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A discrete boundary-sensitive Hodge decomposition is

proposed as a central tool for the analysis of wall shear stress

(WSS) vector fields in aortic blood flows. The method is

based on novel results for the smooth and discrete Hodge–

Morrey–Friedrichs decomposition on manifolds with

boundary and subdivides the WSS vector field into five

components: gradient (curl-free), co-gradient (divergence-

free) and three harmonic fields induced from the boundary,

which are called the centre, Neumann and Dirichlet fields.

First, an analysis of WSS in several simulated simplified

phantom geometries (duct and idealized aorta) was performed

in order to understand the nature of the five components. It

was shown that the decomposition is able to distinguish

harmonic blood flow arising from the inlet from harmonic

circulations induced by the interior topology of the geometry.

Finally, a comparative analysis of 11 patients with coarctation

of the aorta (CoA) before and after treatment as well as 10

control patients was done. The study shows a significant

difference between the CoA patients before and after the

treatment, and the healthy controls. This means a global

difference between aortic shapes of diseased and healthy

subjects, thus leading to a new type of WSS-based analysis

and classification of pathological and physiological blood flow.
1. Introduction
Biological flows or haemodynamics of the cardiovascular system

play an important role in the genesis, progress and treatment of
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cardiovascular pathologies including congenital or acquired diseases of the heart, heart valves and vessels.

This is because wall remodelling including wall thickness and wall constitution is triggered by

haemodynamics. The major haemodynamic parameter describing an interaction between haemodynamics

and a vessel wall, which is covered by endothelial cells, is the wall shear stress (WSS). The WSS is an area-

normalized tangential force component of the blood flow acting on the wall and/or endothelial cells. In

turn, endothelial cells trigger and modulate adaptation, inflammation and remodelling of the vessel wall

as well as a respective remodelling of the vessel lumen [1,2]. Consequently, abnormal WSS is considered

an important local risk factor for a set of diseases or pathological processes. These include, for example,

atherosclerosis of carotid arteries [3] or coronary artery disease [4], rupture risk of cerebral aneurysms

[5,6] or abdominal aortic aneurysms [7], aortic dilatation [8] and thrombus formation [9]. Furthermore, the

analysis of WSS is also of great interest for the study of the haemodynamic impact of a treatment or a

change of the haemodynamics caused by a certain treatment device. These studies include, for example,

an analysis of post-treatment flow conditions after a treatment of cerebral aneurysms with a flow diverter

[10] or a change of flow conditions after an aortic valve replacement [11]. The use of WSS as a reliable

biomedical marker to characterize disease, disease progress or initiation or to characterize haemodynamic

outcome of a treatment procedure is challenging. The WSS is also a surface-bounded vector field with

vector magnitudes and directions varying in space and time. This allows for a definition of a set of

parameters, which were proposed during the last years as haemodynamic risk parameters for endothelial

dysfunction and related wall remodelling. A characterization of WSS magnitude, direction, time and

space gradients as well as topological features results in a relatively large set of parameters, which are

well summarized in [12,13]. The majority of studies investigating WSS in biological flows are numerical

studies using an image-based computational fluid dynamics approach [14], or 4D VEC MRI-based

assessment [15]. The primary source of data for the WSS analysis, however, is computational fluid

dynamics (CFD), since an accurate WSS assessment requires a high spatial resolution as shown by mesh

independence studies for CFD solutions [16].

Vector fields modelling fluid flow often tend to exhibit a complicated behaviour on various scales and

are hard to understand. This poses a particular problem for clinical applications where the behaviour of

blood flow in vessels serves as an indicator for potential abnormalities. The classical Helmholtz

decomposition was a first step to classify and analyse vector fields by decomposing them into a

divergence-free component and a component having a potential. With the advent of Hodge theory,

Helmholtz’ results generalize to decomposition rules for differential forms on closed manifolds in

arbitrary dimensions. Since then a tremendous amount of research—both on the theoretical and on the

applied side—has been carried out to include manifolds with boundary, differential forms of Sobolev

class and various flavours of Hodge-type decomposition statements, see e.g. [17] for an overview of

Hodge-type decompositions and the survey [18].

An important landmark in this evolution is the L2-orthogonal decomposition of k-forms on manifolds

with boundary as

Vk ¼ dVk�1
D � dVkþ1

N � dVk�1 > dVkþ1 � (Hk
N þHk

D),

where the spacesHk
N andHk

D of harmonic Neumann and Dirichlet fields, respectively, reflect the absolute and

relative cohomology of the manifold. Specifically for vector fields, the first two spaces in this decomposition

correspond to divergent and rotational irregularities in the interior of the geometry, whereas the latter three

spaces represent steady flows through the domain, as each field in these spaces is harmonic. A fairly recent

result [19] provides a further orthogonal decomposition of these spaces into subspaces

Hk
N ¼ Hk

N,co �Hk
N,@ex and Hk

D ¼ Hk
D,ex �Hk

D,@co,

which permits a precise distinction between harmonic flows induced by boundary components, represented

by the subspacesHk
N,co andHk

D,ex, from those induced by the interior topologyof the manifold, represented by

Hk
N,@ex and Hk

D,@co.

For the numerical treatment of vector fields, it is therefore important to seek for a discretization which

on the one hand provides a good approximation with predictable error, and on the other hand preserves

the structural decomposition results from the smooth theory.

In this work, we focus on a discretization by piecewise constant vector fields (PCVF) resulting from

CFD-based analyses of the blood flow. PCVFs are a very intuitive and simple to implement

approximation while at the same time a concise theoretical framework has been developed in recent

years, which includes the aspects of convergence and structural consistency. The recent works [20,21]

establish a consistent discretization for PCVFs of the smooth refined decomposition results for vector
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Figure 1. Example of a Hodge – Helmholtz decomposition of a PCVF on a torus into gradient, co-gradient and harmonic field.
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fields on surfaces with boundary, now including distinguished subspaces for effective boundary analysis

and control. Previous to that, a first strategy for the analysis of vector fields is provided by the

decomposition in [22], with a convergence analysis on closed surfaces in [23], and a discrete

connection for PCVFs is proposed in [24], both without an effective boundary control.

The aim of our study presented here is a proof of concept for the novel Hodge-type decomposition

analysis of the WSS vector fields for blood flows in general and specifically for the aortic flow. The paper

is structured as follows: first, a theoretical analysis of each vector field component with respect to a WSS

vector field is given. Second, a detailed description of the data acquisition and blood flow simulation is

exposed. Finally, a statistical analysis of several patients will summarize the results.

2. Discrete Hodge-type decomposition
The most important results on discrete Hodge-type decompositions on simplicial meshes concerning our

application can be summarized by two fundamental theorems: the traditional Hodge–Helmholtz

decomposition decomposes vector fields on closed surfaces into three components. By contrast, on

surfaces with boundary a refined decomposition is provided by the so-called Hodge–Morrey–

Friedrichs decomposition. The main ingredients of the discretization and the related spaces are given

in appendix A. These decompositions constitute the building block of all analysis in the present work.

For the theoretical foundations, see [20,21].

Theorem 2.1 (Hodge–Helmholtz decomposition). The space of piecewise constant vector fields L1(Mh)

on a closed simplicial surface Mh decomposes into an L2-orthogonal sum of the spaces of gradient fields, co-gradient
fields and harmonic fields:

L1(Mh) ¼ rSh � JrS�h � (H :¼ ker curl�h > ker divh)

X ¼ rw|{z}
curl�hrw¼0

� Jrc|ffl{zffl}
divhJrg¼0

� Y|{z}
curl�hY¼divhY¼0

:

The fields belonging to rSh are free of turbulence and contain only flow induced by sources and

sinks. Jrc is divergence-free and contains the rotational part of the field (figure 1). Furthermore, if Mh

is homeomorphic to a sphere with m boundaries, then the harmonic fields can be decomposed into

three components:

Theorem 2.2 (Hodge–Morrey–Friedrichs decomposition HMF). On a surface Mh homeomorphic to a
sphere with m boundaries, the space of harmonic fields can be decomposed into center fields, Neumann fields, and
Dirichlet fields:

L1ðMhÞ ¼ rS0 � JrS�0 �rSh > JrS�h �HN �HD (2:1)

One of the main studies of this paper is to understand the nature of these harmonic spaces on

simulated CFD WSS vector fields. Instuitively the space HC ¼ rSh > JrS�h of center vector fields

behaves similar to the space of smooth vector fields forming an �458 angle with the boundaries, the

Neumann vector fields are orthogonal to the boundaries, and the Dirichlet are parallel to the

boundaries. By the Pythagorian theorem it is

Xk k2¼ rwk k2þ Jrck k2þ HCk k2þ HNk k2þ HDk k2

which enables a full quantification of the input vector fields according to their decomposition

components. Figure 2 shows an example of an HMF-decomposition on the WSS of a simple flow on a

cylinder. Notice how the field is dominated by HD.
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Figure 2. An HMF-decomposition of a perturbed WSS vector field on a cylinder into five components: gradient, co-gradient, centre,
Neumann and Dirichlet vector field.

a
9080706050403020100

1.0

0.8

0.6

0.4

0.2

0

Dirichlet
Neumann
centre
co-gradient
gradient

Figure 3. Perturbation of a laminar WSS on a cylinder starting from 08 to 908. An increase in angle deviation decreases the Dirichlet
component and increases the co-gradient components.
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3. Wall shear stress component analysis
In this section, we study each component of the HMF-decomposition with respect to the WSS of several

phantom as well as real patient models obtained from CFD. The phantom models are either hand-

designed or real patient models with mathematical deformation and boundary conditions. The

observations are used to emphasize possible changes of WSS encoded in each HMF-component with

respect to anatomy/topology of the geometry, and parameters used for blood flow simulation.

3.1. Perturbed wall shear stress
Consider a smooth cylinder with a WSS of a laminar flow. We add a moderate amount of rotational noise

to the vector field within the interval (2 a, a) where a bounds the frequency of the noise. High values of a

correspond to high overall frequencies while small values alter slightly the global smoothness of the flow.

The HMF-decomposition shows that the Dirichlet field HD recovers the original field in its unperturbed

state, behaving like a vector field denoising. The increase of a decreases HD and increases the co-gradient

field. Figure 3 is a quantitative comparison of each decomposition where a varies from 08 to 908. The

diagram shows that HD is a good reference to understand the global structure of the WSS.

In general, harmonic fields depend only on the topology of the shape, not the field. In figure 5 (second

row), for example, HD stays invariant even though the input velocity profile is changed. Quantitatively

half of the WSS component is Dirichlet. One logic behind this is reflected in the nature of fluids, being

mostly dominated by a laminar component in order to move only in one direction.

3.2. Coarctation analysis
Aortic coarctation is a common congenital heart disease. It represents a local narrowing of the aortic

vessel causing abnormal blood flow and pressure in the cardiovascular system. Generally, the WSS
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Figure 5. First row: Plug versus MRI input profile encoded in the centre and Neumann components. Second row: invariance of the
Dirichlet component under the change of input profile.
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Figure 4. Linear deformation of a pre- to post-intervention of a patient stenosis. A constant input velocity profile is used for the
simulation. An increase in the Dirichlet component and a reduction in the co-gradient field is observed within 10 frames of
the deformation.
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vector field of a pre- and post-operative patient does not provide enough information about amelioration

in the patient blood flow. The HMF-decomposition enables us in a theoretical setting to identify

important changes between the two states. We took a segmented MRI scan of a patient before and

after operation, deformed the coarctation linearly from pre to post and analysed the WSS evolution

during the diffusion process. The simulation is performed with a plug profile and settings given in

§4.1. The results are shown in figure 4. We notice a significant increase in the Dirichlet field amortized

with a reduction in co-gradient field. The improvement in the Dirichlet field component corresponds

to the improvement of the overall blood flow as proven previously. Notice how the gradient,

Neumann and centre fields remain almost unchanged. The nature of these components is explained in

the next sections.
3.3. Plug versus MRI profile
The boundary conditions used in CFD are, most of the time, either a constant input velocity field (plug)

or velocity information acquired from 4D MRI scans using specialized software and sequences. MRI

profiles are noisy and sometimes the resulting WSS field looks more perturbed than a WSS field

obtained by a plug profile. Using the HMF-decomposition, one can classify which components of the
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WSS are more affected by the inlet velocity profile. Figure 5 presents a WSS analysis of the same patient

with a different inlet profile. Visually, the global flow pattern of the two vector fields are different, but by

analysing each HMF-decomposition component, one can see perturbations in the centre and Neumann

fields. The Dirichlet fields in both cases are topologically the same (similar streamline and same number

of singularities). Figure 6 is a comparison of both inlet boundary conditions for 10 control patients. The

statistical analysis (paired Student’s t-test) of normally distributed data (Komogorov–Smirnov test)

found no significant difference for the gradient component (p ¼ 0.571). However, significantly (p ¼
0.038) smaller Dirichlet components for MRI-measured inlet velocity profiles accompanied with

significantly larger co-gradient (p ¼ 0.007), centre (p ¼ 0.002) and Neumann (p ¼ 0.002) components of

the HMF-decomposition have been observed. Notice that the L2-norms of the centre and Neumann

components in both cases are relatively small compared with the other components.
3.4. Number of branches
The following study shows the effect of branches on an idealized aorta. Starting with a curved cylinder

with zero branch, artificial branches are successively added and a blood flow is simulated on each

geometry using a plug inlet profile. The results show that for this ideal situation the gradient field

increases with the number of branches (figure 7). Geometrically, branches induce high curvatures

and hence more divergence. There are still several parameters not taken into account such as

tapering or twisted cylinders. The proposed set-up with the correct geometry can be used to analyse

these extra cases.
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3.5. Unsteady flow
Finally, the effect of time-varying flow boundary conditions is examined in this section. For this purpose,

an unsteady CFD simulation of a whole cardiac cycle performed earlier for a MICCAI CFD Challenge

[25] was used. For the analysis, however, only the systolic part of the cardiac cycle is considered, since

the diastolic part shows only little to zero flow and therefore negligible WSS in the aorta. Twenty

time points have been evaluated in total and are presented in figure 8, along with inlet and outlet

flow-curves. Additionally, decomposed WSS vector field plots are presented for five time points with a

more detailed picture of the WSS distribution. As can be seen from the decomposition at the various
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time points, the respective components of the HMF-decomposition change over time, with a significant

increase in co-gradient component and decrease in Dirichlet component. Furthermore, it appears that

the variations of the HMF-components do not only arise from variations of the flow rate (i.e. Reynolds

number) but also from acceleration and deceleration effects. This can be seen by comparing two

time points with equivalent flow rates, as, for example, time points 3 and 17, both of which show a

flow rate of about 160 ml s21. Despite that, time point 17, at which the flow is being decelerated,

shows a significantly higher co-gradient and lower gradient component than time point 3, where

the flow is being accelerated. Neumann and centre components, however, remain at almost zero

throughout the whole systole.
970
4. Method
A diagram summarizing the analysis pipeline is given in figure 9. The implementation of the HMF-

decomposition is done following the iterative L2-projection approach [20,22] with the discretization

given in appendix A. The choice of basis functions for each harmonic field subspace follows [20].

Our system takes as input a mesh with a vector field and returns the five-term decomposition

equation (2.1) of the vector field, assuming that the surface fulfils the topological requirement.

Our implementation is done in Java using the JavaView (www.javaview.de) geometry processing

package. The line integral convolution (LIC) implemented in ZIBAmira 2015.28 (Zuse Institute

Berlin) is used for the field visualization. Maximum magnitude is coloured with red while close

to zero vectors are coloured in violet. Most of the data used in this paper is from real patient

biological models.

4.1. Data input

4.1.1. MRI

The HMF-decomposition analysis was done for WSS vector fields of the aorta from an MRI-based CFD

analysis of the aortic flow. These are subdivided in two groups: controls and coarctation of the aorta

(CoA) patients before and after treatment.

The study was carried out according to the principles of the Declaration of Helsinki and approved by

the local ethics committee. Written informed consent was obtained from the participants and/or their

legal guardians.

MRI examinations used to set boundary conditions for the CFD analysis were performed using a 1.5

Tesla Achieva R5.1.8 MRI scanner with a five-element cardiac phased-array coil (Philips Medical

Systems, Best, The Netherlands). MRI protocols including a routine three-dimensional anatomical

imaging in end-diastole are used to reconstruct the geometry of the aorta (3D MRI). The sequence

parameters used were: acquired voxel size 0.66 � 0.66 � 3.2 mm, reconstructed voxel size 0.66 �
0.66 � 1.6 mm, repetition time 4 ms, echo time 2 ms, flip angle 908, number of signal averages 3. Four-

dimensional velocity-encoded MRI (4D VEC MRI) was used to capture the flow data of the ascending

aorta and the thoracic aorta (acquired voxel size 2.5 � 2.5 � 2.5 mm, reconstructed voxel size 1.7 �
1.7 � 2.5 mm, repetition time 3.5 ms, echo time 2.2 ms, flip angle 58, 25 reconstructed cardiac phases,

number of signal averages 1). High velocity encoding (3–6 m s21) in all three directions was used in

order to avoid phase wraps in the presence of valve stenosis or secondary flow. All flow

measurements were completed with automatic correction of concomitant phase errors. These data

were used to set inflow and outflow boundary conditions.

http://www.javaview.de
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4.1.2. CFD

CFD requires geometries. Geometries of human aortas were segmented and reconstructed using ZIBAmira

2015.28 (Zuse Institute Berlin, Berlin, Germany) according to the previous description [26]. Briefly,

intensity-based image segmentation was done semi-automatically with an intense manual interaction.

Rough surface geometries were then generated from segmentations with a subvoxel accuracy and

subsequently smoothed using Meshmixer (v. 3.3, Autodesk, Inc., San Rafael, USA). These procedures

were described in more detail earlier [26]. Figure 10 shows all aorta models used for our analysis.

With the exception of the unsteady case, all simulations were performed as steady-state simulations of

the peak-systolic aortic flow using STAR-CCMþ (v. 12.06, Siemens PLM Software, Plano, USA). Vessel

walls were assumed to be rigid and a no-slip boundary condition was applied at all walls. To model

turbulence observed in systolic aortic haemodynamics, a k 2 v SST turbulence model with a turbulence

intensity of 5% at the velocity inlet was used. Blood was modelled as a non-Newtonian fluid with a

constant density of 1050 kg m23 and a Carreau–Yasuda viscosity model [27]. Patient-specific flow rates

as measured with GTFlow (GyroTools LLC, Zurich, Switzerland) from 4D VEC MRI data were set at

the LVOT inlet and the descending aorta outlet. Furthermore, patient-specific velocity profiles at peak-

systolic flow rate were extracted using MEVISFlow (v. 10.3, Fraunhofer MEVIS, Bremen, Germany) and

set as inlet boundary conditions. The used CFD pipeline was earlier validated by a comparison with 4D

VEC MRI-measured velocity fields as well as clinically validated against catheter measured pressure

drops in cases of CoA [28]. Furthermore, to validate results of our simulations we compare velocity

fields calculated by CFD against velocity fields measured by 4D flow MRI, both visualized by velocity

magnitude colour-coded path lines [29]. Calculated WSS values are in the range of published results [30].

4.2. Statistical analysis
Statistical analysis of the Hodge decomposition results was done using the software package IBM SPSS

Statistic, version 25 (IBM, USA). Measured data are presented as mean and standard deviation (s.d.) for

normally distributed data or as a median with IQR. All data were tested for normality using the

Kolmogorov–Smirnov test. Depending on the results of the normality test, the Student’s t-test or

Mann–Whitney U-test were used for the group comparison. Paired tests were used to compare pre-

and post-treatment results. A p-value of less than 0.05 was considered significant.
5. Results
Results of the HMF-decomposition analysis of 11 CoA patients before and after treatment as well as 10

controls are illustrated in figure 11. The Student’s t-test found significantly lower gradient and

significantly higher Dirichlet in CoA cases before treatment versus controls: 0.3 (s.d. ¼ 0.083) versus

0.46 (s.d. ¼ 0.065) gradient, and 0.54 (s.d. ¼ 0.125) versus 0.42 (s.d. ¼ 0.065) Dirichlet. The co-gradient

in the CoA group was higher than in controls with median 0.119 IQR [0.069–0.147] versus median

0.086 IQR [0.065–0.098], approaching significance (Mann–Whitney test, p ¼ 0.061). Overall significant
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reduction (paired Wilcoxon test, p ¼ 0.041) in co-gradient has been observed from pre- (median 0.119 IQR

[0.069–0.147]) to post-intervention (median 0.070 IQR [0.064–0.113]) as expected from the theoretical

experimentation exposed previously. However, no significant changes in the major flow descriptors of

gradient (p ¼ 0.174) and Dirichlet (p ¼ 0.073) were found between pre- and post-treatment WSS vector

fields (paired Student’s t-test).
6. Discussion
Our first results on the application of a discrete HMF-decomposition analysis of the aortic flow and

especially an analysis of the WSS vector fields of the coarctation of the aorta (congenital narrowing of

the aorta) disease revealed great potential for computational biofluid mechanics. Based on the results

shown in figure 11, we suppose that the HMF-decomposition analysis allows us to find anatomical

shapes forming pathological haemodynamics before disease progress becomes symptomatic.

Our findings show an added value of the HMF-decomposition analysis if compared with the usually

used analysis of WSS vector fields by visualization or quantification of time- and surface-averaged WSS

values, areas with low WSS values (e.g. WSS values below 0.5 Pa) or areas with high OSI as well as an

analysis of WSS critical points [6,12,30]. Our approach, however, does not allow, for example, a

quantitative analysis of two different abnormal WSS vector fields or a quantitative analysis of

different impact factors (boundary conditions) forming abnormal haemodynamics.

The results shown in figure 11 together with the theoretical analysis on ideal models raise several

open questions. Could a pathological anomaly such us stenosis present in the aorta be identified by

its amount of WSS co-gradient? Control healthy patients have less co-gradient field. The pre- versus

post-operative patient also shows a significant reduction in co-gradient field. An objective classification

has not been achieved with our current analysis because of the limited number of patient models.

Nevertheless, the theoretical deformation shown in figure 4 suggests that it should generally be the case.

The current analysis is focusing only on studying the differences in WSS vector fields shown by the

HMF-decomposition due to treatment aiming at restoring the stenosed region towards a physiological

diameter. The differences between diseased and control groups aiming to identify haemodynamic

reasons for the development of a pathological anatomy are emphasized. Future research could be also

focused on the impact or decomposition of haemodynamic and/or morphometric boundary

conditions on the resulting HMF WSS vector field decomposition. This is, however, a challenging task

since the haemodynamics depend on a set of nonlinear effects of all boundary conditions including

the flow rate distributions, vessel curvature, branching topology and others.
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A perfect flow would have a pure WSS Dirichlet field, but due to branches and taperings in the shape,

gradient and co-gradient components are also present. On the one hand, there are higher gradient than

Dirichlet components in the control group; on the other hand, there are higher Dirichlet than gradient

components in the pre- and post-operative groups. The theoretical analysis on the number of branches

shows that the nature of the gradient field may change and become dominant. Understanding the

correlation between the gradient and the Dirichlet field will be a good direction for future research.

We applied the HMF-decomposition first to analyse WSS vector fields, since WSS is a known risk

factor for the genesis and progress of pathological processes associated with an interaction between

blood flow and vessel wall. The analysis allows for an integral characterization of the WSS

distribution. However, it does not replace an analysis of WSS magnitudes, which are also associated

with abnormal blood flow conditions: regions with low WSS promote development of atherosclerosis

and thrombus formations, whereas high WSS could cause an injury of endothelial cells. As part of our

study, we investigated the impact of side branches, degree of stenosis and/or treatment procedure,

inlet flow profile boundary conditions and the impact of laminar flow disturbances on WSS vector

fields as characterized by the HMF-decomposition.

The HMF-decomposition analysis of simulated WSS vector fields was based on the Reynolds-

averaged Navier–Stokes (RANS) solver using the k 2 v SST turbulence model. However, flow

simulations of haemodynamics allowing assessment of pressure and velocity fields and hence WSS

are not limited to the RANS CFD. The lattice-Boltzman method (LBM), large-eddy simulations (LES)

or smoothed-particle hydrodynamics (SPH) are possible CFD alternatives. For example, LES is

supposed to be better suited in order to simulate accurately transition to turbulence and to assess

turbulent structures [31]. Finally, the choice of the CFD approach should be done based on validation

studies comparing simulation results versus in vivo measurements [32]. The HMF-decomposition

analysis is, however, independent from the CFD approach.

Further possible and planned studies include, for example, an analysis of pulsatile flows, analysis of

flow differences due to different turbulence models, the extension of an analysis to other parts of

circulation (e.g. coronary arteries, carotid bifurcations or cerebral vessels) and other diseases (e.g.

abdominal aortic aneurysms, cerebral aneurysms or coronary artery disease).

Summarizing our results, the HMF-decomposition is able to support (1) basic research of the

flow-mediated disease, (2) predictive computational modelling of the treatment procedure as well as

(3) quantitative analysis of the haemodynamic treatment outcome. Altogether, it supports a clinical

translation of the computational modelling approach.

7. Conclusion
The novel discrete Hodge–Morrey–Friedrichs decomposition was for the first time applied to analyse

the WSS vector fields of simulated patient-specific aortic blood flows. The approach seems to be a

powerful tool to distinguish between pathological and physiologic blood flows, and to characterize

the impact of inflow boundary conditions as well as the impact of a treatment.
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Appendix A
In this appendix, we give a brief introduction to calculus on discrete surfaces. Only the most relevant

notions necessary to understand the discrete Hodge decomposition are given. A complete overview

can be found in [22].
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A.1. Simplicial surfaces
A two-dimensional simplicial surface Mh is a set of triangles glued at their edges with a manifold structure.

In finite-element analysis, this type of discrete surface is called triangle mesh. For actual FEM

computations on such meshes, one often uses the space Sh of linear Lagrange functions, or the space

S�h of Crouzeix–Raviart functions. They are defined by

Sh :¼ {w : Mh ! R jwjT is linear on each triangle T, and globally continuous}

S�h :¼ {c : Mh ! R jcjT is linear, and continuous at edge midpoints}:

A geometric realization of example functions on Sh and S�h is shown in figure 12. Two additional

subspaces S0 , Sh and S�0 , S�h for surfaces with boundary are given by

S0 :¼ {w [ Sh jw(v) ¼ 0 for all boundary vertices v}

S�0 :¼ {c [ S�h jc(me) ¼ 0 for all boundary edge midpoints me}:

The gradient field rw of a function w [ Sh or S�h is a constant tangent vector in each triangle. The

co-gradient field Jrw is obtained by a rotation J of the gradient rw by p/2 in each triangle (figure 12).

The idea of having functional spaces is a common technique in finite-element analyses to solve

complicated partial differential equations. For example, a temperature map u which assigns a scalar

value to each vertex of Mh is an element of Sh. It can be expressed with respect to the nodal basis

functions (wi)i of Sh, i.e. u ¼
P

i uiwi, where wi is the Kronecker delta, wi(vj) ¼ 1 if i ¼ j and 0 otherwise,

for a vertex vj of Mh. Then, the gradient of an arbitrary function in Sh can simply be expressed as a

linear combination of the rwis.

A.2. Vector fields on simplicial surfaces
Definition A.1 (PCVF). The space of piecewise constant tangential vector fields L1(Mh) on a two-

dimensional simplicial surface Mh , Rn is given by

L1(Mh) :¼ {X :Mh ! TMh jX jtriangle T is a constant tangent vector in T}:

Here, TMh denotes the (piecewise) tangent bundle of Mh. The gradient field rw introduced

previously is an example of a tangential vector field.

Definition A.2 (L2-product). The L2-product of two vector fields, X ¼ (XT)T[Mh
and Y ¼ (YT)T[Mh

,

where XT , YT are tangent vectors in the triangle T, is defined by the area-weighted Euclidean sum

hX , YiL2 ¼
X

T[Mh

hXT , YTiArea(T):

In particular, two vector fields X and Y [ Xh are L2-orthogonal if hX , YiL2 ¼ 0. A vector field subspace

A # L1(Mh) is the L2-orthogonal decomposition of two subspaces B, C# A (written A ¼ B� C) if

every X [ A can be written uniquely as a sum X ¼ Y þ Z with Y [ B and Z [ C, and

furthermore hY, Zi ¼ 0. The sum of two vector fields is a new vector field obtained by the sum of the

components.
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A.3. Discrete calculus
Definition A.3 (Discrete curl). The discrete curl of a vector field X ¼ (XT)T[Mh

at a vertex p and an

edge midpoint me of Mh is computed by

curlhX (p) :¼ 1

2

þ
@ star p

X ¼ 1

2

Xk

i¼1

hX jTi , eii

curl�hX (me) :¼
þ
@ star e

X ¼ �hX jT1
, ei þ hX jT2

, ei,

where the eis are the edges of the oriented boundary of star p, the Tis the triangles adjacent to p and e the

edge with midpoint me (figure 13).

Definition A.4 (Discrete divergence). The discrete divergence of a vector field X at a vertex p and an

edge midpoint me of Mh is computed by

divhX (p) :¼ 1

2

þ
@ star p

hX , nids ¼ � 1

2

Xk

i¼1

hX jTi , Jeii

div�hX (me) :¼
þ
@ star e

hX , nids ¼ hX jT1
, JjT1

ei þ hX jT2
, JjT2

ei,

where n is the outer unit normal along @ star p, respectively, @ star e. Discrete rotation and divergence are

related by curlhJX ¼ divhX and curl�hJX ¼ div�hX (cf. figure 13).

Definition A.5 (Dirichlet and Neumann field). A vector field X is a Dirichlet field (respectively,

Neumann field) if X jT[@Mh
is orthogonal (respectively, ‘almost’ parallel) to the boundary edge of T.

In the discrete case, the definition of Neumann fields is subtle due to technical properties of the

chosen function spaces Sh and S�h. They are not strictly parallel along the boundary as one might

expect from the smooth case, but can deviate slightly. However, they are overall mostly parallel, so

for simplicity one may imagine them as being just parallel, in perfect duality to the definition of

Dirichlet fields. For technical details, we refer the reader to [20, §3.1].

The harmonic Dirichlet field HD is, for example, a divergence-free and a curl-free field orthogonal

to @Mh. Note that Dirichlet fields and Neumann fields do not exist on a closed surface. One can

nevertheless define them using hard directional constraints on certain features of the underlying

surface, e.g. sharp features.
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