Learning How to Correct a Knowledge Base Wikidata from the Edit History

Thomas Pellissier Tanon, Camille Bourgaux, Fabian Suchanek
Wikidata is kind of messy

Constraints violations (July 2018)
There are patterns for fixing constraint violations

gender-oneOf-violation(?s, wd:woman) → - { ?s wdt:gender wd:woman } +{ ?s wdt:gender wd:female }
There are patterns for fixing constraint violations

There is a constraint violation for the place of birth of Matsuo Bashō.

```
placeOfBirth-valueType-violation(?s, ?p) . ?p wdt:country ?c
→ +{ ?p wdt:type wd:geoObject }
```
Why rules?

➢ Explainable

➢ Works well with new entities
The edit history provides past corrections

Before:

Revision:

After:
Extracting past corrections

➢ Solving a violation, two options:

➢ We look for such edits and check if they correct a violation
The history SPARQL endpoint

```
PREFIX hist: <http://wikiba.se/history/ontology#>
PREFIX wdt: <http://www.wikidata.org/prop/direct/>

SELECT ?addedGender ?deletedGender (COUNT(?revision) AS ?count) WHERE {
  GRAPH ?additionsGraph {
  }
  GRAPH ?deletionsGraph {
    ?s wdt:P21 ?deletedGender .
  }
  ?revision hist:additions ?additionsGraph ;
  hist:deletions ?deletionsGraph .
} GROUP BY ?addedGender ?deletedGender ORDER BY DESC(?count) LIMIT 10
```

700M revisions, 390k triples - https://wdhqs.wmflabs.org
Result

rev 1223445: `placeOfBirth-valueType-violation(wd:MatsuoBashō, wd:Iga-Ueno)` → +{ `wd:Iga-Ueno wdt:type wd:geoObject` }

Mining correction rules

Goal: generalize from:

rev 1223445: `placeOfBirth-valueType-violation(wd:MatsuoBashō, wd:Iga-Ueno) → +{ wd:Iga-Ueno wdt:type wd:geoObject }`
rev 3344552: `placeOfBirth-valueType-violation(wd:JohnDoe, wd:SomeWhere) → +{ wd:SomeWhere wdt:type wd:geoObject }`
rev 3456544: `placeOfBirth-valueType-violation(wd:JeanDupond, wd:QuelquePart) → - { wd:JeanDupond, wd:placeOfBirth, wd:QuelquePart }`

to:

`placeOfBirth-valueType-violation(?s, ?p) . ?p wdt:country ?c
→ +{ ?p wdt:type wd:geoObject }`
Generate candidate rules

- Generalization:
 \[
 \text{placeOfBirth-valueType-violation(wd:MatsuoBashō, wd:Iga-Ueno)} \rightarrow \{ \text{wd:Iga-Ueno wdt:type wd:geoObject} \}
 \]
 become (e.g.):
 \[
 \text{placeOfBirth-valueType-violation(}?s, ?p) \rightarrow \{ ?p \text{ wdt:type wd:geoObject} \}
 \]
 → replace constants by variables

- Expansion from global state:
 add facts about variables:
 \[
 \text{placeOfBirth-valueType-violation(}?s, ?p) . ?p \text{ wdt:country }?c \rightarrow \{?p \text{ wdt:type wd:geoObject}\}
 \]
Vocabulary

rule body

placeOfBirth-valueType-violation(?s, ?p) . ?p wdt:country ?c

→ +{ ?p wdt:type wd:geoObject }

rule head

support(query) = number of times the query matches
Rules ranking

“A rule is good if it predicts the correct change”

\[
\text{confidence}(\text{body} \rightarrow \text{head}) = \frac{\text{support(\text{body . head})}}{\text{support(\text{body})}}
\]
Confidence example

\[r = \text{gender-oneOf-violation}(?s, \text{wd:woman}) \]
\[\rightarrow - \{ ?s \text{wd:gender wd:woman} \} +\{ ?s \text{wd:gender wd:female} \} \]

rev 2334569: \text{gender-oneOf-violation}(\text{wd:Nefertiti, wd:woman})
\[\rightarrow - \{ \text{wd:Nefertiti wdt:gender wd:woman} \} +\{ \text{wd:Nefertiti wdt:gender wd:female} \} \]

rev 4556544: \text{gender-oneOf-violation}(\text{wd:Hatchepsout, wd:woman})
\[\rightarrow - \{ \text{wd:Hatchepsout wdt:gender wd:woman} \} +\{ \text{wd:Hatchepsout wdt:gender wd:female} \} \]

rev 8994432: \text{gender-oneOf-violation}(\text{wd:RamsesII, wd:woman})
\[\rightarrow - \{ \text{wd:RamsesII wdt:gender wd:woman} \} +\{ \text{wd:RamsesII wdt:gender wd:female} \} \]

\[\text{confidence}(r) = \frac{2}{3} \]
Full mining algorithm

1. **Generalize** past corrections
2. **Filter** if body support too low (do not apply in a lot of cases)
3. **Expand** by adding one “context” triple
4. **Filter** if
 a. body support too low (do not apply in a lot of cases)
 b. too small increase in confidence (not useful expansion)
5. **Repeat**...
6. **Filter** out rules with too low confidence
Mining results

178k rules mined on 80% of the past corrections

Some top rules:

Single Value:
```
gender-singleValue-violation(?s, wd:maleOrganism) . ?s wdt:sportsTeam ?t
  → - { ?s wdt:gender wd:maleOrganism }
```

One-of:
```
mannerOfDeath-oneOf-violation(?s wd:trafficAccident)
  → - { ?s wdt:mannerOfDeath wd:trafficAccident } + { ?s wdt:causeOfDeath wd:trafficAccident }
```
Evaluation on the past corrections

➢ Apply the rules on the other 20% known corrections
➢ Compute
 ○ recall (we find a correction)
 ○ precision (it is correct)
➢ Baselines
 ○ Remove the violation
 ○ Add the missing triple (if possible)
Some results

Micro averages

\[F_1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \]
Wikidata Game

- Experiment on three months
- 47 participants
- 50k suggested corrections

Francesco Belinzeri [Q57082102]

Violation
An entity should not have a statement for country of citizenship if it also has a statement for sex or gender with value male non-human organism.

Possible correction
Edit statement (Q57082102, sex or gender, male non-human organism). Setting value to: male
Wikidata Game

- **Inverse/Symmetric**: 22k actions, 92% approval
- **Value requires statement** and **Conflicts with**: 1k actions each, 80% approval
- **Others**: between 30 et 700 actions, approval between 20% and 50%

Biased by what has been done (or not) by bots

- Some huge easy completions
- Mostly hard stuffs remains
Conclusion

➢ Rule mining:
 ○ Better than baselines
 ○ Understandable

➢ Easy stuffs are already “done”
Future

➢ Interesting problems
 ○ *There are two birth places*
 ○ *A birth date is missing*

➢ Applications
 ○ Suggest edits
 ○ Fight vandalism
Thank you!

Game: https://tools.wmflabs.org/wikidata-game/distributed/#game=43

Dataset: https://doi.org/10.6084/m9.figshare.7712720

Code: https://github.com/Tpt/corhist

History SPARQL endpoint: https://wdhqs.wmflabs.org