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We construct an elementary equation fθ (x) with a single real valued parameter θ ∈ [0, 1]
that, as θ varies, is capable of fitting any scatter plot on any number of points to within
a fixed precision. Specifically, given ε > 0, we may construct fθ so that for any
collection of ordered pairs {(xj, yj)}nj=0 with n, xi ∈N and yi ∈ (0, 1), there exists a
θ ∈ [0, 1] giving |fθ (xj) − yj | < ε for all j simultaneously. To achieve this, we
apply results about the logistic map, an iterated map in dynamical systems the-
ory that can be solved exactly. The existence of an equation fθ with this property
highlights that “parameter counting” fails as a measure of model complexity when
the class of models under consideration is only slightly broad. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5031956

I. INTRODUCTION

The mathematician John von Neumann famously admonished that with four free parameters he
could make an elephant, and with five he could make it wiggle its trunk.1 Indeed, the number of free
parameters is often taken as a proxy of model complexity intuitively as well as in quantitative model
comparison measures like AIC2 and BIC.3 While these measures can be shown to be statistically
principled or optimal for certain classes of models,4 they are often used to evaluate arbitrary models
by practitioners in a given field. The aim of this short note is to show that, in fact, very simple,
elementary models exist that are capable of fitting arbitrarily many points to an arbitrary precision
using only a single real-valued parameter θ. This is not always due to severe pathologies—one such
model, studied here, is infinitely continuously differentiable as a function of θ and x. The existence
of this model has implications for statistical model comparison, and shows that great care must be
taken in machine learning efforts to discover equations from data5–7 since some simple models can
fit any data set arbitrarily well.

We will consider the simple setting of a scatter plot of x-values at natural numbers 0, 1, 2, 3,
. . ., n and y-values in (0, 1). We show how to construct an elementary function fθ that, as θ varies,
may fit any collection of ordered pairs {(xi, yj)}nj=0 to an arbitrary precision ε > 0. The existence of a
solution for x = 0, 1, 2, . . ., n implies the existence of solution for any subset of these integers. The
general approach taken here will be to first find an initial condition of a chaotic dynamical system
whose orbit comes close to values related to each yj. Then, an exact solution of this dynamical system
yields a friendly and simple equation y = fθ (x) that, as x varies, recovers the system’s dynamics
with initial condition θ. This approach is related to attempts to encode computations into chaotic
dynamical systems.8,9 The techniques deployed here are not novel mathematically, but this lesson
from dynamical systems theory has not been explicitly articulated in the literature on statistics and
model comparison.

II. A DERIVATION OF fθ

We will make use of the logistic map m(z) = 4z(1 − z) whose iterated application can be solved
exactly10 for a given initial value θ as
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mk(θ)= sin2
[
2k arcsin

√
θ
]
. (1)

This solution follows from the double angle identity,

m(sin2(z))= 4 sin2(z)(1 − sin2(z))

= 4 sin2(z) cos2(z)

= sin2(2z)

(2)

and the requirement that m0(θ) = θ. The map m is chaotic11 and it is well-established that m may be
viewed as a shift map on θ through its conjugacy via ϕ(z) = sin2(2πz) to the Bernoulli map,

S(z)=




2z if 0 < z <
1
2

2z − 1 if
1
2
≤ z < 1.

(3)

S has the effect of removing the first bit of a binary expansion 0. z1z2z3· · · of z, so that

S(0.z1z2z3 · · · )= 0.z2z3 · · · . (4)

This property of S means that we may construct a real number ω ∈ (0, 1) whose orbit under S will
bring it arbitrarily close to each member of any collection of points. Specifically, let us fix ε > 0 and
choose r ∈N so that 2−r < ε /2. We will define y′j = ϕ

−1(yj) and denote the binary expansion of y′j
as 0.y′j1y′j2y′j3 · · · . Define the parameter value ω ∈ (0, 1) by concatenating the first r binary digits of
each y′j ,

ω = 0.y′11y′12 · · · y
′
1ry′21y′22 · · · y

′
2r · · · y

′
n1y′n2 · · · y

′
nr . (5)

Due to the construction of ω and the ability to interpret S as removing the leftmost bit, Srj(ω) agrees
with y′j on its first r bits, so,

|Srj(ω) − y′j | < 2−r < ε/2 for all j = 0, 1, 2, . . . , n. (6)

The ability to construct such an orbit relies ultimately on the fact that S is continuous and topologically
mixing. Since ϕ is a homeomorphism between S and m, Srj = ϕ−1◦mrj◦ϕ. Moreover, ϕ is Lipschitz
continuous and in particular 2 |x − y| > |ϕ(x) − ϕ(y)| for all x, y ∈ (0, 1). Putting these two facts
together with (6) yields that for all j,

ε > 2 |Srj(ω) − y′j | = 2 |ϕ−1(mrj(ϕ(ω)))
)
− ϕ−1(yj)| > |m

rj(ϕ(ω))
))
− yj |, (7)

where the last inequality follows the Lipschitz condition and application of ϕ to each term inside the
absolute value. This presentation has elided one technical factor, which is that ϕ is not one-to-one
on (0, 1) and so ϕ−1 has two possible values. This has the consequence that in (7), mrj(ϕ(ω))

))
may

be close to either yj or 1 − yj, since ϕ is symmetrical about 1/2. To address this, we may always use
the lower value for ϕ−1 and scale the yj so that they are always below 0.5. This scaling may then be
inverted in the output of the final equation if desired.

Equation (7) shows that mrj will come ε close to each of the yj when started on value θ = ϕ(ω).
Thus, we may define a single parameter equation,

fθ (x)=mrx(θ)= sin2
[
2rx arcsin

√
θ
]

(8)

where choosing θ = ϕ(ω) yields that |fθ (xj) − yj | < ε for all j. Of course, the yj were freely chosen,
showing that fθ can approximate any data set {(xj, yj)}nj=0 as θ varies in [0, 1]. Note that for a fixed
ε , the number of data points n that can be fit is not bounded, although the number of bits of pre-
cision required of θ scales linearly with n (and also with r). In addition, this fθ is continuous and
differentiable—indeed infinitely continuously differentiable—and so it will satisfy nearly all regular-
ity conditions that would normally weed out such pathological functions in the context of parameter
estimation.
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FIG. 1. A scatter plot of fθ for θ = 0.2446847266734745458227540656· · · plotted at integer x values, showing that a single
parameter can fit an elephant (left). The same model run with parameter θ = 0.0024265418055000401935387620· · · showing
a fit of a scatter plot to Joan Miró’s signature (right). Both use r = 8 and require hundreds to thousands of digits of precision
in θ.

To illustrate that (8) can fit an arbitrary data set as θ varies, Figure 1 shows the value fθ (0), fθ (1),
fθ (2), . . ., for two values of θ. Each parameter value was created by following the construction above
using target yj chosen at each x value from the black pixels of a line drawing of either an elephant (left)
or signature (right). The implementation used the arbitrary precision library mpmath in python12 and
is here made freely available.13 Both data sets are able to be fit well by fθ (x) if θ is appropriately
tuned, as shown by the figures. This single parameter model provides a large improvement over the
prior state of the art in fitting an elephant.14,15 Note that the only shown x values are integers, even
though fθ is defined for all real numbers. Between the shown integers are the rapidly oscillating
sinusoidal patterns implied by (8).

III. DISCUSSION

The equation fθ (x) is extraordinarily sensitive to its single parameter θ and in fact will generalize
to x > n in ways that depend only on the digits of θ are after the last digit of y′n. Thus, while fitting
the data, generalization behavior is completely determined by the free parameter’s less significant
digits. This implies that there can be no guarantees about the performance of fθ in extrapolation,
despite its good fit. Thus, the construction shows that even a single parameter can overfit the data,
and therefore it is not always preferable to use a model with fewer parameters. This fact is related to
the observation, in a setting of classification, that f (x) = sin(x) has an infinite VC-dimension.16

The existence of such a simple equation with such freedom in behavior illustrates a more basic
problem that model complexity cannot be determined by counting parameters. More generally, uncrit-
ical use of a “parameter counting” approach ignores the fact that a single real-valued parameter
potentially contains an unboundedly large amount of information since a real number requires an
infinite number of bits to specify—a fact that is inherently problematic.17 Indeed, the set of real
numbers that can even be described with finitely many bits (e.g. by a Turing machine) is countable
and thus has measure zero. Given the existence of injective maps between Rn and R,18 the number of
parameters in a model cannot be a meaningful measure of its complexity once the class of models is
large enough to implement these maps and effectively decode one single number into many. However,
such embeddings are not continuous nor likely constructible as an ordinary looking equation that a
scientist is likely to encounter.

The example provided in this paper shows that the infinite amount of information in a real
valued parameter can be decoded quite simply, using just sin and exponentiation. The existence
of such a simple yet problematic equation shows that attempts both at broad model comparison and
automatic discovery of equations from data may often be ill-posed. Quantitatively, parameter-counting
and maximum-likelihood methods should be dispreferred relative to model comparisons based on
measures that incorporate the precision of real-valued parameters, such as Minimum Description
Length.19 Alternatively, such problems can be avoided by comparison methods like cross-validation
that implicitly penalize over-fitting. The result also emphasizes the importance of constraints on
scientific theories that are enforced independently from the measured data set, with a focus on careful
a priori consideration of the class of models that should be compared.4
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10 E. Schröder, “Ueber iterirte functionen,” Mathematische Annalen 3, 296–322 (1870).
11 R. Devaney, An Introduction to Chaotic Dynamical Systems (Westview Press, 2008).
12 F. Johansson, “mpmath: A Python library for arbitrary-precision floating-point arithmetic” (2013).
13 Https://github.com/piantado/OneParameterIsAlwaysEnough.
14 J. Wei, “Least square fitting of an elephant,” Chemtech 5, 128–129 (1975).
15 J. Mayer, K. Khairy, and J. Howard, “Drawing an elephant with four complex parameters,” American Journal of Physics

78, 648–649 (2010).
16 J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learning, Vol. 1 (Springer series in statistics New

York, 2001).
17 N. Gisin, “Indeterminism in physics, classical chaos and bohmian mechanics. are real numbers really real?,” arXiv preprint

arXiv:1803.06824 (2018).
18 G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathematische Annalen 36, 157–160 (1890).
19 P. D. Grünwald, The Minimum Description Length Principle (MIT press, 2007).

https://doi.org/10.1038/427297a
https://doi.org/10.1109/tac.1974.1100705
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1126/science.1165893
https://doi.org/10.1103/physrevlett.81.2156
https://doi.org/10.1109/tcsi.2002.804551
https://doi.org/10.1007/bf01443992
http://Https://github.com/piantado/OneParameterIsAlwaysEnough
https://doi.org/10.1119/1.3254017
https://arxiv.org/abs/1803.06824
https://doi.org/10.1007/bf01199438

