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Tropical rainforests are known for their extreme biodiversity,
posing a challenging problem in tropical ecology. Many
hypotheses have been proposed to explain the diversity of tree
species, yet our understanding of this phenomenon remains
incomplete. Here, we consider the contribution of animal seed
dispersers to the species diversity of trees. We built a multi-
layer lattice model of trees whose animal seed dispersers
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are allowed to move only in restricted areas to disperse the tree seeds. We incorporated the effects
of seed dispersers in the traditional theory of allopatric speciation on a geological time scale. We
modified the lattice model to explicitly examine the coexistence of new tree species and the resulting
high biodiversity. The results indicate that both the coexistence and diversified evolution of tree
species can be explained by the introduction of animal seed dispersers.

1. Introduction
Tropical rainforests are known for their extreme angiosperm diversity [1,2]: their biological richness
exceeds that of any other plant community. Beginning in the 1970s, many hypotheses have been
advanced to explain this high diversity [3–6]. Some of the hypotheses are based on ecological factors,
such as seed predators, pathogens, seed banks, pollinators, light conditions, ant–plant interactions and
seedling survival [7–23]. Among them, the negative density dependence of seedlings demonstrates the
importance of seed predation, pathogens and seedling survival [19–24]. Other hypotheses reflect the
statistical properties of migration and extinction [6,25,26]. Although there are many plausible causes
of the extreme tree diversity of tropical rainforests, we still have no conclusive explanation of the
mechanisms for the coexistence of so many tree species in tropical rainforests [1–3,6,26–28].

Among the ecological factors affecting tree species diversity, the importance of biotic interactions
has been noted, especially mutualistic interactions [17,29–32]. Mutualism is a characteristic feature of
tropical rainforests. Most tree species in tropical rainforests are angiosperms known to produce nectar
and pollen in flowers attractive to insect and vertebrate pollinators and to bear fruit eaten by seed-
dispersing animals [2]. Many intriguing cases of tight species-to-species mutualism are known in insects
[8–10,29–34], e.g. a fig tree and its fig wasp, and orchids and their pollinators; the effects of pollinators
and ant–tree interactions have been considered theoretically [18,33]. Angiosperm trees have been found
to have relatively close relationships with specific seed dispersers, notably birds, bats and some other
mammals [35–37], in mutualisms characterized as dispersal syndromes [38]. For example, some tree
species yield a hard seed that can be broken and germinated only by elephants [39]. The importance of
seed dispersers for the coexistence of tree species is well established [35–37,40,41]. Thus, the diversity
of angiosperm tree species may originate from and is maintained by the mutualistic relationships
of tree species and their pollinators and seed dispersers. Recent models explore the contribution of
seed dispersers to tree diversity [42–46]. Here, we incorporate animal movements (paths) into a lattice
space model.

We propose that the present extremely high diversity of tree species in tropical rainforests originates
from tight mutualisms among angiosperm trees and their specific animal seed dispersers. In our
model, we introduce species-specific animal movements for seed dispersal. These movements reduce
competition among tree species. Because each animal species has a unique movement pattern [47–49],
the dimensions of its habitat become uniquely species-specific [50,51]. Therefore, we may find an animal
in one location, but never in another, even if the required habitat components are the same [52].

Geologically, tropical rainforests have experienced repeated fragmentations due to climatic
oscillations [2,53–57]. Milankovich cycles and changes in the composition of the atmosphere have
resulted in alternating glacial and interglacial periods, causing sea-level oscillations over approximately
120 m during the Cenozoic Era [58]. As a result, since the beginning of the Cenozoic Era, land areas
(in particular, those supporting tropical rainforests) have been repeatedly fragmented by increasing
sea levels during warm interglacial periods, then reunited by decreasing sea levels during cool glacial
periods. Even on large continents such as those on which the Amazon and the African tropics occur,
savannah communities predominated during glacial periods because of a decrease in precipitation
[2,29,56]. During the glacial periods, rainforests were evidently separated and confined to small areas
of each continent. These processes promoted speciation in many angiosperm tree lineages as well as
in birds and insects. High species diversity in a community implies highly frequent speciation events
and less frequent extinctions [57,59,60]. In this study, our models consider frequent allopatric speciation
events due to repeated separations and reunifications of habitats caused by intermittent ice ages [61].
Allopatric speciation is assumed to have occurred in every mutualistic pair of a tree species and its
partner. For example, if a single habitat were separated into three isolated areas twice, the total number
of species would be 32 = 9 tree species [57]. If a habitat were separated four times, then the total is 34 = 81
tree species. Hence frequent geographical fragmentation is suggested as a core mechanism producing the
high species diversity in many rainforest taxa [53,61].
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Here, we build a lattice simulation model to incorporate the role of animal seed dispersers in the

coexistence of tree species. We investigate whether the movements of animal seed dispersers affect tree
species diversity and what characteristics of the movement of animals are important for the coexistence
of tree species. In our basic model, we evaluate the effects of seed dispersers on the coexistence of
tree species. In the extended evolutionary model, we incorporate the traditional theory of allopatric
speciation by repeated fragmentation on a geological time scale to examine the promotion of species
diversity.

2. Material and methods
2.1. Lattice model framework
Focusing on the mutualism between seed plants and their seed dispersers, we built a multi-layer lattice
model of tree species with animal seed dispersers (figure 1a,b). All tree species grow in the plant
layer of the lattice, while each animal has its own species-specific habitat and disperses the seeds
of its partner within its habitat range in its own lattice layer. We assume species-specific patterns of
seed dispersal by animal partners reduce interspecific competition among tree species, promoting their
coexistence.

To verify the coexistence and persistence of tree species, we first built a (n + 1) multi-layer lattice
ecosystem model with n tree species (Pi for i = 1, 2, . . ., n) and their corresponding seed dispersers (Ai for
i = 1, 2, . . ., n; figure 1a,b). The lattice size is 200 × 200 cells. The first layer is a plant layer (L0), in which
all tree species grow, and each animal species (Ai) moves within its own layer (Li for i = 1, 2, . . ., n) to
disperse seeds (figure 1a). Each cell in the plant layer (L0) is either occupied by the ith tree species (Pi) or
unoccupied (vacant: O0). The seeds of a plant (Pi) are carried only by its animal partner (Ai) (figure 1b).
The cells in an animal layer of the lattice are classified into two types: (i) cells where animals of species i
can visit (either occupied or vacant: Ai or Oi, respectively) and (ii) cells where animals of species i cannot
visit (unvisited site: Ui).

We evaluated the overall effects of the unvisited cells by varying their proportion in the animal
lattice layers. As a control, we also built a single-layer lattice model without animals, where seeds were
dispersed globally.

2.2. Specifications for the population model
To explore specifically the effects of animal–plant interactions on tree diversity, we introduced the
following simplifications: animals are immortal with no reproduction, flowers are automatically
pollinated to produce seeds and, after a seed is carried to a vacant cell, it will automatically grow to
an adult tree, unless it dies (with a constant risk of mortality).

The process of seed dispersal and reproduction is as follows. In an animal layer (Li), we pick a cell
randomly. If the cell is occupied by an animal (Ai), we randomly choose one vacant cell (Oi) and move the
animal to that cell, i.e. Ai + Oi → Oi + Ai (figure 1b). When the animal Ai moves, it carries and disperses
the Pi seed if the animal was located above the cell where the Pi plant grows. If the seed is carried into
a vacant cell, it automatically grows to an adult tree, i.e. Pi + Oi → Oi + Pi (figure 1b). Definitions of our
symbols are given in table 1.

We varied the unvisited rates u of a plant species as follows. In the initial simulations, we set the
unvisited rate u to be the same for all species. We varied the constant unvisited rate between 0 and 1 to
examine its effects on the number of coexisting species. We also varied the unvisited rates of species to
examine the superiority of species among species, such that ui = 1.0 − 0.1i. We also considered the case
when seed-dispersal mutualisms are not perfectly species-specific. When animal Ai moves to the cell
where the Pj ( j �= i) plant grows, it carries and disperses the Pj seed with a decreased probability (20%
or 50%).

A randomly chosen plant also dies at a constant mortality rate mi, i.e. Pi → Oi. Here, we make the
species-specific mortality rates differ among species such that mi = 0.11 − 0.01i for i = 1, . . . , 8. The reason
for this difference among species is to expedite simulation results. If we set the same mortality rate among
all species, the simulation generates random walks in which the convergence time becomes excessively
long. This species difference also makes the coexistence of species much less likely in the context of
competitive interactions. We also examined the effects of mortality on the number of coexisting species
and their density. Here, we keep the mortality of all species identical (the basic mortality M = mi for
i = 1, . . . , 8), and the unvisited rates are varied among species such that ui = 1.0 − 0.1i for i = 1, . . . , 8.
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Figure 1. Schematic diagram of the population and evolution models. (a) Schematic diagram with two tree species (P1 and P2 on plant
layer L0) and the corresponding seed dispersers (birds A1 on layer L1 and squirrels A2 on L2). In each animal layer, the grey cells (U1 and
U2) indicate unvisited sites (where animals never visit). (b) An animal (bird) eats a fruit (apple) at the tree (P1) and drops a seed at an
unoccupied site (O1) that results in a new apple tree. (c) The fragmentation process repeats at every 6000 MCS, such that (stage I: a
single habitat)→ 3000 MCS→ (stage II: habitat separation and stage III: species differentiation)→ 3000 MCS→ (stage IV: habitat
reunification and resulting species coexistence= stage I).

Table 1. Glossary of symbols.

symbol description

Pi plant growth sites (cells). The subscript denotes species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ai sites visited by animals (cells). The subscript denotes species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Li layers. L0: a plant layer; L1–Ln: animal layers for A1–An
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ui unvisited sites (cells). The subscript denotes species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Oi unoccupied sites (cells). The subscripts denote either a layer, animal species, or both
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ui, unvisited rates. The subscript denotes species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mi mortality rates. The subscript denotes species
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v niche-shift probability
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We performed this procedure for a given number of (Monte Carlo) steps. We set each Monte Carlo step
(MCS) as 200 × 200 times. The initial densities of Ai and Pi are 0.1 for all population simulations. The
template of a simulation program for the population model is provided in the electronic supplementary
material, text S1.
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2.3. Specifications for the evolutionary model
To simulate the evolutionary diversification of tree species, we applied repeated separations and
unifications of habitats in the lattice model, where the separated trees and animal partners were assumed
to evolve a new mutualistic relationship. The diversification of tree species was evaluated by the same
lattice model by introducing repeated geographical isolations (figure 1c). The procedure consists of
four stages: (I) the initial single-lattice habitat; (II) two isolated habitats; (III) the species differentiation
stage, where each tree–animal system has diverged into two independent systems; and (IV) the habitat
unification stage, where the isolated habitats are reunited into a single large habitat (=stage 1). This
process approximates the evolutionary diversification of trees and their associated seed dispersers
during repeated fragmentation by glacial periods on a geological time scale. A single large habitat
before glaciation episodes (I) becomes isolated into two small isolated habitats when glaciation begins
(II). During the glacial period (III), trees and their associated seed dispersers diverge into two distinct
species. After the glacial period (IV), the two isolated habitats are united, owing to global warming
during the following interglacial period. Geologic evidence indicates this process was repeated over
many glacial periods during the Cenozoic Era [62], yielding the diversification of many animal and plant
taxa [53,63,64]. We then evaluated the number of surviving species after the repeated fragmentations and
unifications of the lattice space.

All the combinations of trees and animal dispersers are doubled during stage III when the habitat
is separated. At stage II, the entire lattice is divided in half (200 × 100 cells). At stage III, we introduce
speciation in all tree–animal interactions, i.e. a partnership (Pi − Ai for i = 1, 2, . . ., n) → two independent
partnerships (Pij − Aij and Pij − Aij for i = 1, 2, . . ., n and j = 1, 2, where j denotes an isolated habitat).
Stage IV becomes Stage I of the next speciation cycle. After speciation begins, habitat modification occurs
such that when the lattice space is divided in half, the distribution of the unvisited sites Ui is modified
into two different distributions (Ui1 and Ui2) in the following manner. The animals Aij are resident in each
half lattice (j = 1, 2), the unvisited cells Uij in the j-lattice remain unmodified, while the unvisited cells
Uik (k �= j) in the k-lattice are moved to its neighbouring cells with a niche-shift probability (v: described
below), such that Uij + Oij → Oij + Uij. Here, we modify the neighbouring cells in particular, because the
niche shift of new species differs only slightly from habitat preferences compared with parental species
(phylogenetic niche conservatism) [65,66]. If the selected cell is either an already unvisited cell or outside
the boundary, movement to the cell is negated. If the niche-shift probability v = 0, then no speciation
takes place, while a non-zero v means speciation with niche shift from the original habitat (visited cells).
We set v as the same value among all species, assuming speciation is synchronized between trees and
seed dispersers. Biotic interactions, such as host–mutualist and host–parasite interactions, are known
to yield synchronized divergence patterns [34,67,68]. To explore temporal dynamics, we set v = 10−2

for the initial simulation. To evaluate the effects of v and u, we set v between 10−2 and 10−5 for the
current simulations. We varied the unvisited rates u of a species, as follows. In the initial evolutionary
simulations, we set the unvisited rate u = 0.8 for all species. We also varied the constant unvisited rate
between 0 and 1 to examine its effects on the number of coexisting species. When we evaluated the effects
of niche-shift probability v, we set u = 0.8, 0.6 and 0.4.

We start with three species and this fragmentation process is repeated three times: three plant species
(Pi for i = 1, 2, . . ., n, where n = 3). Therefore, the total number of coexisting species if no extinction takes
place becomes 3 × 2 = 6 species (Pij for j = 1, 2) in a single iteration, 6 × 2 = 12 species (Pijk for j, k = 1, 2)
for two iterations, and 12 × 2 = 24 (Pijkl for j, k, l = 1, 2) for three iterations. Initially, we set the species-
specific mortality rates of three species, such that mi = 0.032 − 0.02i for i = 1, 2, 3 and all the derived
species are assigned the same mortality rate as the parental species. The initial densities of Ai and Pi
were 0.2 for all evolutionary simulations. The template of a simulation program for the evolutionary
model is provided in the electronic supplementary material, text S2.

3. Results
The coexistence and persistence of species diversity was verified using a (8 + 1) multi-layer lattice
ecosystem model with eight tree species and their corresponding eight animal species for seed dispersal
(figure 2). When there were no unvisited sites (u = 0), the tree species with the lowest mortality
(m8 = 0.03) excluded all other species immediately, occupying 80% of the lattice space (figure 2a). By
contrast, when 80% of the lattice space consisted of unvisited sites (u = 0.8), all the tree species coexisted
with less than a 0.2 steady-state density (figure 2b). In this case, the steady-state density of species
depended on the mortality rate, such that superior species (species with a lower mortality rate) occurred
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Figure 2. Persistence of eight tree species in the multi-layer lattice model of tropical rainforests. (a) Dynamics with no unvisited sites
(unvisited rate: u= 0). (b) Dynamics with a high unvisited rate (u= 0.8). (c) The number of surviving species at steady state against u.
(d–f ) Steady-state densities against u, when the animal Ai carries and disperses the Pj ( j �= i) seed with (d) 0%, (e) 20% or (f ) 50%
probability. (g) The number of surviving species as a function of mortality rate mi = M. (h) Steady-state densities against M. (a–f )
Mortality rates of individual species aremi = 0.11 − 0.01i. (c–h)Mean values of 30 trials. Steady-state density is estimated at 3000 MCS,
because all simulation runs reach a steady state by 1000 MCS. (g,h) Unvisited rates of individual species are ui = 1.0−0.1i. (a–h) The
initial densities of Ai and Pi = 0.1. The drawing was created by S.H. and J.Y.

at high densities. Thus, coexistence of two or more tree species was nearly impossible when tree seeds
were randomly dispersed (u = 0), while coexistence was guaranteed when the dispersal of tree seeds
were highly restricted due to limited animal movements (u = 0.8). When seeds were dispersed globally
without animals, the tree species with the lowest mortality rate (m8 = 0.03) excluded all other species,
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Figure 3. Diversification model via repeated habitat fragmentation in the multi-layer lattice model of tropical rainforests. (a) Dynamics
of species diversity. (b) Density dynamics of all species. (c) The final number of species against the unvisited rate u for various levels of
shift rate v in unvisited sites. With probability v, an unvisited site is shifted to a neighbouring cell (v = 10−2, 10−3, 10−4 and 10−5).
(d) The final number of species against the probability v for various u (=0.4, 0.6 and 0.8). (c,d) The averages of 30 trials were measured
at 21 000 MCS. Parameters are: m1 = 0.03, m2 = 0.028 and m3 = 0.026 and the initial densities of Ai and Pi = 0.2. The drawing was
created by S.H. and J.Y.

which also occurred with animal dispersal with no unvisited sites (u = 0) (electronic supplementary
material, figure S1).

We plotted the number and densities of tree species against the rates at which they were not visited
(‘unvisited’) (figure 2c,d). When the unvisited rate increased, the number of coexisting species increased
as a stepwise function, totalling eight species at about u = 0.8 (figure 2c). For the density of species, when
the unvisited rate increased, the density of already existing species decreased, while newly coexisting
species increased in density (figure 2d). When u = 0.75−0.99, all eight species coexist with very low
densities.

When the species specificity of seed dispersal is lower, the number of coexisting species decreases
compared with perfect species-specificity (figure 2c). However, when the unvisited rate is high, the
results are the same if animals can disperse the seeds of other plant species with a 20% probability. Even
if this probability is increased to 50%, the number of coexisting species converges when the unvisited rate
approaches unity. Thus, this mechanism is highly effective even if animal dispersers exhibit diminished
species-specificity.

We plotted the number and densities of tree species against the basic mortality rates M (identical for
all eight species), while the unvisited rates varied among species (ui = 1.0 − 0.1i for i = 1, . . ., 8). When
the basic mortality rate was low (M < 0.1), all eight species coexisted (figure 2e). When mortality rates
were further increased, the number of surviving species decreased rapidly, reaching only one species at
approximately M = 0.3. As the basic mortality rate M increased, the densities of all species decreased
(figure 2f ). Here, a superior species remaining at a higher steady-state density always had a lower
unvisited rate. Thus, species with a low unvisited rate always maintained a high density. However,
coexistence became impossible when all animals moved freely to disperse seeds, i.e. u = 0 (figure 2c,d),
or when the mortality rate was too high (figure 2e,f ).



8

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150330

................................................
Figure 3 shows the simulation results for the diversified evolutionary model. Figure 3a shows the

temporal dynamics of the number of coexisting species starting from three species (mi = 0.11 − 0.01i, for
i = 1, 2, 3), all with a 0.2 initial density with the unvisited rate u = 0.8 and the niche-shift probability
v = 10−2. With speciation events, the total number of coexisting species reached 24 species with no
extinctions (figure 3a). The temporal dynamics of densities (figure 3b) showed a large reduction in
density when the lattice space was fragmented into two halves because the number of species doubled
(Stage II and III). Accordingly, when the fragmented lattices were reunited, the density of each species
was increased.

We plotted the number of surviving species against the unvisited rate u for four different levels of the
niche-shift probability v (10−2, 10−3, 10−4 and 10−5) (figure 3c). When the niche-shift probability v was
relatively large (v = 10−2 − 10−3), no extinction occurred; this resulted in the maximum of 24 species
as long as the unvisited ratio was high (u > 0.8). However, when v was smaller (v = 10−4), extinctions
occurred, resulting in fewer than 24 species, even if the unvisited ratio was sufficiently high (u > 0.8).
Furthermore, when v was too small (v = 10−5), the number of surviving species became close to the
initial number of species.

To extend our analysis, we plotted the number of surviving species against the niche-shift probability
v for three different levels of the unvisited rate (0.4, 0.6 and 0.8) (figure 3d). These plots reveal an optimal
level of the niche-shift probability (v), indicating that the behavioural pattern of animals is critical for the
coexistence of tree species; this trend became evident when u = 0.4 and 0.6.

4. Discussion
Our results indicate that the existence of habitat patches not visited by animal dispersers has an
important role in the coexistence of species (figure 2). If there are no unvisited patches (u = 0), animals
can move into any sites and deposit the seeds they carry, which is equivalent to random dispersal. In
this case, one superior species immediately drives the others to extinction (figure 2a). By contrast, if there
are many unvisited patches, some sites are likely to be almost exclusively available to one plant species,
because of the limited access other species-specific animal dispersers have to these sites. In the extreme
case, some sites are available to one animal species only, as the remaining animal species fail to visit these
sites. Thus, each tree species occupies specific sites unavailable to the other tree species. Interestingly, the
complete exclusion of seed dispersal appears unnecessary to promote coexistence of tree species. It is
unknown how many species can coexist in the 40 000 sites (200 × 200 cells), but at least 24 species are
possible in the current simulations (figure 3a).

Our model assumes many strict conditions, which may limit its general applicability to tropical
rainforests. For example, our model assumes an exclusive one-to-one relationship between a tree species
and its seed disperser. In reality, frugivorous animals are often considered generalists [69,70]. Because
animals eat many types of fruit, they are likely to carry the seeds of other plants, albeit with lower
probabilities. To explore this possibility, we ran the simulation with lowered relationship specificities.
The results show that the coexistence of many species is still highly maintained, in spite of lower species
specificity in seed dispersal (figure 2c). However, there remains a large gap between our assumptions
and actual scenarios with frugivores.

Coexistence of multiple species, in our models, is achieved under the following necessary conditions:
(i) there are mutualistic seed dispersers with specific movements (resulting in unvisited sites); (ii) the
entire ecosystem (here, the whole lattice space) is divided and united repeatedly; (iii) when the ecosystem
is divided into two or more patches, speciation occurs in both trees and their associated animal
dispersers; and (iv) the changes in behavioural patterns and resulting dispersal sites should be neither
too small nor too large. If the niche shift is too small, competitive exclusion takes place involving
the parental species. If the niche shift is too large, then the unvisited sites of new animal species are
distributed randomly. Thus, slight deviations from niches of the parental species seem important to
promote coexistence of closely related species.

There is strong evidence that the fragmentation of distribution ranges results in the loss of diversity
[71], probably because the likelihood of extinction increases when the ranges are small. Plant population
sizes sufficient to avoid extinction are rather small in our models because the persistence of tree species
is guaranteed by seed dispersers (figure 2). In our evolutionary model, fragmentation does not cause
the extinction of all species because mutualistic seed dispersers prevent the competitive exclusion of tree
species through the animals’ unique dispersal behaviour (figure 3a,b). Moreover, the number of species
may be increased exponentially by repeated fragmentation events.
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Our hypothesis for extreme diversity in tropical rainforest trees incorporates two critical components:

(i) mutualisms between animal seed dispersers and angiosperms and (ii) repeated geographical
isolations during the Pleistocene. These elements occur in a unique historical context, where
tropical rainforests are restricted to equatorial regions during glacial maxima [54,55]. While few
hypotheses for rainforest tree diversity consider the importance of the historical backdrop, our
hypothesis rests on assumptions explicitly addressing the biogeographic elements common to tropical
rainforests generally [72].

Although our models provide theoretical support for the hypotheses that dispersal syndromes and
range contractions promote speciation and the coexistence of tree species in the tropics, it ignores
many important aspects of tropical rainforests, such as plant–pollinator mutualisms and phylogenetic
constraints that act on trees and animal seed dispersers [29]. A more encompassing approach will
necessarily consider the persistence and evolutionary branching patterns of mutualisms between
angiosperm trees and their associated pollinators and seed dispersers. Tree phenology may also
be important, as observed, for example, in mass fruiting events occurring in the Southeast Asian
dipterocarp rainforests [73], as well as spatial limitations imposed by the complex plant architecture
of the rainforest [72]. The population structure of seedlings probably reflects the movements of animal
seed dispersers. These potential refinements may all affect the quantitative predictions of the nature of
tree diversity, yet we expect our models to yield the same qualitative results. We find further support for
our hypothesis in studies of the radiation of birds and insects in tropical regions [53,56,74,75]. Note that
the extreme diversification of angiosperms in tropical rainforests evidently occurred over a fairly limited
span in the Late Cenozoic, which was marked by abrupt cycles of glacial and interglacial periods over
the past 2 Myr [76–78]. Our model may be expanded to include the plants with seeds spread by wind
dispersal or gravity dispersal.

Our ecological simulation results imply that the coexistence of an extremely high number of
tree species is possible in a relatively small geographical area (figure 2). Moreover, the results of
the evolutionary simulation suggest that the final number of species depends mostly on repeated
geographical isolations during the Pleistocene (figure 3). Here, the tropical forest region is separated
and isolated into three or more areas, and the number of species becomes tripled or multiplied several
times at each isolation event [57]. Hence the resulting number of species may be represented as nm,
where n represents the number of isolated habitat areas and m the number of isolation events. Our
hypothesis is thus consistent with the pattern of explosive speciation documented in angiosperms in
tropical forests [79–81].

There are two major classes of hypotheses explaining the extremely high species diversity of trees
in tropical rainforests: (i) the niche hypotheses, such as the Janzen–Connell hypothesis [4,5,19–24],
and (ii) the neutral theory of communities [6,26]. Our model can incorporate the negatively density-
dependent properties inspiring the Janzen–Connell hypothesis [4,5,19–24], as follows. In the current
model, animal movement is purely random; therefore, the distribution of each plant species is also
random. However, animals often move away from trees where they harvest fruits. Furthermore, when
animals release faeces that include fruit seeds, they may avoid (or are already distant from) the parental
tree, thus seedlings are likely to be dispersed away from the natal trees. We should also note that the
Janzen–Connell hypothesis itself may be incorporated into the current model. Seed mortality can be
increased near the cells of parental trees in the current model. By incorporating the negative density
effects of seedling survival, seed predation, pathogens and the species-specific animal dispersal of
seedlings, we may approach a plausible explanation for the extreme high tree species diversity of tropical
rainforests. The neutral theory of communities may act as an additional factor in the temporal diversity
of tree species, reducing the extinction process of new tree species with their own partner animals [6,26].

Competition and coexistence are central to the origins and maintenance of extremely high levels of
tree diversity in tropical rainforests. The theory of niche separation [7] indicates that, at most, only a
few tree species can coexist in a single habitat. We suspect that all animal dispersers are distinguished
by possession of unique niche separations; this quality, in turn, is expected to promote the coexistence
of trees. Speciation of tree species can be achieved by a slight degree of differentiation in animal
movements that guarantees the coexistence of closely related tree species (figure 3c,d). Hence, as long
as these animals occupy distinctive niches, various tree species may be able to coexist in the same
habitats. Thus the current theory is essentially a niche theory [4,5], not so much of plants but of
animal mutualists. Similarly, coexistence is also impossible in a single-layer lattice model under global
interactions (electronic supplementary material, figure S1). Thus, the coexistence and persistence of many
tree species can be maintained by the presence of species-specific seed dispersers. We may expand this
simple model to include the mortality of animal dispersers, tree species with wind and gravity dispersal,
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such as Dipterocarpaceae, and the coevolution of insect pollinators to reach a more precise picture of the
community biodiversity in tropical rainforests. We should stress that our model shows only one possible
mechanism for extreme tree diversity and is limited by many strict conditions not necessarily applicable
to tropical rainforests in general. We hope, however, that these ideas trigger various new approaches
towards understanding species richness in tropical rainforests.
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