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1. Introduction

Humans are highly invasive apes. Starting from African origins,
our ancestors have populated and successfully made a living in
virtually any habitable region around the globe. This immensely
flexible behavioural adaptation relies on the population-level
accumulation and modification of cultural information over time
that results in the emergence and refinement of locally adapted

Electronic supplementary material is available tools, beliefs and institutions [1-3]. Such behavioural or cultural
online at https://doi.org/10.6084/m9.figshare.c. evolution is partly driven by the strategies individuals employ
5219333.

© 2020 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http:/creativecommons.org/licenses/by/4.0/, which permits
THE ROYAL SOCIETY P g ! P

PUBLISHING unrestricted use, provided the original author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.200734&domain=pdf&date_stamp=2020-12-02
mailto:dominik_deffner@eva.mpg.de
https://doi.org/10.6084/m9.figshare.c.5219333
https://doi.org/10.6084/m9.figshare.c.5219333
http://orcid.org/
http://orcid.org/0000-0002-1649-3861
http://orcid.org/0000-0002-0387-5377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

to learn behaviour from others, i.e. the rules that govern how information is passed on between [ 2 |
interacting individuals [4-6]. Both formal models and controlled experiments have established how
humans (should) combine individual and social information strategically to acquire locally adaptive
information (e.g. [6,7], for reviews of the theoretical end empirical literature, respectively). Previous
laboratory experiments let fixed groups of individuals engage in repeated rounds of a learning task
and analysed how individuals’ choices are affected by the payoffs they received and the choices of
other members of their group. Typical findings are that social learning is generally adaptive but
underused [8,9], individuals use a combination of payoff-biased, frequency-dependent and a set of
other strategies [9,10], social learning strategies can regulate the ‘wisdom/madness’ of collective
decision making [11] and, finally, there are considerable and consistent inter-individual differences in
the reliance on social information [12,13].

Our study includes three features that are critical in natural populations but were missing from
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previous experimental approaches: (i) differences in expertise among group members, (ii) the presence
of both temporal and spatial variation in optimal behaviour, and (iii) analysis of time dynamics in
learning. To better understand the adaptive logic of culture in real organisms, we must not only study
learning processes in isolation but investigate how learning intersects with demography and operates
in dynamic groups [14].

Group membership in previous experiments was constant and all participants had the same level of
experience in their current environment. Understanding the strategic learning decisions individuals
make under such circumstances is elucidating, but those experiments do not reflect decision making in
the real world. Natural populations are characterized by age structure, overlapping generations and
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frequent migrations between different habitats. Juveniles, for instance, grow up in an informational
environment where they can learn from social interaction partners of different ages and, thereby,
different levels of experience. In the social learning literature, organisms as different as young guppies
and human children have been proposed to follow a ‘copy older over younger models’ strategy [15,16].
Whether copying older rather than younger individuals is adaptive, however, is not straightforward,
but depends on the relative strength of different interacting forces. These forces include the importance
of a cultural trait for survival, the difficulty to acquire the trait as a juvenile and the rate of
environmental change [17].

Birth and death are also not the only processes that result in such an experience gradient among
demonstrators. Migration between different habitats similarly results in an experience-structured
population where group members have had different numbers of learning opportunities in the present
environment. Formal modelling has explored the consequences of such spatial variability on the
evolution of learning as compared with temporal changes in the environment that occur to everyone at
the same time [18]. Under pure spatial variation, environmental factors vary across a spatial transect, i.e.
from one habitat to the next, but are constant over time. Under pure temporal variation, by contrast,
factors vary over time but are constant across space [7,19-21]. Most natural environments vary in both
space and time, and adaptive learning strategies can be expected to differ depending on the dominant
mode of environmental variation. An important finding, for instance, is that conformist learning is
generally adaptive in spatially varying environments but not so much in temporally varying
environments. Conformity helps migrants to efficiently adopt community-typical behaviour and also
lets residents filter out the non-adaptive variation brought in by migrating individuals. Both factors tend
to increase proportions of adaptive behaviour in the population (especially if individuals must choose
between more than two traits) [18]. If the environment changes temporally, by contrast, everyone
becomes non-adapted at the same time, such that conformity and social learning in general are expected
to be of less value. Despite its theoretical relevance, this difference in adaptive social learning strategies
between spatially and temporally varying environments, has received little empirical attention.

Formal models have also explored the effects of migration and conformist cultural transmission on
within- and between-group cultural diversity [4,22]. General findings are that conformist learning
tends to increase and high migration rates tend to decrease between-group cultural diversity (the
opposite associations are true for diversity within groups). These models further highlight the need
for more empirical research into the individual-level learning strategies that underlie acculturation in
spatially varying environments [22].

In this paper, we report a laboratory social learning group experiment that investigates the dynamics
of strategic social learning in experience-structured groups with both spatial and temporal variability (see
preregistration at https://osf.io/a5bkg/). Such ‘microsociety” experiments create social contexts in which
groups of individuals can evolve behavioural traditions, through a combination of individual exploration
of the environment and the available social information [23,24]. Unlike many other experimental studies,
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social information in these experiments arises endogenously from the behaviour of others in a group. B
This is important because in order to uncover the design features of social learning strategies, we
must study their use in an informational environment they themselves create.

In each session, two groups of four individuals engage in a four-armed bandit task [25,26]. Aiming to
maximize monetary rewards, participants learn to identify the currently optimal option based on their
own returns and the choices of group members. At certain times, participants switch group
membership and migrate into the other region having to adopt locally adaptive behaviour. In addition
to these spatial changes, the environment also switches temporally altering optimal behaviour in both
regions. Using multi-level computational learning models, we are able to infer learning strategies at
individual-level resolution. We investigate how individuals strategically use social information and how
their social information use differentially responds to migration events (i.e. spatial changes) and
temporal changes in the environment. We augment these multi-level models by estimating time-varying
parameters through monotonic effects and Gaussian processes and describe how learning dynamics
unfold over time. Finally, we employ agent-based simulation to validate statistical models ahead of time
and check model predictions by simulating new ‘participants’ from parameter estimates.
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2. Methods
2.1. Participants

A total of 200 individuals (127 self-identified as women, 73 as men, mean age (s.d.) 30.2 (11.8) years)
participated in the social learning experiment (37 additional participants in individual learning control,
see below). One hundred and ninety participants named German as/among their first language(s) and
everyone was proficient enough to understand instructions. We recruited participants through an
institute database, leaflets handed out at Leipzig University and several online advertisements. Written
informed consent was obtained prior to the start of the experiment in accordance with the Declaration
of Helsinki. Participants received between €12 and €14 in cash straight after the experiment, based upon
their performance. No deception was involved in this study and participants were instructed to collect
as many points as possible to increase their monetary reward.
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2.2. Set-up

For each of in total 25 sessions, eight participants were sorted into two random, anonymous groups of four
individuals. Each session was conducted by the same experimenter (DD) at the same time of the day in a
computer laboratory at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and
lasted between 30 and 60 min depending on the speed of the participants. While participants in the same
session were sitting in front of individual computers (Dell OptiPlex 7460 All-in-One desktop computers
with 23.8-inch displays) in the same room, they did not know which of the other participants they were
sorted into a group with and who the pieces of social information were coming from. Separation walls
and enough space between participants ensured they could not see each others’ computer displays. The
experiment was programmed in oTree v. 2.2.4, a Python-based open-source platform for behavioural
research [27]. To transfer information between participants’” computers, we set up a local Microsoft
Windows 10 web server and used a PostgreSQL database to store the data [28].

2.3. Design

In each session, two groups of four individuals engaged in 100 rounds of a four-armed bandit task
[25,26]. The experimental task was framed as a farming game (e.g. [8,9]) and participants had to
decide in each round to plant one of four different crops (wheat, potatoes, corn, rice, figure 1).
Participants were told that both groups live on different sides of a river and, due to differences in the
local ecology, different options might be optimal in both regions (in figure 1, corn is currently optimal
in region 1 and potatoes in region 2). Which region individuals were currently in was indicated by the
background colour of the screen (green versus blue) and was explicitly stated at the top of the display
(region 1 versus region 2). Every five rounds, one individual from the first group switched group with
a fixed individual from the second group and migrated into the other region. This migration dynamic
created a situation in which each individual in a group was characterized by a distinct level of
experience in the current region. Groups have completely switched regions after 20 rounds and
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Figure 1. lllustration of experimental design and computer display. See Methods section for detailed description.

returned back to their original state after 40 rounds (see electronic supplementary material, figure S1 for
full migration schedule).

The experiment was divided into four phases of 25 rounds each and participants were informed that
temporal changes, which would affect optimal crops in both regions, might occur between the phases.
Which option yielded the highest average payoff in each phase was randomly determined for both
groups but in a way to ensure that different crops are optimal in both regions (see in electronic
supplementary material, figure S1). Therefore, migrating individual always had to relearn which crop
yields the highest payoff in the present environment. Similarly, after a temporal change participants
always needed to update their behaviour in order to maximize payoffs. Every time participants
migrated and/or reached the end of a phase, they were informed about the total number of points
they had collected up to this point and were reminded that a different option might (or might not)
become optimal now.

2.4. Decision environment

In each round, participants decided between four different options (crops). Payoffs for all options i were
randomly drawn from a normal distribution N (w;, o), so that payoffs varied among rounds but each
option was characterized by a given expected value y; (see bottom left part of figure 1). At each point in
time and for a given region, one option always had a higher expected payoff than the other three
options and participants’ task was to find the highest-paying option in order to maximize their payoff.
The height of payoffs varied among the four phases of the experiment but the difference between the
means of the optimal and the other options was always 3 points (means of 13, 15, 17 and 19 points for
the optimal options, respectively). We compared a high task uncertainty condition, in which the payoff
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distributions were greatly overlapping (o =3; ‘hard’ phases), with a low task uncertainty condition, in [ 5 |
which there was little overlap (c=1.5; ‘easy’ phases). Two randomly selected phases were relatively
‘hard’, the other two were relatively ‘easy’.

After the first round, participants could access information about their individual payoff from the
previous round (i.e. private information) as well as the crop choices of the other group members from
the previous round (i.e. social information) as shown in the bottom right part of figure 1.
Additionally, participants could obtain information about how many rounds a given individual
(including themselves) has already spent in the current region (experience). We did not include payoff
information from other participants, as it is unrealistic to assume that learners can reliably access
other individuals’ payoffs in most real-world situations. Our experiment thus models only scenarios
where this information is either absent or too unreliable. The order in which group members are
displayed and the order of crop options to choose from was randomized in each round. To prevent
indirect learning about the other region, participants could not see which option newly arrived
members chose in the previous round.
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2.5. Mouse tracking

All information was hidden at first and individuals must hover over the boxes to see the respective
information (see bottom right part in figure 1). We used mouselab [29] JavaScript to record all
occasions when individuals entered and left a box and calculated from that raw data the time per
round that an individual spent in each box. That way, we can not only study how participants sample
different sources of information but also have complete data about the informational environment that
resulted in a given behavioural choice. Below, we use detailed mouse-tracking information to
condition learning strategies on the sources of social information individuals actually accessed in each
round. Analysing full search strategies using for instance information foraging models [30] would be a
fruitful avenue for future research.
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2.6. Individual learning control

To compare learning in the social learning experiment with an asocial control and to ensure there was no
difference between spatial and temporal changes arising from framing effects or other confounds, we let
37 additional individuals (18 self-identified as women, 19 as men, mean age (s.d.) 29.9 (13.8) years)
perform an individual learning condition. The procedure was identical to the one described above
with the only exception that participants were not assigned to a group and thus could only see their
own choice and payoff from the previous round.

2.7. Data analysis

2.7.1. Experience-weighted attraction models

Looking to infer learning strategies from behaviour, we are faced with a so-called inverse problem, i.e.
going from (overt) observations to (hidden) causes. This constitutes a problem because typically many
different processes can result in the same empirical pattern [31,32]. By formulating scientific models as
statistical models, however, we can estimate which parameter values are most compatible with the
observed choices [33]. Here, we use Bayesian multi-level experience-weighted attraction (EWA) models
that link individual (reinforcement-learning) updating rules and social information to population-level
cultural dynamics [8,34,35].

There are two basic components: first, we have an updating or learning equation that tells us how
attractions to different behavioural options A;;,.; (i.e. how preferable option i is to the actor j at time
t+1) change over time as a function of previous attractions A;;; and recently experienced payoffs 7; ;.
The (participant-specific) parameter ¢; describes the weight of recent experience. The higher the value
of ¢;, the faster do learners update their attractions

Ai,j,t+l =(1- ¢j)Ai,j,t + (ls]"”'i,j,b 2.1)

The second major part expresses the probability an individual j chooses option i in the next round, t +1,
based on a series of cues. We can divide those cues into asocial (P4) and social cues (Ps) and the model



lets us estimate the relative influence of social versus asocial cues (c;):
PG|Aijt, 01 = (1 — 0)Paijer1 + 0iPsjiji. (2.2)

The asocial choice probability P, is determined by a multinomial-logistic or softmax choice rule which
translates the attraction towards option i into the probability this option is chosen in the next round:

exp ()\in,j,t) ‘
zjlnzl exp (AjAn,jr)

The parameter A; represents the exploration rate of an individual (also called inverse temperature). It
controls how sensitive choices are to differences in attraction scores. As A; gets larger, choices become

Ppiji1 = 2.3)

more deterministic, as it gets smaller, choices become more exploratory (random choice if 4;=0).
Individuals in the experiment have access to different sorts of social information. Our model estimates

the relative influence of conformist (P¢) and experience-directed (Pg) learning as a convex combination of

both cues with parameter x; giving the relative influence of experience cues relative to frequency cues

Psiite1 = (1 = k)Pcijri1 + KiPEijri1 2.4)
The frequency-dependent or conformist probability is given by
nf/

Pciji1 = ﬁ , (2.5)

m=1 nm,[

where 1, represents the number of group members that chose option i in the previous round. Conformity
exponent f; determines how strongly learning is biased towards the majority. When f;=1, learning is
unbiased; as f; becomes larger, individuals become more and more likely to copy the majority. When
0<fi<1, individuals are disproportionately copying the minority option. The experience-biased
probability is given by

iy exp (B;Ex)
Yot >k exp (BjEx) '

where Ey ; gives the experience of the kth of 1;, group members who chose option i. Parameter §; determines
the strength and direction of experience bias. When ;= 0, individuals are indiscriminate with respect to
experience in the current region. Negative values of f; indicate a bias towards less-experienced
individuals, positive values a bias towards more-experienced individuals. This parametrization
provides a straightforward way to combine conformist learning that operates on the basis of choices
and experienced-biased learning that operates on the level of individuals. We validated this approach
by simulating data from different parametrizations and ensuring this model would recover simulated
dynamics (see preregistration or electronic supplementary material for details).

Priji1 = (2.6)

2.7.2. Time-varying learning parameters

To investigate how learning unfolds over time after migration, we included temporally dynamic learning
parameters. Note we only describe o, the weight of social learning, in detail here, but other learning
parameters were constructed in the same way. We took two approaches. First, instead of imposing a
particular function, we only assumed that learning parameters change monotonically over time, i.e.
either constantly decrease or increase, and let the model estimate the size of the steps in which
learning strategies change. The value for o; after # rounds in a new region can be expressed as follows:
-1
Ot = Ot — (Ot j = Ot ) Z Om- 2.7)

m=0

Each individual is characterized by two parameters, oy, ; and oy, ; representing values for the shortest
and longest time since migration, respectively. These values determine how much ¢ changes over time
for individual j, their difference thus represents the total effect of time. This total effect is multiplied
by the sum of a number of § parameters which give the incremental effect of each additional time
step (note that §,=0 and all § parameters must sum to one). To allow for sudden shifts in learning,
which are realized through large differences in § values, we chose a relatively weak Dirichlet prior
(with a=2) for the vector of § parameters [33].
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Second, we modelled the effect of time since migration as a Gaussian process, where the model can
estimate any arbitrary function. Gaussian processes extend the varying effects approach to continuous
categories and estimate a unique parameter value for each level, while still regarding time as a
continuous dimension in which similar levels result in more similar behaviour [33]. Specifically, the
value of o after # rounds in a new region is composed of the average across rounds and a round-
specific offset: oy = &+ d,. We define a multivariate Gaussian prior (hence the name ‘Gaussian
process’) for the round-specific offsets d,

d 0
LNl O k] 28
doo 0

The vector of means is all zeros, so the average weight of social learning remains unchanged, and K is the
20x20 covariance matrix among levels of experience. We estimate the parameters of a function that
expresses how the covariance between different levels is expected to change as the distance increases

Koy = 7" exp(=p’D} ) + 8.y 0° (2.9)

The covariance between any pair of times x and y, K, equals the maximum covariance n* which is
reduced at rate p> by the squared distance in time between x and y, Diy. There is an additional
covariance parameter o that gets ‘turned on’ by &,, when x =1y; it expresses the additional covariance
for observations with the same time since migration. With only a handful of replicates per individual
for each time interval, we could not fit the fully multi-level Gaussian process model that estimates
participant-specific variance-covariance matrices, so we report trends across all individuals below.

All models were fitted using the Hamiltonian Monte Carlo engine Stan [36] in R v. 3.6.0 [37] from Rstan
v.2.19.2 [38]. We used weakly informative normal priors centred on 0 for learning parameters, which were
estimated on the linear (8), logarithmic (4, f) and logit (o, «, ¢) scale, respectively, exponential priors for
scale parameters and Lewandowski-Kurowicka-Joe (LK]) priors for correlations matrices [39]. To
improve convergence, we implemented the non-centred version of varying effects using a Cholesky
decomposition of the correlation matrix [33]. For all analyses, visual inspection of traceplots and rank
histograms [40] suggested good model convergence and no problematic autocorrelation, with
convergence confirmed by the Gelman—Rubin criterion R < 1.01 [41]. All inferences are based on over
1000 effective samples from the posterior [42]. The code necessary to reproduce all analyses is available
on GitHub (https://github.com/DominikDeffner/Dynamic-Social-Learning).

2.7.3. Pre- and post-experimental simulations

To validate our analytical approach before data collection, we conducted agent-based simulations using
the exact same set-up and parameter values we used for the actual experiment. In 25 sessions, we
followed eight simulated ‘participants’ through 100 rounds of the experiment and recorded their
choices in a comparable format. The behaviour of agents was governed by the same mathematical
learning rules we used for the statistical models. These simulations allowed us to (i) choose good
experimental design parameters (round number, migration rate, difficulty etc.), and (ii) verify that the
models recover simulated parameter values in both extreme and more realistic scenarios. Electronic
supplementary material, figure S2 shows exemplary results of the parameter recovery test for the
monotonic-effects model. Half of simulated agents relied heavily on social learning in the beginning
and then switched completely to individual learning, while the rest relies on intermediate amounts of
social learning irrespective of experience. We also implemented sudden shifts in agents’ conformity
and experience bias. The model accurately recovered strategies in both sub-groups and also produced
quantitatively matching parameter estimates. Further information on our simulations are described in
the preregistration at https://osf.io/j6vbm/ or in the electronic supplementary material.

Simulations are critical to plan experiments and validate statistical models ahead of time, but they can
also be used after data collection to generate novel predictions from parameter estimates. Multi-level
models adaptively regularize individual parameters and the covariances among them by estimating a
population of varying effects typically defined as a multivariate normal distribution. Maintaining the
correlation structure among parameters, we can draw samples from that distribution and simulate
new ‘participants’. As the model is trained to predict choices in the next round based on detailed
time-series data and not to fit whole learning trajectories, we cannot expect our simulated participants
to behave in the same way real human participants did. Inspecting how the behaviour of simulated
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Figure 2. Behavioural results: proportion of optimal choices per round after (a) spatial change (migration) and (b) temporal
environmental change. Solid orange lines represent relatively easy phases (o = 1.5), dashed green lines represent relatively hard
phases (o= 3). Dashed horizontal lines show chance level. Proportion of social information boxes (choice boxes dashed purple,
experience boxes solid yellow) viewed per round after (c) spatial change (migration) and (d) temporal environmental change.
Error bars show standard errors of the means (s.e.m., o3 = s/ V).

participants diverges from the real participants, however, provides valuable insights into the implications
of the model that are invisible from the parameter estimates alone. Full simulation code can be found on
GitHub (https://github.com/DominikDeffner/Dynamic-Social-Learning).

3. Results

3.1. Behavioural results

3.1.1. Learning

Participants learned to choose the optimal option over time after migration into a new region (figure 2a)
and after a temporal change in the environment (figure 2b). In the first round after migration, individuals
already performed considerably better than chance (25%) which was probably supported by social
learning from residents possessing optimal behaviour (see below). Spending more time in a region
generally increased proportions of optimal choices confirming our expectation that more experienced
individuals should overall show better performance. However, there are drops in adaptive behaviour
after 5, 10 and 15 rounds, respectively, that are due to occasional temporal changes occurring at these
time intervals after migration. In contrast to spatial changes, temporal changes initially resulted in
choices below chance indicating that individuals first continued with their previous choices. The
drops in adaptive behaviour due to migration events are less pronounced, as social information from

yeL007 £ s uadp 205y sosyjeuwmol/biobunsyqndfaanosiedor g


https://github.com/DominikDeffner/Dynamic-Social-Learning
https://github.com/DominikDeffner/Dynamic-Social-Learning

Table 1. Results of baseline multi-level ENA model. Posterior means, 89% highest posterior density intervals (HPDI), standard [JEJ}
deviations of varying effects across individuals and correlations with overall success across individuals.
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residents buffered the effect of spatial changes. Participants in an individual learning control condition
(electronic supplementary material, figure S3) learned more slowly and exhibited no clear difference
between spatial and temporal changes, suggesting that the observed patterns in the social learning
experiment are indeed due to different social environments.

3.1.2. Social information boxes

The bottom row in figure 2 shows the proportion of social information boxes individuals inspected
conditional on round after migration (figure 2c) and temporal change (figure 2d). Overall, individuals
viewed 75-90% of boxes showing previous choices of other group members and 50-65% of boxes
showing their respective levels of experience in the present region. While rates of social information use
mildly declined over time, participants tended to search for more social information at times when
temporal changes occurred or they migrated into the other region suggesting a ‘copy-when-uncertain’
strategy [1,5,6].

3.2. Computational modelling

3.2.1. Baseline model

As a first step, we constructed a multi-level EWA model where learning parameters varied by individual
but did not change across rounds of the experiment. Table 1 shows posterior means, 89% highest
posterior density intervals (HPDI), standard deviations of varying effects and correlations with overall
success across individuals for all major model parameters [33]. Individuals used social information to
guide their choices (¢ = 0.29; HPDI =0.27 — 0.32) with considerable variation among individuals. We
have seen in the previous section that, due to increased learning opportunities, more experienced
individuals tended to show higher proportions of optimal choices. In line with this distribution of
adaptive behaviour, participants preferentially copied more experienced rather then less experienced
individuals (8 = 0.50; HPDI =0.10 — 0.96) exhibiting what could be called an ‘experience-biased’ social
learning strategy [16]. As reported in previous experiments [8,9,11], participants disproportionately
copied the most common option among observed neighbours exhibiting a pronounced ‘conformity’ bias
(f =3.30; HPDI=221-4.35). Participants promptly updated their behaviour in light of new
experiences (¢ = 0.72; HPDI = 0.64 — 0.79) which reflects the various environmental changes individuals
were confronted with. From the posterior distributions of each participant-specific parameter, we can
calculate how learning strategies were associated with overall payoffs. This analysis reveals that
participants who relied more heavily on social information (rgpa.y=0.35; HPDI=0.29 —0.41),
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Figure 3. Comparison of learning for first five rounds after spatial (pink) and temporal (green) changes in the environment:
marginal posterior probability distributions for (a) o, the relative weight of social versus individual learning, (c) f, the strength
and direction of frequency bias (conformity), (¢) S, the strength and direction of experience bias and (g) «, the relative
weight of experience bias versus frequency bias. Plots (b), (d), (f) and (h) show posterior distributions (including 89% HPDI)
for respective contrasts between spatial and temporal changes.

who updated their behaviour more quickly in response to recent payoffs (1 pay = 0.18; HPDI = 0.13 — 0.24)
and who let their attraction values more strongly determine their choices (13 p.y = 0.27; HPDI = 0.16 — 0.37)
tended to collect more points in the experiment (using the geometric mean corresponding to multiplicative
fitness effects gives the same results). Social information use was relatively low compared with individual
learning with enough group members tracking the state of the environment. Therefore, social learners could
benefit from this accumulated collective knowledge and improve their performance relative to more
individual learners [4,43].

3.2.2. Temporal versus spatial changes

To directly compare learning strategies after temporal and spatial changes, we repeated the previous
analysis but included indicator or dummy variables that let us compute contrasts in learning
parameters between the first five rounds after spatial changes and the five first rounds after temporal
changes. Results revealed that participants relied substantially more on social learning after spatial
changes compared with temporal changes (figure 3a,b). Migrants enter established groups where other
members already had multiple rounds to learn the optimal option increasing the value of social
learning. Temporal changes, by contrast, result in a situation where all group members become non-
adapted and need to learn the new optimal solution (only 31% of group members chose the optimal
option in the first five rounds after a temporal change compared with 53% after a spatial change).
Under these circumstances, it is beneficial to rely more on individual learning. As expected from the
modelling results in [18], participants were more likely to copy the majority option after spatial
changes compared with temporal changes (figure 3c,d). While spatial changes resulted in a clear
signal of conformist social learning with all posterior probability lying above 1 (which represents
unbiased copying), learning after temporal changes was not clearly conformist with substantial
posterior probability lying around and below 1. Experience cues should only be correlated with rates
of adaptive behaviour after spatial changes, but not after temporal changes. Therefore, we expected
participants to rely more heavily on experience cues after spatial compared with temporal changes.
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Figure 4. Monotonic effects: dynamic learning strategies after migration. (a) o, the relative weight of social versus individual
learning, (b) £, the strength and direction of frequency bias (conformity), (c) 5, the strength and direction of experience bias,
(d) x, the relative weight of experience bias versus frequency bias, (e) ¢, the learning/updating rate and (f) A, the (inverse)
exploration rate. Orange lines show posterior estimates for each of 200 participants and black lines show means over all participants.

Although most of the posterior density of the contrast points into this direction, there was no distinct
difference in the reliance on experience information with individuals being more likely to copy more
experienced individuals irrespective of the type of environmental change (figure 3ef). Similarly, there
was also no distinct difference in the relative weight placed on experience versus frequency
information (figure 3g,h). In sum, these results suggest that participants adaptively adjusted social
learning strategies broadly in line with predictions from theoretical models.

3.2.3. Time dynamics of strategic social learning

Next, we included time-varying learning parameters on top of individual-specific varying effects to
explore how learning dynamically changed over time. Figure 4 shows how learning parameters
changed after migration into a new region according to the multi-level monotonic-effects model. Right
after migration, most individuals relied very heavily on social information from residents in the new
region (o ~ 0.55; figure 4a). The mean social learning weight then halves after approximately five
rounds and falls below 0.2 eventually. The results also reveal large inter-individual variability with
some participants almost exclusively relying on individual information throughout the experiment. As
participants spent more time in a region, they seem to become slightly less conformist over time (figure
4b) and their tendency to copy more experienced group members also declined (figure 4c). Because
individuals relied on relatively small amounts of social learning and inspected only around 50% of
experience boxes (figure 2c) after 20 rounds in a region, the model struggled to estimate the variation
among participants for f long after migration resulting in the strong convergence of estimates. Over
time, experience information became marginally more important relative to frequency information
(figure 4d). Finally, the rate at which individuals updated their beliefs declined over time (figure 4¢) and
individuals became more sensitive to differences in attraction scores, i.e. less exploratory (figure 4f).
Reassuringly, without making any assumptions about the shape of the functions, the Gaussian
processes largely confirm the previous results but also add some interesting nuance (figure 5). Social
information use is highest in the beginning, drops significantly in the first few rounds after migration
and then declines at a relatively constant rate. Conformity is also highest straight after migration, then
drops but remains relatively high throughout the experiment. As parameters in EWA and other
learning models can interact in highly nonlinear ways, we also report results for analyses where we
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let only social learning parameters change over time while holding others constant (see electronic
supplementary material, figures S4 and S5 for monotonic effects and Gaussian processes,
respectively). These results largely confirm results from fully time-varying models reported here.

3.2.4. Post hoc simulations

To better understand the implications of the computational learning models, we conducted agent-based
simulations of the experiment with 200 new ‘participants’ sampled from the estimated population of
varying effects. Electronic supplementary material, figure S6 shows learning curves after spatial and
temporal changes analogous to figure 2 that plots data from human participants. We compare the
behaviour of agents simulated from results of the baseline model where learning parameters are
constant over time (top row) to agents simulated from the time-varying monotonic-effects model
(bottom row). Overall, simulated ‘participants’ learned much slower than their human counterparts.
Only by increasing the difference between expected payoffs we obtain remarkably similar patterns to
real participant, especially for agents simulated from the time-varying model (see electronic
supplementary material, figure S7). This highlights that our model is most definitely missing some
important cognitive detail typical of real human participants. Unlike simulated agents, participants
were told that one option is optimal at each point in time, so that points were presumably used to
update beliefs about which option is best in a categorical way instead of the continuous nature of
pure reinforcement learning.

4. Discussion

We investigated strategic social learning in dynamic groups including both spatial and temporal
variability. To understand how culture evolves and operates in real organisms, it is not enough to
study the dynamics of learning and cultural information in isolation. Instead, we need more
theoretical and empirical work that investigates how learning intersects with demography and
population dynamics and flexibly responds to different informational environments [14]. As a step in
this direction, we designed a laboratory experiment where two groups of four individuals (per
session) learned locally optimal behaviour in a four-armed bandit task. Participants occasionally
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migrated between two regions (spatial changes) and also were faced with temporal changes in the [ 13 |
environment. We used computational learning models to identify individual-level strategies and
included time-varying parameters to explore how participants strategically adjusted learning over
time. Experiments are gross simplifications of reality. They abstract away from most real-world
complexities and result in a highly idealized version of the phenomena they aim to represent. Good
experiments, however, also lay bare the fundamental structure of an otherwise overly complex system
and confront participants with controlled situations that elicit behavioural strategies that are hard or
even impossible to observe in more naturalistic settings. Well-designed experiments thus resemble
theoretical models in that their simplification is a critical design feature and not a bug,.

We found that, overall, individuals used both experience and frequency cues to direct their social
information use. In the social learning literature, a ‘copy older over younger models’ strategy has been
suggested to be adaptive because older individuals have had more experience with the environment.
Empirical tests that mostly let children decide to either copy an adult or a child demonstrator
generally confirmed this prediction [16]. Such studies, however, cannot isolate experience as the

*sosi/Jeunof/6106uiysgnd/aposjedos

relevant factor nor are there any adaptive consequences to the choices participants make. Our results
demonstrate that experience can endogenously arise as a predictive cue of successful behaviour that
human participants actually use to selectively learn behaviour. Being particularly old or experienced
may often be a signal of having adaptive behaviour but it can also predict being out of date,
especially if there is an exploration-exploitation trade-off and older individuals are less likely to
update their behaviour. Future experiments could test this idea by implementing a learning cost or
forcing participants to either learn or exploit a known option in every given trial.

¥EL00T =L DS uadp 0S Y

We also found that participants selectively responded to different changes in the environment. After
spatial changes (i.e. migration events), individuals heavily relied on conformist social learning which let
them quickly and reliably adopt the locally adaptive behaviour. After temporal changes that render
everyone non-adapted at the same time, by contrast, participants relied more on individual learning
and were less conformist in their social information use. These findings support important but
hitherto untested predictions of the theoretical cultural evolution literature [4,18,44]. Rates and
strategies of social information use in humans and other animals can also be expected to vary outside
the laboratory depending on the dominant mode of environmental variation. This prediction could be
tested by comparing social learning in similar communities that are characterized by more or less
spatial structure and/or different rates of temporal environmental change.

Social learning tendencies in most animals probably are not fixed traits, but adjustable propensities
that can flexibly respond to changing ecological conditions. To account for both stable inter-individual
differences in social learning as well as changes depending on situational factors, we estimated time-
varying learning parameters on top of participant-specific varying effects. These analyses revealed
that participants relied on very high levels of social learning straight after migration with rates of
social information use dropping as individuals became more experienced in their new region.
Conformist tendencies remained relatively stable over the course of the experiment. These results
potentially help explain which factors could maintain between-group cultural diversity in the face of
frequent migration that would otherwise erode cultural differences. It has been suggested that
conformist social learning can stabilize between-group cultural variation because it makes migrants
quickly acculturate to community-typical norms [22]. Our findings corroborate this expectation and
add that relatively stable conformist tendencies of resident individuals similarly act to filter out
cultural variation brought in by newly arrived group members thereby also reducing within-group
cultural diversity. Understanding the mechanisms underlying such structured cultural variation is not
only important to understand culture itself but also has important implications for cultural group
selection, a proposed explanation for human large-scale cooperation [45,46]. This theory presupposes
that alternative equilibria of local norms and behaviours are stabilized through learning processes in
different groups, and group-level selection between such culturally differentiated populations might
then lead to the spread of cooperative social norms that benefit the cultural group.

We used computational learning models to investigate how strategies varied among individuals and
changed over time. Through post hoc simulation, we found that simulated agents showed similar overall
patterns of behaviour but learned much slower than real human participants. Implementing more
realistic individual learning models from computational neuroscience based on, for example,
variational inference could be fruitful avenues for future research [47—49]. Additionally, the way our
model estimates time-varying learning parameters through monotonic effects and Gaussian processes
is purely stochastic, i.e. relying on statistical associations, and not mechanistic, i.e. grounded in
cognitive processing. Alternatively, in hierarchical Gaussian filter models, which have also been



applied to social contexts, learning parameters can vary depending on the perceived reward variability of
the environment potentially linking observed changes in learning strategies to underlying cognitive
mechanisms [50,51].

Studies in the behavioural and social sciences have been repeatedly criticized for relying almost
exclusively on WEIRD samples [52]. Although not the typical student sample, participants in our
study were also predominantly Western, relatively educated, and from an industrialized, rich, and
democratic country. While we do not find the WEIRD/non-WEIRD dichotomy particularly useful, as
it hides important cultural variation both within and between societies, generalizability of empirical
findings to new environments, settings or populations is always a concern for experimental studies.
This concern is typically addressed by (calls for) replication across different conditions and
populations. Although replication across societies may suggest greater generalizability, it is impossible
to sample all relevant populations, and drawing inferences from either positive or negative results is
difficult without a profound theoretical understanding of factors expected to cause cross-cultural
differences and their distribution across populations. As a complement to this bottom-up, data-driven
approach, researchers in computer science have put forward a rigorous formal framework for licensed
transfers of causal effects from experimental studies to new populations, in which only observational
studies can be conducted [53,54]. Developing a similar framework for cross-cultural generalizability
would be a major advance.

Human evolution has been characterized by massive range expansions and constant migration events
between different populations [55,56]. To understand how culture evolved in our ancestors and how it
facilitates flexible human adaptation, we need to develop more formal theory and empirical tests of
the mechanisms underlying cultural evolution in such highly dynamic scenarios. We provide
experimental insights and introduce modelling tools that hopefully can be applied to understand the
adaptive logic of dynamic social learning in different systems.

Ethics. The experimental procedure was approved by the HBEC Department Ethics Board at the Max Planck Institute
for Evolutionary Anthropology.

Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/
DominikDeffner /Dynamic-Social-Learning, and have been archived within the Zenodo repository: https://doi.org/
10.5281/zenodo0.4034787.

Authors contributions. D.D. and R.M. jointly designed the work. D.D. programmed and conducted the experiment. V.K.
and D.D. recruited the participants. D.D. analysed the data and wrote the first draft of the manuscript. All authors
contributed to the final version.

Competing interests. We declare we have no competing interests.

Funding. The research has been funded by the Max Planck Society.

Acknowledgements. We thank Peter Frolich for invaluable help in setting up the laboratory and web server, recruiting
participants for pilot experiments as well as constant technical and emotional support. We thank members of the
Department of Human Behaviour, Ecology and Culture for testing software and providing critical input in the
design stage of this study. We also thank our pilot and study participants for taking their time and supporting our
research. Finally, we thank the Max Planck Society for funding.

References

1. Henrich J, McElreath R. 2003 The

evolution of cultural evolution.

Evol. Anthropol. 12, 123-135. (doi:10.
1002/evan.10110)

Boyd R, Richerson PJ, Henrich J. 2011 The

Kendal RL, Boogert NJ, Rendell L, Laland KN,
Webster M, Jones PL. 2018 Social learning
strategies: bridge-building between fields.
Trends Cogn. Sdi. 22, 651-665. (doi:10.1016/j.
1ics.2018.04.003)

existence and aiming outside the laboratory:
estimating frequency-dependent and pay-off-
biased social learning strategies. Phil.

Trans. R. Soc. B 363, 3515-3528. (doi:10.1098/
rsth.2008.0131)

cultural niche: why social learning is essential Aoki K, Feldman MW. 2014 Evolution of 10.  Morgan TJH, Rendell LE, Ehn M, Hoppitt W,
for human adaptation. Proc. Natl Acad. Sci. USA learning strategies in temporally and spatially Laland KN. 2011 The evolutionary basis of
108 (Supplement 2), 10 918—10 925. (doi:10. variable environments: a review of theory. human social learning. Proc. R. Soc. B 279,
1073/pnas.1100290108) Theor. Popul. Biol. 91, 3-19. (doi:10.1016/j.tpb. 653-662. (doi:10.1098/rspb.2011.1172)

Laland KN. 2018 Darwin’s unfinished symphony: 2013.10.004) 1. Toyokawa W, Whalen A, Laland KN. 2019 Social
how culture made the human mind. Princeton, McElreath R, Lubell M, Richerson PJ, Waring TM, learning strategies regulate the wisdom and
NJ: Princeton University Press. Baum W, Edsten E, Efferson C, Paciotti B. 2005 madness of interactive crowds. Nat. Hum.
Boyd R, Richerson PJ. 1988 Culture and the Applying evolutionary models to the laboratory Behav. 3, 183-193. (doi:10.1038/541562-018-
evolutionary process. Chicago: University of study of social learning. Evol. Hum. Behav. 26, 0518-x)

Chicago press. 483-508. (doi:10.1016/j.evolhumbehav.2005. 12.  Efferson C, Lalive R, Richerson PJ, McElreath R,

Laland KN. 2004 Social learning strategies.
Anim. Learn. Behav. 32, 4-14. (doi:10.3758/
BF03196002)

04.003)
McElreath R, Bell AV, Efferson C, Lubell M,
Richerson PJ, Waring T. 2008 Beyond

Lubell M. 2008 Conformists and mavericks:
the empirics of frequency-dependent
cultural transmission. Evol. Hum. Behav.

yeL007 £ s uadp 205y sosyjewmol/bobunsyqndfaanosiedor [


https://github.com/DominikDeffner/Dynamic-Social-Learning
https://github.com/DominikDeffner/Dynamic-Social-Learning
https://github.com/DominikDeffner/Dynamic-Social-Learning
https://doi.org/10.5281/zenodo.4034787
https://doi.org/10.5281/zenodo.4034787
https://doi.org/10.5281/zenodo.4034787
http://dx.doi.org/10.1002/evan.10110
http://dx.doi.org/10.1002/evan.10110
http://dx.doi.org/10.1073/pnas.1100290108
http://dx.doi.org/10.1073/pnas.1100290108
http://dx.doi.org/10.3758/BF03196002
http://dx.doi.org/10.3758/BF03196002
http://dx.doi.org/10.1016/j.tics.2018.04.003
http://dx.doi.org/10.1016/j.tics.2018.04.003
http://dx.doi.org/10.1016/j.tpb.2013.10.004
http://dx.doi.org/10.1016/j.tpb.2013.10.004
http://dx.doi.org/10.1016/j.evolhumbehav.2005.04.003
http://dx.doi.org/10.1016/j.evolhumbehav.2005.04.003
http://dx.doi.org/10.1098/rstb.2008.0131
http://dx.doi.org/10.1098/rstb.2008.0131
http://dx.doi.org/10.1098/rspb.2011.1172
http://dx.doi.org/10.1038/s41562-018-0518-x
http://dx.doi.org/10.1038/s41562-018-0518-x

13.

4.

15.

16.

17.

18.

19.

20.

21.

22.

2.

24,

25.

26.

29, 56—64. (doi:10.1016/j.evolhumbehav.2007.
08.003)

Molleman L, Van den Berg P, Weissing FJ. 2014
Consistent individual differences in human social
leamning strategies. Nat. Commun. 5, 1-9.
(doi:10.1038/ncomms4570)

Deffner D, McElreath R. 2020 The importance of
life history and population regulation for the
evolution of social learning. Phil. Trans. R. Soc. B
375, 20190492. (doi:10.1098/rstb.2019.0492)
Amlacher J, Dugatkin LA. 2005 Preference for older
over younger models during mate-choice copying
in young guppies. Ethol. Ecol. Evol. 17, 161-169.
(d0i:10.1080/08927014.2005.9522605)

Wood LA, Kendal RL, Flynn EG. 2013 Whom do
children copy? Model-based biases in social
learning. Dev. Rev. 33, 341-356. (doi:10.1016/j.
dr.2013.08.002)

Deffner D, McElreath R. 2020 When does
selection favor learning from the old? Social
Learning in age-structured populations. OSF
Preprints. (doi:10.31219/osf.io/unjtm)
Nakahashi W, Wakano JY, Henrich J. 2012
Adaptive social learning strategies in temporally
and spatially varying environments. Hum. Nat.
23, 386-418. (doi:10.1007/s12110-012-9151-y)
Starrfelt J, Kokko H. 2012 Bet-hedging—a
triple trade-off between means, variances and
correlations. Biol. Rev. 87, 742-755. (doi:10.
1111/}.1469-185X.2012.00225.x)

White EP, Emest SKM, Adler PB, Hurlbert AH,
Lyons SK. 2010 Integrating spatial and temporal
approaches to understanding species richness.
Phil. Trans. R. Soc. B 365, 3633—3643. (doi:10.
1098/rstb.2010.0280)

Levins R. 1968 Evolution in changing
environments: some theoretical explorations,
Monographs in Population Biology 2. Princeton,
NJ: Princeton University Press.

Mesoudi A. 2018 Migration, acculturation, and
the maintenance of between-group cultural
variation. PLoS ONE 13, 0205573. (doi:10.1371/
journal.pone.0205573)

Schotter A, Sopher B. 2003 Social learning and
coordination conventions in intergenerational
games: an experimental study. J. Pol. Econ. 111,
498-529. (doi:10.1086/374187)

Baum WM, Richerson PJ, Efferson CM, Paciotti BM.
2004 Cultural evolution in laboratory microsocieties
including traditions of rule giving and rule
following. Evol. Hum. Behav. 25, 305-326. (doi:10.
1016/j.evolhumbehav.2004.05.003)

Robbins H. 1952 Some aspects of the sequential
design of experiments. Bull. Am. Math. Soc. 58,
527-535. (doi:10.1090/50002-9904-1952-09620-8)
Bergemann D, Valimaki J. 2008 Bandit
problems. In The new Palgrave dictionary of
economics (eds M Vernengo, E Perez Caldentey,

27.

28.

29.

30.

3N

32.

33

34,

35.

36.

37.

38.

39.

4.

4.

BJ Rosser Jr), vol. 1-8, pp. 336—340. London,
UK: Palgrave Macmillan.

Chen DL, Schonger M, Wickens C. 2016 oTree—
an open-source platform for laboratory, online,
and field experiments. J. Behav. Exp. Fin. 9,
88-97. (d0i:10.1016/j.jbef.2015.12.001)
Momjian Bruce. 2001 PostgreSQL: introduction
and concepts, vol. 192. New York, NY: Addison-
Wesley.

Johnson EJ, Payne JW, Bettman JR, Schkade DA.
1989 Monitoring information processing and
decisions: the mouselab system. Technical
report, Durham, NC: Duke University Center for
Decision Studies.

Pirolli P, Card S. 1999 Information foraging.
Psychol. Rev. 106, 643—675. (doi:10.1037/0033-
295X.106.4.643)

Kandler A, Powell A. 2018 Generative inference
for cultural evolution. Phil. Trans. R. Soc. B 373,
20170056. (doi:10.1098/rsth.2017.0056)

Barrett BJ. 2019 Equifinality in empirical studies
of cultural transmission. Behav. Processes 161,
129-138. (doi:10.1016/j.beproc.2018.01.011)
McElreath R. 2018 Statistical rethinking: a
Bayesian course with examples in R and Stan.
Boca Raton, FL: CRC.

Camerer C, Hua Ho T. 1999 Experience-weighted
attraction learning in normal form games.
Econometrica 67, 827-874. (doi:10.1111/1468-
0262.00054)

Hoppitt W, Laland KN. 2013 Social learning: an
introduction to mechanisms, methods, and models.
Princeton, NJ: Princeton University Press.
Carpenter B et al. 2017 Stan: a probabilistic
programming language. J. Stat. Softw. 76,
1-32. (doi:10.18637/js5.v076.i01)

R Core Team. 2013 R: a language and
environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.
Stan Development Team. 2019 RStan: the

R interface to Stan. R package version 2.19.2.
Lewandowski D, Kurowicka D, Joe H. 2009
Generating random correlation matrices based
on vines and extended onion method. J.
Multivariate Anal. 100, 1989-2001. (doi:10.
1016/j.jmva.2009.04.008)

Vehtari A, Gelman A, Simpson D, Carpenter B,
Biirkner P-Christian. 2019 Rank-normalization,
folding, and localization: an improved R for
assessing convergence of MCMC. (http:/arxiv.
org/abs/1903.08008).

Gelman A, Rubin DB et al. 1992 Inference from
iterative simulation using multiple sequences.
Stat. Sci. 7, 457-472. (d0i:10.1214/ss/
1177011136)

Gelman A, Carlin JB, Stern HS, Dunson DB,
Vehtari A, Rubin DB. 2013 Bayesian data
analysis. Boca Raton, FL: CRC.

3.

4,

45,

46.

47.

4.

49.

50.

51

52.

53.

54.

55.

56.

Rogers AR. 1988 Does biology constrain culture? m

Am. Anthropol. 90, 819-831. (doi:10.1525/aa.
1988.90.4.02a00030)

Henrich J, Boyd R. 1998 The evolution of
conformist transmission and the emergence of
between-group differences. Evol. Hum. Behav.
19, 215-241. (doi:10.1016/51090-5138(98)
00018-X)

Henrich J. 2004 Cultural group selection,
coevolutionary processes and large-scale
cooperation. J. Econ. Behav. Organ.

53, 3-35. (d0i:10.1016/50167-2681(03)
00094-5)

Handley C, Mathew S. 2020 Human large-scale
cooperation as a product of competition
between cultural groups. Nat. Commun.

11, 1-9. (doi:10.1038/541467-020-

14416-8)

Blei DM, Kucukelbir A, McAuliffe JD. 2017
Variational inference: a review for statisticians.
J. Am. Stat. Assoc. 112, 859-877. (doi:10.1080/
01621459.2017.1285773)

Doya K, Ishii S, Pouget A, Rao RPN. 2007
Bayesian brain: probabilistic approaches to
neural coding. Cambridge, MA: MIT press.
Friston K. 2010 The free-energy principle: a
unified brain theory? Nat. Rev. Neurosd. 11,
127-138. (doi:10.1038/nrn2787)

Diederen KMJ, Schultz W. 2015 Scaling
prediction errors to reward variability

benefits error-driven learning in humans.

J. Neurophysiol. 114, 1628-1640. (d0i:10.1152/
jn.00483.2015)

Diaconescu A0, Mathys C, Weber LAE, Daunizeau
J, Kasper L, Lomakina El, Fehr E, Stephan KE.
2014 Inferring on the intentions of others by
hierarchical Bayesian learning. PLoS Comput.
Biol. 10, €1003810. (doi:10.1371/journal.pcbi.
1003810)

Henrich J, Heine SJ, Norenzayan A. 2010 Beyond
WEIRD: towards a broad-based behavioral
science. Behav. Brain Sci. 33, 111-135. (doi:10.
1017/50140525X10000725)

Pearl J, Bareinboim E. 2014 External validity:
from do-calculus to transportability across
populations. Stat. Sci. 29, 579-595. (doi:10.
1214/14-ST5486)

Pearl J. 2015 Generalizing experimental
findings. J. Causal Inference 3, 259-266.
(doiz10.1515/ci-2015-0025)

Stoneking M, Krause J. 2011 Learning about
human population history from ancient and
modern genomes. Nat. Rev. Genet. 12,
603-614. (doi:10.1038/nrg3029)

Reich D. 2018 Who we are and how we

got here: ancient DNA and the new science of
the human past. Oxford, UK: Oxford University
Press.

*sosi/Jeunof/6106uiysgnd/aposjedos

¥EL00T =L DS uadp 0S Y


http://dx.doi.org/10.1016/j.evolhumbehav.2007.08.003
http://dx.doi.org/10.1016/j.evolhumbehav.2007.08.003
http://dx.doi.org/10.1038/ncomms4570
http://dx.doi.org/10.1098/rstb.2019.0492
http://dx.doi.org/10.1080/08927014.2005.9522605
http://dx.doi.org/10.1016/j.dr.2013.08.002
http://dx.doi.org/10.1016/j.dr.2013.08.002
http://dx.doi.org/10.31219/osf.io/unjtm
http://dx.doi.org/10.1007/s12110-012-9151-y
http://dx.doi.org/10.1111/j.1469-185X.2012.00225.x
http://dx.doi.org/10.1111/j.1469-185X.2012.00225.x
http://dx.doi.org/10.1098/rstb.2010.0280
http://dx.doi.org/10.1098/rstb.2010.0280
http://dx.doi.org/10.1371/journal.pone.0205573
http://dx.doi.org/10.1371/journal.pone.0205573
http://dx.doi.org/10.1086/374187
http://dx.doi.org/10.1016/j.evolhumbehav.2004.05.003
http://dx.doi.org/10.1016/j.evolhumbehav.2004.05.003
http://dx.doi.org/10.1090/S0002-9904-1952-09620-8
http://dx.doi.org/10.1016/j.jbef.2015.12.001
http://dx.doi.org/10.1037/0033-295X.106.4.643
http://dx.doi.org/10.1037/0033-295X.106.4.643
http://dx.doi.org/10.1098/rstb.2017.0056
http://dx.doi.org/10.1016/j.beproc.2018.01.011
http://dx.doi.org/10.1111/1468-0262.00054
http://dx.doi.org/10.1111/1468-0262.00054
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1016/j.jmva.2009.04.008
http://dx.doi.org/10.1016/j.jmva.2009.04.008
http://arxiv.org/abs/1903.08008
http://arxiv.org/abs/1903.08008
http://arxiv.org/abs/1903.08008
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1525/aa.1988.90.4.02a00030
http://dx.doi.org/10.1525/aa.1988.90.4.02a00030
http://dx.doi.org/10.1016/S1090-5138(98)00018-X
http://dx.doi.org/10.1016/S1090-5138(98)00018-X
http://dx.doi.org/10.1016/S0167-2681(03)00094-5
http://dx.doi.org/10.1016/S0167-2681(03)00094-5
http://dx.doi.org/10.1038/s41467-020-14416-8
http://dx.doi.org/10.1038/s41467-020-14416-8
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.1152/jn.00483.2015
http://dx.doi.org/10.1152/jn.00483.2015
http://dx.doi.org/10.1371/journal.pcbi.1003810
http://dx.doi.org/10.1371/journal.pcbi.1003810
http://dx.doi.org/10.1017/S0140525X10000725
http://dx.doi.org/10.1017/S0140525X10000725
http://dx.doi.org/10.1214/14-STS486
http://dx.doi.org/10.1214/14-STS486
http://dx.doi.org/10.1515/jci-2015-0025
http://dx.doi.org/10.1038/nrg3029

	Dynamic social learning in temporally and spatially variable environments
	Introduction
	Methods
	Participants
	Set-up
	Design
	Decision environment
	Mouse tracking
	Individual learning control
	Data analysis
	Experience-weighted attraction models
	Time-varying learning parameters
	Pre- and post-experimental simulations


	Results
	Behavioural results
	Learning
	Social information boxes

	Computational modelling
	Baseline model
	Temporal versus spatial changes
	Time dynamics of strategic social learning
	Post hoc simulations


	Discussion
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


