

TECHNICAL NOTE

445

A Bibliography on Methods
For the Measurement of
Inhomogeneities in Semiconductors
(1953–1967)

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics²—Radio Standards Laboratory, which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference

ence Data.

THE INSTITUTE FOR MATERIALS RESEARCH... conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

-Analytical Chemistry-Metallurgy-Reactor Radiations-Polymers-Inorganic Materials-Cry-

ogenics2—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY . . . provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The

principal elements of this Institute are:

Building Research—Electronic Instrumentation—Technical Analysis—Center for Computer Sciences and Technology—Textile and Apparel Technology Center—Office of Weights and Measures—Office of Engineering Standards Services—Office of Invention and Innovation—Office of Vehicle Systems Research—Clearinghouse for Federal Scientific and Technical Information³—Materials Evaluation Laboratory—NBS/GSA Testing Laboratory.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234

² Located at Boulder, Colorado, 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

UNITED STATES DEPARTMENT OF COMMERCE C. R. Smith, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

ISSUED MAY 1968

A Bibliography on Methods for the Measurement of Inhomogeneities in Semiconductors (1953–1967)

Harry A. Schafft and Susan Gayle Needham

Electronic Instrumentation Division Institute for Applied Technology National Bureau of Standards Washington, D.C. 20234

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	- 1
2.	ORGANIZATION AND USE OF THE BIBLIOGRAPHY	- 3
3.	INDEX ACCORDING TO KEY WORDS	- 6
4.	INDEX TO AUTHORS	- 11
5.	INDEX ACCORDING TO METHODS OR EFFECTS USED TO DETECT INHOMOGENEITIES	- 15
б.	BIBLIOGRAPHY	- 20

A BIBLIOGRAPHY ON METHODS FOR THE MEASUREMENT OF INHOMOGENEITIES IN SEMICONDUCTORS (1953-1967)

Harry A. Schafft Susan Gayle Needham

About 130 papers which deal with the measurement techniques useful in detecting the type and location of various inhomogeneities, primarily in germanium and silicon, are listed with key words. The types of inhomogeneities considered are those in impurity concentration, resistivity, mobility, diffusion length, lifetime, surface conditions, crystal perfection, and p-n junctions. Some of the twenty-two effects or methods used to detect these inhomogeneities photovoltaic, electron-voltaic, photoconductivity, one-, two- and four-point probe, spreading resistance, and voltage breakdown. There are three indexes: reference tabulation according to key words, a reference tabulation according to methods or effects used to detect an inhomogeneity, and an author index.

Key Words: bibliography; semiconductor material inhomogeneities; measurement methods: photovoltaic, electron voltaic, photoconductivity, point potential probe, spreading resistance, voltage breakdown.

1. INTRODUCTION

Inhomogeneities in semiconductors cause many diverse problems in the measurement of transport properties and in the fabrication, operation, and reliability of semiconductor devices. Troublesome inhomogeneities include variations in the distribution of impurities; clusters of impurities, voids, second phase precipitates, and clusters of crystal defects such as dislocations, lineage, or strain fields.

Among the transport properties affected are the resistivity, lifetime, and mobility. These appear to be most affected by nonuniform impurity distributions, including clusters. In fabrication, both solid-state diffusion and alloying steps are affected by the presence of voids or clusters of crystal defects. As a result, poor junction geometry and nonuniform current distributions frequently appear in devices fabricated from inhomogeneous material. These faults often lead to such causes of failure as hot spots, thermal runaway, and second breakdown. Anomalous diffusion of impurities along crystal defects may also occur during operation of devices at high power. In addition, gross variations in properties over a slice often causes wide variations in device characteristics and poor yields. This problem is particularly serious in large area power devices and large scale integrated circuits.

One crucial aspect of the general problem of inhomogeneities in semiconductors is the detection and location of these inhomogeneities. This is the subject of the bibliography, which is the result of a literature survey of measurement techniques useful in detecting the type and location of various inhomogeneities, primarily in germanium and silicon. The sources used in this survey were: personal files, subject indexes of Science Abstracts since 1960, literature citations in papers collected, and journal issues not yet abstracted. To keep within the bounds of manageability without sacrificing utility, the size of the bibliography was limited by applying three sets of boundary conditions. These boundary conditions determined the kinds of inhomogeneities considered, the kinds of measurement techniques described, and the intent of the paper.

The following types of crystal inhomogeneities were selected because of their relevance to the electrical properties of semiconductor devices:

- 1. Resistivity
- 2. Impurity concentration
- 3. Diffusion length
- 4. Lifetime
- 5. Surface recombination velocity
- 6. Surface conditions (inversion layers, surface states, etc.)
- 7. Mobility
- 8. Crystal perfection
- Junction conditions (doping profile, physical location or extent).

The 22 techniques listed below are included in the bibliography. The first 16 of these, which involve electrical and optical interactions, are emphasized. An effort was made to obtain complete coverage of the literature dealing with these techniques. A few representative papers describing the remaining techniques are also included.

- 1. Photovoltaic
- 2. Surface photovoltage
- 3. Electron-voltaic
- 4. Photoconductivity
- 5. Two- and one-point probe
- 6. Four-point probe
- 7. Spreading resistance
- 8. Voltage breakdown
- 9. Internal injection-extraction

- 10. Capacitance vs voltage
- 11. Impedance
- 12. Reflectivity (plasma edge)
- 13. Absorption
- 14. Refractive index
- 15. Birefringence
- 16. Microwave diode
- 17. Neutron activation
- 18. Radioactive tracer
- 19. Electron microprobe analysis
- 20. Light microprobe analysis
- 21. X-ray topography
- 22. Electrochemical analysis (etching and electroplating).

With regard to the intent of the paper, only those papers were included which dealt directly with one of the listed measurement techniques even though the use of the technique may not have been the major subject of the paper. Those papers which describe results of measurements that can be affected by inhomogeneities were usually excluded.

2. ORGANIZATION AND USE OF THE BIBLIOGRAPHY

Each paper has been given an identification code which consists of a sequence of two digits, a letter, and another digit. The first two digits indicate the year of publication and the letter is the initial of the first author's surname. The last digit is used to distinguish those papers which would otherwise have the same code. No rule was used in the assignment of the last digit.

Five major topic headings, each divided into sub-topics and assigned key words, are used to indicate the contents and the approach of each paper. The major topic headings are: (1) the type of inhomogeneity considered, (2) the material examined, (3) the method used or effect measured to detect the inhomogeneity, (4) the special techniques used, and (5) the type of paper. These topics and key words (in capital letters) are listed in the Index According to Key Words. Also included is a tabulation of codes by the appropriate key words.

The papers in the bibliography are arranged according to their codes. The codes are grouped first by year, then in alphabetical order by letter, and then in numerical order by the last digit. Appropriate key words of each topic are arranged in a column just below each reference in order of their listing in the first index.

Of the papers which deal with a given measurement technique to detect a particular type of inhomogeneity, there are some which are sufficiently important that they should be given special attention. The key word for the measurement technique in each of these papers has been bracketed in the bibliography. The codes for these papers have also been underlined in the Index According to Methods or Effects Used to Detect Inhomogeneities.

Each reference citation in the bibliography is followed by an abstract identification code, in parenthesis, if one was available. The code begins with either PA, EA, or CA to indicate that the abstract may be found in Series A, Physics, of Science Abstracts, Series B, Electrical and Electronics (formerly Electrical Engineering) of Science Abstracts, or Chemical Abstracts, respectively. Following these letters are two digits which indicate the year the paper was abstracted if it appears in Science Abstracts or the volume in which the abstract may be found in Chemical Abstracts. The remaining code is the one assigned by the abstracting journal.

If the reference citation is followed by a number preceded by the letters AD then the paper may be obtained from the Clearinghouse for Federal Scientific and Technical Information, Department of Commerce, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151, by using the AD number.

Journal abbreviations follow those of <u>Science Abstracts</u>. One exception was made in the case of publications of the <u>Institute</u> of Electrical and Electronics Engineers, which is abbreviated IEEE. For those publications which are not listed no abbreviations were made where confusion might arise.

ACKNOWLEDGMENT

The authors wish to thank Dr. W. Murray Bullis for his generous encouragement and valuable guidance throughout the preparation of the bibliography and for the use of his extensive personal files of papers. The personal files of papers on X-ray topography techniques and on electron microprobe analysis techniques which Dr. Richard Deslattes and Dr. Kurt Heinrich, respectively, made available were very useful. The secretarial assistance of Miss Juanita Seal was of considerable help in the final stages of the preparation of the bibliography. The final draft was expeditiously typed by Mrs. Gail Crum.

This work was supported by the Rome Air Development Center, U. S. Air Force, under contract F30602-67-C-0105.

3. INDEX ACCORDING TO KEY WORDS

I. Type of Inhomogeneity

1. RESISTIVITY

```
55T1, 56F1, 56H1, 56T1, 57T1, 58B1, 58R1, 58S1, 59D1, 59O1, 59Z1, 60B1, 60B2, 60C1, 60H3, 60L1, 60O1, 60S1, 61B2, 61K1, 61S1, 61T1, 61V1, 62B1, 62K1, 63C1, 63G1, 63H1, 63K2, 63L2, 63P1, 63S2, 63T1, 64A1, 64B1, 64B2, 64D1, 64I1, 64L2, 64S1, 64S2, 65B1, 65G2, 65I1, 65M1, 65M2, 65M3, 65M4, 65M5, 65P1, 65S2, 65W2, 65W3, 66A2, 66B1, 66G1, 66M1, 66M2, 66M3, 66M4, 66S1, 66Z2, 67A3, 67D1, 67H1, 67L1, 67M1
```

2. IMPURITY CONCENTRATION

```
53B1, 60H1, 61A1, 61B1, 61T1, 62E1, 62H1, 62I1, 62P1, 62T1, 63K1, 64K1, 65A1, 65G3, 65Z1, 66A2, 66D1, 66L1, 66N1, 66W1, 67C2, 67D3, 67F1
```

- 3. DIFFUSION LENGTH
 - 61G1, 63S1, 64M4, 66C2
- 4. LIFETIME

54A1, 56H1, 60S1, 61R1, 62T2, 63W1, 64B1, 66B1, 67E1

- 5. SURFACE RECOMBINATION VELOCITY 60S1
- 6. SURFACE (inversion layers, surface states, etc.)
 63L1, 65H1, 65W1, 66E1, 66N1, 66Z1, 67H2, 67P1, 67T1, 67T2
- 7. MOBILITY

54A1

8. CRYSTAL PERFECTION

```
53B1, 59L1, 59L2, 62H1, 62I1, 62P1, 62W1, 63L1, 64B2, 64F1, 64L1, 64M1, 65C1, 65G3, 65S1, 66C1, 66C2, 66O1, 66H1, 66J1, 66L1, 66L2, 66N1, 67A1, 67A2, 67B1, 67C1, 67D2, 67J1
```

9. JUNCTION (doping profile, physical location or extent)
60H2, 61B1, 62H1, 62I1, 62P1, 62S1, 63K2, 63M1, 65G1, 65G3, 66A1, 66E1, 66M4, 66N1, 67D3, 67F1, 67L1

II. Material

1. Ge

```
53B1, 54A1, 55T1, 56F1, 56H1, 56T1, 57T1, 58B1, 58R1, 59D1, 59L1, 59O1, 60B1, 60C1, 60H1, 60H2, 60O1, 60S1, 61B2, 61R1, 61S1, 62B1, 62H1, 62K1, 62P1, 62S1, 62T2, 63H1, 63L2, 63M1, 63S1, 63W1, 64I1, 64L1, 65B1, 65G3, 65I1, 65M1, 65M2, 65M3, 65M4, 66A2, 66B1, 66C1, 66M1, 66M2, 66M3, 67E1, 67H1
```

2. Si

```
54A1, 56H1, 58R1, 59L1, 59L2, 60L1, 61K1, 61S1, 61T1, 62H1, 62P1, 62S1, 62T1, 63G1, 63G2, 63K2, 63L1, 63M1, 63S1, 63S2, 63T1, 63W1, 64B1, 64D1, 64F1, 64K1, 64L1, 64M1, 64S1, 65A1, 65B1, 65C1, 65G1, 65G2, 65H1, 65I1, 65M5, 65S1, 65S2, 65W1, 65W2, 66A1, 66A2, 66B1, 66C1, 66C2, 66E1, 66G1, 66J1, 66L1, 66L2, 66M4, 66N1, 66Z1, 67C1, 67D3, 67D2, 67E1, 67H2, 67J1, 67M1, 67P1, 67T1, 67T2
```

3. GaAs

```
61G1, 62H1, 63K1, 65G3, 65Z1, 66D1, 66H1, 66L2, 66W1, 67C2, 67D1, 67F1, 67L1
```

4. InSb 61A1, 62H1, 64B2, 65G3

5. InAs 62E1, 62H1

6. GaP 66C2, 66H1

7. GaAs-InAs, Ge-Si

III. Method or Effect Used

1. PHOTOVOLTAIC

```
55T1, 56F1, 56T1, 57T1, 5901, 59Z1, 60B5, 60C1, 6001, 60S1, 61S1, 62K1, 63P1, 63S1, 64B2, 65M4, 65P1, 66B1, 66S1, 67E1
```

2. SURFACE PHOTOVOLTAGE
61G1

3. ELECTRON-VOLTAIC 65M2, 65M3, 66M1, 66M2

- 4. PHOTOCONDUCTIVITY
 56H1, 60B2, 61R1, 62T2, 63S1, 63W1, 64B2, 65M1, 66B1, 66G1
- 5. TWO-POINT (probe and one-point probe)
 58B1, 58R1, 60L1, 61B2, 63L2, 64I1, 65I1, 67A3, 67D1, 67L1
- 6. FOUR-POINT (probe)

 58R1, 58S1, 59D1, 60B1, 60H3, 60L1, 61K1, 61T1, 61V1, 63C1, 63H1, 63S2, 63T1, 64A1, 64D1, 64S1, 64S2, 65S2, 65W2, 66Z2, 67A3
- 7. SPREADING RESISTANCE 62B1, 63G1, 63S2, 66M4, 67F1, 67M1
- 8. VOLTAGE BREAKDOWN
 63G1, 63S2, 64B1, 64D1, 65G2, 66A2
- 9. INTERNAL INJECTION-EXTRACTION 60H1
- 10. C VS V (capacitance vs voltage)
 60H2, 61B1, 62T1, 63M1, 64K1, 65G1, 65W1, 66A1, 66Z1, 67D3
- 11. IMPEDANCE 56H1, 59R1, 64L2, 65B1, 67H1
- 12. REFLECTIVITY (plasma edge) 62E1, 63K1
- 13. ABSORPTION
 60H1, 65M5, 65Z1
- 14. REFRACTIVE INDEX 66D1
- 15. BIREFRINGENCE 59L2

16. MICROWAVE DIODE 63K2

17. NEUTRON ACTIVATION
61T1, 65A1

18. RADIOACTIVE TRACER
53B1, 61A1

19. ELECTRON MICROPROBE (analysis)
62S1, 63L1, 65C1, 65W3, 66C1, 66C2, 66E1, 66L1, 66M3, 66N1, 66W1, 67C2, 67T1

20. LIGHT MICROPROBE (analysis)
54A1, 65H1, 67H2, 67P1, 67T2

21. X-RAY TOPOGRAPHY

59L1, 62W1, 64F1, 64L1, 64M1, 65S1, 66H1, 66J1, 66L1, 66L2, 67A1, 67A2, 67B1, 67C1, 67D2, 67J1

22. ELECTROCHEMICAL (etching, electroplating)
62H1, 62I1, 62P1, 63L2, 65G3

IV. Techniques

- SURFACE PREPARATION
 60L1, 64M1, 65G3, 65W2, 66L1
- 2. CONTACTS 64K1, 67F1
- 3. APPARATUS

54A1, 56F1, 56H1, 58R1, 59D1, 59L2, 60B1, 60C1, 60O1, 61G1, 61S1, 62K1, 63M1, 63T2, 63W1, 64B2, 64D1, 64F1, 64I1, 64K1, 64M1, 64S1, 65B1, 65G2, 65H1, 65I1, 65M4, 65S1, 65S2, 65W3, 66B1, 66D1, 66E1, 66L1, 66L2, 66M4, 66Z1, 66Z2, 67C1, 67C2, 67D1, 67H1, 67H2, 67L1, 67P1, 67T2

FABRICATION
 62T1, 64K1

5. GENERAL PROCEDURES

61T1, 62H1, 67A2, 67A3

V. Type of Paper

1. THEORETICAL

```
55T1, 58S1, 59Z1, 60C1, 60H3, 60L1, 61B1, 61V1, 63C1, 63H1, 63P1, 64A1, 64L2, 64S2, 66M2, 66S1
```

2. EXPERIMENTAL

```
53B1, 56H1, 56T1, 59D1, 59L2, 59O1, 60B1, 60O1, 61A1, 61G1, 62B1, 62K1, 62S1, 63K1, 63K2, 63L1, 63L2, 64B2, 64D1, 64F1, 64I1, 64K1, 64M1, 65A1, 65B1, 65C1, 65I1, 65M2, 65M3, 65M4, 65M5, 65Z1, 66C1, 66E1, 66H1, 66J1, 66L1, 66L2, 66M1, 66M4, 66N1, 66Z1, 66Z2, 67C1, 67D1, 67D2, 67H1, 67H2, 67L1, 67M1, 67P1, 67T1, 67T2
```

3. EXPERIMENTAL ANALYSIS

```
54A1, 56F1, 58B1, 58R1, 59L1, 60B2, 60H1, 60H2, 60S1, 61B2, 61K1, 61R1, 61S1, 61T1, 62E1, 62T1, 62T2, 63G1, 63M1, 63S1, 63S2, 63T1, 63W1, 64B1, 64S1, 65G1, 65G2, 65H1, 65M1, 65P1, 65S1, 65S2, 65W1, 65W2, 65W3, 66A1, 66A2, 66B1, 66C2, 66D1, 66G1, 66M3, 66W1, 67A3, 67C2, 67D3, 67E1, 67F1, 67J1
```

4. REVIEW

57T1, 62H1, 62I1, 62P1, 62W1, 64L1, 65G3, 67A1, 67A2, 67B1

4. INDEX TO AUTHORS

A

Abe, T., 65A1

Adam, G., 54A1

Adler, R. B., 65G1

Albert, M. P., 6eCl, 64A1

Allen, C. C., 66A2

Allred, W. P., 61A1

Antonov, A. S., 66A1

American Society for Testing and Materials, 67A2

Austerman, S. B., 67A3

Authier, A., 67Al

Azim, S. A., 67F1

<u>B</u>

Baev, I. A., 64B2, 66B1

Baranskii, P. I., 58B1, 60B2, 61B2

Bate, R. T., 61A1

Berglund, C. N., 66B2

Berkova, A. V., 65M5

Biard, J. R., 62B1

Biet, J. P., 61B1

Bonse, U. K., 67B1

Brice, J. C., 60B1

Brock, G. E., 59D1

Brownson, J., 64B1

Bryant, C. A., 65B1

Buck, T. M., 63L1

Burton, J. A., 53B1

Bush, H. D., 66Z2

C

Carron, G. J., 67C1

Casey, H. C. Jr., 67C2

Chernopisskii, V. U., 64I1

Clevenger, L. H., 66A2

Combs, J. F., 63C1, 64A1

Cox, C. D., 60C1

Czaja, W., 65Cl, 66Cl, 66C2

D

Decker, D. R., 67D3

Deslattes, R. D., 66L2

Dew-Hughes, D., 59D1

Dickey, D. H., 66M4

Dilatush, E., 67D1

Dionne, G., 67D2

Dobbs, P. J. H., 64D1

Dobrott, R. D., 66H1

Drougard, M. E., 66D1

E

Edwards, D. F., 62E1

Epstein, A. S., 64K1

Esposito, R. M., 67E1

Everhart, T. E., 66E1

F

Fassett, J. R., 66Z2

Fiermans, L., 64F1

Flicker, H., 67E1

Frank, H., 56F1, 67F1

G Hughes, K. A., 67T1 Gallas, M., 66Gl Ι Gardner, E. E., 63G1, 65G2, Iglitsyn, M. I., 6411, 6511 Gatos, H. C., 65G3 Irving, B. A., 62I1 Gergely, Gy., 62G1 Ivanov, A. V., 6511 Gold, R. D., 60H2 J Goodman, A. M., 61G1 Jones, A. H., 59D1 Gray, P. E., 65G1 Juleff, E. M., 66J1, 67J1 Grishina, S. P., 65M5 Guldbrandsen, T., 63M1 K Gunn, J. B., 65B1 Kahng, D., 62T1 Gupta, D. C., 66A2 Kaiser, R. H., 67C2 Karagioz, O. V., 6511 H Klein, M. A., 63K2 Haberer, J. R., 67H2 Kokorev, D. T., 62K1 Hagon, P. J., 66N1 Kolb, E. D., 53B1 Haisty, R. W., 67H1 Komukhaev, E. I., 58B1 Hallenback, J. F. Jr., 63G1, Kopestansky, J., 66G1 Kovacs, F. S., 64D1, 64K1 Hansen, E. B., 60H3 Hantay, 0., 62G1 Kovtonyuk, N. F., 62K1 Harrick, N. J., 60H1 Kressel, H., 63K2 Hart, M., 67Bl Ksoll, G., 61K1 Henisch, H. K., 56H1 Kudman, I., 63K1 Henkel, H.-J., 6521 Kyslik, V., 66G1 Hilibrand, J., 60H2 Holmes, P. J., 62H1 Laakso, C. W., 66N1 Hooper, W. W., 65H1 Lamorte, M. F., 60L1 Hora, H., 63H1 Lander, J. J., 63L1 Hornung, H., 62T2 Lang, A. R., 59L1, 64L1 Howard, J. K., 66H1 Lapierre, III, A. G., 66J1, Htin Kyaw, 67T1

Lavine, M. C., 65G3 Layer, H. P., 66L2 Lederhandler, S. R., 59L2 Lehner, H. H., 67L1 Levinson, D. I., 6411 Levinzon, D. I., 6511 Locherer, K.-H., 64L2 Loferski, J. J., 67E1 Lorinczy, A., 63L2 Lublin, P., 66L1 M Ma, C. H., 64M1 Maker, P. D., 62E1 Makris, J. S., 64M1 Malyutenko, V. K., 65M1 Many, A., 5901, 6001

Malyutenko, V. K., 65M1

Many, A., 5901, 6001

Manz, R. C., 62T1

Markowska, E., 65M4

Mathews, J. R., 63L1

Mazur, R. G., 66M4, 67M1

Meier, A. A., 65I1

Meyer, N. I., 63M1

Millward, C., 67T1
Mil'vidskii, M. G., 65M5
Munakata, C., 65M2, 65M3, 65W3, 66M1, 66M2, 66M3

Nealey, C. C., 66N1
Nemeth, T., 63L2
Newkirk, J. B., 67A3, 67B1

Pankove, J. I., 62P1
Pasztor, G., 67T2
Pataki, G., 63P1
Patel, J. R., 65C1
Pereverzev, N. A., 62S1
Piotrowski, K., 65P1
Potter, C. N., 67P1

0

Oi, N., 65A1

Rashba, E. I., 61R1
Romanov, V. A., 61R1
Romanov, V. O., 65M1
Rudenberg, H. G., 58R1
Runyan, W. R., 65W2

Saparin, G. V., 62S1
Sato, K., 65A1
Sawyer, D. E., 67P1
Schreiber, H. Jr., 63L1
Schroen, W., 65H1
Schumann, P. A. Jr., 63G1, 63S2, 64S1, 65G2, 65S2
Schwuttke, G. H., 65S1

Sheiner, L. S., 64S1
Sikorski, S., 66S1
Slichter, W. P., 53B1
Smits, F. M., 58S1

Spivak, G. V., 62S1
Stride, A. A., 60B1
Struthers, J. D., 53B1
Sulway, D. V., 67T1
Sutkowski, W. J., 66L1
Swartzendruber, L. J., 64S2

Swiderski, J., 60S1, 61S1, 63S1, 65M4, 65P1

Szebeni, P., 63L2

<u>T</u>

Tannenbaum, E., 61T1
Tarui, Y., 63T1
Tauc, J., 55T1, 57T1

Thiessen, K., 62T2

Thomas, C. O., 62T1

Thornton, P. R., 67T1

Tihanyi, J., 67T2

Trousi1, Z., 56T1

V

Valyashko, E. G., 64B2, 66B1

W

Wackwitz, R. C., 65W2

Vaughan, D. E., 61V1

Wang Shou-wu, 63Wl

Watanabe, H., 65W3, 66M3

Watelski, S. B., 62B1, 65W2

Webb, W. W., 62W1

Whelan, M. V., 65W1

Winstel, 'G., 5921

Wittry, D. B., 66W1

Wolfson, R. G., 67J1

Z

Zaininger, K. H., 6621

Zerbst, M., 59Z1

Ziegler, G., 65Zl

Zrudsky, D. R., 66Z2

Zucker, J., 56H1

5. INDEX ACCORDING TO METHODS OR EFFECTS USED TO DETECT INHOMOGENEITIES

1. RESISTIVITY

PHOTOVOLTAIC

55T1, 56F1, 56T1, <u>57T1</u>, 5901, 59Z1, 60B5, 60C1, <u>6001</u>, 60S1, 61S1, 62K1, 63P1, 64B2, 65M4, 65P1, 66B1, 66S1

ELECTRON-VOLTAIC

65M2, 65M3, 66M1, 66M2

PHOTOCONDUCTIVITY

60B2, 65M1, 66G1

TWO-POINT PROBE

58B1, 59R1, 60L1, <u>61B2</u>, 62G1, 63L2, 64I1, 65I1, 67A1, 67D1, 67L1

FOUR-POINT PROBE

58S1, 59D1, 59R1, 60B1, 60H3, 60L1, 61K1, 61T1, 61V1, 63C1, 63H1, 63S2, 63T1, 64A1, 64D1, 64S1, 64S2, 65S2, 65W2, 66Z2, 67A1

SPREADING RESISTANCE

62B1, 63G1, 63S2, 65B2, 66M4, 67M1

VOLTAGE BREAKDOWN

63G1, 63S2, 64B1, 64D1, <u>65G2</u>, 66A2

IMPEDANCE

56H1, 59R1, 64L2, 65B1, 67H1

ABSORPTION

65M5

MICROWAVE DIODE

63K2

ELECTRON MICROPROBE 65W3, 66M3

2. IMPURITY CONCENTRATION

VOLTAGE BREAKDOWN 66A2, 67F1

INTERNAL INJECTION-EXTRACTION 60H1

C VS V 61B1, 62T1, 64K1, 67D3

REFLECTIVITY 62E1, 63K1

ABSORPTION 60H1

REFRACTIVE INDEX 66D1

NEUTRON ACTIVATION
53B1, 61T1, 65H1

RADIOACTIVE TRACER 61A1

ELECTRON MICROPROBE

66L1, 66N1, 66W1, 67C2

ELECTROCHEMICAL

62H1, 62I1, 62P1, 63L2, 65G3

3. DIFFUSION LENGTH

PHOTOVOLTAIC 63S1, 65M4

SURFACE PHOTOVOLTAGE

61G1

PHOTOCONDUCTIVITY

63S1

ELECTRON MICROPROBE

66C2

4. LIFETIME

PHOTOVOLTAIC

60S1, 63S1, 67E1

PHOTOCONDUCTIVITY

56H1, 61R1, 62T2, 63S1, 63W1, 64B1, 66B1

ELECTRON MICROPROBE

66C2

LIGHT MICROPROBE

54A1

5. SURFACE RECOMBINATION VELOCITY

PHOTOVOLTAIC

60S1

6. SURFACE

C VS V

65W1, 66B2, 66Z1

ELECTRON MICROPROBE

63L1, 66E1, 66N1, 67T1

LIGHT MICROPROBE

65H1, 67H2, 67P1, 67T2

7. MOBILITY

LIGHT MICROPROBE

54A1

8. CRYSTAL PERFECTION

PHOTOVOLTAIC

64B2

REFRACTIVE INDEX

66D1

BIREFRINGENCE

59L2

ELECTRON MICROPROBE

63L1, 65C1, 66C1, 66C2, 66N1

X-RAY TOPOGRAPHY

59L1, 62W1, 64F1, 64L1, 64M1, 65S1, 66H1, 66J1, 66L2,

67A1, 67A2, 67A3, 67B1, 67C1, 67D2, 67J1

ELECTROCHEMICAL

62H1, 62I1, 62P1, 65G3

9. JUNCTION

TWO-POINT

67D1, 67L1

SPREADING RESISTANCE

66M4

C VS V

60H2, 61B1, 63M1, 65G1, 66A1, 67D3

MICROWAVE DIODE

63K2

ELECTRON MICROPROBE
62S1, 66E1, 66N1

ELECTROCHEMICAL

62H1, 62I1, 62P1, 65G3

6. BIBLIOGRAPHY

1953 -- 1958

Burton, J. A., E. D. Kolb, W. P. Slichter, and J. D. Struthers
DISTRIBUTION OF SOLUTE IN CRYSTALS FROM THE MELT. PART II. EXPERIMENTAL
J. Chem. Phys., vol. 21, pp. 1991-1996, November 1953. (CA:48-1762d)

IMPURITY CONCENTRATION, CRYSTAL PERFECTION Ge

RADIOACTIVE TRACER EXPERIMENTAL

Adam, G.
A FLYING LIGHT SPOT METHOD FOR SIMULTANEOUS DETERMINATION
OF LIFETIME AND MOBILITY OF INJECTED CURRENT CARRIERS
Physica, vol. 20, pp. 1037-1041, November 1954.
(PA:55-3733)

LIFETIME, MOBILITY
Ge, Si
LIGHT MICROPROBE
APPARATUS
EXPERIMENTAL ANALYSIS

Tauc, J.
THE THEORY OF A BULK PHOTO-VOLTAIC PHENOMENON IN SEMICONDUCTORS
Czech. J. Phys., vol. 5, pp. 178-191, April 1955.
(PA:55-7970)

RESISTIVITY
Ge
PHOTOVOLTAIC
THEORETICAL

Frank, H.
PHOTOELECTRIC MEASUREMENT OF INTERNAL ELECTRIC FIELD IN
INHOMOGENEOUS SEMICONDUCTORS
Czech. J. Phys., vol. 6, pp. 433-442, October 1956 (in
German). (PA:57-7904)

RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
EXPERIMENTAL ANALYSIS

Henisch, H. K., and J. Zucker
CONTACTLESS METHOD FOR THE ESTIMATION OF RESISTIVITY
AND LIFETIME OF SEMICONDUCTORS
Rev. Sci. Instrum., vol. 27, pp. 409-410, June 1956.
(CA:51-12639c)

RESISTIVITY, LIFETIME Ge, Si

PHOTOCONDUCTIVITY, IMPEDANCE APPARATUS

EXPERIMENTAL

56T1 Trousil, Z.
BULK PHOTO-VOLTAIC PHENOMENON
Czech. J. Phys., vol. 6, pp. 96-98, January 1956.
(PACKET VIEW)

RESISTIVITY
Ge
PHOTOVOLTAIC
EXPERIMENTAL

Tauc, J.
GENERATION OF AN EMF IN SEMICONDUCTORS WITH NONEQUILIBRIUM CURRENT CARRIER CONCENTRATIONS
Rev. Mod. Phys., vol. 29, pp. 308-324, July 1957.
(PA:58-3097)

RESISTIVITY
Ge
[PHOTOVOLTAIC]
REVIEW

Baranskii, P. I., and E. I. Komukhaev
BULK-GRADIENT EMF IN THE PRESENCE OF CURRENT IN GERMANIUM
Soviet Phys. Tech. Phys., vol. 3, pp. 1744-1751, September
1958. (PA:59-4588)

RESISTIVITY
Ge
TWO-POINT PROBE
EXPERIMENTAL ANALYSIS

Rudenberg, H. G.
RESISTIVITY MEASURING TECHNIQUES IN SEMICONDUCTORS
Proc. Nat. Electronics Conf., vol. 14, pp. 585-597, 1958.
(EA:59-4652) Also Semiconductor Products, vol. 2, pp. 28-34, September 1959.
RESISTIVITY

RESISTIVITY
Ge, Si
TWO-POINT, FOUR-POINT, IMPEDANCE
APPARATUS
EXPERIMENTAL ANALYSIS

Smits, F. M.
MEASUREMENT OF SHEET RESISTIVITIES WITH THE FOUR-POINT PROBE
Bell Syst. Tech. J., vol. 37, pp. 711-718, May 1958.
(EA:58-4029)

RESISTIVITY FOUR-POINT THEORETICAL Dew-Hughes, D., A. H. Jones, and G. E. Brock IMPROVED AUTOMATIC FOUR-POINT RESISTIVITY PROBE Rev. Sci. Instrum., vol. 30, pp. 920-922, October 1959. (PA:60-2856)

RESISTIVITY
Ge
FOUR-POINT
APPARATUS
EXPERIMENTAL

59L1 Lang, A. R.
STUDIES OF INDIVIDUAL DISLOCATIONS IN CRYSTALS BY X-RAY
DIFFRACTION MICRORADIOGRAPHY
J. Appl. Phys., vol. 30, pp. 1748-1755, November 1959.
(PA:60-1587)

CRYSTAL PERFECTION
Ge, Si
X-RAY TOPOGRAPHY
EXPERIMENTAL ANALYSIS

59L2 Lederhandler, S. R.
INFRARED STUDIES OF BIREFRINGENCE IN SILICON
J. Appl. Phys., vol. 30, pp. 1631-1638, November 1959.
(PA: 60-1723)
CRYSTAL PERFECTION
Si
BIREFRINGENCE
APPARATUS

Oroshnik, J., and A. Many
EVALUATION OF THE HOMOGENEITY OF GERMANIUM SINGLE CRYSTALS
BY PHOTOVOLTAIC SCANNING
J. Electrochem. Soc., vol. 106, pp. 360-362, April 1959.
(CA:53-10985d)

RESISTIVITY
Ge
PHOTOVOLTAIC
EXPERIMENTAL

EXPERIMENTAL

Zerbst, M., and G. Winstel

DETERMINATION OF DOPING GRADIENTS FROM PHOTO-EMF AND
PHOTOCONDUCTIVITY IN SEMICONDUCTORS
Z. Naturforsch., vol. 14a, pp. 754-755, August 1959 (in German). (PA:59-13285)

RESISTIVITY PHOTOVOLTAIC THEORETICAL Brice, J. C., and A. A. Stride
A CONTINUOUS-READING FOUR-POINT RESISTIVITY PROBE
Solid-State Electronics, vol. 1, p. 245, July 1960.
(PA:62-11581)

RESISTIVITY
Ge
FOUR-POINT
APPARATUS
EXPERIMENTAL

Baranskii, P. I.
THE VOLUME-GRADIENT EFFECTS IN SEMICONDUCTORS
Proceedings of the International Conference on
Semiconductor Physics, Prague, 1960, Academic Press,
New York, 1961, pp. 815-817 (in Russian). (PA:62-23262)

RESISTIVITY
PHOTOVOLTAIC
EXPERIMENTAL ANALYSIS

60C1 Cox, C. D.
BULK PHOTOEFFECTS IN INHOMOGENEOUS SEMICONDUCTORS
Canad. J. Phys., vol. 38, pp. 1328-1342, October 1960.
(PA:60-18059)

RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
THEORETICAL

Harrick, N. J.
SEMICONDUCTOR TYPE AND LOCAL DOPING DETERMINED THROUGH
THE USE OF INFRARED RADIATION
Solid-State Electronics, vol. 1, pp. 234-244, July 1960.
(PA:62-8312)

IMPURITY CONCENTRATION

Ge

ABSORPTION, INTERNAL INJECTION-EXTRACTION EXPERIMENTAL ANALYSIS

Hilibrand, J., and R. D. Gold
DETERMINATION OF THE IMPURITY DISTRIBUTION IN JUNCTION
DIODES FROM CAPACITANCE - VOLTAGE MEASUREMENTS
R.C.A. Rev., vol. 21, pp. 245-252, June 1960.
(PA:60-15972)

JUNCTION
Ge
C VS V
EXPERIMENTAL ANALYSIS

Hansen, E. B.
ON THE INFLUENCE OF SHAPE AND VARIATIONS IN CONDUCTIVITY
OF THE SAMPLE ON FOUR-POINT MEASUREMENTS
Appl. Sci. Res. B, vol. 8, no. 2, pp. 93-104, 1960.
(PA:60-7045)

RESISTIVITY FOUR-POINT THEORETICAL

60L1 Lamorte, M. F.
CALCULATION OF CONCENTRATION PROFILES AND SURFACE
CONCENTRATION FROM SHEET-CONDUCTANCE MEASUREMENTS OF
DIFFUSED LAYERS
Solid-State Electronics, vol. 1, pp. 164-171, July 1960.
(PA:62-8279)

RESISTIVITY
Si
TWO-POINT, FOUR-POINT
SURFACE PREPARATION
THEORETICAL

Oroshnik, J., and A. Many
QUANTITATIVE PHOTOVOLTAIC EVALUATION OF THE RESISTIVITY
HOMOGENEITY OF GERMANIUM SINGLE CRYSTALS
Solid-State Electronics, vol. 1, pp. 46-53, March 1960.
(PA:61-14514)

RESISTIVITY
Ge
[PHOTOVOLTAIC]
APPARATUS
EXPERIMENTAL

60S1 Swiderski, J.

NEW APPLICATIONS OF BULK PHOTOVOLTAIC EFFECT MEASUREMENTS
ON GERMANIUM
Proceedings of the International Conference on Semiconductor
Physics, Prague, 1960, Academic Press, New York, 1961,
pp. 479-482. (PA:62-23464)
RESISTIVITY, LIFETIME, SURFACE RECOMBINATION VELOCITY
Ge

PHOTOVOLTAIC EXPERIMENTAL ANALYSIS

- 1961 -

61A1 Allred, W. P., and R. T. Bate
ANISOTROPIC SEGREGATION IN InSb
J. Electrochem Soc., vol. 108, pp. 258-261, March 1961.
(CA:55-11100a)
IMPURITY CONCENTRATION
InSb
RADIOACTIVE TRACER
EXPERIMENTAL

Biet, J. P.

DETERMINATION OF DOPING PROFILE OF IMPURITIES OF A
TRANSISTOR FOR MEASUREMENT OF CERTAIN ELECTRICAL
CHARACTERISTICS
J. Phys. Radium, vol. 22, no. 2, pp. 59A-63A, February 1961
(in French). (PA:61-17778)
IMPURITY CONCENTRATION, JUNCTION
C VS V
THEORETICAL

Baranskii, P. I.
VOLUME-GRADIENT PHENOMENA AND LIMITS OF APPLICABILITY
OF THE POTENTIOMETRIC PROBE METHOD OF MEASURING THE ELECTRICAL
CONDUCTIVITY OF SEMICONDUCTORS
Soviet Phys. Solid State, vol. 3, pp. 643-646, September
1961. (PA:61-17644)

RESISTIVITY
Ge
[TWO-POINT]
EXPERIMENTAL ANALYSIS

Goodman, A. M.

A METHOD FOR THE MEASUREMENT OF SHORT MINORITY CARRIER
DIFFUSION LENGTHS IN SEMICONDUCTORS
J. Appl. Phys., vol. 32, pp. 2550-2552, December 1961.
(PA:62-2131)

DIFFUSION LENGTH
GaAS
SURFACE PHOTOVOLTAGE
APPARATUS
EXPERIMENTAL

Ksoll, G.
ON THE DETERMINATION OF THE CONCENTRATION PROFILE OF
DIFFUSION LAYERS IN SILICON FROM LAYER CONDUCTIVITY
MEASUREMENTS
Phys. Status Solidi, vol. 1, pp. 181-188, June 1961 (in German). (PA:62-2155)

RESISTIVITY
Si
FOUR-POINT
EXPERIMENTAL ANALYSIS

Rashba, E. I., and V. A. Romanov
A PHOTOELECTRIC METHOD OF OBSERVING INHOMOGENEITY WITH
DEPTH IN SEMICONDUCTORS
Soviet Phys. Solid State, vol. 2, pp. 2393-2396, May 1961.
(PA:61-5014)

LIFETIME
Ge
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

Swiderski, J.

APPLICATION OF THE PHOTOVOLTAIC EFFECT IN THE STUDY OF
THE HOMOGENEITY OF GERMANIUM
Arch. Elektrotech., vol. 10, pp. 441-467, 1961 (in Polish).
(PA:62-12510)

RESISTIVITY
Ge, Si
[PHOTOVOLTAIC]
APPARATUS
EXPERIMENTAL ANALYSIS

Tannenbaum, E.

DETAILED ANALYSIS OF THIN PHOSPHORUS-DIFFUSED LAYERS IN P-TYPE SILICON

Solid-State Electronics, vol. 2, pp. 123-132, March 1961.

(EA:61-4004)

RESISTIVITY, IMPURITY CONCENTRATION

Si FOUR-POINT, NEUTRON ACTIVATION GENERAL PROCEDURES EXPERIMENTAL ANALYSIS

61V1 Vaughan, D. E.
FOUR-POINT RESISTIVITY MEASUREMENTS ON SMALL CIRCULAR
SPECIMENS
Brit. J. Appl. Phys., vol. 12, pp. 414-416, August 1961.
(PA:61-16203)
RESISTIVITY

RESISTIVITY FOUR-POINT THERORETICAL

- 1962 -

62B1 Biard, J. R., and S. B. Watelski
EVALUATION OF GERMANIUM EPITAXIAL FILMS
J. Electrochem. Soc., vol. 109, pp. 705-709, August 1962.
(PA:63-2889)

RESISTIVITY
Ge
SPREADING RESISTANCE
EXPERIMENTAL

62E1 Edwards, D. F., and P. D. Maker
QUANTITATIVE MEASUREMENT OF SEMICONDUCTOR HOMOGENEITY
FROM PLASMA EDGE
J. Appl. Phys., vol. 33, pp. 2466-2468, August 1962.
(PA:62-16686)

IMPURITY CONCENTRATION InAs REFLECTIVITY EXPERIMENTAL ANALYSIS Gergely, Gy., and O. Hantay
ON THE MEASUREMENT OF CROSS-SECTIONAL RESISTIVITY
VARIATION ON SEMICONDUCTOR CRYSTALS
Solid-State Electronics, vol. 5, pp. 416-417, November December 1962. (PA:63-17844)

RESISTIVITY
Ge, Si
TWO-POINT
EXPERIMENTAL

62H1 Holmes, P. J.
PRACTICAL APPLICATIONS OF CHEMICAL ETCHING
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,
Academic Press, New York, 1962, pp. 329-377. (CA:57-225c)
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si, GaAs, InSb, InAs
[ELECTROCHEMICAL]
GENERAL PROCEDURES
REVIEW

62I1 Irving, B. A.
CHEMICAL ETCHING OF SEMICONDUCTORS
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,
Academic Press, New York, 1962, pp. 256-289. (CA:57-225d)
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
ELECTROCHEMICAL
REVIEW

Kokorev, D. T., and N. F. Kovtonyuk
ANALYSIS OF THE HOMOGENEITY OF SEMICONDUCTOR MATERIALS BY
USING THE METHOD OF THE VOLUME PHOTO - EMF
Instrum. Exper. Tech., vol. 28, pp. 382-387, November 1962.
(PA:63-15567)

RESISTIVITY
Ge
PHOTOVOLTAIC
APPARATUS
EXPERIMENTAL

Pankove, J. I.
PRACTICAL APPLICATIONS OF ELECTROLYTIC TREATMENTS TO
SEMICONDUCTORS
The Electrochemistry of Semiconductors, P. J. Holmes, Ed.,
Academic Press, New York, 1962, pp. 290-328. (CA:57-225d)
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si
ELECTROCHEMICAL
REVIEW

Spivak, G. V., G. V. Saparin, and N. A. Pereverzev
POTENTIAL DISTRIBUTION IN A P-N JUNCTION AS OBSERVED BY
ELECTRON-OPTICAL SCANNING
Bull. Acad. Sci. USSR, Phys. Ser., vol. 26, pp. 1362-1365,
November 1962. (PA:64-10074)

JUNCTION
Ge, Si
ELECTRON MICROPROBE
EXPERIMENTAL

62T1 Thomas, C. O., D. Kahng, and R. C. Manz
IMPURITY DISTRIUBTION IN EPITAXIAL SILICON FILMS
J. Electrochem. Soc., vol. 109, pp. 1055-1061, November
1962. (PA:63-10650)

IMPURITY CONCENTRATION
Si
C VS V
FABRICATION
EXPERIMENTAL ANALYSIS

Thiessen, K., and H. Hornung
MEASUREMENT OF INHOMOGENEOUS DISTRIBUTION OF RECOMBINATION
CENTERS IN GERMANIUM BY MEANS OF PHOTOCONDUCTIVE AND
PHOTOMAGNETOELECTIC EFFECTS
Phys. Status Solidi, vol. 2, pp. 1158-1164, September 1962
(in German). (PA:62-23344)

LIFETIME
Ge
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

62W1 Webb, W. W.
X-RAY DIFFRACTION TOPOGRAPHY
Direct Observation of Imperfections in Crystals, J. B.
Newkirk and J. H. Wernick, Eds., Interscience Publishers,
New York, 1962, pp. 29-76. (CA:58-7441h)
CRYSTAL PERFECTION
[X-RAY TOPOGRAPHY]
REVIEW

- 1963 -

63C1 Combs, J. F., and M. P. Albert
DIAMETER CORRECTION FACTORS FOR THE RESISTIVITY
MEASUREMENT OF SEMICONDUCTOR SLICES
Semiconductor Prod., vol. 6, pp. 26,27,43, February 1963.
(EA:63-9771)
RESISTIVITY

RESISTIVITY FOUR-POINT THEORETICAL

Gardner, E. E., J. F. Hallenback, Jr., and P. A. Schumann, Jr. COMPARISON OF RESISTIVITY MEASUREMENT TECHNIQUES ON EPITAXIAL SILICON Solid-State Electronics, vol. 6, pp. 311-313, May - June 1963. (PA:64-6989)

RESISTIVITY

SPREADING RESISTANCE, VOLTAGE BREAKDOWN EXPERIMENTAL ANALYSIS

Hora, H.
ON THE MEASUREMENT OF SEMICONDUCTOR LAYERS ON DIFFERENT CONDUCTIVITY SUBSTRATES WITH A FIVE-PROBE METHOD Z. Angew. Phys., vol. 15, pp. 491-496, June 1963 (in German). (PA:63-21674)

RESISTIVITY
Ge
FOUR-POINT
THEORETICAL

Kudman, I.
A NONDESTRUCTIVE MEASUREMENT OF CARRIER CONCENTRATION IN
HEAVILY DOPED SEMICONDUCTING MATERIALS AND ITS APPLICATION
TO THIN SURFACE LAYERS
J. Appl. Phys., vol. 34, pp. 1826-1827, June 1963.
(PA:63-17878)

IMPURITY CONCENTRATION
GaAs
REFLECTIVITY
EXPERIMENTAL

Kressel, H., and M. A. Klein
DETERMINATION OF EPITAXIAL-LAYER IMPURITY PROFILES BY
MEANS OF MICROWAVE - DIODE MEASUREMENTS
Solid-State Electronics, vol. 6, pp. 309-311, May - June
1963. (PA:63-25273)

RESISTIVITY, JUNCTION Si MICROWAVE DIODE EXPERIMENTAL

Lander, J. J., H. Schreiber, Jr., T. M. Buck, and J. R. Mathews
MICROSCOPY OF INTERNAL CRYSTAL IMPERFECTIONS IN Si P-N
JUNCTION DIODES BY USE OF ELECTRON BEAMS
Appl. Phys. Letters, vol. 3, pp. 206-207, December 1, 1963.
(PA:64-7657)

CRYSTAL PERFECTION, SURFACE Si

ELECTRON MICROPROBE EXPERIMENTAL

Lorinczy, A., T. Nemeth, and P. Szebeni
MICRO-INHOMOGENEITIES IN Ge SINGLE CRYSTALS
Acta Phys. Hungar., vol. 16, no. 1, pp. 63-67, 1963.
(PA:63-22786)

(PA:63-22786)
RESISTIVITY
Ge
TWO-POINT, ELECTROCHEMICAL
EXPERIMENTAL

63M1 Meyer, N. I., and T. Guldbrandsen
METHOD FOR MEASURING IMPURITY DISTRIBUTIONS IN
SEMICONDUCTOR CRYSTALS
Proc. IEEE, vol. 51, pp. 1631-1637, November 1963.
(PA:64-15530)

JUNCTION
Ge, Si
C VS V
APPARATUS
EXPERIMENTAL ANALYSIS

Pataki, G.
REMARK ON THE THEORY OF THE BULK PHOTOEFFECT IN
INHOMOGENEOUS SEMICONDUCTORS
Acta Phys. Hungar., vol. 15, no. 3, pp. 353-356, 1963.
(PA:63-20395)

RESISTIVITY PHOTOVOLTAIC THEORETICAL

Swiderski, J.

MEASUREMENTS OF DIFFUSION LENGTH OF MINORITY CARRIERS IN
AN INHOMOGENEOUS SEMICONDUCTOR
Bull. Acad. Polon. Sci. Ser. Sci. Tech., vol. 11, no. 9,
pp. 63[487]-66[490], 1963. (PA:64-9892)

DIFFUSION LENGTH
Ge, Si
PHOTOVOLTAIC, PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

63S2 Schumann, P. A. Jr., and J. F. Hallenback, Jr.
A NOVEL FOUR-POINT PROBE FOR EPITAXIAL AND BULK
SEMICONDUCTOR RESISTIVITY MEASUREMENTS
J. Electrochem. Soc., vol. 110, pp. 538-542, June 1963.
(PA:63-25341)
RESISTIVITY
Si

Si FOUR-POINT, SPREADING RESISTANCE, VOLTAGE BREAKDOWN EXPERIMENTAL ANALYSIS

63T1 Tarui, Y.

METHOD FOR MEASURING THE RESISTIVITY OF HIGH-PURITY SILICON
J. Inst. Elect. Commun. Engrs. Japan, vol. 46, pp. 46-54,
January 1963. (EA:64-285)
RESISTIVITY

RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS

Wang Shou-wu
MEASUREMENT OF THE LIFETIME OF MINORITY CURRENT CARRIERS
IN SEMICONDUCTORS BY OBSERVING THE PHOTOCONDUCTIVE DECAY
OF THE SPREADING RESISTANCE UNDER A POINT CONTACT
Acta Phys. Sinica, vol. 19, pp. 176-190, March 1963 (in
Chinese). (PA:64-1582) Translation available in AD 631119.

LIFETIME
Ge, Si
PHOTOCONDUCTIVITY
APPARATUS
EXPERIMENTAL ANALYSIS

- 1964 -

Albert, M. P., and J. F. Combs
CORRECTION FACTORS FOR RADIAL RESISTIVITY GRADIENT
EVALUATION OF SEMICONDUCTOR SLICES
IEEE Trans. Electron Devices, vol. ED-11, pp. 148-151,
April 1964. (PA:64-20350)

RESISTIVITY FOUR-POINT THEORETICAL

Brownson, J.
A THREE-POINT PROBE METHOD FOR ELECTRICAL CHARACTERIZATION
OF EPITAXIAL FILMS
J. Electrochem. Soc., vol. 111, pp. 919-924, August 1964.
(PA:64-28569)

RESISTIVITY
Si.
VOLTAGE BREAKDOWN
APPARATUS
EXPERIMENTAL ANALYSIS

Baev, I. A., and E. G. Valyashko
STUDY OF THE HOMOGENEITY OF SEMICONDUCTOR CRYSTALS WITH
THE USE OF A MOVING LIGHT PROBE
Soviet Phys. Solid State, vol. 6, pp. 1357-1361, December
1964. (PA:65-12706)

RESISTIVITY, CRYSTAL PERFECTION, LIFETIME Ge, InSb
PHOTOVOLTAIC, PHOTOCONDUCTIVITY
APPARATUS
EXPERIMENTAL

Dobbs, P. J. H., and F. S. Kovacs
MEASUREMENT OF THE RESISTIVITY OF SILICON EPITAXIAL
WAFERS
Semiconductor Prod. Solid State Technol., vol. 7,
pp. 28-31, August 1964. (EA:65-249)

RESISTIVITY
Si
FOUR-POINT, VOLTAGE BREAKDOWN
APPARATUS
EXPERIMENTAL

Fiermans, L.
DIRECT OBSERVATION OF DISLOCATIONS IN SILICON SINGLE
CRYSTALS USING A WHITE X-RAY RADIATION TECHNIQUE
Phys. Status Solidi, vol. 6, no. 1, pp. 169-172, 1964.
(PA:64-25945)

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS

64II Iglitsyn, M. I., D. I. Levinson, and V. U. Chernopisskii CHECKING THE UNIFORMITY OF MONOCRYSTALLINE GERMANIUM BY THE SINGLE PROBE METHOD Industr. Lab., vol. 30, pp. 251-254, February 1964. (CA:60-11471c)

RESISTIVITY
Ge
TWO-POINT
APPARATUS
EXPERIMENTAL

THEORETICAL

EXPERIMENTAL

64K1 Kovacs, F. S., and A. S. Epstein
DETERMINATION OF IMPURITY DISTRIBUTION PROFILES IN
SILICON EPITAXIAL WAFERS
Semiconductor Prod. Solid State Technol., vol. 7,
pp. 32-36, August 1964. (PA:65-1462)
IMPURITY CONCENTRATION
Si
C VS V
CONTACTS, APPARATUS, FABRICATION
EXPERIMENTAL

64L1 Lang, A. R.
CRYSTAL GROWTH AND CRYSTAL PERFECTION: X-RAY TOPOGRAPHIC STUDIES
Disc. Faraday Soc., no. 38, pp. 292-297, 1964.
(PA:66-1853)
CRYSTAL PERFECTION
Ge, Si
X-RAY TOPOGRAPHY
REVIEW

CAPACITIVE MEASUREMENT OF THE CONDUCTIVITY OF SEMICONDUCTOR SPECIMENS

Z. Angew. Phys., vol. 17, no. 6, pp. 429-436, 1964 (in German). (PA:65-9665)

RESISTIVITY
IMPEDANCE

64M1 Makris, J. S., and C. H. Ma
A MODIFIED X-RAY DIFFRACTION MICROSCOPE TECHNIQUE FOR
STUDY OF DISLOCATIONS IN CRYSTALS
Trans. Metall. Soc. AIME, vol. 230, pp. 1110-1112, August
1964. (PA:64-30568)
CRYSTAL PERFECTION

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS, SURFACE PREPARATION
EXPERIMENTAL

Schumann, P. A. Jr., and L. S. Sheiner
PRECISION OVER-UNDER FOUR-POINT PROBE WITH A SMALL
PROBE SPACING
Rev. Sci. Instrum., vol. 35, pp. 959-962, August 1964.
(PA:64-26025)

RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS

Swartzendruber, L. J.
FOUR-POINT PROBE MEASUREMENT OF NON-UNIFORMITIES IN
SEMICONDUCTOR SHEET RESISTIVITY
Solid-State Electronics, vol. 7, pp. 413-422, June 1964.
(PA:64-22697)

RESISTIVITY [FOUR-POINT] THEORETICAL

- 1965 -

Abe, T., K. Sato, and N. Oi
DETERMINATION OF EPITAXIAL-LAYER IMPURITY DISTRIBUTION
BY NEUTRON ACTIVATION METHOD
Japan J. Appl. Phys., vol. 4, pp. 70-71, January 1965.
(PA:65-12365)
IMPURITY CONCENTRATION

Si NEUTRON ACTIVATION EXPERIMENTAL

Bryant, C. A., and J. B. Gunn
NONCONTACT TECHNIQUE FOR THE LOCAL MEASUREMENT OF
SEMICONDUCTOR RESISTIVITY
Rev. Sci. Instrum., vol. 36, pp. 1614-1617, November 1965.
(PA:66-2322)

RESISTIVITY Ge, Si IMPEDANCE APPARATUS EXPERIMENTAL 65C1 Czaja, W., and J. R. Patel
OBSERVATIONS OF INDIVIDUAL DISLOCATIONS AND OXYGEN
PRECIPITATES IN SILICON WITH A SCANNING ELECTRON BEAM
METHOD
J. Appl. Phys., vol. 36, pp. 1476-1482, April 1965.
(PA:65-17657)
CRYSTAL PERFECTION
Si
[ELECTRON MICROPROBE]
APPARATUS
EXPERIMENTAL

Gray, P. E., and R. B. Adler
A SIMPLE METHOD FOR DETERMINING THE IMPURITY DISTRIBUTION
NEAR A P-N JUNCTION
IEEE Trans. Electron Devices, vol. ED-12, pp. 475-477,
August 1965. (PA:66-8559)
JUNCTION
Si
C VS V
APPARATUS
EXPERIMENTAL ANALYSIS

65G2 Gardner, E. E., and P. A. Schumann, Jr.

MEASUREMENT OF RESISTIVITY OF SILICON EPITAXIAL LAYERS BY
THE THREE-POINT PROBE TECHNIQUE
Solid-State Electronics, vol. 8, pp. 165-174, February
1965. (PA:65-12707)
RESISTIVITY
Si

SI [VOLTAGE BREAKDOWN] APPARATUS EXPERIMENTAL ANALYSIS

Gatos, H. C., and M. C. Lavine
CHEMICAL BEHAVIOR OF SEMICONDUCTORS: ETCHING
CHARACTERISTICS
Progress in Semiconductors, vol. 9, Heywood Book, Temple
Press Books Ltd., London 1965, pp. 1-45.
IMPURITY CONCENTRATION, CRYSTAL PERFECTION, JUNCTION
Ge, Si, GaAs, InSb
ELECTROCHEMICAL
SURFACE PREPARATION
REVIEW

Hooper, W. W., and W. Schroen
INVESTIGATION OF SURFACE BREAKDOWN BY LIGHT SCANNING
Physics of Failure in Electronics, vol. 3, RADC Series
in Reliability, M. F. Goldberg and J. Vaccaro, Eds., 1965,
pp. 433-451. AD 617715

SURFACE Si LIGHT MICROPROBE APPARATUS EXPERIMENTAL ANALYSIS Iglitsyn, M. I., A. A. Meier, O. V. Karagioz, D. I. Levinzon, and A. V. Ivanov
A SINGLE-PROBE METHOD OF MEASURING THE RESISTIVITY OF SEMICONDUCTORS WITH ALTERNATING CURRENT Industr. Lab., vol. 31, pp. 1355-1357, September 1965. (CA:63-15694h)

RESISTIVITY
Ge, Si
TWO-POINT
APPARATUS
EXPERIMENTAL

Malyutenko, V. K., and V. O. Romanov
SOME PECULIARITIES OF PHOTOCONDUCTIVITY KINETICS IN
NONHOMOGENEOUS SEMICONDUCTORS
Ukrayin. Fiz. Zh., vol. 10, pp. 459-461, April 1965 (in
Ukrainian). (PA:66-5507)

RESISTIVITY
Ge
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

65M2 Munakata, C.
BULK ELECTRON VOLTAIC EFFECT
Japan. J. Appl. Phys., vol. 4, p. 697, September 1965.
(PA:66-5506)

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

Munakata, C.

MEASUREMENT OF THE HOMOGENEITY OF A SEMICONDUCTOR WITH AN ELECTRON BEAM

Japan. J. Appl. Phys., vol. 4, p. 815, October 1965.

(PA:66-5416)

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

Markowska, E., and J. Swiderski
APPLICATION OF LASER TO MEASUREMENTS OF HOMOGENEITY AND
DIFFUSION LENGTH OF MINORITY CARRIERS IN SEMICONDUCTORS
Bull. Acad. Polon. Sci. Ser. Sci. Tech., vol 13, no. 3,
pp. 39[257]-42[260], 1965. (PA:66-12326)
RESISTIVITY, DIFFUSION LENGTH

Ge PHOTOVOLTAIC APPARATUS EXPERIMENTAL Mil'vidskii, M. G., S. P. Grishina, and A. V. Berkova
DETECTING INHOMOGENEITIES IN SILICON SINGLE CRYSTALS
WITH INFRARED TRANSILLUMINATION
Industr. Lab., vol. 31, pp. 586-588, May 1965.
(CA:63-5030d)

RESISTIVITY Si ABSORPTION EXPERIMENTAL

65P1 Piotrowski, K., and J. Swiderski
THE PHOTOVOLTAIC METHOD OF MEASURING THE SPECIFIC
RESISTANCE OF EPITAXIAL LAYERS
Przeglad Elektron., no. 1, pp. 39-41, 1965 (in Polish).
(EA:65-12226) Translation available in AD 636678.

RESISTIVITY
PHOTOVOLTAIC EFFECT
EXPERIMENTAL ANALYSIS

Schwuttke, G. H.
NEW X-RAY DIFFRACTION MICROSCOPY TECHNIQUE FOR THE STUDY
OF IMPERFECTIONS IN SEMICONDUCTOR CRYSTALS
J. Appl. Phys., vol. 36, pp. 2712-2721, September 1965.
(PA:65-33064)

CRYSTAL PERFECTION
Si
[X-RAY TOPOGRAPHY]
APPARATUS
EYDERIMENTAL ANALYSIS

EXPERIMENTAL ANALYSIS

Schumann, P. A. Jr., and E. E. Gardner
FOUR-POINT PROBE EVALUATION OF SILICON N/N* AND P/P*
STRUCTURES
Trans. Metall. Soc. AIME, vol. 233, pp. 602-608, March
1965. (PA:65-17922)

RESISTIVITY
Si
FOUR-POINT
APPARATUS
EXPERIMENTAL ANALYSIS

Whelan, M. V.
INFLUENCE OF CHARGE INTERACTIONS ON CAPACITANCE VERSUS
VOLTAGE CURVES IN MOS STRUCTURES
Philips Res. Rep., vol. 20, pp. 562-577, October 1965.
(PA:66-15679) Correction in vol. 21, p. 151, April 1966.

SURFACE Si C VS V EXPERIMENTAL ANALYSIS Watelski, S. B., W. R. Runyan, and R. C. Wackwitz
A CONCENTRATION GRADIENT PROFILING METHOD
J. Electrochem. Soc., vol. 112, pp. 1051-1053, October
1965. (CA:64-1458h)
RESISTIVITY

Si FOUR-POINT SURFACE PREPARATION EXPERIMENTAL ANALYSIS

Watanabe, H., and C. Munakata
MEASUREMENT OF RESISTANCE BY MEANS OF ELECTRON BEAM - I
Japan J. Appl. Phys., vol. 4, pp. 250-258, April 1965.
(PA:65-17819)

RESISTIVITY
ELECTRON MICROPROBE
APPARATUS
EXPERIMENTAL ANALYSIS

Ziegler, G., H.-J. Henkel
INHOMOGENEOUS IMPURITY DISTRIBUTION IN GAAS SINGLE CRYSTALS
Z. Angew. Phys., vol. 19, pp. 401-404, September 1965 (in German). (PA:66-6507)

IMPURITY CONCENTRATION
GaAs
ABSORPTION
EXPERIMENTAL

- 1966 -

Antonov, A. S.
DISTRIBUTION OF IMPURITIES AND THE VARIATION OF ELECTRIC FIELD IN THE DRIFT REGION OF SILICON P-I-N DETECTORS Soviet Phys. Solid State, vol. 8, pp. 1061-1063, November 1966. (PA:67-5026)

JUNCTION
Si
C VS V
EXPERIMENTAL ANALYSIS

Allen, C. C., L. H. Clevenger, and D. C. Gupta
A POINT CONTACT METHOD OF EVALUATING EPITAXIAL LAYER
RESISTIVITY
J. Electrochem. Soc., vol. 113, pp. 508-510, May 1966.
(CA:65-127f)

RESISTIVITY, IMPURITY CONCENTRATION Ge, Si BREAKDOWN VOLTAGE APPARATUS EXPERIMENTAL ANALYSIS 66B1 Baev, I. A., and E. G. Valyashko
AN INVESTIGATION OF THE DISTRIBUTION OF INHOMOGENEOUS
REGIONS IN SEMICONDUCTORS
Soviet Phys. Solid State, vol. 7, pp. 2093-2099, March
1966. (PA:66-15602)
RESISTIVITY, LIFETIME
Ge, Si
[PHOTOVOLTAIC], PHOTOCONDUCTIVITY
APPARATUS

Berglund, C. N.
SURFACE STATES AT STEAM-GROWN SILICON-SILICON DIOXIDE
INTERFACES
IEEE Trans. Electron Devices, vol. ED-13, pp. 701-705,
October 1966. (PA:67-11404)

SURFACE
Si
C VS V
EXPERIMENTAL ANALYSIS

EXPERIMENTAL ANALYSIS

66C1 Czaja, W.

DETECTION OF PARTIAL DISLOCATIONS IN SILICON WITH THE SCANNING ELECTRON BEAM TECHNIQUE

J. Appl. Phys., vol. 37, pp. 918-919, February 1966.

(PA:66-18315)

CRYSTAL PERFECTION
Si
ELECTRON MICROPROBE

Czaja, W.

RESPONSE OF Si AND GaP P-N JUNCTIONS TO A 5- to 40-KeV ELECTRON BEAM

J. Appl. Phys., vol. 37, pp. 4236-4248, October 1966.

(PA:67-1970)

DIFFUSION LENGTH, CRYSTAL PERFECTION

Si, GaP ELECTRON MICROPROBE EXPERIMENTAL ANALYSIS

EXPERIMENTAL

OPTICAL INHOMOGENEITIES IN GALLIUM ARSENIDE
J. Appl. Phys., vol. 37, pp. 1858-1866, March 15, 1966.
(PA:66-21721)
IMPURITY CONCENTRATION, CRYSTAL PERFECTION
GaAs
REFRACTIVE INDEX
APPARATUS
EXPERIMENTAL ANALYSIS

Everhart, T. E.
CERTAIN SEMICONDUCTOR APPLICATIONS OF THE SCANNING ELECTRON MICROSCOPE
The Electron Microprobe, T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, Eds., John Wiley & Sons, New York, 1966, pp. 665-676. (PA:67-24190)

JUNCTION, SURFACE Si ELECTRON MICROPROBE APPARATUS EXPERIMENTAL

Gallas, M., J. Kopestansky, and V. Kyslik
THE INVESTIGATION OF INHOMOGENEITIES IN SILICON SINGLE
CRYSTALS BY THE METHOD OF PHOTOELECTRIC CONDUCTIVITY
Czech. J. Phys. B, vol. 16, pp. 583-589, July 1966.
(PA:67-1949)

RESISTIVITY
Si
PHOTOCONDUCTIVITY
EXPERIMENTAL ANALYSIS

66H1 Howard, J. K., and R. D. Dobrott
COMPOSITIONAL X-RAY TOPOGRAPHY
J. Electrochem. Soc., vol. 113, pp. 567-573, June 1966.
(CA:65-141g)
CRYSTAL PERFECTION
GaAs, GaP, GaAs-InAs, Ge-Si
X-RAY TOPOGRAPHY
EXPERIMENTAL

Juleff, E. M., and A. G. Lafierre
PHOTOGRAPHIC EMULSION RELIEF TECHNIQUE FOR SMALL-AREA
INTENSITY COMPARISONS
J. Appl. Phys., vol. 37, pp. 3633-3634, August 1966.
(PA:67-1584)

CRYSTAL PERFECTION

X-RAY TOPOGRAPHY EXPERIMENTAL

Lublin, P., and W. J. Sutkowski
APPLICATION OF THE ELECTRON PROBE TO ELECTRONIC MATERIALS
The Electron Microprobe, T. D. McKinley, K. F. J. Heinrich,
and D. B. Wittry, Eds., John Wiley and Sons, New York, 1966,
pp. 677-690. (PA:67-24556)

IMPURITY CONCENTRATION
GaAS
ELECTRON MICROPROBE
SURFACE PREPARATION
EXPERIMENTAL

66L2 Layer, H. P., and R. D. Deslattes
A SIMPLE NONSCANNING CAMERA FOR X-RAY DIFFRACTION CONTRAST
TOPOGRAPHY
J. Appl. Phys., vol. 37, pp. 3631-3632, August 1966.
(PA: 67-1535)
CRYSTAL PERFECTION
Si

Si X-RAY TOPOGRAPHY APPARATUS EXPERIMENTAL

Munakata, C.
DETECTION OF RESISTIVITY STRIATIONS IN A Ge CRYSTAL WITH
AN ELECTRON BEAM
Japan J. Appl. Phys., vol. 5, p. 336, April 1966.
(PA:66-21392)

RESISTIVITY
Ge
ELECTRON-VOLTAIC
EXPERIMENTAL

66M2 Munakata, C.
ON THE VOLTAGE INDUCED BY AN ELECTRON BEAM IN A BULK SEMICONDUCTOR CRYSTAL
Japan J. Appl. Phys., vol. 5, pp. 756-763, September 1966.
(PA:67-7929)
RESISTIVITY

RESISTIVITY
Ge
[ELECTRON-VOLTAIC]
THEORETICAL

Munakata, C., and H. Watanabe
MEASUREMENT OF RESISTANCE BY MEANS OF ELECTRON BEAM - II
Japan J. Appl. Phys., vol. 5, pp. 1157-1160, December 1966.
(PA:67-14943)

RESISTIVITY
Ge
ELECTRON MICROPROBE
EXPERIMENTAL ANALYSIS

66M4 Mazur, R. G., and D. H. Dickey
A SPREADING RESISTANCE TECHNIQUE FOR RESISTIVITY
MEASUREMENTS ON SILICON
J. Electrochem. Soc., vol. 113, pp. 255-259, March 1966.
(PA:66-18515)
RESISTIVITY, JUNCTION
Si

[SPREADING RESISTANCE]
APPARATUS
EXPERIMENTAL

Nealey, C. C., C. W. Laakso, and P. J. Hagon
PLANAR SILICON DEVICE ANALYSES WITH THE ELECTRON PROBE
MICROANALYZER
The Electron Microprobe, T. D. McKinley, K. F. J. Heinrich,
and D. B. Wittry, Eds., John Wiley and Sons, New York, 1966,
pp. 748-783. (PA:67-24191)

IMPURITY CONCENTRATION, CRYSTAL PÉRFECTION, SURFACE, JUNCTION SI

[ELECTRON MICROPROBE]
EXPERIMENTAL

66S1 Sikorski, S.

DEMBER EFFECT IN AN INHOMOGENEOUS SEMICONDUCTOR AND BULK
PHOTOVOLTAIC EFFECT
Arch. Elektrotech., vol. 15, pp. 703-723, 1966 (in Polish).
RESISTIVITY
PHOTOVOLTAIC

PHOTOVOLTAIC THEORETICAL

Wittry, D. B.
CATHODOLUMINESCENCE AND IMPURITY VARIATIONS IN Te-DOPED
GaAs
Appl. Phys. Letters, vol. 8, pp. 142-144, March 15, 1966.
(PA:66-21789)

IMPURITY CONCENTRATION
GaAs
ELECTRON MICROPROBE
EXPERIMENTAL ANALYSIS

Zaininger, K. H.
AUTOMATIC DISPLAY OF MIS CAPACITANCE VERSUS BIAS
CHARACTERISTICS
RCA Rev., vol. 27, pp. 341-359, September 1966.
(EA:67-2123)

SURFACE
Si
C VS V
APPARATUS
EXPERIMENTAL

Zrudsky, D. R., H. D. Bush, and J. R. Fassett FOUR POINT SHEET RESISTIVITY TECHNIQUE Rev. Sci. Instrum., vol. 37, pp. 885-890, July 1966. (PA:66-27672)

RESISTIVITY FOUR-POINT APPARATUS EXPERIMENTAL 67Al Authier, A.
CONTRAST OF DISLOCATION IMAGES IN X-RAY TRANSMISSION
TOPOGRAPHY
Advances in X-Ray Analysis, vol. 10, J. B. Newkirk and
G. R. Mallett, Eds., Plenum Press, New York, 1967,
pp. 9-31.
CRYSTAL PERFECTION

CRYSTAL PERFECTION X-RAY TOPOGRAPHY REVIEW

American Society for Testing and Materials
TENTATIVE METHODS OF TEST FOR BULK SEMICONDUCTOR RADIAL
RESISTIVITY VARIATION
1967 Book of Standards, Part 8. To be published by
American Soc. for Testing and Materials, Philadelphia.
RESISTIVITY
TWO-POINT, FOUR-POINT
GENERAL PROCEDURES
EXPERIMENTAL ANALYSIS

Austerman, S. B., and J. B. Newkirk
EXPERIMENTAL PROCEDURES IN X-RAY DIFFRACTION TOPOGRAPHY
Advances in X-Ray Analysis, vol. 10, J. B. Newkirk and
G. R. Mallett, Eds., Plenum Press, New York, 1967,
pp. 134-152.
CRYSTAL PERFECTION
Y-RAY TOPOGRAPHY

CRYSTAL PERFECTION X-RAY TOPOGRAPHY GENERAL PROCEDURES REVIEW

67B1 Bonse, U. K., M. Hart, and J. B. Newkirk
X-RAY DIFFRACTION TOPOGRAPHY
Advances in X-Ray Analysis, vol. 10, J. B. Newkirk and
G. R. Mallett, Eds., Plenum Press, New York, 1967, pp. 1-8.
CRYSTAL PERFECTION
X-RAY TOPOGRAPHY
REVIEW

67C1 Carron, G. J.
X-RAY TOPOGRAPHIC CAMERA
Rev. Sci Instrum., vol. 38, pp. 628-631, May 1967.
(PA:67-29341)
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
APPARATUS
EXPERIMENTAL

67C2 Casey, H. C. Jr., and R. H. Kaiser
ANALYSIS OF N-TYPE GAAS WITH ELECTRON-BEAM-EXCITED
RADIATIVE RECOMBINATION
J. Electrochem. Soc., vol. 114, pp. 149-153, January February 1967. (EA:67-10423)

IMPURITY CONCENTRATION

IMPURITY CONCENTRATION
GaAs
ELECTRON MICROPROBE

ELECTRON MICROPROBE APPARATUS EXPERIMENTAL ANALYSIS

Dilatush, E.
MICROPROBE PROMISES BETTER SEMICONDUCTOR DEVICES
Electrical Design News, vol. 12, pp. 56-58, September 6,

1967.
RESISTIVITY, PROFILE
GaAs
TWO-POINT
APPARATUS
EXPERIMENTAL

67D2 Dionne, G.
HIGH-RESOLUTION X-RAY - DIFFRACTION TOPOGRAPHY USING K
RADIATION
J. Appl. Phys., vol. 38, pp. 4094-4096, September 1967.
CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
EXPERIMENTAL

67D3 Decker, D. R.

MEASUREMENT OF EPITAXIAL DOPING DENSITY VERSUS DEPTH

J. of Electrochem. Soc., vol. 114, p. 63C, abstract no. 96,

March 1967.

IMPURITY CONCENTRATION, JUNCTION

Si

C VS V

EXPERIMENTAL ANALYSIS

67E1 Esposito, R. M., J. J. Loferski, and H. Flicker CONCERNING THE POSSIBILITY OF OBSERVING LIFETIME - GRADIENT AND DEMBER PHOTOVOLTAGES IN SEMICONDUCTORS J. Appl. Phys., vol. 38, pp. 825-831, February 1967. LIFETIME Ge, Si

PHOTOVOLTAIC EXPERIMENTAL ANALYSIS

67F1 Frank, H., and S. A. Azim
MEASUREMENT OF DIFFUSION PROFILE OF Zn IN N-TYPE GaAs BY A
SPREADING RESISTANCE TECHNIQUE
Solid-State Electronics, vol. 10, pp. 727-728, July 1967.
CARRIER CONCENTRATION, JUNCTION
GaAs
SPREADING RESISTANCE
CONTACTS
EXPERIMENTAL ANALYSIS

67H1 Haisty, R. W.
ELECTRODELESS MEASUREMENT OF RESISTIVITIES OVER A VERY
WIDE RANGE
Rev. Sci. Instrum., vol. 38, pp. 262-265, February 1967.
(EA:67-18679)
RESISTIVITY

Ge IMPEDANCE APPARATUS EXPERIMENTAL

67H2 Haberer, J. R.
PHOTORESPONSE MAPPING OF SEMICONDUCTORS
Physics of Failure in Electronics, vol. 5, RADC Series in
Reliability, T. S. Shilliday and J. Vaccaro, Ed., 1967,
pp. 51-82. AD 655 397

SURFACE Si LIGHT MICROPROBE APPARATUS EXPERIMENTAL

Juleff, E. M., A. G. Lapierre, III, and R. G. Wolfson
THE ANALYSIS OF BERG - BARRETT SKEW REFLECTIONS AND THEIR
APPLICATIONS IN THE OBSERVATION OF PROCESS-INDUCED
IMPERFECTIONS IN (111) SILICON WAFERS
Advances in X-Ray Analysis, vol. 10, J. B. Newkirk and
G. R. Mallett, Eds., Plenum Press, New York, 1967,
pp. 173-184.

CRYSTAL PERFECTION
Si
X-RAY TOPOGRAPHY
EXPERIMENTAL ANALYSIS

67L1 Lehner, H. H.
PROBING TECHNIQUE FOR MEASURING THE POTENTIAL DISTRIBUTION
IN SEMICONDUCTORS
Rev. Sci. Instrum., vol. 38, pp. 699-700, May 1967.
(PA:67-29786)
RESISTIVITY, JUNCTION
GaAs

GaAs TWO-POINT APPARATUS EXPERIMENTAL

67M1 Mazur, R. G.
RESISTIVITY INHOMOGENEITIES IN SILICON CRYSTALS
J. Electrochem. Soc., vol. 114, pp. 255-259, March 1967.
(EA:67-20978)
RESISTIVITY
Si

SPREADING RESISTANCE EXPERIMENTAL Potter, C. N., and D. E. Sawyer
OPTICAL SCANNING TECHNIQUES FOR SEMICONDUCTOR DEVICE
SCREENING AND IDENTIFICATION OF SURFACE AND JUNCTION
PHENOMENA
Physics of Failure in Electronics, vol. 5, RADC Series in
Reliability, T. S. Shilliday and J. Vaccaro, Eds., 1967,
pp. 37-50. AD 655 397

SURFACE Si LIGHT MICROPROBE APPARATUS EXPERIMENTAL

Thornton, P. R., K. A. Hughes, Htin Kyaw, C. Millward, and D. V. Sulway
FAILURE ANALYSIS OF MICROCIRCUITRY BY SCANNING ELECTRON
MICROSCOPY
Microelectronics and Reliability, vol. 6, pp. 9-16,
February 1967. (EA:67-9145)

SURFACE
Si
ELECTRON MICROPROBE
EXPERIMENTAL

Tihanyi, J., and G. Pasztor
OBSERVATION OF SURFACE PHENOMENA ON SEMICONDUCTOR DEVICES
BY A LIGHT SPOT SCANNING METHOD
Solid-State Electronics, vol. 10, pp. 235-239, March 1967.
(PA:67-17994)

SURFACE Si LIGHT MICROPROBE APPARATUS EXPERIMENTAL

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, chemistry, and engineering. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts.

Published in three sections, available separately:

Physics and Chemistry

Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, \$5.00; foreign, \$6.00*.

Mathematical Sciences

Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, \$2.25; foreign, \$2.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer and the applied scientist. This section includes many of the new developments in instrumentation resulting from the Bureau's work in physical measurement, data processing, and development of test methods. It will also cover some of the work in acoustics, applied mechanics, building research, and cryogenic engineering. Issued quarterly. Annual subscription: Domestic, \$2.75; foreign, \$3.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning the Bureau's research, developmental, cooperative and publication activities, this monthly publication is designed for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, \$1.50; foreign, \$2.25*.

NONPERIODICALS

Applied Mathematics Series. Mathematical tables, manuals, and studies.

Building Science Series. Research results, test methods, and performance criteria of building materials, components, systems, and structures.

Handbooks. Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS conferences, bibliographies, annual reports, wall charts, pamphlets, etc.

Monographs. Major contributions to the technical literature on various subjects related to the Bureau's scientific and technical activities.

National Standard Reference Data Series. NSRDS provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated.

Product Standards. Provide requirements for sizes, types, quality and methods for testing various industrial products. These standards are developed cooperatively with interested Government and industry groups and provide the basis for common understanding of product characteristics for both buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of communications and reports (covering both other agency and NBS-sponsored work) of limited or transitory interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and Technical Information, operated by NBS, supplies unclassified information related to Government-generated science and technology in defense, space, atomic energy, and other national programs. For further information on Clearinghouse services, write:

Clearinghouse
U.S. Department of Commerce
Springfield, Virginia 22151

Order NBS publications from:
Superintendent of Documents
Government Printing Office
Washington, D.C. 20402

^{*}Difference in price is due to extra cost of foreign mailing.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE