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ABSTRACT 

This thesis investigates the implementation of optimal control solutions for positioning 

spacecraft antenna using conventional techniques. Conventional maneuvers consider each 

axis independently and may include artificial limits that reduce the efficiency of the 

system. These methods allow simple, but generally suboptimal, maneuver design. Multi-

body dynamic systems do, however, exhibit coupling effects that can be advantageous for 

enhancing motion planning. Including coupling effects in the model can reduce energy 

needed to implement a slew maneuver. For example, previous work demonstrated that 

optimal control solutions can reduce required slew time for spacecraft antenna 

maneuvers. This work explores the utility of implementing such optimal trajectories as 

reference maneuvers using current control schemes. Development and validation of the 

approach is explored using systems of increasing dynamic complexity. Two methods to 

match given optimal control profiles using existing control logic were developed and 

compared against current practice. The developed methods were applied to the results for 

a double gimbal model and the Tracking Data Relay Satellite. The developed approach 

allows optimal trajectories to be successfully matched to within 2% position error along 

the trajectory using less than four conventional maneuvers. These results thus provide a 

simplified approach for implanting optimal slew maneuvers. 
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I. INTRODUCTION 

A. MOTIVATION 

Many space systems in operation today were designed with conservative 

operational limits. These limits were chosen during the design process for various 

reasons, such as limiting stress on components or reducing induced disturbances [1]. 

Some of this conservatism is a result of providing a desired safety margin but, in many 

cases, these limits are based on simplifications made during system modeling. 

Historically model reduction was necessary to develop solutions to these complex 

problems without the aid of computers [2]. Progress in computing power and software 

provided engineers and scientists the ability to solve multi-body dynamics problems 

without simplification [3].  

Optimal control problems, which attempt to minimize a user defined cost 

functional, can now easily be solved using home computers for multi-body dynamic 

systems, such as spacecraft. These techniques have resulted in more efficient maneuver 

paths as demonstrated in [2, 4] on the International Space Station and Transition Region 

and Coronal Explorer (TRACE) spacecraft. This idea has also been applied to 

communication satellite antenna pointing to reduce slew maneuver times and improve 

customer access [1].   

Optimal maneuvers, however, usually require the implementation of a 

polynomial-based trajectory for the path. Because of simplifications used to facilitate 

simple problem solutions, many current systems are designed to maneuver along an 

eigenaxis path [2]. This path represents the shortest angular path between two points but 

is not, in general, the time-optimal trajectory [5]. Systems designed using such 

conventional control logic may not be capable of accepting other, polynomial trajectories 

as inputs, without some kind of software change. Such changes will typically incur some 

cost and this tends to deter the adoption of more efficient optimal control maneuver 

paths. 
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B.  THESIS OBJECTIVE AND SCOPE 

This thesis seeks to determine the utility of implementing optimal control 

solutions using current control techniques to mimic the optimal response. If the optimal 

path can be achieved without requiring a system to accept or process a polynomial 

solution, the benefits of optimal control can be exploited by a variety of systems with 

minimal changes. This approach therefore represents an intermediate step between the 

current state of practice and the future state of the art. An approach for implementing 

optimal maneuvers using existing control system will make the benefits accessible to 

numerous applications including optics, antenna pointing, and robotics. 

The development of optimal control problems will be discussed to demonstrate 

the advantages of this process for maneuver development, particularly for multi-body 

systems. Optimal control problems will be solved using available computer software. 

Various applicable cases and systems of increasing dynamic complexity will be 

evaluated. The optimal solution maneuver path will then be approximated using current 

methods and the performance achieved will be evaluated. 

This thesis approaches the concept of implementing optimal control solutions that 

have been solved a priori. Instead of using the existing control logic to plan and 

implement a linear maneuver, it is assumed that a certain path to the final position is 

known and is provided to the spacecraft operator. The given profile can then be matched 

using a sequence of maneuver steps based on the existing trapezoidal motion profile, 

shown in Figure 1. This approach allows maneuvers to be solved off line and the 

maneuver parameters stored for later implementation. It is not necessary to solve the 

maneuver as part of the flight software. 
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Figure 1.   Trapezoidal motion profile. 

In the trapezoidal motion profile, the motion has a prescribed maximum 

acceleration and velocity limit. The maximum acceleration is applied from the initial time 

until the maximum allowed velocity is reached, then the system coasts at the maximum 

velocity until near the desired final position. The system then uses negative, full 

acceleration to return to zero velocity at the desired final position. Torque applied will be 

constant, only the time of application will be varied to generate the required velocity 

profile. This is meant to limit the complexity of the implementation to allow the resulting 

method developed here for inserting optimal motion profiles to be applicable to the 

widest number of applications. 

Finally, the maneuver matching techniques developed will be applied to the 

Tracking Data Relay Satellite (TDRS), as a practical example. The output of an 

optimization for TDRS based on the analysis in [1] was used as the optimized path. It is 

shown that the approach developed in this thesis allows for an optimal solution to be 

implemented on a real world system using existing control algorithms. The performance 

of the developed scheme is evaluated by comparing the time required for each sequenced 

maneuver against the current slew implementation.  
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C. THESIS OUTLINE 

The remainder of this thesis is organized to provide an introduction to optimal 

control problems, develop the optimal solution matching technique, and then apply the 

process to selected example cases. Chapter II introduces basic concepts in optimal control 

theory. Chapter III presents examples of optimal control problems and their solutions. 

Chapter IV introduces the double gimbal system, describes associated optimization 

problems, and presents their solutions. Chapter V describes the matching techniques 

developed for optimal reference paths and provides the results of test case analysis. 

Chapter VI provides a description of the TDRS optimization problem and presents the 

results of optimal solution matching technique implementation. Finally, Chapter VII 

presents conclusions and suggested areas for future work.  
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II. OPTIMAL CONTROL THEORY 

For every operation there is a particular path that represents the minimum 

resources required to achieve a given goal. Conventionally, the optimum path between 

two points has been thought to be a straight line. This comes from the idea that the 

shortest path must represent the best path. It has been shown for multi-body dynamic 

systems, like spacecraft antennas, that the optimal solution rarely follows a straight line 

because of the effects of nonlinearities and coupling between the various bodies [6]. The 

question of what optimal means therefore becomes a relevant piece of information. 

Generally, operators seek to reduce time, fuel, or torque required to perform a maneuver. 

In each case, the optimal solution is one that provides the lowest user defined cost to 

execute the desired action. 

Several techniques exist for generating these optimal solutions, each requiring a 

varying level of user involvement and complexity. These approaches include the 

formulation of boundary value problems (BVPs), which can be solved in MATLAB 

using a shooting method or a collocation method or the use of automated computer 

programs such as DIDO [3, 4]. In this chapter, each of these methods will be briefly 

discussed. 

A. OPTIMAL CONTROL PROBLEMS 

An optimal control problem is a set of differential equations that is coupled with a 

set of boundary conditions and any other constraints on the system with the objective of 

minimizing a cost functional. The boundary conditions are based on the desired behavior 

of the system at specific points. These conditions are imposed on the system by fixing the 

function and some of its derivatives at more than one value of the independent  

variable [7]. Boundary conditions can be expressed as fixed values or functions. For 

example, the initial values of position and velocity may be explicitly specified or they 

may be part of a range of values with the optimal value being dictated by the solution. If 

boundaries are specified for the entire path of the problem, these conditions force a 

constraint on the solution [1]. 
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The fundamental optimal control problem, PC, is given in Equation (2.1) [8]. 
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
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
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






  (2.1) 

In Equation  (2.1), function E  represents the endpoint cost in terms of final state and 

time. Function F  represents the running cost based on the state variables, x , a control 

variable, u , and time, t . Applying Pontryagin’s Principle leads to the definition of a 

BVP, the solution of which provides a solution to PC .  

Pontryagin’s Principle is stated as follows: “Given an optimal solution 

    , , fx u t  to Problem PC, there exists a costate,    , and a covector, , that 

satisfies the Adjoint Equation, the Hamiltonian Minimization Condition, the Hamiltonian 

Value Condition, the Hamiltonian Evolution Equation and the Transversality  

Condition” [8]. Meeting these conditions does not solve the optimal control problem 

explicitly, but identifies the required conditions that a candidate optimal solution must 

satisfy. Each of these conditions will be discussed in relation to the specific example 

cases used in this thesis.  

The first and most important step in the process of solving this type of problem is 

the problem formulation. To properly formulate an optimal control problem, the three 

components of PC above must be present: a function or quantity to minimize, the system 

dynamics, and a set of boundary conditions and constraints [1]. The problem is 

constrained and bounded as necessary to limit its scope. 

A dynamical model is formulated in state space, given by  , ,x f x u t . This state 

space model takes the control function u as the input and produces response x. The next 

step in the application of Pontryagin’s Principle is the development of the Hamiltonian 

function, H, based on the specified problem dynamics. Pontryagin’s Principle states that 

the control function is optimal when H is minimized with respect to u for all instants in 
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time [8]. This provides a construct to find the optimal solution to a stated problem, if the 

control trajectory that minimizes the Hamiltonian can be found.  

The Hamiltonian is defined in Equation (2.2). 

      , , , , , , ,TH x u t F x u t f x u t     (2.2) 

In Equation (2.2),   represents the adjoint covector, a Lagrange multiplier function, 

which shadows the established state dynamics, and satisfies the conditions of the adjoint 

equation [8]: 

 
H

x



 


  (2.3) 

The adjoint forms a Hamiltonian pair with the state dynamics and minimizing this 

with respect to u  produces a candidate optimal solution. This is known as the 

Hamiltonian Minimization Condition (HMC) [8]. 

 

 Minimize   , , ,
       

Subject to   

          

H x u t
u

u








  (2.4) 

If there are no constraints on the controls, the HMC reduces to the Euler-Lagrange 

equation and the control that minimizes the Hamiltonian is given by: 

 0
H

u





  (2.5) 

At this point, there may not be enough information to develop a unique solution to 

the system of equations because there could be too many unknown quantities. Upon 

application of Pontryagin’s Principles, a system of 2N  variables, N  states, N  costates, 

and 2N  differential equations is obtained. Thus, knowledge of 2N  point conditions is 

necessary to generate a unique solution [1]. All of these point conditions will not 

necessarily be known at the time the problem is formulated but can be obtained based on 

the defined system parameters. Other boundary condition information is determined from 

the terminal Transversality Condition, 
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  f

f

E
t

x






  (2.6) 

where E  is the Endpoint Lagrangian. 

      , , , ,T

f f f f f fE x t E x t e x t     (2.7) 

In Equation (2.7),  ,f fE x t  represents the endpoint cost,   is a vector of 

Lagrange multipliers, one for each endpoint condition, e . Developing the Transversality 

Condition will introduce xN  new equations, but will also provide eN  unknowns. This 

allows for the discovery of x eN N  additional boundary conditions [8]. In the event that 

all the states had endpoint conditions explicitly provided in the problem formulation, 

evaluation of Equation (2.6) would not provide any additional information because all of 

the 2N  point conditions necessary would already be known.   

Finally, if a specific end time is not required or specified, the Hamiltonian Value 

Condition must also be introduced and evaluated to provide the final point condition on 

the Hamiltonian. This would not be required when the final time is specified. The 

Hamiltonian Value Condition is [8]: 

 
f

f

E
H t

t


     

  (2.8) 

Equations (2.2)–(2.8) provide the complete set of equations and boundary 

conditions required to obtain a unique candidate solution to an optimal control BVP. It 

should also be noted that slight changes in the boundary conditions of a BVP can lead to 

significant changes in the behavior of the solution [7]. There are also some cases where 

required constraints produce additional terms in the Hamiltonian making the simple 

Euler-Lagrange Equations (2.5) no longer applicable [1]. In these cases, the partial 

derivative H u   must be interpreted as a switching function. 



 9 

B. SOLVING AN OPTIMAL CONTROL PROBLEM 

Once a BVP has been developed by the application of Pontryagin’s Principle, it 

must be solved. Obtaining a solution to a BVP means to solve the underlying differential 

equations and satisfy the specified boundary conditions [7]. Numerous techniques exist 

for solving BVPs. These range from user defined code to pre-programed algorithms that 

act solely based on user inputs. This section is not meant to be an exhaustive survey of 

these techniques, but some basic ideas are presented to give the reader an appreciation for 

the most commonly used techniques. Three basic methods will be discussed: shooting, 

collocation, and the use of the software program DIDO. All of these methods rely on 

MATLAB for execution and each presents unique challenges and merits to obtaining the 

solution to an optimal control problem. 

1. Shooting Methods 

One common approach for solving optimal control problems is the use of a 

shooting method, which generates the numerical solution of a BVP by integrating a 

simpler initial value problem (IVP) [9]. An IVP is determined by specifying all the values 

of a system of differential equations at a single point, i.e., the initial time. Some initial 

values will be unknown and must be guessed. A shooting method combines the solution 

of an IVP with the solution of nonlinear algebraic equations required to satisfy the 

desired boundary conditions [10]. Shooting methods are relatively easy to program and 

evaluate using modern computer applications; however, fundamental problems with this 

method remain for all dynamical systems described by BVPs arising from the application 

of Pontryagin’s Principle. 

First, there can be instability in the IVP for the system of differential equations. 

IVP solutions can be sensitive to changes in the initial values while the solution to the 

BVP is insensitive to changes in specified boundary values [10]. This issue arises because 

of the “curse of complexity” where the system time constant is small; there is a large 

horizon or both [8]. Second, most methods using iterative solvers require good starting 

values for the guessed initial conditions to generate accurate solutions, especially for 
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nonlinear problems [9]. These problems can be avoided by using a collocation technique 

instead. 

2. Collocation Techniques 

Collocation techniques generate solutions to BVPs by employing linear 

combinations of convenient sets of functions and determining the coefficients required to 

satisfy the differential equation at certain points [11]. Unlike the shooting method, 

information at nodes spanning the whole solution interval, including the boundary 

conditions, are simultaneously taken into account. Essentially, this method satisfies the 

differential equation at both ends and the midpoint of a specified subinterval [10]. 

Collocation relies on the solution of systems of linear equations and not IVPs thus 

eliminating some of the problems associated with shooting methods.  

Despite these advantages, collocation is still highly dependent on the quality of 

the user supplied guess across the initial mesh. Techniques exist in current software to 

mitigate the effects of poor guess quality, but this remains the hardest part of solving a 

BVP [10]. Also, this method is not appropriate where high accuracy is required or where 

the system displays sharp changes in its solution [10].   

3. DIDO 

While many options exist for solving optimal control problems, the complexity of 

the mathematics associated and the required knowledge of the system characteristics 

cause these approaches to become rapidly unreliable in many real world applications. 

DIDO is a MATLAB-based software package that greatly simplifies the process of 

reliably solving optimal control problems. This tool takes a basic problem formulation as 

discussed in Section A consisting of the system dynamics equations and boundary 

conditions and develops a solution using pseudospectral optimal control theory [3]. 

Because of the ease of problem formulation, DIDO allows the user to vary parameters 

and observe their effects on system output. This output includes the controls, states, and 

covectors allowing for better understanding of the system response and troubleshooting 

during solution development [1]. 
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DIDO uses MATLAB as its user interface and requires the specification of four 

files to formulate the profile and define all necessary variables. These are dynamics, cost, 

events, and path. The dynamics function provides the differential equations to be 

optimized and defines the states for each time interval. The cost function describes the 

endpoint and running cost of the system. These are both user defined and allow for 

simple analysis of the effects of cost on output. Sometimes this is the most powerful 

driver of solution variation. The events function provides the known boundary conditions 

for the basic problem. The path function allows the user to provide additional constraints 

along the solution path if needed [3]. The path function is considered optional because 

such constraints are unnecessary for a basic solution. 

One additional script is required to call DIDO, a user defined problem definition 

file. This main problem file defines the number of state variables, the boundaries for the 

solution space and the number of evaluation points for the system to use. DIDO performs 

all the analysis of Pontryagin’s Principle and develops an extremal solution (a candidate 

optimal control) as described in Section A. It is possible to use DIDO iteratively by 

taking the results of the initial solution and using them to seed the next iteration of the 

solver. This can be done to quickly improve results when high accuracy is required.   

To ensure the results are feasible, a verification and validation check must be 

performed by propagating the DIDO generated control path through the system dynamic 

equations. This propagation can be done using one of the built in MATLAB ODE tools 

and a simple comparison graph produced. It is also possible to compare the necessary 

conditions for optimality (obtained using DIDO) against their expected values (obtained 

via analysis) to further verify the optimality of the extremal solution. Because of its 

benefits, DIDO will be used throughout this thesis to solve optimal control problems for 

test cases examined. 

C. SUMMARY 

Optimal control problems seek to find a solution to a set of differential equations, 

subject to boundary conditions, that minimizes a user defined cost function. Applying 

Pontryagin’s Principles to a given optimal control problem produces a BVP which can 
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then be solved using one of several available methods. Most of these methods are 

difficult and time consuming to execute by hand, so, computers are used to determine 

solutions. Even with computer tools some of these methods still present challenges for 

solution development. DIDO represents a tool for solving these complex problems using 

only the system dynamics and associated boundary conditions.  

The following chapter will explore the use of this tool to develop optimal 

solutions for a double integrator system. Various cases will be considered through the 

associated cost function. Resulting optimal paths will be evaluated and compared. 
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III. SOLVING OPTIMAL CONTROL PROBLEMS USING DIDO 

Throughout this thesis, various case studies will be used to illustrate the principles 

involved in each section. Each system model will be discussed prior to its example case 

discussion. For the introduction of the theoretical concepts, a simple double integrator 

system will be used as the test case. This system is simple enough to limit the complexity 

of the supporting mathematics but complex enough to illustrate the applicable  

concepts [8]. 

A. THE DOUBLE INTEGRATOR 

The double integrator is a representative dynamic system present in many 

mechanical system variants including antenna pointing, robotics, and spacecraft 

maneuvers. Here, the double integrator system is used to represent one axis of a double 

gimbal system such as the one shown in Figure 2. 

 

Figure 2.   Schematic of a double gimbal system, from [6]. 

Minimum effort control of the double integrator system is mathematically 

described in Equation (3.1). 
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  (3.1) 

In Equation (3.1), the states are represented by variables     and     with the control 

variable represented by  u  . Equation (3.1) presents the simple case of a minimum 

control effort problem with the cost function based on a quadratic function of the control. 

This formulation also explicitly gives the initial and final conditions of the state variables 

and time.  

Equation (3.1) is used as the mathematical basis for several optimization problems 

that vary based on modification of the cost function, states or controls. This very simple 

system provides a means to explore the results generated by an optimization tool for a 

maneuver that is intuitive, specifically a transition from point A to point B of one gimbal 

axis. To illustrate the effects of changes to the problem specifications and to illustrate 

issues that are applicable to real world problems, results for the following cases will be 

presented: minimum effort, minimum total maneuver time, rate limited maneuvers, and a 

multi-objective cost that combines minimum effort and time. 

B. MINIMUM EFFORT SOLUTION  

To fully describe the minimum effort BVP, the steps discussed in Chapter II.A are 

applied to transform the problem described by Equation (3.1). This produces the 

following Hamiltonian. 

       
2

, , , ,
2

u
H u u              (3.2) 
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With the Hamiltonian defined, the five conditions stated in Pontryagin’s Principle 

can each be evaluated to produce an optimal solution to the formulated problem. The first 

condition is the Hamiltonian Minimization Condition: 

 0 0
H

u
u




   


  (3.3) 

Equation (3.3) provides a function for the control variable given in terms of the costates.  

 u     (3.4) 

Next, the adjoint equations are evaluated. 
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  (3.5) 

Because of the information already known about the boundary conditions from 

the problem statement, i.e., all the conditions on the state are given, evaluation of the 

Transversality and Hamiltonian Value Conditions does not provide new information and 

the results of these steps are omitted. Using the relationship u at b  derived from 

Equations (3.4) and (3.5), the extremal states can be obtained as: 
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  (3.6) 

Using the given boundary conditions the unknown constants in Equation (3.6) can be 

determined, resulting in the following: 12, 6, 0, and 0a b c d     .  

A solution satisfying all of the conditions outlined above will be an optimal 

solution to the problem described by (3.1). Several methods exist to meet these criteria 

and thus obtain the solution to the BVP for the given conditions. But, as discussed in 

Chapter II Section B these methods each present their own difficulties. Even a simple 

system such as the one described by Equation (3.1) can be difficult to solve by hand (as 
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was done above) if iteration or variation of the problem, such as adding a rate constraint, 

is desired.   

To simplify the determination of the solution, DIDO software can be used. To 

solve the problem using DIDO, the problem statement of Equation (3.1) is the only item 

required. In addition to the boundary conditions given in Equation (3.1), bounds are 

placed on the states, control, and time. These bounds, given in Table 1, are necessary to 

numerically limit the search space, but are not intended to actively constrain the system 

response.  

Table 1.   Box constraints for solving the double integrator  

problem in DIDO. 

Bound     u  t  

Lower -2 -2 -10 0 

Upper 2 2 10 1 

 

After formatting the input as discussed in Chapter II Section B, DIDO 

automatically determines all the conditions required by Pontryagin’s Principle. Figure 3 

provides graphs of the states, costates, and control values associated with the solution. 

The solution is consistent with the analytic solution developed in Equations (3.2)(3.6). 

In Figure 3, the states are overlaid with the results of a MATLAB ODE45 

propagation of the generated control values through the system dynamics. This provides a 

method of verification and validation (V&V) of the results produced by DIDO. 

Furthermore, the Hamiltonian should be a constant with respect to time and take on the 

value of 2 2v xv   . Note that since   is unknown, the value of the constant is also 

unknown. Figure 4 plots the Hamiltonian and demonstrates the expected constancy with a 

value of 18H   .  

 



 17 

 

Figure 3.   Extremal states, costates, and control for minimum effort double 

integrator problem.  

 

Figure 4.   Hamiltonian of minimum effort solution for double integrator 

problem.  

C. MINIMUM TIME SOLUTION 

To demonstrate how much a small change in boundary conditions or cost function 

definition can affect the solution to an optimal control problem, the same dynamic system 
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is evaluated with the transfer time, 
ft  , as the cost function. This represents the case of a 

system operator desiring travel from point A to point B in the least time. Equation (3.7) 

provides the problem statement for this version of the optimal control problem. Note that 

the cost function  J  has been changed and the final time left unspecified while all other 

boundary conditions and relationships remain the same as the previous example.  
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  (3.7) 

The change to the system cost function produces changes in several of the 

conditions necessary to satisfy Pontryagin’s Principle despite the fact that the system 

dynamics remain the same. Because a final time is not specified, essential information 

required for the evaluation of the solution is missing. The evaluation of the Transversality 

and Hamiltonian Value conditions is necessary to obtain the missing information [8].  

Differences can be seen starting with the formulation of the system Hamiltonian, 

which is given by:  

       , , , ,H u u             (3.8) 

 Since the control now appears linearly in the Hamiltonian, the value of the control is not 

given by the Euler-Lagrange equation since 0H u    yields 0  . Now the 

minimization of the Hamiltonian must be performed subject to the limits on u  as in 

Equation (3.9) [8]. 
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Introducing an additional costate,  , produces the Lagrangian, H ,  in Equation (3.10).  

  , , ,H u u             (3.10) 

Applying the minimization conditions to H  now results in 0H u       , which 

provides the basis for a control switching function. 
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  (3.11) 

 The resulting adjoint equations remain unchanged. From the given final 

conditions, the end-point Lagrangian also changes and is given as: 

   1 2, ( 1)f f f f fE t t          (3.12) 

The terminal Transversality Conditions are: 
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The Transversality Conditions do not yield new information about the boundaries but the 

evaluation of the Hamiltonian Value Condition given in Equation (3.14) does.  

 1f

f

E
H t

t


       

  (3.14) 

As per Equation (3.14), the specific constant Hamiltonian value of -1 is expected 

for the time optimal solution. In addition, the control acts in a Bang-Bang fashion either 

being fully on in the positive or negative directions [8]. This simple change to the cost 

definition presents significant changes to the problem solution development. 

Again DIDO was used to solve the optimal control problem. Note that changing 

the problem in DIDO only required a modification of the cost file. Results are presented 

in Figure 5. Costates were multiplied by a factor of five to enhance the detail. 
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Figure 5.   Extremal states, costates, and control for minimum time double 

integrator problem. 

The overall maneuver time was 0.6 seconds and the maximum control authority is 

used. Reducing the control effort would require a longer time horizon which is why 

1ft   was used in Equation (3.1) for the minimum effort problem. While the motion 

profile is qualitatively similar to the previous case, the control profile is very different 

leading to a much higher peak velocity. In this case, the optimal path uses the maximum 

control effort to generate a larger angular rate in order to reduce the total maneuver time. 

The control switch point is determined by the costate relationship in Equation (3.11). 

This response displays the behavior of common Bang-Bang (On-Off) control techniques, 

where control effort is limited to maxu  and minu only [12]. This minimum time solution 

can therefore be chosen to simplify maneuver design for complex dynamic systems. 

Figure 6 shows the DIDO output for the Hamiltonian of the time optimal 

maneuver of a single gimbal axis. The Hamiltonian value in Figure 6 is also much 

different when time is included in the cost evaluation. For optimal time maneuvers, the 

Hamiltonian value is expected to be -1 as defined by Equation (3.14). In the numerical 

results, the small deviation from -1 (around 0.3 seconds) is a numerical artifact caused by 

the switching from maximum positive control effort to maximum negative control effort. 
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Nonetheless, the Hamiltonian displays the behavior expected for a valid optimal control 

solution. 

 

Figure 6.    Hamiltonian of minimum time solution for double integrator. 

D. RATE LIMITED RESULT 

For many applications, rate limits are incorporated for various reasons such as 

limiting induced disturbances or ensuring safety margins based on material properties. To 

illustrate the effect that a rate limit has on the optimal solution, the double integrator 

system was run with the rate limit set at 1.2 o s , so that the constraint becomes active. 

The problem formulation and DIDO results for this case will be presented but a complete 

development of the associated BVPs will be omitted as they are not needed to obtain the 

solutions. 

1. Minimum Effort Solution 

The rate limited, minimum effort, double integrator case was formulated as shown 

in Equation (3.15). 
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  (3.15) 

Again, the problem was solved in DIDO and the results were validated using a 

propagation with ODE45. The Hamiltonian value exhibited the expected constancy and is 

omitted for brevity. Control and costate behavior was significantly different from the rate 

free case as seen in Figure 7. 

 

Figure 7.   Extremal states, costates, and control for rate limited minimum effort 

double integrator problem. 

With the rate limit in place, the control profile now follows a On-Off-On model. 

This small and very realistic limitation to the system caused a notable change in the 
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trajectory of the system. The rate profile is constant at the maximum allowed value for 

more than half of the maneuver, during which the value of the control is zero.   

2. Minimum Time 

The problem statement for the rate limited, minimum time, case is presented in 

Equation (3.16). Note the changes in J  and the imposed rate limit based on the minimum 

time results given in Section C. 
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  (3.16) 

The Hamiltonian value exhibited the expected constant value of -1 and is omitted. 

Costate behavior was similar to Figure 7 and is also omitted. The DIDO results were 

validated using the ODE45 method shown here with circle markers. Results for the V&V 

propagation are presented in Figure 8. Note the total time is greater than the case without 

the rate limit presented in Section C. The increase in time is a result of the changes in the 

control and rate profiles that result from the addition of the active rate constraint. 
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Figure 8.   DIDO and V&V results for minimum time rate limited double 

integrator problem. 

The control profile for this time optimal rate limited maneuver follows the Bang-

Off-Bang model, while the rate follows a trapezoidal profile. Similar to the Bang-Bang 

maneuver, the Bang-Off-Bang maneuver is common in many applications due to ease of 

implementation and ease of modeling system limitations.   

E. MULTI-OBJECTIVE RESULTS 

There are cases when designers and operators need to minimize more than one 

parameter at the same time. This is illustrated by constructing a cost function for the 

double integrator example that considers both the time and effort required. The boundary 

of the search range for final time was set at five seconds. The problem statement is 

presented in Equation (3.17). 



 25 

 

   

       

   

   

2

0

,

1
Minimize , , ,

2

Subject to

, 0,0

1, 0,0

4 4

f

T

t

f f

o o

f f

x u u

J u t t u t dt

u

 

 

 



 

 



  


       








 

  

   



  (3.17) 

Figure 9 displays the DIDO results along with V&V. Because time was included 

in the cost functional, the Hamiltonian exhibited the constant -1 value associated with a 

time optimal solution. This case exhibits similar motion and control profiles as those 

demonstrated in Section B, but it takes just over twice as long to move to the required end 

state. The addition of the 
2u  term to the cost functional produces a much smoother 

profile than the one displayed in the minimum time results of Section C. It is also 

possible to apply weighting factors to the cost functional components to emphasize time 

or effort optimality. The results presented are unweighted, with time and effort 

contributing equally. Comparing the result of Figure 9 to Figure 3, where the minimum 

effort problem was solved over a one second time horizon, it is apparent that the control 

effort is more dominant than the maneuver time in this case.  
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Figure 9.   DIDO and V&V results for combined minimum time and effort 

double integrator problem. 

F. SUMMARY 

This chapter has shown, through a series of simple examples, that there can be 

many “optimal” solutions depending on what the designer or user requires from their 

system, for example rapid slew maneuvers or energy conservation. Each of these cases 

has a real world application that depends on how the system is employed. Each small 

change to a boundary condition, cost function, or desired end state can have a large 

impact on the real-world operation of the system. During this analysis, performance 

changes of 30–40% in time or effort could be affected by small changes in parameters. 

Thus, it is highly desirable that a procedure for implementing a variety of optimal control 

solutions on existing hardware be derived so that operators realize these types of benefits 

on existing systems. 
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IV. DOUBLE GIMBAL OPTIMIZATION 

The simple double integrator system discussed in Chapter III provides a useful 

model to illustrate the concepts of optimal control. These ideas can be applied to each 

individual axis of a system such as the one depicted in Figure 2, however, treating each 

axis or component individually limits the possible benefits of optimization. This is 

because kinematic planning leads to inefficiency due to the need to specify conservative 

bounds on acceleration and velocity which decrease system performance. In multi-body 

systems, the nonlinear dynamic coupling of the links may be employed by system 

designers and operators to further enhance performance [6]. 

It is possible to apply optimal control theory to multi-body systems as a whole in 

order to leverage the advantages of coupling and nonlinearities and design a motion 

trajectory accordingly. In this case, the coupling relationships can be used to limit the 

effects of induced disturbances while simultaneously reducing the time required for 

maneuvers as compared with traditional approaches [6]. This is a departure from current 

practice which bases most designed trajectories, particularly for minimum-time motion, 

on kinematic relationships alone [13].   

A. DOUBLE GIMBAL DYNAMICS 

Taking nonlinear and coupling terms into account requires deriving the multi-

body system dynamics which can rapidly become complicated based on the number of 

included bodies. Figure 10 gives a schematic of the forces and interactions present in a 

basic double gimbal such as the one presented in Figure 2. This model can also be used to 

describe a multi-body satellite system with a gimbaled appendage [1].   
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Figure 10.   Schematic of a multi-body double gimbal system. 

In Figure 10, the base and its forces are represented by body B0, the azimuth 

gimbal and its forces by body B1, and the elevation gimbal and its forces by body B2. 

Considering each link as a separate body and describing the joint torques and constraint 

forces independently of other applied forces, allows for the construction of Newton-Euler 

equations of motion [14] for any two bodies in the system. Equation (4.1) gives the main 

result of this analysis. 
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In (4.1), the terms FG and TG are the constraint forces and torque at the joint while all 

other symbols are defined in Table 2. 
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Table 2.   Symbols used in Newton-Euler equations, after [14]. 

Symbol Description 

,i o    Angular velocity  /rad s   

,i o    Velocity of  mass center  /m s   

,i oI I   Central moments of inertia  2kg m   

,i om m   Mass  kg   

,i or r   Vector from mass center to joint  m   

,i oH H   Central angular momentum  N m s    

,i oF F   Resultant external force  N   

 

The dynamics can become quite complicated with multiple, connected bodies. 

The model described in Figure 10 along with the necessary coordinate frame 

transformations require a  6 3 1N N   system of equations, where N  is the number of 

links, to describe three rotational degrees of freedom. It is, therefore, advantageous to 

eliminate the constraint forces by deriving a set of dynamics equations in the following 

form [14]:  

 
G

xA R T

FS U F

    
         

  (4.2) 

This technique allows the dimension of the state vector to be reduced to 3 3N   

by eliminating the joint constraint forces. This means that by using (4.2) for the simple 

double gimbal depicted in Figure 10, only 12 equations are required to describe the 

system dynamics rather than 24 if the constraint forces were not eliminated.  

For the analysis of this chapter, the element of interest is to observe the effects of 

dynamic coupling on the optimal trajectory. To this end, additional assumptions and 
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simplifications were made to reduce the system complexity while preserving the desired 

interactions. For example, it is assumed the center of mass of each body is aligned with 

its center of rotation, reducing mass imbalance effects. The center of rotation for each 

link is coincident with the frame origin and the same point for each. The product of 

inertia terms are also neglected for simplification. Finally, the system is assumed to 

provide perfect motion control of the base body. Applying these assumptions yields the 

following equations of motion [6]: 
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   

  

      
     
     

 
  

    (4.3) 

In (4.3), I is the moment of inertia, θ is the body position, τ is the control torque, and   is 

the body rate. Subscripts denote the specific body and, for I, the principle axis associated 

with the quantity. Coupled motion occurs when 2 2xx zzI I , otherwise, the nonlinear 

coupling term is eliminated and each gimbal can be rotated independently of the  

other [15]. 

B. OPTIMIZATION OF THE DOUBLE GIMBAL SYSTEM 

The motion of the double gimbal system was optimized using DIDO for the 

general three body case. Body zero is the system base, body one the azimuth gimbal, and 

body two the elevation gimbal. Based on the assumptions made for the system, the 

resulting responses of body zero were assumed to be precisely controlled and thus 

ignored. The optimal control problem formulation for the double gimbal system is 

analogous to the one given in Chapter III, although the dynamics are more complex. 

Equation (4.4) presents the general optimal control problem statement for the three body 

case [1]. 
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  (4.4) 

The problem statement of Equation (4.4) describes orientation of the azimuth 

gimbal as θ1 and the elevation gimbal as θ2. Base rotation and translation are described by 

o  and ov , respectively with q representing the base attitude in quaternions. The 

1 1 1( ) ( )A RU S T RU F      term results from the algebra needed to reduce the 

dimension of the equations of motion, as in Equation (4.2). The reduction process is 

described in detail in [1] and [14]. The system inertia tensors used were 
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   2

1 4,4,6I diag kg m  and    2

2 2,2,4I diag kg m . Other relevant constraints are 

listed in Table 3. 

Table 3.   Bounds for double gimbal problems.  

Bound  1 deg
 

 2 deg
 

 1 2, deg sec 
 

 in-ozu
 

 sect
 

Lower -90 -60 -50 -191 0 

Upper 90 60 50 191 25 

 

1. Minimum Time Case 

The system of equations in Equation (4.4) was used with the boundary conditions 

of Table 3 and varying cost functions to investigate the influence of the coupling terms. 

First, a maneuver from 0
o
 to 40

o
 azimuth and 40

o
 to 20

o
 elevation was evaluated with the 

cost function fJ t , yielding the minimum time solution to this optimal control problem. 

The resulting trajectory is presented in Figure 11 and the resulting Hamiltonian in Figure 

12. 

 

Figure 11.   Time optimal gimbal trajectories for double gimbal problem. 
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Figure 12.   Hamiltonian for time optimal double gimbal problem. 

The small variation between the resulting optimal trajectories and the V&V 

propagation are the result of “open-loop” error that would be corrected by the control 

system during implementation. The plot of the Hamiltonian, Figure 12, shows the 

expected value of -1 with slight variation due to numerical artifacts that correlate to the 

control switching time of the azimuth gimbal. The changes to the profile that result from 

the inclusion of coupling can be seen in the angle, rate, and torque profiles shown in 

Figure 13 and Figure 14. Figure 13 presents the resulting angle and rate profile along 

with the V&V of this output. Figure 14 depicts the torque profile required to produce the 

motion. 



 34 

 

Figure 13.   Optimal control results with V&V for time optimal double gimbal 

problem. 

 

Figure 14.   Gimbal torque for time optimal double gimbal problem. 
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The axis with the larger change in angle, in this case azimuth, is observed to 

follow a Bang-Bang profile similar to the results obtained in Chapter III.C. The torque 

profile for the other axis, elevation, generates a non-standard rate and position profile 

(see Figure 13). The motion of the non-dominant gimbal results, in part, from the torque 

generated internal to the system as a result of dynamic coupling, given as: 

 
     

     

, 2 2 2 2 1 2

2

, 2 2 2 2 1

2 sin cos

sin cos

c AZ xx zz

c EL zz xx

I I

I I

    

   

 

 
  (4.5) 

Figure 15 presents the coupling torque for the  minimum time maneuver. 

 

Figure 15.   Coupling torque for time optimal double gimbal problem.   

Modeling this torque as part of the system and including it, rather than treating it 

as a disturbance, enhances the capabilities of the system. The same double gimbal 

minimum time problem with each axis uncoupled (i.e., by setting 2 2xx zzI I ) produces no 

coupling term and requires additional torque in the elevation axis. Therefore, if coupling 

effects were not included in the model (kinematic planning), more energy would need to 

be expended in order to implement a slew between the same two initial and final gimbal 

orientations. 
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2. Minimum Effort Case 

Optimal control of the double gimbal system was also evaluated using the same 

boundary conditions and initial and final states as in the minimum time case but with the 

cost being based on control effort instead. The new cost function is  2 2

1 2

1

2

f

o

t

G G

t

J T T dt  . 

Here 1GT  and 2GT  are the individual gimbal torques of each axis. Also, in order to 

achieve the minimum maneuver time with the minimum control effort, the upper limit for 

ft  was bounded to the minimum time of 3.5 seconds, established in the previous case. 

The solution to this problem results in the trajectory in Figure 16. 

 

Figure 16.   Minimum effort trajectory for double gimbal problem. 

The Hamiltonian shown in Figure 17 displays the expected behavior, maintaining 

a constant value. Again, slight variation in the Hamiltonian is seen at the switch point of 

the control due to numerical effects. 
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Figure 17.   Hamiltonian for minimum effort double gimbal problem. 

The gimbal angle and rate results with V&V for each axis are presented in Figure 

18. The resulting torque profiles are presented in Figure 19.  

 

Figure 18.   DIDO results with V&V for minimum effort double gimbal problem. 
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Figure 19.   Gimbal control torque for minimum effort double gimbal problem. 

The azimuth gimbal, which is the longer of the two maneuvers, still follows the 

Bang-Bang trajectory. The motion of the elevation gimbal has, however, changed 

significantly. The profile for elevation angle is nearly the same smooth path as the one for 

azimuth angle. The torque profile has become a straight line with no abrupt changes and a 

constant variation as the maneuver progresses. The coupling behavior, shown in Figure 

20, is similar to the minimum time case. In this case, however, the coupling torque on the 

azimuth gimbal has slightly reduced, which enhances the effectiveness of the azimuth 

gimbal drive. 
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Figure 20.   Coupling torque for minimum effort double gimbal problem. 

C. SUMMARY 

This chapter has applied the principles of optimal control to a more complex 

system, specifically the double gimbal system. The example problems presented in this 

chapter illustrate the effects of including higher order dynamic systems on optimal 

solutions. Using system dynamics, rather than kinematic planning, and including the 

effects of coupling significantly alter the resulting maneuver paths. The resulting 

maneuver paths follow polynomial trajectories that existing systems may not be capable 

of producing.  

The next chapter will explore the possibility of reproducing these more complex 

optimal paths using a sequence of sub-optimal maneuvers. A conventional control 

implementation using on-off torque input will be modeled. Next, simple maneuver 

profiles will be broken into steps to ensure the conventional implementation is capable of 

producing polynomial paths. Finally, an optimal path will be matched using the 

developed sequence of conventional maneuvers. 
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V. MATCHING OPTIMAL REFERENCE PATHS 

In order to implement optimal control solutions on current systems it is necessary 

to understand the methods used to maneuver current systems. The most common 

approach is to use a bang-bang or a bang-off-bang maneuver. These kinematics based 

trajectories are the same ones obtained for the minimum time double integrator model 

described in Chapter III. These types of maneuvers have been employed primarily 

because they are simple. They are, however, not the most efficient approach for operating 

a complex dynamic system [1]. As a consequence, the flight software for many space 

systems is not sophisticated enough to directly accommodate the optimal solution, which, 

as shown in the previous chapter, is not always a Bang-Bang or Bang-Off-Bang response. 

A. CONVENTIONAL CONTROL MODEL 

To work towards developing an approach for inserting optimal maneuvers to a 

conventional system, a basic control implementation for a double gimbal, such as 

described in Chapter IV, was modeled in MATLAB. This approach represents the typical 

control implementation generally available on space systems. In this method, each gimbal 

axis is treated individually for planning purposes. The desired maneuver in each axis is 

evaluated, based on system capabilities, to determine the time required to complete the 

maneuver plan.  

For this model, it was assumed that both gimbal axes should arrive at their final 

locations concurrently, similar to TDRS [16]. To achieve this desired condition, the 

largest time required of either axis was used as the maneuver final time. The maximum 

velocity of the other, faster axis was reduced to extend the time required for that axis to 

the maneuver final time. Gimbal acceleration was assumed to be constant and the time 

applied varied to obtain required velocity values. This is consistent with many 

applications [16]. 

This model demonstrates essential elements of the procedure required to generate 

a profile that is equivalent to an optimal control based path. First, the ability to complete 

a desired maneuver in both axes at the same time is developed. This requires the ability to 
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adjust the length of the projected coast period in Bang-off-Bang maneuvers, based on 

independent axis maneuver times, to match a given profile. Effort was made to ensure 

that the code generated was as general as possible with the intention of having it be 

applicable to numerous situations. 

1. Computation of Standard Maneuver Profile 

For rest-to-rest motion between two given angles, the trapezoidal maneuver 

profile can be determined from Equation (5.1), after [17]. 
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  (5.1) 

The segment from 1 10 T   describes the position of a gimbal through the 

acceleration phase. The 2 20 T   segment gives the position during the coast phase. 

The interval, 3 30 T  , gives the position values during deceleration. Here, the values 

of position are represented by θ, rate is given by ω, and time parameters, T, are as 

described in Equations (5.2) and (5.3). Terms A and D represent the magnitude of the 

acceleration and deceleration, respectively.  

 1 3;T T
A D

 
     (5.2) 

 
 1 3

2
2

T T
T






    (5.3) 

The summation of the times resulting from Equations (5.2) and (5.3),  

1 2 3T T T T   , were used to calculate the total maneuver time. The associated rate and 

acceleration profiles can be calculated by taking the first and second derivatives of the 

position expression given in Equation (5.1). This results in the expressions given in 

Equation (5.4) for the three segments of the maneuver. 
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 (5.4) 

 

The user must provide the desired maneuver distance  f o   and the system 

limits on acceleration, deceleration, and velocity. The MATLAB code generated for this 

simulation was based the pseudo-code contained in [17].   

To ensure each axis completed its maneuver concurrently, the total time of all 

steps for each axis was evaluated. The velocity required for the axis with the lower total 

time was recalculated using the “vpasolve” numerical solver function in MATLAB. The 

trapezoid model was then run again for that axis with the resulting velocity limit. Note 

that in this approach the switch times may not be aligned in time. 

2. Individual Axis Linear Motion Profile 

In order to begin testing the basic equation for the path matching approach, a 

simple test was performed. A large maneuver was simulated using the generated model to 

validate the execution of Equation (5.4). This method also provides a base case for 

maneuver time in tests that follow. First, a linear maneuver of 10 degrees elevation and 

80 degrees azimuth was generated from Equation (5.4). Acceleration and deceleration 

were limited to 0.045°/s
2
 and velocity was limited to 0.225°/s. This results in the motion 

profiles shown in Figure 21. 
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Figure 21.   Asynchronous linear motion profile results for independent axes. 

Here, the total maneuver times are 49.4 seconds for elevation and 360.5 seconds 

for azimuth. Note this maneuver uses the maximum allowable velocity for each axis 

resulting in the different slew times for each axis. The simulation was run again to verify 

the ability to match the final time of each maneuver with updated velocity values. The 

velocity calculation is fully automated as part of the maneuver generation script. The 

synchronous maneuver is shown in Figure 22. 

 

Figure 22.   Synchronous linear motion profile for independent axes. 
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Note the final times for each axis of the synchronous maneuver coincide at  

360.5 seconds. This is a result of decreasing the maximum value of elevation velocity to 

0.028 °/s. The maximum value of acceleration is also used for both axes for varying 

amounts of time to reach the desired rate limit.  

3. Stepped Motion Profiles 

Applying Bellman’s Principle, an optimal path can be divided into a sequence of 

maneuver steps which are each optimal, as long as the steps follow the original reference 

trajectory [18]. This is demonstrated in Figure 23, where an optimal path has been 

divided into five individual steps. Under certain conditions, as shown in Chapter III, the 

Bang-Bang and Bang-Off-Bang acceleration profiles represent the optimal control 

solution. So splitting the maneuver into a number of steps is consistent with Bellman’s 

Principle. Optimal trajectories for more complicated systems can, in theory, be matched 

using a sequence of these rudimentary maneuvers. The definition of Bellman’s Principle 

will not be satisfied exactly in this case. However, the idea is that a near optimal 

trajectory can be reproduced, in the spirit of Bellman, using a collection of near optimal 

steps. 
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Figure 23.   Division of an optimal motion profile into steps using Bellman’s 

Principle.  

To investigate this idea, the profile model described above was modified to 

incorporate the ability to perform rest-to-rest, uniform time steps, over a given time 

interval, to produce a desired path. Since each step requires the boundary conditions to be 

met before proceeding to the next one, the total time required for the matched profile 

must be compared to the optimal reference maneuver. A test case was run with five steps 

to verify that a standard maneuver profile could be produced and to evaluate the effects 

of additional steps on total maneuver time. The results are shown in Figure 24. 
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Figure 24.   Multi-step linear motion profile for independent axes. 

The results of Figure 24 display similar behavior to the case shown in Figure 22. 

The total maneuver time for the multi-step profile is 382.9 seconds, a full 22 seconds 

longer than the original case. This is a result of the individual steps being rest-to-rest: 

additional time is required to bring the rate of each axis to zero before moving on to the 

next step.  

The amount of additional time required is related to the number of steps used to 

match the desired position profile. This is not a significant issue in this trivial case but 

becomes more of an issue as the motion profile becomes more complicated, since 

capitalizing on the effects of non-linear coupling terms depends on accurately 

reproducing each axis motion profile. 

B. MOTION MATCHING TESTS 

The trivial maneuver of the last section was used for development and 

troubleshooting of the trapezoid motion profile model. Generally, optimal control results 

are of a polynomial form and resemble more of an S-curve for the position variables. 

Therefore, two additional test cases were evaluated with this model to fully vet the 
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developed code: a sinusoidal profile and the results of the double gimbal optimization 

from Chapter IV.  

1. Sinusoidal Motion Profile Generation 

A sine function was used to develop a non-linear motion profile from the 

trapezoid motion model described in Section A. No reference path was used for these 

simulations, the desired motion profile was created directly using azimuth values from 

0 2Az   , where 2 /Az N  and N is the number of steps. Elevation angles are 

given by  sinEl Az . This test did not consider the maneuver time, only the desired 

motion path of the axes. 

The range of azimuth angles was chosen to demonstrate positive and negative 

changes in elevation axis angles and to give a full cycle of the sine wave. Figure 25 

presents the output of the trapezoid motion algorithm when the time was split into evenly 

spaced steps. For this test case, N = 10 was chosen arbitrarily to provide enough points to 

produce a relatively smooth sine wave. 

 

Figure 25.   Multi-step sinusoidal motion profile for independent axes. 
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2. Double Gimbal Optimal Path Matching 

While the cases presented previously are useful for proof of concept, they are 

contrived. The double gimbal system optimization described in Chapter IV was used next 

to test the developed path matching model, with an optimal result. For this test, the 

double gimbal was maneuvered in minimum time from 0° to 40° azimuth and 0° to 10° 

elevation. The maximum rate was limited to 3°/s for each axis. The optimal maneuver 

was then matched using a sequence of five rest-to-rest steps.  

This is also the first test case to use data imported from a DIDO output file. This 

required slight modification of the code to include importing the .mat file and employing 

the interpolate tools to divide the optimal path into steps. Figure 26 shows the resulting 

five step approximation of the optimal path along with the DIDO result for each axis. 

Note that the curves labelled “Profile Match” are obtained using linear interpolation. 

Only the initial and final points of each segment (indicated by “x” markers) are used by 

the path matching algorithm. 

 

Figure 26.   Division of optimal motion profile for minimum time double gimbal 

problem into steps. 
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In this example, the time optimal path reaches the desired final conditions  

in 13.65 seconds, based on the conditions described. Solving a maneuver for each  

axis independently using the method described in Section A.2 gives a maneuver that is 

14.33 seconds long. This optimal path represents a 4.7% improvement in maneuver time. 

Evidently, coupling effects allow the maneuver to be completed more quickly. 

While this particular result varies in many respects from the case presented in 

Chapter IV.B.1, the general shape of each axis motion path is preserved. This is the first 

example of an optimal path that takes advantage of dynamic coupling among the various 

bodies of the system to reduce the maneuver time. This result, therefore, presents a more 

realistic case for analysis and is closer to the real world systems for which this thesis is 

intended to be of benefit. Five steps were chosen to ensure reasonable approximation of 

the optimal solution but no quantitative analysis of fit quality or step sensitivity was 

performed. The results of the simulation output are provided in Figure 27. 

  

 

Figure 27.   Multi-step optimal motion profile for time optimal double gimbal 

problem (rest-to-rest steps). 
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This model performs reasonably well in matching the shape of the input provided 

but requires 18.33 seconds to complete the maneuver. This is a 27.9% reduction in 

performance over the current state of practice and is 34.3% worse than the optimal path. 

It is also unlikely that any coupling benefit would be retained by this matched maneuver. 

While the situation could be improved by varying the number of steps, the main reason 

for this additional time requirement is the rest-to-rest nature of each step in the process.  

C. IMPROVING PERFORMANCE ON VARIABLE MOTION PROFILES 

The results of the rest-to-rest test cases demonstrated the concept of optimal path 

matching is feasible but cause the maneuvers to take longer to complete. One approach 

for improving model performance is to allow for non-zero initial and final velocity values 

in the intermediate steps of the maneuver path so that both position and velocity can be 

matched. This was accomplished using a MATLAB script previously developed by 

Karpenko, available from the author [19]. 

This function replaced the rest-to-rest motion generator. The new function takes 

reference values for both gimbal axes positon and rate into account during calculation. 

Now the input provided includes the segment’s initial and final position and velocity, the 

step time, and the acceleration and deceleration limits. Because the step time is specified, 

total generated maneuver time should match the optimal path provided. The function tests 

maneuver feasibility based on the provided limits, and then produces a trajectory that 

works to maintain the rate and position profile of each axis concurrently.  

To test the potential for this refined approach, the results from the minimum time 

double gimbal case were re-evaluated. As in the other initial test cases five steps were 

chosen. The results for position, velocity, and acceleration obtained for each axis are 

presented in Figure 28. The simulation results now closely match the optimal reference 

profile. The final time for each is 13.65 seconds, which is consistent with the optimal 

solution. As can be seen, the velocity and position trajectories are not exactly matched. 

This suggests that additional steps are needed. Another case was run with ten steps and 

the results are shown in Figure 29. Evidently, including additional steps reduces the 

matching error. 
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Figure 28.   Multi-step optimal motion for time optimal double gimbal  

problem (5 non-rest steps). 
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Figure 29.   Multi-step optimal motion for time optimal double gimbal  

problem (10 non-rest steps). 

These results of Figures 28 and 29 lead to the question of how many steps need to 

be used to generate the desired rate and position profiles. Applying too few steps will 

reduce accuracy, while applying additional steps may not significantly improve accuracy 

leading to unnecessary complexity. The ideal number of steps must be determined in 

order to meet user requirements. To determine the best number of steps to use the 

matching quality of the generated profile against the optimal reference profile can be 

evaluated. The 1-norm and 2-norm of the maneuver path length are suitable metrics for 

this purpose. 
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The 1-norm is defined by [20]; 
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while 2-norm is defined by [20] ; 
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and the reproduction error can be calculated as: 

 
 Matched - Reference

Fit Error =
Reference

  (5.7) 

All norm values were calculated using MATLAB’s norm function. The 1-norm 

verifies the sum of each path vector generated by the simulation is the same as the 

reference path. The 2-norm determines the Euclidean length of each path vector [20]. 

These values are then compared to the reference to determine a matching error quality. A 

perfect match would yield a zero result using Equation (5.7).  

These measures of error were chosen because they provide a comparison of the 

entire generated path to the reference trajectory. An alternative method would measure 

the error for each step to determine how closely reference path points were matched. This 

would be appropriate if the matching code was based on executing the desired control 

profile over the step time interval and measuring the performance versus the optimal 

reference path. This method was not chosen because the matching code developed 

requires the system to reach the desired end point for each step before switching to the 

next target point. The measures described in Equations (5.5)(5.7) will be used in the 

remainder of the thesis to determine the reference path matching quality of simulation 

result.  

The error metrics are now used to perform a step sensitivity analysis. An iterative 

loop was developed in MATLAB to determine the error of results for a range of step 

values from one to a user defined maximum (in this case five). The optimal reference 
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path was matched using the allowed number of steps and the error metrics computed. The 

results were compared to the reference using Equation (5.7) producing Figure 30, which 

presents the results for the minimum time double gimbal maneuver discussed in this 

section. 

 

Figure 30.   Fit error sensitivity for the minimum effort double gimbal problem. 

In Figure 30, the position matching performance appears to converge at three 

steps for azimuth and two steps for elevation. These results follow the qualitative error 

trends observed in Figure 28. For this test case, the maximum number of steps allowed 

was increased to ten with no significant reduction in calculated rate or position error after 

five steps. This error analysis also shows that five steps (as in Figure 28) provide a good 

match of the desired, optimal reference trajectory.  

The error analysis allows the user to select a sequence of steps that meet the error 

tolerance desired for the application in question. Using too few steps may reduce the 
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efficiency of the maneuver to a point that the benefit does not justify the changes 

necessary to implement this method. Using too many steps, on the other hand, 

unnecessarily complicates the process. 

D. SUMMARY 

This chapter demonstrates that an optimal reference trajectory can be reproduced 

using a series of Bang-Bang and Bang-Off-Bang steps. Requiring rest-to-rest behavior for 

these steps increased the total maneuver time, but employing non-rest intermediate steps 

allowed the optimal reference profiles to be more closely reproduced. A simple error 

analysis was developed to help determine the correct number of steps necessary to 

accurately reproduce the desired profile. These results are promising but are based on 

simplified example cases. Next, the developed approach will be employed on the real 

world TDRS antenna slew problem.  
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VI. APPLICATION TO TDRS 

Chapter V demonstrated that various optimal trajectories can be implemented 

with current kinematics based control techniques for a simple, theoretical system. In this 

chapter, the same approach is applied to a real world system to evaluate the utility of this 

method for a practical problem. Specifically, the work of Sears [1], on optimizing the 

antenna slews of NASA’s TDRS satellite, was used as a test case. TDRS uses two single-

access (SA) antennas, shown in the schematic of Figure 31, to support the bulk of its 

communication services. 

 

Figure 31.   Simplified schematic of TDRS, from [21]. 

TDRS provides a link to ground stations for tracking and data relay services for 

satellites in altitudes ranging from 750 to about 3,100 miles [21]. An overview of the 

opportunity for slew improvement, development of a system dynamic model, and its 

optimization as presented in [1] will be discussed in this chapter. Results from applying 
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the techniques of Chapter V to optimized TDRS antenna slews will also be presented to 

show how optimal antenna slew profiles could be implemented on this legacy system. 

A. TDRS MODEL 

The TDRS system (TDRSS) presents an opportunity to improve customer access 

to a satellite relay by improving the efficiency of its antenna slews. Currently, TDRSS 

antenna slew maneuvers are planned to occur over a standard three minute window [1]. 

In the event that a maneuver is calculated to take less time a buffer is added to extend the 

maneuver out to three minutes. Maneuvers that exceed the standard length, such as large 

slews from the limits of the antenna field of view, are planned for their full duration to 

provide customers accurate access time estimates [1]. These planning limitations can lead 

to reduced system employment and in some cases even excluded users, particularly 

during periods of congestion. 

One of the drivers for the use of the three minute slew time for access scheduling 

is the current method of slew control used by TDRSS. A maneuver from one target to 

another requires three phases: a program track that performs the gross antenna slew, an 

acquisition phase to align the boresight toward the null, and a target lock phase where 

target tracking occurs [22]. Little effort has been applied to improve the gross antenna 

slew portion of these antenna maneuvers, with the work of [1], [21] being the notable 

exceptions.  

The standard slew mode is designed to include three segments in a Bang-Off-

Bang arrangement: 5 seconds of acceleration, constant rate coast to a pointing error less 

than 1.17 degrees, and a 5 second deceleration [21]. Each slew axis maneuver is 

determined independently. During the slew phase for large SA maneuvers (>5
o
 in one 

gimbal axis), gimbal rate is limited to 0.25
o
/s to reduce base motion effects in the satellite 

body and the coupled effects on the second SA antenna [6], [16]. This limit further 

reduces the performance of the slew phase in an effort to simplify control of the base 

body. In the case that one axis requires a larger slew than the other; the coasting phase 

slew rate is adjusted to ensure that both maneuvers are completed at the same time [1], 

[16]. 
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Based on available literature, the dynamic model of TDRS used in the slew 

optimization problem described in [1] was developed. This model was derived based on 

the method presented in [14] for multi-body dynamic systems. The resulting equations 

were validated using MATLAB and SimMechanics. This analysis established the limits 

used in test cases for control torque and maximum spacecraft body rates [1].  

An intermediate, expanded form of the equations of motion, developed following 

the method in [14], is given in Equation (6.1) [6]. 
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 (6.1) 

Equation (6.1) and the results of multi-body simulations were used to formulate the 

optimal antenna slew problem. The basic optimal control problem statement with 

associated state and control limits is presented in Equation (6.2) [1]. The optimal control 

problem was solved using DIDO. 
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B. TEST CASES 

In order to use DIDO for slew path optimization, initial and final maneuver 

conditions including azimuth, elevation and their associated rates must be determined. 

For the cases presented in [1], simulations were performed using Systems Tool Kit (STK) 

software, a powerful orbit propagator capable of generating azimuth and elevation data. 

Four customer spacecraft representing various target positions and TDRS were placed in 

an orbital model that was propagated for a 24-hour period [1]. Customer spacecraft 

involved in the simulation include: the International Space Station (ISS), National 

Oceanic and Atmospheric Administration (NOAA) 15, Worldview 2, and a fictional 

MEO satellite. The orbital parameters used for these satellites are summarized in Table 4. 



 61 

Table 4.   Target satellite orbital elements, from [1]. 

 
 

A sixth satellite in a geostationary orbit 72
o
 outboard in azimuth, in the same 

inclination and at the same ascending node as TDRS was added to investigate the effects 

of the full antenna FOV [1]. This satellite was not included in the simulation because its 

position and rate relative to TDRS were known. The output of the STK simulation and 

the known information about the sixth satellite identified six different scenarios where 

TDRS was required to slew from one customer to another. Azimuth and elevation angles 

and rates were calculated as boundary conditions for optimal control. These values for 

each scenario, as well as which customers are involved, are presented in Table 5. 

Table 5.   Boundary conditions for slew optimization, from [1]. 

 
 

TDRS ISS NOAA-15 Worldview-2 MEO

Semi-Major Axis (km) 42166.41 6787.36 7173.81 7150.06 16678.14

Eccentricity 0.001014 0.001563 0.002720 0.001403 0.500000

Inclination (deg) 2.730 51.595 98.708 98.504 20.000
1RAAN (deg) 64.113 330.089 330.583 58.213 0
2Arg of Perigee (deg) 187.147 98.819 65.831 74.292 360
1Right Ascension of Ascending Node
2Argument of Perigee

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Starting Azimuth (deg) -5.67 -9.07 7.52 -29.42 -8.84 -72.00

Starting Azimuth rate (deg/s) -0.0006 0.0065 -0.0070 0.0002 0.0017 0.0000

Ending Azimuth (deg) -8.27 -3.83 8.24 5.19 -24.19 8.24

Ending Azimuth rate (deg/s) 0.0054 -0.0063 -0.0053 0.0035 -0.0007 -0.0053

Starting Elevation (deg) -7.35 -2.05 6.12 -7.21 -0.86 0.00

Starting Elevation rate (deg/s) 0.0005 0.0030 0.0071 -0.0010 -0.0077 0.0000

Ending Elevation (deg) -5.16 8.92 5.16 6.97 1.42 5.16

Ending Elevation rate (deg/s) -0.0086 -0.0038 0.0085 0.0011 -0.0012 0.0085

Scenario 1:  ISS to NOAA-15

Scenario 2: MEO to Worldview-2

Scenario 3: NOAA-15 to Worldview-2

Scenario 4: MEO to ISS

Scenario 5: ISS to MEO

Scenario 6: GEO to Worldview-2 (Same final conditions as Scenario 3)
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Optimal maneuver results for the scenarios using the limits on gimbal rate listed 

in Equation (6.2) yielded negligible benefit [1]. In order to achieve beneficial 

improvement in slew times, the gimbal rate limits were allowed to reach up to 2
o
/s to 

provide a wide solution space. The gimbal rate limit was assumed to be a soft limit aimed 

at reducing the effects of SA gimbal slews on the spacecraft body and the second SA 

antenna and not a hard limit of gimbal hardware [1], [6]. However, in order to prevent the 

antenna motion from perturbing the spacecraft, limits on the induced spacecraft rates 

were imposed. Each scenario was optimized twice; the first run determined the minimum 

time solution and a second was used to minimize the control effort keeping the upper 

time bound the same as the value determined in the minimum time solution. This 

produced spacecraft body rotation results which all remained within acceptable limits 

while reducing slew times [1]. Table 6 presents a summary of results for each scenario 

including the estimated conventional maneuver time, optimal slew time obtained from 

DIDO and the percent reduction in time obtained. 

Table 6.   Optimal antenna slew results, from [1].  

 
 

In general, the largest reductions were seen where larger maneuvers are required. 

The increased gimbal slew rates allow the longer axis to build rate to decrease the slew 

time while the shorter maneuver axis slews in a non-traditional manner to help reduce the 

impact of the induced motion on the spacecraft body. The maneuvers of the larger axis 

follow a Bang-Bang type control profile accelerating through half the slew and 

decelerating for the other half. The smaller axis changes constantly to maintain the 

desired spacecraft body spins rates within their limits [1].  

Implementation of the optimal path requires the use of the developed polynomial 

paths as reference profiles. Current methods to incorporate this type of path require 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Estimated Conventoinal Time (s) 17.13 54.32 9.80 159.40 73.78 362.17

Optimal Slew time (s) 16.44 40.12 8.66 87.56 56.03 122.60

Maximum Azimuth rate (deg/s) 0.2347 0.2351 0.1576 0.4688 0.4053 1.0214

Maximum Elevation rate (deg/s) 0.1806 0.3294 0.2051 0.2786 0.0617 0.0776

% reduction in slew time 4.03 26.14 11.62 45.07 24.05 66.15
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processing capabilities and software changes for existing systems. Thus, the optimal 

matching methods discussed in Chapter V present a less complicated and less costly 

alternative for realizing the benefits of the optimal solutions. 

C. MATCHING OPTIMAL PATHS FOR TDRS ANTENNA SLEWS 

The methods presented in Chapter V were applied to the results obtained from [1] 

to show how the optimal maneuvers can be implemented on a real-world system.   

1. Scenario One 

Scenario one was chosen as the first case to evaluate the performance of optimal 

maneuver matching. This scenario demonstrates the performance of TDRS on a routine, 

short maneuver and is presented as proof of concept for a real world application. The 

number of steps providing efficient matching was evaluated first and results for azimuth 

and elevation are presented in Figure 32. 

 
 

Figure 32.   Fit error sensitivity of elevation and azimuth for Scenario one. 
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From the data shown in Figure 32, N = 3 was chosen as the number of steps to be 

used for further analysis and optimal maneuver matching. Figure 33 presents the N = 3 

matched path (solid line) along with the optimal path (circles). Note that the error 

decreases from acceleration to rate to position as would be expected based on the integral 

relationship between these states. The final time of the matched profile is the same as the 

optimal reference path, 16.44 seconds. Finally, the quality of the matching path was 

compared to the values of the optimal path. For this scenario, the position follows to 

<0.1% error for both axes. Figure 34 presents the resulting error norms values for this 

case. 

 

Figure 33.   Matched profile with optimal path for scenario one with N = 3. 
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Figure 34.   Fit error of elevation and azimuth for scenario one with N = 3. 

2. Scenario Three 

Scenario three was chosen for analysis based on the observation that both axes 

demonstrated close to a Bang-Bang behavior. This case verifies the proper behavior of 

the matching method by demonstrating a one-step match for this very short maneuver 

case (around 1
o
 in each axis). Azimuth and Elevation step sensitivity results are presented 

in Figure 35. Step sensitivity analysis shows that while there is some improvement when 

using more than one step, results are better at one step in this case than those for three or 

more steps in scenario one. This is likely because the maneuvers in each axis are short 

and the maximum acceleration is not reached in either axis. Figure 36 presents the 

matched path along with the optimal trajectory. Note that the error behavior is similar to 

scenario one. 
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Figure 35.   Fit error sensitivity of elevation and azimuth for scenario three. 

 

Figure 36.   Matched profile with optimal path for scenario three with N = 1. 
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Finally, the quality of the matching path was compared to the values of the 

optimal path. For this scenario, the position follows to <0.3% error of the optimal path 

for both axes. Figure 37 presents the resulting error norm values for this case. 

 

Figure 37.   Fit error values of elevation and azimuth for scenario three  

with N = 1. 

3. Scenario Six 

Scenario six was the final case chosen for testing the maneuver matching scheme 

because it represents the largest maneuver analyzed and the largest improvement as noted 

in Table 6. For this case, the effects of varying number of steps were investigated. The 

simulation step sensitivity analysis for each axis is presented in Figure 38. 
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Figure 38.   Fit error sensitivity of elevation and azimuth for scenario six. 

In this scenario, the error of the Azimuth (dominant) slew appears to have a 

nearly linear relationship with number of steps beyond N = 2. To investigate the effects of 

number of steps, the match was performed using N = 2, 3, and 4. Graphs of each match 

compared to the optimal path will be provided to demonstrate the effects of the step size 

on the quality of the match. The graphs of simulation results along with the optimal path 

for N = 2 are presented in Figure 39. 
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Figure 39.   Matched profile with optimal path for scenario six with N = 2. 

These results follow the same error behavior demonstrated in other cases 

analyzed. The final time of the matched path is the same as the optimal trajectory, 122 

seconds. The quality of the matching path was compared to the values of the optimal 

path. For this scenario, the position error metric is less than 2% for both axes. Figure 40 

presents the resulting fit error values for this case. 
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Figure 40.   Fit error values of elevation and azimuth for scenario six with N = 2. 

The graphs of simulation results with the optimal path for N = 3 are presented in 

Figure 41. Note the visual improvement in rate and position matching. For this scenario, 

the position error has been reduced to less than 0.5% for both axes. Figure 42 presents the 

resulting error norm values for this case, which confirm the perceived improvement in the 

maneuver trajectory as compared to the case where N = 2. 

 



 71 

 

Figure 41.   Matched profile with optimal path for scenario six with N = 3. 

 

Figure 42.   Fit error values of elevation and azimuth for scenario six with N = 3. 
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Finally, the graphs of simulation results with the optimal path for N = 4 are 

presented in Figure 43. This case provides a very small improvement over the N = 3 case 

and it is hard to see any obvious different in the graphical results.  

 

Figure 43.   Matched profile with optimal path for scenario six with N = 4. 

For this scenario, the position error has been maintained at less than 0.5% for both 

axes. This result shows a small improvement over the N = 3 case but not a major jump in 

terms of error reduction. Figure 44 presents the resulting error norm values for this case. 
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Figure 44.   Fit error values of elevation and azimuth for scenario six with N = 4. 

D. SUMMARY 

Current maneuver planning methods used on TDRS are based solely on 

kinematics and reduce potential user access time. As presented in this chapter, TDRS has 

the potential for improving its capacity through the implementation of optimal antenna 

slews. The use of optimal slew paths presents the challenges discussed throughout this 

thesis. TDRS represents a good candidate for testing the optimal path implementation 

described in this thesis. The test cases developed in [1] were matched using the model 

developed with positive results. In all cases, the optimal minimum time was attained 

using the path matching technique. 

Overall the results of this chapter demonstrate that a trade space exists for 

implementation of the developed technique. The step sensitivity analysis performed on 

scenario six demonstrates that a point of diminishing returns will be reached where the 

addition of steps does not produce sufficient benefit to be of use. Each situation is 

different and the mission will determine the error threshold required. Performance 

improvement must be balanced against the potential complications from adding steps.   
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VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS 

This thesis demonstrates an approach for implementing an optimal control 

solution using current kinematics based control techniques. A sequence of standard 

maneuvers can be employed to closely match a reference pointing profile. The first 

variation of the idea, representing the lower bound of comparison, employed rest-to-rest 

steps to match the desired profile. While this method was capable of generating the shape 

of the desired reference path, it required additional time to execute the maneuver. This 

prevents the approach from being used in most applications, where system nonlinearities 

and dynamic coupling are used to enhance performance. 

To improve maneuver times, a more sophisticated model was developed that 

incorporated the use of non-rest steps. This allowed the system to maintain the advantage 

of dynamic coupling between constituent bodies that is the basis of the optimal control 

advantage. This approach matched reference profiles while preserving the majority of 

performance improvement from optimal control results without requiring additional time 

to complete the maneuver. Further, sensitivity analysis showed that many cases can be 

matched to reasonable levels using only a few intermediate steps. In all cases tested, the 

resulting position error between the matched maneuver and the optimal reference path 

was less than 2% for fewer than five steps. Reducing the number of steps is an important 

operational consideration since many systems are not designed to perform optimal 

maneuvers. 

Finally, the method developed was applied to an operational satellite system, 

TDRS, based on previously determined optimal paths. The non-rest matching method 

reproduced all optimal paths tested to position errors less than 0.5% using fewer than 

three steps. This demonstrates that, in theory, an optimal trajectory can be implemented 

on an existing system without major changes in system processing to accommodate 

polynomial trajectories. It is also possible that new system designs can be simplified, 
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yielding a cost reduction, based on the fact that simple maneuver segments could be used 

to achieve more complex optimal paths. 

The approach for re-creating optimal paths using an existing control system is not 

unique to satellite antenna pointing systems. The approach also has potential application 

in robotics and optics. In general, this process can be applied to any system involving a 

multiplicity of gimbaled joints. 

B. FUTURE WORK 

This thesis was limited to the investigation of the feasibility of implementation of 

optimal control paths using currently implemented methods. Numerous control 

implementations exist and are based on the user requirements and operational limits of 

the system. This thesis only considers the simplest case (prevalent in industry) where 

users can turn torque on and off. Other types of input shaping may produce different 

results and should be investigated.  

This work only considered reproducing the reference optimal trajectory. In many 

applications, the vibration effects may be of concern and the additional applications of 

control torque may induce undesirable motion in the system. The TDRS case optimal 

reference path was designed to minimize these disturbances but is based on having the 

ability to vary acceleration. The effects of step transitions in acceleration modeled were 

not included in that analysis. Further analysis as well as numerical simulation should be 

performed to fully investigate these effects.  

Two operational areas of interest are also related to this research. First, a cost 

estimate of implementation should be developed. This study should include the cost of 

required software or personnel changes, as well as consideration of potential savings 

from added capacity resulting from more efficient maneuvers. Second, the best use of 

added capacity resulting from this work should be considered. Capacity gained could be 

used to serve additional customers or could be held as a surge element for high volume 

periods or casualty situations. 
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Finally, this work has been based purely in theory and simulation. Practical 

implementation on a test bed or physical system would also provide valuable data. 

Experimental results would further validate the approach developed in this thesis and 

could provide further insight at the hardware level.  
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