounted on the

head and used for locating and tracking the beacon on top

of the battery charging station. Optical Board Target

Output goes high when any of the three photocells acquires

the beacon.

Range - a special comparator compares the center photocell

output with an adjustable set point. Used to indicate

proximity of charger beacon .

Near-infrared Parabolic Sensor - mounted on the head and

therefore oositionable 100 degrees either side of center-
ST O

line, this highly directional active sensor is used to

establish the location of objects out to a distance of

six feet. Provides excellent bearing resolution but gives

no indication of range.

Flooding - spring loaded sensor indicates presence of water

on floor.
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Discriminatory Hearing - bandpass filter incorporated in

sound activated circuitry to respond to high frequency

noises such as breaking glass, sawing, or filing, for

intrusion detection.

Head Position (relative) - analog to digital conversion,

represents position of the head as a four-bit binary number

Drive Status - six bit number which reflects the current

steering command and drive direction status

.

Battery Level - two separate comparators indicate when

battery is in need of a charge, and when recharging is

complete

.

Sonar - LM1812 based forward looking sonar transceiver,

used in collision avoidance routines when robot is in

motion and for intrusion detection when platform is

stationary

.

Infrared Proximity Detectors - ten transmitter/receiver

units employing active source high power near-infrared

LEDs sense returned energy to indicate the presence of

obstructions around the vehicle , out to a maximum range

of 13 inches

.

Contact Sensors - fourteen microswitches strategically

positioned to indicate the deflection due to impact of

spring loaded bumpers around the vehicle periphery.
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Feelers - eight spring loaded feelers which sense object

proximity for collision avoidance

.

Bus Status Monitors - numerous comparators which monitor the

voltage on various power distribution buses and initiate

shutdown procedures in the event of a malfunction.

Storm Monitor - lightning discharges detected by an AM

radio, output is rectified and fed to a capacitor. Voltage

level across capacitor is monitored by a comparator which

alerts CPU and activates a 24 hour weather broadcast

receiver in the event of an aoDroaching storm.&

Probe Status - indicates presence of 1M- volts on recharging

probe when connected to battery charging station, activates

relay to disable forward windings of tandem drive motors.

Drive Overload - Comparator monitors the voltage drop across

the drive power circuit breaker for signs of stalled drive

wheel

.

Switch Position Verification - numerous comparators used to

ensure critical switches are in correct position before

initiating actions dependent on associated circuitry.

Speech Busy - 1 bit signal used to indicate to CPU com-

pletion of previously requested speech synthesis output.
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Operator Input - four bit binary code manually loaded via

toggle switches on Operator Control Panel to allow operator

to request actions or modify behavior of robot.

ENTER Button - Normally open pushbutton to signal CPU that

above switches have been set and are ready to read. Also

used by operator to terminate current routine in execution.

Hostile/Friendly Switch - used by operator to advise robot

as to action desired in event an intruder detected. In

Friendly position the robot responds with a greeting of

'Hi' or 'Hello' . In hostile position the robot advises

intruder to leave the room and then sets off alarm.

Alert Verify - used to confirm all previously powered down

circuitry has come up on line as requested after transition

from Passive Mode to Alert Mode.
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APPENDIX D

PROXIMITY DETECTOR CIRCUITRY OPERATION

The near-infrared proximity detector system consists of

a centrally located driver/detector board, with indicator

LEDs , and remotely mounted transmitter/receiver units , re-

locatable for optimum placement . The driver circuitry is

built up around two identical pulse generators , each pro-

ducing a square wave train of 15 microsecond pulses with a

pulse repetition period of 1.7 milliseconds. These pulses

drive into saturation an NPN transistor which gates a

XC-8 80-A high power gallium aluminum arsenide LED emitting

energy in the near infrared spectrum (380 nanometers). The

device is supplied in a T-l 3/4 package. A 4 7 mfd electro-

lytic and 10 ohm current limiting resistor are configured

to supply an extremely heavy current flow (in excess of two

amps) for the brief on-time, more than enough to destroy the

LED under steady state conditions . The result is an intense

pulsed output in a narrow cone, both desirable properties

for an object detection system of this type. The two

pulse generators are alternately enabled by a 555 astable

multivibrator at about a 1 Hz rate , reducing power consump-

tion by a factor of two, and eliminating pattern overlap of

two adjacent LED's where desired. (There are certain cases
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where pattern overlap is used to shape and/or enhance the

detection field of a sensor intentionally, as discussed

later .

)

The receivers utilized with this system each consist of

a TIL413 photodiode incorporating a built in filter and lens

system, with a ccne shaped detection field roughly 45 degrees

around the lens axis . The output of this photodiode is ampli-

fied through a L/C differentiator network, and then fed to

a 741 (1/2 458) Op Amp (see Figure 23), which subsequently

produces a positive spike for each burst of returned infra-

red energy detected. These pulses are inverted by a 4049,

which also serves as a threshold detector, and used to trig-

ger a 555 monostable (1/2 555). This acts as a pulse

stretcher, providing an output pulse of approximately 100 ms

,

and illuminating a red LED for circuit monitoring and adjust-

ment. The 55 5 monostable output generates an interrupt on

IRQ Channel A and is then read by Data Selector A. Six re-

ceiver channels are provided, and all are commonly enabled

or disabled by Data Distributor A output number 4 as needed.

The circuitry is powered up automatically with the Drive

Relay 3oard by Subroutine Dri.on. The receivers must sub-

sequently be enabled by Subroutine I/Ren.

Position resolution of the detector is a function of

receiver sensitivity, the photodiode field of view, and the

irradiation pattern of the high power LED. Of these, the
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latter is the most significant determining factor, as the

irradiation cone of the infrared LED is relatively narrow

(40 degree angle between half power points) with respect to

the detection cone of the photodiode . The usable irradia-

tion cone angle was experimentally determined to be roughly

half that of the half power angle, yielding good resolution

of object location for a low cost system.

Where desired, multiple emitters can be used to advan-

tage to strengthen the irradiation field for greater range

or sensitivity, and through careful placement of the LEDs

it is actually possible to shape the detection zone to

best fit the application. The prototype robot is little

concerned with how tail an object is, but rather interested

in horizontal resolution of its exact location. Therefore

emitters were arranged in vertical columns to expand the

detection field vertically, while creating no horizontal

overlap. This technique greatly expands the proximity

detectors' versatility at minimal additional cost as long

as the LED patterns remain within the photodiode field of

view. A rough guideline to ensure reliability was found

to be one field width either side of a normal LED irradia-

tion pattern, as shown in Figure 29.

The near-infrared parabolic dish detector utilizes two

adjacent LEDs for increased range and sensitivity, but the

spatial resolution here is primarily dependent on the
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I/R LED [3

PHOTODIODE C^

I/R LED D

Figure 29. Near-infrared Sensor LED Overlap Pattern. Two
emitters can be configured as shown to increase the vertical
coverage of a single photodiode detector while maintaining
the horizontal resolution required for collision avoidance.
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directional property of the four inch parabolic reflector

which focuses returned energy on the photodiode lens . The

receiver circuitry is essentially the same as that employed

in the proximity detectors, but with increased amplifier

gain and an adjustable detector threshold implemented

through use of an inverting comparator in place of the M-0 49

inverter gate. Additionally, the 555 monostable pulse

stretcher is made retriggerable to provide a constant high

output as long as pulses are received, free of intermediate

resetting. This is a desirable property when the device is

panned in search of a wall opening, for example, as a low

output arises only when reflections stop, and not moment-

arily each time the 555 clocks out and resets.
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APPENDIX E

POSSIBLE OPERATORS FOR ROBOT CONTROL LANGUAGE

Parameters follow operator and are separated by a space

SPEAK

DELAY

CLOCK

POWER

SPOT

SCAN

TRACK

Voice output word through speech synthesis
First parameter is list number (1,2, or 3)

Second parameter is word number on list
Third parameter D causes 40 millisecond delay first
First and second parameters are required
Third Darameter must be D or not used
Ex: SPEAK 1 $4C output 'danger 1

, list 1,

Ex: SPEAK 2 $0F D
word number 4C hex, no delay
output 'circuit', list 2, word
number OF hex, delay M-0 ms first

Delay before continuing
First parameter is number of half seconds of delay
First parameter is required
Second parameter C enables voice output of time of

day if appropriate (see CLOCK) during wait
Second parameter must be C or not used
Ex: Delay 9 Wait M- . 5 seconds before continuing

Postpone announcement of time until
authorized at later point

Allows announcement of time of day at this point
in program if appropriate (hour or half hour)

Mo parameters are used

Turns power on or off to interface and actuator
circuitry

First parameter must be ON or OFF
Ex: POWER ON powers up system

Turns spotlights on or off
First parameter must be ON or OFF

Controls automatic scan system which rotates head
back and forth 9 5 degrees each side of center

First parameter must be ON or OFF

Enables tracking circuitry for locating beacon
Also enables head to scan for lock on to beacon
Disabled by SCAN OFF
Mo parameters are used
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INITIAL

DRIVE

POSITION

HOME

BEACON

READ

RANDOM

CENTER

ALIGN

Used to initialize system at start
No parameters are used

Used to enable or disable drive control circuitry
First parameter must be ON or OFF
Ex: DRIVE ON enables drive circuitry

does not start drive motor

Used to position a joint
First parameter must be joint identifier
Second parameter must be desired position
Ex: POSITION HEAD $08 sets head facing forward
Ex: POSITION WHEEL $0 sets steering full right

Matches steering angle to head angle
When used in a loop with tracking function enabled

causes robot to home in on beacon
No parameters are used

Used to control beacon on top of recharging station
First parameter must be ON or OFF

Inputs data from specified source
First parameter must be source identifier
Second parameter can be used to further specify input
Ex: READ HEAD read head position (1 parameter)
Ex: READ A 11 read Data Selector A, Input no. 11

Creates a random integer - 256
First parameter is lower limit (inclusive)
Second parameter must be upper limit (inclusive)
No parameters returns random logic (high or low)
Ex: RANDOM 20 200 create random integer in

range 20 to 200
Ex: RANDOM randomly sets logical variable

Determines head bearing to center of specified
opening in wall, such as door or window
First parameter specifies a bearing to left

of desired opening to investigate
Operation is then performed on first opening found

to right of specified bearing
Ex: CENTER $0 8 Find center of first opening located

to right of centerline ($08)

Causes robot to align itself with beacon dead ahead
by backing, if such action requested by interrupt
service routine , else no action taken

No parameters are used
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SKIRT Causes robot to go around obstacle to left when
homing on recharger, if such action requested.

No parameters are used

MOVE Controls motion of robot chassis
First parameter must be drive motor command
Legal choices are FORWARD, REVERSE, OPPOSITE, SAME,

STOP
Second parameter must be steering command
Legal choices are LEFT, RIGHT, CENTER, SAME
A variable (range 0-15) can also be used to

specify intermediate steering angles
Ex: 'MOVE FORWARD LEFT turn left moving forward
Ex: MOVE OPPOSITE SAME reverse direction only
Ex: MOVE REVERSE SAME move backward, steering same
Ex: MOVE SAME RIGHT continue motion, turn right
Ex: MOVE STOP LEFT turn wheel to left, drive off
Ex: MOVE SAME $05 turn wheel to position $0 5

TEST Perform a canned test routine as specified
First parameter is system to be tested
Ex: TEST HEAD perform canned test of head

positioning circuitry
Ex: TEST DRIVE perform canned test of drive wheel

positioning circuitry

ALERT Sets or secures system in 'alert' mode
First parameter must be ON or OFF
Ex: ALERT OFF secures system to 'passive' mode
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