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ABSTRACT 

Hyperspectral data were assessed to determine the effect of integrating spectral 

data and extracted texture features on classification accuracy. Four separate 

spectral ranges (hundreds of spectral bands total) were used from the VNIR-

SWIR portion of the electromagnetic spectrum. Haralick texture features 

(contrast, entropy, and correlation) were extracted from the average grey level 

image for each range. A maximum likelihood classifier was trained using a set of 

ground truth ROIs and applied separately to the spectral data, texture data, and a 

fused dataset containing both types. Classification accuracy was measured by 

comparison of results to a separate verification set of ROIs. Analysis indicates 

that the spectral range used to extract the texture features has a significant effect 

on the classification accuracy. This result applies to texture-only classifications 

as well as the classification of integrated spectral and texture data sets. Overall 

classification improvement for the integrated data sets was near 1%. Individual 

improvement of the Urban class alone showed approximately 9% accuracy 

increase from spectral-only classification to integrated spectral and texture 

classification. This research demonstrates the effectiveness of texture features 

for more accurate analysis of hyperspectral data and the importance of selecting 

the correct spectral range used to extract these features. 
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I. INTRODUCTION  

Many remote sensing platforms collect electro optic data. These systems 

vary in spectral range and band width as well as spatial extent and resolution. 

Computer image processing algorithms tend to focus on the spectral character of 

individual pixels. In the case of hyperspectral data (spatial-spectral data with up 

to hundreds of spectral bands; Goetz et al., 1985), algorithms may attempt to 

assign each pixel with a value based on its spectrum and its relationship to other 

predefined (library) spectra. A classification image is made by grouping pixels 

with similar values. This is the conventional approach to spectral-only 

classification. 

The process of classifying a single pixel in multispectral and hyperspectral 

imaging data typically relies solely on the measured spectrum for that pixel, 

without reference to surrounding pixels. If the target of interest spans an area of 

several pixels or more, however, there is the potential of using additional 

information from surrounding pixels in the classification. This information, called 

texture, is based on the spatial relationship of varying intensity values. The 

problem with the current method of identification is that even when the target 

spans many pixels, the texture properties of the target are not being utilized.  

Texture extraction is generally accomplished using a gray-level image, 

however, there are many options regarding the gray level image source. A 

panchromatic image could be used, which can be advantageous in that it tends 

to provide the highest spatial resolution of all the types of electro optical 

collections. Any one of the tens of multispectral bands could be used or one of 

the hundreds of hyperspectral bands could be used as well. In the case of 

hyperspectral data, a single band can be used as the gray level image or an 

average can be taken of more than one spectral band. Additionally any 

combination of bands could be combined to create a gray scale image.  
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Texture analysis is important because very valuable information, which is 

already being collected, can be used to improve the classification accuracy of 

spectral methods. Substantial previous work combined multispectral data and 

texture features extracted from co-registered panchromatic data. Olsen et al., 

2003 described an application of this approach for the analysis of wetlands 

areas. Other research used texture to distinguish between spectrally similar tree 

and lawn classes (Zhang, 2001). In this case, the addition of texture data to the 

multispectral data showed an average classification improvement of 30% for the 

tree class compared to conventional spectral-only classification. 

The research described here explored the effect of the spectral range 

used as the source for the gray level image and the dependency of the texture-

only classifications on the selected spectral region. The hyperspectral data set 

was divided up into four spectral subsets. Each of these subsets was converted 

to a gray level image which represented the mean value over those spectral 

bands. From these four gray level images, separate sets of texture features were 

extracted. Classification algorithms were run on the spectral bands, texture 

bands, and the combined spectral and texture bands. Accuracy of the spectral-

only, texture-only, and combined classifications were assessed with respect to 

pre-defined ground truth classes to determine improvements attributable to the 

combined analysis and spectral range. 
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II. BACKGROUND 

A. PREVIOUS WORK 

1. Hyperspectral Imaging 

a. Spectroscopy 

Spectroscopy is the investigation of material properties by studying 

the way matter interacts with electromagnetic radiation. A quantized unit of this 

radiation is known as a photon. In principle, a target material will either transmit, 

absorb, or reflect a photon based on its wavelength. Due to the quantum nature 

of this interaction, a photon of a given wavelength has a probability of 

transmitting, absorbing, or reflecting upon interacting with a given material. This 

probability leads to a percentage of the incident energy resulting in some 

transmission, some absorption and some reflection where the sum total is unity. 

In a laboratory setting, the full range of the electromagnetic spectrum can be 

used to probe a material in order to determine its response. A materials response 

to the full range, or a section of the electromagnetic spectrum can serve as a 

unique identifier for that material (Vane & Goetz, 1988). 

b. Imaging Spectrometry 

Also known as hyperspectral imaging (HSI), imaging spectrometry 

is the collection of the full spectroscopic response over a range of spatial 

positions, usually using hundreds of spectral bands. This method has proven 

effective in material identification and mapping based on spectral signatures 

(Goetz et al., 1985). Figure 1 shows the basic concept of these collection 

systems. 
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Figure 1.   Hyperspectral imaging concept (From Chai et al., 2000). 

Hyperspectral imaging has been successfully implemented in a 

number of airborne and spaceborne systems. The Jet Propulsion Laboratory 

(JPL) developed a system to take hyperspectral images of the earth. This system 

is known as the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and is 

an airborne platform which first measured spectral images in 1987 (Green et al., 

1998) (Green, 2007). The National Aeronautics and Space Administration 

(NASA) launched the first space-based sensor covering the visible (VIS) through 

short wave infrared (SWIR) section of the electromagnetic spectrum. This 

system, known as Hyperion, is a hyperspectral imager and was launched in 2000 

(Pearlman et al., 2003) (Kruse et al., 2003). 

2. Hyperspectral Analysis 

a. General Information 

Hyperspectral analysis is the process by which a target is identified 

as a known quantity based on its spectral signature. This quantity could come 

from library spectra or spectra generated using the image itself where a portion 

of the image has been verified by ground truth. Hyperspectral imagery data 

provided an analysis challenge when it first began to arrive into the community. 
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Simply visualizing the data was not easy or intuitive. Work was done to improve 

this by the creation of algorithms and an interface specifically designed to deal 

with this type of data (Kruse et al., 1993). Once the data could be worked with in 

an efficient way, the next step was to process the data. There are many different 

ways that targets can be matched. These include approaches such as: binary 

encoding, minimum distance, and maximum likelihood. A survey of many of the 

most widely used methods has been compiled (Franklin & Wulder, 2002). So far 

each method has been shown to have its strengths and its weaknesses. 

Therefore, the method used must be considered based the goals of each 

endeavor (Franklin & Wulder, 2002). Some methods designed for analysis of 

multispectral data have been shown to be ineffective when dealing with the 

higher dimensionality of hyperspectral imaging data. A comparison of 

classification methods applied to hyperspectral imaging data is shown in Cloutis, 

1996.  

b. Dimensionality Reduction 

One approach used often in the analysis of hyperspectral imagery 

is to start by reducing the dimensionality of the data set. This can be done by a 

principal components transform, which can reduce hundreds of bands of spectral 

information to tens, while preserving the vast amount of information from the 

original data set. The purpose of this is to get at the intrinsic dimensionality of the 

data set. This will avoid redundancy caused by highly correlated spectral bands 

(Harsanyi & Chang, 1994). An extension of this is to consider the signal to noise 

ratio (SNR) during the transform and thus deemphasize the noise contribution; 

this is known as a minimum noise fraction (MNF) approach (Green et al., 1988) 

(Boardman & Kruse, 2011). If the classification effort is performed with library 

spectra, then the transforms can be modified to specifically reject all other signals 

from the data. Then an optimal classification can be performed on the remaining 

data. This approach maximizes the ability to classify while minimizing the amount 

of data to process (Harsanyi & Chang, 1994). The maximum likelihood method of 

hyperspectral classification is used so often that work has been put into 
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optimizing it to process large data sets such as those obtained by the use of the 

AVIRIS system (Roger, 1996). The maximum likelihood classification method has 

been extended to incorporate prior probabilities when training sets yield this 

information (Strahler, 1980). Varying atmospheric and illumination conditions can 

make matching target spectra with library spectra difficult. Work has been done, 

however in the area of automating identification under these unknown conditions 

(Healey & Slater, 1999). 

c. Maximum Likelihood Classification 

The maximum likelihood classification method is a statistically 

based classification method. Each pixel that is processed is assigned to the class 

that it has the highest probability of being a member. To do this statistically an 

assumption must be made, which is that the statistical distribution of each class 

is normal. This method is computationally expensive and because of this has not 

always been utilized even though it has been around since around 1912 (Hald, 

1999). It has been confirmed that the maximum likelihood classification method 

does assign pixels to the class they most likely belong when hyperspectral 

imagery data is used (Cloutis, 1996). Work continues to improve the use of 

maximum likelihood classification on hyperspectral imagery data sets. With large 

pixel sizes the training set can be too small to generalize the classification. A 

method has been presented to find near neighbors that can be included in the 

training set if they will indeed improve the class statistics (Richards & Jia, 2008). 

3. Texture Analysis 

a. General Description of Texture 

Texture is the connection between pixel positions and their intensity 

values. This is distinct from tone, which is the statistical relationship between a 

pixel’s value and all other pixel values in an image regardless of their position. 

Both of these are important properties of an image and can be used to process 

data. Texture has been used to process imagery for a range of disciplines. For 
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example the field of medical research has used texture to automatically detect 

heart disease by computer processing x-ray images (Sutton & Hall, 1972). 

Spectrally similar vegetation classes have been successfully separated by the 

use of texture (Zhang, 2001). Early work in the recognition of patterns, upon 

which texture analysis is built, dates back to work done with conditional joint 

probability densities where the image pixels are processed as a vector 

(Sebestyen, 1962). General image processing that preforms calculations based 

on the spatial relationship of pixel values and thus the very basis of texture 

analysis has long been studied (Andrews et al., 1972). Finally, an overview of 

early work on feature extraction and pattern recognition is noted (Levine, 1969). 

b. Haralick Texture Features 

The pioneering work of computer based extraction of textural 

features was published by Haralick in 1973. He described a set of algorithms to 

process black and white images in such a way as to produce texture features. 

This work focuses on the grey level spatial dependence relationship using a Grey 

Level Co-occurrence Matrix (GLCM). From this GLCM the quantities known as 

texture features are extracted. The textures studied in his landmark paper were: 

angular second moment, contrast, correlation, sum of squares, variance, inverse 

difference moment, sum average, sum variance, sum entropy, entropy, 

difference variance, difference entropy, information measures of correlation, and 

maximal correlation coefficient. Some success was shown classifying imagery 

using just these texture features (Haralick et al., 1973). More recent work has 

been done to compare the Haralick texture features with other methods. Gabor 

texture filters were found to be outperformed by other methods and there was no 

evidence they should be preferred. Wavelet transform decomposition was shown 

to generally not be superior to other decompositions. The final result is that there 

was not a clearly preferred method and thus no clear alternative to the Haralick 

texture feature method (Randen & Husoy, 1999). 
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c. Entropy – The Measure of Disorder 

One of the measures of texture put forth by Haralick is entropy, 

which is a measure of randomness. This quantity first arose in the context of 

communication theory and was applied to place a limit on the optimal lossless 

compression for a given set of data (Shannon, 1997). Target classes can vary by 

randomness, crops will have low randomness due to their uniform rows. A 

natural forest will exhibit high randomness as a result of growth cycles. In the 

context of remote sensing this property has the ability to measure texture in a 

unique and meaningful way that can be combined with other independent 

measures of surface variation (Shannon, 1997). The Shannon entropy texture 

feature has successfully been used to measure the compactness of an urban 

area. A study was done to specifically measure the urban growth and entropy 

was used as an indicator. The area studied by Bhatta was Kolkata, West Bengal, 

India. Landsat data were used for the study (1975, 1990, and 2000) as well as 

data from the Indian multispectral asset Resourcesat 1 (2005). The spectral 

range used for the study were VIS-NIR and for Landsat TM/ETM+ the SWIR 

bands were also included. Validation was done using census data to confirm the 

method was effective before using it to make predictions about the future (Bhatta, 

2009). 

d. Optimum Texture Features for Classification 

There is good reason to wonder which of the texture measures 

outlined by Haralick should be used, as many of them are directly correlated. 

Another good question is how many grey levels should be used in the calculation 

of these texture features. The effect of varying the grey level quantization used to 

calculate texture features was one topic of this investigation. In the research 

done by Clausi, 2002 the ability of texture for classification was studied. It was 

shown, that for some texture features, increasing grey levels can lead to a 

decrease in the classification accuracy. It was also shown, for the remaining 

Haralick texture features, that accuracy remained the same for the range of 
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quantization levels studied. Clause’s work has also shown that the most effective 

classification is achieved with only three texture features, namely: contrast, 

entropy, and correlation. These three texture features out performed all other 

texture set combinations and did so with a relatively low quantization level. One 

benefit to this particular set of texture features is that they are largely 

independent of each other. The work by Clausi has put bounds on the preferred 

quantization level between 24 and 64, with levels lower than 24 producing 

unreliable results and levels higher than 64 failing to improve the classification 

accuracy (Clausi, 2002). Performance evaluation has been done on the Haralick 

texture features confirming that contrast, entropy, and correlation are among the 

most useful features to use for classification (Ohanian, 1992). Some work has 

been done on complex terrain in which the addition of only the texture feature 

entropy was sufficient to improve the classification results compared to spectral 

data only (Franklin & Peddle, 1989). 

e. Texture Processing Window Size 

The next question to consider is the optimum size of the texture 

window to use for calculating the texture features. This window defines the 

number of surrounding pixels that are used to create the GLCM. A 3x3 window 

would only include the 8 pixels immediately adjacent to the pixel being 

processed. A 5x5 window would include the 8 pixels from the 3x3 window in 

addition to the 16 pixel immediately adjacent to those 8 pixels. Combining texture 

features calculated from a range of window sizes has been shown to increase 

the classification accuracy of forest tree types (Coburn & Roberts, 2004). In this 

work the term multi-scale refers to the size of the moving processing window 

used to calculate the texture features. The greatest success of the study showed 

that a combination of texture features from different window sizes produced 

better results than any individual window size. The range of window sizes used to 

determine this were between 3x3 and 11x11. This paper supports the idea that 

the texture that exists in remotely sensed images is fundamentally multi-

dimensional (Coburn & Roberts, 2004). Land use classification work done using 
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SPOT HRV data supports the use of window sizes including 3x3, 5x5, and 7x7 

(Gong et al., 1992). In this study, the larger sizes were omitted because of 

unsatisfactory preliminary results. It stands to reason that including larger 

windows is harmless if a dimensionality reduction step is performed before the 

classification step. 

f. Alternative to Haralick Texture Features 

An alternative concept for quantifying texture is the texture 

spectrum using texture units (He & Wang, 1990). A texture unit, defined by He 

and Wang, is a measure of each pixel’s relationship to the eight surrounding 

pixels. It is a one by eight vector that contains a zero (0) if that neighbor’s value 

is less than the given pixel. The vector contains a one if the neighbor is equal to it 

and a two if it is greater than. This leads to a total number of possible texture 

units of 6561. In the method outlined, this is calculated for an area of an image 

and the results are fashioned into a histogram. This becomes the texture 

spectrum that can be used as a measure of the texture for a given area and 

success was achieved in using this as a basis for classification. In the 

experiments described, the accuracy rate is 97.5% for a mixed texture image, 

and 99.6% for an image with homogeneous texture (He & Wang, 1990). 

4. Integrated Analysis 

a. General Information 

Integrated analysis is the process that allows multiple types of 

information to be used together, for a shared purpose, in the most successful 

way possible. Hyperspectral data can be fused with LIDAR data to perform 

classification of forest types (Dalponte et al., 2008) or to estimate tree stem 

diameters (Dalponte et al., 2009). Data fusion can also result in other benefits, 

like enhanced resolution of hyperspectral imagery data sets (Mianji et al., 2009). 

With the realization that sometimes, preferred datasets are those that were 

collected at the same time and from the same view angle, a team set out to do a 



11 

 

 

coincident collection. A collection of multispectral data and high resolution color 

imagery data was successfully completed in 2001. These multiple collections 

were combined to produce a coincident data set that can easily be used for 

further analysis and processing (Mirzaoff et al., 2002). Another method for the 

fusion of hyperspectral and high spatial resolution data is to extract spatial 

information from the high spatial resolution data and use it to modify the 

hyperspectral data at its original spatial resolution (Niemann et al., 1998). The 

fusion of hyperspectral and multispectral data sets has been explored by means 

of different algorithms with a principle component transform being the preferred 

method. This yielded an image with the spatial resolution of the multispectral 

data and the spectral resolution of the hyperspectral data (Pande et al., 2009). 

SAR data and electro-optical data have been successfully fused with the use of 

support vector machines, which in the case studied out performed, among 

others, the maximum likelihood classification method (Waske & Benediktsson, 

2007). Early work done using aerial photography, multispectral, and thermal 

imaging data that had been collected at optimal times throughout the year, 

relative to the information type desired, and were integrated to map inland 

wetlands (Jensen et al., 1986). 

b. Combining Spectral and Texture 

There is significant previous research on combining spectral data 

and texture data to perform supervised classification (Li & Narayanan, 2004). A 

diagram of the system architecture used by Li is shown in Figure 2. In the 

approach by Li texture features are extracted from images along with land use 

classifications. These are combined with a segmentation algorithm and stored in 

a data base for future query and retrieval. 
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Figure 2.   Method of spectral and spatial integration (From Li & Narayanan, 
2004). 

A method, by Rogge et al. (2007) of endmember extraction based 

on spatial proximity is an example of combining spectral and spatial information 

and a diagram is shown in Figure 3. In the work by Rogge pixel spectra were 

grouped together based on their position to improve endmember selection. 
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Figure 3.   Spectral spatial integration method (From Rogge et al., 2007). 

Previous research was also done on image segmentation in the 

areas of hedges (Lennon et al., 2000) and forests (Ryherd & Woodcock, 1996). 

Texture has also been used to create optimal composite images, from multiple 

hyperspectral data sets, to be visually interpreted be a human (Wilson et al., 

1997). An example of spectral and texture fusion focused on the classification of 

wetlands in the Elkhorn Slough on the coast of California (Olsen et al., 2003). 

The IKONOS satellite sensor was used, which has four spectral bands (4 m 

resolution) and one panchromatic band (1 m resolution). The panchromatic band 

was used to extract four virtual texture bands; two for variance and two for 

correlation. These were combined with the four spectral bands to create an eight 

band data set. The combined data set was trained using ground truth ROIs and 

classified using, among others, the maximum likelihood and minimum distance 

classifiers. At 4 m resolution the accuracy for the spectral-only data set was 

~50% while the addition of the texture bands increased this to ~55%. The 
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minimum distance results for spectral-only were ~27% and adding the texture 

bands reduced the accuracy to ~9% (Olsen et al., 2003). Other work to classify 

land use types was done to study the amount of remaining vegetation as an 

urban area was built up over time. Improvement with the addition of the spatial 

components was shown for some classes and not for others (Segl et al., 2003). 

The method of integration that is most relevant to the work done is this research 

is the combination of spectral and texture bands used by Olsen et al. (2003). This 

method allows for the use of supervised classification and the comparison of 

spectral-only, texture-only and combined spectral and texture data sets. 

B. AREA OF INVESTIGTION 

The data used for this study were AVIRIS data collected over Salinas, CA, 

and surrounding areas. The collection was done on the 9th of September 2011. 

Collection began at 8:24pm and concluded at 8:36pm. The instrument was flown 

at an altitude of 3km with a ground speed of 122km/hr. The resulting resolution is 

approximately 2.7 m per pixel and the image is 978 x 9643 pixels in size, which 

can be seen in Figure 4. The coordinates for the center of the subset study area 

are (+36.709870, -121.664468) and this area is shown in Figure 5. The ground 

track vector for the flight path started from the north-west and proceeded to the 

south-east. Some significant regions captured in this collection include Moss 

Landing, Castroville, and Rt. 101. This area has been studied previously using 

high-resolution panchromatic imagery to extract texture features (Humphrey, 

2003).  
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Figure 4.   Full AVIRIS collection flight line # f110928t01p00r08. Blue box 
shows subset location used for this study. 
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Figure 5.   True color image of the subset study area. 

The subset study area contains a variety of ground cover types including 

(1) pavement that can be found on the major highway, parking lots, and mixed in 

with residential housing; (2) urban mixtures of houses, yards, trees, cars, and 

dirt; (3) green healthy fields and dry vegetation and mixtures; and (4) dirt paths 

found between the fields used for agricultural access. These ground cover types 

can be hard to distinguish using spectral classification only. The dry vegetation 

and dirt path class for example are nearly identical from a spectral perspective. 
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III. METHODOLOGY 

A. ATMOSPHERIC CORRECTION 

1. Purpose 

Due to the wavelength dependent nature of atmospheric absorption, 

radiation incident on the sensor at altitude is not equal to the radiation leaving the 

target surface on the ground. This means that some form of compensation is 

required to convert sensor measurements into the spectral reflectance of the 

target material. After this conversion is made, further processing can take place 

such as classification using known library spectra, which will now match with the 

recorded data (Bernstein et al., 2008). 

2. Quick Atmospheric Correction (QUAC) 

Atmospheric correction for this study was performed using the process 

known as QUAC. This method has been around for many years and is widely 

available in the remote sensing community (Bernstein et al., 2004; 2005). The 

goal is to convert the upwelling radiance recorded at the sensor into apparent 

reflectance at the target surface. The QUAC algorithm makes a key assumption, 

which holds for most scenes. That is that the scene contains 10 or more diverse 

endmembers and that their average reflectance spectrum is constant from scene 

to scene. This is taken to be a universal reference spectrum, which has been 

shown empirically (Bernstein et al., 2012). Figure 6 shows the process flow for 

the algorithm. After the first two setup steps the offset value is obtained by 

selecting the lowest value in each band. Next, all pixel spectra are divided by the 

solar blackbody curve as a way to normalize the data set before endmembers 

are selected. These endmembers are computed with the chosen library 

endmembers and a gain curve is calculated.  



18 

 

 

 

Figure 6.   QUAC process flow (From Bernstein et al., 2012). 

Equations 1 & 2 are the gain and offset used in the QUAC algorithm. 

(Bernstein et al., 2012) The numerator of the gain equation is the average of the 

endmember spectra derived from linear combinations of library spectra. The 

denominator in the gain equation is the average of the endmembers retrieved 

from the in-scene pixel spectra. The offset equation yields a curve of minimum 

values from each spectral band. 

  
libendGain

obs ave end
CL 

 


   (1) 
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 min( _ _ _ _ )Offset pixel value for each band  (2) 

 

B. AVIRIS REMOTE SENSING PLATFORM & DATA 

The AVIRIS sensor is a hyperspectral imaging (HSI) system also known 

as an imaging spectrometer. First measuring spectral images in 1987 AVIRIS, 

collects upwelling radiance from the solar reflected spectrum from approximately 

400–2500 nm. Across this spectrum are 224 bands spaced approximately 10 nm 

apart with an average band width of 10 nm at FWHM (Green et al., 1998). The 

AVIRIS specifications are detailed in Table 1. The AVIRIS system can be hosted 

on several different airframes and flown at different altitudes. The data used for 

this study were collected using the Twin Otter airframe. At the time of collection 

the aircraft’s altitude was 3 km and its speed over the ground was 122 km/hr. 

This resulted in a data set with a ground sample distance of approximately 2.7 m.  

 

Description Value Units 
   

Scan Rate 12 Hz 

Detectors 224 # 

Digitization 12 Bits 

Data Rate 20.4 Mbits/sec 

Spectrum Rate 7300 Spectra/sec 

Wavelength Range 400–2500 nm 

Sample Spacing 10 nm 

Spectral Response 10 nm 

Calibration Accuracy 1 nm 

Signal-to-Noise 100:1 Ratio 

Field of View 30 Degrees 

IFOV 1 mrad 

Flight Line Length 800 km 

Table 1.   AVIRIS specifications. 
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C. GENERAL PROCEDURE 

1. Data Preparation 

Once the data were corrected to apparent reflectance using QUAC, the 

data were spectrally subset into four sets. Spectral band groups were selected to 

remove the water absorption regions near 1400 and 1900 nm and any noise 

recognized in the data. This is shown in Table 2. 

 

 # of bands # removed Min (nm) Max (nm) 
     

Set one 61 1 365 928 

Set two 44 8 947 1343 

Set three 38 17 1432 1801 

Set four 52 3 1957 2466 

Total 224 29 365 2466 

Table 2.   Range and number of bands in each spectral subset. 

An average image was taken of the bands in each set. For example the 

gray level image for set one was taken from 61 bands (365–928 nm). These gray 

scale images were used as the inputs for the texture extraction processes. The 

texture features extracted were: contrast, entropy, and correlation (Haralick et al., 

1973). These have been shown to be optimal, and as a group, they perform 

better than any single texture measure and better than any other set of traditional 

Haralick texture features (Clausi, 2002). 

The window size used to extract these texture features was varied from 

3x3 to 11x11 to capture unique features at different scales. For each window 

size, all three texture features were extracted. This results in a 15 dimensional 

texture feature vector, which is detailed in Table 3. After a dimensionality 

reduction, this data set was used independently to classify area targets as well 

as being merged with the spectral subset data cube. This vector was rescaled to 

blend in with the reflectance data during classification. Because the maximum 

likelihood method was used, any extreme difference in amplitude could bias the 
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results, therefore a scale factor of x200 was chosen to bring the maximum values 

of the texture vector up to the maximum values of the spectral data. Rescaling 

the data minimizes any unintended influence due to this effect. A flow diagram 

from original data to classification is shown in Figure 7. 

 

 

Figure 7.   Process flow chart. 
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Band # Texture Feature Window Size 
   

01 Contrast 03x03 

02 Entropy 03x03 

03 Correlation 03x03 

04 Contrast 05x05 

05 Entropy 05x05 

06 Correlation 05x05 

07 Contrast 07x07 

08 Entropy 07x07 

09 Correlation 07x07 

10 Contrast 09x09 

11 Entropy 09x09 

12 Correlation 09x09 

13 Contrast 11x11 

14 Entropy 11x11 

15 Correlation 11x11 

Table 3.   Texture band descriptions. 

Shown in Figure 8 is the process flow from the original AVIRIS data to 

final texture data sets. These are the data sets that get classified on their own, 

combined with spectral data, and finally get combined with all the texture data 

sets and all the spectral data sets for the full range analysis. 
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Figure 8.   Texture data sets process flow. 

2. ROI Selection 

Classification of the AVIRIS data were performed using statistical 

measures rather than by using library spectra. Therefore, training classes were 

defined by selecting ROIs based on ground truth inferences from Google Earth 

as well as the study area data. R-G-B true color composites were used to select 

paved roads and urban areas. A false color IR-R-G composite shown in Figure 9 

was used to distinguish dry and healthy vegetation (healthy vegetation appears 

red). To check the accuracy of these classification methods separate ROIs were 

selected to be used in the post classification confusion matrices. The ROIs 

shown in Figure 10 and detailed in Table 4 are all two-tone colors indicating the 

separate ROIs that were used for training and verification. Each class was 

initially selected as a single ROI for a total of five separate ROIs. Next, half the 

number of pixels from each class were chosen randomly and became the training 
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set (total of five training ROIs). Then the remaining pixels from each class 

became the verification set (total of five verification ROIs). In this way, the full 

extent of the selected classes are used. ROIs are evenly distributed into training 

and verification data sets. 

 

 

Figure 9.   False color IR-R-G composite image of study area (healthy 
vegetation shown in red). 

Class Color Used for 
   

Dry Veg Red Training 

Dry Veg Dark Red Verification 

Healthy Veg Green Training 

Healthy Veg Dark Green Verification 

Urban Cyan Training 

Urban Dark Cyan Verification 

Dirt Path Blue Training 

Dirt Path Dark Blue Verification 

Pavement Maroon Training 

Pavement Dark Maroon Verification 

Table 4.   ROI color descriptions. 
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Figure 10.   Study area showing the selected regions of interest (colors detailed 
in Table 4). 

3. Application of MNF Transform 

At this point we have eight groups of data, the four spectral subsets and 

the extracted texture data sets that go with each spectrally subset region. Each 

of these texture subsets underwent a dimensionality reduction before moving on 

to the next process of classification and then accuracy verification. The 

dimensionality reduction is necessary for the extracted texture sets because 

there are some very clear correlations in the data that will lead to less accurate 

classification. This is likely due, in part, to the added noise from each correlated 

band whereby these additional bands do not add new information but do add 

more noise to the data set. This can be understood by considering the three 

extracted texture features that get repeated with an increasing window size. The 

texture measure correlation for example will increase as the window size 

increases in a uniform area such as a field. As a result, it is clear that many of 
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those data points will be correlated. The MNF transform is able to order the data 

by descending signal to noise ratio for each of the dimensions (Green et al., 

1988; Boardman & Kruse, 2011). Then the dimensions with the least signal to 

noise can be removed. For this research, the 15 dimension texture data sets 

were reduced to six dimensions that accounted for 95% of the original 

information in that data set. In addition to removing noise from the data sets, the 

extensive correlation found in the data set was removed, which is expressed by 

the removal of nine bands of the texture data. As an example, the correlation of 

the contrast texture features are shown in Table 5. The spectral data were not 

dimensionally reduced. While there is perhaps something to be gained by this, 

the purpose of this research was to demonstrate an improvement over traditional 

spectral-only classification methods. Performing a MNF on the spectral data 

would only confuse the matter at hand. 

 

Correlation Band 01 Band 04 Band 07 Band 10 Band 13 
      

Band 01 1.000 0.878 0.785 0.705 0.645 

Band 04 0.878 1.000 0.933 0.863 0.796 

Band 07 0.785 0.933 1.000 0.954 0.899 

Band 10 0.705 0.863 0.954 1.000 0.964 

Band 13 0.645 0.796 0.899 0.964 1.000 

Table 5.   Contrast texture feature correlation for set one. 

A scale factor is required so the MNF texture data match values with the 

spectral data. This scale factor was determined by comparing the minimum and 

maximum values of the spectral and MNF texture data. The entire subset image 

was used, not just the ROIs selected for training and verification. This was done 

so the scale factor would be less specific to the ROIs used. The scale factor of 

200, calculated in this way, will be more representative of the appropriate scale 

relationship between the spectral data to the MNF texture data. Because of this, 

the spectral and MNF texture data ranges of the ROIs shown do not match 

exactly.  
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4. Classification 

To investigate the improvement of identification each data set was 

processed using the supervised classification method known as maximum 

likelihood, previously described. Each data set was used to classify the study 

area using the training ROIs as input to the classification algorithm. The resulting 

classification image was measured for accuracy by comparing it to the 

verification ROIs. The summary of this is captured in a confusion matrix. A 

confusion matrix is a way of displaying the results of two classification images 

when one is considered to be ground truth. The second image is rated by what 

percent of pixels agree with the ground truth image. This is typically broken up 

class by class as well as providing an overall accuracy percentage 

measurement. In addition to this a separate overall measurement is produced 

which takes into account the size of each class and weights the contribution to 

this measurement, known as the kappa coefficient, by the proportion of each 

class compared to the total classification area. In this way, small classes that do 

very well carry less weight than large classes that do poorly, which could bias the 

results. The equations for the percent correct and kappa coefficient 

measurements are shown in Figure 11. 

 

 

Figure 11.   Confusion matrix and Kappa coefficient equation (From Foody, 
2002). 
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Classifications were performed for the spectral-only, texture-only, as well 

as combined spectral and texture data sets. This included individual processing 

for each of the four spectral subset regions and the full spectral and texture data 

sets. 
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IV. RESULTS AND ANALYSIS 

A. SPECTRAL AND TEXTURE ROI AVERAGES 

The following are the results for the first spectral set and the full spectral 

range. The remaining results for spectral sets one thru four are detailed in the 

Appendix. Each spectral subsets results consist of the following items for each 

ROI: average spectra, average texture features, average texture features after 

MNF transform. Classification images include: spectral-only, texture-only, and 

combined spectral and texture. Confusion matrices include: spectral-only, 

texture-only, and combined spectral and texture. Also included are the combined 

results for comparison, which are spectral, texture, and combined spectral and 

texture confusion matrix summaries for each spectral range one thru four and the 

full range. Lastly are classification accuracy summaries for spectral-only, texture-

only, and spectral and texture data sets. 

1. Set One: 365–928 nm 

Shown in Figure 12 are the average spectra for each of the ROIs. This 

data is the scaled reflectance as it is output from QUAC, the data range is 

approximately +100 to +4000 (1 to 40% reflectance). In this spectral range we 

see an expected profile for healthy vegetation with a peak near 550 nm, an 

absorption feature near 675 nm, and a large peak near (IR plateau) 900 nm. The 

dry vegetation is characterized by the lack of an absorption feature near 675 nm 

and the lack of a large peak near 900 nm. Pavement shows a characteristic 

(dark) profile having no sharp features and a gradual increase throughout this 

spectral range. The Dirt Path is lacking the absorption feature near 675 nm and 

increases from low to high wavelengths. The Urban class is similar to the Dirt 

Path profile but with less of an increase from low to high wavelengths. 
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Figure 12.   Set one: Spectral average for each ROI. 

A plot of the texture features shown in Figure 13 is less intuitive than the 

spectral signatures are in describing their relationship to a particular material. 

The band numbers for these texture feature plots are defined in Table 3. This is 

the point of the study, that is, to draw on additional unique information from the 

area targets in question. This information is not accessible from the individual 

pixel spectra, which is what points the research towards extracting texture 

features. For example if any of these ROI materials were carefully arranged such 

that they were smoothly and evenly distributed over a large area they would yield 

a large correlation value with small entropy and contrast values. The goal of this 

study is to consider how these materials are normally found and what their 

arrangement typically is for the scene in question. We also can show that these 

target classes are typically arranged in such a way as to provide valuable texture 

feature identifiers. Shown in Table 3 bands 3, 6, 9, 12, and 15 are correlation 

texture features. So areas where one pixel’s value can be used to predict the 

values of neighboring pixels would have a high measure of correlation. This can 

be seen in the dry vegetation class indicating that this class has high degree of 

correlation. The data shown below have not been scaled, these are the results 



31 

 

 

from the texture extraction process, the range is approximately -10 to +450. This 

raw texture data was not used directly for classification, it is shown here to 

illustrate the texture extraction results. These data were used as input to the 

MNF transform. 

 

 

Figure 13.   Set one: Texture average for each ROI. Band definitions in Table 3 
on Page 22. 

We have seen that these texture bands can be correlated. The best way 

of dealing with this type of data is to perform a MNF transform. In this case, 95% 

of the information was retained before proceeding to the next processing step. 

These new bands are shown in Figure 14 and represent the information from the 

extracted texture feature bands but have been decorrelated and much of the 

noise has been removed so they don’t look like the raw texture feature bands. 

The MNF texture data shown have been scaled by a factor of 200 to match the 

spectral data sets. The data range is approximately -2500 to +3000. 
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Figure 14.   Set one: Texture average 95% MNF for each ROI. 

2. Full Range: 365–2466 nm 

These full range results follow from the first subset results. Shown in 

Figure 15 the ROIs discussed earlier display their reflectance profile across the 

full spectral range of the AVIRIS system. This data is the scaled reflectance as it 

is output from QUAC, the data range is approximately +100 to +4500 (1 to 45% 

reflectance). The two classes Dirt Path and Dry Veg show an absorption feature 

at 2200 nm, which indicates the presence of a mineral. In the case of a Dirt Path 

one expects to see the sign of minerals. For Dry Veg the sign of minerals may 

cause concern of incorrect ground truth. It is noted, however, that with Dry Veg 

there is considerably more penetration thru to the ground below which is made 

up of, among other things, minerals. Thus, in fact, the dry vegetation class is 

likely a mixture of dry vegetation and “dirt” spectral signatures. 



33 

 

 

 

Figure 15.   Full range: Spectral average for each ROI. 

In Figure 16, the texture bands have been extracted from each spectral 

subset region of the full spectral range. The data range is approximately -10 to 

+500. Texture bands 1–15 (defined in Table 3) come from the average values of 

set one 365–928 nm, which is considered to be the visible to near IR region of 

the electromagnetic spectrum. Texture bands 16–30 (definitions are the same as 

bands 1–15) come from set two and so on. An interesting result is to note that 

the correlation texture features from set one, particularly for Dry Veg, are very 

strong compared to the rest, reaching a value of nearly 500 where the rest of the 

sets peak near 50.  

 



34 

 

 

 

Figure 16.   Full range: Texture average for each ROI. 

We can see in Figure 17 the full range of texture features after the MNF 

transform and the removal of noise components. This MNF texture data have 

been scaled by a factor of 200 to match the spectral data. The data range is 

approximately -4100 to 3000. Comparing the two classes Dirt Path and Dry Veg, 

again we see a big difference from the spectral signatures. In this case, the Dry 

Veg has a local maximum at band six while Dirt Path shows a local minimum in 

the same band. This provides a clear distinction between these two classes 

which are spectrally very similar. 
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Figure 17.   Full range: Texture average 95% MNF for each ROI. 

B. CLASSIFICATION IMAGES 

The classification images are the result of running the trained maximum 

likelihood classifier on the entire data set. A better result is one that better 

matches the ROIs, which are defined as ground truth. In this section, the images 

are shown side by side to get a sense of how they relate to each other. Larger 

sized images are shown separately in the Appendix to view finer details.  

1. Set One: 365–928 nm 

 

Figure 18.   Set one classification images from left to right: (1) ROIs, (2) spectral-
only, (3) texture-only, (4) spectral and texture. 
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2. Full Range: 365–2466 nm 

 

Figure 19.   Full range classification images from left to right: (1) ROIs, (2) 
spectral-only, (3) texture-only, (4) spectral and texture. 

C. CONFUSION MATRICES 

To quantify the accuracy of the classifications confusion matrices were 

used to show how well the classifier does when compared to the pre-selected 

verification ROIs. Because the classifier was trained using a separate set of 

ROIs, these verification ROIs are independent and are not biased by the training 

process. These confusion matrices indicate what percent of the verification ROIs 

were correctly classified. Unclassified pixels, which include all pixels that were 

not assigned to either the training set of ROIs or the verification set of ROIs, were 

not included in the accuracy measurements. The reason for this approach is to, 

as clearly as possible, isolate the improvement of adding the additional texture 

features to the traditional spectral-only classification method. While excluding the 

unclassified pixels from the process means that every pixel will get assigned to 

one of the five classes, only the verification ROIs are used to assess accuracy. 

1. Set One: 365–928 nm 

Shown below in Table 6 is the confusion matrix for the set one spectral-

only classification accuracy results. Dry Veg (near 99%), Healthy Veg (near 

99%), Dirt Path (near 95%), and Pavement (near 91%) all classify very 

accurately using spectral data only. The Pavement class had near 9% false 

positives from the Urban class likely due to the Pavement class being found in 



37 

 

 

the Urban class area mixture. The Urban class had an accuracy of near 74% with 

near 25% false positives from the Pavement class. This is likely due to the 

presence of the Pavement class in the mixture that makes up the Urban class. 

 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 99.37 0.00 0.01 2.76 0.00 

Healthy Veg 0.00 99.11 0.01 1.10 0.00 

Urban 0.16 0.01 74.28 1.38 8.86 

Dirt Path 0.47 0.88 0.56 94.75 0.02 

Pavement 0.00 0.00 25.14 0.00 91.11 
      

Overall Accuracy 91.03     

Kappa 0.8770     

Table 6.   Spectral-only confusion matrix results for set one. 

Shown below in Table 7 is the confusion matrix for the set one texture-

only classification accuracy results. Dry Veg had an accuracy of near 64% and 

near 31% were false positives from the Healthy Veg class, this shows there is 

some level of similarity between these two. The Healthy Veg class had an 

accuracy of near 75% with some (near 6%) false positives from Dry Veg but 

more (near 14%) false positives from the Dirt Path class. This shows that for this 

spectral range the texture of Healthy Veg is more like Dirt Path and Dry Veg is 

less like Dirt Path. It would seem that Dry Veg should share attributes with Dirt 

Path because the soil below the vegetation is more visible in the Dry Veg class. 

The accuracy of the Dirt Path class is near 92% with some (near 7%) false 

positives from the Pavement class, this is likely due to the relatively flat surface 

found in both classes. The accuracy of the Pavement class was found to be near 

66% with false positives split between Urban (near 15%) and Dirt Path (near 

14%). The false positives in the Urban class are likely due to the presence of 

Pavement in the mixture of components found in the Urban class. 
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 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 64.47 6.55 0.35 0.37 0.65 

Healthy Veg 31.34 75.45 0.14 1.20 3.50 

Urban 0.00 0.00 54.27 0.28 15.16 

Dirt Path 2.94 14.17 0.45 91.62 14.27 

Pavement 1.25 3.83 44.79 6.54 66.42 
      

Overall Accuracy 64.47     

Kappa 0.5393     

Table 7.   Texture-only confusion matrix results for set one. 

Shown in Table 8 is the confusion matrix for the spectral and texture 

classification accuracy results. The Dry Veg (near 98%), Healthy Veg (near 

99%), Dirt Path (near 97%), and Pavement (near 91%) accuracies are mostly the 

same as the spectral-only results. The Urban class had an accuracy near 78% 

for set one spectral and texture classification. This is up from near 74% and the 

false positives were near 21%, which is down from near 25%. This shows that 

the improvement in Urban classification comes directly from the largest false 

positive class. This result is promising because the improvement in accuracy did 

not spread out the false positives into the other classes. 

 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.40 0.00 0.00 0.64 0.00 

Healthy Veg 0.01 99.01 0.00 0.37 0.00 

Urban 0.34 0.01 78.10 1.57 9.33 

Dirt Path 1.25 0.98 0.22 97.15 0.00 

Pavement 0.00 0.00 21.69 0.28 90.67 
      

Overall Accuracy 91.76     

Kappa 0.8868     

Table 8.   Spectral and texture confusion matrix results set one. 

Table 9 is the combination of three confusion matrices and shows the 

results for spectral, texture, and the combined data sets. These are results for set 

one only and the remaining sets confusion matrices are included in the Appendix. 
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This combined data set will indicate the success of integration of the spectral and 

texture data sets. Looking at the spectral results, we can see a very high 

accuracy for the Dry Veg and Healthy Veg classes, and poorest results for the 

Urban class. Texture-only accuracy was reasonably good for all classes with the 

highest accuracy for the Dirt Path class. For the combined results, the Dry Veg 

and Healthy Veg classes suffered a small decrease in accuracy possible due to 

some correlation between the spectral data and the texture data or the addition 

of noise from the texture bands. Urban was the lowest performing class for 

spectral-only, but with the addition of texture made a signification improvement of 

nearly 4%. The Dirt Path class also made an improvement of nearly 2.5%.  

 

 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 99.37 64.47 98.40 -0.97 

Healthy Veg 99.11 75.45 99.01 -0.10 

Urban 74.28 54.27 78.10 3.82 

Dirt Path 94.75 91.62 97.15 2.40 

Pavement 91.11 66.42 90.67 -0.44 

Overall 91.03 64.47 91.76 0.73 

Kappa 0.8770 0.5393 0.8868 0.0098 

Table 9.   Summary of confusion matrix results for set one. 

2. Full Range: 365–2466 nm 

For the full range accuracy results all measures improved compared to the 

set one results. The Urban and Dirt Path classes still both improved with the 

addition of texture features but only by about 4% and 1.2% respectively. It 

appears that as the spectral-only classification accuracy approaches 100% it 

becomes harder for the additional texture features to improve upon the accuracy. 
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 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 99.44 91.17 99.04 -0.40 

Healthy Veg 99.46 76.33 99.27 -0.19 

Urban 86.94 74.06 90.92 3.98 

Dirt Path 96.69 96.50 97.88 1.19 

Pavement 90.81 85.10 91.04 0.23 

Overall 94.81 83.01 95.83 1.02 

Kappa 0.9281 0.7677 0.9421 0.014 

Table 10.   Summary confusion matrix for full range. 

D. CLASSIFICATION ACCURACY SUMMARY CHARTS 

1. Spectral-Only Classification Accuracy 

Shown below in Figure 21 are the accuracy results for the spectral-only 

classification. While the combination of all four regions did produce higher 

accuracy than any single spectral region, the most variation is seen in the Urban 

class. For the Urban class, set three showed the lowest performance at near 

50%, while sets one and four did best at near 75%, and set two was in between 

near 64%.  

 

Figure 20.   Spectral-only classification accuracy summary. 
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2. Texture-Only Classification Accuracy 

Shown in Figure 21 is the classification accuracy summary for the texture-

only data set. This chart displays results for each class and for each spectral 

range used for the texture feature analysis. For the Healthy Veg class, the set 

two spectral range was more accurate than any other spectral range or the full 

range. This is likely due to a large amount of noise present in the remaining 

spectral ranges. For the Dry Veg class, sets three and four did well with 

accuracies near 89%, and the least accurate spectral range was set two with 

near 30% accuracy. For the remaining classes Urban (near 55%), Dirt Path (near 

85%), and Pavement (near 70%), the accuracies for each spectral range were 

within 10%.  

 

 

Figure 21.   Texture-only classification accuracy summary. 

3. Spectral and Texture Classification Accuracy 

Shown in Figure 22 is the classification summary for the combined 

spectral and texture data set. The results of this data set are very similar to the 

spectral-only classification accuracy summary. The Urban class shows 
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improvement over the spectral-only data, but it still is the most varied, from near 

60% for set three, to near 79% for sets one and four. 

 

 

Figure 22.   Spectral and texture classification accuracy summary. 
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V. SUMMARY AND CONCLUSIONS 

A. SUMMARY 

AVIRIS data collected over Salinas, CA and surrounding areas were used 

in this study as the source for both spectral processing and texture extraction. It 

has been shown that the addition of texture features to hyperspectral imagery 

can improve the classification accuracy of area targets. This was most significant 

in the Urban and Dirt Path classes, where an overall improved accuracy of 

approximately 4% and 2.5% respectively were shown. The accuracy of the Urban 

and Dirt Path classes, as they vary with analysis technique, are shown in Figures 

23 and 24. respectively.  

 

 

Figure 23.   Urban classification accuracy summary. Optimal wavelength range 
set two (947–1343 nm). 
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Figure 24.   Dirt Path classification accuracy summary. Optimal wavelength 
range set two (947–1343 nm). 

In other cases, like Healthy Veg, the spectral information provided 

classification accuracy greater than 99%. Attempting to improve upon this would 

require more study because the increase in noise and correlated data start to 

degrade the results. For the Healthy Veg class the accuracy actually went down 

by approximately 1%, which was the largest decrease seen during this study. 

The overall improvement across all five classes was nearly 1%. 

Texture is effective in accurately classifying some classes. Dirt Path and 

Dry Veg were among the highest using texture-only, extracted from the full 

spectral range, with accuracies of approximately 97% and 91% respectively. 

Some of the individual spectral sets provided good classification accuracies, for 

example, the Healthy Veg class using spectral set two was near 89%. Also the 

Dry Veg class using spectral set three was near 88%. 

B. CONCLUSIONS 

This research has shown that the use of texture features in classification 

of hyperspectral data can improve the identification of area targets. It has also 

been shown that the accuracy of target classification is dependent on the 
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wavelength range from which the texture features are extracted. For the highest 

classification accuracy, the texture features should be extracted from: set three 

(1432–1801 nm) or four (1957–2466 nm) for Dry Veg, set one (365–928 nm) or 

two (947–1343 nm) for Healthy Veg, set two (947–1343 nm) for Urban, Dirt Path, 

and Pavement. The reason these spectral sets out perform other sets is that the 

composition of the target area varies uniquely from class to class. A class like 

Healthy Veg does well in set one (VIS-NIR) because the leaves reflect relatively 

strongly in the NIR but the ground absorbs relatively strongly in the same range, 

this leads to intensity variation, which is the basis of texture. This research 

demonstrates the effectiveness of texture features for more accurate analysis of 

hyperspectral data and the importance of selecting the correct spectral range 

used to extract these features.  
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VI. FUTURE WORK 

A. FINER SUBSETS OF THE SPECTRAL RANGE 

In this study, the AVIRIS spectral range was divided into four spectral 

subsets. Further refinement might be obtained by dividing up this spectral range 

even further. This would allow for more specific spectral subsets to be used to 

improve the identification of specific area targets. 

B. HIGHER SPATIAL RESOLUTION IMAGERY 

The unique texture features that can be extracted from an image are 

limited to the resolution of the image. Features where the scale of the area target 

textures are smaller than the resolution become inaccessible from that image. 

Higher spatial resolution data should be explored, which will allow more area 

target classes to be examined.   

C. OTHER TEXTURE MEASURES 

Alternative texture measure should be tried. The work done using texture 

units (He & Wang, 1990) is worth exploring. Computer code would need to be 

written to implement this method. The method is well laid out and the results 

shown are promising. 
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APPENDIX 

A. SPECTRAL PLOTS 

1. Set One: 365–928 nm 

 

2. Set Two: 947–1343 nm 
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3. Set Three: 1432–1801 nm 

 

4. Set Four: 1957–2466 nm 
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5. Full Range: 365–2466 nm 
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B. TEXTURE FEATURE PLOTS 

For these texture feature plots the x-axis represents the texture band as 

described in Table 3. The y-axis is the value of each texture feature. In either 

case, there are no units that apply. 

1. Set One: 365–928 nm 
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2. Set Two: 947–1343 nm 

 

3. Set Three: 1432–1801 nm 
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4. Set Four: 1957–2466 nm 

 

5. Full Range: 365–2466 nm 
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C. TEXTURE FEATURE MNF 95% PLOTS 

For these texture feature plots the x-axis is the result of the dimensionality 

reduction and they related to the eigenvectors. The y-axis for these plots is the 

related to the eigenvalue multiplied by 200 to blend in better with the spectral 

data. 

1. Set One: 365–928 nm 
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2. Set Two: 947–1343 nm 

 

3. Set Three: 1432–1801 nm 
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4. Set Four: 1957–2466 nm 

 

5. Full Range: 365–2466 nm 

 



58 

 

 

D. CLASSIFICATION IMAGES 

1. Set One: 365–928 nm 

 

Figure 25.   Full resolution spectral-only classification image set one. 
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Figure 26.   Full resolution texture-only classification image set one. 

 

Figure 27.   Full resolution spectral and texture classification image set one. 
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2. Set Two: 947–1343 nm 

 

Figure 28.   Full resolution spectral-only classification image set two. 

 

Figure 29.   Full resolution texture-only classification image set two. 
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Figure 30.   Full resolution spectral and texture classification image set two. 
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3. Set Three: 1432–1801 nm 

 

Figure 31.   Full resolution spectral-only classification image set three. 

 

Figure 32.   Full resolution texture-only classification image set three. 
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Figure 33.   Full resolution spectral and texture classification image set three. 
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4. Set Four: 1957–2466 nm 

 

Figure 34.   Full resolution spectral-only classification image set four. 

 

Figure 35.   Full resolution texture-only classification image set four. 
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Figure 36.   Full resolution spectral and texture classification image set four. 
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5. Full Range: 365–2466 nm 

 

Figure 37.   Full resolution spectral-only classification image full range. 

 

Figure 38.   Full resolution texture-only classification image full range. 
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Figure 39.   Full resolution spectral and texture classification image full range. 

E. CONFUSION MATRICES 

1. Set One: 365–928 nm 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 99.37 0.00 0.01 2.76 0.00 

Healthy Veg 0.00 99.11 0.01 1.10 0.00 

Urban 0.16 0.01 74.28 1.38 8.86 

Dirt Path 0.47 0.88 0.56 94.75 0.02 

Pavement 0.00 0.00 25.14 0.00 91.11 
      

Overall Accuracy 91.03     

Kappa 0.8770     

Table 11.   Spectral-only confusion matrix set one. 

 

 



68 

 

 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 64.47 6.55 0.35 0.37 0.65 

Healthy Veg 31.34 75.45 0.14 1.20 3.50 

Urban 0.00 0.00 54.27 0.28 15.16 

Dirt Path 2.94 14.17 0.45 91.62 14.27 

Pavement 1.25 3.83 44.79 6.54 66.42 
      

Overall Accuracy 64.47     

Kappa 0.5393     

Table 12.   Texture-only confusion matrix set one. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.40 0.00 0.00 0.64 0.00 

Healthy Veg 0.01 99.01 0.00 0.37 0.00 

Urban 0.34 0.01 78.10 1.57 9.33 

Dirt Path 1.25 0.98 0.22 97.15 0.00 

Pavement 0.00 0.00 21.69 0.28 90.67 
      

Overall Accuracy 91.76     

Kappa 0.8868     

Table 13.   Spectral and texture confusion matrix set one. 

 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 99.37 64.47 98.40 -0.97 

Healthy Veg 99.11 75.45 99.01 -0.10 

Urban 74.28 54.27 78.10 3.82 

Dirt Path 94.75 91.62 97.15 2.40 

Pavement 91.11 66.42 90.67 -0.44 

Overall 91.03 64.47 91.76 0.73 

Kappa 0.8770 0.5393 0.8868 0.0098 

Table 14.   Summary of confusion matrix results for set one. 
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2. Set Two: 947–1343 nm 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 99.17 0.00 0.29 4.97 0.02 

Healthy Veg 0.01 98.62 0.07 1.20 0.00 

Urban 0.36 0.68 63.78 1.84 9.00 

Dirt Path 0.45 0.70 0.70 91.99 0.07 

Pavement 0.00 0.00 35.16 0.00 90.90 
      

Overall Accuracy 87.73     

Kappa 0.8327     

Table 15.   Spectral-only confusion matrix set two. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 30.45 2.98 0.23 0.28 0.70 

Healthy Veg 64.12 89.26 0.33 1.38 0.70 

Urban 0.01 0.00 62.03 2.03 23.79 

Dirt Path 2.69 6.53 0.05 92.27 3.38 

Pavement 2.73 1.24 37.35 4.05 71.43 
      

Overall Accuracy 56.44     

Kappa 0.4499     

Table 16.   Texture-only confusion matrix set two. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.00 0.00 0.02 1.01 0.00 

Healthy Veg 0.00 98.48 0.00 0.55 0.00 

Urban 0.84 0.67 69.00 3.87 9.17 

Dirt Path 1.16 0.85 0.00 94.57 0.00 

Pavement 0.00 0.00 30.98 0.00 90.83 
      

Overall Accuracy 88.81     

Kappa 0.8473     

Table 17.   Spectral and texture confusion matrix set two. 
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 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 99.17 30.45 98.00 -1.17 

Healthy Veg 98.62 89.26 98.48 -0.14 

Urban 63.78 62.03 69.00 5.22 

Dirt Path 91.99 92.27 94.57 2.58 

Pavement 90.90 71.43 90.83 -0.07 

Overall 87.73 56.44 88.81 1.08 

Kappa 0.8327 0.4499 0.8473 0.0146 

Table 18.   Summary of confusion matrix results for set two. 

3. Set Three: 1432–1801 nm 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.55 0.03 0.55 1.93 0.28 

Healthy Veg 0.01 98.38 0.26 0.92 0.02 

Urban 0.40 0.57 50.03 2.76 7.98 

Dirt Path 0.92 1.02 3.24 94.38 0.33 

Pavement 0.13 0.00 45.91 0.00 91.39 
      

Overall Accuracy 83.58     

Kappa 0.7788     

Table 19.   Spectral-only confusion matrix set three. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 88.15 71.69 0.61 0.83 1.26 

Healthy Veg 4.90 21.91 0.10 0.28 0.05 

Urban 1.49 1.08 55.28 4.60 20.85 

Dirt Path 1.14 2.85 2.97 87.66 10.28 

Pavement 4.32 2.47 41.04 6.63 67.56 
      

Overall Accuracy 64.35     

Kappa 0.5052     

Table 20.   Texture-only confusion matrix set three. 
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 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.11 0.07 0.04 0.92 0.00 

Healthy Veg 0.01 97.67 0.03 0.28 0.00 

Urban 0.58 0.63 59.34 3.41 8.96 

Dirt Path 1.26 1.63 0.71 95.03 0.28 

Pavement 0.05 0.00 39.88 0.37 90.76 
      

Overall Accuracy 85.92     

Kappa 0.8093     

Table 21.   Spectral and texture confusion matrix set three. 

 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 98.55 88.15 98.11 -0.44 

Healthy Veg 98.38 21.91 97.67 -0.71 

Urban 50.03 55.28 59.34 9.31 

Dirt Path 94.38 87.66 95.03 0.65 

Pavement 91.39 67.56 90.76 -0.63 

Overall 83.58 64.35 85.92 2.34 

Kappa 0.7788 0.5052 0.8093 0.0305 

Table 22.   Summary of confusion matrix results for set three. 

4. Set Four: 1957–2466 nm 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.60 0.00 0.05 1.20 0.00 

Healthy Veg 0.01 98.42 0.71 0.83 0.00 

Urban 0.19 0.52 73.97 0.92 10.07 

Dirt Path 1.20 1.06 0.16 97.05 0.05 

Pavement 0.00 0.00 25.11 0.00 89.88 
      

Overall Accuracy 90.45     

Kappa 0.8691     

Table 23.   Spectral-only confusion matrix set four. 
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 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 90.58 48.25 0.60 0.92 2.08 

Healthy Veg 3.47 42.62 0.47 1.01 0.09 

Urban 0.72 1.02 52.96 5.80 18.42 

Dirt Path 1.03 2.99 6.17 80.39 11.26 

Pavement 4.19 5.13 39.80 11.88 68.14 
      

Overall Accuracy 68.26     

Kappa 0.5652     

Table 24.   Texture-only confusion matrix set four. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 98.26 0.01 0.00 1.20 0.00 

Healthy Veg 0.04 98.00 0.02 0.37 0.00 

Urban 0.18 0.74 79.28 0.92 9.98 

Dirt Path 1.53 1.24 0.04 97.51 0.05 

Pavement 0.00 0.00 20.66 0.00 89.97 
      

Overall Accuracy 91.79     

Kappa 0.8872     

Table 25.   Spectral and texture confusion matrix set four. 

 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 98.60 90.58 98.26 -0.34 

Healthy Veg 98.42 42.62 98.00 -0.42 

Urban 73.97 52.96 79.28 5.31 

Dirt Path 97.05 80.39 97.51 0.46 

Pavement 89.88 68.14 89.97 0.09 

Overall 90.45 68.26 91.79 1.34 

Kappa 0.8691 0.5652 0.8872 0.0181 

Table 26.   Summary of confusion matrix results for set four. 
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5. Full Range: 365–2466 nm 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 99.44 0.00 0.00 1.66 0.00 

Healthy Veg 0.00 99.46 0.00 1.01 0.00 

Urban 0.17 0.06 86.94 0.64 9.19 

Dirt Path 0.39 0.49 0.00 96.69 0.00 

Pavement 0.00 0.00 13.06 0.00 90.81 
      

Overall Accuracy 94.81     

Kappa 0.9281     

Table 27.   Spectral-only confusion matrix full range. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 91.17 15.72 0.33 0.83 0.47 

Healthy Veg 3.54 76.33 0.00 0.00 0.00 

Urban 0.59 0.13 74.06 1.29 14.37 

Dirt Path 1.84 6.93 0.00 96.50 0.07 

Pavement 2.86 0.89 25.61 1.38 85.10 
      

Overall Accuracy 83.01     

Kappa 0.7677     

Table 28.   Texture-only confusion matrix full range. 

 Dry Veg Healthy Veg Urban Dirt Path Pavement 

Dry Veg 99.04 0.00 0.00 0.55 0.00 

Healthy Veg 0.00 99.27 0.00 0.37 0.00 

Urban 0.43 0.07 90.92 1.20 8.96 

Dirt Path 0.52 0.66 0.00 97.88 0.00 

Pavement 0.00 0.00 9.08 0.00 91.04 
      

Overall Accuracy 95.83     

Kappa 0.9421     

Table 29.   Spectral and texture confusion matrix full range. 
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 Spectral Texture Combined Combined - Spectral 
     

Dry Veg 99.44 91.17 99.04 -0.40 

Healthy Veg 99.46 76.33 99.27 -0.19 

Urban 86.94 74.06 90.92 3.98 

Dirt Path 96.69 96.50 97.88 1.19 

Pavement 90.81 85.10 91.04 0.23 

Overall 94.81 83.01 95.83 1.02 

Kappa 0.9281 0.7677 0.9421 0.014 

Table 30.   Summary of confusion matrix results for full range. 
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