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ABSTRACT

In order to better understand the complex nature of a system, analysts need efficient
experimental designs that can explore high-dimensional simulation models with multiple
outputs. These simulation models are critical to the early phases of system design and
involve complicated outputs with a wide variety of linear and nonlinear response surface
forms. The most common response surface form for analyzing complex systems is the
second-order model. Traditional designs that fit second-order response surface models do
not effectively explore the interior of the experimental region and cannot fit
higher-order models. We present a genetic algorithm that constructs space-filling designs
with minimal correlations between all second-order terms for a mix of continuous and
discrete factor types. These designs are specifically suited to fit the second-order model
with excellent space-filling properties and are flexible enough to fit higher-order models
for a modest number of factors; these high-order terms are what characterize the system
complexities. We demonstrate the utility of these designs with a Model-Based Systems
Engineering application that integrates multiple simulation outputs to form a trade-off
environment for a system design. This research enables the simulation analysis and
system design community to better understand the complex nature of multiple

simulation outputs.
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EXECUTIVE SUMMARY

This dissertation introduces a new class of experimental designs used to explore complex
simulation models. We present a genetic algorithm (GA) that constructs
space-filling designs with minimal correlations between all second-order terms for a mix
of continuous and discrete factor types. These designs are specifically suited to analyze
simulations with multiple outputs in which numerous, complicated response forms are
possible. Analysts must rely on computer simulations to properly understand the complex
nature of a system. The art of systems architecting and the science of systems engineering
both use models to understand how a set of elements interact to achieve a unified
purpose. We find these interactions, or relationships, by examining how changes in the
system parameters impact the performance measures used to assess different alternatives
or system configurations. When using a simulation to analyze a system, the simulation
inputs often represent the system parameters, while the outputs are the performance
measures. The best way to understand the input/output relationships of a simulation
model is to leverage the field of statistical design of experiments (DOE).

DOE allows the analyst to not only identify the significant factors that drive a
system, but also to characterize the system’s complexities. These complexities include
the synergies or interactions that exist between factors, a factor’s diminishing or
increasing rate of change, or a threshold that groups output results into vastly different
areas. We can characterize a system’s complex behavior by data farming a simulation
model to obtain a statistical meta-model, or “model of a model,” that acts as a surrogate
of the simulation once it is verified. Meta-models approximate the functional form
between the simulation inputs and outputs over a specified range of inputs. The most
common polynomial model used to describe a simulation’s outputs is the second-order
model that includes linear, quadratic, and two-way interaction terms; these terms are what
characterize the simulation’s complex behavior. These second-order models provide a
rich variety of functional forms that can represent surfaces with global or local
maximums and minimums, rising or stationary ridges, and saddles (Myers, Montgomery,

& Anderson-Cook, 2009).
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Traditionally, in order to create a second-order meta-model, analysts use a
specific class of experimental designs that sample at the corners, edges, and center of the
experimental region. These second-order designs minimize the correlation between all
second-order terms, thereby ensuring that no statistically significant terms are
confounded with another. Unfortunately, these traditional second-order designs have
significant limitations in that they cannot explore the interior of the experimental region
and cannot be used to create meta-models with a higher-order, such as a third-order
model with an inflection point in the meta-model’s form. Space-filling designs are better
suited for identifying unknown behavior, where multiple complex meta-model forms and
localized effects are possible (Myers et al., 2009). Traditional space-filling designs do a
great job at filling the interior of the experimental region, but do not minimize the
correlation between all second-order terms; therefore, there are trade-offs in terms of
design choice between minimal correlation and space-filling properties.

A number of researchers have developed algorithms to reduce or eliminate
correlations among columns of a popular, space-filling design called a Latin hypercube
(LH). A Nearly Orthogonal Latin Hypercube (NOLH) is defined as an LH with a
maximum absolute pairwise correlation no greater than 0.05 between any two input
variables or columns in the design matrix (Hernandez, 2008). Vieira, Jr., Sanchez,
Kienitz, and Belderrain (2011) developed the Nearly Orthogonal/Balanced (NO/B)
designs for a mix of discrete and categorical factors. Because simulations often have a
mix of factor types, the introduction of these designs was a significant breakthrough for
the space-filling domain. Despite these contributions, these designs focused on main
effects only and none of these algorithms guarantees nearly orthogonal, second-order,
space-filling designs. The designs created by the GA purposed in this dissertation are
called the 2" Order NOLH and 2" Order Discrete NO/B designs. This new class of
designs allows experimenters to simultaneously identify critical input variables and fit
commonly used second-order models with nearly uncorrelated coefficient estimates,
while providing the flexibility to fit more complex relationships on a modest number

of factors.
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The algorithm uses random choice as a guide to select better-performing solutions
from a population of candidate solutions. The algorithm iteratively generates new
populations using attractive characteristics of solutions from the previous generation. The
intent is to evolve solutions that perform better with each new generation. The GA has 15
input parameters with a varied amount of run time, depending on the number of columns
and rows in the desired design matrix. In order to understand the algorithm’s
performance, we studied the results from three experimental designs to help determine
the appropriate input parameter settings of the algorithm in order to improve the search
for better space-filling designs. Despite the algorithm’s highly stochastic nature, the
results of the experimental designs provided enough insight to recommend the
appropriate algorithm input parameter setting.

In order to compare the performance of our 2" Order NOLH with other
traditional second-order and space-filling designs we used the following two metrics: the
maximum absolute pairwise (map) correlation between the columns of the 2™ Order
regression matrix (Pqp) and the modified L discrepancy (ML;) space-filling metric.
Figure ES1 shows a snapshot comparison of the 2" Order NOLH and 8 other leading
designs with 4 factors (or variables) and 25 design points (or experiments). Figure ES1
indicates how the 2" Order NOLH dominates all other designs in terms of correlation

and space-filling properties.
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Design Type Comparison With 4 Factors and
25 Design Points
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Figure ES1. A Pareto chart showing ML, versus py, 4, for the 2nd Order NOLH

and the state-of-the-art designs.

To demonstrate the utility of the 2" Order NOLH and NO/B designs, we applied
them to a Model-Based Systems Engineering (MBSE) application. MBSE leverages
computer simulation models throughout the system design life cycle, especially in the
early stages. We applied the MBSE design concept to an Office of Naval Research
(ONR) ship design problem to show how accurate meta-modeling contributes to the
understanding of a complicated system design problem. The MBSE design concept’s
reliance on accurate meta-models emphasizes the utility of the 2" Order NOLH and

Discrete NO/B design. For each operational simulation model, there were a wide variety

XX



of factor types with different levels. All terms within the designs used for the simulations
nearly guaranteed that no first-order term was confounded with another. In addition, a
large subset of the factors nearly guaranteed that no second-order term was confounded
with another as well. Because the designs possessed excellent space-filling properties,
they were able to explore the interior of the experimental region to find interesting
behavior throughout the entire response surface landscape.

Because simulations often have a mix of continuous, discrete, and categorical
factors, our algorithm has the ability to append categorical factors that minimizes the
correlations for the first-order terms. Due to the infinite amount of discrete- and
categorical-level combinations, there is a need for a custom design creator capable of
generating space-filling designs for a mix of the factor types often encountered during
simulation studies. Additionally, the design creator should have the flexibility to create
designs with the number of design points dictated by the experimental conditions. To
date, the algorithms developed by Hernandez (2008) and Vieira et al. (2011) require the
use of licensed software, making it difficult to access their custom design capabilities.
Our algorithm uses no licensed software or external libraries and is freely available at the
Simulation Experiments and Efficient Designs (SEED) Center website under the
general-purpose license (see http://harvest.nps.edu). A freely available, custom design
builder enables the simulation community to analyze multiple responses that have

different meta-model forms with a single experiment.
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l. INTRODUCTION

The art of systems architecting and the science of systems engineering both use
models to understand how a set of elements interact to achieve a unified purpose. We find
these interactions or relationships by examining how changes in the system parameters
impact the performance measures used to assess different alternatives or system
configurations. When system interactions are simple enough, we can use mathematical
models to find analytical solutions. Real-world systems, however, are often too complex
to be evaluated analytically (Law, 2006). In such cases, we must rely on computer
simulations to properly understand these system complexities. The inputs to these
simulations may involve hundreds of uncertain environmental variables and controllable
system parameters that define the alternative configurations. Identifying the significant
factors related to multiple performance measures is critical to a system design decision.
The best way to understand the input/output relations of a simulation model is to leverage
the field of statistical design of experiments (DOE). DOE allows the analyst to not only
identify the significant factors that drive a system, but also to characterize the system’s
complexities. These complexities include the synergies or interactions that exist between
factors, a factor’s diminishing or increasing rate of change, or a threshold that groups
output results into vastly different areas. This dissertation presents new experimental
designs specifically suited for complex simulations. Our research enables the simulation
and system design community to better understand the system’s complexities. This
introductory chapter discusses the background on simulation DOE, describes the

contributions to the body of literature, and summarizes the dissertation organization.

A BACKGROUND

DOE has applications in all areas of research. Scientists use DOE to help them
understand how the world works through observation in the areas of behavioral, social,
and natural sciences; engineering; medicine; finance; manufacturing; transportation; and

many others. DOE allows us to efficiently learn about and characterize the complex



nature of our world. As computers become progressively more powerful and affordable,
they have become an increasingly valuable instrument for experimentation (Santner,
Williams, & Notz, 2010).

Computer simulations provide important insights in the areas mentioned above
when physical experimentation is not possible or cost effective. Simulations are
simplified representations of reality, programmed on a computer, that are regularly used
to find optimal settings, make predictions, develop an understanding of a particular
simulation model or system, and discover robust decisions or policies (Kleijnen, Sanchez,
Lucas, & Cioppa, 2005). The typical objective of experimental analysis is to identify the
factors (i.e., input variables) that significantly affect the response (i.e., output variables)
and, for those that do, determine the nature of the relationship.

Simulation models tend to have many input factors. In addition, there are often
multiple responses of interest, with each response having its own unique form. For
example, one output response may only require linear terms to adequately describe its
behavior, while another may involve higher-order polynomials, change-points, and
higher-order interactions. We define the term meta-model form to mean the shape of the
response surface landscape dictated by the order of a polynomial function. For any given
response, usually relatively few factors significantly affect it. This is known as effect
sparsity. Unfortunately, we likely do not know those factors with certainty before
conducting the experiment. For those factors that do impact the response, the
relationships may be complex. Practicing simulation analysts obtain valuable insight by
identifying the important factors, their interactions (e.g., synergies), key thresholds,
response contours, and trends such as diminishing or increasing rates of change.

The most common way to quantify the relationship between a complex
simulation’s input factors and a response is to fit a parametric polynomial function using
statistical regression (Barton, 1998). For a computer simulation study, this function is
known as a meta-model or a “model of a model.” Meta-models approximate the
functional form of the input factors and the output responses over a range of inputs. A
good meta-model is one that makes parsimonious use of the input factors, that is simple

to understand, and whose outputs closely match those of the simulation (Sanchez & Wan,
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2009). The most common polynomial model used to describe response surfaces is the
second-order model that includes linear, quadratic, and two-way interaction terms. These
second-order models provide a rich variety of functional forms that can represent surfaces
with global or local maximums and minimums, rising or stationary ridges, and saddles
(Myers et al., 2009).

The meta-models we can fit—and hence the insights that we can glean—depend
critically on the design. For example, we cannot identify a nonlinear response for a
quantitative input variable from a two-level design. In such a case, inferences based on
the implicit assumption of linearity will be erroneous. The error that occurs when our
assumed model is wrong (typically due to under-fitting) is known as “model bias.” We
desire designs less susceptible to model bias and with the ability to detect it when it
occurs. Thus, we prefer designs that allow us to fit a breadth of meta-models. Another
difficulty that experimenters face when simultaneously varying multiple inputs is
correlations among the inputs. When two inputs are highly correlated, it is difficult (or
impossible) to distinguish their effects on the response. Orthogonal designs overcome this
problem, and are thus desired. An additional challenge occurs when there might be
localized effects, such as a threshold or changepoint. To increase the odds of detecting
localized effects, we favor designs that sample throughout the experimental region. Such
designs are called space-filling.

Mckay, Beckman, and Conover (1979) introduced the Latin hypercube (LH)
design to address the need for space-filling designs with continuous factors. LHs are
commonly used to design experiments involving computer simulations. A key reason for
this is that they are easily obtainable (e.g., LHs are available in many simulation software
packages). Furthermore, they have few restrictions on the number of experiments () and
factors (k). In addition, the resultant output data allow analysts to fit many different
diverse models to multiple outputs from a single experimental (Sanchez, Lucas, Sanchez,
Nannini, & Wan, 2012).

Unfortunately, a given LH need not have good correlation or space-filling
properties. To address this, a number of researchers have developed algorithms to reduce

or eliminate correlations among columns of an LH and improve on their space-filling
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properties (see Florian, 1992; Owen, 1994; Ye, 1998; Cioppa & Lucas, 2007; Steinberg
& Lin, 2006; Hernandez, 2008; Joseph & Hung, 2008; Pang, Liu, & Lin 2009; and Moon,
Dean, & Santner, 2011). An LH with no correlation between any of its input variables is
an Orthogonal Latin Hypercube (OLH). A Nearly Orthogonal Latin Hypercube (NOLH)
is defined as an LH with a maximum absolute pairwise correlation no greater than 0.05
between any two input variables (Hernandez, 2008). Although this criterion is somewhat
arbitrary, designs meeting it suffer minimal adverse multicollinearity effects. Vieira, Jr.
et al. (2011) developed the Nearly Orthogonal/Balanced (NO/B) designs for a mix of
discrete and categorical factors. Because simulations often have a mix of factor types, the
introduction of these designs was a significant breakthrough for the space-filling domain.
Despite these contributions, there are still areas to improve. The aforementioned research
only focused on main effects and none of these algorithms guarantees nearly orthogonal,
second-order, space-filling designs. This dissertation presents a genetic algorithm (GA)
for generating designs that allow experimenters to simultaneously identify critical input
variables and fit commonly used second-order models with nearly uncorrelated
coefficient estimates, while providing flexibility to fit more complex relationships on a

modest number of factors.

B. CONTRIBUTIONS

In order to understand complex simulations, we must consider the high-order
effects and thresholds that may exist across multiple responses. The designs proposed in
this dissertation allow the experimenter to properly analyze the complexities of a system
via simulation. In order to highlight the key contributions this dissertation provides to the
body of literature, we emphasize the following three issues:

o Multiple system simulation responses have different meta-model forms
(first-, second-, or higher-order). Most designs require a priori
assumptions for one specified model form. There is a need for designs that
are flexible enough to analyze multiple response surface forms with a
single experimental set.

o The state-of-the-art NOLH designs do not guarantee low correlation
performance between the second-order terms in a regression matrix.



. The state-of-the-art NO/B designs do not guarantee low correlation
performance between the second-order terms in a regression matrix.

To address these important issues, we developed a GA that creates space-filling
designs that minimize the maximum absolute pairwise correlation of a regression matrix,
with all second-order terms, for a mix of continuous and discrete factors. Because
simulations often have a mix of continuous, discrete, and categorical factors, our
algorithm has the ability to append categorical factors that minimize the correlations for
the first-order terms. In addition to constructing designs for second-order models, our
algorithm can also construct space-filling designs that minimize the correlations for the
linear terms only, or for the linear and quadratic terms (without the two-way
interactions). The algorithm can also create saturated designs for a linear model, i.e.,
whenn =k + 1.

Because of the infinite amount of discrete- and categorical-level combinations,
there is a need for a custom design creator capable of generating space-filling designs for
a mix of factor types often encountered during simulation studies. Additionally, the
design creator should have the flexibility to create designs with the number of design
points dictated by the experimental conditions. To date, the algorithms developed by
Hernandez (2008) and Vieira et al. (2011) require the use of licensed software, making it
difficult to access their custom design capabilities. Our algorithm uses no licensed
software or external libraries and is freely available at the Simulation Experiments and
Efficient Designs (SEED) Center website under the general-purpose license (see
http://harvest.nps.edu). A freely available custom design builder enables the simulation
community to analyze multiple responses that have different meta-model forms with a

single experiment.

C. DISSERTATION ORGANIZATION

This dissertation is organized into eight chapters. Chapter II reviews the purpose
of DOE and how it is used in the simulation context; describes how the second-order
model characterizes complex behavior; reviews the literature of the traditional and
optimal designs used for the second-order model, and the space-filling designs that

explore the interior of the design space; and, finally, concludes with an explanation of
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where this dissertation fits into the body of literature. Chapter III reviews the basics of
GAs and provides the detailed steps of the algorithm’s scheme. Chapter IV describes the
algorithm diagnostics we performed in order to recommend appropriate input parameter
settings and to provide guidance on the GA’s performance and run time requirements for
different design sizes. Chapter V compares the continuous 2" Order NOLH with a
number of different, state-of-the-art designs and demonstrates the utility of our proposed
designs with an empirical experiment. To address the need for designs with discrete and
categorical factors, Chapter VI introduces the discrete 2™ Order NO/B design augmented
with first-order categorical factors. Chapter VII applies our designs to a Model-Based
Systems Engineering (MBSE) application. Chapter VIII summarizes the dissertation’s

key contributions and recommends future improvements to the algorithm.



II.  SECOND-ORDER AND SPACE-FILLING DESIGN
REVIEW

This chapter describes why we perform designed simulation experiments,
explains how statistical surrogate meta-models represent complex behavior, and defines
the metrics we use to evaluate designs. Additionally, it reviews the literature of the
traditional and optimal designs that fit second-order models and the space-filling designs
that explore the interior of the experimental region. Designs that fit second-order models
do not efficiently explore the interior region and space-filling designs tend not to be well
suited to fit second-order models. The final section of this chapter explains how this
dissertation addresses these limitations, with new designs that perform well for the
second-order model and are flexible enough to fit higher-order models when needed,

while simultaneously filling the interior of the experimental region.

A. EXPERIMENTAL DESIGN IN THE SIMULATION DOMAIN

A common practice of analysis is to develop a baseline specification of input
factor settings that represent a system configuration. The analytic questions usually entail
investigating which of the experimental and decision factors have a significant impact on
the response output. Two typical methods for experimentation are to vary one factor at a
time or to develop excursions from the baseline to see what happens. Varying one factor
at a time does not allow us to identify factor interactions or synergies. An interaction is
when a factor’s impact on the output depends on the setting or value of another factor. A
positive interaction implies that factors complement each other and a negative interaction
implies that factors substitute each other. Most complicated systems contain multiple
synergies. Examining excursions from the baseline usually means that the input factors
may be varied simultaneously; this may result in confounding effects, thus making it
impossible to identify which input factors cause the observed impact on the response. To
address these concerns, experimenters use the methods of DOE to help understand how

our world works.



DOE is a statistical concept that provides an efficient means to collect
experimental data and conduct analysis. Classical DOE originated with the work of
Fisher (1925) in the agricultural domain. When designing an experiment, we use a design
matrix that dictates the complete specification of the input factors and their settings for
each experiment. We use DOE to efficiently explore the design space, to allow for the
identification of factor interactions, and to prevent confounding between factors. We
design experiments in such a way so that we can get as much statistical information from
the experiments as possible with the least amount of work. DOE is particularly useful in
simulation studies because of the large number of potential factors, the complex response
surfaces that are involved, and the user can control the experiments without the need to
block confounding effects typically required during physical experiments. Some of the

differences between physical and simulation experiments are listed in Table 1.

Table 1. Differences between physical and simulation experiments.

Characteristic Physical Simulation
Number of factors Few Many
Number of levels Few Many
Number of responses Single Multiple
Error variance Homogeneous Heterogeneous
Presence of interactions Negligible or limited Important and complex
Error structure iid Normal Complex structure
Response surface form Linear Nonlinear

Because of the differences noted in Table 1, there is a need to have experimental
designs specifically suited for a simulation study. Within the simulation context, DOE
allows us to address three types of practical problems: develop a basic understanding of
a system, find robust solutions or policies as opposed to optimal, and compare the merits
of decisions or policies (Kleijnen et al., 2005).

Developing a basic understanding spans across two extremes; on the one end, we
want to gain insight into the mechanisms of a vague, ill-defined, or not-well-understood
problem with limited, real-world data. On the other end, we want to perform detailed

analysis on a verified and validated simulation model. No matter where we are in
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between these two extremes, there are a number of benefits in performing DOE that can
help us understand a simulation model. These benefits include uncovering detailed
insight into the model’s behavior, allowing us to examine the modeling assumption
implications, helping us frame the questions when we do not know what to ask,
challenging or confirming expectation of directional factor effects and their relative
importance, and uncovering problems of program logic. It is important to note that a
factor’s importance depends on the context of the simulation experiment; a factor may be
influential in one setting, but not in another. Because system analysis involves
uncertainty, finding optimal solutions may not be appropriate when the probability of a
certain event is near zero. Robust analysis allows us to investigate acceptable solutions
with minimal variation. A robust system performs consistently across a wide range of
circumstances. DOE allows us to designate input factors as two types: control or
decision factors and noise or uncontrollable factors. The analysis will find solutions by
finding a robust setting of decision factors in the presence of uncertainty. We can
compare decisions or policies by performing rank and selection techniques that help
select the best potential choice for a system or how to screen potential solutions to obtain
a subset of good ones. For a detailed discussion of ranking and selection procedures, see
Bechhofer, Santner, and Goldsman (1995).

There are many types of experimental designs used for different purposes. A
design’s use depends on a number of different considerations; some of these include: the
number of potential factors, the number of experiments or design points in the design
matrix, the types of meta-models that will be fit, and the a priori assumptions about the
response surface. The number of factors and the response surface complexity
assumptions may be the two most important considerations. If we have a small amount of
potential factors and we can assume that there are no higher-order terms (i.e., the
response surface is linear), then we can use full-factorial, two-level designs to identify
which of the potential factors are important. The number of design points needed to
perform a full-factorial design increase exponentially as the number of potential factors
increase; therefore, we may need to use fractional factorial designs that require fewer

design points. The cost for using fractional factorial designs is that the factor’s effect may
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be confounded or aliased with other factor main effects or second-order effects. Within
the domain of fractional designs, the term resolution indicates what type of confounding
may exist among the factors. A resolution III design has its main effects confounded with
the two-way interactions. A resolution IV design has main effects that are not confounded
with other two-way interaction effects, but we cannot determine which interaction is
significant if the analysis indicates that there are two-way interactions present. We need a
resolution V design in order to identify which two-way interactions are significant when
they are present. Two-level, factorial designs provide us with a good way of identifying
meta-models that have linear and interaction effects, but if the response surface may be
nonlinear, then we must use a different design type to explore what happened between
the two levels.

We consider experimental settings involving a stochastic, computer-based
simulation in which users specify the input values and analyze the outputs. The design
matrix is the complete specification of input settings for each factor over a set of runs.
We assume that the design is specified prior to the experiments being conducted, as
opposed to a sequential one. The simulation being investigated contains k variables that
we wish to vary in n computational experiments over a k dimensional hyperrectangle. We

denote the n x k design matrix as X, where row i of X corresponds to the ith experimental
run, and column j represents the jt4 input variable. Thus, X 1] is the value the experimenter

sets for factor j in run i. We further denote the jth column of X as X/and the ith row as X;.

Finally, let y; be an outcome generated by the ith experiment.

B. CHARACTERIZING COMPLEX BEHAVIOR WITH A SURROGATE
META-MODEL

An important goal in DOE is to identify a short list of important factors from a
long list of potential factors. We can do this with the use of statistical meta-models that
approximate the implicit input/output function of a simulation. By data farming the
simulation model, we can obtain the data needed to develop a statistical meta-model, or
“model of a model,” that acts as a surrogate of the simulation model once it is verified.

We often express the deterministic component of the meta-model as a polynomial
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function of factors and the stochastic component as white noise. The white noise
assumption usually assumes that the errors be normally distributed, independent, and
identically distributed (iid). Unfortunately, simulation models typically have unequal
variance; therefore, it is important for our designs to sample points in a balanced fashion
so that they cover the majority of the design space defined by each of the factor ranges;
this way, we can identify where the variance is unequal. In order to estimate the variance,
we must perform multiple replications. The terms in the meta-model’s polynomial
function are the subset of important factors from the potentially many that are statistically
and practically significant. Statistical significance is usually determined when the term’s
coefficient has a p-value of less the 5% or 1%; practical significance involves knowledge

about the system that indicates important factors.

1. First- and Second-Order Meta-Models

If we assume the response surface is a linear combination of the input factors,

then the meta-model has the following form:
y=PBo+X1BiX +¢, (1)

where y is the response, X’ is the jth input factor, k is the number of factors, S, is the
intercept term, and S is the coefficient of the X term and represents a factor’s rate of
change, or effect, on the output response y, when all other factors are held constant. The
error term € represents other sources of variation (stochastic component) not accounted
for by the factor’s systematic variation (deterministic component). The stochastic
component is a result of a lack of fit or pseudo random variables in the simulation. When
we can assume that the true response surface is linear, then we can experiment at the low
and high factor settings to identify significant rates of change among the factors.
Response surfaces from complicated simulations are rarely well represented by
linear combinations of the input factors. As stated before, the second-order model is the

most used polynomial to model real-world problems and it has the following form:

y=PBo+ X1 BiX + T Bji(XN* + T T By X' X + €, (2)
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where (X/)* is the quadratic term for the jth input factor, f5;; is its coefficient, X'X”is

the two-way interaction between the itk and jzh input factors, and f;; is the coefficient of

X'X’. The quadratic term’s nonlinear effect indicates a factor’s diminishing or

increasing rate of change on the response. In order to identify a quadratic effect, we must

experiment not only at the low and high factor settings, but also in between. Assuming

that the true response is linear when, in fact, it is nonlinear, can cause misleading

interpretations. For example, Figure 1 shows how a linear assumption indicates that the

amount of increase necessary to improve the output (y) is far more than is actually

needed. This faulty assumption could result in a significant waste of resources.

Output (y)

Figure 1.
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The two-way interaction term X'X’  indicates that a factor’s effect depends on

the setting or level of another factor. Figure 2 shows how the effect of factor X’ depends

on the setting of factor X°.
X2 High ~ When X?is High,

increasing X! will have an
impact on the Output y

Output (y)

When X? is Low, increasing X!
will have NO impact on the
Outputy

X? Low

Factor Effect (X7)

Figure 2. Two-way interaction effect. Factor X’ only has an impact on the response
when factor X is set at the highest level.

The quadratic and two-way interactions are the most common polynomial forms
that characterize the complexities of a system; they are referred to as the second-order
terms. In order to identify these higher-order effects, we must expand the regression
matrix to include additional columns that represent the higher-order terms within the

meta-model.

2. The Importance of Minimal Correlations

Least squares estimation is the most common method to estimate the f

coefficients. The precision of these estimates depends upon the correlations among input
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factors within the design matrix (Ryan, 2007). In order to ensure that factor effects are
not confounded with other effects, the design should minimize the correlations among
factors. If a factor correlates well with the response, but has a high correlation with
another factor, then we cannot tell for certain which factor contributes to the observed
change in the response variable. In addition, correlation impacts the length of the
confidence interval around f;, making it harder to identify the true impact of a factor on
the response (Box & Draper, 1987). This section demonstrates, analytically and
empirically, the impact that correlations have on the f§ estimates.

Figure 3 demonstrates how correlation inflates the variance of the estimates by
varying the angle between two vectors, X! and X2, from 1 to 90 degrees (a correlation of
0 is analogous to two vectors that are orthogonal, with 90 degrees between them). Each
of the vectors has a unit length of 1 and is anchored at the origin. Assuming that the
variance of the response (a2) is constant, the variance of the estimates can be determined

analytically with the following form (Montgomery, 2008):

var(B) = (X'X) a2 (3)
Therefore, var(ﬁ) is a function of the design matrix, X. We created the graph in
Figure 3 by rotating X from 1 to 90 degrees and evaluating var(ﬁ’) using Equation (3).

We can see from Figure 3 that when the angle between two vectors is less than 50

degrees, the variance of the estimates is inflated significantly.
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Figure 3.

Impact on the coefficient estimate variance as the angle between vectors

increases. The variance is inflated as the angle between vectors approaches zero.

To further demonstrate the impact of the angle between two unit vectors, we
simulated multiple, least-squared fits on an arbitrarily chosen true model with random
error using a design with two factors, X! and X2, and two design points. The simulation
response was fit to three linear models. One where both X and X? were fit to create an
unbiased linear model, and another two linear models that fit X* and X? individually to
create biased estimates (these models are considered biased because the original true
model contains both X! and X?). Figure 4 shows the true model at the top and the impact

on f; and B, from the angle between X! and X2, for both the unbiased model and the two

biased models.
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Figure 4. Monte Carlo simulation experiment (1,000 runs) of the impact on f when

the angle between X'and X2 is varied between 1 and 90 degrees. The top two charts
show the estimates when fitting the unbiased linear model (y = p; X! + p,X?). The
bottom two charts show the estimates for the other two biased linear models

(y = X' and y = B,X?).

The angle between X' and X? only severely impacts the B estimate in the
unbiased linear model when the angle is close to zero. For the biased models, however,
the [ estimate was severely impacted. The [; and [, estimates from the biased linear
models deviate significantly from the true model as the angle between X'and X2 gets
closer. During most simulation studies, there are a large number of possible terms that
include not only the linear terms, but the higher-order terms as well. We do not want the
results of our f estimates to be a function of which terms we decide to include in the

model fit. The S, biased estimate, while fitting the y = $,X? linear model, has a
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coefficient sign reversal (negative to positive) as the angle between X'and X? decreases;
this results in a completely inaccurate estimate of the impact of X2 on the response, y.
Figure 5 shows the impact of high correlations on the f; estimates for a full
second-order model, using a simple deterministic least squares fit. To the left of
Figure 5, there are two columns from a 1% Order NOLH, its two-dimensional projections,
and correlation matrix that include the second-order terms. The top right of Figure 5
shows an arbitrarily chosen true response surface with no random error and its
polynomial form. The fitted model table shows the different combinations of models we
can fit and the resulting least squares estimates for each term’s ;. We can see that
because there are high correlations between the second-order terms, the ; estimates are
significantly different than the true model coefficients; these differences can lead to
misleading interpretations. Because the linear terms have zero correlations between them,
these estimates are accurate no matter what model we fit. In summary, nearly orthogonal
designs result in nearly independent estimates of regression coefficients with higher

precision, while avoiding potential biases due to under-fitting.
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Figure 5. Impact of high correlations on the meta-model estimates. Within the fitted
model matrix, red indicates a deviation from the true model coefficient, green indicates
an accurate estimate.

In order to obtain the maximum amount of information from an experimental
region we must ensure that the correlations between factors are minimized. The type of
experimental design dictates the types of meta-model we can fit when we need to find the
significant few from the potential many. Therefore, we desire designs that have minimal

correlation among all terms in our meta-model.

3. Computational Complexity

The number of terms needed to estimate a full second-order model increases

according to the following expression:

p=1+2k+k(k—1)/2, 4)
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where p is the number of terms and & is the number of factors. In practice, the actual fit
requires far fewer terms, but we need to consider all of them within the regression matrix
in order to identify the significant ones. Minimizing a design’s maximum absolute
pairwise correlation for a second-order model is significantly more difficult than for a
linear model, or a linear model with the quadratic terms added to it. For example, there

are as many (g) pairwise correlation comparisons for a 15-factor, second-order model as

there are for a 135-factor linear model (9,045 comparisons). Figure 6 shows how the
pairwise correlation comparisons increase exponentially as the number of factors
increase. In big O notation, we would say that the number of term’s growth expansion for
a second-order model is O (k?). The implications of this high growth rate means that we
do not expect to find space-filling designs with much greater than 15 factors for a second-

order model, using the genetic algorithm, due to the computational complexity.
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Figure 6. Number of pairwise correlations as k increases. There are a significantly

higher number of pairwise correlations when we include the two-way interaction terms in
the regression matrix.
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4. Thresholds and the Importance of Space-Filling

A second-order meta-model approximates a smooth, nonlinear response surface,
but cannot account for a three-way interaction, a cubic term, a discontinuous step
function that may exist in the output, or many other relationships. Step functions or
thresholds are common when dealing with complicated response surfaces. Identifying the
presence of a step function can lead to important insights when analyzing a system. For
example, during the test and evaluation of the maximum allowable weight of a cargo
parachute, the rate of decent may increase linearly or nonlinearly as the weight increases,
up until a weight threshold. Once we exceed this threshold, the parachute will collapse
and increase, or step up, the rate of decent by a significant amount. Identifying the weight
threshold for a cargo parachute is, therefore, critical for those involved with its use. For
an example of threshold detection using an LH design in software testing, see Cioppa and
Lucas (2007). In order to account for an existing threshold, we can include a step

function in the meta-model with the following form:
Y =Bo+ X1 BiX) + X1 Bjy(X)? + X T By X X + BI( XS > threshold) + €, (5)

where /(a) is an indicator function that has a value of 1 if a is true, and 0 otherwise. For
example, if the value of X° exceeds the threshold, the response will step up in the amount
of PBs. Space-filling designs are particularly useful for identifying the presence of
step functions.

Partition trees are an excellent way to identify thresholds. For continuous
variables, a partition tree finds the optimal split in a data set where the distance between
the two group means is the greatest (Sall, 2007). Each split occurs at a factor level that
separates the data into two groups, one below and one above the split level. Figure 7
shows a second-order polynomial with a step function and a partition tree that finds

where the discontinuous step function occurs.

20



y =10 4+ 20X + 20(X)2+30I(X > 0.5) s0] Py
704 T T
90 0] BN
804 50
>40
70+ 30
20 - T T L e
80+ et Lt . .- N .
g 504 0 %<0.51 I =051
9’1‘ All Rows
2 a0
= 304 All Rows
Count 201 LogWorth  Difference
20 Mean 24.19602 125.57548 56.867
Std Dev  25.368755
104 \_/
0 A 0 y " y x<0.51 x>=0.51
B o e o=
Std Dev 5.5456424 || Std Dev 7.3275023
Figure 7. The chart on the left shows a quadratic with a step function, /(a) that

represents an indicator function, with a value of 1 if a is true and 0 otherwise. The chart
on the right shows the split in the data where the difference in the response mean for each
group is the greatest.

Partition trees, when used in conjunction with regression analysis, can be
powerful tools for finding meta-models involving step functions. If we find a split that
explains the data’s variability with a partition tree, then we can create a new factor (an
indicator variable) that has value 0 if x is less than the threshold identified by the partition
tree, and 1 otherwise. The indicator variable becomes a term in the meta-model that may
be significant and help explain more of the variance.

The presence of thresholds, or step functions, implies that we must experiment
throughout the design space in order to identify where they are, if they exist. Traditional
designs used to fit second-order models experiment at the center and extreme points of
the design space and, therefore, may not find a threshold. A traditional design often used
to fit a second-order response surface is the D-Optimal design, which minimizes the
determinant of the covariance matrix (Myers et al., 2009). Figure 8 shows the
two-dimensional projections of a D-Optimal design next to an orthogonal space-filling
design, both of which have 2 factors and 21 design points (the D-Optimal design has
points overlaid on top of each other). In the center of the figure is a picture of an arbitrary
true model response surface, with a threshold and the correlation matrix for both designs.

The threshold is a region where the response behavior is significantly different than the
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rest of the response surface. Overlaid underneath the two-dimensional projections is a

contour plot of the true model response surface.
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Figure 8. Two-dimensional projections of the D-Optimal and 2" Order NOLH
designs, overlaid onto a contour plot of a true response surface
with threshold.

We can see from Figure 8 that both designs are orthogonal and, therefore, have
the ability to accurately estimate the linear and second-order behavior that exists within
the true response surface. Because the D-Optimal design only experiments at the corners
and center; however, it cannot identify the presence of the threshold, while the

space-filling design can.

C. CORRELATION AND SPACE-FILLING METRICS
1. Correlation Metric

Our algorithm focuses on minimizing the correlations for a full second-order

model (see Equation (2)). Thus, we need to control the correlations among all pairs of
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columns in the second-order regression matrix, which we will denote as Z. The first
column of Z is a vector of all 1s to account for the intercept term; we do not include this
column in Z because the other columns will not correlate with a vector of 1s. The first &
columns are the design matrix X, for the linear terms. The next £ columns are the
quadratics, which are the squares of the columns in the design matrix. Finally, the last
k(k—1)/2 columns consist of the element-by-element product of the columns of X, thereby
enabling the estimation of the two-way interactions. Therefore, Z 1is the
n x (2k + k(k—1)/2) regression matrix needed to estimate the fs in Equation (2). Figure 9
shows a visual depiction of the differences between the design and second-order

regression matrices, with three experimental factors.

Linear Linear Quadratics Two-Way
Interactions
A A A A
[ \ [ |l \ [ \
1 ] 1 1 6 1 36 1 6 1 6
3 2 8 3 2 8 4 64 6 24 16
2 3 5 2 3 5 9 25 6 10 15
- | 5 7 = .4 5 7 16 25 49 20 28 35
X= 7 a 6 Z= 7 4 6 a9 16 36 28 42 2
5 1 2 5 1 2 25 1 4 5 10 2
6 7 3 6 7 3 36 49 ° 42 18 21
8 8 4 8 8 4 64 64 16 64 32 32
Figure 9. Design and second-order regression matrices, where £ = 3.

The correlation coefficient between any two vector columns, Z!and Z/, in

regression matrix Z is:

22:1[(Z§;—7i)(zi_zj)]

g n i _Zi\Zsn J _7j 2
J2b=1(zb_zl) Zb=1(Zb_Z])

(6)

where Z! and Z/ are the mean of the ith and jth columns in Z. Ideally, we would like a
design in which p; =0 fori=1,..., 2k + k(k—1)/2 andj = 1,..., 2k + k(k — 1)/2, with j # i.
We quantify the degree of nonorthogonality by calculating the maximum absolute

pairwise (map) correlation between the columns of Z:
Pmap = max{lPij':v(i * ])} (7)
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A design with a pp,,,, near zero will minimize confounding factors and result in nearly
independent and more precise coefficient estimates in the second-order regression
meta-model as well as enhance the performance of partition trees (Kim & Loh, 2003).
Other authors (e.g., Owen, 1994; and Joseph & Hung, 2008), minimize the sum (or
average) of the squares of the pairwise correlations (for a first-order model). We prefer to
minimize Pp,q, because it bounds the worst-case correlation. A design can have low
average correlation, but a few unacceptable values—especially when there are a large
number of pairwise correlations, as is the case when fitting second-order models to a

model with numerous factors.

2. Space-Filling Metric

Low correlation, even orthogonality, does not guarantee good space-filling. The
modified L, discrepancy (ML) is a space-filling measure often used to assess how well a
design covers the entire design region; the smaller the value, the better a design’s
space-filling property (Hickernell, 1998). The ML, is a modified version of the L,
discrepancy, which is traditionally used as a proxy for space-filling. Fang, Lin, Winker,
and Zhang (2000) state that discrepancy is a measure of uniformity and the L, “is
probably the most commonly used measurement for discrepancy . . . and has been
universally accepted in quasi-Monte-Carlo methods and number theoretic methods”
(p- 238). The notion of discrepancy means that if there are too few or too many design
points in a subregion compared to its volume, then the design has poor discrepancy; put
another way, a low discrepancy (good space-filling) indicates that the proportion of
points within a subregion is nearly proportional to the volume of the subregion.
Figure 10 shows an illustrative example from Fang and Wang (1993) of an experimental
region with two factors (A and B) and with two rectangular subregions anchored at the
origin (0,0). Rectangle 2 has a disproportionate number of design points compared to its

volume, resulting in a large discrepancy indicating poor space-filling.
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Figure 10. Two-dimensional design point projection of Factors A and B, with two

rectangle subregions anchored at the origin. Rectangle 2 has a larger discrepancy than
rectangle 1.

There are an infinite number of rectangular subregions nested within the design
space, making the L, discrepancy extremely computationally expensive, especially for
high dimensions. The ML, (with the designs normalized to [0,1] in each dimension) is an
excellent alternative to assess a design’s space-filling property (see Matousek, 1998;
Hickernell, 1998; and Okten, 2001). The ML, metric is calculated using the following

expression:
21—k

Kk
ML, = G) ——Yg-1 [T (3 — x%) + %Z’,}:l Yjea Iica[2 —max(xap x;1)]. - (8)

A design with a smaller ML, is preferred. By its construction, if a design has a low ML,,
then all of the projections of the design onto subsets of the k& variables will likely also

have good space-filling properties.

D. TRADITIONAL AND OPTIMAL SECOND-ORDER DESIGNS
1. Traditional Designs

In order to identify quadratic effects, a design must experiment not only at the two
extremes, but also in the interior, most often at the center. A three-level factorial design

works best at finding nonlinearities, but the number of design points required quickly
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becomes infeasible due to the “curse of dimensionality.” Additionally, the number of
potential terms needed for a full second-order model increases significantly as the
number of factors increase. The most frequently used design to fit a full, second-order
model is the central composite design (CCD) (Myers et al., 2009). The CDD was first
introduced by Box and Wilson (1951) and has numerous applications in response surface
methodology (Box & Draper, 1987). The CCD has 2* corner points, 2k axial points, and a
select number of center points. The axial points are set at a specified distance from the
center to allow for rotatability. A design that is rotatable will have the same prediction
variance in the output response throughout the experimental region. A rotatable design
must extend the axial points beyond the corner points, which may not be feasible
depending on the experimental region. There are three types of CCDs, each with their
own properties and reasons for use. The circumscribed CCD has the axial points extended
beyond the corner points to allow for better estimation over the entire design space. An
inscribed CCD collapses all points inside the feasible region so that the extreme points
are no longer at the corners of the design space. This preserves the rotatability property
and provides good estimate accuracy inside the central subset of the design space. The
Faced CCD has the axial points positioned on the face of the design space. The Faced
CCD is not rotatable and provides a fair estimate over the entire region, but not for the
quadratic coefficient effects. It does, however, allow us to sample at the extreme corners
of the design space without having to collapse the points to fit inside the establish factor
ranges.

Another popular second-order design is the Box-Behnken (BBH) Design (Box &
Behnken, 1960). BBH designs are used when the extreme corners of the design space are
undesirable or infeasible. The BBH designs have no factorial corner points or face points.
The design points are only at the center and the midpoints of the design space edges.
BBH designs are rotatable and require less design points than the CCD for four or less
factors. The CCD and BBH designs are excellent design choices when we know for sure
that the true model is second-order, but, in practice, they are only used for a small

number of factors; their larger size designs are considered inefficient due to the large
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number of design points. Two designs that were developed to address the need for
efficient second-order designs are the Hoke and Hybrid designs.

The Hoke design experiments at selected subsets from the 3* factorial design and
axial points from the CCD (Hoke, 1974). The design points reside at the corners, axial
points, and edges. The Hoke designs are a good option when the experimenter needs a
saturated design, where n = k + 1 for up to six factors. The trade-off is that there are no
degrees of freedom available to estimate the pure error of lack-of-fit (Myers et al., 2009).
Hybrid designs are a set of saturated or near-saturated economical designs (Roquemore,
1976). For a given k, the Hybrid design has the same number of design points as a k — 1
CCD, where the number of levels for the kth factor is set to create certain symmetries in
the design (Myers et al., 2009). The hybrid designs are considered economical for up to
seven factors. These classes of economical designs are good for physical experiments
where the number of factors and designs points is small, but not for the

simulation domain.

2. Optimal Designs

Computer-generated optimal designs are often used when traditional designs are
not applicable. For example, when there is an irregular experimental region that has
factor constraints, qualitative factors, and/or if we want to fit a nonstandard model that
excludes a subset of quadratics or interactions (Myers et al., 2009). The computer
typically generates a design by using a point exchange algorithm that maximizes a
specified criterion for a given model, usually either first, second, or higher order.
Furthermore, the form of the covariance matrix is often assumed. The types of criterion
used are known as the alphabetic optimality criterion, which typically minimize some
function of the covariance matrix of the coefficient estimates. For example, a D-Optimal
design minimizes the determinant of the covariance matrix, while the I-Optimal design
minimizes the average prediction variance; both for a prespecified model (usually a main
effects model, with constant variance). Optimal design theory originated with the work of

Kiefer and Wolfowitz (1959). Practical use of the optimal designs began in the 1970s and
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1980s, when the computer became more popular. For a detailed discussion of optimal
design criteria, see Atkinson and Donev (1992).

Computer-generated optimal designs work very well when we know the true
model form; when the true model is second-order, the CCD and BBH perform
exceptionally well. Designs meant for second-order models perform well when the
response is a second-order surface. More often than not, we have no idea what the
response surface looks like. If the true response happens to be third- or fourth-order, then
the designs that sample at the corners of the design region will have regression matrices
with columns that are linearly dependent. A regression matrix with linear dependence
cannot fit a model using the method of least squares. When analyzing simulations that
represent complicated systems, we need designs that allow us to fit a variety of different
models of high-order without having to make a priori assumptions about the response
surface. Space-filling designs provide information about all portions of the design space
interior and are better suited for identifying uncertain response surfaces (Santner et al.,
2010). Traditional space-filling designs do not require strong a priori assumptions, but,

unfortunately, can have significant problems with high correlation between columns.

E. SPACE-FILLING DESIGNS

The traditional and optimal second-order designs mentioned in Section D
typically experiment only at the corners, faces, and center of the design space and,
therefore, are not flexible. Space-filling designs are better suited for identifying unknown
response surfaces, where multiple complex forms and localized effects are possible
(Myers et al, 2009). Some of the popular space-filling designs include the
sphere-packing, uniform, and maximum entropy designs. Sphere-packing designs
maximize the minimum distance between pairs of design points (Johnson, Moore, &
Ylvisaker 1990). Uniform designs scatter the design points as uniformly as possible
throughout the design space (Fang, 1980). The maximum entropy designs maximize the

information contained in the distribution of a data set (Shewry & Wynn, 1987).
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1. The Random Latin Hypercube Design

Chapter I indicated that the LH is a good, all-purpose design for continuous
factors in computer simulation experiments. The LHs’ critical shortfall is their inherent
propensity for correlations among the design columns. In the recent years, there have
been some significant contributions that extended the LH designs into higher dimensions,
with minimal correlations. When Mckay et al. (1979) first introduced the Latin
Hypercube Sampling (LHS) design, it was considered an improvement to the random
sampling techniques. The LHS was shown to reduce the sampling variance of the
predicted average response output when the function is monotone in each of the inputs.

Since our designs for continuous factors are based on the LH family, we detail
how they are created. McKay et al. (1979) first proposed LH sampling and described it as
follows: For each input variable X, “all portions of its distribution [are] represented by
input values [by dividing its range into] n strata of equal marginal probability 1/n, and

[sampling] once from each stratum” (McKay et al., 1979, p. 56). Following Koehler and

Owen’s (1996) notation, the ith element in the jth column, X/, is determined by Xij =

i

Fj_l ((n’(ll—_u”)), fori=1,...,nand j = 1,...k, where m;(1), ...,m;j(n), is one of the n!
possible random permutations of 1,...,n in which all n! permutations are equally likely.

F;, for j = 1,...,k, are continuous and invertible distribution functions. Uj;, fori=1,...,n

ijs
and j = 1,...,k are independent and identically distributed uniform [0, 1] random

variables. Many analysts choose F; to be a uniform distribution and take a fixed value in
each stratum (e.g., the median). In this situation, the design points all fall on a lattice in .-
space. In such a case, creating an LH corresponds to independently generating k£ random
permutations of the first » natural numbers and appropriately scaling the columns to
cover the factors’ ranges. This uniform spacing guarantees that for each factor j,
assuming its scaled range is [ab], Vx €]a, b],maxi=1wm|x —Xij| < (-
a)/(2(n — 1)). Therefore, if a response to a factor has a sharp threshold, these designs
will closely bracket it. Moreover, with an LH, at the extreme, an analyst could fit an n — 1
degree polynomial to a single input variable. Figure 11 shows an illustration of a LH with

two factors X! and X2. The experimental region examines a portion of a nonlinear
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response surface by sampling within the rectangle that lies on the column space of X* and
X2. Spreading the samples throughout the region allows the experimenter to explore how

the response, f(x), behaves within the region’s interior.
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Figure 11. A two-factor Latin hypercube design projection onto the column space
of X.
2. Improvements to the Random Latin Hypercube Design

Iman and Conover (1982) improved the LHS by controlling the correlations of the
design matrix. They used a method that induced rank correlation in the design to
correspond with the correlation that one would expect from the input factors. The method
generated several matrices and the user would choose the matrix that provided the most-
preferred Spearman’s Rank Correlation. Florian (1992) developed a method known as
the Rank Cholesky Dependence Induction Algorithm, which usually resulted in reduced
correlations among the columns in the matrix. His method used a rank matrix where the
factor-level values of the columns were rearranged to meet the new rank structure. Owen

(1994) used a ranked Gram-Schmidt orthogonalization algorithm to control correlations
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among factors. His method attempts to convert LH designs to correspond with correlation
matrices that approach the identity matrix; it was shown to reduce correlations, but did
not guarantee their complete elimination.

Prior to 1998, there were no algorithms to generate LH designs that were
orthogonal. Ye (1998) introduced the first OLH design matrices between each of the
linear effects and the linear effects with the second-order effects; however, correlations
between the second-order effects and themselves still existed. Ye’s method produces
orthogonal design for experiments with n = 2" — 2 and k = 2m — 2, where n is the number
of design points, k is the number of factor columns, and m is any positive integer. These
designs are not efficient (e.g., 20 factors require 2,049 design points) and are inflexible
because the number of factors must round up to k£, where k£ must be an even number.
Cioppa and Lucas (2007) extended and improved on the space-filling properties of Ye’s
designs by accepting a small amount of nonorthogonality (a maximum pair-wise
correlation of less than 3%). Cioppa’s method produces Nearly Orthogonal Latin
Hypercubes (NOLHs) for experiments with n = 2" + 1 design points and k = m + (mz_ D)
factors; he cataloged NOLHs for up to 22 factors and 129 design points. Ang (2006)
extended Cioppa’s method and cataloged OLH and NOLH with a maximum pair-wise
correlation of less than 5% for up to 512 factors and 1,025 design points. Ye, Cioppa, and
Ang used permutation matrices to find their designs. A permutation matrix has exactly
one entry of the number one in each row and each column and zeros everywhere else.
Multiplying any two permutations to form a two-way permutation can create additional
permutations matrices. Ye and Cioppa used two-way permutations, but Ang extended
their methods by exploring p-way combinations for the permutation matrices where

p <m—1. The number of factors with the same number of design points is now

k=1+ Z?zl (mj_l). Steinberg and Lin (2006) presented a new construction method for

OLH by rotating the points in a two-level factorial design to preserve the orthogonality of
the original design. Their method produces OLHs for experiments with n = 2* with m a
power of 2 and k = B,,m, where B,, = |(n — 1) / m]. Despite these improvements the
designs are very inflexible (e.g., 12 factors require 16 design points, but 13 factors

require 64 design points). Hernandez (2008) addressed the inflexibility in design
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dimensionality with a mixed integer program (MIP) that creates fully saturated OLH and
NOLH designs with a py4;, less than 0.05 for the linear terms and any given number of
factors. An MIP is a mathematical method that optimizes an objective function that has a

mix of continuous and integer decision variables, given specified constraints.

3. Discrete and Categorical Designs

Simulation experiments often have a mix of input factor types. Continuous factors
range between a low and a high setting, while discrete and categorical factors have a
predetermined amount of levels. The discrete levels have a numeric meaning, while each
categorical level represents qualitative categories. LH designs are useful for the
exploration of continuous factors because they provide insight throughout the
experimental region. Experimenters use orthogonal arrays when exploring discrete and
categorical factors. Rao (1945) introduced orthogonal arrays in order to ensure that
qualitative factors are not confounded with each other. For a review of the techniques
used to create orthogonal arrays, see Hedayat, Neil, Sloane, and Stufken (1999). A
significant limitation of orthogonal arrays is that the number of n experiments needed for
a moderate number of factors is too large. For example, an orthogonal, full-factorial
design, with 10 discrete factors, each with 10 levels, requires 10 billion experiments,
making them extremely inefficient. To address the inefficiencies of orthogonal arrays,
Vieira, Jr. et al. (2011) developed NO/B designs in order to explore all types of factors
simultaneously (continuous, discrete, and categorical) in a reasonable amount of
experiments. This dissertation will refer to the designs developed by Cioppa and
Hernandez as 1* Order NOLH designs and the designs developed by Vieira, Jr. as
1* Order NO/B designs.

4, Space-Filling Design Contribution

The OLH, NOLH, and NO/B designs allow analysts to explore complicated and
uncertain response surfaces. Despite the significant improvement in the use of these
space-filling LHs, there is still an opportunity to improve this field of study. Finding LH

designs that minimize the pp,q, among not only the first-order terms, but also the second-
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order terms, is a worthy contribution. Figure 12 shows a matrix of the aforementioned
authors’ contributions to the space-filling designs’ literature, with respect to four different
design properties. These properties include the p;,4, among the effects order ( 1 or 2");
the factor number flexibility (e.g., an inflexible family of LH designs is one that has the
same number of design points for a multiple number of factors, while a flexible family of
LH designs has one set of design points for each number of factors); the factor types
(continuous, discrete, or categorical); and the number of factors. Figure 12 shows where

our proposed designs fit into the body of literature.

© - -
il ; rthogonal and Nearly |5 .S ICREIRCIE
Space-Filling Design Latin Hypercube | CrthogonalandNearly o 2 B iR -
Contributi Sampling Orthogonal Latin S _Ou = _Ou g
) —
ontributions Hypercubes ] S S S°
3 — &
& ~ % m 3 =) 3
. £ Q> — . © S S S
Spectrum Design |2 5|2 2|3 E |5 = = =
o 2 (8 o —_ () = B 3 © ©
Legend |Properties| 5|5 (S |2 |8 |2 | 8|5 _| 2| S £
53|0g E|s| S8 S |25 & | =
X c|l g X ol [ = a o w |= S c = Q Q
2 olg | © 3 v |29 ¢ (82| o Q2 (1] (]
S ol 2 = [¢) > [0 8 < |68 T s = =
2nd Order Med | Med | Med | Med | Med | Med | Med | Med | Med | Med
Effects with to to to to to to to to to to Low Low
Maximum Second Order | High | High | High | High | High | High | High | High | High | High
Correlation Between | Linear Effects | Med | Med | Med | Med
Effect Type: Low (< | with 2nd Order | to to to to | Low | Low | Low | Low | Low | Low | Low Low
0.05), Med to High Effects High | High | High | High
(significantly >0.05) | Linear Effects | Med | Med
with Linear to to | Med | Med | Low | Low | Low | Low | Low | Low | Low Low
Effects High | High
Flex: unique design
for each factor Factor Number Flex Flex
u
number; Inflex: no o Flex | Flex | Flex | Flex |Inflex|Inflex|Inflex|Inflex Flex Flex
A T Flexibility (Sat) (Sat)
unique designs; Sat:
Saturated
Continuous (C), cD
Discrete (D), Factor Types C C C C C C C C C - C D
A Cat
Categorical (Cat)
Efficient Number of
Design Points: Low Number of
(<20), Mod: High | High | Mod | Mod | Low | Mod | High | High | High | High | Low Low
Factors
Moderate (>= 20),
High (>=50)
Figure 12. Literature review summary of the space-filling design contributions. The

Spectrum Legend lists four properties for the LH family of designs.
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F. SUMMARY

Design selection primarily has to do with the number of potential factors and the
response surface complexity. For situations where there are a small number of factors and
we can assume that the response surface is linear with no interactions, a two-level
factorial design is sufficient. As the number of factors increase, we can efficiently use
fractional factorial designs, but we increase the potential for confounding effects. When
we can assume that a second-order model can represent the response surface, we can use
traditional designs like the CCD and the BBH Design. Computer-generated optimal
designs work well at estimating the predicted response output or the model coefficients,
when the design space region is constrained and we can specify the type of true model.
When the response surface is uncertain and may include a combination of higher-order
behavior and a step function or threshold, then space-filling designs that sample
throughout the entire design space can best fit the appropriate model. Recent
advancements in space-filling designs developed NOLH designs that have minimized the
correlations between the linear effects and the linear effects with the second-order effects
for continuous, discrete, and categorical factors. What remains is to find designs that also
minimize the correlations between second-order effects and themselves.

Kleijnen et al. (2005) wrote a comprehensive article titled “The User’s Guide to
the Brave New World of Designing Simulation Experiments.” In this article, there is a
figure that shows the recommended designs according to the number of factors and
system complexity assumptions. An update to this figure, which includes recent
experimental design advances, is shown in Figure 13. The figure indicates how our
proposed designs extend the simulation experimenter’s ability to understand complex

response surfaces for a modest number of factors.
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Figure 13. Recommended designs according to the number of factors and system

complexity assumptions.

Depending on the experimental conditions, there are a number of different design
properties an experimenter must consider when selecting a design, especially for complex
response surfaces. Box and Draper (1987) list 14 properties that often conflict with each
other, which imply that the experimenter must use practical judgment when selecting a
design. For the second-order response surface, the orthogonality and space-filling
properties are in conflict because, to date, there are no designs that perform well in both
areas simultaneously for a modest number of factors. The 2™ Order NOLH and discrete
NO/B designs address this conflict and provide the simulation experimenter with designs
that can better explore the response landscape, while nearly guaranteeing that no first-
and second-order terms are confounded with each other. The 2" Order NOLH and
discrete NO/B designs extend not only the space-filling design body of knowledge, but
also the available second-order response designs. Figure 14 shows how our research

converges the space-filling and second-order response surface domains together.
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Figure 14. Space-filling and second-order design domain convergence. The oversized

stars indicate contributions that originated within the Simulation Experiments and
Efficient Designs (SEED) Center.
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I1l. GENETIC ALGORITHM

To construct the 2™ Order NOLH and NO/B design algorithm we utilized the
principles of GAs (Holland, 1975). GAs have been proven to provide a robust search
mechanism for a wide variety of problems with complicated search spaces (Goldberg,
1989). The algorithm uses random choice as a guide to select better-performing solutions
from a population of candidate solutions. The algorithm iteratively generates new
populations using attractive characteristics of solutions from the previous generation. The
intent is to evolve solutions that perform better with each new generation; the user
measures performance by a predetermined fitness value. GAs are different from
traditional optimization methods. They are heuristics that do not guarantee the optimal
solution, but can find attractive solutions in complicated environments where linear and
nonlinear math programming cannot (Michalewicz & Fogel, 2010).

There are numerous applications of GAs that construct computer-generated
designs. Primarily, these applications focus on optimizing the alphabetical criterion that
find good coefficient estimates or predicted response estimates for a specified model.
Techniques to construct D-Optimal designs using GAs have been shown to outperform
other traditional optimization procedures that require the search space to fit a particular
structure (Heredia-Langner, Carlyle, Montgomery, Borror, & Runger, 2003). GAs were
used to find optimal designs that are robust across a specified number of different models
(Heredia-Langner, Carlyle, Montgomery, Borror, & Runger, 2004). In addition, GAs
have constructed designs involving mixture and process factors that include control and
noise factors (Goldfarb, Borror, Montgomery, & Anderson-Cook, 2005). There are other
search algorithms that use heuristics to find designs. Morris and Mitchell (2008) used
simulating annealing to find designs with a distance metric for the fitness function.
Joseph and Hung (2008) proposed a modification of the simulating annealing algorithm
by using a ‘“smart swap” method, rather than randomly swapping design points. In
addition, they used a weighted average of a distance metric and the average column
correlation among the linear terms as their fitness function. Moon et al. (2011) developed

algorithms for generating maximin LH and orthogonal designs that show improvements
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to the existing algorithms under a variety of criteria. These aforementioned heuristic
algorithms all attempt to minimize the correlations among the first-order terms only.

In our domain, an optimal solution is an orthogonal LH regression matrix (£) that
includes the quadratics and two-way interactions, with good space-filling properties.
Unfortunately, these designs have not yet been found or proven to exist to an arbitrary
number of design points (n). Because our goal is to find good (nearly orthogonal) designs
and not necessarily optimal ones, we choose to use genetic algorithms to find attractive
design solutions with minimal py,q, and good space-filling properties. We will now
review the basics of a genetic algorithm before we describe our algorithm’s

detailed scheme.

A. GENETIC ALGORITHM BASICS

Within a GA, an operator is a set of instructions that performs operations on
solutions to evolve them into better performers. Every GA has a unique set of operators
used within each generation. A simple GA typically uses three types of operators: a
reproduction, a crossover, and a mutation operator (Goldberg, 1989). The reproduction
operator selects attractive solutions from a previous generation in order to create the new
solutions needed for the next generation. A common reproduction operator uses the
notion of a biased roulette wheel, where each candidate solution in a population has a
roulette wheel slot that is sized proportional to its performance. In this way, the algorithm
allows any candidate to be selected, but places a higher selection probability on
candidates that perform well; by spinning the roulette wheel, candidates that have the
largest wheel slot have the highest chance of selection. The crossover operator creates a
new solution by combining a random set of characteristics from the two solutions
selected by the reproduction operator (Goldberg, 1989). The mutation operator randomly
changes a solution before it moves into the new population. Its purpose is to prevent the
algorithm from converging to a local optimum solution and is typically performed with a
low probability. A generation is an iteration of each of the algorithm’s operators. The
simple genetic algorithm starts with an initial population of solutions, and ends with the

best solution found after completing a set number of generations.
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B. GENETIC ALGORITHM SCHEME

Our goal is to minimize Equation (7), while using an LH design. The algorithm
will create designs that minimize the maximum absolute pairwise correlation of the
columns in Z, while sampling once within each of n equally spaced strata for each of the
k factors. Solving this is challenging, since the objective function is nonlinear and not
differentiable everywhere.

Our algorithm starts with one randomly generated, centered design column and a
population of randomly generated, centered candidate columns. We center a column
(around 0) by subtracting its mean from each of the entries. If we did not center the
columns, then they would be highly correlated with their quadratic term. Our GA solution
is a column that, when added to the existing design, results in the lowest ppqp,. Our
algorithm uses two types of operators to modify the structure of a column solution. The
swap operator swaps or exchanges a pair of values, X lJ within the jth column at random
positions. The jiggle operator adds a small value to the element of a randomly selected
row of a column, while subtracting the same amount from a different row. We define the
term jiggle as a slight perturbation to a couple of values within a column. The jiggle
operator does not perturb the lowest and highest values in X/, so that the desired
experimental ranges do not change. The perturbation amount is selected from a uniform
distribution. The upper and lower bounds of the uniform distribution ensure that the
values remain in their original interval. For example, if the upper and lower bounds are
set to £0.5, then the jiggle operator can never perturb a value set to 2 to be greater than
2.5 or less than 1.5. This preserves the idea that an LH samples once in each interval of
the range. These bounds on the jiggle operation also preserve the design’s space-filling
properties. In addition, subtracting the same amount from one element that we add to
another preserves the column’s mean.

In order to create a new population of column solutions, the algorithm selects
attractive columns from the old population and creates new columns by modifying the
selected column’s structure using the swap or jiggle operators. In order to determine the
selection probability, the algorithm uses the notion of a biased roulette, wheel where each

candidate solution in the population has a roulette wheel slot sized proportional to its
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performance (Goldberg, 1989). In this way, the algorithm allows any candidate to be
selected, but places a higher selection probability on candidates that perform well. By
spinning the roulette wheel, candidates that have the largest wheel slot have the highest
chance of selection. A column’s performance is measured by its fitness value. The fitness
value is defined as the complement of the maximum absolute pairwise correlation
(1 - pmap), so that the higher the fitness value, the higher the selection probability. In
order to increase the chance of selecting the columns with a higher fitness, we redefine

the fitness value by using a linear ranking defined as:
fitness(t) = Min + [Max — Min][n — t]/[n — 1], 9)

where fitness(t) is the redefined fitness value of the 74 column; Max and Min are the
maximum and minimum of the original fitness values (1 - pmap), respectively; n is the
number of columns in the population; and ¢ is the rank-ordered index of the original
fitness values (Vieira, Jr., 2008).

The search for a candidate column solution with the lowest ppq, is highly
dependent on the randomly generated, initial population. As the number of generations
increase, the best-performing column converges to a local solution. In order to increase
the chance of finding a low py, 4y, the algorithm performs a limited number of exploration
trials, each with its own initial population and a predefined number of generations. The
algorithm then exploits the population with the best-performing column solution by
continuing a set number of additional generations. In order to prevent the algorithm from
wasting computation time while the best-performing column converges to a local
solution, we established an exit criterion. The algorithm will stop performing additional
generations if the best column has not improved in a set amount of generations; (the
generation exit criteria). Each of the exploration and exploitation generations utilizes the
swap operator only. After all the swap generations are complete, the best-performing
column is placed into X and the algorithm searches for the next column. The algorithm
has the option to perform additional attempts at finding a column if the p, 4y, is not below
0.05; each attempt will have a new initial population and set of exploration and

exploitation generations. Once X contains the designated number of & columns, the
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algorithm then performs a set number of generations using the jiggle operator on each
column in X. The jiggle operator also has a generation exit criteria similar to the
swap operator.

The choice of n and k& depend on the experimental conditions. The experimenter
chooses k based on the objectives of a study. A large k& implies the need for a larger n.
Because of experimental constraints imposed by time and resources, a design may need
to be as small as possible for a given £. To find the smallest » for a given k, we performed
several iterations of the algorithm by bracketing » within an arbitrarily chosen range until
we found the lowest pp,,,. Now that we have defined the solutions, operators, selection
probabilities, and fitness values of our genetic algorithm, we present the algorithm steps
used to find the 2™ Order NOLH and 2™ Order Discrete NO/B designs for a given n and
k. To assist the reader with following the 13 different input parameters discussed in the

steps, Table 2 briefly defines them for reference; the parameters are donated in italics.

Table 2.  Input parameter descriptions for the genetic algorithm.
Input Parameter Description Input Parameter Description
numExploreGen Number of exploration swapPortion Portion of design points
generations. swapped during a swap
operation.
numkExploitGen Number of exploitation \poolSize Size of the pool that contains a
generations. set of candidate columns.
\popSize Size of the population of genExitCriteria Number of generations
candidate columns. performed without
improvement of the fitness
function.
copyPortion Portion of candidate columns |jigglePortion Portion of the design point
that copy into the next jiggled during a jiggle
generation. operation.
halfWidth The bounded distance that colAttempts Number of attempts to find a
prevents the jiggle operator column with a new initial
from perturbing outside a population of solutions if an
range. attempt did not meet the
minimum correlation threshold.
numJigGen Number of jiggle generations. |jigglePasses Number of times the jiggle
operation is performed on the
columns.
numTrials Number of exploration trials,
each consisting of a set of
exploration generations.
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Step1l.  Start with an n x 1 design matrix, X with n design points, and one
randomly generated, LH column (i.e., a random permutation of the first » natural
numbers). Center the column at 0; thus, the extreme values in the column are +
(n-1)/2. Set the population index u = 1.

Step 2. Generate an initial population pop; of random LH candidate columns
and center them. A population is defined as pop,,, for u = 1,...,numExploreGen or
u = 1,...,numExploitGen, where numExploreGen and numExploitGen are the
number of generations performed for the exploration and exploitation generations,
respectively. We denote the ath candidate column in pop, as CZ, for a =
1,...,popSize, where popSize is the size of the population.

Step 3.  Calculate each column’s fitness value. For each C in pop,,, create a
candidate 2™ Order regression matrix Z with all linear, quadratic, and two-way
interactions of y, where y = X U (3. Calculate the py,q), for each Cf using Z with

Equation (6). Calculate each C fitness value in pop,, using Equation (8).

Step4.  Create the next swap generation (see Figure 15):
a. Copy a portion of the highest-performing columns from pop, into
pPOp,+1. This portion is defined as copyPortion, where the number of
columns copied is equal to |copyPortionx n|; copyPortion is set to a value
between 0 and 1.
b.  Create a cumulative distribution function (CDF), based on the relative
fitness values of each C in pop,,.
c. Randomly select a CZ in pop,, using the CDF. With the selected CZ,
create a new column using the swap operator. The number of swap
operations performed is random and depends on the number of design
points, n; this number is drawn from a uniform [1,s] distribution where s =
|swapPortionx n| and swapPortion is set to a value between 0 and 1.
Place the new column into a pooled container. Continue to create new
columns in this same manner until the container is full. The number of
columns in the pooled container is defined as poolSize.
d. Calculate each new column’s fitness (as described in Step 3) within
the pooled container and place the best-performing column into pop,.;.
Increment the uth element of pop,,. Repeat Steps 4c and 4d until the size of

pOopy+1 = popSize.
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Figure 15. This figure shows the mechanics of a swap generation in Step 4 of

the algorithm.

Step 5. Repeat Step 4 until u = numExploreGen.

Step 6.  Continue to explore by repeating Steps 2—5 a designated number of
trials, defined as numTrials.

Step 7.  Save the population, poppes:, from the trial that contains the best-

performing column. Set u# = 1 and pop; = poppest- Exploit pop,.s: by repeating
Step 4 until u = numExploitGen. If there is no improvement after a set number of
generations, defined as genExitCriteria, stop repeating Step 4 and set u =
numExploitGen.

Step8. If the best-performing candidate column, Cpymexpioitgen 1N
POPnumExploitGen, Nas @ Pmap > 0.05, repeat Steps 2-7 for a set number of times,
defined as colAttempts. After performing the set number of column attempts, add

to X.

ce
numExploitGen

Step 9.  Repeat Steps 2—8 until the designated number of columns, £ is in X.
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Step 10. Setj = k.
Step 11. Remove X/ from the design X.

Step 12. Create a container of size popSize for the first jiggle population,
jigPop,.

Step 13. Fill jigPop; with new columns; C{* generated by modifying the
structure of X/ using the jiggle operator. The jiggle operator creates new columns

by adding a small amount w, where w = U — 0.5, to a randomly selected Xl.jl,

while subtracting the same amount to another randomly selected Xi];; Uis a

uniform [0,1] random variable. In order to preserve the design’s space-filling
property, the algorithm bounds the values to be within + a distance from the

original value before any jiggle operation. We define Hij to be the original value
from X l] before Step 10. The bounded distance is defined as halfWidth and is the
maximum distance a value may be perturbed away from 91'] . Setting halfWidth <

0.5 will ensure the values remain within each of the n equally spaced strata in X lj .
Setting halfWidth too high will degrade the design’s space-filling property, but
improve the search for lower correlations. If Xij + w and Xl-j — w, is within the
range [Xl.j -—w > Gij < Xl-j + w], then add w to X{l and subtract w from X{Z
Perform the jiggle operation a random number of times; the number of times is

drawn from a uniform [1, g] distribution, where g = |jigglePortionx n| and
JigglePortion is set to a value between 0 and 1.

Step 14. Create the next jiggle generation (see Figure 16):
a. Copy a portion of the highest-performing columns (copyPortion) from
jigPop,, into jigPop, 1.
b. Create a CDF based on the relative fitness values of each Cf
in jigPop,,.
c. Randomly select a C2 in jigPop, using the CDF. With the selected
C2, create poolSize number of new columns using the jiggle operator (as
described in Step 13) and insert them into a separate pooled container; the
number of containers = popSize.
d. Calculate each new column’s fitness (as described in Step 3) within
the pooled container and place the best-performing column
into jigPop, +,. Increment the uth element of jigPop,,. Repeat Steps 14c
and 14d until the size of jigPop, .1 = popSize.
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Figure 16. This figure shows the mechanics of a jiggle generation in Step 14 of
the algorithm.

Step 15. Repeat Step 14 until u = numJigGen, where numJigGen is the number
of jiggle generations. If there is no improvement after genExitCriteria number of

generations, stop repeating Step 14 and set u = numJigGen.

Step 16. If the best-performing CJ,,, JigGen WIthin jigPOPrymjiggen Improves

the design’s Py, qp, add it to the X. If not, add the originally removed X J back to X.
Decrement the jth element of X.

Step 17. Continue the jiggle generation for each X’/ in X. Repeat Steps 14-16

until j = 0.

Step 18. Repeat Steps 10-17 a designated number of times, defined as

JjigglePasses.
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Step 8. Add the column with the i
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Step 9. Repeat Steps 2-8 until the
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{ Steps 10-17. Once all columns are
in the design, perform jiggle
generations on each them. If the
S correlation improves, replace
them with the new columns.

Step 18. Algorithm
is complete after a
set amount of
jiggle operations.

A strategic view of the algorithm’s 18 steps.

Figure 17 shows all 18 steps to assist the reader with the algorithm flow. Because

the algorithm is highly stochastic and its performance depends on the first random LH

column placed in X, we recommend the user leverage a computer cluster to perform

multiple replications in order to find the design with the lowest pp,,,,. The algorithm’s

output is a design matrix with the lowest p,,,;, found. Table 3 shows an example output

design, with 4 continuous factors and 25 design points.
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Table 3.

Continuous factor design created by the genetic algorithm.

Run x! X2 x3 x*
1 8.01 -11.06 -9.04 -5.52
2 4.2 -7.36 7.89 12
3 -11.2 3.44 -2.21 11.22
4 -3.5 -5.57 -1.5 4.5
5 -3.37 -9.55 4.13 -12
6 3.5 10.44 -3.5 7.5
7 1.22 1.5 -5.5 -7.5
8 9.5 -3.5 -3.5 4.5
9 9.5 5.5 -8.12 -10.18
10 -6.82 12 0.5 -9.36
11 -5.6 5.5 6.21 3.5
12 -1.45 7.5 9.59 9.04
13 -2.38 -0.5 -7.3 -0.1
14 -8.02 -12 -4.57 6.5
15 6.7 1.11 9.5 -10.5
16 11.35 -8.72 7.5 -1.23
17 -4.58 10.5 -11.06 2.49
18 1.5 -4.84 2.48 -1.5
19 5.5 -2.44 -12 10.5
20 12 7.5 0.5 6.09
21 5.5 8.92 10.5 -4.29

22 -10.36 -3.24 -10.5 -8.43
23 -9.05 -7.82 12 0.5
24 -12 4.19 5.5 -5.23
25 -0.15 -1.5 2.5 -2.5

The design’s ppqp for all second-order terms is 0.032, while the ML, is 0.011.

Figure 18 shows the correlation matrix and two-dimensional projections of the design in

Table 3.
L 2"‘]’Order C?Erelialiiquat{ixforzall (z:ontizrwous]Facltors . Two-Dimensional Projections
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Figure 18. Correlation matrix and two-dimensional projections of the design

in Table 3. The green indicates a correlation below 0.05
while the red indicates a correlation above 0.05.
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C. SUMMARY

The principles of genetic algorithms proved to be a useful way to find
space-filling designs that minimize the second-order Pmap- BY modifying the structure of
the candidate columns with the swap and jiggle operators, the algorithm was able to
iteratively construct a design with the desired number of columns and design points. If
someone needed to replicate the genetic algorithm in a computer language of their choice,
they could follow the 18 steps described in this chapter. These steps allow others to
recreate the algorithm to improve the search mechanisms or change the fitness function to

something other than p;, 4.
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IV. ALGORITHM DIAGNOSTICS

Genetic algorithms often have several input parameters that are typically set
arbitrarily, with no knowledge of their appropriate settings. This chapter demonstrates
how we used experimental design to help determine the appropriate input parameter
settings of the genetic algorithm, in order to improve the search for better space-filling
designs. Additionally, the chapter provides guidance to the user on the algorithm timing

and performance for a given n and £.

A. INPUT PARAMETER ANALYSIS

Because the input parameters involving the swap operations have nothing to do
with the jiggle operations, we performed separate experiments for each operation. A third
experiment varied the colAttempts and genExitCriteria parameters, while fixing the
others. Each of the three experiments focused on the following research questions:

o Which swap parameters matter most (Swap Experiment)?

o How many generations without improving the correlation should the
algorithm perform (Exit Criteria Experiment)?

o Which jiggle parameters matter most (Jiggle Experiment)?

To answer each of these questions, we created an experimental design using the
genetic algorithm for a mix of factor types. Because our analysis uses DOE to study the
input parameters that will create an experimental design, we must clarify some
terminology. We use the term design point to mean the input parameter settings that may
be replicated multiples times. A run is defined as a single replication experiment of a
design point. The term levels is defined as the number of rows, n, in the design created by

the algorithm. We now describe each of our experiments and discuss our analysis.

1. Swap Experiment

The swap experiments focused on Steps 1-9 of the algorithm (see Chapter III).
We crossed a design with a mix of continuous and discrete factors consisting of 150
design points with 4 different design size searches (a given n and k). The term “crossed”

means that we performed 150 experiments for each of the 4 designs, for a total of 600
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design points. The design matrix sizes were k =4 and n =25; k=5 and n =39; k=6 and
n=70; and k =7 and n = 125. We ran 30 replications for each design point on a high-
performance computer cluster, for a total of 18,000 runs. Table 4 shows the input

parameter experimental ranges and the factors types.

Table 4.  Swap Input Parameters.

Input Parameter Low High Factor Type
popSize 51 200 Discrete
numExploreGen | 150 Discrete
poolSize 51 200 Discrete
numExploitGen 151 300 Discrete

swapPortion 0.05 0.5 Continuous
numTrials 1 5 Discrete

copyPortion 0 0.3 Continuous

Our exploratory analysis began with observing p.,,, for each design point.
Visually, we can see in Figure 19 that the algorithm is extremely stochastic, with the
Pmap ranging from 0.057 to 0.178. Additionally, the mean diamond plots that show a
95% confidence interval among the replicated design points do not reveal any subset of
points that perform significantly better than anything else. We highlighted the top 34
performing runs and observed their input parameter distributions. The parameter
distributions that revealed trends are shown in Figure 19; all other parameter distributions
tended to be uniform. Our initial exploratory analysis revealed that the best-performing

runs had a high popSize, poolSize, and numExploreGen, and a low swapPortion.
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Figure 19. Pmap Tesults for 18,000 algorithm runs for 600 design points, each with
their own set of input parameters.

Next, we performed a stepwise regression on the seven parameters from the swap
experiment. Because of the algorithm’s stochastic nature, not much variation can be
explained by a regression model or by partition tree analysis. Therefore, we regressed on
the mean design point p,,q,, for each of the 30 replications. Additionally, because we are
interested in obtaining the lowest p,,,,, among multiple replications, we also regressed on
the minimum design point p,qy. Figure 20 shows the prediction profilers for the mean
and minimum pp,.,. A prediction profiler is an analysis feature in JMP™ 9.0 that

displays the partial derivatives for each factor in a meta-model (Statistical Analysis
System [SAS] Institute, 2008). These profilers show how changes in a factor impact the

response, while the other factors are held constant.
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Figure 20. Swap experiment prediction profilers for the mean and minimum p, 4.

Both prediction profilers reveal the same insights. The number of levels tends to
dominate all other input parameters. A higher population size has a higher impact than a
higher pool size. The number of exploration generations tends to level out at 75. A low
swap portion tends to perform better than a higher one. Additionally, the number of
exploitation generations does not matter, probably because the algorithm converges to a
local solution after a certain amount of generations. Because the number of levels was the
dominant parameter, we examined the designs with 25 levels and 125 levels separately to
see what parameters mattered among a low and high set of levels. Figure 21 shows the

prediction profilers for the mean ppg, of the k = 4, n =25 design and the
k=17, n=125 design.
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Figure 21. Prediction profilers for the mean py, 4, of the designs with the lowest and

highest number of levels in the swap experiments.

The meta-models in Figure 21 convey similar insights to the ones shown in
Figure 20. For a low number of levels (25), copy portion matters, while the swap portion

does not. At the higher end of the number of /evels (125), the swap portion does matter,

while the copy portion does not.

2. Exit Criteria Experiment

Our next experiment examined whether the exit criteria for the number of
generations performed would impact the performance of the algorithm. The exit criteria
experiment only searched for a design with £ = 5 and varied n between 38 and 45 levels.
We fixed the input parameters to the values shown in Table 5 and performed an

experimental design on the number of /evels, the generation exit criteria, and the number

of column attempts.
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Table 5.  Parameters fixed during exit criteria experiment.

Input Parameter Set Value Input Parameter Set Value
numExploreGen 100 swapPortion 0.2
numExploitGen 200 poolSize 100

popSize 100 numTrials 5
copyPortion 0.1

We crossed a design with 50 design points with 8 different levels (38—45), for a
total of 400 design points. We ran 30 replications for each design point on a
high-performance computer cluster, for a total of 12,000 runs. Table 6 shows the input

parameter experimental range and the factor types for the exit criteria experiment.

Table 6.  Column attempts and exit criteria parameters.
Input Parameter Low High Factor Type
colAttempts 1 5 Discrete
genExitCriteria 5 50 Discrete
levels 38 45 Discrete

Surprisingly, we found that the generation exit criteria did not matter. Figure 22
shows that levels again dominate the results. When we exclude levels by examining
levels 38 and 45 separately, we find that the number of column attempts is the only
parameter that matters. Figure 22 shows regression plots, rather than prediction profilers,

because there was only one factor in the meta-model.
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Figure 22. Prediction profiler and regression plots for the exit criteria experiment.

3. Jiggle Experiment

For the jiggle experiment, we first created 12 designs with 4 different size
matrices, using only Steps 1-9 of the algorithm. The algorithm created three designs for
each of the following matrix sizes: k=4 and n=25; k=5 and n=39; k=6 and n = 70;
and k = 7 and n = 125. The experiment started with one of the 12 designs and only
performed Steps 10-18 of the algorithm. Observing the final p;,q, after the jiggle
operation would not provide a valid comparison because each design had its own initial
Pmap- We are interested in the reduction in p,,, after performing the jiggle operations.
Therefore, the response variable reduction is defined as the difference between the

design’s initial py,4, and final pp,qp, after performing Steps 10-18 of the algorithm (see
Chapter I1I).
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For each of the 12 different design sizes, we performed 100 design points with a
mix of continuous and discrete factors, for a total of 1,200 design points. We ran 30
replications for each design point on a high-performance computer cluster, for a total of

36,000 runs. Table 7 shows the input parameter experimental ranges and the

factor types.
Table 7. Jiggle input parameters for the jiggle experiment.
Input Parameter Low High Factor Type
genExitCriteria 1 50 Discrete
popSize 51 150 Discrete
numJigGen 51 150 Discrete
JjigPortion 0.1 0.9 Continuous
halfWidth 0.3 1 Continuous
JigglePasses 1 4 Discrete
poolSize 51 150 Discrete

Our jiggle parameter analysis indicates that the only parameters that matter are the
levels, halfwidth, and jigglePasses. Figure 23 shows the prediction profiler from the

meta-model created from the jiggle experiments.
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Figure 23. Jiggle experiment meta-model prediction profiler.
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When the halfwidth is set greater than 0.5, the design may move beyond the equal
intervals within the column. Therefore, the jigglePasses is the only parameter that truly
matters, given that we will not set halfwidth greater than 0.5 and the levels are determined

by the experimental requirements.

4. Recommended Input Parameter Settings

Despite the large variance in the algorithm’s output, the three experimental
designs we performed provided enough insight to recommend the appropriate algorithm

input parameter setting (see Table 8).

Table 8. Recommended GA input parameter settings.

Input Set Input Set Input Set Input Set
Parameter |Value| Parameter |Value|Parameter|Value| Parameter |Value

numExploreGen| 100 |copyPortion 0.1 |numTrials 3 |jigglePortion| 0.2

numExploitGen | 200 |swapPortion 0.2 |halfWidth 0.5 |jigglePasses | 3
opSize 100 |poolSize 100 |numJigGen| 100
colAttempts 3 |genExitCriteria| 20

The next set of diagnostics explored different combinations of »n and &, with the
input parameters set to the values in Table 8. The diagnostics described in Section B
allowed us to understand how the algorithm performs in terms of correlation and length

of run time, as we vary #n and k.

B. ALGORITHM PERFORMANCE AND TIMING GUIDANCE
1. Correlation Performance

We know from our experiments described in Section A that for a given £, the

more levels there are, the easier it is for the algorithm to find a minimal p;,4,. To find 2n
Order NOLH designs that meet the minimum py,q, threshold of 0.05, we ran the

algorithm with a different number of /evels for a given k. Figure 24 shows the results of

20 algorithm replications for designs with & ranging from 7 to 12, each with their own
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range of /evels. Because of the algorithm’s stochastic nature, it is necessary to perform

several replications for each input parameter setting and select the design with the

minimum Py .
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Figure 24. Correlation performance box plots versus the number of levels for factors

7—12. The horizontal line donates the 0.05 threshold that defines a NOLH. The x-axis is
not to scale for all charts.

The 0.05 ppqp threshold is an arbitrary number that defines an NOLH
(Hernandez, 2008). We believe that a design with a pp,qp, = 0.065 would provide nearly

as meaningful insights as a design with a pyq, < 0.05. Therefore, depending on the
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experimental conditions, the analyst may prefer a design with a much lower number of
experiments, n, if they are willing to have a pp,q), slightly above the 0.05 threshold.

To understand how n and & impact the correlation algorithm output, we ran an
experimental design with 2 factors (n and k) and 400 design points, with 16 replications,
for a total of 6,400 runs; £ varied from 3 to 12 and » varied from 22 to 820. The
experiment was performed on two computer clusters from the Department of Defense
(DoD) High-Performance Computing Modernization Program at the Navy DoD
Supercomputing Resource Center (DSRC), Stennis Space Center and the U.S. Air Force
Research Laboratory DSRC, Wright-Patterson Air Force Base. Figure 25 shows a
prediction profiler of a third-order meta-model with an interaction plot. Additionally, the
bottom of the figure shows a graph of the minimum correlations from each replication

versus the number of levels for factors 3—12.
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Figure 25. Prediction profiler and interaction plot from a third-order meta-model. The

graph at the bottom shows the minimum correlation from each replication versus the
number of levels for factors 3—12.

We can see from the prediction profiler and the minimum correlation graph that
there is a point of diminishing returns with respect to the number of /evels; as we increase

the number of levels, the correlation flattens to a point where adding more /evels does not
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significantly improve the ppqp. The interaction plot tells us that if there are enough
levels, we can obtain a P4y, < 0.05 for any number of columns (up to 12). Additionally,
for a low number of levels, the pp,,, increases significantly as the number of columns
increase. The interpretations we obtained from the experiment confirmed what we expect
to happen with changes in » and k. We now have a better quantitative understanding of

how increases in 7 and k impact P4y,

2. Algorithm Timing

GAs can take a while to solve. The algorithm’s time depends highly on n and £, as
well as the input parameters. We implemented the algorithm using Java™ 2 on a 2.8
Gigahertz (GHz) Intel Core 17 processor, with 8 Gigabyte (GB) of Random Access
Memory (RAM). Using the input parameter settings listed in Table 8, we found three-
and four-factor designs within an hour. Designs with 5-8 factors are solved in fewer than
24 hours. The designs for 9-12 factors took 1-3 days to complete. To better understand
the algorithm’s timing, we leveraged a computer cluster to run multiple replications of
different combinations of n and k. Figure 26 shows the number of hours to complete the
algorithm versus the number of levels for factors 7—12. These runs were performed using
the Naval Postgraduate School’s Hamming high-performance computer cluster.
Hamming is a hybrid computer containing 8-core, 48-core, and 64-core nodes of
Advanced Micro Devices (AMDs) Computer Processing Units (CPUs), with 2,112 CPU

cores. The various core processors run between 2.2 and 2.3 GHz.
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Figure 26. Algorithm timing box plots in hours versus the number of levels for

factors 7—12.

Figure 26 reveals that the time increases significantly as the number of columns
increase; this is primarily due to the increase in the number of pairwise correlations that
the algorithm must perform as the regression matrix, Z, increases. Additionally, we see

that the variability in hours increases as the columns increase.

C. SUMMARY

This chapter reviewed the algorithm diagnostics in order to recommend input
parameter setting, as well as provide guidance in regards to the performance of the
algorithm for different values of n and k. The input parameter settings recommended in
this chapter do not guarantee that the algorithm will perform better than a different set of
setting. Because the algorithm is highly stochastic, there will be a lot of variance in the
output. If the user can afford to wait a long time, increasing the numTrials parameter may

improve the pp,,, by performing additional exploration trials. Additionally, the more
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replications performed, the more opportunities the algorithm has at starting with a
different initial column and initial population of candidate columns. Because the
algorithm’s performance is contingent on these initial conditions, replicating the
algorithm multiple times will increase the chance of finding a design with a

minimal py,qp.
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V. CONTINUOUS FACTOR EMPIRICAL DESIGN
COMPARISONS

Chapter V compares our new 2™ Order NOLH continuous designs with the Face
Centered Composite Design (FCCD), BBH, D-Optimal, I-Optimal, and the following
four space-filling designs: LHS, Sphere Packing (Sphere Pack), Maximum Entropy
(Max Entropy), and Uniform (see Chapter II for description of these designs). We used
JMP™ 9.0 software to create each of the alternative designs for our comparison. In
addition, we performed a Monte Carlo simulation experiment to test the accuracy of each

design’s response prediction and meta-model coefficient estimation.

A. DESIGN COMPARISONS

In order to make a valid comparison, each design has 4 factors and 25 design
points, and each factor’s range is scaled from —1 to 1. Excluding the FCCD and the BBH
designs, JIMP™ 9.0 software uses a stochastic algorithm to create the designs and as a
result, each design has a different p;,,q,,. We instantiated the algorithm 500 times for the
Sphere Pack, Uniform, and LHS designs and 30 times for the D-Optimal, I-Optimal, and
Max Entropy designs. Figure 27 shows the distribution of each design’s ppq, for the
second-order regression matrix; clearly, there is a wide variety of py,4;, results. For our
comparisons, we selected the design with the lowest py,q, for each of the seven

stochastic IMP™ 9.0 design types.
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Figure 27. Pmap distribution of stochastically generated designs from the
IMP™ 9.0 software.

Figure 28 shows a color correlation plot indicating that the 2™ Order NOLH has
the lowest correlation throughout all terms. The other designs may fit accurate
meta-models, but that may be due to chance if the terms in the true model coincide with
regression matrix columns that have low correlation. The 2™ Order NOLH has a Pmap Of
0.032 and, therefore, nearly guarantees that no term in the second-order model is

confounded with another term.
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Figure 28. Color correlation plots. Darker-shaded colors indicate higher correlations
(black represents a correlation of 1.0 and white represents a correlation of 0.0). Each plot
shows designs with 4 factors and 25 design points for all second-order terms.

Figure 29 provides a visual perspective of each design’s space-filling
characteristic. The FCCD, BBH, I-Optimal, and D-Optimal designs fit second-order
models very well by sampling at the corners, faces, and center of the design space. They
cannot fit higher-order meta-models, however, because their third, fourth, or higher-order

regression matrices have columns that are linearly dependent. Space-filling designs
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provide information about all portions of the design space by sampling throughout
the region, which makes them well suited to fit a variety of models (Santner

etal., 2010).
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Figure 29. Design scatter plots. The chart shows the designs’ two-dimensional

projections of the 4-factor, 25-point design space. The FCCD, BBH,
D-Optimal, and I-Optimal designs have points overlaid on top of each other because they
only sample at the corners, faces, and center.
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Figure 30 shows a plot of the ML, metric versus the ppq, for each of the nine
designs. The 2nd Order NOLH’s p;,4, dominates all other designs for the second-order

regression matrix. In terms of space-filling, the 2™ Order NOLH has an ML, very close

to the LHS and Uniform design.
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Figure 30. The ML, versus pp,qy, for each of the nine state-of-the-art designs.

B. MONTE CARLO SIMULATION EXPERIMENT

We performed an empirical experiment to test the prediction and estimated
coefficient accuracy for a select number of designs against several known true-response,
surface models. We tested each of the following designs: 2" Order NOLH, FCCD,

D-Optimal, Uniform, Sphere Pack, and LHS. The experiment’s objective is to determine
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if any of the six designs performs well across several higher-order response surfaces. We
selected six response surfaces to represent a rich variety of complex models that are
characteristic of what experimenters may encounter during a simulation experiment. The
six polynomial models and polynomial models with step functions, listed in Table 9,

represent six different simulation output responses that have a unique model form.

Table 9.  Six known true-response, surface model forms. The model form identifiers
are used in Figures 31 through 34.

Model
True Model Form| Form True Model
Identifier
Second-order ) y(x) = 10 + 10x2? — 4x3 + 2x* + 3(x1)? + 4x'x* + 10x3x* —
model 6(x*)? +¢
Third-order model 3 y(x) = 10 + 10x? — 4x3 + 2x* + 4xtx* + 10x3x* — 6(x*)? —

12x2%x3x* +9(x?)3 + ¢

y(x) = 10 + 10x? — 4x3 + 2x* + 4xtx* + 10x3x* — 6(x*)? —

Fourth-order model F4 12x2x3x% + 9(x2)3 — 10x x2x3x% + 5(xc)* + ¢

Second-order
model with step F2Step
function

y(x) = 10 + 10x? — 4x3 + 2x* + 3(x1)? + 4x x* + 10x3x* —
6(x*)?% +20I(x! > 0.7) + ¢

Third-order model F3Ste y(x) = 10 + 10x? — 4x3 + 2x* + 4xtx* + 10x3x* — 6(x*)? —
with step function P 1120223 %% + 9(x?)3 + 201(x! > 0.7) + ¢

y(x) = 10 + 10x% — 4x3 + 2x* + 4x1x* + 10x3x* — 6(x*)? —
F4Step  [12x2%x3x* + 9(x?)3 — 10x1x2x3x* + 5(x1)* + 201 (x* >
0.7) + ¢

Fourth-order model
with step function

The € is a vector of 25 independent and identically distributed, standard, normal,
random variables. We developed a MATLAB™ script that performs a stepwise
regression with each design matrix and a vector of responses from the functions listed in
Table 9. The MATLAB™ algorithm starts with an initial model that only includes the
intercept. Then, one step at a time, we add the term not in the model that has the smallest
p-value less than the entrance tolerance, until there are no more significant terms to add.
In addition, after a term is added, we remove the term, if any, that has the largest p-value
greater than an exit tolerance. The p-values to enter and exit the model were both set to

0.05. To calculate the prediction accuracy, we created two uniform grids of 11* points
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that range from —1 to 1, one grid for the true model and one grid for the predicted model
(Goel, Tushar, Raphael, Haftka, Shyy, & Watson, 2008). The prediction accuracy (P,..)
is the average of the squared difference between the true and predicted values for all

14,641 points in the 11* space:

2
Pace = Zgrid(ytrue - ypredict) /(114)’ (10)

where Yy is the known true response surface value and yy,,¢qic; is the estimate from the
predicted design’s fitted meta-model. A small P, indicates a better prediction.

In order to measure the accuracy of the coefficient estimates, we calculate the
Euclidian distance (Ep) between the estimated meta-model coefficient vector, Sestimates

and the true model coefficient vector, B, using the following expression:

ED = \/(ﬁtrue - Bestimate)T(Btrue - ﬁestimate)- (1 1)

The smaller the Ep, the closer the design’s coefficient estimates are to the true model
coefficients. A flexible design is one that consistently has a low P,.. and Ep across a
variety of high-order true models.

For each design and each true model we performed 10,000 replication
experiments of fitting a model. Each replication generated its own error vector for the six
true model responses. Given that, in practice, we never know the true model, our
experiment fits each of the six true models using stepwise regression for up to a second,
third, and fourth order model. The third- and fourth-order fits only apply to the space-
filling designs because the other designs cannot estimate these effects. In cases where
there was a step function, we included the first split from a partition tree as an additional
column (indicator variable) in the design matrix for the stepwise regression. This
additional column indicates which factor and factor value best splits the data into two
groups. In practice, the analyst will only add the indicator variable to the regression
matrix if there is a split that explains a lot of the data variation. Because we are using a
MATLAB™ script to fit 10,000 meta-models, we force the indicator variable that
represents the first split from a partition tree into the regression matrix for all true models

with a step function.
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Figures 31 through 34 summarize the Monte Carlo simulation results for P,.. and
Ep using box plots, mean lines, and grand means. In each figure, the box contains the
25th-75th percentiles, the horizontal line within the box is the median, the horizontal line
that crosses the box is the mean, and the horizontal line that crosses the entire chart is the
grand mean; the outliers are not shown for clarity purposes. We use the grand mean
across all true models tested to assess a design’s flexibility. A design with a low grand
mean is considered a robust design. Because the FCCD and D-Optimal designs cannot fit
third- and fourth-order models, we separated the comparisons among the designs that can
only fit a second-order regression matrix from the designs that can fit all three regression
matrices.

In Figure 31, we see that the FCCD and D-Optimal design have a considerably
higher grand mean P, than the 2™ Order NOLH. This difference is primarily due to the
FCCD and D-Optimal design’s inability to detect step functions because they only

sample at the corners, faces, and center of the design space.
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Figure 31. Monte Carlo P, .. simulation results for the FCCD and D-Optimal design.
The charts show the P,.. box plots, mean lines, and grand means for 10,000 experiment
replications. Outliers are not shown. The x-axis shows each model form with the number
of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form
Identifiers. Also shown is the grand mean summary table.

The space-filling designs in Figure 32 generally predict the response well across

all true model forms without step functions, due to the multiple lenses they provide by
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sampling throughout the design space. The uniform design had problems fitting the
third-order model with step function, while the Sphere Pack design had problems fitting

all models with step functions.
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Figure 32. Monte Carlo P, simulation results for the space-filling designs. The

charts show the P,.. box plots, mean lines, and grand means for 10,000 experiment
replications. Outliers are not shown. The x-axis shows each model form with the number
of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form
Identifiers. Also shown is the grand mean summary table.

The Ep calculation only applies to design matrices that include the terms for each
coefficient in the true model; therefore, the FCCD and D-Optimal designs only have Ep
results for the second-order models. Figure 33 indicates that the FCCD and D-Optimal
design Ej outperform the 2" Order NOLH’s Ep for the true model without step
functions, but not by a substantial amount. We would expect the traditional and optimal
designs to outperform ours because they are the leading design choices when we know
the true model is second-order. When we include the true models with step functions, the
2" Order NOLH has a lower grand mean due to its space-filling characteristics; this

illustrates the robustness of the 2™ Order NOLH.
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Figure 33. Monte Carlo Ej, simulation results for the FCCD and D-Optimal design.

The charts show the Ej, box plots, mean lines, and grand means for 10,000 experiment
replications. Outliers are not shown. The x-axis shows each model form with the number
of possible meta-model regression matrix terms. Refer to Table 1 for the Model Form

Identifiers. Also shown is the grand mean summary table.

The Ep grand mean summary table in Figure 34 indicates that the 2" Order

NOLH outperforms the other space-filling designs, but only by a relatively small margin.
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Figure 34. Monte Carlo Ej, simulation results for the space-filling designs. The charts

show the E, box plots, mean lines, and grand means for 10,000 experiment replications.
Outliers are not shown. The x-axis shows each model form with the number of possible
meta-model regression matrix terms. Refer to Table 1 for the Model Form Identifiers.
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Figure 35 compares the computer-generated optimal and space-filling designs
created in JMP™ 9.0 with the 2nd Order NOLH for up to 12 factors with the same
number of design points. We calculated each design’s pp,qp using a matrix that includes
all second-order terms. JMP™ 9.0 uses different random seeds for each of the optimal
and space-filling design creations and, therefore, has a different py,qp, or ML, results for
each generation. Thus, the designs shown are only a single instantiation that may not
have the best p;,4 0r ML,.
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Figure 35. Design comparisons of the 2™ order py,q,, and ML, for all designs with

the same number of design points (DPs). The 10-, 11-, and 12-factor uniform designs are
not listed, due to the time required to construct them. The ML, charts are split into two
because of the differences in scale among the designs.

We can see from Figure 35 that the 2" Order NOLH designs have the lowest
Pmap> With excellent space-filling properties based on its ML, performance. This makes

the 2" Order NOLH design very competitive against the other five design types; the 12
2" Order NOLH designs are available for download at http://harvest.nps.edu.
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C. SUMMARY

The 2™ Order NOLH has the lowest grand mean across all six models tested for
both the P,.. and Ej,. These results indicate that our design is robust for the selected true
model forms and demonstrates its flexibility. Because the FCCD and D-Optimal designs
cannot detect step functions and require strong a priori assumptions about the true model,
they are considered the most inflexible designs among the six we tested. These results do
not prove empirically that the 2™ Order NOLH will outperform the other designs across
all types of higher-order models, as we cannot test for every possible true model that may
exist. Despite this, because we will never know for certain which terms will be in the true
model, the 2™ Order NOLH design guarantees that a second-order term’s statistical
significance is not confounded with another term. In addition, because our design has
excellent space-filling properties, it is more able to detect model bias and the presence of

step functions than classic second-order models.
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VI. DISCRETE AND CATEGORICAL DESIGNS

Simulation models often have a mix of continuous, discrete, and/or categorical
factors. The 2™ Order NOLH designs discussed in Chapters II-V are for continuous
factors only. This chapter introduces the Discrete 2" Order Nearly Orthogonal/Balanced
design that minimizes the p,,q, among all second-order terms for discrete factors. We
can augment these designs with categorical factors that minimize the correlations
between the first-order terms only. When combined with the 2™ Order NOLH, these
continuous, discrete, and categorical designs provide the simulation experimenter an
infinite amount of factor combinations of different types and levels to meet their needs in

a variety of circumstances.

A. DISCRETE AND CATEGORICAL FACTOR CONSIDERATIONS

Discrete factors are numeric and have a number of /evels specified; we designate
the number of levels as a. For example, a simulation experiment may use a discrete factor
with three levels, where a = 3, to examine the benefits of using 0, 1, or 2 aircraft carriers;
a continuous factor would not be appropriate because simulating 1.5 aircraft carriers has
no meaning. Categorical factors are qualitative and are not considered numeric, with a
well-defined scale of measurement. Like the discrete factors, the categorical factor has a
set number of levels (a). For example, if a simulation is exploring the effectiveness of
four different weapon systems, there would be one level for each weapon type, where a =
4. In order to properly represent each weapon type, the regression matrix must include
columns that represent indicator or dummy variables for each category. Generally, a
categorical factor with a levels has a — 1 dummy variables. Each level is coded with a
value of 1, 0, or —1. There are two common conventions that statistical packages use to
represent dummy variables: the 0/1 and the 1/0/—1 conventions. Table 10 shows the two

conventions for a four-level categorical factor.
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Table 10.  Two conventions for a set of dummy variable columns representing a
four-level categorical factor.

Categorical Dummy Variables
Factor 0/1 Convention 1/0/-1 Convention
Levels Level 1 Level2 Level3 Level 1 Level2 Level3
1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 0 0 1 0 0 1
4 0 0 0 -1 -1 -1

For both conventions, levels 1 through 3 have the number 1 under the dummy
column that represents that level. The 4th level has either a set of Os or —1s across all
three dummy columns. The 0/1 convention defines a regression model baseline as the
level with Os across the rows, while the 1/0/~1 convention ensures that the intercept of a
regression meta-model represents the overall mean response. Representing the ath level
in this way reduces the amount of columns needed in the regression matrix and ensures
that the matrix achieves full rank, unless there is collinearity among the columns (SAS
Institute, 2008).

Collinearity among the dummy variables could pose a problem when we analyze
the effects of different categories. To demonstrate, Table 11 shows two categorical four-
level factors with their dummy variables, where X' is the ith categorical factor and
X iDummy]. is the dummy variable for the jth level of the ith categorical factor. The
correlation between X' and X? is 0, while the correlation between X'Dummy, and
X?Dummy, is —1. Minimizing the correlation between categorical factor columns alone
may result in a confounding problem between the categories. We must minimize the

correlation between the dummy variables of different categories in order to properly

determine which category has an impact on the response.

78



Table 11.  Dummy variable correlation example.

Categorical Dummy Variables
Factors
X! X2 X'Dummy,; X'Dummy, X'Dummy; X?Dummy, X?’Dummy, X?>Dummy;
1 3 1 0 0 0 0 1
2 1 0 1 0 1 0 0
3 4 0 0 1 -1 -1 -1
4 2 -1 -1 -1 0 1 0

The correlations between dummy variables within the same categorical factor
have no meaning because only one of these dummy variables will be active in a
regression meta-model at one time. For example, if a categorical factor has three levels,
representing three different gun types, only one of these gun types would be active during
a simulation at one time. Therefore, we are not concerned with the correlation between
the dummy variable that represents gun type 1 and the dummy variable that represents
gun type 2. While observing the correlation matrix that includes a categorical factor’s
dummy variables, we ignore the correlations between dummy variables within the same

categorical factor.

B. EXPERIMENTAL DESIGNS FOR DESCRETE AND CATEGORICAL
FACTORS

In practice, the simulation experimenter traditionally has the following three
options when dealing with discrete or categorical factors:

o Utilize a full-factorial, orthogonal design. When continuous factors are
present, the experimenter can cross a design with continuous factors and a
full-factorial design with discrete and or categorical factors. This option
becomes extremely impractical when there are a large number of factors
and levels.

J Utilize a two-level factorial or fractional factorial design. This option
reduces the amount of experiments needed, but because the primary
objective of a simulation is often to explore the benefits of increasing
resources, the two-level design becomes infeasible because we do not
know what is happening between the two levels.

. Scale and round the columns of a 1% Order NOLH. We can create a
discrete factor by scaling the 1* Order NOLH from 1 to the number of
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levels needed and rounding to the nearest integer value. Unfortunately,
rounding can have a severe impact on the design’s near orthogonality
(Sanchez & Wan, 2009). Hernandez (2008) developed a formalized
stacking methodology that alleviates the impact of rounding on the
correlation among the first-order terms, but significantly increases the
number of design points of the original design.

To demonstrate the impact of rounding, Figure 36 compares the correlation
matrices between a 1* Order OLH design with 7 factors and 17 design points before and
after rounding. Prior to rounding, the design in Figure 36 is orthogonal among the first-
order terms; the second-order terms, however, have significant correlation problems
(Pmap = 0.98). When the factor levels are scaled to a smaller range and rounded to
integer values, the absolute pairwise correlations among the first-order terms increases
significantly, from 0.0 to 0.29, while the average among all second-order terms increases

by 0.027.
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010 019 -0.25 -0.07 -0.49 0.12 050 0.43 -0.05 -0.01 -023 0.66 -0.57 039 0.16 0.64 -0.16 0.74 1.00
0.38 -0.24 014 -0.28 058 057 0.41 -0.16 -0.31 -017 062 0.35 -0.17 050 0.28 0.16 0.02 025 044 100
0.26 -0.11 -0.30 0.08 0.80 -0.09 -0.44 0.39 045 053 040 -0.01 -0.36 037 -0.16 0.04 -0.01 020 -0.19 -0.65 1.00
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052 -021 -0.42 0.53 -0.28 -0.23 0.10 -0.35 -0.20 0.21 -058 0.15 037 0,61 -0.39 -0.22 -0.03 037 0.22 039 -0.34 -0.03 1.00
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0.19 059 0.25 -0.30 -0.33 -0.38 -0.14 -048 0.04 -0.44

-0.30 -0.55 0.60 -0.23 0.43 -0.29 -0.07

-0.25 -0.32 -0,02 -0.45 -0.09 0.02 059 -0.27 026 1.00

Correlation matrices for a 1* Order NOLH before and after rounding. Red
indicates an absolute pairwise correlation greater than 0.05 and the green indicates
correlations below 0.05. Embedded within each matrix is the design table indicating the
type of factors and number of levels.
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The three discrete and categorical experimental design options mentioned above
have significant limitations in their use. The number of experiments required to perform a
full-factorial design quickly becomes infeasible for a moderate number of factors; the
two-level factorial or fractional factorial designs do not reveal what happens in between
the two extreme levels; finally, scaling and rounding an NOLH design can have a
significant impact on the correlations among the first- and second-order terms. The NO/B
designs developed by Vieira, Jr. et al. (2011) address these limitations with efficient
designs. The next section describes the NO/B designs and introduces further

contributions to the field of discrete experimental designs.

C. FIRST- AND SECOND-ORDER NEARLY ORTHOGONAL/BALANCED
DESIGNS

A significant breakthrough in the space-filling domain was when Vieira, Jr. et al.
(2011) created a mixed integer program to find NO/B designs with a p ., less than 0.05
among the first-order terms for discrete and categorical factors, while maintaining
balance. The concept of balance ensures that each factor level has an equal amount of
experiments within a design. A design that is not balanced has too many experiments
performed at one level and not enough at another level. A balanced design is one where
the number of discrete or categorical levels is spread across the design space as much as
possible. Ideally, a design is considered balanced if the number of design points set to
each level is equal. For example, a discrete factor with three levels and nine design points
is balanced when there are three design points set to each of the three levels. In order to

explain the concept of nearly balanced we first must define the parameters listed in Table

12.
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Table 12. Balance Parameters.

Parameter Definition
n Number of design points
c Column index number
Weq The number of design points set to level a in column ¢
P, The number of levels in column ¢
Ac The ideal number of design points for each level in column ¢
a The percent of allowed imbalance

A design is considered nearly balanced if the number of design points within each
factor level differs from the ideal by no more than a, where « is the percent of allowed

imbalance such that (1 —a)A, < w,, < (1 + a)A,, where 0 <a <1 and A, = n/¢
c

(Vieira, Jr. et al., 2011). Ideal balance means that the number of design points set to each
level is equal and a = 0. Balance is important because without it, we cannot handle
situations where there is unequal variance; a situation often experienced in complex
simulations (Bathke, 2004). By relaxing the ideal balance slightly, normally where
a < 20%, Vieira, Jr. was able to find efficient nearly orthogonal designs for a mix of
continuous, discrete, and categorical factors.

The NO/B designs developed by Vieira, Jr. address the need for efficient discrete
and categorical designs, but still have imitations; specifically, they only minimize the
Pmap for first-order, linear terms. The linear program formulation Vieira, Jr. developed to
create NO/B designs cannot account for the high-order quadratic and two-way interaction
terms within a second-order model. The genetic algorithm proposed in this dissertation
has the ability to create discrete NO/B designs that minimize the p;,q,, for a full second-
order model. Instead of creating continuous factors, the algorithm creates discrete factor
columns and performs the swap operation only (see Steps 1-9 in
Chapter III), but does not perform the jiggle operation; jiggling or perturbing a design
point value within a discrete factor would change it to a continuous factor. Generally, a

2" Order discrete NO/B design requires more design points (n) than the continuous

2" Order NOLH design.

83



In addition to creating continuous and discrete factor columns, the algorithm can
augment the 2" Order NOLH and discrete NO/B designs with categorical factors that
minimize the ppq, for first-order, linear terms only. For each categorical factor, the
algorithm creates the required number of dummy variables using the 0/1 or the 0/1/-1
convention. These dummy variables are added to the regression matrix, Z, when the
algorithm calculates the categorical factor’s fitness.

Table 13 shows an example of a design generated by the genetic algorithm with
three discrete factors, each with 6, 9, and 12 levels; a continuous factor; and two
categorical factors, one with three levels and the other with four levels, while using the

0/1 dummy variable convention.
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Table 13.

Design with continuous, discrete, and categorical factors. The design uses
the 0/1 dummy variable convention.

Type Discrete Continuous Categorical
Levels 6 9 12 45 3 4
Run x* X2 X3 x* x° Dummy, x° Dummy, X8 Dummy, X8 Dummy, X8 Dummy;
1 6 2 9 44 0 0 0 0 0
2 6 6 6 26 1 0 0 0 1
3 6 9 2 39 0 1 0 0 0
4 6 6 9 8 0 1 0 0 0
5 3 3 7 22 0 1 0 0 0
6 5 1 1 24 0 1 1 0 0
7 4 3 3 1 1 0 1 0 0
8 2 1 11 33 1 0 0 0 1
9 2 5 12 18 0 1 1 0 0
10 1 8 8 41 0 0 1 0 0
11 2 2 6 14 0 0 0 0 0
12 1 5 1 15 1 0 0 0 0
13 3 6 2 40 0 0 0 1 0
14 1 6 7 6 0 1 0 1 0
15 2 5 5 21 0 1 0 0 1
16 5 1 12 3 0 0 0 1 0
17 1 2 8 11 1 0 0 0 0
18 1 1 3 42 0 0 0 1 0
19 4 4 6 16 0 0 1 0 0
20 4 8 11 45 0 0 0 0 1
21 2 4 3 38 1 0 0 0 1
22 5 4 5 43 0 1 1 0 0
23 3 6 4 35 0 1 0 1 0
24 3 4 11 29 0 1 0 1 0
25 5 2 9 25 1 0 0 1 0
26 1 4 12 37 0 1 1 0 0
27 4 9 10 19 0 1 0 0 1
28 3 9 6 30 1 0 1 0 0
29 5 8 7 5 1 0 0 1 0
30 1 9 2 17 1 0 1 0 0
31 1 8 8 32 0 0 0 0 0
32 6 8 12 31 1 0 0 0 0
33 6 3 6 12 0 0 1 0 0
34 4 9 4 13 0 0 0 1 0
35 4 5 1 34 0 0 0 0 1
36 5 4 10 28 1 0 1 0 0
37 3 7 1 0 0 0 0 1
38 2 5 10 2 0 0 0 0 1
39 6 7 3 10 0 1 0 0 1
40 4 8 5 27 1 0 0 1 0
41 5 6 11 20 0 0 0 0 1
42 2 9 11 7 0 0 1 0 0
43 6 2 2 23 0 0 1 0 0
44 4 1 8 36 1 0 0 0 1
45 2 1 4 9 0 1 0 0 1

The design in Table 13 has a six-level discrete factor, x;, with a percent of

allowed imbalance, a = 0.14; for all other factors, @ = 0.0. The number of design points,

n determines the balance of a design; for example, if n were any multiple of six the

discrete factor with six levels would be balanced. More than likely, a design with

multiple discrete factors will have a different number of levels, so setting » to a multiple
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of one of the discrete factor levels may not guarantee a fully balanced design. In general,
increasing the design’s n will improve a design’s balance; therefore, the genetic
algorithm can create a design with a larger »n if the analyst desired a design that is
completely balanced, where a = 0.0 for all factors.

Figure 37 shows the 2" order correlation matrix for the design in Table 13, with
the continuous and discrete factors only, and the Ist order correlation matrix for the entire
design, to include the categorical factors. In addition, the two-dimensional projections
among the six factors in Figure 37 reveal the design’s space-filling characteristics. Within
the figure, the correlations between dummy variables within the same categorical factor
are grayed out because we are not concerned with them for the reasons mentioned in

Section A.
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2" Order Correlation Matrix for all Continuous and Discrete Factors

xl xz xa xd lxl)z xlxz xlxs xlxd (XZ)Z x2x3 xzxﬂ (x3]3 xixd (xlld
1 1.00
2 0.00 1.00

X
X
X

W

0.00 -001 1.00

x* 002 -001 0.01 1.00

(XY 001 000 000 003 100

x'x®  0.00 0.00 0.01 0.04 0.00 1.00

x!x®  0.00 0.01 0.00 -003 -0.01  0.00 1.00

xix® 0.03 0.03 -0.03 -0.03 -0.03  -0.03 0.04 1.00

(x** 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 1.00

xx® 001 0.00 0.00 0.03 0.01 001 -001 -004 0.00 1.00

x*x* 003 0.03 003 -002 002 0.02 -004 001 -002 -0.02 1.00

(x*¥  o0.00 0.00 0.00 0.03 000 -0.01  0.00 0.02 0.01 0.00 0.03 1.00
*x*  -003 003 0.03 0.01 004 -0.04 003 003 -004 001 -0.04 003 1.00
x)* -003 -003 0.02 0.00 0.02 0.02 0.03 0.03 0.02  -0.03 0.03 003  -0.03 1.00

15t Order Correlation Matrix for all Continuous, Discrete, and Categorical Factors

x* X2 X x* X Dummy; x® Dummy, x* Dummy; x° Dummy; x® Dummy;
X 1.00
X2 0.00 1.00
X 0.00 -0,01 1.00
x* 0.02 -0.01 0.01 1.00
X° Dummy, 0.00 -0.01 -0.01 0.00 1.00
X° Dummy, 0.00 -0.01 0.01 -0.01 _ 1.00
X® Dummy, -0.01 -0.01 -0.01 -0.01 0.00 0.00 1.00
X° Dummy; -0.03 0.02 -0.02 -0.02 -0.01 -0.01 1.00
X® Dummy; 0.02 -0.01 -0.01 -001 0.00 0.00 1.00
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Figure 37. Correlation matrices for the second-order terms among the continuous and

discrete factors, and the first-order terms among the continuous, discrete, and categorical
factors. The two-dimensional projections at the bottom of the figure indicate a good

space-filling property.

For the six design factors listed in Table 13, the only way to guarantee that no

second-order term is confounded with another term is to use a full-factorial design; if we
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excluded the categorical factors, this would require 648 design points for the discrete
factors alone (6 x 9 x 12 = 648). If we crossed the continuous factor with these discrete
factors, the design would require 29,160 design points (648 x 45 = 29,160). If we
included the categorical factors in the full-factorial design and crossed it with the
continuous factor, there would be 349,920 design points required. Although a full
factorial is orthogonal for the second-order model and is perfectly balanced, the large
number of design points needed to perform the experiments is infeasible. The design in
Table 13 only has 45 design points and is nearly orthogonal and nearly balanced. By

slightly relaxing the minimal p;,,, and balance constraint, the algorithm was able to

create a design with significantly less design points.

D. SUMMARY

The discrete 2" Order NO/B designs allow the simulation analyst to properly
analyze high-order quadratics and two-way interactions terms for discrete factors, with a
reasonable amount of experiments. By combining the discrete 2™ Order NO/B designs
and the 2™ Order NOLH designs, augmented with categorical 1* Order NO/B factors, the
simulation analyst can now better identify the significant factors and understand the
high-order effects for a mix of continuous, discrete, and categorical factors without
having to use a full-factorial design. Because there is an infinite amount of discrete and
categorical factor levels, the simulation community now has the ability to build custom

second-order designs that are specifically suited for a given simulation study.
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VIl. MODEL-BASED SYSTEMS ENGINEERING APPLICATION

This chapter demonstrates the utility of the 2™ Order NOLH and NO/B designs
by applying them to a Model-Based Systems Engineering (MBSE) application. After
introducing the concept of MBSE, we review a concept that leverages computer
simulation models during the early design of a system. We then apply this MBSE design
concept to an Office of Naval Research (ONR) ship design problem to show how
accurate meta-modeling contributes to the understanding of a complicated system

design problem.

A. MODEL-BASED SYSTEMS ENGINEERING INTRODUCTION

According to the International Council of Systems Engineering (INCOSE),
MBSE is a methodology characterized by a collection of processes, methods, and tools
used to support systems engineering design in a “model-based” context (Friedenthal,
Sanford, Moore, & Steiner, 2011). Traditionally, the systems design process was
considered document-based, with a large emphasis on reports generated throughout the
design cycle. The MBSE concept emphasizes a collection of continually changing models
that represent the system at different stages of the design process. These models can be in
the form of static diagrams, cost spreadsheets, physical prototypes, or several computer
simulation models; each model represents a different aspect or view of the system.
Ideally, all models should be connected together such that each time the system changes
its configuration, the collection of models would update simultaneously to inform
changes in each aspect they represent. The discipline of MBSE is evolving rapidly and
will eventually mature into a more common state of systems engineering practice in the
near future.

The Aerospace Systems Design Laboratory (ASDL) at the Georgia Institute of
Technology is considered a leading developer in design methods for complicated
systems. In the spirit of MBSE, the ASDL developed a design method that leverages the
Response Surface Methodology (RSM) originally introduced in the 1950s to optimize

empirical models of continuous functions (Box & Draper, 1987). Their design concept,
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called the Universal Trade-off Environment (UTE) creates numerous
meta-models that act as surrogates to several simulations in order to explore the trade
space (see Mavris & DeLaurentis, 1995; Maricq, Chase, Podsiadlik, & Vogt, 1999;
Soban & Mavris, 2000; Baker & Mavris, 2001; Kirby, 2001; and Baker, Mavris, &
Schrage, 2002). These meta-models approximate the underlying dependencies of the
simulation output responses to the system design parameters within a specified region.
The meta-models express the design parameter’s impact on the responses
mathematically, with a polynomial expression. These meta-models allow the designer to
investigate the trade-offs among the simulation output responses while changing the
design parameter inputs. In order to gain insight into an unknown, complicated response
behavior, the ASDL creates meta-models in an efficient manner by using traditional
second-order designs (see Chapter II), otherwise known as RSM designs. The designs
proposed in this dissertation contribute to accurate meta-model creation and can enhance
the RSM method. In order to understand how the 2™ Order NOLH and NO/B designs
contribute to RSM, we must first review its concept.

In practice, RSM is performed as a sequential design approach using the
following three steps:

Stepl.  Perform a screening experiment by using a two-level factorial or
fractional factorial design to identify the significant few factors from the potential
many.

Step 2.  Perform a second experiment on the significant factors found in Step 1
using a second-order design (see Chapter II). These designs approximate a
second-order meta-model by examining design points at the center of the
experimental region.

Step 3.  Utilize steepest ascent optimization algorithms to find the
best-performing solutions within the specified region of the response surface
meta-model generated in Step 2.

There are four critical limitations with the RSM steps described above. First, by
using two-level fractional factorial designs during the screening experiments, the analyst
may not identify a critical interaction that might exist among the large number of initial
factors. Second, the number of significant factors that the traditional second-order
designs can handle feasibly, while minimizing all first- and second-order correlations, is

no more than eight factors. Third, these traditional second-order designs assume that the
90



response is a second-order surface and cannot fit a higher-order meta-model. Finally,
because the traditional second-order designs only sample at the corners, edges, and
center, they have limited space-filling properties that may not find the presence of
thresholds or step functions and cannot identify model bias.

The collection of 1 and 2™ Order NOLHs and discrete NO/B designs address all
of the above-mentioned RSM limitations. The 1* order designs developed by Cioppa and
Lucas (2007), Hernandez (2008), and Vieira, Jr. et al. (2011) can screen hundreds of
factors while filling the interior of the experimental region to identify the significant few
and their potential high-order effects; our algorithm can also create 1 order designs for a
large number of screening factors. The 2™ order designs introduced in this dissertation
can confirm the effects of the significant terms identified in Step 1. The
2" Order NOLH and discrete NO/B designs result in better, higher-order, meta-model
approximations. These more accurate meta-models will lead to better solutions, while

using the steepest ascent optimization algorithms.

B. MODEL-BASED SYSTEMS ENGINEERING DESIGN CONCEPT

The ONR has an initiative to demonstrate a methodology that leverages
simulation models early in the architectural design of a ship. The traditional naval
architect paradigm is to design the weapon systems, radars, or any organic ship asset
around the hull vessel platform instead of the platform being designed around the assets.
As a result, the intended ship’s operational effectiveness becomes dependent on the
design of the platform, rather than the organic assets of the ship. Simulation models allow
ship designers to reverse the traditional paradigm by linking a ship’s operational
effectiveness to physical ship characteristics early in the life cycle. By analyzing
simulations that incorporate physical design input parameters we can identify what
physical design characteristics will result in better operational effectiveness. These
physical design parameters are what define the ship alternative configurations. Trade
decisions among physical characteristics can then be based on operational effectiveness,

rather than on the physical constraints of the system.
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To demonstrate this methodology, ONR sponsored the Department of Systems
Engineering at NPS to supervise three Naval officer students to apply the proposed
MBSE design concept. The design concept utilizes computer simulations to model an
Off-Shore Patrol Vessel (OPV) within different operational scenarios. In addition, the
concept uses a ship synthesis model that dictates a feasible ship design for a given set of
design parameters. The context of the design problem is to understand how different
physical ship characteristics impact operational effectiveness. The MBSE design concept
is similar to the ASDL UTE concept described earlier. Both design concepts utilize
polynomial meta-model functions that act as simulation model surrogates in order to
explore the trade space among several response outputs. Figure 38 illustrates the MBSE

design concept proposed by the Department of Systems Engineering at NPS.
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Figure 38. MBSE design concept linking synthesis physical design parameters to

operational effectiveness.
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The left side of Figure 38 shows the linkage between the real-world operational
environment, the simulation models that are an abstraction of the real environment, and
the meta-models that act as surrogates to the simulations. These operational meta-models
describe the measures of effectiveness (MOEs) dependence on the physical design
characteristics. The center of Figure 38 shows the physical design characteristics
consisting of measures of performance (MOPs) and physical design parameters; the
physical design parameters are the decision factors that define a ship configuration and
are controlled by the ship designer. The MOPs are a function of the design parameters;
for example, speed is a function of the type and number of engines. Above the physical
design characteristics are the environmental and operational noise factors that the
designers have no control over. The meta-model response, y is a vector of MOE
results that are the simulation’s outputs. The design matrix, X, contains the simulation
inputs composed of the physical design characteristic decision factors and the
environmental/operational noise factors.

The right side of Figure 38 has the same construct as the left side, only instead of
modeling the operational effectiveness, it models the ship configuration feasibility
determined by the ship synthesis model. Performing a DOE to create the synthesis
meta-models allow us to describe the synthesis model output’s dependence on the
physical design parameter inputs. The meta-model response, y, is a vector of synthesis
model outputs. The design matrix, X, contains the synthesis model inputs that define the
ship configurations. The synthesis model outputs are design considerations that ensure a
given ship configuration (defined by the design parameters) is feasible. For example, the
designer can increase the radar detection rate by maximizing the radar range with a taller
mast height, which will interfere with the ship’s stability (a synthesis model output).
Understanding how the mast height impacts the radar detection rate, as well as the ship’s
stability, is important to both the operational commanders and the ship designers; a mast
height that is too tall may provide excellent radar detection rates, but may render the ship
configuration infeasible due to the instability it creates. Using DOE to create the

operational and synthesis meta-models in tandem provides the ship designers with a way
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to explore the linkages between the operational MOEs and the design synthesis
considerations, using mathematical functions.

The center of Figure 38, labeled “Physical Ship Characteristics Factors,” shows
some examples of the synthesis model inputs. These inputs may be different than the
operational simulation inputs. For example, the speed of the OPV is an operational
simulation input that must be mapped to the synthesis model as the type and number of
engines. If an operational MOE requires a lot of speed, the ship designers can investigate
how to obtain a higher rate of speed with a variety of engine types and engine numbers.
Changes to the engine synthesis inputs may require changes to other synthesis inputs in
order to ensure that the ship’s design considerations (or synthesis outputs) remain
feasible. Additionally, these synthesis input changes may result in changes in the
operational MOE performance. In order to visualize how changes in design parameters
impact the operational MOEs and design synthesis considerations, the MBSE design
concept uses contour profilers.

At the bottom of Figure 38, labeled “Trade Space,” there are two contour
profilers, one representing the operational space and the other the physical space. A
contour profiler is a two-dimensional projection showing the relationships between two
design parameters and a response from a polynomial, meta-model function. These
projections allow the user to interactively explore how a response depends on two design
parameters. The shaded areas represent constraint limits set by the user on each of the
responses; as a result, the white area represents the feasible region. Within the operational
space, a lower response limit may represent a threshold or minimum acceptable response
the operational commanders’ desire. The limits within the physical space may be ship
configuration feasibility constraints dictated by the ship synthesis model. The crosshairs
within the contour profilers indicate the design parameter settings depicted along each
axis. Visualizing the operational and physical contour profilers next to each other allows
the user to explore different design parameter configurations, while ensuring that the ship
remains feasible. As long as the crosshair remains within both the operational and
physical white space (feasible region), we can find design parameter settings that will

achieve the desired performance among multiple operational MOE responses. In addition,
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the contour profilers allow the user to understand the trade-offs that exist between
responses; by adjusting the desired constraint limit of the responses, we can explore ways

to increase performance in one response, while decreasing performance in another.

C. SHIP DESIGN APPLICATION

The three operational scenarios evaluated in the ONR project were the Maritime
Interdiction Operations scenario (Yoosiri, 2012), the Anti-Surface Warfare scenario
(Mckeown, 2012), and the Search and Rescue scenario (Ashpari, 2012). Three master’s
degree students from the Operations Research Department at NPS designed and built the
simulation models used to demonstrate the MBSE design concept. Notional synthesis
meta-models were used to demonstrate the linkages between the operational and physical
trade-space environment. In order to create the operational meta-models, each student
performed an experimental design on their simulation model, with multiple replications
on a high-performance computer cluster. We created three custom designs with a mix of
continuous, discrete, binary, and categorical factors, using our GA. Our GA can only
create 2" Order NOLH and NO/B designs for a modest number of factors, which depend
highly on the number of design points. Therefore, if the experimental conditions require a
large number of factors, the analyst may elect to have a subset of factors that minimize
the ppqp for a second-order model and append additional factors that minimize the py,qy
for a first-order model. Table 14 shows each simulation model’s experimental design
characteristics. For the Search and Rescue experiments, the analyst chose a design with
11 continuous factors that has a second-order p;,q, slightly greater than the 0.05
threshold, in order to reduce the number of experiments (465 versus 630; see Figure 24 in

Chapter IV).
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Table 14.  Experimental design characteristics for the MBSE ship design problem.
The table shows each design’s number of factors, levels, type, and the
subsets of factors that have minimal correlations for either a first- or
second-order model.

Maritime Interdiction Operations Design Anti-Surface Warfare Design Search and Rescue Design
Number of[Number of| Factor | Factor Order |[Number of|[Number of  Factor |Factor Order |Number of Number of| Factor | Factor Order
Factors Levels Type (1" or 2™) Factors Levels Type (1" or 2") Factors Levels Type (1" or 2™)
8 300 CDminuousl 2™ Order 3 200 ‘Cominuous 2 Order 11 | 465  |Continuous 2" Order
2 300 Continuous 3 10 Discrete 2 3 Discrete
1 11 Discrete 1 5 _ Discrete 1% Order 1 25 Discrete 1" Order
1 3 Discrete *Order 8 2 Binary 1 4 Categorical
2 2 Binary Note: The 15-factor design with 200 design Note: The 15-factor design with 465 design
1 11 Categorical points has a 1% Order p ,, = 0.023. The subset [points has a 1 Order p ,, = 0.034. The subset
1 3 Categoricall of factors that are labeled 2™ Order have a 2™ |of factors that are labeled 2™ Order have a 2"
Note: The 16-factor design with 200 design Order p g = 0.029. Order p pup = 0.065.
points has a 1% Order p msp = 0.047. The subset
of factors that are labeled 2™ Order have a 2™
Order p ., = 0.048.

The MBSE design concept relies heavily on the accuracy of the meta-models
developed from the experimental design. The designs in Table 14 provided excellent
exploratory opportunities for the analyst to understand the complicated behavior of the
simulation outputs. Because these designs minimize the correlation between model
effects, they reduce the variance in the coefficient estimates and increase their precision
by reducing model bias (see Chapter II); these benefits ensure that the meta-models are as
accurate as possible. For an in-depth look at the analysis and insights gleaned from the
designs in Table 14, see Ashpari (2012), Mckeown (2012), and Yoosiri (2012).

The operational meta-models created from the experimental designs in Table 14
were used to create the operational contour profiler that highlights the trade-offs
between three operational MOEs and five physical design considerations. Figure 39
shows the MBSE design concept contour profilers that represent the operational and

physical spaces.
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Feasible Design Identification

Significant Factors

Factors Moise
Ship Max Speed 30 Gun (0M1) 1 Patrol Area Size 1
Classification Range 14900 Type of Missiles (1/2) 2 Enemy Ship Max Speed 18
Number of Helicopters 1 Search Speed Fraction 0.5

Number of UAVs 1

XAxis  Helos v Next YAxis yavs v Next
Operational Functions Synthesis Functions
Object Protected , - . min 31 Ship Length , o . . min 100max 301
Search TiMe(Min) j— ) max 31 Ship Beam , - « min 41 max B0
INerdiction . e— min 0.7 Displacement (k Ibs) - max 4800
CrewSize, o « Min 53 max 120
Ship Cost (20125M), -— max 3330
Operational Synthesis
2 2+
wm wm
z 1 z 1
3 3
0 0+
T T T T T T
0 1 2 0 1 2
Helos Helos

Figure 39. The MBSE design concept contour profilers. The colored areas within the
contour profilers indicate infeasible ship configurations that violate the minimum and
maximum constraints set at the middle of the figure, under the operational and
synthesis functions.

The contour profilers in Figure 39 allow decision makers to explore different ship
configurations while ensuring it is feasible and operationally effective. There are seven
physical design factors and two operational noise factors listed at the top of Figure 39;
these are the significant factors within the meta-models created using the designs in
Table 14. In the middle of Figure 39, there is an area that sets the minimum and
maximum constraints for each of the three operational and five synthesis meta-model

functions; the form of the meta-models determines the shape of the colored contours.
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Adjusting the constraints will adjust the colored area that indicates the infeasible region;
as long as the crosshairs fall within the white space in both the operational and physical
space, the ship is simultaneously feasible and effective. Because the shape of these meta-
models greatly impacts the insights gleaned from the contour profilers, it is important to
ensure that they are as accurate as possible in order for the MBSE design concept to be
effective. The designs created by our GA provide the means to develop accurate meta-
models that best describe the output behavior of the operational simulation models.
Traditionally, when faced with a problem that has a mix of continuous,
discrete, and categorical factors, experimenters often cross the continuous factors with a
full-factorial design that contain the discrete, binary, and categorical factors. Table 15
shows the number of total experiments needed for each of the operational simulations if
the analyst used a continuous design, crossed with a full-factorial design. We can see
from this table that there is a considerable amount of savings in computational resources

when we use the designs created by our GA.

Table 15.  The number of design points needed to perform each of the operational
simulation experiments when crossing a continuous design with a
full-factorial design.

Number of Design Points
Conti Discrete. Bi d Total Number of
ontinuous iscrete, Binary, an .
Operational Simulation ) ) y Experiments
Experiment Design Categorical Full (Continuous Design
P Experiment Factorial Crossed with Full-
Factorial Design)
Maritime Interdiction Operations 300 11x3x2°%x11x3 1,306,800
Anti-Surface Warfare 200 10° x 5 x 2° 256,000,000
Search and Rescue 465 32x25x4 418,500

D. SUMMARY

The MBSE design concept’s reliance on accurate meta-models emphasizes the
utility of the 2" Order NOLH and discrete NO/B design. In addition, the designs created
by our GA provided a tremendous savings in computational resources by not having to
rely on the full-factorial designs for the discrete and categorical factors. For each
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operational simulation model, there were a wide variety of factor types with different
levels. All terms within the designs used for the simulations nearly guaranteed that no
first-order term was confounded with another. In addition, a large subset of the factors
nearly guaranteed that no second-order term was confounded with another as well.
Because the designs possessed excellent space-filling properties, they were able to
explore the interior of the experimental region to find interesting behavior throughout the

entire response surface landscape.

99



THIS PAGE INTENTIONALLY LEFT BLANK

100



VIIl. CONCLUSIONS AND RECOMMENDATIONS FOR
ALGORITHM IMPROVEMENTS

In order to understand the complex nature of our world, we must be able to detect
the driving factors during simulation experiments and understand how they impact the
results. Computer simulations and DOEs enable us to model our world by simultaneously
exploring numerous factors that may affect the complex nature of multiple simulation
responses. These experiments are critical in the early phases of the system design
process, when there is little information and no existing system. Simulation outputs often
have complicated, high-order, response surfaces that may include thresholds or step
functions in different regions of the experimental space. The simulation analyst needs
experimental designs that can best capture the significant factors, thresholds, factor
synergies, and the factor’s diminishing or increasing rates of return. Additionally,
because we never know the true form of the response surface, analysts need designs that
minimize a priori model assumptions that are flexible enough to estimate a variety of
high and low order response surfaces.

In this dissertation, we presented a new genetic algorithm that constructs the
first-ever 2" Order NOLH and NO/B designs for continuous and discrete factors, with
minimal correlations between all main, quadratic, and two-way interaction factors.
Additionally, we can augment these designs with categorical factors that minimize the
first-order correlations between the dummy variables of one categorical factor and the
dummy variables from another categorical factor.

In addition to constructing 2" Order NOLH and NO/B designs, the genetic
algorithm can also construct NOLH and discrete NO/B designs that minimize the pyq,
for the linear terms only, or for the linear and quadratic terms. Table 16 shows a sample
of NOLH, Saturated NOLH, and Quadratic NOLH designs that were constructed using
our algorithm. A NOLH design has a design matrix with only linear terms. Saturated
NOLHSs have a design matrix where n = k£ + 1. A Quadratic NOLH has a design matrix

that includes the linear and quadratic terms only.
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Table 16.  Sample of NOLH, saturated NOLH, and quadratic NOLH designs.

Number of
Number of .
NOLH Type Factors Dejslgn Pmap
Points

NOLH 30 50 0.000
NOLH 50 75 0.006
NOLH 100 200 0.040
Saturated NOLH 9 10 0.003
Saturated NOLH 15 16 0.003
Saturated NOLH 30 31 0.031
Saturated NOLH 46 47 0.029
Quadratic NOLH 4 17 0.042
Quadratic NOLH 9 33 0.050
Quadratic NOLH 14 65 0.050
Quadratic NOLH 20 129 0.050
Quadratic NOLH 31 250 0.050

The GA enables the construction of NOLH designs for any number of design
points, which allows the user to construct unique designs for different analytical needs.
For example, if the analyst wanted the flexibility to estimate up to a fourth-order model
with four factors, the algorithm can create a 2" Order NOLH with 28 design points,
allowing enough degrees of freedom to fit all 27 terms.

The Monte Carlo simulation experiment demonstrated the 2™ Order NOLH
design’s ability to estimate the coefficients and predict the response for six different
high-order, complicated, true models with continuous factors. Independent of the true
model form, the 2™ Order NOLH is flexible across a wide variety of models for two

reasons. First, the minimal p;,,, can nearly guarantee that all statistically significant

first- and second-order terms are not confounded with others and, second, their small
ML, indicates an excellent space-filling property that enables the detection of model bias
and the presence of step functions or other change points. The discrete 2" Order NO/B
designs, augmented with first-order categorical factors, provide the experimenter with a
wide variety of designs for any mix of factors. The infinite combinations of discrete and
categorical levels require a need for a custom design creator capable of generating
designs for a mix of factor types often encountered during simulation studies. We provide

this freely available custom design builder at http:/harvest.nps.edu. The
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2" Order NOLH and NO/B designs are particularly well suited for simulation
experiments that have multiple responses with complicated surfaces. In a single
experiment, the designs proposed in this paper can fit a wide variety of response surfaces
with the desired amount of degrees of freedom.

There are a number of future contributions that still need further research within
the space-filling domain. The first is to investigate the creation of designs with
second-order categorical factors. The categorical factor does not have a quadratic term,
but they do have two-way interactions. During our attempts to find categorical
2" Order NO/B designs, we found that the cross products of the dummy variables with a
0/1 or 0/1/~1 convention do not result in a lot of variation. For example, multiplying 0
times 1 or 0 times 0 both equal 0 and, as a result, the interaction terms ends up with a lot
of 0s. An interaction term between two dummy variables with a lot of Os will inherently
be correlated with another dummy variable interaction term with a lot of 0s. Investigating
the field of orthogonal arrays may provide some insight into how to address high-order
interactions between dummy variables (Hedayat et al., 1999).

Another worthy improvement would be to find 3" Order NOLH designs. Because
the linear term and cubic term of each factor will always be highly correlated, we should
exclude these correlation checks when evaluating the fitness of a candidate column. The
results will be designs that nearly guarantee no term is confounded with another for up to
a three-way interaction (excluding the linear and cubic term pairwise correlations). We
expect the number of required design points, n, will be larger and that the computation
time will increases because there will be additional terms in the regression matrix, Z.

Incorporating experimental constraints into the algorithm would further benefit
the simulation community. There may be circumstances where a factor setting is
infeasible if another factor is set at a certain setting. To implement a constraint within the
algorithm, we could include a rejection criterion or assign a correlation greater than 1 for
a candidate column that violates a constraint. The end result would be space-filling

designs with holes in the experimental region where there are infeasible factor settings.

103



THIS PAGE INTENTIONALLY LEFT BLANK

104



APPENDIX. DESIGN CREATOR FRONT-END USER MANUAL

This appendix serves as a user manual to the Front-End Tool in the
DesignCreator.xIsm file used to run our genetic algorithm. The purpose of the tool is to
allow the user to create a custom design, with a specified number of design points and
number of factors, by type, number of levels, and the model terms included in the
regression matrix. In addition, the user can start the algorithm with an existing design and
add columns to it; this allows us to leverage the cataloged 2" Order NOLH designs that
are included in the workbook by adding columns to them. Once the algorithm creates the
design, there are some utilities available that will create a spreadsheet to translate a
design, create higher-order terms, calculate the maximum absolute pairwise correlation,
and create dummy variables for categorical factors.

The algorithm was written in Java'™ 2 and requires the user to ensure
that the Java Platform (JDK) is downloaded on their computer; visit the Oracle
website at http://www.oracle.com/technetwork/java/javase/downloads/index.html to
download. You can download the tool from the SEED Center website at
http://harvest.nps.edu/software.html. Once downloaded, there will be two files:
DesignCreator.xlsm (containing the Front-End Tool with utilities) and DOE.jar (the
executable .jar file written in Java). Ensure that these files are saved to the same folder. If
you are on a shared network computer we do not recommend that you save the files to the
desktop. When opening the DesignCreator.xIsm file, the user must enable the macros in
order to utilize the buttons throughout the workbook. The Front-End Tool will create an
input.csv file and a runit.bat file (for Windows computers) or runit.txt file (for Macintosh
computers) and save them to the same folder; these are the files the DOE.jar file needs to
execute the algorithm from the Windows computer Command line or the Macintosh
computer Terminal window.

Once the algorithm is complete, the output design will be saved as a .csv file in
the same folder the DOE jar file is in. The output file title name will have the number of
rows, columns, the pp,qp, ML, and the initial seed used for the random number generator
(see Chapter II for the definition of pp,,, and ML,). In the .csv file, the first four rows
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will contain the following, respectively: the factor type, the number of levels, the model
terms included in the regression matrix, and the factor name, x;, where i is the column
number. If there are discrete or categorical factors in the design, the last row, separated
by the word “balance,” will have the factor’s balance metric indicating the spread of the
levels across the design points; see Chapter VI for the definition of balance. As a general
rule, the user should never delete or change any of the worksheet names in the
DesignCreator.xlsm file. Each section in this appendix describes the worksheets in the
DesignCreator.xlsm file and provides instructions where appropriate.
readme

The readme worksheet provides the purpose of the tool, explains how to create
designs and use the utilities. In addition, it references literature that pertains to the
designs created by the genetic algorithm.
glpl

The worksheet describes the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 2.1 of the License or (at your
option) any later version. This license ensures that the algorithm is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY, without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Front End

Input Parameter Settings

The Front End worksheet allows the user to enter the genetic algorithm input
parameters. The blue-colored cells are the factor entry area used to specify the number of
factors, by type, number of levels, and the model terms included in the regression matrix
for the pqp calculation. The four types of factors are: continuous, discrete, categorical,
and binary. For continuous factors, the number of levels must be equal to whatever is set
as the “Number of Design Points” parameter in the green-colored entry area. For
categorical and binary factors, only the main (linear) terms can be added to the regression
matrix (model terms must be set to “M.”) Binary factors can only have the number of
levels set to 2. Generally, the user should set the highest-order model terms in the first set

of rows. The model term designations are the following: M for main effects; MQ for
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main and quadratic effects; MI for main and two-way interactions; and MQI for main,
quadratics, and two-way interactions. The model terms order, from highest to lowest, are
MQI, MI, MQ, and M. The model term designations significantly impact the algorithm

run time. Figure A1 shows a snapshot of the factor entry area in the Front End worksheet.

Enter the desired factors in the blue area.
Indicate their type, number of levels, and
model terms. The algorithm creates one
column and then adds the remaining
columns one at a time until the design has
the total number of desired factors. When
adding an additional column, the algorithm
will attempt to minimize the correlations
between columns in a regression matrix. The
Model Terms entry area to the right specifies
the terms that will be included in the
regression matrix for each column.

Note: Creating a full second-order regression
matrix (MQI) for 12 continuous factors may
take over 3 days to complete. We
recommend that you use the cataloged 2"¢
Order NOLH designs in this workbook and
augment additional factors with the Model
Terms set to either M or MQ.

Number of Factor Number Model Model Terms Key:
Factors Type of Levels | Terms | M: Main effects only
3 continuous 20 M

MI: Main and two-way
interaction effects

MQ: Main and quadratic effects
MQI: Main, quadratic, and two-
way interaction effects

Run Algorithm (Windows
Computer Only)

For MAC computers, see instructions
below.

Note: In erder to run the algorithm you
must have Java Platform (IDK)
downloaded on your computer. If it is
not already, click on the following
Oracle website link to download it:

http://www.oracle.com/technetwork,/
java/javase/downloads/index.html

Figure A1.  Factor entry area in the Front End worksheet.

The red-colored cells are the algorithm’s internal input parameters that will not be
of interest to the general user of the design creator. Chapter IV discusses the experimental
designs we performed to determine the appropriate input parameter settings for design
searches. The user can change these input settings, if desired (see Chapter III for the
algorithm steps and definitions of input parameters), and can restore the default settings
by pressing the macro button underneath the red-colored cell area. Changing these
internal input parameter settings will impact the algorithm’s performance and run-time
length; see Chapter IV for guidance on the performance and run-time length for different
number of design points and columns with the default internal parameter settings. For

designs that are not difficult to minimize the pp,q,, We recommend setting the number of

trials (numTrials) equal to 1 in order to speed up the algorithm’s run time.
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The green-colored cells are the input parameters the general users will need to set
each time they run the algorithm. Because the algorithm is run as a batch file from the
Command or Terminal window, the user may decide to increase the number of algorithm
instantiations that will be executed. Setting the “Number of Batch Replications”
parameter to greater than 1 will allow the user to send a batch file to a computer cluster to
perform multiple replications of the algorithm. Because of the stochastic nature of the
algorithm, we recommend performing multiple replications when searching for efficient
designs and then selecting the design with the smallest py,qy,. If the user does not intend
to send a batch file to a computer cluster, he/she can run the algorithm multiple times in
separate Command/Terminal windows. The “Number of Design Points” parameter is the
number of experiments or rows in the desired output design matrix. The “Start With
Design” boolean parameter lets the algorithm know whether to add the desired factors
entered in the blue-colored cell area to an existing design located in the Start Design
worksheet. When the “Start With Design” parameter is set to TRUE, ensure that the
“Number of Design Points” parameter is set to the same number of rows in the design
that is pasted into the Start Design worksheet. The “Jiggle Operations” boolean
parameter lets the algorithm know whether to perform the jiggle operations on the
continuous factors (see Chapter III for a description of the jiggle operations). If the
algorithm starts with an existing design, the jiggle operation will only be performed on
the newly added continuous columns. The “Show Comments” boolean parameter lets the
algorithm know whether to show the comments in the Command/Terminal window
during the algorithm’s execution. When sending a batch file to a computer cluster, the
“Show Comments” parameter should be set to FALSE. Figure A2 shows a snapshot of

the input parameter entry area in the Front End worksheet.
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Input Parameter Setting Description

Number of Batch Replications 1 The number of command line batch replications written to the batch file.

Number of Design Points 20 The number of rows in the design matrix. Each row designates the factor settings for each experiment.
TRUE means that the algorithm will add columns to the design that is pasted into the Start Design
worksheet. FALSE means that the algorithm will create a new design.

TRUE means that the algorithm will perform the jiggle operation, FALSE means that it will not. The
jiggle operation will not be performed on columns in the Start Design worksheet.

TRUE means that the algorithm comments will be displayed in the command/termainal window. Set to
FALSE when sending batch files to a high performance computer cluster.

Start With Design FALSE

Perform Jiggle Operations TRUE

Show Comments TRUE

numExploreGen 100 Number of exploration generations.
numExploitGen 200 Number of exploitation generations.
popSize 100 Size of the population of candidate columns.
copyPortion 0.1 Portion of candidate columns copy into the next generation.
halfWidth 0.5 The bounded distance that prevents the jiggle operator for perturbing outside a range.
numligGen 100 Number of jiggle generations.
. Number of exploration trials each consisting of a set of exploration generations with its own initial
numTrials 3 X i
population of candidate columns.
swapPortion 0.2 Portion of design points swapped during a swap operation.
poolSize 100 Size of the pool that contains a set of candidate columns.
genExitCriteria 20 Number of generations performed without improvement of the fitness function.

jigglePortion 0.2 Portion of design point jiggled during a jiggle operation.

Number of attempts to find a column with a new initial population of solutions if an attempt did not
meet the maximum correlation threshold.

jigglePasses 3 Number of times the jiggle operator is performed on the columns.

The maximum correlation a column threshold must be before added to the design. The algorithm will
continue to find a column to add to the design for a set number of attempts (colAttempts).

colAttempts 3

corrThreshold 0.05

Figure A2.  Input parameter entry area in the Front End worksheet.

Algorithm Execution

Once the input parameters are set, the steps to execute the algorithm will depend
on the type of operating system on your computer (Windows or Macintosh). For
Windows computers, simply press the “Run Algorithm” macro button; each time you
press this button, a new Command line window will open and run a different instantiation
of the algorithm. Macintosh computers must run the algorithm from the Terminal
window, with the current directory set to the file location where the DesignCreator.xlsm
and DOE jar files are saved. The first step is to press the “Create Flat Files” macros
button. Then, open the Terminal window and change the directory to where the algorithm
is saved. At the Terminal Command prompt, type the following:

. ./runit.txt

To run additional algorithm instantiations simultaneously, open a new Terminal window
and repeat the above steps. To open the Terminal window from the Finder, the user can
go to System Preferences and click on “Keyboard,” select the “Keyboard Shortcuts” tab
and click “Services” from the left menu; scroll down on the right and check the box next

to “New Terminal at Folder.” Setting this preference will allow the user to right click on
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a folder in the Finder and click “New Terminal at Folder” to open the Terminal at the
desired folder. This preference setting will save the user from having to change the
directory manually to where the algorithm is located each time you open the Terminal
window.

When the “Show Comments” parameter is set to TRUE, the comments shown in
the Command or Terminal window reveal the progress of the algorithm. Figure A3 shows
a Command line window that searched for a three continuous factor 2™ order design with
20 design points. The algorithm performed three exploration trials (numExploreGen = 3)
and three jiggle generation passes (jigglePasses = 3). The final time shown at the bottom

of Figure A3 is in hours.

Y: \trunk\Dlssertatlon\FrontEnd)%ava -jar DOE. jar 20 False True True 100 200 100
©.1 2.5 100 9.2 100 20 0.2 3 as
design Points: 20 seed: 2149891

1dcolumn. continuous factor type, 20 discretelLevels, mode: MQI, 1 columnAttempt,
esignSize:

1 exploration trial correlation: 0.0030075187969924814

2 exploration trial correlation: 0.0035120253120068706

3 exploration trial correlation: 0.08038094149848396284

best from exploration generations: 0.0030075187969924814 time elapsed: 0,0661632
0333333334 minutes

best from exploitation generations: @.0030075187969924814

2 column, continuous factor type, 20 discretelevels, mode: MQI, 1 columnAttempt,
eslignolze:

1 exploration trial correlation: @.04602415128730918

2 exploration trial correlation: @.02857142857142857

3 exploration trial correlation: 0.08298522151520584

best from exploration generations: 0.02857142857142857 time elapsed: 0.209332816

66666667 minutes

best from exploitation generations: ©.02857142857142857

j i 1 .

jiggled column: @.@13533527345797927 original column: ©@,02857142857142857
jiggled column: .RRE62377093987147 original column: 0.013533527345797927
jiggled column: O.Q05520766537884698 original column: ©.0135186121050120719

jiggle pass:

jiggled column: @.005520766537884698 original column: 0.005520766537884698
jiggled column: @.0Q03323758202155466 original column: @.006572470707733691
jiggled column: . 003943008496000514 original column: @.005520766537884698

jiggle pass:

jiggled column: . 00394300849600049 original column: 0.00394300849600249
jiggled column: @.002658994167946492 original column: 0.00394300849600049
jiggled column: . 0034261573867559723 original column: 0.005472171446045812

design siz elation: ©.003426157386755961, time: ©.0191719396666
6667,ML2: @ @@622199344670@@47 seed 2149891,

Y:N\trunkN\Dissertation\FrontEnd>

OFENW NN RN

Figure A3.  Command line window during the algorithm execution.
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Cataloged Designs

This worksheet has hyperlinks that will navigate the user to other worksheets that
contain the cataloged 2" Order NOLH design. Once there, the user can press the macro
button to automatically copy the design into the Start Design worksheet. We recommend
using these cataloged designs for up to 12 continuous factors when you can afford to
perform the number of experiments needed for each design. When the user desires to add
discrete factors to a set of continuous factors (up to 12), with the model terms set to
“MQI” (for a full second-order model), we recommend copying a cataloged design to the
Start Design worksheet and then deleting two continuous columns for every one discrete
factor (this is only a rule of thumb). Adding additional columns (of any type) to the
cataloged designs, with the model terms set to “M” or “MQ” do not require that you
delete continuous columns.
Start Design

If the user desires to add additional columns to an existing design, paste the
design into this worksheet and set the “Start Design” parameter to TRUE in the Front
End worksheet. The first row designates the factor type. Ensure one of the following text
entries is in each column in the first row: continuous, discrete, binary, or categorical.
Specify the number of levels for the factor in the second row. For continuous factors, the
algorithm does not care what is entered because the number of levels for a continuous
factor is always the number of design points. The third row contains the model terms (M,
MI, MQ, and MQI). These entries have no impact to the algorithm. The fourth row is
reserved for the factor name. Ensure that the design (with the first four rows) is pasted

into cell B1.
Coded Design

Paste a design with the first four row entries as indicated in the Start Design
worksheet instructions into cell Bl. If there are discrete or categorical factors in the
original .csv output file, be sure not to paste the word “balance” and the balance metric
into this worksheet. Also, avoid pasting empty cells that may get highlighted after
selecting the current region in the .csv output file. Press the “Create Translation

Worksheet” macro button to create a formula worksheet that will allow the user to
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translate the coded design point levels to the factors range desired for the experiments. To
calculate the ML, and ppg, metrics, press the “Insert Design into Design Tools
Worksheet” macro button. If the design has categorical factors and the user wants to
examine the first-order correlations of the design with the categorical dummy variables,
press the “Insert Design into Categorical Design Worksheet.”
Translated Design

After pressing the “Create Translation Design” macro button in the Coded Design
worksheet, the macro will insert the formulas into the cells that will allow the user to
translate the design to the desire factor ranges. The blue-colored cells are copies of the
first three rows from the Coded Design worksheet (factor type, number of levels, and
model terms). For continuous factors, enter the low and high setting for each factor.
Users have the option to round the continuous factor to a discrete factor; however, we do
not recommend doing this. Rounding a continuous factor is an old technique to create
discrete factors but can severely impact the p,,,;, of the original design (especially the ond
Order ppqp). We should not have to round a continuous factor anymore because our
algorithm is capable of creating designs with discrete factors for a specified number of
levels. If the factor column is discrete, the sixth row allows the user to scale the column
instead of rounding. Scaling a discrete factor to a number greater than 1 will spread the
discrete levels over a wider range of values. If the factor type is either discrete or
categorical, the high level will be protected and will add the number of levels to the
low-level setting. The yellow-colored cells are protected to ensure the user does not
change the translation formulas. After establishing the low and high levels and naming
the factors, the user can copy and paste special values the translated design into another

spreadsheet for their experiment.
Design Tools

After pressing the “Insert Design into Design Tools Worksheet” macro button in
the Coded Design worksheet, the design will appear (with the factor names only in the
first row) in cell B1. The available macro buttons allow the user to calculate the ML,

space-filling metric; center the design by subtracting the mean; create the quadratic
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terms; the second-, third-, and fourth-order terms; calculate the p;,,4,, and calculate the
distribution of all absolute pairwise correlations. Before you create the higher-order
terms, you must ensure that you center the design first; otherwise, the main factors will
be highly correlated with its own quadratic. Be sure to only press the higher-order macros
button once; otherwise, the macro will expand out the terms with whatever is currently in
the worksheet. Delete the high-order terms in the worksheet if you desire to recreate a
different set of higher-order terms. When the user presses the “Collect and Sort Abs Corr
Distribution” macro button, the distribution of all absolute pairwise correlations of
whatever design is currently in the worksheet will get pasted and sorted into the Abs Corr

Distro worksheet.
Abs Corr Distro

After pressing the “Collect and Sort Abs Corr Distribution” macro button, the
absolute pairwise correlation distribution will get pasted and sorted into this worksheet.
Categorical Design

After pressing the “Insert Design into Categorical Design Worksheet” macro
button in the Coded Design worksheet, the design will appear in cell B1. From here, the
user can designate the dummy variable convention before creating the dummy variables
(see Chapter VI for a description of the different dummy variable conventions). After
pressing the “Create Dummies” macro button, a new design will get pasted into the
Dummy Variables worksheet with all the categorical factors converted into the set of
dummy variables determined by the number of levels.

Dummy Variables

This worksheet will contain the design with dummy variables after pressing the
“Create Dummies” macro button in the Categorical Design worksheet. Pressing the
“Find First-Order Correlation Distro with Dummy Variables” macro button will paste
and sort the absolute pairwise correlation distribution into the 4bs Dummy Corr Distro

worksheet.
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Abs Dummy Corr Distro

After pressing the “Find First-Order Correlation Distro with Dummy Variables”
macro button, the absolute pairwise correlation distribution will get pasted and sorted into
this worksheet. The third column will designate (with an N/A) the pairwise correlations
that are between dummy variables within the same categorical factor. For practical

purposes, we are not concerned with these correlations (see Chapter VI for a description

of the dummy variables).
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