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ABSTRACT 

In order to better understand the complex nature of a system, analysts need efficient 

experimental designs that can explore high-dimensional simulation models with multiple 

outputs. These simulation models are critical to the early phases of system design and 

involve complicated outputs with a wide variety of linear and nonlinear response surface 

forms. The most common response surface form for analyzing complex systems is the 

second-order model. Traditional designs that fit second-order response surface models do 

not effectively explore the interior of the experimental region and cannot fit  

higher-order models. We present a genetic algorithm that constructs space-filling designs 

with minimal correlations between all second-order terms for a mix of continuous and 

discrete factor types. These designs are specifically suited to fit the second-order model 

with excellent space-filling properties and are flexible enough to fit higher-order models 

for a modest number of factors; these high-order terms are what characterize the system 

complexities. We demonstrate the utility of these designs with a Model-Based Systems 

Engineering application that integrates multiple simulation outputs to form a trade-off 

environment for a system design. This research enables the simulation analysis and 

system design community to better understand the complex nature of multiple  

simulation outputs. 
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EXECUTIVE SUMMARY 

This dissertation introduces a new class of experimental designs used to explore complex 

simulation models. We present a genetic algorithm (GA) that constructs  

space-filling designs with minimal correlations between all second-order terms for a mix 

of continuous and discrete factor types. These designs are specifically suited to analyze 

simulations with multiple outputs in which numerous, complicated response forms are 

possible. Analysts must rely on computer simulations to properly understand the complex 

nature of a system. The art of systems architecting and the science of systems engineering 

both use models to understand how a set of elements interact to achieve a unified 

purpose. We find these interactions, or relationships, by examining how changes in the 

system parameters impact the performance measures used to assess different alternatives 

or system configurations. When using a simulation to analyze a system, the simulation 

inputs often represent the system parameters, while the outputs are the performance 

measures. The best way to understand the input/output relationships of a simulation 

model is to leverage the field of statistical design of experiments (DOE). 

DOE allows the analyst to not only identify the significant factors that drive a 

system, but also to characterize the system’s complexities. These complexities include 

the synergies or interactions that exist between factors, a factor’s diminishing or 

increasing rate of change, or a threshold that groups output results into vastly different 

areas. We can characterize a system’s complex behavior by data farming a simulation 

model to obtain a statistical meta-model, or “model of a model,” that acts as a surrogate 

of the simulation once it is verified. Meta-models approximate the functional form 

between the simulation inputs and outputs over a specified range of inputs. The most 

common polynomial model used to describe a simulation’s outputs is the second-order 

model that includes linear, quadratic, and two-way interaction terms; these terms are what 

characterize the simulation’s complex behavior. These second-order models provide a 

rich variety of functional forms that can represent surfaces with global or local 

maximums and minimums, rising or stationary ridges, and saddles (Myers, Montgomery, 

& Anderson-Cook, 2009). 
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Traditionally, in order to create a second-order meta-model, analysts use a 

specific class of experimental designs that sample at the corners, edges, and center of the 

experimental region. These second-order designs minimize the correlation between all 

second-order terms, thereby ensuring that no statistically significant terms are 

confounded with another. Unfortunately, these traditional second-order designs have 

significant limitations in that they cannot explore the interior of the experimental region 

and cannot be used to create meta-models with a higher-order, such as a third-order 

model with an inflection point in the meta-model’s form. Space-filling designs are better 

suited for identifying unknown behavior, where multiple complex meta-model forms and 

localized effects are possible (Myers et al., 2009). Traditional space-filling designs do a 

great job at filling the interior of the experimental region, but do not minimize the 

correlation between all second-order terms; therefore, there are trade-offs in terms of 

design choice between minimal correlation and space-filling properties. 

A number of researchers have developed algorithms to reduce or eliminate 

correlations among columns of a popular, space-filling design called a Latin hypercube 

(LH). A Nearly Orthogonal Latin Hypercube (NOLH) is defined as an LH with a 

maximum absolute pairwise correlation no greater than 0.05 between any two input 

variables or columns in the design matrix (Hernandez, 2008).  Vieira, Jr., Sanchez, 

Kienitz, and Belderrain (2011) developed the Nearly Orthogonal/Balanced (NO/B) 

designs for a mix of discrete and categorical factors. Because simulations often have a 

mix of factor types, the introduction of these designs was a significant breakthrough for 

the space-filling domain. Despite these contributions, these designs focused on main 

effects only and none of these algorithms guarantees nearly orthogonal, second-order, 

space-filling designs. The designs created by the GA purposed in this dissertation are 

called the 2nd Order NOLH and 2nd Order Discrete NO/B designs. This new class of 

designs allows experimenters to simultaneously identify critical input variables and fit 

commonly used second-order models with nearly uncorrelated coefficient estimates, 

while providing the flexibility to fit more complex relationships on a modest number  

of factors. 
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The algorithm uses random choice as a guide to select better-performing solutions 

from a population of candidate solutions. The algorithm iteratively generates new 

populations using attractive characteristics of solutions from the previous generation. The 

intent is to evolve solutions that perform better with each new generation. The GA has 15 

input parameters with a varied amount of run time, depending on the number of columns 

and rows in the desired design matrix. In order to understand the algorithm’s 

performance, we studied the results from three experimental designs to help determine 

the appropriate input parameter settings of the algorithm in order to improve the search 

for better space-filling designs. Despite the algorithm’s highly stochastic nature, the 

results of the experimental designs provided enough insight to recommend the 

appropriate algorithm input parameter setting. 

In order to compare the performance of our 2nd Order NOLH with other 

traditional second-order and space-filling designs we used the following two metrics:  the 

maximum absolute pairwise (map) correlation between the columns of the 2nd Order 

regression matrix (ߩ௠௔௣) and the modified L2 discrepancy ሺܮܯଶሻ space-filling metric. 

Figure ES1 shows a snapshot comparison of the 2nd Order NOLH and 8 other leading 

designs with 4 factors (or variables) and 25 design points (or experiments). Figure ES1 

indicates how the 2nd Order NOLH dominates all other designs in terms of correlation 

and space-filling properties. 



 xx

 
Figure ES1. A Pareto chart showing ܮܯଶ versus ߩ௠௔௣ for the 2nd Order NOLH  

and the state-of-the-art designs. 

 

To demonstrate the utility of the 2nd Order NOLH and NO/B designs, we applied 

them to a Model-Based Systems Engineering (MBSE) application. MBSE leverages 

computer simulation models throughout the system design life cycle, especially in the 

early stages. We applied the MBSE design concept to an Office of Naval Research 

(ONR) ship design problem to show how accurate meta-modeling contributes to the 

understanding of a complicated system design problem. The MBSE design concept’s 

reliance on accurate meta-models emphasizes the utility of the 2nd Order NOLH and 

Discrete NO/B design. For each operational simulation model, there were a wide variety 
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of factor types with different levels. All terms within the designs used for the simulations 

nearly guaranteed that no first-order term was confounded with another. In addition, a 

large subset of the factors nearly guaranteed that no second-order term was confounded 

with another as well. Because the designs possessed excellent space-filling properties, 

they were able to explore the interior of the experimental region to find interesting 

behavior throughout the entire response surface landscape. 

Because simulations often have a mix of continuous, discrete, and categorical 

factors, our algorithm has the ability to append categorical factors that minimizes the 

correlations for the first-order terms. Due to the infinite amount of discrete- and 

categorical-level combinations, there is a need for a custom design creator capable of 

generating space-filling designs for a mix of the factor types often encountered during 

simulation studies. Additionally, the design creator should have the flexibility to create 

designs with the number of design points dictated by the experimental conditions. To 

date, the algorithms developed by Hernandez (2008) and Vieira et al. (2011) require the 

use of licensed software, making it difficult to access their custom design capabilities. 

Our algorithm uses no licensed software or external libraries and is freely available at the 

Simulation Experiments and Efficient Designs (SEED) Center website under the  

general-purpose license (see http://harvest.nps.edu). A freely available, custom design 

builder enables the simulation community to analyze multiple responses that have 

different meta-model forms with a single experiment. 
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I. INTRODUCTION 

The art of systems architecting and the science of systems engineering both use 

models to understand how a set of elements interact to achieve a unified purpose. We find 

these interactions or relationships by examining how changes in the system parameters 

impact the performance measures used to assess different alternatives or system 

configurations. When system interactions are simple enough, we can use mathematical 

models to find analytical solutions. Real-world systems, however, are often too complex 

to be evaluated analytically (Law, 2006). In such cases, we must rely on computer 

simulations to properly understand these system complexities. The inputs to these 

simulations may involve hundreds of uncertain environmental variables and controllable 

system parameters that define the alternative configurations. Identifying the significant 

factors related to multiple performance measures is critical to a system design decision. 

The best way to understand the input/output relations of a simulation model is to leverage 

the field of statistical design of experiments (DOE). DOE allows the analyst to not only 

identify the significant factors that drive a system, but also to characterize the system’s 

complexities. These complexities include the synergies or interactions that exist between 

factors, a factor’s diminishing or increasing rate of change, or a threshold that groups 

output results into vastly different areas. This dissertation presents new experimental 

designs specifically suited for complex simulations. Our research enables the simulation 

and system design community to better understand the system’s complexities. This 

introductory chapter discusses the background on simulation DOE, describes the 

contributions to the body of literature, and summarizes the dissertation organization. 

A. BACKGROUND 

DOE has applications in all areas of research. Scientists use DOE to help them 

understand how the world works through observation in the areas of behavioral, social, 

and natural sciences; engineering; medicine; finance; manufacturing; transportation; and 

many others. DOE allows us to efficiently learn about and characterize the complex 
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nature of our world. As computers become progressively more powerful and affordable, 

they have become an increasingly valuable instrument for experimentation (Santner, 

Williams, & Notz, 2010). 

Computer simulations provide important insights in the areas mentioned above 

when physical experimentation is not possible or cost effective. Simulations are 

simplified representations of reality, programmed on a computer, that are regularly used 

to find optimal settings, make predictions, develop an understanding of a particular 

simulation model or system, and discover robust decisions or policies (Kleijnen, Sanchez, 

Lucas, & Cioppa, 2005). The typical objective of experimental analysis is to identify the 

factors (i.e., input variables) that significantly affect the response (i.e., output variables) 

and, for those that do, determine the nature of the relationship. 

Simulation models tend to have many input factors. In addition, there are often 

multiple responses of interest, with each response having its own unique form. For 

example, one output response may only require linear terms to adequately describe its 

behavior, while another may involve higher-order polynomials, change-points, and 

higher-order interactions. We define the term meta-model form to mean the shape of the 

response surface landscape dictated by the order of a polynomial function. For any given 

response, usually relatively few factors significantly affect it. This is known as effect 

sparsity. Unfortunately, we likely do not know those factors with certainty before 

conducting the experiment. For those factors that do impact the response, the 

relationships may be complex. Practicing simulation analysts obtain valuable insight by 

identifying the important factors, their interactions (e.g., synergies), key thresholds, 

response contours, and trends such as diminishing or increasing rates of change. 

The most common way to quantify the relationship between a complex 

simulation’s input factors and a response is to fit a parametric polynomial function using 

statistical regression (Barton, 1998). For a computer simulation study, this function is 

known as a meta-model or a “model of a model.”  Meta-models approximate the 

functional form of the input factors and the output responses over a range of inputs. A 

good meta-model is one that makes parsimonious use of the input factors, that is simple 

to understand, and whose outputs closely match those of the simulation (Sanchez & Wan, 
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2009). The most common polynomial model used to describe response surfaces is the 

second-order model that includes linear, quadratic, and two-way interaction terms. These 

second-order models provide a rich variety of functional forms that can represent surfaces 

with global or local maximums and minimums, rising or stationary ridges, and saddles 

(Myers et al., 2009). 

The meta-models we can fit—and hence the insights that we can glean—depend 

critically on the design. For example, we cannot identify a nonlinear response for a 

quantitative input variable from a two-level design. In such a case, inferences based on 

the implicit assumption of linearity will be erroneous. The error that occurs when our 

assumed model is wrong (typically due to under-fitting) is known as “model bias.”  We 

desire designs less susceptible to model bias and with the ability to detect it when it 

occurs. Thus, we prefer designs that allow us to fit a breadth of meta-models. Another 

difficulty that experimenters face when simultaneously varying multiple inputs is 

correlations among the inputs. When two inputs are highly correlated, it is difficult (or 

impossible) to distinguish their effects on the response. Orthogonal designs overcome this 

problem, and are thus desired. An additional challenge occurs when there might be 

localized effects, such as a threshold or changepoint. To increase the odds of detecting 

localized effects, we favor designs that sample throughout the experimental region. Such 

designs are called space-filling. 

Mckay, Beckman, and Conover (1979) introduced the Latin hypercube (LH) 

design to address the need for space-filling designs with continuous factors. LHs are 

commonly used to design experiments involving computer simulations. A key reason for 

this is that they are easily obtainable (e.g., LHs are available in many simulation software 

packages). Furthermore, they have few restrictions on the number of experiments (n) and 

factors (k). In addition, the resultant output data allow analysts to fit many different 

diverse models to multiple outputs from a single experimental (Sanchez, Lucas, Sanchez, 

Nannini, & Wan, 2012). 

Unfortunately, a given LH need not have good correlation or space-filling 

properties. To address this, a number of researchers have developed algorithms to reduce 

or eliminate correlations among columns of an LH and improve on their space-filling 
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properties (see Florian, 1992; Owen, 1994; Ye, 1998; Cioppa & Lucas, 2007; Steinberg 

& Lin, 2006; Hernandez, 2008; Joseph & Hung, 2008; Pang, Liu, & Lin 2009; and Moon, 

Dean, & Santner, 2011). An LH with no correlation between any of its input variables is 

an Orthogonal Latin Hypercube (OLH). A Nearly Orthogonal Latin Hypercube (NOLH) 

is defined as an LH with a maximum absolute pairwise correlation no greater than 0.05 

between any two input variables (Hernandez, 2008). Although this criterion is somewhat 

arbitrary, designs meeting it suffer minimal adverse multicollinearity effects.  Vieira, Jr. 

et al. (2011) developed the Nearly Orthogonal/Balanced (NO/B) designs for a mix of 

discrete and categorical factors. Because simulations often have a mix of factor types, the 

introduction of these designs was a significant breakthrough for the space-filling domain. 

Despite these contributions, there are still areas to improve. The aforementioned research 

only focused on main effects and none of these algorithms guarantees nearly orthogonal, 

second-order, space-filling designs. This dissertation presents a genetic algorithm (GA) 

for generating designs that allow experimenters to simultaneously identify critical input 

variables and fit commonly used second-order models with nearly uncorrelated 

coefficient estimates, while providing flexibility to fit more complex relationships on a 

modest number of factors. 

B. CONTRIBUTIONS 

 In order to understand complex simulations, we must consider the high-order 

effects and thresholds that may exist across multiple responses. The designs proposed in 

this dissertation allow the experimenter to properly analyze the complexities of a system 

via simulation. In order to highlight the key contributions this dissertation provides to the 

body of literature, we emphasize the following three issues: 

 Multiple system simulation responses have different meta-model forms 
(first-, second-, or higher-order). Most designs require a priori 
assumptions for one specified model form. There is a need for designs that 
are flexible enough to analyze multiple response surface forms with a 
single experimental set. 

 The state-of-the-art NOLH designs do not guarantee low correlation 
performance between the second-order terms in a regression matrix. 
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 The state-of-the-art NO/B designs do not guarantee low correlation 
performance between the second-order terms in a regression matrix. 

To address these important issues, we developed a GA that creates space-filling 

designs that minimize the maximum absolute pairwise correlation of a regression matrix, 

with all second-order terms, for a mix of continuous and discrete factors. Because 

simulations often have a mix of continuous, discrete, and categorical factors, our 

algorithm has the ability to append categorical factors that minimize the correlations for 

the first-order terms. In addition to constructing designs for second-order models, our 

algorithm can also construct space-filling designs that minimize the correlations for the 

linear terms only, or for the linear and quadratic terms (without the two-way 

interactions). The algorithm can also create saturated designs for a linear model, i.e., 

when n = k + 1. 

Because of the infinite amount of discrete- and categorical-level combinations, 

there is a need for a custom design creator capable of generating space-filling designs for 

a mix of factor types often encountered during simulation studies. Additionally, the 

design creator should have the flexibility to create designs with the number of design 

points dictated by the experimental conditions. To date, the algorithms developed by 

Hernandez (2008) and Vieira et al. (2011) require the use of licensed software, making it 

difficult to access their custom design capabilities. Our algorithm uses no licensed 

software or external libraries and is freely available at the Simulation Experiments and 

Efficient Designs (SEED) Center website under the general-purpose license (see 

http://harvest.nps.edu). A freely available custom design builder enables the simulation 

community to analyze multiple responses that have different meta-model forms with a 

single experiment. 

 C. DISSERTATION ORGANIZATION 

 This dissertation is organized into eight chapters. Chapter II reviews the purpose 

of DOE and how it is used in the simulation context; describes how the second-order 

model characterizes complex behavior; reviews the literature of the traditional and 

optimal designs used for the second-order model, and the space-filling designs that 

explore the interior of the design space; and, finally, concludes with an explanation of 
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where this dissertation fits into the body of literature. Chapter III reviews the basics of 

GAs and provides the detailed steps of the algorithm’s scheme. Chapter IV describes the 

algorithm diagnostics we performed in order to recommend appropriate input parameter 

settings and to provide guidance on the GA’s performance and run time requirements for 

different design sizes. Chapter V compares the continuous 2nd Order NOLH with a 

number of different, state-of-the-art designs and demonstrates the utility of our proposed 

designs with an empirical experiment. To address the need for designs with discrete and 

categorical factors, Chapter VI introduces the discrete 2nd Order NO/B design augmented 

with first-order categorical factors. Chapter VII applies our designs to a Model-Based 

Systems Engineering (MBSE) application. Chapter VIII summarizes the dissertation’s 

key contributions and recommends future improvements to the algorithm. 
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II. SECOND-ORDER AND SPACE-FILLING DESIGN 
REVIEW 

This chapter describes why we perform designed simulation experiments, 

explains how statistical surrogate meta-models represent complex behavior, and defines 

the metrics we use to evaluate designs. Additionally, it reviews the literature of the 

traditional and optimal designs that fit second-order models and the space-filling designs 

that explore the interior of the experimental region. Designs that fit second-order models 

do not efficiently explore the interior region and space-filling designs tend not to be well 

suited to fit second-order models. The final section of this chapter explains how this 

dissertation addresses these limitations, with new designs that perform well for the 

second-order model and are flexible enough to fit higher-order models when needed, 

while simultaneously filling the interior of the experimental region. 

A. EXPERIMENTAL DESIGN IN THE SIMULATION DOMAIN 

A common practice of analysis is to develop a baseline specification of input 

factor settings that represent a system configuration. The analytic questions usually entail 

investigating which of the experimental and decision factors have a significant impact on 

the response output. Two typical methods for experimentation are to vary one factor at a 

time or to develop excursions from the baseline to see what happens. Varying one factor 

at a time does not allow us to identify factor interactions or synergies. An interaction is 

when a factor’s impact on the output depends on the setting or value of another factor. A 

positive interaction implies that factors complement each other and a negative interaction 

implies that factors substitute each other. Most complicated systems contain multiple 

synergies. Examining excursions from the baseline usually means that the input factors 

may be varied simultaneously; this may result in confounding effects, thus making it 

impossible to identify which input factors cause the observed impact on the response. To 

address these concerns, experimenters use the methods of DOE to help understand how 

our world works. 
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DOE is a statistical concept that provides an efficient means to collect 

experimental data and conduct analysis. Classical DOE originated with the work of 

Fisher (1925) in the agricultural domain. When designing an experiment, we use a design 

matrix that dictates the complete specification of the input factors and their settings for 

each experiment. We use DOE to efficiently explore the design space, to allow for the 

identification of factor interactions, and to prevent confounding between factors. We 

design experiments in such a way so that we can get as much statistical information from 

the experiments as possible with the least amount of work. DOE is particularly useful in 

simulation studies because of the large number of potential factors, the complex response 

surfaces that are involved, and the user can control the experiments without the need to 

block confounding effects typically required during physical experiments. Some of the 

differences between physical and simulation experiments are listed in Table 1. 

Table 1.   Differences between physical and simulation experiments. 

Characteristic Physical Simulation 
Number of factors Few Many 
Number of levels Few Many 

Number of responses Single Multiple 

Error variance Homogeneous Heterogeneous 

Presence of interactions Negligible or limited Important and complex 

Error structure iid Normal Complex structure 

Response surface form Linear Nonlinear 

 

Because of the differences noted in Table 1, there is a need to have experimental 

designs specifically suited for a simulation study. Within the simulation context, DOE 

allows us to address three types of practical problems:  develop a basic understanding of 

a system, find robust solutions or policies as opposed to optimal, and compare the merits 

of decisions or policies (Kleijnen et al., 2005). 

Developing a basic understanding spans across two extremes; on the one end, we 

want to gain insight into the mechanisms of a vague, ill-defined, or not-well-understood 

problem with limited, real-world data. On the other end, we want to perform detailed 

analysis on a verified and validated simulation model. No matter where we are in 
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between these two extremes, there are a number of benefits in performing DOE that can 

help us understand a simulation model. These benefits include uncovering detailed 

insight into the model’s behavior, allowing us to examine the modeling assumption 

implications, helping us frame the questions when we do not know what to ask, 

challenging or confirming expectation of directional factor effects and their relative 

importance, and uncovering problems of program logic. It is important to note that a 

factor’s importance depends on the context of the simulation experiment; a factor may be 

influential in one setting, but not in another. Because system analysis involves 

uncertainty, finding optimal solutions may not be appropriate when the probability of a 

certain event is near zero. Robust analysis allows us to investigate acceptable solutions 

with minimal variation. A robust system performs consistently across a wide range of 

circumstances. DOE allows us to designate input factors as two types:  control or 

decision factors and noise or uncontrollable factors. The analysis will find solutions by 

finding a robust setting of decision factors in the presence of uncertainty. We can 

compare decisions or policies by performing rank and selection techniques that help 

select the best potential choice for a system or how to screen potential solutions to obtain 

a subset of good ones. For a detailed discussion of ranking and selection procedures, see 

Bechhofer, Santner, and Goldsman (1995). 

There are many types of experimental designs used for different purposes. A 

design’s use depends on a number of different considerations; some of these include:  the 

number of potential factors, the number of experiments or design points in the design 

matrix, the types of meta-models that will be fit, and the a priori assumptions about the 

response surface. The number of factors and the response surface complexity 

assumptions may be the two most important considerations. If we have a small amount of 

potential factors and we can assume that there are no higher-order terms (i.e., the 

response surface is linear), then we can use full-factorial, two-level designs to identify 

which of the potential factors are important. The number of design points needed to 

perform a full-factorial design increase exponentially as the number of potential factors 

increase; therefore, we may need to use fractional factorial designs that require fewer 

design points. The cost for using fractional factorial designs is that the factor’s effect may 
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be confounded or aliased with other factor main effects or second-order effects. Within 

the domain of fractional designs, the term resolution indicates what type of confounding 

may exist among the factors. A resolution III design has its main effects confounded with 

the two-way interactions. A resolution IV design has main effects that are not confounded 

with other two-way interaction effects, but we cannot determine which interaction is 

significant if the analysis indicates that there are two-way interactions present. We need a 

resolution V design in order to identify which two-way interactions are significant when 

they are present. Two-level, factorial designs provide us with a good way of identifying 

meta-models that have linear and interaction effects, but if the response surface may be 

nonlinear, then we must use a different design type to explore what happened between 

the two levels. 

We consider experimental settings involving a stochastic, computer-based 

simulation in which users specify the input values and analyze the outputs. The design 

matrix is the complete specification of input settings for each factor over a set of runs. 

We assume that the design is specified prior to the experiments being conducted, as 

opposed to a sequential one. The simulation being investigated contains k variables that 

we wish to vary in n computational experiments over a k dimensional hyperrectangle. We 

denote the n  k design matrix as X, where row i of X corresponds to the ith experimental 

run, and column j represents the jth input variable. Thus, ௜ܺ
௝ is the value the experimenter 

sets for factor j in run i. We further denote the jth column of X as ܺ௝and the ith row as ௜ܺ. 

Finally, let yi be an outcome generated by the ith experiment. 

B. CHARACTERIZING COMPLEX BEHAVIOR WITH A SURROGATE 
META-MODEL 

An important goal in DOE is to identify a short list of important factors from a 

long list of potential factors. We can do this with the use of statistical meta-models that 

approximate the implicit input/output function of a simulation. By data farming the 

simulation model, we can obtain the data needed to develop a statistical meta-model, or 

“model of a model,” that acts as a surrogate of the simulation model once it is verified. 

We often express the deterministic component of the meta-model as a polynomial 
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function of factors and the stochastic component as white noise. The white noise 

assumption usually assumes that the errors be normally distributed, independent, and 

identically distributed (iid). Unfortunately, simulation models typically have unequal 

variance; therefore, it is important for our designs to sample points in a balanced fashion 

so that they cover the majority of the design space defined by each of the factor ranges; 

this way, we can identify where the variance is unequal. In order to estimate the variance, 

we must perform multiple replications. The terms in the meta-model’s polynomial 

function are the subset of important factors from the potentially many that are statistically 

and practically significant. Statistical significance is usually determined when the term’s 

coefficient has a p-value of less the 5% or 1%; practical significance involves knowledge 

about the system that indicates important factors. 

1. First- and Second-Order Meta-Models 

If we assume the response surface is a linear combination of the input factors, 

then the meta-model has the following form: 

    ࢟ ൌ ૙ࢼ ൅ ∑ ࢐ࢄ࢐ࢼ
࢑
࢐ୀ૚ ൅  (1)           , ࢿ

where y is the response,  is the jth input factor, k is the number of factors, ߚ଴	is the 

intercept term, and ߚ௝	is the coefficient of the 	term and represents a factor’s rate of 

change, or effect, on the output response y, when all other factors are held constant. The 

error term ߳ represents other sources of variation (stochastic component) not accounted 

for by the factor’s systematic variation (deterministic component). The stochastic 

component is a result of a lack of fit or pseudo random variables in the simulation. When 

we can assume that the true response surface is linear, then we can experiment at the low 

and high factor settings to identify significant rates of change among the factors. 

Response surfaces from complicated simulations are rarely well represented by 

linear combinations of the input factors. As stated before, the second-order model is the 

most used polynomial to model real-world problems and it has the following form: 

࢟ ൌ ૙ࢼ ൅ ∑ ࢐ࢄ࢐ࢼ ൅ ∑ ࢐ሻ૛ࢄ࢐࢐ሺࢼ ൅ ∑ ∑ ࢐ࢄ࢏ࢄ࢐࢏ࢼ ൅ ࣕ࢑
࢐வ࢏

࢑ି૚
ୀ૚࢏

࢑
࢐ୀ૚

࢑
࢐ୀ૚ ,  (2) 

jX

jX
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where  is the quadratic term for the jth input factor, ߚ௝௝	is its coefficient, is 

the two-way interaction between the ith and jth input factors, and ߚ௜௝	is the coefficient of 

. The quadratic term’s nonlinear effect indicates a factor’s diminishing or 

increasing rate of change on the response. In order to identify a quadratic effect, we must 

experiment not only at the low and high factor settings, but also in between. Assuming 

that the true response is linear when, in fact, it is nonlinear, can cause misleading 

interpretations. For example, Figure 1 shows how a linear assumption indicates that the 

amount of increase necessary to improve the output (y) is far more than is actually 

needed. This faulty assumption could result in a significant waste of resources. 

 

 

Figure 1. Nonlinear effect on the true response. Sampling at only the low and high 
settings without exploring the interior may result in a misinterpretation of the true  

factor effect. 

2( )jX i jX X

i jX X
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The two-way interaction term , indicates that a factor’s effect depends on 

the setting or level of another factor. Figure 2 shows how the effect of factor X1 depends 

on the setting of factor X2. 

 

Figure 2. Two-way interaction effect. Factor X1 only has an impact on the response 
when factor X2 is set at the highest level. 

The quadratic and two-way interactions are the most common polynomial forms 

that characterize the complexities of a system; they are referred to as the second-order 

terms. In order to identify these higher-order effects, we must expand the regression 

matrix to include additional columns that represent the higher-order terms within the 

meta-model. 

2. The Importance of Minimal Correlations 

Least squares estimation is the most common method to estimate the ߚ 
coefficients. The precision of these estimates depends upon the correlations among input 

i jX X
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factors within the design matrix (Ryan, 2007). In order to ensure that factor effects are 

not confounded with other effects, the design should minimize the correlations among 

factors. If a factor correlates well with the response, but has a high correlation with 

another factor, then we cannot tell for certain which factor contributes to the observed 

change in the response variable. In addition, correlation impacts the length of the 

confidence interval around ߚ௝	, making it harder to identify the true impact of a factor on 

the response (Box & Draper, 1987). This section demonstrates, analytically and 

empirically, the impact that correlations have on the ߚ estimates. 

Figure 3 demonstrates how correlation inflates the variance of the estimates by 

varying the angle between two vectors, ܺଵ and ܺଶ, from 1 to 90 degrees (a correlation of 

0 is analogous to two vectors that are orthogonal, with 90 degrees between them). Each 

of the vectors has a unit length of 1 and is anchored at the origin. Assuming that the 

variance of the response (ߪଶ) is constant, the variance of the estimates can be determined 

analytically with the following form (Montgomery, 2008): 

෡൯ࢼ൫࢘ࢇ࢜ ൌ 	 ሺࢄ′ࢄሻି૚࣌૛.     (3) 

Therefore, ݎܽݒ൫ߚመ൯ is a function of the design matrix, X. We created the graph in  

Figure 3 by rotating ܺଵ from 1 to 90 degrees and evaluating ݎܽݒ൫ߚመ൯ using Equation (3). 

We can see from Figure 3 that when the angle between two vectors is less than 50 

degrees, the variance of the estimates is inflated significantly. 
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Figure 3. Impact on the coefficient estimate variance as the angle between vectors 
increases. The variance is inflated as the angle between vectors approaches zero. 

To further demonstrate the impact of the angle between two unit vectors, we 

simulated multiple, least-squared fits on an arbitrarily chosen true model with random 

error using a design with two factors, ܺଵ and ܺଶ, and two design points. The simulation 

response was fit to three linear models. One where both ܺଵ and ܺଶ were fit to create an 

unbiased linear model, and another two linear models that fit ܺଵ and ܺଶ individually to 

create biased estimates (these models are considered biased because the original true 

model contains both ܺଵ and ܺଶ). Figure 4 shows the true model at the top and the impact 

on ߚଵ and ߚଶ from the angle between ܺଵ and ܺଶ, for both the unbiased model and the two 

biased models. 
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Figure 4. Monte Carlo simulation experiment (1,000 runs) of the impact on ߚ when 
the angle between ܺଵand ܺଶ is varied between 1 and 90 degrees. The top two charts 
show the estimates when fitting the unbiased linear model (ݕ ൌ ଵܺଵߚ ൅  ଶܺଶ). Theߚ

bottom two charts show the estimates for the other two biased linear models  
ݕ) ൌ ݕ ଵܺଵ andߚ ൌ  .(ଶܺଶߚ

The angle between ܺଵ and ܺଶ only severely impacts the ߚ estimate in the 

unbiased linear model when the angle is close to zero. For the biased models, however, 

the ߚ estimate was severely impacted. The ߚଵ and ߚଶ estimates from the biased linear 

models deviate significantly from the true model as the angle between ܺଵand ܺଶ gets 

closer. During most simulation studies, there are a large number of possible terms that 

include not only the linear terms, but the higher-order terms as well. We do not want the 

results of our ߚ estimates to be a function of which terms we decide to include in the 

model fit. The ߚଶ biased estimate, while fitting the ݕ ൌ  ଶܺଶ linear model, has aߚ
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coefficient sign reversal (negative to positive) as the angle between ܺଵand ܺଶ decreases; 

this results in a completely inaccurate estimate of the impact of ܺଶ on the response, y. 

Figure 5 shows the impact of high correlations on the ߚ௝	 estimates for a full 

second-order model, using a simple deterministic least squares fit. To the left of  

Figure 5, there are two columns from a 1st Order NOLH, its two-dimensional projections, 

and correlation matrix that include the second-order terms. The top right of Figure 5 

shows an arbitrarily chosen true response surface with no random error and its 

polynomial form. The fitted model table shows the different combinations of models we 

can fit and the resulting least squares estimates for each term’s ߚ௝	. We can see that 

because there are high correlations between the second-order terms, the ߚ௝	 estimates are 

significantly different than the true model coefficients; these differences can lead to 

misleading interpretations. Because the linear terms have zero correlations between them, 

these estimates are accurate no matter what model we fit. In summary, nearly orthogonal 

designs result in nearly independent estimates of regression coefficients with higher 

precision, while avoiding potential biases due to under-fitting. 
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Figure 5. Impact of high correlations on the meta-model estimates. Within the fitted 
model matrix, red indicates a deviation from the true model coefficient, green indicates 

an accurate estimate. 

In order to obtain the maximum amount of information from an experimental 

region we must ensure that the correlations between factors are minimized. The type of 

experimental design dictates the types of meta-model we can fit when we need to find the 

significant few from the potential many. Therefore, we desire designs that have minimal 

correlation among all terms in our meta-model. 

3. Computational Complexity 

The number of terms needed to estimate a full second-order model increases 

according to the following expression: 

࢖ ൌ ૚ ൅ ૛࢑ ൅ ࢑ሺ࢑ െ ૚ሻ/૛,     (4) 
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where p is the number of terms and k is the number of factors. In practice, the actual fit 

requires far fewer terms, but we need to consider all of them within the regression matrix 

in order to identify the significant ones. Minimizing a design’s maximum absolute 

pairwise correlation for a second-order model is significantly more difficult than for a 

linear model, or a linear model with the quadratic terms added to it. For example, there 

are as many ൫୮ଶ൯ pairwise correlation comparisons for a 15-factor, second-order model as 

there are for a 135-factor linear model (9,045 comparisons). Figure 6 shows how the 

pairwise correlation comparisons increase exponentially as the number of factors 

increase. In big O notation, we would say that the number of term’s growth expansion for 

a second-order model is ܱሺ݇ଶሻ. The implications of this high growth rate means that we 

do not expect to find space-filling designs with much greater than 15 factors for a second-

order model, using the genetic algorithm, due to the computational complexity.  

 

 

Figure 6. Number of pairwise correlations as k increases. There are a significantly 
higher number of pairwise correlations when we include the two-way interaction terms in 

the regression matrix. 
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4. Thresholds and the Importance of Space-Filling 

A second-order meta-model approximates a smooth, nonlinear response surface, 

but cannot account for a three-way interaction, a cubic term, a discontinuous step 

function that may exist in the output, or many other relationships. Step functions or 

thresholds are common when dealing with complicated response surfaces. Identifying the 

presence of a step function can lead to important insights when analyzing a system. For 

example, during the test and evaluation of the maximum allowable weight of a cargo 

parachute, the rate of decent may increase linearly or nonlinearly as the weight increases, 

up until a weight threshold. Once we exceed this threshold, the parachute will collapse 

and increase, or step up, the rate of decent by a significant amount. Identifying the weight 

threshold for a cargo parachute is, therefore, critical for those involved with its use. For 

an example of threshold detection using an LH design in software testing, see Cioppa and 

Lucas (2007). In order to account for an existing threshold, we can include a step 

function in the meta-model with the following form: 

࢟ ൌ ૙ࢼ ൅ ∑ ࢐ࢄ࢐ࢼ ൅ ∑ ࢐ሻ૛ࢄ࢐࢐ሺࢼ ൅ ∑ ∑ ࢐ࢄ࢏ࢄ࢐࢏ࢼ ൅ ࢙ࢄ	ሺࡵ࢙ࢼ ൐ ሻࢊ࢒࢕ࢎ࢙ࢋ࢘ࢎ࢚ ൅ ࣕ࢑
࢐வ࢏

࢑ି૚
ୀ૚࢏

࢑
࢐ୀ૚

࢑
࢐ୀ૚ ,   (5) 

where I(a) is an indicator function that has a value of 1 if a is true, and 0 otherwise. For 

example, if the value of ܺ௦	exceeds the threshold, the response will step up in the amount 

of ߚ௦. Space-filling designs are particularly useful for identifying the presence of  

step functions. 

Partition trees are an excellent way to identify thresholds. For continuous 

variables, a partition tree finds the optimal split in a data set where the distance between 

the two group means is the greatest (Sall, 2007). Each split occurs at a factor level that 

separates the data into two groups, one below and one above the split level. Figure 7 

shows a second-order polynomial with a step function and a partition tree that finds 

where the discontinuous step function occurs. 
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Figure 7. The chart on the left shows a quadratic with a step function, I(a) that 
represents an indicator function, with a value of 1 if a is true and 0 otherwise. The chart 

on the right shows the split in the data where the difference in the response mean for each 
group is the greatest. 

Partition trees, when used in conjunction with regression analysis, can be 

powerful tools for finding meta-models involving step functions. If we find a split that 

explains the data’s variability with a partition tree, then we can create a new factor (an 

indicator variable) that has value 0 if x is less than the threshold identified by the partition 

tree, and 1 otherwise. The indicator variable becomes a term in the meta-model that may 

be significant and help explain more of the variance. 

 The presence of thresholds, or step functions, implies that we must experiment 

throughout the design space in order to identify where they are, if they exist. Traditional 

designs used to fit second-order models experiment at the center and extreme points of 

the design space and, therefore, may not find a threshold. A traditional design often used 

to fit a second-order response surface is the D-Optimal design, which minimizes the 

determinant of the covariance matrix (Myers et al., 2009). Figure 8 shows the  

two-dimensional projections of a D-Optimal design next to an orthogonal space-filling 

design, both of which have 2 factors and 21 design points (the D-Optimal design has 

points overlaid on top of each other). In the center of the figure is a picture of an arbitrary 

true model response surface, with a threshold and the correlation matrix for both designs. 

The threshold is a region where the response behavior is significantly different than the 
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rest of the response surface. Overlaid underneath the two-dimensional projections is a 

contour plot of the true model response surface. 

 

 

Figure 8. Two-dimensional projections of the D-Optimal and 2nd Order NOLH 
designs, overlaid onto a contour plot of a true response surface  

with threshold. 

We can see from Figure 8 that both designs are orthogonal and, therefore, have 

the ability to accurately estimate the linear and second-order behavior that exists within 

the true response surface. Because the D-Optimal design only experiments at the corners 

and center; however, it cannot identify the presence of the threshold, while the  

space-filling design can. 

C. CORRELATION AND SPACE-FILLING METRICS 

1. Correlation Metric 

Our algorithm focuses on minimizing the correlations for a full second-order 

model (see Equation (2)). Thus, we need to control the correlations among all pairs of 
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columns in the second-order regression matrix, which we will denote as Z. The first 

column of Z is a vector of all 1s to account for the intercept term; we do not include this 

column in Z because the other columns will not correlate with a vector of 1s. The first k 

columns are the design matrix X, for the linear terms. The next k columns are the 

quadratics, which are the squares of the columns in the design matrix. Finally, the last 

k(k–1)/2 columns consist of the element-by-element product of the columns of X, thereby 

enabling the estimation of the two-way interactions. Therefore, Z is the  

n × (2k + k(k–1)/2) regression matrix needed to estimate the ߚs in Equation (2). Figure 9 

shows a visual depiction of the differences between the design and second-order 

regression matrices, with three experimental factors. 

 

Figure 9. Design and second-order regression matrices, where k = 3. 

The correlation coefficient between any two vector columns, ܼ௜	and ܼ௝, in 

regression matrix Z is: 

࢐࢏࣋ ൌ
∑ ቂ൫࢈ࢆ

࢏ ࢈ࢆ൯ቀ࢏ഥࢆି
࢐ ࢔ഥ࢐ቁቃࢆି

స૚࢈

ට∑ ൫࢈ࢆ
࢏ ൯࢏ഥࢆି

૛
∑ ቀ࢈ࢆ

࢐ ഥ࢐ቁࢆି
૛࢔

స૚࢈
࢔
స૚࢈

,    (6) 

where ܼ̅௜	and ܼ̅௝	are the mean of the ith and jth columns in Z. Ideally, we would like a 

design in which ij = 0 for i = 1,…, 2k + k(k – 1)/2 and j = 1,…, 2k + k(k – 1)/2, with j ≠ i. 

We quantify the degree of nonorthogonality by calculating the maximum absolute 

pairwise (map) correlation between the columns of Z: 

࢖ࢇ࢓࣋ ൌ ,࢐ห࢏൛ห࣋࢞ࢇ࢓ ∀ሺ࢏ ് ࢐ሻൟ.	    (7) 
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A design with a ߩ௠௔௣ near zero will minimize confounding factors and result in nearly 

independent and more precise coefficient estimates in the second-order regression  

meta-model as well as enhance the performance of partition trees (Kim & Loh, 2003). 

Other authors (e.g., Owen, 1994; and Joseph & Hung, 2008), minimize the sum (or 

average) of the squares of the pairwise correlations (for a first-order model). We prefer to 

minimize ߩ௠௔௣ because it bounds the worst-case correlation. A design can have low 

average correlation, but a few unacceptable values—especially when there are a large 

number of pairwise correlations, as is the case when fitting second-order models to a 

model with numerous factors. 

2. Space-Filling Metric 

Low correlation, even orthogonality, does not guarantee good space-filling. The 

modified L2 discrepancy ሺܮܯଶሻ is a space-filling measure often used to assess how well a 

design covers the entire design region; the smaller the value, the better a design’s  

space-filling property (Hickernell, 1998). The ܮܯଶ is a modified version of the ܮ∞ 

discrepancy, which is traditionally used as a proxy for space-filling.  Fang, Lin, Winker, 

and Zhang (2000) state that discrepancy is a measure of uniformity and the ܮ∞ “is 

probably the most commonly used measurement for discrepancy . . . and has been 

universally accepted in quasi-Monte-Carlo methods and number theoretic methods”  

(p. 238). The notion of discrepancy means that if there are too few or too many design 

points in a subregion compared to its volume, then the design has poor discrepancy; put 

another way, a low discrepancy (good space-filling) indicates that the proportion of 

points within a subregion is nearly proportional to the volume of the subregion.   

Figure 10 shows an illustrative example from Fang and Wang (1993) of an experimental 

region with two factors (A and B) and with two rectangular subregions anchored at the 

origin (0,0). Rectangle 2 has a disproportionate number of design points compared to its 

volume, resulting in a large discrepancy indicating poor space-filling. 
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Figure 10. Two-dimensional design point projection of Factors A and B, with two 
rectangle subregions anchored at the origin. Rectangle 2 has a larger discrepancy than 

rectangle 1. 

There are an infinite number of rectangular subregions nested within the design 

space, making the ܮ∞ discrepancy extremely computationally expensive, especially for 

high dimensions. The ܮܯଶ (with the designs normalized to [0,1] in each dimension) is an 

excellent alternative to assess a design’s space-filling property (see Matoušek, 1998; 

Hickernell, 1998; and Ökten, 2001). The ܮܯଶ	metric is calculated using the following 

expression: 

૛ࡸࡹ ൌ ቀ૝
૜
ቁ
࢑
െ ૛૚ష࢑

࢔
∑ ∏ ൫૜ െ ࢏ࢊ࢞

૛ ൯࢑
ୀ૚࢏

࢔
ୀ૚ࢊ ൅ ૚

૛࢔
∑ ∑ ∏ ൣ૛ െ࢞ࢇ࢓൫࢞࢏ࢊ, ൯൧࢏࢐࢞

࢑
ୀ૚࢏

࢔
࢐ୀ૚

࢔
ୀ૚ࢊ .    (8) 

A design with a smaller ܮܯଶ is preferred. By its construction, if a design has a low ܮܯଶ, 

then all of the projections of the design onto subsets of the k variables will likely also 

have good space-filling properties. 

D. TRADITIONAL AND OPTIMAL SECOND-ORDER DESIGNS 

1. Traditional Designs 

In order to identify quadratic effects, a design must experiment not only at the two 

extremes, but also in the interior, most often at the center. A three-level factorial design 

works best at finding nonlinearities, but the number of design points required quickly 
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becomes infeasible due to the “curse of dimensionality.”  Additionally, the number of 

potential terms needed for a full second-order model increases significantly as the 

number of factors increase. The most frequently used design to fit a full, second-order 

model is the central composite design (CCD) (Myers et al., 2009). The CDD was first 

introduced by Box and Wilson (1951) and has numerous applications in response surface 

methodology (Box & Draper, 1987). The CCD has 2k corner points, 2k axial points, and a 

select number of center points. The axial points are set at a specified distance from the 

center to allow for rotatability. A design that is rotatable will have the same prediction 

variance in the output response throughout the experimental region. A rotatable design 

must extend the axial points beyond the corner points, which may not be feasible 

depending on the experimental region. There are three types of CCDs, each with their 

own properties and reasons for use. The circumscribed CCD has the axial points extended 

beyond the corner points to allow for better estimation over the entire design space. An 

inscribed CCD collapses all points inside the feasible region so that the extreme points 

are no longer at the corners of the design space. This preserves the rotatability property 

and provides good estimate accuracy inside the central subset of the design space. The 

Faced CCD has the axial points positioned on the face of the design space. The Faced 

CCD is not rotatable and provides a fair estimate over the entire region, but not for the 

quadratic coefficient effects. It does, however, allow us to sample at the extreme corners 

of the design space without having to collapse the points to fit inside the establish factor 

ranges. 

Another popular second-order design is the Box-Behnken (BBH) Design (Box & 

Behnken, 1960). BBH designs are used when the extreme corners of the design space are 

undesirable or infeasible. The BBH designs have no factorial corner points or face points. 

The design points are only at the center and the midpoints of the design space edges. 

BBH designs are rotatable and require less design points than the CCD for four or less 

factors. The CCD and BBH designs are excellent design choices when we know for sure 

that the true model is second-order, but, in practice, they are only used for a small 

number of factors; their larger size designs are considered inefficient due to the large 
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number of design points. Two designs that were developed to address the need for 

efficient second-order designs are the Hoke and Hybrid designs. 

The Hoke design experiments at selected subsets from the 3k factorial design and 

axial points from the CCD (Hoke, 1974). The design points reside at the corners, axial 

points, and edges. The Hoke designs are a good option when the experimenter needs a 

saturated design, where n = k + 1 for up to six factors. The trade-off is that there are no 

degrees of freedom available to estimate the pure error of lack-of-fit (Myers et al., 2009). 

Hybrid designs are a set of saturated or near-saturated economical designs (Roquemore, 

1976). For a given k, the Hybrid design has the same number of design points as a k – 1 

CCD, where the number of levels for the kth factor is set to create certain symmetries in 

the design (Myers et al., 2009). The hybrid designs are considered economical for up to 

seven factors. These classes of economical designs are good for physical experiments 

where the number of factors and designs points is small, but not for the  

simulation domain. 

2. Optimal Designs 

Computer-generated optimal designs are often used when traditional designs are 

not applicable. For example, when there is an irregular experimental region that has 

factor constraints, qualitative factors, and/or if we want to fit a nonstandard model that 

excludes a subset of quadratics or interactions (Myers et al., 2009). The computer 

typically generates a design by using a point exchange algorithm that maximizes a 

specified criterion for a given model, usually either first, second, or higher order. 

Furthermore, the form of the covariance matrix is often assumed. The types of criterion 

used are known as the alphabetic optimality criterion, which typically minimize some 

function of the covariance matrix of the coefficient estimates. For example, a D-Optimal 

design minimizes the determinant of the covariance matrix, while the I-Optimal design 

minimizes the average prediction variance; both for a prespecified model (usually a main 

effects model, with constant variance). Optimal design theory originated with the work of 

Kiefer and Wolfowitz (1959). Practical use of the optimal designs began in the 1970s and 
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1980s, when the computer became more popular. For a detailed discussion of optimal 

design criteria, see Atkinson and Donev (1992). 

Computer-generated optimal designs work very well when we know the true 

model form; when the true model is second-order, the CCD and BBH perform 

exceptionally well. Designs meant for second-order models perform well when the 

response is a second-order surface. More often than not, we have no idea what the 

response surface looks like. If the true response happens to be third- or fourth-order, then 

the designs that sample at the corners of the design region will have regression matrices 

with columns that are linearly dependent. A regression matrix with linear dependence 

cannot fit a model using the method of least squares. When analyzing simulations that 

represent complicated systems, we need designs that allow us to fit a variety of different 

models of high-order without having to make a priori assumptions about the response 

surface. Space-filling designs provide information about all portions of the design space 

interior and are better suited for identifying uncertain response surfaces (Santner et al., 

2010). Traditional space-filling designs do not require strong a priori assumptions, but, 

unfortunately, can have significant problems with high correlation between columns. 

E. SPACE-FILLING DESIGNS 

The traditional and optimal second-order designs mentioned in Section D 

typically experiment only at the corners, faces, and center of the design space and, 

therefore, are not flexible. Space-filling designs are better suited for identifying unknown 

response surfaces, where multiple complex forms and localized effects are possible 

(Myers et al., 2009). Some of the popular space-filling designs include the  

sphere-packing, uniform, and maximum entropy designs. Sphere-packing designs 

maximize the minimum distance between pairs of design points (Johnson, Moore, & 

Ylvisaker 1990). Uniform designs scatter the design points as uniformly as possible 

throughout the design space (Fang, 1980). The maximum entropy designs maximize the 

information contained in the distribution of a data set (Shewry & Wynn, 1987). 
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1. The Random Latin Hypercube Design 

Chapter I indicated that the LH is a good, all-purpose design for continuous 

factors in computer simulation experiments. The LHs’ critical shortfall is their inherent 

propensity for correlations among the design columns. In the recent years, there have 

been some significant contributions that extended the LH designs into higher dimensions, 

with minimal correlations. When Mckay et al. (1979) first introduced the Latin 

Hypercube Sampling (LHS) design, it was considered an improvement to the random 

sampling techniques. The LHS was shown to reduce the sampling variance of the 

predicted average response output when the function is monotone in each of the inputs. 

Since our designs for continuous factors are based on the LH family, we detail 

how they are created. McKay et al. (1979) first proposed LH sampling and described it as 

follows:  For each input variable , “all portions of its distribution [are] represented by 

input values [by dividing its range into] n strata of equal marginal probability 1/n, and 

[sampling] once from each stratum” (McKay et al., 1979, p. 56). Following Koehler and 

Owen’s (1996) notation, the ith element in the jth column, , is determined by ௜ܺ
௝ ൌ

௝ܨ
ିଵ ቀ

൫గೕሺ௜ሻି௎೔ೕ൯

௡
ቁ, for i = 1,…,n and j = 1,…,k, where ߨ௝ሺ1ሻ, … ,  !௝ሺ݊ሻ, is one of the nߨ

possible random permutations of 1,…,n in which all n! permutations are equally likely. 

 ௝, for j = 1,…,k, are continuous and invertible distribution functions.  ௜ܷ௝, for i = 1,…,nܨ

and j = 1,…,k are independent and identically distributed uniform [0, 1] random 

variables. Many analysts choose ܨ௝ to be a uniform distribution and take a fixed value in 

each stratum (e.g., the median). In this situation, the design points all fall on a lattice in k-

space. In such a case, creating an LH corresponds to independently generating k random 

permutations of the first n natural numbers and appropriately scaling the columns to 

cover the factors’ ranges. This uniform spacing guarantees that for each factor j, 

assuming its scaled range is [a,b], ∀	ݔ	 ∈ ሾܽ, ܾሿ,max௜ୀଵ,…,௡หݔ െ ௜ܺ
௝ห ൑ ሺܾ െ

ܽሻ/ሺ2ሺ݊ െ 1ሻሻ. Therefore, if a response to a factor has a sharp threshold, these designs 

will closely bracket it. Moreover, with an LH, at the extreme, an analyst could fit an n – 1 

degree polynomial to a single input variable. Figure 11 shows an illustration of a LH with 

two factors ܺଵ and	ܺଶ. The experimental region examines a portion of a nonlinear 

jX

j
iX
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response surface by sampling within the rectangle that lies on the column space of ܺଵ and 

ܺଶ. Spreading the samples throughout the region allows the experimenter to explore how 

the response, f(x), behaves within the region’s interior. 

 

Figure 11. A two-factor Latin hypercube design projection onto the column space  
of X. 

2. Improvements to the Random Latin Hypercube Design 

Iman and Conover (1982) improved the LHS by controlling the correlations of the 

design matrix. They used a method that induced rank correlation in the design to 

correspond with the correlation that one would expect from the input factors. The method 

generated several matrices and the user would choose the matrix that provided the most-

preferred Spearman’s Rank Correlation.  Florian (1992) developed a method known as 

the Rank Cholesky Dependence Induction Algorithm, which usually resulted in reduced 

correlations among the columns in the matrix. His method used a rank matrix where the 

factor-level values of the columns were rearranged to meet the new rank structure.  Owen 

(1994) used a ranked Gram-Schmidt orthogonalization algorithm to control correlations 
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among factors. His method attempts to convert LH designs to correspond with correlation 

matrices that approach the identity matrix; it was shown to reduce correlations, but did 

not guarantee their complete elimination. 

Prior to 1998, there were no algorithms to generate LH designs that were 

orthogonal.  Ye (1998) introduced the first OLH design matrices between each of the 

linear effects and the linear effects with the second-order effects; however, correlations 

between the second-order effects and themselves still existed. Ye’s method produces 

orthogonal design for experiments with n = 2m – 2 and k = 2m – 2, where n is the number 

of design points, k is the number of factor columns, and m is any positive integer. These 

designs are not efficient (e.g., 20 factors require 2,049 design points) and are inflexible 

because the number of factors must round up to k, where k must be an even number.  

Cioppa and Lucas (2007) extended and improved on the space-filling properties of Ye’s 

designs by accepting a small amount of nonorthogonality (a maximum pair-wise 

correlation of less than 3%). Cioppa’s method produces Nearly Orthogonal Latin 

Hypercubes (NOLHs) for experiments with n = 2m + 1 design points and ݇ ൌ ݉ ൅ ൫௠ିଵ
ଶ ൯ 

factors; he cataloged NOLHs for up to 22 factors and 129 design points.  Ang (2006) 

extended Cioppa’s method and cataloged OLH and NOLH with a maximum pair-wise 

correlation of less than 5% for up to 512 factors and 1,025 design points. Ye, Cioppa, and 

Ang used permutation matrices to find their designs. A permutation matrix has exactly 

one entry of the number one in each row and each column and zeros everywhere else. 

Multiplying any two permutations to form a two-way permutation can create additional 

permutations matrices. Ye and Cioppa used two-way permutations, but Ang extended 

their methods by exploring p-way combinations for the permutation matrices where 

݌ ൑ ݉ െ 1. The number of factors with the same number of design points is now 

݇ ൌ 1 ൅ ∑ ቀ௠ିଵ
௝ ቁ௣

௝ୀଵ .  Steinberg and Lin (2006) presented a new construction method for 

OLH by rotating the points in a two-level factorial design to preserve the orthogonality of 

the original design. Their method produces OLHs for experiments with n = 2k with m a 

power of 2 and	݇ ൌ ௠ܤ ௠݉, whereܤ ൌ 	ሺ݊ہ െ 	1ሻ	/	݉ۂ. Despite these improvements the 

designs are very inflexible (e.g., 12 factors require 16 design points, but 13 factors 

require 64 design points).  Hernandez (2008) addressed the inflexibility in design 



 32

dimensionality with a mixed integer program (MIP) that creates fully saturated OLH and 

NOLH designs with a ߩ௠௔௣ less than 0.05 for the linear terms and any given number of 

factors. An MIP is a mathematical method that optimizes an objective function that has a 

mix of continuous and integer decision variables, given specified constraints. 

3. Discrete and Categorical Designs 

Simulation experiments often have a mix of input factor types. Continuous factors 

range between a low and a high setting, while discrete and categorical factors have a 

predetermined amount of levels. The discrete levels have a numeric meaning, while each 

categorical level represents qualitative categories. LH designs are useful for the 

exploration of continuous factors because they provide insight throughout the 

experimental region. Experimenters use orthogonal arrays when exploring discrete and 

categorical factors.  Rao (1945) introduced orthogonal arrays in order to ensure that 

qualitative factors are not confounded with each other. For a review of the techniques 

used to create orthogonal arrays, see Hedayat, Neil, Sloane, and Stufken (1999). A 

significant limitation of orthogonal arrays is that the number of n experiments needed for 

a moderate number of factors is too large. For example, an orthogonal, full-factorial 

design, with 10 discrete factors, each with 10 levels, requires 10 billion experiments, 

making them extremely inefficient. To address the inefficiencies of orthogonal arrays, 

Vieira, Jr. et al. (2011) developed NO/B designs in order to explore all types of factors 

simultaneously (continuous, discrete, and categorical) in a reasonable amount of 

experiments. This dissertation will refer to the designs developed by Cioppa and 

Hernandez as 1st Order NOLH designs and the designs developed by Vieira, Jr. as  

1st Order NO/B designs. 

4. Space-Filling Design Contribution 

The OLH, NOLH, and NO/B designs allow analysts to explore complicated and 

uncertain response surfaces. Despite the significant improvement in the use of these 

space-filling LHs, there is still an opportunity to improve this field of study. Finding LH 

designs that minimize the ߩ௠௔௣ among not only the first-order terms, but also the second-



 33

order terms, is a worthy contribution. Figure 12 shows a matrix of the aforementioned 

authors’ contributions to the space-filling designs’ literature, with respect to four different 

design properties. These properties include the ߩ௠௔௣ among the effects order (1st or 2nd); 

the factor number flexibility (e.g., an inflexible family of LH designs is one that has the 

same number of design points for a multiple number of factors, while a flexible family of 

LH designs has one set of design points for each number of factors); the factor types 

(continuous, discrete, or categorical); and the number of factors.  Figure 12 shows where 

our proposed designs fit into the body of literature. 

 

 

Figure 12. Literature review summary of the space-filling design contributions. The 
Spectrum Legend lists four properties for the LH family of designs. 
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Factor Types C C C C C C C C C
C, D, 

Cat
C D

Efficient Number of 

Design Points: Low 

(<20), Mod: 

Moderate (>= 20), 

High (>= 50)

Number of 

Factors
High High Mod Mod Low Mod High High High High Low Low

Maximum 

Correlation Between 

Effect Type: Low (< 

0.05), Med to High 

(significantly > 0.05)

Latin Hypercube 

Sampling

Orthogonal and Nearly 

Orthogonal Latin 

Hypercubes

Space‐Filling Design 

Contributions
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F. SUMMARY 

Design selection primarily has to do with the number of potential factors and the 

response surface complexity. For situations where there are a small number of factors and 

we can assume that the response surface is linear with no interactions, a two-level 

factorial design is sufficient. As the number of factors increase, we can efficiently use 

fractional factorial designs, but we increase the potential for confounding effects. When 

we can assume that a second-order model can represent the response surface, we can use 

traditional designs like the CCD and the BBH Design. Computer-generated optimal 

designs work well at estimating the predicted response output or the model coefficients, 

when the design space region is constrained and we can specify the type of true model. 

When the response surface is uncertain and may include a combination of higher-order 

behavior and a step function or threshold, then space-filling designs that sample 

throughout the entire design space can best fit the appropriate model. Recent 

advancements in space-filling designs developed NOLH designs that have minimized the 

correlations between the linear effects and the linear effects with the second-order effects 

for continuous, discrete, and categorical factors. What remains is to find designs that also 

minimize the correlations between second-order effects and themselves. 

 Kleijnen et al. (2005) wrote a comprehensive article titled “The User’s Guide to 

the Brave New World of Designing Simulation Experiments.”  In this article, there is a 

figure that shows the recommended designs according to the number of factors and 

system complexity assumptions. An update to this figure, which includes recent 

experimental design advances, is shown in Figure 13. The figure indicates how our 

proposed designs extend the simulation experimenter’s ability to understand complex 

response surfaces for a modest number of factors. 
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Figure 13. Recommended designs according to the number of factors and system 
complexity assumptions. 

Depending on the experimental conditions, there are a number of different design 

properties an experimenter must consider when selecting a design, especially for complex 

response surfaces.  Box and Draper (1987) list 14 properties that often conflict with each 

other, which imply that the experimenter must use practical judgment when selecting a 

design. For the second-order response surface, the orthogonality and space-filling 

properties are in conflict because, to date, there are no designs that perform well in both 

areas simultaneously for a modest number of factors. The 2nd Order NOLH and discrete 

NO/B designs address this conflict and provide the simulation experimenter with designs 

that can better explore the response landscape, while nearly guaranteeing that no first- 

and second-order terms are confounded with each other. The 2nd Order NOLH and 

discrete NO/B designs extend not only the space-filling design body of knowledge, but 

also the available second-order response designs. Figure 14 shows how our research 

converges the space-filling and second-order response surface domains together. 



 36

 

Figure 14. Space-filling and second-order design domain convergence. The oversized 
stars indicate contributions that originated within the Simulation Experiments and 

Efficient Designs (SEED) Center. 
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III. GENETIC ALGORITHM 

To construct the 2nd Order NOLH and NO/B design algorithm we utilized the 

principles of GAs (Holland, 1975). GAs have been proven to provide a robust search 

mechanism for a wide variety of problems with complicated search spaces (Goldberg, 

1989). The algorithm uses random choice as a guide to select better-performing solutions 

from a population of candidate solutions. The algorithm iteratively generates new 

populations using attractive characteristics of solutions from the previous generation. The 

intent is to evolve solutions that perform better with each new generation; the user 

measures performance by a predetermined fitness value. GAs are different from 

traditional optimization methods. They are heuristics that do not guarantee the optimal 

solution, but can find attractive solutions in complicated environments where linear and 

nonlinear math programming cannot (Michalewicz & Fogel, 2010). 

There are numerous applications of GAs that construct computer-generated 

designs. Primarily, these applications focus on optimizing the alphabetical criterion that 

find good coefficient estimates or predicted response estimates for a specified model. 

Techniques to construct D-Optimal designs using GAs have been shown to outperform 

other traditional optimization procedures that require the search space to fit a particular 

structure (Heredia-Langner, Carlyle, Montgomery, Borror, & Runger, 2003). GAs were 

used to find optimal designs that are robust across a specified number of different models 

(Heredia-Langner, Carlyle, Montgomery, Borror, & Runger, 2004). In addition, GAs 

have constructed designs involving mixture and process factors that include control and 

noise factors (Goldfarb, Borror, Montgomery, & Anderson-Cook, 2005). There are other 

search algorithms that use heuristics to find designs.  Morris and Mitchell (2008) used 

simulating annealing to find designs with a distance metric for the fitness function.  

Joseph and Hung (2008) proposed a modification of the simulating annealing algorithm 

by using a “smart swap” method, rather than randomly swapping design points. In 

addition, they used a weighted average of a distance metric and the average column 

correlation among the linear terms as their fitness function.  Moon et al. (2011) developed 

algorithms for generating maximin LH and orthogonal designs that show improvements 
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to the existing algorithms under a variety of criteria. These aforementioned heuristic 

algorithms all attempt to minimize the correlations among the first-order terms only. 

In our domain, an optimal solution is an orthogonal LH regression matrix (Z) that 

includes the quadratics and two-way interactions, with good space-filling properties. 

Unfortunately, these designs have not yet been found or proven to exist to an arbitrary 

number of design points (n). Because our goal is to find good (nearly orthogonal) designs 

and not necessarily optimal ones, we choose to use genetic algorithms to find attractive 

design solutions with minimal ߩ௠௔௣ and good space-filling properties. We will now 

review the basics of a genetic algorithm before we describe our algorithm’s  

detailed scheme. 

A. GENETIC ALGORITHM BASICS 

Within a GA, an operator is a set of instructions that performs operations on 

solutions to evolve them into better performers. Every GA has a unique set of operators 

used within each generation. A simple GA typically uses three types of operators:  a 

reproduction, a crossover, and a mutation operator (Goldberg, 1989). The reproduction 

operator selects attractive solutions from a previous generation in order to create the new 

solutions needed for the next generation. A common reproduction operator uses the 

notion of a biased roulette wheel, where each candidate solution in a population has a 

roulette wheel slot that is sized proportional to its performance. In this way, the algorithm 

allows any candidate to be selected, but places a higher selection probability on 

candidates that perform well; by spinning the roulette wheel, candidates that have the 

largest wheel slot have the highest chance of selection. The crossover operator creates a 

new solution by combining a random set of characteristics from the two solutions 

selected by the reproduction operator (Goldberg, 1989). The mutation operator randomly 

changes a solution before it moves into the new population. Its purpose is to prevent the 

algorithm from converging to a local optimum solution and is typically performed with a 

low probability. A generation is an iteration of each of the algorithm’s operators. The 

simple genetic algorithm starts with an initial population of solutions, and ends with the 

best solution found after completing a set number of generations. 
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B. GENETIC ALGORITHM SCHEME 

Our goal is to minimize Equation (7), while using an LH design. The algorithm 

will create designs that minimize the maximum absolute pairwise correlation of the 

columns in Z, while sampling once within each of n equally spaced strata for each of the 

k factors. Solving this is challenging, since the objective function is nonlinear and not 

differentiable everywhere. 

Our algorithm starts with one randomly generated, centered design column and a 

population of randomly generated, centered candidate columns. We center a column 

(around 0) by subtracting its mean from each of the entries. If we did not center the 

columns, then they would be highly correlated with their quadratic term. Our GA solution 

is a column that, when added to the existing design, results in the lowest ߩ௠௔௣. Our 

algorithm uses two types of operators to modify the structure of a column solution. The 

swap operator swaps or exchanges a pair of values, ௜ܺ
௝ within the jth column at random 

positions. The jiggle operator adds a small value to the element of a randomly selected 

row of a column, while subtracting the same amount from a different row. We define the 

term jiggle as a slight perturbation to a couple of values within a column. The jiggle 

operator does not perturb the lowest and highest values in ܺ௝, so that the desired 

experimental ranges do not change. The perturbation amount is selected from a uniform 

distribution. The upper and lower bounds of the uniform distribution ensure that the 

values remain in their original interval. For example, if the upper and lower bounds are 

set to േ0.5, then the jiggle operator can never perturb a value set to 2 to be greater than 

2.5 or less than 1.5. This preserves the idea that an LH samples once in each interval of 

the range. These bounds on the jiggle operation also preserve the design’s space-filling 

properties. In addition, subtracting the same amount from one element that we add to 

another preserves the column’s mean. 

In order to create a new population of column solutions, the algorithm selects 

attractive columns from the old population and creates new columns by modifying the 

selected column’s structure using the swap or jiggle operators. In order to determine the 

selection probability, the algorithm uses the notion of a biased roulette, wheel where each 

candidate solution in the population has a roulette wheel slot sized proportional to its 
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performance (Goldberg, 1989). In this way, the algorithm allows any candidate to be 

selected, but places a higher selection probability on candidates that perform well. By 

spinning the roulette wheel, candidates that have the largest wheel slot have the highest 

chance of selection. A column’s performance is measured by its fitness value. The fitness 

value is defined as the complement of the maximum absolute pairwise correlation 

൫1 െ  ௠௔௣൯, so that the higher the fitness value, the higher the selection probability. Inߩ

order to increase the chance of selecting the columns with a higher fitness, we redefine 

the fitness value by using a linear ranking defined as: 

ሺ࢚ሻ࢙࢙ࢋ࢔࢚࢏ࢌ ൌ ࢔࢏ࡹ ൅ ሾ࢞ࢇࡹ െ࢔࢏ࡹሿሾ࢔ െ ࢚ሿ/ሾ࢔ െ ૚ሿ,  (9) 

where fitness(t) is the redefined fitness value of the tth column; Max and Min are the 

maximum and minimum of the original fitness values ൫1 െ  ௠௔௣൯, respectively; n is theߩ

number of columns in the population; and t is the rank-ordered index of the original 

fitness values (Vieira, Jr., 2008). 

The search for a candidate column solution with the lowest ߩ௠௔௣ is highly 

dependent on the randomly generated, initial population. As the number of generations 

increase, the best-performing column converges to a local solution. In order to increase 

the chance of finding a low ߩ௠௔௣,	the algorithm performs a limited number of exploration 

trials, each with its own initial population and a predefined number of generations. The 

algorithm then exploits the population with the best-performing column solution by 

continuing a set number of additional generations. In order to prevent the algorithm from 

wasting computation time while the best-performing column converges to a local 

solution, we established an exit criterion. The algorithm will stop performing additional 

generations if the best column has not improved in a set amount of generations; (the 

generation exit criteria). Each of the exploration and exploitation generations utilizes the 

swap operator only. After all the swap generations are complete, the best-performing 

column is placed into X and the algorithm searches for the next column. The algorithm 

has the option to perform additional attempts at finding a column if the ߩ௠௔௣ is not below 

0.05; each attempt will have a new initial population and set of exploration and 

exploitation generations. Once X contains the designated number of k columns, the 
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algorithm then performs a set number of generations using the jiggle operator on each 

column in X. The jiggle operator also has a generation exit criteria similar to the  

swap operator. 

The choice of n and k depend on the experimental conditions. The experimenter 

chooses k based on the objectives of a study. A large k implies the need for a larger n. 

Because of experimental constraints imposed by time and resources, a design may need 

to be as small as possible for a given k. To find the smallest n for a given k, we performed 

several iterations of the algorithm by bracketing n within an arbitrarily chosen range until 

we found the lowest ߩ௠௔௣. Now that we have defined the solutions, operators, selection 

probabilities, and fitness values of our genetic algorithm, we present the algorithm steps 

used to find the 2nd Order NOLH and 2nd Order Discrete NO/B designs for a given n and 

k. To assist the reader with following the 13 different input parameters discussed in the 

steps, Table 2 briefly defines them for reference; the parameters are donated in italics. 

Table 2.   Input parameter descriptions for the genetic algorithm. 

Input Parameter Description Input Parameter Description 
numExploreGen Number of exploration 

generations. 
swapPortion Portion of design points 

swapped during a swap 
operation. 

numExploitGen Number of exploitation 
generations. 

poolSize Size of the pool that contains a 
set of candidate columns. 

popSize Size of the population of 
candidate columns. 

genExitCriteria Number of generations 
performed without 
improvement of the fitness 
function. 

copyPortion Portion of candidate columns 
that copy into the next 
generation. 

jigglePortion Portion of the design point 
jiggled during a jiggle 
operation. 

halfWidth The bounded distance that 
prevents the jiggle operator 
from perturbing outside a 
range. 

colAttempts Number of attempts to find a 
column with a new initial 
population of solutions if an 
attempt did not meet the 
minimum correlation threshold.

numJigGen Number of jiggle generations. jigglePasses Number of times the jiggle 
operation is performed on the 
columns. 

numTrials Number of exploration trials, 
each consisting of a set of 
exploration generations. 
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Step 1. Start with an n x 1 design matrix, X with n design points, and one 
randomly generated, LH column (i.e., a random permutation of the first n natural 
numbers). Center the column at 0; thus, the extreme values in the column are ± 
(n-1)/2. Set the population index u = 1. 
 
Step 2. Generate an initial population ݌݋݌ଵ	of random LH candidate columns 
and center them. A population is defined as ݌݋݌௨, for u = 1,…,numExploreGen or 
u = 1,…,numExploitGen, where numExploreGen and numExploitGen are the 
number of generations performed for the exploration and exploitation generations, 
respectively. We denote the ath candidate column in ݌݋݌௨ as ܥ௨௔, for a = 
1,…,popSize, where popSize is the size of the population. 
 
Step 3. Calculate each column’s fitness value. For each ܥ௨௔ in ݌݋݌௨, create a 
candidate 2nd Order regression matrix Z with all linear, quadratic, and two-way 
interactions of ࢽ, where ࢽ ൌ ܺ ∪  ௨௔ using Z withܥ ௠௔௣ for eachߩ ௨௔. Calculate theܥ
Equation (6). Calculate each ܥ௨௔ fitness value in pop୳ using Equation (8). 
 
Step 4. Create the next swap generation (see Figure 15): 

a. Copy a portion of the highest-performing columns from ݌݋݌௨ into 
 ௨ାଵ. This portion is defined as copyPortion, where the number of݌݋݌
columns copied is equal to ݊݋݅ݐݎ݋ܲݕ݌݋ܿہ  copyPortion is set to a value ;ۂ݊
between 0 and 1. 
b. Create a cumulative distribution function (CDF), based on the relative 
fitness values of each ܥ௨௔ in ݌݋݌௨. 
c. Randomly select a ܥ௨௔ in ݌݋݌௨ using the CDF. With the selected ܥ௨௔, 
create a new column using the swap operator. The number of swap 
operations performed is random and depends on the number of design 
points, n; this number is drawn from a uniform [1,s] distribution where s = 
݊݋݅ݐݎ݋ܲ݌ܽݓݏہ  .and swapPortion is set to a value between 0 and 1 ۂ݊
Place the new column into a pooled container. Continue to create new 
columns in this same manner until the container is full. The number of 
columns in the pooled container is defined as poolSize. 
d. Calculate each new column’s fitness (as described in Step 3) within 
the pooled container and place the best-performing column into ݌݋݌௨ାଵ. 
Increment the uth element of ݌݋݌௨. Repeat Steps 4c and 4d until the size of 
௨ାଵ݌݋݌ ൌ popSize. 




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Figure 15. This figure shows the mechanics of a swap generation in Step 4 of  
the algorithm. 

Step 5. Repeat Step 4 until u = numExploreGen. 
 
Step 6. Continue to explore by repeating Steps 2–5 a designated number of 
trials, defined as numTrials. 
 
Step 7. Save the population, ݌݋݌௕௘௦௧, from the trial that contains the best-
performing column. Set u = 1 and popଵ = ݌݋݌௕௘௦௧. Exploit ݌݋݌௕௘௦௧ by repeating 
Step 4 until u = numExploitGen. If there is no improvement after a set number of 
generations, defined as genExitCriteria, stop repeating Step 4 and set u = 
numExploitGen. 
 
Step 8. If the best-performing candidate column, ܥ௡௨௠ா௫௣௟௢௜௧ீ௘௡

௔  in 
௠௔௣ߩ ௡௨௠ா௫௣௟௢௜௧ீ௘௡, has a݌݋݌ ൐ 0.05, repeat Steps 2–7 for a set number of times, 
defined as colAttempts. After performing the set number of column attempts, add 
௡௨௠ா௫௣௟௢௜௧ீ௘௡ܥ
௔  to X. 

 
Step 9. Repeat Steps 2–8 until the designated number of columns, k is in X. 
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Step 10. Set j = k. 
 
Step 11. Remove ܺ௝ from the design X. 
 
Step 12. Create a container of size popSize for the first jiggle population, 
 .ଵ݌݋݆ܲ݃݅
 
Step 13. Fill ݆݅݃ܲ݌݋ଵ with new columns; ܥଵ

௔ generated by modifying the 
structure of ܺ௝ using the jiggle operator. The jiggle operator creates new columns 
by adding a small amount ߱, where ߱ = U – 0.5, to a randomly selected ௜ܺభ

௝ , 

while subtracting the same amount to another randomly selected ௜ܺమ
௝ ; U is a 

uniform [0,1] random variable. In order to preserve the design’s space-filling 
property, the algorithm bounds the values to be within േ a distance from the 
original value before any jiggle operation. We define ߠ௜

௝ to be the original value 

from ௜ܺ
௝ before Step 10. The bounded distance is defined as halfWidth and is the 

maximum distance a value may be perturbed away from	ߠ௜
௝. Setting halfWidth ൑ 

0.5 will ensure the values remain within each of the n equally spaced strata in ௜ܺ
௝. 

Setting halfWidth too high will degrade the design’s space-filling property, but 
improve the search for lower correlations. If	 ௜ܺ

௝ ൅ ߱ and ௜ܺ
௝ െ ߱, is within the 

range [ ௜ܺ
௝ െ ߱ ൐ ௜ߠ	

௝ ൏ ௜ܺ
௝ ൅ ߱], then add ߱ to ௜ܺభ

௝  and subtract ߱ from ௜ܺమ
௝ . 

Perform the jiggle operation a random number of times; the number of times is 
drawn from a uniform [1, g] distribution, where g = ݊݋݅ݐݎ݋݈݆ܲ݁݃݃݅ہ  and ۂ݊
jigglePortion is set to a value between 0 and 1. 
 
Step 14. Create the next jiggle generation (see Figure 16): 

a. Copy a portion of the highest-performing columns (copyPortion) from 
 .௨ାଵ݌݋݆ܲ݃݅ ௨ into݌݋݆ܲ݃݅
b. Create a CDF based on the relative fitness values of each ܥ௨௔ 
in	݆݅݃ܲ݌݋௨. 
c. Randomly select a ܥ௨௔ in ݆݅݃ܲ݌݋௨ using the CDF. With the selected 
 ௨௔, create poolSize number of new columns using the jiggle operator (asܥ
described in Step 13) and insert them into a separate pooled container; the 
number of containers = popSize. 
d. Calculate each new column’s fitness (as described in Step 3) within 
the pooled container and place the best-performing column 
into	݆݅݃ܲ݌݋௨ାଵ. Increment the uth element of ݆݅݃ܲ݌݋௨. Repeat Steps 14c 
and 14d until the size of ݆݅݃ܲ݌݋௨ାଵ ൌ popSize. 


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Figure 16. This figure shows the mechanics of a jiggle generation in Step 14 of  
the algorithm. 

Step 15. Repeat Step 14 until u = numJigGen, where numJigGen is the number 
of jiggle generations. If there is no improvement after genExitCriteria number of 
generations, stop repeating Step 14 and set u = numJigGen. 
 
Step 16. If the best-performing ܥ௡௨௠௃௜௚ீ௘௡

௔  within ݆݅݃ܲ݌݋௡௨௠௃௜௚ீ௘௡ improves 

the design’s ߩ௠௔௣, add it to the X. If not, add the originally removed ܺ௝ back to X. 
Decrement the jth element of X. 
 
Step 17. Continue the jiggle generation for each ܺ௝ in X. Repeat Steps 14–16 
until j = 0. 
 
Step 18. Repeat Steps 10–17 a designated number of times, defined as 
jigglePasses. 
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Figure 17. A strategic view of the algorithm’s 18 steps. 

Figure 17 shows all 18 steps to assist the reader with the algorithm flow. Because 

the algorithm is highly stochastic and its performance depends on the first random LH 

column placed in X, we recommend the user leverage a computer cluster to perform 

multiple replications in order to find the design with the lowest ߩ௠௔௣. The algorithm’s 

output is a design matrix with the lowest ߩ௠௔௣ found. Table 3 shows an example output 

design, with 4 continuous factors and 25 design points. 
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Table 3.   Continuous factor design created by the genetic algorithm. 

 

 

The design’s ߩ௠௔௣ for all second-order terms is 0.032, while the ML2 is 0.011. 

Figure 18 shows the correlation matrix and two-dimensional projections of the design in 

Table 3. 
 

 

Figure 18. Correlation matrix and two-dimensional projections of the design  
in Table 3. The green indicates a correlation below 0.05  

while the red indicates a correlation above 0.05. 

Run X1 X2 X3 X4

1 8.01 ‐11.06 ‐9.04 ‐5.52

2 4.2 ‐7.36 7.89 12

3 ‐11.2 3.44 ‐2.21 11.22

4 ‐3.5 ‐5.57 ‐1.5 4.5

5 ‐3.37 ‐9.55 4.13 ‐12

6 3.5 10.44 ‐3.5 7.5

7 1.22 1.5 ‐5.5 ‐7.5

8 9.5 ‐3.5 ‐3.5 4.5

9 9.5 5.5 ‐8.12 ‐10.18

10 ‐6.82 12 0.5 ‐9.36

11 ‐5.6 5.5 6.21 3.5

12 ‐1.45 7.5 9.59 9.04

13 ‐2.38 ‐0.5 ‐7.3 ‐0.1

14 ‐8.02 ‐12 ‐4.57 6.5

15 6.7 1.11 9.5 ‐10.5

16 11.35 ‐8.72 7.5 ‐1.23

17 ‐4.58 10.5 ‐11.06 2.49

18 1.5 ‐4.84 2.48 ‐1.5

19 5.5 ‐2.44 ‐12 10.5

20 12 7.5 0.5 6.09

21 5.5 8.92 10.5 ‐4.29

22 ‐10.36 ‐3.24 ‐10.5 ‐8.43

23 ‐9.05 ‐7.82 12 0.5

24 ‐12 4.19 5.5 ‐5.23

25 ‐0.15 ‐1.5 2.5 ‐2.5
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C. SUMMARY 

The principles of genetic algorithms proved to be a useful way to find  

space-filling designs that minimize the second-order ߩ௠௔௣. By modifying the structure of 

the candidate columns with the swap and jiggle operators, the algorithm was able to 

iteratively construct a design with the desired number of columns and design points. If 

someone needed to replicate the genetic algorithm in a computer language of their choice, 

they could follow the 18 steps described in this chapter. These steps allow others to 

recreate the algorithm to improve the search mechanisms or change the fitness function to 

something other than ߩ௠௔௣. 
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IV. ALGORITHM DIAGNOSTICS 

Genetic algorithms often have several input parameters that are typically set 

arbitrarily, with no knowledge of their appropriate settings. This chapter demonstrates 

how we used experimental design to help determine the appropriate input parameter 

settings of the genetic algorithm, in order to improve the search for better space-filling 

designs. Additionally, the chapter provides guidance to the user on the algorithm timing 

and performance for a given n and k. 

A. INPUT PARAMETER ANALYSIS 

Because the input parameters involving the swap operations have nothing to do 

with the jiggle operations, we performed separate experiments for each operation. A third 

experiment varied the colAttempts and genExitCriteria parameters, while fixing the 

others. Each of the three experiments focused on the following research questions: 

 Which swap parameters matter most (Swap Experiment)? 

 How many generations without improving the correlation should the 
algorithm perform (Exit Criteria Experiment)? 

 Which jiggle parameters matter most (Jiggle Experiment)? 

To answer each of these questions, we created an experimental design using the 

genetic algorithm for a mix of factor types. Because our analysis uses DOE to study the 

input parameters that will create an experimental design, we must clarify some 

terminology. We use the term design point to mean the input parameter settings that may 

be replicated multiples times. A run is defined as a single replication experiment of a 

design point. The term levels is defined as the number of rows, n, in the design created by 

the algorithm. We now describe each of our experiments and discuss our analysis. 

1. Swap Experiment 

The swap experiments focused on Steps 1–9 of the algorithm (see Chapter III). 

We crossed a design with a mix of continuous and discrete factors consisting of 150 

design points with 4 different design size searches (a given n and k). The term “crossed” 

means that we performed 150 experiments for each of the 4 designs, for a total of 600 
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design points. The design matrix sizes were k = 4 and n = 25; k = 5 and n = 39; k = 6 and 

n = 70; and k = 7 and n = 125. We ran 30 replications for each design point on a high-

performance computer cluster, for a total of 18,000 runs. Table 4 shows the input 

parameter experimental ranges and the factors types. 

Table 4.   Swap Input Parameters. 

Input Parameter Low High Factor Type 
popSize 51 200 Discrete 

numExploreGen 1 150 Discrete 
poolSize 51 200 Discrete 

numExploitGen 151 300 Discrete 
swapPortion 0.05 0.5 Continuous 
numTrials 1 5 Discrete 

copyPortion 0 0.3 Continuous 

 

Our exploratory analysis began with observing ߩ௠௔௣ for each design point. 

Visually, we can see in Figure 19 that the algorithm is extremely stochastic, with the 

 ௠௔௣ ranging from 0.057 to 0.178. Additionally, the mean diamond plots that show aߩ

95% confidence interval among the replicated design points do not reveal any subset of 

points that perform significantly better than anything else. We highlighted the top 34 

performing runs and observed their input parameter distributions. The parameter 

distributions that revealed trends are shown in Figure 19; all other parameter distributions 

tended to be uniform. Our initial exploratory analysis revealed that the best-performing 

runs had a high popSize, poolSize, and numExploreGen, and a low swapPortion. 
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Figure 19. ߩ௠௔௣	results for 18,000 algorithm runs for 600 design points, each with 
their own set of input parameters. 

Next, we performed a stepwise regression on the seven parameters from the swap 

experiment. Because of the algorithm’s stochastic nature, not much variation can be 

explained by a regression model or by partition tree analysis. Therefore, we regressed on 

the mean design point ߩ௠௔௣ for each of the 30 replications. Additionally, because we are 

interested in obtaining the lowest ߩ௠௔௣ among multiple replications, we also regressed on 

the minimum design point ߩ௠௔௣. Figure 20 shows the prediction profilers for the mean 

and minimum ߩ௠௔௣. A prediction profiler is an analysis feature in JMPTM 9.0 that 

displays the partial derivatives for each factor in a meta-model (Statistical Analysis 

System [SAS] Institute, 2008). These profilers show how changes in a factor impact the 

response, while the other factors are held constant. 
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Figure 20. Swap experiment prediction profilers for the mean and minimum ߩ௠௔௣. 

Both prediction profilers reveal the same insights. The number of levels tends to 

dominate all other input parameters. A higher population size has a higher impact than a 

higher pool size. The number of exploration generations tends to level out at 75. A low 

swap portion tends to perform better than a higher one. Additionally, the number of 

exploitation generations does not matter, probably because the algorithm converges to a 

local solution after a certain amount of generations. Because the number of levels was the 

dominant parameter, we examined the designs with 25 levels and 125 levels separately to 

see what parameters mattered among a low and high set of levels. Figure 21 shows the 

prediction profilers for the mean ߩ௠௔௣ of the k = 4, n =25 design and the  

k = 7, n =125 design. 
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Figure 21. Prediction profilers for the mean ߩ௠௔௣ of the designs with the lowest and 
highest number of levels in the swap experiments. 

The meta-models in Figure 21 convey similar insights to the ones shown in  

Figure 20. For a low number of levels (25), copy portion matters, while the swap portion 

does not. At the higher end of the number of levels (125), the swap portion does matter, 

while the copy portion does not. 

2. Exit Criteria Experiment 

Our next experiment examined whether the exit criteria for the number of 

generations performed would impact the performance of the algorithm. The exit criteria 

experiment only searched for a design with k = 5 and varied n between 38 and 45 levels. 

We fixed the input parameters to the values shown in Table 5 and performed an 

experimental design on the number of levels, the generation exit criteria, and the number 

of column attempts. 
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Table 5.   Parameters fixed during exit criteria experiment. 

Input Parameter Set Value Input Parameter Set Value 
numExploreGen 100 swapPortion 0.2 
numExploitGen 200 poolSize 100 

popSize 100 numTrials 5 
copyPortion 0.1   

 

We crossed a design with 50 design points with 8 different levels (38–45), for a 

total of 400 design points. We ran 30 replications for each design point on a  

high-performance computer cluster, for a total of 12,000 runs. Table 6 shows the input 

parameter experimental range and the factor types for the exit criteria experiment. 

Table 6.   Column attempts and exit criteria parameters. 

Input Parameter Low High Factor Type 
colAttempts 1 5 Discrete 

genExitCriteria 5 50 Discrete 
levels 38 45 Discrete 

 

Surprisingly, we found that the generation exit criteria did not matter. Figure 22 

shows that levels again dominate the results. When we exclude levels by examining 

levels 38 and 45 separately, we find that the number of column attempts is the only 

parameter that matters. Figure 22 shows regression plots, rather than prediction profilers, 

because there was only one factor in the meta-model. 
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Figure 22. Prediction profiler and regression plots for the exit criteria experiment. 

3. Jiggle Experiment 

For the jiggle experiment, we first created 12 designs with 4 different size 

matrices, using only Steps 1–9 of the algorithm. The algorithm created three designs for 

each of the following matrix sizes:  k = 4 and n = 25; k = 5 and n = 39; k = 6 and n = 70; 

and k = 7 and n = 125. The experiment started with one of the 12 designs and only 

performed Steps 10–18 of the algorithm. Observing the final ߩ௠௔௣ after the jiggle 

operation would not provide a valid comparison because each design had its own initial 

 .௠௔௣ after performing the jiggle operationsߩ ௠௔௣. We are interested in the reduction inߩ

Therefore, the response variable reduction is defined as the difference between the 

design’s initial ߩ௠௔௣ and final ߩ௠௔௣, after performing Steps 10–18 of the algorithm (see 

Chapter III). 
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For each of the 12 different design sizes, we performed 100 design points with a 

mix of continuous and discrete factors, for a total of 1,200 design points. We ran 30 

replications for each design point on a high-performance computer cluster, for a total of 

36,000 runs. Table 7 shows the input parameter experimental ranges and the  

factor types. 

Table 7.   Jiggle input parameters for the jiggle experiment. 

Input Parameter Low High Factor Type 
genExitCriteria 1 50 Discrete 

popSize 51 150 Discrete 
numJigGen 51 150 Discrete 
jigPortion 0.1 0.9 Continuous 
halfWidth 0.3 1 Continuous 

jigglePasses 1 4 Discrete 
poolSize 51 150 Discrete 

 

Our jiggle parameter analysis indicates that the only parameters that matter are the 

levels, halfwidth, and jigglePasses. Figure 23 shows the prediction profiler from the 

meta-model created from the jiggle experiments. 

 

 

Figure 23. Jiggle experiment meta-model prediction profiler. 
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When the halfwidth is set greater than 0.5, the design may move beyond the equal 

intervals within the column. Therefore, the jigglePasses is the only parameter that truly 

matters, given that we will not set halfwidth greater than 0.5 and the levels are determined 

by the experimental requirements. 

4. Recommended Input Parameter Settings 

Despite the large variance in the algorithm’s output, the three experimental 

designs we performed provided enough insight to recommend the appropriate algorithm 

input parameter setting (see Table 8). 

Table 8.   Recommended GA input parameter settings. 

Input 
Parameter 

Set 
Value 

Input 
Parameter 

Set 
Value

Input 
Parameter

Set 
Value

Input 
Parameter 

Set 
Value

numExploreGen 100 copyPortion 0.1 numTrials 3 jigglePortion 0.2 
numExploitGen 200 swapPortion 0.2 halfWidth 0.5 jigglePasses 3 
popSize 100 poolSize 100 numJigGen 100   
colAttempts 3 genExitCriteria 20     

 

The next set of diagnostics explored different combinations of n and k, with the 

input parameters set to the values in Table 8. The diagnostics described in Section B 

allowed us to understand how the algorithm performs in terms of correlation and length 

of run time, as we vary n and k. 

B. ALGORITHM PERFORMANCE AND TIMING GUIDANCE 

1. Correlation Performance 

We know from our experiments described in Section A that for a given k, the 

more levels there are, the easier it is for the algorithm to find a minimal ߩ௠௔௣. To find 2nd 

Order NOLH designs that meet the minimum ߩ௠௔௣ threshold of 0.05, we ran the 

algorithm with a different number of levels for a given k. Figure 24 shows the results of 

20 algorithm replications for designs with k ranging from 7 to 12, each with their own  
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range of levels. Because of the algorithm’s stochastic nature, it is necessary to perform 

several replications for each input parameter setting and select the design with the 

minimum ߩ௠௔௣. 

 

 

Figure 24. Correlation performance box plots versus the number of levels for factors 
7–12. The horizontal line donates the 0.05 threshold that defines a NOLH. The x-axis is 

not to scale for all charts. 

The 0.05 ߩ௠௔௣ threshold is an arbitrary number that defines an NOLH 

(Hernandez, 2008). We believe that a design with a ߩ௠௔௣ = 0.065 would provide nearly 

as meaningful insights as a design with a ߩ௠௔௣ ൑ 0.05. Therefore, depending on the 
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experimental conditions, the analyst may prefer a design with a much lower number of 

experiments, n, if they are willing to have a ߩ௠௔௣ slightly above the 0.05 threshold. 

To understand how n and k impact the correlation algorithm output, we ran an 

experimental design with 2 factors (n and k) and 400 design points, with 16 replications, 

for a total of 6,400 runs; k varied from 3 to 12 and n varied from 22 to 820. The 

experiment was performed on two computer clusters from the Department of Defense 

(DoD) High-Performance Computing Modernization Program at the Navy DoD 

Supercomputing Resource Center (DSRC), Stennis Space Center and the U.S. Air Force 

Research Laboratory DSRC, Wright-Patterson Air Force Base. Figure 25 shows a 

prediction profiler of a third-order meta-model with an interaction plot. Additionally, the 

bottom of the figure shows a graph of the minimum correlations from each replication 

versus the number of levels for factors 3–12. 
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Figure 25. Prediction profiler and interaction plot from a third-order meta-model. The 
graph at the bottom shows the minimum correlation from each replication versus the 

number of levels for factors 3–12. 

We can see from the prediction profiler and the minimum correlation graph that 

there is a point of diminishing returns with respect to the number of levels; as we increase 

the number of levels, the correlation flattens to a point where adding more levels does not 
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significantly improve the ߩ௠௔௣. The interaction plot tells us that if there are enough 

levels, we can obtain a ߩ௠௔௣ 	൑ 0.05 for any number of columns (up to 12). Additionally, 

for a low number of levels, the ߩ௠௔௣ increases significantly as the number of columns 

increase. The interpretations we obtained from the experiment confirmed what we expect 

to happen with changes in n and k. We now have a better quantitative understanding of 

how increases in n and k impact ߩ௠௔௣. 

2. Algorithm Timing 

GAs can take a while to solve. The algorithm’s time depends highly on n and k, as 

well as the input parameters. We implemented the algorithm using JavaTM 2 on a 2.8 

Gigahertz (GHz) Intel Core i7 processor, with 8 Gigabyte (GB) of Random Access 

Memory (RAM). Using the input parameter settings listed in Table 8, we found three- 

and four-factor designs within an hour. Designs with 5–8 factors are solved in fewer than 

24 hours. The designs for 9–12 factors took 1–3 days to complete. To better understand 

the algorithm’s timing, we leveraged a computer cluster to run multiple replications of 

different combinations of n and k. Figure 26 shows the number of hours to complete the 

algorithm versus the number of levels for factors 7–12. These runs were performed using 

the Naval Postgraduate School’s Hamming high-performance computer cluster. 

Hamming is a hybrid computer containing 8-core, 48-core, and 64-core nodes of 

Advanced Micro Devices (AMDs) Computer Processing Units (CPUs), with 2,112 CPU 

cores. The various core processors run between 2.2 and 2.3 GHz. 
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Figure 26. Algorithm timing box plots in hours versus the number of levels for 
factors 7–12. 

Figure 26 reveals that the time increases significantly as the number of columns 

increase; this is primarily due to the increase in the number of pairwise correlations that 

the algorithm must perform as the regression matrix, Z, increases. Additionally, we see 

that the variability in hours increases as the columns increase. 

C. SUMMARY 

This chapter reviewed the algorithm diagnostics in order to recommend input 

parameter setting, as well as provide guidance in regards to the performance of the 

algorithm for different values of n and k. The input parameter settings recommended in 

this chapter do not guarantee that the algorithm will perform better than a different set of 

setting. Because the algorithm is highly stochastic, there will be a lot of variance in the 

output. If the user can afford to wait a long time, increasing the numTrials parameter may 

improve the ߩ௠௔௣ by performing additional exploration trials. Additionally, the more 
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replications performed, the more opportunities the algorithm has at starting with a 

different initial column and initial population of candidate columns. Because the 

algorithm’s performance is contingent on these initial conditions, replicating the 

algorithm multiple times will increase the chance of finding a design with a  

minimal ߩ௠௔௣. 
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V. CONTINUOUS FACTOR EMPIRICAL DESIGN 
COMPARISONS 

Chapter V compares our new 2nd Order NOLH continuous designs with the Face 

Centered Composite Design (FCCD), BBH, D-Optimal, I-Optimal, and the following 

four space-filling designs:  LHS, Sphere Packing (Sphere Pack), Maximum Entropy 

(Max Entropy), and Uniform (see Chapter II for description of these designs). We used 

JMPTM 9.0 software to create each of the alternative designs for our comparison. In 

addition, we performed a Monte Carlo simulation experiment to test the accuracy of each 

design’s response prediction and meta-model coefficient estimation. 

A. DESIGN COMPARISONS 

In order to make a valid comparison, each design has 4 factors and 25 design 

points, and each factor’s range is scaled from –1 to 1. Excluding the FCCD and the BBH 

designs, JMPTM 9.0 software uses a stochastic algorithm to create the designs and as a 

result, each design has a different ߩ௠௔௣. We instantiated the algorithm 500 times for the 

Sphere Pack, Uniform, and LHS designs and 30 times for the D-Optimal, I-Optimal, and 

Max Entropy designs. Figure 27 shows the distribution of each design’s ߩ௠௔௣ for the 

second-order regression matrix; clearly, there is a wide variety of ߩ௠௔௣ results. For our 

comparisons, we selected the design with the lowest ߩ௠௔௣ for each of the seven 

stochastic JMPTM 9.0 design types. 
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Figure 27. ߩ௠௔௣	distribution of stochastically generated designs from the  
JMPTM 9.0 software. 

Figure 28 shows a color correlation plot indicating that the 2nd Order NOLH has 

the lowest correlation throughout all terms. The other designs may fit accurate  

meta-models, but that may be due to chance if the terms in the true model coincide with 

regression matrix columns that have low correlation. The 2nd Order NOLH has a ߩ௠௔௣ of 

0.032 and, therefore, nearly guarantees that no term in the second-order model is 

confounded with another term. 
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Figure 28. Color correlation plots. Darker-shaded colors indicate higher correlations 
(black represents a correlation of 1.0 and white represents a correlation of 0.0). Each plot 

shows designs with 4 factors and 25 design points for all second-order terms. 

Figure 29 provides a visual perspective of each design’s space-filling 

characteristic. The FCCD, BBH, I-Optimal, and D-Optimal designs fit second-order 

models very well by sampling at the corners, faces, and center of the design space. They 

cannot fit higher-order meta-models, however, because their third, fourth, or higher-order 

regression matrices have columns that are linearly dependent. Space-filling designs 

 



 68

provide information about all portions of the design space by sampling throughout  

the region, which makes them well suited to fit a variety of models (Santner  

et al., 2010). 

 

Figure 29. Design scatter plots. The chart shows the designs’ two-dimensional 
projections of the 4-factor, 25-point design space. The FCCD, BBH,  

D-Optimal, and I-Optimal designs have points overlaid on top of each other because they 
only sample at the corners, faces, and center. 
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Figure 30 shows a plot of the ܮܯଶ metric versus the ߩ௠௔௣ for each of the nine 

designs. The 2nd Order NOLH’s ߩ௠௔௣ dominates all other designs for the second-order 

regression matrix. In terms of space-filling, the 2nd Order NOLH has an ܮܯଶ very close 

to the LHS and Uniform design. 

 

Figure 30. The ܮܯଶ versus ߩ௠௔௣ for each of the nine state-of-the-art designs. 

B. MONTE CARLO SIMULATION EXPERIMENT 

We performed an empirical experiment to test the prediction and estimated 

coefficient accuracy for a select number of designs against several known true-response, 

surface models. We tested each of the following designs:  2nd Order NOLH, FCCD,  

D-Optimal, Uniform, Sphere Pack, and LHS. The experiment’s objective is to determine 
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if any of the six designs performs well across several higher-order response surfaces. We 

selected six response surfaces to represent a rich variety of complex models that are 

characteristic of what experimenters may encounter during a simulation experiment. The 

six polynomial models and polynomial models with step functions, listed in Table 9, 

represent six different simulation output responses that have a unique model form. 

Table 9.   Six known true-response, surface model forms. The model form identifiers 
are used in Figures 31 through 34. 

True Model Form 
Model 
Form 

Identifier 
True Model 

Second-order 
model 

F2 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ 3ሺݔଵሻଶ ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ
6ሺݔସሻଶ ൅ ε  

Third-order model F3 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ 6ሺݔସሻଶ െ
ସݔଷݔଶݔ12 ൅ 9ሺݔଶሻଷ ൅   ߝ

Fourth-order model F4 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ 6ሺݔସሻଶ െ
ସݔଷݔଶݔ12 ൅ 9ሺݔଶሻଷ െ ସݔଷݔଶݔଵݔ10 ൅ 5ሺݔଵሻସ ൅ ε  

Second-order 
model with step 
function 

F2Step 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ 3ሺݔଵሻଶ ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ
6ሺݔସሻଶ ൅ ଵݔሺܫ20 ൐ 0.7ሻ ൅ ε  

Third-order model 
with step function 

F3Step 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ 6ሺݔସሻଶ െ
ସݔଷݔଶݔ12 ൅ 9ሺݔଶሻଷ ൅ ଵݔሺܫ20 ൐ 0.7ሻ ൅ ε  

Fourth-order model 
with step function 

F4Step 
ሻݔሺݕ ൌ 10 ൅ ଶݔ10 െ ଷݔ4 ൅ ସݔ2 ൅ ସݔଵݔ4 ൅ ସݔଷݔ10 െ 6ሺݔସሻଶ െ
ସݔଷݔଶݔ12 ൅ 9ሺݔଶሻଷ െ ସݔଷݔଶݔଵݔ10 ൅ 5ሺݔଵሻସ ൅ ଵݔሺܫ20 ൐
0.7ሻ ൅   ߝ

 

The ࢿ is a vector of 25 independent and identically distributed, standard, normal, 

random variables. We developed a MATLABTM script that performs a stepwise 

regression with each design matrix and a vector of responses from the functions listed in 

Table 9. The MATLABTM algorithm starts with an initial model that only includes the 

intercept. Then, one step at a time, we add the term not in the model that has the smallest 

p-value less than the entrance tolerance, until there are no more significant terms to add. 

In addition, after a term is added, we remove the term, if any, that has the largest p-value 

greater than an exit tolerance. The p-values to enter and exit the model were both set to 

0.05. To calculate the prediction accuracy, we created two uniform grids of 11ସ	points 
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that range from –1 to 1, one grid for the true model and one grid for the predicted model 

(Goel, Tushar, Raphael, Haftka, Shyy, & Watson, 2008). The prediction accuracy ሺ ௔ܲ௖௖ሻ 

is the average of the squared difference between the true and predicted values for all 

14,641 points in the ૚૚૝	space: 

ࢉࢉࢇࡼ ൌ ∑ ൫࢚࢛࢟࢘ࢋ െ ࢊ࢏࢘ࢍ൯࢚ࢉ࢏ࢊࢋ࢘࢖࢟
૛
/ሺ૚૚૝ሻ,   (10) 

where ݕ௧௥௨௘	is the known true response surface value and ݕ௣௥௘ௗ௜௖௧	is the estimate from the 

predicted design’s fitted meta-model. A small	 ௔ܲ௖௖ indicates a better prediction. 

In order to measure the accuracy of the coefficient estimates, we calculate the 

Euclidian distance ሺܧ஽ሻ	between the estimated meta-model coefficient vector, ߚ௘௦௧௜௠௔௧௘, 

and the true model coefficient vector, ߚ௧௥௨௘, using the following expression: 

ࡰࡱ ൌ ඥሺࢋ࢛࢚࢘ࢼ െ ࢋ࢛࢚࢘ࢼሺࢀሻࢋ࢚ࢇ࢓࢏࢚࢙ࢋࢼ െ  ሻ.   (11)ࢋ࢚ࢇ࢓࢏࢚࢙ࢋࢼ

The smaller the ࡰࡱ, the closer the design’s coefficient estimates are to the true model 

coefficients. A flexible design is one that consistently has a low ࢉࢉࢇࡼ and ࡰࡱ	across a 

variety of high-order true models. 

For each design and each true model we performed 10,000 replication 

experiments of fitting a model. Each replication generated its own error vector for the six 

true model responses. Given that, in practice, we never know the true model, our 

experiment fits each of the six true models using stepwise regression for up to a second, 

third, and fourth order model. The third- and fourth-order fits only apply to the space-

filling designs because the other designs cannot estimate these effects. In cases where 

there was a step function, we included the first split from a partition tree as an additional 

column (indicator variable) in the design matrix for the stepwise regression. This 

additional column indicates which factor and factor value best splits the data into two 

groups. In practice, the analyst will only add the indicator variable to the regression 

matrix if there is a split that explains a lot of the data variation. Because we are using a 

MATLABTM script to fit 10,000 meta-models, we force the indicator variable that 

represents the first split from a partition tree into the regression matrix for all true models 

with a step function. 
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Figures 31 through 34 summarize the Monte Carlo simulation results for ௔ܲ௖௖ and 

 ஽ using box plots, mean lines, and grand means. In each figure, the box contains theܧ

25th-75th percentiles, the horizontal line within the box is the median, the horizontal line 

that crosses the box is the mean, and the horizontal line that crosses the entire chart is the 

grand mean; the outliers are not shown for clarity purposes. We use the grand mean 

across all true models tested to assess a design’s flexibility. A design with a low grand 

mean is considered a robust design. Because the FCCD and D-Optimal designs cannot fit 

third- and fourth-order models, we separated the comparisons among the designs that can 

only fit a second-order regression matrix from the designs that can fit all three regression 

matrices. 

In Figure 31, we see that the FCCD and D-Optimal design have a considerably 

higher grand mean ௔ܲ௖௖ than the 2nd Order NOLH. This difference is primarily due to the 

FCCD and D-Optimal design’s inability to detect step functions because they only 

sample at the corners, faces, and center of the design space. 

 

 

Figure 31. Monte Carlo ௔ܲ௖௖	simulation results for the FCCD and D-Optimal design. 
The charts show the ௔ܲ௖௖ box plots, mean lines, and grand means for 10,000 experiment 
replications. Outliers are not shown. The x-axis shows each model form with the number 

of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form 
Identifiers. Also shown is the grand mean summary table. 

The space-filling designs in Figure 32 generally predict the response well across 

all true model forms without step functions, due to the multiple lenses they provide by  
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sampling throughout the design space. The uniform design had problems fitting the  

third-order model with step function, while the Sphere Pack design had problems fitting 

all models with step functions. 

 

Figure 32. Monte Carlo ௔ܲ௖௖	simulation results for the space-filling designs. The 
charts show the ௔ܲ௖௖ box plots, mean lines, and grand means for 10,000 experiment 

replications. Outliers are not shown. The x-axis shows each model form with the number 
of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form 

Identifiers. Also shown is the grand mean summary table. 

The ܧ஽ calculation only applies to design matrices that include the terms for each 

coefficient in the true model; therefore, the FCCD and D-Optimal designs only have ED 

results for the second-order models. Figure 33 indicates that the FCCD and D-Optimal 

design ܧ஽ outperform the 2nd Order NOLH’s ED for the true model without step 

functions, but not by a substantial amount. We would expect the traditional and optimal 

designs to outperform ours because they are the leading design choices when we know 

the true model is second-order. When we include the true models with step functions, the  

2nd Order NOLH has a lower grand mean due to its space-filling characteristics; this 

illustrates the robustness of the 2nd Order NOLH. 
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Figure 33. Monte Carlo ܧ஽	simulation results for the FCCD and D-Optimal design. 
The charts show the ܧ஽ box plots, mean lines, and grand means for 10,000 experiment 

replications. Outliers are not shown. The x-axis shows each model form with the number 
of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form 

Identifiers. Also shown is the grand mean summary table. 

The ED	grand mean summary table in Figure 34 indicates that the 2nd Order 

NOLH outperforms the other space-filling designs, but only by a relatively small margin. 

 

 

Figure 34. Monte Carlo ܧ஽	simulation results for the space-filling designs. The charts 
show the ܧ஽ box plots, mean lines, and grand means for 10,000 experiment replications. 
Outliers are not shown. The x-axis shows each model form with the number of possible 
meta-model regression matrix terms. Refer to Table 1 for the Model Form Identifiers.  
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Figure 35 compares the computer-generated optimal and space-filling designs 

created in JMPTM 9.0 with the 2nd Order NOLH for up to 12 factors with the same 

number of design points. We calculated each design’s ߩ௠௔௣ using a matrix that includes 

all second-order terms. JMPTM 9.0 uses different random seeds for each of the optimal 

and space-filling design creations and, therefore, has a different ߩ௠௔௣ or ܮܯଶ results for 

each generation. Thus, the designs shown are only a single instantiation that may not 

have the best ߩ௠௔௣ or ܮܯଶ. 

 

 

Figure 35. Design comparisons of the 2nd order ߩ௠௔௣ and ܮܯଶ for all designs with 
the same number of design points (DPs). The 10-, 11-, and 12-factor uniform designs are 
not listed, due to the time required to construct them. The ܮܯଶ charts are split into two 

because of the differences in scale among the designs. 

We can see from Figure 35 that the 2nd Order NOLH designs have the lowest 

 ଶ performance. This makesܮܯ ௠௔௣, with excellent space-filling properties based on itsߩ

the 2nd Order NOLH design very competitive against the other five design types; the 12 

2nd Order NOLH designs are available for download at http://harvest.nps.edu. 
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C. SUMMARY 

The 2nd Order NOLH has the lowest grand mean across all six models tested for 

both the ௔ܲ௖௖ and ܧ஽. These results indicate that our design is robust for the selected true 

model forms and demonstrates its flexibility. Because the FCCD and D-Optimal designs 

cannot detect step functions and require strong a priori assumptions about the true model, 

they are considered the most inflexible designs among the six we tested. These results do 

not prove empirically that the 2nd Order NOLH will outperform the other designs across 

all types of higher-order models, as we cannot test for every possible true model that may 

exist. Despite this, because we will never know for certain which terms will be in the true 

model, the 2nd Order NOLH design guarantees that a second-order term’s statistical 

significance is not confounded with another term. In addition, because our design has 

excellent space-filling properties, it is more able to detect model bias and the presence of 

step functions than classic second-order models. 
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VI. DISCRETE AND CATEGORICAL DESIGNS 

Simulation models often have a mix of continuous, discrete, and/or categorical 

factors. The 2nd Order NOLH designs discussed in Chapters II-V are for continuous 

factors only. This chapter introduces the Discrete 2nd Order Nearly Orthogonal/Balanced 

design that minimizes the ߩ௠௔௣ among all second-order terms for discrete factors. We 

can augment these designs with categorical factors that minimize the correlations 

between the first-order terms only. When combined with the 2nd Order NOLH, these 

continuous, discrete, and categorical designs provide the simulation experimenter an 

infinite amount of factor combinations of different types and levels to meet their needs in 

a variety of circumstances. 

A. DISCRETE AND CATEGORICAL FACTOR CONSIDERATIONS 

Discrete factors are numeric and have a number of levels specified; we designate 

the number of levels as a. For example, a simulation experiment may use a discrete factor 

with three levels, where a = 3, to examine the benefits of using 0, 1, or 2 aircraft carriers; 

a continuous factor would not be appropriate because simulating 1.5 aircraft carriers has 

no meaning. Categorical factors are qualitative and are not considered numeric, with a 

well-defined scale of measurement. Like the discrete factors, the categorical factor has a 

set number of levels (a). For example, if a simulation is exploring the effectiveness of 

four different weapon systems, there would be one level for each weapon type, where a = 

4. In order to properly represent each weapon type, the regression matrix must include 

columns that represent indicator or dummy variables for each category. Generally, a 

categorical factor with a levels has a – 1 dummy variables. Each level is coded with a 

value of 1, 0, or –1. There are two common conventions that statistical packages use to 

represent dummy variables:  the 0/1 and the 1/0/–1 conventions. Table 10 shows the two 

conventions for a four-level categorical factor. 
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Table 10.   Two conventions for a set of dummy variable columns representing a 
four-level categorical factor. 

Categorical 
Factor 
Levels 

Dummy Variables 
0/1 Convention  1/0/–1 Convention 

Level 1 Level 2 Level 3  Level 1 Level 2 Level 3 
1 1 0 0  1 0 0 
2 0 1 0  0 1 0 
3 0 0 1  0 0 1 
4 0 0 0  –1 –1 –1 

 

For both conventions, levels 1 through 3 have the number 1 under the dummy 

column that represents that level. The 4th level has either a set of 0s or –1s across all 

three dummy columns. The 0/1 convention defines a regression model baseline as the 

level with 0s across the rows, while the 1/0/–1 convention ensures that the intercept of a 

regression meta-model represents the overall mean response. Representing the ath level 

in this way reduces the amount of columns needed in the regression matrix and ensures 

that the matrix achieves full rank, unless there is collinearity among the columns (SAS 

Institute, 2008). 

Collinearity among the dummy variables could pose a problem when we analyze 

the effects of different categories. To demonstrate, Table 11 shows two categorical four-

level factors with their dummy variables, where ܺ௜ is the ith categorical factor and 

ܺ௜݆ݕ݉݉ݑܦ is the dummy variable for the jth level of the ith categorical factor. The 

correlation between ܺଵ and ܺଶ is 0, while the correlation between ܺଵ3ݕ݉݉ݑܦ and 

ܺଶ2ݕ݉݉ݑܦ is –1. Minimizing the correlation between categorical factor columns alone 

may result in a confounding problem between the categories. We must minimize the 

correlation between the dummy variables of different categories in order to properly 

determine which category has an impact on the response. 
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Table 11.   Dummy variable correlation example. 

Categorical 
Factors 

 
Dummy Variables 

૛࢟࢓࢓࢛ࡰ૚ࢄ ૚࢟࢓࢓࢛ࡰ૚ࢄ  ૛ࢄ ૚ࢄ ૜࢟࢓࢓࢛ࡰ૚ࢄ ૚࢟࢓࢓࢛ࡰ૛ࢄ ૜࢟࢓࢓࢛ࡰ૛ࢄ ૛࢟࢓࢓࢛ࡰ૛ࢄ
1 3  1 0 0 0 0 1 
2 1  0 1 0 1 0 0 
3 4  0 0 1 –1 –1 –1 
4 2  –1 –1 –1 0 1 0 

 

The correlations between dummy variables within the same categorical factor 

have no meaning because only one of these dummy variables will be active in a 

regression meta-model at one time. For example, if a categorical factor has three levels, 

representing three different gun types, only one of these gun types would be active during 

a simulation at one time. Therefore, we are not concerned with the correlation between 

the dummy variable that represents gun type 1 and the dummy variable that represents 

gun type 2. While observing the correlation matrix that includes a categorical factor’s 

dummy variables, we ignore the correlations between dummy variables within the same 

categorical factor. 

B. EXPERIMENTAL DESIGNS FOR DESCRETE AND CATEGORICAL 
FACTORS 

In practice, the simulation experimenter traditionally has the following three 

options when dealing with discrete or categorical factors: 

 Utilize a full-factorial, orthogonal design. When continuous factors are 
present, the experimenter can cross a design with continuous factors and a 
full-factorial design with discrete and or categorical factors. This option 
becomes extremely impractical when there are a large number of factors 
and levels. 

 Utilize a two-level factorial or fractional factorial design. This option 
reduces the amount of experiments needed, but because the primary 
objective of a simulation is often to explore the benefits of increasing 
resources, the two-level design becomes infeasible because we do not 
know what is happening between the two levels. 

 Scale and round the columns of a 1st Order NOLH. We can create a 
discrete factor by scaling the 1st Order NOLH from 1 to the number of 
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levels needed and rounding to the nearest integer value. Unfortunately, 
rounding can have a severe impact on the design’s near orthogonality 
(Sanchez & Wan, 2009).  Hernandez (2008) developed a formalized 
stacking methodology that alleviates the impact of rounding on the 
correlation among the first-order terms, but significantly increases the 
number of design points of the original design. 

To demonstrate the impact of rounding, Figure 36 compares the correlation 

matrices between a 1st Order OLH design with 7 factors and 17 design points before and 

after rounding. Prior to rounding, the design in Figure 36 is orthogonal among the first-

order terms; the second-order terms, however, have significant correlation problems 

 When the factor levels are scaled to a smaller range and rounded to .(௠௔௣ = 0.98ߩ)

integer values, the absolute pairwise correlations among the first-order terms increases 

significantly, from 0.0 to 0.29, while the average among all second-order terms increases 

by 0.027. 
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Figure 36. Correlation matrices for a 1st Order NOLH before and after rounding. Red 
indicates an absolute pairwise correlation greater than 0.05 and the green indicates 

correlations below 0.05. Embedded within each matrix is the design table indicating the 
type of factors and number of levels. 
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The three discrete and categorical experimental design options mentioned above 

have significant limitations in their use. The number of experiments required to perform a 

full-factorial design quickly becomes infeasible for a moderate number of factors; the 

two-level factorial or fractional factorial designs do not reveal what happens in between 

the two extreme levels; finally, scaling and rounding an NOLH design can have a 

significant impact on the correlations among the first- and second-order terms. The NO/B 

designs developed by Vieira, Jr. et al. (2011) address these limitations with efficient 

designs. The next section describes the NO/B designs and introduces further 

contributions to the field of discrete experimental designs. 

C. FIRST- AND SECOND-ORDER NEARLY ORTHOGONAL/BALANCED 
DESIGNS 

A significant breakthrough in the space-filling domain was when Vieira, Jr. et al. 

(2011) created a mixed integer program to find NO/B designs with a ߩ௠௔௣ less than 0.05 

among the first-order terms for discrete and categorical factors, while maintaining 

balance. The concept of balance ensures that each factor level has an equal amount of 

experiments within a design. A design that is not balanced has too many experiments 

performed at one level and not enough at another level. A balanced design is one where 

the number of discrete or categorical levels is spread across the design space as much as 

possible. Ideally, a design is considered balanced if the number of design points set to 

each level is equal. For example, a discrete factor with three levels and nine design points 

is balanced when there are three design points set to each of the three levels. In order to 

explain the concept of nearly balanced we first must define the parameters listed in Table 

12. 
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Table 12.   Balance Parameters. 

Parameter Definition 
n Number of design points 
c Column index number 
߱௖௔ The number of design points set to level a in column c 
߶௖ The number of levels in column c 
 ௖ The ideal number of design points for each level in column cߣ
 The percent of allowed imbalance ߙ

 

A design is considered nearly balanced if the number of design points within each 

factor level differs from the ideal by no more than ߙ, where ߙ is the percent of allowed 

imbalance such that ሺ1 െ ௖ߣሻߙ ൑ ߱௖௔ ൑ ሺ1 ൅ 	௖, where 0ߣሻߙ ൑ 	ߙ ൏ 1 and ߣ௖ ൌ 	݊ ߶௖ൗ  

(Vieira, Jr. et al., 2011). Ideal balance means that the number of design points set to each 

level is equal and 0 = ߙ. Balance is important because without it, we cannot handle 

situations where there is unequal variance; a situation often experienced in complex 

simulations (Bathke, 2004). By relaxing the ideal balance slightly, normally where 

	ߙ ൑ 20%, Vieira, Jr. was able to find efficient nearly orthogonal designs for a mix of 

continuous, discrete, and categorical factors. 

The NO/B designs developed by Vieira, Jr. address the need for efficient discrete 

and categorical designs, but still have imitations; specifically, they only minimize the 

 ௠௔௣ for first-order, linear terms. The linear program formulation Vieira, Jr. developed toߩ

create NO/B designs cannot account for the high-order quadratic and two-way interaction 

terms within a second-order model. The genetic algorithm proposed in this dissertation 

has the ability to create discrete NO/B designs that minimize the ߩ௠௔௣ for a full second-

order model. Instead of creating continuous factors, the algorithm creates discrete factor 

columns and performs the swap operation only (see Steps 1–9 in  

Chapter III), but does not perform the jiggle operation; jiggling or perturbing a design 

point value within a discrete factor would change it to a continuous factor. Generally, a 

2nd Order discrete NO/B design requires more design points (n) than the continuous  

2nd Order NOLH design. 
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In addition to creating continuous and discrete factor columns, the algorithm can 

augment the 2nd Order NOLH and discrete NO/B designs with categorical factors that 

minimize the ߩ௠௔௣ for first-order, linear terms only. For each categorical factor, the 

algorithm creates the required number of dummy variables using the 0/1 or the 0/1/–1 

convention. These dummy variables are added to the regression matrix, Z, when the 

algorithm calculates the categorical factor’s fitness. 

Table 13 shows an example of a design generated by the genetic algorithm with 

three discrete factors, each with 6, 9, and 12 levels; a continuous factor; and two 

categorical factors, one with three levels and the other with four levels, while using the 

0/1 dummy variable convention. 
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Table 13.   Design with continuous, discrete, and categorical factors. The design uses 
the 0/1 dummy variable convention. 

 

The design in Table 13 has a six-level discrete factor, ݔଵ, with a percent of 

allowed imbalance, 0.14 = ߙ; for all other factors, 0.0 = ߙ. The number of design points, 

n determines the balance of a design; for example, if n were any multiple of six the 

discrete factor with six levels would be balanced. More than likely, a design with 

multiple discrete factors will have a different number of levels, so setting n to a multiple 

Type Continuous

Levels 6 9 12 45

Run X1 X2 X3 X4 X5 Dummy1 X5 Dummy2 X6 Dummy1 X6 Dummy2 X6 Dummy3
1 6 2 9 44 0 0 0 0 0

2 6 6 6 26 1 0 0 0 1

3 6 9 2 39 0 1 0 0 0

4 6 6 9 8 0 1 0 0 0

5 3 3 7 22 0 1 0 0 0

6 5 1 1 24 0 1 1 0 0

7 4 3 3 1 1 0 1 0 0

8 2 1 11 33 1 0 0 0 1

9 2 5 12 18 0 1 1 0 0

10 1 8 8 41 0 0 1 0 0

11 2 2 6 14 0 0 0 0 0

12 1 5 1 15 1 0 0 0 0

13 3 6 2 40 0 0 0 1 0

14 1 6 7 6 0 1 0 1 0

15 2 5 5 21 0 1 0 0 1

16 5 1 12 3 0 0 0 1 0

17 1 2 8 11 1 0 0 0 0

18 1 1 3 42 0 0 0 1 0

19 4 4 6 16 0 0 1 0 0

20 4 8 11 45 0 0 0 0 1

21 2 4 3 38 1 0 0 0 1

22 5 4 5 43 0 1 1 0 0

23 3 6 4 35 0 1 0 1 0

24 3 4 11 29 0 1 0 1 0

25 5 2 9 25 1 0 0 1 0

26 1 4 12 37 0 1 1 0 0

27 4 9 10 19 0 1 0 0 1

28 3 9 6 30 1 0 1 0 0

29 5 8 7 5 1 0 0 1 0

30 1 9 2 17 1 0 1 0 0

31 1 8 8 32 0 0 0 0 0

32 6 8 12 31 1 0 0 0 0

33 6 3 6 12 0 0 1 0 0

34 4 9 4 13 0 0 0 1 0

35 4 5 1 34 0 0 0 0 1

36 5 4 10 28 1 0 1 0 0

37 3 7 1 4 0 0 0 0 1

38 2 5 10 2 0 0 0 0 1

39 6 7 3 10 0 1 0 0 1

40 4 8 5 27 1 0 0 1 0

41 5 6 11 20 0 0 0 0 1

42 2 9 11 7 0 0 1 0 0

43 6 2 2 23 0 0 1 0 0

44 4 1 8 36 1 0 0 0 1

45 2 1 4 9 0 1 0 0 1

Discrete Categorical

3 4
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of one of the discrete factor levels may not guarantee a fully balanced design. In general, 

increasing the design’s n will improve a design’s balance; therefore, the genetic 

algorithm can create a design with a larger n if the analyst desired a design that is 

completely balanced, where 0.0 = ߙ for all factors. 

Figure 37 shows the 2nd order correlation matrix for the design in Table 13, with 

the continuous and discrete factors only, and the 1st order correlation matrix for the entire 

design, to include the categorical factors. In addition, the two-dimensional projections 

among the six factors in Figure 37 reveal the design’s space-filling characteristics. Within 

the figure, the correlations between dummy variables within the same categorical factor 

are grayed out because we are not concerned with them for the reasons mentioned in 

Section A. 
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Figure 37. Correlation matrices for the second-order terms among the continuous and 
discrete factors, and the first-order terms among the continuous, discrete, and categorical 

factors. The two-dimensional projections at the bottom of the figure indicate a good 
space-filling property. 

For the six design factors listed in Table 13, the only way to guarantee that no 

second-order term is confounded with another term is to use a full-factorial design; if we 
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excluded the categorical factors, this would require 648 design points for the discrete 

factors alone (6 × 9 × 12 = 648). If we crossed the continuous factor with these discrete 

factors, the design would require 29,160 design points (648 × 45 = 29,160). If we 

included the categorical factors in the full-factorial design and crossed it with the 

continuous factor, there would be 349,920 design points required. Although a full 

factorial is orthogonal for the second-order model and is perfectly balanced, the large 

number of design points needed to perform the experiments is infeasible. The design in 

Table 13 only has 45 design points and is nearly orthogonal and nearly balanced. By 

slightly relaxing the minimal ߩ௠௔௣ and balance constraint, the algorithm was able to 

create a design with significantly less design points. 

D. SUMMARY 

The discrete 2nd Order NO/B designs allow the simulation analyst to properly 

analyze high-order quadratics and two-way interactions terms for discrete factors, with a 

reasonable amount of experiments. By combining the discrete 2nd Order NO/B designs 

and the 2nd Order NOLH designs, augmented with categorical 1st Order NO/B factors, the 

simulation analyst can now better identify the significant factors and understand the  

high-order effects for a mix of continuous, discrete, and categorical factors without 

having to use a full-factorial design. Because there is an infinite amount of discrete and 

categorical factor levels, the simulation community now has the ability to build custom 

second-order designs that are specifically suited for a given simulation study. 
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VII. MODEL-BASED SYSTEMS ENGINEERING APPLICATION 

This chapter demonstrates the utility of the 2nd Order NOLH and NO/B designs 

by applying them to a Model-Based Systems Engineering (MBSE) application. After 

introducing the concept of MBSE, we review a concept that leverages computer 

simulation models during the early design of a system. We then apply this MBSE design 

concept to an Office of Naval Research (ONR) ship design problem to show how 

accurate meta-modeling contributes to the understanding of a complicated system  

design problem. 

A. MODEL-BASED SYSTEMS ENGINEERING INTRODUCTION 

According to the International Council of Systems Engineering (INCOSE), 

MBSE is a methodology characterized by a collection of processes, methods, and tools 

used to support systems engineering design in a “model-based” context (Friedenthal, 

Sanford, Moore, & Steiner, 2011). Traditionally, the systems design process was 

considered document-based, with a large emphasis on reports generated throughout the 

design cycle. The MBSE concept emphasizes a collection of continually changing models 

that represent the system at different stages of the design process. These models can be in 

the form of static diagrams, cost spreadsheets, physical prototypes, or several computer 

simulation models; each model represents a different aspect or view of the system. 

Ideally, all models should be connected together such that each time the system changes 

its configuration, the collection of models would update simultaneously to inform 

changes in each aspect they represent. The discipline of MBSE is evolving rapidly and 

will eventually mature into a more common state of systems engineering practice in the 

near future. 

The Aerospace Systems Design Laboratory (ASDL) at the Georgia Institute of 

Technology is considered a leading developer in design methods for complicated 

systems. In the spirit of MBSE, the ASDL developed a design method that leverages the 

Response Surface Methodology (RSM) originally introduced in the 1950s to optimize 

empirical models of continuous functions (Box & Draper, 1987). Their design concept, 
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called the Universal Trade-off Environment (UTE) creates numerous  

meta-models that act as surrogates to several simulations in order to explore the trade 

space (see Mavris & DeLaurentis, 1995; Maricq, Chase, Podsiadlik, & Vogt, 1999; 

Soban & Mavris, 2000; Baker & Mavris, 2001; Kirby, 2001; and Baker, Mavris, & 

Schrage, 2002). These meta-models approximate the underlying dependencies of the 

simulation output responses to the system design parameters within a specified region. 

The meta-models express the design parameter’s impact on the responses 

mathematically, with a polynomial expression. These meta-models allow the designer to 

investigate the trade-offs among the simulation output responses while changing the 

design parameter inputs. In order to gain insight into an unknown, complicated response 

behavior, the ASDL creates meta-models in an efficient manner by using traditional 

second-order designs (see Chapter II), otherwise known as RSM designs. The designs 

proposed in this dissertation contribute to accurate meta-model creation and can enhance 

the RSM method. In order to understand how the 2nd Order NOLH and NO/B designs 

contribute to RSM, we must first review its concept. 

In practice, RSM is performed as a sequential design approach using the 

following three steps: 

Step 1. Perform a screening experiment by using a two-level factorial or 
fractional factorial design to identify the significant few factors from the potential 
many. 

Step 2. Perform a second experiment on the significant factors found in Step 1 
using a second-order design (see Chapter II). These designs approximate a 
second-order meta-model by examining design points at the center of the 
experimental region. 

Step 3. Utilize steepest ascent optimization algorithms to find the  
best-performing solutions within the specified region of the response surface 
meta-model generated in Step 2. 

There are four critical limitations with the RSM steps described above. First, by 

using two-level fractional factorial designs during the screening experiments, the analyst 

may not identify a critical interaction that might exist among the large number of initial 

factors. Second, the number of significant factors that the traditional second-order 

designs can handle feasibly, while minimizing all first- and second-order correlations, is 

no more than eight factors. Third, these traditional second-order designs assume that the 
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response is a second-order surface and cannot fit a higher-order meta-model. Finally, 

because the traditional second-order designs only sample at the corners, edges, and 

center, they have limited space-filling properties that may not find the presence of 

thresholds or step functions and cannot identify model bias. 

The collection of 1st and 2nd Order NOLHs and discrete NO/B designs address all 

of the above-mentioned RSM limitations. The 1st order designs developed by Cioppa and 

Lucas (2007), Hernandez (2008), and Vieira, Jr. et al. (2011) can screen hundreds of 

factors while filling the interior of the experimental region to identify the significant few 

and their potential high-order effects; our algorithm can also create 1st order designs for a 

large number of screening factors. The 2nd order designs introduced in this dissertation 

can confirm the effects of the significant terms identified in Step 1. The  

2nd Order NOLH and discrete NO/B designs result in better, higher-order, meta-model 

approximations. These more accurate meta-models will lead to better solutions, while 

using the steepest ascent optimization algorithms. 

B. MODEL-BASED SYSTEMS ENGINEERING DESIGN CONCEPT 

The ONR has an initiative to demonstrate a methodology that leverages 

simulation models early in the architectural design of a ship. The traditional naval 

architect paradigm is to design the weapon systems, radars, or any organic ship asset 

around the hull vessel platform instead of the platform being designed around the assets. 

As a result, the intended ship’s operational effectiveness becomes dependent on the 

design of the platform, rather than the organic assets of the ship. Simulation models allow 

ship designers to reverse the traditional paradigm by linking a ship’s operational 

effectiveness to physical ship characteristics early in the life cycle. By analyzing 

simulations that incorporate physical design input parameters we can identify what 

physical design characteristics will result in better operational effectiveness. These 

physical design parameters are what define the ship alternative configurations. Trade 

decisions among physical characteristics can then be based on operational effectiveness, 

rather than on the physical constraints of the system. 
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To demonstrate this methodology, ONR sponsored the Department of Systems 

Engineering at NPS to supervise three Naval officer students to apply the proposed 

MBSE design concept. The design concept utilizes computer simulations to model an 

Off-Shore Patrol Vessel (OPV) within different operational scenarios. In addition, the 

concept uses a ship synthesis model that dictates a feasible ship design for a given set of 

design parameters. The context of the design problem is to understand how different 

physical ship characteristics impact operational effectiveness. The MBSE design concept 

is similar to the ASDL UTE concept described earlier. Both design concepts utilize 

polynomial meta-model functions that act as simulation model surrogates in order to 

explore the trade space among several response outputs. Figure 38 illustrates the MBSE 

design concept proposed by the Department of Systems Engineering at NPS. 

 

 

Figure 38. MBSE design concept linking synthesis physical design parameters to 
operational effectiveness. 
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 The left side of Figure 38 shows the linkage between the real-world operational 

environment, the simulation models that are an abstraction of the real environment, and 

the meta-models that act as surrogates to the simulations. These operational meta-models 

describe the measures of effectiveness (MOEs) dependence on the physical design 

characteristics. The center of Figure 38 shows the physical design characteristics 

consisting of measures of performance (MOPs) and physical design parameters; the 

physical design parameters are the decision factors that define a ship configuration and 

are controlled by the ship designer. The MOPs are a function of the design parameters; 

for example, speed is a function of the type and number of engines. Above the physical 

design characteristics are the environmental and operational noise factors that the 

designers have no control over. The meta-model response, y is a vector of MOE  

results that are the simulation’s outputs. The design matrix, X, contains the simulation 

inputs composed of the physical design characteristic decision factors and the 

environmental/operational noise factors. 

 The right side of Figure 38 has the same construct as the left side, only instead of 

modeling the operational effectiveness, it models the ship configuration feasibility 

determined by the ship synthesis model. Performing a DOE to create the synthesis  

meta-models allow us to describe the synthesis model output’s dependence on the 

physical design parameter inputs. The meta-model response, y, is a vector of synthesis 

model outputs. The design matrix, X, contains the synthesis model inputs that define the 

ship configurations. The synthesis model outputs are design considerations that ensure a 

given ship configuration (defined by the design parameters) is feasible. For example, the 

designer can increase the radar detection rate by maximizing the radar range with a taller 

mast height, which will interfere with the ship’s stability (a synthesis model output). 

Understanding how the mast height impacts the radar detection rate, as well as the ship’s 

stability, is important to both the operational commanders and the ship designers; a mast 

height that is too tall may provide excellent radar detection rates, but may render the ship 

configuration infeasible due to the instability it creates. Using DOE to create the 

operational and synthesis meta-models in tandem provides the ship designers with a way 
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to explore the linkages between the operational MOEs and the design synthesis 

considerations, using mathematical functions. 

The center of Figure 38, labeled “Physical Ship Characteristics Factors,” shows 

some examples of the synthesis model inputs. These inputs may be different than the 

operational simulation inputs. For example, the speed of the OPV is an operational 

simulation input that must be mapped to the synthesis model as the type and number of 

engines. If an operational MOE requires a lot of speed, the ship designers can investigate 

how to obtain a higher rate of speed with a variety of engine types and engine numbers. 

Changes to the engine synthesis inputs may require changes to other synthesis inputs in 

order to ensure that the ship’s design considerations (or synthesis outputs) remain 

feasible. Additionally, these synthesis input changes may result in changes in the 

operational MOE performance. In order to visualize how changes in design parameters 

impact the operational MOEs and design synthesis considerations, the MBSE design 

concept uses contour profilers. 

At the bottom of Figure 38, labeled “Trade Space,” there are two contour 

profilers, one representing the operational space and the other the physical space. A 

contour profiler is a two-dimensional projection showing the relationships between two 

design parameters and a response from a polynomial, meta-model function. These 

projections allow the user to interactively explore how a response depends on two design 

parameters. The shaded areas represent constraint limits set by the user on each of the 

responses; as a result, the white area represents the feasible region. Within the operational 

space, a lower response limit may represent a threshold or minimum acceptable response 

the operational commanders’ desire. The limits within the physical space may be ship 

configuration feasibility constraints dictated by the ship synthesis model. The crosshairs 

within the contour profilers indicate the design parameter settings depicted along each 

axis. Visualizing the operational and physical contour profilers next to each other allows 

the user to explore different design parameter configurations, while ensuring that the ship 

remains feasible. As long as the crosshair remains within both the operational and 

physical white space (feasible region), we can find design parameter settings that will 

achieve the desired performance among multiple operational MOE responses. In addition, 
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the contour profilers allow the user to understand the trade-offs that exist between 

responses; by adjusting the desired constraint limit of the responses, we can explore ways 

to increase performance in one response, while decreasing performance in another. 

C. SHIP DESIGN APPLICATION 

The three operational scenarios evaluated in the ONR project were the Maritime 

Interdiction Operations scenario (Yoosiri, 2012), the Anti-Surface Warfare scenario 

(Mckeown, 2012), and the Search and Rescue scenario (Ashpari, 2012). Three master’s 

degree students from the Operations Research Department at NPS designed and built the 

simulation models used to demonstrate the MBSE design concept. Notional synthesis 

meta-models were used to demonstrate the linkages between the operational and physical 

trade-space environment. In order to create the operational meta-models, each student 

performed an experimental design on their simulation model, with multiple replications 

on a high-performance computer cluster. We created three custom designs with a mix of 

continuous, discrete, binary, and categorical factors, using our GA. Our GA can only 

create 2nd Order NOLH and NO/B designs for a modest number of factors, which depend 

highly on the number of design points. Therefore, if the experimental conditions require a 

large number of factors, the analyst may elect to have a subset of factors that minimize 

the ߩ௠௔௣ for a second-order model and append additional factors that minimize the ߩ௠௔௣ 

for a first-order model. Table 14 shows each simulation model’s experimental design 

characteristics. For the Search and Rescue experiments, the analyst chose a design with 

11 continuous factors that has a second-order ߩ௠௔௣ slightly greater than the 0.05 

threshold, in order to reduce the number of experiments (465 versus 630; see Figure 24 in 

Chapter IV). 
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Table 14.   Experimental design characteristics for the MBSE ship design problem. 
The table shows each design’s number of factors, levels, type, and the 
subsets of factors that have minimal correlations for either a first- or 

second-order model. 

 

 

 The MBSE design concept relies heavily on the accuracy of the meta-models 

developed from the experimental design. The designs in Table 14 provided excellent 

exploratory opportunities for the analyst to understand the complicated behavior of the 

simulation outputs. Because these designs minimize the correlation between model 

effects, they reduce the variance in the coefficient estimates and increase their precision 

by reducing model bias (see Chapter II); these benefits ensure that the meta-models are as 

accurate as possible. For an in-depth look at the analysis and insights gleaned from the 

designs in Table 14, see Ashpari (2012), Mckeown (2012), and Yoosiri (2012). 

The operational meta-models created from the experimental designs in Table 14 

were used to create the operational contour profiler that highlights the trade-offs  

between three operational MOEs and five physical design considerations. Figure 39 

shows the MBSE design concept contour profilers that represent the operational and  

physical spaces. 
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Figure 39. The MBSE design concept contour profilers. The colored areas within the 
contour profilers indicate infeasible ship configurations that violate the minimum and 

maximum constraints set at the middle of the figure, under the operational and  
synthesis functions. 

The contour profilers in Figure 39 allow decision makers to explore different ship 

configurations while ensuring it is feasible and operationally effective. There are seven 

physical design factors and two operational noise factors listed at the top of Figure 39; 

these are the significant factors within the meta-models created using the designs in  

Table 14. In the middle of Figure 39, there is an area that sets the minimum and 

maximum constraints for each of the three operational and five synthesis meta-model 

functions; the form of the meta-models determines the shape of the colored contours. 
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Adjusting the constraints will adjust the colored area that indicates the infeasible region; 

as long as the crosshairs fall within the white space in both the operational and physical 

space, the ship is simultaneously feasible and effective. Because the shape of these meta-

models greatly impacts the insights gleaned from the contour profilers, it is important to 

ensure that they are as accurate as possible in order for the MBSE design concept to be 

effective. The designs created by our GA provide the means to develop accurate meta-

models that best describe the output behavior of the operational simulation models. 

Traditionally, when faced with a problem that has a mix of continuous,  

discrete, and categorical factors, experimenters often cross the continuous factors with a  

full-factorial design that contain the discrete, binary, and categorical factors. Table 15 

shows the number of total experiments needed for each of the operational simulations if 

the analyst used a continuous design, crossed with a full-factorial design. We can see 

from this table that there is a considerable amount of savings in computational resources 

when we use the designs created by our GA. 

Table 15.   The number of design points needed to perform each of the operational 
simulation experiments when crossing a continuous design with a  

full-factorial design. 

 
 

D. SUMMARY 

The MBSE design concept’s reliance on accurate meta-models emphasizes the 

utility of the 2nd Order NOLH and discrete NO/B design. In addition, the designs created 

by our GA provided a tremendous savings in computational resources by not having to 

rely on the full-factorial designs for the discrete and categorical factors. For each 

Operational Simulation 

Experiment

Continuous 

Design 

Experiment

Discrete, Binary, and 

Categorical Full 

Factorial

Total Number of 

Experiments 
(Continuous Design 

Crossed with Full‐

Factorial Design)

Maritime Interdiction Operations 300 11 × 3 × 2
2
 × 11 × 3 1,306,800

Anti‐Surface Warfare 200 10
3
 × 5 × 2

8 256,000,000

Search and Rescue 465 3
2
 × 25 × 4 418,500

Number of Design Points
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operational simulation model, there were a wide variety of factor types with different 

levels. All terms within the designs used for the simulations nearly guaranteed that no 

first-order term was confounded with another. In addition, a large subset of the factors 

nearly guaranteed that no second-order term was confounded with another as well. 

Because the designs possessed excellent space-filling properties, they were able to 

explore the interior of the experimental region to find interesting behavior throughout the 

entire response surface landscape.   
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VIII. CONCLUSIONS AND RECOMMENDATIONS FOR 
ALGORITHM IMPROVEMENTS 

In order to understand the complex nature of our world, we must be able to detect 

the driving factors during simulation experiments and understand how they impact the 

results. Computer simulations and DOEs enable us to model our world by simultaneously 

exploring numerous factors that may affect the complex nature of multiple simulation 

responses. These experiments are critical in the early phases of the system design 

process, when there is little information and no existing system. Simulation outputs often 

have complicated, high-order, response surfaces that may include thresholds or step 

functions in different regions of the experimental space. The simulation analyst needs 

experimental designs that can best capture the significant factors, thresholds, factor 

synergies, and the factor’s diminishing or increasing rates of return. Additionally, 

because we never know the true form of the response surface, analysts need designs that 

minimize a priori model assumptions that are flexible enough to estimate a variety of 

high and low order response surfaces. 

In this dissertation, we presented a new genetic algorithm that constructs the  

first-ever 2nd Order NOLH and NO/B designs for continuous and discrete factors, with 

minimal correlations between all main, quadratic, and two-way interaction factors. 

Additionally, we can augment these designs with categorical factors that minimize the  

first-order correlations between the dummy variables of one categorical factor and the 

dummy variables from another categorical factor. 

In addition to constructing 2nd Order NOLH and NO/B designs, the genetic 

algorithm can also construct NOLH and discrete NO/B designs that minimize the ߩ௠௔௣ 

for the linear terms only, or for the linear and quadratic terms. Table 16 shows a sample 

of NOLH, Saturated NOLH, and Quadratic NOLH designs that were constructed using 

our algorithm. A NOLH design has a design matrix with only linear terms. Saturated 

NOLHs have a design matrix where n = k + 1. A Quadratic NOLH has a design matrix 

that includes the linear and quadratic terms only. 
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Table 16.   Sample of NOLH, saturated NOLH, and quadratic NOLH designs. 

 

  

The GA enables the construction of NOLH designs for any number of design 

points, which allows the user to construct unique designs for different analytical needs. 

For example, if the analyst wanted the flexibility to estimate up to a fourth-order model 

with four factors, the algorithm can create a 2nd Order NOLH with 28 design points, 

allowing enough degrees of freedom to fit all 27 terms. 

The Monte Carlo simulation experiment demonstrated the 2nd Order NOLH 

design’s ability to estimate the coefficients and predict the response for six different  

high-order, complicated, true models with continuous factors. Independent of the true 

model form, the 2nd Order NOLH is flexible across a wide variety of models for two 

reasons. First, the minimal ߩ௠௔௣ can nearly guarantee that all statistically significant 

first- and second-order terms are not confounded with others and, second, their small 

 ଶ indicates an excellent space-filling property that enables the detection of model biasܮܯ

and the presence of step functions or other change points. The discrete 2nd Order NO/B 

designs, augmented with first-order categorical factors, provide the experimenter with a 

wide variety of designs for any mix of factors. The infinite combinations of discrete and 

categorical levels require a need for a custom design creator capable of generating 

designs for a mix of factor types often encountered during simulation studies. We provide 

this freely available custom design builder at http://harvest.nps.edu. The  

NOLH Type
Number of 

Factors

Number of 

Design 

Points

NOLH 30 50 0.000

NOLH 50 75 0.006

NOLH   100 200 0.040

Saturated NOLH 9 10 0.003

Saturated NOLH 15 16 0.003

Saturated NOLH 30 31 0.031

Saturated NOLH 46 47 0.029

Quadratic NOLH 4 17 0.042

Quadratic NOLH 9 33 0.050

Quadratic NOLH 14 65 0.050

Quadratic NOLH 20 129 0.050

Quadratic NOLH 31 250 0.050

௠௔௣ߩ
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2nd Order NOLH and NO/B designs are particularly well suited for simulation 

experiments that have multiple responses with complicated surfaces. In a single 

experiment, the designs proposed in this paper can fit a wide variety of response surfaces 

with the desired amount of degrees of freedom. 

There are a number of future contributions that still need further research within 

the space-filling domain. The first is to investigate the creation of designs with  

second-order categorical factors. The categorical factor does not have a quadratic term, 

but they do have two-way interactions. During our attempts to find categorical  

2nd Order NO/B designs, we found that the cross products of the dummy variables with a 

0/1 or 0/1/–1 convention do not result in a lot of variation. For example, multiplying 0 

times 1 or 0 times 0 both equal 0 and, as a result, the interaction terms ends up with a lot 

of 0s. An interaction term between two dummy variables with a lot of 0s will inherently 

be correlated with another dummy variable interaction term with a lot of 0s. Investigating 

the field of orthogonal arrays may provide some insight into how to address high-order 

interactions between dummy variables (Hedayat et al., 1999). 

Another worthy improvement would be to find 3rd Order NOLH designs. Because 

the linear term and cubic term of each factor will always be highly correlated, we should 

exclude these correlation checks when evaluating the fitness of a candidate column. The 

results will be designs that nearly guarantee no term is confounded with another for up to 

a three-way interaction (excluding the linear and cubic term pairwise correlations). We 

expect the number of required design points, n, will be larger and that the computation 

time will increases because there will be additional terms in the regression matrix, Z. 

Incorporating experimental constraints into the algorithm would further benefit 

the simulation community. There may be circumstances where a factor setting is 

infeasible if another factor is set at a certain setting. To implement a constraint within the 

algorithm, we could include a rejection criterion or assign a correlation greater than 1 for 

a candidate column that violates a constraint. The end result would be space-filling 

designs with holes in the experimental region where there are infeasible factor settings. 
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APPENDIX. DESIGN CREATOR FRONT-END USER MANUAL 

This appendix serves as a user manual to the Front-End Tool in the 

DesignCreator.xlsm file used to run our genetic algorithm. The purpose of the tool is to 

allow the user to create a custom design, with a specified number of design points and 

number of factors, by type, number of levels, and the model terms included in the 

regression matrix. In addition, the user can start the algorithm with an existing design and 

add columns to it; this allows us to leverage the cataloged 2nd Order NOLH designs that 

are included in the workbook by adding columns to them. Once the algorithm creates the 

design, there are some utilities available that will create a spreadsheet to translate a 

design, create higher-order terms, calculate the maximum absolute pairwise correlation, 

and create dummy variables for categorical factors. 

 The algorithm was written in JavaTM 2 and requires the user to ensure  

that the Java Platform (JDK) is downloaded on their computer; visit the Oracle  

website at http://www.oracle.com/technetwork/java/javase/downloads/index.html to 

download. You can download the tool from the SEED Center website at 

http://harvest.nps.edu/software.html. Once downloaded, there will be two files:  

DesignCreator.xlsm (containing the Front-End Tool with utilities) and DOE.jar (the 

executable .jar file written in Java). Ensure that these files are saved to the same folder. If 

you are on a shared network computer we do not recommend that you save the files to the 

desktop. When opening the DesignCreator.xlsm file, the user must enable the macros in 

order to utilize the buttons throughout the workbook. The Front-End Tool will create an 

input.csv file and a runit.bat file (for Windows computers) or runit.txt file (for Macintosh 

computers) and save them to the same folder; these are the files the DOE.jar file needs to 

execute the algorithm from the Windows computer Command line or the Macintosh 

computer Terminal window. 

 Once the algorithm is complete, the output design will be saved as a .csv file in 

the same folder the DOE.jar file is in. The output file title name will have the number of 

rows, columns, the ߩ௠௔௣, ܮܯଶ, and the initial seed used for the random number generator 

(see Chapter II for the definition of ߩ௠௔௣ and ܮܯଶ). In the .csv file, the first four rows 
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will contain the following, respectively:  the factor type, the number of levels, the model 

terms included in the regression matrix, and the factor name, xi, where i is the column 

number. If there are discrete or categorical factors in the design, the last row, separated 

by the word “balance,” will have the factor’s balance metric indicating the spread of the 

levels across the design points; see Chapter VI for the definition of balance. As a general 

rule, the user should never delete or change any of the worksheet names in the 

DesignCreator.xlsm file. Each section in this appendix describes the worksheets in the 

DesignCreator.xlsm file and provides instructions where appropriate. 

readme 

The readme worksheet provides the purpose of the tool, explains how to create 

designs and use the utilities. In addition, it references literature that pertains to the 

designs created by the genetic algorithm. 

glpl 

The worksheet describes the terms of the GNU Lesser General Public License as 

published by the Free Software Foundation, either version 2.1 of the License or (at your 

option) any later version. This license ensures that the algorithm is distributed in the hope 

that it will be useful, but WITHOUT ANY WARRANTY, without even the implied 

warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

Front End 

Input Parameter Settings 

The Front End worksheet allows the user to enter the genetic algorithm input 

parameters. The blue-colored cells are the factor entry area used to specify the number of 

factors, by type, number of levels, and the model terms included in the regression matrix 

for the ߩ௠௔௣ calculation. The four types of factors are:  continuous, discrete, categorical, 

and binary. For continuous factors, the number of levels must be equal to whatever is set 

as the “Number of Design Points” parameter in the green-colored entry area. For 

categorical and binary factors, only the main (linear) terms can be added to the regression 

matrix (model terms must be set to “M.”) Binary factors can only have the number of 

levels set to 2. Generally, the user should set the highest-order model terms in the first set 

of rows. The model term designations are the following:  M for main effects; MQ for 
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main and quadratic effects; MI for main and two-way interactions; and MQI for main, 

quadratics, and two-way interactions. The model terms order, from highest to lowest, are 

MQI, MI, MQ, and M. The model term designations significantly impact the algorithm 

run time. Figure A1 shows a snapshot of the factor entry area in the Front End worksheet. 

 

 

Figure A1. Factor entry area in the Front End worksheet. 

The red-colored cells are the algorithm’s internal input parameters that will not be 

of interest to the general user of the design creator. Chapter IV discusses the experimental 

designs we performed to determine the appropriate input parameter settings for design 

searches. The user can change these input settings, if desired (see Chapter III for the 

algorithm steps and definitions of input parameters), and can restore the default settings 

by pressing the macro button underneath the red-colored cell area. Changing these 

internal input parameter settings will impact the algorithm’s performance and run-time 

length; see Chapter IV for guidance on the performance and run-time length for different 

number of design points and columns with the default internal parameter settings. For 

designs that are not difficult to minimize the ߩ௠௔௣, we recommend setting the number of 

trials (numTrials) equal to 1 in order to speed up the algorithm’s run time. 
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 The green-colored cells are the input parameters the general users will need to set 

each time they run the algorithm. Because the algorithm is run as a batch file from the 

Command or Terminal window, the user may decide to increase the number of algorithm 

instantiations that will be executed. Setting the “Number of Batch Replications” 

parameter to greater than 1 will allow the user to send a batch file to a computer cluster to 

perform multiple replications of the algorithm. Because of the stochastic nature of the 

algorithm, we recommend performing multiple replications when searching for efficient 

designs and then selecting the design with the smallest ߩ௠௔௣. If the user does not intend 

to send a batch file to a computer cluster, he/she can run the algorithm multiple times in 

separate Command/Terminal windows. The “Number of Design Points” parameter is the 

number of experiments or rows in the desired output design matrix. The “Start With 

Design” boolean parameter lets the algorithm know whether to add the desired factors 

entered in the blue-colored cell area to an existing design located in the Start Design 

worksheet. When the “Start With Design” parameter is set to TRUE, ensure that the 

“Number of Design Points” parameter is set to the same number of rows in the design 

that is pasted into the Start Design worksheet. The “Jiggle Operations” boolean 

parameter lets the algorithm know whether to perform the jiggle operations on the 

continuous factors (see Chapter III for a description of the jiggle operations). If the 

algorithm starts with an existing design, the jiggle operation will only be performed on 

the newly added continuous columns. The “Show Comments” boolean parameter lets the 

algorithm know whether to show the comments in the Command/Terminal window 

during the algorithm’s execution. When sending a batch file to a computer cluster, the 

“Show Comments” parameter should be set to FALSE. Figure A2 shows a snapshot of 

the input parameter entry area in the Front End worksheet. 
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Figure A2. Input parameter entry area in the Front End worksheet. 

Algorithm Execution 

Once the input parameters are set, the steps to execute the algorithm will depend 

on the type of operating system on your computer (Windows or Macintosh). For 

Windows computers, simply press the “Run Algorithm” macro button; each time you 

press this button, a new Command line window will open and run a different instantiation 

of the algorithm. Macintosh computers must run the algorithm from the Terminal 

window, with the current directory set to the file location where the DesignCreator.xlsm 

and DOE.jar files are saved. The first step is to press the “Create Flat Files” macros 

button. Then, open the Terminal window and change the directory to where the algorithm 

is saved. At the Terminal Command prompt, type the following: 

. ./runit.txt 

To run additional algorithm instantiations simultaneously, open a new Terminal window 

and repeat the above steps. To open the Terminal window from the Finder, the user can 

go to System Preferences and click on “Keyboard,” select the “Keyboard Shortcuts” tab 

and click “Services” from the left menu; scroll down on the right and check the box next 

to “New Terminal at Folder.”  Setting this preference will allow the user to right click on 

Input Parameter Setting Description

Number of Batch Replications 1 The number of command line batch replications written to the batch file.

Number of Design Points 20 The number of rows in the design matrix. Each row designates the factor settings for each experiment.

Start With Design FALSE
TRUE means that the algorithm will add columns to the design that is pasted into the Start Design 

worksheet. FALSE means that the algorithm will create a new design.

Perform Jiggle Operations TRUE
TRUE means that the algorithm will perform the jiggle operation, FALSE means that it will not.  The 

jiggle operation will not be performed on columns in the Start Design worksheet.

Show Comments TRUE
TRUE means that the algorithm comments will be displayed in the command/termainal window. Set to 

FALSE when sending batch files to a high performance computer cluster.

numExploreGen 100 Number of exploration generations.

numExploitGen 200 Number of exploitation generations.

popSize 100 Size of the population of candidate columns.

copyPortion 0.1 Portion of candidate columns copy into the next generation.

halfWidth 0.5 The bounded distance that prevents the jiggle operator for perturbing outside a range.

numJigGen 100 Number of jiggle generations.

numTrials 3
Number of exploration trials each consisting of a set of exploration generations with its own initial 

population of candidate columns.

swapPortion 0.2 Portion of design points swapped during a swap operation.

poolSize 100 Size of the pool that contains a set of candidate columns. 

genExitCriteria 20 Number of generations performed without improvement of the fitness function.

jigglePortion 0.2 Portion of design point jiggled during a jiggle operation.

colAttempts 3
Number of attempts to find a column with a new initial population of solutions if an attempt did not 

meet the maximum correlation threshold.

jigglePasses 3 Number of times the jiggle operator is performed on the columns.

corrThreshold 0.05
The maximum correlation a column threshold must be before added to the design.  The algorithm will 

continue to find a column to add to the design for a set number of attempts (colAttempts ).



 110

a folder in the Finder and click “New Terminal at Folder” to open the Terminal at the 

desired folder. This preference setting will save the user from having to change the 

directory manually to where the algorithm is located each time you open the Terminal 

window. 

 When the “Show Comments” parameter is set to TRUE, the comments shown in 

the Command or Terminal window reveal the progress of the algorithm. Figure A3 shows 

a Command line window that searched for a three continuous factor 2nd order design with 

20 design points. The algorithm performed three exploration trials (numExploreGen = 3) 

and three jiggle generation passes (jigglePasses = 3). The final time shown at the bottom 

of Figure A3 is in hours. 

 

 

Figure A3. Command line window during the algorithm execution. 
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Cataloged Designs 

This worksheet has hyperlinks that will navigate the user to other worksheets that 

contain the cataloged 2nd Order NOLH design. Once there, the user can press the macro 

button to automatically copy the design into the Start Design worksheet. We recommend 

using these cataloged designs for up to 12 continuous factors when you can afford to 

perform the number of experiments needed for each design. When the user desires to add 

discrete factors to a set of continuous factors (up to 12), with the model terms set to 

“MQI” (for a full second-order model), we recommend copying a cataloged design to the 

Start Design worksheet and then deleting two continuous columns for every one discrete 

factor (this is only a rule of thumb). Adding additional columns (of any type) to the 

cataloged designs, with the model terms set to “M” or “MQ” do not require that you 

delete continuous columns. 

Start Design 

If the user desires to add additional columns to an existing design, paste the 

design into this worksheet and set the “Start Design” parameter to TRUE in the Front 

End worksheet. The first row designates the factor type. Ensure one of the following text 

entries is in each column in the first row:  continuous, discrete, binary, or categorical. 

Specify the number of levels for the factor in the second row. For continuous factors, the 

algorithm does not care what is entered because the number of levels for a continuous 

factor is always the number of design points. The third row contains the model terms (M, 

MI, MQ, and MQI). These entries have no impact to the algorithm. The fourth row is 

reserved for the factor name. Ensure that the design (with the first four rows) is pasted 

into cell B1. 

Coded Design 

Paste a design with the first four row entries as indicated in the Start Design 

worksheet instructions into cell B1. If there are discrete or categorical factors in the 

original .csv output file, be sure not to paste the word “balance” and the balance metric 

into this worksheet. Also, avoid pasting empty cells that may get highlighted after 

selecting the current region in the .csv output file. Press the “Create Translation 

Worksheet” macro button to create a formula worksheet that will allow the user to 
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translate the coded design point levels to the factors range desired for the experiments. To 

calculate the ܮܯଶ and ߩ௠௔௣ metrics, press the “Insert Design into Design Tools 

Worksheet” macro button. If the design has categorical factors and the user wants to 

examine the first-order correlations of the design with the categorical dummy variables, 

press the “Insert Design into Categorical Design Worksheet.” 

Translated Design 

After pressing the “Create Translation Design” macro button in the Coded Design 

worksheet, the macro will insert the formulas into the cells that will allow the user to 

translate the design to the desire factor ranges. The blue-colored cells are copies of the 

first three rows from the Coded Design worksheet (factor type, number of levels, and 

model terms). For continuous factors, enter the low and high setting for each factor. 

Users have the option to round the continuous factor to a discrete factor; however, we do 

not recommend doing this. Rounding a continuous factor is an old technique to create 

discrete factors but can severely impact the ߩ௠௔௣ of the original design (especially the 2nd 

Order ߩ௠௔௣). We should not have to round a continuous factor anymore because our 

algorithm is capable of creating designs with discrete factors for a specified number of 

levels. If the factor column is discrete, the sixth row allows the user to scale the column 

instead of rounding. Scaling a discrete factor to a number greater than 1 will spread the 

discrete levels over a wider range of values. If the factor type is either discrete or 

categorical, the high level will be protected and will add the number of levels to the  

low-level setting. The yellow-colored cells are protected to ensure the user does not 

change the translation formulas. After establishing the low and high levels and naming 

the factors, the user can copy and paste special values the translated design into another 

spreadsheet for their experiment. 

Design Tools 

After pressing the “Insert Design into Design Tools Worksheet” macro button in 

the Coded Design worksheet, the design will appear (with the factor names only in the 

first row) in cell B1. The available macro buttons allow the user to calculate the ܮܯଶ  

space-filling metric; center the design by subtracting the mean; create the quadratic 
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terms; the second-, third-, and fourth-order terms; calculate the ߩ௠௔௣, and calculate the 

distribution of all absolute pairwise correlations. Before you create the higher-order 

terms, you must ensure that you center the design first; otherwise, the main factors will 

be highly correlated with its own quadratic. Be sure to only press the higher-order macros 

button once; otherwise, the macro will expand out the terms with whatever is currently in 

the worksheet. Delete the high-order terms in the worksheet if you desire to recreate a 

different set of higher-order terms. When the user presses the “Collect and Sort Abs Corr 

Distribution” macro button, the distribution of all absolute pairwise correlations of 

whatever design is currently in the worksheet will get pasted and sorted into the Abs Corr 

Distro worksheet. 

Abs Corr Distro 

After pressing the “Collect and Sort Abs Corr Distribution” macro button, the 

absolute pairwise correlation distribution will get pasted and sorted into this worksheet. 

Categorical Design 

After pressing the “Insert Design into Categorical Design Worksheet” macro 

button in the Coded Design worksheet, the design will appear in cell B1. From here, the 

user can designate the dummy variable convention before creating the dummy variables 

(see Chapter VI for a description of the different dummy variable conventions). After 

pressing the “Create Dummies” macro button, a new design will get pasted into the 

Dummy Variables worksheet with all the categorical factors converted into the set of 

dummy variables determined by the number of levels. 

Dummy Variables 

This worksheet will contain the design with dummy variables after pressing the 

“Create Dummies” macro button in the Categorical Design worksheet. Pressing the 

“Find First-Order Correlation Distro with Dummy Variables” macro button will paste 

and sort the absolute pairwise correlation distribution into the Abs Dummy Corr Distro 

worksheet. 
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Abs Dummy Corr Distro 

 After pressing the “Find First-Order Correlation Distro with Dummy Variables” 

macro button, the absolute pairwise correlation distribution will get pasted and sorted into 

this worksheet. The third column will designate (with an N/A) the pairwise correlations 

that are between dummy variables within the same categorical factor. For practical 

purposes, we are not concerned with these correlations (see Chapter VI for a description 

of the dummy variables). 
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