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ABSTRACT

The feasibility of controlling a rigid-flexible, tv;o

links planar robot arm with an adaptive computer simulation

model is investigated. The velocity curve following method

was used as the adaptive control scheme. The motors acting

at each joint were driven by the adaptive model. The

adaptive algorithm update the states and the gain parameter

of the ideal motor used in the computer model. This

adaptation procedure was accomplished using only the

measured angular position of the arm. The mathematical

model for the proposed manipulator was derived using the

Lagrangian dynamics approach. Simulation results were

obtained with the manipulator performing under various

conditions, by changing the load of the arm and the forces

included in the environment.
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I. INTRODUCTION

A. GENERAL CONCEPT

The need to improve industrial productivity has greatly

motivated the implementation of a variety of forms of

automation. With respect to this fact, programmable multi-

functional manipulators (robots) , have become increasingly

important. Due to the fact that the robots will play a

major role in future manufacturing systems, the need for

improvement of robot's performance becomes imperative.

One of the major drawbacks of today's robots is that in

general they are very slow. The speed, with which they can

transfer objects from one point to another, is at many cases

limited by the weight of the manipulator arm. The excessive

arm weight not only hampers the rapid motion of the mani-

pulators arm, but also increases the robot's consumption of

energy and the size of the required actuators.

A flexible manipulator is free of these drawbacks,

because it requires less material that results in less arm

weight, less power consumption and increased maneuverability

compared with the traditional (rigid-arm) manipulators. The

flexible manipulator also uses smaller actuators because of

the smaller power demand.

Therefore flexible arm manipulators are particularly

advantageous in small lot manufacturing and also very

attractive for space applications.



Manipulator arms require a reasonable accuracy in the

response of the arm's end-point to the joint control system

input commands. In order to achieve this accuracy most of

the manipulator's arms exhibit some vibrations. These

vibrations have been eliminated by increasing the rigidity

of the manipulator's arm.

In the case of the flexible manipulators the above

solution is unsatisfactory if their basic advantages stated

above are not to be sacrificed.

It is clear that in order to realize the very attr-

active features of the flexible manipulator arm, extensive

research has to be performed in both the areas of design and

control of the system. Obviously a control system has as

tasks to perform the required motion for the flexible arm of

the manipulator with a reasonable accuracy in the arm's end-

point position, but also to control the vibration modes of

its links.

B. THESIS OBJECTIVE

The manipulator that will be used through this thesis

will be a two links planar robot arm having the first link

rigid and the second link flexible.

Controlling the proposed manipulator to obtain position

accuracy of the end-point, fast response and control of the

vibration modes of the flexible link is a very complicated

problem because the dynamic motion of the manipulator is



strongly influenced by mechanical design and physical

properties of the manipulator, as well as environmental

effects. Coupling inertia, coriolis forces, actuator

dynamics, joint friction, centripetal forces, gravity

effects and mainly the vibration modes introduced due to the

elastic motion of the flexible link and the coupling of the

two links create an overall system that is a very nonlinear

dynamic system. Because of the nonlinear dynamic model of

the manipulator a robust and flexible control system is

required.

The velocity curve follow technique is a powerful

control scheme that was successfully used to control a

single flexible arm [Ref. 1] and also for a near minimum

time positioning of a planar robot arm with two rigid links

[Ref. 2]. A feasibility study will be done in the appli-

cation of the same technique, the velocity curve follow

control scheme, for the proposed manipulator model. In

order to compare the results of the proposed rigid-flexible

planar robot arm, for fast and accurate response, with the

results of a planar robot arm with two rigid links, the

model of a rigid-rigid planar robot arm having similar

parametric data and using the same adaptive control scheme

will be developed and tested.

The advantages of this technique are the adaptive

nature and the simplicity of the control scheme loop, that

can also be implemented in a digital computer or micro-



processor with the output signals through a D/A converter

used to drive the motors acting on the manipulators joints.

Problems arising from modelling uncertainties, unpredictable

environmental changes and noise contamination of the signals

can be taken into account and solved through the adaptation

procedure.

C. BASIC CONCEPTS OF THE ADAPTIVE MODEL

A very simplified block diagram of the adaptive control

scheme that will be used is illustrated in Figure 1.1. In

order to control the motion of the manipulator's links the

adaptive control scheme receives from the actuator the

position of each link. Knowing the position and previous

values of the position, the digital computer calculates the

velocity and updates the gain constant, the position and the

velocity of the second order model, used to model the real

motor in the computer, at certain time intervals. Ancjther

advantage of this control scheme, concluded from the basic

implementation described above, is the elimination of a

tachometer requirement.

The block named 'Curve follower', approximates the

deceleration curve of an ideal motor. This curve can be

obtained as an analytic expression or as a table look-up

stored in the memory of the digital computer.

The 'Model-environment' block represents the dynamic

equations that describe the given system. In this block are
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Figure 1.1 Simplified block diagram of the system.

also included gravitational torques, centripetal forces,

coriolis forces, inertia of the loaded arm, forces acting on

the rigid and the flexible links due to the elastic motion

of the flexible beam.

The motors acting at the two joints are identical,

using the same adaptive velocity curve follow control

scheme. At the adaptive model both actuator and ideal motor

are driven by the same velocity error input.



D. ORGANIZATION OF THE THESIS

In Chapters II and III the mathematical models for the

rigid-rigid and rigid-flexible two links planar robot arm

will be developed respectively.

Some preliminary studies of the models will be per-

formed in Chapter IV, including frequency response of the

systems which will help to extract, some important for the

adaptive model, data from the prominent physical chara-

cteristics of the systems.

The development of the computer simulation model, that

will be used in both cases, will be derived in Chapter V,

where the velocity curve follow control scheme will be

developed and simulated.

In Chapter VI, the velocity curve follow will be

applied as the control scheme of the rigid-flexible planar

robot arm, described by the model derived in Chapter III, in

order to investigate if this control scheme is applicable.

Simulations under different conditions (load, gravity

environment) will be performed. Simulation results will be

obtained under the same conditions for the rigid-rigid

planar robot arm, described by the model derived in Chapter

II, and the results will be compared.

In Chapter VII, the conclusions and the requirements

for further studies will be given.



II. MODEL DEVELOPMENT FOR THE TWO RIGID LINKS

ROBOT ARM

A. INTRODUCTION

In this chapter, a mathematical model of a planar robot

arm with two rigid links will be derived by the use of

Lagrangian mechanics. The planar robot arm having two rigid

links was partially investigated in Ref.2. In order to

compare the resulted equations of motion and the performance

of the planar robot arm at two different cases, one when

both links are rigid and the other when the second link is

flexible, the study of the two rigid links planar robot arm

will be repeated in this thesis.

Lagrange's equations will relate the torques and forces

acting on the system to the position, velocity and accele-

ration of each link at any time. Therefore, the second

order differential equations that will be derived following

this Lagrangian dynamics approach will be the equations of

motion, that describe the system.

B. DEVELOPMENT OF THE MODEL

The two rigid links planar robot arm is illustrated in

Figure 2.1. Both joints are rotary joints and the motion

will be considered to be on one plane, the xy plane. The

two links having lengths 1^^ and I2, are assumed to be
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Figure 2.1 Planar robot arm with two rigid links.

massless and two equivalent masses m]_ and ra2 are lumped at

the end of LINKl and LINK2 respectively. The driving

torques for the motors at each joint will be denoted as Fi

and r2 at JOINTl and J0INT2 respectively.

C. DERIVATION OF THE LAGRANGE'S EQUATIONS

Defining the Lagrangian function L, as L=T-V, where T

and V are the kinetic and potential energies of the system,

8



the equations of motion that describe the system will be

derived from the Lagrange's equations defined as:

d_ (^I^) _ _5L_ ^ Q i = l,2,...,n (2.1)
dt .' .

5q^ 5q^

where:

q. = the generalized coordinates,

Q. = the generalized forces,

n = the number of degrees of freedom.

For that system configuration only two coordinates will

be used, because the number of degrees of freedom must be

equal to the number of coordinates which must be used to

describe that system. Selecting the angles 9-^ and 82 to be

the generalized coordinates for the system shown at Figure

2.1, the position of both arms at any instant of time, with

constant lengths 12^ and ±2, will be exactly specified from

these two angles. The torques Fl and r2 will be the gene-

ralized forces acting on that system. Derivation of the

kinetic and potential energies and construction of the

differential equations from the Lagrangian function L is a

very lengthy approach and the detailed presentation is given

in Appendix A. The pair of the second order nonlinear

differential equations derived in Appendix A, will become

the equations of motion that describe the system and will be

used as the mathematical model at the studies of the two

rigid links planar robot arm.



^1 = ("ll* Jl'®i * °12 ®2 -^ °122 ®2

-^°112 ®1 «2 -^ °121 «2 ^ ^ °1

(2.2)

^2 = (°22+ ^2)^2 ^ °21 ^i -^ °211 ^1 ^ °2 f^"^'

where

^22 = ^2^2

°12 = °21 = "^2^2 -^ ^2lll2^°^®2

^12 = °122 = °121 = -^211 = -^2lll2^i"®2

D = (m +m )gl sine + m2gl2sin(e^+e2)

°2 = ^2^^2^i"(®l-'®2)

J. = the inertia of the motor at JOINTl

J = the inertia of the motor at J0INT2

2
g = the acceleration of gravity ( = 9.814 m/sec )

The parametric values, lengths of the links and masses at

the end of each link, that will be used in this study of the

two rigid links planar robot arm are given in the Table 2.1.

The Dii (i=l,2) values defined in the above equations

were obtained from the forces acting on each link due to

acceleration and velocity of the moving robot arm. A more

detailed specification for each value will be given as

follows.

10



TABLE 2.1 PARAMETRIC DATA OF A TWO RIGID LINKS PLANAR
ROBOT ARM.

1 = 0.40 m

1 = 0.32 m

III- = 0.3 kg/m/sec'

m = 0.05 kg/m/sec'

m_ = 0.10 kg/m/sec'
(with load)

An acceleration of the joint i causes a torque at the

same joint equal to Dj^j^S-j^, therefore at this particular

system D^^]^ and D22 represent the effective inertias for the

joints 1 and 2 respectively. Also an acceleration at one

joint i will cause a torque at joint j of the form D-j^jG-j^j,

and for the particular system D]^2 ^^"^ ^21 ^^® ^^® coupling

inertias. Also a velocity at joint i will produce a centri-

petal force at joint j having the form Dj-j^j^Gj^, and therefore

^122' ^211 ^^® ^^^ centripetal forces for that system

(notice D]^2l^D222~^) • ^ combination of the form DijkQjQk

*'^ikj®k®j ^^^ "^^^ produced coriolis force acting at joint i

due to the velocities at joints k and j, therefore for the

two link model the coriolis forces will be represented by

the coriolis acceleration coefficients D3^22' ^121^ '-*212 ^^^

^221-

11



III. MODEL DEVELOPMENT FOR A PLANAR ROBOT ARM

WITH TWO LINKS. THE SECOND FLEXIBLE

A. INTRODUCTION

The basic mathematical model that will be used in the

computer simulations for the planar robot arm with two

links, the first rigid and the second flexible, has to be

derived. In order to examine its performance and to compare

the simulation results with the results obtained for the

planar robot arm having two rigid links, the two models have

to be compatible. Therefore the mathematical model of a

rigid-flexible planar robot arm, will be derived in this

chapter.

B. PRIOR WORK IN THIS FIELD

From previous works and studies in the field of robotic

manipulators with structural flexibility many different

approaches can be used on the derivation of the different

models. Book [Ref.3] applies the transfer matrix method to

describe in the frequency domain the elastic bending motion

of a two-link planar elastic arm and for small angular

velocities. In later work Book [Ref.4] considered the

linear dynamics of spatial flexible arms represented as

lumped mass and spring components via 4x4 transformation

matrices. Maiza-Neto [Refs.5 and 6] develops the nonlinear

equations of motion in the time domain for the same problem

12



using Lagrangian dynamics. Usoro [Ref.7] uses the finite

element/Lagrange methods coupled with the concept of a

generalized inertia matrix, derived for lightweight flexible

manipulators, to achieve positional and vibration control,

with the mathematical background for this study presented by

Mahil [Ref.8]. Schmitz [Ref.9] applies Hamilton's principle

and uses boundary conditions to linearize the model of a

very flexible one-link manipulator in order to describe its

performance with transfer functions for the end-point

position control. The latest procedure was followed by

Zouzias [Ref.l] in his attempt of controlling a flexible

manipulator arm with an adaptive computer simulation model.

C. DEVELOPMENT OF THE MODEL

For the sake of the comparison of the two cases, as was

mentioned before, Lagrangian dynamics was decided to be used

for the model development of the two links planar robot arm

having the first link rigid and the second link flexible.

The model of the planar robot arm, that will be used through

this thesis, is illustrated in Figure 3.1. Both joints are

rotary joints and the system will again assumed to have only

planar motion, on the x,y plane, with relative motion of the

two links due to the torques applied from the motors at each

joint. The torques applied at JOINTl and J0INT2 will again

be denoted as Fi and r2 . Both links, rigid and flexible,

having lengths 1-^ and ±2 respectively are assumed to be

13
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Figure 3.1 Two links (rigid-flexible) planar robot arm.

massless and two equivalent masses m]^ and m2 are lumped at

the end of each link. The discrete masses at the end of the

rigid and the flexible links represent the servo motor of

the flexible beam and the end-point sensor and payload.

D. DERIVATION OF THE LAGRANGE'S EQUATIONS

The model will be developed by superposing the flexible

motion of the second link over the two rigid links body

14



motion. This approach is in favor of the finite element

Lagrange method because will there result a set of second

order differential equations similar to those obtained for

the two rigid links planar robot arm, with additional terms

due to the flexibility of the second link and the coupling

effects between the rigid and the flexible link.

The coordinates for the rigid beam, first link, will be

defined as in the "two rigid links arm model". For the

second link, that is now a flexible beam, the coordinates

will be defined as if the beam was rigid superposing in this

result the flexible motion. In order to describe this

flexible motion the general schematic of the model will be

repeated in Figure 3.2 introducing three reference frames.

These references frames can be defined as follows:

[0,X,Y] : an inertial reference frame with origin at JOINTl.

[0 ,Xi,Y2_] : a reference frame with origin at O and the X^

axis lying on LINKl.

[0]^,X2,Y2] : a reference frame with origin at O^ and with

the X2 axis tangent to the flexible beam at the point O^.

The two angles can therefore be defined as follows:

©1 = the angle between the axis X and X-^.

02 = the angle between the axis X^ and X2

.

The overall motion can be understood as a motion of the

hypothetical rigid system 00^^02 and a flexible motion of the

second beam, LINK2 , with respect to this moving system. The

position of any point of LINK2 can be described by a

15



convenient definition of a set of coordinates. As indicated

in Figure 3.2 any point P along the flexible beam can be

specified if a new variable u(X2,t) will be defined as being

the coordinate of the flexible motion with respect to the

reference frame [Oi,X2,Y2]. The position (coordinates) for

any point P of the flexible beam will then be given in

vector notation as:

R, = [i^cose^+ x^cosce^+e^) - u since^+e^)] cl^

(3.1)

+[1 sine + X sin(e +e ) + u cos(e^+e2)] a

Therefore the Cartesian coordinates of the end-point of the

flexible arm can be expressed from the following equations:

x^ = i^cose^ + i2cos(e^+e2) - UgSin(e^+e2) (3.2)

Y2 = l^sine^ + l2sin(e^+e2) + u^cos{Q^+Q^) (3.3)

where Ug is the flexible linear displacement at the end-

point of the flexible beam (LINK2)

.

Having defined the coordinates transformation for the

flexible beam, as given in the above Equations 3.2 and 3.3,

Lagrange's equations can normally be derived. In order to

develop a mathematical model for the proposed system the

flexible displacement u(X2,t) must be given by a closed form

expression.

In general for any arbitrary point of the flexible beam

the corresponding flexible displacement u(X2,t) that will be

superposed to the hypothetical motion of the two rigid links

16



Figure 3.2 Vector position for an arbitrary point P at
the flexible beam of the planar robot arm.

system can be expressed using the so called assumed-modes

method. The assumed-modes method was described in detail in

Ref. 10. In the case of a free vibration problem the basic

idea is the assumption of a solution, in the form of a

17



series composed of a linear combination of admissible

functions f^ multiplied by time dependent generalized

coordinates g-L(t). By admissible function is meant any

arbitrary function of the spatial coordinates satisfying all

the geometric or essential boundary conditions. Then for

the case of the flexible displacement of LINK2 it is

possible to assume that:

n
u = E f

.
(X

) g. (t) (3.4)
i=l

where the admissible function £1(^2) must satisfy the

geometric boundary conditions with respect to the represent-

ation of LINK2 in the reference frame [0]^,X2,Y2]-

From the above it is clear that the assumed-modes

method treats a continuous system as an n-degrees of freedom

system. Therefore the degrees of freedom for the overall

system will be increased from 2 to n+2 , and the new system

will be represented with n+2 generalized coordinates that

are Q^, 62 and g-^ where i=l,2,...,n.

Increasing the number of degrees of freedom by

increasing n, the estimated natural frequencies of the

system will approach the true natural frequencies from

above. Using a large value for n for a more accurate model

of the flexible beam, the number of the generalized coordin-

ates will also increase making the analysis of the system

and the derivation of the mathematical model through

Lagrange's equations a very unrealistic approach. The

18



system can be simplified with the assumption that the ampli-

tudes of the higher modes for the flexible link are very

small compared with the amplitudes of the first modes.

Therefore, as was indicated in Ref. 5, the higher modes can

be neglected and the system can be truncated with n=2,

resulting in a four-degrees of freedom problem. In order to

verify the stated assumption, that the modes with n>3 can be

neglected, the equations of motion are derived in Appendix B

for a planar robot arm having only one flexible link by

using the Lagrangian dynamics method. The elastic motion of

the flexible beam that will superposed to the hypothetical

rigid motion of the arm will have a flexible displacement

approximated by the assumed-modes method. In Appendix B,

models were developed for this flexible planar robot arm

using the assumed modes with n=l,2 and 3 respectively. The

resulting models were used with the adaptive control scheme

(derived in Chapter V) in the simulation studies of this

flexible beam. Three different DSL programs were written

for these simulation studies, with the source programs given

in Appendix C. The resulting phase plane and step response

plots in the cases where n=l,2 and 3 are shown in Figures

3.3 to 3.8. From the analysis presented, comparing the

results obtained for the different cases of n used one can

observe that the step responses for n=2 (Fig. 3.8) and for

n=3 (Fig. 3.8) have essentially the same duration and almost

the same oscillatory characteristics. Thus it was concluded

19



Figure 3.3 Phase plane of the flexible beam (n=l)
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Figure 3 .

4

Step response of the flexible beam (n=l) .
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Figure 3.7 Phase plane of the flexible beam (n=3)

.
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Figure 3.8 Step response of the flexible beam (n=3)
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that the use of the value n=2 for the assumed-modes was a

satisfactory assumption. Due to the previous analysis

Equation 3.4 can be truncated obtaining the form:

with the flexible displacement and velocity at the end of

the LINK2 given as:

^E = ^lE^l^ ^2e92 (^-^^

^E = ^lE^l^ f2E92 (^•''^

From that point the derivation of the Lagrange's

equations becomes a solvable but also lengthy and tedious

problem. Forming the Lagrangian function L, from the

general form of the Lagrange's equation

k <i^>
- ^ = Qi

i=l-2-3,4 (3.8,
5q^ ^1

a set of four nonlinear second order differential equations

can be derived, where the generalized coordinates will be

given as qi=6i, q2=62» ^3=91 ^nd q4=g2 • From the definition

of the generalized coordinates for the proposed system it is

possible to show that the generalized forces obtain the

values Qi=r]_, Q2=r2 and Q3=Q4=0, where F^ and F2 are the

torques applied to the motors at JOINTl and J0INT2

respectively

.

With the complete derivation of the Lagrange's equati-

ons given in Appendix D, the final form of the differential

26



equations that describe the system and that will be used as

the basic model through that thesis will be given as

follows:

^"1 = (Dlll+Jl> «! +Dl22®2 +0133-31 +°144'32

'°112®lS2 -^^llS^igi +°114®l'32
<^-9)

+°1222®2 +°123®2"3l +°124®2g2 "^^l

I"2 = °211®1 +(°222+J2>S2 +°2335l ^-024492

+°213®l5l •••°214®l'32
<3-^°'

+ °223®2'3l
'D224®2'32 +°211ie? +^2

° = "^Sll®! +°322®2 '°333'3l '°344g2 '°312®lS2

+ '^3111®! +^3222^2 *°3

° = °411®1 +°422®2 -'°4335l +°44452 -^^4126^62

+^4111®! +^4222^2 "°4

where

^111 =
^122^(™1^"^2^1i^"^2^i12^°^®2-"^2^1^^"®2"e

°122
=

^212^^2"e^^2^1^2^°^®2-"^21i^^^®2"e

°133
= ^2ll^°^®2^E^™2l2^E

^144
=
^2H^°^®2^2E^^2l2^2E

27
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^112 = -Sm^l^^Ccose^Ug+l^sine^)

^113 = 2m2f^j,(Ug-l^sine2)

^1222 = -m2li(l2sine2+cose2Ug)

^23 = °113

^24 = ^114

D^ =
[ (m^+in^) l^cose^+in2l2Cos(e^+e2)-in2UgSin(e^+e2) ]g

^211 = ^^122

D222 = ^212-"^2Ue

^213 = ^223 = 2in2f,EU^

°214 = ^224 = 2m2f2EU^

^233 = "^2^2^1E

D224 = ^2^2^2E

^^2111 = ^2H^2^^"®2^"^21i^°^®2Ue

D2 = [m2i2cos(e^+e2)-m2U^sin(e^+e2) ]g

^311 = ^2fl^ll^°^®2^l2)

°322 = ^2^2^1E

°333 = "^2^?E

^344 = ^2^1E^2E

°312 = -2^2^e"e

^3222 = -"^2^1E^E
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3111 3222 2 1 IE 2

D3 = gm^f^^cos(e^^e^)-}^^q^

^422 = ^2^2^2E

411 = ^422^™2llf2E^°^®:

^433 = ^^344

^444 = ^2f2E

^412 = -2^2^2eUe

^4222 = -"^2^2eUe

^4111 = °4222^^2llf2E^i^®2

^4 = gm2f2ECOs(e^+e2)-KW2g2

KW^ = EI
rl2

KW^ = EI
rl2

f^(x) f^(x) dx

f^Cx) f^Cx) dx

J = the inertia of the motor at JOINT 1

J = the inertia of the motor at JOINT 2

2
g = the acceleration of gravity (= 9.814 m/sec

)

U = f g +f g = the end-point displacement

E is the Young's modulus, and I is the second moment of area

of the beam cross section.

The admissible functions f-j_ (i=l,2) are assumed to be

the eigenfunctions of a clamped-free beam. According to

Ref.ll the restrictions for the geometric boundary conditi-
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ons will be satisfied because of the orthogonality of these

functions:

^1 ^1

f (X) f (x)dx = f^(x) fg(x)dx _ I , ri^i

r=s (3.13)

with

f^(x) = cosh (jLt^x) -cos (/i^x)-cj^[sinh (Mj^x) -sin (M^x) ] (3.14)

where, r is the mode of vibration.

sinh(iLi^x) -sin(Aij^x)

r ~ cosh (/Li x)+cos(jLi x)
(3.15)

with sinh and cosh to be the hyperbolic sine and cosine

functions respectively, given as:

sinh(x) =
X -X

e - e
(3.16)

cosh(x) =
X , -X

e + e
(3.17)

Because the model takes into account only two modes for

the vibration of the flexible beam, the superscript r will

obtain the values 1 and 2. The values for [i^ and a^, at the

end-point of the flexible beam where x = 1, will then be as

given in Table 3.1.

TABLE 3.1 CHARACTERISTIC VALUES FOR A CLAMPED-FREE
BEAM.

r n = u 1
r '^r

a
r

1 1.8751 0.7341

2 4.6941 1.0185
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Because of the orthogonality identity of the assumed-

modes the flexible component of the potential energy will be

evaluated as follows:

KW =
r

EI
n

n' r=l,2 (3.18)

with EI the beam stiffness, tt the density per unit length

and fij- the flexible value given above for the r^^ mode.

Therefore the values of the flexible components KW-j^ (i=l,2)

of the potential energy can be computed, and they will be

given in Table 3.2.

TABLE 3.2 PARAMETERS FOR THE ELASTIC COMPONENTS OF THE
POTENTIAL ENERGY.

r KW^

1 0.00124

2 0.0433

The other parametric values, lengths of the links and

discrete masses that are lumped at the end of each link,

that will be used in this thesis for the study of the two

links planar robot arm (with the first link rigid and the

second flexible) are given in Table 3.3.

The Dj^j^ (1=1,2,3,4) values defined in the above

equations were obtained from the forces acting on each link

due to acceleration and velocity of the moving robot arm as

was done in the case of the two rigid links planar robot

arm. Additional terms are due to the forces introduced by
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the flexible motions of the second link and the coupling

forces acting on the system.

TABLE 3.3 PARAMETRIC DATA OF A RIGID-FLEXIBLE PLANAR
ROBOT ARM.

h = 0.40 m

^2
= 0.32 m

"l
= 0.30 kg/m/sec^

™2 = 0.03 kg/m/sec^

"2 = 0.10
(wit^

kq/m/sec^
L load)
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IV. PRELIMINARY STUDIES USING THE COMPUTER SIMULATION MODEL

A. INTRODUCTION

The second order models derived in Chapters II and III

for the rigid-rigid and rigid-flexible planar robot arms

respectively will become the mathematical models for this

case. Each arm will be driven, open loop, by a servo motor.

The servo motors have to follow a predetermined curve until

the desired position is reached. In order to achieve this

the states of the second order model have to be adapted such

that the computer model mimics the position and the velocity

of the actual servo motor with equivalent gain constants.

For the sake of the analysis identical servo motors are

used independently at each joint to provide the proper

torques for the required movements.

B. SERVO MOTOR SELECTION

From Ref. 12 the equivalent transfer function of a

servo motor can be expressed as:

e(s) 1/Kv

V(s) "
] JR 77"

; L
~~

i^-'^)

^ (^ k7k7 ^^^ (^ -^ -^1)

with the parameters 9, V, K^, K-j-, J, R and L obtained from

the data of the specific motor to be used. For the purpose

of this thesis a permanent magnet motor drive currently used

in industrial robots was selected. The parametric data for

this motor obtained from Ref. 13 are listed in Table 4.1.
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TABLE 4.1 PARAMETRIC DATA FOR THE JOINT SERVO MOTOR.

Torque constant Kt: 10.37 gr-m/amp

Motor inertia •^m* 0.024 gr-m-sec^ /rad

Damping coefficient Bm = 0.031 gr-m-sec/rad

Back-emf constant Ky

:

0.1012 V-sec/rad

Armature inductance L : 0.0001 H

Terminal resistance R : 0.91 n

Adding a large inertia to represent the arm of the robot to

the motor inertia given above the mechanical pole of the

motor becomes very small. Since R/L represents a large

number the electrical pole of the motor becomes large with

no significant effect on the response of the servo motor and

can be neglected. Therefore the transfer function of the

servo motor can be approximated as:

= -— (4.2)
V(s) s2

where the value of K-^ will be computed from the preliminary

studies of the arm-motor systems given below.

C. ANALYSIS OF THE ARM-MOTOR SYSTEMS

1. Rigid-rigid planar robot arm

The inertia of each arm will be given from D^^]^ and

D22/ ss they are defined in Chapter II, for the first and
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the second link respectively. Evaluating the expressions of

D-^j^ and D22 from the parametric data given in Table 2.1 and

adding the result to the inertia of the servo motor used at

each joint (in this particular case the motor inertia J^^ is

the same for both joints) , the effective joint inertias can

be evaluated. Knowing the effective joint inertias at each

joint the exact transfer function for each motor will be

calculated. The inertia of the first arm is also a function

of the angle 02 of the second link, solving for the case

62=0° the effective joint inertias become:

J]_ = D3^3_+Jj^-L = 65.92 + 0.024 = 65.944 gr-m-sec^/rad , and

J2 = D2 +Jin2 = 5.12 + 0.024 = 5.144 gr-m-sec^/rad.

Substituting the effective inertias calculated above and the

parametric data for the servo motor, given in Table 4.1,

into the Equation 4.1 the transfer functions for the two

servo motors will be obtained as follows:

S(^) =
s (s/9100 !ir(s/0.016 +1)

rad/volt (4.3)

S(^) =
s (s/9100 +ir(s/0.204 +1)

rad/volt (4.4)

The open loop Bode plots for the servo motors acting at each

joint were obtained using the software package 'CONTROLS'

with the resulted plots are shown in Figures 4 . 1 and 4.2.

From the Bode plots it can be observed that the gain curves

of both servo motors have a slope of -40 db/dec and their

gain crossover frequencies are n3_=0.402 and ^2"^^'"^^ rad/sec
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Open loop Bode plot of the servo motor at
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respectively. These results indicate that the electrical

pole can be neglected and the approximation of an ideal

motor, with its transfer function given as Equation 4.2, is

valid for both systems. In order to have the same gain

crossover frequency for the ideal motor, the error coeffic-

ient Km must have the value Km^ = n^^ (i=l,2). Therefore

the error coefficients for the second-order ideal motors

have the values Kmi=0.162 and Km2=2.045 respectively. The

frequency responses of the ideal motors using the error

coefficients calculated above are given in Figures 4.3 and

4.4.

2 . Rigid-flexible planar robot arm

The general idea of the previous analysis for the

case of a rigid-rigid planar robot arm is not affected by

changing the second link to be a flexible one.

The inertia of each arm will now be given from

^111 ^^^ ^222' ^^ they are defined in Chapter III, for the

rigid and the flexible link respectively. In this case

evaluation of ^±ii and D222 ^^ ^°^ ^° simple because in

their expressions are also involved terms due to the elastic

motion of the flexible arm. To overcome that problem

different approaches were used to obtain the frequency

response of the arm-motor system for each arm.

For the rigid arm due to the nature of the system

and observing the quantities involved in the expression of

the inertia of the arm, ^m, the "flexible" terms can be
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neglected. Therefore the inertia of the arm can be computed

using the parametric data given at Table 3.3 in Chapter III.

With 92=0° again, and adding the result to the inertia of

the servo motor, Jm^^, the effective joint inertia can be

evaluated:

Jf]_ = Dm+Jj^i = 58.75+0.024 = 58.774 gr-m-secV^ad

Knowing the effective inertia at JOINTl the exact transfer

of the motor will be calculated. Substituting the effective

inertia and the parametric data for the servo motor (given

in Table 4.1) into Equation 4.1 the transfer function for

the servo motor acting at JOINTl is obtained as follows:

^^(^) =
s (s/9100 +ir(s/0.018 +1)

rad/volt (4.5)

The open loop Bode plot for this servo motor was obtained

and the resulteing plot is given in Figure 4.5. The gain

curve of the servo motor again has a slope of -40 db/dec

with gain crossover frequency at nf]_=0.431 rad/sec. In

order that the ideal motor have the same gain crossover

frequency, the error coefficient Kmf3_ must have the value

Kmf]^=nf 3^2 = . 185 . The frequency response of the ideal motor

using the calculated error coefficient is given in Figure

4.6.

In the case of the flexible arm the "flexible"

terms are significant and they cannot be neglected. A

satisfactory approach in terms of the frequency response is

to uncouple the flexible arm from the rigid arm. With the
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flexible arm uncoupled, the transfer function given in

Ref.l can be used after appropriate scaling to represent the

flexible beam with the parametric values of mass, length and

strength used in this study. The transfer function that

describes the system, flexible arm and motor, can be

obtained by combining the two transfer functions and its

final form is:

585130 (s+l±j30) (s+3.2±jl70) (s+9.1±j462)
^^2^^^" s(s+0.3) (s+9100) (S4-I.8±jl20) (s+4±j215) (s+7.3±j481)

(4.6)

The open loop Bode plot was obtained for the transfer

function of the flexible arm-motor system, with the plot

given in Figure 4.7. One can observe that the gain curve

has a slope that is approximately -40 db/dec, and the gain

crossover frequency is nf2=1.52 rad/sec. In the frequency

response are also shown three resonant frequencies due to

the elastic motion of the flexible arm. The magnitude at

the resonant frequencies is decreasing in amplitude with the

first resonance occurring at about 120 rad/sec. For the

case of the ideal motor the response at high frequencies can

be neglected. In order to have the ideal motor's response

at the same gain crossover frequency the error coefficient

Kmf2 must have the value Kmf 2=f^f i^=2 . 34 . The frequency

response of the ideal motor using the error coefficient

calculated above is shown in Figure 4.8.
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V. VELOCITY CURVE FOLLOWER CONTROL SCHEME

A. BACKGROUND

A commonly used modification of a bang-bang controller

is the "curve following" servo [Ref.l4]. The "curve

following" control scheme usually involves three modes of

operation in following a step position command. There are

an initial full acceleration mode, a curve following mode

and a terminal linear servo mode. The nice feature of this

control scheme is that the amplifiers used are intentionally

being driven into saturation resulting in fast response and

taking full advantage of the available power in the motor,

which is being driven with full forward or full reverse

power. This is the main advantage compared to linear

controllers where saturation of the amplifiers must be

avoided because it renders the controller ineffective.

Other advantages of this control scheme are its implement-

ation on a digital machine and the adaptive capabilities

which were discussed at the introduction in Chapter I.

B. DESCRIPTION OF THE VELOCITY CURVE FOLLOW SYSTEM

The velocity curve following control scheme is illustr-

ated in Figure 5.1. The control scheme that will be used

has two modes of operation in following a step input

command. It can be shown that the commanded input does not

have to be a step. Actually any input command (of arbitrary
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shape) can be used with the proposed control scheme.

Initially the system gets into full acceleration until

the designed curve is reached, at which point the system

follows the curve. The velocity curve follow control scheme

is therefore a nonlinear control scheme and practically it

is a modification of a bang-bang controller.

When an input is applied to the system, the resulting

error signal, E, will enter the curve as the "distance to

go" producing as output the corresponding velocity ordinate

of the curve, X. This velocity X, becomes the input of the

velocity loop. The "Saturation Amplifier", saturates and a

full forward signal is applied to the motor. As the

position error signal decreases, the output from the curve

is reduced and the velocity feedback signal, KC, increases

until the velocity error, XE, becomes zero. Zero velocity

error means that the acceleration trajectory crosses the

designed curve. From that point the velocity error reverses

sign, causing the input voltage to the motor to reverse, and

the system decelerates following the curve down until it

reaches the final position.

C. DESIGN OF THE CURVE

The curve used in any curve follow control scheme must

have a shape that fits the requirements for the specific

system and the application of that system.

For the purpose of this study the curve will have a
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parabolic shape. The equations describing this curve can be

derived from the equations of the ideal motor as follows:

C = K V ^ (5.1)m sat

C =

C =

C dt = K V . t+C(0) (5.2)m sa L

C dt = -^ K^V^^^t^ +C(0)t+C(0) (5.3)

Solving Equation 5.2 for t and substituting its expression

into Equation 5. J, after some algebraic manipulations and

with the initial conditions C(0)=0 and C(0)=0, the following

equation is obtained:

m sat

For deceleration of the system from initial conditions, with

the input R=0, then:

C = -E (5.5)

• •

C = -E (5.6)

Combining Equations 5.4, 5.5 and 5.6, finally:

X = A /~E (5.7)

where

A = y 2K V 7m sat

X = E
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Therefore the output of the curve that represents the

commanded velocity can be generated at any instant of time

from the multiplication of the square root of the position

error by the defined constant factor A. This constant

factor will be initially calculated from the specific

parameters K-^ and V^^^ and its value stored in the memory of

a digital computer. The gain constant of the second order

model, Kjfj, is determined by the actuator parameters and the

effective inertia seen by the actuator and is updated

through the adaptive algorithm. The initial values for

these gain constants have been derived in Chapter IV for two

different cases of a planar robot arm with two links, the

rigid-rigid and the rigid-flexible.

The saturation limits, V^^^, of the amplifier are

determined by the available servo motor parameters, the

mechanical design of the arm of the manipulator and the

working conditions. The gain parameter K2 must have a

relatively large value in order to saturate the amplifier

even for small commanded velocity signals.

The gain parameter K^^, used to reshape the curve as a

weight factor of the commanded velocity signal, and the

feedback gain K will be used in the velocity curve follow

model in order to give best system performance and suitable

results for each specific problem. The calculations of the

values of K and K]_ will be based on the simulation results.
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D. SIMULATION STUDIES OF THE CONTROL SCHEME MODEL

To demonstrate the good performance of the basic model,

shown in Figure 5.1, and the ability of the velocity curve

follow control scheme to follow the designed curve, the

model was simulated using DSL/VS. The DSL/VS simulation

program is listed in Appendix E.

The basic model was simulated with different values

corresponding to each link of the planar robot arm, for both

cases the rigid-rigid and the rigid-flexible. The resulted

four sets of parameters are given in Table 5.1.

TABLE 5.1 RESULTED PARAMETERS FROM THE SIMULATION STUDY
OF THE BASIC MODEL.

Rigid-Rigid Rigid-Flexible

LINK 1
Kjh = 0.162 rad/V

Vsat = ±300 V

Kjj^ = 2.04 5 rad/V

Vsat = ±150 V

LINK 2
Kjji = 0.18 5 rad/V

Vsat = ±300 V

Kni = 2.340 rad/V

Vsat = ±150 V

To guarantee the saturation of the amplifier the value

K2=10,000 was chosen to be used at the simulation studies

for all the different cases.

From the simulation studies the appropriate gain values

were obtained using trial and error. The best value for the

52



feedback gain, in all cases, was found to be K=l. For the

constant weight factor K-^, the values 0.8 and 1 gave the

best system performance when used with the parameters

corresponding to the first and the second link respectively.

Simulating the basic model for a commanded input R=l

rad by using the calculated parametric values of the rigid-

rigid planar robot arm, the step response and the phase

plane trajectories are given in Figures 5.2 and 5.3. Using

the parametric values (extracted from the rigid-flexible

planar robot arm) the corresponding plots are given in

Figures 5.4 and 5.5.

From the phase plane, where the trajectories of the

angular velocity C and of the commanded velocity X versus

the angular position C are given, one can observe that the

angular velocity increases with constant acceleration until

the curve is reached. From that point the angular velocity

follows the designed curve until the desired position is

reached. Reaching the final position the system stops with

no oscillations.

The step responses demonstrate good performance of this

basic model with fast response and with no overshoots, even

for this relatively large commanded input signal.

E. THE ADAPTIVE MODEL

The block diagram of the adaptive model that will be

used in controlling the two links planar robot arm (at both
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cases) is illustrated in Figure 5.6. The output signal from

the saturating amplifier of the adaptive model is common to

both the second order ideal motor and to the actual system

that is a combination of the real motor and the arm of the

manipulator. Therefore the control scheme forces the actual

system to follow the second order model of the ideal motor

which in turn is adaptive in nature.

The angle, TH, of the manipulator's arm is measured at

specified time intervals and the resulting value is used in

the adaptive algorithm to update the states and the gain

constant of the second order model. Figure 5.6 shows that

the entire control scheme and the adaptive algorithm can be

implemented in a digital computer and the only hardware

requirement for the proposed system will be the device that

measures the angle of the arm. The gain constant K-^ of the

second order model has to be adjustable in order to account

for the inertia reflected back to the joint due to the

motion of the arm. The adaptation algorithm for K-^ must

satisfy the following two conditions:

1) The calculations must be accurate to allow the

states of the second order model to approximate the

trajectory of the actual system.

2) The required calculations must be kept simple

because Kjj^ must be updated in minimum time and the

algorithm has to be easily programmed in a computer.
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The method described in Ref 15 satisfies the above

stated conditions and will be used in this analysis.

Solving Equation 5.3 for Kj^, with zero initial conditions,

the following expression was obtained:

2C

sat

For discrete time intervals the time t will be replaced by

the product NT where T is the sampling interval and N the

number of sampling intervals. By also letting C=TH Equation

5.8 obtains the form:

2 TH

\ = 2 (5-^^

^sat (^T)

Equation 5.9 for Kj^ is valid only for constant acceler-

ation of the system. Therefore the gain K^^ will be updated

during the full acceleration mode and until the velocity of

the actual motor reaches the velocity curve. During the

curve following mode K-^ will remain unchanged.

To update the states of the second order model the

adaptive algorithm requires the angular position and the

angular velocity of the actual system. The actual angular

velocity of the system cannot be used and therefore must be

estimated from the measured angular position of the system.

Therefore the estimation of the angular velocity will be

obtained as the derivative of the sampled angular position,

that in discrete representation is:
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TH(N) = 2fTH(N)-TH(N-l)1 _ ^•(^_^, (5,0,

where TH(N-l) is the last estimation of the angular velocity

given from:

TH(N-l) = TH(N)-^TH(N-2)
(5_^^,

Equation 5.10 requires the storage of the last angular

position and the last estimated angular velocity. From

Equation 5.11 it is clear that the angular velocity can be

estimated after two samples of angular position are taken.

Equation 5.10 is not self correcting if the system switches

from full acceleration to the curve following mode, until

two new samples of the angular position are taken after the

switching. To eliminate this problem, the switching time

has to be detected and the value of the velocity of the

second order model at that time must be stored as TH(N-l)
,

in order to be used at the next calculation.

The storage of the data and the required calculations

as given in Equations 5.10 and 5.11, and also the required

checks can be easily programmed in a microprocessor.

This adaptive model will be used through the end of

this thesis at the simulations of the two links planar robot

arm, for both the rigid-rigid and the rigid-flexible cases.
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VI. SIMULATION OF THE ADAPTIVE MODEL

A. INTRODUCTION

In this Chapter simulation results will be obtained for

the two cases, the rigid-rigid and the rigid-flexible, of a

two links planar robot arm. The proposed velocity curve

follow adaptive control scheme will be investigated for the

case of the rigid-flexible two links planar robot arm in

order to examine how well it can correspond to the control

requirements of the model. The simulation results of each

model will be examined in order to obtain the corresponding

performance. Finally the performance of the two different

models will be compared as well as the equations of motion

derived for each model, as given in Chapters II and III

respectively

.

B. COMPARISON OF THE EQUATIONS OF MOTION

The equations of motion that describe the two models

were given as Equations 2.2 and 2.3 in Chapter II for the

case of the two rigid links, and as Equations 3.9 - 3.12 in

Chapter III for the case of the rigid-flexible two links

planar robot arm.

Comparing the two sets of equations one can observe

that the second order differential equations obtained by

evaluating Lagrange's equation with respect to the general-

ized coordinates e]_ and 02/ are exactly the same for both
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cases except that some additional terms are included in the

first two equations of motion for the rigid-flexible planar

robot arm due to the flexibility of the second link. The

number of additional terms is proportional to the number of

assumed-modes used to express the elastic motion of the

flexible beam. The other terms are identical because they

represent the same rigid motion with the elastic motion

superimposed this rigid motion, for the case of the rigid-

flexible planar robot arm.

In the case of the rigid-flexible planar robot arm n

additional second order differential equations will be

obtained, by evaluating Lagrange's equation for n generali-

zed coordinates gj^ (i=l, 2 , . . . , n) , in order to model the

elastic displacement of the flexible link using n assumed-

modes.

C. PLANNING THE SIMULATION STUDIES

The sample motion used to investigate the performance

of the two links planar robot arm is depicted in Figure 6.1.

The same sample motion was used for both, rigid-rigid and

rigid-flexible, combinations of the two links planar robot

arm. This sample motion was decided in order to remove as

many of the nonlinearities as possible and to investigate

the system behavior for possible overloading conditions.

A step input with amplitude 1.0 rad was used to drive

the two motors acting on JOINTl and J0INT2 respectively.
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SAMPLE MOTION

Starting Position:

Ending Position : g =57. 3," 0=57.3

9=0°. =
1 o 2

Figure 6.1 Sample motion of the planar robot arm.
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In order to have a more complete understanding of the

system's performance the sample motion of the two links

planar robot arm in the simulation studies will considered

with and without load in both gravitational and gravity-

free environments. The case where the sample motion will be

completed in two successive steps, by first moving only the

first link and, when its final position is reached, then

moving the second link, will be also investigated in the

simulation studies.

First, a complete set of simulation results will be

obtained for the case of the two rigid links planar robot

arm, with the phase plane and the step response plots given

for the two generalized coordinates 6^^ and 62 corresponding

to the angular position of LINKl and LINK2 respectively.

Similar studies will investigate the performance of the

rigid-flexible planar robot arm, with plots giving the end-

point displacement as well as the phase plane and the step

response plots for each of the two angles Q-^ and 02 of the

hypothetical rigid motion.

D. SIMULATION OF THE RIGID-RIGID PLANAR ROBOT ARM.

The simulation results for the two rigid links planar

robot arm are given in Figures 6.2 - 6.13.

Figures 6.2 and 6.3 are the phase plane and the step

response respectively of the unloaded arm in a gravitational

environment. Considering a load, equal to the mass of the
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second arm, to be carried from the manipulator the resulting

phase plane and step response plots are shown in Figures 6.4

and 6.5 respectively. To complete the sample motion in two

successive steps, LINKl is moved first with the resulting

phase plane and step response plots shown in Figures 6.6 and

6.7 and then LINK2 is moved having the resulting phase plane

and step response plots given in Figures 6.8 and 6.9,

respectively. When the sample motion of the two rigid links

planar robot arm is considered in a gravitational-free

environment, the resulting plots when the manipulator is

unloaded are given in Figures 6.10 and 6.11. Figures 6.12

and 6.13 are the plots corresponding to a loaded manipulator

in a gravitational-free environment. In the gravitational-

free environment cases small overshoots occured in the

response of the angular position for both links, especially

with the manipulator loaded. The reason for these effects

is that the motors were selected with parametric values to

satisfy a gravitational environment. Therefore the motors

overdrive when no gravitational forces are included in the

equations of motion. The two links accelerate past the

deceleration curve which then cannot slow down the system

enough to stop at the desired position. This causes the

small overshoots to appear. The step response of the system

for any of the above situations confirm that the use of the

velocity curve follow as the control scheme of a two rigid

links robot arm results to a near minimum time response.
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E. SIMULATION OF THE RIGID-FLEXIBLE PLANAR ROBOT ARM.

The model of the rigid-flexible planar robot arm will

be tested using the same sample motion. For the particular

situation this sample motion represents the hypothetical

rigid motion with the elastic motion superposed on this

motion. For the case of the rigid-flexible planar robot arm

in the simulation results the plots for the flexible motion

of the end-point of the flexible beam will be also obtained.

Figures 6.14, 6.15 and 6.16 illustrate the phase plane,

step response and elastic motion of the end-point respec-

tively for the case of the rigid-flexible planar robot arm

in a gravitational environment with the manipulator not

carrying any load. The plots demonstrate that the proposed

velocity curve follow control scheme is fully applicable

with the system of a planar robot arm having a rigid first

link and a flexible second link. The resulting plots

indicate a good overall system performance with the hypo-

thetical rigid motion being completed in near minimum time.

The elastic motion of the flexible beam has no effect in the

response of the first link, that actually is smoother due to

a lighter second link as compared to the two rigid links

case. The motion produces a very small overshoot, less then

2%, in the response of the flexible link. The response of

the overall system is of course much slower due to the

settling time required for the elastic motion of the

flexible beam.
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Due to the flexible motion of the end-point this time

is approximately 1.5 sec, which is about 5 times more then

the required time for the rigid motion. Figure 6.16 shows

that the end-point is displayed in a negative direction with

respect to the center line of an equivalent rigid arm. This

is due to the bending of the flexible arm as it is ac-

celerated. No other vibrations occur in the response of

the flexible displacement.

When a load is carried by the manipulator the simula-

tion results are given in Figures 6.16, 6.17 and 6.18. The

load carried by the manipulator is equal to the load used in

the simulation studies of the two rigid links planar robot

arm, resulting a load that is approximately 50% more then

the weight of the flexible link. Therefore in the case of

the rigid-flexible planar robot arm the payload will be

increased. The resulting phase plane and step response

plots indicate some vibration modes acting on the system due

to the increased weight of the flexible beam. The effects

of these vibrations are more apparent in the response of the

flexible beam where they cause some overshoots to occur.

Because of the nature of the system, the overshoots in the

response of the flexible beam are not constant in frequency

and amplitude. The reason for this is the several vibration

modes, due to the elastic motion, acting on the system and

the coupling effects of the two arms during the hypothetical

rigid motion of the system.
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These coupling effects are also indicated in the

response of the rigid arm, where some vibrations exist

having small amplitudes. The vibrations of the flexible arm

are coupled into the rigid arm and increase its settling

time. When the flexible arm is loaded the settling time of

the rigid arm is about 1.0 sec, which is greater then the

settling time for an unloaded arm by about a factor of

three. This is also the required settling time for the

hypothetical rigid motion of the flexible link. The actual

settling time of the flexible link is given by the required

settling time of the end-point. Thus the settling time of

the flexible arm is also increased by the load, which causes

its oscillation to last about 2.1 sec. The load also tends

to cause the end-point to overshoot the desired position.

The total response time of the end-point is 0.6 sec longer

when the arm is loaded. The additional time requirement may

be acceptable related to the incresed weight of the flexible

arm due to the load.

For the sample motion to be completed in successive

steps the requested motion for only the rigid arm will be

first completed, followed by the movement of the flexible

beam. The same results will be obtained by reversing the

order of the successive steps, first moving the flexible arm

and when its motion is completed moving the rigid arm. The

resulting plots are illustrated in Figures 6.20, 6.21 and

6.22 for the phase plane, the step response and the flexible
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end-point displacement respectively when moving the rigid

arm. For the motion of the flexible arm the respective

plots will be shown in Figures 6.23, 6.24 and 6.25. The

required time to complete the sample motion, by adding the

time that is required to complete each motion of the

successive steps, is approximately 4.0 sec. Therefore the

settling time for the sample motion, when using the method

of the successive steps, will be twice the required settling

time of the previous simulations. If the time is not the

only important requirement, then the use of the method

described above will give some advantages in the performance

of the system. These advantages can be shown in the phase

plane and the step response plots of the two motions. From

these plots one can observe that the responses of the rigid

arm and the flexible arm have less vibration and insignifi-

cant coupling effects. Thus, the resulting response for the

flexible arm has much smaller overshoot and is close to a

linear system type response. That was expected from the

simulation results for a planar robot arm having only one

flexible link, as was illustrated at Figures 3.5 and 3.6 in

Chapter III.

When the rigid-flexible planar robot arm motion is to

be performed in a gravitational-free environment (i.e.,

space applications) the simulation results giving the phase

plane, the step response and the flexible displacement of

the end-point will be illustrated for the unloaded planar
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robor arm in Figures 6.26, 6.27 and 6.28 and for the loaded

planar robot arm in Figures 6.29, 6.31 and 6.31.

In the case of a gravity-free environment the response

for the hypothetical rigid motion of the unloaded rigid-

flexible planar robot arm, as shown at the phase plane

(Fig. 6.26) and the step response (Fig. 6.27), are almost

identical to the results obtained for the two rigid links

planar robot arm. The required settling time of the overall

motion will be about 0.8 sec due to the required settling

time for the end-point flexible displacement. When the arm

is loaded the size of the overshoots occurring in the system

becomes larger and the required settling time for the

overall motion increases to about 1.9 sec, (that is about

the required settling time of the unloaded manipulator

moving in a gravitational environment)

.

Therefore in a gravity-free environment the rigid-

flexible two links planar robot arm gave very good performa-

nce.

F. COMPARING THE SIMULATION RESULTS

Many observations can be made by comparing the obtained

simulation results for the rigid-flexible and the two rigid

links planar robot arms.

The results for the required settling time of the

hypothetical rigid motion of the rigid-flexible robot arm

are very close to the near minimum time positioning of the
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two rigid links. The hypothetical rigid motion of the

rigid-flexible robot arm resulted in overshoots and vibrati-

ons, that are highly nonlinear in amplitude and in frequen-

cy. The reason for the overshoots is that the system

presents four natural frequencies, two rigid and two

flexible as the model takes into account only two modes of

the flexible beam, combined with the coupling effects

between the two links. By lowering these frequencies when

increasing the load of the flexible link these effects are

more pronounced. The stated nonlinearity in the system's

response can be observed from the shapes of the curves for

both the phase plane and the step response plots.

From the plots of the elastic motion of the system, for

the end-point displacement, it can be seen that accurate

results require a long settling time. Another interesting

point is that the end-point of the manipulator bounces back

and forth from its final position sjlowly but not many times.

That indicates a good control of the flexible components

from the adaptive model.

In the case where the sample motion, or any desired

motion, will be completed in successive steps by moving the

links one at a time, the system's performance indicates

better results with respect to the accuracy and the introdu-

ced vibrations. In this case the required settling time for

the completion of the sample motion will be approximately

twice the time required when the two links are moving
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simultaneously. Therefore once more a decision must be made

based on the requirements of the specific application.

For the case where no gravitational forces are included

in the environment, the rigid-flexible robot arm has a

better performance, not very different from the one obtained

for the two rigid links. Because the performances are not

very different, the other advantages of the flexible

manipulator make its use more advantageous for applications

in a gravity-free environment, such as space applications.
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VII. CONCLUSION / AREAS FOR FURTHER STUDY

As a result of the research conducted in this thesis,

the control of the rigid-flexible, two links planar robot

arm, using the curve following system, appears not only

possible but resulted in a relatively good predicted

performance of the system.

The sample motion used in testing the adaptive system

introduced relatively large inputs for both links of the

manipulator in order to examine the system under large

parameter variations.

The simulation plots indicate that the system provided

very good steady-state accuracy (of the order lOE-3) for the

elastic motion of the flexible link under all tested

conditions. The steady-state accuracy was independent of

the load of the flexible link, but not the settling time of

the elastic motion. The required settling time of the

elastic motion for all cases was many times greater than the

required settling time of the hypothetical rigid motion.

Which was approximately equal to the near minimum time

positioning of the two rigid links planar robot arm.

In the case of a loaded arm increased overshoots with

more vibration modes were introduced in the angular position

of the arm. This problem was partially alleviated by

completing the motion in successive steps, i.e., by moving

the rigid and the flexible links sequentially. This
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solution results in an overall increase of the required

settling time and the whole situation is a trade-off between

time and the amount of oscillation.

It was also observed that for the case of the direct

drive arm that was used as the model, the effects of the

disturbance torques caused by the elastic motion and the

coupling inertia between the two links as well as the

centripetal, coriolis and gravitational forces acting on the

robot arm, are larger. Therefore the servo motor must apply

larger torques which implies high torque constant and high

armature current capabilities. Due to the lighter structure

of the flexible link the torque requirements (for both

motors) are smaller than the requirements in the case of a

two rigid links planar robot arm. Therefore the lighter

rigid-flexible planar robot arm results in less power

consumption, that also means use of smaller actuators.

Combining the above stated main advantage with the

resulting end-point accuracy (from the simulation of the

adaptive model) the rigid-flexible manipulator may be an

attractive solution for many applications.

Compared with a two rigid links planar robot arm, the

rigid-flexible planar robot arm may be preferable in many

applications especially when time is not the main require-

ment and also in gravity-free environment applications, such

as space applications.
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An area for further study arises when the feasibility

of controlling two flexible links with the proposed adaptive

computer simulation model is to be investigated.

Modelling the manipulator both links were assumed to be

massless. Another area for further study arises when two

links having their masses distributed along their lengths

are used to build a robot arm.

Finally a very interesting area for further study will

be the use of the same curve following method as the

adaptive control scheme but with curve reshaping through

the adaptive algorithm in order to obtain better system

performance.
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APPENDIX A

DERIVATION OF THE LAGRANGIAN EQUATIONS FOR THE

TWO RIGID LINKS PLANAR ROBOT ARM

For the sake of the analysis the configuration of the

system for the two rigid links planar robot arm will be

repeated as Figure A.l.

t
Y
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GTBwitatTonal Forco

9
X-Y Piano
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'\ T^ w
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Figure A.l Planar robot arm with two rigid links.
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For this particular system the generalized coordinates

are e-^ and 62, and the generalized forces r2^ and r2 as

defined in Chapter II. To form the Lagrangian function L,

the kinetic and potential energies of the system must

derived in terms of the generalized coordinates. The

kinetic energy of any multi-link robot arm system can be

obtained from the kinetic energies of the individual links,

therefore, for the two links robot arm system, the kinetic

energy T will be the sum of the kinetic energies Tq^ and T2

of LINKl and LINK2 respectively. The kinetic energies, T^^

and T2 , will be given as:

T^ = 4- m^Cx^+y^) (A.2)

By coordinates transformation:

x^= i^cose^+ i^cosce^+e^) (a.3)

Y^= l^sine^+ l^sinCe^+e^) (A. 4)

Taking the derivatives of the Equations A.3 and A. 4 then:

x^ = -i^e^sine^- 1^ (e^+e^) since^+e^) (a.5)

^2 " 1-^02.^°^®!"^ I2 (e^+e2)cos(G^+e2) (a.6)

Substituting Equations A.5 and A.6 into Equation A.2, after

simple algebraic manipulations, the kinetic energy for the

second link is given by the following equation:
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^2= 4- >"2[li^l+^2(®1^2eie2-^^2'^21^l2(e=^+e^92)cose2] (A.7)

Therefore the kinetic energy of the system will be given as:

4- m^i^i^iel +9^02) cose^

(A. 8)

The total potential energy of the system can be

computed by following the same procedure from the potential

energies of the individual links, given as:

V^ = m^gy^ = m^gl^sin9^ (A. 9)

^2 " ™2^^2 " m2g[l^sin9^+l2sin(9^+92) ]
-:•:. (A. 10)

Therefore the total potential energy is:

V = V^+V^ = (m^+m2)gl^sin0^+m2gl2sin(9^+92) (A. 11)

Thus the Lagrangian function, L = T - V, for the system

of the two rigid links planar robot arm will be obtained

from Equations A. 8 and A. 11. After algebraic manipulations

the Lagrangian function obtains the final form:

L = 4- (in^li+Ji)92 + -^ (^212^^2)^2

-H 4- m2(lJ+l^ +21^l2COse2)9^+m2(l^ +l^l2COse2)9^92 (A.12)

-
[ (m^+m^) I^sin9^+m2l2sin(9^+e2) ]g

From the above derived Lagrangian function L, the partial

derivatives of L with respect the generalized coordinates Q-^
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and 92 and their rate of change 9^^ and 92 will give the

following results:

-j^ = -(in^+in2)gl3^cos9^ - m2gl2COS (9^+62) (A. 13)

^ = (in,l2H-J^)9^ + in2(l^H-l2+21^l2COs92)9^

'^1
^

(A.14)

ft (^ = (m^ll^J^^ra^ll^r.^ll^2r.^l^l^cose^)e[

(59.

H- (in2l2+in2l^l2COs92)92 (A. 15)

- (2in2l^l2sin92)9^92- (in2lil2sin92) 9^

% = -(m2l^l2sin92)92 - (m2lil2sin92) 9^92

-in2gl2COS(9 +9 )

(A. 16)

-^ = ("^2^2^^2)®2 ^ in2(l^+l,l2COs92)9^ (A.17)

592

it (^ = (^212-^^2)^2 ^(^2l2^"^2lll2^°^^2)^

<^®2 (A. 18)

- m2l^l2sin92 9^92

A set of two nonlinear second order differential

equations will then be obtained by direct substitution of
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the Equations A. 13, A. 15, A. 16 and A. 18 into the formula for

the Lagrange's equations:

it (^ -^ = Qi -1-2 <*•")

with the generalized forces to be, in this particular case,

*2l~-^l ^^^ Q2^^2 • "^^^ derived pair of the nonlinear second

order differential equations was given in Chapter II of this

thesis, as a result of this analysis.
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APPENDIX B

DERIVATION OF THE MODEL FOR A PLANAR ROBOT ARM HAVING

ONE FLEXIBLE LINK USING THE ASSUMED-MODES METHOD

Bl. GENERAL REMARKS

In this Appendix, the derivation of the mathematical

models for a planar robot arm having one flexible link will

be given, with the flexibility being approximated using the

assumed-modes method. The set of the second order differ-

ential equations of motion that describe that system will be

derived using the Lagrangian dynamics approach.

The Lagrangian function can be computed as L=T-V, where

T and V are the kinetic and the potential energies of the

system respectively. Therefore the Lagrangian function will

be derived similar to the method followed in the case of the

flexible second link of the planar robot arm, as will be

given in Appendix D. Expressing the Lagrangian function in

terms of the flexible displacement Ug the following equation

are obtained:

212. 12 2. '2
I + -m I (-mL = —T- [ml e + me u + mu ] + mlGu

(B.l)
n

1 2- g[mlsine+ mu cose] - —-— 2 (KW.g.)
i=l

where n = 1, 2 or 3

.

With the above derived Lagrangian function L, the set of the

differential equations that describe that system can be
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obtained by forming the Lagrange's equation with respect the

generalized coordinates. For this system the generalized

coordinates are defined to be 9 and gj^ (i=l/ 2 or 3) . Thus

sets of two, three and four nonlinear second order differen-

tial equations will be obtained when the numbers of the

assumed modes used to approximate the flexibility are n=l,2

or 3, respectively. The differential equations will be

obtained by forming the Lagrangian equation, as is given

below:

ip
(^L_) - -^ = Q. i=l,2,... (B.2)

dt ^
.

'^ Sq. ^1 '
' ^ '

5q.

B2. EXPRESSING THE FLEXIBILITY WITH ONE ASSUMED-MODE

For the case in which the flexible displacement will be

expressed using one assumed mode then:

^E = flEgi (B.3)

Replacing the above expression for the flexible displacement

the Lagrangian function will obtain the form:

L = -^ [ml2e2+ me^ (fiE^i)^^ ni(f^gg^)2]

+ mie(f^gg^) - -^ KW^gJ (B.4)

- g [mlsinG+ m(f _ ^g. ) cosG]

Forming the Lagrangian equation of the above given

Lagrangian function with respect the generalized coordinate

6, then:
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~~Fq~ ~ ~9 [miecosa - insinef-„g.] (B.5)

-^^ = ml^e +inlf^gg^ +ine(f^gg^)^ (B.6)

(59

ft (-^^)=ml^e +mlf^gg^ +me* (f ^^g^)
^+ 2inG g^ifl^^-^) (B.7)

50

The same approach with respect the generalized coord-

inate g]_ results in:

|^ = mG^f^^g^- KW^g^- gmf^gCOsG (B.8)

^^ = "^flE^l^ ^l^flE (^-^^

^^1

it (^= ^f'lE^i ^ ^IflE®* (^-^^^

Combining Equations B.5 and B.7 the first nonlinear second

order differential equation can be produced. The second

nonlinear differential equation will be derived from the

Equations B.8 and B.IO. The final form of the differential

equations that describe the system when one assumed mode is

to be used to describe the flexibility of the arm will be

given as follows:

^ = ''ill® ^°1225l +0112® -31 +°1 (B.ll)

° = °211®' -^°222gi +°2111®' ^°2 <''-^2)
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where

°111 == ^l' ^ ^^E^l

°122 = ™1^E

°112 = 2inf2^g^

D- = g[inl6 cose -mf g sinG]

^211 = ^l^E

^222 = ^^lE

•^2111 = -^^E^^l

D^ = gmf^gcose + KW^g^

KW = EI ^ f (X) f (X) dx

Equations B.ll and B.12 are the mathematical model used

in the analysis of the flexible arm, in Chapter III, when

the flexible displacement is to be expressed with one

assumed-mode

.

B3. EXPRESSING THE FLEXIBILITY WITH TWO ASSUMED-MODES

Having the flexible displacement, Ug, being expressed

with two assumed-modes then:

^E = flE^l + f2Eg2 (B.13)

By replacing the derived expression for the flexible

displacement the Lagrangian function will achieve the form:

L = 4- [ml2e2+me2(f^j,g^+f2gg2)^m(f,j,g,+f2j,g2)']
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+ mieCf^^g^+f^^g^) - -^ (KW^g^+KW^g^) (B.14)

- g[mlsine + m(f^^g^+f2j,g2) cose]

In these case the generalized coordinates are G, g^^ and

g2 • Therefore a set of three second order differential

equations will be obtained by following the same procedure

as was illustrated in the case of the one assumed-mode. By-

taking partial derivatives of the Lagrangian function with

respect each generalized coordinate and their corresponding

velocities and differentiate with respect the time the

following equations will be obtained:

^ = '^111® ^°1229l ^^33^2 ^^112® ^1 ^^113® ^2 ^^1 ^^-^^^

° = ^211® ^^222^1 ^^233^2 ^^2111® "^^2

° = ^311®* ^^322^1 -^^333^2 ^^3111^" ^^3

(B.16)

(B.17)

where

D
111 = ^1^ + ^flE'?? ^ ^^2E^2 ^ 2^^1Ef2E^l'^2

°122 = ^l^E

^133 = ™^^2E

°112 = 2inf^gg^+ ^mf^^f^gg^

^133 = 2^f2E^2-' 2mf^^f2j,g^

D^ = gmiecose - gm (

f
^^g^+f 2gg2 ) sine

^211 = ^l^E
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^222 = ^f?E

^233 ^ "^^1E^2E

•^2111 = -"^^1e(^1E'^1-'^2E^2)

D^ = gmf^gCose + KW^g^

^311 = ^lf2E

^322 °233

^333 = ^^2E

^3111 = -"^f2E(^E'^l^f2E'32)

D = gmf^gcose + KW2g2

KW = El

KW = El

I2 ..

f (X) f (X) dx

1 ..

f (X) f (X) dx
^ ^

The derived Equations B.15, B.16 and B.17 will become

the mathematical model of the flexible arm, for the analysis

presented in Chapter III, when two assumed-modes are to be

used to express the flexible displacement of the arm.

B4. EXPRESSING THE FLEXIBILITY WITH THREE ASSUMED-MODES

By expressing the flexible displacement, ug, with three

assumed-modes then:

^E = flE^l + f2Eg2 + f3Eg3 (B.18)

Replacing into the Lagrangian function the approximation of
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the flexible displacement, given by Equation B.18, the

following equation is obtained:

• • • ^ • • • •

+^(flE^l+f2E92'-^3E^3) ^
"'^l®

^ ^lE^l^^ 2E'^2-'f3E^3 ^

(B.19)
-g[nilsine+in(f^^g^+f2gg2+f3gg3)cose]

- -Y- ^"^A ^^2^2 ^^3^3)

For this model the generalized coordinates are 9, q^,

^2 ^rid g3 . Therefore a set of four nonlinear second order

differential equations will be obtained by taking partial

derivatives of the Lagrangian function, with respect to each

generalized coordinate as well as with respect to the rate

of change of these generalized coordinates and different-

iating the resulted equations with respect the time. This

set of the second order differential equations is given as:

^ = °111® '°122'3l +Dl33"32 *°14A^3 ^°112® '^l

+ 0^136 92 +°114® 53 +0,^

(B.20)

° = °211®' ^'^22291 +02339; +02,^9; ^D^^^^^^ +0^ (B.21)

° = °311®' -'°322gi +°333'52 +°344^3 +°3111®' ^""z '^-^^l

° = °411^' ^°422'3i
^D^jg' +0^449^ +0^11102 +D^ (B.23)

where

2 2Dm = ml + m(fiEgi+f2Eg2 + f3E93)
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°122 = ^l^E

^133 = ^lf2E

°144 = "^l^SE

^112 = 2inf^gg^+ 2inf^gf25,g2 + 2inf^^f3gg3

^113 = 2inf2^g2+ 2inf^gf2j,gi + 2mf^^f^^q^

^114 = 2inf2^g3+ 2iT,f^2f3^g^ + 2Taf^^f^^q^

D^ = gmiecose - gin(f ^^g^+f2gg2 + f 3^93 ) sinG

°211 = ^l^E

^222 = ^^lE

^233 ^ ™^1E^2E

^244 = "^^IeSe

^2111 = -^^1E^^1e'5i^^2e'52^^3e'53)

D_ = gmf-^cose + KW.g,

^311 = ^lf2E

"^322 "^233

^333 ^ ™f2E

^344 = "^^2E^3E

D3111 = -"^^2E^^1E^1+^2E^2^^3e'?3)

D3 = gmf^gCOsG + KW2g2

^411 = ^lf3E

°422 ^ °244
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D.__ = D_ . .

433 344

D . . . = mf __
444 3E

^4111 = -^f3E(^E9l^f2E^2-'f3E^3)

D^ = gmf^gcose + ^^g^

KW = El

KW^ = El

KW^ = El

pl-

1.

f^(x) f^(x) dx

f^Cx) f^Cx) dx

f3(x) f3(x) dx

The derived Equations B.20 - B.23 will represent the

mathematical model of the flexible arm, when the flexible

displacement will approximated using three assumed-modes.

B5. THE MODELS FOR THE FLEXIBLE ARM

A planar robot having one flexible rigid arm will have

a mathematical model that can be represented by the models

derived previously. All these models are very similar

because they were based on the same idea with the difference

that the flexible end-point displaceiaent was expressed with

one, two and three assumed-modes. These models will be used

with an adaptive control scheme, the velocity curve follow,

that will be derived in Chapter V. The three different

models that will be resulted will be simulated in order to

investigate the performance of the flexible arm.
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APPENDIX C

SIMULATION PROGRAMS OF THE ADAPTIVE MODEL HAVING A FLEXIBLE

ARM TO INVESTIGATE THE EFFECTS OF THE ASSUMED MODES

CI. APPROXIMATION USING ONE ASSUMED MODE (N=l)

TITLE
TITLE
TITLE
TITLE
*

CONST
*

PARAM
PARAM
PARAM
PARAM
PARAM
PARMI
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
*

INTGER

INITIAL

SIMULATION PROGRAM FOR THE ADAPTIVE MODEL OF A
PLANAR ROBOT ARM HAVING ONE FLEXIBLE LINK.
THE FLEXIBILITY WAS APPROXIMATED USING ONE ASSUMED
MODE (N=l)

.

G=981.4

K=1.0,K1=1.0,K2=10000.0,KM=2.341
KT=1036.93
VSAT=150.0
J=2.3 8

KV=0.1012
BM=3 . 094 , LL=0 . 0001 , R=0 .91
KW1=0.57
M=1.0
L=3 2.0
El=1.8751
REF=1.0
DT=0. 00025

N,N1,FLAG,NCHK

N=0
N1=0
FLAG=0
Q1=0.0
Q1D=0.0
Q1DD=0.0
TH=0.0
THD=0.0
THDD=0.0
TH1=0.0
SIG1=(SINH(E1)-SIN(E1)

) / (COSH (El ) +COS (El
)

)

F1=C0SH(E1)-C0S(E1)-SIG1*(SINH(E1)-SIN(E1)

)

A=SQRT ( 2 . 0*KM*VSAT)

DERIVATIVE
RR=REF*STEP(0.0)
ER=RR-P

NOSORT
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****************************************************************
******* PARAMETERS FOR THE EQUATIONS OF MOTION ******
***********************************************************

UE=F1*Q1
D111=M* (L**2+UE**2)
D112=2*M*F1*UE
D122=M*L*F1
D1=G*M*(L*C0S(TH)-UE*SIN(TH)

)

D211=M*L*F1
D222=M*F1**2
D2111=-M*F1*UE
D2=G*M*F1*C0S (TH) -KW1*Q1

***********************************************************
****** THE LAGRANGE'S EQUATIONS OF THE SYSTEM *******
***********************************************************

TL=D122*Q1DD+D112*THD*Q1D+D2
Q1DD=(D21I*THDD+D2111*THD**2+D2)/D2 2 2

***********************************************************
*********** THE ADAPTIVE MODEL ************
***********************************************************

JT0T=J+D111
IF (ER.LT.0.0) THEN
XD0T=-A*K1*SQRT (ABS (ER)

)

ELSE
XD0T=A*K1*SQRT (ER)

END IF
***********************************************************
************ FLEXIBLE LINK ************
***********************************************************
SORT

XD=XDOT-K*PD
V=LIMIT ( -VSAT , VSAT , K2 *XD)

NOSORT
IF (FLAG.EQ.l) GO TO 20
IF (V.LT.VSAT.AND.TIME.GT. 0.0005) FLAG=1
NCHK=N1

2 CONTINUE
SORT

PDD=KM*V
PD=INTGRL(0.0,PDD)
P=INTGRL(0.0,PD)
VP=V-(KV*THD)
IM=REALPL (0.0, LL/R , VP/R)
TM=KT*IM
TNET=TM-THD*BM-TL
THDD= ( 1

.
/JTOT) *TNET

THD=INTGRL (0.0, THDD)
THD=INTGRL (0.0, THD)

*********,:*************************************************
************ ASSUMED MODES ************
***********************************************************

Q1D=INTGRL( . , QIDD)
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Q1=INTGRL(0. 0,Q1D)
*************************************************************
*********** SAMPLING THE SYSTEM ***********
***********************************************************
SAMPLE

NOSORT

30

IF (N.EQ.O) GO TO 30
P=TH
IF (N.GE.2) THEN
TH1D= (TH-TH2 ) / ( 2 . *DT)
ELSE
TH1D=PD
END IF
IF (FLAG.EQ.O) THEN

PD=(2.*( (TH-TH1)/DT) ) -THID
IF (N.GE.2) THEN

KM=DABS(2.*TH/(V*( (N1*DT) **2) )

)

END IF
END IF
IF (Nl.NE.NCHK) THEN

PD=(2.*( (TH-TH1)/DT) ) -THID
END IF
N=N+1
N1=NH-1
TH2=TH1
TH1=TH

TERMINAL
METHOD RKSFX
*

CONTRL FINTIM=2 . , DELT=0 . 00005 , DELS=0 . 00025
SAVE (SI) 0.005,XDOT,THD,TH
*

GRAPH (L1/S1,DE=TEK618)
TH(LO=0.0,SC=.2,LE=10,NI=10,UN='RAD'

)
, . .

.

THD ( L0=-8 , SC=4 . , LE=8 , NI=8 )
, . .

.

XDOT ( L0=-8 , SC=4 , LE=8 , NI=8 , P0=10)
*

GRAPH (L2/S1,DE=TEK618) TIME (UN= ' SEC ') , TH(UN='RAD')
*

LABEL (LI) PHASE PLANE OF THE FLEXIBLE BEAM (USING 1-MODE;
LABEL (L2) STEP RESPONSE OF THE FLEXIBLE BEAM (USING 1-MODE

;

*

END
STOP
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C2. APPROXIMATION USING TWO ASSUMED MODES (N=2)

TITLE
TITLE
TITLE
TITLE
*

CONST
*

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
*

INTGER
*

INITIAL

SIMULATION PROGRAM FOR THE ADAPTIVE MODEL OF A
PLANAR ROBOT ARM HAVING A FLEXIBLE LINK.
THE FLEXIBILITY IS APPROXIMATED USING TWO ASSUMED
MODES (N=2)

.

G=981.4

K=1.0, Kl=1.0, K2=10000.0, KM=2.341
KT=1036.93
VSAT=150.0
J=2.3 8

KV=0.1012
BM=3.094, LL=0.0001,R=0.91
M=1.0
L=32.0
El=1.8751, E2=4.6941
KW1=0. 00124, KW2=0.0433
REF=1.0
DT=0. 00025

N, Nl, FLAG, NCHK

N=0
N1=0
FLAG=0
QD=0.0
Q1=0.0
Q1D=0.0
Q2=0.0
Q2D=0.0
Q2DD=0.0
TH=0.0
THD=0 .

THDD=0.0
TH1=0.0
SIG1=(SINK(E1)-SIN(E1)

) / (COSH (El) +COS (El)

)

SIG2=(SINH(E2)-SIN(E2)
) / (COSH (E2 ) +COS (E2 )

)

F1=C0SH(E1)-C0S(E1)-SIG1*(SINH(E1) -SIN (El)

)

F2=COSH(E2) -C0S(E2) -SIG2* (SINH (E2 ) -SIN(E2)

)

A=SQRT(2 . 0*KM*VSAT)
*

DERIVATIVE
RR=REF*STEP(0.0)
ER=RR-P

NOSORT
**************************************************************
****** PARAMETERS FOR THE EQUATIONS OF MOTION ******
***********************************************************

UE=F1*Q1+F2*Q2

124



D111=M*(L**2+UE**2)
D112=2*M*F1*UE
D113=2*M*F2*UE
D122=M*L*F1
D133=M*L*F2
D1=G*M*(L*C0S(TH)-UE*SIN(TH)

)

D211=M*L*F1
D222=M*F1**2
D233=M*F1*F2
D2111=-M*F1*UE
D2=G*M*F1*C0S (TH) +KW1*Q1
D311=M*L*F2
D322=D233
D333=M*F2**2
D3111=-M*F2*UE
D3=G*M*F2*COS (TH) +KW2*Q2

*****************************************************************
****** THE LAGRANGE'S EQUATIONS OF THE SYSTEM ******
***********************************************************

TL=D12 2*QD+D13 3*Q2DD+D112*THD*Q1D+D113*THD*Q2D+D1
Q1DD=(D211*THDD+D2 3 3*Q2DD+D2111*THD**2+D2)/D2 2 2

Q2DD=(D311*THDD+D3 2 2*QD+D3111*THD**2+D3)/D3 3 3

QD=Q1DD
***********************************************************
*********** THE ADAPTIVE MODEL ***********
***********************************************************

JT0T=J+D111
IF (ER.LT.0.0) THEN
XD0T=-A*K1*SQRT (ABS (ER)

)

ELSE
XD0T=A*K1*SQRT (ER)

END IF
***********************************************************
************ FLEXIBLE LINK ************
***********************************************************
SORT

XD=XDOT-K*PD
V=LIMIT ( -VSAT , VSAT , K2 *XD)

NOSORT
IF (FLAG.EQ.l) GO TO 2

IF (V. LT. VSAT. AND. TIME. GT. 0.0005) FLAG=1
NCHK=N1

2 CONTINUE
SORT

PDD=KM*V
PD=INTGRL (0.0, PDD)
P=INTGRL(0.0,PD)
VP=V-(KV*THD)
IM=REALPL (0.0, LL/R , VP/R)
TM=KT*IM
TNET=TM-THD*BM-TL
THDD= ( 1

.
/JTOT) *TNET
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THD=INTGRL (0.0, THDD)
TH=INTGRL (0.0, THD)

*******************************************************************
************ ASSUMED MODES *************
***********************************************************

Q1D=INTGRL (0.0, QIDD)
Q2D=INTGRL (0.0, Q2DD)
Q1=INTGRL(0.0,Q1D)
Q2=INTGRL ( . , Q2D)

***********************************************************
*********** SAMPLING THE SYSTEM ***********
***********************************************************
SAMPLE
NOSORT

IF (N.EQ.O) GO TO 30
P=TH
IF (N.GE.2) THEN
THID= (TH-TH2

) / (2 . *DT)
ELSE
TH1D=PD
END IF
IF (FLAG.EQ.O) THEN

PD=(2.*( (TH-TH1)/DT) ) -THID
IF (N.GE.2) THEN
KM=DABS(2.*TH/ (V*

( (N1*DT) **2) )

)

END IF
END IF
IF (Nl.NE.NCHK) THEN

PD=(2.*( (TH-TH1)/DT) )-THlD
END IF

3 N=N+1
N1=NH-1
TH2=TH1
TH1=TH

TERMINAL
METHOD
*

CONTRL
SAVE (SI)
*

GRAPH

RKSFX

FINTIM=2.0, DELT=0. 00005, DELS=0. 00025
0.005,XDOT,THD,TH

GRAPH
*

LABEL
LABEL
*

END
STOP

(L1/S1,DE=TEK618)
TH(LO=0. 0, SC=. 2 , LE=10,NI =10,UN='RAD' ) , . . .

THD ( L0=-8 , SC=4 . , LE=8 , NI=8 ) , . .

.

XDOT ( L0=-8 , SC=4 , LE=8 , NI=8 , P0=10

)

(L2/S1,DE=TEK618) TIME (UN= ' SEC ') , TH(UN='RAD')

(LI) PHASE PLANE OF THE FLEXIBLE ARM (USING 2 -MODES;
(L2) STEP RESPONSE OF THE FLEXIBLE ARM (USING 2-MODES
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C3. APPROXIMATION USING THREE ASSUMED MODES (N=3)

TITLE
TITLE
TITLE
TITLE

CONST
*

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
*

INTGER

INITIAL

SIMULATION PROGRAM FOR THE ADAPTIVE MODEL OF A
PLANAR ROBOT ARM HAVING A FLEXIBLE LINK.
THE FLEXIBILITY IS APPROXIMATED USING THREE ASSUMED
MODES (N=3)

.

G=9 81.4

K=1.0, Kl=1.0, K2=10000.0, KM=2.341
KT=1036.93
VSAT=150.0
J=2.38
KV=0.1012
BM=3.094, LL=0.0001,R=0.91
M=1.0
L=3 2.0
El=1.8751, E2=4.6941, E3=7. 85467
KW1=0. 00124, KW2=0.0433, KW3=0.357
REF=1.0
DT=0. 00025

N, Nl, FLAG, NCHK

N=0
N1=0
FLAG=0
QD1=0.0
QD2=0.0
Q1=0.0
Q1D=0.0
Q2=0.0
Q2D=0.0
Q3=0.0
Q3D=0.0
Q3DD=0.0
TH=0.0
THD=0.0
THDD^O.O
TH1=0.0
SIG1=(SINH(E1)-SIN(E1)

) / ( COSH (El ) +COS (El )

)

SIG2=(SINH(E2)-SIN(E2)
) / (COSH (E2 ) +COS (E2

)

)

SIG3=(SINH(E3)-SIN(E3)
) / (COSH (E3 ) +COS (E3 )

)

F1=C0SH(E1)-C0S(E1)-SIG1*(SINH(E1)-SIN(E1)

)

F2=COSH(E2) -COS (E2 ) -SIG2* (SINH (E2 ) -SIN (E2
)

)

F3=COSH(E3) -C0S(E3) -SIG3* (SINH (E3 ) -SIN(E3)

)

A=SQRT ( 2 . 0*KM*VSAT)

DERIVATIVE
RR=REF*STEP(0.0)
ER=RR-P
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NOSORT

****** PARAMETERS FOR THE EQUATIONS OF MOTION ******
***********************************************************

UE=F1*Q1+F2*Q2+F3*Q3
D111=M*(L**2+UE**2)
D112=2*M*F1*UE
D113=2*M*F2*UE
D114=2*M*F3*UE
D122=M*L*F1
D133=M*L*F2
D144=M*L*F3
D1=G*M* (L*COS (TH) -UE*SIN (TH)

)

D211=M*L*F1
D222=M*F1**2
D233=M*F1*F2
D244=M*F1*F3
D2111=-M*F1*UE
D2=G*M*F1*C0S (TH) +KW1*Q1
D311=M*L*F2
D322=D233
D333=M*F2**2
D344=M*F2*F3
D3111=-M*F2*UE
D3=G*M*F2*COS (TH) +KW2*Q2
D411=M*L*F3
D422=D244
D433=D344
D444=M*F3**2
D4111=-M*F3*UE
D4=G*M*F3*COS (TH) +KW3*Q3

***********************************************************
****** THE LAGRANGE'S EQUATIONS OF THE SYSTEM ******
***********************************************************

TL=D122*QD1+D133*QD2+D144*Q3DD. .

.

+D112*THD*Q1D+D113*THD*Q2D+D114*THD*Q3D+D1
Q1DD=(D211*THDD+D233*QD2+D244*Q3DD. .

.

+D2111*THD**2+D2)/D2 2 2

Q2DD=(D311*THDD+D322*QD1+D344*Q3DD. .

.

+D3111*THD**2+D3)/D3 3 3

Q3DD=(D411*THDD+D422*QD1+D433*QD2. .

.

+D4111*THD**2+D4)/D44 4

QD1=Q1DD
QD2=Q2DD

***********************************************************
*********** THE ADAPTIVE MODEL ************
***********************************************************

JT0T=J+D111
IF (ER.LT.0.0) THEN
XD0T=-A*K1*SQRT (ABS (ER)

)

ELSE
XD0T=A*K1*SQRT (ER)
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*******
*******
*******
SORT

NOSORT

20
SORT

*******
*******
*******

*******
*******
*******
SAMPLE
*

NOSORT

END IF
****************************************************
****** FLEXIBLE LINK *************
****************************************************

XD=XDOT-K*PD
V=LIMIT ( -VSAT , VSAT , K2 *XD

)

IF (FLAG.EQ.l) GO TO 20
IF (V.LT.VSAT.AND.TIME.GT. 0.0005) FLAG=1
NCHK=N1
CONTINUE

PDD=KM*V
PD=INTGRL (0.0, PDD)
P=INTGRL(0.0,PD)
VP=V-(KV*THD)
IM=REALPL ( . , LL/R , VP/R)
TM=KT*IM
TNET=TM-THD*BM-TL
THDD= ( 1

.
/JTOT ) *TNET

THD=INTGRL (0.0, THDD)
TH=INTGRL (0.0, THD)

****************************************************
***** ASSUMED MODES ************
****************************************************

Q1D=INTGRL (0.0, QIDD)
Q2D=INTGRL(0. 0,Q2DD)
Q3D=INTGRL( .

, Q3DD)
Q1=INTGRL(0.0,Q1D)
Q2=INTGRL(0.0,Q2D)
Q3=INTGRL(0.0,Q3D)

****************************************************
**** SAMPLING THE SYSTEM ***********
****************************************************

IF (N.EQ.O) GO TO 30
P=TH
IF (N.GE.2) THEN
TH1D= (TH-TH2

) / ( 2 . *DT)
ELSE

TH1D=PD
END IF
IF (FLAG.EQ.O) THEN

PD=(2.*( (TH-TH1)/DT) ) -THID
IF (N.GE.2) THEN

KM=DABS (2 . *TH/ (V* ( (N1*DT) **2) ) )

END IF
END IF
IF (Nl.NE.NCHK) THEN
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30

PD=(2.*( (TH-TH1)/DT) ) -THID
END IF
N=N+1
N1=N1+1
TH2=TH1
TH1=TH

TERMINAL
METHOD RKSFX
*

CONTRL FINTIM=3.0, DELT=0 . 00005 , DELS=0. 00025
SAVE (SI) 0.005,XDOT,THD,TH
*

GRAPH (L1/S1,DE=TEK618)
TH(LO=0.0,SC=.2,LE=10,NI=10,UN='RAD'

)
, . .

.

THD ( L0=-8 , SC=4 . , LE=8 , NI=8 )
, . .

.

XDOT (L0=-8 , SC=4 . , LE=8 , NI=8 , P0=10

)

GRAPH (L2/S1,DE=TEK618) TIME (UN= ' SEC ') , TH(UN='RAD')
*

LABEL (LI) PHASE PLANE OF THE FLEXIBLE ARM (USING 3 -MODES)
LABEL (L2) STEP RESPONSE OF THE FLEXIBLE ARM (USING 3 -MODES)
*

END
STOP
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APPENDIX D

DERIVATION OF THE MODEL FOR A TWO LINKS PLANAR ROBOT ARM

HAVING ONE RIGID AND ONE FLEXIBLE LINKS

In this Appendix, a complete derivation will be given

for the mathematical model of the proposed two links planar

robot arm having the first link rigid and the second link

flexible. The set of the second order differential equa-

tions of motion that describe the proposed system will be

derived using the Lagrangian dynamics approach. For the

sake of the analysis Figure 3.2 given in Chapter III,

illustrating the coordinates of the system for both the

rigid and the flexible links will be repeated as Figure D.l,

in order to give a better understanding in the derivation of

the kinetic and the potential energies.

The Lagrangian function will again be given as L=T-V,

where T and V are the kinetic and the potential energies of

the system respectively. The kinetic and potential energies

will derived from the kinetic and potential energies of the

individual links. Therefore T=T]_+T2 and V=V]_+V2 , where

"^I'^l ^^^ "^2 '^2 ^^® ^^^ kinetic and potential energies of

the rigid and the flexible link respectively.

The kinetic energy for the rigid link will be given as:

^1 = 4- ""A^l (D-i)
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Figure D.l Coordinates configuration of the (rigid-
flexible) two links planar robot system,

The kinetic energy of the flexible link will be:

T = 4- in2(x2 +
yI)

(D.2)

where X2 and Y2 ^^^ t.h& end-point Cartesian coordinates of

132



the flexible beam. The transformation to the generalized

coordinates, that were selected to describe that system, was

given in Chapter III, with equations 3.2 and 3.3. Taking

the derivatives of these equations the velocity components

will be represented as:

x^ = -i^e^sine^ - 1^ (e^+e2)sin(e^+e2)

- Uj,sin(e^+e2)- \i^{e^+e^)sinie^+e^)

(D.3)

(D.4)

^2 " i^QiCose^ + 12(6^+92)003(9^+92)

- UgCOs(9^+92) - Ug(9^+92)sin(9^+92)

Taking the squares of the above equations then:

X2 = 1^9^sin^9^+l2 (6^+92) ^sin^(9^+92)+u^sin^ (9^+92)

+u^ (9^+92 )^cos^ (9^+92 )+1^120-l(9i+02)^^"®1^^"^®1^®2^

• • • •

+u^sin(9^+92) [1^9^sin9^+l2(9^+92)sin(9^+92)

]

(D.5)

+l^Ug9^ (9^+92) sin9^cos (9^+92)

+l2U^ (9^+92 )sin^ (9^+92)

+l2Ug (9^+92 )^sin (9^+92) cos (9^+92)

+Uj,Uj, (9^+62) sin (9^+92) cos (9^+92)

y2 = 1^9^cos^9^+l2 (9^+92) ^cos2(9^+92)+u^cos^ (9^+92)

+Ug (9^+92 )^cos^ (9^+92) +1^12©]^ (e^+92)cos9^cos (9^+92)
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+l^Uge^cose^cos(G^+02) +12^^(9^+92)003^(9^+02)

-l^Ug9^ (9^+92) cos9^sin (9^+92) (D.6)

-l2Ug (9^+92) cos (9^+92) sin (9^+92)

-UgUg (9^+92) cos (9^+92) sin (9^+92)

Combining Equations D.5 and D.6 into Equation D.2, and using

trigonometric identities to simplify the expression, the

kinetic energy for the flexible link obtains the form:

+21 1 e (6 +e jcose + 21 ue cose (d.7)

To obtain the final form of the kinetic energy for the

flexible link, the flexible displacement Ug and velocity Ug

can be substituted from the expressions derived in Chapter

III as given by Equations 3.6 and 3.7 respectively. For

motions of the flexible arm in the range -90°<92<90° then

sin (-92)= -sin92. Therefore the total kinetic energy of the

system is:

T = 4- [m^l292+m2l2,92+m2l2,(9^+92)^m2(f,Eg,+f2Eg2)'^

+ -^ m2(9^+92)^f,gg,+ f2Eg2)'+in2l,l29,(9,+92)cos02

^ ^2ll®l(^E^l^f2E^2)^°^®2-'"^2l2(®l^®2^ ^ ^ lE^l-^^2e92 ^
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The potential energy for the rigid link will be:

V = gm 1 sine (D.9)

For the flexible link the potential energy will be composed

of the energy associated with the rigid motion plus the

elastic potential energy. Assuming the magnitude of the

elastic motion small compared to the overall motion, meaning

small amplitude of the flexible displacement u, the potent-

ial energy of the flexible link can be written as:

V^ = gm2[l^sine^+l2sin(e^+e2)+UgCos(e^+02)

]

(D.IO)

EI (
" 7 ) dx

'^2 „. . 52u

where EI is the stiffness of the flexible link, assumed

constant for the purpose of this model.

Substituting the flexible displacement Ug with the

equivalent expression, derived in Chapter III, given by

Equation 3.6, the integral involved in the potential energy

of the flexible beam can be evaluated as follows:

*'

where

,1

^ (figi+f2^2)^^''"^1^1^^2^2 (D-11)

KW = EI ^ (f. f.) dx

and
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KW^ = EI
-L _ • • • •

^ ^

Therefore the total potential energy of the system becomes;

V = g[m 1 sine +m 1 sine +m 1 sin(e +e
)

+m2(f^gg^+f2j,g2)oos(9^+02)]- 4- (KW^g^+KW^g^)

The Lagrangian function, L, will then can be computed from

the Equations D.8 and D.12, as follows:

L= 4-[ (m^+m^) l^e^+m^l^ (e^+e^) ^m^
(©i+Qs^

'
^^lE^l^^2E^2)

'

+m2(f^2g^+f2Eg2) ^1+^21^126^ (e^4-e2)cose2

'^2ll®l(flE^l^f2E^2)^°^V^2ll(^^®2) ^ ^ lE^^l^^2E^2 ^
^^-^^^

-m2i^e^(e^4-e2)(f^gg^+f2j,g2)sine2-[(m^+m2)i^sine^

+m2i2sin(e^+e2)+m2(fij,g3^+f2^g2)cos(e^+e2)]g

Having derived the Lagrangian function, the differential

equations that describe this system can be obtained by

forming the Lagrange's equations that have the general form

given from Equation 3.8 in Chapter III. For this particular

system the generalized coordinates are defined to be e^^, 02,

c^Y s^^d g2 . Therefore a set of four nonlinear second order

differential equations will be obtained by taking partial

derivatives of the Lagrangian function with respect to each

generalized coordinate and their corresponding velocities
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and differentiated with respect to time. This approach with

respect to Q-^ gives:

—r-— = -[(m +m )1 cose +m 1 cos (9 +9
)

*®1 (D.14)

"" ^2(^E'5l^f2E'52)^^^(®l^®2^^^

+in2lil2e2COs92+2in2lil29^cose2+in2l^(f^j,gi+f2Eg2)cos9
(D. 15)

• • •

m

k (-^' = ('"l""2)l?^i +»2l2®i *™2l2®2
+'°2®i < ^lEgi+*2Eg2

'

+2m29^f2^g^g^+2in2e^f^gf2gg^g2-H2m2e^f^gf2Eg2gi

• — • •— • • •

+2m29^f2gg2g2 + 2in292f^gg^g^+2in292figf2Egig2

'2™2®2^E^2E^2^1^2in292f^j,g2g2+n^2lll2®2 ^°^®2

+2in2l^l2e^ cos92-in2l^l2e2 sine2-2in2l^l2e^e2sin92

+ni2i^cose2(f^j,g^ +f2£g2 )-in2i^e2(f^£g^+f2Eg2)sine2

^^2l2^E^l ^^2l2^2E^2 "^2 ^ 1®2 ^ ^E^l^^2E^2 ^
^^^®2

-m2l^e2(f^^g^+f2^g2)cos92-m2l^92sine2(f^j,g^+f2Eg2)

-211,21, (f^£g,+ f2Eg2) (©1 Sine2+9,92C0S92)
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Combining the above Equations D.14 and D.16 the first non-

linear second order differential equation can be derived, as

given in Chapter III by Equation 3.9. The same approach

with respect to 62 gives:

^^ =-m_l,l„e- (e,+G_)sine_-m_l,e_ (f,„g +f_^g-)sine.

-m^i^e^O^+e^) (f^j,g^+f2Eg2)cose2- g[m2i2cos(e^4-e2) (d.17)

-^2(flE^l-'f2E92)^i^(®l^®2)^

^^ = "^2^2®2+"^2®l(^lE^1^^2E92^^-'™2®2(^lE'?l^f2E'?2^^

69^

^^2l2(^E9l+f2E^2)-^2H®l(^lE9l^^2E^2)^^"®2 ^^'^^^

^™2l2®l^"^2ll^2®l^°^®2

dt (^=^2^2^^ ^^2l2®2 ^^2(flE9l-'^2E92)'^i ^^m^fJ^g.g.e^

• • • • — • •

'2^2^Ef2E'?l92®1^2m2f^£f2Egig20i+2m2f2gg2g2e^

'™2(^E^1-'^2E^2^'®2 ^2in2fiEgigiQ2^2m2f,gf2Egig2©2

'2™2^E^2E^l'52®2^2m2f^j,g2g2e2+in2l^l2e; cose^ (D.19)

-m2l^l2e^e2sine2+m2l2f^gg^
""^2^1^ lE®l'^l^^"®2

-"^2H^2E®1^2^^"®2-"^2^2(flE^l^f2E'52)®l ^^"®2

-m2l^(f^j,g^+f2Eg2)eie2COse2+m2l2f2Eg2
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The second nonlinear second-order differential equation that

describes the system will result from the above Equations

D.17 and D.19, having the final form given by the Equation

3.10 in Chapter III. With respect to the generalized

coordinate g-L this approach gives:

^^ = m re,+e,)2f2 g 4-m,(e +e,)2f,,f,^g
5g 2^1 2' lE^l 2^1 2' IE 2E^2

(D.20)

-m2i^e^(e^+e2)fi5,sine2-gm2f^j,cos(e^+e^)+Kw^g^

^^ =^2tfWflEf2E^2^1l^flE^°^®2^l2(^^S)^E^ (^'^D

-
^^1

dt
(-^^) = ^24e9i ^^2^Ef2E^2 ^"^2ll^E®l ^°^®2

•^^1 (D.22)

-m^i.f^^e^e^sine^+m^i^fiEe; ^m^i^f.j^e;

Combining Equations D.20 and D.22 the third nonlinear second

order differential equation can be produced with its final

form given in Chapter III by Equation 3.11. The last

Equation 3.12 of the second order differential equations

given in Chapter III, can be derived from the given below

(Equations D,23 and D.25). These equations can be derived

by following the same procedure with respect to the fourth

generalized coordinate g2

.

1^ = m2(e^^e2)2f2^g^^,^(0^+0^)2f^^f^^g^

-m^l^e^ie^+e^)t^^sine^-gra^t^^cosie^+e^)+}^^g^
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dt <^^' = '"2*2e"32 •'"2flE^2E5l +'"2ll*2E®l '=°=®2

• • • • • •

'^2^2f2E®l '™2l2^2E®2 -^2^1^2E®1®2^^^®2

(D.25)
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APPENDIX E

SIMULATION PROGRAM FOR THE BASIC MODEL OF THE

VELOCITY CURVE FOLLOW CONTROL SCHEME

TITLE
*

PARAM
PARAM

INITIAL

ADAPTIVE VELOCITY CURVE FOLLOW CONTROL SCHEME

Kl=0.8, K2=10000., KM=0.185, VSAT=300.0, K=

INP=1.0

A=SQRT ( 2 . *KM*VSAT)
VEL=0.0

1.0

DERIVATIVE
R=INP*STEP(0.0)
ER=R-C

NOSORT

SORT

IF (ER.LT.0.0) THEN
VEL=-A*K1*SQRT(ABS(ER)

)

ELSE
VEL=A*K1*SQRT(ER)

END IF

DVEL=VEL-FBVEL
FBVEL=K*CDOT
AMP=LIMIT ( -VSAT , VSAT , K2 *DVEL)
CDDOT=KM*AMP
CDOT=INTGRL (0.0, CDDOT

)

C=INTGRL (0.0, CDOT

)

METHOD RKSFX
CONTROL FINTIM=0.4, DELT=0.0001
SAVE (SI) 0.001, C, CDOT, VEL
SAVE (S2) 0.001, C, R
*

GRAPH (G1/S1,DE=TEK618,PO=0,0)
C(LE=8,NI=10,SC=0.1,UN='RAD'

) , . .

.

VEL (LE=4,NI=4,LO=0,SC=$AR,UN=' RAD/SEC ) , .

.

CDOT ( LE=4 , NI=4 , L0=0 , SC=$AR , UN= ' RAD/SEC
'

, P0=

GRAPH (G2/S2,DE=TEK618,OV,PO=0,5)
TIME ( LE=8 , UN= ' SECOND '),...
C ( LE=4 , NI=4 , L0=0 , UN= ' RAD

'
, SC=0 . 5 ) , . .

.

R ( LE=4 , NI=4 , LO=0 , SC=0 . 5 , AX=OMIT)
LABEL (Gl) PHASE PLANE
LABEL (G2) STEP RESPONSE
END
STOP
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TITLE
TITLE
*

TITLE
TITLE
TITLE
*

CONST
CONST
*

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
*

INTGER

INITIAL

APPENDIX F

SIMULATION PROGRAM FOR THE TWO LINKS

(RIGID-RIGID) PLANAR ROBOT ARM

SIMULATION PROGRAM OF THE ADAPTIVE MODEL FOR THE
PLANAR ROBOT ARM HAVING TWO RIGID LINKS.

THIS PROGRAM WAS USED FOR THE SIMULATION RESULTS
FOR THAT SYSTEM, WITH OR WITHOUT LOAD AS ALSO
WITH OR WITHOUT THE GRAVITATIONAL FORCES.

G=981.4
ZL=0.0

K1=0.8,K2=10000. ,K3=1.0,KM1=0.162,KM2=2.04 5,K=1.0
KT1=103 6.9 3,KT2=103 6.9 3

VSAT1=300 . , VSAT2=150 .

J1=2.38,J2=2.38
KV1=0.1012,KV2=0. 1012
R1=0.91,R2=0.91,L=0.0001
BM1=3 . 094 , BM2=3 . 094
L1=40.0,L2=32.0
M1=3.0,M2=0.5
REF1=1.0,REF2=1.0
DT=0. 00025

N , Nl , N2 , NCHKl , NCHK2 , FLAGl , FLAG2

N=0
N1=
N2 =
FLAG1=0
FLAG2=0
P1=0.0
P2=0.0
P1D=0.0
P2D=0.0
TH1=0.0
TH2=0.0
TH11=0.0
TH21=0.0
TH1D=0.0
TH2D=0.0
THIDD^O.O
TH2DD=0.0
A1=SQRT(2.*KM1*VSAT1)
A2=SQRT ( 2 . *KM2 *VSAT2

)
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*

DERIVATIVE
RR1=REF1*STEP(0. 0)
RR2=REF2*STEP(0. 0)
RRD2=TRANSP(200, 0.0,0. 1 , RR2

)

E1=RR1-P1
E2=RRD2-P2

NOSORT
***********************************************************
****** PARAMETERS FOR THE EQUATIONS OF MOTION ******
***********************************************************

TH=TH1+TH2
D11=(M1+M2) *(L1**2)+M2*(L2**2)+2*M2*L1*L2*C0S(TH2)
D12=M2* (L2**2)+M2*L1*L2*C0S (TH2)
D22=M2*(L2**2)
D12 2=-M2*L1*L2*SIN(TH2)
D112=D122
D211=-D112
D1=(M1+M2) *G*L1*C0S(TH1)+M2*G*L2*C0S(TH)
D2=M2*G*L2*COS (TH)

***********************************************************
********** DIFFERENTIAL EQUATIONS **********
***********************************************************

TL1=D12*TH2DD+D12 2*TH2D**2+2*D112*TH1D*TH2D+D1
TL2=D12*TH1DD+D211*TH1D**2+D2

*

JT0T1=JH-D11
JTOT2=J2+D22
IF (El.LT.0.0) THEN

X1D0T=-A1*K1*SQRT(ABS(E1)

)

ELSE
X1D0T=A1*K1*SQRT(E1)

END IF
IF (E2.LT.0.0) THEN
X2DOT=-A2*K3*SQRT(ABS(E2)

)

ELSE
X2 D0T=A2 *K3 *SQRT ( E2

)

END IF
SORT
***********************************************************
************* LINK 1 *************
***********************************************************

X1D=X1D0T-K*P1D
V1=LIMIT(-VSAT1,VSAT1,K2*X1D)

NOSORT
IF (FLAGl.EQ.l) GO TO 5

IF (VI. LT.VSATl.AND.TIME.GT. 0.0005) FLAG1=1
NCHK1=N1

5 CONTINUE
SORT

P1DD=KM1*V1
P1D=INTGRL (0.0, PIDD)
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********
*******
*******

NOSORT

7
SORT

*******
*******
*******
SAMPLE
NOSORT

P1=INTGRL(0.0,P1D)
VP1=V1- (KV1*TH1D)
IM1=REALPL (0.0, L/Rl , VPl/Rl

)

TM1=KT1*IM1
TNET1=TM1-TH1D*BM1-TL1
TH1DD= ( 1

.
/JTOTl ) *TNET1

TH1D=INTGRL (0.0, THIDD)
TH1=INTGRL (0.0, THID)

****************************************************
******* LINK 2 **************
****************************************************
X2D=X2DOT-K*P2D
V2=LIMIT ( -VSAT2 , VSAT2 , K2*X2D)

IF (FLAG2.EQ.1) GO TO 7

IF (V2.LT.VSAT2. AND. TIME. GT. 0.0005) FLAG2=1
NCHK2=N2
CONTINUE

P2DD=KM2*V2
P2D=INTGRL ( . , P2DD)
P2 =INTGRL ( . , P2 D)

VP2=V2- (KV2*TH2D)
IM2=REALPL (0.0, L/R2 , VP2/R2

)

TM2=KT2*IM2
TNET2=TM2-TH2D*BM2-TL2
TH2DD= ( 1

.
/JT0T2 ) *TNET2

TH2D=INTGRL( . , TH2DD)
TH2=INTGRL (0.0, TH2D)

****************************************************
*** SAMPLING THE SYSTEM ***********
****************************************************

IF (N.EQ.O) GO TO 20
P2=TH2
P1=TH1
IF (N.GE.2) THEN
TH21D=(TH2-TH22)/ (2

TH11D= (TH1-TH12
) / (

2

ELSE
TH21D=P2D
TH11D=P1D
END IF
IF (FLAG2.EQ.0) THEN

P2D=(2.*( (TH2-TH21)/DT) )-TH21D
IF (N.GE.2) THEN
KM2=DABS(2.0*TH2/(V2*( (N2*DT) **2) )

)

END IF
END IF
IF (N2.NE.NCHK2) THEN
P2D=(2.*( (TH2-TH21)/DT) ) -TH21D

*DT)
*DT)
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20

END IF
IF (FLAGl.EQ.O) THEN

P1D=(2.*( (TH1-TH11)/DT) ) -THUD
KM1=DABS(2.*TH1/(V1*( (N1*DT) **2) )

)

END IF
IF (Nl.NE.NCHKl) THEN

P1D=(2.*( (TH1-TH11)/DT) ) -THUD
END IF
N=N+1
N2=N2+1
N1=N1+1
TH2 2=TH21
TH12=TH11
TH21=TH2
TH11=TH1

TERMINAL
METHOD
*

CONTRL
SAVE (SI)
SAVE
*

GRAPH

(S3)

RKSFX

FINTIM=0.8, DELT=0. 00005, DELS=0. 00025
0.005,X1DOT,P1D,TH1D,X2DOT,P2D,TH2D,TH1,TH2,ZL
0.005, PI, P2 TH1,TH2 ,RR1,RRD2

*

GRAPH

*

GRAPH

*

GRAPH

*

LABEL
LABEL

(L1/S1,DE=TEK618)
THl ( LE=8 , UN= ' RAD

'

, L0=-0 . 1 , SC=0 . 1 , NI=12 ) , . .

.

PID ( LE=4 , NI=8 , L0=-4 . , UN= ' RAD/SEC
'

, SC=2
.

, P0=8 )
, . .

.

XIDOT ( LE=4 , NI=8 , L0=-4
.

, SC=2 . , UN= • RAD/SEC
'

, AX=OMIT)
THID ( LE=4 , NI=8 , L0=-4

.
, UN= ' RAD/SEC

'
, SC=2 .),•••

ZL(LE=4,NI=8,LO=-4. , SC=2 . ,AX=OMIT)

(L2/S1,DE=TEK618,OV,PO=0,5)
TH2 ( LE=8 , UN= ' RAD

'
, L0=- . 1 , SC= 1,NI=12

P2D(LE=4,NI=8,LO=-4. , UN= ' RAD/SEC
'

, SC=4
.
,P0=8) , . .

.

X2DOT(LE=4,NI=8,LO=-4. ,UN=' RAD/SEC ,SC=4. ,AX=OMIT)
TH2D ( LE=4 , NI=8 , L0=-4 . , UN= ' RAD/SEC

'

ZL(LE=4,NI=8,LO=-4. , SC=4 . ,AX=OMIT)
SC=4.

)

(L3/S3,DE=TEK618)
Pl(LE=4,NI=4,LO=-

TIME ( LE=8 , UN= ' SEC )

5,UN='RAD' ,SC= 5,P0=8)

SEC
)

THl ( LE=4 , NI=4 , L0=- . 5

,

SC= . 5 , UN= ' RAD '),...
RRl ( LE=4 , NI=4 , L0=- . 5 , SC= . 5 , AX=OMIT

)

( L4/S3 , DE=TEK6 18 , OV , PO=0 , 5 ) TIME ( LE=8 , UN^
P2 ( LE=4 , NI=4 , L0=- . 5 , UN= ' RAD

'
, SC= . 5 , P0=8 ) ,

.

TH2 ( LE=4 , NI=4 , L0=- . 5 , UN= ' RAD
'

, SC= . 5 ) , . .

.

RRD2 ( LE=4 , NI=4 , L0=- . 5 , SC= . 5 , AX=OMIT)

(LI) PHASE PLANE (RIGID-RIGID PLANAR ROBOT ARM)
(L3) STEP RESPONSE (RIGID-RIGID PLANAR ROBOT ARM)

END
STOP
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TITLE
TITLE
TITLE
TITLE
TITLE
TITLE
TITLE
TITLE
*

CONST
CONST
*

PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM
PARAM

INTGER

INITIAL

APPENDIX G

SIMULATION PROGRAM FOR THE TWO LINKS

(RIGID-FLEXIBLE) PLANAR ROBOT ARM

SIMULATION PROGRAM FOR THE ADAPTIVE MODEL, USING
THE VELOCITY CURVE FOLLOW CONTROL SCHEME, OF A TWO
LINKS PLANAR ROBOT ARM HAVING ONE RIGID AND ONE
FLEXIBLE LINK, USING TWO ASSUMED MODES TO EXPRESS
THE ELASTIC MOTION OF THE FLEXIBLE BEAM.
THIS SAME PROGRAM WAS USED TO OBTAIN SIMULATION
RESULTS WITH THE SYSTEM TREATED WITH OR WITHOUT
LOAD, AS ALSO WITH OR WITHOUT GRAVITY FORCES.

G=981.4
ZL=0.0

K=1.0,K1=0.8,K2=1.0,K3=10000.0,KM1=0. 18 5,KM2=2 .31
KT1=103 6.9 3,KT2=103 6.9 3

VSAT1=300. 0,VSAT2=150.
J1=2.38,J2=2.38
KV1=0 . 1012 , KV2=0 . 1012
BM1=3 . 094 , BM2=3 . 094 , L=0 . 0001 , R=0 .91
M1=3.0,M2=1.0
L1=40.0,L2=32.0
El=l. 8751, E2=4. 6941
KW1=0.0012 4,KW2=0.04 3 3

REF1=1.0,REF2=1.0
DT=0. 00025

N , Nl , N2 , FLAGl , FLAG2 , NCHKl , NCHK2

N=0
N1=0
N2=0
FLAG1=0
FLAG2=0
Q1=0.0
Q1D=0.0
QD=0.0
Q2=0.0
Q2D=0.0
Q2DD=0.0
TH1=0.0
TH1D=0.0
TH1DD=0.0
TH2=0.0
TH2D=0.0
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TH2DD=0.0
TH11=0.0
TH2 1=0.0
SIG1=(SINH(E1)-SIN(E1)

) / (COSH (El ) +COS (El
)

)

SIG2= (SINK (E2) -SIN (E2)
) / (COSH (E2 ) +COS (E2 ) )

F1=C0SH(E1)-C0S(E1)-SIG1*(SINH(E1)-SIN(E1)

)

F2=COSH(E2)-COS(E2)-SIG2*(SINH(E2)-SIN(E2)

)

A1=SQRT ( 2 . 0*KM1*VSAT1)
A2=SQRT ( 2 . 0*KM2*VSAT2

)

*

DERIVATIVE
RR1=REF1*STEP(0.0)
RR2=REF2 *STEP (0.0)
RRD2=TRANSP ( 2 00 ,0.0,0.1, RR2

)

ER1=RR1-P1
ER2=RRD2-P2

NOSORT

****** PARAMETERS FOR THE EQUATIONS OF MOTION ******
***********************************************************

UE=F1*QH-F2*Q2
TH=TH1+TH2
D122=M2*L2**2+M2*UE**2+M2*Ll*L2*COS(TH2) . .

.

-M2*L1*SIN(TH2) *UE
D111=D122+(M1+M2) *L1**2+M2*L1*L2*C0S (TH2 ) . .

.

-M2*L1*SIN(TH2) *UE
D133=M2*L1*C0S(TH2) *F1+M2*L2*F1
D144=M2*L1*C0S(TH2) *F2+M2*L2*F2
D112=-2*M2*Ll*(UE*COS(TH2)+L2*SIN(TH2)

)

D113=2*M2*F1*(UE-L1*SIN(TH2)

)

D114=2*M2*F2*(UE-L1*SIN(TH2)

)

D1222=-M2*L1* (L2*SIN (TH2 ) +UE*COS (TH2)

)

D123=D113
D124=D114
Dl=( (M1+M2) *L1*C0S(TH1)+M2*L2*C0S(TH) . .

.

-M2*UE*SIN(TH) ) *G
D211=D122
D2 2 2=M2*L2**2+M2*UE**2
D213=2*M2*F1*UE
D223=D213
D214=2*M2*F2*UE
D224=D214
D233=M2*L2*F1
D244=M2*L2*F2
D2111=M2*L1*(L2*SIN(TH2)+UE*C0S(TH2)

)

D2=G*M2* (L2*C0S (TH) -UE*SIN(TH)

)

D311=M2*L1*F1*C0S (TH2 ) +M2*L2*F1
D322=M2*L2*F1
D333=M2*F1**2
D344=M2*F1*F2
D312=-2*M2*F1*UE
D3222=-M2*F1*UE
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D3111=D3 2 2 2+M2*L1*F1*SIN(TH2)
D3=G*M2*F1*C0S (TH) +KW1*Q1
D4 2 2=M2*L2*F2
D411=D422+M2*Ll*F2*COS(TH2)
D433=D344
D444=iyi2*F2**2
D412=-2*M2*F2*UE
D4222=-M2*F2*UE
D4111=D4 22 2+M2*L1*F2*SIN(TH2)

***********************************************************
****** THE LAGRANGE'S EQUATIONS OF THE SYSTEM ******
***********************************************************

TL1=D12 2*TH2DD+D13 3*QD+D144*Q2DD+D112*TH1D*TH2D.

.

+D113*TH1D*Q1D+D114*TH1D*Q2D+D123*TH2D*Q1D. .

.

+D12 4*TH2D*Q2D+D12 2 2*TH2D**2+D1
TL2=D211*TH1DD+D233*QD+D244*Q2DD+D213*TH1D*Q1D. .

.

+D214*TH1D*Q2D+D223*TH2D*Q1D+D224*TH2D*Q2D. .

.

+D2111*TH1D**2+D2
Q1DD=(D311*TH1DD+D322*TH2DD+D344*Q2DD. .

.

+D312*TH1D*TH2D+D3111*TH1D**2. .

.

+D3 222*TH2D**2+D3)/D3 3 3

Q2DD=(D411*TH1DD+D422*TH2DD+D433*QD. .

.

+D412*TH1D*TH2D+D4111*TH1D**2. .

.

+D422 2*TH2D**2+D4)/D444
***********************************************************
*********** THE ADAPTIVE MODEL ************
***********************************************************

JT0T1=J1+D111
JTOT2=J2+D222
IF (ERI.LT.0.0) THEN
X1D0T=-A1*K1*SQRT(ABS(ER1)

)

ELSE
X1D0T=A1*K1*SQRT(ER1)

END IF
IF (ER2.lt. 0.0) THEN
X2D0T=-A2*K2*SQRT(ABS(ER2)

)

ELSE
X2 D0T=A2 *K2 *SQRT ( ER2

)

END IF
***********************************************************
************* FIRST LINK *************
***********************************************************
SORT

X1D=X1D0T-K*P1D
V1=LIMIT ( -VSATl , VSATl , K3 *X1D)

NOSORT
IF (FLAGl.EQ.l) GO TO 10
IF (VI. LT.VSATl.AND.TIME.GT. 0.0005) FLAG1=1
NCHK1=N1

10 CONTINUE
SORT

P1DD=KM1*V1
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P1D=INTGRL(0.0,P1DD)
P1=INTGRL(0.0,P1D)
VP1=V1- (KV1*TH1D)
IM1=REALPL (0.0, L/R , VPl/R)
TM1=KT1*IM1
TNET1=TM1-TH1D*BM1-TL1
TH1DD= ( 1

.
/JTOTl ) *TNET1

TH1D=INTGRL (0.0, THIDD)
TH1=INTGRL (0.0, THID)

***********************************************************
************* SECOND LINK *************
***********************************************************

X2D=X2DOT-K*P2D
V2=LIMIT (-VSAT2 , VSAT2 , K3*X2D)

NOSORT
IF (FLAG2.EQ.1) GO TO 20
IF (V2.LT.VSAT2. AND. TIME. GT. 0.0005) FLAG2=1
NCHK2=N2

2 CONTINUE
SORT

P2DD=KM2*V2
P2D=INTGRL( . , P2DD)
P2=INTGRL(0.0,P2D)
VP2=V2- (KV2*TH2D)
IM2=REALPL (0.0, L/R , VP2/R)
TM2=KT2*IM2
TNET2=TM2-TH2D*BM2-TL2
TH2 DD= ( 1

.
/JT0T2 ) *TNET2

TH2D=INTGRL( . , TH2DD)
TH2=INTGRL ( . , TH2D)

***********************************************************
******** ASSUMED MODES AND FLEXIBILITY ********
***********************************************************

Q1D=INTGRL( . , QIDD)
Q2D=INTGRL(0. 0,Q2DD)
Q1=INTGRL(0.0,Q1D)
Q2=INTGRL(0.0,Q2D)
FLX =-UE/L2

***********************************************************
*********** SAMPLING THE SYSTEM ***********
***********************************************************
SAMPLE
*

NOSORT
IF (N.EQ.O) GO TO 30
P2=TH2
P1=TH1
IF (N.GE.2) THEN
TH21D=(TH2-TH22)/(2.*DT)
TH11D= (TH1-TH12

) / (2 . *DT)
ELSE
TH21D=P2D
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30

TH11D=P1D
END IF
IF (FLAG2.EQ.0) THEN

P2D=(2 . * ( (TH2-TH21)/DT) ) -TH21D
IF (N.GE.2) THEN
KM2=DABS(2.*TH2/(V2*( (N2*DT) **2) )

)

END IF
END IF
IF (N2.NE.NCHK2) THEN

P2D=(2 . * ( (TH2-TH21)/DT) ) -TH2ID
END IF
IF (FLAGl.EQ.O) THEN

P1D=(2.*( (TH1-TH11)/DT) ) -THUD
KM1=DABS(2.*TH1/(V1*( (N1*DT) **2)

) )

END IF
IF (Nl.NE.NCHKl) THEN

P1D=(2.*( (TH1-TH11)/DT) ) -THUD
END IF
N=N+1
N2=N2+1
N1=N1+1
TH2 2=TH21
TH12=TH11
TH21=TH2
TH11=TH1

TERMINAL
METHOD

CONTRL
SAVE (SI)
SAVE (S3)
SAVE (S5)
*

GRAPH (L1/S1,DE=TEK618)
TH1(LE=8,UN='RAD' , L0=- . 3 , SC= . 1 , NI=16) , . .

.

PlD(LE=4,NI=8,L0=-4. , SC=2 . ,UN= ' RAD/SEC
'

, SC=2
XIDOT ( LE=4 , NI=8 , L0=-4

.
, SC=2 . , UN= ' RAD/SEC

'
, AX=

THID ( LE=4 , NI=8 , L0=-4 . , UN= ' RAD/SEC '
, SC==2 •)/•••

ZL(LE=4,NI=8,LO=-4. , SC=2
.
,AX=OMIT)

RKSFX

FINTIM=2.4, DELT=0. 00005, DELS=0. 00025
0.005, XIDOT, PID, THID, X2 DOT, P2D,TH2D,TH1,TH2,ZL

. 005 , PI , P2 , THl , TH2 , RRl , RRD2
0.005,FLX,ZL

,P0=8)

,

OMIT) ,

.

GRAPH (L2/S1,DE=TEK618,OV,PO=0,5)
TH2 ( LE=8 , UN= ' RAD

'
, L0=- . 6 , SC= . 2 , NI=12 ) , . .

.

P2D(LE=4,NI=8,LO=-10. , UN= ' RAD/SEC
'

, SC=5 .
, P0=8

X2DOT(LE=4,NI=8,LO=-10. , UN= ' RAD/SEC
'

, SC=5
.

, AX
TH2D(LE=4,NI=8,LO=-10. , UN= ' RAD/SEC

'
,SC=5. ) , .

.

ZL(LE=4,NI=8,LO=-10. , SC=5
.
,AX=OMIT)

*

GRAPH (L3/S3 ,DE=TEK618) TIME ( LE=8 , NI=8 , SC= . 3 , UN=

'

PI ( LE=4 , NI=4 , L0=- . 5 , UN= ' RAD
'

, SC= . 5 PO
THl ( LE=4 , NI=4 , L0=- . 5 , SC= . 5 , UN= ' RAD

' )

,

RRI ( LE=4 , NI=4 , L0=- . 5 , SC= . 5 , AX=0MIT)

) ,...
=OMIT)

,

SEC ) ,

= 8) , . .
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GRAPH (L4/S3,DE=TEK618,OV,PO=0,5)
TIME ( LE=8 , NI=8 , SC= . 3 , UN= ' SEC '),...
P2 ( LE=4 , NI=6 , L0=- . 5 , UN= ' RAD

'
, SC= . 5 , P0=8 )

, . .

.

TH2 ( LE=4 , NI=6 , L0=- . 5 , UN= ' RAD
'

, SC= . 5 ) , . .

.

RRD2 ( LE=4 , NI=6 , L0=- . 5 , SC= . 5 , AX=OMIT)

GRAPH (L9/S5,DE=TEK618) TIME (LE=8 , UN= ' SEC
'

, NI=8 , SC= . 3 ) , . .

.

FLX ( LE=6 , L0=-2 . , NI=8 , SC= . 5 ) , . .

.

ZL ( LE=6 , L0=-2 . , NI=8 , SC= . 5 , AX=OMIT

)

PHASE PLANE (RIGID-FLEXIBLE PLANAR ROBOT ARM)
STEP RESPONSE (RIGID-FLEXIBLE PLANAR ROBOT ARM)
FLEXIBLE MOTION OF THE END-POINT

*

LABEL (LI)
LABEL (L3)
LABEL (L9)
*

END
STOP
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