
plates I-III pp 126, 155, 19\%
then and sespence I- IT (IT III on Boms Wetwren pa 2833287 (6pletes) plate) AT ens of vot VIII-XI, XIII plate XII at p^{536}

$$
\operatorname{Lon}+\sqrt{2}+1
$$

The Pofthumous

W O R K S
 O F

Dr. Robert Hooke.
emomidios ont

Stool. jusdo. :tE

The Pofthumous

W O R K S

0 F

ROBERT HOOKE, m.D. s.R.S.

Geom. Prof. Grefh. ©oc.

Containing his

Cutlerian Lectures,

AND OTHER

DISCOURSES,

Read at the Meetings of the Illuftrious
 ABERDOYLCSIS I N W HICH
I. The prefem Defferency of Natural Philosophy is difcourfed of, with the Methods of rendering it more certain and beneficial.
II. The Nature, Motion and Effects of Light are treated of, particularly that of the Sun and Comets.
III. An Hypothetical Explication of Memory; how the Organs made ufe of by the Mind in its Operation may be Mechanically underitood.
IV. An Hypothefis and Explication of the caufe of Gravity, or Gravitation, Magnetism, \&b.
V. Difcourfes of Eartheuakes, their Caufes and Effects, and Hiftories of feveral; to which are annext, Phyfical Explications of feveral of the Fables in Cvid's Metamorphofes, very different from other.Mythologick Interpreters.
VI. Lectures for improving Navigation and Astronomy, with the Defcriptions of feveral new and ufeful Influments and Contrivances; the whole full of curious Difquifitions and Experiments.

Illuftrated with SCULPTURES.

To thefe Discourses is prefixt the Author's Life, giving an Account of his Studies and Employments, with an Enumeration of the many Experiments, Inftruments, Contrivances and Inventions, by him made and produc'd as Curator of Experiments to the Royal Society.

By RICHARDW $A L L E R$, R. S. Secr.

Sir ISAAC NEWTON, Kt. PRESIDENT, And to the

Council and Fellows OFTHE

R OYALSOCIETY

$$
\mathrm{LO} \stackrel{\mathrm{OF}}{\mathrm{~N}} \mathrm{DO} \mathrm{~N}
$$

FOR THE

Advancement of Natural Knomledge. THESE
POSTHUMOUS WORKS O F
Dr. Robert Hooke
Are humbly Dedicated
By Richard Waller, S. R. Secr.
 TK4012019 ade $11 \sin 4$
avolls 1 bixhomu0

$$
\partial l l+40
$$

Q' $101, D Q B A$

$$
50
$$

CTV (T) OT

$$
A e_{-11} \uparrow
$$

- 2) SOW 2UOMLHHTROO 50
$92100 x^{+2+550}+31$ hatoifect widmuit ond

THE

P U B LISHER

TO THE

READER.

CUftom having made a Preface or Epifle to the Reader almoft neceffary, I Jall fo far comply as to give fome foort Account of the following Treatifes. The Reputation of the Author is fo well eftablifh'd, that I Baill wave all that might be faid upon that Head, and only defire the Reader toobferve, that foon after bis Deceafe, his Papers were, by bis Relations, committed to my care to Publifh what I thought might prove acceptable to the Learned, which I bave endeavour'd in this Volume.

The Tracts here Publifb'd are for the moft part Lectures; made and read. by him at feveral diftant times upon different Subjects, which the Reader is here prefented with as the Author left them; for Iwas unwilling to Model or Methodize them a new, by reducing the Subjects and Difcowres of many Lectures into one continu'd Difcourfe, as his method bas been in the Treatijes formerly Publifb'd by bim in Quarto; much lefs bave I ventur'd upon any Epitome, Abridgments too of ten diforting and curtailing the Author's true Senfe, and difguifing it So, that bis ons Sentiments are hard to be diftinguifod and always dubious, mbich Errors I have defir'd as much as poffible to foun." I am fenfible, by publifbing bis Difcourfes thus at large, Some Recapitulations bive been unavoidable, efpecially in Difcourfes of this Nature, which it is poffible may difguft forne nice Criticks; neverthelefs I hope the Canded Reader will not find thefe Repetitions-Jo many or large, as to be diffatisfy'd thereat, moft, if not all of them, containing fome new Matter added to what was faid before.

The Subjects here handl'dare fome of the moft difficalt in Natural Philofophy, and the Difcourfes were all well accepted and approv'd of when read before competent Judges of the Ro YAL SOCIETY, at their ufual Meetings.

The firfe contains a general Scheme or Draught of a method of advancing and promoting Natural Philofophy, fbewing its prefent deficiency, with the feveral Queries to be made, and how they may be anfwer'd to render it more ingtructive and beneficial. It muft be granted the laft and chief Part of this Phyfical Algebra, or New Organ, viz. The method of ranging the Experiments and Obfervations in order, fo as to frame and raife Axioms from them is wanting (which Ibelieve was never wrote by the Author) bowever I make no doubt but what is here offer'd will prove acceptable for the many curious Informations and Experiments therein contain'a':

Whal follows is a Collection of Several Lectures concerning the Nature of Ligitr, in which its Caufe, Motion, Action, Velocity and Properties are largely treated of, with many new, ufeful and entertaining Subjects, either more copioufly bandled or binted in Tranficu. Tho' the Author has not in the \int e D ijcourfes treated of the Several alterations and affections, of the Rays of Light from Reflection, Inflection, and Refraction, ofe:

The Publifher to the Reader.

as bis intention was to do (which is evident from feveral PafJages in his Writings) yet the Learned will bere wicet with feveral no lefs difficult thar curious Matters explain'd, among the reft that great Problem of Memory, which is here at lcaft intelligibly explicated with the Organs, neceffary to perform that ation of the Mind, or Reffection, which Organs polfibly are not immaterial or incorporeal

From this Contemplation be comes to treat of Time and Duration, Shewing whence we gain the Notion of it, which be fuppofes from the formation of, and impreffions upon fenfible and coporeal Ideas, or Images fored up in the Repofitory of the Brain, tho be pofitively afferts she recipient and directing Power or Soul to be a felf-moving immaterial Being.

Next to this is a. Phyfical Treatife of Comets, proving from many Obfervations, that theyare actually burning Bodies, with an account of the unconceivable V 'elocity of the motion of the Flaghes or Accenfion of the Steames in the Blaze or Taile far furpafing thofe of Light'ning: To this is join'd the Author's Hypothefis of the caufe of Gravity, a Subject that has bitherto puzzl'd, as well as exercis'd the moft ingenious Heads. This Hypothefis is deducod from Mechanick Principles, and back'd with Experiments; to which is added a foort Account of his Hypothefis of Magnetifm.

After thefe are many Lectures concerning the external Shell or Superfices of the Earth, of the Caufe and Original of Mountains, Vallies and Lakes. Of Foffle Shells, and other marine Remains found on the higheft Hills over moft part of the known World, with Hiftorical Accounts of Earthquakes, fiery Eruptions, Deluges, \&c. and a Phyfical Interpretation of the moft antient Mythologick Reprefentations of Natural HiItory. In the fe Lectures the figure of the Teryaqueous Globe and encompaffing Air is prov'd from the diarnal Motion and Gravitation.

Laftly, I have added fome Lectures.relating to the Improvement of Aftronomy and Navigation, wherein, tho' I cannot promife the Reader the Invention of the Longitude, or the like great Matters, yet I hope they will prove agreeable for the feveral new and ufeful Suggefions and Inforuments therein mention'd and defcrib'd, with jome new methods of making Obfervations at Land and Sea, to determine the true Meridian Latitude of the Place, \&c.

In all thefe Difcourfes I bave fairly and truly given the Author's own Opinions and Reafonings in his own words, with the Several times when they were read before the R OYal Society, when I could any way difcover them.

I could wifb the Author had bimfelf. fitted thefe Papers for the Prefs in tis Life time, or at leaft Jich'd the Jeveral agreeing Subjects together, which would have prevented fome Errors that pofibly have happen'd in the Order and Difpogition of them, for which I defire the Reader to accept this Excufe, that. feveral of his Papers came to my Sight and Hands, when others. that might better have follow'd them, were Printeaoff.
R. W.

THE

L I F E

O F

Dr. Robert Hooke.

UNnderftanding that it would be acceptable to feveral Learned and Ingenious Perfons to have fome publick Account given of the Life, Studies and Employments of fo know ing and diligent an Inquirer into Nature, as Dr. Robert Hooke is generally allow'd to have been, and who was one of the greateft Promoters of Experimental Natural Knowledge, as well as Ornaments of the laft Century (fo fruitful of great Genii) I could not well refufe that Task, which (knowing my own infufficiency fór fuch an Attempt) I could hardly undertake, being confcious it requir'd a Perfon much better qualify'd with natural and acquir'd Abilities to perform it with Satisfaction; efpecially in fo judicious and nice an Age, more ready to find Faults than pardon Miftakes: Befides my delire has always been not to expofe my felf to Cenfure, when I might live quietly, Studits ignobilis otii. But the following Papers of Dr. Hooke having been put into my Hands to be Publifh'd, I was, in fome manner, oblig'd to a ppear in Print. What Miftakes the Candid Reader may obferve, in the following Relation of his Life, I hope he' will obligingly pardon. In which I profefs the utmoft Sincerity, the greateft part of my Vouchers being either taken out his own Memorials, or from the Journals of the Royal Society.
Had Dr. Hooke profecuted a Defign which I find he once propored to himfelf, my prefent Undertaking had been as vain as needlefs, for in a fmall Pocket-Diary of his I found thefe Words written. 'Saturday April the Ioth 1697. I began this Day to write the ' Hiftory of my own Life, wherein I will comprize as many re${ }^{6}$ markable Paffages, as I can now remember or collect out of fuch ' Memorials as I have kept in Writing, or are in the Regifters of ' the Royal Society; together with all my Inventions, Ex' periments, Difcoveries, Difcourfes, © c. which I have made, the ' time when, the manner how, and means by which, with the fuc' cefs and effect of them, together with the ftate of my Health,
' my Employments and Studies, my good or bad Fortune, my

- Friendsand Enemies, © ©r. all which thall be the truth of Mattet - of Fact, fo far as I can be inform'd by my Memorials or my own - Memory, which Ruie I refolve not to tranfgrefs.

Accordingly I found a beginning of his Life, which tho' it affords but little fatisfaction, being only concerning his Childhood, yet I have here given an Abftract of what is contained in it.
Dr. Robert Hooke was Born at Frefbwater, a Peninfula on the Weft fide of the Ine of Wight, on the eighteenth of July, being Saturday, 1635, at twelve a Clock at Noon, and Chriftened the twenty fixth following by his own Father Minifter of that Parifh.
He was very infirm and weakly, and therefore Nurft at Home, tho' his Brothers and Sifters were Nurf Abroad ; and for at leaft feven Years his Parents had very little hopes of his Life, being often fick; all which time his chief Food was Milk, or things made thereof, and Fruits, no Flefh in the leaft agreeing with his weak Conftitution.
For his Age he was very fprightly and active in Running, Leaping, ơ. tho very weak as to any robuft Exercife: Was very apt to learn any thing, and after his Englifh foon learnt his Grammar by Heart; but, as he fays, with but little underfanding, till his Father defigning him for the Miniftry, took fome pains to inftruct him. But he ftill being often fubject to the Head-ach which hindered his Learning, his tather laid afide all Thoughts of breeding him a Scholar, and finding himfelf alfo grow very infirm through Age and Sicknefs, wholly neglected his farther Education, who being thus left to himfelf fpent his time in making little mechanical - Toys, (as he fays) in which he was very intent, and for the Tools - he had fuccefsful; fo that there was nothing he faw done by any - Mechanick, but he endeavoured to imitate, and in fome parti' culars could exceed (which are his own words.) His Father obferving by thefe Indications, his great inclination to Mechanicks, thought to put him Apprentice to fome eafy Trade (as a Watchmakers or Limners) he fhewing moft inclinations to thofe or the like curious Mechanical Performances; for making ufe of fuch Tools as he could procure, 'feeing an old Brafs Clock taken to pieces, - he attemted to imitate it, and made á wooden one that would go: - Much about the fame time he made a fmall Shipabout a Yard ' long, fitly fhaping it, adding its Rigging of Ropes, Pullies, Mafts, ' Occ. with a contrivance to make it fire off fome fmall Guns, asit
' was Sailing crofs a Haven of a pretty breadth: He had alfo a
'great fancy for drawing, having much about the fame Age Cop-

- pied feveral Prints with a Pen, that Mr. Hoskins (Son to the fa:
' mous Hoskins Compers Mafter) much admired one not inftructed - could fo well imitate therr.

Thefe Indications of a Mechanick Genius appeared in him when very young; for by the fame Paper I find that his Father died in October 1648 , having for three or four Years before his Death been much afflicted with a Cough, a Palry, Jaundice and Dropfy.

This is the fum of what he has left of his own Writing, by which we find him at the time of his Fathers Death, to be thirteen Years and about three Months Old.

This carly Propenfity of his to Meclianicks was a fign of his fu= ture Excellency in fuch Contrivances, and admirable Facility he afterwards manifefted in applying Mechanical Principles to the explication of the moft difficult Pberomena of Nature, and I remember it has been often obferved by feveral Perfons, that whatever apparatus he contrived for the exhibiting any Experiment before the

The Life of Dr. Robert Hooke.

Royalsociety, it was performed with the leaft Embarraffment clearly and evidently, to explain the prefent Subject, which was a fufficient proof of his true knowledge of the Mechanical Powers, and of a method of applying them to the Explication of Nature.

How he fpent the next fix or feven Years of his Life I have not been particularly informed; but I underftand he was for fome time with Sir Peter Lely, how long I am not certain: I fuppofe but a Dhort time; for Thave?heard that the fmell of the Oil Colours did not agree with his Conftitution, increafing his Head-ach, to which he was ever too much fubject.

It was after this that he lived with Dr. Busby, the late famous Mafter of Weftminfer-School, as a Scholar in his own Houfe, where with more diligence he apply'd himfolf to Latin and Greek, in which he made a fufficient proficiency for the time, and had a competent Knowledge, and at the fame time got fome infight into the Hebrew and fome other Oriental Languages. While he liv'd with Dr. Bufby, he fell ferioully upon the fudy of the Mathematicks, the Dro encouraging him therein, and allowing him particular times for that purpofe. In this he took the moft regular Method, and firft made himfelf Mafter of Euclide's Elements, and thence proceeded orderly from that fure Bafis to the other parts of the Mathematicks, and after to the application thereof to Mechanicks, his firft and laft Miftiefs.

From Wefiminfler-School he went to the Univerfity of Oxford, in 1653. but as'tis often the Fate of Perfons great in Learning to be imall in other Circumftances, his were but mean. I find that he was a Student of Chrift-Cburch, tho' not of the Foundation, but was, as I have heard, a Servitor to one Mr. Goodman, and took his Degree of Mafter of Arts feveral Years after, about 1662 , or 1663.

About the Year $\mathbf{1} 655$, he began to Thew himfelf to the World, and that he had not fpent his Juvenile Years in vain ; for there being a Concourfe at that time of extraordinary Perfons at Oxford, each of which afterwards were particularly diftinguifh'd for the great Light they gave the Learned World by their juftly admired Labours; he was foon taken notice of, and for his. Facility in Mechanick Inventions much priz'd by them.

For the proof of his being at this time brought into the acquaintance of thefe great Men, I fhall tranfcribe fome Paffages which I met with among his Manufcripts; and firft fpeaking of their Philofophical Meetings at Oxford, he fays,

6 At thefe Meetings, which were about the Year 1655 (before 6 which time I knew little of them) divets Experiments were fug. ' gefted, difcours'd and try'd with various fucceffes, tho' no other - account was taken of them but what particular Perfons perhaps - did for the help of their own Memories; fo that many excellent 6 things have been loft, fome few only by the kindnefs of the Au' thors have been fince made publick; among thefe may be reckon'd ${ }^{6}$ the Honourable Mr. Boyle's Pneumatick Engine and Experiments, ' firft Printed in the Year 1660. for in 1658°, or 9, I contriv'd and - perfected the Air-pump for Mr Boyle, having firft feen a Contri-- vance for that purpofe made for the fame honourable Perfon by
' Mr. Gratorix; which was too grofs to perform any great matter.

iv
 The Life of Dr. Robert Hooke.

The Draught of this Air-pump and all its parts, as it was after Publifh'd by Mr. Boyle, I have now by me defign'd by Mr. Hooke, and I have heard him fay, he was then fent to London by Mr. Boyle to get the Barrel and other parts for that Engine which could not be miade at Oxford. But to return to fome other Notes.

- The fame Year I contriv'd and made many trials about the Art 6 of flying in the Air, and moving very fwift on the Land and Wa-
${ }^{6}$ ter, of which I fhew'd feveral Defigns to Dr. Wilkins then War-
- den of Wadham College, and at the fame time made a Module,
* which, by the help of Springs and Wings, rais'd and fuftain'd it

6 felf in the Air; but finding by my own trials, and afterwards by

- Calculation, that the Mufcles of a Mans Body were not fuffici-
* ent to do any thing confiderable of that kind, I apply'd my Mind
s to contrive a way to make artificial Mufcles; diver's defigns where-
' of I fhew'dalfo at the fame time to Dr. W'ilkins, but was in ma-
6 ny of my Trials fruftrated of my expectations.
What is mention'd here of his attempts about flying, is confirm'd by feveral Draughts and Schemes upon Paper, of the Methods that might be attempted for that purpofe, and of fome contrivances for faftening fuccedaneous Wings, inot unlike thofe of Bats, to the Arms and Legs of a Man, as likewife of a Contrivance to raife him up by means of Horizontal Vanes plac'd a little allope to the Wind, which being blown round, turn'd an endlefs Screw in the Center, which help'd to move the Wings, to be manag'd by the Perfon by this means rais'd aloft: 'Thefe Schemes I have now by me, with fome few Fragments relating thereto, but fo imperfect, that I do not judge them fit for the Publick. But to return to his own Notes.
' About thistime having an opportunity of acquainting my felf - with Aftronomy by the kindnefs of Dr. Ward, I apply'd my felf
' to the improving of the Pendulum for fuch Obfervations, and in the
- Year 1656 , or 57 , I contriv'd a way to continue the motion of ' which Dr. W' ard had recommended to me to perufe; I made fome 'trials for this end, which I found to fucced to my wifh.

6 The fuccefs of thefe made me farther think of improving it for *I never could 'finding the Longitude, and * the Method I had made for my felf for meet with what is mentiMechanick Inventions, quickly led me to the ufe of Springs inftead oned here, and ${ }^{6}$ of Gravity for the making a Body vibrate in any Pofture, wherein feveral o- ' upon I did firft in great, and afterwards in fmaller Modules, fatif: ther places of ' fy my felf of the Practicablenefs of fuch an Invention, and hopready printed, ing to have made great advantage thereby, I acquainted divers and of thofe
contained in of my Friends, and particularly Mr. Boyle, that I was poffeft of cont
thinsed V vede, of
fuch an Invention, and crav'd their Affitance for improving the a method for 6 ufe of it to my advantage.
Mechanick
Inventions,
wwhich be fomenhere calls a Mechanick Algebra for folving any Probleme in Merbanicks, as eafily and certuinly as any Geometrick by Algebra, and Says, that by this his method be could readily determine whether any fuch Probieme was pogficle, aridif jo, which wows the meareft and eafiest way of folving it.
'Immediately after his Majefy's Reftoration, Mr. Boyle was plea-- fed to acquaint the Lord Brouncher and Sir Robert Moray with it, 6 who advis'd me to geta Patent for the Invention, and propoun6 ded very probable ways of making confiderable advantage by t. ? 'Toinduce them to a belief of my performance, I fhew'd a Pocket-

- watch, accommodated with a Spring, apply'd to the Arbor of - the Ballance to regulate the motion thereof; concealing the way "I had for finding the Longitude; this was fo well approv'd of,' 6 that Sir Robert Moray drew me up the form of a Patent, the prin-- cipal part whereof, viz. the defcription of the Watch, fo regulat-- ed, is his own hand Writing, which I have yet by me, the dif-- couragement I met with in the management of this Affair, made - me defift for that time.

So far this Paper:. In confirmation of what is abovefaid, I met with a Draught of an Agreement between the Lord Brouncher; Mr. Boyle, and Sir Robert Moray, with Robert Hooke Mafter of Arts to this purpofe, that Robert Hooke fhould difcover to them the whole of his Invention to meafure the parts of Time at Sea as exactly and truly as they are at Land by the Pendititum Clocks invented by Monfieur Huygens; 'That of the Profits to be made thereby not exceeding 6000 l. Robert Hooke was to have ${ }_{4}$ of whatever was made more of it, not exceeding 4000 l . Robert Hooke was to liave $\frac{2}{3}$ of the reft, if more could be made of it, he was to have the $\frac{1}{2}$, and Robert Hooke to be publickly owned the Author and Inventor thereof. This is the fum of one Draught; there are indeed fome others which differ only in the divifion of the Profts, which it is needlefs here to trouble the Reader with. In purfuance of this Defign there were feveral Papers drawn up, viz. The Draught of an ACt of Parliament to oblige all Mafters of Ships to pay fo múch per Tun for the ufe of this Invention, as alfo of a Warrant to be granted by the King to Robert Hooke, M. A. \&c. for a Patent for the fole ufe of the faid Invention for fourteen Years, and fign'd by His Majefty's Command, William Morrice. Ihave fome other Papers which are unneceffary to be here mention'd.

Thus far the Matter then proceeded, and how it came to fop here may be juftly wondred; but to give the Reader the beft fatiffaction I can in this matter, I fhall tranfcribe a Paragraph out of the Poftcript to Hooke's Treatife of Heliofcopes Printed 1676.
' This Treaty with me had been finally concluded for feveral - Thoufand Pounds, had not the inferting of one Claufe broke it 6 off, which was, That if after I had difcover'd wy Invention about 'the finding the Longitude by W atches (tho' in themselves fufficient) they, - or any other Perfon Sbould find a way of improving my Principles, he or ' they Jbould bave the benefit theroof during the term of the Patent, and 6 not I. To which Claufe I could no ways agree, knowing 'rwas e eafy to vary my Principles an hundred ways; and 'twas not im${ }^{6}$ probable, but there might be fome addition of conveniency to 6 what I fhould at firft difcover, it being facile inventis addere; and ' judging it unreafonable to be depriv'd of the benefit of my In6 ventions, in themfelves fufficient, becaufe others might vary ' them, or any other ways improve them, of which it was very 6 probable they would have no thought if they had not the advan-- tage of being initructed by my Difcovery, it having been hid - fome Thoufands of Years already; as indeed the effect hath made ${ }^{6}$ evident and certain, there having been nothing done by any Bo-- dy elfe upon that matter ever fince.

There is more in the fame place worth the perufal, which, for brevity, I omit.

Dr. Hooke fuffering this Invention to lie undifcover'd to the laft, gave fomePerfons caufe to queftion whether he was ever Poffelfor of it, and to doubt whether what in Theory feem'd very promifing, wou'd anfwer when put to the Teft of Practice; othersindeed more feverely judged, that it was only a kind of boafting in him, to affert he knew that which had not yet been perform'd, tho' attempted by many. However the matter is, it is certain he perfifted in the affirmation to the laft, and not many Weeks before his Death, told me and other Perfons, that he knew a certain and infallible method to defcover the true place of a Veffel at Sea, as to its Eaft and Weft diftance from the Port departed from: Whether by Watches, or other Time-keepers, or by any other ways, I know not, tho' indeed by what is before mention'd, it fhould feem to be by Watches, for the improvement of which he made many Trials, and read feveral Difcourfes.

How ever this matter produc'd the difcovery of that moft ufeful and practicable method of regulating Pocket-watches by a fpiral Spring, apply'd to the Arbor of the Ballance as they are now made without any confiderable addition fince; the Hiftory of which, as I have heard it from himfelf and find publifh'd, is thus.

In Difcourfe once he told me, that aboutthe Year 1660 . he having Shewn a Movement fo regulated to the Lord Brouncher, \&c. as is above related, Monfieur Huygens having for fome time apply'd himfelf to invent feveral ways to regulate Time-keepers by the correfpondence he held with Mr. Oldenburgh, a mong other matters had notice of this, for which there was afterwards an application made to procure a Patent. This indeed is poffible, but whether it were fo or not I cannot determine. That Mr. Hooke had many Years before (Huygens mention'd it) difcover'd the Invention is certain, by what is related in the Hiftory of the R oyal Societyamong feveral new Inventions, in thefe words, There have been invented feveral kinds of Pendulum W'atches for the Pocket, wherein the motion is regulated by Springs, \&c.

Now tho this does not mention the Springs being fpiral or faftened to the Arbor of the Ballance, yet it appears it was fo by what is related above, and a Paffage I have feen in a Leter from Sit Robert Moray to Mr. Oldenburgh, dated Oxion Sept. 30.1665 . clears it, in which are thefe words. 'You (meaning Oldenburgh) will be ' the firft that knows when his (that is Hugyens's) Watches will be - ready, and I will therefore expect from you an account of them, 6 and if he imparts to you what he docs, let me know it ; to that - purpofe you may ask him if he doth not apply a Spring to the Arbor - of the Ballance, and that will give himoccafion to fay fomewhat - to you; if it be that, you may tell him what Hooke has done in 'that matter, and what be intends more. Altho' I cannot be affur'd what Oldenburgh wrote to Monfieur Huygens, yet it is probable their intimacy procur'd what he knew; and it is exident that Huygens's difcovery of this was firft publifh'd in the Fournal des Scavans, and from thence in the Philof. Tranfact. for March 25th. 1675 , about ten Years after that Letter of Sir Robert Morays, and near fifteen after Hooke's firft difcovery of it.

To this I fhall add what Mr. Oldenburgh has Printed, Philof. Tranfat. N°. 118. ${ }^{5}$ Tis certain the defcriber of Heliofcopes (mean'ing Hooke) fome Xears ago caus'd to be actually made fome

- Watches of this kind; which (indeed he there fays) were unfucceisful. Which whether fo or not, I cannot learn, fo many Years after; tho' I am inclin'd to think that Expreffion proceeded from Paffion, the Invention and Principle of Hooke's and Huygens's being both the very fame as are now us'd.

To this of Mr. Oldenburgh, Mr. Hooke made his Reply in a Poftfcript to his Lampas: In rejoinder to which Oldenburg Printed a philof. Transo Declaration of the Council of the Royal Socrety, to teftify No. $129 . P_{0}$ his faithfulnefs in managing the Correfpondence of the Society; 749. but it is obfervable that in this place there is no contradictionto Hooke's being the firft in that Invention.

It cannot be deny'd but that Mr. Hooke was frequently defir'd to perfect his Inventions about Watches and Time-keepers, which, when urg'd, he as often promis'd, and when any new Contrivance was by any Perfon produc'd, he then fhew'd fomething of his own, either the fame, or excelling it, a Proof he had try'd the fame before. 'Particularly when on the gth of Auguft 1666. Mr. Mer-- cator Thew'd to the Society a Watch of his Invention, reprefents ing the Æquation of Time to the approbation of the Company. - Mr. Hooke at the fame time produc'd a new piece of Watch-- work of his own Contrivance to meafure Time exactly both at fournal Resoc:

6 Sea and Land, of which he was defir'd to bring in the Defcrip' tion, which, tho' promis'd, was, as I think, never done.

It muft be confefs'd that very many of his Inventions were never brotight to the perfection they: were capable of, nor put in practice till fome other Perfon either Foreigner or: of our own Nation cultivated the Invention, which, when Hooke found, it put him upon the finifhing that which otherwife poffibly might have lain 'till this time in its firft Defects: Whether this miftake arofe from the multiplicity of his Bufinefs which did notallow him a fufficient time, or from the fertility of his Invention which hurry'd him on, in the queft of new Entertainments, neglecting the former Difcoveries when he was once fatisfied of the feazablenefs and certainty of them, tho' there wanted fome fmall matter to render their ufe more practicable and general, I know not, and whether this was the Cafe in the prefent Subject: But this I fuppofe may be an undoubted Truth, the fpiral Springs were not apply'd generally to regulate Watches, 'till after this Difpute with Huygens.

I have been the more particular in this matter, that I Might, as far as I was able, affert the Invention to the true Author, and fuppofe I have wrong'd no Perfon. They that require more of this Subject may confult the Philofophical Tranfactions, and Hooke's Tracts in the places before quoted: I have in this brought all that relates to this Queftion together, that the Reader may the better underftand the whole matter, tho' thereby I have diforder'd the feries of his Life, and order of Time.

But to return (from this Digreffion, which, to make it more plain, I have enlarg'd upon) to Oxford, I find that 1655, or 6 there were many curious Experiments, Obfervations and Inquiries made, and Inftruments for thofe purpofes contriv'd, as paricularly the Barometer, of which he fays, the firft occafion of the Invention was a Suggeftion of Sir Ch . Wren in order to find whether the Hypothefis of Des.Cartes for giving the Reafon of the Tides from the preffure of

Traitez de l^{\prime} Equilibre deIrqueurs, \&c. 1064.

Fide p. 500. s.c. infra.
the Moon upon tlie Air in its paffage by the Meridian, were true or not. At this time I have heard Mr. Hooke fay, it was firt obferv'd, that the height of the Merciry in the Barometer did not conform itfelf to the Moon's motion, but-to that of the different Gravitation of the Air, as has been fince fufficiently: verified. Yet in a French Treatife Printed at Paris, feveral Years after this Obfervationat Oxford, the difcovery of the Gravitation of the Air is attributed to Monfieur Pafoal deduced from feveral Experiments, made about the Year 1650. at Clermont in Auvergne by Monfieur Perier, at Paris by ochers: And at Stockbolm byt Meffeures Des Cartes and Chanute; which if it be, as is there related, and the Inferences from that Experiment fuch as are in the fame Tract mentioned; 'tis ftrange they Thould not have been apply'd to the ufe of fo beneficial an Inftrument fooner, which I do not find it was till after this Obfervation at Oxford.

By: the perfuafion of Dr. Seth Ward, afterwards Bifhop of Salisbu$y y$, about 1656 , lie apply'd himfelf more particularly to the Study of Aftronomy, and about 58, or 59 , he fays this, "I contriv'd fe-- veral Aftronomical Inftrunients for making Obiervations both at - Sea and Land, which I afterwards produc'd before the R o y a L - Society.

Some of thefe, I fuppofe, are the Inftruments hereafter mention'd in his Aftronomical Lectures, where I have endeavour'd to retrieve as many as I could, partly from fome rough Draughts, partly from old Modules, and fome fron the verbal Defrriptions where both thofe helps were wanting; in which how I have fucceeded, is left to the candid Readers Judgment.

- Much about this time (as he fays) he contriv'd the Circular Pen-- dulum, and the ufe of it for continuing the motion of a nother Penaulum, which he afterwards fhew'd to the R oyal Society in 1663 ; about which time, and afterwards, there are feveral particulars relating to the Circular Pendulum enter'd in the Journals as his: A Movement to this purpofe; is defcrib'd in his Animadverfions on Machina Caleftiv, pag. 68. Printed 1674.

In the Year i660. the moft Illuftrious R o yal.S ociety was founded, for a full account of which, and its Inftitution, the Reader is referred to the Right Reverend and Learned, Dr. Sprat's Hiftory thereof, Publifh'd 1667. I fhall only obferve the Occafion and Time when Mr. Hooke was introduc'd into their Service as Cu rator. Soon after the beginning of the Royal Society, viz. about April 1661. a Debate arofe in the Society, occafion'd by a fmall Tract Printed in 1660 about the caufe of the rifing of Water in flender Glafs Pipes, higher than in larger, and that in a certain proportion to their Bores ; this Difoourfe was wrote and Publifh'd by Hooke ; the Explication of which diffcult Phenomenon made him the more regarded. The fum of his Reafonings upon this Subject he Publifh'd afterward, Micrography Obferv. the bth. in which there are feveral very curious and then new Remarks and Hints; as to the Nature of Fluidity and Gravity, which laft is farther profecured in his 'Treatife of Springs, with other excellent Subjects, to which the Inquifitive are referr'd for a more ample fatisfaction.

This, together with his former Performances, made him much refpected by the R. Socisty, and on the fifth of November $166_{2 \cdot}{ }^{6}$ Sir 6 Robert Moray propos'd a Perfon that was willing to be entertain'd 6 as a Curator by the Society, offering to furnifh them every day 6 when they met, with three or four confiderable Experiments;

- which Propofition was unanimoully receiv'd, Mr. Hooke being
- nam'd to be the Perfon; and accordingly the next Day of their
- meeting on the twelfth of November he was unanimounly accep-

6 ted and taken as Curator, with the Thanks of the Society order'd
' to Mr. Boyle for difpenfing with him for their ufe, and order'd

- that Mr. Hooke fhould come and fit among them, and both bring

6 in every Day three or four of his own Experiments, and take care
6 of fuch others as fhould be recommended to him by the So-
${ }^{5}$ ciety.
From this time the Societies Journals gave fufficient Teftimonials of his Performances, all which would be too many to particularize here, therefure I Thall only touch upon fome of the chief, as the Experiment of breaking Glafs-Bubbles inward, the Air contain'd in them being rarify'd by heat in their blowing, and fo hermetically fealing them whillt hot; which Bubbles were obferv'd at a certain degree of Tenfion, both in the difending them whilft blowing, and in their contracting as they cool'd, to yield a finart found, feveral of thefe in cooling would break inwards with a brisk noife, tho' others broak without any noife, upon which ties Experimenter made feveral Remarks.

Many Experiments were made to explicate the Nature and Quality of the Air, viz. as to its Gravitation, its different Effects when Rarify'd, Condens'd and Natural, with its ufe as to the Life of Animals, and maintaining a lucid Flame, or caufe the Diffolution of Bodies by Fire, a live Animal and Lamp being inclofed together in a Receiver, fhew'd the Pabulum vite and famma to be much the fame: At which time alfo he try'd how long the fame Air would ferve for breathing. This leads me to remember that noble Experiment made by him of keeping a Dog alive, his Thorax being laid open, by blowing frefh Air into his Lungs, of which a particular Account is given in the Hiftory of the R OYALSOCIETY, Pag. 232. which plainly fhews the ufe of the Air, and difference between venal and arterial Blood.

He fhew'd what addition of weight is given to Fluids, by afcending and defcending Bodies in them. The different Specifick weight of Hot and Cold Water, with the ufes to be made thereof in heating large quantities of Water. Of the difference of Ice and Water, with the Refraction of other Fluids, by an Inftrument defcrib'd in the Preface to his Micrography.

Experiments and a Contrivance to fhew the Force and Velocity of Bodies falling from feveral heights, weighing Bodies at feveral heights. Pendulums of two hundred Foot long. The difference of the Barometer at feveral heights. Experiments to improve Land Carriage. Methods of conveying fecret and quick Intelligence.

Inftruments to meafure time exactly. To obferve a fecond Minute by the Sun or Stars. To try the ftrength of Gun-power, and feveral others, particularly an Engine to cut down the Teeth of Watch Wheels more exactly than can be done by the moft expert Hand, an Invention now of conftantufe.

The Life of Dr. Robert Hooke.

About this time he fix'd the Standard for the Thermometer from the Point of Freezing; and contriv'd a way to make the motions of the Barometer more fenfible, which is fince with farther Improvements, Publinh'd in the Philofoph. Tranfact. N0. 185.p. 241.

In Feb. 166_{+}^{3}. he contriv'd a way to fupply frefh Air to the Urinator under the Diving Bell by a Chain of Buckets and a Leaden Box for his Head, when he went out of the Bell to be fupply'd with frefh Air from the Bell, \&oc.

At this time he fhew'd Experiments of the dilating of Glafs and other Bodies by Heat.

In Fuly 1664 . he produc'd an Experement to thew the number of Vibrations of an extended String, made in a determinate time, requifite to give a certain Tone or Note, by which it was found that a Wire making two hundred feventy two vibrations in one Second of 'Time, founded G Sol Re $V t$ in the Scale of all Mufick. Other Experiments were made of the divifion of a Monochord, which I omit.

About this time many Experiments were made of the Velocity

Pbilof. Trany.

 ${ }^{10} \cdot 9.9 .147$. $8 \mathrm{~N}^{\circ} \mathrm{O} .24 \cdot \mathrm{p}$.439. of Bodies finking and rifing in Water, in order to afcertain that Contrivance, which was after made publick, of founding the Seas depth with the founding Ball, which is too well known to infift on it.

At feveral Meetings of the Society in 1663 , and 4 . he produc'd his Microfcopial Obfervations, and read the Explications and Difcourfes made upon them, which were after publifh'd in his Micrographia, at the beginning of the Year 1665. In which Book, I fuppofe, it will hardly be deny'd, that there are more excellent Philofophical Difcoveries and Hints, that in moft extant of its bulk: The Book itfelf being well known, I thall only obferve that there are deferib'd in it feveral forts of Microfcopes, with the ways of ufing them. The Barofcope, Hygrofcope, an Inftrument to graduate 'Thermometers, an Engine to grind Optick-glaffes, an Inftrument to meafure the Refraction of Liquors, $\begin{gathered}\text { o. I remember Mr.Margbal when he }\end{gathered}$ defir'd the Societies Approbation of his new Method of grinding Spectacles and other Optick-glaffes, own'd he had the firt intimation of it from a hint of Mr. Hooke's in this Book about the Polifhing many very fmall Microfcope Object-glaffes at once.

A more particular Account of this Book is extant in the Pbilofoph. Tranfact. N° 2. p. 29. and to fhew the Efteem Foreigners had of it, I fhall refer the Reader to the account given of it in the fournal des Scavans for the Month of December 1666 . In this the Journalift fpeaks with great Refpect of the Author, and Efteem for the Work itfelf, obferving the vaft number of curious Remarks made therein concerning the improvement of the other Senfes, as well as that of feeing: Obfervations of Colours and Light, the Moon, Stars, Reflexion, Inflection, ơc. concluding after (having mention'd feveral) that the Book contains more than can be taken notice of in an Extract.

In the beginning of June 1664 . Sir Fobn Cutler liaving intimated his Defign to fome Members of the Society of founding a Mechanick Lecture, with a Yearly Gratuity of fifty Pounds, on the twenty fecond of the fame Month feveral Members met to confer about the manner of fetling that Lecture, and on the ninth of November following, it is enter'd in the Journals to this purpofe; ${ }^{6}$ Sir

The Life of Dr. Robert Hooke.

- Fohn Cutler having founded a Lecture, and fettl'd an Annual Sti-
' pend upon Robert Hooke, M. A. of fifty Pounds during Life (en-
' trufting the Prefident, Council and Fellows of the faid Society to
' direct and appoint the faidMr. Heoke as to the Subject and Number
- of his Lectures) the Society order'd feveral of their Members to
(wait upon Sir Fobn Cutler, with their Thanks for his particular
- Favour to a worthy Member, and for that Refpect and Confidence
' he hath hereby expreft towards their whole Body, oc.
' On the twenty feventh of June 1664. it was voted that at the
' firft Opportunity Mr. Hooke fhould be put to the Scrutiny for
' the Curators place by Office; on the twenty third of November
'following he was propos'd as a Setled Curator of Experiments;
' and on the eleventh of \mathfrak{F} an. 1664 . elected and made Curator by Of.
${ }^{6}$ fice for Life, with an additional Salary to Sir Gobn Cutler's Annu-
' ity.
At this time he read feveral Aftronomical Lectures, fome of which are publifh'd in this Volume, and invented many Inftruments, particularly his Quadrant witha Roler on the Limb; an Inftrument to meafure the Velocity of the Wind, and repeated the Experiment of the Vibrations of a Pendule two hundred Foot long. The firf propofal for the Weather-Clock was then offer'd upon the Defcription of one made by Sir Chriffopher Wren. The Experiment was made and account given of the fufpenfion of the Mercury to feventy five Inches in the Tube, which, with fome additions, is Printed in this Volume. From this time he brought in almoft at every Meeting Experiments, Obfervations, Schemes of new. Inftruments and Inventions, or fomething confiderable to the advancement of Knowledge, and very frequently read his Cutleriain Lectures, of many whereof he publifh'd, the moft material parts in his Tracts Printed at different times, in Quarto, call'd Lectures and Collections, \&c. comprizing compendioully in one continu'd Difcourfe, the chief Matters and Subjects handled in feveral Lectures.

Thus the generous Ardor with which the Royal Society was infpir'd, continu'd'till the Year 1665 . when, by reafon of the great Mortaity then reigning, they were oblig'd to defift and break up their Weekly Meetings till the fourteenth of March 166\%. when, upon Summons, they met again. In this Interim the Members retir'd to feveral Places in the Country, and Mr. Hooke attended Dr. Wilkins, and fome other ingenious Gentlemen into Surry, near Banffead Downs, where feveral Experiments were made during this Recefs, an account of which was after brought into the Society.

At fome of the firft Meetings, after they came together again, 6 Mr. Hooke produc'd a very fmall Quadrant for obferving accu' rately to Minutes and Seconds, it had an Arm moving on it by ' means of a Screw lying on the Limb of the Quadrant; this is all the account I find of it. Poffibly this was the firf ever made after that manner, tho' it is now fufficiently known and practis'd: A large one of this fort, and of all its parts, with the reft of the apparatus and manner of ufing it, is at large publifh'd by the Inventor, Anno 1674. in his Animadverfions on Herelius's's Maching Caleftis, pag. 54. in which Book alfo feveral other ingenious Contrivances, Inftruments and Inventions are mention'd.
xii The Life of Dr. Robert Hooke.
fourral R.s. 'May 23d. 1666. There was read a Paper of Mr. Hooke's ex' plicating the Inflexion of a direct motion into a Curve, by a fu-
' pervening, attractive Principle, which was order'd to be Regi-

- Iter'd. The Difcourfe contain'd therein is an Introduction to an
- Experiment to fhew that Circular Motion, is compounded of an
'indeavour by a direct motion by the Tangent, and of another in-
- deavour tending to the Center: To which purpofe there was a
- Pendidum faftened to the Roof of the Room with a large wooden
- Ball of Lignum Vite on the end of it; and it was found, that if
' the Impetris of the indeavour by the Tangent, at the firft fetting
6 out, was flronger than the indeavour to the Center, there was
- generated fuch an Elliptical Motion, whofe longeft Diameter was
- parallel to the direct indeavour of the Body at the firft Impulfe:
- But if that Impetus were weaker than that indeavour to the Cen-
' ter, there was generated fuch an Elliptical Motion, whofe fhor-
' ter Diameter was parallel to the direct indeavour of the Body in
- the firft point of the Impulfe, if both were equal there was made
- a perfect Circular Motion. There was alfo made another Expe-
' riment, by faftening another Pendulous Body by a fhort String
- on the lower part of the Wire, by which the greater weight was
' furpended, that it might freely make a Circular or Elliptical Mo-
' tion round the bigger, whilft the bigger mov'd Circularly or El-
- liptically about the firft Center. The intention whereof was to
' explicate the manner of the Moons motion about the Earth, it
' appearing evidently thereby, that neither the bigger Ball, which
' reprefented the Earth, nor the lefs which reprefented the Moon,
6 were mov'd in fo perfect a Circle or Ellipflis, as otherwife they
' would have been, if either of them had been fufpended and
' mov'd fingly: But that a certain Point which feem'd to be the
' Center of Gravity of the two Bodies (howfoever pofited and ' confider'd as one) feem'd to be regularly mov'd, in fuch a Circle 6 or Ellipfis, the two Balls having other perculiar motions in fmall - Epicicles about the faid Point.
- Aug. ift. 1666 . he read his Obfervations of the Comet in 1664. © after Printed among his Tracts, and call'd Cometa. The fame
- produc'd a certain Contrivance to fhew that the Circular Pendu-
- lum was made of two ftrait Lines croffing each other, \&rc. and about the fame time his Inftrument to take the diftance of the Stars from the Moon, the one Object feen direct, the other by Reflexion, this is publifh'd in his Book, pag. 503.

The dreadful Conflagration of a great part of the City of London happening in the beginning of September 1666. brought another great hindrance to the Societies Proceedings; fo that they were oblig'd to remove their ufual place of Meeting from Greflbans College to Arundel Houfe in the Strand, where, by the favour of the then Duke of Norfolk, they profecuted their former Inquiries, their firft Meeting at Arundel Houfe being on the ninth of $\mathfrak{F a n} .166 \%$.

- On the nineteenth of Sep. 1666. he produc'd a Module he had - defign'd for the Rebuilding of the City, with which the Society - were very well pleas'd, and Sir Fohn Laurence the then late Lord
‘ Major, addrefs'd himfelf to the Society, expreffing the prefent Lord
- Majors and Aldermens liking thereof,as alfo their defire that it might
' be fhewn to his Majefy, they preferring it far before the Model
' drawn up by the City Surveyor.

What this: Model was, Tw cannot fo well determine, but I have heard that it was defign'd in it to have all the chief Streets as from Leaden-Hall corner to Nenigate, and the like, to lic in an-cxact ftrait Line, and all the other crofs Streets turning out of them at right.Angles, all the Churches, publick Buildings, Markeitplaces, and the like, in proper and convenienc places, which, no doubt, would have added much to the Beauty and Symmetry of the whole. How this came not to be accepted of I know not, but it is probable this might contribute not a little to his being taken notice of by the Magiftrates of the City, and foon after made Surveyor.
The Rebuilding of the City, according to the Att of Parliament, requiring an able Perfon to fet out the Ground to the fevcveral Proprierors, Mr. Hooke was pitch ${ }^{\circ} d$ upons and appointed CitySurveyor for that difficult Work, which being very great, took up a large proportion of his Time, to the no fmall hindrance of his Philofophical Difquifitions.
In this Employment he got the moft part of that Eftate he died poffeffed of, as was evident by a large Iron Cheft of Money found after his Death, which had been lock'd down with the Key in it, with a date of the Time, by which it appear'd to have been lo fhut up for above thirty Years : In this ;was containd the greateff part of what he left behind him, which was to the value of ma:ny thoufands in Gold and Silver. That he might by this place juftly acquire a confiderable Eftate, I think cannot be deny'd, every particular Perfori after the Fire being in hafte to have his concerns expedited; fo that as I have been inform'd he had no Reft early and late from Perfons foliciting to have their Grounds fet out; which, without any Fraud or Injuftice, deferv'd a due recompence in fo fatiguing an Employ.
OCt. 3I. 1666. He fhew'd his inclineing Pendulum, with the ufes thereof, to regulate the motions of a Clock as exactly as a long one.

On the 9 th of ${ }^{\text {FI }} \mathrm{Fan}$. 166%. he was order'd to profecute his Obfervations of the Earth's Paralax formerly by him propos'd: A large Account of the Refult of his Obfervations therein were after Printed in his Attempt to prove the notion of the Earth 1674, being the firft of his Cutlerian Lectures Publifh'd.

On the 6th of Feb. following, he produc'd his new Lamp contriv'd fo as to fupply the Oil in equal quantity as it waftes, that it may never rife too much or too little, the farther Defcription and Explication of which, with many curious Remarks, were Publifli d 1677. and intitl'd Lamppes, or Deforiptions of fome Improvements of Lamps and Waier-poijes, \&c.

Feb. the 28th. He firft produc'd his Refecting Telefrope, which is defcrib'd with the Reafon of the Principle, with fome other Infrruments in his Treatife of Heliofoopes, Printed 1676.
On the 17 th of ${ }^{\text {Iune }} \times 66$. and afterwards he read large Difcourfes of the Caufes, Powers and Effects of Earthquakes, affirming the great Hills and Mountains in the World to have been raifed by them, of which Subject he at feveral times afterwards made very many Difcourfes and Lectures, the moft part of which are collected together in this Volume, beginning at Page 279.

In Fuly 1667. he try'd feveral Experiments upon himfelf in an exhaufted Receiver, big enough to contain a Man, I think the only Experiment of that kind ever try'd.

At this time he contriv'd a Micrometer of lefs Charge and Difficuly than that invented by Mr. Gafooin with Screws; this, I fuppofe, is Publifh'd in this Volume, Page 498.
Dec. 26. 1667. He brought in a farther Defcription of a Sea Barometer.

Fan. the 16 th 166_{8}^{7}. he produc'd ς his new Contrivance of promoting the Vibrations of Pendules, fo as to prevent all Checks, which
he affirmed had not been provided againft by any Contrivance to
6 that time.
Apr. 9. 1668. He produc'd two Inftruments to promote the fenfe of Hearing.

May the ist the hew'd an Experiment of the penetration of Liquors in Oil of Vitriol and fair Water.

About this time he producd many other Experiments and Inventions, which I omit, and fhall only obferve, that there being feveral Difcourfes about the meafuring a of Degree of the Earth, he propos'd divers Methods of performing it, and invented feveral Inftruments; and as is enter'd in the Journal, Oct. 28. 166 g . Mr. Hooke was of Opinion, That one of the exacteft ways of meafuring, was by making accurate Obfervations of the Heavens to a fecond, by a Perpendicular Tube, and then to take exact diftances by Angles to a fecond alfo, which I take to be the Method obferv'd by the French not long after, as may be feen by a particular Treatife of it Publifh'd by Monficur Picart, as likewife by what Dubamel fays in his Hiftory of that Society, p. 98 . to which the curious are refer'd. I find alfo by fome Notices and loofe Papers of our Curator, that he invented a fort of travelling Calefh for this purpofe, which fhould defcribe upon a Paper, not only the Menfuration of the way gone over, but the feveral Afcents and Defcents, together with the turnings and windings of the Calefh, or the Points of the Compafs upon which the Perfon travell'd with other Contrivances, which I know not by what misfortune, were never put in practife. There were alfo other Methods for meafuring a Degree propos'd to be made in St. Fames's Park on the Canal, which alfo had the like fate of not being profecuted.
In \mathfrak{F} an $166 ;$. He firft propos'd a drop of Mercury for an univerfal Standard, which is more at large defcrib'd, Page 472. of the following Volume. And in April fhew'd an Experiment with a folution of Copper to reprefent the appearance of Clouds and other aerial Meteors, by dropping into it feveral Salts, ofc. and at the fame time fhew'd the ufe of introducing the Species into a dark Room for Painting, and contriv'd a Box for that purpofe, which is here Printed.
In March 1671. © he fhew'd feveral Experiments to explain the

- Nature and Caufe of Gravity: Particularly on the gth an Ex-- periment was made, in which fome Flower put into a void Shal' low Glafs with a large floping brim, and a pretty tall Foot was ' made to rife and run over like a fluid, by the knocking on the ' edge of the Glafs, and alfo by the forceably moving of ones Fin ' ger round the edge of the fame. Leaden Bullets alfo being put - into this Glafs, did, by knocking, move it like a fluid....-This
\& was propos'd to confider what might be the caufe of Gravity, s and fuggeft an Hypothefis to explicate the motion of Gravity ${ }^{6}$ by, ơc.

Thefe, and feveral other Experiments, he fhew'd to explain Na tural Bodies and Actions, in fome of which I have been the more particular out of a hope thefe hints may excite fome inquifitive Perfon to proceed farther in fuch Inquiries.

This fame Year feveral Difcourfes and Papers paft between the Learned Mr. Newton and Mr. Hooke concerning a new Theory of Light and Colours, which being now fo generally known, I thall not farther infift on.

About this time he made a Propofition for perfecting all forts of Optick-glaffes, the fecret of which was deliver'd in an Anagram to the Prefident my Lord Browncher.

Not long after this time began that unhappy Difpute between The Difpute $^{\text {Dis }}$ Monfieur Hevelius and Hooke concerning the preterence of Plain and woith HeveliTelefcopical Sights for Aftronomical Inftruments, which, as I can us. collect, was thus occafion'd. Mr. Hooke, by means of Mr. Oldenburgh, had recommended to Monfieur Hevelius the Application of Telefcopick Sights to his exquifitely contriv'd and elobrated Inftruments, affirming that by them an Angle might be taken to a much greater nicenefs than with plain Sights, and gave them a fhort, but as he thought a fufficient information of the manner of applying them to the Inftrument, and intimated that if any thing requird a farther Explication, he was ready to give it. Neverthelefs Hervelius could not be prevail'd with to make ufe of them, whether he thought himfelf too experienc'd to be inform'd by a young Aftronomer, as he reckon'd Hooke, or whether having made fo many Obfervations with plain Sights, he was unwilling to alter his Method, leaft he might bring their exactnefs into Queftion, or whether being by long practice accuftom'd to the ufe of them, and not thoroughly apprehending the ufe of the other, nor well underftanding the difference, as Mr. Molineus has obferv'd in his Opticks, is indeed uncertain.

Not long after came out his curious and pompous Book of the firft part of his Machina Caleftis; and Hooke took occafion in his CutLerian Lectures, to read feveral Difcourfes upon that Book, and the Inltruments therein defcrib'd, which were Printed $A n n o$ 1674. under the Title of Animadverfions upon Hevelius's Machina Caleftis.

In which Treatife vindicating fomewhat warmely the benefit of Telefcopick Sights and their preference, he chanc'd to let flip fome Expreffions, which, tho' poffibly ftrictly true, could yet never be digefted by Hevelisn.

Several Years after Hevelius Publifh'd his Annus Climactericus; which again reviv'd the Difpute, and caus'd feveral Learned Men to intereft themfelves in the Controverfy. This, I think, is the true Hiftory of the Matter. I Shall here fubjoin what Hooke wrote himfelf in Anfwer to what fome Perfons thought fit to write upon this Subjeet, as I found them drawn up by himfelf in a Paper or two among his Manufcripts; for the better underftanding of which, I fhall obferve, Firit, That Hevelius having fent his Annus Climactericus to the R oyal Society, Dr. Wallis was defir'd to give an account of it, which is Printed in the Philofophical Tranfactions N°. 175. p. I162, in which the Dr. having ufed fome Expreffions which

Hooke, thought reflected too feverely upon him; and Mre Malis yeux fiot long after fending a Letter to the fame purpofe, he virote his own Vindicationalmoft verbatim, as I have here Printed it, at leaft nothing material is omitted or added.

- There having been lately read in a Meeting of this Honour: - able Society a Letter from Mr. Molineux containing feveral Re-
- flections sliat concern'd me, which, without foine fatisfactory an-

6 fwer, mult needs make me fuffer in the Opinion of thofe who
G have not truly: underfood the Matter in Controverfy, and the
6 high Efteem I have of the Jultice and Judgment of this Illuftri-
6 ous Company, perfuades me the rather to make my Dofence
6 here:

- The Objections in the Letter were thefe.

© That if it be true which has been afferted, not only by fome - celebrated Aftronomers, but chiefly by Mr., Hooke in his Animad-
- verfoys, \&c. the Indeavours of. Hevelius will be fruftrated and his
- vaft Charges to no more purpofe than Ticho's and all his fplendid
- apparatus but meer Lumber ; for upon this Queftion as to plain
- Sights, the price of his Aftronomical Labours of his whole Life

6 depends; but furely this were an Event highly deplorable, not
6 only to the party himfelf immediately concern'd, but the whole

- Refpublica Literaria.

Secondly, Mention is made of the flightnefs and fmallinefs of © what I had publifh'd, which was only a Pamphlet, that afferted,
© that notwithftanding all this, yet meerly for want of Telefcopick

- Sights and fome new kind of invented Divifions on Mr. Hevelius's
- Inftruments, I went fo far as to doubt whether his Obfervations
- could be true, and always the fame to two or three Minutes, and

6 that the whole import of it befides this, was nothing but the De-
' feription of an Inftrument which he never heard was put in

- practice.
- The Third ObjeCtion againft me is that, tho' Monfieur Heve-- lius had earnefly requefted from me, or any one elfe that had Te-- lefcopick Inftruments, to fend him fome diffances of fixt Stars ' obferv'd by them, yet he could never be fo happy as to obtain a-
' ny from me, tho' afterwards he did from fome others, ơ'c.
© Thefe, and fome other Difcourfes, fpread abroad tacitely infi' nuate, that the Publifhing thofe Animadverfions was a very ill 'Action, and that the Learned in general have receiv'd a great pre6 judice thereby, it concerns me therefore to clear my felf of this
- Imputation: For Anfwer then I fay,
- Firft, If what I have Publifh'd in thofe Animadverfions be true ' and certain, then Idefire to know whether it were better for the
- Refpublica Litenaria to be acquainted with it, or to remain poffert
' with the beliet of fome Affertions of Monfieur Hevelius, which
' are really Miftakes (not to fay worfe) tho' poffibly till that time,
' wherein I publifh'd them, they were generally believ'd to be Truths,
' as he has taken a great deal of pains to induce a belief of, in the firft
' part of his Machima Caleftio, from Page 293, to Page 300, which I
' the

6 the rather mention, becaufe fome Perfons have thought and af
6 ferted, that I was the firft Aggreffor in Print, the contrary of
${ }^{6}$ which thofe fix Pages evince.
Secondly, ${ }^{6}$ Whether thofe deplorable Events of leffening the ' price of Monfieur Hevelius's Works, if that were true, when - put into the Ballance, will out-weigh the detecting a Miftake, ou

6 difcovery of a Truth in a matter of fo great Moment in Natu-

- ral Philofophy, as concerns the moft confiderable parts of Know-
- ledge in the Theory of the Univerfe, efpecially of Celeftial Bo-
- dies; for if Truth be that which is moft prevalent with all Phi-
- lofophical Spirits againft any particular Intereft, then I hope I fhall
- prove I have not offended in that particular in my publication of
' thofe Animadverfions. And Hevelius himfelf was of the fame
' Mind, when at the fixty firft Page of his Preface he writes
- (fpeaking of his difparaging fome things of Ticho Brabe) in hoc ne-
- gotio femper in cujujuis animo harere debet. Amicus Plato, Amicus
- Ariftoteles, fed magis tamen amica veritas. Nor do I find him fo

6 thy in proclaiming the Miftakes of Ticho's Obfervations, when it
' made for his own Reputation; for in the thirty fourth Page of his

- Preface he fays, that the greateft part of Ticho's Obfervations dif-
' fer'd from his own four, five, fix, and even ten Min. At'the
6 thirty ninth Page he fays, That of 780 in Ticho's Catalogue there
- are but 260 which differ, not lefs than two Minutes; but all the
${ }^{6}$ reft differ $3^{\prime} \cdot 5^{\prime} \cdot 10^{\prime}$. $20^{\prime} \cdot 30^{\prime} \cdot 40^{\prime} .45^{\prime \prime}$. $\times x^{\prime}$. nay a whole Degree from
6 the truth, and that fifteen differ above a Degree, and fome many
- more, even to eight Degrees in Longitude, and in Latitude to
' thirteen whole Degrees, fometimes in defect, fometimes in ex-
- cefs, yet for all this Hevelius would be thought highly to value
- Ticho Brabe, and not to have made any Reflections upon him.

6 Nor has the detecting Miftakes even in Perfons of as great

- Fame been look'd upon fo ill a thing, but rather a meritorious
- Action, as might be inftanc'd in Dr. Pelles fhort Anfwer in a ${ }_{4}^{\text {a }}$ of

6 a Sheet of Paper to Longomontanus his Work, which had been the
6 bufinefs of thirty Years. Another inftance may be of Phocilides

- upon Lansbergiuts, the learned Savilian Aftronomick Profeffor againft
- Bulialdus, \&c. all which Authors were well efteem'd for their de-

6 tecting Miftakes, and difcovering Truth. And as for any difre-

- fpectful or undervaluing Sentiments I had of Hevelius or his Per-
- formances, I hope what I have printed in my Admadverfions will
' prevail with the unprejudiced to believe the contrary; where $I P_{0}{ }_{43}$. © 44.
- fay, That I would not be uraderflood by thefe Animadverfions to under-

6 value the Works and Performances of a. Perfon fo bighly meriting the

- Thanks of the Learned World for his great Expence and vaft Pains, in
'performing a Work fobighly ufeful to Aftronomy and Navigation, that
- I did not in the leaft doubt but that it would be a Work of perpetuat
- Efteem, and much preferrable to any thing of the like kind yet done in the
- World; and that be bad gone as far as was pofible for bumane Induftry
' to go with Inftruments of that kind, which were as compleat and exact
- as Inftruments with plain Sights could be made; and that he had calcu-
- lated with all imaginable care and skill, and deliver'd them with the like
' Candor and Integrity: But yet that it was my Opinion, that this ought
- not to difcourage others from making ufe of Telefcope-jights, and to make
- better Obfervations with Inftruments by that means more exact.

xV111 The Life of Dr. Robert Hooke.

- This I hope may A pologize for my writing thofe Animadverfions.
${ }^{6}$ But in the next place I muft make fome defence for what is ${ }^{6}$ faid in them. This Gentleman fays I went fo far as to doubt
" whether Hevelius's Obfervations could be made true and always
' the fame to two or three Minutes, I wifh the place had been quo-
${ }^{6}$ ted where I faid fo, fince I only faid that I believ'd it impoffible

Animaduerfin ons, Pag. 7.
' for any one to diftinguifh with common Sights any diftance in
' the Heavens to lefs than half a Minute, and very few to a Mi-
' nute, and Iam apt to believe there may be fome inftances even
' in Hervelius's Catalogue that will verify this Affertion.
' And for any other Affertion, which is really mine in that Trea${ }^{6}$ tife, I do not doubt of fatisfying any unprejudiced Perfon by ex' periment, if defir'd, which I fay, is really my Afertion; for by
6 miftake or otherwife, fome things have been fathered upon me

- Inever faid, viz. that I fhould affert, That an:Inflrument of a fpan
- Radius might be made, that Joould perform Obfervations fixty times more
- accurate than could be done with his beft Inftruments:. Which Affer-

6 tion is none of mine, and whoever have fpread thefe Falfities,
6 might have found better Employment. I fay indeed, that a very
6 fmall Inftrument, curioufly made, exactly divided and inftructed
6 with 'Telefcope-Sights will perform much better in all Obferva-
' tions (except of the Sun) than the largeft Inftrument without
' fuch Sights, for the reafon before alledged from the defect in our

- Eyes which cannot diftinguifh an Angle lefs than half a Minute,

6 nor is this a defect in my ov-i.'yes only (as Hevelius fomewhere feems
' to hint) for the Experiment may eafily be try'd with the beftEyes.

- Nor is it any difparagement to Hevelizus's Obfervations to com-
${ }^{6}$ pare them with Ticho Brabe's, tho' I fhould have fuppos'd them
' but of equal value, fince the mere repeating of his Obfervations
6 would be of great ufe in Aftronomy, thefe being almott one hun-
6 dred Years after his; for we muft by fuch comparifons judge
6 of many confiderable inquiries concerning Celeftial Bodies, which
' cannot by other means be fo well detected, for which I refer to
' the feventy fixth Page of my Animadverfions, viz. to know whe-
' ther thofe Celeftial Bodies which are fuppos'd fo fixt, do not vary
' their Pofitions to each orher, and alfo their Magnitudes, which I
6 had good grounds to believe.
' As to the Objection that my Pamphlet contain'd little befides the
- Defoription of an Inflrument never put in practice. I conceive there
' may be feveral Miftakes; for I am of Opinion, upon perufal there
6 will be fomewhat elfe in that Treatife worth confideration. Next
- that, there has been Inftruments made, perfected and ufed after
${ }^{6}$. that way, by Sir Fonas More, by Mr. Gregory in Scotland, by Mr.
- Halley, and many others, and I believe very few Aftronomical In-
- iftruments fince have been made with plain Sights; and if the

6. multiude of Authorities were neceffary, I could produce Auzout,
': Ricart, Mariet, Romer, De la Hire, Montanari, Gotignies, and o-
' thers, notitoname thofe of our own Nation.
6 As to my not returning the Obfervations of certain diftances
' of Stars, which Herelius defir'd, 'tis fufficiently known what in-
6 conveniences we lay under in this place after the Fire of London,
6 . and had I found conveniences, yet the unkind Reception thofe
${ }^{6}$ things found, which I fent him, was enough to deter me from

- fuch a Compliance ; tho' he was fenfible how I had often been rea-

6 dy to gratify his Curiofity in many other particulars. But when
6 his Machina Caleftis was publifh'd, I was oblig'd to write thofe A -
6 nimadverfons, in which I hope all unprejudic'd Readers will juftify

- my proceedure, at leaft I am ready to provelany thing I have

6 cherein afferted.
I have been the laiger in the Account of this Controverfy that the intelligent Reader may make the better judgment thereof, it being the moft confiderable he ever had with any Perfon, and frall wave the giving my Opinion of it.

In 1674. he fhew'd an Engine or Inftrument to perform any Arithmetical Operation, but the more particular account of this and other Inftruments not defcrib'd in this Volume, I Thall referve for a nother opportunity.

About the later end of the fame Year the Romal Societ.y kept their Weekly Meeting at Grefbain College again, and on the fifteenth of fan. following he fhew'd a way to determine how fmall an Angle the unaffifted Eye is able to difcern, by which it was found, that none of the Perfons Eyes prefent could obferve a much lefs Angle than of a Minute; for a more ample account of which the Reader is referr'd to the eighth Page of his Animadverfions.

From this time many Magnetical Experiments were made by him, and on the nineteenth of March he propos'd a Theory of the variation, the fubltance of which was this, 'That the Magnet 6 hath its peculiar Poles diftant ten Degrees from the Poles of the 6 Earth, about which they move fo as to make a Revolution in 6 three hundred and feventy Years, whence the variation hath al6 tered of late about ten or eleven Minutes every Year, and will ' probably continue fo to do for fome time, till it begins to grow 6 flower and flower, and will at length be Stationary and Retro-- grade, and in probability may return; but whether it will be fo or ' not Time mult fhew. At the fame time he propos'd the making - of a very eafy and nice Inftrument to obferve the variation of the - variations of the Needle in different parts of the World. .

What this Inftrument was is not eafy now to be determin'd, but the Reader will find the Figure of an Inftrument fomething to this purpofe at Page 486.

On the $4^{\text {th }}$ of $F_{e b}$. $167 \frac{4}{5}$. feveral Obfervations and Difcourfes having been made about the Structure of the Mufcles of Animals, Mr. Hooke faid, ' That his Obfervation was, that the flefhy part of

- a Mufcle confifted of an infinite number of exceeding fmall round
- Pipes, extended between the two tendons of the Mufcles, and
- feem'd to end in them. Which Tendons, in the Mufcles of Beef
' boyl'd would be eafily ftript off from thofe Pipes, and fo leave the
6 round ends of thofe Pipes very diftinct and vifible: He faid that
6 the reafon of the moving of a Mufcle might be from the filling
6 or emptying of thofe Pipes, whofe fides feem'd to be flexible like
6 thofe of a Gut. He intimated alfo, that he knew a way of mak-
6 ing fuccedaneous Mufcles for a Man to fupply the defect of his
6 Mufcles for flying, and give one Man the ftrength of ten or
- twenty, if required.

6 March the I 8 th 167_{5}^{4}. he made an Experiment of a new proper6 ty of Light, having before read fome Difcourfes upon that Sub6 ject. This Experiment is to be feen Page 186 of this Book, to which the Reader is referr'd for a more full account.

Mr .

Mr. Oldenburgh, the then Secretary, dying in the time of the Societies Recefs, 1677. Mr. Hooke was defir'd to take his place, and take the Minutes of what confiderable Matters paft, which he did on the twenty fifth of October. 1677 . and the fame day produc'd his Water-poife and fhew'd the nicety thereof. The Defcription of this is in the Pbilof. Tranfact. N ${ }^{\circ}$. 197. p. 623. There were afterwards fome other Hydroftatical Inftruments produc'd, as likewife many Improvements of the double and fingle Microfcopes, with the ufe of fmall glafs Canes and other Contrivances, by which he verify'd Monfieur Leuenhook's Obfervations; thefe, with feveral others, I omit, they not being fo intelligible without Schemes.

From that time he officiated in that Place, as well as his Curatorfhip, fhewing feveral Experiments and Inftruments in order to explain the Gravitation and Alterations in the Air by Vapours, ór. Contriving an Air-poife to fhew the different fpecifick Gravity of the Air by a large thin ball of Gla fs counter-poifed.

In Feb . 1677_{s}. upon an account of Monfieur Gallet's Obfervation of the Oval Figure of Mercury in the Sun, he gave feveral reafons for the prolated Oval Figure of the Planets, fome of which are Printed in this Volume, Page 355. with a Demonftration thereof, * and faid, ' That all Fluids on the Surface would run into that © Shape, and that 'twas not improbable but that the Water here ' about the Earth might do fo by the influence of the diurnal Mo6 tion of the Earth, which compounded with that of the Moon, he ${ }^{6}$ conceiv'd was the caufe of the Tides.

From. this time he made Microfcopal Obfervations on Animaloules in Peper-water, and other Sceds Iteeped in Water, confirming Monfieur Leuenhook's Affertions, and propos'd fome Improvements of Microfcopes.

Some propofals were made by him of Inftruments more accurate than thofe formerly invented for founding the Seas depth, bringing up Water, or other Subftances from the bottom, or any affigned depth which were fome Years after more perfected.

Apr. 25. 1678. he fhew'd an Experiment farther to explain the action of a Mufcle, ' which was by a Chain of fmall Bladders fa-- ftened together, fo as by blowing into one Pipe, the whole might - be fucceflively fill'd, and by that means contracted, fuppofing the © Fibres of the Mufcles which feem'd like a Necklace of Pearl in 6 the Microfcope, might be fill'd with a very agill Matter, which - he thought moft likely to be Air, which being included in fo thin - Skins, was eafily wrought upon by Heat, Cold, or the acting © Properties of the Liquors that pafs between them, and fo perform - the lengthening and contracting of the Mufcles.

Aug. 1678. he read feveral Difcourfes, and Thew'd Experiments in order to confirm his Theory of Springs and fpringy Bodies, which are publifh'd in his Treatife de Potentia refitutiva the fame Year, the fum of which Hypothefis is comprized in a Cypher at the end of his Defcription of Heliofcopes, being the third of a Decimate of Inventions which he there mentions he was Mafter of, fome of which he difcover'd himfelf, affirming he had a Centry of the like ufeful Inventions: Others of them I have had the luck to find out, which I fhall take this opportunity of mentioning. I fhall firft tranfcribe what he fays of them, and then add the deciphering of them.

The fecond Invention, which is the firft Cypher, is thus worded.

- The true Mathematical and Mechanical Form of all manner of - Arches for building with the true butment neceffary to each of * them, a Problem which no Architectonick Writer hath ever yet ' attempted, much lefs perform'd. ab, ccc, dd, eeeee, f, gg, iiiiiiii, ll, ' mmmm, nnnnn, oo, p, rr, sss, tttttt, uuuuuuuu, x, which deci' phered is there words, ot pendet continuum flexile, fic flabit conti-- gutur rigidum inverfum, which is the Linea Catenaria.

The third is his Theory of Springinefs in thefe Letters, ce, iii, no, sss, $t \mathrm{t}$, uu, which is v_{t} Tenfio fic vis; this is the principle of his Theory of Springs.

6 The ninth, which is the next Cypher, is concerning a new 6 fort of Philofophical Scales of great ufe in Experimental Philo' fophy, cde, ii, nn, oo, p, sss, tt, uu, vt Pondus fic Tenfio.

The laft is mention'd as a very extraordinary invention in Mechanicks above the Chimeras of perpetual motions for feveral ufes, aa, $x, b, c c, d d$, eeeeee, g, iii, 1, mmm, ni,oo, pp, q, rrir, s, ttt, uuuuu. Pondere premit aer vacuum quod ab igne relictum eft. This is one of the Principles upon which Mr. Savery's late invented Engine for raifing Water is founded. See Lexicon Technicum under Engine.

On the 29th of Aug. 1678 . his Grace the Duke of Norfolke having given the Arundelian Library to the Royal Society, Mr. Hooke was order'd to be Affiftant in making a Catalogue thereof,and removing it to Greflbam College.

In the beginning of the Year 1679. and afterwards, feveral Experiments were repeated to examine the ufe of the Air in Refpiration by including Animals in common rarify'd and condenfed Air, as likewife concerning the neceffity of the Air to maintain Fire, to illuftrate his Theory of Fire farther, viz. 'That Air is a Menftrumm 6 that diffolves all Sulphureous Bodies by burning, and that without 6 Air no fuch diffolution will follow, tho' the heat apply'd be ne' ver fo great, which was try'd particularly by a Charcoal enclof6 ed in an Iron Cafe with a Screw-ftopper, which tho' violently * heated yet the Cole was not burnt nor-wafted when taken out.

Some Experiments were made to explain the different Gravitation of the Air, and to fhew that Vapours prefs only according to their own Gravity, and not according to the fpace they take up in the Atmofphere.

Some Contrivances were Shewn by him to be added to the Wea-ther-Clock, as a Hygrofcope, a contrivance to meafure the quantity of Rain, Snow, or Hail fallen in a certain time; which Engine was foon after perfected in all its parts, and fet up in the Repofitory.

In July $\mathbf{1} 679$. he read a Difcourfe concerning a way to help fhorted Sighted Perfons, which he call'd Myopibus Invamen ; this is Printed in his third Collection, p. 59. 'At the fame time he gave his * Thoughts of the reafon of the different apparent Magnitude of ${ }^{6}$ the Sun and Moon in the Meridian and near the Horizon, which ' he fuppos'd to be a deception of the Eye as judging them when near ' the Horizon, to be farther off than when nearer the Zenith, for - that he faid the Diameters meafur'd were really the fame in both ' places, or rather fomething lefs in the Horizon than in the Zenith, 6 being remov'd a Semidiameter of the Earth farther off.

Experiments were made by him of the mixtures of Metals, particularly of Copper and Tin, in which there was obferv'd a real Penetration, the Compofitum being fpecifically heavier than"cither of the Metals before mixture ; for whereas Copper is to Water as 8 $\frac{1}{2}$ to I . and Tin to Water as $7_{\frac{17}{3} 7}^{5}$ to I . the compolitum was to Water as 8 辛故 I .

- In Decermber, the fame Year, an Experiment being fuggefted to ' try whether the Earth mov'd with a diurnal motion or not, by the - fall of a Body from a confiderable height, alledging it would fall to - the Eaft of true Perpendicular: Mr. Hooke read a Difcourfe up-- on that Subject, wherein he explain'd what the Line defrrib'd by - a falling Body muft be, fuppos'd to be mov'd circularly by the di-- urnal motion of the Earth, and perpendicularly by the power of - Gravity, and fhew'd it would not be a Spiral Line, but an Ex© centrical-Elliptoeid, fuppofing no refiltance in the medium, but fup' pofing a Refiftance, it would be an IExcentric-Ellipti-Spiral, ' which after many Revolutions, would reft in the Center at laft; ' that the fall of the Body would not be directly Eaft, but to the - South-Eaft, and more to the South than the Eaft. This was try'd, 6 in which the Ball was ftill found to fall to the South-Eaft.

The remainder of this Year was fpent in making Experiments of the mixture of feveral Metals, among the reft Mr. Hooke took notice in the mixture of Copper and Tin of feveral particulars, as Firft, 'That the colour of the Copper was quite deftroy'd, it ap"pearing much of the colour of Iron Polifh'd. Secondly, That - the Compofition, tho' made of two very malleable Metals, was - yet very brittle and friable. 'Thirdly, That it bore a pretty good - Polifh and Reflection. Fourthly, That tho' Copper is exceeding - hard to be melted, yet the mixture melted very eafily. Fifthly, - That viewing the Polifh'd Surface with a Microfcope, he found 6 it very full of very fmall holes or blebs in the Metal.

> In April 1680. he produc'd a new invented Level.

In May he read a Paper of Obfervations upon an unufual fort of Hail-ftones that fell on the 18 th. the fum of which was to this purpofe. About ten a Clock in the Morning it grew very dark and Thundered much, and near to the S. E. when foon after the Hail fell from the fize of Piftol-Bullets to the bignefs of Pullets Eggs, the fmaller were white like Chalk, and pretty round, the larger Conical or Oval, upon breaking them they were found to be made of feveral Orbs, encompaffing one another ; feveral had a white Center or Nucleus in the middle, which in others was more toward one fide; they that exceeded in bignefs were made by an additional accretion of tranfparent Icecles, radiating from the white Ball in the middle; fome of thefe flood in diftinct tranfparent Rays, in others the Interftices were fill'd up between the Rays with a white opaque Concretion: The lower part of thefe Stones were more flat and like a Turnip, the radiations appearing more towards the upper fide; the fides and top were more rough, and the ends of the Stirix were prominent. Before they fell a great noife was heard in the Sky: From the manner of their Figure Mr. Hooke conceiv'd their accretion was made by a congelation of Water as they fell ; that the Globe in the middle about the bignei's of a Pea, was the firft drop that concreted into Hail, the Coats being added to it as it paft through the watry Clouds, of which fome

The Life of Dr. Robert Hooke.

werc white, fome pellucid, according to the different coldnefs of the Regions they paft through.

Fuly 8 th 1680 . upon a Debate concerning the Experiment of my Lord Bacon's of the internal motion of Bodies, Mr. Hooke related, - That he had obferv'd that the motion of the Glafs, filld with - Water, was obferv'd to be vibrative, perpendicular to the Sur-
' face of the Glafs, and that the Circular Figure chang'd into an

- Oval one way, and that the Reciprocation prefently changed it

6 into an Oval the other way, which he difcover'd by the motion
i of the Undulation or rifing of the Water in the Glafs, which was
' obferv'd to. be in four places of the Surface in a fquare pofture,

- the fame Glafs being fruck on the edge with a Viol-bow, this
' fquare Undulation was very plain, and there wasalfo difcover'd
- 6 another Undulation, by which the Water was obferv'd to rife in
' fix places like an Hexagon, and upon farther trials alfo in eight
' places like an OEtagon; each of thefe gave their particular and
- diftinct Sounds or Notes, the 4 and 8 were Octaves, and the 6 and - 4 were Fifths, \&゙c.

In November 1680. he read fome Obfervations he had made of a Comet then appearing, which, with other Obfervations and Difcourfes of other Comets are publifh'd in this Volume under that Title, beginning at Page 194.

And about this time Mr. Hooke fhew'd a Contrivance by a Staterco to examine the attractive power of the Magnet at feveral diftances, and made many Experiments therewith.

In April 168 r . and afterwards, he read his Lectures of Light and Luminous Bodies, which are here collected together, and begin at Page 71.

In Fuly the fame Year he fhew'd a way of making Mufical and other Sounds, by the ftriking of the Teeth of feveral Brafs Wheels, proportionally cut as to their numbers, and turned very faft round, in which it was obfervable, that the equal or proportional ftroaks of the Teeth, that is, 2 to 1,4 to 3 , © c. made the Mufical Notes, but the unequal ftroaks of the Teeth more anfwer'd the found of the Voice in feaking.

Noverber following he mention'd a new Sea-Quadrant for making Obfervations more accurate than could be done by any Inftrument yet known ; this is what the Reader will find towards the end of this Volume: At the fame time he firft mention'd his new Compafies for defcribing all forts of Spirals, as likewife of the Rumb-lines, which Inttrument I alfo have indeavour'd to retrieve from being loft.

Soon after this he fhew'd and demonftrated a very expeditious way of drawing the Rumb-lines exactly true upona Globe, by an Inftrument grounded upon the fame Principle with the other. He fhew'dalfo a very eafy way of finding all the poffible foci of Rays refrąted by a Plano-Spherical Lens, whereof the Convex fide was turn'd roward the focus, as alfo the quancity of Rays that would pafs thro' fuch a Glafs, whofe Convexity was of the full bignefs of a Hemifphere.
'In \mathfrak{F} an. 1682:. He fhew'd an Inftrument to deferibe all forts of - Helixes upona Cone, by which he affirm'd to be able to divide any 6 given length, tho' very fhort, into almoft any affignable number
6 Of given parts, as fuppofe an Inch into 100000 equal parts; this

The Life of Dr. Robert Hooke.

' he conceiv'd very ufeful for perfecting Aftronomical and Geogra-
' phical Inftruments. And at the next Meeting he produc'd ano-
© ther Inftrument, by which he defcrib'd a certain Curve Line,
' which may be call'd an Invented Parabola, or Parabolical-Hyperbo-
${ }^{6} l a$, having thefe Proprieties, that it is infinite both ways, and
${ }^{6}$ hath two Afymptotes as an Hyperbola, \&c. A third Inftrument
' was alfo fhew'd for exactly defcribing the Spiral of Archimedes by
' a new Propriety thereof, and that as eafily and truly as a Circle,
6 whereby not only any given Arch might be divided into any
© number of equal parts, but a ftrait Line given equal to the Cir-- cumference of a Circle.
' Marcll the firft, he fhew'd a way; by the fame Inftrument, of - defcribing all varieties of Eilipfes.

In the fame Year he read the remainder of his Difcourfes of Light, which are in the following Volume Printed, and particularly that Lecture explicating the Memory, and how we come by the notion of Time.
From thistime, or rather fomething before, he began to be more referv'd than he had been formety, fo that altho he often made Experiments, and hew'd new Inftruments and Inventions, and read his Cutlerian Lectures, yet he feldom left any full Account of them to be enter'd, defigning, as he faid, to fit them himfelf for the Prefs, and then make them publick, which he never perform'd. This is the rea fon that I am oblig'd to be the fhorter in the remaining part of his Life ; and fhall only touch upon fome few of his Performances, fince the bare nameing of them, or mentioning their Titles, will but create an uneafy Curiofity in the Reader without any fatisfaction.
Several of there Lectures and Difcourfes I have indeavour'd to preferve from being loft, by Publifhing them in this Book, and fome Inftruments are there defcrib'd.

In the beginning of the Year 1687. his Brothers Daughter, Mrs. Grace Hooke dy'd, who had liv'd with him feveral Years, the concern for whofe Death he hardly ever wore off, being obferv'd from that time to grow lefs active, more Melancholly and Cynical.

On the fifth of May he read a Lecture of the unequal diurral motion of the Earth, which the Reader may find in this Book

In foly he fhew'd an Experiment of the communication of Motion by a Packthread extended a very confiderable length, and, after running over a Pulley, brought back to the place, near to which the other end was faftened, and it was found that any addition of Weight or Motion given to the one end, would be immediately fenfible at the other end of the String, tho'it muft pafs in going and returning fogreat a length ; there were other ways fhewn of communicating motion, as by a long Cane fufpended by Strings, or by Wires diftended a great length; in which it was obfervable, that the found was propagated inftantaneoufly, even as quick as the motion of Light, the found convey'd by the Air coming a confiderable time after that by the Wire.

A great part of the next Year he was very weak and ill, being often troubl'd with Head-achs, Giddinefs and Fainting, and with a general decay all over, which hinder'd his Philofophical Studies, yet ftill he read fome Lectures whenever he was able. At the farne time a Chancery-Suit, which he was forc'd to have with Sir Gobn

Cutler for his yearly Salary, made him very uneafy, the trouble of which increas'd his Illnefs.

But on the zoth of Fune he read a farther Defcription concerning feveral ways of making a portable Sea-Barometer, with the great ufes thereof in foretelling changes of the Weather and Storms.

From this time, for fome Years, I find but little done by him, except his reading the Lectures founded by Sir fohn Cutler, feveral of which are here Printed, to which the curious are referr'd: Of thefe he read in Dec. 1691. feveral relating to improvements of founding Inftruments which he calld Nustiti inanimati ad fundum Abyfs emif:Sarii. Having receiv'd a warrant from Dr. Tillotfon the Arch-bifhop of Cianterbury, for a Degree of Dr. of Phyjick, he went on the 7 th of Dec. the fame Year, and took the Oaths before Sir Charles Hedges in Doctors Commons.

A bout this time he was employ'd about the contriving and furveying the Hofpital ftanding near Hoxton, given by the Will of Alderman $A s k$, a Building that few will judge any difreputation to the Contriver, for the due proportion of its Parts, and Beauty of the whole. I have heard indeed that Dr. Hooke has been blam'd for exceeding the Sum at firft propos'd to be expended thereon; and once difcourfing with him upon that Subject, he own'd to me that it had far exceeded the firft Eftimate he had given in of the Charges, but not by this Fault or Miftake, but partly by new additions and alterations of the firft Defign, and chiefly by his not procuring and agreeing with the Workmen himfelf, which if he had done, as he faid, he would have ingag'd it Chould havecome to little or no more than his firft propos'd Sum. He alfo propos'd that there might be inftituted in that place, a Mathematical-School for Boys to be inAtricted in the Principles of Aftronomy and Navigation, which at firf was well approv'd of by the Perfons concern'd in the Management of that Affair.

On Thurday the 8th of Sep. 16y2. he fets down an Earthquake to be obferv'd by himfelf exadtly 55 Min. paft one a Clock p. m. he notes that there was no Wind but Rainall Day. It was remarkable that this Earthquake was fult at the fame time not only in moft parts of England, butalfo in feveral parts of Germany.

This Year he read a curious Difcourfe defcribing the Tower of Babel or Belus. The Year following he read feveral Lectures about Earthquakes, and an Explication of Ovid's Metamorphofis, of which it is needlefs to mention the Contents, or the Times, the Dates of moft of them being affixt to them in the following Book, they begin at Page

On the 18 th of $F^{\prime} u l y \mathbf{5} 66$. being his Birth Day, his Chancery-Suit for Sir Golm Cutler's Salary, was determin'd for him, to his great fatisfaction, which had made him very uneafy for feveral Years. In his Diary he fhews his fenfe of it in thefe Terms D OMS HL GISS: A. which I read thus Deo Opt. Max. Summus Honor, Glorias in fecula Secularum, Amen. I was Born on this Day of July 1635 and GOD has, given me a new Birth, may I never forget his Mercies to me; whilft he gives we Breath may I praife bim.

March the 5 th 169_{8}^{7}. he read a Leqture about the prolated Spherocdical Figure of the Sun, and other Pbenomena thereof, of the Macula and liacule, \&c. of making a Heliofcope by four reflex Planes in a twenty four Foot Tube, or a Telefcope for Planets and
fix'd Stars, by two Reflexions in a Tube of forty Foot with Monfieur Huygerns 120 Foot Glafs, which was well lik'd of.

Fune 27. 1698. he read a Lecture upon Huygen's Cofruotheoros, and fhew'd a Module of Saturn and his Ring.

Thus I have mention'd fome of his Performances, in the latter of which I have been the more fuccinct, laving exceeded the bounds I at firft intended in the Accounts of the former. It muft be confeffed that the later part of his Life was nothing near fo fruitful of Inventions as the former; tho' it is certain he had a defign to repeat the moft part of his Experiments, and finifh the Accounts, Obfervations and Deductions from them, and had an Order for the Societies bearing the Charge thereof, in fune 1696 . when he propos'd likewife to perfect the Defcription of all the Inftruments he had at any time contriv'd; but by reafon of his increafing Weaknefs and a general Decay, he was abfolutely unable to perform it, had he defir'd it never fo much.

He had for feveral Years been often taken with a giddinefs in his Head, and fometimes great Pain, little Appetite, and great faintnefs, that he was foon very much tir'd with walking, or any Exercife. About Fuly 1697. he began to complain of the fwelling and forenefs of his Legs, and was much over-run with the Scurvy, and about the fame time being taken with a giddinefs he fell down Stairs and cut his Head, bruis'd his Shoulder, and hurt his Ribbs, of which he complain'd often to the laft. About September he thought himfelf (as indeed all others did that faw him) that he could not laft outa Month. About which time his Legs fwell'd more and more, and not long after broke, and for want of due care Mortify'd a little before his Death. From this time he grew blinder and blinder, that at laft he could neither fee to Read nor Write. Some of the laft he wrote, I believe was on the 17th of Dec. 1702. when he fets down a Memorandum about an Inftrument to take the Horizontal Diameter of the Sun to the tenth of a fecond Minute, but difcovers not the way.
Thus he liv'd a dying Life for a confiderable time, being more than a Year very infirm, and fuch as might be call'd Bed-rid for the greatelt part, tho' indeed he feldom all the time went to Bed but kept in his Cloaths, and when over tii'd, lay down upon his Bed in them, which doubtlefs brought feveral Inconveniences upon him, fo that at laft his Diftempers of Chortnefs of Breath, Swelling, partly of his Body, but moftly of his Legs, increafing, and at laft Mortifying, as was obferv'd after his Death by their looking very black, being emaciated to the utmoft, his Strength wholly worn out, he dy'd on the third of March $170 \frac{2}{3}$. being 67 Years, 7 Months, and 13 Days Old.

His Corps was decently and handfomely interr'd in the Church of St. Hellen in London, all the Members of the Royal Society then in Town attending his Body to the Grave, paying the Refpect due to hisextraordinary Merit.

As to his Perfon he was but defpicable, being very crooked, tho' I have heard from himfelf, and others, that he was ftrait till about 16 Years of Age when he firft grew awry, by frequent practicing, turning with a Turn-Lath, and the like incurvating Exercifes,being but of a thin weak habit of Body, which increas'd as he grew older, fo as to be very remarkable at laft: This made him but low of Sta-
ture, cho' by his Limbs he fhou'd have been moderately tall. He was always very pale and lean, and laterly nothing but Skin and Bone, with a meagre Afpect, his Eyes grey and full, with a tharp ingenious Look whilft younger ; his Nofe but thin, of a moderate height and length ; his Mouth meanly wide, and upper Lip thin; his Chin fharp, and Forehead large; his Head of a middle fize. He wore his own Hair of a dark Brown colour, very long and hanging neglected over his Face uncut and lank, which about three Year before his Death he cut off, and wore a Periwig. He went ftooping and very faft (rill his weaknefs a few Years before his Death hindred him) having but a light Body to carry, and a great deal of Spirits and Activity, efpecially in his Youth.

He was of an active, reftlefs, indefatigable Genius even almoft to the laft, and always flept little to his Death, feldom going to Sleep till two three, or four a Clock in the Morning, and feldomer to Bed, oftener continuing his Studies all Night, and taking a fhort Nap in the Day. His Temper was Melancholy, Miftruftful and Jealous, which more increas'd upon him with his Years. He was in the beginning of his being made known to the Learned, very communicative of his Philofophical Difcoveries and Inventions, till fome Accidents made him to a Crime clofe and referv'd. He laid the caufe upon fome Perfons, challenging his Difcoveries for their own, taking occafion from his Hints to perfect what he had not; which made him fay he would fuggeft nothing till he had time to perfect it himfelf, which has been the Reafon that many things are loft, which he affirm'd he knew. He had a piercing Judgment into the Difpofitions of others, and would fometimes give fhrewd Gueffes and fmart Characters.

From his Youth he had been us'd to a Collegiate, or rather Monaftick Life, which might be fome reafon of his continuing to live fo like an Hermit or Cynick too penurioufly, when his Circumftances, as to Eftate, were very confiderable, fcarcely affording himfelf Neceffaries.

I indeed, as well as others, have heard him declare fometimes that he had a great Project in his Head as to the difpofal of the moft part of his Eftate for the advancement of Natural Knowledge, and to promote the Endsand Defigns for which the RoyalSocietr, was inftituted: To build an handfome Fabrick for the Societies ufe, with a Library, Refpofitary, Laboratory, and other Conveniencies for making Experiments, and to found and endow a perpetual Phy-fico-Mechanick Lecture of the Nature of what himfelf read. But tho' he was often folicited by hisFriends to puthisDefigns down in Writing, and make his Will as to the difpofal of his Eftate to his own liking in the time of his Health; and after when himfelf, and all thought, his End drew near, yet he could never be prevail'd with to perfeat it, ftill procraftinating it, till at laft this great Defign prov'd an airy Phantom and vanifh'd into nothing. Thus he dy'd at laft without any Will and Teftament that could be found. It is indeed but a melancholy Reflexion, that while fo many rich and great Men leave confiderable Sums for founding Hofpitals, and the the like pious Ufes, few fince Sir Thomas Grefbane fhould do any thing of this kind for the promoting of Learning, which no doubt would be as much for the Good of the Nation, and Glory of God, as the other of releiving the Poor.

He always expreft a great Veneration for the eternal and immenfe Caule of all Beings, as may be feen in very many Paffages in his Writings, and feldom receiv'd any remarkable Benefit from God without thankfully ackowledging the Mercy; never made any confiderable difcovery in Nature, invented any ufeful Contrivance, or found out any difficult Problem, without fetting down hisAcknowledgement to the Omnipotent Providence,as many places in his Diary teltify, frequently in thefe or the like words, abbreviated thus, D O M G M. and was a frequent ftudier of the Holy Scripture in the Originals : If he was particular in fome Matters, let us leave him to the fearcher of Hearts.
To conclude, all his Errors and Blemifhes were more than made amends for, by the Greatnefs and Extent of his natural and acquired Parts, and more than common, if not wonderful Sagacity, in diving into the moft hidden Secrets of Nature, and in contriving proper Methods of forcing her to confers the Truth, by driving and purfuing the Proteus thro' all her Changes, to her laft and utmoft Receffes; fo that what Ovid faid of Pythagoras may not unfitly be apply'd to him.

> Mente Deos adiit, ó que Natura negivit

Metamorth. Lib. 15 .

There needs no other Proof for this than the great number of Experiments he made, with the Contrivances for them, a mounting to fome hundreds; his new and ufeful Inftruments and Inventions; which were numerous, his admirable Facility and Clearnefs, in explaining the Phanomena of Nature, and demonftrating his Affertions ; his happy Talent in adapting Theories to the Phænomena obferv'd, and contriving eafy and plain, not pompous and amufing Experiments to back and prove thofe Theories; proceeding from Ob fervations to Theories, and from Theories to farther trials, which he often afferted to be the molt proper method to fucceed in the interpretation of Nature. For thefe, his happy Qualifications, he was much refpected by the moft learned Philofophers both at home and abroad: And as with all his Failures, he may be reckon'd among the great Men, of the laft Age, fo had he been free from them, poffibly, he might have ftood in the Front. But hrmanums eff errare:

A

 General Sebeme of 7 Dea

 General Sebeme of 7 Dea}

Of the Present State of Natural Philofophy,

AND
How its DEFECTS may be Remedied
By a Methodical Proceeding in the making

EXPERIMENTS ANDCOLLEGTING

OBSERVATIONS. WHEREBY
To Compile a NaturalHistory, as the Solid Bafis for the Superftruqure of True PHILOSOPHY.

THIS Treatife of Dr. Hook's tho it was never brought to its defigned Perfection, yet I thought beft to prefent the Learned with in the firlt place, fince it treats of the Method be propofed to bimSelf in bis Inquiries into Nature; and wobich be bas very much obferved, I have here publifht it as be left it, not prefuming to alter any thing in bis Writings, left it might be doubted what peere bis Genuine T boughts. I bave only added the Marginal Contents, believing they would not be unacceptable. The Difcourfe contains Tepo Principal Parts, or Generals. The Eirft Treats of the State of Pbilofopby, as delivered to us by the Ancients, with its Defects. The Second, How thefe Defects may be Remedied, for the building up a jolid Pbilofophical Struture.

R. Waller.

FIRST GENERAL.

The Prefent-State of Natural Philofophy, and wivnsiontis mberein it is deficient. (ABEHORESLS

THE Bufinefs of Philofopthy is to find out a perfect Knowledge firfit Gencrat: of the Nature and Proprieties of Budies, and of the Caules of Natural Productions, and this Knowledge is not bàrely acquir'd for it felf, but in order to the inabling a Man to underftand how by the joyning of fit Agents to Patients according to the Orders, Laws, Times and Methods of Nature, he may be able to produce and bring to pafs fuch Effects, as may very much conduce to his well being in this World, both for fatisfying bis Defires, and the relieving of his Neceffities: And for advancing his State above the common Condition of Men, and make him able to excel them as much, almolt, as they do Brutes or Ideots.

Now thiough there have been many Men, in divers Ages of the World; which The Fireent feem to have had fome confus'd and imperfect Conception of this Idea of the Sturat of NaBufinefs of Philofophy, and accordingly feem to have had fome Aims and De. tural Philorofigns towards the attaining of their propos'dend; yet having not a right Underftanding of the chief end, and failing much more in the Knowledge of the Means, or the manner of making ufe of them, they have generally left Philo:fophical Knowledge almoft in the Condition they found it: Without making any confiderable Increafe or Addition to it. Whence this kind of Knowledge has been very little promoted ever fince the very firft times we have had any Hiftory of it: And though it has always made a fair thew of flourifhing; yet apon Examination, it has been found to yield Leaves inftead of folid Fruit, to be a Knowledge very confus'd and imperfect, and very infignificant as to the inabling a Man to practife or operate by it:

This feems to have proceeded from divers Caufes, as
Firft, from the Unskilfuinefs of the Inventors and Founders of it, who feem to have many ways contributed thereto.
i. Firft in that they had not a true Idea of the Defign and thing it felf, their The Redons of Aims were low and mean, and reacht but at fmall things, fuch as the giving the of De Deficiency Explication of things in hard words, which might ferve to amufe their Auditors, of Natural Phiand to raife fome Efteem of themfelves amongtt them, farce ever thinking, I. From the much lefs indeavouring to find out the true Nature and Proprieties of Bodies; firf \mathcal{I} Inventers what the inward Texture and Conftitution of them is, and what the Internal 3 Ways. Motions, Powers and Energies are, and how they may be made ufe of for producing fuch Changes and Transformations of Bodies from one thing to another as is defired.
2. Next in that they were as ignorant of the true means of attaining it, as they were of the Knowledge of the End. Some efteem indeed we find them to have had of Natural Hiffory, and fome Imagination they had that it was conducive to Natural Knowledge, but what Hiftory was requifite, they neither had, or indeed fo much as knew, for what we find in Ariffotle, Pliny, and others called by that Name is fo uncertain and fuperficial; taking notice only of fome flight and obvious things, and thofe fo unaccurately; as makes them fignify but little; but as for the more fubtile Examinations of Natural Bodies, by Diffections, Experiments; or Mechanical Tryals, we find thern not to mention them as needful, much lefs to have pratifed them. Nor can I perceive that they had any Affection or Induftry for Experiments, much lefs for fach as ought to be vigoroufly profecuted with Care and Judgment: Nor do they: feem to have had that Strictnefs and Accuratenefs as is requifite in ferting down or re. giftring thofe things which their Writings contain, but grod and indifferen
and ftark naught are without Diftinction mixt together, true and probable and falfe are all alike dignified, nor are they fo atcurate in their Defriptions, even of not common things that they help us with; but a great part of them we find to be a needlefs infilting upou the outward Shape and rigure, or Beauty, and the like, or elfe of fome Magical and Superftitious Effeets Producible by it feem. ing to aim at creating Pleafure, and Divertifement or Admiration and Wonder, anid not of fuch a Knowledge of Bodies as might teñd to Prattice.
3. Thirdly, In that, as they knew not the means; fo neither did they the manner of making ufe of them, iif whick Particular we may find them to be much more to feek than in knowing what Materials were'requifite. Their Method herein indeed was moft prepolterous and very pernicious, for firt we find them much inclin'd to a Belief of implanted Notions, at leaft in their Practice, though fome of them affirm, Nibil effe in intelledfu quod non fuit prius in Senfu; yet upon the whole, we may find that in their manner of proceeding they did quite otherwife. From a very few uncertain Hiftories they ufually rais'd the moft general Deductions, and from them though never fo imperfett, would needs prefcribe Laws to the Univerfe and, Nature it felf. In this they were very fupercilious, and very angry to be contradicted, and maintained their Opi- nions more becaufe they had afferted them, than becaufe they were .rue; they fudied more to gain Applaufe and make themfelves admired; or the Head of fome Sect, or the Author of fome ftrange Opinion, or the Oppofer of fome one already famous Doctrine, or the like, than to perfect their Knowledge, or to difcern the Secrets of Nature, or advance the active Power of Man over the Creatures. Nor was this all; but we may find them even to wreft thofe few Experiments and Obfervations they had read, or collected, and to endeavour rather to adapt them to their Hypothefis, than to regulate their Thoughts by them, efteeming their own Underftandings to be the Mine of all Science, and that by pertinacious ruminating, they could thence produce the true Image and Pieture of the Univerfe. afcribed to the Sectators of thefe Theories, who at beft have not improv'd it to a nearer Approach to Truth, but have rather made it worfe than bettet, and more ohfcure by Interpretation. The Reafon of which feems to be from thefe Particulars.

From their manner of Inftitution, being bred up with a Prejudice againft the fearch of Truth elfewhere, than in Books thereby chained up by the imbibid Principles and Dictates of their Teachers, and their Minds habituated to a loatb. ing of any thing that offered it felf as a Novelty or new Difcovery, and upon that account'whether true or falfe rejected. This proceeded partly in the 2 d . Place.
From an Imagination they have that Arts are already come to their higheft pitch of Perfection, and that therefore'tis in vain to endeavour to find out that by the moft difficult way, which might be obtained more eafily and fully out of Books.

This Averfion alfo to Inquiries and New Difcoveries proceeded partly alfo in the 3d. Place.

From a too great Reverence and Efteem for the Writings of the Ancients, as fuppofing thofe to be the greateft Men for Wifdom and Knowledge, and thofe Ages wherein they liv'd to be the elder Times of the World; and therefore they accounted it a great piece of Folly, and a kind of Impiety to contradiet, or endeavour to be wifer than their Fore fathers.

Hence proceeded a Fourth Impediment, namely,
From their following the fame Way and Method in illuftrating or endeavouring to underftand their Writings, that the Authors themfeives did in compofing them: And therefore 'tis not to be expected that Water Chould rife higher than the Fountain Head from whence it came; or that greater and more notable Effects thould be produced by any other than an extrarodinary Method. For the Logick or way of Ratiocination they have made ufe of, hath been rather an Hindrance than a Furtherance. For neither is the way of Syllogifing as it ought

The Prefent State of Natural Philofophy.

nor are their firt Notions ftated aright, and confequently their Axioms and Conclufions cannot be better than the Grounds and Principles from which they were rais'd; fo that it does not only not promote real Knowledge, but is injusious to it, by begetting an Opinion of Science whete there is no fuch thing:
$5 l y$, From their miftaken Aim or Scope, which is an indeavour by Nice Diftin: Ctions to wreft over all the Obfervations they chance to ftumble upon, and make them currefpondent with their already believ'd Theory; inftead of an indeavour to reetify and regulate thofe fo receiv'd Theories by thofe Intimations, which careful and accurate Obfervations would afford.
$6 l y$, Such as have a little varied from the receiv'd Opinions, the Alteration has
been rather for the bringing in fome one New Hypothefis or Opinion of theit own inftead of the Old, and not for the renewing or Amending the whole.
$7 l y$, And fome that have indeavoured to make ufe of Argumentsrais'd from the
Experiments, and Obfervations, have been fo confounded with them, for want of a Method of proceeding ; that it has been to little purpofe, fave the putting of Men upon new Tryals, whereby perhaps fome ufeful Experiment has been light on, and thereby fome latent Error in the former Theories detected. For neither having a true Idea of making Obfervations and Experiments, nor a convenient way of ordering, nor a right Method of ufing them, the greater number of them they have, the more are they confounded; for 'tis not the Multi. tude of Experiments nor the Excellency of them, nor is it indeed the fubtile and curious Ratiocinations of an accomplifht Mind, nor the Endeavours of a Multitude of fuch joyned together, that will be able to do any great matter in this Defign ; for fuch Endeavours do at beft but raife new Probabilities, and confequently augment Difputes on the one hand, and new Tryals on the other, and all to as little purpofe as 'twould be to attempt to find fome extreamly difficult Geometrical Problem by the Ruler and Compafs, without the Knowsledge or Help of Geometrical Algebra.
For where the Examination and Comparifon of fo great a Number of Particulars is requifite, and where the Procefs is long, and the Informations but thinly fcatter'd', and thofe alfo in the Dark, 'tis not to be expected from the moft fubtile Wit, that the whole Operation fhould be only performed by the Strength of its Memory, and the Activity of its Ratiocination, though each of them in the greatelt pitch of Perfection; much lefs can it be hoped from Endeavours, that want either of thefe Accomplifhments. * And how ufual 'tis for one of there to be defective where the other prevails, may be fufficiently evident from the almoft Proverbial Saying, that good Wits have ill Memories. Some things indeed have been by lucky Inquirers light on by chance, but thofe fo few and feldom, that 'twas not abfurd in Pytbagoras to offer up a Hesatomb for a fingle Invention in Geometry. I do not here with the Scepticks affirm, that nothing is or can he known, my Defign is quite another thing; their end only in denying any thing to be knowable, feems to be Difpute, and tends to Ignorance and Lazinefs, mine on the other fide fuppofes all things as poffible to be known, and accordingly ftudies and confiders of the Means that feem to tend to that end, and roufes up the deceiv'd Faculties to feek a Means of recovering themfelves out of their Thraldom, and of improving, reetifying and inlarging their Powers. They affirm pofitively nothing can be known any way, I only that many more things may be difcoverd by this Method I here propound, than are already known.

Nor is the State of Philofophy as yet very much improved by our Modern III. Philojophy Writers, who have endeavour'd to illuftrate or piece up the old, by adding muct bither not fome Placits of their own : There are yet many Impediments to be removed, muct improved and many Helps to be fupplied before any very great Increafe in Knowledge is derns, and the to be expected. It may be queftioned whether piecing or mending will ferve Reafons why. the turn, or whether there muft not be a new Foundation laid on the Informations of our Senfes, and more ftrictly examined and furveyed by accurate and judicious Experiments and Obfervations. That which hath had the Cultivation of many Hundreds of Years, and by divers very acute Men in all Ages, and yet as to the Inquiry after the Caufes of Natural Efficients, has made fo little, if any Progrefs at all, cannot with any Probability be imagined to afford a Method fufficient for this Inquiry. I do not here altogether reject Logick, or the

Tbe Prefent State of Natural Philpfophy

way of Ratiocination already known; as a thing of no ule, It has its peceliar Excellencies and Lues, in ordinary Difcourfe and Converfation: And af, fords fome Helps to fome kinds of Invention, elpecially of Argupents, as well as to the Memory, by its Method: It affords copious Matter for Difputes as well for, as againtt the Truth, and teaches how to folve, as well as, how to make a fallacious Affertion. It hhews how the Modes of feaking and argaing may be reduced to certain Rules, and how each compleat Sentence may be trifected into its conftituent Parts, and how thofe may be various ways fhuffd and chang'd, and likewife on occafion alfo how each of thefe bigger may be divided into three lefs. But as to the Inquiry into Natural Operations, what are the Kinds of fecret and fubtile Actors, and what the abftrufe and hidden Inftruments and Engines there made ufe of, may be; It feems not, to me, as yet at all adapted and wholly deficient. For 'tis not to be expected from the Accomplifhments the Creator has endowed Man withal, that he thould be able to leap, from a few particular Informations of his Senfes, and thofe very fuperficial at beft, and for the moft part fallacious, to the general Knowledge of Univerfals or abffracted Natures, and thence be able, as out of an inexhauttable Fountain, to draw out a perfect Knowledge of all Particulars, to deduce the Caufes of all Effects and Actions from this or that. Axiome or Sentence, and as it were intuitively, to know what Nature does or is capable of effecting: And after what manner and Method fhe works; and yet that Method fuppofes listle lefs: Man's'Memory feems very fhallow and infirm, and fo is very prone to forget many Circumftances, befides it cannot fo well propound all it docs te member, to be examin'd at once by the Judgment; but prefers fome things firt in order, before others, and fome things with more Vehemence and greater concern, and accordingly the Underttanding is more apt to be fwayd to this or that hand, according as it is more affected or prelt by, this or that Inftance, and is very liable to overfee fome confiderable Paffages, or to negleet them; and thence very apt to be feduc'd, in pronouncing pofitively for this or that Opinion, efpecially being very prone to ruin into the affirmative way of judging, and wanting Patience to follow and profecute the negative way of Inquiry, by Rejection of Difagreeing Natures.

Farther, a great Caufe why Philofophy has not formerly or of late increafed, is becaufe the greateft part of Learned Men have applied themjelves to other Studies, Divinity, Law, Phyfick, छ゙c. as being thofe ftanding Profeflions whereby Men of the mof liberal and ingenuous Education and Spirit might provide for themfelves, and promote their Fortune in the World: Taking only a tranfient View of Natural Philofophy, in their Paffage to other things, thinking it fufficient to be able to talk of it in the Phrafe of the School. Nor is it only fo now, but it has been fo almoft in all Ages, fo that for about two Fhoufand Years, of which we have fome account in Hiftory, there is not above one quarter of that face wherein Men have been Philofophically given, and among fuch as have been fo , feveral of them have been fo far disjoined by Time, Language, and Climate, by manner of Education, Manners, Opinions, and divers other Prejudices, that it could not be expected it fhould make any confiderable Progrefs : For either becaufe it feemed to promife Jittle, Men for the moft part have neglected it, or in thofe fhort fpaces of time in which it was fomewhat more minded and look'd after, what from the want of Dowry belonging to other liberal Profeffions, what from the Contefts of fevetal Theorifts, and the Defect of applying of it to fuch things as might be ufeful to Humane Life; Men have been either difcouraged from the Study, or tired our in it.

Some other Courfe therefore mult be taken to promote the Search of Know. ledge. Some other kind of Art for Inquiry than what hath been hitherto made ufe of, mult be difcovered; the Intellect is not to be fuffer'd to act withour its Helps, but is continually to be affifted by fome Method or Fngine, which thall be as a Guide to regulate its Actions, fo as that it thall not be able to act amifs: Of this Engine, no Man except the incomparable Verulam, hath had any Thoughts, and he indeed hath promoted it to a very good pitch; bat there is yet fomewhat more to be added, which he feem'd to want time to compleat. By this, as by that Art of Algebra in Geometry; 'twill be very eafy to proceed in any Natural Inquiry, regularly and certainly: And indeed it may not

The Prefent State of Natural Philofophy.

improperly be call'd a Philofophical Algebra, or an Art of directing the Mind in the fearch after Philofophical Truths, for as 'tis very hard for the moft acute Wit to find out any difficult Problem in Geometry, without the help of Algebra to direct and regulate the Acts of the Reafon in the Procefs from the Queftion to the quefitum, and altogether as eafy for the meaneft Capacity acting by that Method to compleat and perfect it; fo will it be in the Inquity after Natural K nowledge.

The greatelt and moft accomplifht Wits for there many Ages have labourd and fweat in thefe Inquiries, and yet they have not been able to bring forth any greater Effeßts than Probabilities: Whereas I cannot doubt but that if this Art be well profecuted and made ufe of, an ordinary Capacity with Induftry, will be able to do very much more than has yet been done, and to thew that even Phyfical and Natural Enquiries as well as Mathematical and Geometrical, will be capable alfo of Demonitration; fo that henceforward the bufiness of Invention will not be fo much the Effect of acute. Wit, as of a ferious and indultrious Profecution: And therefore, I hope as I thall not feem to detract from the Parts and Excellency of the Ancients, but rather to admire and magnify their Wit and Induftry that they were able to proceed fo far as they did, with.out the Help of this Method, fol hope I Thall not be look'd on as vain or boafting, of extolling of the prefent Abilities of this Age, if by the Profecution of this Method I expect and affert a much greater Proficiency. And this Art we owe firft and chiefly to that excellent Perfon I now mention'd, who was able to overcome all the Difficulties of Prejudice, with which Mens Mindsare ufually befer; and to confider and weigh the Nature ofthings fo far, as not only to difcover the Impediments of Learning, but to contrive a Method how to free the Mind from them; and likewife to fortify and inrich it with fuch a Method, as thall be a conftant Guide and Affiftant to regulate all its Motions; fo that by the ufe of it, it may be able to go through with its Llndertaking, and as with an Engine to perform incomparably much more than tis poffible to do without that Afliftance.

SECOND GENERAL.

Of the True Metbod of Building a Solid Pbilofophy, or of a Pbilopopbical Algebra.

THIS Method of a Philofophical Algebra, I fhall divide into two main ${ }_{P b i l l o f o p h i c a l ~}$ Branches.
The Firt Thall contain the manner of Preparing the Mind, and Furnifhing it $f_{P a n f s}^{f i f s}$ of with fit Materials to work on:
The Second fhall contain the Rules and Methods of proceeding or operating with this fo collected and qualify'd Supellex."
Of the former only I fhall fpeak at prefent, referving the Explication of the later to fome other Opportunity. Tbis I tbink Dr. Honk never wrote; for I have not found any Tralt of that kind amongft bis'Papers.' R. W.

The former therefore has there Three Parts confiderable in it, which fhall be The former bes treated of in three diftinct Sections.
ift. An Examination of the Conftitution and Powers of the Soul, or an Attempt of Difclofing the Soul to its felf, being án Endeavour of Difcovering the Perfections and Imperfections of Humane Nature, and finding out' ways and means for the attaining of the one, and of helping the other.

[^0]
8 The Method of Improving Natural Philofophy.

Natural and Artificial Operations, or a Method of making Experiments and Obfervations for the Profecution and Examination of any Philofophical Inquiry.

3dly, A Method of defcribing, regiftring and ranging thefe Particulars fo colleeted, as that they may become the moft adapted Materials for the raifing of Axioms and the Perfecting of Natural Philofophy.
of the Powerers the Soml.

Part I.] There are two things confiderable, the Imperfections of our Na. tures and the Perfections as to the firft, the Imperfections: The Mind of Man fuffers under-various Prejudices, which do either darken or clog its Faculties, fo as that it cannot exert and make ufe of them, and thefe we are fubject to.
51. Of the Imperfertions thereof, and bon they may be helped.

1f. Caufe of Prejudicie from our own Nature.

Firft, From our own Nature and Conflitution, as we are Men, and indued with fuch Organs as are capable of taking Information of the Operations of Nature, only by fome few peculiar ways of Senfation: Man is not indued with an intuitive Faculty, to fee farther into the Nature of things at firft, than the Superficies and out-fides, and fo muft go a long way about before he can be able to behold the Internal Nature of things, and in this Progrefs there is very great Danger of his mifcarrying; for endeavouring to make ufe of the Informations of Senfe, for that end, there are fo many ways of miftaking, that moft have fallen into them : Some have fallen prefently upon abftracted Notions, and flown immediately from a very few particular Senfations to the moft General and Univerfal Conclufions and Theories, others on the other fide have been fo amazed and confounded with Particulars, that they have only proceeded, groping on a fter other Particulars, thinking at laft they may by chance light urpon fomething that may afford them Information in what they look after: Some others have endeavoured to intermix both thefe together, but with fo very ill Succefs, that they have left but little Fruit of their Endeavours.
The greateft Defign indeed of the Organs of Senfe, feems to have been for fome other Ufe than for the acquiring of this kind of Knowledge, and to have a very great Affinity with the Senfes of other Animals; which feem to have been made purpofely for the peculiar Ule of each feveral Species: The Sight for difcovering Conveniences and Inconveniences at a greater Diftance as well as near at hand: The Ear, for receiving Warning or Information from Sound, where the Eye could not affift : The Nofe, for diftinguirhing by the Effluvia of Bodies, of wholfome or unwholfome Nourifhment: The Tafte for the fame purpofe, by the Diffolution of them in the Mouth, and for the determining of the Quantity requifite to be taken at a time: The Feeling, for the Senfation of External Textures or Motions. But yet the greater Perfection of Ratiocination in Man, may make them capable of other kind of Informations: Though indeed of themfelves they afford little as to what we are looking after. The Apprehenfion alfo or common Senfe is not of the Nature of the things fo fenfated, but only with fome peculiar Reference to our own Structure. Thus fome Taftes are fweet or fowre to us, which I make a great doubt whether they are fo to the Senfes of other Creatures: And thofe things feem pleafant in the Smell to other Creatures Senfes, which to our Senfes feem quite otherwife.
So that our Apprehenfions of things feem to be appropriated to our Species: And that if there were another Species of Intelligent Creatures in theWorld, they fions appropin -might have quite another kind of Apprehenfion of the fame thing, and neither species.
perhaps fuch as they ought to be, and each of them adapted to the peculiar Structure of that Animal Body in which the Senfation is made. Thus we, by having our Organ of Hearing moved by a certain Motion of the Air, caufed by a quick Vibration of fome folid Body, have a peculiar Conception of Sound; not to be expreft to a deaf Man, or one that has not the fame kind of Organ or manner of Apprehenfion. We do not fo conceive of it as of a Notion in the Sonorous Body, but as of a Quality which we know not how to exprefs our Conception of, but as of fomething that does pleafingly affect our Hëaring, and we call that Conception we have of it Sound. But if we obferve that Propriety in the founding Body by the Eye, we have there quite another Idea of it impreft on our Phantcy, and nothing at all of the Imagination of Sound, but only of a

The Metbod of Improving Natural Philofophy.

Body in a Vibrative Motion. And if we fenfate that Propriety in the Vibra. ting Body by our Feeling, we have quite a differing Idea of the fame Proptiety, and there we have an Imagination of it, which we call tingling or tickling, of Heat : From which it feems evident, that thofe Imaginations we have of things, are not according to the Nature of the things themfelves; but only appropriated to the peculiar Organs, by which they are made fenfible to the Underftanding : So that had we other kinds of Organs, we fhould have other kind's of Conceptions of thofe Effects. And thofe perhaps we have may be quite differing from what other Creatures have of the fame thing. Thus that Conftitution of Air, which we call dark; is not to to Cats and Owls, and the like; nor is it fo indeed to a Man if his Eyes are affifted by fome peculiar kind of In. ftruments, as I have divers times found by Experiment, wherein I have been able to fee to read the Letters and Words diftinct in fuch a Light, wherein, without that help, I have hardly been ahle to fee the Lines. Thus Heat and Cold are only Relative to our Conftitution, as is evident by the Weather Glafs, which feels many Degrees of Heat before it be fenfible to us.

The beft Remedy therefore that feems to be againft this Prejudice is, to com. Remedy for pare the feveral Informations we receive of the fame thing, from the feveral Im-thefe Prejue preffions it makes on the feveral Organs of Senfe and (by a Rejection of what dices from the is not confonant) by degrees to find out its Nature, and thereby to inform the ${ }^{\text {Senfes: }}$ Intellect with a Notion of the thing; which is not according to this or that Idea, rais'd from the Impreffion of this or that Senfe, but by a comparative At of the Underttanding from all the various Informations' 'tis capable of teceiving, more immediately by any of the Senfes, or more mediately by vatious orher Obfervations or Experiments.

We ought to conceive of things as they are part of, and Actors or Patients in the Univerfe, and not only as they have this or that peculiar Relation or Influence on our own Senfes or felves: And for this caufe we ought to be very careful in what Senfe we underftand Philofophical Words already in ufe, for thefe having been for the moft part made by fuch as had thofé Prejudices re. maining on them, and we alfo having firt received in or imbibed the Senfes of thofe words; whilft under the like Prejudices: It cannot be expeeted but that the Notions muft be very confufed and inconfiftent with the things themfelves.

Another Caufe of Prejudice is from every Man's own pecaliliar Structure : 2d. Canfe of Every Man has born with him, or contra民ted by fome way or other, a Confti Prepdice from tution of Body and Mind, that does more or lefs difpofe him to this or that kind strueculiar of Imagination or Phant'fy of things, and every one has fome kind of every Mant, of Accident or other, that does more or lefs difpofe him for this Opinion or particillar bent that Operation of the Mind as well as of the Body. Thus fome kind of Con- of his Strdiest: ftitutions of Body does more incline a Man to Contemplation, and Speculatioh, another to Operation, Examination, and making Experiments, and look what way the Conftitution of a Man, or fome other Accident has inclin'd him to, that way almoft are bent all his other Faculties and Powers. Thus one is for fpeaking, and another for Writing, and all things are look'd on, or difregarded by fuch, as they are fubfervient to fuch an end : And not only many things, not very inftructive, are let pafs; but fometimes alfo many things that have no fuch Indication in them, are brought in as 'twere by the Head and Shoulders, and wrefted, to be made compliable to this or that Opinion. Juft as a Man that is troubled with the Jaundice, fuppofes all things to be Yellow, and all things he eats, till otherwife prevented, ferve to augment his Choler, by being chiang'd into it : Or a melancholy Perfon, that thinks he meets with nothing but frightful Apparitions, does convert all things he either fees or hears into dreadful Reprefentations, and makes ufe of them to frengthen his Phant'ry', and fill it fuller of fuch uneafy Apprehenfious, fo is it in Conftitutions of Mind as to Philofophy. Thus Ariftotle's Phyfick is very much influenced by his Logick: Des Cartes Philofophy favours much of his Opticks: Van Helmonts, and the reft of the Chymifts of their Chimical Operations: Gilberts of the Loadftone : Pytbagoras's and 'Fordanus Brunus's, Kepler's, \&xc. of Arithmerick and the Harmony of Numbers. The Philofophy, of fome Divines, is intermingled with Divinity; of others, with Spirits and immaterial Agents: Aftrologers endeavóur to bring

10. The Metbod of lmproving Natural Philofophy.

all things under the Power and Influence of Cæleftial Bodies, and would have them the chief Efficients of the World, and indeed every one according to the things he moft fancies naturally, or has accidentally tudied, and is moft converfant in, endeavours to make all things he meets with, agreeable or fubfervient thereto. And he is much the more inclin'd to maintain and defend this or that Opinion, if he has once any way publickiy owned it, whether in Writing or Difcourfe, fo far too perhaps fometimes, that though at firft he defended it when he thought otherwife, yet by continuing to do fo for the maintaining of an Atgument, or of his Credit, he at laft comes to believe it, and the Fallacy, which he endeavoured to put upon others, impofes moft of all upon himfelf.
The Remedies The beft Remedy againft this Inconvenience, is the finding out of what Conagainft this. ftitution ones felf is, and to what one is either naturally or accidentally moft inclin'd to believe, and accordingly by reafoning and comparing things together to confider what the things themfelves hint, and what Intimation proceeds from ones own Conftitution.

Next, to accuftom ones felf as much as can be for a while at leaft, to a quite contrary Suppofal or Practice: Or which is indeed more general, not to receive any Notion for certain, till throughly confirm'd by very Cogent Arguments and Ratiocinations, and always moft to fufpect that which feems moft confonant and pleafing to our Inclination: Thus one, that fancies Novelty fhould be moft cautious of what he admits for Truth or Demonftration that is news; left his Mind being prejudiced with a Love of Novelties . Thould otherwife impofe up. on his Belief and Underftanding : Thus one that is addicted to Chymical or Mechanical Operations, thould be very cautious of admitting of a Chymical or Mechanical Solution, and fo for the reft; for that may feem very probable and rational to one, whofe Mind is fo inclin'd; which to one of another Conftitution will feem moft unlikely and abfurd : So one, inclin'd to Speculation and abftracting, fhould bridle his Nature and not fly too foon to the moft geral Conclufions, for as a Nature fo' inclin'd does willingly oftentimes impofe upon it felf, and longs to be acting, and running in its proper and moft known Road, and avoids that Method it is not acquainted with, finding it very uncouth and full of many new Difficulties. So though the reafon fhould be fatisfied, and the Phant ${ }^{\text {fly }}$ y full of the Truth of this or that Opinion, another Mind otherwife qualified, may find many Flaws and Errors in it, and perceive many things to have proceeded from Prejudice.
A 3d. Caufe of A Third Caufe of Prejudice is from Language, Education, Breeding, Con${ }_{\text {Preiudice from }}$ verfation, Inffruction, Study, from an Efteem of Authors, Tutors, Mafters, AnEducation and tiquity, Novelty, Fafhions, Cuftoms, or the like. The Philofophical words, the unaccurate of all Languages yet known in the World, feem to be for the moft part very
wfe of words. improper Marks, fer on confufed and complicated Notions, together with the Learning of which Language we have imbibed thofe confus'd Notions, which are commonly underfood by the mention of thofe Words, thefe Words therefore being ufed in our Difcourfe, and thofe Notions in our Ratiocinations, muft needs very much perplex the Operations of the Mind, and much puzzle and difturb the Ratiocination. The Notions of the Mind therefore ought to be ftated aright, and the Signification of many words ought to be more defin'd, divers new Words alfo to be made and fet upon more diftinct Conceptions and Notions, and many other words ought to be wholly blotted out and rejected, as either fignifying fomething imperfectly, which is otherwife better expreft, or elfe a Phantafm, for which there isno ground inNature: Education alfo, Breeding, Converfation and Inftruction, do all of them very much work upon the A'ffection, and ferve to fway it this way or that way according to the Will of the Teacher, whereby the Underftanding becomes inflaved to the Diktates of Education; and the Ratiocination bound up or fettered by the Placits of a Tutor, fo as not to be able to lay hold of Truth though never fo fairly offer'd : For moft of thofe things being inftilled into our Minds when young and tender, and incapacitated to diftinguith between Affertions and Demonftrations, and between Opinions and Realities, have taken fo deep a Root, and fo poffett the Mind with Prejudice againft many Ways and Methods of Truth, that they are not freed without very much Trouble and Circumfpection; and 'tis a kind of Soveraignty

The Metbod df llomproving Natural Philotophy.

which Men do moft of all-affect, ro captivate and inflave Mens Minds to a Reverence or good Opinion of their Abilities, and Doetrines; fo that we have not only a great many Enemies to Knowledge and Freedom, lodg'd within our Breatts and Fabricks, but are every way encompaffed; and thofe which feem our greateft Friends, do in this regard prove our greateft. Enemies.

And this Bond is fo much the more difficult to be fhaken off, if together with their Doctrines we haveentertain'd an Admiration, Awe, Reverence, or Efteem of the Perfons themfelyes that inftructed us or were the Authors of the Books or Opinions we have approv'd. Add tocall thefe Multitudes of falfe Opinions, which have been impos'd upon our Belief by fallacious Demonftrations in Dif. courfe and Converfation: For Words being ill fet Marks on very confufed Notions; the Reafon of a Man is very eafily impos'd on by Difcourfe, unlefs the Mind be extreamly attent, and watchful, not to take any thing for granted, that is not evidently prov'd, and very perficacious in finding out the diftinet Notion of the Word, in every fuch Sentence, wherein it is ufed, 'for the No-$-$ tions fignified by fome words being very many and very perplex, unlefs that Notion there meant be (by fome Periphrafis or otherwife):determin'd to be al ways fignified when that word is pronounced ; the Circumfeetion of the Intelleat is fo flow in examining over Particulars, and running over all the particular Siginifications fome words may have, that it may very eafily be impos'd upon by a quick and cunning Difputant, and being once impos'd on without being detected, the Admiffion of that Error is the occafion of bringing in Multitudes of others; Error being a kind of Ferment which tends to the rurning or * conforming all things to its own Nature, and like an infected Perfon has Influ-: ence on all things it comes near.

The beft Remedy, for which Inconvenience, is not to confider fo much what The Remedf the Perfon is that inftructs, as how true the things are he afferts, nor of what Au. for thefe? thority thofe Authors are efteem'd we read; but what Arguments are by them brought for that which they affert, and if we are fo over born with Love, or Reverence, to this or that Author, as to efteem of whatever he fays, wherher right or wrong, than to imagine what he fays to be fpoken by one iggainft whofe Perfon or Dottrine we have a Prejudice; for that will fomewhat incline the Mind to a contrary Opinion, and thereby help to ballance the Inclination of it the better, fo that it Ihall not reje民t Truth when offerd on the one hand, nor embrace an Errot when afferted by the other.

Another way is to confider with what Vehemence and Earneftnefs itwo contrary Opinions are believed and afferted on both fides, and to confider what are or have been the occafions to incline the Parties to thofe Opinions of Doctrines they maintain, and as near as may be to diftinguifh what manner of Actings there are which proceed from Reafon, and what from Prejudice, and from thence to endeavour to fortify the Mind with Arguments againft Dogmatical. nefs and Opinionativeuefs upon too fmall Grounds, and to accuftom the Mind to an Equilibrium or Indifferency, fo as to be fway'd and turn'd to 'the embracing of Iruth from whence or whomfoever brought.

A third way of remedying or rooting out Prejudices already impos'd on us, and of preventing the like Impofitions for the future; is an Hypothetical Scepticifm, whereby to impofe upon our felves a Disbelief of every thing whatfoever, that we have already imbraced or taken in as a Truth : And in fo doing, to throw out not only thofe things wê may a little doubt of, but even all thofe things of which we are moft confident, and thofe efpecially which our particular Conftitutions feem moft of all to incline us to believe, rejecting them all as Impoftures and Fallacies, that have by fome indireft means or other crept into our Ulnderftandings, or have been impos'd upon our Minds by fome or other that either wilfully or purpofely endeavoured to deceive us, which having fo done by leafure and degrees, not too many at a time, by much Caution and Circumfeetion, not without weighing well all the Arguments and Circumftances that can be alledg'd either for or againft them by many Tryals and Experiments and Siftings, to take fuch of them in again, diftinctly and determin'd as can produce fufficient Evidence of Truth: Others, whofe Truth we cannor make out, to reject them in all our Ratiocinations as uncertain and of doubrful Credit, and not to be relied on; till by farther Tryals or Experience

12 The Method of Improving Natural Philofophy.

the Truth or Fallhood of them be made evident, and then accordingly to-deal finally with them by a Reception of them into the number of Truths, or a final Rejection of them as Falfities and Errors.
5. II. of the Perfeltions of sumane Nathre, and how they may be improved.

Firft, As to the Senfes their Examination, and \$ow a $\sqrt{17}$ ifed.

The Second thing to be done, is the finding out the Perfections of our Nature, and the particular Helps we have for Information, and with what means of Difcovery we are furnifht, and how thofe Means may be improved. Now the Faculties of the Soul are Three; Senfe, Memory and Reafon, or Ratiocination the particular Bufinefs, of each of which is to be examined how far their Ability and Power, when in the greateft Perfection extends, and wherein each of them are deficient, and by what means they may be affifted and perfected.
The firf therefore that will be neceffary to this end, will be the Examination of the particular Conftitution of our Senfes, to fee what Propriety of a Body each of them takes notice of, and how far they are capable of affilting in the finding out of that Propriety, and wherein that Propriety of a Body does confift, where the Help of the Senfes fails or leaves us in this Inquiry, and then what Inftruments will farther affift the Senfes in this Inquiry, and how far alfo their Puwer will extend, and by what means we may be farther affifted in this Search.

The differing ways of Senfation we find to be Five, which are provided with as many diftinat Organs; the ift. and moft Spiritual is plac'd in the Eye, a 2d. in the Ear, a 3 d. in the Nofe, a 4 th. in the Mouth, the 5 th. over the whole Body.

The Senfe of Sceing.

The Fabrick of the Eye is moft admirably contrived for receiving in the Impreffion of the Rays of Light, and for fo difpefing and ordering of them, that thofe Rays that proceed from the feveral Points of any Object that either emits or reflects Light, and fall on the Cornea of the Eye, thall be all of them collected into fo many diftinct Points at the bottom of the Eye, and that in the fame Order, that the Points were fcituated in refpeet of the Eye, but in a leffer Proportion, according as the Objett is farther removed in diftance from the Eye, and in a greater Proportion as the Object is nearer; fo that the Pidture or Reprefentation of the Object in the fenfible part, or bottom of the Eye, may according to the Pofture or Diftance of it from the Cornea, be either lefs equal or bigger than the Obje 0 it felf: Whence were the Senfe of diftinguifhing the Parrs of the Picture at the bottom of the Eye, as nice and particular as the Body has diftinct Parts, we might very eafily by this Senfe only find out the Texture or Schematifm of any Body within our reach; for 'tis very eafy by one fingle Lens of a fmall Sphere, or of a very Convex Figure, plac'd juft before the Eye, to make the Object diftinetly vifible, when much neater to the Cornea than the Cornea is to the bottom of the Eye, and confequently the Rays croffing near the Cornea, the Picture or Reprefentation at the bottom muft be bigger than the Object it felf; but the difcerning Power of the Senfe is not capable of making Diftinction of Parts when they are fmaller than fuch a Bulk, the Terminus of which, I find to my Eye, to be when the Reprefentation is about the Bignefs of the fmaller Pores of Wood: Which I find by this Expedient, by a convenient fingle Lens I bring the Object I look on fo near my Eye, that the croffing of Rays in the Eye may be about the middle Space between the vifible fide of the Object, and the bottom of my Eye; from whence it follows, that the Piqure of the vifible part of the Object is as big as the thing reprefented: But the Eye being then at moft but capable of feeing or diftinguilhing thofe Pores; it follows, that (if the Caufe of that Diftinction be from the ends of the Filaments of the Optick Nerve, as Des Cartes ingenioufly fuppofes) the Filaments cannot be fmaller than the Microfcopical Pores of Wood, and that the Eye is uncapable of diftinguilhing the Parts of any Pi\&ture that are fmaller than thofe : So that any Object being fo far removed from the Eye as to make the Picture of it on the Retira lefs than a Microfcopical Pore, that Objeet becomes invifible, if at leaft it be but of a dull Radiation; for if it be., otherwife of a very bright Radiation, the whole Filament is mov'd by having one part of it powerfully acted on, and fo we have a Senfation of the Object, the fame as if it were much bigger, and this feems to be the reafon why the Stars appear to

The Metbod of Improving Natural Philofophy.

our naked Eye many Thoufand times bigger in bulk than really they are, and even as big as through a long Telefcope, which would not be if our Senfe were fufficiently fine and nice. I could have inftanc'd likewife in the other Senfes, but this may fuffice for an Example.
Having confidered therefore the Power and Property of the Senfe, we may be fo much the better inabled to find out its Defects, and by what means it may be improv'd.

The Eye therefore prefenting to the Senfe a Picture of the Objects that areWhat this plac'd before it, is capable of Informing of the Senfe of Four or Five Qualities Senfe informs of Bodies, firlt of the Radiation, or the thining or not fhining Properties of Bo. us off, and b dies, next of the Peliucidity and Opacoufnefs of Bodies. 3ly, Of the Reflex-may be helped. ivenefs of Bodies. 4. Of the Figure, Magnitude and Pofition of Bodies. 5. Of the Motion; when therefore thefe Proprieties'of Bodies are inquir'd after, the Information concerning the three firlt mult be wholly fetcht from this Senfe, but the Information concerning the other two may be had partly from this and partly alfo from fome of the other Senfes. In the difcovering of each of thefe Properties, the Senfe may be various ways affifted, both by Engines, Obfervations and Experiments.

As Firft, for the difcovering of the fhining Properties of many Bodies, there $1 /$. It informs are thefe two more immediate Affiftances; the firt is by placing the Eye and of the RadicObject in fuch a place where all other Radiations of Light may be wholly ex. tion of Bodies. cluded, for by this means, many weak Degrees of Radiation will become vifible to the Eye, which in a greater Light would be altogether infenfible, and this proceeds from Twofold Caufe; Firf, becaufe there is no ftronger Impreffion made on the Eye from the Radiation of any other Object, which is the reafon why the Stars difappear in the day.time: Next the Eye thereby opens its Apperture much wider, and fo admits a much greater number of Rays; whence 'tis that the Eye by a long ftay in a Comewhat dark Room begins to fee and diftinguifh things almoft as well as in a "much lighter, becaufe the Apperture is not opened in an inftant but by degrees. Hence the Radiation of Gloworms Tails, of the Juice of theHundred Legged Worm, of rotten Wood; of Salt Water, of Putrifying Fifh, of a rubbed or warmed Diamond, and the like, becomes vifible to the naked Eye in a dark Room, which difappears and vanifhes in a bigger Light, but becaufe we find that the more Rays the Eye is capable of collecting, the better is it able to difcover this Propriety where it is very languid; therefore if the Eye can by any Contrivance of Glaffes be made capable of collecting a much greater quantity of Rays from a Point, and making them meet on the Retina, 'tis not improbable but that a much greater number of Bodies may be difcover'd Radiant than are yet fuppos'd to be fuch, perhaps alfo it may difcover to us the Properties of many other Motions; for it feems not improbable, but that the Motions of Corrofion in many Bodies may generate fome faint Degree of Light; perhaps alfo, the Motion of Fermentation, and many Degrees of Heat, much lefs than what we now efteem requifite, may produce the like effect. And that this help of this Senfe in this Inquiry, is not a Suppofition without any ground from the Nature of the thing, With fome fuch will appear firft in that Cats and Owls, and Bats, and divers orher Creatures, are Glaffes it meere able to fee in a much lefs degree of Light than is fufficient for a Man's Sight. very defirable Next from this, that making Tryal upon this very Suppofition with a convenient haould be made Lens, I have divers times been able to read in the Night by the help of it, with feveral, when I could hardly with niy naked Eye diftinguilh the Lines. Now this be- Bodies in apering done with an ordinary double Convex Spherical Lens, 'tis not improbable Roply, dark but that much more may be done by a double. Hyperbolical one, if the way $a n n$ norrubbd d or of making it can be found (which reems not altogether improbable to be done cold Diamond, with Nicenefs enough as to this ufe of collecting the Rays of Light, though in with corroding Glafs it be very difficult to be done accurate enough for diftinct Vifion) or by Borment with Bo. the help of an Elliptical Concave, by placing the Body to be examin'd in one diers, and fucb of its Focufes, and the Eye with a Concave Lens before it in the other, and for as are treated this ufe tis eafy enough to make a Concave fufficiently accurate of an Ellipti-by various $\%$. cal Figure.

Farther, If our Eyes thould nor be capable of being brought up to fuch a Degree of Nicenefs in Senfation as is requifite 3 'tis not impoffible but that by fome Obfervations and Tryals, one may come to the Knowledge of the Truth as to this Inquiry. 'Tis poffible perhaps to find a way to difcover, whether a Cat or fome fuch other Creature can fee by fuch a Light, which I think might be many ways done, were it not much eafier and more certain to make a Difcovery with ones own Eyes, and that perhaps to as grẹat, if not much greater Desree of Nicety than Cats can.

There may perhaps alfo be found, upon farther Inquiry into the Nature of things, fome Body that is acted on or mov'd by Light, which is much more fenfible of the Degrees thereof than the Eye, which, if found, would be a huge Affitance to a diligent Inquirer into this Property of Body; and for this we may have fome reafon to hope, if we confider, how lately 'tis that the Beard of an Oat was found out for the Senfation of the Moifture or Drynefs of the Air: And 'is not yet above _—.Years fince I firft difcover'd the like, hut fomewhat more nice Property in the Seeds of Geranium Mofchatuin: Atbanafius Kircher tells us, that the Sun-Flower follows the Light of the Sun, but whether true or nor, I difpute not now : Sufficient it is to the prefent Defign (which is only to hint by what ways poffrbly the Senfe may be affifted) to thew that fuch an Help is not altogether improbable to be found. Perhaps alfo the augmenting the Bulk of fuch a Body, may make that Propriety become fenfible which might orherwife lie hid:

2dly, of their
Next as to the Pellucidity, Colours, of Opacoufnefs of Bodies, the Eye may Pellucidity.
be various ways affifted in the finding out that Propriety and reducing its Degrees to a Meafure or Standard. One way is, by placing the examining Eye in a Room perfectly darkened, without any Cranny to admit Light into it, fave only one or two Holes; againft one of which whillt the other is quite ftopt the Body to be examin'd may be plac'd, of various Thickneffes according to its diftinct Nature: The more tranfparent it be, the thicker Mafs of Body may be feen through, and the more opacous, the thinner muft the plated Body be : And by this Contrivance a great Number of Bodies will be found aliquatents tranfparent, which are judg'd wholly opacous, and by the Thinnefs, requifite to admit a fenfible Degree of Light through, may the comparative Opacity of Bodies be found and determin'd.
A fecond way whereby the Eye may be affifted in this Inquiry, is by the Microfcope; for the Body being, by beating or otherwife, reduced into fmall parts, the Microfcope does plainly diftinguifh thofe Particles aliquatenus tranfparent. 'Thus the parts of moft forts of Stones when reduc'd to Sand, appear manifeftly tranfparent, the moft Metalline and other Colours ufed by Painters, appear to confift of formewhat tranfparent Parts, and very many of thofe Bodies which the Eye is not able to difcover fuch the other way, is by this means very eafily manifetted; and indeed, there feems to be fcarce any Body in Nature, unlefs perhaps fome of the white Metaline that are not in forme Degree or other tranfparent, and this is fo much the more probable; fince we find that the moft compacted, we know in the World, namely Gold, is manifeftly tranfparent, when beaten very thin and held up againft the Light.
Next, the Tranfparency, Opacity, or Colours of Bodies may be farther inquired into, by mixing and incorporating feveral of them with divers forts of appropriated Hómogeneous Tranfparent Bodies; that is, with fuch as with whom they will readily mix. Thus Cochineel, which looks like an opacous dark Body, when mixt with Water that diffolves it, yields a tranfparent Crimfon Colour. Thus Iron melted with Glafs yields a kind of Red. Thus Copper mixt or diffolv'd by fome Saline Liquors yields a Green, with others a Blew, with others a Purple. Thus many forts of Stones and Earths, which feemed before perfectly opacous, by this means fhew their Colour,
${ }^{3}$ dly y, of their Thirdly, The reflecting Property of Bodies may be partly difcover'd and di Reflaxivenefs. ftinguiht by the above-mention'd Merhods, and partly alfo by reaucing the Bodies into the Shape of a Burning. Glafs of a determinate Bignefs, and fmoothing the Superficies of it very well; for by the comparing of divers of thofe Inffruments

The Method of Improving Natural Philolophy.

fo made, by the Effects of burning they produce when expos'd to the Sun, 'twill not be difficult to determine the comparative Power of reflecting the Rays of Light.

Another way of judging, of the comparative Refleetion of Bodies, may be by viewing them in a Microfope in feveral Lights, and with feveral Apertures; and by pitching upon fome one Body to the Strength of the Reffection of which the proportionate Reflection of all the reft may be referr'd; for by knowing the Smalnefs of the Aperture of the Glafs requifite to make each of them difappear, we know alfo their comparative Power of Reflection.

Tryal alfo of this Property may be made with the Eye, only affifted with feveral Apertures, and only finding the Smalnefs of the Aperture trequifite to make the Reflection of Light from fuch a Body to difappear.

The Ule of which Inquiry into this Property of Bodies may be of very great Ufe, as to the Invention of the Nature and Texture of Bodies.

Fourthly, As to the Magnitude, Figure, and Pofition of Bodies, though the 4 thly, of theit Eye can pretty "well guefs at them in Bodies pretty near, and within its reach Magnitude, Fias 'twere, yer beyond that, and even in that too if Accutatenefs be required, gare, and $P Q$ it is deficient, and does much need the Help of Inftruments and Contrivances to affift it.

As to the Magnitude and Pofition of Bodies; the Eye may be affifted by making Experiments with divers forts of Mathematical Inftruments, efpecially by the Ulfe of fome which I fhall afterwards defcribe, by which means the Mag. nitude, Diftance, and Pofition of the Celeftial Bodies, that are fo far out of our reach, may 'be much more accurately meafur'd, than by any other fort of Inftrument yet made publick to the World.

As for the Figure and Magnitude of fome Bodies; the Eye (being unable to diftinguith the Pofition of Parts, when the Appearance of them is lefs than fuch an Angle) may be affifted by two forts of Inftruments, namely the Telefcope.for the appearing Figure of fmall Bodies, abfent, and out of our reach; and the Mifcrofcope for fuch minute Bodies as we have accefs to; the Melioration of both which Inftruments would be a Matter of huge Concernment, is to the Refolution of this Inquiry. And I cannot doubt, but that the Induftry of fome of the many Ingenious Men, that are now imploy'd about it, will be fo fuccefsful as to accomplifh it-

The Figures alfo of fome, inacceffible Bodies may be judg'd by the Obfervation of divers Circumftances: Thus the ingenious'Monfieur Hygens difcover'd the true Figure of the Body of Saturn, which had fo much puzled Learned Men before.

Fifthly, The Eye may be various ways aflifted for the Difcovery of the Mo. sthly, of their tion and Velocity of Bodies; as by meafuring the time it has paft fuch a motiono length or fpace by the help of a Pendulum, and whereas the Motion of fome Bodies is fo flow that their Velocity does not make a fenfible Angle to the Eye, therefore the Velocity of fuch Motions is beft gathered by Confequents, fuch as all the Motions of the Celeftial Bodies, many of which cannot be otherwife difcern'd.

The Internal Motions alfo of Bodies may be difcover'd by vatious Effeets, fuch as thofe of Fermentation, Heat, Corruption, Generátion, Growth, Decay, Diffolution, Coagulation, and the like, from the accurate Obfervation of divers of which compared with feveral other Circumftances, may be very well collęted the Degree, Nature and Manner of Internal Motions.

The Telefcope alfo, and Microfcope may much affift the Eye in this Inquiry ; thus the Body of the Sun has been found to vertiginate on its Axis. I did alfo by the Help of a good Telefcope, about two Years fince, difcover the Motion of ψ about its own Axis, by means of a fomewhat darker fpot in the Body of it; the Moon, ${ }^{2}$, and ψ have alfo been found to have a Motion of Libration, the Satellites of 4 and Moon of Saturn to make their Periodick Revolution in fuch or fuch a time. The Microfcope alfo can make the Motion of the Legs of Mites, and many other fmall Creatures fenfible, as alfo the Motion of the Hand of a Watch; and perhaps alfo Mifcrofcopes may be made fo accurate as

16 The Method of Improving Natural Philofophy.

to difcover the vegetating Motion of Plants (though I confefs I have not yet found the Growth of any fo faft as to be quickly fenfible through a Microfcope) and of corrofive and corroding Liquors, and the like; however in the fearch after every of thefe the Eye is not left without many Affitances, whereby it may perfectly difcover what it feeks after.

Thus for the finding the Velocity and Strength of falling Bodies, I made this following Contrivance, which fucceeded according to Expectation.

A Defcription of the Infirument for falling Bodies. rid. the fig.

The Inftrument was thus contrived. See the rft. Figure in which A B C is the Pedeftal or Bottom to fultain the Scales and other Parts. DE a double Beam, or two Bealms well faftened together by crofs pieces of Steel at the Ends, or other ways, between the two Cheeks of which the Steel Ball F falls from any determinate Height upon the Steel Plate or Bafin G;' and if by that Fall it moves the double Beam and the Counterpoife H, lying in the Scale 1 K , it gives the fmall Spring L a free Paffage to flip between the end of the double Beam and the Sray M, by which means there is given a certain Sign whether the falling Body has moved the Scale or Counterpoife fo far, as to admit the very thin Edge of the Spring L, the reft of the Contrivance is obvious. enough from the Scheme it felf. "Tbat the Reader may the better underftand" "the UJe and Performance of bis Inftrument, I bave added Some of the Experi"ments made woith it, as I find them entered in the Regifters of the Royal Society, "wobich I thought might not be unacceptable to the Ingenious. K. W.

The Account is as follows,

"The Inftrument being thus prepared, 1. (i.e. Dr. Hook) put into the oppo"Site Scale I K, a 4 Ounce Weight H that is four times the Weight of the Sieel "Ball F, and letting this Steel Ball or Bullet F fall from juft the Height of an "Inch above the Steel Plate G (by cutting the Thread that beld it; I found it "very Senfibly to move it; I repeated ttje Tryal So long, till I found tbat letting "this Ball fall but $\frac{-4}{2 t}$ of an Inch above the Plate, it woould move the Beann So as "to admit the Spring; "but if I let it fall from a lefs'Height it would not, then "I put in 8 Ounces, and by Several repeated Iryals, If ound $\frac{2}{3}$ of an Inch) to be wi the Height requifite for the falling . Bullet to pafs, before it would move 8 times "its own Weight, I proceeded farther, and from the Experiments collected in the "firft Table A:
"Afterwards I took a Jmall Ball of Clay that was very ronnd, and exceeding "bard, in. Weight near a quarter of an Ounce, and proceeding with, this as I bad "d done with the Stepl, I collected from the Several Tryals the Second Table B.

TABLE B.

"The firft row of Numbers in botb wobich Tables fhew the perpendicular Height "from wobich the Balls were let fall, to move the feveral Counterpoifes, wobich "are noted by the Second Row of Numbers in both Tables,s, 4, 8, 16, \&x.. Jignifying "the Counterpoife to be 4, 8, 16, \&2. times the Weight of the Ball.
"Wbich Tryals and Obfervations, though they do not abfolutely anfwer our "Expeetation as to the thing fought, that a Body moved with twoice the Celerity "acquires twice the Force, yet they Jerve for Several good Ufes; for firft, it Jhews ". us the Difficulty of fucb. Tryals, where though all things as to ones Senfe appeared
"ithe fame, yet Some fmall infenfible Circumfances nade the Effects fo differing, "that we need not wonder, if oftentimes when we endeavour to repeat an Experi-

The Metbod of Improving Natural Philofophy.

" ment delivered upon good Credits as done by anotber with fucb or fuch Mate.
‘
"
"
"
"
©
"Now the firft and greatefo Defedt in our. Tryals Seems to be, that there is a
"Next in this Contrivance, there is befides the Counterpoife of Weights, a
${ }^{6}$
©
a
tb a very quick and Sudden Motion before the Spring, though it be fo ver'y
${ }^{6}$ thin can get between the End of the Beam and Stay, to make the Effeal fenfible.
${ }^{6}$
or
"
a
Degree of Celerity.
"Thirdly, The Scales and Counterpoije may be all mov'd, and yet the finall
"Spring, though it be fo thin as not to be above $\frac{5}{4} \frac{0}{4} \frac{x}{5}$ part of an Inch in Thick-
"neess, yet is that a Space, and the Beam may operbaps be moved balf that way,,
" and the forcible Refiftance of Gruvity may make it return back again before it
" bave mov'd the whole Space, fo that it may be moved a little, and yet not So
" mucb as to make it fenfible by this Contrivance. Nor wowld the making that
"Spring thiner mucb mend the matter, fince tbere are otber Inconveniences: And
"that this is fo, I try'd the following Experiment, when in my laft Tryal I bad
"found that the Ball of a quarter of an Ounce required to be let fall from the
"Height of 36 Inches, before it would move the end of the Beam fo much as to
"let in the Spring, when there was 128 times its Weight of Counterpoife, that I
" might try rohether the fame Ball would not Senfibly move the fame Counterpoife,
"though it were let fall from a much fmaller Heigbt. I placed the Spring fo as that
" it was between the Stay and the end of the Beam, but not fo far in as it would
"Spring in if it were left free; then letting fall the Ball at 4 Inches Height, I
"found that it bad moved the end Sufficiently to let the Spring flide in as far as
\because it would, I put the Spring in Order as before, and let it fall fron $3^{\frac{1}{2}}$ Inches
"Height, and found it there likewife to move the end of the Beam.
" Irepeated it again at 3 Inches Height, but though I try'd Severaltimes, I could
" not find that it bad at all moved or let flip the Spring. Now as exalt Tryals
"s of this kind may be very ufeful in Mecbanioks, fo could they be made with Bo.
" dies perfectly folid, would they be for the Eftablifhment of one of the chief Prin.
"ciples of Pbilofopby, namely, the Strength a Body moved bas to move another. "And though Des Cartes puts it as a Principle, that Si Corpus C plane qui-
"efceret effetq; paulo majus quam B, quacumq; cum celeritate B moveretur
"verfus C nunquam ipfum C moveret, fed ab eo repelleretur in contrariam
sp partem, and gives this Reafon for it, Quia Corpus quiefcens magis refittit
© magnæ celeritati quam parvx, idq; pro ratione exceffus unius fupra alteram.
"Et idcirco femper major effet vis in C ad refiftendum, quam in B ad impel.
" Iendum. Iet the fe Experiments do rather feem to bint, that the leaft Body by
"c any acquir'd Celerity, may be able to move the greateft, though bow mucb of its
"Motion is imparted to the bigger Body, and bow much of it is recoil'd into the
" fmaller be not hereby determin'd.
But to proceed, I could thus have gone over all the other Senfes, by examining their particular Conftruction, and what Proprieties of Bodies they each of them take Notice of, what Information they can afford us alone, and where they leave us, and by what Inftruments and Methods they might be helpt and affitted in the Profecution of the Inquiry. But thefe being more proper to be

18. The Method of Improving Natural Philofophy.

inftanced in hereafter, when I come to.give Examples of this Merhod for the finding out of particular Inquiries, and my Bufinefs at prefent heing only to give a Specimen for the Explication of my Defign, and as it is preparatory to the finding out fuch Helps for the Senfes for making Difcoveries as may zfift a Natural Hiftorian in the collecting of Materials for a Philofophical Supellex, to fill up the Repofitory of the Memory withal; for the Ratiocination to work on, for finding out the Caufes, Manner, and Method of Nature's proceeding in all thofe Operations, we inquire into. I , fhall now pafs on to confider of thofe other Faculties of the Soul, namely, Memory and Ratiocination. The Bufinefs of the former being nothing elfe but a faithful Prefervation of the things committed to it, and a ready recollecting them when neceffary, will be rectified and perfected by this Method of the Philofophick Algehra, and the rectifying and perfecting of the Reafon, we fhall refer to another Opportunity.

Part II. Of collecting the Pberiomena of Nature, for en Hiftory.

The fecoind thing therefore, is a Method of collecting a Philofophical Hiftory, which fhall be as the Repofitory of Materials, out of which a new and found Body of Philofophy may be raifed. This is to comprize a brief and plain Account of a great Store of choice and fignificant Natural and Artificial Operations, Actions and Effects, ranged in a convenient Order, and interwoven here and there with fome fhort Hints of Accidental Remarks or Theories, of correfponding or difagreeing received Opinions, of Doubts and Queries and the like, and indeed until this Repofitory be pretty well ftored with choice and found Materials, the Work of raifing new Axiomes or Theories is not to be attempted, left beginning without Materials, the whole Defign be given over in the middle, for out of this are to be taken the Foundation Stones, on which the whole Structure fhould be raifed, and thofe ought to be proportioned according to the reft of the Materials; for otherwife there may follow great Inconveniences, in profecuting of it, here therefore ought, to be laid up the more fubftantial Parts: But as for, the moft curious and precious things which may ferve for the finifhing or compleating this grand Structure, they are to be fought for as occafion fhall require and prompt. For as in any great building; none can be fo perfpicacious as to forefee every particular thing he fhall need, for the compleating of it, but leaves the Care of providing them till occafions call for them, as being then beft able to judge which of that okind of Material which is wanting will be moft fitting for his purpofe, aid fo with that proceeds till other occafions call for other Requifites and Helps: And fo from time to time furnifhes himfelf with thofe more choice things, as the Occafrons require; fo there is none but before he fets upon fuch a Defign, will be fure to provide himfelf of a fufficient Store of fuch Materials as he knows altogether neceffary, nor will he neglect to lay hold on fuch things, as offering thèmfelves by chance, put him in mind that he fhall have occafion for them before he can finifh his Defign; and certainly much better it were, if the Architect were fo skilful as to forefee to provide all kinds of Materials before he begins; for thereby his Viork would be carried on the more compleatly and uniformly, without Neceflity of pulling down, or altering, or piecing, or transforming any part, or ftaying or interrupting.

The Cafe is much the fame in providing a proper Hittory for the perfecting of a new Body of Philofophy, the Intelleet hould firt like a skilful Architeet, underftand what it defigns to do, and then confider as near as can he, what things are requifite to be provided in order to this Defign, 'then thofe Materials are to be carefully fought for and collected, and fafely laid up in fo convenient an Order, that they may not be far to feek when they are wanting, nor hard to be come by when they are found: In the choice of which, Care ought to be taken that they are found and good, and cleans'd and freed from all thofe things which are fuperfluous and infignificant to the great Defign; for thofe do nothing elfe but help to fill the Repofitory, and to incumber and perplex the l?fer, yet notwithftanding, Brevity is not fo much to be ftudied, as to omit many little Circumftances which may be confiderable in the ufe of it, for as in the laying up of Timber, the keeping on a branching part does make it ferviceable for many Defigns which it would be wholly unfit for, if it had been fquared off, fo it will be in the fitring and preparing the Particulars for a Philofophical Hi-
ftory, there mult he Judgment in the Hiftorian to difcern what will be material and ufeful in general, and what will be more efpecially adapted for the Inquiry whatever he defigns.

This Similitude therefore hints unto us the whole Method of making a Phi. lof phical Hiftory, according to which, I fhall enumerate the feveral things neceflaty to this Defign, and according to my, Ability, endeavour to explain each Particular in fuch Order, and fo far forth.as to me feems moft natural and confonant to my prefent Purpofe. But firt I fhall premife fome of the Accomplithments requifite for a Natural Hiftorian.

There feem therefore thefe Requifites to. accomplifh one, that intends to $\$ \mathrm{I}$. of the profecute ordo- any thing confiderable in this Work, withous which the Col: Requiftes in lections may very much fail of the defirable Excellency in this or that Particu. A Natural hio lar, though perhaps as to the kind they may contain many good things.

The Firft is, That he ought to be very well skilld in thofe feveral kinds of Philofophy already known, to underfand their feveral Hypotheres, Suppofitions, Collections, Obfervations, ofc. their various ways of Ratiocinations and Proceedings, the feveral Failings and Defeats both in their way of Raifing and in their way of managing their feveral Theories: For by this Meaņs the Mind will be fomewhat more ready at guefling at the Solution of many Phenomena almoft at firt Sight, and thereby be much more prompt at making Queries, and at tracing the Subtilty of Nature, and in difcovering and fearching into the true Reafon of things ; and though perhaps none of thofe Methods of. Philofophy he has been accuftomed to, may any way direet him in the Contrivance of this New Fabrick, yet 'tis with the Exercifes of the Mind as with the Operations of the Body; one that has been bred up, and well skill'd in any Trade, fhall go much more readily and handily about it, and make a much better piece of Work of a quite new Defign in that Trade, than one that has not been at all us'd to fuch kind of Operations; there mult be a time to bring and fix the Mind to a Regard and Heedfulnefs of this kind of Contemplation, and a time alfo to accultom it to Meditation and Contrivance, and a time to acquaint it with rationating from material Obfervations before it can go about fuch a Defign dexté: roully. Befides this alfo, the Mind will, by being acquainted with various Conjectures and Solutions of things, be much fooner and better freed from Preju: dice, for by difcovering experimentally the Errors in this or that Hypothefis, ${ }^{\text {s }}$ twill be much eafier takeri off from adhering to any, and fo enjoy a greater Freedom of perceiving and imbracing Truth from what occafion foever it be offered.

Next, As he ought to be knowing in Hypotheres, fo ought he alfo to be very well furnifhed with thofe things, which will, moft affift the Mind in making, examining, and ratiocinating from Experiments. And thefe are chiefly two, Mathematicks and Mechanicks; the one fomewhat more fpeculative, the other more practical : The;one qualifying the Mind with a moft exact Idea and Pattern of Ratiocination, Demonftration, Invention, and Deteetion: The other acquainting and inftructing it with the Proceffes of Action, and Operation. He ought firtt of ail, and chiefly to be very well skill'd in Geometry and Arithmetick, the more demonftrative Parts, and Algebra the more inventive Part of it: And this not only, as it furnifhes the Mind as it were with Numbers, Weights, and Meafures to inquire into, examine and prove all things; but as it alfo in. ftructs and accuftoms the Mind to a more ftrict way of Reafoning, to a more nice and exatt way of examining, and to a much more accurate way of inquiring into the Nature of things: The other more Phyfical Parts of Mathematicks are allo very ufeful in their kind; fhewing a Way and Method of applying the former to Phyfical Ufes and Inquiries. Mechanicks alfo being partly Phylical, and partly Mathematical, do bring the Mind more clofely to the Bufinefs it defigns, and thews it a Pattern of Demonftration, in Phyfical Operations, manifefts the poffible Ways, how Powers may act in the moving refifting Bodies: Gives a Scheme of the Laws and Rules of Motion, and as it were enters the Mind into a Method of accurate and demonftrative Inquiry and Examination of Phyfical Operations. For though the Operations of Nature are more fecret and abftrufe;

The Method of Improving Natural Philofophy.

and hid from our difcerning, or difcovering of them, than thofe more grofs and obvious ones of Engines, yet it feems moft probable, by the Effeets and Circumftances; that moft of them may be as capable of. Demonftration and Reduction to a certain Rule, as the Operations of Mechanicks or Art. And from thofe, which are yet fomewhat more fpeculative, he ought to proceed to acquaint himfelf with others more complicated Mechanical Operations: Such as Chymical, and the Phyfical, yea even divers Mechanical Operations in many other Trades: For by thefe Ways, he will be better acquainted and enabled how to deal with Nature, for the procuring and getting more hidden Jewels and greatelt Myfteries. But this is not yet enough, for the way to acquire thefe things certainly is not as yet fully difcovered, much lefs has it been prafifed, he cannot have a Pilot to direct him certainly, to Thew the exa\&t Courfe, and deffribe all the Turnings and Windings, and Shoalds, and many other Difficulties that are to be met withal, in this Attempt : Moft of thefe things muft be left to his own prudent and wary Management of his own Defigns.

And, as Columbus did in the Difcovery of the New World of America, he ought to contrive his Defign well ; then to procure what Helps and Affiftances he is able, lafly, thoroughly to profecute it, and not be difcouraged by the many Croffes and ill Succeffes he may at firtt chance to meet with in the Attempt, and afterwards alfo in the Profecution thereof.

Thirdly, Therefore being thus well provided, he ought very thoroughly and ferioufly to confider of his Defign; and this he thould do firtt by propofing to himfelf the end of his Inquiry; then by confidering from the Nature of the Inquiry, what things feem moit likely to be conducive thereunto, and accordingly to fer down thofe things as quafita or Requifites; then further to confider well, and contrive by what means each of thefe Properties may he attain'd, viz. By what Experiments or Obfervations, what Engines, and Contrivances are neceffary, and how to be ufed: And for this end it is altogether neceffary, that he be able to defign and draw very well, thereby to be able both to exprefs his own Ideas the better to himfelf, to enable him to examine them and ratiocinate upon them himfelf, and alfo for the better informing and inftructing of others; for there are many things which cannot be made as plain to the Ulnderffanding, by a large Defcription in Words, as by the Delineation of them in a quarter of a Sheet of Paper. "Drawing therefore is not only neceffary in point of In. vention of Mechanick Contrivances and Demonftrations, but for the Regiffring Particulars, and compiling a defirable Hiftory. Next, Having contrived his Methods of Examination, he ought to profecute them with great Diligence and Judgment, in ordering, ufing, and deducting from them.

4thily, In the Profecution of each of which, he ought to proceed with the greatelt Degree of Candor and Freedom from Prejudice, not to be byaffed by this or that Opinion in making of Deductions, nor by the Pleafantnefs or Gainfulnefs of the Experiment, or any other by Confideration that does not immediately look at the prefent Difcovery he is fearching after; for though thofe things are not to be wholly neglected, but rather mark'd by the by, and in tranfitu, yet the Mind is not to dwell upon them, or look otherwife after them, than as they are conducive to the prefent Inquiry, as they manifeft a Truth or difcover an Error, left like fweet finging Syrens they feduce their followers out of theit right way to their utter Deftruction. He ought alfo to proceed with the greateft Circumfpection and Diligence to find out fuch things, as are Indications of what he feeks, and from thofe to take Incouragement to profecute his Intentions, as Columbus did from the decreafing Depth of the Sea, the Drift of Weeds on the Surface of the Water, and the White Clouds that appear'd neear the Horizon, and the like to incourage and direct him in his Courfe.
5. He ought to get what Help'he can from others to affit him in this his Un. dertaking; for 'tis not to be expected from the fingle Endeavours of any one Man, though the moft accomplifht, that any great Matter fhould be done, Man's Life will be well near half fpent, before he can be fit to undertake this

The Metbod of Improving Natural Philofophy.

Work, and 'twill be a long time afterwards, before a fufficient Supellex can be gathered by his fingle Endeavours: Befides, there is much of Expence requifite, which every one cannot fo well bear, that may perhaps be otherwife fit for this Employment; he mult therefore here alfo imitate Columbus, endeavour to be provided with Ships, and Men, and Money, and all thofe Affiftances he finds requifite for the thorough Profecution of this Difcovery.
6. Lafly, He ought, as Columbus did, freely and impartially to difcover what he finds; but yet with particular and more efpecial Regard to the great Promoters and Benefactors of this Defign, and what Affiftances he has receiv'd he ought candidly to acknowledge: And whatfoever he regifters, he ought to do it in the plaineft; fhorteft, and moft fignificant Defcription, the Matter is capable of, and in fuch a Method as may neither caufe Repetition of Hiftory; in more places than one, nor the Rejection of fome others, becaufe it fits not punctually to his Merhod: He ought likewife to own what Information any one has contributed roward the compiling of fuch a Hiftory; and to be as care. ful that he be not impos'd on, either by the Ignorance or Deceit of fuch as feem to be affifting.
The next thing to be confidered is, what the Subject of his Enquiry is ; which I thall endeavour to explain, by fetting down the General Scheme of the whole Matter, about which a Philofophical Hiftory is to treat.

And this is not of lefs extent than the World, there is no Body or Opera- sif. The Subo tion in the Ulniverfe, at leaft if it can be any way brought to our Knowledge, ject of Philofo. that is not fome way or other to be taken notice of in this Great Work; the phical hiftory moft precious are here not more confiderable, nor perhaps fo much as the moft trivial and vile : Every thing is here to be taken notice of only as it is lucriferous or conducive to the Difcovery of Truth, and for a while at leaft the Lucriferoufnefs of any that occurs (anlefs for the Caufe of encouraging others in the Search) is to be omitted ; left thereby the Mind be diverted before it have gone through with its firf Undertaking. Nor though the Volumes requifite to be filled with this kind of Hiftory be many, and fo may feem to confound the Mind with the very thought of making ufe, or examining over the Particulars therein, and much more with the thought of compiling and collecting them; yet if we confider but the Volumes that are already writ on Subjects that have much lefs of Reality, and thofe perhaps by fome one Man, and theVolumes he has been fain to tumble and fearch over for the collecting of the Matter contain'd in them, befides the Multitude of Thoughts and Perplexities of Mind in fpiming out Niceties and ranging them, we may find the Labour and Perplexities of there Colle己tions of teal things, nothing comparable for Difficulty to thofe of Fiftion, and Imagination; for I have very good Reafon to believe, that the whole Mafs of Natural Hiftory, may be contain'd in much fewer words than the Writings of divers fingle Authors: And the Method of ufing them will be much more eafy, and the Labour of interpreting or underftanding them, if done aright, will be almoft as eafy as to unravel a Botiom when you begin ar the right end. The Method of diftributing the Matter of Philofophical Hiftory, both for making Heads of Inquiry, and confequently alfo of regiftring them, need not be very nice or curious, they being in them laid up only in Heaps as it were, as in a Granary or Store-Houfe, from thence afterwards to be tranfcribed, fitted, ordered and rang'd, and Tabled, as I fhall afterward explain to be made fit for Ule; for (as I inftanced before) a fufficient Store of found and good Matetials; ought to be collected before the Work of Superftructure can be begun.

We will divide the whole Bufinefs of Philofophical Hiftory into thefe parti. cular Heads of Inquiry, in which we have not fo much proceeded according to the Nature of the things themfelves, as according to their Appearance or Refpect to us : For though the Earth, in Comparifon of the Heavens, be as it were a Point, yet in Relation to its Nearnefs and Senfiblenefs to us, it becomes much more confiderable, and the Confideration of it and its Parts will take up the greateft Part of this Hiftory. We will divide the Subject of Philofophical Hiftory into two Parts; to wit, into things Natural and things Artificial.

22 The Method of Improving Natural Philofophy.

Natural things may according to their Refpects to us, be diftinguifhed into containing or contain'd Bodies; the great containing Body we call Æther, in this may be confider'd either its Magnitude and Figure; or its Parts: Or its Mo. tions: Or its Mixtures: Or the things contain'd by it. Thefe laft are either Comets, or Planets, or Stars, the Planets we yet know of are either Primary or Secundary ; the Primary are thefe ${ }^{9}, 8$, the Earth, $\delta^{\pi}, 4,5$, the Secundary are the Moon, the Satellites of ψ the Lunal of Saturn. All thefe, faving the Earth, being remov'd much out of rèach, may be.compriz'd under one only Head ; but of the Earth being nearer to us,we may confider its Parts. By the Earth I underftand, all the Bodies contain'd within the Compafs of the Armofphere: In the Atmolphere therefore being that which contains the reft; we may confider either its Figure and Extent, its Parrs irs Mixtures, its Motions, the things it contains: Thefe laft are either greater orlefs, the greater are the two great Maffes of Body, of which the Earth is made up, Namely, Water and Earth; the leffer are Animals. Animals are Infects, Birds, Beafts, Men: In the Water we may confider either its Figure and Extent, its Parts, its Mixtures, its Motions. The things contain'd, thefe, are either Vegetables or Animals; Vegetables fofter, and ftony finimals, Infects, Filhes, Beafts. In the Earth we may confider its Magnitude and Figure, its Parts, its Mixtures, its Motions, the things it contains; thefe may be Metals. Plants, Mufhrooms, Moffes, Herbs, Shrubs, Trees, from which Confideration of the Matters of which Hiftory is to be written, might be collęted Tables or Heads for Inquiry ; but becaufe thefe might feem Dogmatical, and thereby he offenfive to fome, and might feem to favour of Prejudice, or favour to the Copernican Hypothefis, which I have been endeavouring to provide againtt; I fhall make choice of this following Diftribution, which is made only according to the Appearance of things.

From which Diftribution of things on the firft of thefe, we may make thefe particular Heads of Inquiry, which for the Journal or firft Book of Entries, will be particular and diftinet enough.

Artic. I. The
Hiftories of Na tural things.

1. The Hiftory of Comets and Blazing Stars.
2. The Hiftory of the Sun, Moon, Stars and Planets.
3. The Hiftory of the Æther.
4. The Hiftory of the Height, Extent, Figure, $\mathcal{V}^{\circ} c$. of the Atmofphere or Air.

The Met bod of Improving Natural Philolophy.

5. Thie Hiftory of the Variety of its Parts, or feveral climates, and in feve. ral Regions or Heights.

6. The Hiftory of the various kinds of Mixtures it fuffers from Meteors.
7. The Hiftory of its various Motions;Breizes, Winds; Storms, Hurricanes, $\xi^{\circ} c$:
8. The Hiftory of Infects:
9. The Hiftory of Birds.
10. The Hiftory of Beafts.

Anatomical Hiftory of the Internal Parts of Man, compar'd with thofe of other Animals.
Anat. Hift. of the Humors and Motions in the Bodies of Men, compar'd alfo.
The Hiftory of the Shapes, Cuftoms, Diets, Ages Difeafes, Cures of Men in divers Countries.
The Hift. of Senfation, Morion of the Mind, Memo ry, Reafon, Folly; Madnefs;Sleeping; \& Dreams; $\xi^{\circ} c$
12. The Hiftory of the Figure, Extent, Bulk, छ゙c, of the Water.
13. The Hiftory of the Seas, Lakes, Ponds, Rivers, Fountains, Subterraneous Rivers, $\vartheta \%$.
14. The Hiftory of the various forts of Bodies that are found ineorporate, or that may be diffolv'd by it, as Salts, Slimes, Gums, 60 c:
15. The Hiftory of Currents, Ebbings and Elowings, Increafe and Decreafe, Overflowings, Inundations, and Defertings of feveral Parts, of Voragoes, . Sub-

16. The Hiftory of Sea. Infects, compar'd with Aerial and Terreftrial. . I
17. The Hiftory of Fifh, both of frefh Water. and Salr, defcribing their Internal Structure, and Shapes as well as Outwards:
18. The Hiftory of Sea Beafts, Eic. Morfes, Seales, Tortoifes, Evc. Anầtomiz'd and compar'd with other Creatures.
19. The Hiftory of the Extent, Figure, Magnitude, \mathcal{E}. of the Earth, both in refpelt of other great Bodie's in the World, as the Sun, the Moon, the Sea, Erc. and in refpect alfo of the Body of Man, or our common Meafures.
20. The Hiftory of its various Parts, External Mountains, Vales, Plains, Clifts, Places of Reception for the Sea, $\mathcal{O}^{c} c$.
21. The Hiftory of its Mix́tures, Metals, Minerals, Stones; Clays, Earths, Sands, Oyls, Salts, छ'c. and the various Conftitution of its Parts; the feveral Regions of it, of what kind of Shells, or Layers of Sand, Stone, Eayth, Clay, ξc^{c}. it confifts at feveral Depths.
22. The Hiftory of its Motions, Diurnal, Annual, Lunar, or Tide-making.
23. The Hiftory of its Internal Motions, Earthquakes, Efuptions, E゙c. Tranfpolitions and Transformations.

24: The Hiftory of the Magnetifm of it:
25. The Hiftory of its Gravitating Power.
26. The Hiftory of the Subterraneous Fires, Rivers, Caverns, Damps, \&rc.
27. The Hiftory of Mufhrooms, Moffes and Plants, Roots, छ๗c.
28. The Hiftory of Shrubs and Trees.
29. The Hiftory of Ground Animals and Worms.

Befides thefe particular Hiftories of the feveral parts of the World, there ought to be feveral Hiftories compos'd of the prime: fenfible Qualities, fuch as may ferve afterwards for the finding out of thofe Proprieties firft which art more fimple, fuch ás thefe.

1. The Hiftory of Light and Darknefs.
2. The Hiftory of Tranfparency and Opacoufnefs.
3. The Hiftory of Colours, commonly diftinguifht into real and appearing
4. The Hiftory of Sounds, Mufical and Harmonious.
5. The Hiftory of Taftes.
6. The Hiftory of Smells.
7. The Hiltory of Heat and Cold.
8. The Hiftory of Gravity and Levity.

24 The Metbod of Improving Natural Philofophy.

9. The Hiftory of Denfity and Expanfion.
10. The Hiftory of Flexibility and Stiffners.
ir. The Hiftory of Malleability and Brittlenefs.
${ }^{2}$ ally, The Hi - And thefe Hiftories will be moft adorn'd and compleated from the Hiftory of forries of Arti- Mechanical Employments and Operations, and moft efpecially by judicious and fricial and Me- accurate Experiments, defignedly tried; the true Nature of each of which Prorations. prieties being exactly determin'd, will hugely facilitate all the other Inquiries in Philofophy. It were very defirable therefore, that though thefe Hiltories are here placed in the Second Place;, yet they were primarily and chiefly to be regarded; for the Knowledge of thefe, will extreamly rectify the Mind both in propounding Queries, and alfo in making Examinations aright, for the Nature of all thefe Proprieties being known in a Body, the true Texture and Conftitution of the Body may be much more eafily found.

Thus much for the Heads of Natural Hfftories, next for Artificial. It will be requifite to take notice of, and enumerate all the Trades, Arts, Manufactures, and Operations, about which Men are imployed, efpecially fuch as either contain fome Phyfical Operation, or fome extraordinary Mechanical Contrivance, for fuch as thefe will very much inrich a Philofophical Treafury. And thefe we may diftinguifh into thefe feveral Heads, according to the various Materiais about which they are converfant. We may refer
To Fire. 1. The Hiftory of \{Chymilts, either fuch as make Tryals on Metals, or ope-
To Air. 2. The Hiftory of sthe various Ways of making ufe of the Air for the Mo: 2. The Hiftory of $\{$ tion of Ships, Mills, Engines, drc.

To the Water. 3. The Hiftory of $\{$

Rowers, ways of cutting Rivers and making them Navigable, Engines for raifing Water; for finking Water, छ̌c. for founding the Depth, the Hiftory of Divers, Swimmers, Sailors, © c.
Surveyors, the moft expedite ways, as alfo the moft exact.
To the Earth.
 4. The Hiftory of Miners, their ways of finding the Mineral; of digging, clearing, and breaking through Rocks and Rivers in their Paffage, of the various Earths they meet with, as alfo of their Damps, and other Exhalations.

The Hiftories alfo of fuch as are converfant about Mineral, Vegetable, and Animal Subfances, fuch as thefe.
PPotters, Tobacco.Pipe-Makers, Glafs makers, Glafiers, Glats. Grinders, Looking.Glass-Makers, or Foilers, Spectacle Makers, and Optick:Glafs-Makers, Makers of Counterfeit Pearl and precious Stones, Bugle-Makers, of Lamp-blowers, Colour Makers, Colour Grinders, GlafsPainters, Enamellers, Varnifhers, Colour-Sellers, Pain-

[^1] ters, Limners, Pieture: Drawers, Makers of Baby Heads, and Bowling Stones or Marbles, Counterfeit Marble, Wax-work, Cafters.
Brick-makers, Tile-makers', Lime-burners, Plafterers, Paviers, Pargiters, Eurnace-makers, China Potters, Crucible Makers:

6. The Hiftory of $\left\{\begin{array}{l}\text { Mafons, Stone-cutters, Statuaries, Sculptors, ArchiteEts, } \mathcal{E}_{2} c_{0} \\ \text { Cryftal-cutters, Engravers in Stones, Jewellers, or Stone }\end{array}\right.$

To Stomes . Setters.

The Metbod of Improving Natural Philofophy.

7. The Hiftory of

Making Salt, Alum, Salt-peter, Vitriol, Gunpowder, Sul. To Minerals. phur, Bitumen Naphtha, Sal Armoniac, Sandiver, Kelp, Borax, Pot-afhes, Soap boilers, Refiners, Colliers.

Iron-Mills, and Founding in Iron, of forging it into Bars, To Fonto of Anchor-Smiths, orc. Plate-makers, Nail-makers.
Steel-making.
Lock-fmiths, Gun fmiths, Jack-fmiths, Edge-tool makers and Hardners; Grinders and Forgers, Armourers, Spurriers, Bit-makers, Needle makers, Hook-makers, Toolmakers, Wire Lettice and Cage-makers, or Latton-men; Spring-makers, File cutters, Chirurgeons Inftrument-makers, Engine-makers, and Crofs-bow-makers.
9. The Hiftory of $\left\{\begin{array}{c}\text { Plumbers, Shot-making, Cerufe-making, Red Lead ma-To Lead } \\ \text { king, } \\ \text { E̛c }\end{array}\right.$, king, $\underbrace{\prime} c$.
10. The Hiftory of $\left\{\begin{array}{l}\text { La } \\ \mathrm{m} \\ \mathrm{Pe}\end{array}\right.$

Latin-makers, and Tin-men, Type.founders, Printers, of To Tin belong making Soder and Putte, Glafs colours. thefe Trades, Pewterers, Pipe or Worm-founders, Organ Pipe-makers. whole Hiffories mould be col. lected.
Copper.fmiths and Founders. Copper and.
Ingravers, Etchers, Emboffers, $\vartheta^{\circ} \mathrm{c}$. Brafs.

Brafs.making, and Founders of Bells, Ordnance, Rots, Nails, and other fmall things.
Brafiers and Tinkers, Clafp-makers, Scale-makers and
11. The Hiftory of

Weight makers, Thimble makers.
Plate makers, Burnifhers, Roll-Prefs Printers.
Clock-makers and Watchmakers, Mathematick Inftrument makers, Turners.
Wire, drawers, Tinfey-makers, Pin makers, Taggers.
Trumpet-makers, $\begin{gathered} \\ \text { C. }\end{gathered}$
Smelters and Refiners
Gold and Silver-fmiths, and Guilders, Coiners, Inlayers, ver.
12. The Hiftory of $\{$ Enamellers.
Gold-beaters, and Wire-drawers, and Throfter or Spinners, Lace and Stuff makers, Spangle makers.

Gold and Sil-

CHusbandry and Gardning, Botanicks, and Sugar Planters, Vegetables.
Tobacco Planters, 'Saffron, and Ginger, Liquorice Planters, $\xi^{\circ} c$. Threethers, Ploughmen.
Flax.makers, Dreffers, Spinners, Lace-makers, Buttonmakers, Weavers, Calenders, Hatchelers, Whitefters, Painter Stainers, Fuftian-makers,'Twine and Packthreadmakers, Net-makers, Sieve-makers and Serce makers, Rope-makers, Cauckers, Sail-makers, Mat-makers, Semfpters, Bone-lace Makers, Tape-makers, Straw-work makers.
13. The Hiftory of $<$ Malters, Millers, Brewers, Bakers, Vintagers, Vintners, Diftillers, Strong water-men, Alehoufe-keepers, and Ci-der-makers, the Makers of Coffee, Chocolate, and various other Drinks, Vietuallers.
Prefervers of Corn, Fruit, Hops, Wood, Indico, Spices and various other Drugs, as Meal-men, Fruiterers, Coftermongers, Brazil-grinders, Hop.dreffers, Wood-men, Madder Planters, Rape-Oyl Makers, Seed-men.
Grocers, Drugfters, Apothecaries, Confectioners, SugarBakers, Smokers, Tobacco-cutters, Huckfters, Perfumers, Garblers of Spices.

Paper and Paftboard making，Stationers，Bookfellers， Printers，Compofers，Scriveners，Starch－makers，$\varepsilon \subsetneq c$ ．
Woodfellers，Barkers and Cole Charrers，Woodmongers． Sawyers and Saw－mills，Carpenters，Shipwrights，Mill－ wrights，Pump－makers，Joyners，Cabinet－makers，Screw－ makers，Mufical Inftrument－makers，Organ makers，Car－ vers，Turners，Fletchers，Bowyers，Archers，Buttenmold－ makers，Coopers，Gagers，Basker－makers，Bnx makers， Comb－makers，Laft and Heel－makers，Broom and Mop－ makers，Bellows makers，Hoop－makers，Lath－makers．

〔Shepherds，Grafiers，Goatherds，Swineherds，Sow．gelders， Grooms，and Horfe－Courfers，Bear and Lyon Keepers， Dog．catchers and Keepers，Rangers or Keepers of Parks， Warrens or Forefts．
To Animatso Farriers，and the various ways of Curing Beafts，Mole－ catchers，Rat－catchers．
Hunters，Hawkers，Fowlers，Decoyers，Fifhers，Draggers， Gunners，Fowl keepers and Lookers to Aviaries，છ゙c．

Sheep－fheerers；Fellmongers，Clothiers，worfted Combers， Spinfters，Knitters，Weavers，Cloth－dyers，Fullers，Cloth－ workers，Sheerers，Hot－preffers，Taylors，Drawers，Em－ broiderers，Tapeftry－makers，Carpet－makers．
Felt－makers，Caftor－makers，Cap－makers，Furriers，Hair cloth makers，and other kinds of Stuff，as Arras，Mille－ ners，Pencil－makers，Brufh－makers．
Horners，Horn－turners，Comb－makers，Horn－makers， Hafters，Dice－makers． Upholfterers，Feathermongers，Pen－makers．
Silk Trofters，Dyers，Weavers，Stocking weavers and Knit－ ters，Ribbond weavers，Gumflower－makers，Mercers， Silk－men，Button－makers，Lace－makers，Embroiderers， Preffers and Waterers．
Bee－keepers，Silkworm keepers．
Leather－dreffers，Parchment－makers，Glovers，Perfumers， Tanners，Curriers，Shooe makers，Botrle makers，Harnel＇s and Coller－makers，Sadlers，Coach－makers，Cafe makers， Trunk makers，Book－binders，Sheath－makers，Leather－ fellers，Leather－guilders，Belt－makers．
Butchers，Cooks，Tallow－chandlers，Wax－chandlers， Cheefemongers．
Fifhmongers，Ripiers，Oyle－makers，Soap boylers，$\xi^{\circ} c$ ．

There are other
Imployments， more particu－ larly about Man．
＇About the
Parts of Ani－ mals．
mals.
（School－mafters，Writing mafters，Printers，Mufick－mafters， Stage－players，Dancing mafters，Horfe riders，Fencers， Vaulters，Tümblers，Wreftlers，छ゙c．
Apothecaries，Chirurgeons，Barbers，Laundreffes，Cofme－ ticks，Seamfters，Taylors，ジc．

In the writing of all which Hiftories there may be two things defign＇d，either a Defcription of the things themfelves，whereby Inquifitive Perfons that are ignorant of them，may come to a more perfect Knowledge of them；in order to fome other Defign as for Curiofity，or Difcourfe，or Profit，and Gain，or the like：Or fuch a Defcription of them as is only in order to the Ufe of Philo． fophical Inquiry，for the Invention of Caufes，and for the finding out the ways and means Nature ufes，and the Laws by which ihe is reftrain＇d in producing divers Effects．

And this laft is that which is chiefly aim＇d at in this Defign（though others alfo whofe Intenfions are only of the former kind，may find much to fatisfy

The Method of Improving Natural Philofophy.

their Defires) for thefe being known and applied, not only the Reafons of the ways already made ufe of in feveral Trades might be eafily known: But each of them highly amended and improved, and by other ways performed with much more Eafe, Speed and Certainty.
In the Hiftory therefore of Trades, we are chiefly to look after the Phyfical Proprieties of each, as what is hard or foft, what flexible or ftiff, what fharp, corrofive, what odoriferous, balfamick and prefervative, what putrifactive and corruptive, $\mathcal{F}^{\circ} c$. together with the manner of applying Agents to Patients, and to obferve the manner of Natures proceeding, where the is impos'd on by Art, and limited to this or that Degree, and not fuffer'd to a\&t otherwife, by what Ways the may he affifted, accelerated, regarded, ftopt, and the like, in her ufual Proceedings; for thefe being known, molt of the other things will be very eafy and follow of courfe. We ought alfo, to take notice of the various forts of Mechanical Engines, which ferve to affift and direct the hand in performing many Operations together, with Eafe and Speed and certainty : which are not otherwife done without much Uncertainty, Time, and Difficulty; and of the feveral Slights and Contrivances in Operations, and the order of them, which precede and which follow, and the Efficacioufnefs of them in this or that Method.
Befides thefe Trades I have been mentioning, there are many excellent Ex. periments and Secrets to be found fcattered up and down in Mens Practifes, which have not come up to that Confiderablenefs in the Commonwealth as to be made a Trade, which yet contain in them divers Circumftances of very excellent Ulfe and Information, thofe alfo ought to be fought out and collected and rang'd into their proper Places, if at leaft they can properly be referr'd to any of the foregoing Heads, otherwife they are to make a particular Head of themfelves: Of this kind there are a multitude almoft in all Eftates and Conditions of Men, which to this Defign will be of huge Importance, and will afford very much Information, even out of the moft vile and feemingly moft foolifh and trivial things, and of thofe which are moft common, and therefore pafs without regard, becaufe ufual, may be collefted things of moft excellent Ufe; and therefore, nothing in this Defign is to be look'd on with the Eye of the Vulgar, and with Prejudice, according to the Efteem it has obtain'd in the World with the Generality of Men, who generally judge or efteem of things only for the immediate Pleafure or Profit they afford, and look no further; therefore 'tis not equal to make their Efteem who underftand them, the Standard of the value of things for this ufe. So that a diligent Naturalift can go no-where; but he may find a Subject for him to contemplate and examine, but efpecially in fuch Places as are moft or leaft frequented, for the Obvioufnefs in the one, and Difficulty in the other, has made Multitudes of confiderable Obfervations to be neglected.

Having thus curforily fumm'd up the chief Heads of thofe things that are fit s rir. The mo to be the Subject of Natural Hiftory, I thall next adjoyn a Specimen of what thods of mas things are to be inquired after in them, that fo any other that fhall have an king the enOpportunity, and willing to promote this Defign, may accordingly, whatever quiries. the thing be he defigns to write a Hiltory of, firlt propound to himfelf the things, which upon a ferious Confideration of the Matter, he fhall judge to be moft likely to be inftrictive for the difcovering of the true Nature of that which he inquires into.
For it cannot be expected, that any one fhould be alike able to make Queries of thofe things in which he has not been much, if at all converfant; "as one that has had an Opportunity of acquainting himfelf more particularly with the Na ture of it, and has imbib'd in (though he knows not how) a great deal of imperfect Knowledge of the Proprieties of, it . He ought therefore to confider with himfelf, what things there are in the Subject he would inquire into, which being told him, he fhould be able to know the true Propriety, Nature and Texture of it : And fuppofing he had met' with fome one that could refolve him, what Queftions he would ask, him, by the Refolution of which he fhould be able to find out what he feeks; and accordingly he ought to fet down thofes Queftions in Writing, that to he may have a Scheme before his Eyes what are the things he looks: after, what his Scope and Aim is.

28 The Metbod of Improving Natural Philofophy.

The way of anfrering the Queries.

And having fet down thefe Queries, he ought in the next place to confider what things feem requifite to attain thofe ends; what means he can imagine may be conducive to the folving or anfwering thofe Queftions, that is, what Obfervations, Examinations, or Experiments would feem conducive thereunto, and accordingly under every fuch Query or Queftion, he ought to fet down the things requifite to be known for the obtaining the full Knowledge of a compleat and full Anfwer to it ; afterwards with Care and Diligence he ought to make Examination and Tryal of what he has propounded, one thing after another, with much Circumfpection, for accordingly as thefe Queries are made with more or lefs Judgment, and as the means conducive to the Refolution of them are more judicioufly pitcht on, and diligently try'd more or less confiderable, fo will the Particulars to be entred in the Diary be; and the more or lefs ufeful for a Philofophical Treafury. In the making of which Experiments and Tryals, it were.very defirable that the Inquirer would firft make Tryal of them once all over, and obferve diligently and enter into a Paper by themfelves as many Particulars as he can difcover worth noting, and then a fecond time to make them over again. 'In the doing of which, it would be very convenient to get fome fuch Perfon to be prefent as has not been acquainted with Experiments on that Subject, though ingenious and inquifitive in other Phyfical Searches, becaufe fuch a Perfon may take notice of many Particulars which are in themfelves very obfervable, but were and would ftill have been neglected becaufe of their being obvious, and becaufe the Inquirer having been long accuftomed to the feeing of them without thiriking them any ways confiderable, will be now very prone to do as formerly, flight and neglect them, and this will be inttructive to him in thewing him in what things he is moft likely to be overfeen in, as, well as fhewing "him the things themfelves. The Tryal of thefe Experiments, 'tis very likely, will much further his' Knowledge, and thew him perhaps the Solution of fome of his Queries, as well as the Error and Infignificancy of others; and may perhaps much better inftruct him how to make his fecond Clafs of Queries, and how to proceed in the folving and anfwering them, they will not only facilitate the Labour of making and accuftome his Mind to a greater Circumfpection, but will fuggeft alfo various ways of examining and experimenting, which without this Method of inquiring would not have been thought of.

And though indeed the Multitude of Queries that may be made upon every Subject, may feem to make this W ork infinite and impoffible to be compleated, yet if Men would but profecute thoroughly, according to the ways I propound in this Track, fuch kind of Inquiries in order to the Difcoveries of the Proprieties of fome Bodies, or for finding out the Nature of fome general Qualities. I cannot doubt but that fuch Endeavours would pioduce fo confiderable Difcoveries, as would not only ferye for the Explication of that one Body inquir'd into, but of Multitudes of Bodies of the like Nature; and every fuch livention will eafe the Inquiries in moft other Bodies, half in half, after the fame Propriety. As to give an Inftance propounding to my felf to find out the Rea-
An Example of fon of the Lightnels of Cork. I fet down among other ways of Tryal to exa.

the Method.

 mine the Texture of it with a good Microfcope, hoping that poffibly I might thereby be able to difcover its Texture, to this end I examin'd feveral Pieces of Cork, whofe fides I had cut very fmooth with a Razor, but the glaring RefleEtion from the Multitude of fides that compofe its Surface made me unable, though I try'd it in feveral Lights to difcern any kind of Pores, I bethought me therefore of Thaving off a very thin Sliver of Cork, and laying it on a black Ground, I could with my Microfcope then plainly perceive the Texture of its Subftance, that it was as porous as a Honey-comb; that is, all over full of fmall long Pores, upon and down, through the length of which were inter\{pers'd many crofs Diaphragms, or Valves, by which means the Air is imprifon'd in very curious clofe Boxes. Finding thefe in Cork, I proceeded to find the fame in Wood, not doubting but the Lightnefs of that might proceed from fome fuch Caufe, I made tryal with Wood both green and dry, thav'd after the fame way, but in green Wood it fucceeded not at all, but I could perceive divers larger up and down the dry. I conceived therefore, that it might be the Juice of the Plant which had fill'd thofe Holes, and therefore confidering that inCharcole

The Metbod of Improving Natural Philofophy.

Charcole all that fuperfluous Juice is wafted, and evaporated; I made tryal of viewing a Coal in a Microfcope, and even beyond my Expectarion, I could dif cover fuch Multitudes of them and fo fmall, that I could hardly at firft believe my own Eyes, till trying the Experiment over and over again, I found the fame Propriety was not only to be found in one or two other kinds of Wood, but was common to all forts of Vegetables that I was able to charr.
Thus the Experiment of Saccharum Saturai, by diffolving Lead in an acid Li: quor, and evaporating away the watery part, will hint to us a way of difcovering the Taftes of all kinds of Bodies; that is, by diffolving thofe referved and taftelefs Bodies, in fome convenient Men/fruum, for being once diffolv'd, it becomes diffoluble alfo, by the Vehicle of that Menftruum, to the Saliva or Juice in the Mouth, or Tongue which feems to be the Organ of Tafte.
Thus the finding out the Caufe of Fluidity, Heat, Gravity, Brittlenefs, occ. in one Body, will much facilitate the Inquiry after the like Properties in any other Body, fo that though indeed upon every fpecifick Body to be examin'd, there may be a Multitude of Queries propounded, yet the more proceeding Bodies have been by this Method examin'd, the fewer of them will there remain to be anfwer'd.

The Queries that may be made on the firft Head, I fhall refer to a following The if Heads Difcourfe, concerning the late Comets, and of the Nature of Comets in ge of Coimets. neral.

The Queftions on the Second may be fome fuch as thefe.
The Difference between Stars and Planets?
How many Planets, Primary, or Secundary ?
And how many fixt Stars?
In what Order plac'd?
Of what Figure?

The 2 id Head_{2} of the Stars enid Plarets.

In what Ordér plac'd?
Of what Magnitude compar'd to the Earth ?
How far diftant from the Earth ?
In what way they are mov'd ?
With what Velocity?
In whar time they perform their Revolutions?
What Heat, or Light they have?
From what Caufe their Heat or Light proceeds ?
What Influence they have on each other, or on the Earth ?
Whether they are conftant or changeable in being or appearing ?
Whether conftant in Magnitude and Figure?
Whether conftant in Motion and Diftance?
Whether conftant in Light, and Heat, and Influence ?
What Proprieties are common to them with the Earth?
Whether included in Orbs or fwimming in Æther?
Wherher the Ambient Body move them, or they the Ambient?
Wherher moving together with the Ambient, or mov'd through it ?
What the Confiftence of the Ambient Body may be ?
How much it may hinder or retard their Motions?
Divers of thefe may be referr'd to the Third Head, concerning the Solidity The 3d Heads or Fluidity of the 历ther, the Motion of it and the Refiftence of it to Bodies of the 座theri mov'd through it, and of the Tranfparency and Communicativenefs of it as a Medium : There might be many other things alfo propounded on this Heads, as whether it. permeates all Bodies, be the Medium of Light, be the Fluid Body in which the Air is but as a Tincture? Whether it caufe Gravity; in the Earth, or other Caleftial Bodies? Whether it affifts in the Action of Fire and burning, and in the Diffolution of other Bodies by Menftruums; in the Fermentation of Bodies,' and Multitudes of the like; which will be difpers'd up and down in the Queries, on feveral other Subjects, and are there beft refolv'd, though they may afterwards be referr'd and tranfcribed under this Third Head.

30 The Method of Improving Natural Philofophy.

The Queries on the Fourth Head concerning the Atmofphere, may be fome fuch as thefe.

The 4 th Head, of the Atmo Sphere, as to its Extent, 8 C

Whether the Atmofphere, or Air be defin'd, or not, by a Superficies?
Whether it be not indefinitely extended upward, and continually more and more rarified the farther 'tis diftant from a gravitating Body, as the Earth Moon, Eic.

Of what kind of Figure the groffer or more vaporous Air near ihe Surface of the Earth is ; that is, Whether it be not much lower near the Poles than under the Torrid Zone?

Whether the Torricellian Experiments made at feveral Altitides from the Earth, may not determine it?

Whether the Refraction and Gravitation of the Air, examin'd in both places by Inftruments, may not clear this Query? Since 'tis demonfrable that where the Refraction is greater with an equal Degree of Preffure, the Denfity of the Air muft needs be much greater near the Surface.

With what Bodies it is mixt? Whether with Water, Wood, Earth, Animal Subftances, and Vegetable Subftances, and with all forss of Liquors and Spirits?

Whether it helps to nourih the Fires kindled within the Bowels of the Earth ?

Whether it encompafs the Sun and Planets, and that each of them have a peculiar Atmofphere, as well as they have a gravitating Power?
-Whether the Fire, in the Sun, is not maintain'd by the Air that incompaffes it?

Whether the Spots in the Sun may not be Clouds of Smoke, or Vapours, rais'd up into that Atmofphere?

Whether the Combuftion of Comets may not be afcrib'd to the Diffolution of them by the incompafing Air, which is fomewhat more condenfed near them?

The Queries on the Fifth Head, of the Variety of the Parts of the Air, may be fome fuch as there.

The sth Head,
Whether the Air be not a kind of Volatile or fmall ramify'd Bodies fwim-
of the Variety of the parts of the Air. the then

Of what Figure and Magnitude, how they are kept afunder, or what fills the diffeminated Spaces between them ?
What is the Caufe of making them capable of fo vaft a degree of Expanfion, and yet of being able to preferve their Elaftick Power outwards.

What Condenfation it is capable of bearing by Preffure from an Engine: Or from being let down to the bottom of a very deep Sea, or from Cold or from being let down a great Depth into the Earth?
What refractive Power it then has compar'd with the ordinary Air?
How much the Air may be rarified by Keat, by Exfuction, by the Torricellian Experiment, by Engines, by Vapours and the like ?

By what Degrees the Air expands it felf, being carried upwards, and from the Surface of the Earth, and whether this comparative Expanfion be the fame in divers Countries, and in differing Seafons of the Year ?

What the Height of the Air is that bears the higbeft Clouids, what are the Height of Thunder Showers, Hail Showers, whire dry Clouds, Halo's, Maccarel Skies, and the like?

What difference between the Air in thofe very high Places of the Earth, as Tenariff, the Alps, and the Andes in Peru, aud other Places as to Healthfulnefs, or Aptitude for Burning or Refpiration, or the Flight of Birds, or the like?
From what Bodies the Air may be generated anew, or whether that Air fo made be not fuch as had been formerly imprifon'd?

The Metbod of Improving Natural Philofophy. 3*

By what Varieties of Operations it may be produced, and by what Helps?

How the Air fo generated may be preferved in the Form of Air?
How any kind of Air may be made to loofe the Form of Air, anid to be coridens'd into a folid or fluid Body ?
How much the Air in the Torrid Zone differs in Heat, and Drynefs, or Moifture, or Rarefaction, or Preffure, or the like, from the Air nearer the Poles?

In what Proprieties it chiefly differs from other Liquors?
To the Sixth, Of the various kinds of Mixtures the Air fuffers from Meteors, there Queries may be propounded.
What is the Caure of the fudden thickning or clearing of the Air?
From what Power fo great a Quansity of Water as has been obferved to fall of the verimitus in fome Thunder Showers, fhould be collected or gathered together ?
Whether the Heat of the Sun alone, or fome internal Heat in the Bowels of Earth fhould raife up fo great a Quantity of Water ?
Wherker there be any fuch Meteors, as Earthy ones, raisd up into the Air, and if fo what becomes of them ? Whether Smoke and Duft and fuch like Fumes do not fall, as faft as the Air cools, to the Earth?
Whether there were ever any fuch thing as a Thunder-bolt, or other fuch maffy Body thrown out of the Air?
How much more fpace is fill'd by generated Vapours, than by the Water from whence they are made?
Why all Rains and falling Water are frefh?
Whether from the Coalition of divers forts of Vapours together, there be not ingendred a new Quantity of Air, and the reff falls down in Drops or Flakes; as in the Experiment of making Tartarum Vitriolatum, wherher that may not be the reafon of the Figure of the Flakes of Snow, ϑ° c.
What is the Reafon of the Shining or Light of the Star fhootings, and in what Region or Height they are generated? Whether this may not be obferved eafily enough by two Confederates?
Whether they have any thing of Fire in them, or whether the Light may not be an effeet of their rapid Motion ?
Whether the rifing of certain Steams from the Earth into the Air, may not be the Caufe of precipitating the Exhalations, by caufing the Air to throw off its Load in the fame manner as a charged Menfruum will relinquilh its diffolv'd Body; when it is penetrated by another Liquor of a contrary Nature, fince by fuch kind of Experiments may be very well reprefented in little, almoft all the Phenomena of the Changes of Air in the great Ocean of the Atmof phere.
What are the Caufes of the Rain-bows, and their Colours?
What are the Reafons of the Duplication, Triplication, Quadruplication, \mathcal{E}°. of both the Rain-bows? Which are obvious enough when the Bows are very vivid:
What are the Reafons of Rings about the Sun and Moon, and of their varying Bigneffes at feveral times.
Why the under Superficies of Clouds are fmooth, and feem to lie at the fame level Diftance from the Earth, whereas. the Tops are Mountainous and unequal?
Why there are fometimes divers of thefe Regions of Clouds one above ano. ther, and in what thofe Clonds differ?
What is the reafon of the various Figure of the Clouds, undulated, hairys crifped, coyled, confus'd, and the like?
What is the caufe of the Rednefs, Or. of high exalted Vapours?
What is the reafon of thofe Multitudes of fmall Cobwebs that cloth the whole Face of the Ground after a Fogg? And why there are divers fuch white Subftances flying up and down in the Air after fuch Fogs?
What is the caute of Lightning, whence that accenfible Matter is raisd up into the Air, and how collected, and how kindled ?
What Artificial Experiments, with Fumes or Spirits accenfible, will help to explicate them ?

Whether all thefe Phenomena may not be folv'd by Chymical Experiments (of which kind I may perhaps hereafter manifeft fome not vulgar.)

Whether Fire in general be not the effect of the Air's corroding or diffolving a heated combuftible Body? How it comes firf to be begun or kindled, how preferved and continu'd, and how deftroy'd, why it rifes in the Air whilft it lafts, but quickly vanifhes?

By what other means Fires may be generated, continued, made more intenfe, and much more violent ?

What is the Nature and Properties of Niter or Salt peter, as to this Particular ?

What the Mixture Coalduft performs in Gunpowder, and Alcalys in fulmi. nating Powders ?

The 7 th Head, To the Seventh, to wit, What are the Motions or Qualities of the Air? of the Motions Thefe Queftions, and divers others of the like kind, may be propounded:
and 2 ualities What the Air contributes to the Generation and Corruption of Bodies, whe-
of the Air. ther Mineral, Vegetable, Animal, \&c.

What it contributes to the Prefervation or Deftruction of Lifelefs Bodies, by hardning, drying, rufting, fermenting, ξ^{c}.?

What it contributes to the Nourifhment of Vegetables that grow in it? Since the Air is a kind of fluid that encompaffes all things in it, atter the fame manner as the Water in the Sea incompaffes the Vegetables that grow in it.

What is the ufe of it in Refpiration, whether Fifhes, Worms, Infects, \mathcal{C}. have any ufe of it; or whether Water be not of the fime ufe to Fifhes, that Air is to the Anmals that live in it? Whether the comparing of the one with the other will not much facilitate the Explication?

What is the ufe of it in Fire? Whether it does not perform that Action after the manner of a Menfirum?

Whether that Property in Air which promotes burning, be not of the fame Nature with that of Salt peter?

By what means Fires may be extinguifhed, by dry Bodies, by wet, or fluid Bodies, by the Air, and divers other liquid Bodies ?

What Flame is, the Expanfion of it compar'd to the Denfity of common Air?

Why Fire or burning Bodies produce Light, Heat, Smoke, AThes, Salt, Eic.
What the Air contributes to Corrofion and Diffolution of Bodies?
What it contributes to the Fermentation, and Concoction or changing of Bodies?

What are its Motions, conftant, anniverfary, periodical, accidental?
What are the Reafons of Breizes, Winds, Storms, Hurricanes, Whirlwinds?
What are the Velocities and Strengths of each of thefe, and the Conco. mitants?

What are the Ebbings and Flowings of the Air difcoverd by the Barometer, to what Regularity reducible, from what Caufe they proceed, whether from the rifing of new Vapours, or from the flowing in of the Air from other Cli mates; or from the Motion of the Earth, Moon, छic.
What are the Motions of the upper Parts of the Air, whether in the fame way, and with the fame Velocity with the lower part of the Atmofphere, why the Clouds that are plac'd one higher than another in feveral Regions and Stations, are fometimes obferv'd to go various ways at the fame time, and none of them perhaps the fame way with the Wind below.

Whence the Air is able to bear up the Clouds that feem denfer Bodies, whether from the Abatement of Gravity, or from the greater Cold and Denfity of the Air, at that height than near the Earth, or whether it be not more Denfe as to Expanfion, than the Clouds though the cloudy be more denfe in refpeit of Opacoufnefs.

Hence the Air is able to carry up Smoke, Duft, and feveral bulky Bodies that are manifeftly heavier, and why moft apt in Summer when 'tis moft expanded, whether it be not from longer Continuance of Hear, and from the Drynels of the Air in the Summer, and from the fudden cooling, and the interfperd Moifture of the Air in Winter.

The Metbod of Improving Natural Philolophy.

How it becomes able to fuftain the heavy Bodies of Birds and Infets, and the like, and by what means it may be fer viceable to raife and fuftain much greater Bodies?

How much the Air impedes the Felocity of Bodies mow'd through it?
What part of the Air is the Medium of Light?
What isthe Tranfparency or Opacoufnels of the Air, and from what Caüfes they proceed?

How much better a Body may be feen juft upward at a Diftance, than at the like Diftance in a Horizontal or level Polture?

At what Diftance a Body may be diffinctly feen in a Horizontal Pofure?
What is the comparative Reflectivenefs and Refractivenefs of the Air?
By what means may the Inflection or Multiplicate Refraction of the Air be found and determin'd ?

What is the reafon of the Undulations of the Sun and Moon, and bigget Pianets, and of the twinkling of Stars?

What are the Caufes of the appearing Blewnefs, Yellownefs, Rednets, \&ic. of Bodies through the Air?

By what means the Air becomes the Medium of Sound, whether the more denfe or rarify'd, moift or dry, tranfparent or opacous, be fitteft for that Conveyance?

With what Velocity Sound is conveyed through the Air, whether it may not be conveyed fwifter by Strings well ftretcht, or folid Bodies?

Whether it proceeds by ftraic or curve Lines?
Whether it be not alter'd by. Winds, $\bigoplus^{\prime} c$?
By what means it becomes the Medium to convey Smells?
How it diffolves or licks up the odorous Steams and Effluvia of Bodies?
Whence it comes that fo fmall a part of an odorous Body is able to tinge, of fcent fo great a Quantity of Air?

What are the Teveral Temperatures of the Air, as to Heat and Cold, Drynefs and Moifture in feveral Regions of the Earth, and at feveral Heights above the Surface of the Earth upwards and below the Surface, downwards in Wells, Mines, E̛C.

How many various ways there may be of making Thermometers and Hygrofcopes to be vifible at a great Diftance, by the help of Perfpectives, by which thofe Temperatures of the Air may be found without going up or down into thofe Places?

What is the Caufe of the Congruity or Incongruity of the Air, and how many Phenomena of Nature may be folv'd thereby?

What is the comparative Gravity of the Air in feveral Climates and Regions, and Seafons of the Year?
The Degrees of the Elaftick Power of the Air, how caus'd, augmented, deftroy'd, छ゙c.

What are the Degrees of Preffure in feveral Regions, Heights, Climates, ξc. the Effects thereof, and Phxnomena folvable thereby?

Thefe few Inftances, I hope, may ferve for a Specimen of what I mean by the Merhod of propounding Queries on any Subject, to be examined by accurate Obfervations and Tryals, before the Writing a Natural Hiftory of it.

After the Queries have been thus propounded and ranged, the next thing will $\$ 4$ th. The itebe to confider what Materials are to be gor for the folving of them, and an thod of anfwerfwering our Doubts, what. Hiftories and Oblervations from abroad, and what rist the EnquiExperiments, Obfervations and Tryals at home will be neceffary to be obiained and made: What Inftruments, Engines, and Contrivances, will be affifing to this End, how far the Senfes themfelves will help us, and where they leave us to feek other Helps, and this a ferious and unprejudiced Meditation, and confidering of the Nature of the thing will beft hint. And accordingly we ought to fet down under each Queries, what means can be thought of for refolving and anfwering of them, which Tryals and Ways ought to be profecuted from begin. ning to end vigoroufly, with Diligence and Accuratenefs, and to be Regiftered as faft as made, that no confiderable Circumftance may be forgotten. And al-

34 The Method of Improving Natural Philofophy.

ways upon tryal as things occur, that feem to be affifting towards the folving of another Query; than they were intended for; they ought to be regiftered unjer that, as an additional Help of folving that Doubt, for the Memory is frail, and may quickly forget even thofe things that are of moft Importance, and does not without much Labour and Trouble at beft, recal all Circumftances that are confiderable at the time when they are moft requifite. By this Method alfo, the Imperfections of Hiftory will be amended. And tho' indeed this Procefs of Reafoning and Inquiry may feem nothing elfe but what every Man would do, and does indeed continually practife in all kinds of Inquiry: Yet has it this vaft Advantage above the common way, where the bare Powers of the Senfes, Memory and Underftanding are relied upon, that it perfeets thefe Faculties to the higheft pitch they are capable of, and that is indeed as much as can be hoped for from Art : Every thing being here reduced to Regularity, Certainty, Number, Weight, and Meafure; for whereas in the common ways of Ratiocination, Examination and Inquiry, all things are trufted to the immediate Power of the Faculties of the Soul, viz. the bare Senfes, Memory and Reafon; in this they are none of them left, without their Armour, Engines, and Affiftants, the Senfes are helped by Inftruments, Experiments, and comparative Collections, the Memory by writing and entering all things, ranged in the beft and moft Natural Order; fo as not only to make them material and fenfible, but impoffible to be loft, forgot, or omitred, the Ratiocination is helped firt, hy being left alone and undifturbed to it felf, having all the Intention of the Mind bent wholly to its Work, without being any other ways at the fame time imployed in the Drudgery and Slavery of the Memory, either in calling particular things to Memory, or ranging them in Order, or remembring fuch things as belong to another Head, or in tranfpofing, jumbling, ranging, methodizing, and the like; for firft all things are fet down in their Order, the ultimate End, the intermediate, and other Ends that are aimed at in order to the great one, the Steps and Ways that lead to each of thefe, then Engines and Helps are propounded; the Progrefs, that has been made and the Diftance to come, is plainly to be feen for all things are regiftred in their due Order, as faft as made.
Next, it is not troublefome to find what thing is to be done in the next place, the way of proceeding is chalked out, nor will the Mind be much troubled, to run over all the particular Inftances and Heads of Inquiry; they are all prefented at once to the View: Their Order, Congruity, Difagreement, Similitude, छ̛́. are all manifeft to the Eye, quickly to be examined, recollected, reviewed, otherwife placed, blotted out, or the like, according to occafion, and nothing need be forgotten or omitted, or put in a falfe Order, if but a fmall parcel of Diligence be made ufe of.
The means of The laft thing therefore is, to confider of the means of collecting ObfervaColleding ob- tions, and making fuch Experiments as feem likely to determine the Inquiry, fervations. either Negatively or Affirmatively, either in part or totally, from whence thefe Materials are to be collected, and by what means? For according to the choice of the Experiments, fuch moft ufually is the Information. Such Experiments therefore, wherein Nature is as 'twere put to Shifts and fore'd to confefs, either directly or indirectly the Truth of what we inquire, are the beft if they could be met with: But thefe being hard to find at the beginning, it will be beft to be firft a little acquainted with the Method of Nature, in her moft evident Manifeftations of her felf, to follow her meerly upon the Light of common Obfervations and Experiments, fuch as are very obvious upon that Subject, till we are fomewhat acquainted with the ways the feems moft inclined to follow, and fo by degrees can follow her clofer and clofer at the heels, for by this means we may be able to guefs where the begins ro make a Deflexion out of her common Road; which way her Paths lie, at leaft whereabouts we loft her, and were able to follow her no longer with our bare Senfes: And there we ought to make ufe of the Helps of our Senfes, of Microfcopes and Telefcopes, for the difcovering the minute Figure of divers kinds of Liquors and Menftruums; for difcovering latent Taftes: Of Thermometers and Hygrofcopes for difcovering Degrees of Heat and Cold, Drynefs and Moifture, and other tangible Qualities which our Senfes are unable to diftinguifh: Of exaft Scales, weighing in

The Metbod of Improving Natural Philofophy.

Water, $\xi^{\circ} c$. for comparative Gravity, and Expanfion of Bodies: Of Barofcopes,

 for Gravitation and Preffure of the Parts of Fluids one upon another: And feveral other Contrivances which a good Mechanift will eafily invent upon occafion, as the Subject fuggefts : By which the Informations of the Senfes may be advanced and more certainly determined.By thefe means are to be fearched out the Properties of Bodies, whereof the Hiftory is to be written, and where we can find no farther ways of proceeding to deeper Searches, and Nature feems to leave us in the Lurch, or pafs away by unfeen Paths, there ought to be fet up as it were a Land-mark to direct us where to begin again to fearch, if making Tryal in one way we find our felves miftaken, and thus we may a fecond or third if poffibly we can by any means light upon fuch Experiments or Obfervations, as may inable us to guefs which way fhe was moft likely to take; but if upon Tryal we find it to be a bufinefs of much greater Difficulty, the Progrefs how far we have gone is to be regiftred, and the non ultra together with it, and fo that kind of Inquiry may be laid by for a time, till fomewhat more of the fecret Workings of Nature are learnt from fome other Profecutions of her, in other ways, for Nature is fo very fubtle and referved, that there will need a very great Stock of Patience as well as Skill to be able to difcover her Paths and Methods. As in inquiring An Infaince in after the Adequate Caufe of Expanfion, we find that molt Bodies as well the Caure of fluid as folid, Metals, Quick-filver, Stones, Glafs, Water, Spirit of Wine, Oyle, ofc. are expanded by Heat, but finding alfo that the contrary Quality to Heat, Namely, intenfe Cold does produce the fame Effect as that Water frozen into Ice is more rarified than the Water: We are here at a lofs to find what way Nature Chould take with two quite contrary Agents, to bring forth the fame Effeet, here therefore we fet up a Mark, and make an Attempt to find what way Expanfion is perform'd by Cold, we find that moft Ice when examin'd is all over befprinkled with diffeminated Bubbles; till we have traced Nature a little farther, we inquire therefore, whether Nature has not taken that way of rarifyigg that Body, but we may find that even thofe pieces of Ice which through the beft Microfcope is perfeztly clear and free from thofe finall Bubbles, has a greater Expanfion than the Water out of which it was frozen, becaufe it will fwim in it, and next becaufe that the Refraction of Ice is lefs than the Refraction of Water. This laft feems to hint that Nature has taken this way of making Ice lighter than the common Water, by precipitating a groffer or heavier part of the Water to the Bottom, and by collecting the lighrer and more rarify'd Parts and freezing them, as may be in part obferved in the freezing Salt Water; but that neither is this the way that Nature has attempted, this Experiment will fatisfy us, that taking two clear pieces of Ice, and fuffering one of them to thaw and the other to remain frozen, the Ice will ftill fwim upon the Water, whence 'tis evident that the Water is the fame as to Weight. Befides we find that the whole Bulk is expanded, and not the frozen part made lighter and the unfrozen heavier; for we find it to break the containing Veffel if it be fuch as will not freely give it room to expand; fo that we muft here fet up 2 reft, till we may come to the Knowletge of it fome other way.

By thefe ways are we to proceed to collet all the moft common and obrious Experiments and Obfervations, that feem to have any thing of Information in them as to the Nature inquir'd after, or are very fignificant to any other N ature, yea though we "cannot prefently forefee what ufe there may be of it, yet as in collecting Timber for a building, hewing off all the Superfluities and trimming it to be fit for the Repofitory; we fhould lay it up in the place of things of uncertain Lufe.
But to proceed, the ways of difcovering the Properties and Powers requifite rhree ways of to be well underftood and made ufe of in the compiling of a Philofophical Hi . fory, may be thefe three following,
diccovering the Nature of Eodies.

I. By the Help of the Naked Senfes.

II. By the Senfes affifted with Inftruments, and armid with Engines.
III. By Induction, or comparing the collected Obfervations, by the two preceding Helps, and ratiocinating from them.

36 The Method of Improving Natural Philofophy.

Article 1 P. . By Firf, By the naked Senfes are difcovered the more obvious and fuperficial
the the naked Sen-Proprieties of Bodies fuch as thefe,
fes.

Shiningnefs, or not giving any Light. Gravity, or Levity. Tranfparency, or Opacity. Coarfnefs, or Fineners. Reflexivenefs, or Refraktivenefs. Faftnefs, or Loofnefs. Colour, or Colourlefnefs. Sonoroufnefs, or Dulnefs. Smell or Tafte. Heat, or Cold. Drynefs, or Moifture. Fluidity, or Confiftence.
Denfity, or Rarity.
Fatfness, or Loofneis.
Siffriefs, or Pliablenefs.
Roughnefs, or Brittlenefs.
Clamminefs, or Slipperinefs.
Figure, or Motion.
Place, or Pofition.
Action, or Paffion.
Parts, or Number.
Thefe are as 'twere the firft Elements or Letters of Information, and therefore ought firft to be learn'd and underftood, before we proceed further into the deeper parts of Inquiry. But we are not here to flay; for this, like the Knowledge of Letters, without knowing how to fpell with them, or ufe them, is little worth; for our Senfes are of fuch a Conftitution, that they are very apt to miflead us in thofe things where their Power reaches, and in many things they leave us without being able farther to affift us.
Article 2d. By The Defeets therefore being naturally two, we ought to provide againft the Senfes bel-chem with two Artificial Helps; firt, for the more certain determining and ped and afit- defining the Senfations, and reducing them to a Standard, and next for the Difcovery of thofe fenfible Properties in Bodies, which our Senfes are not able to reach, and defining them alfo.

1f. Reducing Firft, For the exact determining and defining of the Quality or Degree of the Senfation to a Proprieties, Powers, and. Affections of Bodies, we ought to provide fuch InItruments or Standards, as may be capable of receiving all Degrees whereof that Propriety is capable, after which Search is made: That fo by making the Standard receive the fame Degree of the Propriety with that in the Body to be meafur'd, the Divifion of the Standard may give the determinate Quantity or Degree, whether the Inquiry be after the Quantity of its Extenfion, Time, Motion, Action, or Paffion.

Secondly, For diftinguifhing the Quality of fome of them in anfwer to what kind, of this or that general Propriety they belong to; there ought to be peculiar Contrivances that fo every thing may bemore exactly defin'd, and nothing may be left to the unaccurate and cafual Ifformation of the Senfes, but that every thing that is taken into Philofophical Hiftory, may be capable of being àccurately determin'd by Inftruments. Now though it be very difficult to determine exactly in all; there being fome of them, fuch as the Smells and Taftes of Bodies, which never have been brought to any kind of Theory, and of which therefore we have fo very imperfect Notions that we have not words for many, and even thofe Names we have are very ambiguous and determine little, yet 'tis not impoffible but that even thefe alfo may be reduc'd to a Theory and Standard; for the Variety of Colours is not lefs than the Varieties of Taftes and Smells, and yet 'tis not difficult to derive them all from two Heads, and the Degrees of them; nameIy, from the Degrees of Yellow, and the Degrees of Blew, and from the In: terpofure of White or much Reflection, and Dark or little Reflection: For all the Colours in the World are made up of the Mixtures of fome of thefe Degrees, with the Intermixtures of White and Black, which make: them only appear more faint or foul: And it feems not improbable alfo, but thar with Di_{i} ligence there might be found out fuch a Theory of Taftes and Smells; as that from the Mixture of fome few with their Gradations, might be explain'd all the Taftes and Smells in the World. The well determining of which Inquiry, feems to be likely to afford us as great Affifance towards the Difcovery of the Nature and Conftitutions of Bodies, as to their Medicinal Ufé, as any way imaginable. Now though this nice diftinguifhing and defining ithe Degrees of fome things be very neceffary, yet in other things it is of ton times needlefs and infignificant,
infignificant, for in fuch things wherein Nature does not obferve fuch Nicety in making ufe of this or that peculiar Degree or Mixture, but feems indifferent to all; in fuch things the diftinguifhing that Propriety in any one particular on which Experiment or Ohfervation is made, will rather be prejudicial than affifant in difcovering the Nature in general, but in other things where Nature feems to be bounded, and to aft by a certain Method, and to keep within fuch Limits, in thofe the Limits and Bounds are to be obferved, as in obferving the Colour of, any Terreftrial Animal: 'Tis not very material to define exactly what Colour it is of becaule we find Nature ufes a Latitude; only this may be noted, that though the Colours of Terreftrial Animals of the farne Species are of ten very various, intermixt with White and Black, and no one Colour perfeetly clear or bright is to be found amongit them, yet in the Colours of Birds there are indeed to be found all Varieties of Mixtures, but generally the Colour is fomewhat more fixt to the Species, and the moft of them more clear and orient: Which laft does difcover fomewhat of Diftinction between the Parts and Subfance of Hair and thofe of Feathers, namely, that the Parts of Feathers are far more clear and fmall, than thofe of Hair, and confequently 'tis not improbable, but that the conftituent Parts may be more porous, defecated and fine.

- So likewife the Bounds of Heat, between which Nature has confin'd it felf for proportioning the Animal and Vegetable Life, and beyond either of which Life cannot fubfilt, are to be as exactly obferv'd as can be defin'd, but the peculiar Warmth of this or that Animal is not fo nice: So likewife for Gravity the lighteft and heavieft Animal, Vegetable, or Mineral Subftance, and fo for the reft.

In other chings where the exaft Degree is very neceffary and Fundamental to the Conftitution of the Body, in that cafe the greater Diligence and Skill is ufed in the determining of it the better. Thus in determining the Specifick Weight, Denfity, Colour, Malleablenefs, ©oc. of Gold, or any of the other Metals: The more exact the Experiments are, the greater Information we receive from them of the Nature of thofe Bodies.
For the making of there Standards and Meafures, to determine the various Degrees of feveral Proprieties, there may be divers Contrivances for each peculiar Property, and fome of them more fit, convenient, and exad than others. The Degrees of Light may be determin'd by Comparifon to the Light of a Candle, of a determinate Bignefs, plac'd in a long dark Room or Gallery, and by examining the fhining Body at feveral Diftances from that Light; as fuppofe the Light or Shining of a Gloworm be to be determin'd in fuch'a dark Vault, Itry at feveral Diftances from the Candle whereabout the Light begins to be vifible; in departing from the Candle, and whereabout it begins to difappear in approaching towards it, and that Place I mark for the Degree of the Light of Gloworms; by the like Method I try the Light of rotten Wood, decaying Fifh, Diamonds, heated Metals, occ.

The ways of determining Colours, many skilful Painters and Dyers know obfrvation very well without Inftruments, but by one not fo skill'd, théy may be defin'd gth. and roth. by a way I have mention'd in my Micography, which I thefefore now omit to repeat.

The Acutenefs and Loudnefs of Sounds, and Sonoroufnefs' of Bodies, may be Time oflafing, eafily enoughr meafur'd by a found Pipe of a determinate Bignefs, and by the velocity of ProStrength of the Blaft that is given by poifed Bellows to blow it, other more pagation, grean. loud Sounds may be determin'd alfo by thooting fmall Guns with various Extenfion. Charges, or by the Diffance they can be heard, and the like.
Smells and Taftes being not yet reduc'd cannot be fo exactly meafur'd and Smells and They may be fomewhat determin'd, by comparing them to the
Heat and Cold may be many ways difcover'd by
mometers of feveral kinds; the way of making by determining which, I have and Delocity of fhewn in my Micrography, or elfe by Burning.Glaffes, together with the help Propagation, of the Thermometers: For if a Burning. Glafs of a known Number of Inches in the cold Air Diameter be able to melt Gold, and lron, and Copper, and Stones, $\mathcal{E}^{\circ} c$. in fuch fromeds. Snomy a determinate Quantity of Tiine; and that the Reflection from a part of it be able-to raife the Standard to fuch a Degree, it follows, that thereby all De- to determine the Degree of the Heat of the Flame of a Lamp, intended by a ftrong Blaft, we find that fuch a blown Flame is capable of heating Glafs Ked hot, and melting it in fuch a fpace of time.

To reduce it therefore to the Standard, 'tis eafy to fee what Aperture of the Burning Glafs will produce the fame Effect in the fame time, and what A perture at the fame time (for this is very neceffary to he known) will raife the Thermometer to fuch a Degree. The Degrees of Cold alfo may be eafily deter$\min ^{\prime}$ d by the Thermometer, as I have elfewhere thewn.

The Degrees of Drynefs and Moifture in the Air, and fometimes alfo in other Bodies, may be diffinguifhed by the Hygrofcope, of which I have explain'd the way of making and ufing in my Micrography. Stiffnefs and Pliablenefs, Toughnefs and Brittlenefs, are fufficiently obvious, by comparing them to the Pliablenefs or Stiffnefs of pieces of unhardned Iron of peculiar Bigneffes and Shapes, and to the Toughnefs of Wire of a determinate Bignefs: Now though in all thefe things we cannot come to a Mathematical Exactnefs, yet it will be fufficient if we come as near to the Truth as the Matter is capable of; for we find that Nature it felf does not fo exactly determine its Operations, but allows a Latitude almoft to al! its Workings, though as I faid before, it feems to be reftrain'd within certain Limits, and beyond thofe is neither exceffive on - the one hand or defective on the other.

The Specifick Gravity of Bodies may be determin'd by weighing in Water.
There are as many various ways alfo of determining all the other Proprieties, and reducing them to a Certainty or Standard, but thefe may fuffice for an Inftance, to fhew what I mean by the determining the Degrees of the Proprieties in feveral Objects.

As for the determining of the Figure, Number, Motion, Velocity, Power, Time, and the like, the ways are fufficiently eafy, and the ingenious Inquirer will upon the occation, find various Contrivances to determine them.
The fecond way of affifting the Senfes, is either firft by enlarging their Power,
2 dly , By belping the Senfes or Sphere of Activity, and extending it much farther than that affign'd them to difcover by Nature; or elfe fecondly, by reducing other things to fuch a Conftitution, what unafified as to bring them within the Power of the Senfe. For the Performance of each
they could they could of which there are various means to be uled.
not, $2 \times c$.
1.f. By enlarg-. And firf, for the enlarging the Power of the Senfe, and making it capable of ing theirPower. fenfating many things, which without thofe Helps would not have been difcerned or fallen within the reach of thofe Senfes; of thefe there may be many for the affilting of every Senfe, but fome of them have been more cultivated thain others, and brought to a much greater Perfection, but yet not to the higheft pitch they feem capable of, but they are every day more and more improv'd, and it may be hoped, that this Age may produce the perfecting of fome of them.
Of this kind are Microfcopes and Telefcopes for the Sight, the one for dif-

As for the Sight Microscopes and $T e$. lefcopes. covering the Figure and Magnitude of the fmall Parts of fuch Bodies as are within our reach, the other for detecting the Figures and Magnitude of fuch Bodies as are by the Greatnefs of their Diftance, reduc'd to fo fmall a vifible Appearance as that the naked Ey' is unable to diftinguifh either their determinate Bignefs or their Figure, thefe may be Helps both of Invention and defining: And as they are indeed the greateft Inftance that can be given of the Irnproyement of the Power of the Senfes; So the perfecting of them is the moft likely way to afford us the greateft help for the Detection of the Nature of Bodies. For the Eye is the moft Spiritual and moft capacious Senfe we are endowed with, it affords us the moft fudden, moft diftinct and inftructive Information of all; with this we expatiate through the Univerfe, and pafs from the one end to the other in the twinkling of an Eye, by this we compare the Mágnitude and Meafure, the Diftances, Motions, and the Velocities of all thofe vaft Bodies which are diffeminated up and down through it, and none of the other Senfes tend fo mucin to perfect the Imagination as this. Now whereas the Power of the Sight in Difcovery was not able to diftinguifh of Objects that appear'd to the Eye under a lefs Angle than about a Minute, by the help of thefe it is able to diftinguifh fuch as would not appear bigger than a third. So that according to

The Method of Improving Natural Philofophy: : 39

this Calculation, the Power of the Eye is increafed near 4000 times as much more as it was before, and we are capable of difcovering things 4000 times further off, and 4000 times nearer the Eye than we were without them. And it feems not improbable to me but that each of them may be improvid fo far as to inlatge that Power 4000 times 4000 times the firf Dimenfion, efpecially in fuch Objects where the imperfect Tranfparency of the Medium, or the Defect of Light does not hinder this Effect as in things very near the Eye, or in Objects very near the Zenith.

The Senfe of Hearing does not altogether fo much inftruct as to the Nature The Hearing of things as the Eye, though there are many Helps that this Senfe would afford by a greater Improvement, there may be a Poffibility that by Otocoufticons many Sounds very far diftant (l had almoft faid as far off as fome Pla nets) may be made fenfible, at leaft the Noifes of Thunder might be difco: ver'd at a much greater Diffance than it can be by the Ear without thefe Helps, and hereby perhaps the Variations and Changes of the Weather might be predicted much longer before hand than now they are; and Ships at Sea might perhaps difcover an Enemy of Weather coming by the Hearing, as well as they can now difcern an Enemy's Ship by the Sight. As for the hearing of Noifes made as far off as the Planets, I cannot, I confefs, my felf to far throw off Prejudice, as not to look on it as a very extravagant ConjeCture, but yet methinks I fhould have had the fame Thoughts of a Conjecture to find out a Help for the Eye to fee the fmaller Parts and Rocks of the Moon, and to difcover their Height and Shadow, before I had feen or known the excellent Contrivance of Telefcopes. And though methinks from what Experience I have had, of Sounds, Iam apt to imagine them not capable of being propagated to fo great a Diftance; yet when I confider again, that by very ordinary and cafual Tryals as it were; I have been able to hear Perfons difcourfe diftinctly where others in the fame place have not heard any Noife or Whifper, I would fain perfwade my felf againft concluding or building on the Impoffibility of fuch things as I am not able demonftrably to prove not poffible:

There may be alfo a Poffibility of difcovering the Internal Motions and A. The Internal Etions of Bodies by the found they make, who knows but that as in a Watch motions of Bawe may hear the beating of the Balance, and the running of the Wheels; and dies may be the ftriking of the Hammers, and the grating of the Teeth, and Multitudes of dijcover'd by other Noifes; whoknows, I fay, but that it may be poffible to difcover the Motions of the Internal Parts of Bodies, whether Animal, Vegetable, or Mineral, by the found they make, that one may difcover the Works perform'd in the feverals Offices and Shops of a Man's Body, and thereby difcover what Inftrument or Engine is out of order, what Works are going on at feveral Times, and lies fill at others, and the like; that in Plants and Vegetables one might difcover by the Noife the Pumps for raifing the Juice, the Valves for fopping it, and the rufhing of it out of one Paffage into another, and the like. I could proceed further, but methinks I can hardly forbear to blufh, when I confider how the moft part of Men will look upon this: But yet again, I have this In: couragement, not to think all thefe things utterly impoffible, though never fo much derided by the Generality of Men, and never fo feemingly mad, foolith and phantaftick, that as the thinking them impoffible cannot much improve my Knowledge, fo the believing them poffible may perhaps be an occafion of taking notice of fuch things as another would pals by without regard as ufelefs. And fomewhat more of Incouragement I have alfo from Experience, that I have been able to hear very plainly the beating of a Man's Heart, and 'tis common to hear the Motion of Wind to and fro in the Guts, and other fmall Veffels, the ftopping of the Lungs is eafily difcover'd by the Wheefing, the Sropping of the Head, by the humming and whiftling Noifes, the fliping to and fro of the Joynts in many cafes, by crackling, and the like; as to the working, or Motion of the Parts one amonglt another, methinks I could receive Incouragement from hearing the hiffing noife made by a corrofive Menftruum in its Operation, the Noife of Fire in diffolving, of Water in boyling, of the Parts of a Bell after that its Motion is grown quite invifible as to the Eye, for tơ me thefe Motions and the other feem only to differ fecundum magis ϑ minus, and to to their becoming fenfible they require either that their Motions be increafed

40
 The Method of Improving Natural Philofophy.

or that the Organ be made more nice and powerful to fenfate and diftinguifh them [ro try the Contrivance about an Artificial Timpanum] as they are, for the doing of borh which I think it not impoffible but that in maty cafes there may be Helps found, fome of which I may as Opportunity is offerd make Tryal of, which. if fucceffful and ufeful, Ifhall not coriceal.

As for the Senfe of Smelling, though it has been lefs cultivated than that of Hearing, and feems to be of much lefs Extent, and to have much lefs Influence upon out Knowledge than either of thofe I have already mentioned, it being only for the diftinguifhing of the Effluvia and Fumes of Bodies, which are dif:folv'd by and Hy upon and down the Air ; yet if we confider the Nature of it aright, we fhall find that it is capable of a much greater Degree. We find that a Hound by this Senfe is able for a good while after to difcover where his Game has paft, which poffibly may arife from the Steams or Efflux of its Body, which perfpiring through the Pores of the Skin, and coming into the Air are eafily precipitated down upon the Track which the Creature has paft over, and folie loofe upon the upper Surface of it, and thereby they eafily touch the Nofe of the Hound, which in following his Game he ufually either rubs over the Grafs, or Ground, or at leaft lays it fo very near, that with drawing in the Breath at his Nofe, by ftrongly fniffing; the Volatile Salt, which is in the Effluvia of all Animals is eafily rais'd and drawn in with the Air, and that Senfe being very acute in this Creature, it eafily perceives the fmallef Impreffion on it.

There may be multitudes of ways of affifting this Senfe, fome of which I have already hinted in the Preface of my Micrography, as I havealfo concerning fome Affiftances that may be thought of for the helping of the Senfes, of Tafting and Feeling, which may ferve as a Specimen or Example to Thew what my meaning is in this Particular.
${ }^{2 d l y}$, By ma- The Second way therefore of affifting the Senfes in Difcovery, is by making king the fenfi- the fenfible Qualities of the Object more powerful than naturally they are of ble 乌ualities themfelves for affecting the Senfe, or more proportionate to the Power and Fain the objezt culties of them. This may be various ways performed according to the particular Nature of the Objects that are difproportion'd to the Senfory. For

Firf, Some are quite obfcurd and buried in the matter, fo as not at all to affect the Senfe, thefe therefore will need to be excited and made active and vigorous by Art ; thus the Taftes of Metals and divers other Bodies are difco. ver'd, by opening and loofning the Bodies of them with appropriate Menftruums; thus the Light of a Diamond is made vifible by rubbing, The Inky Black Colours of Galls, or the Juice of Oak is made vifible by mixing Coperas, The Sound of a Bell is difcover'd by ftriking it, the Smell of Sal-Armoniack is freed by mixing Quick Lime, the biting Smell of Muftard-Seed is freed by bruifing and grinding. The internal Heat of Corrofive Menftruums is made fenfible by mixing diffoluble Bodies with them, the Gravity of the Air is manifefted by being weighed in an evacuated Veffel, the Greenefs of Gold is difcover'd by being beaten very thin, the Greenefs and Bluenefs of Copper by Diffolution, the Salt of Vegetables by calcining, and Multitudes of the like.

Secondly, Some are very languid and weak, and fo affect the Senfe to which they are appropriated fo very little that they are hardly difcernible, fuch as thefe therefore will need to be affifted by Art, and to be made more vigorous and powerful.. Thus the Heat in the Air or Sun Beams, in the coldeft time of Winter, is hardly fenfible to the touch ; but if the Rays be united by a BurningGlafs, they will not only be able to warm, but alfo to burn the Finger; thus when the Air has very few Effluvia in it of an odorous Body, fo that we can ${ }^{\text {. }}$ haidly fmell them, if drawing in the Breath through the Noftril we make a great Quantity of that Air pafs through it, thofe few that are collected and united out of the Air by this means become fenfible. Thus the Smells of many other Bodies are fo languid and faint, that they are hardly difcernable withoue being either heated or rubb'd, the Flexibility of Glafs is manifefted by drawing it out into very fmall Threads. Thirdly, many things become infenfible from their Slownefs, thefe ought eirher to be accelerated or to be fought after by
other means which I thall thew in the third way of acquiring Information of the Effects of Nature. If they are fuch things as are within our Powier to pro. mote, their Motions are to te accelerated and promoted either really or in Appearance ; thus fuppofing the Experiment were true that fome Authors have delivered to us concerning the Acceleration of Sallets, we might polifly he able to fee the Motion of Vegeration, as we might alfo, if that Story be true iwhich Clufius tells us, of the frangely growing and rifing Tree; thus the Mntion of the Hand of a Watch may be feen by making it go fatter: As to the making thiem appear fo though they really are not accelerated, this is done by the Telefcope for the Coleltial Bodies, for by the help of long ones of that kind, the Motion of the Sun and Stars is almolt as plain as that of a Bowl, the like is done alfo by viewing the Shadow of the Sun when caf on the Ground, or a Wall, hy a Body at a great Diftance from the thadowing Body.
Thus alfo the Sound of a String very flackly ftrain'd is not to be heard, but by being ftrain'd harder it yields a very brisk Sound. Iron heated to one Degree of Heat has not acquir'd Motion enough to make it thine, but if fartheit wrought on and agitated by Heat, it fhines very bright and clear.
Thirdly, Some Objects ate too ftrong, and fo the Senfe is not able to indure the-examining of them: In this cafe, the vigotous Influence of them on the Senfory is to be abated; thus the Body of the Sun is fo bright as to be able to deItroy the Sight, but if it be veil'd with a Fog or Cloud, or the Sight be veil'd by a deep colour'd Glafs, or a fmall Aperture, or the Reflection of it be view'd in a Bucket of Water, the Eye may without much Trouble behold and view it. Thus the burning and corrofive Liquor of Oyl of Vitriol, or the like, which would burn the Mouth and fpoil the Senfory, when allay'd by the Mixture of much fair Water, becomes a very pleafant Tafte, and fuited well enough to the O_{r} gan: Thus the Sound of Bells in a Steeple is fo loud, that the Ear is hardly able to diftinguifh the differing Tones, but if the Ear be placed at a convenient Diftance it does plainly perceive the Harmony, and eafily diftinguifh each feveral Note and Tone.

Fourthly, Other Objects there are, which are fo,minutely difpers'd through other Bodies, that unlefs there may be many of them collected together, or that that Matter through which they are difper'd be feparated from them they are not capable of affecting the Senfe. Thus Salts may lie invifible in Water, till by Evaporation the Water be feparated, and Coral diffolv'd into Vinegar becomes invifible, till collected by Pracipitation into a vifible Powder; thus Vapours difpers'd through the Air become fmall, and to the naked Eye invifible, till they are united clofer together in a Cloud or Mift, the invifible Stars which are difperfed through the Æther, become not vifible without being many of them united into a Galaxie, or cloudy Star, thus the Tinctures alfo of fe= veral Liquors are hardly vifible till much of the more Watery and Tranfparent Parts are evaporated.
Fifthly, There are other ObjeCts of the Senfe, which though in themfelves very aetive and powerful, yet by being mixt and united with Objects more powerful, their Action on the Senfe becomes imperceptible, becaufe overpower'd by the ftronger Influence of the affociated Objects: Thus the Light of the fixed Stars in the Day-time becomes invifible by reafon of the greater Light of the Sun which fills the Air. Now the way of making thefe Objects fenfible, is by removing the Influence of the more powerful Object, either by deftroying, weakning, abating, or if it be capable of it, by frengthning the Powers of the weaker. Thus (if we may believe what is affirmed by many Authors) the Stars may be made vifible in the Day by placing the Eye at the bottom of a very deep Well, they may be alfo made vifible by a total Eclipfe of the Sun in the Day.time, and the like. Thus the Melody of a fweet Voice is not heard among a noife of Trumpets or Drums; thus the Pallate cannot diftinguifh the Sweetnefs and Variety of fuch Taftes as are mingled with others more ftrong and powerful ; therefore even the beft Drinks relifh ill after eating fweet things, thus 'tis commonly faid, that the fmelling of Hounds is fpoild by fuffer-

42 The Method of Improving Natural Philofophẏ.

ing them to frell of ftrong fcented Bodies, thus the Light of a Gloworm, or Diamond, or the fparkling of a Cat's Back by rubbing is not to be feen but in the dark, and the Gravity of the Air feems Lightneis when enconpuffed with Water, which is much heavier and more powerful, but if the IVarer and all other incompaffing heavy Fluids be remov'd, the Gravitation of it becomes ve. xy manifeft.
6. Sixthly, There are other fenfible Qualities, which cannot be diftinguifh'd for want of Oppofites and contrary Qualities. This in a Full Moon the Irregularities of the Surface are not difcover'd, for want of dark Shadows to be intermixt with the brighter Reflections; thus the Tafte of Bodies is better perceiv'd by being tafted after other Subftances of a, different Tafte, the Brightnefs of any Colour is better difcern'd by being interpos'd between Colours of another kind. And 'tis a Maxim in Mufick, that Harmonies become more pleafant and grateful, that is, affeet the Senfory better by having Difcords intermingled: Thus Cold is better felt after Hear, Roughnefs after Softnefs, Dry. nefs after Moifture, Sweetnefs is better tafted after Sowernefs, and the like in all the Senfes. As for the Medicinal affiting of the Senfes, I leave that to the Phyficians.

There remains a third way of inquiring into the Nature of Bodies and Operations, by which we may be able to write a more accurate Hiftory of them, for all thefe. Ways I have already mention'd, though in themfelves very requifite, and as it were the Letters or Elementsto what follows; yet if the Natural Hiftorian proceeds no further in his Examination, his Information will be very imperfect, and he that thall afterwards come to make ufe of it will find himfelf neceffitated almoft to begin the whole Inquiry anew, to make over again all thofe Experiments and Obfervations that he finds Regiftred, and to intermingle divers others to the end that he may find out that which ought to have been ready prepared to his hands; and in Truth, without profecuting this third way 'tis not poflible to make Experiments with any Judgment, that is, to know which Experiment is more or lefs fignificant, or of greater or lefs Concernment as to the Difcovery of the Proprieties fought, for moft Experiments are like fingle Letters which feldom fignify but when they are joyn'd and compounded in Syllables or Words; nor can the Hiftory be freed from infinite Repetitions and Interpofitions of Experiments and Obfervations, which are either very infignificant or at beft indicate nothing elfe but what is much better manifefted in fome of the other Entries and Kemarks, and fo ferve only to fill Room needlefly and perplex and weary the Uler or Student of it: For 'tis nor fit that every

- Experiment that is made fhould be regiftred, but of a Number of good Obfervations and Experiments, fuch ought to be chofen and pick'd which are as it were the Epitomy of the reft, and comprife in thort and plainly all that is more largely and widely diffus'd and obfcur'd in others.
Art. 3d. or the That therefore which will regulate and rectify both the former ways of proThird Way of ceeding is this Third, which is an Inquiry into the Nature of things by the diforvering Na-Effeas produced at a greater Diftance, and more remote from immediately afture by Indu- fecting the Senfe, and this is by putting of feveral Obfervations and Informations
Rion. together, and collecting from them, and by reafoning and deducing from them fo as to proceed, to the culling and chufing of the Experiments and Obfervations already made, and to the inventing of fuch farther Experiments and Ways of fearching, as thall be moft fignificant to the Inquiry ; for this will not only make the Hiftory much fhorter, and more compendious, but much plainer, fignificant, and full.
The third way therefore of difcovering Nature, is by the Obfervation of a great Number of Effets and Circumftances; and thefe, tho' very many, may be very well reduced under thefe two Heads.

Firft, By obferving the Effells themfelves produced.
Secondly, By obferving the manner of Proceeding, or means made ufe of.
Again, The Effects themfelves may be Intermediate or Ulitimate.
$\mathbf{1}, \mathbf{2}$, The Intermediate may be either, conftant, neceffary, and always inter--pos'd or accidental, and fometimes prefent fometimes abfent.

3, The

The Metbod of Improving Natural Philolophy.

3, 4. The Ult imate alfo may be either neceffary of accidental.
In the fecond place, The Manner alfo" of Natures proceeding may be either more obvious or more fecret, and both thefe may be obferved either in feveral Bodies, or elfe in feveral Operations.

The more fecret are fuch wherein the manner of proceeding is more obfcure and difficult to be found, and not yet difçoverable by the Senfes, or any other known way.

Thefe more occult and fecret Workings of Nature are diligently to be noted The manner of and examined.

1. Firft, The Operations of Bodies are to be more efpecially noted which feem to produce Effects, by means of which we have not the leaft Information immediately from our Senfes, fuch as we call Sympathetical and Antipathetical, モ゙c.
2. Next, Operations of Bodies at a much greater Diftance, fuch as we ufe to call Influences or Influxes.
3. Laftly, we muft obferve the yet more fpiritual and more fubtile Operations of Phantfy and Imagination, Memory and Ratiocination : Both of fleeping and waking living Creatures, how they work on their own Bodies, and whether they work on others?

The more obvious are fuch wherein the Agents, Patients, and Means are The manner of more plainly to be difcerned by the Senfes, or other commonly known ways, the more obviwhich may befuch as thefe following.

1f. In general, how Nature proceeds in generating, increafing, weakning, and deffroying the fame Proprieties in feveral States of the fame Body.

2ly, How Nature proceeds in diftributing the fame Proprieties in feveral Bo. dies, in what Bodies it has placed a dawning or beginning of it, in what a middle Conftitution, in what the higheft Perfection, in what a decaying, in what it has quite extirpated it?

3ly, How Nature proceeds in Conjunctions or Combinations; that is with what other kinds of Proprieties, the fame Quality is joyned in divers Bodies? With which it flourifhes moft, with which it withers, with which moft ufual, with which moft feldom?
$4 y$, How Nature proceeds in Separations or Disjunctions, that is, what Propriety it feldom or never joyns in the fame Subject?

5ly, To obferve the Tranfitions of Nature, how from the Deftruction of one Propriety it generates this, that, or another, whether that be the fame in all Bodies, or how it varies? as fweet into fowre, Eic.

6ly, To obferve the feveral ways Nature takes in feveral Bodies to produce the fame Effect.

7y, To obferve how, where, and when Nature makes ufe of the fame Body or Means to produce differing. Effects, as Condenfation and Rarefaction by Cold, $\xi^{\circ} c$.

8ly, To diftinguifh as near as may be, when there feem to be more than one Caufe conducive to the producing of an Effect; which of them is moft powerful, which lefs, which leaft, and this by varying one and th' other of them, and obferving the Iffue. And by obferving the Effects of each, when mixt with orher Bodies in other ways.
gly, To obferve the Refemblance and Difcrepancy of Natures producing the like Parts in differing Kinds, Species, or Individuals?
roly, To obferve the Tranfition of Nature in the Forms and Proprieties of Creatures, how it paffes from one to another, $\xi^{\circ} c$.
$11 y$, To obferve where and how Nature feems fometimes to, be fruftrated, and how and where it fails or miffes in producing its ufual Effects.
$12 l y$, To obferve the Deviations of Nature in framing Specifick Bodies, and the feveral Circumftances that attend upon fuch Deviations.
$13 l y$, To obferve the Deviations of Nature in producing Individuals fuch as Monitters, שit.

14 ly, To obferve the concomitant Proprieties of Individuals in their greateft and loweft pitch of Perfection they feem capable of.

15 ly , To obferve the various workings of Nature in various Places, and Times, how fuch Circumftances alter her Courfe, as Birds in the Air, and on Land, Fifh in frefh and falt Water, Men in Guiney and England, \&cc.
$16 l y$, To obferve what things feem moft conducive to the Perfection or Imperfection of Productions.
$17 y$, In particular we are to obferve, efpecially and more attentively, the workings of Nature where fhe feems to be peculiar in her manner, and feems not any where elfe to follow the like Method.

181y, To obferve and enquire after what middle way, or fomewhat refembling Method can be found, which is as 'twere interpofired between this peculiar and the more common Merhod.

Ioly, To obferve how mùch, and by what Degrees Nature is made to alter its Courfe by Art.
201y, To obferve where and by what means Art caufes Nature to deviare where it affilts, promotes, perfects, impedes, diverts, deftroys the ufual Courfe of Nature.
$2 \mathbf{1}$ y, To obferve the Natural and Artificial ways of producing the farae Effect, as diftilling falt Water, hatching Eggs by Artificial Heat, $\mathcal{F} c$.

22ly, To obferve the Difference between Bodies produced by Nature and, thofe by Art.
23 ly, To obferve the differing ways of producing the fame Effect by Art.
$24 l y$, To obferve with what Circumftances Nature and Art do fometimes exceed each other.
25ly, To enquire and try how many Mechanical Ways there may be of working on, or altering the Proprieties of feveral Bodies; fuch as hammering, pounding, grinding, rowling, fteeping, foaking, diffolving, heating, burning, freezing, melting, $\mathfrak{C} C$.

26ly, To enquire and try how many Mechanical Ways there may be of fepa. rating Bodies; as winnowing, fifting, wafhing, filtering, ftraining, wringing, preffing, diftilling, evaporating, precipitating, Chryftallizing, burning, copel. ling, freezing, fhaking, knocking; ξ^{c} c.

27ly, To inquire and try how many Mechanical ways there may be of uniting and incorporating Bodies into one another; as by melting, Diffolution, jumbling, charring, digefting, Infolation, by mixing a third, by taking away a part, by Compreffion, by opening, by Time, E'c.
28iy, To inquire and attempt by what means Bodies may be changed or tranfmuted, from one thing to another by a real change of all their former Proprieties and fenfible Qualities, and by having acquired new ones, being altered in their Confiftence, Colour, Bulk, Gravity, $\xi^{\circ} c$, as the Mixture of Tin and Copper, $\begin{gathered}\text { © } c . ~\end{gathered}$
29ly, To obferve, or rather contrive, by what Means or Supplements Nature may be more fenfibly explained, that fo the Nature of infenfible Operations may be more eafily gueffed at and imagined.

- In the making of all which Obfervations, Tryals, and Inquiries, great Care and Judgment muft be ufed in exactly determining the Quantity, Quality, Time, Place, Space, and feveral other Circumftances of the Ingredients, Effects, Proceffes, Dcubts, $\xi_{0} c$. that all things may be reduced to forme Certainty of Number, Weight, and Meafure, and that nothing may be left to doubting, Hefitation, or Gheffes, that no part of thefe Materials which are for the Foundation may be defective or faulty, which may endanger the whole Superftructure.

There are many other ways of makingufe of and deducing from Experiments and Hiftories, for the raifing of more general Axiomes, and for the building of a Body of Philofophy, than thefe I have mentioned, which I muft refer to fome other Opportunity ; thefe feeming to me fufficient to inable a diligent Inquirer to fet his hands to promote fignificantly this great Work of compiling fuch a Philofophical Hiftory, as thall be both fufficient and adapted for the perfecting the Knowledge of the Works of Nature. And thefe being once well under-

The Metbod of Improving Natural Philofophy.

food and practifed, all the other will eafily follow : That therefore thefe may be the more plain and eafy to be underfood, I fhall endeavour farther to explicate each of them, and to exemplify them with fome eafy and obvious In: ftances.

The firt way therefore of difcovering the Power and working of Nature more mediately, is by the ronftant and more neceffary Effects, which are produc'd by the working Power, before it produces its final and ultimate Effect, and thefe ferve as a Torch, Drum, or Light, by which we may be guided in our purfuit of Nature, and be inabled to diftinguilh by what Steps, and which way Nature proceeds.
i. For inflance, Suppofe it be inquitd to know whether the Sun be a fired Infances in or burning Body, Here the Body to be examin'd is fo far off, that we cannot the Efferts make any Tryals or Examinations of it, and 'tis of that Bignefs that it cannot themselves. be expeited to be cônfum'd in many Ages, and fo the ultimate Effect is not to be look'd after; the Helps therefore of knowing may be fome fuch as thefe; what are the intermediate Effects of all Fire ? Heating, Chining, emitting fome kinds of Fumes and Vapours, watting the Body it burns, and ufually at laft confiuming it : Thefe therefore are the things to be look'd after, and ailigently examin'd; as firt whether the warming of the Earth by the Sun Beams be not in the fame manner perform'd as a Body fuppofe an Apple is warm'd by the Fire, whether the Caufe of Subterraneous Fires and Earthquakes may not proceed from the Heat of the Sun, as Blifters and Eruptions on the fide of an Ap. ple that is roafted by the Fire.' Next, Whether the Colour of its Light be not like that of Flame, efpecially that of Nitre and Sulphur... Thirdly, Whether it yield any Smoke or Fumes, and efpecially whether fuch maculie and facule as have been difcover'd in it, can be obferv'd when at the Brink to be elevated above the Surface of the Sun: Thefe muft be made with great Diligence and -very accurate Glaffes, as muft alfo this laft, which could it be certainly known would afford us the greatelt Probability, and that is the difcovering of the Body of the Sun to diminifh and grow lefs, which perhaps to After Ages may not be impoffible, if with very accurate Telefcopes this Age do exactly determine the Diameter of the Sun. Thus the Scorbute, and many other Difeafes, are a long while difcoverable by certain Symptoms almolt infenfible and fcarce regarded, before it comes to rage with its more direful Effects: By which means a diligent Obferver may deteat the very Inclinations of Nature, and then furely much more eafily turn them. Thus the Obfervations of the Change of the Nuclei of Comets is an Argument of the wafting and Confumption; thus alfo, by the daily Progreffes of the Motion of the Comet; we may eafily judge of the Diftance and Velocity and way of it.
2. Secondly, Nature may fometimes be difcoverd by comparing accidental intermediate Effeets; thefe as they are for the moft part not thought of, and are a Product of Providence, fo do they generally afford very fingular and ex: cellent Information, and ufually much more than the more conftant and neceffary and expeeted Circumftances. Thus by an abortive Birth, much more may be learnt of the manner of Formation in the Womb, than by only examining a perfect Infant: Thus the paffing of the Comet very near fome Star, fo that the brighteft part of the Tail feems to cover fome Stars, and yet very little eclipfe their Light, is a help to jadge that the Subftance or Confiftence of it is very much rarify'd, and fomewhat of the Nature of Smoke, Thus alfo by the Curvity of the Tail of the Comer,' and by the Deflection of it many times a good way out of the ftraight Line, which paffes through the Body of the Comet, we may find that it cannot be caufed by Refraction, as many fuppofe, but is rather a real Body.
3. Thirdly, Nature may be difcovered by the conftant ultimate End, or laft Effect of a Principle. Thus fomewhat of the Nature of a Comet may be difcover'd by the end of it, and this we find always to be by degrees growing fmaller.and fmaller, and fainter and fainter, till it difappears; and as it daily decreafes in Bulk, fo does it alfo in Motion, whence 'tis not improbable that

46 The Method of Improving Natural Philofophy-

the Caufe of both is from the Increafe of Diftance, and the Obliquity of the Line of its Motion to the Eye. Whereas, if it fhould accidentally happen, that the Comet fhould dwindle away and vanifh, or be fuddenly extinat when in its greateft VeIocity and Brightnefs, 'twould be an Afgument that its Conftitution were of another Nature than what we fhall hereafter indeavour to fhew it probably to be, which may ferve as an Inftance to explain what we mean by our

Fourth Method of tracing Nature by the accidental ultimate Effects. An Inftance of this $4^{\text {th }}$ way may be this ; fuppofe the thing fought for be the Caufe of Earthquakes, Here if we inquire after the End or Events of them, we fhall find that they have fometimes ended in ftrange and monftrous Eruptions of Fires, and Smokes, and Waters, and the like, cafting forth great Quantities of burnt and melted Sulphur, Sands, Stones, Earths and Minerals, together with new Rivers and Streams of boyling Waters, fometimes raifing, otherwhile finking Mountains, fometimes raifing, fometimes finking Iflands, fometimes digging, fometimes filling Caves. Hence 'tis not improbable, but that Subterraneous Fires are the chief Caufe of thofe direful Effects, and that thofe Fires may be fed by Supplies of Nitrous and Sulphureous Subftances, with which thofe Places ufually moft abound, that are or have been fubject to thefe Accidents; for 'tis not elfe imaginable without the Supply of Niter, how, thofe Fires fhould continue to burn, fince I have not yet found any Subftance whatfoever that would burn without a Supply either of frefh Air or Niter (the Reafon of which I hope I have given in my Micrography) and 'tis very hard to imagine how fuch vaft Fires fhould be fupply'd with a fufficient Quantity of freth Air, unlefs there be many Ventiducts under Ground, whereas we have no Knowledge of any : Or unlefs by the Influx of Springs and Rivers, the Vapours of the Water may ferve to fupply the Defeet of Air, which whether fo or not fome further Inquiries and Experiments ought to be made; and though they fhould not be found to be fufficient for this Effect, yet they feem very much to contribute to the Violence of the Commotion and Eruption, which the breaking of Æolipiles, and fmall Dubbles of Glafs feald up Hermetically half fill'd with Water, feem further alfo to illuftrate.
$2 d l y$, Inftances 5. A Fifth way of difcovering Nature, is by taking more efpecial Notice of in the manner fuch Operations and Effects of Nature as feem to be more fecret and referv.'d, and means of working on Bodies remov'd at fome diftance, fuch ftrange Effects as our Senfes Natures ope- are wholly unable to thew us any probable Caufe thereof; for by difcover-
rations, firt rations, firff
themore fecret. which will open us a large new Profpect into Nature that we dreamt not of before. An Inftance of this may be the Verticity or Direction of the Load.ftone towards North and South; the Gravity and Attraction of the Earth towards its Center, the Influence of the Moon on the Waters of the Sea, or on Vegetable or Animal Bodies, the Attraction of Jet, Amber, Red wax, and the like: we fhould very much labour to find out all the Affiftances we are able for the perfecting of fuch Difcoveries, by collecting all fuch Experiments together, and by comparing them one with another, that fo the Mind may by fome of thofe ways hereafter to be mentioned, difcover firft the Similitudes and Diverfitieg of fuch Operations, and may the better be enabled to know what further $\mathrm{Ob}_{\text {, }}$ fervations:and Experiments are neceffary for the Difcovery of their Nature: Such Operations and Experiments therefore are to be fought after for from their Difcovery, the Caufes of much greater Effects may appear. The Verticity of the Loadftone may perhaps explain to us, why the Axis of the Earth keens a Pa rallelifm whilft it moves about the Sun; and the Explication of Gravity may fhew us the true Caufe of the Circular Motion of the Moon about the Earth, the Satellites about Fupiter and Saturn, and the Primary Planets about the Sun, and may alfo fhew us the reafon of the Currents, Ebbings and Flowings of the Tide, and the like, which I may hereafter more fully explain.
6. A Sixth way of difcovering Nature, is by taking particular notice of fuch fecret Proprieties of Bodies as caufe them to unite or not unite with other Bodies,

The Method of Improving Natural Philofoplay.

or as caufe them to operate, or not to operate on contiguous Bodies, thefe are Proprieties of Bodies of which the Senfe can give us no other Information, but of the Effects; and therefore the Difcovery of the Caufes of thefe will give us another, or a 7 th Senfe, whereby to watch and follow Nature. Of this kind is the Animation (as I may call it) of Iron by the touch of the Loadftone, the Diffolution of hard Bodies by appropriate Menftruums, the Congruity or Incon gruity of Fluids with Fluids, or of Fluids with confiftent Bodies [that is, a propriety whereby Fluid Bodies will readily unite and intimately mingle them: felves, or adhere to fome kind of Bodies, and will by no means unite and min. gle with or adhere to other] the raifing Fermentation by Addition of Leaven or Yeaft, the firing a Heap of Powder by a fpark of Fire, the deftroying many: Thoufands by the Infection of one Man, the Impregnation of a whole Clufter of Eggs by one treading of the Cock; Experiment's therefore and Obfervations of this kind fhould be carefully fought after, and all the Circumfances and Accidents diligently mark'd, meafur'd and defin'd, for thiat thefe Proprieties whatever they be, feem to be fome of the moft confiderable Inftruments which Nature makes ufe of in all, or at leaft in fome of the moft confiderable of its Productions.. I have, I hope, made it probable at leaft, that Fire is nothing but the Diffolution or Corrofion of Sulphureous heated Bodies, by the Air as a Menftruum, and had I here a proper place, I hope I could thew that Fermentation is fomewhat Analogus, or of the fame kind with Diffolutions or Corrofion: If therefore we can by deducting from Obfervations and Tryals, find the true Nature of this Propriety, what a Multitude of things will there be explicable thereby for though at firlt fight all thefe kinds of Experiments feen little inftructive, becaufe their Operations for the moft part are fuch as fall not under our Senfes, yet when their Nature is detected, that we know how to unlock thore Myfteties, then we fhall find their great Ulefulnefs.
7. Further, Another way of difcovering Nature, is by taking more efpecial notice of fuch of her Works, wherein the feems to aet yet more fecretly and farther remov'd from the Derection of our Senfes, fuch as in the Formation and Configuration of Bodies: And here we are to obferve all fuch things as vary and change thofe ufual Methods, for if herein her Workings alfo can be detected to be Mechanical, it will not then feem impoffible but that fome of the moft confiderable Effects of Nature may be detected by Mens Induftry, and to this end all kind of Impreffions on the Phantcy are to be obferv'd what kind of Alteration they make in the Body, as in the Formation of the Fxtus, in caufing Mifcarriages and Abortions, in curing or producing Difeafes; for thefe kind of Actions, we term more fpiritual, becaufe our Senfes help us not at all in difcovering of them, and they ftand up as an Opprobrium to Philofophical Inquiry, as being generally believ'd impoffible to bedetected, and much lefs reduc'd to fuch a Degree of Science as might tend to practife, yet if we more ferioully confider the Progrefs of Nature from the more fimple and plain Operations to the more complicated and abftrufe, we may from them deduce agreat Argument of Incouragement. For, we fhall find it to make but very fmall Steps, and to add but a little more in one thing than in another, to make it a degree higher in Perfection ; there is but a fnall difference between Earth and ftrong Concretions, between fuch Concretions and Salt, between the cryftallizing and fhooting of Salt, and the Vegetation of Mould, and lefs between the Vegetation of Mould and Mufhrooms; and but a very little between the Vegetation of Muhrooms and Mofs, and as little betweer Mofs and Grafs, and between Grafs and the moft hulky Vegetable, and no great matter between the Vegetation of Plants and Zoophyts, and there is no great Difference between Maritime Zoophyts and Oyfters, Blubbers and the like; between thofe and Periwinkles, and other kinds of Shell-fifh, between Shell-fin and cruftaceous Creatures, between thofe and Fifhes, between Fifhes and amphibious Creatures, fach as Morfes and Sea-Calves, and' the like, between thofe and Aerial Animals, "Ec.' All fuch Operations and Experiments therefore as tend to the Illuftiation of one of thefe, are more diligently to be remark'd"

48 The Met bod of Improving Natural Philofophy.

The more obvi. I. To proceed to the more obvious workings of Nature; the firft way of ous workings of dis covering them, is by observing the Metbod or Progrefs of Nature in generaNature ex- ting; increafing, weakning or deffroving the fame Propriety in divers States of
plained. plained. ting, increafing, weakning or fame Bodies, for hereby may be difcover'd what things and Circumftances are adjuvant, and what deftructive of this Propriety: As fuppofe Greennefs be the Propriety fought for, we may obferve that that Propriety is moft, and in its greateft Perfection when the Plant is fo, and that before the Plant is come to Maturity and is too moift, waterifh, and tender, it inclines or is ting'd too much with Blew, and afterward, as it decreafes in Moifture and grows more dry, the Yellownefs increafes; and as it more and more dries and grows old, - fo the Yellow is more and more heightned, till at laft it ends almoft in a Red. So that Blew feems more appropriate to Liquidity and Moifture, and Yellow to Drynefs and Sulphuroufnefs; unlefs by comparing it with other Effects of the fame kind in other Bodies, as in the Generation of Colours on melted Me. tals, where Yellow beginning firft, then Red, and after Purple, according as the vitrify'd Skin grows thicker and thicker, we may fuppofe that the Blewnefs proceeds from the Thicknefs of thofe Parts which afford the Colour by their plentiful Supply of Moifture, and that as that Moifture decreafes and dries away, and thofe Colour-making Bodies grow thinner and clofer together, fo the Colour grows by degrees Yellower and Yellower, $\mathfrak{c} c$.
Again, Suppofe Liquidity be the thing to be obferv'd, we fhall find that Wa . ter for Inftance, when cold beyond fuch a degree grows very confiftent, folid, and hard, when it only fuffers a gentle degree of Heat or Warmth, it becomes liquid and moilt; but if Heated beyond that degree, it becomes Aerial, Fluid and Rarify'd. Suppofe Light be the Propriety to be trac'd, we may find that Fifh when frefh or newly dead thine not or afford no Light, when they begin a little to taint and ferment as 'twere, they begin to fhine and glare, but as they grow more putrid and rot, fo again the Light decreafes and at laft goes quite out. So that it feems for the producing Light in fuch a Body there is requifite a determinate Degree of Fermentation or Corruption: Suppofe the ebbing and flowing of the Sea be inquir'd after, we find that the new Moon makes the ebbings and flowings very great ; as the Moon goes further and further towards the firt Quarters, fo thofe Motions do more and more decay, and are loweft or weakeft at the Quarters again, as the Moon goes further from that and nearer to its Oppofition to the Sun, fo the Tides again increafe, and after Decreafe to the laft Quarter, and after it again increafe to the New Moon: For this it remains yet farther to be obferv'd whether ceteris paribus, the Tides are greater at the Full or the New Moon, or whether lefs at the firlt or laft Quarter; for from the determining of thefe, there would be many helps afforded for the difcovering of the true caufe and reafon of them. Suppofe Specifick Gravity be inquir'd after, we are to inquire what Body there is which in feveral States of it hath feveral Degrees of it: And for this we may find Air, which according as it is more or lefs rarify'd, fo has it more or lets Gravitation, whence we may deduce the Rarefaction and Condenfation of Bodies does diminifh or augment their Gravity, and 'tis not improbable as we fhall add by and by, but that this Propriety is general, that the comparative Gravity and Levity of Bodies depends upon their comparative Condenfation and Rarefaction.

[^2]
The Metbod of Improving Natural Philofophy.

there are confiftent Bodies almoft of all Degrees of Gravities. But on the othet fide, we fhall find that Gravity has a great Dependence upon Rarefaction and Condenfation, for always the moft rarify'd Bodies feem to be the moft light, and the moft condens'd the moft heavy, for as in Flame it feetms to be leaft, fo in Gold does it feem to hé molt prevalent.

3ly, Another way of difcovering Nature, is by fuch Obfervations and Experiments as do manifeft the Method of Nature in Combirations or Conjunetions, that is, how and with what other ; the Propriety fought for is combin'd in feveral Bodies. As fuppofe the Propriety of Heat be inquir'd for, we fhall find that in the Sun and in Fire it is joyn'd with Light, but in Corrofion of Metals by Saline Liquors and in Fermentation, and in rubbing Motions, without it; whence we may conclude Light or Darknefs not neceffary to Heat : Next Heat being produc'd by Oyl of Vitriol and Oyl of Turpentine mixt, and by two folid Bodies rubb'd together, fhews that neither is Fluidity or Confiftence effential in the Production of Heat; from the Heat in Flame, and boyling Water, we may conclude Drynefs and Moifture likewife not to be effential; from the being able to make both Gold and Air hot, both Gravity and Levity, and Den. fity and Rarity, appear not to be effential, but from a conftant Conjunition of an internal Motion ofthe Parts, where there is Heat; may be concluded, that thofe two have fome Dependance one upon the other. From the almoft conftant Combination of violent Heat and Light, we may conclude them to have fome great Affinity, as alfo becaufe in molt Bodies Fluidity is joyn'd with fome degree of Heat; we may conclude thofe alfo to have much Affinity, but how much, and in what manner muft be determin'd by fome of the other ways of Inquiry.

4ly, Another way of difcovering Nature, is by tracing her ways in disjoining or feparating Proprieties, that is, very feldom or never joining them together in the fame Body; as Fluidity and Sonoroufnefs, Shining and abfolute Cold, Malleability and Tranfparency, Sweetnefs to Smell and Tafte, Hardnefs and Toughnefs, Levity and Denfity. Thefe and their Contraries are chiefly to be obferv'd, becaufe fuch as thefe do ftill lead us nearer and nearer to the Mark we aim at, and do as 'twere circumfcribe Nature, and bound it fo as that we know it cannot go beyond fuch or fuch Limits.
$5 l y$, Another way of tracing Nature, is by obferving the Tranfitions it makes from one Propriety to another; of this kind of Obfervations and Experiments great Multitudes fhould be collected, that fo the Affinity and Dependance of one Propriety upon another may be the better underfood: For by this means the Circumftances alfo being well obferved, the Nature of any one of thofe Pro prieties being known, the other cognate Propriety will eafily be difcover'd. As Sournefs and Acidity does ufually follow Sweetnefs in moft kinds of fermenting Liquors, as in Wine, Beer, Ale, Metheglin, orc. And in the making Saccarum Saturni, Sweetnefs feems to return, again from Sournefs. Sweetnefs by Combuftion or Heat very often degenerates into Bitternefs: And Bitternefs by long keeping feems to turn into Sweetnefs, as in Hopt Beer long kept, Bitternefs, Acerbity, and Sowrnefs in unripe Fruits, by Maturity turns into Sweetnefs; the Bluifh Greenefs of Buds of Plants by degrees turns perfectly Green ${ }_{5}$ and as they decay degenerates into Yellow, as I noted before; Plûmbs, Grapes; Mulberries, and the like, being of a palifh Green at firft, by degrees turn Red and at laft Blue; the Colours on tempering Iron or Steel are firt of a Straw Colour, then Yellow, then Red, then Putple, then Blue, and fo onwards. To this Head may be referred many of thofe excellent Experiments of the Tranf mutation of Colours, publifht by the Incomparable Mr. Boyle, Cabages by an Inclination to Putrefaction do often produce a moft fragrant and Musk-like Odour, but fuffer'd to putrify quite, their Stink is not to be indur'd, Apples alfo by Putrefaction do oft produce very pleafing Smells, Musk alfo is faid to be the Corruption of the Flefh and Blood of a kind of Dear: But generally all kind of putrify'dSubftances, efpecially Animal, ingender very loath fome Smells, whict feem to be caus'd by a very penetrant and volatile Salt, which by the Diffolution of the Texture of thofe Subftances is let loofe; and being very Aerial

50 The Method of Improving Natural Philofophy.

readily mixes and joins it felf with the Air, from whence at firl it feems to have been taken.

6ly, Another way of difcovering Nature, is by endeavouring to find by what ways Nature produces the fame Effect in divers Bodies, whether always the fame ways, or for the moft part by differing, or by fome few; and among all thefe Experiments and Obfervations, we are to make choice of fuch efpecially, wherein the Propriety fought for is produced by fome Caufe that feems leaft incumbred with perplexing Circumftances:

As for inftance, Whether Nature produces Heat in the Sun, in Fire, in Mo. tion, in Fermentation, in Baths and hot Springs, in quick Lime flack'd with Water, in the Operation of corrofive Menftruums, in Animals, occ. all the fame way, or whether differing ways: That is, whether the Sun be not a Sulphureous and Nitrous Earth or Globule fir'd and confum'd, or diffolv'd either by it own Nitroufnefs, or by the Circum-ambient Air, whether that and our common Fire be not much the fame kind of Operation (but with differing Menftruums and differing ${ }^{\circ}$ Diffolubles) with that of cerrofive Menftruums; and whether Fermentation be not a kind of Diffolution or Corrofion, whereby the Parts work upon one another, and whether quick Lime flack'd by Water will not prove the fame kind of Operation, Namely, the working of the Alkali in the quick Lime on the Body of the Water; whether Baths and hot Springs proceed not from Subterraneous Fires, and thofe maintain'd by a nitrous and fulphureous Fuel there plac'd; whether the Heat in Animals be not caus'd by the continual working of the Liquors and Juices of the Body one upon another, and more efpecially by the uniting of the Volatile Salt of the Air with the Blood in the Lungs, which is done by a kind of Corrofion of Fermentation, which to me I confefs feems fomewhat more than probable; Firft, Becaufe that only thofe Animals that breath much are very hot, all other kinds of them are even cold to a Man's touch, as Fifhes, Snakes, Frogs, Cameleons, ơc. Next, That all thofe Exercifés which caufe the Blood to circulate much, and confequently to make the Animal breath much, do make the Heat to increafe, and the expir'd Vapours to be more copious. Thirdly, That fuch as ftir little, and confequently whofe Blood does circulate but flowly, breath but little and feldom, and are generally moft cold in Conftitution and grow Flegmatick, and at laft thort-breath'd, and are very apt to fall into Fevers or Exceffes of Heat and Inflamations as it were; becaufe thofe Parts which fhould have been wrought on by the Air, and thereby have been brought to another kind of Conftitution and concooted, are in great Quantity laid up in the Blood: So that at laft the Blood becomes over charg'd by them, and the Lungs become ftuff'd and ftopt, Whence wanting the Prefervative Salt of the Air, they upon all occafions ate apt to caufe unnatural Fermentations and Putrefactions which inflame and deftroy the natural Texture and Conftitution of the Blood, Humours and Parts, and fo vitiate oftentimes and deftroy the very Principles of Life. Further, the Ebullition of Steams into the Lungs, which are carried out with the Breath by Expiration, may probably be caufed by the Ebullition of the Blood upon the mixing of the Salt of the Air, fomewhat after the Nature, as Oyl of Tartar will bubble by the Affufion of Volatile and Acid Salts, now whether fo or not, deferves to be further inquir'd into. But this by the by ; Another Inftance, to illuftrate this Head, may be the Method Nature ufes in generating Colours: That is, whether the Colours in the Rain bow, in Triangular Cryftal and Gems, in Bubbles and plated Bodies, in Flowers, Woods, Leaves, Stones, $\mathcal{F i c}_{\text {c }}$ In Liquors and Flame be all of the fame kind, and from one and the farme Principle difguifed under feveral Masks or Vefts; or whether Nature has not almoft in every of them taken a differing way. This will be found by reducing each of them to the moft fimple Principles, and by endeavouring to find out whether there be not fome one Principle wherein they all agree; for if it can be found that all of them do depend upon Tranfparency and RefraEtion, and that by deffroying that Principle in any of them all the Colours will immediately vanifh, "tis' a very great Argument that that is the chief Caufe of all thofe Ap. pearances, and all the reft are but accidental and circumftantial, fomewhat of this kind I have endeavour'd to explain in my Micrography., A.Third thing

The Metbod of Improving Natural Philofophy.

may be the Method of Nature, in producing Light, in fome we find it to be effected by a violent Diffolution of the Body, as in Fire, and perhaps in the Sun, in others we find it to be an Effect of a very gentle and fcarce fenfible Diffolution, as in Fifh and rotten Wood, and perhaps the Gloworm; in others the Effect of a gentle Heat or Motion, as in a Diamond and Bonorian Stone, from another Caufe in the Scintillation of the Hair of a Cats Back when Pfrok'd much and quick in the dark, from another. Caufe in the fhining of the Juice of a 100 legg'd Worm when kill'd in the dark. From another, the thining of Ignes Fatui, Dews, Sea-water, and the like. Now from the comparing of thefe feveral ways Nature makes ufe of for the producing of thefe Effects, it will not be difficult to find that there is one Principal Caufe of all, which is in almoft each of them conceal'd under a differing covering. Now by cafting a way all thofe Circumftances, which by comparing them one with another, will be found needlefs and accidental as to the producing of Colour, we may quickly come to that which is the only true and adequate Caufe.

7y, Another Method of Difcovery may be by taking notice of all fuch Proceffes of Nature, wherein by the fame effective Principle it caufes quite differing Products: For by diftinguifhing and defining carefully the confiderable Circumftances of fuch Operations, the Nature of both of them will be the more eafily found. As why Heat for inftance, does in Bricks firft by a gentle degree caufe a Condenfation, and Chrinking, and hardning; and afterwards by a more violent caufes a Rarefaction, Liquefaction and foftning, if we obferve well the Circumftances we may find that the firft is caus'd only by the flying a way of the more watery and liquid, Part that kept the other a little further disjoin'd, whereby thofe more folid Parts flide and fall nearer together, whereas even then thofe more folid Parts were not condens'd but rarify'd, as all other folid Bodies are by a fenfible degree of Heat; and as for the other Effects they are but a further Augmentation of the fame Product. Another Inftance may be the Condenfation and Rarefaction of Water by Cold; the Reafons of one of which Operations feem a little more abftrufe, and deferve to be farther inquir'd into ; Namely, why Water fhould continue to condenfe more and more; till it comes to fuch a degree of Cold, and afterwards according as the Cold increafes, fo does the Expanfion of theWater into Ice. The Difcovery of the true Reafon of which Experiment will very probably afford us a much larger Profpect into the ways of Nature than we have yet been Mafters of, towards the finding of which it will be requifite to take notice of and examine well all the Proprieties of Ice and Snow, fuch as are the feeming Blebs or Bubbles generated; the Figures of falling Snow and the Figures of frozen Snow, both which are very ftrange and extreamly pretty; the Figures and manner of the freezing of Ice, the Refraction of Ice, and the Lightnefs of it, and the like.
$8 / y$, Another way of Difcovery, is by indeavouring to find out fuch Experiments as may diftinguifh between two or more Principles, and thew what the Influence or Power of each of them is towards the producing of that Effect. whereunto they feem both or all to concur : Of this kind there are Multitudes in Natural Operations, which Operations are very feldom fo fingle as to be perform'd and perfected by one active Principle only, but to the producing of almoft all its Effects, Nature for the moft part makes ufe of two, three, or more co-operating Principles; the diftinguifhing the adequate Power of each of which is one of the moft difficult things in all Philofophical Inquiries, fuch Merhods and Rules therefore as affit us in this Performance, ought efpecially to be look'd after. As for Inftance, in the Fulmination of Gunpowder, what the feveral Offices of the three Bodies of which it feems.neceffary to be compounded are, what Part the Nitre, what the Sulphur, and what the Cole acts s the like in the fulminating Powder, defcrib'd by Glauber, made of Salt of Tartar, Sulphur and Nitre, whofe Operation feems to be quite differing from that of Gunpowder, and nearer to approach to the Nature of Aurum Fulminans, which is a third thing of this kind to be obferv'd, made of the Powder of Gold precipitated out of Aqua Regis, by Spirit of Urine, or Salt of Tartar; and feeming to want the Sulphur, which feems neceffary to the other two whether the Gold it felf do not contribute as an active Principle, to the difperfing of it felf in the Aqua Regis, as well as the Aqua Regis doth to the Penerration or corroding the Gold; and in the Aqua Regis, what the Sal Armoniack, and what the Nitrons Spirit contributes towards that Action. And herein the ways for Difcovery muft be by varying either the feveral Ingredients themfelves if it can be, and by obferving in what the new fubftituted ones differ from the other either in Quantity, Quality, Time, manner of operating, and the like, or elfe by indeavouring to vary and alter the Quantities of the Ingredients themfelves; and by obferving diligently all the Circumftances of the fucceeding Effects. Or elfe Thirdly, fomething may be learnt by mixing one or two other Ingredients, and obferving and comparing their Effeets to confider in all of them in what common Nature they all agree, and in what they moilt of them differ, what Bodies feem to promote, and what to hinder thofe Operations.
9. Another way of tracing Nature is by obfervins, the Refemblance or Difcrepancy of Natures working in the producing thelitle parts in differing Kinds, Species, or Individuals. This Merhod is very luciferous, and produces very copious Matter of Information, for by obferving how Nature varies its Method according to feveral Defigns we may eafily by comparing, and rejeCting, quickly arrive to fome pofitive Information, what the Ule and Bufinefs of each part is; as for inftance, by obferving the Keys of Sicamores, Maples, $\mathcal{F}^{\circ} c$. and finding in them a tender, but perfect Plänt wrap'd up and clos'd in a Box or Cafe, fo as to preferve it from taking Injury, which by being buried in the Ground in warm Weather does by degrees fwell and break the Shell, and grow up in a Plant: And comparing this with the like Procefs of moft other Seeds, though the Plant or Web of them be not fo vifible, we may conclude that they alfo have the fame Principle in them though fomewhat farther remov'd or hid from our Senfe: And by comparing thefe with the Eggs of Serpents, Crocodiles, Æfrridges, Tortoifes, and Multitudes of other Oviparous Infects, who lay their Eggs in convenient Receptacles, that the Heat of the Sun or Air may hatch, we fhall find it very probable that Nature takes the fame courfe both in the one and the other; but with fome difference, that in fome fhe feems to operate more openly , in others more fecretly and referved. And by comparing likewife the Method of Nature in the Formation of the Fxtus in the Womb, we may find reafon to conclude, that all kinds of Vegetable and Animal Bodies are propagated by much the fame Ways and Methods, though fomewhat varied in Circumftances, the Obfervation and diligent Examination of which by Experiments will hugely promote this Inquiry. Thus alfo by comparing the Contrivances for Motion in the Leaves and Branches of the fenfible Plant, with the Mufcles and Inftruments of Motion in Infects, Birds, Beafts, Fifhes, fcaled, fhell'd, and cruftaceous, each of them feeming in fome particular or other to differ, and by joyning to thefe feveral other felf-moving Bodies, as the Beard of a wild Oat, the wreathed Seeds of Muskgrafs, the Ihrinking of Gut-Atrings, the Expanfion of fired Gunpowder, the Corrofion of acid Liquors, ξ° c. we fhall find many helps to judge of what is moft likely to be the true caufe of the Motive Power of the Mufcles: For every Difcrepancy in thefe brings us a ftep nearer to the thing fought for, by lefning the Bounds, or at leaft by fixing the Terms within which it muft be found.
10. Another way of Difcovery is by taking notice of the Tranfitions of Natura, by what degrees and fteps it paffes from one thing to another in the Formation of Species; for this will afford very great Light, how to find out which Product of Nature is moft fimple, and which moft complicated, which the moft perfect, and which is fartheft from it, and wherein the Additions or Defects lie. And accordingly from this we fhall be the better inabled to find out the Significancy and Cufe of each part: As fuppofe from a Man Nature feems to defcend to an Ape, Monkey, or Baboon, which we may find in very many things toimitate Man very exactly, as in its Figure, Gate, and Jefture, as is teftified by in his Natural Hiftory of the Eaft Indies, in frowning, grinning, and

The Method of Improving Natural Philofophy.

laughing, as divers, Travellers affure us, but feem to want the Ufe of Reafon and Speech, the things wherein they differ in Figure from Men are chiefly thefe; that the comparative Bulk of their Brain is much lefs in Proportion to their Bodies than that of a Man, as has been excellently well obferv'd by the Learned Phyfician Dr. Willis, that they are all over cover'd with Hair, that their Heads and Nofes are flatted, and their Mouth thrult out, tending fomewhat towards the Shape of other Beafts; that their Legs and Arms are much fhorter in proportion to their Bodies than thofe of Men, and that their Spine, and confequently the Spinal Marrow is yet fpun out longer and fmaller into a long Tail : And which may be further taken notice of, that thofe which have naturally the longett Tails are ufually cateris paribus, the furthelt remote from imitating the Aftions of a Man, and do feem neareft approaching to the Capacity of other Brutes. And there is no doubt but that a diligent Obferver may by accurately anatomizing each, and comparing them together, find divers other confiderable Variations which are of a kind of middle*Conftitution, between thofe of a Man and thofe of other the moft brute Creatures; which may much inable an Inquirer in finding what parts of a Man feem moft to contribute to the Perfection of his Natural Parts. Another Inftance may be this, to obferve the Tranfition of Nature between the Figure of precious Stones, and the cryftadlizing of Salts, between the thooting of Salt, and the growing of Mould and Mufhrooms, and its Tranfition from Mufhrooms to Mofs, and from Mofs to Grafs, छัc. The accurate Obfervations of all which Tranfitions, together with all the Circumftances that attend upon them, will with a Clew almoft lead us from the Explication of the moft plain, fingle, and obvious Phrnomenon, to the Underftanding of the inmoft and moft fecluded Procefs of Nature.
11. Another way of Difcovery, is by taking Notice of all fucb Experiments. and Accidents as fhew the Fruftrations and Failings of Nature; for all fuch Experiments as thefe, the Circumftances being diligently noted, afford very effential Diftinctions, and do very much direct, circumfcribe, and limit the Mind in its fearch : and, by fhewing what things are deftructive to it and over-rule and govern it, and what pervert it and turn it out of its Courfe, it very much fits the Mind for pofitive and affirmative Knowledge of the Caufes of thofe Effeets. For inftance, Let the Nature of Fire be the thing fought for: Here we are to look chiefly after fuch Experiments as fhew the failing of Nature in this Operation, fuch as thefe; the falling of Water on the Fire makes it immediately go out, query whether from the Coldnefs or Moifture; that 'tis not from the Coldnefs is evident, becaufe boyling Water will produce the fame Effect, nor is it from the Moifture, becaufe then Spirit of Wine would do the fame thing which yet it does not; query further therefore, whecher it be by keeping of the Menftruum of the Air, if fo, then the keeping of that Body any ways from coming to it will do the fame Effect. To confirm this, we have many Inftances of the Fruftration of Nature; as that a Candle will prefently go out if inclos'd in a Veffel, whereby the frefh Air is excluded: The like it will prefently do, if it be included in a larger Veffel, and the Air drawn out. Coles likewife will do the fame, if included in a clofe Veffel, nay though by a pair of Bellows included in the Box with them, they, be all the time blown upon by them, as I have feveral times fhewn before very many illuftrious Spectators.
12. Another way of Difcovery, is by obferving the Deviation of Nature ith framing Specifick Bodies, fuch kind of Operations wherein Nature feems to ftep a little afide out of its ufual Rode, and feems to take up a new Method in forming: Now thefe though in themfelves they feem at firft to amaze and perplex the Mind, yet when by diligent Examination and Inquiry the Vail that covers them is remov'd, and it be difcoverd to which of the more common Operations of Nature it belongs, and wherein it differs from them, then does it as the former, highly affitt the Judgment in determining the true Nature of that Principle, by manifefting what great Influence thefe or thofe accidental Concurrents had in altering or difguifing it fo as to make it appear fomewhat. extraordinary and miraculous. As for inftance, the Loadftone feems to be an Inflance of the Deviation of Nature out of its ufual Merhod; and feems to con.

The Method of Improving Natural Philofophy.

tain fome Principles in it altogether extraordinary and very wonderful, but when we have taken this excellent Compofition to pieces, and found that it is refembled in fome of its Proprieties by the Motion of an Unifon String, in others by the Attration of rubbed Jet, Amber, Wax, $\mathcal{V}^{\circ} c$. that both its Axis may be varied Mechanically into another Pofture, and that its Poles may be turn'd end for end, and that its Vertue may be quite deftroyed as well as Mechanically augmented ; that it has a Dependence on the Earth, and is mov'd by it, as haying the firtt and chief Magnetical Principle which moves all the reft; that the Sun, Moon, and all other the Planets, have the fame or alike Vertue with this of the Earth, and that the Loadftone has given the occafion of the Difcovery of all thefe: When we confider this Inftance, I fay, we may plainly fee of what great Ule Obfervations and Experiments of this kind are, for the finding out of the Methods and Ways of Nature which are fomewhat beyond the Difcovery of our Senfes. Another Inftance may be a Diamond, which for two or three Proprieties feems extraordinary, the firft and chiefeft is Radiation in the dark, after it has been gently rubb'd or ftruck, which gives us a new manner of producing Light feeming to depend on the other Property, namely, an extraordinary Hardnefs, and affords anew Difference or Help of Rejection : For fince in this Experiment there is neither Combuftion nor Flame as in Fire, nor Moifture and Putrefaction as in Fifh and rotten Wood, nor a Motion of Animal Spirits, which fome pretend to be the Caufe in Glow worms and Cats.Eyes; nor any previous Light, which fome have imagined to inhere and remain like a Liquor in the Object till it be evaporated or dry'd, as in the Bononian Stone, by the help of this one extravagant Inftance all thefe Suppofitions are rejected, as not at all neceffary to the Exiftence of Light, and only this one effential Propriety feems to be fet up in the ftead of them; ; namely, a very quick Vibrative Motion, which a Body of that extream Hardnefs feems only capable of from fo fmall and fudden a Fercuffion, as that has been obferved to thine with. Another Inftance of this Rule may be the Apparition of Colours in the Triangular or Sexangular Stirix of Cryftal, for therein Nature feems to generate a lovely Variety of Colours after quite another way̆, than it feems to do in other Bodies whether Vegetable, as Flowers, Leaves, Woods, Fruits; or Animal, as Blood, Gall, Hair, Feathers; or Mineral, as Metals, Marchafites, Scoria, Vitriols, छ゙c. in all which, fome Authors will needs hare a various Temperament of Sulphur and Mercury to be the chief and principal Caufe. Now by this one Experiment or Obfervation of Cryftal, thefe and divers other phiantaftical Hypothefes about Colour are overthrown, and by examining it thoroughly it may be found that this does demonftrate only one thing neceffary, namely, a confiderable RefraEtion enough'to obliquate the Puls of Light, as I have in my Micrography indeavoured more fully to explain. Such Experiments as there do hagely ftreng. then the Difcurfive Faculty, and (at one Blow as it were) inables it to cut off all thofe numerous Heads of Hydra, which when cut off one by one do a-frefh fpring up again, and create new and greater Difficulties, but by watching Nature and taking hold of this opportunity of the Deviation of it, the Viftory becomes eafy and fpeedy.
13. Another way of Difcovery, is by taking notice of all sucb Productions of Nature, as are differing from the reft of the fame Species, and are therefore truly efteem'd monftrous and wonderful by the Generality, but a Philofophical Hiftorian has fomewhat elfe to do than admire them; for thefe are indeed the moft inftructive and the richeft Commodities he can meet with. His Bufinefs therefore is diligently to fet upon examining of it both as to the Caufes of it, and as to the particular Effects, and to indeavour to find out wherein lies the Deviation in what confiderable Circumftances they differ from the moft ufual Effects, and wherein the Myfterie of Nature's proceeding after fuch a manner lies, what Caufe it was made it thus deviate. One therefore that is fit to make Obfervation of this kind, muft firft be very well skill'd in the moft ufual ways of Nature of that kind, fo as that he may be able readily to detectall the Aberrations of Nature: Nor is this Knowledge indeed fufficient, but he ought to be fomewhat knowing alfo in the Ules and Defigns of the parts of that Species whereof the thing under Examination is an Aberration; for 'tis none of the

The Method of Improving Natural Philofophy.

leaft Helps, towards the finding out the Nature of the thing fought for, to be able to know and judge what things are material and confiderable enough to be obferved; for 'tis not the fetting down of every little Variation; of which there be Multitudes in every individual of the fame Species, whereby they differ one from another, moft of thofe being to be paft over as the Effects of a luffus na tura ; that is, of many little Circumftances which perhaps 'tis impoffible ever to be able to take notice of, or find out, there being continually fuch Multitudes of them and thofe fo complicated: Nor again on the other fide are fmall, nay almoft unperceivable Variations in fome cales to be paft by where the Caufes can be certainly found, or where thofe thoughi never fo fmall Variations, become confiderable toward the producing greater Effeets; for fometimes thofe Variations which feem greateft and moft confpicuous are very inconfiderable, and as to the promoting of Natural Knowledge fcarce fignificant. So that 'tis not every one that can be preferitly fit for this Undertaking, but it'requires a long and fedulous indeavour and accuftoming ones felf to obferve the Methods and Courfes of Nature; without which endeavour'd 'tis much to be fear'd that the Hiftory fo written will be full ftufft with Impertinencies, and contain very little of any thing folid, material and ufeful. Of this kind there are Multitudes of Inftances among Animals, Vegetables, and Minerals, all kind of extravagant natural Actions, Generations, Vegetations or Accretions, Difeafes, Cafualties, Conjugations, and Separations, and the like; being to be numbred under this, and every one in their feveral Kinds, if accurately examin'd, affording choice and rare Informations which affift us beyond any other way, how to command and regulate Nature; by either promoting or furthering it in its ufual Method.
14. Another way of Difcovery is, by objerving the concomitant Proprieties of Individuals in their greateft or bigheft, and in the loweft pitch of their Perfections or Exiffences. As the former was of the extravagant and preter-natural Concomitants in a preter-natural State, fo this of a Natural: For though the former be an excellent Method of Difcovery, yet that alone, and of it felf is not fufficient; we ought as well to know what things and Circumftances accompany the natural Progreffes of Nature as well as the preter natural, that by the comparing thefe two together the Differences between them may more manifefly appear. As for inftance, that in an. Infant the parts, are foft, moift and tender, and as very unfit for Animal Motion fo have they very. little, till, after a certain time moft of thofe parts begin to grow a little more dry and ftiff, but yet retaining Plenty of Natural Juice and Moifture, whereby all the numerous Parts of the Automaton (like thofe of a new and clean Clock, that has been a little us'd to take off the Roughnefs and is well oyl'd) eafily and glibly move and flip by one another and confonant hereunto, that Conftitution of Body is ever in Motion, eats much and acts much, is quickly wound up, and whurr 'tis quickly down again, and a new fupply of Aliment mult be had. And thus it continues to be wound up and run down, till by degrees the Oyl begins to be a little fpent, and to grow fomewhat more ftiff, and the Parts to be well worn and adapted one fo another when it arrives at its beft going; the Child being become a Man, his Parts by much Exercife become very prompt and habituated, they move not fo much as at firft but more fteady and regular, the parts become more firm and confiftent, the Humidum Radicale feems to be perfectly concocted and brought up to its juft Confiftence, being neither too thin and watery, or too thick and clammy: But as he grows older the Parts grow dryer and ftiffer, and lefs fit for Motion; the Natural Moifture is grown too thick and flug, and the parts begin to. fhrink and Thrivel, and to be clogg'd. and worn, and all the Motions become flower-and more heavy, and the parts grow quickly weary, a little Food ferves long; the Juice in many parts of the Body become fo charg'd with excrementitious parts thereof, that it turns into a kind of hard or ftony Confiftence: and like an old decayed and foul. piece of Clock.work, here a Pivot is worn loofe in his Socket, there the Oyl is thickned with Duft and Filth, as almoft to ftop the Motion: Here a Wheel is bent, and there a Tooth is worn out, and the like. Now as there things which are the common Accidents of Warches, and do generally happen to all

56
 The Method of Improving Natural Philofophy.

fooner or later, according as they are better or worfe ufed, are very eafy to be found by a diligent Obferver, though altogether ignorant of Watches; and by comparing the feveral Accidents one with another, he may at laft be able to underftand a Watch thoroughly, and know wherein the Goodnefs or Badnefs of one confifts, and what is good and bad for it, fo may one that is wholly ignorant of the Fabrick of any Natural Body be able to learn the Nature of it, by obferving the feveral Accidents that happen to it in the feveral States and Conditions of it.
15. Now as the Obfervation of the various Accidents of Bodies in feveral States is one way of Difcovery, fo another way may be of obferving fuch Variations as bappen to Bodies from their being produc'd at differing times, or in differing Places, of the fame Medium, or in differing Mediums, or with a differing 2 wantity; for each of thefe kinds of Obfervations do further manifeft to us by what Rules Nature works, and by what things it becomes regulated and circumicrib'd. Of this kind may be the obferving of the difference between the Shape and Nature of a wild Irifh Man (or fuch a one as has nothing of Education to biafs him) and one of Saldania or the Cape of good Hope. The Difference between the Stature, Age, Strength, Shape, छ ${ }^{\circ}$ c. of Men at the beginning of the World and now. The Difference between the Fins of the flying Herring and the Wings of a Bird, between a Crab and a Spider, \mathcal{F}^{c}, the one being an Infect of the Water, and the other of the Air. The Difference between Beatts of the fame Species under the Pole, and under the Line, E̛c.
16. Another way of Difcovery is, by obferving wobat things moft conduce to the Perfection or Deftruction of any Production: This is differing from the next but one preceding, in this, that there we confidered only fuch things as accidentally were found Concomitants with the feveral Conditions not fo much confidering them as Caufes; but here out of many of thofe former, we fegregate and collect fuch as feem very active and contribute either to the better perfecting, or to the Deftruction or Overthrow of fuch a Body. As fuppofe that Fire be the Subject enquired into, we fhall find Nitre or frefh Air, and fome Sulphureous Body, to be that which moft powerfully makes that Operations, and that nothing does deftroy and hinder it fo much, as the feparating of the intermediate Contract of thofe two Bolies, by the throwing on of Water or any other incombuftible and fluggith Liquor.
17. Arother way of Difcovery is, to find out and enumerate all Such Operations of Nature as wherein it feems to work after a peculiar manner, and very differing from her more ufual Metbods; for by this means many Circumftances are cut off, which being generally the Concomitants in her more ufual Method, are therefore more liable to be thought effential to the producing of the Propriety fought. For Inftance, the Flying Herrings commonly obferved flying in great Sholes in the Torrid Zone, may feem as an excellent Inftance to manifeft that to the Bufinefs of flying, there is no need of Feathers about the Body, nor in the Wings, nor in the Tail, as moft imagine; and the Poets feem to confirm it by the Story of Dadalus and Icarus, fince this Fifh has nothing but Fins and Scales: Nor fecondly, is there any need of a flat Tail, fuch as all kind of Birds have and Bats; for the Tail of this Fifh ftands edge.ways: Nor thirdly, is there any need of Joynts in the Arm, or Stems of the Wing, as in the Pin. nions of Birds, and in the Fingers of the Bat; nor is it fo neceffary that the Stem of the Wing mult needs grow in the Center of Gravity, fince this is not obferv'd in this Creature, and divers other fuch Circumftances which were generally believ'd to be neceffary Cirćumftances to the Bufinefs of Flying by the Peculiarity of Nature, in Shaping this Fifh after this kind, and induing is with the Power of Flying, they are all of them difcovered to be only moft proper for that peculiar Creature to which they were adapted, and where no fuch Accomplifiment is beftowed on a Creature by Nature, 'tis as proper if we would fupply that Defect artificially to make ufe of one way as well as the other, and perhaps could there be made an Artificial Repofitory or Magazine of Strength; which for Weight and Bulk would not be too cumberfome ; 'tis not
impoffible
impontible to fit a Pair of Wings for a Man to tly with, which may be contriv'd fomewhat after the manner of the long Fins of there flying Fifh. Suppofe Congruity be the thing look'd after, the thorough confidering of the Nature of the peculiar Species of it between Iron and Magnets, will help to cut off many Circumftances which divers Inftances in other Bodies do feem to make neceffary.
18. Another way of Difcovery is, by inquiring after and diligently obferving what middle way of Nature there can be found between thofe extravagant and the more common ones. For fuch as thefe ferve as a Vinculum; to conjoyn both thefe together by fome common Nature, which is to be found in the third, and thereby hugely promote the Explication of both the other. As fuppore, Congruity he the Nature fought, the more common ways of Congruity are between divers Homogeneous Fluids and Solids that are immediately contiguous; the more tare and lingular is between two Load.ftones or two Magnetick Irons, or between a Loadftone and Iron contiguous and at a diftance, between thefe too may be interpofed the Attraction of Amber,' Jet, Wax, © - c. which as they fometimes aft at a diftance when they are rubb'd, and alfo on the Bodies contiguous, very much help to explain the Congruity both in the one and in the other.
19. Another way of difcovering the Methods of Natures working is, by ob. ferving'and comparing the Productions of Art with ibofe of Nature. And for this purpofe it would be very requifite to have a perfect Account of all the Productions of Art, fuch as are difpers'd up and down in feveral Trades and Occupations of Men, whether for Profit or Pleafure; and efpecially all thofe excellent ways of working on Bodies by Chymical Operations, fuch as Menftrua, Miftion, Digeftion, Fermentation, Diftillation, Calcination, Fufion, Freezing, and the like; every of which as they admit of a vaft Variety, fo do each of them ferve as fo many Torches to light us in the dark Paffages of the Labyrinth of Nature, where the Affiftance of the common Works of Nature, like the Radiation of the Sun, cannot go along with us. For inftance, fuppofe we compare an Automaton with an Animal, as I mentioned a little before by the by. Or fuppofe we compare Paper or Hats with the Skin of an Animal, becaufe the Texture of thofe two feems of much Affinity with this, we fhall find the Method of Nature prettily explicated by them: For in both thofe Artificial Products we find that the Artifts endeavour firft to cut, grind, or beat into fmall parts the Materials they are to ufe, then to make them foft, light, and fupple with Water or other Liquor, then to difpofe, place, or put it into fuch Forms or Moulds as may fhape it into what Form they defign it, then they there fo work and order it, that the Moifture may by degrees watte, and the folid Parts unite more clofely together, adding to it fuch glutinous Matter as may make it fit to ftick, hold and grow ftiff, firm, and ftrong together; and laftly, by feveral ways they fmooth and colour, or beautify the Surface: Ail which Particulars may be underftood more fully by my Defcriptions of thofe Trades, and the Explication of their feveral Operations, which I muft referve for another Opportunity. Now Nature in preparing the Matter that does repair the Skin or Fleth of the Body, feems to proceed much after the fame Method, the Food is chofen, then groun'd or chewed, then digefted or brought into the Form of a Milk or Froth, then difpers'd over the Body, by degrees thicked, and laftly polifhed. Now though every Particular does not exactly hit, yet there are many that feem to have a great Affinity, and ferve to prompt the Intellect, and very much to help the Fancy and Imagination to conceive of thofe things, and of the Method of Nature, and they will ferve greatly to inftruct the Mind what things are to be look'd after and examin'd in the Proceedings of Nature: And the more Variety there are of thefe Artificial Inftances, the more will the Mind be quickned to Inquiry, and the more taken off from Prejudices, or an Imagination, that becaufe the Procefs of Nature in one part may agree with one part of the Artificial Procefs; therefore that all the other parts of the one moft agree with the other parts of the other, for when we fee that even Art can ufe the fame Beginning, but yet very differing intermediate Proceedings, textures which have every of them a differing way of proceeding to perfeet the End.
20. Another way of Difcovery is, by obferving where and by what means Art caufes Nature to deviate or alter its ufual Courfe, where it affifs, promotes and perfeds, and wobere it impedes, diverts, or deftroys. Of this there are Multitudes of Inftances in all things, about which Art has been ufed, and therefore needs not exemplifying; but certain it is, that this Method affords extraordinary Help for Difcovery of the true Nature of the efficient and material Caufes of things: For knowing what in Art is able to change, and divert the Proceedings of Nature, and what to ftay or promote them, it will not be difficult to find what they are that are thuswrought upon, fince it feems very probable that they muft be fomewhat of the Nature of thofe in Art which promote them, and fomewhat of a contrary Nature to thofe that do alter and impede them. As becaufe 'tis found by experienced Gardiners, that Artificial Heats ripen Fruit, 'tis not improbable but that 'tis a convenient Degree of Natural Heat that contributes moft to that Effect: Now as we fhould obferve diligently the Caufes or Ingredients which do co-operate with Nature, fo thould we alfo obferve in what Quantity it is moft affiftant, by what Steps and in what Degrees it affifts the Circumftances of Time, Place, manner of Application, Operation, and the like, for without the Determination of thefe Particulars, the Informations will be lame and imperfect, and nothing of Certainty can be built on them, for that which is affiftant in one degree, at one time, in one Place, or at fuch a Diftance, is perhaps deftructive and pernicious in another: This will not only help the Mind to judge of what the caufe is, but the Degrees and Circamftances of Time, Place, Quantity, E̛c.
21. Another way of difcovering Nature is, by obferving and comparing the Natural and Artificial woys of producing the fame Effelts. For having the Artificial way in our own Power, and being able to alter ard change, and vary it: We have much greater Helps to find out the true Reafons and Caufes of thofe Operations, and having found them in Artificials'twill be very eafy to apply them to Naturals, and this way of inquiring where the Subject is capable of it, is the molt eafy of any I have yet mentioned, and the moft inftructive, and does more immediately inform the Senfe and the Imagination with a true Idea of it, obliterating and difpelling dark and confus'd. Notions. Thus, for inftance, had we not found an Artificial way of hatching Eggs by a gentle and equal Heat from whatever caufe it proceeds, we fhould have been very apt to have fancied frange kind of irradiating and plaftick Influences from the brooding Hen to the hatching Eggs, but by the Egyptian Experiment of hatching them in Dung and Ovens, or Stoves, which has been tried other ways very fuccefffully in Denmark (as Bartholine affirms) and in. England, and elfewhere, with the gentle Heat of Digefting, and Lamp Furnaces; and alfo by the hatching them oftentimes in Womens Bofoms, and divers other ways, 'tisevident that fuch Phancies will eafily vanifh. Thus many People are ftill very apt to fancy a cerrain attractive Vertue in the Sun, which by a kind of Magnetifm does draw up the frefh Water out of the Sea, leaving the falter part behind, and by that its Power does keep it fufpended in Clouds: Whereas if we confider that any other Heat to that Degree will do the fame thing, whether the Heat be placed above or below, or on one fide or t^{\prime} 'ther, we fhall then find caufe to think that'tis not an attractive Vertue of the Sun that performs this Effect, but that 'tis the Heat of the Sun which working on the fuperficial and frefher parts of the Water warms them, and by degrees rarifies them into the Form of Air, which having much heat and Agitation in them, do fo far expand themfelves as to make them more rarify'd in Specie than the Circumambient Air, which being therefore heavier than them caufes them to afcend in the fame manner as Water makes Air, or Oyl, or any other Liquor lighter than it felf to afcend to the Top. This way does very much difcover the naked Truth and Simplicity of things, by taking away the Vizour under which it lay difguifed. Much in the fame manner as

I be Metbod of Improving Natural Philofophy.

Travellers judge of the Beauty of the Perfian or Indian Ladies, whom they never faw, by obferving and exainining fuch as they have more Liberty to fee and converfe with.
22. Another way of difcovering Nature is, by obferving the difference between the Prodults of Nature and thofe of Art. And*without this Head indeed the former way cannot be compleat, and therefore this has an immediate De. pendance upon it: This way does farther affift the Mind to find out and fix the effential Differences and Proprieties of Natural Actions; for by comparing thefe kind of Obfervations with the former, we fhall be able to judge better of the differing Nature of thofe Operations, and what Propriety 'tis in the 'one that makes the Workmore perfect, and what 'tis makes the other mifcarry. Thus the Reaion why Rain Water feems to be more pleafant than diftill'd, feemis to be partly from the Saline or Nitrous part of the Air which does fomewhat purify it, and partly alfo from the gentle or moderate Heat of the Sun which acts upon the Surface of the Water, and partly alfo from the greater Coldnefs of the outward Air, which being therefore heavier does fooner carry up the Vapours, though but a little rarify'd; the diftilled Water on the other fide contracts an Empyreume from the greater Heat, which is apply'd at the bottom, and fo the whole is much heated, and from the Pentnefs of the Veffel, whereby all thofe Parts that rife, though many of them are Saline and Terreftrial, are driven over with the Vapours, and muft neceffarily fall and unite-again with the Water in the Recipient; whereas in the Air they ferve to another purpofe, for the ColleEtion of thofe Parts together at the rop of the Clouds, and there kindling, feems to be the caufe of Lightning and Thunder.
23. Another way of Difcovery is, by obferving the differing Materials, and ways of producing one and the Same Effea by Art. For this does mightily free the Mind from Prejudice, and from being too much imbued with any one Experiment or Method of proceeding, and each of them does much contribute to the Explication of the reft. Thus by obferving that the fiirituous part of Urine may be extracted out of it, either after it has ftood a confiderable time to putrify, or immediately after the Intermixture of quick Lime we may learn, that Putrefaction is.nothing but a kind of Corrofion or a working of fome of the parts of the Uline upon others, and thereby a fetting others at Liberty. Thus the being able to make a very Volatile Spirit, and Salt with Horns, Bloods, Flefh, Hair, Hoofs, δc. of Animals, we may learn that all the parts of Animals feem to be much of the fame Nature, but only diverfify'd and dreft under feveral Textures and Schematifms; and by obferving that Spirit of Soot yields much the fame kind of Spirit, we may thence perhaps with fome Probability argue, that the caufe of thefe Effects may proceed from a. Corrofion or mixing of the Salt of the Air with the Materials that yield thofe Subftances; the Operation of the one being made in the Chimney, and of the other in the Lungs or Heart, though indeed that which feems to be the Empyreume in all Liquors may perhaps not improbably be fuppos'd fome fuch thing as this Volatile Salt, and may perchance be caus'd only by the exceeding Violerce of Heat.
24. Another way of Difcovery is, by obferving woith robat Circumfances N_{a} ture and Art doe Sometimes exceed one anotber. For thefe kind of Ohfervations as they difcover the Excellencies of the one, fo do they alfo the Defects of the other, and each of them contributes to the Explication of the other, and do put the Mind upon Inquiry how to fupply thofe Defects. For inftance, that Cryftal and Diamonds are made by Nature of an Hexangular Prifmatical Figure perfectly tranfparent and exceeding hard. Art on the other fide is able by Decoctions and Evaporations, to make a Body fomewhar tranfparent, and of the fame Figure, but very foft and brittle, and eafily either fufil or diffoluble again in Water, Namely, Salt Peter. This will-prompt one to enquire what may be the caufe of the more perfect Tranfparency, and of the much greater Hardnefs; that is, to find out by what means Niter may be fo ordered as to be made perfectly tranfparent, hard, and fixt: Or elfe to inquire by what means Cryftal

The Method of Improving Natural Philofophy.

may be made as eafily liquefiable as Salt Peter, and by what Menftruum it may be melted away, as that Salt is into warm Water. Somewhat like the former of thefe Inquiries may perhaps have formerly raifed in the firft Inventors of Glafs a Defire and Endeavour to find out fuch a way, whereby thefe things might be performed, and thofe Tryals perhaps might produce Glafs; as I think 'ris not to be doubred but that by this means the tinging of Glafs into all kinds of Colours was fought after and found. Another Inftance wherein Art excels Nature, may be in Chymical Diftillations and Separations which is no where naturally done, and the Inquiry how and where this is or may be perform'd by Nature, may prompt unto us perhaps fomewhat of the ftrange Operations perform'd in Animals, and ftir us up to examine wherher thofe may not be Nature's Chymical Veffels; and to inquire alfo by what means thofe combuftible Subftances that caufe Lightning are feparated from other Vapours collected together, and afterwards kindled: A Collection therefore of all Expsriments and Obfervations that feem to thew fomething of this Nature, will greatly quicken and excite the Mind, and inform it of what things are material to be inquir'd, and what Circumftances are very fignificant and in. ftructive.
25. Anotlier way of Difcovery will be, to, enquire after, to try and enumerate bow many mecbanical ways there may be of working on, or altering the Pro. prietics of feveral Bodies. For the being well inftructed and knowing in thefe, will exceedingly adapt and fit the Miid to trace the Method of Nature, and to judge which or likelieft to which of thofe ways Nature performs her Operations inquir'd after; it will much rectify the Imagination, and take it off from an Inclination to uncoiceivable and confufed Apprehenfions of things. Thus, methinks, the Operation of corrofive Menftruums on Metals, or diffoluble Bodies, may hint to us a way how the Air may operate on combultible Bodies, or fuch as are diffoluble by Air exceedingly heated. Thus the Obfervations that by the cutting off a part of any Stone from onie fide of it, does alter the Center of Gravity of it : And that a Mufical String, wherever it be ftopp'd, if it be ftruck does make the longeft Vibrations in the middle, may prompt unto us perhaps fomewhat of the Reafon of the changing of the Poles of the Magnet upon the paring off one fide. Were this way well practifed, certainly Men would not have fuch ftrange, wild and unconceivable Notions of the Works and Effects of Nature: For as it feems to do nothing unintelligibly, fo are there very many things that it manifeftly performs mechanically: For inftance, all Animal Motions and the Inftruments thereto belonging. Wo fhould therefore endeavour to be acquainted with all the various mechanical ways of Hammering, Preffing, Pounding, Grinding, Rowling, Cutting, Sawing, Filing, Steeping, Soaking, Diffolving, Heating, Burning, Freezing, Melting, and the like; of which there are various other Species, and each of thefe have Multitudes of Individual ways, very much differing from one another, as many of which as can be attain'd unto, fhould be underfood and examin'd to inform and regulate the Conceptions of the Mind, and to remove thofe Puerile and Childifh Fancies that we fuck'd with our Milk, and learnt with our Language.
26. Another Help of Difcovery will be, to inquire out, and try bowo many various mechanical ways there may be of Separating Bodies joyn'd and mixt. Such as Winnowing, Straining, Wringing, and Prefling, Warhing, Diftilling, Evaporating, Precipitating, Subliming, Cryftallizing, Burning, Coppelling, Freezing. Shaking, Knocking, and the like; each of which will furnilh the Mind with their differing Circumftances and Proprieties, fo as by comparing thofe various kinds of Separations in the workings of Nature, with thefe it will be the better inabled to judge to which of them they have moft Refemblance, and will be better fitted to detect in what Circumftances they vary, or are differing from them; and the eafier undertand what Particulars are notable and what are not.

The Metbod of Improving Natural Philofophy. 61

Abstract

27. Another Help of Difcovery will be, to inquire and try bow many various mecbanical ways there may be of uniting and incorporating Bodies into one another. Such as Jointing, Binding, Screwing, Pinning, Hooking, Shaking, Tumbling, Churming, Kneading, Melting, Diffolving (for the Diffolution of fome parts feem caus'd by the uniting of others) to which may be adjoyn'd Burning; in which thete feems to be feveral Unitings as well as Separations; Digelting, Infufion, Freezing, Infolation, by mixing a third or fourth, ϑ_{c}. by taking away an Impeding part by Compreffion, by opening and divers other ways and Methods, fome of which are more obvious and vifible, others more fecret and obfcure, and themfelves will need further Explications: All which ways fhould, if polfible, be well underftood and reduc'd to a certain Theory, that fos by that means other more fubtile and curious workings of Nature, might by. the Help of them be more exactly detected and defin'd.

28. Another way of Difcovery is, to feek after and attempt by tryal oll fuch ways, wobereby Bodies are really chang'd from one thing to another. And for this purpofe it matters not whether it be from worfe to better, or from better to worfe, or neither.: For each, as to this Defign, may be alike ufeful. Of this kind may be fuch Bodies as are chang'd by all forts of Corruptions, Vegetations, Animations, Vitrifications, Incorporations, Combuftions, Digeftions, and feveral other Chymical Operations; or any other Mechanical and Artificial way whatfoever, whereby all or any of the former Proprieties or renfible Qualities are really changed and deftroyed, and new ones generated in their Stead, fuch as the Alteration of their Confiftence, Colour, Bulk, Gravity, $\Xi_{0}^{\circ} c$. An Inftance of this may be the Body produced by the melting together of Tin and Copper, which make a third Body quite diftinet in moft of its Proprieties from either of thofe other two; 'fas quite a diftinct Colour from either; 'tis of a Confiftence abundantly harder than either, 'tis exceeding brittle; whereas the others are both tuff, tis much heavier in Specie than either of them, and fo for divers other Proprieties, it leems wholly differing from either of the two Ingre: dients of which it is compoupded.

And laftly, A moft general Help of Difcovery in all kind of Philofophical Inquiry is, to attempt to compare the working of Nature in that particular that is under Examination, to as many various, mechanical and intelligible ways of Operations as the Mind is furnifht with. For this will not only make the Mind very attent, and earneft, and circumfpect, in obferving, but will alfo hint many confiderable Circumftances to be inquird after, and Experiments for examining and explicating of them. And which is much more than either, will hugely affift the Ratiocination and Invention in detecting the true Caufes of things. As burning compar'd with Diffolution, छ'c.

Thefe are fome of the various ways by which Nature may be trac'd, by which we may beable to find out the material Efficient and Inttrumental Caufes of divers Effeets, not too far removed beyond the reach of our Senfes, and which do not very much differ from fuch Effects as are more material and obvious to our Senfes. But as for the Difcovery of the more internal Texture and Conftitution, as alro of the Motion, Energy, and operating Principle of Concret Bodies, together with the Merhod and Courle of Nature's proceeding in them : Thefe will require much deeper Refearches and Ratiocinations, and very many Viciflitudes of Proceedings from Axiomes to Experiments, and from Experiments to Axiomes; and are indeed the Bufinefs of the Philofopher, and not of the Hiftorian, the Method of which I intend, God willing; to handle in the fecond part of this Philfophical Algebra; which explains the way of making ufe of the Penus Analytica, of raifing Axiomes, and more general Deductions from a fufficient Stock of Materials collected according to the Method of this firft part, with Integrity, Judgment, and Care.
Haying thys paft over curforily the Mertiods and Means of Inquiry, we will next confider the Mainer and Order of entring what things are to be Regiftred, and in what manner, and to be rejected as ufelefs or noxious.

In the making of all kind of Obfervations or Experiments there ought to be a huge deal of Circumfpection, to take notice of every the leaft perceivable

Circumftance that feems to be fignificant either in the promoting or hindering, or any ways influencing the Effect. And to this end, as I mentioned before, it were very defirable that both Obfervations and Experiments Thould be divers times repeated, and that at feveral Seafons and with feveral Circumftances, both of the Mind and of Perfons, Time, Place, Inftruments and Materials: For all there do very much contribute to the Difcovery of Circumftances. And an Obferver Chould endearour to look upon fuch Experiments and Obfervations that are more common, and to which he has been more accuftom'd, as if they were the greatef Rarity, and to imagine himfelf a Perfon of fome other Country or Calling, that he had never heard of, or feen any thing of the like before: And to this end, to confider over thofe Phoenomena and Effects, which being accuftom'd to, he would be very apt to rin over and flight, to fee whether a more ferious confidering of them will not difcover a Significancy in thofe things which becaufe ufual were neglected: For I am very apt to believe, that if this Courfe were taken we fhould have much greater Difcoveries of Nature made than have been hitherto. For I find it very common for Tradefmen, or fuch as have been much verfed about any thing, to give the worft kind of Defcription of it for this purpofe $;$ and one that is altogether ignorant and a Stranger to it, if he be curious and inquifitive, to make the moft perfect and full Defcription of it. And the like may be obferved alfo in fuch as travel into other Countries, that they will give a better Defcription of the Place than fuch as are Natives of it; for thofe ufually take notice of all the things which becaufe of their Newnefs feem ftrange, whereas a Native paffes over thofe becaufe accuftom'd to them. I grant that a Native, or one that has been more accuftom'd and vers'd in a thing or place, fhall be able to anfwer Queftions propounded much better : But a Stranger fhall be beft able to make the Queries; every Experimenter and Obfervator therefore fhould endeavour to be himfelf both the Inquirer and the Anfwerer, he fhould indeavour to make himfelf as knowing and as much vers'd in any thing he is to defcribe, and to fuppofe himfelf as ignorant and unacquainted as if wholly a Stranger: For as the one will make him inquifitive, fo the other will inable him to folve his Doubts. And that his Attention may be the more weakned and rous'd, it will be neceffary that he Thould look upon every Circumftance as the moft fignificant and effential to the producing the Effect, and to continue fo to do till he find fufficient Reafon to the contrary, by having thoroughly confider'd and examin'd it : For though I confefs that this his Suppofal will be often fruftrated, yet I dare affure him, that it will divers times alfo prove much otherwife, as I have very often found. And 'tis one confiderable Step towards Science, to know the Negative Properties of things, for by that means the Affirmative Properties are made fomewhat more defin'd and circumfrtib'd.
of Regifering Now what I have here fpoken of, Attention and Diligence in making ObferExperiments. vations and Experiments, the fame I would have alfo in regiftring; at firft let all Circumftances be entred as confiderable, unlefs they are fo very obvioufly otherwife that they appear fo at the firft examining of them, but yet even in that cafe alfo 'tis good to be a little doubtful that poffibly fomething may be at firft overfeen, which being difcover'd would caufe other Thoughts and Opinions of it; they can be eafily ftruck out, as foon as they ate by further Obfervations or Experiments prov'd infignificant, and if entred in few words they will not take much room; befides there are very many things, which though perfaps infignificant to the prefent End or Defign, may yet be very notable to forme other. If it be found fuch, 'twill be very good when obliterated in one place, to be infcrib'd in another, where at leaft it may keep its place till fome other thing much more fignificant to the fame purpofe, may give occafion to difplace it.

Now Obfervations, Experiments, or Circumftances are not to be efteem'd according to the common Opinion of the World, nor are they to be look'd upon as they are curious or not, or pleafant, or ftrange, or gainful, or fumptuous, or efteem'd by the great, the grave, the otherwife Learned part of the World, or any of thofe, other kinds of Valuations which are put upon them for other ends, and by Perfons altogether unable to judge of their Significancy as to this great and ufeful Defign : But he that is a true Philofophical Hiftorian, will

T be Method of Improving Natural Philofophy.

find quite orher Reafons to advance their Value and fix his Enteem of them. He may perhaps fee Caufe to account thofe the molt precious and rich, which are generilly efteem'd the moft vile and fordid; he may perhaps difcover that to be the -richeft Ambergreafe, which another takes for Greafe-fit for naught but to noint his Shoes: Thofe things which others count Childifh and Foolifh, he may find Reafons to think them worthy his moft attentive, grave and fesious Thoughts; and thofe things which fome are pleafed to call Swingfwangs to pleafe Children, have been found to difcover Irregularities even in the Motion of the Sun it felf. Other things which the Generality would account an Employment about Niceties and Trifles, he finds to be the fhorteft and eafieft way to his Journey's end, and from the miffing of the Hundred part of a Grain, perhaps in his Statical Experiment, finds the Mafs of Metal to be many Hundred Pounds worfe for Allay : And from the turning of a Straw, is able to forefee a Change in the great Ocean of the Air. He ought therefore to fortify himfelf againtt thefe kinds of Prejudices, which are too to apt to obtrude into his Mind, and prepoffers him againft a clear View and Obfervation of Circumftances as they are in their own Nature, or as they are fignificant to the Defign of perfecting Philofophy, and not to neglect or pafs by any of them as trivial, or childifh, or filthy, or bafe and mean, and the like; but having always his main End or Aim before his Eyes, to make that the Touchltone, whereby to find the Value of all his Inventions:

And as there things are not to fway him in the things of his own Invention, What Infuence fo neither Thould they have any Influence upon him, as to thofe things which Autbority he receives from others, Authority therefore thould have no other Argument of ${ }^{\text {ought to have: }}$ Prevalency, but as it was affirmed by an inquifitive, judicious, and moft ftrict. ly veracious Perfon; one that is not found to vent Affirmations rafhly or negligently, or for any other by Refpeat, but meerly for the fake of Truth, and becaufe he had by Obfervation or Tryal found it fo, or for fome very confiderable reafon believed; it fuch; one that is very circumfpeet in chufing and placing his W ords, and that is not obferv'd to ufe too much the Superlative Degree, nor to be too confidently pofitive in his Affertion. Wherefoever therefore any thing is regiftred upon the Authority of another, there ought to be put in the Margin a C ; $\mathrm{a} P$, or a D , according as the Authority is Certain, Probable, or Doubtful: Nor needs there any other Naming fince they are only to be refpected according to one of thefe Confiderations, or at moft nothing but the bare Name of the Perfon. Fot 'tis not Epithets taken from Antiquity or Novelty, or Honour, or, Greatnefs, or Will, or Eloquence, or any other Learning but Experimental, that will be fignificantly added upon this Account: And therefore a Philofophical Hiftorian fhould indeavour to look through all thofe Vifards, and to fee only whiar Truth or Probability at leaft he can fpy underneath ; befide, that fuch kind of Additions fill Space, and fo expand the Hiftory into a wider Space, whereas it ought to be comprisd, as I hhall afterwards thew in as little room as poffible, fo as to appear and come under View all at once that the Eye may the more quickly pafs over it from one Particular to another, as I hall afterwards more fully explain.

The next thing to be taken care of is the manner of Regiftring: And this, as The third pare it ought to be done as faft as the Experiment is made, and as foon as the Ob - of the mannei fervations or Circumftances occur, becaufe of the Frailty of the Memory, and of Regiffring the great Significancy there may be in fome of the meaneft and frilleft Cir- vaies. cumftances; - fo ought they afterwards to be feveral times reviewed and examin'd, and rang'd into a better Method, and abbreviated in the manner of Defcription; fo that as nothing be wanting in the Hiftory, fo nothing alfo be fupertluous in the words. In the Choice of which, there ought to be great Care and Circumfpection, that they, be fuch as are fhorteft and exprefs the, Matter with the leaft Ambiguity, and the greateft Plainnefs and Significancy, not augmenting the Matter: by Superlatives, nor abating it by Diminutives, not inclining it to this or that Hypothefis, or accommodating it to this or that Author's Opinion; avoiding ail kinds of Rhetorical Flousithes, or Oratorical Garnifhes, and all forts of Periphrafes or Circumlocutions, omitting the Citations of Authors, or the Recital of Opinions, and Sayings, or the like; in the fecond Review and siting of which, 'twill not be amifs to wtite it in a very fine piece

64 The Method of I mproving Natural Philofophy．
of Paper，and to enter it in the moft＇compendious manner of writing that the Hiftorian is acquainted with，fuch as fome very good Short－hand or Abbrevia－ tion，whereby the whole Hiftory may be contracted into as little Space as is poffible；for this，as I fhall more fully explain in my fecond part，is of huge Ufe in the Profecution of Ratiocination and Inquiry，and is a vaft Help to the IInderftanding and Memory，as in Geometrical Algebra，the expreffing of many and very perplex Quantities by a few obvious and plain Symbols：And therefore＇twere to be wilht，that we could exprefs the whole Hiftory in as few Letters or Charafters as it has confiderable Circumftances，fomewhat of the manner of doing which in my fecond part．

Now thefe Hiftories being writ in brief，in a fmall piece of very fine Paper，
－＇swill be very convenient to have a large Book bound after the manner of thofe that are very ufual for keeping Prints，Pictures，Drawings，$\xi^{\circ} c$ ．in，to preferve them fmooth and in order：On the fides of which，in the fame manner as thofe Piftures are kept，it would be convenient to ftick on with Mouth Glew，or fome fuch Subftance in the beft Method that can be thought of for the pre－ fent；the feveral fmall Schedules containing the abbreviated and complicated Hiftories of Obfervations or Experiments，as they are laft written on fine Paper， for by the Contrivance of this Book；which for Brevity＇s fake I will call a Re－ pofitory，not only all the Hiftories belonging to any one Inquiry may be placed fo as to appear all at one View，there being two large fides of Paper to be filld with thefe Schedules：But they may at any time，upon occafion，be prefently Iemov＇d or alter＇d in their Pofition or Order，that which was plac＇d firft may be plac＇d middle－moft，or laft，or tranfpos＇d to another Head，or a little remov＇d to fuffer another to be interpos＇d，the Convenience of which will quickly upon Tryal be found to be very great，as alfo it has another Convenience that many of thofe Schedules which feem to be of the fame Significancy may for a time be placed all one over another，and fo at laft the choiceft and moft excellent of them may be preferv＇d and plac＇d in their room，and all the reft as fupera－ bundant，and in particular lefs fignificant of the fame thing may be remov＇d elfewhere，of which an inquifitive and diligent Hiftorian will very often find great llfe．On thefe large fides he may place them either according to the Me－ thod of the Queries，which he has at firft propounded to himfelf，or according to their firft appeäring Plainnefs，or Difficulty，or after any other Method of Inquiry，or Proceeding，which every one will be beft able to adapt for himfetf， according to the Subjeet whereon he makes his Inquiry，or according to his par－ ticular Aim and Scope in examining it，or according to the Knowledge he has already acquir＇d in it．

As for the Queries which he at firft propounds to himfelf to be examin＇d on that Subject，he intends the Hiftory of，thofe will be moft conveniently written either in fome other fmall long Book，or elfe better in a fingle Sheet of Paper， either of which may at the fame time be expos＇d to the View－with the Schedules on the fides of the larger Repofitory，and as＇twill be no great Labour to write over the one anew according as \％urther Information fhall give occafion to add or alter Queries，fo twill be much lefs to tranfpofe and range the Method and Order of the Schedules in the Repofitory．

Now becaufe oftentimes much more may be expreffed in a fmall Pieture of the thing，than can be done by a Defcription of the fame thing in as many words as will fill a Sheet；it will be often necelfary to add the Pietures of thofe Obfervables that will not otherwife be fo fully and fenfibly expreft by Verbal Defcription ：But in the doing of this，as a great Art and Circumfection is＇to be ufed in the Delineation，fo ought there to be very much Judgment and Caution in the ufe of it．For the Pictures of things which only ferve for Or－ nament or Pleafure，or the Explication of fuch things as can be better defcrib＇d by words is rather noxious than ufeful，and ferves to divert and difturb the Mind，and fways it with a kind of Partiality or Refpect ：Befides that，it fills up room，and occupies the Mind with the Ideas of things which are little fignificant in the prefent Inquiry．

And therefore all thofe kind of Pictures of the outward Forms and Beauties， gind Varieties of the Species of Nature，are to be refersed to another Head， where

The Metbod of Improving Natural Philofophy.

where indeed they will prove very fignificant, but to a peculiar kind of Inquiry, as I thall thew more at large in my fecond part. All things indeed ought to be regiftred very exactly and defind and determin'd all according to their Proportions in Number, Weight, Meafure, Time, Place, and Circumftances; but all in brief, and yet fufficiently fignificant.

Together with thefe Schedules of Hiftory, 'twill be convenient to interpofe fmall Schedules of particular Deductions, or Conjectures, or Queries, or Caufes of Doubt, or receiv'd Hypotheres, and the like; but thefe, as they thould be expreft in a very few words, fo that they may be the more obvious, and, may thereby the lefs difturbe the Mind in its Inquiry: So 'twill be beft to have them written with an Ink of fome other Colour, as Red or Green, or the like; for this will much affift the Memory and Ratiocination, as I fhall afterwards manifeft more at large.

The Promise of our Author at thbe end of the foregoing Difcourfe of profecuting, and more particularly explaining the way of ranging Observations and Experiments, So as to make them more convenient for Ufe, as occafion offers, was I believe never performed: For I never beard or met with any of that Subject, and as to the reafoning part of bis Pbilofopbick Algebra, that likewife was not worote, only there is fometbing to that purpofe in feveral of bis Geometrick Lectures read Anno 1680. woberein be Shews the Excellency of the Method obferved by Euclid in bis Elements, whbich be enlarges upon; Shewing how from a fewo Self evident Axiomes and Definitions, and. Poftulata eafy to be granted, a vaft Structure of undeniable Truths bave been raijed, and that from the Method of not leaving any thing undemonftrated behind, but fitl proceeding on, feadily and firmly a Notioribus ad minus nota; which Meibod, if exactly obferved in Pbilofophical Inquiries, the woblele Pile would be founded and built upon So fure a Foundation as never to be foaken. And in order to this, be prefers generally the Synthetick Metbod as the moft inflructive and perfective of the Underfanding and Reafon, tho' be Sometimes proceeds by the Analytick, Specimens of each of which will be feen in feveral of the following Letlures, wherefore I hall forbear, to enlarge upon them in this place, fince the Prefaces to the particular Lectures woill with more Benefit inform the Rëader what use be made of them: And likewife of what Ufe, if not Necefsty, Theories and pre conceived Hypothefes are (contrary tothe Opinion of Some Learned Perfons', in order to the making more proper Obfervations, contriving andordering more convenient Experiments, and inventing more - fit Infruments for that purpose, the more accurately and nicely to determine whether the Suppos'd Theory be true or falfe; all ithich Observations'witbout fuch a preconceived Suppofition, would eitber bave been paft by unbeeded, and feveral material Particulaŕs unobfervied, and Experiments wanderingly made; or as Cbance offered them, and not made with jo mucb Care and Circsmspection, and Inftruments and other neceffary Apparatzs not well contrived ford etermining the Enquiry; yet be filll afferts all hould be done zoith great Candor, and without Fondnefs. for any Theory, which Jhould be taken up only to difcover Truth, and as cafly laid down again if found not agreeable to Trutb. For a fartber Account of bis Opinion in this Matter, I refer the inquifitive Reader to the Several places where this Sub. jeat bappens to be difcourfed of, and more particularly to a Lecture about determining the Oval Figure of the Terraqueous Globe, and Encompalfing Atmo pphere, whether it be an Oblong or a. Prolated Spberoeid, and of determining the 2uefion whether the Axis of the Earth's Rotation has or does fucceffively, tbo very flowly alter, which Lectures were read the beginning of the Year 1657 . and follow in their proper place.

I Shall only as a Specimen of these Geometrick Leetures above-mentioned, give the Reader fome few Abftracts of fome of our Autbor's Explications: Since I judge it needlefs to publigh bis Lectures on that Subjelt at large, the Elements of Geometry baving been already illuftrated and Set forth by feveral eminent Perfons and tbat in different Metbods, and the firl I Shall affer is what our Autbor bas delivered concerning the Definition of a Point, viz. R. W.

A Point is that which batb no part. This which fome would deem the moft inconfiderable thing in the World, feems yet the moft difficult to be under-
ftood; no Senfe, or Imaginarion; or Fant'cy, can reach it, nor words defcribe it, but by a Negative, to tell you what it is not : For it is not to be taken in the Senfe, that the whole Earth is called a Point in refpeft of the Univerfe, nor in the Senfe that the End of a tapering thing is called a Point, as of a Piri or Needle, tho' they feem to be the fmalleft things we know; becaufe thefe later may be faid to have as many parts as the fore-mentioned, for fince all Quantity is divifible in infinitum, the leaft Quantity may be divided as often as the greateft, and therefore whatever is divifible muft have Parts, and therefore none of thefe can he properly called a Point, in the Senfe here named, unlefs this Point be undertood to be the Apex of a Mathematical Cone or Pyramid, where the Superficies of it is determined, for that will be a Mathematical Point: But it cannot be fuppofed of a Phylical Point, of Material Cone, or Pyramid, for that will have Extenfion and Bluntnefs. And we find that Microfcopes will make thofe Points divifible even to Senfe, nay even almoft to difcover a new World in a Point, nay there is one now that affirms he has feen more than 10000 Living Creatures in the Bignefs of a very fmall Sand, which it felf indeed is but a vifible Point to the naked Eye, and each of thofe 10000 may have Worlds within them. We know not the Limits of Quantity, Matter, and Body as to its Divifibility or Extenfion, no Imagination can comprehend the Maximum or the Minimux N'ature, our Faculties are finite and limited, a:-1 we muft content our felves within the Orb and Sphere of their Activity. And acquiefce in a Negative Definition, and underttand if we can fomewhat that is fmaller than the fmalleft, though that be alfo improper; for in that which is not Quantity, there is neither fmaller nor bigger, we muft endeavour to underftand fomewhat infinitely little, lefs than which there cannot be, fomewhat that has no Bignefs or Extenfion, or Quiantity, but only Pofition and Refpeet to Quantities circumjacent: From which, to this or that Body, there is a determinate Length and Diftance; and upon this account, wherever we endeavour to underftand this Notion, our Imagination will reprefent to us the fmalleft vifible Body, as' an exceeding fine Sand, or a Mite, or the Point of a Needle, or the fmalleft vifible Body we have ever feen on Paper, or the like; which we muft be content with fince the Fantcy forms nothing but what is firt in the Senfe, though it be none of thefe. And in truth it can have no true Definition that will reach its Effence. Analogous to this Point, Sign or nothing in Quantity is the Nougbt Cifer, or, Zere in Number, the never in time. The Reft or Quiet in Motion: For as no Aggregate of Points will ever produce a Line or a Quantity, fo the Multiplication of Noughts or Cifers will never produce a Number, and as the Addition of Nevers cannot make time, fo the Aggregate of Reftsecannot produce a Motion. So that all thefe may nor improperly be called the Terminus or Bound, from which they all begin, fo Quantity may be faid to begin from a Point or nothing. Number may be faid to beigin from Nought Cifer or Zero; Time may be faid to begin from Never, and Motion to begin from Reft: And as the Minimum Nature may be faid to be the firlt Quantity, if at leaft there be a Minimum in Nature, fo a Unite may exprefs it in Numbers, Inftant in Time, and Moment in Velocity. It may poffibly be thought I have faid too much of nothing, but yet it feems to be of the greatef: Confideration in Nature; for it feems to be the beginning of every Creature, even the greateft Creatures having been traced to begin from an Attom or Point, no Eye or Senfe can reach. it, nor any Underftanding limit it, that the heginning of a very large Animal hath been feen alive 10000 times finaller than a Mite may be proved, and yet how much fmaller it may have been is not determined.

Now as thefe exprefs Incomprehenfibles one way, as to their Beginning or Centrality, fo the Incomprehenfibles the other way which may be called Circumferential, may be expreffed by Infinity, Abyfs or Immenfity for Quantity or Extenfion, Innumerability for Number, Eternity for Time, and Inftantaneous for Motion: But thofe are beyond our Reach, and yet even of thofe there is a neceffary Ufe in Geometry; and without which feveral of the moft confiderable De. monftrations both in that and Arithmetick cannot be performed, but of thefe elfewhere. When I come to confider Infinity and Innumerability, when I fhiall. Show that innumerable Points do make a Mathematical Line, innumerable Lines

The Metbod of Improving Natural Philofophy. 67

do make a Mathematical Superficies, innumerable Superficies do make a Mathematical Body, innumerable Moments make a Velocity, innumerable Inftants make Mathenatical Time, by fuppofing Motion joyn'd to them: For a Point mbved makes a Line in a Mathematical Senfe, a Line moved makes a Plain, a Plain moved that makes a Body, and contrary Motion reduce them back again, which is expreft or perform'd by Multiplication and Divifion.

I Shall beg the Candid Readers Patience to add one Remark more of the Dollors on the Metbod of Euclid, and that is of bis Metbod of Demonftration, and that in two very eafy Problems, viz. the Prop. צ. and 2. Lib. 1. wobich I bope for fome Obfervations and Hints, particularly as to the Analyticks of the Ancients woill not be altogetber unasceptable.

Euclid having premis'd his Principles, he begins his Method of Demonftration, in which he takes no more for granted than what he hath already laid down as eafy and felfevident. His firt Propofition then is upon a right Linie, given to make an Equilateral Triangle. He hath defined in the 4th Definition what he means by a right Line, namely, that which lieth ftraight between the two Extremes of it which are Points, and what he means by an Equilateral Triangle, namely, fuch a one which hath all its three Sides equal to one another.

This firt Propofition is a Problem, which explains a way how to do and perform the thing required, as well as hhews how to manifeft the Truth and Certainty of the thing done: It contains therefore and fhews a double Invention, without which, of fome fuch other thing, the Propofition can neither be done, nor demónftrated; which Inventions are called Mediums or Means by which we attain to the end propounded or defired. The end here fought is how from the ends of a Linen give to draw two other Lines each equal to the given Line, which fhall meet in one and the fame Point: It is certain that thefe Lines mult begin from the ends of the firt Line given, but which of thefe to draw firft, and which way, with what Inclination to the former Line, that is, with what Angle, that is not yet known, and fome Invention muft be thought of how to direat our Ruler to draw it. Well, how fhall this be done, fince there may be infinite of Lines drawn from each of thofe Points which fhall evety one of them be equal to this Line given? How then fhall we among thofe Infinite or Indefinite Number chufe out the right? 'tis impoffible, without fome Invention. Oúr Author therefore helps you to one, and one which you have already granted to be feafable in the third Petition upon the Center a, and Di_{i} ftance, a b, draw a Circle, fays he, b gch f , what then? To what purpofe? Why this Circle then will give you a Line in which are contain'd all the Points or Ends of the infinite Lines, which may be drawn from the Point a any ways that Thall be equal to a b How fo? Why by the 15 th Definition you are taught, that a Circle is a plain Figure bounded by or contain'd within one Curve Line, which is called the Circumference, to which every right Line drawn from a Point in the middle, which is called the Center, are equal to one another: But what are we yet the wifer ? How do we know which of thefe infinite Lines we are to draw ? To which of thefe infinite Points that are in this Circumference? To know this, you muft do the fame thing upon the Point b_{3} that is, upon the Point b and Diffance b a. Draw or defcribe the Circle a d $\mathrm{ce} \mathrm{f} a$, which will give you all the poffible infinite Points in that Plain; to which the from the Point b right Lines may be drawn equal to $b a$. Now then fince thefe Circles conrain all the poffible Points of the Lines equal to $a b$ or $\mathrm{b} a$, that can be drawn from a or b . It follows, that where thofe Circles interfect there only muft be the Point to which thofe Lines may be drawn; namely, at c and at f and no where elfe foever: Drawing therefore Lines from a and from b to either of tho Points c or f as a $c, b c$, or $a f, b f$, you have done the thing that was propounded, namely, upon the Line $a b_{3}$ given you have made an Equilateral Triangle $a b c$ or $a b f$, which was defired. This is the fifft part of the Problem, and indeed the difficulteft to find out, namely, how to do the thing required, and in this part lie the greateft Difficulties of Mathematical Knowledge, to wit, in the finding out the proper and true Mediums or Means to perform the Problems requir'd to be done, which for the moft part are of the fame Nature with this, and confift in

The Metbod of Improving Natural Philofophy.

the finding out the Pofition of a Point; for this Problem might have been thus worded. A right Line being given as $a b$, to find a Point as c or f, to which Lines being drawn from the Points a and b, they fhall each of them be equal to one another, and to the Line $a b$ which is given, or two Points a and b be. ing given to find a third Point, as c or f , which fhall have the fame Diltance from a and from b that they have from one another. But our Author not having given any Definition of Diftance or Equality, otherwife than may be collected from Equality of the fides of fome Figure, or of the Rays or Lines drawn from the Center to the Circumference of a Circle, he chufes rather to make ufe of an Equilateral Triangle to find out that Propriety of a Point fo pofited. What ways the Ancients had for finding out thefe Mediums or Means of performing or doing the thing required, we are much in the dark: Nor do any of them fhew the way, or fo much as relate that they had fuch a one; yet 'tis he-

1 do not any where find that this was $<$ ever done by Dr. Hooke, and leave the Wefulnefs thereof to be confidered by the Leatned. " lieved they were not ignorant of fome kind of Algebra, by which they had a "certain way to help themfelves in their Inquiries, though that we now ufe be much confined and limited to a few Media. But I do rather conceive, "that they had another kind of Analyticks, which went backwards through " almoft the fame Steps by which their Demonftrations went forwards, though " of this we have no certain Account, their Writings being altogether filent " in that particular. However, that. fuch a way is practicable, I may here" after upon fome other Occafion thew by fome Examples: Wbereby it witl " plainly appear how much more ufeful it is for the finding out the ways for "Solutions of Problems, than that which is now generally known and pra" "tifed. by Species. But this only here by the by, our prefent Bufinefs being to go through all the parts of this firlt Problem of our Author. The fecond part then of the Propofition is the Demonftrative part thereof, namely, to prove from the Principles already laid down and granted and affiented unto for true and certain, by a clear Chain of Reafoning and Deduction, that there Lines $a c$ and $b c$ or $a f$ and $b f$, are each of them equal to $a b$, and fo equal to one another ; and confequently that the Figure a bc bounded and limited by them is an Equilateral Triangle, according to the Defcription of their Figure in the ${ }_{24} \dot{4}$ Definition. The next thing then to be invented or found out is the Medium or Means of demonftrating it to be fuch, for this we have two. Firff, the Definition of the Proprieties of the Lines from the Center of a Circle to the Circumference in the is Definition, that they are all equal to one another: And Secondly, We have the firft Axiome, thofe which are equal to one other are equal to one another. Firft, $a \mathrm{~b}$ is equal to a c , becaufe they are right Lines drawn from the Center a to the Circumference bgch; for by the 15 Definition, as I faid, all fuch Lines muft be equal next b a, and bc muft upon the fame account be equal to one another, becaufe they alfo are Lines drawn from the Center b to the, Circumference adce: Therefore both acand $b c$ are equal to $a b$, but by the firft Axiome thofe which are equal to one other are equal to one ariother, therefore ac and bc are alfo equal to one another. Therefore the three fides of the Figure $a b c$, namely, $a b$, $a c$, and $b c$, are equal to one another, and confequently bound an Equilateral Triangle according to the 24 Definition, therefore upon the Line $a b$ given an Equilateral Triangle is made, which was the thing to be done and proved.

The fecond Propofition is alfo a Problem.

From a Point given to draw a right Line, which fhall be equal to another tight Line, given. For the performing of this Propofition, it being a Problem, there is need of two Mediums to be invented or found out; the firt is for the doing of the thing required, and the fecond for the Demonftration of it, and both thefe are to be fetcht out of the Principles already agreed to, or from the Truth evidenced in the preceding Propofition: For we are nor to fuppofe any thing further known in this Science, and therefore much lefs are we to make ule of it. Searching therefore our Store, we have no other Medium to make a Line equal to a Line, than firft by the Help of a Circle, defined Definition the 15 . which by the third Poffulatum is granted to be defrribable upon any Center, and at any Diftance: Or zdly, by an Equilateral

The Method of Improving Natural Philofophy.

Triangle defcribed Definition 24, which we leatnt how to make by the preceding Problem: For as to the equal fides of an Equilateral Triangle, Definition 25, or the equal fides of a Square, a Parallelogram or oblong Square, Rbombus or Rombocides defcribed Detinition the 30,31,32, and 33. Though theis Proprieties are there defined, yet we are not taught how to make them as yet, and confequently can make no ufe of them, as Media to perform the thing required to be done by this Problem: Nor are we to fuppofe, that the length of the Line given may be taken by the help of a Meafure or a pair of Compaffes, and transferred to the Point given ; becaufe thofe are firt not mentioned in the Principles. laid down there which you are to make ufe of, and of no other, till they be accepted for Principles undeniable: For 'cis not yer granted, that you can with Compaffes, take a true Length of a Line, much lefs that you can transfer it and fet it in another Place. But you have granted that 'ris poffible, upon a Point given at any Diftance, to defcribe a Circle, or fuppofe it fo done; which is fufficient for the Demonftration; that being the principal thing aim'd at by our Author; Namely, to lay open to the Linderftanding, the Reafons and Grounds of the Proprieties of Quantities fo and fo qualify'd, that you may plainly fee how and for what Caufe things are thus or thus and cannot be otherwife: For as to the moft practicable and expedite ways of doing thofe things Mechanically, and for other Ufes, that belongs to another part of Mathematicks; namely, to the practical Part thereof, which is called Practical Geometry or Mechanical Geometry, which ought not to be Learned till this be firt known, but this which our Author treats of is Speculative Geometry; and principally aims ar Demonftrations or explaining the Proprieties of Quantities to the Underttanding. You faw clearly by the former Propofition why abc was as equilateral Triangle, and why there could be but two fuch made upon the Line a b in the fame Plain; there being but two Points wherein thofe Circles cut each other, thofe Circles determining all the Lines equal to $a b$ that can be drawn from the. Points a and b. His way then of performing this Problem is this, Let the Right Line given be a b in the third Figure, and the Point gi- Platé ifo. Figo ven be c, from which Point a right Line is to be drawn equal to the Line a b. 3 . Firft draw a Line from b to c, which is granted poffible by the firf Poftulatum, then by the former Propofition upon this Line, bc make an equilateral Triangle bcd , then upon the Center b and Diftance ab defcribe a Circle, as ag by the third Poftulatum; then by the fecond Poftulatum produce $d b$ to the Circumference e, then upon the Center d and Diftance de, draw the Circle e h; then as before, produce the Line d c to the Circumference f, then fhall of be the Line required to be drawn from the Point c equal to the Line given a b. This is the Conftruction of the Problem, or the preparing of the Propofition fit for Demonitration, by which you may clearly underftand the Reafons of it, deduced from the few Principles, already laid down: For firf, that a b is equal to eb is clear from the 15 Definition, which determines the Propriety of Equality of the Rays of a Circle. Next that d be is equal to $d \mathrm{cf}$, is as clear from the fame Definition, they being both ${ }^{*}$ Rays or Lines drawn from the Center d to the Circumference e h by the Conftruction premifed. Thirdly, That $d b$ is equal to $d c$, is clear from the Conftruetion; for $d b c$ is an Equilateral Triangle, two of whofe fides $d b$ and $d c$ are. Now by the third Axiom or common Norion, if from equal Quantities you take equal Quantities, the Remainders thall be equal; if from $d f$ you take $d c$, and from $d e d b$ the Remainder $\mathrm{c} f$ fhall be equal to the Remainder $b e$; bat $a b$ is alfo by the Conftruction equal to $b e$, therefore fince by the firlt Axiom thefe two Quantities which are equal to ohe other Quantity are equal to one another; therefore $a b$ and $c f$, being equal to $b e$, are equal alfo to one another, therefore from the Point c the Line $c f$ is drawn equal to the Line $a b$, which was the thing to be done and proved.

Now though this way of Demonftration and Reafoning may feem tedious and too long to detain the Mind and Attention in the finding out the Proprieties of Quantities, yer 'twas the way made ufe of by the Ancients. And 'tis altogether neceffary, efpecially in the beginning of this Study, to accuftom the Mind to Attention and Circumfpection, that it may receive nothing for Truth, but what it fees clearly by the Reafons and Caufes of ir, that thereby the

The Method of Improving Natural Philofophy.

Mind may acquire an Habit of Intention, and of examining the whole Chain of Confequents from the firf Principles to the Truth evidenced. For the want of which, fome fmall Error perhaps may flip into the Mind under the Appearance of Truth, and thereby make all the fubfequent Reafonings and Deduetions unfound; and 'tis very much harder to clear and free the Mind from it when once received, than to prevent the Reception thereof. 'There cannot therefore (in this Study efpecially, not now to mention any other, where it is poffible it may be altogether as convenient, nay neceffary) there cannot, I fay, therefore be as I conceive too much Circumfpection and Caution ufed in admitting Principles, and furnifhing the Mind with the true grounds of Knowledge; becaude for the moft part we are too prone to take up every thing we hear upon Truft: Without Examination, we are too apt to run away with a thing, and think we know it and fee it clearly before we are fure we do, and are impatient of Delay in examining and confidering, whereas if the Mind be a little at firft accuftomed to this leifurely and ftrict way of reafoning, after it has got a habit it will make as much Difpatch in receiving things with fufficient Examination, as another fhall without it.' And the Patience only is noedful for the moft part, at firft, to beget Attention: Nor is it peculiar to this Acquifition alone, but we fee it neceffary, and practifed in many other things where a good habit is to be acquired; as in Reading, Writing, Mufick, Drawing, and moft other Manual Operations. The Roots and Beginnings of Knowledge and Practice too are bitter and tedious, but the Fruits are fweet and pleafant; and whofoever attains the end, will never repent the time they fpent in the beginning.

Poffibly fome Readers may tbink thefe Abftracts, out of fome of our Autbors Geometrical Ledures, too prolixe, but I bope they will not by all be judg'd wholly unneceffary, and uselefs, at leaft I thought it not amifs to give this Specimen of our Autbor's Nicenefs, as to the admitting of things unproved, for real Trutbs: But if this be a fault, I bope wobat follows in the fubfequent Difcourfes of the Nature of Light, and otber no lefs curious Subjeds, woill make fufficient amends. R. W.

LECTURES of LIGHT,

EXPLICATING ITS
 Nature, Properties, and Effects, orc.

Sect. I.

Containing thofe read about the beginning of 1680 .

The CONTENTS.

1. The Nature of Light not well explained by Authors hitherto, and is in it felf as difficult and abjtrufe a Subject as any in Nature. 2. The Opinions of Some of the more Famous Ancient Pbilofophers concerning its Nature, as Anaximanders, Anaxagoras's, Evc. as likemife that of Lucretius and the Atomifts. 3. Their Infufficiency fheron in fix Particulars. 4. Ariftotle's Definition of it woberein defective, yet capable of a more Mechanick Explication than any either of the Ancients or Moderns. 5. An Explication of the Theory, that Light is a propagated Motion, the greateft Difficulty feems to lie in the vaft Extenfion thereof, which fome bave thought infinite; Quantity infinite as to its Greatnefs and Smalnefs, can bave no Bounds affigned to it by Man's Thought or Imagination, the inconceivable. Diftance of the Stars. 6. In the next place, as the DiAance is immenfe, \int_{0} the Motion is infinitely fwift; Romers Experiwient queftioned wobether fufficient, Light the Anima Mundi. 7. This Propagation of Light the ACtion of a Body, not a Spirit ; the Adtion proportioned to the Expanfion wohich is in duplicate Proportion to its diftance reciprocally: This Action produces Heat, which is proportioned to the Light, why that of the Moon infenfible to us. 8. The Propagation of Light in a Homogeneous Medium in frait Lines in Orbem, from the Lucid Point; yet this binders not, but that it may be bent by a difforme Medium into a Curve, whibich the Author publifht Anno 1665. and called mirrogr. it. Inflexion; 2dly, By Refraction; 3 dly, By' Reflexion; $4^{\text {thly, }} A^{\text {p. } 217 .}$ Ray may be abforbed: This is called Mortification or Extinction; 5 thly, A Ray is difperfed, Split, or opened at the Superficies of the fecond Medium, Occ. pobereby the Appearance of Colours is produced; 6thly, A Ray is receiv'd or imbib'd bj a Medium, and returned again from that Medium. R.W.

IIntend, God willing, this Term to treat of mixt Geometry, as it is The Diffrulty. made ufe of for the Explanation and clearing of fome Subject to which of the Subject. it is applyed, and by Example therein to fhew of what Life it may be in any other Matter that falls within its Reach: And the Subject I have pitched upon as the firft and moff obvious, though yet the moft abltrufe of all been

Leitures of Light.

been very ferw, if any, in the World that have hitherto underltood and explained the true Nature and Caufe of it: And though it was the very firt thing in the World to which the Almighty Creator gave his Fidt, when he made the World, fiat Lux, Let there be Light; yet it may be poffibly the laft and moft difficult of all fenfible things, that may be thoroughly underftood. And this Subject I have the rather begun withal, becaufe from a clear Explanation of this, feveral other Subjects, as thofe of Gravity, Magnetifm, Rarefaction, Condenfation, Solidity, Fiuidity, and the. like, will be demonitrably evidenced: Now though Nature hath not furnitht us widq diftinct and appropriate Organs of Senfe, whereby we may immediately be made fenfible of all thofe Operations and Workings of Nature, as no Senfe informs us immediately of the Emanations of the Magnetical Vertue, no Senfe immediately informs us of the lnftruments or Powers imployed for driving Bodies towards the Center of the Earth; no Senfe informs us of the Gravitation or continual Preffure of the Air ; no Senfe informs us immediately of the means of the Conveyance of Light, yot an inquifitive and obferving Man may find Helps enough to affitt thofe Senfes which the Creator has furnifht him with, to difcover all thofe ways and means made ufe of and to demonftrate their Proprieties and Powers as clearly, as if the Inflruments and manner of working were vifible and obvious immediately to fome of our Urgans of Senfe.

To repear to you all the Definitions and Defcriptions thereof in Autbors that have treated of it would be endlefs, and inftead of making the Nature of it more perfpicuous, would quite darken and put it out: For the molt part of them have only fpoken of it as it were Metaphorically and by Smilitudes, feeming not to have underftood at all themfelves what they endeavoured to explain to others: Or at leaft have treated of it in fuch general Terms, that initead of making it more intelligible, they have made it incomprehenfible. Such therefore I thall omit to mention, the Science that they deliver being only ufeful for Allegories and Similitudes, and Rhetorical Embellifhments, and no way tending to the Phyfical Explanation of its Effects and Proprieties.

Certain it is, that the Nature of it feems to be the moft abftrufe of any thing we yet know in the Univerfe, and though moft feeing People do believe they thoroughly underttand it, yet if they fhall confider more attentively what their Knowledge of it is, they will begin to think themfelves a little in' the dark, and to want fome further enlightning to difcover that which before they thought fo evident, which will now feem to differ from all other things in Nature.

The Opinisns of 2. But before I come to thefe, I thall determine the Opinions of fome of the the Ancients. cient otminent Philofophers and Mathematicians, which we find either in ancient or Modern Writings, to fee how far they have agreed, and in what they have been deficient in explaining the true Nature of Light.
Amongtt thefe I fhall begin with the moft ancient, as Anaximander, Anagoras, Leucippus. Heraclitus, Empedocles, Zeno, and the Stoicks, Plato and his Followers. All which make Light to be Fire, or a certain Flame iffuing from the Lucid Body, as the Sun, which they fuppole the Fountain of Light, and to be all Fire, Flame, or pure Light : Ana there Anaxagoras call'd it $\mu \mathrm{u} \delta \dot{\text { div }}$ siatuév
 Mafs of Fire. And wherefoever there was Light, there they fuppofe Fire, which produced the Effeets of Fire if it were denfe enough; but if it were not denfe, it only made things vifible, and produced the Effect that we call Light. This was their Opinion in general, but how they did more particularly explain the Nature of Light do not now appear; fo that in effect we are as much to feek as to the Knowledge of the true Nature of Light as before: But 'tis but giving of it another Name, and calling Light by the Name of Fire or Flame, without telling us what that other thing is which they name. For who underftands what they meant by Fire or Flame, whether the ordinary Fire of Wood, Coles, $\because C i c$. or an Elementary Fire, fuch as the Peripateticks afterwards fuppofe; or a third kind, fuch as the Mafs of the Sun and fixed Stars, or neither of all thefe: Becaufe they granted the Moon rifes to participate of it, and yet hath none of its own.

In truth we have no Information from it that is pertinent to this Inquiry I am nowabout: For call it Light, or call it Fire, or call it Flame, unlefs we knew thie Propricties and Caules of it, it comes all to one thing, it inftructs us not ; for how come we thereby to know how this paffes from the Sun? For inftance, or from the fixed Stars, fome Thoufands of times further than the Sun to our Eye here placed upon the Earth, in an inftant? Which Light really doth (as I fhall afterwards endeavour to fhow.) How comes the Sun, or any one, nay all the fixt Stars, continually to give out fo great a Quantity of Flame, as cvery moment to fill the whole Univerfe; which is an Extenfion of Space Millions of Millions of Millions of times bigger than the whole Globe of the Earth and Sea, and indeed incomprehenfible in Greatnefs, and yet at the fame time the Body of it not fenfibly wafted; nay, thus it hath done ever fince the beginning of the World, in every moment of time, and yet by the beft Ob fervations we can find recorded in Natural Hiltorians and Aftronomers, whe cannot learn that the Sun is diminifhed in Quantity: So that let the Flame be never fo much rarify'd, yet confidering it muft fill fo infinitely vaft a Space every Moment, certainly it muft have long before this have rarify'd this Borly all away, this'therefore cannot be a true Explication of the Nature of Light. Befides, we are yet to feek the true Nature of Flame, how that comes to tnake it felf fenfible at a Diftance: For though' we fee a Stick of 'Nood, for inftance, or a Candle, by means of Heat to be turned into Flame and to be confume 3 . thereby, fo that the whole Subftance thereof by degrees is all converted into a fucceflive Body of Flame, yet how this comes to affeet our Sight at fo many Miles diftance in an inflant; fo that at the very Moment the Flame is kindled, or extinguifhed; or difcovered, or covered, thoughat 10,20 , or more Miles Diliance, the Eye at the fame intant is fenfible of thefe Varieties. Now who can imagine, that the Body' of Flame, which appears at one inftant in the top of the Candle, fhould at the fame inftant fill a Hemifphere of the Atmofphere 10, 20, or more Miles in Diameter, and yet it mutt be concluded fo to do if this be the caufe of Light: For there is no Point in all that Hemifphere, in which if the Eye be placed, the Candle cannot be feen at the yery inftant 'tis lighted. This Explication therefore is to me, I confers, wholly inconceivable, and is complicated with fuch Difficulties as no true reafoning can make it poffible and intelligible, and therefore as an Abfurdity or Impofibility, I muft xejeet it.

For as in pute Geometry nothing is to he let pafs for a Truth, whofe Caufe Erotbing is to and Principles are not clearly Thown by the Progrefs. of Reatoning, and the be allowed it Procefs of Demonftration: So in Phyficks Geometrically handled, nothing is to Natural Pbilobe taken for granted, nor any thing admitted for a true Conclufion, that is not jophy but notat plainly deduced from felf-evident Principles, and thofe founded upon ther im- ${ }^{\text {is }}$ selid. mediate Objects of Senfe difintangled from all the Fallacies of the Mediun and Organ. "To avoid then in part this unintelligible Expanfion of Flame, fo as to fill the whole Sphere of the true Medium incompaffing the Lucid Object. Some later Authors have added, that this Expanfion is only fuperficial, and not folid, and that the whole Medium is not at the fame Moment compleatly fill'd with this rarify'd Fiame, but that the Momentary Emanation of Flame from the Lucid Point makes a Spherical Superficies, which Spherical Superficies by an almoft inftantaneous Motion expands it felf every way in Orbem m_{j} and fucceffively becomes the Superficies of grearer and greater Spheres, till it attain the Extremities of the Univerfe, or be at length loft in the Profundities of the Abyfs of Matter. For Explanation of which, they bring the Similitude of the Rings or Circular Waves upon a flagnating Pond of Water, for as in that (fay they) the Wave made by a Stone, or the like Body falling into the Water makes a Wave, which very Wave you fee expands it felf and moves from that place where the Sione fell, in a Circle that continually grows-bigger till it touch the Extremities of the Pond, or Stagrum of Water; fo that very Flame which is emitted from the Lucid Body, does by fucceffive Motions but yer very rapid, move it felf from the Lucid Point to all the Extremities of the Material World in a Spherical Superficies, which does continually grow bigger and bigger, and that 'tis only a Superficies as it were that is at once fill'd by it, and not the whole Sphere; from which Caufe; fay they, the Eye can he

Lettures of Ligbt.

no where plac'd in the ambient Sphere of Matter, but this increafing Sphere will affect it and move againft it, and thereby make on it an Impreffion which we call Light. Now the Body fo long as it burns continually emitting fuch Spherical Superficies of Flame, which continually follow one another, with the fame, though it be an infinitely rapid Motion and fwiftnefs.

Semper enim nova fe radioruni Lumina fundunt, Primaq; difpereint.

Says Lucretius.

And again in another Place of his Books he adds,

> Suppeditatur enim confefsin Lumine Lumen, Et quaf.i pro telo fimulatur fulgure fulgur, 2ua propter fimpulacra pari ratione necefle eft Invmemorabile per Spatium tranfourvere poffe, Temporis in puncto.

It follows therefore, that the whole Sphere muft alro be fill'd with them. This feems to be the Theory which Epicurus and the Atomifts maintain, which is at large explained by Gafaindus, and our Learned Dr. Cbarleton.
3. Butt the Difficulties in it are very great ; for firft, Epicurus fuppored that dy of the Anci-all the Space between the vifible Cocleftial Bodies was a perfect Vacuity, and ent Opinions. only made for the way of thefe Orbicular Superficies of Light, or Paffage of thofe Troops of Atomes of which thefe Orbs confifted ; for fo Lucretizs in his Second Book explains it, fpeaking of Atomes.

> 2ue porro magnumper Inane vagantur Et cita diffliunt longe ; longeq; recurfant In magnis Intervallis. Hecacra rarum Sufficiunt nobis, छo Splendida Lumina Solis.

Now 'tis hard to conceive how fuch infinitely fmall Bodies, fhould with fo rapid a Motion pafs fo vaft a Space in an inftant almoft, and yet muft continually in the way through every Point of Diftance meet with croffing Spherical Surfaces of Light from infinite other Lucid Points, and yet the Paffage of them not to be at all impeded or ftopt.
$2 d l y$, 'Tis not yet proved, that there is any fuch thing as a vacuum. in Na ture ; and Defcartes fuppofes that Extenfion and Body is one and the fame thing, and that there is no where Extenfion but there is Body, and no Body but is extended; for which he brings feveral Arguments, not eafy to be fully anfwered, which I fhall not now infilt upon.
$3 d l y$, Though it might be granted, that there were an Extenfion without a Body to fill it, and a perfect Vacuity; and fo the Atomes or Bodies moved through it, will pafs without any Impediment from this Medium or Space, yet fince we fee that Light paffes the moft folid Bodies allo iniftantaneoufly, or in a Velocity rapid heyond Imagination, here certainly it fhould meet with Impediments to ftop it: For we find it pafs through the hardef Body in the World, namely, a Diamond; and feems to pafs more freely through it than through the Air or Water, or the moft Fluid Body, as may be gathered from the greater Refraction of the Rays from the perpendicular in the more folid Body: Nor can I conceive how the Vacuity of the Pores of the Bodies can folve this Difficulty, fince it will be hard to conceive how thofe Pores can be alike open every way to the Paffages of the Atomes of Light.

4 thly, Suppofing there fuch a Vacuity or Medium not refifting Motion, and there were fuch Bodies as Atomes to be moved in it, yet 'tis difficult to conceive how they Thould receive fo rapid a Motion from the Luminous Body:

For no fuch rapid Motion is there in being. Now 'tis a Rule, Nil dat quod non babet, that which hath no fuch rapid Motion cannot give it to the Atomes that proceed from it. Now that 'tis not neceffary a Luminous Body thould have fo rapid a Motion, may be argued from the fhining of a Diamond in the dark, only by gently ftriking it with the end of ones Nail, as I have often experimented, upon a large Diamond that had that Quality: Or from the fhining of rotten Wood, or fuch other cold Subftances which feem not to have any fuch kind of rapid Motion, and yet produce Light, which might be farther inftanced in the new Phofphori.
sthly, If fuch a rapid Motion of fiery Atomes thould be the caufe of Light; it would be very difficult to conceive, how fo tender a part as the Eye thould continually receive them concentrated in the Tunica Retina, and yet not be deftroyed and batter'd in pieces by fuch continual Volleys of Atomes.
$6 t b l y$, If there were fuch a conftant Emanation of Atomes, and that it has continued ever fince the Creation of Light: Cerrainly this fuppofed Inane, or void Space between the Coeleftial Bodies, muft needs have been filled quite full long before this, and then the free and iftantaneous Motion of the fucceeding Emanations muft have ceafed, becaufe they muft find their way all fopt up by others, and confequently by this time we hould have had no Light at all communicated from the Sun.

I could inftance in many other Difficulties, as that of conveying the Species of things, and the like; that this Hypotbcfis of the Epicureans or Atomifts, who did not underftand the Reafon of Vifion is encumbred with, which feem to make it impoffible, and unfit for the Genuine Explication of their admirable Proprieties of Light; but that thefe, I fuppofe, may fuffice at prefent for this purpofe, though on the other fide there are many things that may be faid for it, that have not been hitherto urged by any I have met with. Some of whicli I Thall have occafion hereafter to mention.
4. Ariftotle was aware of there Difficulties, and therefore goes fomewhat Arifotless more craftily to work in his Definition of Light : Giving you a Notion of it Defnition of in fuch general Terms without particular Explication, that you make almoft Light.
 of a perfpicuous Body, in as much as it is perfpicuous. He affirms, Colour to be the Caufe why a coloured. Body is feen, and this Colour, fays he, does effectually move the Pellucid Body: But this Colour is not feen but with Light, therefore fays he, Colour in the Light does effectually move the Pellucid Body, but Colour without the Light, though it be congenit with the Pellucid, yet it doth not actually move the Pellucid Body; therefore, fays he, the Body muft be actually Pellucid that Colour may move it. Now it cannot be actu Pellucid without Light, therefore Light is that which actu by its Action makes a Pellucid Body: And therefore the Åt of that pellucid Body is Light. Now fays he, this Light is not Fire nor any other Body, nor the Effluvium of another Body, for fo it would ftill be a Body; but 'tis the Prefence of Fire, or forne fuch like, in the Pellucid, and the Abfence or Privation of it Darknefs. From which his Definition of Light, I cannot I confefs, well judge what his Theory of Light was; for this Definition is only made upon one Effect of Light, and doth not at all tell us under what Genus Light is put, nor what are its Differences, nor what are-the many Proprieties of it . So that thefe are to be fought elfewhere. And when we lave feen all he has faid of Light, we fhall find our felves as much in the dark as before, as to the Knowledge of the Nature of Light, he here confiders Light only as it is in the Medium that conveys it, namely, in a Pellucid or Tranfparent Body, and fo calls it the Act of the perfpictuqs Boady ; but what this Act is, or how it comes into the Pellucid hie tells rot, that you mut feek for elfewhere. However, though hie has not fo particulariy and pofitively explained what he means by this Expreffion of his'; nor did perhaps maeroand any plaufible or intelligible Theory of it, yet to me he 1 whis to hive light upon fuch an Expreflion as may pofisly being

Mechanically and Geomerrically explained, more naturally and truly make out the Theory of Ligbt than any other Expreffion or Explanation of any other, either Ancient or Modern Naturalift, Фö́s घ̇siv in घvepzéa $\tilde{r} \tilde{\text { siucounčs. Light is the }}$ in-working of the Tranfparent Body or Medium ; that is, the internal Action of the Peliucid or Tranfparent Body, is that which is the Light of which we are fenfible, or that Light which moves the Eye, And this Eysejéc is nothing but Motion, and this Motion is impreffed by the Motion of the Lucid Body, and that Body is Lucid that has fuch a Motion in it : So that Light in the Thi'ning hody is a peculiar Motion of it, which can communicate it to the tranfparent Medium, that is, to fuch a Body as is fit to propagate it, and Light in the Eye is this Motion impreffed on the Eye, by which the Brain or Anima becomes fenfible of it. For if we confider all the Appearances thereof, we flall at length he neceffitated to come to fome fuch Conclufion: Nor can I conceive how the Phoenomena thereof, can be by any other Hypothefis but this of a propagated Motion, be comprehended. And though even this be not without its Difficulties, nor is it well conceivable how it thould be, if we confider the almoft infinite Difference between the Propagations of Light, and the Motion of any other fenfible Body : Yet when we more attentively confider and weigh all the Effects and Proprieties thereof, and compare them with the other Effects, and Proprieties of more grofs, tangible and fenfible Bodies, we thall find that the Lex Natura is the very fame, by which both the one and the other Motions are governed; and that there is here the fame Regimen in Specie, though they differ in Degrees,

A nexs Theory explained.

Quantity

boundle \int_{s}, or
can have no
Bounds Set to
it.
5. The firft and moft dificult Propriety of this Motion of all the ref, is the almoft incomprehenfible' and unconceivable Extenfion thereof; which is as boundlefs and unlimited as the Ulniverfe it felf, or the Expanfum of all Material Beings: The Valtnefs of which is fo great, that it exceeds the Comprehenfions of Man's Underftanding. Infomuch that very many have afferted it abfolutely infinite, and without any Limits or Bounds, there being no bound fet; but it may be conceived, that Matter may ftill extend farther and farther continually, being as infinite as Quantity, which is by all concluded to be fo, both as to its Greatnefs and Smallnefs: The Limits of which, cannot be either conceived or expreffed; for whatever can be conceived, may be expreffed and computed by Meafure and Number. Now here no Number can be affigned, but there may be given both a greater and a lefs: As Unity, let it fignify. never to great a Quantity, as a Foot, a Yard, a Mile, a Diameter of the Earth or of its Orb, may contimually be increafed by Multiplication or Addition, fo as to reprefent Tens, Hundreds, Thoufands, Millions, and fo onwards of its Quantity. So be a Ulinity taken for never fo fmall a Quantity, as a Foot, an Inch, a Line, an Atome, its Quantity may be ftill fuppos'd diminifhable, either by Subftraction or Divifion; and fo a Tenth, a Centefme, a Thoufandth; a Millionth part of it may be conceived and computed. Now the Propagation of this Motion is coextent with it, as I fhall afterwards prove.

To avoid the Incomprehenfiblenefs therefore of this infinite Extenfion of the Ulniverfe, and yet to make it as extenfive as Quantity it felf, Des Cartes has found out a new Term or Expreffion for it, which he calls indefinite; which Notion differs only from infinite in this, that the one has abfolutely no Bounds or End, and the other that it can have none affigned. But in truth, they have one and the fame Signification, and that is that Quantity neither hath any Bound, nor can have any Bounds affigned to it by Humane Reafon. And if Quantity can havefno Bounds, then Body and Mattercan have none, according to the aforefaid Author Des Cartes Opinion, Body and Extenfion, or Quantity being the fame thing: So that wherever Extenfion can be fuppofed, there alfo muft be fuppofsd a Body, and where there is no Body there can be no Extenfion, and confequently no fuch thing as a Vacuum or Space devoid of Body.
But whether his Notion be true or not, 'tis not much to our prefent purpofe: For molt certain it is, whether it be finite or infinite, the Vaftnefs of it - is fo great that it exceeds our Imagination, to conceive of it truly as it is, and whofoever has a finite and limited Conception of it, has a falfe one not grounded on Reafon, but fome precarious Opinion; for if we confider firft the vaft

Diftance between us and the Sun, which from the beft and lateft Obfervations in Aftronomy, is judged to be about roooo Diameters of the Earth, each of which is about 7925 Englafh Miles, therefore the Sun's Diftance is 79250000 Tbe Diffance of Miles; and if we confider that according to the Obfervation, which I publifh. the Stars uned to prove the Motion of the Earth, the whole Diameter of this Orb, viz. conceizable. 20000 made the Subtenfe but of one Minute to one of the fixt Stars, which cannot therefore be lefs diftant than 3438 Diameters of this great Orb, and confe. quently 68760000 Diameters of the Earth: And if this Star be one of the nea:eft, and that the Stars that are of one Degree leffer in Magnitude, I mean not of the fecond, becaufe there may be many Degrees between the firft and fecond, be as much farther, and another fort yet fmaller be three times as far, and a fourth four times as far, and fo onward ; poffibly to fome Hundred De grees of Magnitude, fuch as may really be difcovered by longer and longer Te lefcopes, that they may be 100 times as far, then certainly this Material Expanfum; a part of which we are, muft be fo great that 'twill infinitely exceed our thallow Conception to imagine. Now by what I laft mentioned, it is evident, that Light extends it felf to the utmoft imaginable Parts; and by the help of Telefcopes, we collect the Rays, and make them fenfible to the Eye, which are emitted from fome of the almoft inconceivably remote Objects: And fince we find, that ftill longer and better Telefcopes do difcover to us fmaller and fmaller fixt Stars, which in Probability are farther and farther removed from us, and that we cannot fet Bounds to the Extent of it; it follows, I fay, that the Extenfion of the Propagation of Light is indefinite, immenfe, and beyond our reach to conceive, yet neverthelefs we fee by clear Induction that fo it muft be, though we do not prefently well conceive how. Nor is it only the great Body of the Sun, or the vaft Bodies of the fixed Stars, that are thus able to difperfe their Light through the vaft Expanfum of the Univerfe: But the fmalleft Spark of a Lucid Body-muft do the very fame thing, even the fmalleft Globule, ftruck from a Steel by a Flint, which is as fmall as the Point of a Pin. For that produces as real Light as the other; and all Light propagating in Orbem, that Point muft do the fame thing with every Point of the Superficies of the Sun. Now that every Point of the Luminous Superficies does emit Light in Orbem through the Diaphanous Medium, is evident from this, that there is no Point of the Ambient Tranfparent Medium in which the Eye being placed, does not fee every Point of the Lucid Surface, and confequently every fenfible Point of the Superficies of the fhining Body, does really propagate its Light thus in Orbem. Nor is this to be limited to a Point big enough to be fenfible to the naked Eye; for by the Help of Microfcopes viewing a Lucid and Thining Body, as a burning Cole, or a red hor Iron, or the like; one is able to diftinguifh Parts that fhine 1000 fmaller than we can diftinguifh with the naked Eye, and yet thefe may be difcover'd and are vifible, and confequently muft radiate in Orbem, as the bigger and more fenfible Parts : So that hereby we are afcertained by our Senfe, that the leaft fenfible Point of Body is able to affect the greateft Expanfum of Nature. So it appears both to our Senfe and our Reafon, and therefore we cannot doubt it, but fet it down as an undoubted Principle.
6. But then fecondly, In the next place, this Propagation of Light which is The Motion of immenfe, is (in all Probability, and as far as Experiments, Obfervations and Light MinfniteReafons can affift us) infinitely fwift: Or we may fay, that the Propagation ly (mift. thereof through the whole vaft or immenfe Expanfum, as far as we can yet find, is made in a Point or Inftant of time; and at the very Inftant that the remoteft Star does emit Light, in that very Inftant does the Eye upon the Earth receive it, though it be many Millions of Millions of ${ }^{-}$Miles diftant, fo that in Probability no time is fpent between the emitting and the Reception; for with this agrees all the Experiments that have heen thought of for this purpofe; and no one has yet proved it temporary, though many ways have been thought of for that purpofe : And though the ingenious Monfieur Romer pretends to have Romer's $E x$ found a way, by which he hath experimentally proved, that this Propagation periment douk is not inftantaneous but temporary, and fo there is fomewhat of time fpent in ted whet het the Paffage of Light, from the illuminating Object to the Eye or Body en- iufficient.
lightned, yet if we examine his Experiment a little more confiderately we may, find reaton to doubt, whether he hath from thefe, grounds fufficient to make fuch a Conclufion. Certain it is, wherher by it he proves the matrer he aims at, or not: His Ingenuity in the inventing the way was not lefs to be effeemed and valued, than if it had fucceeded; nay, it is altogether as valuable, if by it we could prove that no fpace of time were fent whilt the Light is propagated fuch a determinate Space, as if it proved it to be momentary and meafurable. For in all Inquiries of this Nature Truth is the thing fought after, and the finding of that is the Reward of our Endeavours: And therefore I would not be thought to examine this Obfervation of this ingenious Man, with any defign to derract any; thing from the Credit of the Obfervation, or the deferved Reputation of the Author. But that I may firt explain it to fuch perhaps as have not heard of it; Secondly, that I may put fome in mind of it, that perhaps may have forgot it; and Thirdly, That I may excite both, or either, to be mindful to make fome farther Obfervations of their own, of that kind, to fee if by any means they can thereby determine this Queftion, wherher the Propagation of Light for fuch a determinate Diftance, or Length, be inftantaneous or temporary: For till that be proved pofitively, the true Theory cannot be proved; as we thall afferwards hhew. His Way then which is printed in the Journal des Scavans at Paris, and fince in Englijh in the $136 t b$ Philofophical Tranfätion, is by the Light of the Sun reflected from the Satellit of 4 , both when it enters and when it emergies out of the Shadow of the Body of 4 , by which he endeavours to demonftrate, that the time that Light fpenas in palfing about 13000 French Leagues, or 792519 Englijh Miles, of 5280 Englifh Feet to a Mile, that is, in paffing a whole Diameter of the Globe of the Earth, is lefs than one fingle fecond; or the coth part of a Minute of an Hour.

But to confider alittle further this ingenious Way of Monfieur Romer, I do very much doubt, that we are as much to feek for a true Theory of this Satellit of ψ_{2}, as we are of our own Satellit the Moon, if fot fomewhat more, by reafon that the Anomaly thereof may be complicated with more different Motions than even this of the Moon, which is affected only by two Bodies, viz. the Sun and the Earth; whereas I am of Upinion, that the Motion of this inmon Satellit may be atted on alfo by the other three exteriour Satellits, and confequently there will need other Equations and Allowances to be made in the Calculation of its true Place, befides the Allowances for the Influences of the Sun, and the Body of $\mathcal{F u p i t e r}$, which whether he did conceive or take any Cognizance of, I know not : And therefore unlefs we are affured of the true intermediate times between the Eclipfes of it, we cannot make a certain Conclufion.
But fuppofing this may prove it to be temporary, and not inftantaneous, yet wé find that 'tis fo exceeding fwift that 'tis beyond Imagination; for fo far he thinks indubitable, that it moves a Space equal to the Diameter of the Earth, or near 8000 Miles, in lefs than one fingle Second of the time, which is in as fhort time as one can well pronounce $1,2,3,4$: And if fo, why it may not be as well inftantaneous I know no reafon, unlefs it may be faid 'tis inconceivable any Body can be infinitely fluid; which yet how it can be denied, I know not, unlefs we will allow a Vacuity, which the great Afferter of the Inftantaneous Propagation of Light, Monfieur Defcartes will by no means admit. Now that either there mult be a Vacuity, or an infinite Fluid, or elfe no Motion can be made, every way, will necelfarily follow from Geometrical Demonftrations of the Proprieties of Figure: And therefore either infinite Fluidity mult be allowed in Matter, or a Vacuity. Nor can this infinite Fluidity be evaded, hy faying, that there is a Matter indefinitely fluid, becaufe if indefinitely fignifies any thing lefs than infinite, the Demonftrations holds good againft it, as well as if it fignify'd finite. There is a neceffity therefore of admitting in Nature, either firt a Vacuity, which impugns the very ground of the Cartefian Principles, viz. that Body and Extenfion are the fame thing; or fecondly, a Penetration of Dimenfions, which is likewife contradietory both to his and the Opinion of moft eminent Philofophers in the World; or thirdly, a perfect Plenum but infinitely fluid, which I conceive cannot be difproved. But being proved, I fhall after-
wards thew all the ftrange and unconceivable Phenomena of Light will he moft clearly and evidently, and moft demonftrably made out; and not only the reafon fhown why its Extenfion is fo valt, but why its Propagation is fo inftantaneous. Now though I cannot now ftand to thew the Reafons of thefe Conclufions, yet by a Methodical and clear Procefs of Demonftration they will be fhewn to be as neceffary Confequences from undeniable Principles, as any Conclufion made by Euclid in his Geometry, of which I fhall have occafion to fpeak more la gely.

This being that we call Light, fure if any thing may be calld the Anima Mundi : Its Action being fo near of Kin to that of a Spirit, the whole Mafs being in an inftant acted by it, and made fenfible as I may fo fpeak, of what is done in any one Point: So that Light may be faid to be tota in toto $\mathfrak{F l}$:tota in qualibet parte, poffibly with fome kind of Plaufiblenefs. And yet after all this we may prove it to be purely corporeal, and fubjected to the fame Laws that bulky, tangible, and grofs Bodies are fubject to. This may inform us alfo, how even the very remoteft Star, and every one of thofe indefinite Number of Stars may have an Influence every Moment upon this Ball of the Earth on which we tread, and every one upon every other, and all in Proportion Meafure and Harmony, fo they were made, and fo they are preferved, esés : zap dek диацітляе.
7. We come then in the third place to note, that this Propagation of Light, Propagation of whether it be inftantaneous, as moft probably it is; or temporaneous, and re. Light the A quires a time fomeway proportion'd to its Diftance, is not the Action of a Spi- ${ }^{\text {etion of a Brdyo }}$ rit but of a Body, and that it is fubjected to the fame Laws that other corporeal Actions or Motions are fubjected to, and confequently is a Subject that falls under the Laws of Quantity, and there its Proprieties may be a fit Subject for Geometrical Exercitation.
And this appears firt, for that its Power or Action is always proportionable to its Expanfion; now this Expanfion in a free Pellucid Medium, is in a Duplicate Proportion to the Diftance it acts reciprocally taken.

The Actions of Light are firft, that effect it caufes in the Eye, where it cre ates a Paffion which makes us fenfible of Light, which Fffect or Action of Light is fometimes fo very fmall and curious, that we fhould no way have been fenfible of it had not the Creator given us an Organ Paffive by it, and fo fit to difcover it, and had Mankind not had that Organ of Sight, no other part of our Body could have been fenfible of that Effect, nor could it ever have entred into our Imagination to conceive what way it were poffible the Mind or. Underftanding of Man fhould be informed of an Action a thoufand thoufand Miles off, at the fame Inftant that it was theredone, nor though it were a fhoter way that this Information came, viz. 8000 Miles which Monfieur Romer fays ihe -has proved, is paffed in lefs than a fecond of time: We could have had, I fay, no Imagination concerning it, nor any Cenception of the Poffibility of the Ap. pearance of Light or Colours. Hence, To hint this only by the by, we cannot conclede but that polfibly there may be many other Motions and Operations of Bodies at a diftarice, and feveral other ways by which the Bodies of the World may influence one another, though it has pleas'd God not to give us Organs or Senfes to difcover them, and thereby many things that are accounted. Sympathetick or Magical may be done by Natural Caules and Powers, of which we have no Organs to make us fenfible. Now from divers late Difcoveries about the influencing Powers of Gravity and Magnetifm, to name no other atjprefent, of which we have no Senfe that does immediately inform us; but weibecome knowing and affur'd of them by other means, than immediately by-peculiar Oxgans of Senfe.
Now this Propagation of Light doth lact duplicately proportionate to the The PropagaDiftance from the Lucid reciprocally; 'that is, the Strength of the Light at one tion afts in c Foot diftance from the Lucid Body, is to the Strength of the Light at two Duplicate ProFoot as four to one, and to that at' three as nine to one, and fo forwards. So portion to the that the farther this Action is propagated, the more is it expanded, rarify ${ }^{*}$, or ${ }^{\text {difance. }}$ weakned. To explain this, Let ús conceive all the Medium incompafling the Lucid Body: within the Compafs of a Sphere of a Foot Radius, to be by the

Power of Light in the Lucid Point, thrown out and opened into a hollow Orb, which thall incompafs this emptied Globe of a Foot Diameter, poffeffed by the fhining Body. The Thicknefs then of this incompaffing Orb will be $\mathbb{V} \mathrm{c} 2$ \checkmark cr. the Expanfion of this Orb caufes the fluid Matter that was in its 'place before to expand into a bigger Orb: TheThicknefs of which will be $\sqrt{ } \mathrm{c} 3-\sqrt{ } \mathrm{c}_{2}$. and fo onward. So that the Rarefaction or weakening of the Power of Light increafes in Duplicate Proportion to the Diftance, and that this is fo does plainly appear by Multitudes of Experiments, which I fhall have occafion to make ufe of hereafter.

The Aftion of light carries with it a certzin degree of Heat.

Next, Though fo fmall a Degree of this Power or Action as does affect the Eye, doth not move or affect the other Senfes of our Body, yet is it nor without its effect upon other Bodies, befides that which it works on the acutely fenfible Parts of the Retina of the Eye; for we find, that it alfo doth produce Heat, and every the leaft degree of it carries along with it fome, though it he a fmall degree of Heat: Which degrees, if they are collected and concentred, do produce very fenfible Effects both upon the touch, and alfo upon moft other Bodies, whether fluid or folid: For we find it to rarify Fluids, and to melr, burn, and fhatter to pieces the molt folid Bodies: And therefore though the rarify'd, and fmalleft Degree of Light does not actually produce fenfible Effects, yet fince the Conftipation, Multiplication, or collecting of many of thofe together. It follows, that the leaft Degree of Light has fomewhat of Heat; and that the teafon why it is not fenfible, is only becaufe of its Smalnefs, and that it is beneath thofe Degrees which are before actually in the Ambient, even as in the Day-time we are infenfible of the Stars, becaufe the Light of the Sun hath already fill'd the Air with a greater Light: Not that they do then lefs fline upon us than they do in the Night, for as I many Years fince here thewed many of them may be feen at Noon day, by the help of Telefcopes. And (as I fhall afterwards prove more at large) there is no degree of Light, but has its degree of Heat proportion'd to thofe degrees of Light, which are concomitant to the degrees of the Light of the Sun. To this many have objected, that the Light of the Moon is fo far from being actually hot, that it is actually cold, and the more thofe Rays are condenfed the more is the Cold augmented: And to this purpofe Wepferus, in his Treatife De Apoplexia, relates a Story how by the collecting the Rays of the Moon there was produced an actual Cold, which was very fenfible to the hand held in the Focus. But this he relates not as tried by himfelf, but by another Perfon; but upon Inquiry further concerning this Matter, I cannot find there was any fuch Matter certainly obferved. So that the Obfervation is fufpected to have proceeded from fome Miftake, and the Perfon faid to have made this Obfervation, would not maintain any fuch Affertion, and therefore though it might well fuit with the Relatur's Theory, yet till we have fome more pofitive Proof of Matter of Fact, and of the Curiofity and Circumftances of the Obfervation, I hope we may be difpenfed with, though we are not of his Opinion.
Why the Rays Befides, I have this to anfwer, That by divers Experiments purpofely made, of the Moon both by my felf and divers others, we could not find that the Rays of Light bave no fenfible from the Moon had any fuch Power of Cold as is pretended; nor indeed could seat. we find, that they had any fenfible degree of Heat, for having made the Tryals with reflecting Concaves, which collected a great Quantity of the Rays, and concentred them upon a Thermofcrope (which would be moved fenfibly by a very little Alteration of Heat or Cold) I could not cerrainly perceive any fenfible Variation, though the little accidental Changes of Heat or Cold in the Ambient Air, were very fenfible by it ; fo that whatfoever may be pretended, I am fufficiently affured there is no fuch cooling Quality in the Light of the Moon.

Now that the degree of Heat, if proportion'd to the degree of Light, as in the Sun mult be very finall, and confequently wholly infenfible to us will plainly appear, if we confider what Rarefaction of Light is caufed by the Reflection from the Body of the Moon. And how fmall a Quantity of the Light of the Sun, which falls upon the Moon is reflected to us: For if we confider, that when the Moon is full, and fo all the Hemifphere of it vifible to us, is inlightned by the Sun, that the Quantity of Light which falls upon that He-
mifphere of the Moon is rarified into a Sphere about 228 times bigger in Dia, meter than the Moon before it arrive to us, and confequently that the Light of the Moon is 104368 times weaker than the Light of the Sun; and confequent ly, that there muft be 104268 full Moons to reflect a Light as ftroig uppin the Earth at Midnight as the Sun doth at Noon day: And therefore ?itis ho great Wonder, if a 104368th part of the Heat of the Suns Rays is not felt by us. This would be the greatelt Strength of the Moon's Rays, fuppofing ino part of the Sun's Light were loft in the Body of the Moon; but that all were reflected; but then if a part of it be there loft, it will make the Difproportion confiderable greater, and conféquently lefs fenfible: Though therefore we are not fenfible of the Heat of that Light, yet we are nor to coriclude it withdut its due Proportion of Heat.

The fame Reafon may be valid, why the Light of Gloworms, rotten Wood, Fifh, and the Late invented Pbofphorzs, do not at all affect the touch with their Warmth : For though that degree of Heat be propdrtion'd to their degree of Light, yet their Proportion of Light is fo fmall, that 'tis not to be imagin'd it fhould produce any degree equivalent to that which is in the Air that incompaffes our Body.
8. This Infantaneous Propagation of Light is in the next place in ftraight The Propagas Lines, every way from the Radiating Lucid Point, through a uniform pellucid inion of Ligatst, Lmes Medium. With this agrees the Judgmient and Confent of all, both Ancient and in in in bombogeModern Authors, that have written of this Subject, all conclude it to radiate neous Medium. every way in ftraight Lines from the Luminous Point, whether they fuppofed it a Flame, as divers of the Ancients; or whether they fuppofed it a Flux of Atomes, as the Epicureans, or Species, as the Pcripateticks, or the Motion of a ftagnant Body, as the Cartefians, and our Country man Mr. Hobbs; they all fuppofed it to pafs in fraight Lines, though fome of them fuppofed thofe Lines to be but Phyfically fuch, that is, fo that the whole made a ftraight Line, though the imperceptible parts thereof might be a little bended by the Pofition of the Pores, as the Atomifts fuppos'd; or by the Form of the conftituent Parts of the pellucid Medium; as the Cartefians, who imagined the faid Medium to confift of fmall Globules contiguous to each other. And with this alfo agree all Obfervations both in the Heavens, and on the Earth nor have any Experiments or Obfervations hitherto contradited it. Now though the Propagation of Light at a great Diftance fhould be temporaneous, and fo be fome confiderable time in coming from the Luminous Body to the Eye, and thence that the Morning Object fhould not be in the fame place that it appears to the Eye, yet this hinders not but that; that temporaneous Propagation may fill be made in a ftraight Line, there being no Caufe affignable in a uniform ftagnant Medium why it thould be otherwife.

But then this hinders not, but that this ftraight Line may be bent by a Difform Medium.

In the next place therefore, the Propagation of Light is various ways affected, and fo the Straightnefs of the Rays is changed and diverted another way.
yft. By a Medium not uniform and homogeneous; the Ray is bent from a By a Diform ftraight Line into a Curve, which I have long fince proved by many Obferva- Medium the tions and Experiments, and publifhed in the Year 1664. This Paffion of Light Ray is bent ithfrom a difform Medium, I have called Infledion; and thall hereafter have oc- ${ }^{\text {to a Curva }}$ cafion more fully to treat of it:
$2 l y$, The Straightnefs of the way of Propagation is broken, fhort as it were, and diverted another way by its paffing out of one uniform Medium into another uniform Medium. This is call'd Refraction of the Ray, whereby the ftraight Line of Propagation is at the Superficies of the two contiguous tranfparent Mediums diverted fome other way within the fecond Medium, which makes an Angle at the Superficies w the former Rays contiuued.
$3 l y$, The Ray is broken and diverted another way by its meeting with a TA e_{-} dium unfit for admitting the Propagation of Light through it felf, and thereby the Ray is kept within the firf Medium, but at the Superficies is with an Angle diverted and bent Thort another way, this is called Keflection.
$4 l y$, The Ray is impeded, ftopp'd, deaded, or abforpt by meeting with a Body unfit either to propagate it through it felf, or refledt it into the firft Mc. dium, which may be called Mortification or Extinction, of this kind are blank Bodies, and divers others which retain and keep it for a long time, and do not whilft they keep that Form, return or communicate it to any other.
sly, The Ray is difperfed, fplit, and opened by its Refraction at the Superficies of a fecond Medium, and from a Line is opened into a diverging Superficies, and fo obliquated, whereby, the. Appearances of Colours are produced.

6ly, The Rays of Light are imbib'd into, and receiv'd by a fecond Medium, and thence returned again by degrees after they have remain'd a confiderable time in the recipient Medium ${ }_{2}$ as in the Bononia Stone ${ }_{2}$, and fome of our late invented Pbofphori.

Of each of thefe, I thall more at large difcourfe, and explain the particular Caufes and Reafons of thefe Affections, and the Rules, Laws, and Limits of their feveral Powers.

SEct. II.
 Containing the Lectures of Light read about Mís chaelmas, 1680.

The CONTENTS.

1. The true Method of acquiring Knooledge, is firft by examining the of that it is $\int 0$, and then the doriz why it is $\int 0$. 2. The Bodies from whence Light proceeds, as firt the Sun; its vaft Bignefs and: Distance from the Earth, emit's Rays every way equally in Orbem, is fubject to Changes from its Spots which are at large defcribed; with their Motions and Nature, and of the Sun's Rotation. 3: That the Rays of the Sun carry Heat as well as Light, that the Sun has Heat re'ally, and that it is not produced by the Reflexion of the Rays from the Earth; why the upper Air colder. 4. That the Sun is incompaffed mith an Atmofphere, or fomething analogous to it, the Limb nobich appears in us is that of the Atmofphere, more of the Spots: The Sun agrees wiih the Earth in moft Particulars except Light, why the Light of the Sun is moft inffted on. 5. Farther Reafons that there muft be a finid Body incompalfing the Sun, with a farther Explication of the Spots, that thay are not Planets like the Body of Venus or Mercury in Sole, tho there may poffibly be Planets nearer the Sun than them which the Author Sees. no reafon to believe, theje Spots are within the Atmofphere of the Sun; and much of the Nature of Meteors, a farther Confirmation that there is a Small tranfparent Shell or Atmiofphere about the Sun. O. That within this Shell is a Solid Opaque Body, Solid fromits Rotation, Fixednefs of its Axis, and its Poner of Gravitation, Opaque from the Spots not appearing thro' it. 7. Eight Particulars, no perein the Sun and Earth agree, and three wherein they differ. 8. Suppofing the San compo \int ed of Nitrous and Sulphureous Particles, and Set on Fire, all the Phenomerra thereof may be explained, the Proportion of the Diminution of the Adtion of Light in Proportion to the Diftance from the Luminozs Body demon!trated and that the Light of the Sun is from an aliual $^{\text {a }}$ an Fire, or Diffolution of the Superficial Parts thercof, with an Objection againft it anfwered. R.W.

IHave begun in my former Lectures to enumerate and explain to you fome of the Proprieties of Light, and to obferve to you what it effects and performs, which I have done in order to fhew how, and by what means they are performed, and from what Caufes thofe Effects proceed. Firft, to explain to you the o ${ }^{\prime} t$, and thew you that fo and fo it is, and then the dorm, how and why it is f .

This is the true Method of coming to the Knowledge of all the Operations The trie me. of Nature, and therefore whoever goes the other way to work, and begins a thod of acquipriori to this firt of the Caufe, and then to deduce the Effects from it, as a ring Knowleds?: great
great Man has done, or at leaft would be thought fo to have done; begins at the wrong end, and at length when he came to the ultimate and moft vifible Effects, he found himfelf, or at leaft moft Men have found it for him, that he was much at a lofs and unable to get out, and extricate hiaifelf.
The Works of Nature are a great Labyrinth, which is already built and perfected, their ways are determined and bounded by impenetrable Wails; and there are no new Paffages to be made, other than what are already fixt: He therefore that fhall think immediately to fly and tranfport himfelf over thefe Walls, and fet himfelf in the very middle and inmolt Recefs of it, and thence think himfelf able to know all the Meanders and Turnings, and Paffages back again to get out; will find himfelf hugely miftaken and puzled in finding his' way out again.

Whereas he, that would march fecure, muft firt find fome open and vifible Entry, and there enter with his Clew and his Inftruments, and take notice of what Turnings and Paffages he finds, and fee how far he can proceed in this and that way, before he finds a ne plus ultru; then fetting down and protraeting all the ways he has theregone, and what he has there met withal, he muft return by the help of his Clew and try another Paffage, and do as much there, and fo a third and a fourth, and fo onward, fetting down ftill and protracting his feveral Effays; by comparing of all which together, he will at laft be able to give you the true Ground-plat of the whole Labyrinth, and thereby to tell you which is the right and which is the wrong way to find the middle or Cen. ter: Which is the neareft and which is the fartheft way about, which is the plaineft and eafielt, and which the ruggedeft and the moft difficulteft, which the lighteft, and which the darkeft Paffage, and all the Occurences you will meet withal in the ways.

The moft of our Philofophers that have hitherto written, have gone the o. ther way to work. They have begun from fome inward part of the Labyrinth, having made fome fmall Entrance, and have thence thought they knew the whole Fabrick, and to have found the way out again by the help of their Memories, neglecting or defpifing the Clew, the Compafs, the Circumferenter; and the Chain, whereby to obferve Meafure, and fer down all they obferved in their way: And have thereupon feigned a way, and have made to themfelves a Labyrinth; and have prefently given you a Defign of the whole. Bur alas, this Labyrinth was in their own Mind, and not of Nature's making, and how perfect foever they are in their own Method, they are altogether to feek in that of Nature.

Thus the Pytbagoreans were puzled with their Numbers; the Peripateticks with their Four Elements; the Epicurcans with their Atoms; the Chymifs with their three Principles, Salt, Sulphur, Mercury; Ptolomy with his Orbs and Epicycles; Kepler with his Harmonicks; Guilbert with his Magnetifms; not to name many of the Ancients, fome whereof would reduce all from Fire, 0 thers from Air, and others from Water, fome from Heat and Cold, others from Light and Darknefs, others from Good and Evil, but all fell hort of the true Explication of Nature.
He therefore that would make a thorough Difcovery, muft begin from the moft fenfible, obvious and plain Effects of Nature; of thefe he muft make a diligent-Inquiry, firf what is done, and then as near as may be how 'tis done.

Our prefent Inquiry therefore being after the Nature of Light: To proceed ac. cording to the Method I have now been fpeaking of to you, we mult firf inquire and fearch on the outfide of this Labyrinth, and fee what Entrances or Inlers there are by which we penetrate into it; that is, we muft inquire what are the moft obvious and fenfible Effects of it: Thefe muft be all, if poffible; found out, enumerated, and fet down. Secondly, Every one of thefe again muft be more frictly examined, determined, and flated, and the Limits fer, its Maximium and Minimum demonftrated; its comparative Likenefs and Unlikenefs to the Proprieties of other Subjects taken notice of, and recorded ; its Congruents or Opponents, or its Promoters or Retarders; its Contraries and Deftroyers; and the like muft alfo be examined, and all thefe muft be Methodically Difpofed and Regiftred into fit Tables, that fo out of thefe found Materials
chofen with Judgment, examined with Strictnefs, cleanfed and fitted with great Sedulity and Reafonings, we may raife a found and lafting Structure that no Age or right Reafon fhall overthrow or deftroy.

Such are the Fabricks raifed by Genmetry, thus Euclid's and Archimede's De. monftrations, none fince have been able to difprove. This Learning which was faid to have been brought firft out of Egypt, was pofibly known before the Pyramids were built, and may laft when not a Duft of thofe maffy Piles may be left undevoured by Time; for Truth always was, is, and ever will be the rame.
2. To find the Nature of Light we muft examine firft, what it is in the Lu•The Bodies minous Body that is the Fountain, and emits or caufes it, Secondly, what it is from whence in the Medium that propagates and conveys it; and Thirdly, what it is in the Light proceeds. Eye, or the fubject that receives it, and is affeeted or acted by it.

The firft thing then Ifhall take notice of, is of the Bodies from which Light. proceeds, as from the Fountains, whence it has its Original and firt Spring. Namely, of fuch as we have no fenfe that informs us, that 'tis brought into them from any other place, but feems to be there generated and produced.
Thefe Bodies are very many, and very differing in their Conftitutions, and therefore the Enumeration of them, and fome of their Proprieties may be a great help to us to judge of the Nature of Light.

The greatelt and moft remarkable of all (at leaft quoid nos) is the moft glo. The vaft Bigtious Body of the Sun; which from the glorious, great, and powerful Effects nefs of the Sure of it upon this World or Earth, on which Mankind is placed; was by the Hea- and Difance thens, Romans, Greeks, Perfians. 8xc. efteemed a God, and fo worhipped from theEaitho and adored; but under various Names, as fupiter, Apollo, Pbabus, Pbaeton, and feveral other Names, all of which fignified the Sun: As funo, Venus, Cynthia, Diana, \&xc. fignified the Moon. The things obfervable in this Body, befides its Light, are firf, that'tis the greateft Body we yet know in the World, of whofe Magnitude we can have any tolerable Certainty, It being very much bigger than all the Planets together, viz' $\overline{2}, 4, \sigma^{\prime \prime}$, the Earth, $9, q$, and their Satellits, viz. thore of $\hbar ; \psi$, and the Earth, and may be poffibly bigger than any fixt Star, of which by and by.

The Bignefs of it is collected from its Diftance, and the Angle, under which it is feen. The Diftance is by fome of our late Aftronomers, who have been more than ordinarily curious in their Obfervations," Judged to be about 10000 Diameters of the Earth diftant from us, and the Angle under which it is fenabout half a Degree: Its Diameter therefore muft be about hit part of Earth, its Body therefore being Spherical, as I thall thew by dnd by, mult be 87 times 87 times 87 , that is, 658503 times bigger in Bulk than the Body or Globe of the Earth : And therefore the Surface of it, which sis the part that gives Light, is 7569 greater than the whole Superficies of the Globe of the Earth. Now almoft half this Superficies is feen at once, and therefore that part is near $3784^{\frac{1}{2}}$ times bigger than the whole Superficies of the Earthin Now every part of the whole Superficies of the Sun does Thine, Jandetnit Light every way in Orbem, which, will be probable from this, that a very large Zone of the Sun doth fo, and therefore fince all parts of the Sun feem to give Light
alike, it is more than probable, that every other part of the Sums Surface doth the fame thing. Now before I demonftrate this, I muft note 'to you another Propriety obferved in the Body of the Sun, which is neceffary for proving both the real Bnlk of its Body, and the radiating every way of the Superficial parts of it. It is obferved then, that there fometimes bappen to be feveral dark and dusky Spots vifible upon its Surface, whofe Paffage over the Sun have been by Telefcopes and other Inftruments curioully traced and calculated, by which it plainly appears, Ift, That this Body we fee, which appears only as a Plain, is a Globous and Spherical Body; and this becaufe the faid Spots are obferved to pafs over its Face with a Motion proportion to a double Line of Sines, or as they muit appear, fuppofing they were placed upon a Globe appearing under that Angle, and equally turning round upon an $A x i s$. This is yet farther confirmed by the Alteration of the Shape of the Spots, when they are nearer the

Linn $_{3}$

Linth, and To are pofited obliquely from what they appeared in the middle, and fo directly faceing us ; which Aleration perfectly anfwers to the Shape of fuch a Spot, made upon the Face of a Globe, and by turning the Globe; altering the Pofition of it to the Eye. Thefe tell us further, that this valt Globe makes a Revolution in 25 Days, or thereabours, upon an Axis obliquely pofited to the Ecliptick; whence it is plain, as I noted before, that all parts of the Sun's Surface do fline, for that they are fometime or other feen. 2 dly , There being no part of the Sun's Surface lying hetween the two Tropicks of the Earth upon it, but is fomerime or other feen in all the Poffitions of a HemiIphere, and yet continually feeming as far as we can dificover, equally giving Light; it follows, that all thofe parts at leaft do emit Rays of Light in Orbem.

The Sunfubjet

 the like may with all manner of Probability, be concluded of all the reft.to Cbanges and great Chaxt thing then I Thall obferve is, that this great Body is fubject to as of the Spots. great changes in its fuperficial parts, as any that happen to the fluperficial
feni in it. feenim it. or Alterations; as do happen here upon the Earth. This is evident by thofe great Spots which, as I have noted to you, do often appear upon the Face of the Sun, and move along with it.
There are of no certain Figure, nor of any certain Bignefs, but fometimes bigger, fometimes leff, fometimes more appear, fometimes fewer: Soimetimes darker, fometimes dusky, fometimes brighter. Moft of the dark have abour. them a Duskinefs at a certrain Diftance, which does fometimes remain after the dark one be quite wafted; as they are found fometimes before the dark appear. Some of thefe Spots have beci obferved to turn into Spots brighter than the reft of the Sun's Surface, but efpecially when they approach the Limb of the Sun, where alfo many of the dusky ones appear, and more than ufually upon the middle parts of the Suni. Both the dusky, and efpecially the brighter parts, are obferved to flay fome of them confiderably longer in the Limb of the Suni than they ought to do, according to the Theory of moving upon and along with the Superficies of the Globe: But they are never feen to appear without the Limb, but within the edge or in the very edge of the Sun, without making any Protuberance. The brighter Spots are obferved to appeas brighter towards the Limb, and fometimes to appear in it very bright.
They are obferved always to pals over the Face of the Sun, from the Eaftfide towards the Weff, Fometimes in a ftraight Line, and fometimes in an Ellipfis when they move regularly, but they are allo fometimes obferved to decline out of thofe Lines, and fwerve fometimes towards the North, and fometimes towards the South, but never to go the contrary way.
Sometimes one of thefe Spots divides into many, which feparate from one: another, and fometimes many of them coalefs, and joyn together in one.
From all which Appearances, it is very evident, Firft, That there Spors are Bodies moved upon, or in fome fluid Body fomewhat of the Nature of thofe we have upon the Earth, as to Fluidity, viz. Air or Water, though poffibly the fluid, may differ from there Earthly Bodies in other Qualities.
Secondly, That there Bodies are either opaque, and fo hinder the Light of the Sun to pafs through them, or elfe they are incombuttible and dark Bodies, which will afford no Light at all for a certain time, and do as it were quench
An Account of So that thour part of the Sun where they rife,
${ }_{\text {the }}{ }_{\text {the }}$ Scoust in of the that though the Face of the Sun be the moft glorious and vivid Light the Sum. That we are fenfible of in the World, yet fince the Dilcovery and Ufe of Perfpetive Glaffes it has been obferved, not to be free from fome parts that are dusky, and fome perfęly dark, and fome other parts that are obierved to give a brighter Light than even the clear Face of the Sun it felf: The former are called Nebula or Clouds, the fecond Mocule or Spots, and the third Facule or Blazes. Thefe have been obferved by Schiner, Galilee, and others, to be. gene. rated up and down in various parts of the Sun's Face, and to increafe and grow bigger fometimes, and fometimes to grow lefs, decay and vanifh: Their In. cieafè is fometimes from a fmall Cloudinefs, to increafe larger and larger; and then in the middle fometimes, and fometimes in various parts of it, to have perfect dark Spors, which alfo continue to increafe fometimes fo big as to co-
ver a part of the Sun equal to all Europe, and fometimes to be bigger than all the Superficies of the Earth, thofe Spots do fometimes coalefs and joyn all in. to one, and fometimes divide and feparate into divers, and part afunder confiderably: And again, at other times many of thole Spots which are generated feparately, do mieet together and make one great one. Thefe appear fometimes of a dusky Red, fometimes Yellowifh, fometimes of a dusky Blew, and various other Colours ; their Shape is very irregular, and fcatce any two alike, not unlike the upper fides or edges of the grear white Clouds we ufually fee here in the Summer-time : Yet generally the edges of the Macula or darkelt Spots, are very defined, and this Spot is perfectly Black to the very edges; but always about thefe edges to a certain Diflance, which is much the fame, be the Spot bigger or lefs there is a dusky bordering, which is likewife Thaped according to the edges of the Spot, and is all of an even Darknefs or Duskinefs. The Facule are not defined but uneven, and ufually appear brighteft towards the middle. The Shape of thefe Spots fometimes continue much the fame for fome Days, but yet feldom without fome Alteration: So that indeed they feem to be always in a State of Alteration; but fometimes quicker fometimes flower: From the Obfervation of them in feveral parts of the Sun, it is moft demonfrably evident, that they have fome kind of Thicknefs, but very fimall in com: parifon to their Breadth; for as they approach towards the Limb, they keep their extent toward the North and South, but diminith towards the Eaft and Weft, in the fame manner as a broad flat Body would do if varioully, po: fited to the Eye: Infomuch as fuch as are towards a round appear by degrees to turn to a longer Oval, almoft all in the edge appear a Line bended circularly, which is an evident Proof that the Motion of them is on a Spherial Surface ${ }_{\text {; }}$ and not a plain, for if it were on a plain the Shape of them would receive no other Alteration at the Limb of the Sun than it would at the middle. And from hence alfo we have a good.Argument, that the Body of the Sun is a Globe, and hot a plain flat round Superficies, as fome of the ancient Philofophers are faid to have afferted it; nor a round Hole bored through the dark Shell of the Univerfe, to let through the Light of the Celum Empyreum, which fome others of them are faid to have afferted, fuppofing alfo the fixt Stars to be nothing elfe but fmaller Holes through this dark Shell. But thefe Conceptions as too rude, grofs, and favouring of vulgar Conceptions, I pafs over and proceed to obferve to you further, that thele. Spots of the Sun are obferved to move generally all from Eaft to Weft, and over the Face of the Sun, fomerimes coming in at the Eaft Limb, and in $\mathbf{1 2}, 13,14$, or 15 Days to move to the Weft Limb, and to perform this Motion regularly for the moft part, according to an order of Sins, the Radius of the Sun being for the Radius, and the Order beginning from the Center, which is another Demonftration that their Motion is on the Superficies of a Sphere, and that they move on it almoft equal Spaces in equal times, I fay almoft equal; becaufe they have a kind of Motion of their own, whereby they are fomerimes as it were promoted and fometimes hindered, fometimes carried a little towards the North, and fometimes a little towards the South. This Motion of theirs from Eaft to Weft, over the Face of the Sun, fometimes appears to us to be made in a ftraight Line, which hap. pens when the Earth is in that part of the plain of the Ecliptick, which cuts the viz. in the beginning of fune and December: At other times the Line of the Motion of them is incurvated and bent into an Ellipfe, which is greateft when the Earth happens to be in thofe parts of the Ecliptick, which are the extream Limits of it, compar'd to the Plain of the Sun's. Equinoctial, which is alfo twice a Year, viz. in the middle, between the Nodes, both Plains paffing through the Center of the Sun, that is, about the beginning of March and September. From whence alfo is deduced another undeniable Demonftration, that the Sun's Superficies is Globular, and that it moves round upon its $A x$ is from Weft to Eaft, as the Earth and Fupiter alfo are proved to do. And another Remark is likewife evidenced, that this Axis of the Sun's turbinated Motion, temains fixt and direeted toward the fame parts of the Heavens. In the fame manner as the Axis of the Earth is obferved to do, and likewife the $A x$ is of ${ }^{\circ}$ and t, fo far as we can yet difcover by the Spots, Ring, and the Satellits of

Lectures of Light.

thofe Bödies. So that the Method of Nature in moft things agrees both in our and other Globous Bodies of the Univerfe. There is yet one Obfervation more concerning thefe Spots, which further confirms this Deduction, and that is that there is a certain torrid Zone; as I may call it from its Similitude to the torrid Zone of the Earth, viz. a certain Space or Breadth on each fide of the, Equator of the Sun towards. the North and South Poles, in which there Clouds, Smokes, Blazes, or Spots are obferved to appear moft: Whereas without thofe Limits, or in the two temperare Zones, they appear more feldom, and thofe which do are only Nebula or Clouds; but in the two Polar Zones there appeat
none at all.

How great a Similitude there appears in this with the Globe of the Earth, I need not now infift on, only I Thall make this Remark by the by from this Similitude, that though all that have hitherto fpoken concerning this Subjeet, have concluded that the time of the Revolution of the Sun's Body upon its Axif, is to be deduced from the Revolution of fome Spors that have lafted more than quite round the Body of the Sun, and come to the fame Place again, in which they were 29 Days before or thereabouts. I mult upon this occafion, I fay, remark that here upon the Earth, between and near the Tropicks; we always have a continual Brieze of Air, which moves from Eaft to Weft; which upon very good Reafon is concluded by Galileo, and moft of our Modern Naturalifts, to proceed from the Earths moving from Weft to Eaft, and fo leaving the Air behind, which lagging of the Air is yet much more confiderably felt and perceived in the higher Parts of it by the Clouds, and by the Paffage of it over the tops of high Hills. So that if there Spots be Clouds or Smoke, or Tomewhat 'Analogous to them, rais'd into the Air', A tmofphere, or fome Fluid Analogqus to the Earth's Atmofphere, as I Thall obferve by and by, then maty the Motion of the folid Globe of the Sun be confiderably fwifter than thofe Clouds appear'to be carried, and inftead of being. 25 Days, pofibly may make a Revolution in 20 Days or fooner.

There Particulars I have here mentioned, I could have more largely demonftrated to you by Schemes and Figures, whereby every Particular I have afferted of this Matter might have been more fully fhewn and explained. But I do rather avoid it; Firlt, becaufe in Demonftrations. of that kind very few Auditors are able to goalong with the Defription and Quotations of Lines and Letters in the Schemes; and Secondly, becaufe it fpends more time with much lefs Advantage to the Auditory.

The Suns Rays 3 . I fhall then in the next Place remark to you, That the Rays of the Sun warrl Heat as are oblerved to carry with them Heat, or to produce it in the Bodies upon well as Light. which they fall, efpecially if they be collected by the help of a reflecting or a refratting Burning glafs: Infomuch that by thofe means it is eafy to fer Bodies into an actual Flame and Fire, nay, not only to fet Bodies on fire and confume them, but even to melt the moft ftubborn Bodies. Infomuch that none of the Metals, as Tin, Lead, Silver, Brafs, Copper, Iron, Gold, are able to indure it without being in a Moment almof melted, and nor only there, but Stones, Clay, Flints, Bricks, and almoft all other Bodies that will not burn, will by the Power of the Sun's Rays, collected with a Butning glats, be melted and turned into Glass to Admitation. Nay, 'tis polfible by this means to augment the Heat to almoft any affigned Degree, and poffibly fome hundreds times more than tis poffible to perform by all the Attificial Fires that can be made with any combuftible Materials we yet know, Of which Effects, and the Caufes and Proprieties thereof, more hereafter. Now after all this, there have not been wanting divers Meh who would heeds perfouade us; that not with tanding all thefe Obfervations the Body of the Set has no Heaf, nor have the Rays themfelves, but that they produce Heat and Fire only by agitating the Body upon which they fall, "and are reflected; and this is the Reafon (fay they) why the upper Parts of the Air are fo very cold, and the under Parts next the Ground are fo very hot, for the Rays of the Sun, fay thev, being in themfelves perfeetly cold in paffing thorough the ipper Air; and being not reflected, they caufe no Agitation or Heat, butheing reflected from the Earth in the unider Parts of the Air, the crofs Agitation caufeth the Paits of the Air to beat one
againft another, and this cauferh Heat much in the fame manner as a Flint and Steel being ftruck one againft another, though neither of them be hot before they meet together; yet when they meet, produce both Heat, Fire, and Light, though there were no fenfible Signs of any of thefe before, and fo a piece of cold Iron may by being hammer'd on a cold Anvil with a cold Hammer, very nimbly and ftongly, be not only heated fo as to burn ones Fingers, and to fire Gunpowder, but to be viffbly red hot: So that though the Hammer and the Anvil were both in themfelves devoid of Heat, yet their Motion does produce it on the Iron. To this it may be anfwered, that as to the Warmth of the Air Why the uppes at the bottom, and the Coldnefs at the top of the Mountains, or high Towers, Air is colder. the reafon is plain from this, that the Air near the Earth is warmed by the Heat of the Earth, and being not fo fwiftly moved and changed for cold Air, as that which is at the tops of Mountains, of of very high Towers, which is alfo further removed from the warm Surface of the Earth: But that the Rays of the Sun will do the fame thing as to burning of any Body by the help of a refracting burning Glafs at the top of a Hill or Tower, there is no manner of reafon to doubt. 'Tis, I think, fufficiently evident to all the World, that Heat is convey'd by the Sun Beams as well as Light, and that thofe Beams both of Light and Heat are emitted by the Sun, and therefore we have no more reafon to believe, that the Sun has no Light than that it has no Heat:
4. All thefe Circumftances confider'd, it feems very reafonabie to conclude, that the Superficies of this great Body of the Sun is incompaffed with an Air or hats the Sur Atmofphere, or fome other fluid Body or Menftruum, even as this Body of the fphere, or fome: Earth; and that this Atmolphere, though poffibly 80 times thicker than the thing like ito Thicknefs and Height of the Atmofphere about the Earth, yet compared to the Vaftnefs of the Diameter of the Body, it becomes wholly invifible to us, though affifted with our beft Telefcopes: And befideś, 'tis' not to be doubted, but that being very near the Body, and having reflective Parts in it, it muft of it felf look as bright as the very Body it felf, and confequently that the Limb thereof which appears to us is really the Shell of the Atmofphere, Air, or fluid Menftruum about the Sun, and not the very folid Body it felf that shines. Hence all the Phromona of the Macule and Facule of the Sun obferved will be folved, and thefe Spots of the Sun will be no other than our Clouds or Smokes, which rife into the Atmofphere; this I fay, will plainly make out all their Appearances to be much the fame as thofe of Clouds are here with us: For 'tis not to be doubted, but that we have fometimes Clouds big enough to hinder the Sun from thining upon as great a part of the Earth's Surface, as thofe Clouds of the Sun do hinder us from feeing of the Sun's Surface.

Hence 'twill be eafy to know why they fomerimes move a little Northwards, and fometimes a little Southwards, but nill follow the general Courfe of the Sun's Body, why the black Spots generally vary their Shape, regularly as on a Spherical Surface, but that the bright ones do not, but feem to grow othervife; why the bright ones appear moft near the Limb of the Sun, and not fo often in the middle; namely, where we come to fee the Light reflected from the under fides of the Spot, or Cloud: This gives a clear reafon why they ftay fo long about the Limb, and why they grow bigger, whereas the dark grow lefs and fooner vanifh. And in fhort, there is no Obfervation of thefe Spots in the Face of the Sun that I have ever yet made my felf or feen of others, but will hereby be clearly made out.

So that upon all that has been thus far faid concerning the Body of the Sun, The Sunin mofit ir plainly appears, that it agrees with the Terraqueo-Aerial Globe in divers of Prpyieties its Proprieties, and I fhall another time prove to you feveral other Particulars, grees with the by which it will plainly appear, that they perfectly agree in moft other Pro- Earthe except prieties except Light, and wherein that difference confift I fhall likewife that of Ligbto thow.

I am the more particular (upon this occafion) in my Defription of the Sun, becaufe as it is the very Fountain of all vifible Light, and the moft confiderable Body in the World: So the Proprieties of this being explain'd, it will the more clearly difcover to us what are the moft confiderable Proprieties of Light in
orher Luminous Bodies, and thence we may be able fully to explain this Subject, which is the moft operative and moft confiderable Ingredient of the Univerfe.

There muft be 5. Having thus fhewn you that it is neceffary there muft be a fluid Boaiy ina fluid Body en-compaffing the folid Body of the Sun, for otherwife thofe irregular Motions of compaling a more folid in the Sun, with Wore concerning the Spots cannot be made out, and with the fuppofal of it, may be made out and explained very rationally, I hall now more particularly fhew you the the Spots. Reafons thereof. All that have hitherto made accurate Obfervations concerning there Spots in the Sun, amongtt which, I think, none has been more diligent and curious thatn the Learned and Ingenious Jefuite Sbinar, in his Rofa Ur. Sina, that the Phenomena of the Macula, Nebule and Facula, are much what I have already given you an account of: And though there be one or two who from fome fuperficial and flight Obfervations, and from much of Fantcy have pretended fome other Motions of thefe Spots, and would thence conclude, that they are not Clouds but fome fmaller Planets, fo near the Body of the Sun, as that they can never be feen, but when they are in their Perigean Conjunctions, and fo come between the Sun and our Eye; yet fince they are difallowed of by the moft diligent and curious Inquirers into thefe Matters, and fince I could never meer with any fuch my felf, 1 have good reafon to fufpend my Affent to their Conclufion, till by manifeft Obfervations it thall be made out to the contrary. Certain it is, that the Bodies of Venus and Mercury when they have appeared in the Face of the Sun, have been very differing in their form from thofe of the ufual Spors : For Firft, they appear round, which few or none of thefe Spots are obferved to do. Secondly, They have not been obferved to have any Nebule about them, which all the Spots that ever I have feen have always had. And Thirdly, Their Motions have been fo fwift as to pafs over the whole Face of the Sun in a very fhort time, as in fome few Hours; whereas thefe Spots are at lealt 12 days, and fometimes longer. Fourthly, They are obferved to pafs over in a ftraight Line, whereas thefe are very of ten obferved to pafs in an Ellipfe, quam proxime, and but twice a Year in a ftraight Line: Fifthly, They pafs over the Sun with an equal fwiftnefs as to Senfe, whereas thefe pafs with very unequal, as I noted to you before, and according to the Proportions of Sins. Sixthly, They make no ftay in the Limb, which thefe Spors oft-times are obferved to do. It plainly follows therefore, that thefe Spots are very near the Surface of the Sun, if not uponit.

I do not deny but that it is poffible there may be the Bodies of other Planets about the Sun, nearer than that of which by reafon of their nearnefs to its Body, may never appear but only at fuch time as they happen to be obferved whilft they pafs under the Sun: But I never yet met with any certain Obfervation from which I faw a neceffity for making fuch a Conclufion; for the Poffrbility thereof is no ways a fufficient Argument for its Neceffity, or fo much as a Probability; for all the Obfervations that have been made of thefe Spots at the Limb make their ftay rather longer than thorter than they ought to do, fuppofing them upon the very Superficies of the Sun, and therefore they are fo far from being without the fhining and bright Limb of the Sun, that 'tis manifeft that they are within it, that is, within the Superficies of the Atmofphere that incompaffes the Body of the Sun.
Now the fuppofing of fuch an Atmofphere or fluid Body to incompafs the folid Body' of the Sun (for there is as great a neceffity of a folid Body of the Sun as there is of a fluid about it to make out the reafon and caufe of divers other Proprieties of it , as I thall afterwards thew) will plainly and intelligibly make out all the Pbenomena of the Spors, and make it almoft demonftrable that thefe Macule, Nebula and Facula of the Body of the Sun, are much of the Nature of the Meteors raifed up into our Atmofphere from the Earth, and, as I Thall by and by make appear, will plainly fhew unto us from what caufe the Light of the Body proceeds. I have mentioned to you already, that the Spots are obferved to ftay confiderably longer in the Limb of the Sun than they ought, according to the Rule of moving upon the Superficies of an opacous Globe, for it, has been found that they appear, when according to that Rule they thould difappear ; it follows therefore, that either they mult lofe their

Regularity

Lectures of Light.

Regularity when they come to the apparent Limb of the Sun quoad nos, or elfe that the edge of the Limb is aliquatenus tranfparent; for the former there can be no imaginary Reafon, there being no difference in that part of the Superficies of the Sun from any other ; becaufe every part of the Sun fucceffively is in the Limb, and Spots arife promifcuoufly in any Part of its middle Zone: It mult therefore of neceffity be from the Tranfparency of fome fmall Shell, about the folid fhining Body, and therefore probably of an Atmofphere. But fecondly, 'Tis manifelt that this Atmofphere is moved much as our Atmofphere is; for by many Obfervations it has been certainly found, that thefe Spots which rife in the middle Zone of the Sun have been obferved to be longer in paffing over the Sun's Disk, than thofe which happened in the Intermediate, which perfectly agrees with the Motion of the Atmofphere about the Earth, for the Air between and near the Tropicks is obferved to lag and fall more behind the Motion of the Earth than the Air in the temperate Zones; for in the Torrid Zone the Air or Wind almoft continually feems to blow from the Eaft, or from fome Point of it, which is generally now concluded to proceef, from that Caufe, I fay for the moft part from the Eaft, or fome Point of it, as EAh SouthEaft, or South-Eaft, Eaft-North-Eaft or North Eaft, or the like, which explains alfo why thofe Spots of the Sun are obferved to move fometimesitoward the North-Weft, and fometimes towards the South.Weft : But then thofe in the intermediate Zones follow the Courfe of the Sun's Body more eafily, as with us, where the Winds fometimes blow from the Weftwards, and feem to be moved fafter than the Earth it felf.
6. Having therefore as far as the thing is capable of Demonftration thew'd, That the sum that the Superficies of the Sun is fluid and fomewhat tranfparent, and has is a folid and Motions in it analogous and very like to the Motions of our Atmofphere: Iopacom, Body. come in the next place to obferve to you, that the Body of the Sun it felf within this Shell is a folid Body and opacous. Its Solidity I prove from three Pro Wby folido prieties here obfervable, and thofe are Firft, the Conftancy of its Rotation; Secondly, The Fixtnefs of its Axis; And thirdly, the Power of its Gravitation or Attraction to its Center. Firft, I fay, from the Conftancy of its Rotation ; this is an Argument fo plain, as nothing can be more, for we need go no further than the Earth on which we tread, whofe Rotation we find very cerrain and conflant, and none can yet prove but that it is always equal and uniform; in that Motion whereas we fee the fluid Bodies about it, as the Air, nothing is more uncertain and unconftant than them, nay though it be guided by the Superficies of the Earth, nay the very Water which is contain'd in the Capacity of the Earth, and fo has much more reafon to move round; than if all fluid Yet we fee that this has great Varieties of Currents, Ebbings and Flowings, and the like; efpecially in the great Ocean, though it be lefs in Seas inclofed, the fame we fhall find if we make tryal with Water in a Difh, or Water abouta Difh, and the like, which will prefently confound a circular Motion that thall be imprefs'd upon it, and fo mult quickly ftand ftill; whereas we find it quite otherwife; and to continue the fame as it was firft obferved to do.

But then fecondly, by reafon of the Fixednefs of the Axis of its Revolution; this is a ftronger Argument than the former for its Solidity; for there is no body that we yet know that is fluid, has any fuch Propriety as Magnetifm or DireEtion, and all that have a Magnetifm are folid as the Earth, $5, \mathcal{Y}$, and the Moon, the Magnet and Steel; nay, Steel being either melted or diffolved in Aqua Fortis, and fo made fluid lofeth its Virtue [And Iron heated red hot does no more attract till cold, as having fomewhat of Fluidity] and if it would lofe the Regularity of its turbinated Motion, then certainly much rather would it lofe the Direction of its Axis, if it were not a Solid: It follows there. fore that fince 'tis evident from Obfervation, that this Axis keeps its Pofition and Direction, therefore that the Body of the Sun muft be a folid and not a fluid Body. The third Argument drawn from its attractive or gravitating Power, to prove its Solidity, I cannot here ftay to infift upon the Explication of, becaufe the reafon thereof cannot fo plainly appear without the Explication of a whole Theory of Gravity, which will come in more properly undeŕ another Head, and therefore I can only tell you, that the Explication of the

Caufe of Gravity will clearly prove that the Body that hasGravitation ftrictly fo called, muft have alfo Solidity. Now that it has fuch an Attraction or Gravitation, I'hall prove firft from its Spherical Figure; 2dly, From the Motion of thefe Spots; and 3 dly , From the Motions of all the other primary Planets, whofe Motions as I have many Years fince fhewed in this Place, are all influenced and modulated by the attractive Power of this great Body. This alfo as the former, I mult for the prefent refer to that Head to be more fully explained and demonftrated, and only name it at prefent.
In the next place, that the Body within the Atmofphere or tranfparent Shell, is opacous, I argue from the difappearing of the Spots in the Limb, and their not returning backwards as they would feem to do if the Body were tranfparent as the Atmofphere is, or the Flame of a Candle, or the Radiations, or hazy Light about the Nucleus of a Comet, through which as through its Beard, I have feen fmall fixt Stars.

Eight Parriculats in which the Sun and Eartb agree. Three whierein they differ.
7. We find then, that thus far the Proprieties of the Body of the Sun do feem to as ree with the Proprieties of the Body of the Earth: As firft, in its Globula, Figure; 2dly, In its Rotation; 3 dly, In its Gravity; 4 thly, In its Polar $\overline{\text { irections; }} 5$ thly, In its Atmofphere; 6thly, In the Motions of that Atmofimere; 7thly, In attracting Planetary Bodies; 8thly, In the Fixtnefs of its Axis or Polarity, छ゙c.

But then in the next Place they differ, firt in Magnitude, the comparative Quantities of each I thew'd you before. 2 dly , In the Make of the Surface, that of the Earth being rugged and unequal, but that of the Sun as far as yet can be difcovered, very equal and fmoorth. 3 dly, In their Qualities, the Sun's Surface being both hot and light, and that of the Earth dark and cold; that therefore which would afford thefe Proprieties to the Body of the Earth would make the Earth on which we tread a Sun. Thefe two Proprieties then we find Fire to fupply, if therefore the Surface of the Earth were made and compounded of Nitrous and Sulphureous Particles, or fuch like combuftible Subftances, and that they were once fer on fire, I fee no reafon why the Earth fhould not be in all refpects the fame to the Moon as the Sun is to the Earth: Nor is there any reafon why all the other Proprieties of the Earth that it now hath, excepting thofe of Coldnefs and Opacity, fhould not remain much the fame. If therefore we further fuppofe (I fay fuppofe for I do not now intend in this Place to prove that 'tis really and pofitively fo, and not otherwife, though I fhall afterwards from other Arguments demonftrably prove it) that the folid Body of the Sun is made or compounded of fuch Materials as will really work one upon another, and diffolve or burn each other, as we find Sulphur and Nitre do, or any Sulphureous Body, and the Air when rightly joyned. From this Hypothefis, I fay, for I will not prefume, to call it more at prefent, I conceive all the Phanomena of the Sun will 'be made very eafily intelligible, and be fhew'd to be perfectly confonant with the other Proceffes of Nature, which is a very probable Argument at leaft that really it is even fo done and not otherwife.

The Phsnome$n \pi$ of the Sun explained.

1. Firft then I fay, fuppofing the Superficies of a Body as big as the Sun to confift of fuch Materials as would really work upon each other, and confequently burn, as violently as fome Materials which are here upon the Earth would do if once fet on Fire, I fay the Surface of fuch a Body at fuch a Diffance fo burning, muft. give to the Earth a very confiderable Light and Heat.
Firft for Light, It is evident by Experiment that Nitre and Sulphur burning each other, make a very bright Light; infomuch, that few Eyes can indure to look upon it, and is as intolerable almof as the Light of the Sun. Now'tis very probable, that the Materials that maintain the Fire of the Sun are yet much more adapted for that purpofe, and therefore that this Light and Heat may much exceed it, but till this doth not make the Action of it differ, nor make it really differ in Spcie from a Fire made with Earthy Materials but: only in de grees, and therefore ftill fuppofing the whole Superficies of the Sun to afford as much Light in every vifible part of it, as thefe Bodies fo burning do, according to the Bignefs of their Surface $;$ it muft neceffarily very ftrongly affeet the

Lectures of Light:

Earth, though placed at this Diftance; for all Light in the firft place propagates in infinitum in an Inftant. Now the Medium between the Sun and us being perfeetly tranfparent, and fo nothing of the Light being loft bat only rarify'd, it follows, that we muft receive the fame Proportion of the Light of fuch a Body as we do now of the Light of the Body of the Sun as now it is: So that thence the only Difference mult confift in the Proportion of the Light of the Bodies; that is, whether the Light of any one part of the Sun equal to an Artificial Fire to made, be any thing brighter: For if they be equal, as 'tis very poffible they may, then the fame Effects will follow. Now the Queftion will be, how thall this be proved or tried, whether this be fo or not? We cannot go to the Sun, nor fetch Fire from Heaven, as Prometheus is faid to have done: Nor can we fer or remove our Fire fo far diltant from us, as to make an equal Comparifon of the one with the orher. I grant it, we cannot; but yet Art may help us to a way, by which we may be able to afcend thither by Reafon, and be as much affured of it as if we actually did it ; And that is, by knowing in what Proportion the Quantity of Light does diminifh, according to the diftance it is propagated from the Luminous Body; for by that means, we may meafure Hercules by his Foot, from exact Obfervations made of the Power of Luminous Bodies in propagating Light here with us, we may calculate the Power of Luminous Bodies, though never fo far diftant. Light then, as I formerly Kinted, doth decreafe in Duplicate Proportion to its diftance of Propagation from the Luminous Body, that is in the fame Proportion with the Superficies of the Spleres of Diftance:

For fuppofe A the Luminous Point, that emits a Quantity of Light to fill the The Proportion Space ABB; this Light in the next Space fills BBcc, then ccdd, then of the Diminudd EE: And at EE it is arrived at twice the Diftance of B B from A. The tion of Light. Power therefore of this Ray of Light which at B B was all, contained within Plate x . the circular Bafe of the Cone $A B B$, is by that it atts at the Diftance E E expanded into the circular Bafe of thie Cone AEE; Namely, into the Circle E E, which Circle being twice the Bignefs of B B in Diameter, mult have its Area Quadruple to the Area of B B. And fo of FF, which is at treble the Dittance, the Area of the circular Bafe of the Cone AFF will be Nine times the Area of B B, and fo onward the Areas increafe in a Duplicate Proportion of the Diftance of them, from the Apex of the Cone, or which is the fame from the Luminous Point A.

The Power therefore of Light thus propagated will be diminifhed or rarified, fo that at twice the Diftance it will have but a Quarter of the Power at thrice the Diftance, but one Ninth at Four times the Diftance, but ${ }_{i=1}^{i}$ at five times the Diftance, but $\frac{1}{2}$ part of the Power which it had at one Space of Diftance: And confequently the Proportion of the Power of Light at any one Diftance, to the Power of the Light at any other Diftance, will be reciprocally Duplicate to the refpective Diftances, as the Power of Light at five Spaces Di_{i} ftance to that at fix Spaces Diftance, will be as. $\frac{4}{25}$ to $\frac{5}{5}$, that is as 36 to 25 ; for as $\frac{1}{2}, \frac{i}{5}$: $:: 36.25$ which are the Squares of the Diftances reciprocally taken. This, I fay, is the Expanfion of Light according to the various Diflances of its Action from the Luminous Body, and according to this Rule all Light is found to act and diminifh its Power in Proportion to its greater Diftance. So that the Power of any Artificial Light, as Fire, Flame, છ゙c. being. found at any meafurable Diftance, the Power of it may he eafily found for any affignable Diftance be it never fo great: And on the contrary, the Power of Natural Light, as that of the Sun, Moon, Planet, or Stars, being found by Experiment at an affigned Diftance, though never fo great, the Power of it may be found by Calculation at any affigned Diftance, though never fo near; and confequently we have a means of truly calculating the comparative Power of Natural and Artiticial Lights from Experiments made on each of them. But then fecondly, We have another thing to be taken notice of in our Calculation, to make the Comparifon compleat and exact, and that is of the Area of the Luminous Body, for 'tis not enough to calculate the Power of one

Point only, but the Power of an Aggregate of them muft alfon be taken notice of. And this is of the Cone inverred, and turned the other way, where the Apex of the Cone is the Eye, or the Point of the Subject inlightned, and the Bafe is in the Luminous Body, as the Disk of the Sun, and this by fuppo. fing the Ray in all Degrees of Diftance equally flrong, does diminith the Power of inlightning in Proportion to the vifible Angle, under which it ap: pears at greater or greater Diftances. This therefore will alfo be in Duplicate Proportion to the Diftance reciprocally taken; for the Area of Light mult fubtend equal Angles or Cones to make an equal Lighr, and therefore at double Diftance there mult be Four times the Area of Light to make the fame Effect, and at treble Diftance Nine times the Light, and at Quadruple Diftance Sixteen times the Luminous Area to produce the fame Effect upon the Subject. A circular Area therefore of as bright a Light, or , fhining Body as the Sun, being placed at fuch a Diftance as that it may 'appear under much fame Conical Angle as the Sun doth, viz. of $\frac{2}{2}$ a Degree, muft give as Light to the Subject as the Sun it felf.

From thefe two Confiderations, 'twill be eafy to calculate the comparative Power of naturally Luminous Bodies to the Power of fuch as are artificially, or to compare the Light of the Sun with the Light of Coles, Flame, ơrc, and to fee their Differences.

The Light from From which I queftion not, but that there may be very cogent Arguments the Sun caufed drawn to prove, that the Light of this Body of the Sun may be caufed by an by an athal actual Fire, or Diffolution of the fuperficial Parts thereof; partly by the At-
Fire.

An objertion anjwered. mofphere or Air incompaffing it, and partly alfo by the Conttituents of it mixed together into one Mafs, which have Analogy with our Sulphur and Nitre, which do work upon and burn each other, and fo the Sun will be found to be a vaft Globular Body, whofe whole Superficies is in a continual Diffolution or Fire; partly by the working of its conftituent Parts one upon another, and partly alfo by the Affiftance of the Atmofphere, Air, or Fluid Body, in. compafing it. And thence we may deduce, that the Phyfical or Natural Caufe of its Light, is the actual Fire or burning of its fuperficial Parts; which being proved, or fuppofed fo, all the Appearances that have been hitherro taken notice of concerning Clouds, Spots, and Blazes, will be vèry naturally and clearly folved; and there is no one Obfervation I have yet made, or met with in other Authors, that do any way feem to crofs or thwart it. Matters of Fact none can deny, that fuch Changes and Alterations do happen, and I conceive it will be as eatily granted, that they have their Natural Caufes. And therefore that which doth with moft likelihood folve them, is at leaft the moft probable Caufe.

But fome may object and fay, that if this were fo, certainly the Body of the Sun in fo many Thoufand Years would have been all confumed, at leaf would have grown fenfibly lefs. Suppofe this were granted and faid, that it has grown fome Minutes lefs fince it firft began to give Light, none could contradict it by any Obfervations we have upon Record ; for we have no Aftro nomieal Obfervations of that kind 2000 Years at leaft, that could evidence the contrary. But fuppofing we had Obfervations of 4000 Years ftanding; and that they had found the Diameter of the Sun to be as many Minutes as 'tis now, yet that would have been no Argument but that the Sun might have every Year been a Mile lefs in Diameter than it was the preceding Year, and confequently been 4000 Miles lefs in Diameter than it was 4000 Years ago. No Obfervation never.fo. carefully made, either then or now, could have contradricted it: For if the Sun's Diameter be near 87 times bigger than the Diameter of the Earth, and the Earths Diamerer be near 8000 Niles, the Dis meter of the Sun muft be near 696000 Miles, and 4000 is bur a 174 pars of the Diameter, and confequently could have diminifht ir hut about $\frac{5}{5}$ of a Minute, which is a much lefs Quantity than the Ancients pretended to obferve to. But fuppofing they could have obferved even to Seconds, yer that
could not have contradieted it, fince as I fhall upon occafion thew a Reafon, why the Sun may have approacht as much as to recompence that Defeat: But I have not now time to explain it: And fhall only add, that this being fo, it will thence very rationally follow, that the Stars alfo being very probably Bodies in moft Proprieties the fame with the Sun, will be Bodies alfo whofe Superficies do aftually burn confonant to which the Obfervation of the Noble Tycho, and others of the Stars that appear'd in Caffopcia, in the Year 157^{2} will be judged to be all fir'd together, and fo quite burnt out in one Year, for it latted no longer, and did never appear before, nor has fince that I can hear of. Confonant to this Theory, will be the Appearances of Comets, of which kind I this Week obferved one in the Sign of Scorpio: But of this Matter I have elfewhere difcourfed fomewhat already, and fhall add more hereafter upon another Opportunity, when I come to explain what the Caufe of Light is in Fire, and other Luminous Bodies here below within our reach; the Explanation of which will manifently demonftrate to us what 'tis in all other Bodies whatfoever that are out of our Reach.

Sect. III.

Containing the Lectures read in January and Fe bruary, 168° being a Continuation of the fame Subject of Light.

The CONTENTS.

1. Light the moft admirable Effect of Nature, one of the principal Poners by which every part of the great Exittence of Material Beings is united and made one. The Infiniteness or Indefiniteness of the acfive Power of Light already explained; the Smaller the Stars appear, the greater is their Diftance; the reafon why fome before inviffle are made vijible by Telefcopes, because fero Eyes can be affected by any Object under a Lefs Angle than a Minute; thence Several fmall Stars coalefce into one, and why Some of the fixt Stars, though lefs than a Minute, is but of a fecond, are yet vifible; an Objection againft the ufe of T elefcopes in Astronomical Obfervations anfwered, and wohy the Stars appear lefs through a Telefcope than to the naked Eye. 2. An Explicarion and Confirmation of Des Cartes Hypothefis of Vifion, and that the fixt Stars are really at different Diftances, though they may be alfo of different Magnitudes, a farther Reafon that the Propagation of Light muft be inftantaneous: 3. The innate Light of all Celeftial Luminous Bodies proceeds from an actual and real Fire fomething like that on the Earth, though not altogether the fame, the Fuel being polfibly different. 4. By this the Subject of the Inquiry is brought nearer, viz. on combujtible Subftances, wobereon we may exercife our Scrutinies with more. Power, to find the Cause of Light and Fire, and by Analogy, what it is in the Sun: Which therefore is to be the Subjed of future Difcourfes. 5. Of the Nature of Comets, which are, another fort of Celeftial Fire, wobich ought to be examined before the treating of Terreftrial and Culinary Fires, and wobose Light is different. from that of the Sun, Stars or Planets, their different Appearances have caufed great difference in Writers of them. The three Opinions mention'd by Seneca in his Natural 2uefions enumerated, with thofe of other Ancient and Modern Pbilofophers.

Light the moft I. admirable Effert in Na. ture.

IBegan the laft Term to explain to you feveral of the Proprieties of Light, as being one of the moft admirable Effects of Nature which are fubjected to our Senfes, and confequently to our Speculation and Contemplation, as being one of the firft and principal of the Powers of the great Syftem of the World, by which the whole is united and made one; and every one part of that unconceivably great Exiftence of Material Beings is affected by every othet, which may thence not improperly he called one Body, or the only Material or Corporeal Being, diftinet from which no other Corporeal being is.

Lectures of Light.

This by Mofes, in the Hiftory of the Creation, is comprehended under the double Name of Heaven and Earth, denoting both, orie material Being ; but confidered in its parts, Namely, fluid and folid Matter. After the Creation of which God faid, Let there be Light and there was Light; fo that the firf aGive Power was Light.

Some of the Proprieties of this attivë Power I have already explained: Namely, firf its indefinite Extenfion to every part of the whole of Matter, which becaufe our Imagination can fet no Bounds or Limits to $;$ I therefore call infinite or indefinite, not as fuppofing it to be really fol, but for that; as out Senfes inform us of no fuch Bound, Io neither can our Imagination fix the ne plus ultra, beyond which no Material Being can exift. For wherever we put it, we prefently fuppofe Space and Extenfion beyond it, and that at leaft if it be not Body, as Des Cartes would have it; yet it has the infeparable Propriety of Body and Matter, namely, Extenfion: And no one has yer told us, what Body is diftinct from Extenfion, or what is the true Eflence of Body or Material Being; befides Extenfion; and 'tis as eafy to conceive indefinite Body, as indefinite Extenfion. Nor indeed can Extenfion be well conceived without the Notion of Body, no more than Body can without the Notion of Extenfion: for Extenfion is nothing but the abftracted Notion of fomewhat extended: And therefore if there be Extenfion, there mult be fomewhat extended. Now if it be not the Propriety of Spirits, as all Divines and Philofophers con. clude, but only of Body, then wherever there is Extenfion, there is really a Body extended; and therefore fince our Imagination can never limit Extenfion; fo neither can they fer Bounds to Matter or Material Being.
Now I told you, that our Eyes affifted by the help of Glafes inform us that Light is propagated or communicated to us from utmoft inconceivable Diftan, ces, at leaft if we believe, the valt Diffances the Stars are placed from us, and that the fmaller the Stars are the greater is their Ditance: For fill the longer and better our Telefcopes are the more are there difcovered of fmall Stars which were before, and without that Help ipvifible; not for that they did not affect the Eye with Light without, as well as with the help of the Telefcope; but becaufe the Power of the Eye is limited to a certain Magnitude of Appearance, under which nothing can be diftinctly perceived: Whatfoever Object therefore affects the Eye under a lefs Angle than that Eye can diftinguifh, becomes invifible or not feen. Now whereas moft Eyes diftinguifh not a lefs Angle than a Minute, or the 60 th part of a Degree, or the 21600 part of a Circle, therefore whatever is fenfated or feen by it, is feen of that Bignefs or under that Angle: And fo if there be 2 or 3 , or 10 or 100 Imall Stars fo near together as that they are all comprifed within the Angle of one Minute, the Eye has a Senfation of them all, as if they were one Star, and diftinguifhes them not one from another; fo likewife is it, that if the Light be ftrong and powerful fo as to affeet the Eye, it always appears of the Bignefs of a Minute, though poffibly its real Angle be not a fecond. Thence every Star that fuch an Eye difcovers, appears to be of the Bignefs of a Minute at leaft, and fo it is conceived really to be, though yet when we come to examine its Diameter by the help of Telefcopes, we really find it to be but fome few feconds or fixtieth Parts of fuch an Angle; and hence it is, that it is told as a very great Wonder, and is indeed as a great Argument objected againft the tife of Telefcopes, that there can be no Truth in the Difcoveries made by them : For that though they are found to magnify and increafe the Appearance of all other Ob jects except the Stars; yet when they are viewed through them they appear to be rather leffened than increafed in Buik, whence they conclude of that Inftrument that does fometimes magnify and fometimes not, and indeed both at the fame time (as when one looks on two Stars 10 Minutes diffant from each other, their Diftance is really augmented though their apparent Diameters feem not to be at all) they conclude, Ifay, that all the Appearances through fuch an Inftrument are uncertain and imperfect, and real Mifinformations, and confequently nothing but Phantomes and falfe Reprefentations; and this Confideration or indeed Inconfideration hath been the occafion why feveral otherwife very ingenious and knowing Men have been prejudiced againt the making ufe of Telefcopes, and other Oprick Glaffes, for the Difcovery of Nature, for not
knowing how to anfwer to themfelves thefe and fome fuch other Objections as eafily anfwerable, if well confidered, they have fallen into a Disbelief of the whole Information thefe Helps afford us; and will therefore in all Obfervations on which they build any thing; only make ufe of the naked Eye: Whereas had they made ufe of thefe Helps, they would have been able to have made much greater Advances in their Difcoveries and Obfervations.

An Objection againft the uf of Telefcopes anfwered.

To anfwer this Objection therefore againft the Truth of the Difcoveries of Telefcopes, and thofe of Microfcopes, I fay, that thefe Inftruments do equally magnify the real Angle, under which any Object appears to the naked Eye, and fo doe equally magnify the real Angle of the Stars, as well as of any other Object, and that the Fallacy lies in the Eye and not in the Inftrument: For as I faid, fuch is the make of the fenfible part of the Eye, viz. of the Tu. nica Retina, that it cannot diftinguifh in moft Eyes an Angle lefs than a Minute (though there be fome that can to the third of a Minute, but thefe are very few) whence if there be any ftrong fhining Object that does very powerfully operate on the Eye, fo as to create a Senfation, and yet does really act under an Angle only of fome few feconds; yet becaufe the Eye cannor diftinguilh a lefs Angle than a Minute, the Objeft is fuppored to be a Minute in Big. nefs: And fo if the Telefcope do not fo tar increafe the real Diameter of the Object as to make it more than a Minute, it does feem indeed not at all to' magnify it; becaufe it is ftill made to appear, but under the Angle of a Minute. Des Cartes has a very ingenious Explication of the Tunica Retina, or the way of Vifion, which does very intelligibly make out the reafon of this Propriety in the Eye: Which poffibly it may not be amifs now a little to explain, that fome Prejudices may be removed, againft Arguments that are deduced from Obfervations made with Telefcopes, and fome orher Optical Glaffes.

Des Cartes 2."He explains then (as Porta, Kepler, Sbinar, Galileo, and many others "that had treated of that Subject before him do) the Organ of Vifion the "Eye, by the Similitude of it to a dark Room, into which no other Light is "admitted but what enters by one rơund Hole, in which a convenient Con"vex refracting Lens is placed fo, as to collect all the Rays from Obiefts " without, and to unite them in their diftinet and proper places upon a Wall "or Sheet of Paper at a covenient Diftance within; whereby the Pi\&ture of
" all thofe Objects that are without the Room, is made as it were and placed
"upon the Wall or Sheet within: This Sheet fays he in the Eye, is the Tunica
"Retina, on which the Pifture of all Objects without the Eye are as it were "painted and defcribed. Now this Picture on the Tunica Retina is nothing "but the Impreffion of the feveral Rays from the Objects without, collected "by the help of the Cornea and Cryfalline, as by the Convex Glafs in the dark
"Room: And the Retina being like a piece of Pluth, with the ends of the
"Threads turn'd towards the Cryftalline, all the other ends of them being termi-
"s nated in the Brain, there can be no more diftinct Senfations than there are
"diftinet Threads to convey the Impreffion on them : So that if the whole Pi-
"Eture of the Object be fmaller than one fingle Thread of this Plufh, it can-
"s not affect or move a lefs part than one of thofe fmall Threads or Filaments
"s of the-Retina, and therefore the Senfation is the fame as if the Object did
"s take up or cover the whole end of the Thread or Filament, though it affect
" but a tenth pait of it provided it be fftrong.
I have been the more particular in the Explication of this, hecaufe fince my former explaining of the indefinite extenfive Power of Light, I have met with fome that have objected againft the Reality of the Appearances through Telefcopes, as if no Arguments drawn from Obfervation, made by the Help of fuch were to be efteemed of any force, whereas indeed all fuch Objections do only proceed from an Ignorance of the Grounds of Opticks and of Vifion, we being equally as certain of the Appearances we difcover by them, as' of thofe things which are difcovered and feen by the naked Eye. It was by fome of the An. cients conjętur'd, that the Galaxia or Milky Way was nothing elfe but a great number of Stars, fo frmall as that they could not he diftinguifh'd: Telefcopes have difcovered the Truth of that Conjecture, and manifefted it to be fo, and

Lectures of Ligbt.

we have henceforth no more reafon to doubt that it is fo , than we have to doubt whether there are any Stars at all in the Heavens.

Others again I find to object, that though there really be fuch a great Variety That the fixt of Magnitudes in the Appearances of the fixt Stars; yer it is uncertain whether Stars are at thofe Magnitudes do wholly proceed from the Diftances of them, and not ra- different $D i-$ ther from a real Difference in their Magnitudes, and if fo, then all thofe Stars f fances. both great and fmall may be at equal or very near equal Diftances from the Earth; and if fo, then the Extenfions of the Heavens need not be fuppofed fo vaftly big, as if their appearing Magnitudes proceeded only from their Remotenefs from the Earth : To which I fay as I did before explain, that I do fuppofe their appearing. Magnitude, to be caufed by both; that is, Firft by their real Difference in Magnitude and in Brightnefs; and fecondly, by their differing Diftance from us. The Vifiblenefs of fome proceeds from their extraordinary Vividnefs of Light, as that of the Great Dog-ftar, which though it be the moft confpicuous Star in the Heavens, is yet found by the Telefcopes to be lefs in Diameter than feveral others which appear not fo confpicuous: As that of the Bull's Eye:

And this by the way feems to be the reafon of the Appearance of the New Star in Caffopea, oblerved by Ticho Brabe, and by divers other eminent Aftro'. nomers of that time, which from a Star of the third Magnitude increafed to be of the Bignefs of Veniss, and more confpicuous than any, other fixt Star in the Heaven, and yet in lefs than a Year it diminifhed by degrees and went out wholly, and hath not fince appeared; all which time of its Appearance it perfectly kept the fame place without any Variation, fo that in Probability it was a fixt Star before of a very dull Light, and fo invifible till by Come Conftitution in its make, as fome more combuftible Shell or Orb of its Body, it theni burnt or fhined out more confpicuoufly, which Shell being once confumed, it again difappeared, and has fince that time been no mote feen.

Others again, that to the naked Eye appear one Star; and that very confpicuous, by the Telefcope are difcover'd to be two or more Stars, fo near together as that the Eye cannot diftinguith between them, both the Images of them falling upon one fingle Filament of the Tunica Retina, and fo both of them making but one Impreffion on the Brain; of this kind the moft remarkable is the Star in the Left Horn of Aries, which whilft I was obferving the Comet which appeared in the Year 1664. and followed till he paft by this Star, Itook notice that it cónfifted of two fmall Stars very near together $:$ A like Inftance to which I have not elfe met with in all the Heaven, they feeming to be both of rhem very near of equal Bignefs, and yet fo very near together, that you will need a Telefcope of a confiderable Length to fee them both diftinct and feparate:

Others; I conceive, may be of equal Diftance, and may yet appeat of diffe: ring Magnitudes from their real Difference of Magnitude, the Body of the one being fo much bigger than the other as they appear.

But after all this, I cơnceive it very probable, that the greateft Number of the fmall Stars appear fuch, not from any of thefe fore-mentioned Reafons, but only becaufe they are further diftant from us: It máy be objected perhaps, that 'twill be very hard to prove, whether that be the Cauife or not of fuch their Appearance: But to this 1 anfwer, that though it hath not yet been pofetively proved, yet as I mentioned in my Attempt to prove the Motion of the Earth by Obfervations, I there hinted fomewhat to this purpofe, and it fhall not be long before I acquaint the World with what I have done in that kind. So that for the prefent I fhall fay; that upon the whole there is no reafon to doubt, but that the extent of the Heavens is vaftly beyond what we have hitherto imagined, and confequently that the extent of the Propagation of Lighr is equal with it, and therefore, notwithftanding thefe Objections that I formerIy laid down, remains without any folid Reafon againft it.

I proceeded next to thew that this Propagation of Light was to all imagina of the iaffanble Diftance in a Moment or Inftant of Time, infomuch that every one part of taneous Mothe Univerfe might by this means be affected by every other part of it, and though tion of Light: I then related fome confiderable Objections againft it, and to prove its Propa. gation Temporaneous, that is to fpend fome confiderable time in paffing from
the Lucid to the enlightned Body, if at a great Diftance, yet as I thall afrerwards prove by the Effects of Light, the Propagation muft be inftantaneous.

After this I explained what Light was in the Lucid Body: And for that end more particularly defcribed the Conftitution and Make of the Body of the Sun, as the principal and moft confiderable Body for Light as to us, and fhewed many Arguments to prove, thatit is no other than a Body actually burning or on Fire, that it has an Atmofphere that incompaffes it, which may poffihly be the Menfrum that diffolves it, as the Air or Atmofphere abnut the Earth is the Menflrum of burning Bodies here upon the Earth, that it did fometime produce dark Spots or Clouds, which feem'd Analogous to our Smoke, and fometimes brigbter, which feem'd Analogous to our Flames. So that upon the whole, I concluded it a folid Globous Body actually on fire in its fuperticial Parts, and that from that Fire its Light and Heat proceeded.

The Light of the Moon and other Planets, both Secundary and Primary, Telefcopes do plainly evidence to proceed from the Refeetion of the Sun's Light, and therefore none of thofe can be properly faid to be Luminous Bodies. But the fixt Stars, as I have already mentioned, feem to be of the fame Nature with the Body of the Sun, and therefore the fame Explanation that was given of the Light in the Sun, will ferve alfo for the Light of the Bodies of thefe Stars. And thence, as I juft now mentioned, a clear Reafon will be given of divers new Stars that have appeared and difappeared.

The Light of 3 . So that in Prohiability the Liglit of all the Celeftial Bodies proceeds from the Stars from an actual Fire, much of the fame Nature with the Fires we here have burning an aflual Fire. upon the Earth; and therefore if we find out what is the Nature of our Fire here with us, we may from that explain how it is generated and how it operates in the Heavens.

Not that I fuppofe, that the Fuel of the Celeftial Fires is the fame with ous Fuel here upon the Earth, as Sulphur, Bitumen, Stone-Cole, or other combuflible Mineral Subftances; or Woods, Refins; Oyls, or other Vegetable Subs ftances, or Fat, Bonés, or fuch like Animal Subitances; but that it may be of Variety of other Subifances very differing from any of thefe; for as all thofe I have named are much diffetent from one another, fo may there be a Hun. dred other Subflances diftinet from any one of thefe, and diftinet alfo one from another, all of which may notwithftanding be of a Subftance fit for the Diffolution of that fluid Menflruum in which they fwim, in the fame manner as thefe I have named are for the Diffolution of the Menftruum of the Air, and fo may be fit Fuel to maintain that Celeftial Fire.
of the Nature 4. We have therefore, brought our Inquiry into Subjects much nearer to us of Fire. than either the Sun or fixt Stars, and into fuch as are within our Command and Reach, into fuch as on which we may with more Power exercife our Scrutinies and Examinations; in which, if by our Tryals and Examinations we can find out what the efficient Caufe of Fire and Light are, we fhall by Analogy eafily find out what is alfo the Caufe of the Light in the Sun, and in the fixt Stars, which Examination and Scrutiny into the Caufe of Fire, and the Light thereof, fhall therefore be the Subject of fome of our following Dif courfes.
of Comets. 5. But before we leave the Contemplation of the Celenial Bodies, and begin our Examination of Terreftrial or Culinary Fires, the late appearing Comet puts me in mind of another kind of Light, which is thought by moft to be of a quite differing Nature from thofe of the Sun, Stars, or Planets, and not to be at all Analogous to them.
The great Variety of Form there has been amonglt thofe that have appeared at feveral Times, and in feveral Ages of the World, and the great Alterations there have happened almoft in every one that appeared before it difappear, has fo much confounded Mens Judgments concerning them, that you fhall hardly find two Men agreeing in all things, to the lame Opinion.

Seneca in the Nineteenth Chapter of his feventh Book of Natural Queftions, The opinions recites three Opinions concerning Comets. Some, fays he, think that no Comet concerniing does really exift, but that the Appearance thereof is made only by the Conjuneti- themo on of the Rays of feveral Stars or Celeftial Bodys into one Point, and a Repercuffion or fpreading of them from thence : शuidam nullos effe Cometas exifimant, Jed Species illorum per repercuffionem vicinorum fiderum, aut per Conjunđioneni vicinorum reddi.
2. Some indeed do fuppofe them to have a real Exiftence, but to have peculiar and proper Courfes of their own. And that after a certain time, the fame Comets return again, and appear to us: 2uidam aiant, effe quidem, Sed babere

3. Sorne do alfo fuppofe them to have a real Being, but not fuch a durable one as may deferve the name of a Star, but of fuch a fubftance as doss waft, and is difperfed and confumed after a certain time; namely, The time they appear which is but fhort. 2uidam, effe quidem, fed non quibus fiderum nomers imponas quia dilabuntur, nec diu durant ϑ exigui temporis mora difßpantur.
So that the firft of thefe Opinions did feem to fuppofe that they were either an Clnion of feveral finall Stars which did really before exift, but being fepatate made no Appearance 'till united; or elfe that the Rays of thefe meeting together in one Point by Repercuffion or Reflection, did feem to make this Appearance. This might well enough agree with the Opinion of the Peripateticks, and thofe that fuppofed the Planers and Stars fixt in folid Orbs, whofe Motions carried them round, and thence poffibly they might allude to the Focus of a Burning-Glafs ${ }_{\text {i }}$ as if thisAppearance were nothing elfe but the Rays of fome CeleftialBody, whether Sun, Planet, or fixed Star, which being collected into one Point, by Reflections from the middle parts of the Concave of fome of the folid Cryftalline Orbs, might there make a bright Appearance, and then the Tail would be nothing elfe but the union of other Rays which fell further from the Middle or Axis of the. Concave, which unite at feveral Diftances from it; or elfe that fome of thefe Spheres might have fome parts of them of greater RefraEtion then others, and fo by that Refraction,might collect a great Quantity of Rays diffufed from that Lu minous Body which was its caufe, as moft probably the Sun, as the moft confiderable Light of this part of the Univerfe; and unite the greatef Quantity in the Head of the Comer, and others in the Tail: And according to thefe Hypothefes, the Comet would really be nothing elfe but a Phantafm or Appearance, and not have any real Exiltence in Nature, and fo would not be much differing from the appearing Meteors, fuch as Rainbows. The Parbelii, and the ParaSelene, the Mock-Suns and Mock-Moons, and the like, all which have no other Exiftence than the Reprefentation of a Body in a Looking Glafs; they being indeed nothing but a Reflection or Refraction of thofe Luminous Bodies which they reprefent, or are attributed to. As, a Rainbow is nothing elfe but the Retlection and Refraction of the Rays of the Sun from the round Drops of Kain which fall from the Cloud, which at certain Pofitions to the Eye and Sun, do by Refraction and Reflection return an extraordinary bright and coloured Ray to the Eye, which very Drops fo foon as ever they are out of that Pofture return not at all; this is Geometrically demonftrated by Maurolicus, Des Cartes; and divers others, and may Experimentally be verified by an artificial Fountain, cafting up and difperfing Water into the Air in a Mift, which will in the Sunfhine make a Rainbow. The fame may be Geometrically dernonftrated of the Parbelii and Parafelena. That all thefe are nothing but the Phantoms or Appearances of fome orher Luminous Body, made by an extraordinary Collection and Repercuffion of the Rays from fome other place, than that Luminous Body flould appear in, and fo the Caufes of them may be moft certainly affigned and fhewn, which being all Atmofpherical and Aerial, and placed in the lower Region near the Earth, they become of no long continuance, but quickly vanifh. Now if thefe Refracting and Reflecting Subftances that may be fuppofed the caufe of the Comers this way, be fuppofed to be Ætherial Subftances, and. fo not fubject to any fuddain Change (as the Atmofphere is) the Caufe re-
maining longer; the Effect alfo may have a longer Exiltence, and fo a Comet may be fuppofed to laft fix Months or more.

Several have been the Opinions concerning this way, and thofe very differing; fome have fuppofed the Head, to be the Point where all there Rays concentred and met together, and there produced a kind of combultive Focus; through which the Rays of the Sun - penetrating, did afterward refract various ways,and Arike forth to a valt length, and from that Penetration of the fiery Focus of the Head, acquired fuch a Quality, as made them to become vifible; by which means, according as this burning Point or Focus did refract more on one fide than on the other'; did the Stream or Tail of the Comet appear to bend From the ftrait Line continued from the Sun through the middle of this Focus.
This they refembled to the Radiation of the Sun between dark Clouds upon a thick and foggy Air, which does indeed very much refemble the Appearance of the Blaze, or rather like the Rays of the Sun let in by one fingle Hole, or through a Glafs into a dapk Room.

I have only this more to add, That if fuch Reflecting or Refracting Bodies could be fuppofed, or that we had any other Argument to prove them than onIy the Appearance of the Comet it felf, there would be fome pretty Congruities in tlie Tlieory that would be of fome cogency to perfivade the Belief of this Opinion : As, Firft, That from the Geometrical Laws both of Refraction and Reflection, this Phantom would have a form much like that of a Comet; that is it it would have a Head brighter than the reft, it would have a Tail or Blaze fpreding from it, it would have this Tail always pretty near, oppofite to the Sun, that is, nor always directly, but fometimes a little varying from the direct Line, though it would fometime alfo be directly oppofire; it would fometime be frait, but fometime alfo be bended, fometimes clear, fometimes a little coloured, and the like; which I cannot now ftay to infift upon, but may fome other time more fully explain. And this the rather, becaufe I do not find that, any one that has hitherto written of Comets, has in the leaft mentioned any Explication like this; nor does Seneca at all explain what the Opinion really was But upon confidering of various ways how to folve the Phanomena, and how alfo to explain the Words of Saneca, amongftothers, I pitch'd on this, of which 1 fhall upon ancther Occafion fpeak more fully, and fhew wherein alfo the Objections lie againft it.
Heveliu's opi- Mr Alevelizes feems to give another kind of Solution of the Tail or Blaze of nion cxamined. Comers, which though it does, toto Calo, differ from this I have now explained; yet it may not improperly be made ufe of to explain this firt Opinion mentioned by Scneca. He then fuppofes that the Tail or Blaze, is really nothing elfe but the Rays of the Sun, which in paffing through a nebulous Body, fuch as he conceives the Head to be, are refracted, and reflected by the Nucleus or Nuclei, if it have more than one, by which Condenfation, Decuffation and Col: lection of thofe Rays he fuppofes the Blaze to be formed, now though, indeed, hed does fuppofe the Head of the Comet to be a diftinct Subftance, and fo falls in or agrees with the Third Opinion; yet as to the Tail, he fuppofes it a meer Phantom, and to have no real Exiftence in Nature.

This fuppofition rencerning Comets refuticd.

But againft this, Suppofition there ase many. Objections; as firt, though the Blize of the Comer does fomerime refemble the Radiation of the Sun between the Clouds, upon, a thick Air below thofe Clouds, as it did in this prefent Comet, when the Blaze appeared brighteft and longeft, yet 'twill be very hard to make put the Similitude well in a Comet $;$ for thefe Radiations under the Gouds appear brighter than the reft of the Air, becaufe all the reft of this thick Air under them is Thadowed and darkned by the interpofition of the Clouds, and thofe that appear bright, do fo, becaufe the Sun fhines clearly upon them between thofe Clouds. But in the Comet we want, firt the Cloud, or fomewhat that thould darken the Wiber round about the Blaze; I fay the Wtbjer, beciufe, as I fhall afterwards thew, all Comets that have been accurately obferred, and thence, in probability, all Comets whatfoever have appeared, to be very far removed above the Air, then in probability this dark Body would hinder the view of fome part of the Blaze. Secondiy, We find that thefe Radiations between the Clouds never happen but when the Air underneath the Clouds is thick and fomewhat opacous, without which they cannot appear; but when

Thall we find fuch an opacous Air to reffect the Light into the Heavens. It would, be much more difficult to fuppofe fuch a vaft fpace of the Atber to be thickned (as muft neceffarily' be) to make out this Appearance; than to fuppofe only fo much Matter as may. juft ferve to make the Bignefs of the Blaze it felf, which though it be prodigioutly long; as fome thoufands of the Earths Diameters, yet ftill 'tis eafier to conceive how there may be matter enoughto make d Cylinder, than to make fo vaft a Body as an Orb of the Atther of that thicknefs. But then, Thirdly, There is nothing in the fhape of the Head of the Comet that does any ways refemble the perforation of a Body that fhould fhadow the refl of the Fther about the Blaze. For as I fhall afterwards fhew you, Comets do generally appear to have a brighter Body in the middle, about which there is a kind of White Cloud, from which the Blaze does feem to iffue. So that, in truth, they have no reafon at all for this Suppofition or Opinion, and it has in probability fprung, and had its-firft rife from thofe who fuppored Comets to be nothing elfe but fome frinall Appearance here in the Air below: But fince, as Ifaid before, It has been hy fo many and fo exact Aftronomical Obfervations found, that fome of thefe Comets are very high in the Heavens, and far removed beyond the Bounds of the Air, that gtoundlefs Opinion may alfo be difcharged, and yet I find moft of our Aftronomerrs and Philofophers do incline to be of that Opinion, as particularly Des Cartes, Fromundus, Kepler, Cyfatus, RiccioLus, Gremaldi, \&zc. who though they do all affign the real Body to the Comet, yet as to the Blaze, that they fuppofe to be made by the tranfit of the Suns Rays through the Cloudy part of the Head. And Hevelizs alfo, the lateft Writer of Comets, is of this Opinion, not aș if it were made by the paffing of the Ray's through a Hole, as in a dark Room, but by the Refraction and Collection of the Rays in the Cloudy, and yet tranfparent Body or Head of the Comet. Now this Body or Head he does not fuppofe Spherical or Globular, and to collect the Rays of the Sun beyond it into a Focus, as a Glafs Globe full of Water would do; but to be of the form of a Difh or Boat, and to confift of various forts of Bodies, fome Round, and fome Angulair, which do varioufly Reflect and Refract the Rays of the Sun, and fo make them unite and crofs each other in various Ways on that fide of the Comet which is oppofite to the Sun, but becaufe he could not well conceive how there Rays fhould come to be confpicuous, urilefs there were fome opacous reflecting Body behind the Comet, as there is in the Air when the Radiations before mentioned are feen below the Clouds, therefore he has fuppofed a vaft Collection of Vapours or halituous Subftances, proceeding partly from the Sun, and partly from the reft of the Planets, as $\overline{5}, \not, \delta, \tilde{E}$. to be made beyond the Body of the Comet, that is on that fide that is oppofite to the Sun, and thefe he fuppofes to be very much more thin than the Air or Atmofphere about the Earth; and therefore, that a little quantity of Matter will go a great way in that Collection: Ulpon this halituous Matter the Radiations falling, he fuppofes, are Reflected, and fo the appearance of the Blaże is generated. Kepler was aware that there was a neceffity of fuch a kind of halituous Subftance as this mentioned by Hevelizs; but yet, confidering the vaft extent of the Blaze of fome Comets, namely, to 40 , 50,60 , nay 90 ; and if we may believe - to 110 Degrees in length; and that this Angle mult be fubtended by the Tail, as a ftrait Line, which in fome Cafes will run it out to a vafter length than if it were only a Circular Extent, he could not conceive whence all that matter fhould be brought. But Hevelius has found out whence to fetch it; namely, from the Orbs and Bodies of the Planets; for fince, fays he, we are affured, 2 uod tam immenfa materiarum Cona geries, umbrarum fcilicet primariaruni circa maculas \mathfrak{c} circa ipfum Solem fecun. dariarum in longe adbuc majori quantitate quandoq; reperiatur, utiq; non absurdum quoq; eft etiam tales expirationes tenuiores etiam circa Cometas dari. Nam dum non raro pene omnium Planctarum Orbes trajiciunt, multum ubiq; materia attrabunt averruntq; fecum, adeo ut brevilimo temporis Spatio cum motu velociffimo gaudent vaftijfimum fubtilijJimarrum ifarum exbalationum cumulum, ad caudam refringendam convenientem coacervare poffint. But to this Opinion of his, it may be objected, that, firft, as to the Collection of halituous Subftances, if fuch were made in its Paffage then in probabiliy this would be in that part of it which came behind it in its Motion, and foconfequently the Tail fhould always appear in that Line which the Comet has paft; as we may often obferve in the fmall Meteors to
be feen in a clear Night called Star-thootings, many of which do leave a kind of Glade of Light behind them in the way through which they have paft. So he gives no manner of Reafon why it fhould be oppofite to the Sun, nor indeed is his Explication at all natural, but altogether forced, and Extraneous from any orher Method or Operation in Nature, nor is it built upon the Appearances, for as I thall afterwards thew, had he well heeded thofe, they would have hinted fome orher ways of explicating thefe Pbrenomena.

I thould have here left this Opinion, but that I was this Week informed from France of a Perfon D. Antbelme, a Cartbufian of Dijon, who pretends to have a true Theory of Comets, and to be able to predict them; and accordingly hath pur out an Ephemerides of this prefent Comer, therein not only fetting down what he had obferved before the Publication, but what fhould happen afterwards 'till the time of its difappearing. This Man I mention not for his prediEting of the Way and Motion of the Comet, for that I think may be muck more exactly done than what he has, by the way I have publifhed in my Cometa, which was invented by Sir Cbrifopber Wren; by which, from any four Obfirvations truly made, one may certainly find the Line, Diftance, Motion, Inclination to the Ecliptick, its place among the fixt Stars, the length of its Tail, Brightnefs, ε どc. fo long as it thall appear to the naked Eye; for fo long that Theory will hold precty near; I do not therefore mention this French Aurhor for that, but to thew that he that is far out of the way in his Conjectures about the form of the Comer, which he fuppofes alfo to be made by the Refraction of the Sun's Rays, the Opinion we have now exploded, and thall hereafter more demonffratively confute from undeniable Arguments; this Man, in probability, is as much out in his Theory, which is only this, that the Head or Body of the Comet is Tranfparent, and that the Tail is made by the Refraction of the Sunbeams through it, but does not feem to have confidered the Difficulty which Kepler, Hevelius, and divers others had taken notice of, and provided for in this Hypothefis.

I could relate to you the Opinions of many other Authors who have inclined to this Opinion, that the Blaze of the Comet is nothing but a Phantom or Ap. pearance, but that as I find the very beft of them that have imbraced this Opinion, to have been very dark and perplexed in their Explications; and as if they had not well underltood it themfelves, fo there are others who only give a bare Affertion without any Explication or Reafon at all: The Authority of fuch Men, I confels, weighs very little with me.

I fhall therefore pafs on to the fecond fort of Opinions, and that was of fuch as fuppofed them to be Aerial, Halituous and Sulphureous Bodies placed fomewhere in or near the Atmofphere, which was raifed out of the Earth, and fired in the upper Regions of the Air, and there continued 'till they wafted away. Of this Opinion was the great Philofoher Ariftotle, and almoft all his Followers; nay many of them, to this Day, who have not taken the Pains to be better inftructed. Of this Opinion we find generally all the Stoicks, but that they fuppofe them elevated from the Air into the Wtber; alfo the Chaldeans and all Hiforians, who have mentioned Comers in their Political Hiftory: Of this O . pinion are almoft all the Illiterate and Ignorant People of the World, and almoft ever have been, and ever will be ; becaufe they are for the moft part ruled by the moft obvious Appearance to the Senfe, without taking Pains to make ufe of their Reafon to examine things ftrictly; fo that if the majority of Votes be an Aigument for the Truth of any Opinion, certainly this will carry it from all the reft, at leaft a Hundred Thoufand to One. And yet, after all this, Ariflotle, his Commentators, his Followers, the greateft number of Scholars, and particularly the Stoick Philofophers, as well as Peripatetick, the Hiftorians, Divines, many Phyfitians, and all the Illiterate Vulgus in the World, will be found quite miffaken in their Opinion, and will eafily be confuted by the Aftronomers and modern Philofophers, who have clearly and plainly demonftrated their Miffake and Frror. And that is, by undeniably proving the vaf diftance thofe Bodies are removed from the Earth by the Parallax, or rather want of Parallax, which they have been of later Ages certainly obferved to have; for that does moft certainly and infallibly fhew that they are fo far from being Atrial or Atmofpherical, as Arifotle feems to fuppofe, that they are feldom,
if ever fo low as the Moon, many times as far off as the Sun, and fometimes perhaps much farther; I fay perhaps, becaufe the Evidence for that is not as yet fo eafily artainable, for no one has yet certainly proved the Parallax of the Sun; nor of Mars to any exactnefs; much lefs have they of the fuperior Bodies:
fohannes Regiomontanus, was the firt among the Moderns, who began to ele. vate the Pofitions of Comets above the Air ar Atmofphere; for by his Obfervations of that which appeared in theYear 1472, he found it by its Parallax, diftant eight Semidiameters of the Earth at leaft, which is very far above the reach of the Air, which thofe, that with any probabilty judge of its Altitude, at moft make, not above Twenty Miles Perpendicular, but in all probability is yet much lefs. But Ticho Brabe, and at the fame time Rotbmannzs Mathematical Profeffor to the Landgrave of Haffa, Nichael Meftine, Cornelizs Gemma, Maddeus Heggetius, and many others (too many to be named at prefenti) who had made Obfervations of the Comets that appeared in the Years, 1577,1580 , $1585,1590,1593$. did all clearly find and prove that they had all of them lefs Parallax than the Moon, and confequently that they muft be far above it; and with them agree almoft all the Learned Aftronomers finice, only Galileo would feem to make it only a Phantom fomewhat like a Halo, which changed its place according to the Pofition of the Eye that faw it, and thence would give a Reafon why it could have no Parallax ; for fince its being of Pofition depended only upon the Refraction and Reflection of the Sun's Rays; according to him, its Diftance or Angle with the Sun would appear the fame where-ever the Eye were placed to time it; and, confequently, it would obferve and keep the fame Pofirion amongft the fixt Stars in the Zenith, as in the Horizon; fup pofing it elevated fo far only above the Earth, or at leaft, fo pofited; as not to fall-in its Shadow. But this Explication of this great. Wit, and molt excellent Philofopher and Mathematician Galileo, though it be very fubtil and curious; and has fome feeming probability, yet the frrict Examination of the Appearances by the known Laws of Refraction and Reflection, will fufficiently thew the Infufficiency of that Solution; and fhould the Examination of thofe not have been fufficient to have confuted this Suppofition from the endeavouring to folve the common Appearances of Comets to the Naked Eye; yet the Imporfibility to have folved the Appearances of them through the Telefcope would have fufficiently confured it. But fetting him afide, all the confidetable Aftro: nomers who have fince written of Comets, do conclude them not to be Sublunary, but far removed above the Moon, and Æthereal. Such were almoft all thofe who writ of that great and very bright Comet which appeared to the World in the Year 1618. And fuch are thofe that have writ of Comets that have appeared fince ; and more particularly, of thofe two great ones which appeared in the End of 1664, and in the beginning of the Year 1665. Many of which are comprifed in the Theatrum Cometicum, Printed in the Year 1667.

This is then the Third Opinion mentioned by Seneca, as the fecond to be held by divers of the Antients. Namely,That Comets were Æthereal Bodies, placed at a great Diftance from the Earth, and there moved according to Rules peculiar to them only, and diftinct from the fixt Stars, and conftantly appearing Planets.
What Arguments the Antients had to make them of this Opinion, does not appear any more, than it doth why they held divers others; many of which have been with great Applaufe, and vety good Reafon taken up, and received by many of our late Philofophers: But certain it is, 'twas not without fome very good Grounds; otherwife, 'tis not to be conceived how they fhould be able to hit upon them: As, Particularly that of Arifarchus Samius or Pbilolaus, who Afferted the Sun to be the Center of the Uliniverfe; and that all the Planets, and the Earth among the reft, which muft therefore be efteemed one of them, moved round about it, that remaining fixt. Which Opinion was received by Coperniczs, and has been fince followed by the moft knowing Aftronomers. 'Tis not therefore to be doubted, but that the Antients might have fome of the fame Reafonings for them that we now have ; and poffibly many other, which length of time has devoured; and 'tis not Improbable what Simon Steven has indeavoured to prove, and the learned Hugo Grotius has helped him to many Arguments for it ; that there was before any of the Hiftories now extant, of

Prophane Writers, a learned Age and Place of the World far exceeding that ot IEgypt, or Greece ; of which we have no manner of Hiftory conveyed down to us, but fome few fcraps and hints here and there fcattered up and down in fome of the Writings of the Antients. 'Tis not improbable, but fome fucceeding Ages and Seets of Men might induftrioufly deftroy them (which was no difficult thing to do before Printing was in ufe) as 'tis faid of Ariffotle. But whatever was the caufe, is uncertain; It is therefore much eafier to find out the Truth by new Inquiry into the Nature of the Things theinfelves, than to hunt for the Caufes of things among the Worm-eaten Volumes of Anliquity. We fhall therefore pafs over the feveral Branches of Opinions under this.Head, of the Æthereal Nature of the Comets, and come to the various Opinions that have heen afferred and defended by the Moderns, whofe Grounds and Reafons we may eafily know.
There are then under this Head, great variety of Opinions, as to the Sub. ffance, Light, Magnitude, Diftance, Motion, Duration, Generation, ళ゙c. of Celeftial Comers. But they may be reduced to thefe.

The firt was; That Comers were certain Planets or wandering Stars, the Laws or Rules of whofe Motions were not yet known, and which were dittant 'from the Seven Planets that were known. Of this Opinion were.the Chaldeans, as alfo Democritus. And that thereupon, why they did but fometimes only appear, and then vanifh; was by reafon of their Approaching and Receding from the Farth in their proper Courfe, or by reafon of their nearnefs to the Sun. Plutarch, alfo, fays, that fome of the Pytbagoreans allo, were of that Opinion: Seneca, allo, held the fame.

The fecond Opinion is, That the Body and Tail of the the Comet is made up only by the conflux of many fmall, and, before, imperceptibie Siars; and that the Reafon of their difappearing is, becaufe thofe Stars are again difperfed.

The Third Opinion is, that the Comets are made De novo, out of the Mate. ria Creleffis. Every of thefe are varied by feveral Suppofitions about the Blaze, of which more hereafter.
N. B. Here our Autbor breaks off, and leaves this Difcourje of Comets imperfelt, So that I was in fome doubt wheetber I fould publifh it; but confidering it contained a brief Explication of Several Opinions of the Antients, and Some of the Moderns, of the Nature of Comets; I thougbt it might not be unacceptable to the Reader. Ifhall in Some following Sbects prefent you witb a pretty large Treatife of Comets"; containing bis own Theory, and Explication thereof, from Objervations made on tbofe in 1680, and 1681 .

IVbat follows is the Continuation of bis Lectures of Light, wherein be profecutes bis former Inquiries into the Nature thereof. R. W.

Sect. IV.

Being a Continuation of the Lectures of Light inter rupted for fometime by our Autbor's Obfervations on the Comets in 1680. Thefe poere read about May, 1681.

The CONTENTS.

1. A Recapitulation of fome former Particulars, as to the Three Properties of Light, viz. its incomprehenfible Extenfion, prodigious Swifinefs of its Motion, and yet the Limitation of its Poover, So as to admit the Rules of Comparifon, of Majority, Minority and Equality. Light falls under a threefold Confideration, as it is in the Luminous Body, as it is in the Medium, as it is in the Eye. Luminous Bodies are. Celeftial or Terreftrial ; Celeftial are fuch as finine by their onn Light, as the Sun,: and fixt Siars or Comets, all which are actual Fires: The Authors Theory of Comets, That the Planets except the Sun bave no Light of their onn. 2. The confideration of Bodies woithin our redch emitting Light, which are reduced to five Clafjes. 1/t. All Sulpbureous, Rejinous, and Spirituous Bodies. Here is afhort Explication of Fire, and the Life of Animals. - $2 d l y$, Bodies not combuftible, yet that will. (hine with a certain Degree of Heat. $3^{d l y}$, Such as fine by an inward Fermentation without Heat. 4thly, Such as Bine by an Impreflion of Light. sthly, Such as Bine by Motion. 3. Thefe are to be the Guides into the Nature of Light. The Definition or Defcription of Light, what it is. The Proof and Confirmation thereof. That the Medium of, it is perfectly Denfe. Bulialdus's Notion of Light rejected. That Light is a Corporeal Subftance, that it perfectly fills Extenfon or Quantity extended every Way, that it is fufceptive and communicative of Motion. 4. The Motion of Light, in the Confideration of which are obfervable, The शuantity, 2uality and Power thereof. Thefe explained. The caufe of Sound. Heat only an internal Motion of the Parts : A'certain Degree of Heat or of this Internal Motion produces Light. Ligbt in objecto, is a peculiar kind of this internal Motion, and the Propagation of this Motion is Light in the Medium. R.W.

${ }^{1}$Was the laft Term diverted from proceeding with the Explication of Light I had begun to difcourfe of in fome of my förmer Lectures, by the Appearance of the Comet, which feems to, give a Light very differing from thofe of other Celeftial Bodies: I was therefore the more willing upon that Occafion to difcourfe on the Light of that Body, having before difcourfed of the Light of the Sun and Stars. But it was with a Defign of, Refuming the Difourfe of Light in General; for that a clear Ulnderttanding and Explication of it, will very much facilitate the Knowledge and Science of many other abitrufe and difficult Operations in Nature. For the doing of which as it ought,

108 Lectures of Light.

much ufe muft be made of Geometry. And, indeed, without it little can be done, that will any ways intelligibly inform us concerning it. General and indefinite Affertions and Defcriptions do but imperfectly inform, and the Deduction from fuch Propofitions muft be uncertain, and of a dubious Senfe; and defective of Form, becaufe they want the neceffary Limits and Boundaries. Whereas, on the other fide, where the Definitions are ftrict and exalt, and the Deductions clofe and neceffary; the Science thence derived is Pofitive and Demonftrative, and will admit of no manner of Hefitancy, or C̣ontradiction.

The Proprieties I have taken notice of were,

A Recapitulatimes ficture Piopiefics of mited as the Ulniverfe, and yet really affeting every Attom or Point of the Iight. Medium or Mafs of Created Body, and this not only of the tranfparent Medi. um, but as. I conceive, and Chall hereafter explain and thew my Reafons for it, even every Atom and Point of Opacous. Bodies alfo; fo that no one Atom or Particle of created Body is free from its Power; and be the Extent thereof never fo Immenfe (as whofe Imagination can fer Limits to Extenfion) yet the whole, and every part thereof is really affected by the Power of Light.

Secondly, The prodigious Swiftnefs, or rather Inftantaneoufnefs of this Propagation; fo that it feems to exert its Power to all imaginable Diftance in an Inftant of time; fo-that at the fame Inltant that the Lucid Body emits its Light, or exerts it Power, the Receptive Body though never fo far diftant is affected by it ; and this without any refpect to the vaft fpace interpofed, fo that a Body a Mitlion of Millions of Miles diftant, is affected as foon as a Body diflant but a Span, fo that it may be faid to outpafs the quicknefs of our Thought; for that we muft think of one thing after another. And though fome ingenious Men, as Monfier Romer, have indeavoured to prove ir to be temporaneous, and to fpend fome time in paffing from the Illuminating to the Illuminated Body, thereby thinking to make it more Intelligible and Adequate to orher'Powers and Operations of the Ilniverfe; yet he fuppofing that time to be fo incredibly fhort, in comparifon to the length of the Space it paffes, as he allows but one fingle fecond of time, or the lixtyth part of a Minute of an Hour for the time in which it paffes the Diftance of about 20000 Miles; it makes it much more difficult to conceive fo rapid a temporaneous Motion, than the Inftantaneoufnefs of that other. For the Motion of a Cannon Bullet is as much flower than this of Light, as the Motion of a Snail is than that of a Cannon Bullet.

The Third Propriety of Light which I took notice of, was, that though its Expanfion feems to be indefinite, and its Motion Inftantaneous, or infinitely fwift ; yet that its Power was finite, and limited and fubjected to the Laws of Quantity, and admitted of the Rules of Comparifon, of Majority, of Minority, and Equality, which nothing that is infinite is fubjected to; and upon this Account it is, that it falls under the Confideration of Geometry.

1. I. Thall now begin with a more particular Confideration of Light; and therein I thall confider what Light is, that has thefe admirable ProprietiesReferving the explication of feveral other Proprieties of it altogether as won, derful, 'till I have a little further explained' there, and shewn how thefe are produced by it.

Light then will fall under a Threefold Confideration; Firf, As it is in the Luminous Body. Secondly, As it is in the Medium that conveys it. And, Thirdly, As it affects the Eye, by means of which, we come to the Knowledge of all the reft.
A Tbrec.foid The Luminous Objects are either Celeftial or Terreftrial ; of each of which, Conffideration there are fome that thine by their own Light, and fome that fhine by Light reof Light.
flected from them, but derived from another Luminous Body.

The Principal of the Celeftial (at leaft as to us) is the Sun, which for ought Celeftial Lumin. we yet certainly know, is the Principal and Brighteft Body in the Worid. I have nous objects. already explained fomewhat of the Nature of that Body as to its bignefs, its turbinated Motion, its Atmofphere, its Nebula, Macuice and Faculx, and their Proprieties and Motions; and thence gave fome probabie Conjecture of the Con: ftitution and Subftance of ie, and concerning the manner how it comes to give Light; and I thew'd you many Reafons why, in all likelyhood, the Light of the Sun might proceed from an actual Fire, fomewhat Analogous to the Fire of Bo. dies burning with us; whence from an underftanding of the Nature of Fire, Flame and Light here within our Reach and Command, we might the better be inabled to examine and judge of the nature of Light in general ; for if the Ce pettial Lights are Analogous, and much of the fame Nature with the Bodies that give Light with us, then the Knowledge of the one will explain the other.

Next, I began to thew fome Reafons why in Probability the fixt Stars were of the fame Nature with the Sun, as to this Propriety of Emitting Light : For, that firft, they were Bodies fome of them vaftly Diftant, aś I have, I think, experimentally proved by the Obfervation I made of the paffing of Stars near the Zenith; and confequently they muft be vaftly big. Thence, Thirdly, They muft emit a very frong and vivid Light; fince at fo vaft a Diftance they do fo fenfibly almoft Dazle the Eye; for the Power of Light, as I fhew'd before, though it be inftantaneous and indefinite in Extenfion, doth yet continually Di. minith in its Power, the farther it. acts from the Lucid Fountain; and this not in a Simple but Duplicate Proportion to the Diftance; fo that a Body a Hundred times further Diftant, receives not a 10000 Part of the Light. But then, Secondly, 'Tis probable, that they are aftual Fires, as I indeavoured to prove the fame, from fome remarkable Inflances we have had of fome of them that have, as it were, blazed out upon a fuddain, and after a fhort fpace, quite burnt out, fo as never to appear fince, as that remarkable Star in 1572, which was fo accurately obferved by the Noble Ticho Brabe, and fome others of that Nature; and by fome others, which fometimes appear, and fometimes difappear again, as thiat in Collo Ceti.

Thirdly, I thew'd why alfo Comets were Bodies that thined by their own Light, and did not teceive their Light from the Sun, but from a Principle of their own; and this I have fhewn to be very much of the fame Nature with our Fire. And by very many Obfervations I have made of the laft Great Comer, I am confirmed that the Light of that vaftly great Blaze, which at fometimes was extended to fo great a length, as to fubtend an Angle of almoft Ninty Degrees, and to be of the breadth of near Three; was wholly from it felf, and was not caufed by the Reflections of the Light of the Suin; and that all that Stream iffued from the Body or Head, much after the fa me manner, as the flame of a Candle does iffue from the Weik; and therefore from all Circumftances I could obferve of it, and from what I took notice of in the former Comets; I judge it to be a Body actually on Fire, or in a State of Diffolution, and that it confifts of burning Materials, but much differing from the Subftance of the Sun and fixt Stars, which afford a more pure, ftrong and defecated Light, whereas this is more blended with a kind of Smoke, or Herrogeneous Vapours, which are confumed whilft they are in the Blaze, in the fame manner, as the Smoke of a burning Body here with us is confumed by the kindling of it into Flame, as it afcends from the fmoaking or fteaming Body; as may be obferved in the Burning of a Tallow or Wax Candle, or of Oyl, Spirit of Wine, or the like in a Lamp. Thefe therefore are the Celeftial Bodies that emit Light of their own; in all which, the Original or Caufe of it feems to be nothing elfe but an aetual Fire, and to be Analogous, or very much of kin to the Fires, that confume Terreftrial Bodies, and therefore our Inquiry for the caufe of Light is brought fomewhat nearer to us, and more within our reach, and therefore we may with the greater Eafe and Certainty find out the true Caufe and Narure of it.

For as to all the other Celeftial Bodies, viz. the Moon, and the reft of the primary and fecundary Planets, 'tis very evident that they do not thine by their own proper Light, but by the help of that of the Sun, which is reflected from
them to us. For if we confider the Moon, 'tis very evident not only from the Increafe and Decreafe of Light, which make the Appearances and Phafes of the Increafing and Decreafing of the Moon, and from the Eclipfes hoth of the Sun and Moon, which have very long been Obferved and Explained by this Theory, the Dark Body of the Moon eclipfing the Sun, and the Interpofition of the Earth between the Sun and the Moon, eclipfing the Moon; but from the very Shadows of the Protuberant and Craggy. Parts of the Mcon upon the Surface of irs Budy; for thofe Shadows may, with a Telefcope, be as plainly feen as the Shadow of the Stile of a Dial, and the Motion and Change thereof may be as plainly alfo feen, and the Progrefs of the Light of the Sun upoin the Surface of that Body. Bur whereas fome object that the fecundary and faint Light of the Moon, which is fometimes remarkable in total Eclipfes, feems to be a proper Light of the Body it felf, 'tis now evident enough that, as Kepler well oblerved, that Light proceeds from the Refractions of the Sun's Light in the Atmofphere about the Earch, where it is refracted towards the Axis of the Umbra of the Earth; and as for that of the New Moon, that is caufed by the Reflection of the Sun's Light from the Surface of the Earth; for that tis very. plain, that as the Light of that Decreafes, as it does when the Afpect is changed, and a lefs part of the inlightned Surface of the Earth reflects to the Moon, as from the firft to the laft Quadrature, that fecundary or faint Light vanifhes and is no more vifible:
Next, As to the Light of the other Planets, 'tis very clear that they Receive what they Reflect, from the Sun; for 'tis plain, that Mercury, when it has paffed between us and the Sun, has appeared a fmall Dark Spot, and fome have affirmed to have feen the Phafe of it through a Telefcope, to appear Horned like a New Moon, though I never yet obferved it fo my felf. But as for Venus, I have very often obferved the Changes in her, and found her as tharp as the Moon, two days before or after the Conjunction, without the leaft Appearance of Light on the other part of her Body ; and Mars I have oblicued a little wained, but as for fupiter, I have divers times plainly feun the Shadow of one of the Satellites pafs over its Disk, as well as the Satellites eclipfed by the Shadow of the Body of fupiter, fo that both the Body of Fupiter and the Satellites about it, do fhine only from the Reflection of the Light of the Sun. We have no reafon to doubt but that the Light of Saturn and its Satellites proceed from the fame Caufe, and that becaure as the Body of Saturn is fo much further removed both from the Sun and us, fo the Light is confiderably more Dull and Weak. And befides, Thave feveral times plainly feen the Shadow of the Ring upon Saturn, which could not be, if the caufe of its Light did not proceed from the Sun. So that upon the whole, we have fufficient Grounds to conclude that the Light of all the Planets proceeds from the Light of the Sun reflected from them to is ; and confequently, that the emitted Light of all Celeftial Bodies is much of the Nature of the Lights of the Fires we have here upon the Earth.

Terrefrial Lu-. 2. We come then in the next place to confider fuch Bodies as are within our minous objefts. reach, that emit a Light of theirown; that fa by a Scrutiny of them we may. find out the Caure and Reafon of Light.

Of thefe we have a vaft Number of all Bodies almoft, by fome means of other affording us Intances of this Luciferous Nature, but they may all be reduced to a few general Claffes or Heads, under which Claffes they may beeafi. ly ranged in fome refpect or other.

1. Sulphureous The Firft and, Principal, and the moft general of all the reft, and which may: Bodies, \&c. moft properly be faid, of fuch Bodies as emit their own Light, or to produce Light from themfelves, are all Sulphureous, Unctuous, Refinous or Spirituous Bodies, which will being firft heated, be burnt or Diffolved by the Air, as a Menffruum; for all fuch Bodies, whilft they are thus Diffolved or Burnt, emit a confiderable Light,
This Heãd therefore comprifes all combuftible Bodies, which are either Mineral, as Sulpbur, Cole, ASpbaltum, Bitumen 2_{2} Pétroleum, and the like; or Ve-
getable; almoft all Parts of which, except the Watry, are Combuttible and Dif foluble by the Air.

Or, Thirdly, Animal Subftances; all the Oily or Faity Parts of which are likewife Combuftible, but the Watery and Earthy Parts are not.

Now all thefe Subftances being firft heated to a certain Degree, fome more; fome lefs, will by the Air be preyed upon and diffolved, in which Action of Diffolution or Burning, Light is produced: And 'tis very evident that that Actio on is neceffary to the effect of Light, for that before the Confumption or Diffo. lution begins, and after it is finifhed, there is no Light produced, but only during the time of the Diffolution. And this may be farther argued from this $\hat{\gamma}_{2}$ that the fafter and quicker the Diffolution is made, the more frong and vivid is the Light; and the flower; the more weak and languid; and therefore, the more of the Menftroum of the Air is applied to the Diffolving Body, the more quick is the Diffolution performed, and the brighter is the Light, as is well known in the blowing of fire with Bellows, whereby a quick lupply of frefh Air, is brought to the burning Body, which is fufficiently krown to all Peo. ple, though not under this Notion : Moft People fuppofe it to be only for blowing away the Athes, and fo by that means thewing or difcovering the Fire that lies underneath them; but I have proved by divers Trials, that tis not the Motion of the Air by the Bellows, for removing the Afties or driving off the burning Parts that does any thing in this Effeet, becaufe if the Air that is fo blown be firft fatiated and then blown on it, it produces no other effect than to blow off the Afhes, and blow out the Fire; for the more you blow the more dead is the Light, and the fooner is the Fire quite extinet; infomuch that in a very Thort time the Coles all become perfectly Black, without emitting the leaf glimpfe of Light or Shining, at which time if one blatt of frefh Air be blown up. on thofe feemingly dead-extinct and black Coles, they all immediately' bég in to Glow, Burn, and Shine afrefh, as if they had not been at all extinct; and the more freth Air is blowed upon them, the more they fhine, and the fooner are they Burnt out and Confumed. So that 'tis the frem Air that is the Life of the Fire, and without a Conftant fupply of that it will go out and Die.:

Somewhat like this is obfervable in the Life of Animals, who live no longer than they have a conftant fupply of frefh Air to breath, and, as it were, n nth blow the Fire of Life, for fo foon as that fupply is wanting, the Fire goes out and the Animal dies, and all the other vital Functions ceafe ; as any: ore may prefently fee, if he puts a frnall Animal as a Bird, of the like, intolannall Glats and covers it clofe; for in a fhort time the Air becomes fatiated and is no longer fit for Rerpiration; but though the Animal breath it as hefore, and Pant and move his Lungs as before, yet if the Air be not frefh, the Bire of Life will extinguifh. Some Learned Philofophers and Phyfitians have been of the Opinion, that the ufe of Breathing was for nothing elfe, but that by the Motion of the Lungs the Blood might he kept circulating which paft through them, of that the Steams of the Blood might be carried off, which tit could not do wihen it was full of Steams; but by many Trials I have proved that neither of thofe are at all the Caufe of the Death of the Creature, but only the wat of frefh Air:

For whether the Lungs move or not move if frefh Air be fupplied, the Anfimal lives, if it be wanting, it dies. Again, If the Air he fall of Steams or not full of Steams, it is all ofie, the Animal lives if it be freth, but if iti be inot, it dies; nor does the heat or Cold of it do any thing. But this only by the liy, be: ing more proper to another Time and Difcourfe, my prefent fiquiry मeltig after the Nature and Caufe of Light. This then is one of the Claffes of thining Bodies'; namely, fuch as are Diffoluble or Burnable by the Air.

The next Clafs are all fuch Bodies as are not combuttible, but are fo fixt ${ }_{2}$. shining Eoas to indure a great degree of Heat, without being fubject to flie away or be dies not coms: difperfed Into Vapours; fuch are all forts of Metals, 'Stones, Earths, Clays, buflible, bus Salts, Sands, White Burnt Bones, Affies of Vegetable and Animal Subftances, heateds and the like; Every one of which when heated to a certain Degree of Hearjwill Shine or afford Light; but under a certain Degree' with not fhine at all:

Now thereare greatVarieties of thefe Degrees, for that frme will not begin to thine till, 'they have a very intenfe and violent Heat, others with a finall Degree, infomuch that I lately faw the Pouder of a Stone which laid upon a Plate of Metal, and held over a Chafingdith of Coles, would prefently, and with a fmall Heat begin to thine, but fo foon as the Plate cooled, would leave off fhining, but the Plate being warmed again, it would again Thine; and almoft every Body has a peculiar Degree of Heat, at which it begins its thining; fo that there are almoft as many Varieties of Degrees of Heat to make Bodies fline, as there are to make Bodies flow and melt; fome will fhine before they melt, as almoft all the harder Bodies; as Gold, Silver, Copper, Brafs, Iron, Stones, Earths, \mathcal{F}^{c}. others will Melt before they Shine, as Tin, Lead, Saltpeter, Allum, Vitriol, Tallow, Gums, छ゙c.
3.Bodiesflining In the Third Clafs are all fuch Bodies as Thine without Heat, by an inward
without Heat. Fermentation, in which though their Light be but fmall,yet does it become vifible enough in a darkned Room or in the Night; fuch are Glow worms, Scolo. pendra, feveral kind of Flies, decaying Fifh, as Whitings, Oyfters, and many others, fometimes Flefh, as Veal, alfo rotten Wood, and forme forts of Putrifying Vegetables, alfo fome Putrifying Urines; alfo the Phofphorus made out of the Caput Mortuum, or the Rob of Urine found out by Dr. Kunkell, and many others.
4. Bodies fhin- In the Fourth Cl afs are fuch as Thine by the Impreffion of Light made upon ing by on $1 m$-them, by being expofed only to the Light of the Sun or the Day. Such are preflion of the Preparation of the Bononian.fione, and the Preparation lately found out of
tigbt Light. common Chalk by Dr. Baldwin; thefe receive fuch a Power from the Influence of the Light; that being carried into a Dark Room after they have been expofed to the Light, they then appear to Phine like a Cole of Fire, and continue fo to do for a pretty while, but will by degrees lofe their Light, and be extintt almoft in the manner as a Piece of Red hot Iron; but being again expofed to the Light of the Sun, or a Window, they prefently reafume their fhining Quality.
5. Bodies hi- In the Fifth Clafs are all fuch as thine by Motion, Diamants, Sea Water, ning by Motion. fome fort of Dews, Sugar, Black Silk, the Back of a Cat, and clean warmed Linnen, as has been lately experimented by Dr. Crone, and feveral other Subftances which will thine with a degree of Motion or a little rubbing.

To this Head alfo, may be referred feveral others alfo which require a great Degree of Heating or Rubbing, as Iron and Come other Metals which may be made Red Hot, or to fhine with Hammering only, two hard Stones as Flints and the like, ftruck one againft the other, two Pieces of Wood which with Rubbing will take fire, and the like.
3. Thefe feveral forts of Lights are to be the Guides which muft conduct us in our fearch after the true Nature of Light, nor can the Truth of the Theory be fully Difcover'd, 'till every one of thefe Witneffes and Teftimonies are thoroughly examined, and that by comparing the Evidences that each of them fhall bring diftinctly, with thofe of every onetof the other, there being fuch Axioms and Maxims founded, as will open a way to the clear Knowledge of this moft abftrufe and difficult Science of Light. From which as all the vifible. Appearances derive their Original, fo the greateft part of the Knowledge and Information of Mankind; for the Explication of which, the Theory of Vifion, and the ftructure of the Eye, the Organ of that Senfe, and all the Powers and Modifications and effects of the Rays of Light: And fo the Theory of Opricks, Dioptricks, Catoptricks, Perfpeetive and Projections, and Cromatick, or the Theory of Pofition, Modification and Effet of the Rays of Light, whether Direct, Refracted, or Reflected, or Compounded on the various Superficies on which they are incident; every of which Idefign (God Willing) fully to explicate. So alfo the Velocity and Modification of all the Motions of the Celeltial Bodies, viz. both the primary and fecundary Planets, have their Original and Caufe, as I thall hereafter plainly and fully demonfirate.

It would be too long here to recount to you the whole procefs of the Examination of thefe Evidences, and the whole proceeding, with thofe Evidences; by comparing every one, with every other, fingly ; and then, many together, with fuch a peculiar Number of many others; whereby the Nature and Caufe, and the Characteriftick of Light in General is difenvered; and then, to difcover what is the peculiar caufe of it in this, and that, and tother particular Body, from whence it proceeds. It will fuffice at this time to tell you the Refult and Conclufion; for that the Procefs is long and tedious, and not attained but by many Steps and Degrees. Light then is notbing elfe but a peculiar Motion of Definizion of rbe parts of the Luminous Body, which does affect a fluid Body that incompaffes the it is is, whe Luminous Body, which is perfectly fuid, and perfealty Denfe, So as not to admit of iso any farther Condenfation; but that the Parts next the Luminous Body being mou. ed, the whole Expanfum of that fuid is moved likeroife. So that any affignable Parts next the Luminous body being protruded a certain affignable Space, that protrudes all the valt Expanfum of the fluid, every way in orbem, at the fame Inftant an affignable Space : So that no one Atom, or Point of it, to all imaginable Diftance, but is at the fame time moved with it, or prottuded forward: For Inftance, When a Luminous Part of the Sun is moved with the Motion of Light, it does at the fame Inftant, move the Parts of the Incompaf fing fluid, which is the proper Medium of Light, with the Motion of Light; which part cannot fo be moved, but that all the Parts of that Medium, to the extent of the World, muft be moved at the fame Inttant, and protruded from the Luminous Point in a direct Line; fo that at the fame Inflant, that the Apex of the Cone is moved, the fpherical bafe of that Cone alfo is moved, and every imaginary Spherical Superficies, that is parallel to that bafe, is moved likewife.

This Confequence will follow of necelfity, from the Definition of the Nature The Medium of of the Medium, that is proper for the conveyance of Light. . And that is, that Light is perfer it is a Medium perfeilly Denfe; that is, fuch as will not be by any Power forced into lefs Dimenfions than it is contained in, but does compleatly fill and maintain that fpace. And, Secondly, From its perfell fuidity, it does accoinmodate it felf to all manner of Forms, fo as exatly to thape it felf into the rew Form that is given to it, by the Motion of Light.

For Infiance, If we imagine A BC to Reprefent an hollow Conical Body, Fig, s. Indefinitely extended from the Point A, which is the Apex towards B, C, and at the fame time imagine alfo this hollow Conical Body, filld with a Body perfectly fluid, and perfectly Denfe; that is, fuch as will perfectly accommodate it felf to the Figure of that Cone, and intirely fill the Cavity of it, fo as not to leave the leaft Point of it unfilled; and that will not admit of any manner of Condenfation into a lefs Room : If then we imagine, that by the firft ftroke of the Motion of Light, the Parts of the fluid that fill th Apex A d n, be driven forward toward the bafe, into the face $a n e o_{2}$ equal to it in quantity; it muft at the fame Inftant drive that part of the fluid that fill'd the race dne. o, into the fpace e opf, equal to it in quantity, and that which filld dhe dpace $\operatorname{cop} f$, muft at the fame time be protruded into the fpace $f p q g$, of the fame quantity; and fo onward $f p q g$, into $g q r h_{1}$ and $g q r b$ into $b r f i_{n}$ in Info nitum, or to the utmoft extent of the Cone, and filling fluid Marter, to that at the fame time that the Parts that made the inaginary Spherical Bafe, $d n$, of the Cone $A d n$ are moved into the imaginary Spherical Bafe e $c, 0$ of the Cone A e 0 ; will the imaginary Spherical Superficies, $l u$, of the Cone $A l u$ be moved into the Place of the imaginary Spherical Bafe m x, of the Cone $A m x$, though never fo far removed from the Apex A : So that a Body perfectly denfe, and perfectly fluid, muft communicate fuch a Motion begun, to all imaginable Diftance in an Inftant. It being impoffible that the Apex of the Cone $A d$ n can be moved into the face d noe , without moving at the fame time, overy part of all the reft of fuch a Cone, to the utmoft Extenfion.

The further confideration then of this Cone, will give us the Reafons, and Grounds of the three I have already named and of fevert other Proprieties of Light, and make them very intelligible and plain to be ynderilood, and eafy to be demonftrated.

[^3]Retron of the As, Firft, From hence we may underfland the Reafon of the Force an. 1 PowDecreafo of the er of Light, ar feveral Diftances from the Luminous Body; for according to the PomerofLigbt. Increafe of the imaginary Bafes of the parts of the Conies, and accordirg to the Decreafe of the Thicknefs of the feveral Parts; fo is the Decreafe of the Power of Light at thofe feveral Diftances. For, Firft, It is clear that the fane Quantity of Motion, and confequently of Light, that there is is in the firit Cone ot Apex $\mathcal{A} d n$, the fame is there in the lalt part $l u x \mathrm{~m}$, and in every other intermediate Part, as $d n o e, \operatorname{cop} f, f p q g, g q r b$, and the reff; fo that if we compute it firft according to the Expanfion of the Imaginary Bate; we fliall find that thofe increafe in a Duplicate Proportion, that is, as the Squares of the Feveral Diftances, as at ren times the Diftance, the Expanfion is a Hundred times the fpace; and confequently the fame quantity of Motion is expanded into a Hundred times the fpace, and therefore an equal fpace of the Superficies of that, at ten times the Diftance, will have but tot Part of the Motion or Light that is upon the Superficies at once the Diftance. This therefore will be reprefented by the Sedtions of a Conical Body, made by turning the Hyperibola round upon the Afymtot; for the Ordinates to the Alymmor being in reciprocal Proportion to the intercepted Parts of the Afymptot, the Squares or Circles of thofe Afymptots, muft be in Duplicate Proportion of the intercepted Parts of the Afymptot Reciprocally. This is the Proportion that the ingenious Kepler, allows to the Decreafe of Light, fuppofing it to be only in Duplicate Proporti. on of the Diftance Reciprocal; and according to this, he founds the Proportion of the Power of the Sun in moving the Planetary Bodies at féveral Diffances; but he ought to have confidered alfo another Decreafe of the Power of the Light, according to the Decreafe of Thicknefs, of the bafe Parts of the Cone. For fince in all the Imaginary equal Parts of the Cones, there is the fame quantity of Matter, if the fame be Expanded in Breadth, it mult be diminilhed in thicknefs. If therefore at ten Foot Diftance, for Inflance, it be fpread into afBreadth 100 times as big as at one foot diftance, then confequently to make the equality of Content in the one and the other, there muft be but to part of the thicknefis.

For if at the Diftances $1,2,3,4,5,6,7,8, \bigoplus_{0} c$ The Supericies or Bafes expanded be as $-1,4,9,16,25,36,49,64$, of. Then
The

Thefe then will give the Proportions of the length of the Pulfes or ftrokes of Light, at feveral diftances from the Luminous Body, and confequently the Velocity of thofe Pulfes. So that according to thefe Rules, the Force or Power of Light muft decreafe in quadruplicate Proportion of the Diftances reciprocally taken; that is, as the fquared Squares of the Diftances Reciprocally; and confequently, as I Thall afterwards thew the effect of Light, or the Motion it caufes in other Bodies, will be in Subduplicate Proportion of the Powers, and therefore only in Duplicate Proportion of the Dittances Reciprocally taken.

So that thence it is evident, that Light does act according to the Proportion of a Body moved, obferving exactly the fame Proportions, and therefore can be nothing elfe but that; for what Tuing foever hath all the fame Proprieties with another, muft be the fame,
Buliniluus's Noodien rejetee?.

It is not therefore what the Learned and Ingenious Bulialdus would have it to be, namely, a certain Subftance which is a Geometrical Medium, between a Body and a Spirit. Lux eft, (fays he) media Proportionalis inter corpoream fubftantiam छ' Incorpoream: Light is a middle proportional Subftance, between a corporeal Subftance, and an incorporeal. A middle proportional (fays he) is that which between two extream Lines, does equally divide the Rationes of both, and which does participate of the Exceffes and Defects, and communicates the fameHabitudes with both; and by how many of its parts it is exceeded by the Greater, by fo many parts of the Lefs does it exceed that. For Inftance, fays he, Let $A E$ be an incorporeal Subitance, and C a Corporeal. The incorporeal Sabftance $\mathbb{A} E$, exceeds the corporeal Subftance C, by the Excefs

DE, to wit, by inftantaneous Motion and Penetration of folid Bodies; but the corporeal Subftance C_{2} is defective of the Incorporeal by its Termination and fucceffive Motion. Now we muft find a middle proportionate Subitance, which is defective of the Incorporeal, and exceeds the Corporeal, hut a middle proportional does participate of the Excefs and Defect. Now $B G$ (the Subftance of Light) is defective of $A E$, in Termination and fucceffive Mocion, but it exceeds C in inftantaneous Motion and Penetration. Now that Subftance which is defective of one, and exceeds the other, is a Medium, but Light is fuch a Subftance, which by its Penetration and inftantaneous Motion, exceeds a corporeal Subftance; but it is defective of Incorporeal Subftance, in its Termination and Succeffive Motion. This is his Demonfrration, but how much more infructed we are by it, of the Nature of Light, I Mall leave to every Man to judge. It is, I confers', above my reach to conceive what Subftance 'tis he Thould mean; it being perfectly new and not thought of before, that ever I could meet with; nor can I fee what need he had of fuppofing any fuch Subftance. For fince the fame Proprieties that are found in Light are found in Corporeal Subftances, or Bodies, as I have before mentioned; I fee no reafon why on this Account, we have any Reafon either to fuppofe an Incorporeal Subflance, or a Subftance of a middle Nature, between Incorporeal and Corporeal. ${ }^{\text {'T }}$ Tis to me, 1 confefs, very difficult to conceive what a Corporeal Subflance is; nor can I have any more clear Conception of what is meant by that Expreffion, than what I would exprefs by thefe two Words; fomewhat extended, which how that differs from a Vacusum, or an Extenfion, without Subftance, or an extended Nothing, is not eafy to be underfood by one that throughly confiders his own Conceptions.

Des Cartes rherefore makes Extenfion and Body, or corporeal Subftance, to be one and the fame thing; and that no other Subitance but Body, or Corporeal, can be extended.

But to leave thefe Metaphyfical Notions, 'tis clear from what I have thewn, that as to this Subject, Light, there is no need of fuppofing any other Sub. flance, but Corporeal, or Body; and that, fo and fo qualified; that is, perfectly Fluid, and perfectly Denfe, and fo Receptive and Communicative, of all manner of Motion.

As to the Notion therefore of the Subfance of Light; I know not what can The true Not ot be farther added, that is more known or more Intelligible than that it is; Firft, on of Light. A Subftance, or a fomething; that is infinitely fluid, or at leaft, indefinitely; if that be more conceivable, whofe leaft conceivable Part is free from oohefion with any other, and fo is fufceptible of any kind of Motion, without carrying or moving along with it the Lateral Bodies, whereby it only communicates the Motion it receives behind, to the Parts that lie immediately before it; whence follows that great Propriety of Light, that in a uniform Medium, it propagates its Motion every way in direet Lines or Rays, from a Center of a Sphere.

And, Secondly, That it is a Subftance, or fomething that compleatly fills an Extenfion or Quantity every way extended, and cannot be condenfed, or forced into le's Extenfion, Space, or Room, by any Natural Power; but that the fame Subftance will always have the fame Quantity, or Extenfion, one way or other; what it wants in one, it will have in one or both of the other Dimenfions; as what it wants in breadth it will have in thicknefs, or in length, that fhall recompence the whole, and bring it to equality.
Thirdly, That this, as all other Bodies, is fufceptive and communicative of all manner of Motion, but is more appropriated to Motion of fuch a Degree of Swiftners, which is in proportion to the Motion of other Bodies, whofe leaft part is folid and bulky, as the bignefs of the one, to the bignefs of the other, Reciprocally taken. This may ferve for the Explication of the Subitance of Light.
4. The next thing we are to confider, is, the Motion of Light, which is the of the Motion principal thing confiderable in it ; for the Subftance withour the Motion has nof Light. effect, nor has the fubftance Light; 'tis that we are fenfible of, and not of the Subftance; fo that be the Subftance what it will, whecher Corporeal, or Incorcorporeal,
corporeal, or Middle, Proportional, or None; provided we know what the Motion is, and the Rules, Powers, and Proportions of that, we need not much confider the Subftance of it.

In the Confideration then of Moiton thefe thing are obfervable.

1. The Quantity.
2. The Quality.
3. The Power.

By the quantity of Motion, I underftand only the Degrees of Velocity ex:iftent in a certain Quantity of Matter.

By the Qualities of Motion, I mean the Modifications of it in Body, as whether it be Simple or Compound, Reflected, Refracted, Direct or Oblique', and the like.

By the Power, I mean the Act or Effect it produces upon other Bodies, in agitating or moving them.
In the Confideration of every one of which, I hhall indeavour to reduce the Theory to Calculation and Mathematical Exactnefs; without which, all other ways are but Random Gueffes, and make no certain and demonftrative Conclu. fions.

The Motion produced by the Lucid Particles mult be of a certain Degree of

Sound how
coufed. Swiftnefs; otherwife, it is not propagated in the form of Light, for 'ris not every Motion that produces that Effect; for 'tis in Light, as it is in Sound; that the Motion muft be of a certain Degree of Swiftnefs, before Motion will be propagated in the Medium that conveys it : we find that moving a Stick in the Air, if we move it but flowly, we hear no Sound; becaufe the Motion is fo flow, that the Parts of the Air that were before it do eafily move round the Sides of the Stick and come behind it ; fo that only thofe Parts of the Air are moved that lie near the Stick, which do only receive fuch a circulating Motion as brings them from before to come behind, the ambient Parts of the Air having Power enough to reflect and keep in that Motion, fo as only to circulate about the Stick; but if the Motion of the Stick be fo fwift, as that the Particles before it over power the Reffftance of the ambient Air, fo that its Motion is not reflexed backwards, but propagated directly forward into the Air, then Sound is generated and propagated from the Stick, every way in orbeim; whence if you give a very quick Motion to the Stick in the Air, you prefently hear a Noife.
A certain De. In the fame manner, if you take a piece of the moft fixed Body that will ingree of Heat dure the Fire ; as for Inftance, a piece of pure Gold; or refined Silver, which produces.Light. will not waft nor burn by heating; if you heat it but with a fmallerDegree of Heat, you will not perceive it to fhine or give any kind of Light; but if you continue to Augment the Heat to a certain Degree it will begin to fhine, and appear Red Hot, as we call it ; and if it be hear more, it fhines brighter; but if you take it from the Fire, and permit it to cool, its Light grows fainter and fainter, and when it is come to a certain Degree of Hear, it ceafes to thine at all, and emits no Light. Now Heat, as I ihall afterward prove, is nothing but the internal Motion of the Particles of Body; and the hotter a Body is, the more violently are the Particles moved, and with a quick Motion; but the Particles of Bodies, according as they are more bulky and clofe, fo do they require the greater Degrees of Motion, to make them move with an equal Degree of Motion, with that of fmaller Particles; as I fhall afterwards prove; when I come to give the Laws and Rules of Motion propagated from Body to Body. In the fame manner in fuch Diamants, as will ohine like a Glow worm in the Dork, (for all Diamants will not; but I have feen and tryed many Diamants that would;) the Stone will not begin to thine 'till it has received a certain Degree of rubbing and Agitation, but beyond that Degree, the more you, rub it the more it thines, and any little ftroke upon it with the Nail of ones Finger, whern it fo fhines, will make it feem to flath. The like I have lately obferved in the Phofporus of Kunkell, that the rubbing it a little with ones Finger, doss make it glow, and as it were flame. So if you take a Piece of Cold Iron, and.

Ham.

Lectures of Light.

hammer it on an Anvil, you muft continue hammering it very ftrong and quick a good while, before you will perceive it to begin to thine; but if you continue to work it with a Hammer for a certain fpace, it will thine very briskly; and grow, as we call it, Red Hot. Now in all thefe Inftances, and a Hundred more I could produce, 'tis evident that there muft be a certain Degree of Hammering, Rubbing, or Heating, before the Body fo wrought on will produce Light: All which do effeet an internal Motion of the parts of the Bodies fo Hammered, Rubbed, or Heated ; 'tis therefore evident, that 'tis not every Motion of the Particles of Bodies that will produce Light, but a certain Degree of it; under which no Light is produced, and beyond which the Light is increafed and augmented.

This kind of internal Motion therefore in the Parts of the Body, is that which produces Light; whatfoever therefore produces this Motion, produces Light; whether it be heat, as in all very fist Bodys, or Fire, which, as I told you before, is a Diffolution of the Borly by the Air, as in all Unctuous, Refinous, or Sulphureous Bodies; or Hammering and Strokes, as in Stones, Chryftals, Diamants, Sugar, $\mathcal{E} c$. : or Fermentation and Corruption, as in Fifh, Glow-worms, Rorten-Wood; or the Morion of Light it felf, as in the Bononi-an-Stone, and Dr. Baldwin's Phofphoros, and in almoft all other Bodies held in the Focus of a Burning Glafs.' Light therefore in the Objeet, is a peculiar kind of Internal Motion of the Particles.

The propagation of this Motion into, and through the incompaffing Medi- What Light is um is that we call Light in the Medium, or the fpace between the Inlightning in the Med!. and Inlightned Body. This propagation of Motion, as I faid before, is every um.
way in orbem; and it may be caufed either by an Immediate pulfe of the Particles of the Body againft the Parts of the incompaffing Fluid, as a Stone ftriking againft the Water, from whence the Waves of Motion are there propagated in Rings; or elfe by the extrufion of the Part of the Fluid Medium of Light that lies between the folid Particles of the fhining Body; as Water fqueezed out of a Spunge into Water, or Water forced out of a Syringe, on Pipe, into Water, which will praduce the fame Rings in the Surface of the Water. It feems to be in fome Cafes One way, and in fome Cafes the other. In burning Bodies, it feems to be the firft way, where every Particle of the Body Diffolved flies afunder, and is rarified or difperfed into a bigger fpace, in the manner as we may oblerve in the firing of a Grain of Gunpouder, which we fee ex., pands into a Sphere of Flame, which extrudes and evacuates a Sphere of Air round about the fired Grain. . But in hammered Bodies, and fome other I have named, it feems to be the other.

If we therefore confider what Effects follow in thefe renfible Examples, we may the more certainly conclude what muft follow in the more infenfible.

The Grain of Gunpouder, then, when it is fired, rarifies it felfinto a Sphere near a Hundred times as big in Diameter, or one Million times as big in Bulk; this extrudes all the Air that was contained in that Sphere into a Space or Oits without it, and incompaffing it, large enough to contain it; and confequently mult remove the Air that fill'd that fpace into another fpace without that, and that the next, and fo onward fucceflively to a certain Diftance ; 'till at laft the Medium of the Air being a Springy, Rarified, or Yielding Medium, and not a Denfe and Unyielding Medium, the Motion is at length loft, and fo this found audible but to a certain Diftance. Whereas in the propagation of Light, the Medium being perfectly Denfe and Llnyielding, that Propagation is continued in Infinitum, or to the utmoft extent of the Medium. The folidity therefore of the incompaffing Spheres, will be to one another as $\mathrm{I}, 2,3,4, \forall{ }^{\circ} c$. in Arithmemetical Progreffion; and confequently the Diameters of thofe Spheres will be as
 Diameters of the contained, from the Diameters of the containing, the Remainders will be the thicknefs of the containing thell ; that is, the $V \mathrm{cI}$. will be the length of the ftroke of the Pulfe of Light in the firt fpace; $V c_{2} .-\checkmark c_{1}$, the of the ftroke in the third; $V \mathrm{c}_{4} .-\sqrt{ } \mathrm{c}_{3}$. in the fourth, $\mathfrak{F} c_{\text {. fo that thofe in- }}$ definitely continued, will be very near to a Series of Numbers in the fame Proportion, with the fuperficies of the Spheres reciprocally taken, and confequently the length of the ftroke of the Pulfe of Light, will be in duplicate Proportion to the diftance reciprocal.

I have been the more particular in the Explication of this Power of Light, becaufe, as I thall afterwards prove to you, this is the Power of Celeftial Bodies by which they Act upon, and attract each other; and by which all the Primary Planets that move about the Sun are regulated in Velocities, Diftances and Motions, whether circular or Oval. As alfo all the fecundary Planets, as the Moon about the Earth, and the Satellites about Saturn and fupiter, make their Periods. And from the true ftating of this Power, and the Effeets of it on Bodies at feveral Diftances, all the Theory of Aftronomy will be deduced a Priori, with Geometrical Certainty and Exaftnefs; and confequently the Tables and Numbers will be eafily adapted, which will tend to the Perfection of that Noble Science.

Sect. V.

A Continuation of the former Subject of Light. Bem ing the Lectures read in June, $168 \mathbf{1}$.

The CONTENTS.

4. Having fiewn what Light is in the Luminous Body and Medium, the Author comes in the third Place to Juew the Operations it bath on the Subject ; the chief of which is, that Effect it has on the Eye; to which End be gives a particular Explication of the Fabrick of this admirable. Organ, in which there are infinite receptive Points within, to receive all the Rays from the Infinite Points witbout. Vifion is made by reuniting all the Rays proceeding from-one Point of the Object, after they bave been fcattered into one Point again. 2. A Second Way of conceiving hoid the Eye multiplies the Power that was by the Hypothefis before explain$\dot{e} d$, i. e. that according to the length of the Stroak or Pulfe, So is the Power or Strength of Light. Effects of Burning Glafles explained and applied to this purpofe; that the length of the Pulfe at the Focus thereof is the fame woith the length of the Pulfe at the Sun. 3. The Adtion of the Eye much the fame with that of a Burning-Glafs; fo that the imspreflion on the Retina is the fame, as if the Adtion of the Object were really there. 4. Why the Eje is noit birt by the Object, tho' it, as it were, feels and touches it: And this is, because it takes in, the Bafis but of a very S_{m} all Cone of Rays from the radiating Sphere; So that tbo the Velocity or length of the Pulfe be the Same, yet there being but fem, their collected Power is lefs; and this is perform'd by the Contraction of the Pupilla; wobence the Eye becomes weakned by bright Objects, and woby we can look on the Sun thro a very fmall Hole. 5. The Fabrick of the Eye and all its parts, as far as relates to Opticks, examined, and is neceffary to the prefent Defign; the more particular Examination of the Parts, and its Humours, being refer'd to the Nature of Refraction. 6. An artificial Eye very ueful for the thorough Underfanding of Vifon. The Defcription and ufe af a Perspective Box, inftead of a dark Room, which woill explicate all the Phenomena of Vifion as they are reprefented in the bottom of the Eye. An Explication of Shadows or the defect of Light. R.W.

IHave in fome of my former Leetures in this place, explained to you the Nature and Proprieties of Light; and Chew'd to you what it is in the Lu: minous Body from whence it proceeds, and what it is in the Medium, through which it is propagated: I fhew'd you how it came to be propagated every way in Orbem, to all imaginable diftance in an Inftant, and with what proportion of Strength it was fo propagated to all affignable Diftances from the Lucid Object; and thence I deduced with what Power it operared, and thereby produced Effects on thofe Subjects; on which it was impreffed.

What effect The firft and Principal of all the Operations it hath on Subjects, is that êffeat $L_{\text {Liget }}$ thas on which it hath upon the Oigan of the feeing Eye, wherein it maketh fuch an the Eye. Impreflion as becomes fenfible to the Animal Faculty. This then is the next thing I fhall indeavour to explain; namely, the Action or Effect of Light upon the Eye.

For the doing of which, I thall firt confider the Fabrick and Make of that Organ. Secondly, The manner how Light comes to operate upon it.

An Explicati- Firft, For the Fabrick of the Eye, It is in it felf fo truly admirable, that on of the Eye. there is nothing in the whole Creation better deferves our Contemplation, and wherein the Wifdom and Defign of the Great Creator more fenfibly appears; for as of all created Beings, thoie which are animated feem to have the greateft Contrivance; every thing in each of them feeming to be contrived on purpofe, and with a Defign, relpecting the end of their being and well-being, and continuation either in the individual, or in the Species propagated. So among thofe animated Bodies, Animals feem to abound with more excellent contrivances than Plants; and of Animals fome are yet more curious and perfect than fome others; that is, have more Contrivance and Perfection of Organifation and Mechanifin than others; though every thing in its kind be furnifh'd with thofe Faculties which are requifite to perform thofe Functions which are neceffary to their Prefervation. Now of all the Organifations of Animals, none are more admirable than thofe of the Senfes, and of thofe, none, that we know, more wonderful than that of Sight, wherein we fhall find every thing fo adapted for Matter, Form, Situation, Motion, and the like; that it does far exceed the Contrivance of the Wit of Man to come near it, even in. Imitation. And yet we find that all things are Confonant and Congruous to our Underftanding, and we cannot chufe but approve and admire the great Wifdom and Contrivance of the Maker; fo that we may even from thence clearly and demonftratively fee, that the Reafon of Man is a fpark of the Divine Influence, and that whatever is done in the World is adequate to the Principles and Ground of Reafon implanted in our Underfanding and Knowledge; and that all things are formed and act with Defign and Refpeft to the End, and not fortuitoully and by chance.

For an Inftance of this, we cannot in Nature pitch upon a better than the Fabrick of the Eye, in which we fhall find every thing adapted and formed for that particular part of performing Vifions, which is to be performed by it; and every part has its neceffity to make up the perfect Effect, and no one is redundant, and there is no part defective.
The Radiations of Light I have formerly Explained, are continually Propagated from every Luminous Object, and from every Point of every Luminous Objeet, every way from every one of thofe Points in Orbem; as the Rays from a Sphere: : So thatias there are infinite of thofe radiating Points in the World, fo from every one of thofe infinite Points there are infinite of thofe Radiations; fo that the Luminous Medium has infinite Radiations in every Point thereof; to wit, a Gingle Radiation from every one of thofe infinite Radiating Points. Now thefe Radiating Points are not only all fuch as fend out their own Light which is generated in themfelves, but all fuch likewife, as by Retlection or Refraction, are the Caufes of reflecting or difperfing the Light, received from other Luminous Bodies. ' Now the Eye is an Organ or Inftrument by which all thoresinfinite Rays that are thus jumbled and blended together, and fo might be thought impoflible to be feparated, are fo curioufly fifted, culled, feparated, and parted from each other, that they are all again made dittinet, and evety one of them appropriated, as it were, to is diftinct Point or Cell. So that as there ate infinite of thofe Radiating Points without the Eye that emit thofe Beams; fo there are infinite of thofe receptiye Points within the Eye that receive them, each of which Points do only receive the Radiations from one of thofe infinite Points without, and from no other whatfoever at the fame time. Now it is not only a Separation of there Rays thus paffing in one fingle Point
only of the Luminous Medium, for that would feem to be more eafy, but it is a Separation of all thofe infinitely infinite Rays that pafs through the infinite Points that are in a Superficies as big as the Pupil, or Black Hole of the Eye, and a Reunion of all thofe radiations that come from any one Point, into one Point again ; fo that the Eye may not improperly be called a Microcofin, or a little World, it having a diftinct Point within it felf, for every diftinct Póint without it felf in the Univerfe; and when a Hemirphere of the Heavens is open to its view, it has a Hemifphere within it felf, wherein there are as inany Refpective Points for Reception of the Radiations, as there are differing Points for emiffion of Radiations, and all thofe infinitely infinite Radiations, which proceed from that whole Hemifphere of the Univerfe, and pafs through the Area of the Superficies of the Pupil of the Eye, are by this truly wonderful Contrivance of the Eye, feparated from each other, and conveyed to the diftinct cells of the Microcofm of the Eye. For the exact and curious Performance of which Work, the Fabrick of the Eye is fo curioufly contrived, that 'tis beyond the Wit of Man to imagine any thing could have been more compleat. Nay, It could never have entred into the lmagination, or thought of Man to conceive, how fuch a Senfation as Vifion could be performed, had not the all Wife Contriver of the World endued him with the Faculty and Organ of feeing it felf: How could it have entred into the Imagination of Man to conceive, how it thould be polfible for fuch an Atom of the Univerfe as Man is, to be informed at the Inftant that a thing is done, how and where it is done, though Million of Millions of Miles diftant ? Certainly no more than we can now imagine how it fhould be polfible for any Man here in London to know the particular Thoughts and Inclinations of any one fingle Man in Cbina or fapan, or of all the Cbinefe or Fapanefe together, at the fame Inftant they are thought there,
Now the contrivance of the Eye is not more admirable for its Power of feparating differing Rays from differing Points, one from another, than it is for con. gregating and culling all the infinite Rays that come from one Point, and Reuniting them again into one Point; for by this; principally, is Vifion made. This is that which makes the Rays produce fo powerful an Effect as to be fenfible to the Animal. Now this will appear more plain if we confider the Ex: plication I have formerly given of the Caufe of Light in the Medium, and the manner of its inftantaneous Progreffion through it. This I fhew'd you was a Motion or Pulfe caufed by the Protrufion of the Bodies about the Center, a certain fpace every way in Orbem, towards the Circumference. Now though the length of this, Pulfe at the Luminous Body, as the Sun, from the Center outwards, thould be an Inch perhaps; yet fince the length of that Pulfe doth decreafe continually in duplicate Proportion of the Diftance, reciprocally taken from the Luminous Body; the length of the Pulfe of Light here with us would not be the 1000000 Part of the thicknefs of a Hair, now what can we imagine or conceive could be fo curioufly fenfible as to be moved thereby, or that the animated Body, or any part of ir, could be fenfible of it, or affegted by it ? certainly it could not, and therefore the all Wife Creator contrived the Eye to beian Organ to reftore again the Strength of that Pulfe, which was deftroyed by the great interpofed Diftance; for by the means hereof, the Pulfe that was, by diftance, Thortned Million of Millions of times of the length it had at the Lu. minous Point; is by the reunion of them by the Eye again, reftored to a good part of its firft Power, in the correfponding Point in the Eye: for as; whilft Rays are diverging and freading from the Luminous Point into a uniform M_{e} dium, the Pulfe grows thorter and Morter in a duplicate Proportion to the Diftance reciprocally ; fo in converging Rays (or Rays drawn to a Point, from a Superficies) do the lengths of the Pulfes increafe in a contrary order: So that in probability, in the Point of Reunion in the Eye, the Pulfe may be almoft as long, as atthe Point of Emifion or Emanation. That this may be the better underfood, I would difcourfe a little upon a very common and obvious Expe: riment off fetting. Fire to a Body by the Rays of the Sun, collected by a Burning Glafs, whether Reflecting or Refracting, it matters not much to our prefent Reafoning.

Suppofe then we have a Burning Glafs of a Foot Diameter, or breadth which will collęt all the Rays from the Sun, and unite them at fourteen. Inches from the Glafs, into a Focus or circular Figure of the Sun of of an Inch in Diameter, we fee firt by Experiment, that the Rays fo collected will fet Fire to Wood, and feveral other Combuftible Bodies and confume them, whereas the Rays of the Sun before this Union of them, were very hardly, perhaps, if at all fenfibly warm. If therefore we confider the Reafon of this Effect, we thall find that all the Rays which were before expanded into a Circle of a Foor Diameter, are, by this Conftipation made by the burning Glafs, crowded and thruft together into the fpace of a Circle $\frac{1}{\text { i }}$ of an Inch in Diameter; we mult conclude that all that warmth that was in the Circle of a Foot Diameter, is now in a Circle of half a quarter of an Inch. Now the Area of the greater Being, to the Area of the lefs, as 9216 to one, it follows that the Heat of the greater to the Heat of the lefs, mult be Reciprocal to the Area, that is, as I to 9216 , and confequently the impreffion of the Light at the Focus, muft be more than at the Glafs, no lefs than 9216 times; and confequently the fame as the direet Rays of Light from the Sun would be, at one 96 th part of the Diftance of the Earth from the Sun; and confequencly as ftrong as it would be upon a Planer about the Suit, which Thould appear to us at the Diftance from the Sun of 36 Minares, or a little more than the Diameter of the Sun. Now in the fame manner as this Burning Glafs acts upon the Rays of the Sun in conftipating and driving them together into a fmaller room, does the Eye for all other Rays of Light from Luminous Objects. Where that Impreffion or Action of the Light; though in it felf it be very fmall, and wholly infenfible even to that part of the Eye, which is the moft fenfible and curious of all the Parts of the Body, namely, the tunica Retina, as I thall afterwards fhew, yet is made fenfible by the Multiplication of its Force upon the Conflipation of the Ray into a Focus, which Acts and Terminates in that moft curious Subfance.

This is one way by which we may conceive fomewhat of the Reafon of the curious Fabrick of the Eye for the Multiplication of the Action or Power of Luminous Bodies, upon the fenfible Animal Part.

How the Eye 2.The other way we may conceive how thisFabrick of the Eye does caufe this $M y+t i p l i e s ~ s t h e ~ I m p r e f f i o n ~ t o ~ b e ~ M u l t i p l i e d, ~ A u g m e n t e d, ~ a n d ~ b e c o m e ~ f e n f i b l e, ~ D e p e n d s ~ u p o n ~$ Power of Light. the confideration of the Hyporhefis, which I propounded the laft Term for the explanation of Light, and that was by a Pulfe or Stroke, according to the length of which, I thewed you at that time, the Power or Strength of the Light was.
This I explain'd to you by a fenfible Fxperiment made by firing Gunpowder. For a Corn or Grain of Gunpowder expanding it felf, when fired in a Sphere - 1000000 as big as its own Bulk, muft necelfarily aft accordingly on the encompafingMedium ; but I need not repeat what was then faid. Therefore to return to the Inftance of the Burning Glafs.
Now by the Refraction or Reflection of a Burning Glafs, all thofe Rays which before were Diverging and fpreading wider and wider from a Point, and fo grew weaker and weaker in the proportion I mentioned (that is, according to the Superficies of the Sphere, or Bafis of the Cone) by this Action I fay of the Burning Glafs, they are made converging and approaching nearer and nearer together; and fo of confequence augmented and increafed in Power and Effect, and the Strength loft or rarified by the diverging, is renewed and revived by the converging. And whereas in the diverging, the Diminution was yery flow and long, in this converging, the Increafe and Augmentation is very quick and Thorr; for as the diftance of the Burning Glafs from the Sun, is to the diftance of the Burning Glafs from its Focus; fo is the Increafe of Conftipation, by the effects of thar Burning Giafs upon the Rays, to the decreafe of Expanfion of them in their Progrefs from the Sun to the Glafs; fo that the Rays of Light at half the Diftance of the Focus from the Burning Glafs, is the fame with the conttipation of the Rays, at half the diftance of the Sun from the Burning Glafs; and confequently the length of the Pulfe, and frength of the Ray is the fame; and. To at a tenth Part of the diftance from the Focus, the

Lectures of Light.

Power or Action of Light, is as ftrong as it is at a tenth part of the Diftance of the Sun from the Burning Glafs. So that if the diftance of the Sun be ro000. Semidiamerers of the Earth, and the Focus 14 Inches; the firength of the Light, or the length of its Pulfe or Stroke thall be the fame at $x_{\frac{2}{5}}$ Inch from the Focus, that it is, at 1000 Diameters Diftance from the Sun; and confequently, the length of the Pulfe in the very Focus, mult be the very fame with the length of the Pulfe at the Sun.
3. Now the Action of the Eye being much the fame upon the Rays of Light, from any Luminous Object with this of the Burning Glafs; it follows that the Eye does by its Power bring all vifible Objects into the bottom of it, and make an Impreffion on the Retina, the fame, as if the very Action of the Object were immediately there.
3. So that the Subftance of the Retina is affected or moved by the very fame Thefeapplied to Action, as if it touched the Object; and the Eye does continually make the the Eye. Hemifphere of Actions or Morions within it felf, the fame with the great vifible Hemifphere without it. And thefe Impreffions are communicated to the Brain, or fenfared by the Animal Soul, if that Subftance be in Health and Sound; if not, the Impreffion is. Defective, and the Sight or Senfation Imperfect. As it fometimes happens in fome Diftempers of the Brain and nervous Parts, in which Cafes the fight fails, though the Organ of the Eye it felf be perfectly formed, as in a Gutta Serena.
There is a very remarkable obfervation of Monfieur Mariotte about Vifion, that the fenfation of Light is not made in the Tunica Retina, but on the Cboroeides; That that part of the bottom of the Eye which the Cboroeides does not cover is wholly ferfelefs and blind, though the Impreffion of Light upon the Place be the fame as on the Parts that are contiguoas, and lie about it.

Now this Gentlemans Obfervation is, that that part of the Eye, where the Optick Nerve enters intd the Cavity of it, which is not in the Axis of its Figure, but at a pretty diftance from it nearer to the Nofe, namely, at about 25 Degrees from the Axis inward, is not covertd with the Choroeides. And that we have no fenfe of the Impreffion of Light thade upon it.

The Experiment is this, take two fmall Candles in the Night, or in the Day time, two fmall bits of White Paper of about the bignefs of a Shilling, let the Candles be fet on a Table at two or thtee Foot diftance, fo that the Flames may be about the height of the Eye from the Floor; let the Papers in the Day time be ftuck againft a dark Wall, or dark coloured Hangings, at about the fame diftance, and the fame height; then placing your felf juft before them, and looking towards them, clofe one of your Eyes with your Hand; ; as fuppofe your left Eye, and look directly. on the Candle or Paper on your left Hand, and you will fee both the ObjeCts very plain, that you refpect, very clear and diftinet, and the other Comewhat more Imperfeatly; keeping your Eye thus thut, and the right Eye refpeeting the left Hand Object, by Degrees go backwards, 'till at length you will perceive that the Right Hand Object vanihes,? and is no more vifible; mark that Diftance and you will find it to be at about $3 \frac{1}{4}$ times the Diftance of the two Objetts, going yet farther backward, you will again begin to fee them both as before, viz. at the diftance of about $4_{\frac{2}{3} ; \text {; then }}$ again going in this Polture nearer the Objects, you will. find the Right Hand Object difappear when you come to the former Diftance, and when nearer, they will both again appear, and fo continue 'till you come clofe to thern. Now the reafon of this Appearance is, that the Axis of the Right Eye being always kept directed to the Left Hand Object, when you are at the aforefaid Di. ftance, the impreffion from the Right Hand Object falls on that part of the bottom of the Eye where the Optick Nerve is inferted, over which there is no. part of the Cborocides expanded, and the fenfible part being wanting, the Senfation is not made, though the Impreffion be the very fame; as on each fide of it, as I thall prove more particularly, when I come to explain the feveral parts of this moft curious Organ, and what the Function and ule of each part is, which I may make the Subject of fome of my fucceeding Lectures.

124
 Lectures of Light.

This Deduction of his was difapproved by Monfieur Pequet, tho the Experiment was allowd, who gave his Reafons for maintaing the Retina, the chief Organ for receiving the Species. This Difpute may be feen in the Pbilos. Tranfact. Numb. 35, $\%$ 59. Whether it be the one or the other, is not much to our prefent purpofe, therefore I hall leave it, and proceed.
4. I have endexvoured to explain to you that admirable contrivance of the Organ of Sight, the Eye, whereby it Collects the Rays of Light, fo as to make an Impreffion upon the fenfitive Part of it, of the Action, Motion," or Power of the Luminous Object upon the immediately incompaffing Medium, though Why the Eye is this Luminous Object be never fo far diftant, and by that means, as it were in not burt by the Aftion of Light. an inftant, to touch, or feel any fuch Object, as if it were contiguous to it, but yet fo as not to hurt or offend the fenfible part; for the Eye taketh but a very fmall Cone, or part of the Radiating Sphere, and thereby, though the Morion be the fame as to Velocity and Lerigth of Pulfe in every the frmalleft Cone or Ray, that it is in the whole Sphere, yee being but a fmall part of the whole incompafling Medium, it contains but a patt of the Action of the Luminous Point; for which Reafon we are able to look upon the Sun, or a Fire, or an exceeding bright Flame; as melted Silver, or Iron, or Sulphur burning upon melted Niter, without much offending the Organ, if it be ftrong and vegete; but if the Eye be weak, and the Impreflion be continued, it will much offend it, and dull the Senfe, whence it is that looking much upon Fire, or any fuch bright Objęt, does very much decay the Sight, and makesit more infenfible of the weaker Impreffions made by other lefs Laminous Objects: And hence we find, that we are unable for a time to perceive Objects' in a Houfe or Room, immediately after we come in out of the Sunhine. Now by reafon of the great, Variety that there is in differing Objects, as to the Quantity and Strength, and that the Retina, or fenfating part is capable only of receiving Impreffions to a certain Degree of Strength, without being hurt by it, there is a contrivance in the Eye, which I fhall afterwards more fully explain, by which the Quantity of the Kays admitted is moderated, fo as to keep it, that the impreffion does not exceed that limit : And this is the Aperture or Hole through the Iris, which is the black Hole that appears in the middle of the tranfparent part of the Eye; for this Hole which admits the Rays to pafs into the Eye, is contracted or dilated, according as the Object is brighter or darker; that a leffer Quantity of the ftronger Rays, and a greater Quantity of the weaker Rays may be admitted, and hence it is, that a brighter Object among dimmer Objects, does cloud and darken them, becaufe the aperture of the Iris being contracted protionable to the Strength of the brighter, the Rays; admitted from the fainter and more dim Objects, are not fufficient to make a renfible Impreffion. So that the effect of the Rays are by this means proportion'd to the Ability of the fenfible Part of the Eye to bear the Impreffion, and where notwithftauding the utmoft contraction of this aperture of the Iris, the Rays make too ftrong an imprefion upon the Retina, we are forc'd to wink and clofe the Eye-Lids nearer, to fhut out part of that quantity of Light which would otherwife have-entred nto the Eye; or to look through a frnall Hole, or through an opacous Body. And hence it is, that any one may with cafe look upon the Sun, if he look through a fmall Pin hole in a Plate, by which means one may with pleafure fee an Eclipfe of the Sun, without ufing any opacous Glafs; though if the Cornea, or any other part of the Eye, be any ways opacous, this way difcovers the Defeets of them, and does fomewhat vitiate the Figure of the Object. But of this, and the manner of contracting of the Pupil, more, when I coine to explain that part of the Eye; that which I mention it for at prefent is, only to explain how the Eye becomes as it were a Hand, by which the Brain feels, and touches the Objeets, by creating a Motion in the Retina, the fame, and at the fame Inftant, with the Motion of the lucid Object it felf. For the make of the Eye is fuch, in all its Contrivance and Patts, that the Conical Ray of Light proceeding from a Point of the Object, and terminating with a Divergency in theAperture, or Cornea of the Eye is is by the Refrastion thereof again reunited into a Point at the Focus, which is in the Retina; and confequently, whatever the Motion or Power of the Light was in the Apsx of this Cone, which is at the Luminous

Luminous Body the fame is the Motion or Power of Light, at the Point or Apex of the Cone, made by the Refracion, and terminating in the Retina, fo that the. Eye does, as it were, invert and fhorten the conical Radiation,and con. tratts a Cone 10000 Semidiameters of the Earth in length, into the length of an Inch or thereabout in a Man; from which Explication all the Appearances of Vifion, whether by the naked Eye, or by Telefcopes, or Microfcopes, will be very naturally, and I conceive very truly explained; and the wonderful Wif: dom of the Great Creator more manifeftly thewn.
5. We are therefore in the next place to confider the Fabrick of the Organ it felf, of what Parts it confiftes and of what ufe each of them is toward the compleating this Effect.
i. In the Confideration whereof, the firl thing that reprefents it felf to our View, is the rranfparent part of it that is placed outwards, which is the entrance by which the Rays pafs into it.

I fhall not noed to mention the pofition of it in the Face, nor the Duality of them, nor the Cells of the Skull in which they lie, nor the Lidds that cover it when Senfation ceafes, as in Sleep; fave only that I fhall afterwards fhew you the ufe of them for moyftning, glazing, and clearing the Cornea from Duft and other Fowlnefs; no nor of the various Mufcles that ferve to Rule it to and fro every way, and direat and fix the Axis of it upon the Object to be viewed; the contrivance of which is truly admirable, nor thall I take notice of any Anatomical Obfervarion concerning it, fave only fuch as tend to explain the Make and Fahrick of it, for performing this Effect of Collecting Diverging and parallel Rays, and refratting them into a Point or Focus: Other confiderations thereof being more proper to be handled upon the confideration of other Subjects.

Having taken the Eye out of its place, or Socket in the Skull, and having taken off carefully all the Mufcles that ferve for its Motion, as being not now confidered, we have a round Ball thaped fomewhat like that reprefented in Plate I.Fig. 6. the fixt Figure $A B E B F A$. This Body is in a Man of about an Inch Diameter, and to $B A B$, is very near. of a globous Figure, though in divers other Animals it be of divers other Figures; fome of them more deprett at the middle; and nearer to the fhape of a Turnip, and at about 25° Degrees from an imagined Axis, which paffes through the middle of all its parts, is inferted into it the Optick Nerve F F, which Infertion together with all the Globous part of the Ball, is covered with a thick, frong, and pretty ftiff Coat, or Shell, which ferves as a folid Wall, to preferve the Chape and figure of the Parts within, to which alfo the Mufcles, for its outward Motions, are faftned; and likewife the Mufcular Parts within the Eye, which ferve for the inward Motions; this is called the oxnnpódns; or Tunica Sclerotica, or hard Coat ; and is a conti-nuation of the Dura Mater, or the outmoft ftrong hard Bag that contains the Brain; and by a curious Diffection may be found quadruplicate, as is alfo the Cornea. This for the moft part is white and opacous, and fo permits no light to pafs it any way, though in fome Creatures I have obferved it to be pretty Tranfparent, fo as to fhew the Picture of Objects without, made at the bottom of the Eye, as in Young Kitlings : The formoft part of this is of a more protuberant Figure, and feems fomewhat Elliptical; rifing confpicuoufly promi. nent above the Superficies of the Sphere $B A B$, continued this Promirent part $B E B_{3}$ is perfectly tranfparent, though it be of a flexible Subftance, and from fome kind of Refemblance it has to Horn, is called the Cornea, or horny Ccar: This, as it is more round in the middle about \mathbf{E}, than it is at the fide $B B$; fo I. have obferved it alfo to be thinner in the middle, than at the fides, fo that it refembles the defcription in the Figure. The Ellipticalnefs of the Figute, as it may plainly be difcovered by the Eye, without any other help, fo more certainly by the Refleetion of Images from its Surface, and by the refraction of it when filled with Water, and looked through toward any near Objeat. Through this tranfparent Coat or Cornea, the Rays enter into the Eye, and receive their firft and greateft Refraction towards their converging and meeting at the bot- the Eye.
tom of the Eye. This is much larger in fome Animals, as in Cats, Owls, Lece. pards, and orher Creatures that feek their Prey in the Night; and fo is able to receive a greater Quantity of thofe faint and dim Rays difperfed from Objects at that time, in which Creatures alfo the Pupil of the Eye is capable of a much greater Expanfion and Contraction, as I fhall by and by obferve. This may give a very good hint of the poffibility and practicablenefs of feeing in the Dark, of which I have many Years fince made divers tryals with very good Succefs: and I have known feveral Men who have had fuch a Confitution of their Eyes by Nature, that they would be able with Eafe to fee every Letter diftingt, wihen other Men, that orherwife had very good Eyes, could not fee the Lines.'

The infide of this thick and hard Coar of the Eye, is covered with another Coart, being in various Eyes of various Colours, as Black, Blue, Brown, Green, Yellow, and the like; it covers alio the Optick Nerve, and is joyn'd to the Sclerotica, by an infinite company of little Veins, and Arteries and Veffels; this immediately joyns to, and, as it were, lines the Infides of the hard outward Coat, fo far as the vitreous Humour extends; namely, to $B B$, and is called the Choroeides. But above this place it is feparated from it in the aqueous Hu mour, and is called the Uvca. The ufe of this, as to Opricks, feems to be for the imblling of the Rays of Light after they have impreft their Motion upon the Retina, though'l have obferved in fome Creatures, a ftrong reflection from the bottom of the Eye, which could be from no other than the Choroeides. What its llfe is for conveying neceffary fupply and Nourithment to the Parts of the Eye, is not my Subject.

To the inflide of this Coat is joyned the Retina, which is that which immediately covers the vitreous Humour, and is the fame Subfance with the Subitance of the Brain, which is alfo the Medulla, Marrow, or Pith of the Optick Nerve. This by Des Cartes and moft others, is fuppofed to be the fenfible part of the Eye, which receives the impreflion of the Pencils of the Rays of Light ; though there are others of another Opinion, that the Retina being the fame with the fubftance of the Brain, has no fenfe in it, as the Brain it felf hath nor, but that the Chorocides, as being the fame with the Pia Mater, and confequently of the moft acute Senfe, is that which receives, and is fenfible of the Impreflion of the Rays of Light : And to confirm this, the Experiment I fhew'd and explain'd to you the laft day is brought as an Argument by Monfieur Mariotte, which carries in it indeed very much of probability ; for by that Experiment you have a fenfible Proof, that in that part of the Eye where there is no part of the Choroeides, as at the Medulla of the Optick Nerve, there you are blind as it were, or infenfible of the Light; whereas ins that Place there is the greateft Plenty of the Retina or Medullary Part; within this Coat is contained the Vitreous or Glaffy Humour of the Eye which fills the whole lower Cavity of it; it is called the Glaffy Humour, not that 'tis fo very, hard; but becaufe it being very tranfparent and clear, it is of a greater confiftence than the watery, being like a Jelly, and yet is fofter than that which from its exceeding clearnefs, not hardnefs, is called the Chrytalline; this is delineated by the Figure G G. This Humour on the upper fide of it has a Cavity in it, where it receives the Cbryftallinet Humour, which is fomewhat of the Figure delineated by $I H$: the under part of which in a Man, and in moft orher Terreftial Animals, is much more convex than the uppermoft which is more flat ; but in moft Fifhes it is of a perfect Globular form ; its of a pretty folid Confiftence fo as to keep its Form after it is ftript of the Coat or Skin, that covers it both above and below, called the Aranca or Cobweb Coat, which is very thin, ftrong and tranfparenr, and is joyn'd to the Choroeides by the Edges, by means of the Ciliares $B H, B H$, which feems to be Mufcular, all the fpace between the Cryftalline Humour and the Cornea is filled with a very clear and liquid Water, the Figure of which Cavity, and confequently of the Water contained is expreft by $I I$, contain'd within the Cavity $E B H B E$.
In this Water between the Chiryftalline and the Cornea, is placed a Skin with a Perforation in the middle of it, that is called the Uvea, expreft by $B I, B I$, the outermoft fide of which is of various Colours, in various Eyes, as hlackifh, blueifh, greenifh, yellowih,' brownifh, and the like; the Hole of it in feveral

Lectures of Ligbt.

Animals is of feveral fhapes, but in Men it is perfeetly round, in Sheep of an oblong Oval, in Cats like a flit; in other Creatures of other Forms, the big. nefs of which is more or lefs, according to the brightnefs or dimnefs, "the nearnefs or remotenefs of the Objects feen, and has in it a kind of natural Motion not voluntary, which is moved only by the various Impreffions of the Otjects. And we have no other Power to open it than by looking upon dark Objerts, or of fhutting it, than by looking upon bright and near Objects: The Limits of which Motion in Men is not very great, but in Cats and other Creature:, that fee in the Dark, very great.

This Watery Humour does fometimes breed a kind of Mother in it, fo as to become thick, and look White, and fo hinder the Rays of Light in part, or in whole, from paffing through it, and when it is grown to a fenfible Thicknefs, is call'd a Cataract, but the Sight may be again recovered by couching that $C a$. taralt, which is nothing but thrufting in a fine Needle through the Cornea, and with the Point of it breaking and cruthing down to the bottom of the Eye this Mothery Subftance. This Humour, though it be all let out, will prefently be renewed again, and filled with Water as before, without deftroying the Sight of the Eye, as has been of ten experimented.

Thus I have flewed you all the parts of which the Eye confifls, and the form and manner of their Pofition in order to compleat this curious Organ to make it fit for Vifion; having omitted all thofe other confiderations of it, which belong more properly to Anatomy and Phyfick, my aim being only to take notice of thofe things only ferve for the explication of Opticks and Light.

It would be too long for this prefent Exercife to explain to you the exact Figure, and the various Refractions of the feveral parts of the Eye, and to thew you the particular ufe of every part of it, for compleating the collection of Rays proceeding from the Points of the Luminous Object, and terminating them in as many diftinct Points at the bottom of the Eye, which I defign, God willing, to compleat, when I come to explain Refraction, and the Laws thereof. And therefore, I Thall at prefent only mention to you, that that Colleftion or Termination is made at the Retina or Choroeides, which, as I have fhew'd, you are the Coats that line the bottom of the Eye, and encompafs the vitreous Humour, on which they do defcribe, as it were, a perfect Pitture, or Reprefentation of all outward. Objeets, as may be plainly feen by the Eye of a.Kitling; the Sclerotis or bottom of which is tranfparent, or by any other Eye, if the Sclerot is be carefully thaved off fo as to leave it tranfparent: And as I have done by a large artificial Eye made with Glafs, Water, and Jelly, figured accordifig to the fhapes reprefented in the Scheme, which is a Section of the Eye, made by the Optick Axis ; that in this Pitture are remarkable not only all the Lines and Proportions, but the Lights, Shadows, Colours, Motions of the Objects themfelves. So that from a clear Underftanding of this, the Reafon, Caufe, and Manner of Vifion will be clearly underftood.
5. Now becaufe the Structure and Making of fuch in Artificial Eye is very difficult, and the ufe thereof notwithftanding, very neceffary for a through Knowledge of Opticks; I having only mention'd this at prefenr, that fuch as have a Mind to be curious in it, may, if they pleafe, prepare the like.

I Thall rather as a Supplement to it, make ufe of a darkned Room, or Perfpective Box, in which all the Appearances that are made in the Eye are in fome manner reprefented. Prepare therefore a Box of the fhape in the feventh Figure, let it be four or five Foot long from A to $D E$, and make the bottom of it $B C$, Concave towards the End A, and the bottom of the Box $B D E C$, being made Cylindrical, and not Tapering, as the part A FG is, that the movable bottom $B C$, may be placed nearer to or farther from the End A. At A place a Convex Glafs of the length of the Box in a Hole as large as the Glats, which the larger it is the better, becaufe of feveral Tryals that may be made with ir, which cannot be made with a fmaller. To this Hole cut feveral, as eighr or ten Pieces of Paft-board that may each of them ferve to cover it, and in every of them cut a Hole of a Round, or other Figure you would, ufe, and either in cording to the Tryals you defign by them; ler the infide of the Concave bottom de made very White, to receive and reflect the Points of Light, and make a Hole in the fide of the Box H, covered about with Leather, or thick Wollen Cloth, with a Hole large enough to put ones Face into it, fo as to fee the Spe-cies or PiEture of outward Objects upon the bottom, then turning the end A where the Glafs is placed toward the Object (if the Sun thines upon in, it is the betrer, becaule of the great ReHlection of Light from fuch Objects, flide the moveable botrom $B C$, to or fro, "till by looking in at the Hole H, you perceive the Reprefentation of the outward Objects very perfect, then take notice of the dittance of the Object, and likewife the diftance of the bottom; the Pofition; Magnityde, Brightnefs, Colour, and all the other Remarks that appertain to the explaining the feveral Appearances that may happen to the Eye, then fit is for reprefenting Objects at a greater diftance, and take notice of the diitance of itie bottom; and all the orher Kemarks neceffary for explaining your Inquiry: The like may be done with the various apertures of Paftboards, which may ferve to explain all that migh suppen to the Eye, by the contracting and dilating the Pupil, by obferving the definednefs of the Species on each lide the $A x$ is, and where they are molt diftinet ; and fo for all orher Queftions that may happen concerning what Light is in the Eye, and what Effects it there produces. It may be convenient to fix a Ball and Socket underneath it to make it more eafy to be managed. It may allo be made fquare as well as Cilindrical, provided. the bortom of ir, $B C$, be a Concave of a part of a Sphere of the length of the BoxesRadius.
Let this therefore fuffice at prefent frir explication of the firft Principle of the Emanation of Light from the Luminous Body, and for the Reception therof upon the fubject; that the Light is conveyed from every Point of the Luminous Body, to every Point of the. Body inlightned, through a uniform tranfparent Medium by direct Emanations, or in imaginary ftraight Lines. The fame Rule holds in all Light that proceeds from an Object inlightned, that promifcuoufly reflects the Light caft upon it every way, for fuch a Body may be faid to thine, as it were, by the Light of another Body, and may therefore upon that account be faid to be a fecundary Luminous Body, and the Light a fecundary Light, fuch as that of the Moon, and the other Primary and Secundary Planets, fa that the fame Rule will hold in both, and the inlightning and the inlightned Cones are to be confidered in the calculation of Rays from Bodies Thining by a fecundary Light, and the Proprieties and Proportions to be obferved in hoth, in their Power and Propagation, will fall under the fame Rules as I thall atterwards more at large explain and manifeft.
"Next, As light is thus propagated by imaginary ftraight Lines, fo is alfo Sladow, which is nothing but a Defect or want of a peculiar Light, taken off or intercepted by an upacous Body, or of a Body that will nor permit the Rays to pafs onwards in its direat Courfe, which is only vifible by Accident ; that is, by finding from that part a defect of the Influence of Light, which we are fenfible of, every where about it. And by this means it is that we fee the dark or Thaded fide of the Moon in, an Eclipfe of the Sun; that is, we perceive fuch a part of the light of the Sun taken off by the opake Body of the Moon coming between that and us, but of it felf it is no ways vifible; for though we may be faid to fee that Thaded part of it which hides part of the Sun, yet we cannot fee any part of it which is without the Suns Limb, fo were the Body of the Moon in an Eclipfe of the Moon, perfectly within the fhadow of the Earth, and that no manner of Light by the refraction of the Sun-beams in the Atmofphere were conveyed to it, we fhould fee no other appearance of it, but only that fometimes this, fometimes that Star would difappear which was covered by ir, and it is only diftinguifhed by the Light about it.

This therefore comes under confideration only relatively with refpect to Light, and is to be calculated as a Defect, though the fame Rules in calculation of the two before mentioned Cones will here hold alfo, but as Defects or like Quantities in Algobra marked with a Minus.

Sect. VI.

A farther Continuation of the Lectures of Ligbt. Read about April or May, 1682.

The CONTENTS,

1. Light, the Medium by which all or moft part of the Knowledge we have of the Celeftial Bodies is conveyed to us. A farther confirmation of: a Plenum. Mr. Romer's Obfervation of a temporaneous Propagation of Light not conclufive. That the Medium is abfolutely Denfe, and where the Parts are immediately contiguous, the propagated Motion mult be ineftantaneous. . 2. Tho this propagation be inftantaneous, yet the impreffion of this Motion is Momentary, or Temporaneots; therefore every Pulfe of Light is Momentary, and requires Some time, tho this is inconceivably Jbort. Mr. Hobb's Expedient of a Conatus ad Motum infufficient. That there muft be an actival local Mation, and that able to break the moft folid Bodies. What Light is in the Agent, Medium, and Patient, is explain'd by a familiar Example :- All Motions local, and differ only in the lengths of Spaces, and Moments of Time. 3. How Light is inftantaneoufly propagated in Orbem, evinced, by a cogent Example, by wotich all the Proprieties of its Motion are clearly explained. Two different Cones may be confidered between the illuminating and illuminated Bodies. Why the Light of the Sun exceeds that of all the Stars collected, if the Stars were brought nearer, tho their Areas remain'd the favie, yet their Light would be greater. ' 4. The Proprieties of I ight propagated in a tran \int parent uniform Medium to the Eye, reduced to four Conjiderations, each of which are enlarged upor and exemplified. How the fame Corpujcle may communicate different Motions Several different Ways, in the Space of a Human Moment. 5. Every fenfible Moment of Time, as well as every jenjible Particle of Matter compofed of infinite leffer; So that in the fame fenfible Moment, the fame fenfible Point may be fuccelfiwely moved infinite W ays, when the Vibrations of a fring can be no longer difcernea, they become the Objects of another Senfe, the Hearing; the Senfible Moments of Creatures proportioned to their Bulk. Short lived Creaiures may bave as many Senfible Moments as longer lived, and in Some Senfe be faid to live as long as Man. That there are infinite Spaces in the leaft fenfible Space to be moved; and laftly, the Velocities may be infinitely fwift in each of the $\int e$ Spaces. The bigger the Body is, the Jlower ure its Vibrations. Leffer Animals fee thofe Vibrations which wee can only bear. A Continuation of that Subject of the Propagation of Light. That the vaft Number of fuccelfive Impulfes in a Human Moment is no Objection; So that upon the. wobole, there may be alfigned to the Propagation of Light, a real local Motion. 6. From the former Reafons, the Author deduces the Caufe of the perfect fluidity of the vaft Expanfum of Matter or Æther, between

Lectures of Ligbt.

the Planctary Bodies. Why one fluid Body binders Motion thro' it, more than another, inftanced by fome Experiments. R. W.

Light the Me-

 dium to convey all Celeftial Knowledge.IHave formierly explaind'here feveral Properties of Light, which I have been the more particular in, hecaufe it is the Medium, by which all the Knowledge we have of the Heavenly Bodies is conveigh'd to us: for though we are affected alfo by the Fear, yer it feems to be conveyed to us by no other Medium than that of Light ; for Light, ás I have fhew'd you, feems to be nothing elfe but an Intemal Morion of a Tranfparent, firft hegun, or impofed by the Luminous Body, upon the Parts of the Uniform, or Tranfparent Medium; and then propagated through that Medium, to the utmoft Fxtent, or Limits of 'it. Now from the boundleffnefs of its Propagation, and the Inftantaneoufinefs alfo of it, I conceive that the Parts thereof are abfolutely Contiguous, and make a Plenums; fo that at the fame Inftant that a part is moved hy the Lucid Body, at any one part of the Medium, the utmoft Extreams of the Medium, on that fide towaräs which the Mution is impreffed, are moved alfo. And this agrees with the moft curious Obfervations that have been hitherto made concerning it; and though Monfieur Romer indeavours to make it otherways by Obfervations made about the Satellites of Fupiter; yet, as I have formerly fhew'd you, they are not fufficient to prove his Theory; becaule, fuppofing his Obfervations and Calculations exadt, yer there may be other as probable Caufes affigned to folve the Appearances, as this which he has affigned: So then if the Propagation be inftantaneous, it will follow, I fay, that the Modium is perfectly Denfe, or the Parts immediately contiguous one to another; for if there thould be Vacuities interfperfed, and fo the Parts behind thould be necelitated to move through that Space, before it could touch the next, and that another fpace, before it.could touch the third, and that third another Space to pafs, before it could touch a fourth, and fo onwards; it would follow, that the paffing of every one of there Spaces would take up fome time, and confequently would make the Motion temporaneous but where the Parts are immediately contiguous, the firft cannot move without, at the fame Inftant, moving the fecond, nor that without moving the third, nor that without moving a fourth, fifth, fixth, and fo forward, to an innumerable Series, or to the utmoft extent of the Medium. The ingenious Defcartes, therefore, compares it to a folid Rod or Stick, whofe Parts being all contiguous, the one End cannot be thrult forward, but that at the fame Inftanr, the other end is alfo thruft forwards, which is a plain and very fenfible Explication of what is meant by Inftantaneous Propagation in the Medium, viz. a moving rogether of all the Parts of the Medium, and not a fucceffive.

Its Imprefion 2. Now though the Propagation be thus inftantanenus, yet the Impreffion of on the Mredium this Motion on the Medilum is Momentary, and though it be never fo thort a mamentary. Motion, and never fo quick, yet it mult be temporary; for if the moving Luminous Body does move, or remove the Medium before it; it mult remove it fome fpace, and that Space cannot be paffed without fome time; and therefore, I conclude, that every Stroke, or Pulfe of Light is Momentary, and latts for fome fpace'till a fecond Pulfe or Stroke is impreffed, though the Duration of each Pulfe be never fo fhort; as fuppofe, but the thoufand thoufindth part of a Second of time,yet a Thoufand Thoufand of fuch Pulfes will make a Second of Time, and though the fpace that it moves be but the thoufandth Part of a Hairs Breadth, yet even that is a Space, and has a terminus a quo, and a terminus ad quem, and an interjacent fpace, through which the Motion muft be Hobbs's Expe-performed in fuch a Space of time. Nor will the Expedient which Mr. Hobbs dient infufici-has found out, to fave a Local Motion, ferve the turn; for he would have it to ent. be nothing but a conatus ad motum, an Endeavour to move, and not a Real Motion, and Defcartes would have it a Propenfion to Motion, and not a Motion; but what the one means by Conatz/s, and the other by. Propenfion, if it be not an actual Motion, I underftand nor; but as I thall hereafter prove, it muft be an actual Loco-Motion, for the Experiments I thall bring for that purpofe, will : manifeft it to the Senfe to be a Local Motion, and that very confiderable too, in as much as it is able to break in Pieces even the molt folid Body in the

World. Now when I fee a Mafon holding the Edge of a Steel Chizzel hard Afamiliar Ewagainft a very folid Marble Stone, with his Left Hand, and with his Right, ample to exftriking upon the Top, or Head of that Chizzel, with an Iron Hammer, fo as plain theje to break off a piece of the Stone, I cannot but conclude that that Chizzel muft have had more than a Conatzss ad Motum, to make the Marble break, and that there was a real Local Motion of the whole Chizzel together forwards, fo far as the Edge thereof did penerrate the Marble before it brake it. And this, I hope, may ferve as a fenfible Similitude, by which I would inform the Underftanding what kind of Action or Motion it is, by which Light is firf generated in the Luminous Body: namely, like the Motion of the Hammer againtt the Head of the Chizzel; next, how it is propagated thfough the tranfparent Medium, viz. the Medium is all moved rogether, even as the Body of the Chizzel : And, Thirdly, How that acts upon the Subject inlightned, and that is, after the manner as the Marble is broken by the Chizzel. This may, perhaps, feem but a coarfe Similitude, for the Explication of the Motion or Action of Light, which is the moft curious and fpiritual of all fenfible things. But yet, I have this to anfwer, that the more plain and obvious it is to be underftood, the better it is to inform the underfanding of the manner how, an Operation, which is too curious and fine to be reached by our Senfes, is performed: And though I cannot have an imagination of a Space, but the thoufandth Part of the breadth of a Hair, yet, by my Reafon, I can be certainly informed that fuch a Space there is, and even by Microfcopes we can make fuch a Space vifible, and yet our fancy will diminifh no farther than the leaft fenfible Point to the naked Eye; as the point of a fharp Needle or the like: But we are not lefs certain of it, though we cannot imagine it, that is, make an Image or Reprefentation " of it to the Mind. Now we are by the Eye affured that there is Light, and confequently, I fay, there is a Motion impreffed therehy upon that Senfe, becaufe there is no Senfe but what is made by an Impreffion of fome Mo. tion, and that Motion is not imprelfed but by a Body moved with Local Motion, (for I cannot underftand any other Motion,) and Local Motion muft have a Space to pafs, and that Space muft be paffed in fome time ; and therefore Motions can only differ in lengths of Spaces and Moments of time; if therefore I underttand, comprehend, and imagine one Local Motion that falls under the reach of my Senfes, I can by fimilitude comprehend and underftand another that is ten thoufand Degrees below the reach of them, they having both the fame Proprieties, and differing only in the Spaces and the times; whofoever therefore, endeavours to explain any infenfible Way of producing an Effect, by fomewhat that is lefs intelligible than that which he would explain, ads prepofteroufly, as I could have inftanced in the Explications of very famous Men, which inftead of informing, do much confound and perplex the Underftanaing; but it would be too long for this place.
3. I Thall therefore proceed, and that is, to explain, how the Morion of How Light is Light is propagated in Orbem, for fo'we find it, which this Similitude I have opropem flewn. here ufed does not reach, but only that of a direct Ray ; to make this therefore plain to the Llnderftanding, I would propound a hollow Cone of Brafs, or fome other ftrong clofe Subftance, whofe bottom fhould be made of a yielding Subftance and Spherical, and the Apex thould have a Cylindrical Hole, by which it might be filled with Water, Quickfilver, or fome other fluid Subfrance: Into this Cylindrical Hole or Syringe, I would have fitted a Cylinder fo clofe as not to let the Water pafs by it, having filled this hollow Conical Veffel, I ftrike againft the end of the Cylinder with a Hammer, and force it to move the whole length of the Cylindrical Hole; In this care it is clear, that the Water which filled the whole Veffel, and Cylindrical Hole muft be all moved towards the bottom, and at the fame Inftant that I force in the Cylindrical Plug ; now fuppofing the Water not capable of Condenfation, and the fides of the Cone not fubject to fretch, and only the bottom capable of being moved; I find that the Plug muft have driven all the Water in the Cylindrical Hole into the Cavity of the Cone, and fo mult have driven forward as much as lay next to it of equal fpace, into the face of another equal Quantity of Water, and fo onward ; 'till that which touches the bottom muft drive the bottom fo
much lower, as to inlarge the Capacity of the Cone enough to receive the Quantity of TVater in the Syringe, forced into the Cone by the Plug. Now if we coinfider this Similitude, it will explain fome other Proprieties of the Propagation of Light. For, tifft, it is clear that every part of the Water muft he moved at the fame Inflatit. Secondiy, That there is no reafon why the Motion of all Parts that lie at equal Diftances from the end of the Syringe, fhould not have the fame Degrees of Motion. Thirdly, Why the Parts that lie more remote from the Syringe, have itill the lefs proportion of Motion communicated to them: Fourthly, It thews us plainly what that proportion is; namely, a Proportion seciprocal to the Square of the Diftances; for every of thofe Spaces mult be equal to the firt, as therefore the fame quantity of Motion is expanded into a bigger and bigger Ared, fo mult its Power upon an equal fpace of any two Diffances, have irs Power reciprocal to the Areas of thofe Bafes; fo that hereby we fee clearly the reafon why the Power of the Light at feveral Diftancus is diminifhed in Reciprocal Proportion to the Expanfion of it. And this may .erve for the Explication of the Propagation of Light, from any fingle Point of a Luminous Oibject. Now the fame, thing that we underftand of any one fhining Point of duminous Object; the fame thing I fay, we are to conceive of every one of the whole Luminous Body; for evey point of it doth in the fime manner propagate its Influence, Power, or Motion; for if inftead of one Syringe at the end of the Cone, there were Two, Three, or more fuch Sy ringes, if any of them were moved, the Effect would be the fame, as in that-I have mentioned already, and if all were moved together, every one would have its Influence on the bottom, as if it had acted fingly, and fo evey Point of the bottom would be affected, or moved by $\mathrm{it}_{;}$as well as every of thofe Points would alro be affected, or moved by every one of the other Syringes; as fuppofe, a, e and i, were the three Holes of thefe Syringes, and B, C, D, F, were the bottom of the Cone; if the Syringe e were moved, it would propagate a Motion, or force to every point B, C, D, F, of the bortorn B, F, fo likewife if the Syringe a, or the Syringe i, wero moved fingly, each of them would propagate their Motion to every one of thofe Points, B, C, D, F, of the Bare B, F, and to every other Point of it. And confequently, all thofe Syringes being moved together, muft every of them influence or move every Point of the Bafe, B, F, with its own diftinct Influence. Now the fame thing that will happen in this Cafe, in the Preffure or Motion of the Water againit the bottom, will alfo be in the Cafe of Light ; for if we fuppofe a, e, i, to reprefent the Body of the Sun, and B, C, D, F, the Surface of a Body inlightned by it; It is moft certain, that every Point of the Bafe or Obje\&t, B, C, D, F, is influenced by every Point of the Superficies of the Sun that fhines; fo that there may be confidered in the Radiation of Light, between a Luminous Body, and an inlightned Body, two forts of Cones, each made up of infinite Radiations; namely, the inlightning Cone, and the inlightned Cone; the inlightning Cone I call that, which is propagated from one Point of a Luminous Body unto all the Parts of the Body inlightned, fuch are $B, a, F, B . B, e, F, B . B, i, F, B$. the active, or inlightning Point being the Apex thereof, as a, e and i. And, $2 l y$, The inlightned Cone, I call that, which has the inlightned Point for its Apex, and whofe Bafe is terminated at the Luminous Body, and all terminate in the inlightned Point, fo if a, e, i, reprefent the Body of the Sun, then $a, B, i, a . a, C$, $i, a . a, D, i, a$, and a, F, i, a. do each of them reprefent a Cone, whence it will clearly follow, that the bigger the inlightning Body is, the more Radiations there will fall upon it, and the more the Cone will be inlightned; and this is one of the Reafons why the Light of the Sun does fo much exceed the Light of all the Stars, becaufe that in the Hemifphere of the Sun that Shines upon us, there are more Luminous Points or Radiations than from all the Stars of a whole Hemifphere of the Heavens; but there is alfo a fecond Caufe, and that is to be fetcht from the greater Diftance of the inlightning Bodies of the Stars; for, as I fhew'd before, the Power of the Light doth decreafe reciprocally to the fquares of the Diftance. For fhould all the Luminous Bodies of the Stars be diminifhed in Diameter, according to their differing Diftances, and be brought fo near us, as the Sun, and fo appear all under the fame Angle they now do, their Light would be confiderably ftronger, and greater to us in the Night, and even in the

Day than now it is; though the Area of them all put together, would be no bigger than now it is; for the Light from the brighteft Star, as of the great Dog Star, though in a Dark Night it feem very vivid, yet could it be feen with the Light of a part of the Sun appearing of the fame Diameter with it, it would look very faint and weak. And when I have viewed a Star in the Daytime, with a Telefcope, though by the help of the Telefcope I have mightily fortified that Light, and fo centuplicated its Power, yet after all, I found thar the Body of it has appeared fainter than the Body of the Moon at Noon.
4. Thefe then are all the Proprieties we need to take notice of in a fimple Propa- Proprieties of gation of Light through a tranfparent uniform Medium. Namely, firft, that there is a Light to be obPropagation of Lighr from every Point of the Surface, in every part of the tranfpa. ferveet. tent incompaffing Medium in orbem, that they each of them exert their particular Influence in that Orb, as if they were all fingle and diftinct. And, Secondly, That the more of thefe fingle Rays there fall upon an inlightned point, the more it is inlightned, and that each of thefe Rays does act upon the inlightned Body with the fame Power, as if it heted fingly, though at the fame time, Millions of Radiations from other Points do act upon it.
This does feem Jomewhat difficult to be underfood how it fhould poffibly How a Bodj be f : : But yet if we confider, that though we cannot by Senre apprehend the may communivery Manner of its Acting ; yet we are not without fenfible Examples of fuch cate different kind of Actions naturally performed: For if on the fmooth Superficies of a motions diffe flanding Water, we let fall a Drop of Water, we fhall, I fay, plainly fee how the Motion made by the fall of that Drop is every way propagated in Rings or Waves increafing and fpreading further and further from the Point where the Motion was begun; and this every way with equal Velocity ; which may be argued from the perfect circular form of fuch Rings. But that which comes yet nester to the Similitude of Lighr, and for which Property only I mention it, is, if we let fall at the fame time 10 or 20 Drops in feveral diftances one from another, we fhall find that every one of them will produce Rings about it; each of which will continue to be propagated equally every way as regularly, as if there had been but one Drop let fall: And though they variounly crofs one another, and fo, one would imagine, fhould confound the regular progagation of each others Rings; yet whoever fhall obferve any one of them in the time of fuch propagation, thall find that they are not in the leaft difturbed by the Action of any ocher, though they may be croft with 20 fuch differing Confecutions of Rings. And though, I confefs, after all this, it does feem not a little difificult to comprehend how one and the fame Pasticle of Matter, or of the tranfparent 'Medium, fhould at the fame Inftant propagate through it a thou: fand differing Motions, a thoufand differing Ways; yet fince we are affured by the laft Similitude of the Rings or Waves upon the Surfáce of the Water, that it is actually done in Nature, and that vifible to Senfe, though we cannot fo clearly comprehend the Metaphyfical Reafon thereof: yet 'tis enough for a Principle to build upon, that we are affured it is fo, and that fuch and fuch are the Effects that flow fromit. So tho'it be difficult to comprehend theMetaphfical Reafon, why a Body which is by another moved with a certain. Degree of Velocity, fhould continue to move forwards in a right Line with the fame Velocity it received, till it be fopt by meeting with other Bodies, and communicating that Motion to them: (For who can underffand what it receives, and what it parts withal, and what it is diftinet from the Effence of a Body that fo moves it or ftays it ?') Yet fince we are fenfibly informed that really it is fo, it will be enough for a Phyfical Priuciple of Nature, of which we can have no further Light or Information, that will make it more plain and certain to us. Now though it do feem thus difficult to be explain'd, yet 'tis not wholly impoffible. I do confefs, the Confideration they have about it, of the neceffity of the Pro. pagation of it many various Ways through the fame Body, in the fame Inttant, does much confound the Imagination; becaufe who can imagine a Body to communicate Motion to another, withour its being actually moved it felf? And if it be actually moved it felf, how can it move more than one way at once? And if it moves but one way, how can it move all the oppofite Bodies with their peculiar Propagations?

Senfible Moments compored ofinfinite other.
5. But to this it may be anfwered, firit, that there are in every fenfible Point

- otions diftinet, without interfering one with another : For as there may be Millions of Morions communicared to a fenfible Point, fo there may he as many Millions of diftinct Particles to receive each of them diftinctly.

But befides that every fenfible Moment of time is compofed of infinite Inftants, or of an indefinite number of other Moments of time of a Morter duration; fo that within a moment of time that is fenfible to a Man, the fame fenfible Point may he moved many Millions of ways fuccffively, and fo communicare each of thofe Motions diftinct, without being confounded with any two : And the next human Moment may have and convey as many others, as many feveral ways. Now that this may be fo, we may yet farther confider, that Motions may be infinitely fwifter than fenflble Motions; that is, than thofe Motions that we can fee a Prizs and Pofterius in: For the fwifteft Motion that we can fee, is that wherein we can diftinguifh the Body moving from the Terminus a quo to the Terminus ad quem, in a fenfible time, or a fenfible moment: For if it be in both within the leaft moment of time we are able to diftinguifh, it feems to us as if it were in both the terms and the interjacent fpace altogether. For inftance, take a long String, and ftretch it out berween two Pins; if it be long and but flack, we are able to fee and diftinguifh it, as it moves from one fide to the' other, and how it returns again, becaufe it makes its Vibrations within the compafs of feveral human Moments of time; and if it come within three fenfible Moments, we feem to fee it in three fenfible Places. But if it be ftrain'd yet ftraighter, fo as to make its whole Vibration within one human Moment, we fee it as if ir were in all parts of its fpace and in the two Termini at once, about which time, and not before, it begins to found. Ulpon the fame account it is, that if you take a Coal of Fire in the Night, and move it to and fro pretty quick, it feems to make a perfect Line of Fire; whereas if it be moved flow, you fee it diftinct as a Body moved. 'I could give a hundred Inftances by which I could make it maniifeft, that the Pbenomona thereof proceed only from the length of time there is in the fhortef Moment of a Man.

Senfible Mo-

 ments of Crea-ares proporti-

And I do not at all doubt but that the fenfible Moments of Creatures are oned to their bull fomewhat proportion'd to their Bulk, and that the lefs a Creature is, the Thorer are itsfenfible Moments; and that a Creature that is a hundred times lefs than a Man, may diftinguifh a hundred Moments in the time that a Mandiftinguifhes one. For when I hear a Fly moving his Wings to and fro fo many times, with fuch a Swiftnefs as to make a Sound, I cannot but imagine, that that Fly mut be fenfible of and diftinguifh at leaft 3 Moments in the time that it makes one of thofe Strokes with his Wings, for that it is able to regulate and guide it felf "by the Motion of them. And the like may be faid for the quick Motions of other lefler Creatures. So that many of thofe Creatures that feem to be very fhorr lived in refpect of Man, may yet rationally enough be fuppofed to have lived, and been fenfible of and diftinguifhed as many Moments of time as a Man; becarfe within that fpace of time it has lived, it has had as many diftinct Moments of time, and has had as many dittinct Differences of Moments, as a Man hath in the Age he lives. But this only by the by.

But farther, in the third place, as there are infinite Parts in the leaft fenfible Part, and infinite Moments in the leaft fenfible Moment; fo there may be infinite Parts of Space in the leaft fenfible Space to be moved. For fince all Space is infinitely divifible into leffer, we cannot fay how little a Space is neceffary to be moved to make a fenfible Propagation of Light. Poffibly the thoufand thoufandth Part of the leaft fenfible Space, may be fufficient to be moved, to make the continuation of the Propagation of Light through a Particle. Now we are fenfibly informed by the Microfcope, that the leaft rifible Space (which is that which appears under an Angle of half a Minute of a Degree) may be actually diftinguifhed into a thoufand fenfible Spaces: And could we yet fur* ther improve Microfcopes, 'tis poffible we might diftinguifh even a thoufand more Spaces in every one of thofe we can now fee by the help of thofe Microfcopes we have already. Now poffibly a lefs Space than the leaft of thefe may

Lectures of Light.

be enough for a Body to be diflocated in the Motion that is neceffary to produce the Propagation of a Ray of Light.

But then in the fourth place, Velocities may be infinitely iwift in thofe Splces: For who cán imagine the fimallnefs of time that a Motion can be performed through the fmalleft of thofe Spaces?

To explain which a little further, I fay, 'tis evident firlt to the Senfe of Seeing, that the bigger the Body is, the flower is its Vibration, and the. fmaller, the quicker: Which is evidenced to the Eye in all pendulous Motions, and in the Kecurfions and Vibrations of Pieces of Timber, which the longer and big. ger they are, the more flow are the Vibrations made by them; and the fmaller and thorter, the quicker. But then where the Eye is unable to affift us any further in diftinguifhing the fwiftnefs of Vibrations, there the Ear comes in with its affiftance, and carries us much further : And as I Thewed before in the Vihrations of Strings, fo now I inftance further in Bells, where we find by the Tone ${ }_{2}$ that the frnaller the Bell, the fharper and more fhrill its Sound; and this caro ries us on to a Sound fo fharp, that we only call it fcreeking, and at length it becomes offenfive to the Ear, becaufe beyond that it cannor endure the Senfe of a fhriller Note or quicker Vibration : For that the Shrillnefs of the Note depends upon the quicknets of the Vibration, I think I need not inftance. Hence I conceive that there may be yet beyond the reach of our Ears infinite Thriller and thriller Notes, which may be diftinguifhed by Ears or Organs of Hearing adapted by their leffer Bulks and finer Parts, to diftinguifh thofe quicker Vibrations: And therefore thofe leffer Creatures that we difcover, tho' poffibly they cannot hear thofe Sounds which we hear, but are able to diftinguifh every Turn and Rerurn of the Vibrations of them by the quicknefs and aptnefs of their Sight $\frac{g}{2}$ yet they may have as great variety in the differences of Sounds wholly imperceptible to us, as we have within the reach of our Ears. And as the Voice of Man is limited to a certain number of Notes, lower or higher than which no Human Voice can reach; fo may it be in the Voices cr Sounds made by thofe fmaller Creatures. That this may be fo, we may argue yet farther from the Curiofity and Make of their Sight; for we plainly enough fee, that the fmaller the Eye is, the fmaller is the Pieture of the vifible Object that is made at the bottom of it upon the Choroeides or Tunica Retina. And this, as I may hereafter explain, is as demonftrable from the Principles of Refraction and Opticks, as any, one thing in that Science : Which if fo, how fmall will be the Picture of the Object that is painted at the bottom of one of thofe Eyes which by a Microfcope we difcover in the Clufter of the Eyes of Flies, and other fmall Infects? And yet after all this, we have no reafon to doubt that thefe Creatures are able to diftinguifh as many fingle Parts in thofe Pictures, as a Man can in a proportionate Pieture at the bottom of his Eye. For as the Senfation of a Man's Sight is limited to a certain bignefs, lefs than which none can diftinguifh; which, as I have elfewhere Thewed, is not lefs than what is comprifed within about a half a Minute of a Degree, at moft, of the Orbicular Part of the bottom of the Eye; which in all probability is from the bignefs of the fmalleft fenfible Part receiving the Image, or of the Optick Nerve that is capable of conveying a diftinct Motion or Senfation to the Brain, as Des Cartes has very. ingenioufly explained: So in thefe fmall Creatures, where every thing elfe is proportionably fmaller, 'nis, not at all to be doubted but that thofe Fibres that convey the Senfation to their Brain, are proportionably alfo fmaller; and confequently that they muft have at leaft a Faculty of diftinguifhing the Parts of that Picture, which whole Picture may poffibly be made upon much lefs than half a Minute of a Degree of the Orbicular Part of the bottom of their Eyes only : For as the Space of thofe Fibres is Chorter between the bottom of the Eye and the Brain, fo may their bignefs be proportionably fmaller. All which Particulars confider'd, it does feem that Nature has as it were ballanced the Gifts beftowed upon them by fome other Means adapted more particularly to each of their Conftitutions; as were it proper for this Time and Place, I could more particularly explain and demonftrate. But thefe Speculations being only by the by, I fhall rather proceed with my Difcourfe concerning the Nature of Light, fo as to make the manner of its Operations mechanically and fenfibly intelligible; by confidering further, that if there be a realMotion neceffary for
every diftinct Propagation of Light; then it will feem to follow, that every luminous Point mult have its diftinct Moment to be propagated this way and that way within the fpace of a fenfible Moment ; Which if it be affirned to be fo, I fee no Reafon in Nature why it may not be poflible, and that from thofer four Confiderations I before fpecified. So that though the whole Hemifphere Thould be filled with lucid vifible Points, as we find in a clear ftarry Niglit, that it is pretty thick fet with Stars, and by Telefcopes we difcover is to be yet thicker: Why, I fay, Impreffions may not be made from every one of them diftinctly and fucceffively upon one fingle fenfible Point of Matrer in one human moment; and confequently why the fame Chime of Impulfes may not be again repeated the next Moment, and fo perpetually in every human Moment: Fos stis not the Number of them that would at all impede fuch a Conclufion, no, not if there thould be ten thoufand times as many more; for there might be found fmaller Moments enough within that Space of a fenfible or diftinguifhable Moment, to fit every one with one at leaft : fo that the fame point of Matter might communicate every one of their Impreffions diftinct and fucceffively within that Period: And befides this, there might be found diftince Parts enough, within the Orb of this leaft fenfible Point, to propagate every one of thofe Motions diftinct, their various ways, by appropriated Parts, all at the fame Inftant.

So that upon the whole, we may affign to every Propagation of Light through the leaft fenfible Space, a real temporary local Motion. And if Monf. Des Cartes by his Propenfion to Motion, and Mr. Hobbs by his Conaius or endeavour to Motion, do not mean fuch a real local Motion, their Nörions are neither of them intelligible to others, nor did they really underftand them themfelves. For bare Propenfion to Motion, is not Motion, and confequently cannot propagate Motion : And Endeavour to move is not moving, and fo cannot progagate Motion: But for the Propagation of Motion, Motion is neceflary. . And this I hope has fhewed a Poffibility at leaft, if not a Probability, how it may be made.

The Caufeof the Fluidity of the vaft Ex:panfum.
6. If then this be fo, we may hence deduce the Caufe of the perfect Fluifdity of the valt quantity of Matter which fills the whole Expanfum of Space between the folid Caleftial or Luminous Bodies of the Univerfe. And we may thence bring a demonftrative Reafon why it becomes fo free from impeding the Motions of the Planetary or Cometical Bodies that are moved through it. For if every one of there Luminous Points, the Fixt Stars, which fill almolt every Point of the Heavens in a clear Night (as is made yet much more vifible by the help of long Telefcopes) be as glorious and Luminous Bodies as the Sun ir felf, though they here appear incomparably lefs, and of a fainter Light, by reafon of their Diftances indefinitely almoft more diftant from us than that is: If, I fay, every one of thofe Fixt Stars, or glorious Suns, be ftuck up and down here and there in the vaft Expanfum of Matter that fills the whole of Nature, not at equal but various Diftances one from another; and every one of thofe do really once at leaft within the fpace of one human Moment of time, really move the whole Expanfum of the Ethereal Matter (as ${ }^{\text {Tis }}$ moft evident and demonftrable they do;) then what can there poffibly be more rationally contrived to make and preferve the perfect Fluidity of the Xther ? For every Point of Matter is Millions of ways, and confequently with incredible Velocity mo. ved to and fro within the compafs of one fingle Moment, and fo muft neceffarily have its Parts indefinitely divided, and loofe one from another ; and confequently being thus fluid, and the minute Motions ballancing each other in every Point of Matter,' and there Motions being proportionably 'fwifter than the fwifteft Motion of the more bulky Mafs : It follows, I fay, that the Inppediment to any bulky Bodies moving through it, muft be inconfiderable, or almoft nothing. For the Parts of this Matter being indefinitely fmaller than the leaft fenfible Point, and the Motion of each of them, though never fo fmall, being within the compafs of a human Moment determined every way, or infinite. ways, the Motion of them one way muft ballance that of others another, and confequently give no. Impediment to the fenfible or bulky Body moved through them. I could have proceeded further from one and the fame Principle to have
explain'd how this continued Chime of Motions from every Part do create va. rious forts of harmonical Motions in concrete Particles, which have their various and admirable Effeets in producing the Harmony which is in Nature. But of that fome orher time, this will be enough at prefent, to intimate that every one of thefe Cæleftial Bodies have their thare in the Motion of the Matter of the World, and every one of themact more or lefs powerfully, according as they are nearer and nearer pofited to the Parts acted upon; and confequently the Sun, as I before hinted, becomes in our Parts more confiderable than all the other Caleftial Bodies. ' ${ }^{\text {'Tis }}$ poflible there may have been in fome former Ages of the World, a Notion fomewhat like this; but not fo well underftood by thofe that we are beholden to for the Hint of it : Which may be argued both from the Platonick and Pytbagorick Tbeorys, and müch more from thofe Scraps we have of the Philofophy of Confucius, the Cbine $\int e$ Philofopher, who was conternporary with Pytbagoras, but wrote of the Philofophy of an Age fifteen hondred Years before him : But the regaining of it is not to be hoped from any of their Hints, but from a clear and Iteddy Geometrical Method of Reafoning, proceeding from the more fenfible to the more abftrufe and infenfible Caufes and Effectsof things.
Nor can I conceive any other Notion why one Body fhould refift or hinder Why one Filuid Motion more than another, than that the one is lefs fluid than another; that binders Motion is, that the folid Parts of the one fluid Body are fmaller than the folid Parts of more than anothe other fluid Body. And we find it evident to Senfe in fenfible Fluids, where we may fenfibly be affured; that the groffer the Particles of the fluid Body are, the more impediment does that Body give to the Motion of another Body through it: As upon the evaporating of Liquors that have folid Bodies in them, in the mixing of Pouders with Water or other Liquors, and in the mixing of Salts and Sugars; which give a much greater impediment before they are dif. folved into Fludity than afterwards. If then from fenfible Experiments we proceed to Effects infenfible yet evident to Reafon, we may conclude that the Ether muft be abundantly more fluid than any other Body, and indeed may be faid to be indefinitely fluid; and fo the Refiftance that it muft give to bulky Bodies, muft be indefinitely fmall, becaufe there is fo mall a Part of it diflocated by the tranfit of a Body, being indeed nothing but a meer Superficies, or the Parts of it that are next contiguous to the Body moved through it. But of this I Thall upon onother occafion fay more, when I thew the Caufe why the Bodies moved through them, though they do really every moment diflocate as much Body as is equal to them in Bulk, do notwithftanding receive little or no im: pediment to their progreflive Motion.

Sect. VII.

The CONTENTS.

BEfore 1 give the Contents of this Section, I think it may be convenient, in order to the better underftanding of mbat follows, to premi f e, That our Anthor baving thus far profecuted bis Inquiries into the Nature of Light, What it is in the Luminous Body, to wit, a certain Vibrative Motion of its Parts, of a determinate Velocity. adly, What the Medium is, bow it is affed upon by Light, and how Light is thereby propagated, with all the necelfary Qualifications of this Medium. 3 dly, What this ACtion is on the Eye, and bow the Poopers of Light are exerted upon the fenfoble Part thereof, to caufe Vifion: Infiead of proceeding farther in the Method be had propofed to himfelf, of explaining how the Rays or Pilles of Light from the Luminous Bodies are Reflected, Refracted or Inflated, by a fucceffive. Refraction, bending the Ray into a Curve; which Several Subjects If uppofe be de fign'd to treat of though I do not find be ever did (except of Inflection, of which fee Micrography, p. 217.) being diverted by other invervening Subjects, which carried bis Thoughts other ways: And indeed the Field of Nature is S_{0} large, and So plentifully adorn'd with tempting Curiofities, that it is a Reftraint upon the Collector, not to leave one befote it is thoroughly ex a mined to reach at another. I fay, mohen our. Author bad treated on thefe Heads lo far, be leaves this Subject, I muft confefs, in Some fense imperfert and taking occafion from his baving mention'd Time and a Human Moment, be mrote the following Difcourfe, wherein,

1. The Author attempts to fuew how we come by the Notion of Time, tho' the Impreffions on the Senfes are all momentary. The Communis Senfus not fufficient for this purpofe, therefore there is a neceffity of fuppofing Some other Organ. This be conceives to be what we call Memory, and then be proceeds to give in Hypothefis to explain Memory, and horo it is performed: That Memory is organical: That the Soul, tho an Incorporeal Being, yet in performing its Actions makes ufe of Corporeal Organs: That Memory is the Repofitory of Ideas form'd by the Senjes, or rather by the Soul it Self. 2. The Adtion of the Soul in ordering and foring up Ideas, is call'd Attention. The Author's Notion what it is : That the Place of the Repoftory is fomewhere in the Brain, wohofe Subftance is the Material out of which Ideas are formed, the Cbain of which is coyled up in the Repofitory, the Soul being at the Center robere the prefent Idea is made, which is the prefent Moment; and berce comes the Notion of Time and Duration, and is apprebended as a Quantity. 3. A Mechanical Reprefentation Suppofed for the better Underffanding the feveral Operations of the Soul, viz. Apprehending, Remembring and Reafoning. That there may be fome certain Point in the Brain, wherethe Soulbas its chief Refidence, and there receives its Theforrsations, and gives its Orders. This Repofitory is furnifhed woith aclapted.
adapted Matter for the Ufes of the Soul: Five forts of Matter for the Imprelfions of the Five Senses : That for Sight explain'd by the Bononian Ptofphorus: That for Sound by the Vafes in antient Theater's and Unifon-tuined. Strings. Smelling, Tafting and Feeling alfo after the Same manner are explained. 4. Out of, this adapted Matter the Ideas formed are material and bulky, of determinate Figures, Sizes and Motions. That the Soul forms one Idea each Moment, wobich Moments differ in duration in different Men. A Computation of the number of Ideas that may be form'din a Man's Life. That the Number will not be found to be an Objection againgt this Hypothefis. That Attention is the Action of the Soul in forming Ideas, and what they are. That they continually protrude eachother from the Center. That the Soul by its Radiation and the Re-action of the Ideas, becomes Senfible of, them, and fo of Time. How it is fenfible of many concomitant Ideas. How Some Thoughts loft may be recovered. That this Radiation and Re-action weakens in a duplicate proportion to the diftance of Time. That the Soul may exert its Pomper on any particular Idea according to it's own Will. That there is a continual Radiation of the Soul in the Repofitory of Ideas, and is in, fome fenfe reacted upon by them; whence. comes wobat we call a bringing to remexabrance. 5. The Adion of the Soul called Thinking, is a more particular Radiation thereof to this or that part of the Repofitory. Thinking is partly Mensory, and partly an Operation of the Soul in forming new Ideas. Reafon a more compleat Action of the Soul from comparing Ideas. As the Repofitory is better fored, fo the Soul alts betier. The Soul a jelfmoving Principle and Primum Movens. The Soul compared to the Sun in the Great World. If the Sun bad Underftanding, it woould be Senfible of the Refftance its. Rays meet witho This explain'd by Hearing and Seeing:' A double Influence from the Sur on Bodies and their Motions. Tho we tainnot conceive bow the Soul, being Jpiritual and incorporeal, atts upon Ideas that are corporeal, or can be afted upon by them'; yet woe are affured Such Effects are performed. That the Soul is not confin'd to act only upon the fe Ideas, but may extend its Power to every part of the Body, and polfibly to Some. confiderable Diftance from the Body. R.W.

BEfore I come to the difcufling of the particular Matters treated of the laft Hiow we come Section, I would a little further confider what I have been difcourfing of, by the Notion of viz. Time : And here, fince it is a general Maxim in the Schools, that Nibil eft in Intellectu, quod non fuit prius in Senfu, I would query by what Senfe it is we come to be informed of Time; for all the Information we have from the Senfes are momentary, and only laft during the Impreffions made by the Ob ject. There is therefore yet wanting a Senfe to apprehend Time; for fuch a Notion we have: And yet no one of our Senfes, nor all together, can furnifh us with it, and yet we conceive of it as a Quantity. For this therefore, fince we cannot find any external or outward Senfe, we muft feek within, and we fhall find there is fomewhat like that which is called Communis Senfus, which is receptive of all the outward Impreffions of the other Senfes. But ftill this is infufficient to afford us the Notion or Knowledge of Time; for the Impreffions on that can be no other than the Impreffions from the other Senfes, conveyed: by the Media of the fenfory Nerves, which muft be alfo momentary, as well as the firf Impreffions, and confequently do not yet fufficiently inform us of the Notion of Time. Confidering this, I fay, we thall find a Neceffity of fuppofing fome other Organ to apprehend the Impreffion that is made by Time. And this I conceive to be no other than that which we generally call Memory, twhich Memory I fuppofe to be as much an Organ, as the Eye, Ear or Nofe,
and to have its Situation fomewhere near the Place where the Nerves from the orher Senfes concur and meet.
Memory orga- Now that it is really Organical, I'argue from this, that it may be both im. nisal. improved and impaired, it may be deftroyed and exalted to a great Perfection. It is at fome times fenfible, and at other times wholly infenfible, as particularly in Sleep: And whenever 'tis fo, we have no Senfe of Time, but we pafs over all that Space of Time, as if it had not been, and we only come to underftand it by other Circumftances. Befides, we have often known that the Memory has been quite deftroyed by a Fall, or great Blow upon the Head, by a Fever, or other great Sicknefs; nay often by Excefs of Drinking, all which affeet not the Soul : And in probability, this might be caufed by fome Wound, Hurt, Bruife, or fome orher Diftemper of that Part, which we conceive to be the Organ of Memory; which makes it an unigt Organ for the Soul to make ufe of for that effect; and confequently the Soul can no more remember without the Organ of Memory, than it can fee without the Organ of Sight, the Eye, or hear without an Ear. For the Soul, or firf Principle of Life, tho' it be an Incorporeal Being, yet in performing its Actions, makes ufe of Corporeal Organs, and without them cannot effect what it wills.

Memory then I conceive to be nothing elfe but a Repofitory of Ideas formed partly by the Senfes, but chiefly by the Soul it felf: I fay, partly by the Senfes, becaufe they are as it were the Collectors or Carriers of the Impreffions made by Objects from withour, delivering them to the ${ }^{\circ}$ Repofitory or Storehoufe where they are to be ufed. Which Impreffions being aftual Motions, as I have plainly proved in the Explication of the Organ of the Eye, and the Operation of Light, thofe Motions conveyed to this Repofitory become Powers fufficient to effect fuch Formations of Ideas as the Soul does guide and direat them in : For 1 conceive no Idea can be really formed or fored up in this Repofitory, without the Directive and Archiectonical Power of the Soul; and the Actions or Impreflions ceafe and fail without the concurrent Act of the Soul, which regulates and difpofes of fuch Powers.
2. This Aftion of the Soul is that which is commonly called Attention, by which what is meant no one does further or more intelligibly explain, than only by giving the fame Notion by fome other ways of Expreffion, which, it may be are as little intelligible. My Notion of it is this, that the Soul in the Action of Attention does really form fome material Part of the Repofitory into fuch 2 Shape, and gives it fome fuch a Motion as is from the Senfes conveyed thither ; which being fo formed and qualified, is inferted into and inclofed in the common Repofitory, and there for a certain time preferved and retained, and fo becomes an Organ, upon which the Soul working, finds the Ideas of paft Actions, as if the Action were prefent.

Wotion concern-

This Repofitory I conceive to be feated in the Brain, and the Subfance thereing Ideas. of I conceive to be the Material out of which thefe Ideas are formed, and where they are alfo preferved when formed, being difpofed in fome regular Order ; which Order I conceive to be principally that according to which they areformed, that being firtt in order that is firft formed, and that next which is next, and fo continually by Succeffion, from the time of our Birth to the time of our Death. So that there is as it were a continued Chain of Ideas coyled up in the Repofitory of the Brain, the firftend of which is fartheft removed from the Center or Seat of the Soul where the Ideas are formed; and the other End is always at the Center, being the laft Idea formed, which is always the Moment prefent when confidered : And therefore according as there are a greater number of thefe Ideas between the prefent. Senfation or Thought in the Center, and any other, the more is the Soul apprehenfive of the Time interpofed.

Thefe are the Supollex of the Soul, and thefe are the Inftruments it makes ufe of in the apprehending of things or Actions paft; and by thefe it becomes fenfible of all that it really knows, and according to the Perfection or Imperfection, the Multitude or Paucity, the Regularity or Irregularity of the Order and Difpofition of thefe Ideas in the Repofitory or Memory, the Aptitude or Ineptitude of the Subftance for Formation, Radiation, Difpofition, छc. fo is the Soul the better enabled, Firft, to form new Ideas aright, or rightly to apprehend the thing to be known. Secondly to apprehend the Order according
to which they have been formed, and are ranged; that is, to know the time, or, to fpeak in the commor Phrafe, to remember. what is paft, as if. it were prefent, and how long it is fince it was done, by the number of Ideas beween. The Soul therefore underftands Time, or becomes fenfible of Time, only by the help of the Organ of the Memory, which Organ is this Repofitory of Ideas, and by means of the Order, Situation and Diftance of the faid Ideas, from the Center, or one among another, fo it becomes fenfible of Time: And Time, as unnerftood by Man, is nothing elfe but the Length of the Chain of thefe Ideas, between any two that are at any time apprehended together: And according to the Number of the Links in this Chain, fo is the Impreffion made to the Soul that apprehends it, of a longer or thorter time interpofed; and the Notion of Time is the Apprehenfion of the Diftance of Ideas from the Center or prefent Moment. And fo Time comes to be apprehended as a Quantity, and fo falls under the Confideration of Geometry and Menfuration.
3. Now becaufe nothing is fo well underfood or apprehended, as when it A jenfible Ren is reprefented under fome fenfible Form, I would, to make my Notion the more prefentation of conceivable, make a mechanical and fenfible Figure and Picture thereof, and ${ }^{\text {the Matter. }}$ from that fhew how I conceive all the Adtions and Operations of the Soul as Apprehending, Remembring and Reafoning are performed.

I fuppofe then that there may be a certain Place or Point fomewhere in the Brain of a Man, where the Soul may have its'principal and chief Seat.

I will not now enter upon Arguments or Reafonings from Experiments or Ob fervations, to determine the precife Place, though concerning the definitive Pofition thereof, I have much that I may at another time produce: But I will only fuppofe at prefent, that there may be fome fuch Place whereinto all the Impreflions made from the Senfes upon adapted Matter may be deliver'd; which Impreffions, as I have elfewhere explain'd, are no other but actual Loco. motions given to the Parts of Matter or Bodies fo or fo moved.

I fuppofe then this Repofitory to be furnifhed with variety of Matter adapted for the ufes to which theSoul applies them, which I call the Elements out of which Ideas are made ; among which Variety there are principally five forrs fitted and adapted to receive the Impreffions from the five Senfes; that is, one peculiar Kind for the Impreffions of Sight, which is of fuch a Quality, Form, Make, Bulk, or other Conftitution, as makes it Receptive and Retentive of the Impreflions of Light and Colours, which none of the other Bodies are capable of. Which may a little be explain'd by the Matter of the Phofphoros made of the Bononian Stone, or that found out by Baldwinus made of Chalk and Niter : which Matters are fo made and adapted by the Chymical Preparations of them by the force of Fire and Mixtures made in their Proceffes, that they, fo foon as expofed to the Impreffions of Light, receive and retain thofe Impref: fions, though for no long time, yet enough to Thew us a Specimen of a certain. Qualification not to be found in moft other Bodies, which may yet polfibly be done much more powerfully and effectually by the Chymiftry of Nature in the Digeftions and Preparations made in the wonderful Elaboratory of the Animal Body; where all things are are ordered and adapted by the All wife Creator, for the Work to be done: So that nothing can be imagined wanting or redun. dant to perform what is by his Intention defign'd to be done.

Another fort of Matter I fuppofe to be that which is fitted to receive the Impreffions of Sound, fomewhat like thofe Bells or Vafes which Vitruvizs mentions to be placed in the antient Theaters, which did receive and return the Sound more vigorous and frong; or like the Unifon-toned Strings, Bells, or Glaffes, which receive Impreffions from Sounds without, and retain that Impreffion for fome time, anfwering the Tone by the fame Tone of their own. And though in thefe Examples (which I am fain to bring for Explication only) there feems wanting the great Requifite of a Power to retain for a long while thofe Impreffions which are fo given, they all of them lofing them in a very fhort time; yet, as I thall by and by fhew, they do and will each of them retain their feveral Impreffions long enough to make them fufficient for producing. the fame Reactions whenever they are again acted upon. And fuch an Impref. fion I thall prove is again given both by the Soul and by fucceeding fimilar Sen-
faticns,
fations: For having Potentiality of receiving, and being excited by fuch Impreffions, they do again renew their former Impreffion, and afrefh fhew their Power, in the fame manner as the Mufical String or Bell, or the well prepared Bmonian or Baldrwin Phofphorus do each thew their Natures, when the one is ftruck or agitated by Motion, and the orher acted upon by Light.

The like appropriated Materials I fuppofealfo for the Impreffions of the other Three Senfes, viz. Smelling, Tafting, Feeling; each of which are qualified to receive and retain the Imprefions from the orher Senfes. As for inttance, the Smell being caufed by a fubtil and curious Exhalation from the odoriferous Body imbibed by the Air, the Olfactory Nerves are prepared with an aerial Body fit to diffolve or imbibe that Subftance in the fame manner as the Air does from the odoriferous Body; which aerialBody, by means of the Olfactory Nerve, having an immediate Intercourfe and Paffage to the Brain, does immediately convey it thither : And according to the nature of this aerial or firituous Sub. ftance with which the Olfactory Nerve is furnifhed, fo does it diffolve or im. bibe this or that Exhalation out of the Air. Whence I conceive that it is of diftinet Natures in every Species of Animals, and thence that every one of them have diftinet Senfations of the fame Effluvia, and that which is congruous and agreeing to one, is of a contrary nature to another; and thence what is gratefal to one is odious to another. And again, what is fenfible to one fort of Creature, who has an aerial Subftance fitted to diffolve and imbibe fuch or fuch a Steam, is wholly infenfible to another that wants that aerial Subftance, and is furnifht with one of a differing Nature. Which I conceive to be the reafon, why Dogs and other Creatures have fo ftrong a Faculty of fmelling the Scent of Animals, or the Flefh of them, which are very hardly difcoverable to a Man. On the other fide, jn probability Man is fenfible of many things, as the Smell of Flowers, Herbs and Fruits, which poffibly a Dog does very little, if at all fcent.

The like may be faid of the Tafte, which I conceive lies only in the Nature of the watery Liquor conveyed by the Nerves of Tafte to the Tongue, according to the Nature of which for diffolving this or that Subftance of the Bodies touching it, is the Impreffion of Tafte conveyed to the Brain. And to we may fee a clear Reafon why one Tafte may be tafted by one, which is not by another, and why one Tafte is pleafant to one Creature which is not fo to another, and how a Body becomes guftable or taftelefs, and how that which is taftefs in it felf may be made taftable, and why that which is taftable may be made taftelefs: Of both which kinds I could give hundreds of Infances which would much confirm this my Theory, and thew what Improvements of this kind could be made. The like, I conceive, is to be faid of an adapted Matter for receiving and retaining the Impreffions of Feeling, fomewhar after the nature of the warming Stone, and feveral other fuch Subftances, which do imbibe thofe Im. preffions more readily, and retain them for a longer time. Now I do fuppofe, that the Repofitory is continually fupplied with a fufficient quantity of thefe kinds of Subftances, with which the Senfe does concinually form Ideas, and difpofe of them into the Repofitory of Memory, and that without thofe Materials, ${ }^{2}$ and the concurrent Impreffions of the Senfes, it cannot form them : For otherwife a blind Man would have Ideas of Colours, which yet he has not, and a fick Man would have a true Ided of Taftes, which yet he has not.

But to return to the confideration of the Place or Repofitory where thefe Ideas afe form'd and retain'd.

The Ideas ma-
4. I fuppore there may be about this place, which I will henceforward call terial and bul- the Center, a certain Sphere of Capacity fill'd with adapted Matter, for the ley. Formation, Reception, and containing of all the Ideas which thall be emitted from the faid Center. Thefe Ideas I will fuppofe to be material and bulky, that is, to be certain Bodies of determinate bignefs, and impregnated with determinate Motions, and to be in themfelves diftinct ; and therefore that no two of them can be in the fame face, but that they are actually different and feparate orie from another; and as they have their diftinct Figures, fo have they each of them their diftinet Qualifications of Motions and Conftitutions.

[^4] Senfes, form one of thefe Ideas, and infert it into the Repofitory. Which Moments in fome Men may be more, in fome may be lefs, within the fame compals of time, according to the Activity of the Soul it felf, and according to the Apritude or Linfitnefs of the Matter to be wrought upon. So that in fome there may te Four of them formed in a fecond Minute of Time, in others poffibly not One in two Seconds of Time: And according to the Perfection and Aptnels of the Matter to be formed, and the Activity of the Soul in performing irs Effects, fo are there more of thefe Ideas formed within the fame Space of time. So that a Man of an ordinary Conftitution of Soul and Body, that is, one of a middle Degree between the more active and quick, and one of the more flow and dull, may within the compafs of his Life, fuppofing he thould live to a hundred Years of Age, (which yet not one of a hundred thoufand thoufand does arrive to) form within that compals of time, and fore up in his Repufitory, a thoufand Millions of diftinct Ideas; all which may have followed each orther in a continued Series, beginning with the time of the firft Advertency of the Child, and continuing to the time of the actual Separation of the Soul and Body at Death, Which I thus compute : A hundred Years contain 36525 Days, and 36525 Days contain 876600 Hours, and 876600 Hours contain 3155760000 Seconds. Now one with another, when the Soul is intent and ating, there may be 3600 formed within the compals of an Hour, and fo one in a Second of Time. So that if the Soul could through the whole Courfe of 100 Years be continually fo intent, and fo acting and forming thefe Ideas, and inferting them into this Repofitory or Organ of Memory, there might be there repofed 3155760000 Ideas. But by reafon of Sleep interpofed, one third Part of the Number will be taken off, the Soul then for the moft part ceafing to form Ideas, or when it does, they are only imperfect and loft. So that there will remain but 2103840000 , or to take a round Sum, but 21 hundted Millions. Now if we examine this remaining two thirds of Time or Moments, and therein confider what part of the time renaining is loft in Infancy; Old Age, Sicknefs and Inadvertency, we may well reckon that two thirds of thefe remaining Moments are loft, and no Ideas at all formed in them; and fo inftead of 21 hundred, there will remain but the number of 7 hundred Millions. And if we again confider how fmall a part of thefe are induftrioufly and carefully ftored up, we may very well agree, that not above a feventh Part of thefe are ftered up: And fo one hundred Millions may be a fufficient Number to be fuppofed forall the Ideas that may have been treafured up in the Organ of Memory through the whole Courfe of a Man's Life, though of a hundred Years continuance; and confequently one Year with another may be fuppofed to add to this Store about one Million of Ideas. But if we confider how much this will amount to for every Day, we fhall find that yet the Number is very much too big, and muft be yet very much diminifhed : For when we confider that this will ftill make 2738 Ideas for every Day of the hundred Years; and if a Man confiders with himfelf how many he conceives he may have added to his Store in one Month next laft paft, I am apt to think he will conclude, that one with another, it will be enough to allow one Tenth of that Number for the Numher of ldeas that have obrained a Place in this Repofitory, the Organ of Memory. So that if a Man allows but two or three hundred a Day, nay, but one hundred for every Day he hath lived, fince he was born to his prefent Moment, he will find that Number large enough to contain all the ldeas he has really ftored up in the Organ of his Memory. As fuppofing a Man of fifty Years of Age, who according to that compute muft have lived 18262 Days; and confequently if you reckon but a hundred for each Day, muft have 1826200 . It will be very hard, I conceive, for a Man of that Age perfectly to remember fo many diftingt things. though get I will not fay it is impoffible. But fuppofing he could by recollecting remember 100 Millions, and confequently muft have as many diftinct Ideas, I fee no Reafon why all there may not actually be contained within the Sphere of the AAvity of the Soul acting in the Genter. Fur is we confider in how fmall a bulk of Body there may be as many diftinet linig Citatires as here are fuppofed Ideas, and every of thefe Creatures per-

Lectures of Light.

feety formed and endued with all its Vegetative and Animal Functions, and with fufficient room alfo left for it to move it felf to and fro among and between ail the reft, fo as to pafs by every one and touch none, we fhall not need to fear any Impoffiblity to find out room in the Brain where this Sphere may be placed, and yet find room enough for all other Ules, of which we may afterwards aifign fome very neceffary.
But to return to the Defcription of this Organ. I do fuppofe that what we call Attention is nothing elfe but the Attion of the Soul in furming certain Ideas, which for the prefent I will call little Images, which bear the Stamp, Seal or Mould according to which the Soul formed it in the Center of the Repofitory. I fuppofe further, that thefe are continually formed by the Soul in the Center, and the prefent always protrudes thofe that were formed before it further into the Repofitory. So that the greater the number of Ideas are that have fucceeded any ones Formation, the greater is the Space of Time of which we have a Senfe: and the Ideas become further and further removed from the Center, and more and more new.form'd Ideas interpofe themfelves between the Center and the faid ldeas placed in Orbs at a greater diftance, by the intrufion of frefh Ideas between the Center and them.
I fuppore further, that all thefe Ideas, though they may for a long time retain the Forms and Motions imprefs'd on them by the Senfes, and by the Action of the Soul, yet notwithftanding they being material, and to fubjeat to change, I conceive, that as the Motions may in time decay, fo the Form may (by Chifting and changing place in the Repofitory or Organ of Memory, and being protruded farther and farther from the Center or Seat of the Soul, and crouded into Orbs, though further off, yet clofer and clofer ftuffed and crouded together) be in time alter'd, and fometimes quite loft.
I fuppofe further, that the Soul being feated in this Center, and there acting, as I faid, by the help of the Information and Impreffions of the Senfes, and forming continually new Ideas, and fo protruding them onwards, and filling the Sphere of the Repofitory fuller and fuller from the Center, increafing outwards. I fuppofe, I fay, that this Soul by its Radiation does atually apprehend, or as it were feel, or is fenfible of any Idea that remains treafured up within this Repofitory : And this it becomes fenfible of, partly from its own Power of Radiation, and partly from the Re-action of the ldeas. It becomes, Ifay, fenfible of them, wherever placed within the Repofitory ; partly by its own Radiation, by which it acts upon the fluid Spirits incompafing it, propagating from it felf every way in Orbem, a Radiation like the Sun, by which, as by a Stick, it becomes fenfible of all thofe Ideas that are yet unwafted with. in the Repofitory, feeling as it were their Form, their Refiftance, and their Re-action to its Radiations: Partly, I fay, only by their lying in the way of the Radiation, and partly alfo by their reacting and repercuffing a Radiation back upon the Soul. By the Diftance of it from this Center the Soul becomes fenfible in fome meafure of the time in which the Idea was made, and how Iong fince it was inferted, there being fo many Orbs of later or more inner Ideas formed and lying between them, which have been fince inferted.
By this means it becomes fenfible of many Ideas that accompanied that Idea, when made, many of them having kept the fame Order in which they were made; though oftimes other Ideas, not formed immediately before or after, intrude and thruft in themfelves between, out of the order they did really fucceed in, fo, as of ten to interrupt and break the Chain or Order of Infertion.
I conceive furthet, that befides the natural Decay there may be of the Form and impreft Motion of the Ideas, there may be alfo an Impediment to this Radiation of the Soul, by the Interpofition of other Ideas between the Center and the Idea fought, much after the manner as the Earth interpofing between the Moon and the Sun, hinders the Sun from radiating upon the Moon. And in fuch cale the Idea may fometimes be thought to be loft, which yet may afterwards be found again when the Obltacle is removed.

Again, as in the Radiation of the Sun, which is as it were a Reprefentation of the Soul of the World; the Radiation of the Soul is more powerful upon Ideas at a nearer than at a further Diftance; and their Reaction is alfo more powerful back again, and that in a duplicate proportion to their Diftance reci-
procal,
procal much the fame with that of Light, which is the moft fpiritual Action of all we are fenfible of in the World. And thenceit is, that the Memory of things long fince done is for the moft part very faint, unlefs in fome cafes, where the Impreflions made upon thofe Ideas were at firft very powerful, or often recalled, which may be faid to be a new forming of them.

I fuppofe further, that though by means of the continual Radiation of the There is a corSoul into this Repofitory or Organ of Memory, it has at all times fenfe timul Radiaof all the Ideas that are there repofed, yet that Senfe is but imperfect and into the Refa. confufed by reafon of the Multitude ; yet can it readily exert its Pow-fitory. er more particularly and ftrongly to this or that Idea, according to the Determination of its Will. And whenfoever it is upon the Action of Thinking, that is, of fixing or darting its Radiation more powerfully upon this or that Idea placed in the Repofitory, it does according to the Power of its Radiation receive a more fenfible Impreffion or Repercuffion from thofe Ideas upon which itradiates, and thereby it does not only apprehend their Qualifications more dio ftinctly, but aifo it does as it were renew or refrefh the former Impreffions, and add to them a further degree of Perfection: And fo though they are in a Place farther diftant from its Center, and by the length of time or the number of Ideas that have been fince inferted, and fo lie in the way of Communicationt; it be become more faint and weak in the retaining the firft Impreffion, and confequently in its re-ating Power; yet by this fecond Action or Radiation of the Soul upon it, its Form and Qualifications are renewed and perfeeted, and for the future it becomes more powerful than the reft of thofe at the fame or leffer Diftances, that have not been by fuch fecond Radiations fo renewed and invigorated; and befides every fuch Action of the Sbul does create and form a new Idea at the Center, which has Impreffions that are the Refult of thofe renewed Actions: And this having fomewhat the, like Figure and Motions or Qualificarions, it has a Sympatherick Agreement with the orher ; and the Impreffions from the one do more readily make the Impreffions from the other more fenfible, in the fame manner as a Mufical String being moved, does make another String that is unifon or harmonious with it, move alfo, and fo together make the Sound the louder, or the Impreffion the ftronger,

Next, as I fuppofe there is a continual Radiation of the Soul into the whole Repofitory of Ideas, fo I do conceive likewife that every Idea fo placed being fo qualified as above, by particular Impreffions of Motions, which continue for a long time fo to move, as they were at firf impregnated, does from fuch its Power fo retained, radiate a Motion of its own, which may in fome manner alfo act upon the Soul, fo as to excite it to Attention; and by this means alfo whenever any Idea is created and impregnated with Motions or Qualifications fimilar to thofe of other Ideas placed at fome diftance in the Repofitory, the concurrent Impreffions or Re -actions of thofe fimilar Ideas upon the Soul at that time do make the fainter to be the more notable, and fo excite the Soul to Attention or Radiation that way alfo; and by that means it has an Excitement to be more fenfible of the other alfo at that moment: And this I take to be that Impreffion which weare fentible of, when we fay, This brings to my Mind, or This purs me in mind, or this makes me remember, $\dot{E} c$.
5. I do further conceive, that that Action of the Soul which we call Think-What Thinking ing, is a more particular Radiation of the Soul to this or that part of the Re. is. pofitory, or on this or that Idea placed in it, and at the fame time forming new Ideas in the Center of the Repofitory; which Action of the Soul in framing new Ideas at the Center, is continued almoft every moment: And though it doth not every moment make a diftinct Idea, yet may it be perfecting of one, and giving new Impreffions every moment: And thence I conceive the Body of one Idea (for as I before mention'd, I fuppofe them to be really corporeal and material) may have many and various Impreffions and Motions annexed to it, poffibly of 100 , nay of 1000 Moments, whence that Idea may be fuppofed to be more compleat and perfect in it felf: And when it again comes to be acted upon by the Radiation of the Soul, all the Impreflions or Qualifications thereof become of Power to affect the Soul with thofe Impreffions which it had for merly received from the Souli.

So that Thinking is partly Memory, and partly an Operation of the Soul in forming new Ideas.

Another and more compleat Action of the Soul, is the forming new laeas from the comparing the Re-actions from feveral Ideas placed here and there in the Repofitory, and its being fenfible of the Harmony or Difcord of them one with another, which does produce an Idea wherein ath thofe various Refpects are in fome means united and impreffed upon one and the fame Idea; This is an Idea of greater Perfection, and according to the Attention of the Soul in heing fenfible of more and more variety of former Ideas, and the Regularity and Order of its proceeding in that Action, and the more fteddy and diftinct manner in the Courfe and Progrefs of it, fo is the Idea more compleat, as well as more compourded: And this I conceive to be that Action of the Soul which is commonly called Reafoning ; and the Conclufion is the new Impreffion made upon the Idea informing from the comparifon of other Ideas which may be contain'd in the major and minor Propofitions:
Now according as theRepofitory is ftored with more and more Ideas, fo hàs the Soul a greater variety to range and expatiate into, whether thefe Ideas are only the firit and more fimple, fuch as are the Refults from the Impreffionis of the Senfes; or the more compounded; fuch as are made by the Refult of comparing fevetal together: And therefore accordingly the Ideas that are made from fewer and more fimple Ideas, are lefs compounded Ideas; and thofe which are made from a greater number, and thofe more compounded Ideas, are yet more and more compounded, and more and more accompliflid and perfect. This will give fome Reafon why the younger and firt Refults of the Actions of the Soul in forming Ideas, are more fimple and lefs perfect, and from whence the Refults of the Actions of the Soul in the elder Years, become the more compounded and perfect.

The Soul a felf where in its Progrefs receive fuch or fuch an Impediment to its Propagation or nioting forwards that way, And be not only fenfible, that fomewher that Ray meets with an Impedirnent, but it may be fenfible alfo at what diftance that Impediment or Re-action is given to its Progrefs: Fof fuppofing the Refiftance or Re-ztion of all thofe impeding Objects, wliere-ever placed, to be in themfelves equal, the Impediment or Refiftance to that End of theRay that is moved by the Sun, muft receive a Reffiftance proportion'd to the nearnefs of the impeding or re-acting Object; and confequently the Impediment made thereby upon the End of the Ray protruded by the Sun, muft be reciprocally propottionate to the. Diftances of the impeding Object; and confequently by the proportion'd Refiftance or Re-action of the Objects, there is a manifeft DiftinEtion at that End of the Ray that touches the Sun, of the Diftance of the Objeef touched by it. -Next by the number of the Rays that receive Impediment from that Objeet, there is a manifert Dittinction of the bignefs of that Object; for if the Angle of the Cone of Rays that receive-Refiftance from any Object,
be actually made and has its Being at the Sun, and that the Diftance of that Refiflarce be likewife diftinguifliable at the Apex of ir at the Sun, then is there a Manifeftation or thdication at the Superficies of the Sun (by means of this Radiation) both of the Diftance of the affected or affecting Object, and of the Angle or Magnitude of it at that diftance, and not only of the Magnitude and Ditance but of the differing nature of the Refiftance or Re-adion of the Object of fuch a bulk and ruch a diftarke, by the confecution of momentary Impreffions. This I could plainly demonftrate by a Sithilitude drawn from the Action made upon the Organ of Heating, from which the Ear is not only inabled trojudge of the Maghitude and Diftance of the Sound, but of the Flatnefs and sharpnefs, the Mulicalnefsiand not Muficalnefs by the like Diftinctions in 1 t .
Buc thay be much batterexplaind कon the Eye, wherein we find, that though there be no Radiation mmed iately enitred by the Eye, which would make the Reactions to the Center thelftronger wet is the Eye able by the reflected Reations onlv of Oujets'that are acted ditexty upon by the Sun, to difcover the Figute, Colour, Maghitude, Diftance, சृ, of all Objects from which there can come to it felf that free Radiation. So that the Soul in the Center of the Repofiory, is fenfible of all the Ideas placed in it; as the Eye is fenfible of all things that are placed before it.

Next, if we conlider the Sun in the Great World, we fhall find it to be placed in the Center of a Space, all which Space, and all Bodies placed within that Space, it does more particularly influence by an attraEive Fower of drawing all bulky Bodies to it, or of commanding all the Motions of them; and confequently may have fenfe of the Renitency of Bodies, as well as of the Motions and Diftances of each of them. So that all Bodies, moreefpecially within the Sphere of its Activity, do receive a double Influence from it; firt of being radiated, inlightned and vivified; and fecondly of being regulated and govern'd in their Motions by it. And hence the Bodies fo placed, as they have each of them peculiar Properties, Shapes and Motions of their own, fo have they alfo particutar Influences, Radiations, Excitations and Regulations communicated to them from the Sun, which gives them not only their regulated Motions and Pofitions, but alfo a kind of new Being or Activity, by which they become vifible and fenfible to the reft of the World, which would otherwife be dark and infenfible, and vagrant here and there uncertainly in the Expanfum of the Univerfe. So that the Soul forms to it felf a Microcofm, or Picture of the Macrocofm, in which it radiates, and is fenfible of every thing contain'd therein, in the fame manner as the Sun in the Macrocofm.
Somewhat of this kind is the Influence of the Soul upon the Ideas placed within the Sphere of its Radiation: And though I cannot cenceive how the Soul, which is incorporeal, fhould move and att upon the Ideas which are corporeal, or how thofe on the other fide fhould by their Proprieties, Qualifications and Motions, re-act upon and influence the Soul ; yet I am affured, that fuch Effeets are performed both by the one and the other Beings; and without them, neither the Senfation, Cognition, Remembring, nor Ratiocination, could be performed ; all which are plainly the Refults of the conjunct Influences of the Soul ${ }_{2}$ and the !deas or Bodies placed within the Repofitory or Sphere of its Activity.

Now though by what I have been faying, I have endeavour'd to fhew that the Soul has by its Radiation a more than ordinary and commanding Power overall the Ideas placed within the Repofitory; yet I would not be underftood fo to limit its Sphere of Radiation, as not to fuppofe that it may have a much bigger Sphere of influencing Power, and thereby may extend it, not only to all and every Point of the Body inlivened and preferved by it; but poffibly it may extend even out of the Body, and that to fome confiderable Diftance, and thereby not only influence other Bodies, but be influenc'd by them alfo. And upon this account \mathbf{I} could produce a Multitude of Obfervations and Reafons, to provenot only the Poffibility, but the Probability, nay almoft Certainty of fuch an Influence, and this from the Senfiblenefs of others Ideas, Lupus in Fabula, Fafcination, \&×c: of which poffibly fome other time;

Here our Autbor leaves off, nor as I can find, ever reaflumed this Subjeal ; añd tbough poffibly fome Perfons may imagine that the foregoing Explication of thefe abfrufe Altings of the Soul is too mechanical, and tends to the making the Soul a material Being, yet I bope the candid Reader, perufing it without prejudice, will not find the leaft Caufe for Such an Imputation, it being tbroughb. out the whole Difcourfe afferted and Shewn to be a Spiritual, Immaterial and Self.moving Principle; and it is granted by all Men, that it both adts and is realled upon by Body, only our Author fuppofes the Piltures conferving the Ideas to be material, which I bope cannot juflly give offerice: However, as I have faid in the Preface, I bold my Self not in the leaft obliged to defend or maintain any of his Opinions or Difcourfes, but fairly prefent them to the Ingenious as be left them. The next that follows is a Difcourfe of Comets worote about Michaelmas in the Year 1682 , containing a Phyfical Hypotbefis and Explication of them, from Obfervations made of one that appeared in Auguft 1680, and on that very unufual one apppearing in December the fame Tear and the beginning of the next Year, and on the following in Auguft 1682. Wherein, after an Intro. dultion, and fetting down Several Opinions of Authors that have worote of Co: mets, be gives us bis own Obfervations, Hypotbefis and Explication. R. W.

A
 discourse OFTHE

Nature of Comets.

Read at the Meetings of the Royat Society, foon after Michaelmas 1682.

The CONTENTS.

At the End of the Year 1680, there appearing a very great, and indeed the moft remiarkable Comet that the Heavens bave 乃bewn us in our Age, the Author was diverted from profecuting his Theory and Explication of Light in the Several other ufeful and neceffary Difquiftions relating to Reflected, Inflected and Refracted Rays; though fomething of the two laft was formerly publifhid by bim in bis Micrography, p.47, \& 217. In the prefent Difquifition, he does not so much relate and confute the Opinions of other's (thought there is fomething of that alfo) as plainly give us his own Obfervations of the Appearances, as he viewed thens through feveral Tielefcopes, night after night, when be could. By the may; I muft in all gratitude ackiowoledge, that the Figures relating to this Difcoure obere generoufly communicated by the Ingenious Dr.Woodward, wolso purchafed them, (put in loofely into Bayer's Uranometria) at the publick Auction of Dr. Hooke's Library. Though indeed thefe Figures were all very rudely defigned, only as Helps to his omn Memory, wobich the Author bimfelf could much better bave fitted for the Gravier; yet I bave endeavoured to fupply this Defell as well as I was able, and bope the Rea. der will pardon the Failures. It think they pretty well anfwer his Defcriptions, thofe being mij chief Directors in perfecting the Draughts. Ineed not be particular in the Contents of this Difcourfe, the Marginal Notes. wobich I bave added will fuficiently inform the Reader: Therefore Ifball only give Some account of whbat is immediately annext to it, and wobich. indeed the Thread of, the Difcourfe led bint to; that is, a fhort Treatife of Gravity : For there being a Gravitation of all Bodies to the Sun, it feemed a difficult Problem (at leaft according to bis Hypothefis of comets) : to givie a reafon of the Blaze or Tail's being nearly oppofite tothe Sun: We bave then bere annext a pretty large, and (if I may be allow-. ed to Speak) an ingenions Difcourse of Gravity or Gravitation. The

Running Title woill direct the Reader to it. In this be confiders the moft knomn Proprieties of the Celeftial Bodies, and baving made feveral Deo ductions from Obfervations, as to the Nature of the 杰ther, Air, and the like, in which in tranfitu be explains Thunder and Ligbtning, afferting a Levitation, as well as Gravitation (or a receding from as weell as (tendency towatds the (enter) baving alfo fiewn that the 压ther or vaft fluid Expanfum is the Medium to convey the Motions of Gravitation ws s. well as Light; be comes in the next place to treat more particularly of Body and Niotion', explaining what he underfands by each of them, and then treating of Motion, fays, that the troo great Laws of Motion are Light and Gravity, and baving before treated of the former, be comes to explain the latter more particularly, woben having flewn that there is fuch a thing asGravity, with the Limits and Proporiions of its Power, and that it exerts it in all Bodies, be comes at laft to the Principal Part, the Caufe of Gravity, and after the Enumeration of its Proprieties, gives his Explication and Hypothefis of the Cause tbereof. The Author defigned to bave anfwered Several. Objections againft this bis Hypothefis, brit biving reply'd to one only, the Difcourfe ends. To fupply this Defect, I bave added fome Fragments which I found relating to the Same Subject, which the Reader will find immediately annext. . R. W.

Of COMETS.

The Introducli-: on to the folloxing Dijcourfe of Comets.

IHave formerly in this Place read feveral Difcourfes concerning the Nature and Proprieties of Light, and have therein explain'd fome of the moft wonderful Qualifications thereof. I Thould have proceeded farther in that Difquifition, afrér another Method than what I now take, had I not been diverted by an extraordinary and unufual Light, which fince offer'd it felf to my View, and exacted a more nice Obfervation and Contemplation upon it; and that was the Comet in Auguft laft. This new appearing Light caufed me foorier to fall upon the Contemplation of this Subject, than according to my intended Méthod I fhould have done, tho' I defigned to have come to it hereafter in its duue Place and Order, wherein I defign'd alfo to have given an account of what I abrerved concerning thofe of 1,680 and 1682.

TH O' the Frequency of Comets, and fome of them very confiderable, has excited the Lovers of Aftronomical Learning to fearch and find out what they are ; yet I have not hitherto met with any (tho' I have feen and perufed the Theorys publifhed by very many Ingenious Men) that has given fuch an account of them, as to me feems natural and fatisfactory. For tho' thefe Bodies feem very heterogeneous, fingular,", and of a diftinet Nature from all the reft of the Celeftial Bodies we contemplate; yet I am very apt to believe, that whenever we attain a true Knowledge of them, we fhall find them to be the Product of the fame regular Courfe of Nature. 'Tis true our Knowledge, even of the moft confpicuous; is very imperfect, and not brought to the utmoft Perfection of Improvement that the Helps which Nature has afforded us may feem to require; tho' even then we thall be to feek after divers other Proprieties of them, which are by other Helps'afforded to the Inquiry after the Qualification of terreftrial Bodies. For whereas we have for the Examination of Terreftrial Bodies all the Five Senfes, for thofe of the Heavens we have but Two at moft, or indeed (the Information of the fecond being fo very little) but one; and that is the Sight, the other, viz, that of Feeling, being fo very little, that 'ris almoft inconfiderable in all, except the Sun. This may be argued from the Ex-
periments that have been made to find whether the Rays of the Moon convey any Heat, by the help of Burningglaffes, whereby tho' the faid Rays have condenfed the Beams above 500 times, and confequently augment "their Power accordingly, yet \mathbf{l} could never find the leaf fenfible Alteration as to the heating or cooling Quality of them; and this rry'd, not only by cafting them on the back of the Hand, as on a Part of the Body very fenffible, but by throwing them upon the Ball of a Thermometer made with Air, which would be rarify'd with the leaft degree of increafed Heat, and condenfed with the leaft degree of Cold. Whence we may very rationally conclude, that if the Atterations of Heat and Cold caufed by the Rays of the Moon, when full and wholly inlightned, be fo very infenfible and inconfiderable, certainly the Influence of the other Planets, as to the Alterations of Heat and Cold, muft needs be very much lefs': For if the Sun's Light reflected from a whole Hemifphere of the Moon, which is firft abundantly more near to us than any of the other Celeftial Bodies, and fo ap. pears anilluminated Area, which is bigger thain the Areas of all the other Ce leftial Bodies put together, both Fixed Stars and Planets; does produce no fenfible Alterations as to the Degrees of Heat and Cold, how much more infenfible muft the Alterations be which are caufed by fome other Body; which alters not in its Light a 10000 part of the Light of the Moon, as thofe Alterations of the other Planets will he found to be upon frict Examination? Next, if the Reflection of the Sun's Light from a Body fo near us as the Moon is, in comparifon of the other Planets, works no fenfible effect, how much lefs effect muft the other Planets produce, which are vaftly much farther from us. Again, if the Reflection fron the Moon, whofe Diftance from the Sun is much the fame with that of the Farth, produces no effect, how much lefs fignificant muft be the Reflection from Saturn, Mars and Jupiter be, which in the neateft Approach to the Sun are much further off from the Body of the Sun, than ever the Moori can be. So that upon the whole, we may conclude, that tho it cannot be denied, but that the Celeftial Bodies may have fome kind of power and effect in the Alterations of Heat and Cold, yet compared to the Influence which the Sun hath in that Particular, it may be faid to be almoft nothing, or at leaft wholly infenfible. I do not fay that the Fixed Stars and other Planets, befides the'Sun and Moon, are wholly infignificant, or without effect, as to the Body of the Earth; for that, as I fhall in ariother place fhew, they may and have all fome Influence, but to be found out by other Media than the immediate Senfes: 'But as to fenfible Effects, as to Heat and Cold, I conceive them fo fubtle and curious, as not ro be diftinguifhed by the more grofs Organs of our Senfe in any of the Planets, nay of the Moon it felf, fave only of thofe of the Sun.

So then the Sight being the chiefeft Senfe that can inform us concerning the What thesight Nature of Celeftial Bodies, we may next confider what kind of Information informs us os concerning the Nature of Comets this Senfe can afford us, and fee whether we to comets. can find in all or any of the Authors that have yet written of them, fo full an Account as for this purpofe were very defirable, and, as I conceive, might, if care had been accordingly taken, without much difficulty have been attained: For my own part, I muft confefs, tho I have read and examined a great many, and confider'd and compar'd them together, to find Anfwers to thofe Queftions I propounded to my felf concerning them; yet I was fo far by this means from procuring to my felf a fatisfactory Anfwer to them, that I was more to feek after this my Enquiry, than I was before: For I found the Accounts of feveral Hiftorians concerning them fo very different one from another in moft things, that I knew not which to rely upon. Which 1 fuppofe might be caufed, either from their differing way of obferving, or from the difference of the goodnef's of their Sight, or for the moft part from the differing Hypothefes they had made to themfelves, or been prepoffert withal from the Writings or Doctrines of other Men. 'Twas a longt ime that the Opinion prevailed' in this' Part of the No Accounts World, that they were nothing but fublunary Meteors toffed and blown to and in Authors fro by theWinds or Motions of the fuperiorRegions of the Air, and the Accounts ${ }_{\text {and }}$ Jatisafy. we find given of them byMen of that Perfuafion to be very fuitable to that Suppofition. So that for all the time that thePeripatetick Philofophy and thePtolomean Aftronomy prevailed, all the Accounts concerning them are idle and infignificant to this purpofe, and feem only fuited to the Ule which they defigned for them,
which was to make them only as Meffengers, to foretel, by the help of their own Chimeras and Fancies joined with them, what Alterations were like to happen in human Affairs, and thence I doubt not, proceeded the firange Shapes of them which they have painted out unto us of Targets, Shields, Spears, and Daggers, with Hands, $\xi^{\circ} c$. of Dragons and Serpents, and fuch like. R great variety of which kind of Figures you may find in Authors that have written concerning them; and you may fee a great many of them together in Hevelius's Cometagraphy, moft of which, I confefs, I look upon only as the Pro ducts of a prejudicate and prepoffert Poetick Fancy in the Hiftorians: For of

The Appearances different from what they inale "em.

The Author's Candidness in Philofophical Matters af. ferted: ore five which I have obferved, I could not obferve any thing like them, no more than I could any of thofe Figures of them which are delivered to us by the faid Hevelius, as Obfervations of his own: For the Figures of them, which I obferved both with my naked Eye, and with the beft Telefcopes I had (fome of which I am fure were very good) I found the Appearances of them much of another kind. And of thefe Figures I was not affured by the Appearances of one or a few Obfervations, but by the Repetitions cf them fome hundreds of times, and by changing the Pofition of the Tube, Apertures, Eye glaffes, Poftore of my Head, and the viewing of them with the Right Eye; and fometimes with the Left, that if thofe Appearances had been caufed by any thing peculiar either in the Glaffes or the Eyes, I might, have found them out. And left fomewhat in the Air or Atmofphere might caufe them, I examined them when at a good hight above the Horizon, and continued ever now and then to obferve them, even to the very fetting of them at the Horizon; in all which Obfervations I plainly faw and took notice of the true appearing Figure and Shape thereof. Wherefore this imperfect and differing Account I found concerning Comers, made me refolve to throw afide all manner of Hyporhefes concerning them. and to obferve them as if there never had been any fuch Appearance before, and to attend wholly to what the Appearances themfelves would teach me: And this I have done in every one that I have yet obferved; for tho' I have already publifhed my Conjectures, which were gtounded upon thofe Obfervarions I had made on the three preceding Comets, yet I did not at all confine my felf to be of that Opinion, or not to feek farther to inform my Judgment by other Appearances I fhould happen to obferve in my future Trials; nor thould that at all have prevailed with me to defend a former Conjecture, that I had owned fuch an Opinion to the World; and had brought feveral Arguments to make it more probable, fetch'd from other collateral Agreements in the Operations of Nature. For in things of this nature, where the Informations are but few, and at beft but imperfee, and where a little unheeded Circumftance may be of great importance in determining the Significancy of it, and where there is oftentimes fo great a Similitude between the Effects produced by Caufes and preceding Circumftances vaftly differing, 'twould be a high Piece of Arrogance and over valuing ones own Judgment pofitively to affert the trne Caufe of fuch appearing Effects to be this or that, and not another. And therefore as in the former, 10 in this, what I deliver as my Opinion, I would have no farther to be rely'd on than as the Refult of my Ratiocination and conjecturing from the beft Information I could hitherto obtain; only. I do pofitively affirm, that the ObfervationsI here fhall mention were made with all the Care I could, and that the Appearances to me were fuch as I here exprefs them ; and that I do verily believe that there was no kind of Fallacy in them, but that any other Perfons might have feen the fame; had they heedfully attended what they faw; which to do, nothing is more advantageous than the prefent defigning and drawing what is feen, and writing a Defcription thereof. Now tho' I did in this Enquiry throw off all Prepoffeflion of other Hypothefes, fo as not to be biafs"d by them, yet was I not fo unmindful of them; as not to make fome good ufe of them; and that was, to confider them as propounded by their feveral Authors, and thence by Synthetical Ratiocination to conclude what the Appeafances ought to be, if fuch or fuch an Hypothefis were true, and confonant to the thing it felf, and thereupon to examine whether any fuch Appearance could be difcovered. To this end I confider'd thofe of Galileo, Hevelius; and divers others, who explain the Blaze or Tail by theLight of the Sun, refracted in the Head, and fo' confipated into a Stream, to make the Appearance of that light Emanation which
which is on the Side oppofite to the Sun ; and putting fuch Suppofitions, as if real, I deduced what muft probably then be the Appearances that would follow from them ; and then making Obfervations afrefh, I inquired whether I could difcover any Appearances that would favour fuch or fuch a Suppofition: But upon the whole, I muft needs fay, I found no one Remark that did any ways incline me to be offuch Opinions, though 1 had many that for the prefent convinc'd me, that the Blaze mult need's proceed from fome other Caufe. It would be toolong to recount here the feveral Hypothefes I did for this purpofe conflider, and the particular Remarks I made to fatisfy my felf concerning them, that they were not in fuch Particulars agreeable to the Theory fuppofed: And therefore I Thall rather give an account what the Particularṣ were which I my felf did obferve.

My Obfervations of the firft, which appeared in November 1680 , were but few, having the opportunity but of two Mornings to fee it, which were the $2 z \mathrm{~d}$ and 23 d of the faid Month; at which times being in the dawning Light of the Morning, and the Air above not fo, clear, I could n9t make any certain Determination of its Place, but by comparing irs Pofition with the Stars that appeared near it, of the greater Magnitude: For on Monday Morning, Nou. 22 d 1680, at half an hour after 6 a Clock, it was almoft in the Line that paft through Spica Virginis and Cor Leonis, but not full fo much toward the South and its Diftance from Spica, as near as I could judge by my Sight, for I had then no Inftrument ready, was very near the fame with that of Algorab in the Right Wing of Corvuis, or rather fomewhat more: Whence (by the Globe) I conceive it was about $3 \div$ Degrees enter'd into Scorpio, and about $3 \div$ Degrees South of the Ecliptick. Its Blaze was but Chort, but pointed towards Spica Virginis, not directly, but a very little on the South of it. It reached more than half way towards it, and fometimes by Glances it would feem of the whole length almoft. Its Appearance was bur faint, as was alfo that of the Head, which though it feemed bigger than any Star of the firt Magnitude, yet it had but a faint, hazy and duskifh Light, like the Appearance of a Star of the firft Magnitude, through a hazy or foggy Air. I then viewed it with a fix-foor Telefcope, and found the Head of it to appear very large, but very feint; and though it were confiderably brighter in the middle, yet the Nuclerts thereof was not fo defined as I had feen fome of the former, but feemed inveloped in a Cloud or Fog, not well defined : The Hazinefs about which fomewhat brighter Middle part, was pretty well defined, and round towards the Sun ; but the other part feemed to fpread parabolically, or rather hyperbollically from the Sun. The dawning Light increafing apace, and the Air thickning, I had not long to obferve it; however I followed it as long as I could, till it appeared but like a faint hazy Star with little or no Tail.

The next Morning, which was the 23 d, I faw it again; but it was got much farther into the dawning Light of the Morning, and the Air was much more hazy : It was then got to the South-Eaft of Lanx Libre, and by placing it according to its Pofition to thofe Stars I could fee, I judged it to beremoved more Eaftward about 4 or 5 Degrees, than it was the preceding Morning, and I conceived it to move pretty near in a Parallel with the Ecliptick, of rather to be got fomewhat more Southward. The Appearance through the fix-foot Tele: foope was much the fame with that I faw the Morning before, and the time being very fhort, the Air thickning, and the Light increafing, I could add no more Remarks, hoping fome other clear Morning would better accommodate me; but though I attended, yet I could not from that time fee it again : Though by others I find it was obferved a good while before, and by others feveral days after. Mr. Thomas Hill of Canterbury faw it firt the 12 th of November, at half an hour after Five in the Morning, and by its Diftances from Cor and Cauda Leonis, taken with an $\ln f$ trument of four Foot and a half Radius, he found it then, as he fays, in 12 Degrees of Virgo, and in two Degrees of North Latititude, with a flow Motion, having nor paffed above four Degrees in three days. Its Tail was then about 30 Degrees long. Sigr Montanari at Venice in Italy, on the 1gth of November, faw it at 4 Degrees diffance from Spica Virginis, and about the fame Latitude with that Star. He judged it in 23 of Libra, with about one Degree and half of South Latitude: Its Tail directed
towards Spica, not direetly, but a little to che Southwards of it. Ins Head appeared as big as a Star of the firf Magnitude, but of a dusky Light, and pale like a Siella Nebulofa: Its Tail was very fhorr, and reached not much more, than two Degrees towards Spica-

Afterwards viewing it with a Telefcope 17 Venetion Feet in length, he f1w the Head of it three times as big as that of fupiter, which was feen that Night, only its Figure was not fo well and round defined, bur of a fmoaky dusky Colour which caufed feveral of thoíe that viewed it to differ fomewhat in their Judgments about this Meafure: And (he fays) that one thing was very remarkable, that he could not in this fee any diftingt round Nuclezs more fhining than the reft of the Head, as was plaini to be difcoveited in thofe of 1664 and 1665 , wherein they were pretty clear, and not without a roundifh Termination, But in this the Light was confiderably greater in the middle than towards the Extremes, but without any certainBoundary, whence it had more the refemblance of a little illuminated Cloud, than of any thing elfe, illuminated but with a dusky Light. This he refembles to the Appearance of Smoak iffuing out of a Chimny or Furnace, wherein there is a great Fire, whenfeen at fome diftance in the Night; for there the Smoak feems to be a kind of Flame tapering to fome dittance, and there to vanifh. Note, the Latitude of Venice is $45^{\circ} \cdot 27^{\prime}$.

The 2 Ift it was diftant from Spica Virginis 8°. 28^{\prime}. the 22 d in the Morning $13^{\circ}-10^{\prime}$. the 23 d he could not fee it for Clouds; the 24 th it wasdiftant $23^{\circ} \cdot 30^{\circ}$. the $25^{\text {th }}$ it was diftant 28° : 13^{\prime}. From which Obfervations he concludes its Longitudes to be, the 21 ft in $27^{\circ} .51^{\prime}$. of as, the 22 d in $\mathrm{m} 2^{\circ} .33^{\circ}$. the 24 th in炚 $12^{\circ} \cdot 52^{\prime}$. the 25 th in 吸 $17^{\circ} \cdot 45^{\prime}$. Its Latitude was South, and it moved almoft parallel to the Ecliptick, and feemed to tend towards the Sun, fo, as he hoped it might be feen to pafs through, or eclipfe the Sun : And the fraight Line from the Comet through Spica Virginis, paffed very near Cor Leonis all the times he faw it. Comparing the Spaces that it paffed the feveral Days which he faw it one with another, he found it to accelerate in its Motion; for between that of the 2 Ift and 22 d, it paffed but $4^{\circ} \cdot 42^{\prime}$. whereas in the next two Days it had paffed $10^{\circ} 19^{\prime}$. So that he fuppofed its greateft Acceleration would be pretty near its Conjunction with the Sun, which would be on the 28 th of the fame Month; and thence he conceived it might re-appear, after it had paft the Sun in the Evenings, and be feen for a good while. Which whether it did or not, I cannot learn from any Place fince that time, for I find no mention of any
Obfervations of Comet till the 1 oth of December following, when the Tail of a Comet was feen the great Co- to rife out of the Weft South-Weft, above the Horizon, to a great length, by met in Decem-fome in Oxford. And Dr. Wallis, at the fame Place the Night following, beser 1680. ing the yith of December about feven of the Clock at Night, faw the Tail of it very bright and long, which he judged to be about three quarters of a Quadrant, but narrow upwards; the Head of it he judged, by the Pofition of the Tail, to be about the Head of Sagittary; the Point reached as high as the Swan, but fomewhat to the Eaftward of the bright Star therein, pointing towards the Conftellation of Perfers, from which time forward it was continually obfer-

Whether it were the fame with the for. mer in November. ved. Some are of opinion, that this was the fecond Appearance of the fame Comet, after it had paft the Sun, though there are more of the contrary Opinion, and fuppofe them to be two differing Comets, and that becaufe of the diffe. ring Tendency of boih their Motions: The Comet of November daily increafing its Latitude to the South, as feveral of the Obfervators make it; butother Obfervations make it to be at its greateft South Latitude on the 23 d or 24 th of November, and that from that time, till it difappeared, its Latitude continually diminifhed. But which of the two obferved beft, I know not; but fure I am, that the Obfervations I have hitherto met with of it, are founcertain, that'twill NB. This the be hard to fay which of them is right. However, fomewhat more concerning
Autbor never this matter fhall be added hereafter, when I come to fpeak of the Motions of performed. Comets in general ; for however ftrange the differing Obfervations of feveral Men, who poffibly may not be fufficiently skilful to make the Obfervations, and of others who though they may have Skill enough, may yet want fitting Infruments for that purpofe; yet by all that I have obferved my felf, and by The Nature of what I have found in the Obfervations of Learned Aftronomers, I conceive they ant comets the are all of them of the fame kind, and are moved with the fame regular Mo. 3amen

tions, and for the moft part agree in their other Affections and Proprieties. I thall therefore, by reafon that all the Obfervations I meet with of this firt are but very few, and fcarce any one that may certainly be rely'd on, rather leave any further Difquition upon this, and proceed to the Obfervations and Appear: ances of the 2d, the Blaze of which, as I fay, began to be feen the roth of December 1680, rifing up above the Horizon, and on the rith was feen by Dr. Wallis at Oxford to rife above the Horizon fo high as the Swan, and was conceived to come from a Head below the Horizon in fome part of the Heaven near the Head of Sagittarius. I find alfo by Mr. Cafini's Relation of the Comet, that Mr. Flamftead at Greenwich faw the Tail of it on the roth and uth, a little after the Setting of the Sun, and took notice, that on the roth it paffed through, the middle of the Conftellation of the Eagle, and terminated at 3 Stars mark'd by Bayer with $A w$ and b, and that on the 1 th the Tail extended to the extremity of the Dart. The 12 th he faw the Head of it at $4:$ of 3 the Clock and 40 . Minutes, in 5 deg. 9 min. of Capricorn, with 9 degrees and 4 Minutes of North Latitude. The fame day Mr. Cafzini faw the Tail of it rifing above the Clouds near the Horizon, and appearing bent likc a piece of a Rainbow; whofeConvexity ${ }_{\text {s }}$: which was fenfible, refpected the South : It feem'd terminated with two Circles. concentrick to each other: At $24 \frac{3}{2}$ Minutes after Five, he faw the Heaç $54 \frac{1}{2}$ degrees high, in the fame Verical with Aquila. The Tail rofe, oblique to the Vertical, declining towards the North; fo that the 3 Stars of the Eagle, which are in a right Line, were as much to the South of it, as they were diftant one from another ; and it paft by the moft Weftein Stats of the Dart, and tended towards the Tail of Cygnus: It ended at the Milky Way, and was of a pale Gold Colour. The Length of it was about 40 degrees. From that time it con: tinued to be obferved almoft every Night fomewhere or other, as I find by comparing the feveral Accounts of it which I have feen, but moft of the Obfervations are fo imperfect, that nothing certain can be built upon them. I Thall therefore pafs them by, and only take notice of thofe of Mr_{r} Cafini made at the Obfervatoire at Paris, and only fuch Obfervations of his as are Phyfical, omitting at prefent thofe whichare purely Aftronomical, and Shew the Place and Motion of it, which I fhall have occafion to ufe hereafter, when I Ahall alfo take notice of the like Obfervations made here by Mr: Elamffead.

The 17 th of December I find that Mr. Galfini viewed the Head of it with the Caffinis PhyTelefcope of his Quadrant, but found the bignefs of, the Nuclezis not to exceed fical Obfervathe bignefs of a Star of the 3 d Magnitude to the naked Eye, not of a deter minate Figure, but confufed and irregular ; and obferving it through a Telefcope of 35 Foot, it appeared of the bignefs of the Ball of Saturn, but confufed alfo and irregular, which he afcribes to the Vapors near thetHorizon which encompaffed it, for that the Bodies of the Planets near the Horizon are foconfufed likewife. The Length of the Tail he judged 48 Degiees....

If aw it feveral times between the 18 th and 19thDays of December, but in Places The Author's where I had noConvenience of making any goodObfervations of it; but the zoth onn Obfervaat 7 in the Evening, I view'd theHead with a 14 Foot Telefcope, and found it of this tions. Form: There was a hazy Brightnefs, which feem'd through theTelefcope about half a Degree in Magnitude, or as big as the Moon would appear to the naked Eye: This was fainter and fainter, as it was farther from the middle, but no where certainly defined; yet the half of ir, which refpected the Sun, was pretty round, and beyond that the Sky was dark and clear, without any Light: Toward the middle it grew lighter and lighter, and about a 6 th or 8 th part of it was pretty near of an equal Degree of Light, not defined any way, but fomewhat like a whiter part of a Cloud: Out of this there was plainly to be feen a kind of Stream iffuing out, not directly oppofite to the half round fart, but a little to the Northward of a brighter fmall Stream, which paffed through the reft of the Head into the Blaze, and though it feem'd to iffue out of it towards the North Pole, yet it fuddenly bent into the middle of the Blaze, and afcended a good way into in like a Pith. The half-round part alfo toward the Edges of it, Itruck into the Tail, making the Outfides of the Tail or Blaze both brighterthan the reft of the Blaze, excepr the Pith : Thefe were a little diverging upwards, and fo bounded the Sides of the Blaze. The Stream out of the middle, asit appear'd through the Telefcope, feemed as if there had been a brighter Stream of
fome more fhining Matter that had iffued out of it, not perpendicularly, but a little inclined to the Right Hand, and imitated a Stream of Warer, if it had run out of a Veffel a little inclined to the Perpendicular: For it bent quickly into the Axis of the Blaze. This is reprefented in the Figure by the bright Part iffuing from the round Nuclerss, aaaa. This appeared fometimes more plain and fometimes morefaint, fo as fometimes to be much like the reft of the Blaze: But for the moft parr, fo much of the Head as I could fee at once, was brightert of all in the middle, and then brighter on the Edges than the relt of the Blaze. Its Blaze or Tail then extended to a very great Length and Breadth, and ended between the two Stars in Perfeus marked by Bayer with γ and n. At firft it feemed to turn off at φ and v on the Right Hand, or towards the North; but as the Evening grew darker, I plainly faw it to reach the Stars γ and n. As concerning itsPlace at that time, and the tendency of its Tail as to the Sun, we fhall fpeak of them hereafter in their due Places: For I fhall now only mention to you what I obferved in its Shape and Appearance.
December the 30 th, at half an hour after 8 , I obferved the Comet both with my naked Eye, and with a Gla ss of fix Foot : Its Nucleus was hardly diftinguiflable, only there was a cloudy Whitenefs in the middle, with a hazy Light about it, which by degrees grew fainter and fainter ; but ftill it was more defined towards'the Sun, 'yet as before very imperfectly, though the outermoft Edge had fomewhat confiderably more light than the Sky, and had a rounding like a Cloud. This Hazinefs fpread from the Head on that Side that was oppofire to the Sun, fomewhat like a Parabolick Figure, and made up the Blaze or Tail; but the Head was confiderably lighter than the Blaze. Looking often upon it, and diligently inquiring, and remarking what I could difcover, I.faw the fame Stream of Lightiffue out of the Nucleus as I had the sight before, and this in the mannier of a fudden Spouting of Water out of an. Engine to quench Fire, which would prefently again difappear, and be much like the reft of the Blaze. Thefe Dartings I could pereeive to rife to a confiderable height into the Blaze or Tail. Ioften faw the Telefcopical Stars through the Blaze, and this Night I obferved one almoft up to the very Hazinefs about the Head of the Comer, appear through the Blaze. After I had difcovered this iffuing of Light through the Telefcope, I diligently attended the Appearance of the Comet with my naked Eye, and I could plainly perceive fuch a kind of Darting of Light from the Head, which did fometimes feem to dart almoft the whole Length of the Blaze or Tail, which I have fome hundreds of times fince taken notice of.
fan. 5. I hoped to have feen it eclipfe of of Pegafus in Bayer; but it paffed very near it, but miffed it.

Fan. 7. I obferved it about is a Clock at Night, I could not fee the Length of the Blaze for the Clouds. It tended towards Perfers, but feemed not to reach it. It was grown very faint, and feemed much wafted. It was very ftrange that there appeared little or no Halo or Atmofphere about the Head on that Side that refpected the Sun; but the Paraholick Edge feemed to touch the very Nucleus or light Cloud in the middle. The brighter Dartings out of Light at fome times more than at others, now manifeftly appeared; and I was then affured by above 20 feveral times taking notice of it, and examining it with allimaginable care through my 14 Foor Telefcope, that thefe Appearances were no Optical Fallacies. I thought the Alteration in the Air might have been fome way a Caufe of this Appearance; but then I thould have difcovered fome fuch thing in the Fixed Stars, which yet I could not: And therefore I judge it a true and real Appearance of the Mutation in the Comet it felf, how inftantaneous foever it appeared; of which I thall thew more in my following Obfervations. I this Night alfo took notice of the Stream; as before, iffuing out of the Nuclerss into the Blaze, with a brighter Pith or Axis of Light, and it feemed to iffue in the fame manner as before, by fpurts, and then as fuddenly difappearing. The Appearances were neither caufed by the Eye; for I faw it both with the Right and with the Left Eye, and with feveral Inclinations of my Head, and fo altering the Po. ftures of each of them, I turned the Telefcope, and varied the Glaffes and Apertures, to fee if any of thefe would make them not to appear, or alter any of them; but I found thern in every Trial, and therefore they mult be caufed by a

Fan. 9 th, from 9 till 12, I obferved the Places, Motions, Pofitions and Ap. pearances of the Comet. The Places of it I hall not mention here. The Blate of it was fometimes pretty clear and bright, efpecially about the Girdle of $A \%-$ dromeda; which was juft within the Rays to the naked Eye, but through the Telefcope it was fomerimes clear of them, though fometimes in the Glafs alfo it was manifeftly within them: They fread alfo fo wide upwards, as to touch the Foot of Andromeda, a little beyond which they feem'd to terminate, though at other times they reacht even to δ of Perjeus in Bayer, fo that δ feem'd to be in the very middle or Axis of the Blaze. This Night again, as I had feveral Nights before, I very often obferved the fudden Radiations or Flafhings from the Auclezs, but efpecially in the middle of the Pith or Blaze. It was exceeding wonderful, and, all things confider'd, it feems very difficult to be explained from what Caufe, or by what means it was effected. I oftentimes obferved the Head with very little Radiations, and then upon a fudden a bright Stream iffued from the Nucleus or light Cloud in the middle, and afcended into the Blaze, fometimes fraight up from the middle, and almoft as big as the N Tuclezs, and would fhoot fometimes to a good diftance from the Head into the Blaze, which 1 difcover'd by viewing a part of the Blaze at a pretty diftance from the Head, with the Telefcope, without feeing the Head it felf. Sometimes it would iffue from one fide, and fometimes from another, and fo fhoot upwards into the Pith of the Blaze. Sometimes it would be difperfed, as it were, into a broad Light, and undefined, whillt the other afcended fraight, and defined; and that alfo fometimes on one fide, fometimes on the other, and feemed fomewhat like the flaring of the Flame of a Candle or Torch. Thefe Appearances I am farther The Appearcertain were not caufed by my Eye, or by the Glaffes of the Telefcope, or by ances were the Alterations of the Air: Not by my Eye, becaufe Ifaw the fame Appear- real. ances, whether I looked with my Righr, or my Left Eye, and changed the Pofture of my Head when Ilooked; fometimes feeing them with my Head upright, fometimes with my Head inclined horizontal on one fide, and then on the other; and fo in all variety of Poftures, in which I fill faw them. Nor were they caufed by my Glafs, for I faw them with the fame Glafs changed with feveral Apertures, and turned every way round, fo as fometimes one Side of the Tube was upwards, fometimes another, yet the Appearances were the fame, as they were alfo through 4 or 5 other Glaffes, through which I faw them in the fame manner. Nor were they caufed by the Air, for the Fixed Stars near the Head of the Comet had no fuch Alterations. Again, if it had been the Alterations of the Air, the Flafhings would have heen feen to defcend fometimes, and fometimes to crofs the Blaze ; but thefe always iffued from the Head, and hot upward into the Blaze, and never any other way, that I could obferve. And I have hundreds of times obferved fuch Flafhings with my naked Eye, darting from the Head even to the whole Length of the Blaze, almoft in a moment. Befides, when thefe Flafhings ceas'd, as they often did, I could fee divers finall Telefcopical Stars in the middle of the Blaze very plainly: Whereas when the Telefcopical Flafhing appeared, they could not be feen for the Light, efpecially the fimaller ${ }_{t}^{\text {Stars }}$ frouzb f fbe of them; and I faw them on the one fide that was without Emanation, clofe $B /$ brough the up to the Pith, but on the other fide of the Pith that had the light Emanation, I could not perceive them, and fo after a little time vice verfa. Sometimes alfo I could fee them on both fides up to the Pith, in the middle of the Blaze, and fometimes they would be all hid. This Night I exactly obferved its Progreffes among the fmall Telefcopical Stars, to fee if I could have found any fenfible Parallax of it, but I could difcover none.

I took notice of the fame Appearances on the 16 th of Fanuary, and the 23 C and 24 th but very little, as alfoon the 26 thand 27 th .

Fanuary the 3 oth at ir at Night, I obferved the Pofition of the Comer, and feveral other Particulars. I obferved this Night alfo, as I had done feveral Nights before very often and very plainly, that the Appearance was perfectly a Refemblance of Flame, but that exceeding thin and rarify'd, and of a faint Light: That it waved, flared, or undulated to and fro: That it fometimes feemed to burn clearer and ftronger, and fometimes fainter and more dim; fometimes on one fide, and then on the other, and fometimes in the middle of zhe Blaze allo, or in the Part oppofire to the Sun : And which I took more no-

A Dicourle of Comets

tice of, as more confiderable, it would be fometimes more on the Side next the Sun, and fometimes lefs: Sometimee it appeared with little or no Halo about it, but only the Nuclezs or white Cloud with a litrle Stream or Blaze iffuing from
Pate 2. Fig.2.it like the 2 digure. At other times, for the twinkling of an Eye, or fmall moment; I could fee a very fmall bright Point of Light in the middle of it, as at c, which appeared no bigger than a Telefcopical Star, which was very near ir, which immediately difappeared, and feemed to be covered with the white cloudy Nuclezs. This cloudy Nucleus was alfo much bigger and brighter than ar other times, and fometimes feemed to have feveral bright Parts in it, as in the Plate 2.Fig.3. 3 d Figure at f. Every one of thefe Remarks I obferved at lealt half a icore fe. veral times, and the Changes were very quick; fo that I was fully fatisfied in my felf, by all the ways of examining I.could think of, that thefe Mutations and ftrange Appearances, poffibly never heeded by any before (for I never mes with any mention of them in any Author, or from any Perfon that had taker: notice of Comets, but only I have been told by fome antient Men that faw that in 1618, that it did perfectly fparkle and fhootforth Fire; but I confefs I did not then give credir to them, but attributed the Caufe of their having fuch an Idea or Remembrance of it to their having poffibly more dreadfull Apprehenfions of it in their younger Years, and alfo to the great Brightnels of the Tail of that Comet) : I fay, I was fully fatisfied that they were real Mutations in the very Phenomenon it felf. And this I was the more fatisfied of, becaufe I had hundreds of times taken notice with my bare Eye, of the Glancings and Durtings out of the Light of the Head into the Blaze; in which 'tis almoft incredible with what Swiftnefs the Flath or darting of Light paffes from the Head to the very Extremity of the Blaze: For I never obferved the Dartings of the Lightning (which I have often diligently remark'd and computed to move above a Mile in lefs than half a Second of Time) to move more fwiftly from Place to Place, than I did fee through the Telefcope fuch kind of Dartings from the Star to move: I mean the actual Flame of the Lightning, and not the fpreading of the Light it felf, which I conceive rather to be inflantaneous; and though it do feem to be fucceffive, and to fpread in a very quick time from the Cencer in Orbern, and that the more remote Parts are inlightned after the nearer; yet I take that to proceed partly from the weaker Impreffion made by the remote parts on the Eye, and partly from the Yieldingnefs of fome parts of the Mediun through which it is propagated. Now if this Appearance be really in the Ob ject, as I am fatisfied it is, and that this Object be at fo valt a diftance from us, as by all the accurate Obfervations that have been hitherto made for this purpofe, 'tis certainly prov'd to be ; we thall find by comparing the diftance of the Lightning with the diftance of the Comet, how incredibly much fwifter thefe Dartings of Light in the Comet will be than the Dartings of the Flame of Lightning it felf: And yet after all, how incredible foever it feem, I am fatif. fied by my often repeated Obfervations, that the Matter is really fo. It feem'd tome upon my viewing them often, that 'twas not improbable but that thefe Flafhes or Sparklings were caufed much after the fame manner as the fudden Kindlings of Steams or Smoke in a Fire, beginning at the Head, and kindling like a Train into the Tail, which may poffibly be made up of fuch a Stream of combuftible rarify'd Parts, and that the whole Light of the Head and the Blaze was from the actual thining of the Head and the Parts of the Blaze; but of this more hereafter. However, this I think is very plain, that the whole Blaze proceeded and iffued from the Head in material Steams, and that it is not at all produced by any manner of Refraction of the Rays of the Sun paffing through the Head, as many are very apt to fuppofe and affert, for which I fhall add, obferved all the fame Appearances again the 3 d of February, and continued to fee them till 12 of the Clock at night; fo that I was fufficiently confirmed in the reality of the Appearance, and that it was not a Deceptio Vifis. I obferv'd it again in its Progrefs the 7 th and 9 th, and diligently fet its Place among the Fixed Stars that lay near it in its way.

The laft time I faw it was on the roth of February at Night, when I fixed its Place among the Telefcopical Stars, with the Direction of its Blaze, which to the laft I all along obferved very confpicuous. I this Night alfo, through my x_{4} Foot Telefcope, difcover'd all the before-recited Pbrnomena, as before, tho ${ }^{2}$
they were very much fainter and paler, and every thing diminifhed as to its, Vividnefs; fo that I did not expeet that it would laft much longer: However, I believe 1 might have followed it for a Fortnight or Three. Weeks longer, had not partly other Occafions, and partly the Cloudinefs and Thicknefs of the, Air, prevented me from feeing it for 7 or 8 days after, till which time I continued fonften as I had Opportunity, toilook for it. Monf. Cafini, it feems, follow'd it fome days longer, till it arrived at the Font of Perfeus, where he alfo loft fight of it. I do not yet hear that any one has certainly feen it beyond that time, and Mr. Ca/fini feems not to be very fure of fome of his laft Obfervations.

Thus I have given you in thort the Sum of what Phyfical Obfervations I have made concerning thefe Comets, which as they are new, fo they may poffibly feem the more flrange, for that no other that has writ concerning them, has mention'd any fuch Appearances, and for that feveral Appearances mention'd by fome very famous Writers, feem very differing, if nor contradictory to thefe. However, what I did obferve I have fet down, that fuch as cannot find caufe to believe them from what I have here fet down, may by their future Opportunities and Obfervations better inform themfelves, and more critically fearch and find out the true Appearances, and at leaft the probable, if not the true Reafons thereof. For I am perfwaded, that there was fcarce any Appearance in this Comer, but may in feme degree, more or lefs, be found in every one that Thall appear for the future; for that I look upon them to be all of the fame nature, and to have all the fame Proprieties in fome meafure; and I thall be content not to be believed, if making the Obfervations in my way, and with as good Inftruments, they do not find the like Appearances.

Thefe Obfervations had ftill lain by me neglected, had not the Appearance of this laft Comet in Auguf? made me find them out; which put me in mind again of repeating my former Care and Scrutiny after the true Appearances thereof. I did therefore, fo foon as ever I had difcover'd it, put my Glaffes in order, (which had lain by neglected fince that time) and refolved in this wholly to mind thofe kind of Obfervations, for that I hoped I fhould from other hands receive fufficiently exaft Aftronomical Obfervations thereof, of which I fhall afterwards have more occafion to make ufe, when I come to enquire concerning the Diftance, Courfe, Velocity, Magnitude and Original of them. And tho the Determination and Demonftration of all thefe do require a great Stock of accurate Obfervations purpofely and pertinently made, which is hardly to be obtained from all that have hitherto writ concerning them; yet from fuch as they are, I fhall fhew fome Conjectures, which to me feem to have fomewhat of probability in them, which may ferve at leaft as Hints to fuch as have Opportunity to obferve them, and are furnifhed with better Abilities and better Inftruments than I have hitherto been furnifhed with.

> NB. Thefe Aftronomieal Obfervations, and our Author's Remarks upon tbem, I bave not met with amongft his Papers; fo that I verily believe he never procured them, or at leaft never made any Animadverfions; as is bere mentioned. R. W.

But to proceed to the Obfervations I made of this laft Comet, which appeard Auguft the 16th i682. The Forepart of the Night being exceeding clear overhead, looking upon the Heavens, I difcover'd a Comer in the North a little above the Horizon, glancing its Blaze toward the South-Eaft, between fome thin Clouds that were near the Horizon, and prefently fetching a fix.foot Telefcope, and viewing the Head of it, I remarked its Pofition to fome Telefcopical Stars that were near it, and with my naked Eye found the Place of thofe Stars, as to the Stars about them; the molt confpicuous of which were two little Stars of the 3 d Magnitude, in the Fore Foot of the Great Bear, marked by Bayer with s and x, and 'twas near in a Line with s and T; 'twas pretty vivid, and through the Telefcope feemed to have a bright and ftrong Nuclezrs, though fmall, not very defined, and the Light or Halo about the Head was much of the Form of all the other I had feen, when very confpicuous. The Side next the Sun was pretty round, and at a good diftance from the Nuclens, and the Blaze ftruck from it in a Parabolick Figure.

A Difcourfe of Comets.

I had not the Opportunity of obferving it again till Augu/t the 20th at 9 at Night, at which time I took its place.
Elate 2.Fig.4. Through the Telefcope it appeared of a Shape which is thewn in the Draught or Piture. See Fig. 4.

The Nucleus was the fmalleft, but the brightef I have feen; the hazy Light about it was fo much the brighter, the nearer it was pofited to the Nucters. The brighteft part of the Head diminifh'd to about 5 or 6 Diameters of the bright Star, as I may call it, in the middle, without which was a thinner Halo, which wasabout twice as broad without it, which was of a pretty equal Light; and this towards the Sun was terminated in a rounding Figure, not very defined, yet fo much, that immediately beyond the Sky look'd black, and was clear of it. The brighter part about the Star or Nuclezs feemed to fpread more or brighter towards the Blaze than any other way, a little tapering; but the thinner part was much more fpread that way, aud extended about eight or ten Degrees, which made up the Blaze. This feem'd to be a kind of Smoke or Steam, which ta. per'd tewards that length from the Sun ; fo that the brighter part feem'd foniewhat like a thin Flame, fird tapering a little into the Blaze, but was foon fpent, and the other thinner part, or Flame, made up all the reft of the Blaze.

Aug. 2I. I faw it again, and noted its Place, but was diverted by accident from making Telefcopical Obfervations, and fetting them down.

Aug. 22. I noted the Pofition, Shape and Length of its Blaze, but nothing elfe.
Plate'2. Fig.s. Aug. 26. At 7 in the Evening, I delineated the Figure and Shape of the Comet exactly like that I faw through my 14 Foot Telefcope, which will appear more plain by the 5 th Figure than I can otherwife well exprefs it. It had a pretty bright round Nuclerus, and about that was an Atmofphere of thinner Light, which was terminated towards the Sup with a round Figure. That part of this Halo or lighter Atmofphere towards the Sun, was not fo bright and radiant as another kind of Light, which feemed to iffue from the \mathcal{N} ucleus or Star both ways at Right Angles, with the Axistbrough the Sun ; which lighter Iffuings bent into a kind of Parabolical Figure within the former Halo or Atmofphere, and was terminated within it , and feem'd to form as it were a 2 d Parabolical Termination towards the Sun, in the Apex of which Parabola was the bright Nuclezs, and this brighter Parabolical Line of Light feemed as grofs or thick as the Nucleus it felf. This iffued on both fides, but that on the Kight Hand, or the Northermoft, was much more conficuous; infomuch, that, that on the Left Hand, or towards the South, was to befeen but fometimes, but that of the other fide was very plain and confpicuous, and feem'd like a Stream of Flame blown out of a Candle by a Blowpipe afcending or bending upwards juft as fuch a blown Flame of a Candle will do, if it be made by a gentle Blaft. This I remark'd very carefully, to fee whether I could find by any fucceeding Obfervations, any Alteration of the Magnitude, Figure, Brightnefs or Polition in refpect of the Comer's Axis.

Thefe two brighter Spoutings of Flame or Light turned or bent upwards from the Sun, and after a fhort fpace feemed to unite into the $A x$ is or Middle of the Blaze, and form the Shape of the outfide of the Flame of a Candle tapering to a point ; the fainter part alfo without it feemed to taper much in the fame manner. I faw alfo feveral Corrufcations or Flafhings of the Flame íhooting out to a great diftance into the Blaze.
Aug. 29. Inoted the Place and Pofition of the Comet at $\frac{1}{2}$ an hour after 8 at night. Its Blaze pointed exactly at the bright Star in the Crown.

I obferved the Body of it through a 14 Foot Telefcope, and faw the Spoutings out of the brighter Streams from the Nuclezs, but efpecially of that on the Right or Northern fide, which was very large and confpicuous, that on the Left or South fide being much fainter and lefs confpicuous. They feemed not now at Right Angles with the Axis, but to be fomewhat more towards the Sun, both of them; but clofe by the Nucleus they turned about again, and extended into the Blaze with a kind of tapering Form, as on the 26 th, and in all other Particulars it feemed to be much the fame as it then appear'd. For it feem'd, as I faid before, like a Stream of Light, or Flame, or Fuzee, iffuing more efpecially on the Right or Northern fide, and rurning about into the Blaze, where
it made a kind of tapering Light; but the oppofite Side was not near fo plain or eafy to be feen.

Aug. 30. I viewed it again with my ri Foot Tube, and found its Figure fuch as I have defcribed in the Draught. The Halo or Atmofphere about the Head, on that fide which was next the Sun, was thinner than the laft time I faw it, not fpreading fo far that way as then. The Fule or Stream on the North fide of it was very plain and bright, but feemed not to iffue now at Right Angles with the Axis of the Blaze, but, as it were, at 45 degrees with $i t_{1}$ and then bent into the Blaze with a kind of Parabolick Figure, and fo ran Parallel with the Axis to a great length, and did not taper in towards it, as on the 2 ?th. The iffuing on the oppofite fide was hardly at all vifible, only it feemed a little bright. er in that part, than in the middle part of the Blaze near the Head.

Aug. 31. I took its Place and the Direction of its Blaze by the 14 Foot Telefcope. The bright Nuclerss appeared much as it had done the preceding Nights, and the Fufe or Stream of Light had much the fame Inclination to the $A x$ is as. laft Night, only it feemed now to run farther parallel to the Axis into the Blaze. The Hazinefs of the Head about the Nucleus, on that fide which was next the Sun, was now much thinner and nearer to the Nucletis, and pretty well defined.

There was alittle Emanation anfwering to it on the Left Hand, but that was exceeding faint; yet the Sides were brighter than the middle part near the $A \times i \delta$. I faw the flating of the Light, and the Corrufcation, as I had done almoft every time I faw it. The Nuclests was not a tenth part of the bignefs of the Halo or Haze about it.

September the 1 ft, I viewed it again with my ${ }_{4}$ Foot Telefcope. I could fee no fmall Stars near it ; the Fufee or Stream of Light appeared much as it had done the two preceding Nights. I fill plainly faw the Flaring or Flathing of the Light, and fometimes alfo faw a Shooting or Spouting as it were of Light from the Nusleus directly into the Blaze, which as quickly difappeared.

I began to fee it September the 4 at $7 \frac{1}{2}$, the Crepufculum being yet very bright. The Nucleus was pretty clear and round, but the Blaze from it was only two Emanations of a kind of Parabolick Figure on each fide, as in the Figure ; but the Northern Side was brighter than the Southern ftill, and they feemed to ipread one from another with an Angle of about 60 Degrees, fo far as \mathbf{I} could fee them then; for they extended bat a little way from the Nucleus. The middle part of the Blaze between them was hardly vifible. But as the Crepuf. culum diminifhed, it appeared much brighter and fuller, and then I could fee its Light alfo in the middle part of the Blaze. Scarce any Halo between the Nuclezs and Sun appear'd, ar firft, and butlittle more when it appear'd brighteft. I obferved alfo the flaring or flafhing of the Light, and a kind of moving of the Fufee on the North fide. It was at its brighteft about 8 , when I obferved alfo its Pofitions. I followed it with my Telefcope downwards towards the Horizon near half an hour after it difappeared to my Sight; and I was able to fee it almoft to the very Horizon, even till it went behind a Steeple a little above the tops of the Houfes, though the Smoke much thickned the Air. As it grew lower and lower, the Blaze difappeared by degrees, and at length alfo the Hazinefs about the Head; fo that I conld not fee the two Streams, but only now and then by glances; but the Nucleus it felf I faw very plain, but verymuch fmaller than before, and feemed about the bignefs of Oculus Tauri, but very dull and fairt, in comparifon even of the fmall Fixed Stars which were not far from it:

The Figure of it when brighteft this Night, was much of the thape of the Flame of a Candle clofe fnuffed, the Nucleus reprefenting the End of the Snuff; tho that in a Candle fo order'd looks perfectly black, but the Nucleus was very light.

Sept.8. I faw it from $7 \frac{1}{2}$ till almoft 8 , I took notice of its N ucleus, and of the Emanations on each fide, as alfo of the flafhing and flaring of the Light. The Beams were darted on each fide parabolically, and feemed at firt almolt like two Sides of an equilateral Triangle, bur when it was cleareft they were much longer. The Clouds near the Horizon hinderd me, that I could not fee it till 9 .

Sept 9. at 7 h .28 m . I faw it perpendicularly over the top of Bow.Steeple; it was 3 times the length of the Dragon above the top of it. The Fufee or Stream

A Dijcourfe of Comets.

feemed juft above it in that pofture, as if it had been the Blaze it felf bended, the oppofite fide being fo faint, that I could only now and then perceive it. The Blaze was at Right Angles with a Line from Arcturus through the Head. I faw very plainly now alfo the flaring, flafhing and wavering of the Light. I continued to obferve it and make my Remarks till it almoft toucht the Horizon; though the Air was very fmoaky near the tops of the Houfes.

Sept. 10. I firft difcovered it with a 4 Foor Telefcope, at $7 \frac{1}{4}$. It appeared very faint: There was nothing befides the Nuclerrs and the Parabolical Edges of the Blaze, or the two Emanations from the Nucleus; the Northern fide was ftill the brighter and longer. It was very much fmaller and fainter this Night than Yefter-night and yot the Sky clearer and darker: I could not find any Fixed Stars near it through the Telefcope, nor could I fee any Stars with my Eyes, the Sky being very cloudy all above it, it juft appearing under and between feveral Clouds : Nor could I, nor I believe any body elfe, fee it now with his naked Eye; and yet through my 14 Foot Telectcope I perceived very plainly the Streams, with the Flaring, Flarhing, and fometimes a perfect Lightning, as it were, in the parts of the Blaze pretty far diftant from the Head; which I 6 or 8 times took notice of to be almoft in the very $A x$ is or middle of the Blaze. I by many trials this Night alfo fatisfied my felf that thefe Appearances were no Delufions of the Sight, but proceeded from real Mutations in the Body it felf.
Since which time 1 have never been able to make any farther Obfervations of it, by reafon of the cloudy thick Air. clezts, or the brighter part in the middle of the Head, which is inveloped by a of parts, like Vare of thick Clouds or Smoak: That a lighter or thinner kind 8 or to times as far towards from it to a much greater diftance, poffibly he Sun, are drive towards the Sun, which by their Limitation in refpect of back again, and return upwards, and oppofite to the Sun. difthere kind of Emanations there feem two forts: One that goes to a greater diftance, and is but very fine and thin, which makes the outmoft Edge of the Halo about the Head, when the Comet appears biggeft and brighteft, and is in its neareft Approach to the Earth. The other, which is a thicker and groffer, which defcends not fo far towards the Sun, but is poffibly more firey, and fo recoiles upwards fooner, and makes the Parabolical Emanations that appeared on both fides of it: The biggeft and brighteft of which was that towards the North, or that part which was the hindermoft in its way of Motion, the Forefide thereof being very thin, and but ar fome times vifible; whereas the other was always very confpicuous. As it went farther and farther off from the Earth, fo the thinner part more and more difappeared (which was very vifible when it it was in its neareft Approach): So that all the time I faw it in September, the fecond or thinner Halo difappeared, which I fuppofe was caufed, firt by the greater diftance of it from the Earth, and fecondly the Light of the Crepufculum, in which it was always placed. And this I judge, becaufe even when it was much more vifible, if I viewed it pretty early before the Day-light was much Spent, I could only fee thofe two Radiations from the Nuclezs, without feeing the thinner Halo about the Head; which yet I faw afterwards when the Evening was darker, which I feveral times took notice of, and which did reconcile what I had opferved concerning the differing Appearance of other Comets zowards the latter end of their Appearance.

The whire Cloud about the Body, which I call the Nuclezs, I take to be fomewhat analogous to a thick Smoak or Steam before it was fired, which only inveloped the firey Body in the midff of it, which J take to be the Solid, through which I very often perceived a fudden fmall bright momentary Glance of Light, which I conceive was either the bright Body in the middle, or elfe fome kindling of the Smoak or luculent Flame about it; but I rather took it to be the former. The two Emanations I take to be the under Edge of the actual, though thin Flame, which, as i have noted; did perfectly refemble the Shape of the Flame of a Candle tapering above the Comet towards the Axis, and fometimes meeting in it pretty near the Head, though at other times it were prolonged to
a much greater diftance, and feemed to afcend almoft parallel. The thinner hazy part without this, which made up the Head, and a great part of the Blaze or Tail, I take to be a kind of Halituous Subftance, that did not actually kindle into Flame, but appeared by the Light of the Sun, and in part alfo by the Light of the Conet it felf, that is, of the Chining Cloud or luculent Flame. The fudden Flafhings I fo very frequently faw, I think are evidently a certain kindling of fome parts within the compats of the Flame, which like Lightning, the one End of them near the Comet taking fire, a whole Train of them follow, as one may alfo commonly fee in the Flame of a Fire. The flaring of the Light, now on one fide, and then on another, I take to proceed only from the nature of the Emanations, which fometimes proceed on one fide, and fometimes on the other, which are more apt to take fire and turn into Flame. The fudden Dartings out of Light, which feemed to extend, to the naked Eye, even to the whole Length of the Blaze, I take to proceed partly from fuch a kind of kindling as I juft now mentioned, and partly alfo poffibly from a temporaneous Pro: pagation of Light, which, as I thall afterwards fhew, in a yielding or fpringy Body, is temporaneous, and not inftantaneous. So that poffibly fome fuch fudden Glance of bright Light, which I often faw break through the middle of the Nucleus, might be propagated to the reflective parts of the whole length of the Blaze, and fo be reflected fucceffively ; which is otherwife fo exceeding rapid and quick, that confidering the vaft length of the Blaze, it feems unconceivable how it thould be moved: For the quicknefs of Lightning is nothing to be compared to it, though by many Obfervations I have feen it move near a Mile in a quarter of a Second Minute of Time, but this muft neceffarily move many thoufands of Miles in a fhorter time.

To conclude, all the Pbenomena did fo perfectly refemble the Appearances of a burniug, flaming and fteaming Body here in the Air near the Earth, that fo far as I can yet inform my felf, I fee no reafon to doubt, that it is a Body qualified much in the fame manner as a Body on fire, or burning in the open Air with us. Though if Fire be only a Diffolution of a Body by the nitrous part of the Air, it may feem pretty difficult to explain how there hould be any Fire in thofe Places through which Comets have been obferved to move. Next, though the Exittence of fomewhat analogous to Fire and Flame, fhould be Thewn probable in Comets, and in the Places through which they pafs, yet it may feem difficult to conceive how the Flame and Steams thereof fhould chiefly iffue and move towards thofe parts of the Space that are fartheft off from the Body of the Sun; for fo it has been obferved to do by all the lateft and beft Ob fervations: And thence it has happen'd, that almof all that have written more particularly concerning them, have explain'd the Appearance of the Blaze, not and Refiecionn by a Matter iffuing from the Head of the Comet, but by a certain Collection of of the Sunthe Sun Beams made by a Refraction of them in the Head of the Comet; fome beams are in. without any confideration of a denfer Matter fit to reflect thofe Rays fo col- fufficient to ex. lected back to our view ; though there be fome others, among which is Monf. plain the Apo. Hevelius, that have feen the neceffity of fuch a reflecting Matter, befides the meer Refraction of them in the Head. But in fhort, I have not yet met with any Hypothefis of that kind that has given fuch an Explication of the manner of thofe Reflections and Refractions, as will aciord with the vifible Appearances that any one that will be diligent and circumfpect may eafily obferve: For taking Refractions and Reflections to be made as they fuppofe them, and confidering what the Figures of the Appearances muft then of confequence be, they will be found exceeding different from what they really are, and will give no fatisfactory Explanation to a friet Enquirer. Leaving thereforethe further Exa-: mination of thefe Hypothefés to their Affertors, or to fuch as may think them to contain fomewhat more of probability than what I am here willing to allow. them; I fhall rather proceed to the confideration of that Hypothefis which the Obfervations I have made do more incline me to embrace. Now though I confefs there may at firft confidering of it appear feveral, and thofe no ordinary Difficulties in this my Suppofition, yet when I have a little further explained the Reafons and Caufes, which I conceive of the Celeftial Appearances, they may appear to have fomewhat more of probability than poffibly fome may imagine.

Five Diffcul. The greateft Difficulties that I conceive in this Hypothefis, are Five, namely,
gies inthis Hy:pothefis.

Firft, If the Comet be a butning Body, or a Body in diffolution, how comes it, that it can fupply fo valt a quantity of Flame or fteaming Emanations; as to form an Appearance of fo prodigious a bignefs and length, as thofe of necefify muft be which have been fo often and fo exactly obferved; as in thofe, to inftance in no more, which were obferved by all the Northern World in 1618, and lately in 1680, and yet notwithflanding, laft, without a fudden and total Dirperfion or Confumption of that exceeding fmall Body in the Head, from whence they are fuppofed to be all fupply'd.

Secondly, Next if the Biaze of Comets be from the Head, and that the Comets are Bodies which are moved with a pretty fwift Motion through the Spaces of the $\mathbb{I t}$ ther, how comes it to pafs that this Flame or Steam does not follow after or point directly to the way through which the Head or Body it felf has palt?

Thirdly, If the Blaze be in part an aEtual Flame, and the Head be a Body actually on fire, or in a State of Diffolution, and that all the Fires and Flames we know have need either of adual Nitre, or of a Nitrous Air to make them, which being fatiated, the Fire or Flame will no longer continue; without a farther Supply either of actual Nitre or Nitrous Air; how comes there to be either fuch a quantity of actual vitre in the Body of the Comer, or of Nitrous Air in the Expanfum in which the Blaze is obferved to extend, and yet neither the Head of the Comet be fuppofed a terreftrial Body, nor the Nitrous Air be fuppofed to extend beyond the Limits of the Atmofphere about the Earth, which thofe that have given it the greateft Extenfion, do affign to be not ahove 50 Miles above the Surface of the Earth and Sea, and thofe others that thisk this too great, will not allow it to be a 5 th part of that height?

Fourthly, Suppofing there could be found a Reafon or Caufe, why the Body of the Comet thould be fuppofed to contain fome fuch Subftance as Nitre, and that there might alfo as probably be fuppofed fuch a Subftance difperfed through the 不tber, as would produce a Flame like that of a Candle, or other flaming Body here in the Air; yet what Caufe can be afligned why it thould not equally difperfe it felf every, way from the burning Body, as we find Flame here with us to do every way from the Center of the Earth ?: And why does it always extend it felf towards that part of the 压ther only that is fartheft off from the Sun in refpect of the Head of the Comet?

Fiftibly, If this Appearance of the Blaze were an actual Flame, yet how fhould it be pofitible, that it thould continue' a Flame fo long, as to extend to fo valt a length; as poffibly of fome hundred thoufand, nay of fome Millions of Miles, and not be extinct in forne very fhort Space, as the flaming Parts of Bodies here with us are obferved to be, which are fuddenly kindled and converted into Flame, and that Flame as fuddenly wafted and difperfed, as indeed every part of the Flame we fee of a Fire or Candle is? For though the Flame of a Candle feems to laft till the whole Candle be burnt out, yer 'tis not really two moments the fame Flame, but the parts of the Flame are every moment annihilated, and others in the fame place every moment afrefh fupplied from the Steams that are continually iffuing out of the. Wieke. Now it feems inconceivable how it fhould be polfible, either that Steams fhould be carried to fo great a diffance, or that Flame fhould laft folong a Journey, as from the Head to the utmoft Extent of the Biaze.

The Explication continued, to prove the Author's Hypothefiss.

Thefe and fome other Difficulties there are, which when one has well conhidered, of the vaft Dittance of them, even when neareft to us, which all the accurateft Obfervations do moft manifeflly evince, and confequently the exceed. ing Magnitude of their Body, and prodigious Extent of their Blaze, and as a confequence of thefe, the great Swiftnefs of their Motions, 'twill be enough to ftartle one, and make one defpair of ever being able to render a true Expli-
cation of the Caufes of thefe Effects. And 'tis very apt to make feveral Petfons to have recourfe to an immediare, extraordinary and divine Power atting, not according to the general Laws and Methods of the reft of Nature, but according to a fingular and particular Determination of that Power for the exhibiting thofe Appearances extraordinarily toMankind: Whence fome afcribe them to the miraculous Power of good Angels immediately directed by the Will of the omnipotent Creator: Others (of which we have lately a Treatife on purpofe, upon the occafion of the great Comer in 1680 .) to affert them to be produced and moved by the Power of Evil Spirits or Devils. But thefe, as the Subterfuges of Ignorance, and the want of Induftry, we leave to their Afferrors. And though I muit confefs it to be a very difficult Attempt to manifeft and demonftrate the true Theory of them, yet I thall endeavour from that fmall Stock of Obfervations I have hitherto met with, and thofe Imperfect and mean Holps I have hitherto had, to thew at leaft a probability, what they are, and how moved, and that they may be fome fuch kind of Bodies as I conjecture them to be; and that in many Proprieties they may be confonant and agreeable to the other Celeftial Bodies. Now to do this as it ought, one Thould be acquainted with what thofe Proprieties are, which may be known of any other Celeflial Sodies: For if they be found agreeable in thofe, we may more rationally fuppofe a further Agreement in other unknown Properties.
Now there feem to be but two forts in general of Celeftial Bodies, and thore are either fluid or folid. By folid I underftand all thofe Bodies that appear, and are made fenfible to us, either by their own Light, or by the Light of another Body reflęted from them. So that thefe Solids do feem of two kinds, that is, either Bodies appearing by their own Light, or Bodies appearing by the help of fame other Light. And poffibly the Comets may be a third fort, that is, fuch as appear partly by the heip of their own Light, and partly by the help of other Light reflected from them.

The fluid parts of the World I here fuppofe of two kinds, that is, one whofe 2 :Fuids of tmo Parts are in fome fort folid, and may have determinate Figures, Magnitudes and kinds. Motions; and the other, which hath no one Part that may be called a Solid; but its Parts are infinitely or indefinitely fluid.

The firt I call the Een-fluid, or almoft-lluid 厌ther; the fecond, the quite Huid 压ther.

The former part of this Divifion of Mundane or Æthereal Bodies, I fuppore is eafy enough to be underflood and granted : And the fecond, though it feems a meer Chimera, and without real ground in Nature, yet by thofe Obfervations and Experiments I thall afterwards produce, I hope it may appear, at leaft to be poffible, though there may be no one found that can pofitively demonftrate it to be fo, and not otherwife.

And this poffibly may be the utmoft that Man's Senfes and Reafon will ever The mof that inable him to perform, in the acquiring of the Knowledge of fuch Caufes, Principles and Operations; the Method and Inftruments wherewith they work being far removed beyond the reach of our Senfes: And therefore the beft and utmoft we can do towards the difcovery of them, is only accurately to obferve and examine all thofe Effects produced by them, which fall within the Power of our Senfes, and comparing them with like Effects, produced by Caufes that fall within the reach of our Senfes, to examine, and fo from Senfibles to argue the Similitude of the nature of Caufes that are wholly infenfible. And this is the utmolt Bound and Limit of our moft exalted and regulated Reafoning, beyond which that Power cannot carry us. We may therefore reff fatisfied with what that will furnifh us; and 'twill furnifh us with a great deal, and far more than poffibly any one has thoroughly fhewn and demonftrated, or perhaps fo much as ever conceived it could, if a tight Method be followed in the mak. ing of Obfervations pertinent, and of ufing them fo as they may exert their utmoft Power toward producing the Difcovery. The Power of Man's Faculties in this kind, has not, I fear, been fufficiently thought upon, much lefs difcovered, and all that has been hitherto produced feems rather to be fome lucky hits of chance, than the neceffary Products of a regular Art grounded upon the unerring Indications and Diftates of Nature. But this only by the by. I return then to the Explication of the Comer, and in order to the removiag

Anfwer to the thofe Difficulties that I have named, and fome other, it will be necelfary to formerDifficul- confider what are the moft known Proprieties of the folid Celeftial Bodies, to ties.

of the Solid

 fee how far this Body, we are confidering, will agree or difagree with them.All folid Celeftial Bodies then have two Proprieties; firft a Faculty of emitceleftialBodies. ting or refleeting Light; fecondly an Orbicular Figure.

1. They bave or The Sun and Fixed Stars, by the beft Obfervations I can yet make, feem to reffect Light. have the Power of emitting Light, the Planets, both primary and fecondary, of reffecting the Light calt upon them from other Bodies; among which the Earth may be reckoned for one. This moft certainly does, as well as the other Planets, refleet the Light of the Sun; one Evidence of which is the inlightning of the Moon thereby, when it is near the Conjunctions.
a. They are or- The fecond Propriety of their. Orbicular or Spherical Form, is an Indication
bicular, and thence have a Gravitation to them. Thefe the troochief Principles in Nature.

In bis LeItures of Liglst. of another active Principle, which I conceive univerfal to all folid Bodies in Nature, and that is, of a Gravitation or Power of attracting fimilar folid Bo. dies towards their Centers. Which two Principles I take to be the moft confiderable and the moft active in Nature, and thofe from which the moft confiderable Effects are produced; and when they are underftood and expiain'd as they oughr, I queftion not but that they will afford us Solutions and Reafons for a yooo Pbrenomena, the Explication of which do now fo much puzzle and perplex us.
Concerning the firft of thefe I have already pretty largely difcourfed, and explain'd thereby the manner of its Production and Propagation, and what Effects are thereby produced; how it comes to produce Senfation in the Eye, and how it caufeth Hear, Rarefaction, Liquefaction, Ignition, and the like; and fomewhat alfo I have mentioned concerning the Refraction, Reflections, Inflection, deadning and quickning of the Radiations thereof; as likewife of compounding, dividing, and varioufly blending of them in the Production of Colours. But I hall not now farther enter upon the Explication of them, referving them to fome other parts of my Difcourfe, which are yet behind, concerning the Nature of Light. That which I have ai prefent to confider, is racher how Light comes to be produced in the Head and Blaze of Comets.
How Light is Now thefe Bodies being fo far removed from our reach, and appearing fo felproduced in the dom, and the Helps we have hitherto met with affording us fo very little that is Head andBlaze to this purpofe, I hope it will not be expeeted that Ithould be able to bring fuck of Comets. powerful Arguments as may not be at leaft doubred of, if not pofitively contradicted. I confefs my grear want of fuch; however, I find from thofe few Obfervations I have made, fome Arguments that do much incline me to think, that what I have conjectured of them is very confonant to the appearing Effects of them, though in every Particular it does not fo exactly agree.

Firft then for my firf Suppofition, that there is in the middle of that white

If Suppofition, that there is: a denfe bright. Body in the Nucleus. cloudy part near the middle of the Head, which we call the Nucleus, another more denfe and bright fhining Body than what is ordinarily taken notice of ; argue from two Particulars. The firt is, that I hundreds of times have taken notice of fome fhort and momentary Appearings of fuch a Star like Spor, as I have mention'd in my Obfervations; which is almoft an ocular Demonftration; I fay almof, becaufe poffibly it may be faid, that thofe were but (like fome of the reft) Flarhings or Kindlings of fome parts of that Cloud of Smoak. And I confefs I was often of that opinion my felf, when I compared them with the other Flathings and Spoutings of Light I have mention'd: But then when I confiderd the fecond Argument, that there muft be fomewhere a very folid Body, otherwife it could not be moved with fo fwift, and fo regular and uniform a Motion, as all Cometsthat have been accurately obferved, have been found to do; I conceived there was more likelihooa to conclude, that it might be fome part of the Star it felf through fome Chafns in the fmoaky Atmofphere. For unlefs there were fome fuch Body, "tis not to be imagined, that a Cloud, fuch as Hevelizs has fuppofed, thould be able to be moved fo vaft a Space fo regularly, and with fo fwift a Motion; nor that it fhould be able to afford Matter enough to make and fupply fo vaftly big and long-extended a Blaze. For there cannot be allowed to it an $\begin{aligned} & \text { Et } t \text { ber moving along with it, in which it fhould }\end{aligned}$ foxim like a Cloud in the Air, of Froth on the Water: For if fo, how could
that in 1664 go Retrograde, and quite contrary to the Morions of the Heavens, if it paffed between the Earth and Mars, as I have feveral Arguments that make me believe it did? Nay, how could all of them move Retrograde to the Motions of the Planets, which 1 hope 1 may thew fome Arguments to prove? Thofe that hold folid Orbs, will afford it no room, nor thofe that hold Vortices. Thofe indeed that fuppofe Demons, may fuppofe what they will, but to little purpofe.

Next, unlefs there were fome very denfe and very violently burning Body fomewhere in the Head, it could not afford fo vaft a quantity of Steams, Smoak, Vapours and Flame, as muft neceffarily go to the making up of fo vaft a Blaze, which is not a conftant abiding Body like a Cloud; but, as I manifeftly difco vered, rather of the Nature of Smoak, Steams, and Flame, from a burning Body, which are continually in a State of Diffolution and Wafting, and are.continually fupply'd by rome Fountain or burning Body in the Head; and this Bo. dy can be no where placed but within the cloudy Nucleus.

Thirdly, if there were not fome fuch Body within the cloudy Nucleus, the Roundnefs of that fide of the Head, that is next the Sun, could not be, nor the greater Denfity of the Light about and near it : For we fee that Clouds and Smoak, and the like unconjoin'd Bodies, have irregular difform Shapes; but the folid Body in the middle muft be that which made the uniform Roundnefs thereof, as I thall afterwards more fully prove, when I come to explain the Nature of that other univerfal Principle, Gravity, in the procefs of my enfuing Difcourfe.

But (which feems to make the thing yet more probable than all the other Arguments) I have made a Ball of combuftible Subftances mixed together, which being fufpended by a Wire in the open Air, and there kindled, would fo very well reprefent all the Appearances in little to the Sight, that the very Refemblande thereof feems to be a very perfwafive Argument, that the Effects and Pbenomena of both were produced from like and homogenous Caufes. And fince the Pbenomena of the Ball are produced by the Fire, and by the Gravita; tion towards the Center of the Earth of the ambient Medium of the Air, it feems not incongruous to conclude, that the Pbanomena of the Comer may be produced by a folid combultible Ball actually fired, and by a Gravitation of the ambient Ether towards the Center of the Sun. But I know it may be faid, that Omne fimile non eft idem: And I will readily grant, that it is not a pofitive Proof, however 'tis poffibly as pofitive as the thing it felf will bear : For in a Subject where we cannot obtain fuch fufficient Proofs as we can defire, we mult be contented with what we can obtain. And let me add this Confideration, that all the Theorys of the Heavens and of Celeftial Bodies, we have hitherto had, are fubject to the fame Objections that this is; for which of all the Motions of the Celeftial Bodies hath not been explicated by various Hypothefes? Some fuppofing the Annual, others the Diurnal Motion of the Earth neceffary: Others fuppofe neither of them, others only one: Some fuppofe both the Earth and the Sun alfo to be moved; others again fuppofe neither of them, but that both the Farth and the Sun may ftand ftill, and only the Heavens of the Fixed Stars may move round them, as Coccers in his Hypothefis: Others have fuppofed the Moon to ftand ftill, and all to move about that, as - Others have placed $k, \psi, \pi, \%$, and \mathbb{Z}, as the Central'Body, and folved the Appearances by fuppofing all the other to move about fome one or other of them: And others, imaginary Points here or there in the Fther: And yet every one of them, grant them but their Suppofitions, will make a Thift to folve the Appearances. But then there will be found fo many Inconcinuities in their Suppofitions, which yet will be found neceffary to be granted to folve the Appearances, that at firtt hearing we reject them as very improbable, and readily bend to that which avoids them, and hath all things very confonant and congruous: Which is the reafon why theCopernican has obrained with all the modern and beft Aftronomers, againft all the other, as being the moft fimple, and the leaft incumber'd of any; elpecially as it is improved by the Incomparable Kepler. All the Reafon of which is from this Maxim, that Natura nibil egit fruftra, Sed fruftra fit per plura quod fieri poteft per pauciora. The Simplicity therefore of the Hypothefis to be granted
and the Concinuity of it with the known Operations of Nature, is as cogent. an Argument as can be urged for any Hypothefis of this nature, and that I hope I Inall be able to manifeft in this I have pitched on.

In the mean time, I fhall now only hint, that thofe vifible Appearances of Comets which I have with much care and circumfpettion obferved and examined, with what ftrictnefs and unprejudicatenefs I could, do incline me to deduce them from thefe following Particulars, which I fhall more particularly endeavour to prove hereafter.

Several Dedu- Firft, That thofe Parts of the Heavens through twhich Comets do pafs, muit Plions from the be a very thin and rarify'd, and an exceeding fluid Medium ; otherwife fo very obfervations. 1. The Mediuim mift beex teeding thin mand fuid. thin a Body as the Halituous Steams about the Head, and efpecially the more -thin Halituous Steams which make up the Blaze or Tail, could not be moved through it with fo fwift a Motion, and that in all Particulars fo regular, without much altering or varying the true Form and Pofition thereof; 1 fay, without much altering and varying the true Form thereof, becaufe, as Ithall afterwards thew, it does really fomewhat alter both the Form and Situation of the Head and Blaze, which would otherwife in probability appear of a fomewhat diffetent Shape.

What I underftand by rarify'd and condenfed, I thall afterwards manifeft, when I come to the Explication of the Conftitution of the Medium, that fills the Spaces between the folid Globular Bodies: For though it freely permits a Body to be moved through it, it cannot be thence argued, that it contains a lefs quantity of Body within the fame Dimenfions, but only that there is a lefs quantity of folid Body, or uniform and united Motion.
2. There in a Secondly, That there is a Gravitation towards, and a Levitation from the Graviration to Body of the Sun: For as I have by many of the Ohfervations Chewn, though and Levitation there be a Defcent of the Steams from the Nucleiss towards the Sun, yet I aifrom the Sun. ways plainly faw, that they quickly returned, and went contrary and oppofite to the Sun, and that fometimes to a prodigious Extent.

Thirdly, That this Gravitating ind Levitating Power, in refpect of the Sunt,
3. This Gravitation and Levitation ex tends to and beyond the Earth.:
4. A flaming Body may be beyond the Atmoppherv. doth extend even to the Earth, and beyond it, as will neceffarily|follow from the Comer which appeared in the Year 1664, (to inftance in no other) For 'twas evident, that the Motion of that Comet was in a Line, without the Orb of the Earth; and yet we found, that that Body was regulated in the fame manner as all the otherComers, and that its Blaze was extended in oppofition to the Body of the Sun, and, as I fhall afterwards more particularly prove, was moved oppofite to it.

Fourthly, That there may be a Fire or Flame, and a burning or flaming Body, in part of the Heavensfar beyond the Armofphere, nay much farther off from the Earth than the Body of the Moon it felf; and confequently that there may be other Bodies of the fame nature with the Earth, which may be much farther off from the Earth than the Body of the Moon, nay much farther off the Sun than either the Earth or Moon : And therefore it may be no great Abfurdity to fuppofe, that the Body of the Moon may be of a Subftance not much differing from the Subftance of the Earth, and fo may have many Proprieties, if not the fame, yet probably not much differing from it.
5. The Pomet Fifthly, That the Power of Gravitation is extended into the IEt ther, without ${ }_{i}$ of extended far Gre Atmofphere of Bodies, and confequently that the Atmofpbere or Air is not is extended far the Caufe of Gravitation, bur rather the introther, in which the Atmofphere or $^{\text {ind }}$ $\stackrel{y}{2}$ ther the Cayfe other Liquors, and that from thence comes even the Gravitation of the Atmoof Gravitation. fpheres to their incompaffed Bodies; which we obferve by many other Experiments made here upon the Earth : For 'tis evident that Bodies in a Receiver, exhaufted or emptied of the Air by means of the exhautting Engine, or any other ways, have not lefs of Gravity towards the Perpendicular or Center of the Earth, than Bodies in the open and free Air; nay they are found to be propor-
tionably heavier, by how much a Body of the Air, equal to them in bulk, has been found to be lighter than them; which is an Experiment that has been often try'd.

Sixthly, That the Air it felf is no farther the Menffruim that difiolves Bo 6. The Air the dies by Fire and Flame, than as it has fuch a kind of Body raifed from the Difolvent of Earth, as has a Power of fo diffolving and working on Unctuous, Sulphure- Badies by Fire, ous or Combuftible Bodies: And this is the Aerial or Volatile Nitrous Spirit, ${ }_{a}{ }_{a}$ far atrouss stit briwhich, provided it be fupplied in the Body to be fo diffolved, as by Fire, will rit. work the fame effect, even without Air. This is obvious in Compofitions made with Salt of Nitre and other combuftible Subftances, as in Gunpowder, and the like, which will actually burn without the help of Air, as may be tried with it under Water; nay in an exhaufted Receiver, as I have often tried, wherein the Effects are much the fame, as if the fame Accenfions had been made in the open and free Air ; though where this. Nitrous part is wanting, no Combuftion, Diffolution or actual Fire will be produced, be the Heat never fo great. Whence we may deduce,

Seventhly, That in the Steams that iffue from the Cometical Body, there are 7. Troo orots of two fortsar leaft of Particles or particular Subftances: Namely, firf a Nitrous, Particles in fuch as is every where to be fourd in our Air, and is perhaps that part which Comets ; it may mof properly he called the Vital part thereof, which fupplies the Men- A Nitrous. firuum to burning and flaming Bodies; and that which continues the Life, Heat and Motion of all Animals and Vegetables. Secondly an Unctuous or Sulphu- 2dly, a Sulreous Body, that is to be diffolved by it. Both which kinds of Bodies may be phureous. actually in the Star or folid Body, which I have fuppofed placed within the cloudy Nucleus, which may ferve to continue the actual Fire once begun, and may both be rarify'd into the Halituous Steams that compofe the cloudy or hazy Head and Blaze (which Particles, when emitted from the Body, may be feparated, and afterwards by convening together again, may produce an afual Flame) and make thofe Flafhings and Flarings, which I fo often took notice of.

That there may be fuch kind of Effects produced, I would argue from $\mathrm{Ob} \cdot$ An Explication fervations which are commonly made here in the Atmofphere near the Earth. of Thunder and Every one has feen the Lightning and heard the Thunder here in the Air, and Lightnind. many have endeavour'd to give a Solution and Explication thereof. But though there be a valt variety of Opinions and Hypothefes concerning it, yet to me they feem every one of them to have milfed the right. I fhall not crouble you to relate them here, fince I have already declared my Opinion concerning them; nor fhall I at prefent trouble you with fetting down many abfurd Confequences that would follow from fuch their Hyporhefes, which would be quite incongruous to the manifeft, if heeded, Appearances: But I thall only tell you what, from all the Obfervations I have made concerning it, I conceive Thunder and Lightning to be, which whether it be congruous to the Pbianomona, and fufficient to explain them, I leave to the curious Obferver to judge. I have fhewed already, that the Atmofphere about the Earth doth abound with a Cpirituous Nitre, or Nitrous Particles, which are every where carried along with it ; befides which fort of Nitrous Particles, there are alfo other Particles raifed up into the Atmofphere, which may be fomewhat of the nature of fulphureous, unctuous, or other cornbuftible Bodies; as we fee Spirit of Wine, Spirit of Turpentine, Camphire, and almoft all other combuftible Bodies, will by Heat be rarify'd into the form of Air or Smoak, and be raifed up into the Air; all which, if they have a fufficient degree of Heat, will catch fire, that is, be diffolved and turned into Flame by the Nitrous Parts of the Air, as thoufands of Experiments might be brought to prove. There are alfo other forts of thefe fulphureous Steams, which are raifed up from fubterraneous and mineral Bodies, which only by their coming to mix with the Nitrous Air (though they have no fenfible Heat in them) will fo ferment and act one upon another, as to proudce an actual Flame ; which has been often found in Mines; and more efpecially if any part of them be kindled, the whole Train of them, intermingled with the Air contiguous, will immediately take fire, like a Train of Gunpowder, and run from one end
to the other of thofe Vapours, be they never folong, as I could prove by a Multitude of Relations from the Cole-mines and feveral other Mines. The Accen. fion of which Vapours is fo fudden, and with fuch violence and fwiftnefs runs from one end to the other, as often to kill the Miners, to blow up their Props, Stays and Houfes, and do as prodigious Effects as if a great quantity of Gunpowder had been fired in the Mine. Now Lightning here in the Air I take to be much of the like nature, that is to fay, the Air or Atmofphere about the Earth is continually furnitht with the firituous Nitrous Parts: Now the Heat of Summer, whenever very extraordinary (as 'tis always obferved to be before Thunder and Lightning) raifes up alfo out of the Earth a great quantity of fulphureous Vapours, which are of fuch a nature, as that meeting with the N_{i} trous of the Air, they work upon each other, and thereby hegin a farther degree of Heat,' which increafes by certain Degrees fo long, till it arrive at a certain pitch, at which pitch they actually fall on each other, and produce an actual Fire or Flame, which fo foon as ever it kindles, whereever it be placed in the Train, it almoft inftantanesully fires the whole Train, and runs to the End with fogreat a Swiftnefs, that though I have obferved the Progrefs of it at three os four Miles diftance, as I have judged by the coming of the Sound to me, yet have I feen this Train kindle or pafs at leaft a Miles diftance in little more than the quarter of a Minute of time. Now the Progrefs of the Flafhes or DartThis applied to ings of Light our of the Comet do feem to be much of the like nature; and the Cometsfa-though the Progrefs of the Flafh in the Comets be poffibly a thoufand times Ming. more fwift; yet confidering the vaft difference there is between the Air and the Fiber, I know not but that the Progrefs of the Accenfion of Flame in the Lightning miy beaccounted as quick through the thick Medium of the Air, as that of the Comet in the thinnner and more fluid Medium of the Ftber.
$81 y$, The Mro-
Eighthly, From the great Diffance of the Comets, and the great Variation tion of Comets of Place they feem to make, we may collect that the Motion of them mult needs very rapid; be very rapid, and to equalize the Swiftnefs even of the Earth it felf, if not therefore they much to exceed it; and conlequently to continue that Mction fo regular, one are folid. would rationally fuppofe it mult be as folid as the Earth it felf; or elfe that the $\overline{\text { E }}$ ther has very little, if any, impeding Power to the Motion of folid Bo. ies through it.
othly, Yet the Ninthly, That notwithftanding this, yet there feems to be reafon to fuppofe, Partsif the Aither are denfer. that there is a greater Denfity even of the Parts of the Nther it felf; for otherwife it feems hard to conceive how there fhould be a Levitation of the flaming Parts, and a Gravitation in refpect of the Sun, of the other more folid, as I fhall afterwards prove moreclearly by Confequences drawn, not only from the Form of their Motion, but from the more indifputable Motion of the Planets.

1othly, $A n A c$ -
Tenthly, That there feems to be a vaft Acceleration in the Motion of Leviceleration in le- tating Bodies (where the Motion is continued upwards) as well as there is of vitating Bodies Gravitating Bodies, where the Motion is continued downwards, and towards the sppards. attracting Center : For though (asI have before mentioned) the exceeding fwift Dartings and Flafhings of the Light do rather feem to be made by a fucceffive Accenfion, like a Train of Gunpowder (and, as I have fuppofed, if not proved, Lightning) ; yet to maintain fuch a Succeffion of Steams, there mult needs be an exceeding quick Supply from the Head, even to the utmoft Extremity of the Blaze : And it looks not unlike to a kind of actual Levitation, or a driving, outwards of certain halituous Parts from the Sun, as if the Rays of Light of the Sun were carried with a local Motion rapidly fwift, and in their Paffage by the Star of the Comet, did carry with them fuch kind of halituous or fiery Steams. The often obferving with my bare Eye thefe fudden Dartings of Light, which feemed to pafs almoft in a Second from the Head even to the End of the Blaze, did often make me confider, whether the Rays of Light might not thence he fuppofed to be moved away from the Sun with this excceedingly violent and rapid Motion ; efpecially fince there are fome Obfervations of Mr . Romer's about the Eclipfes of fupiter Satellites, which feem to make probable fuch a; Theory: But whether that does well accord with other Appearances, and whe-
ther it may be allowed in the Theory of Light I have fuppofed, I fhall leave all. Perfons free to judge. And as I defire they would give me the liberty to fatisfy my felf in trying to make a Solution of the Appearances thiat I have hitherto perfuade any of them Suppofitions of my own, fo I fhall not endeavour to pearances themfelves, that I have mentioned of my Opinion, where the Apnot to make it pofitively neceffary : Since 1 doubt not but a more experie feem more thinking, and more judicious Man, may plainly difcover what to med, as yet undeteited.
For demonftrating thefe io Particulars I have named, and feveral others con. Profs of the fequential upon them, I judge it neceffary to demonftrate, as plainly as I am io foregoing able (by the finall Stock I have of Obfervations and Experiments, and fome Particulars. few Deductions I have made therefrom) Foür Particulars'.

Firft, That the valt Expanfum of the World, that is, the whole Intertice r.Thevaff Exo between the greater globular folid Bodies thereof, is a Body exceedingly fluid, panfum is ex. and fo fiuid, as hardly to be able to hinder the Motion of any Solid through it, ceeding fuid. much lefs of a Body of any confiderable Bulk or Magnitude.

Secondly, That this exceedingly or indefinitely fluid Medium, though it do ${ }^{2}$. Th the Me. not at all, of at moft very little, hinder the Motion of Bodies through it, is dium by wobich yet norwithftanding the Medium by which the Communication of the harmoni- Motions are ous or inharmonious Motions of the more folid Parts and Particles are commu. communicated nicated to others at a confiderable diftance ; and that by means thereof booth the and of Lighs Motion of Light is propagated outwards, or from the folid Body to all ima-tion. ginable Diftance in Radiating Lines or Orbicular Pulfes, with unimaginable Celerity: And alfo the Gravitation or Motion of Defcent from all imaginable Diftance towards the Radiating Body, of all folid Bodies, is caufed and produced by the like Radiating Lines or Orbicular Pulfes reverfed, with an unimaginable Celerity andprodigious Power.

Thirdly, That this indefinitely or exceedingly fluid Body may be, and is a 3. A Body may Medium, in which a folid compound Body of proper Materials may be fired burn in ito and kindled into an actual Fire and Flame, and may be continued in that State fo long as the faid Materials thall laft, and other Circumftances do not hinder; and may have its Flame and Steams afcend, and its more folid Parts defcend.

Fourthly, That the Motion of Afcent and Defcent herein is continually in- 4. The Preporo creafed and augmented in a proportion more than duplicate downwards, and lefs tion of thefe than duplicate upwards, of the proportion of the Times; which Proportion Motionso thall bedetermined and demonftrated.

For the proving, or at leaft making very probable of which four Proprieties of fo vait a Body, and of the Parts of it at fogreat a Diftance, and of a Body fo altogether infenfible to our Organs, any orherwife but by a Series of feveral Confequences, it cannot be expected I thould produce a fenfible and undeniable Demonftration; and yet when the Coherence of all the Confequences, that will neceffarily and naturally flow from this Doctrine and Theory, fhall be confider'd, I hope it may produce other Thoughts and Arguments, in other Mens Minds, far more cogent than I am able to produce.
Now that I may not be iniftaken in my Exprefions; and that the Words I make ufe of, which are commonly uled, but by various Men are underftood to fignify varicus and very differing Notions, I would willingly explain in what fenfe I underftand them, and what Notions I would willingly have them to communicate, when made ufe of by me.

I conceive then the Whole of Realities, that any ways affect our Senfes, to Wbatever afbe Body and Motion. By Body I conceive nothing elfe but a Reality that has feftr sour Senfers. Extenfion every way, pofitive and immutable, not as to Figure; but as to Quan- is Body and tity; and that the Body, as Body; is the fame, whatever Figure it be of : As a mothaton. Quart of Water is a Quart of Water, of a certain quantity of Body, though contained in a Globe, Cylinder, Cone; Cube, Quart Pot, or any other figused

Of Comets and Gravity.

containing Veffel: And as Body, it is indifferent to receive any Figure whatever; nor has it more Extenfioni in one than in the other Veffel, nor can it have lefs; nor is it more effentially a Body, when folid, as Ice, than when fluid; that is, the Minims of it are equally difpofed to Motion or Reft in pofition to each o. ther ; and therefore Body; as Body, may as well be, or be fuppofed to be indefinitely fluid, as definitely folid; and confequently there is no neceffity to fup. pofe Atoms, or any dererminate part of Body perfectly folid, or fuch whofe Parts are uncapable of changing pofition one to another;; fince, as I conceive, the Effence of Body is only determinate Extenfion, or a Power of being unalterably of fuch a Quantity, and not a Power of being and continuing of a determinare Quantity and a determinate Figure, which the Anatomitts fuppofe. Thefe I conceive the two Powers or Principles of the World, to wit, Body and Motion; Uniformity of Motion making a Solid, and Difformity of the Motion of the Parts making a Fluid, as I Thall prove more at large by and by.

Motion what.

By Motion I underftand nothing but an Alteration, or Power of Alteration; of the Minims of a Whole, in refpect of one another, which Power mas be increafed or diminifhed in any affignable Quantity ; but the natural Ballance of the Ulniverfe is reciprocal to the Bulk or Extenfion, or to the Quantity of the other Power, Body.
Thefe troopore. There two I take to he two fingle Powers, which co operate in effecting the ers immutable, moft of the fenfible and infenfible Effects of the World. Of the fenfible Efbut b t the Poto fects I am afcertain'd by fenfible Experiments and Obfervations; and of the iner that made renlible I have a Probability from the Similitude, Harmony and Uniformity in them.

Philofophy ; and all artificial Inquiries tending hereunto, I conceive to tend to The firft Prin- Thefe are as it were the Male and Female of Nature, from the Co-operations siple, Matter. of which the moft of Natural Productions are effected. The firft is, as it were, the Female or Mother Principle, and is therefore tightly called by Arifotle and cther Philofophers, Materia, Material Subftance, or Mater; this being in it felf, abftractly confider'd, without Life or Morion, without form, and void, and dark, a Power in it felf wholly unactive, until it be, as it were, impregnated by the fecond Principle; which may reprefent the Pater, and may be call'd Paterinus, Spiritus, or hylarchick Spirit, as fome call it; without whofe Con'junction nothing, or no Alteration can be produced: For neither can Matter without Motion, nor Motion without Mattef, produce any Effect. As for Matter, that I conceive in its Effence to be immurable, and its Effence being Expatiation determinate, it cannot be alter'd in its Quantity either by Condenfation or Rarefaction; that is, there cannot be more or lefs of that Power or Reality, whatever it be, within the fame Expatiation or Content; but every equal Expatiation contains, is filled, or is an equal quantity of Materia; and the denfeft or heavieft, or moft powerful Body in the World contains no more Materia than that which we conceive to be the rareft, thinneft, lighteft, or leaft powerful Body of all: As Gold, for inftance, and Fther, or the Subftance that fills the Cavity of an exhaufted Veffel, or the Cavity of the Glafs of a Barometer above the Quickfilver. Nay, as I fhall afterwards prove, this Cavity is more full, or a more denfe Body of Ætber, in the common Senfe or Acceptation of the Word, than the Gold is of Gold. Bulk for Bulk ; and that becaule the one, viz. the Mafs of Ftber, is all Fiber, hut the Mals of Gold, which we conceive, is not all Gold, but there is an Intermixture, and that vaftly more than is commonly fuppofed, of $\notin t b e r$ with it : So that the Vacuity, as it is commonly thought, or erroneoufly fuppofed, is a more denfe Body than the Gold as Gold. But if we confider the quantity of the whole Content of the one with that of the other, within the fame or equal:
quantity of Expatiation, theniare they hoth equallyngontaining the M/yat qathof
 This poffibly may at finft hearing feems al litherppatioxjogl, if wnptrabfurd 10
 make it fomewhat more plaufible, if not pofitivelyland landenaably dempnfrate

 ture, and may, be rarified andscondenfed, diminifhed of, incrgafed with in the ciple, Motion: fame quantity of Body of Matter, iniany proportion afllgneds that is, the fame quantity of the rft Power Body; or part of Mat Aer, may receive any aflignable quantity of the ad, that is; any afignable Degree of Mlotiont iand being IDP felf of it, it may communicate or lofe any aflignableipart of whay it has and hill the Body, as Body, remain unalter'd and the fame: For asifit may be moved with any Motion, how fwift foever it be fuppofed, fo may it move with inde finitely flow Motions, and that fo far, as that the next ftep ope would fuppofe is nutt lofeall its Motion, and remain in intire Reft, and unalterable of Polition, as to the contiguious Body.
It may poffibiy be Atill demanded, what is Matter, and what is Motion ? To which I can onily anfwer, That they are what they are fopers created by the Omnipotent to be what they are, and to operate as theyido; which are unalte: rable in the whole, either by Addition or Subitraftion, byany other Power but the fame that at firt made them to be what they are, and what partial Alterations or Compofitions are by them produced, chey flow from that Omnipotent Wifdom that ordered therm fo to do: And thefe are thofe which we call the Laws of Nature; which though at fint glanee they feem wholly unfearchable and incomprehenfible, yet God has planted in Man a Faculty by which, I conceive, he has a Power of underftanding and finding out, by and according to what Order, Rule; Method, or Law, they act, and produce the Effects that are produced by them. And this I conceive to be that we call Natural Knowledge, and our Advance in this Inquiry, I conceive to be that which we call the Improvement of Natural Knowledge; and the nearer we can approach from the loweft and moft fenfible Effects, to higher and higher Steps of Caufes, the near er thall we be to the higheft and utmoft pitch that human Nature is capable of arriving at. Iti have in my Inquiries vatious and fund ry ways attempted to afcend by the Syntbetick Method, and as many ways attempted the contraty, of Analytick way, and fhall therefore in fome of my enfuing Difcourfes give fome Specimina of each; which though they may have their Failings, and come fhort of what may be done by others, yet I hope they may appear to have, been regularly and Atrictly profecuted: And this I am now upon, though it hould not prove the true, may yet be of fome fuch ufe, as the Rule in Arithmetick called falfe Pofition, for the finding by the wrong Product what is more likely to be the true one.

Various have been the Attempts of feveral Philofophers, beth antient and modern, to begin this Analyticalway, which would be too tedious to repeat at this time; yet whether it be for that we have not a true, or at bef but a very imperfeat Account of what they were, we do not find that Satisfaction from the Product of them in the conclufion, which an inquifitive and frift Examiner would expect, the String and Series of the Analy/ss being broken and imperfect, and not carried on through all the Steps of Defcent, as it ought to be ; which will be more difficult to fupply than the Effect will poffibly be valuable, unlefs we had a more full Account of what were their firft and fundamental Pofitions. And though even this has been an Undertaking not lefr unattempted by feveral of the more modern Writers, yet whether fuch Attempts have been alfogether fo fuccefsful as is defirable, I muft leave to thofe that thave examined them to judge.

Others there have been, and that much a greater number, who have gone the other way, and have been dabling in this or that particular Subject, and have been fo blinded with fome little things they have therein met with, that they prefently fquare all the reft of Nature to their Rule. Such as thefe are too hafty in their Conclufions, and think to run away with that which they are far enough from attaining. The 4 Elements, the 3 Chymical Principles, Magne-
nètifm, Sympathy, Fermentation,', Alkaly and Acid, and divers ortierChimera's, too many to repeat; which having, been embraced, nothing elfe will be heard, or go down with them, whereas, alats, Nature perhaps knows no one of there for a Principle in any fenfe, much lefs in that which they underfanditit. Of which I fhall fay fiore elfewhere:
But to proceed, this Suppofition of the two fundamental and primary fowers, to wit, that of Matter, and that of Motion," which I have héredelivered, feems to me very conforiant to the Senfel underftand of the Hiftory of the Genefis of the World, delivered by Mofes in the firtt Chapter of Genefis: And though the Words of that Hiftory be by divers Aurkors very differingly ex plain'd and applied, yet by ferioufly confidering of them, I conceive they may genuinely bear this Senfe alfo in which I thall here mention them.
A brief Inter- The words of the ift Verfe, as render'd in our Englifh, are: In the beginning terpretation of God created the Heaven and the Earth: In the Hebrew 'tis, the Heavens; bur the beginning the Greek, Samaritan and Arabick render it Jonly the Heaven. The Syriack of Genefis. renders it, the Being of Heaven, and the Being of . Earth: But the Arabich renders it thus: The firtt thing that God created was Expreffion does feem to fignify the firft Power that I have mentioned, namely, Matter or Mater, the whole Subftance of the Heavens and the Earth; that is, that-Subftance, which being afterwards informed and qualined by Motion, for fome time without the Impregnation of the fecond Principle, Motio to be tis faid, the Eartb was without form, and void, and Darknefs was upon the Foice of the Deep, or the Abyfs. The Hebrew is, Deferinefs und Inanity. The Greek renders it invifible and incompofed: The Targum, defert and woid. The Arabick renders it, covered woith the-Abyfs, and overwheimed with the Sca. And the Original, and all the Tranflations, agree in the Darknefs upon the Face of the Abyfs. All which Expreffions feem itc fignify, that the Mater of Heaven and Earth was yet without any kind of Motion in it, but like that imaginary Encity we call Vacuity or Space; which wâs without lany moving or aeting Power in it, but had as yet only the Power of Expanfion, Extenfion, or Expatiation: For this is what we underftand by the Notion of Wacuium or Space; and fo is Darknefs', namely, a Defect of the Motion of Light : For Light, as I have already by many Arguments and Experiments proved, is a Morion, and that a regular, uniform, and truly Geometrical Motion. So that the Senfe of the fecond Verfe to me feems to be this, That the Mater out of which the Earth; or all the Solids in the World were afterwards'made', was yet only a pure Mater, or extended Subftance, and of the fame nature with the Aby Is, which had not in it-the 2d Power Motion; but was dark, without the Motion of Light, without Form; that is, without the Power of Motion, that makes Forms; defert of Quality, Life, Action, or Diftinetion; wanting yet Motion, which maketh all the Diitinction, Quality and Action that is in the World.:Then follows the nextWords, which feem to fignify the Creation, or Infufion of this fecond Power Motion. And the Spirit of God moved upon the Face of the Waters. The Original is, And the Spirit of God did move upon the Faces of the Waters. The Targum is, And a Spirit from the Conspectu of God did blow in upon the Face of the Waters.. The Samaritan rendersit, And the Spirit of God was carried upon the Face of the Waters. The Syriack renders it, And the Spirit of God did incubare, or brood, upon the Superfjcies of the Waters. The Arabick, And the Winds of God did blowe upon the Face of Water. All which feveral Readings do feem to fignify the Creation and Production of the fecond Power, Motion. For firft, 'tis moft properly called a Spirit, fignifying its Power of moving, by which Property only we know it. Next, it is faid to move, or be moved, or blown in or carried upon the Face or Superficies of the Waters. The Mater was now no longer dead, and unactive, and Earth, but it became a Fluid, fignified by Water. For, as I thall afterwards fhew, it muft in this Place be fo taken, and not only for the Subftance Water, but that God joining the fecond Power Motion, and impregnating the Mater with it, made every Minim of it to move with infinite Varieties of Mo. tions: And fo all thofe which before lay ftill, and changed not their Places and Pofirions in refpect of one another, and were therefore called Earth, are now by this Infufflation, Incubation, or acting of the Spirit of God upon the Super-
ficcies, become a perfect Fluid, or a Water. Notwo contigupus Minims yet agree in Unity or Uniformity of Motion. And hitherto feems to be the Hitory of the Creation, or making of the wo firt Powers, Matter and Mation, Body and Spirit, or, Matter and Form.
In the next place follows the Defcription of the two great Eaws af Motion, The two great which conttiture the Form and Order of the $\pi \omega \pi \tilde{u}^{\prime}$, or World. The fritt is that Laws of moof Tight, and the fecond is that of Gravity.
 Nature, which is that regular Propagation of Motion, which, as thave formerly explain'd, extends it felf inftantaneoufly through the Whole of Matter. We find in the third Verre, And God Said, Net there be Light, and theré was Light and God divided the Light from the Darknefs. Whereby we find, that the firf Regulation of Motion was the Principle of Ligbt; which feems to fignify, that this Propriety of the fluid Marter was then firtt implanted, by which the fimilar Parts of it were made fit to propagate the Pulfe of Ligbt to all imaginable Diftance; and this Subfance was diftinguifhed from, thatorher Subftance, which would not propagate it, which was upaque and darik: For as yer we find neither the Sun nor Stars were made, nor the Eartb it felf formed but only a Qualification of Matter fit for the performing of thofe Functions, which were accordingly made diftinct, and fecondarily implanted. And God faid, Let there be an Expanfum, or a Firmament, and let it divide the Waters from the Waters. This feems to fignify the fecond general and grand Rule of Natural Motion, namely, Gravity. For this Expanfion or Firmament is faid to 2. Gravity divide the Waters from the Waters, or one Fluid from another, for fo the Word Maim feems to fignify. And this made all thofe Eluids which were of a Terreltrial Nature, to congregate or garher together into the Mafs of the Earth or Earths; and the other of a more Celeftial Nature, to gather together in the Sun and Stars. And this Expanfion or Firmament, which was the extenfive Power of Gravitation, was that which caufed thore Effects. Thefe two Powers feem to conftitute the Souls of the greater Bodies of the World, viz. the Sun and Stars, and the Planets, both fuch as move about the Sun, and fuch as move about any other Central Body: And both thefe are to be found in every fuch Body in the World ; but in fome more, in fome lefs, in fome one is predominant, in others the other; but no one without fome Degree of both: For as there is none without the Principle of Gravitation, fo there is, none without fome degree of Ligbt. And though fome doe not fhew its Effects in producing Light immediately, yet I Thall make it probable that it has that Motion blend. ed with others, which hinder it from producing Effeets, but yet do not wholly deftroy the Principle. And this I thall make the more probable, when I fhall hew how both there Powers are but diftinct Effects produced by one and the fame Power, and that thisPower is implanted in every fuch great Globular Body in the World. I could go on through the whole Hiftory delivered in this firft Chapter of Genefis, but that Ionly aimed at prefent to thew, that nothing of what I have hitherro fuppofed, does any ways difagree with Holy Writ, but rather, that it is perfectly confonant to that, as well as it is to Reafon, and the Nature of things themfelves.

I have often made ufe of the Words Maximum and Minimum, or of the Maximum sind Greateft and the Leaft; and becaufe there are various Opinions concerning the Minimumis if Significancy of thofe Expreffions, fome underftanding them in one fenfe, and fome in another, I would willingly have it undertood in what-fenfe I make ufe of them.

By the Words Maximum and Minimum, or the Greateft and the Leaft, I unit derftand then only the greateft and the leaft Extenfion or Motion we have need to make ufe of in fpeaking or fuppofing; which will ftill be bounded: For In-: finite or Ulnbounded cannot have an Idea formed in our Imagination or Memo ry, which muft always have a bounded Idea, being material: And this bounded Idea, however by comparing and reafoning we may fuppole it differing ; yet ir is never bigger or lefs in reality, than the biggeft Appearance we have had of the Heavens, or the leaft Appearance we have had of a vifible or other fenfible Point. Thefe Ideas therefore of Maximum and Minimum, made ufe of in Difcourfe and Reafoning, are compound Ideas, and confift of the fimple Ideas of the fenfible

176

Maximum and Minimitm，＇with a Proportion annexed For＇as much＇as＇the Ided of the Maximum does exceld the Idea of the Mininum brought in by the Senfe， fo much do we fuppofe the Minimum to exceed another Minimum，of which we

5ncis omi $3:$
$x_{0}^{=2 i n}$ th to zijess
$\therefore 4 \mathrm{c}_{2}^{2} \cdot 1$ would make a fingle Idea，but we cannot，but it will always be a compounded or comparative Idea jand fo vice verf bif the Maximum．For nether can we form a fimple Ideat any thing that is Million of Millions of times lefs than the Idea of the leaft vifible Point；nor can we form an Idea of a Maximum， Wheh is Millions of Miltons bigger than the imaginary bigheis of the Heavens wetree，but by Compofition，and Comparifon，atdyroportion，we make the compounded Ideas，which fuffice for a Material bo be made ufe of in Reafon－ ings and when all comes to all，we dd but teafon upon the x gay in our own Repoftory or Memory，which contains certain ldeas，Forns，Piatures or Marks， we our felves have thade offimple Senfations；which are originally beigun from Motions without，but compleated finithed and difpored of within our felves， by the Power and Activity of the Soul；from whence proceeds that Difference whielis to be found in the Imaginations and Reafonings of feveral Men For the things of Nature are the fame and the Informations ate conveved by the fame Media，and in the farme Mantrer y ye partly ilie Organs of Men difief confiderably in their Perfections；bat chiefly the inward Parts of the Organ of Memory，and the natural or acquired Habits of the Soml in Imagitation and Reafoning，are exceeding different．Somémen have a mofe piercing Sight，and candittinguith a much fradler Point than others，pofibly from the Tuncles and Humours of the Eye，their exceeding Clearnefs and Tranfparency，and Exactnefs of Figure ；polibly alfofrom the Finenefs and excellent Siructure of the fenfible Patt，ard Optick Netie，and Parts of the Brain ferving to that purpofe，and from the Habit，Qre and Exercife of thore Parts and Faculties：But ftill in the beft，the Minimum and the Maximum vifibile is limited，it can be to more than a Hemifphere of the Eye，nor fmaller than a Point of the Eye，which to every Man is affgnable，and whatever other Idea is formed to exprefs a lés or abigger，is a compounded or proportionate ldea，and will be plainly difcover’d fo to Be by any one that will but Cerfouthy fo confider it．
Bleto leave this Digreffion，and proceed by various Enquiries in the Synthe tick Why，oo by reafoning，and proceeding from fenfible Ohfervations and Expe． riments，：tocthe more imenfible Operations of Nature，thave already Thewed Light to be a continued Pulfe or Motion propagated thtough a Diaphanous Mc－ dium to m maginable Diffance in orbem and by this means to conthually agio tate and hake fuid，vivify and regulate the greateft patt of the Linverte I haverdlready frewed all it＇s various vays of moving and crofting each ornet，and the harmonious Chime as were，of the Pulfations of feveral Luminous Pomrs or Bodies，and therefore hall not here repeat them atyy further than only naming， As firf，that Light makes all things fenfible to the Eye next，that fuch a Mo－ tion cdufes Heat，produces and contiues Fluidity and Solidity ；producing Union and Separation ；Union of homogeneous，and Separation of heterogeneous Bo－ Some Efferts of dies．Thefe，I fay，I have already pretty largely explaiñd；and therefore I the Motion of thall leave the further Explanation of it to a more proper Place，and proceed
Light． Light．to the next Principle，Gravity，becaufe I find that Principle to feem the more natinew and frange to fome Perfons，and I would willingly remove fuch Difficul－ ties as occtr，before I proceed，becaufe otherwife there will be a hefitaticy，in all that follows．
What is under－By Gravity then I underftand fuch a Power，as caufes Bodies of a firmilar or food by Gra－homogeneous nature to be moved one towards the other，till they are united；or fuch a Pówer as always impels or drives，attracts or impreffes Motion intothem， that tends that way，or makes them unite．The Llniverfality of this Principle， throughout the whole and every＇thing therein，I thallafterwards have more occa－ fion to explain，when I come to the Effects of Nature in leffer Bodies．At pre fent Ifhall only proceed to thew it in the greater Bodies of the World．

[^5]be a Spirit, an bylarchick Spirit ; others fuppofing it an innate 2uality, or inherent tendency to the Center of the World, not as 'tis the Center of the Earth but as it is the loweft Place in the Univerfe, and fartheft removed from the Heavens, and from the more Spirituous and moving Bodies; and fo is fuppofed the worlt of Places, and made fit only to receive the Dregs of the Llniverfe: And were the Body of the Earth there, or not there; yet thither would all thefe dull and earthy Bodies, that we now find defcend, tend, and there remain. Others fuppofe this Power placed in the Fiber, and that by the Rotation thereof making it tend outward, the more folid Bodies, which confift of more bulky Parrs than the Etber, are driven downwards. Others place it in the Earth it felf, which they fuppofe like a great Loadfome, and to fend forth certain Chains of uncous or hooked Particles, which pull down all Terreftrial Bodies out of the Air, or from any higher to any lower Place: And many other fuch Fietions and Cbime$r a^{\prime} s$, which ferve only to inform us what kind of Notions and Imaginations thofe Men had in their own Minds; but in no wife to inform us of what the Power is, or in what manner it operates. Only this farther we may collect from them all, that every one of them took it for granted, that heavy and terreftrial Bodies were by fome Power moved towards the Center of the Earth, whether their particular Notions concerning that Power were right or not.
Next, there have been as many differing Opinions concerning the Limits of of its Limits this Power : Some extending it too far, and others as extravagantly too little : upwards. Some fuppofing, that wherefoever in the Uliverfe a terreftrial Body thould be placed, there it would have a tendency towards the Center of the World or Earth; and therefore that in the Creation, all the Terreftrial Matter of the Cbaos met togerher, and made up the Body of the Earth. Others, on the other hand, have been too penurious in limiting its Power to fome few Miles; fome to 50 Miles, others to a Boundary, that a Cannon well charg'd with Powder would be able to thoot a Bullet out of its reach. But though they are both enough miftaken, yet they agree in this, that this Power of Gravitation does aft at fome diftance above the Surface of the Earth.
Others differ again about the Modes and Limits of its working within the of the Modes Body of the Earth below its Surface; but no one I have yet met with feems to and Limits of me to have hit upon a right Notion concerning it; and yet all agree in this, that $i t s$ working bethere is fuch a Power fomewhere placed, that does act regularly, and within fome low the Sufface cerrain Limits. I could proceed farther to mention their Explanations; but I of the Earth. conceive they would be too long, and not much to my prefent purpofe.
In the next place, this Power atts regularly and uniformly. I argue its Regu-2.1t afts regularity or Ulniformity of acting on all fides or fuperficial Parts of the Earth, from ${ }^{\text {larly. }}$ the Spherical Surface of the Sea; and that from the Shadow of the Earth in Eclipfes of the Moon, where the Picture or Shadow of it is found to be round: And therefore though I cannot without very much trouble here upon the Earth ${ }_{2}$ be afcertain'd of the Ulniformity or Equality of the Power of Gravity working every way nearly towards the Center of the Earth; and though I cannot afcend high enough, tho' I thould get to the top of the higheft Mountain in the World, to have a cerrainty from Infpection or Sight : Yet this alone, of the roundefs of the Shadow in Eclipfes, isArgument enough to perfuade any unprejudiced Perfon from disbelieving it, as a Matter very unlikely; though it be not fufficient to prove its Geomerrical Roundnefs, which muft be proved by other Mediums. Befides, we find that it muft be very near round, and confequently have very near uniform Gravitation, from the general Obfervations of Navigators, who do find, that fo many Leagues failed Northwards or Scuthwards, do alter a Degree of Latitude; which were the Gravitation not pretty near equal, it would not fo happen. ' Tis poffible, by very accurate trial, the Truth and Certainty thereof might be pofitively proved and determined; but 'twill require more than my Opportunities will reach unto at prefent, to do it, though I can thew how. It were defirable however, that it were once for all accurately rried.
The reafon why I infift fo much upon this Argument of the Roundnefs of the Figure of the Earth, is, becaufe I take this Roundnefs to be as convincing an Argument as any, to prove that there is the like Power in every Globular Celeftial Body, as there is in the Earth. For fince all the Celeftial Bodies, whofe

Shape we are able to difcover, are found to be of a Globular Figure, as is the Earth, and that feveral of them do turn round upon their Axes (as we find beyond doubt that the Sun and fupiter do) were there not in them fuch a gravirating Power, all the loofe Parts of their Bodies muft be fhot out from them, or throivn away like a Stone out of a Sling fwung round, or the loofe Parts fticking to a Wheel or Top, when whirled round; and confequently they muft in a little time be difperfed and fhattered to pieces. But no fuch A ppearance has ever been obferved: Therefore it is an Argument that there is fuch a Power in thofe round Bodies of the Sun and Fupiter, which keep thofe moveable Parts from flying off. For that the Sun has moveable Parts, is evident by the Difcovery of our Telefccpes, which thew us various forts of Spots; which Spots, whether they be Clouds of Smoke, or more opaque Parts that rife out of the Body it felf, and only float on a fluid part of the Body of the Sun, like the Scoria or Drofs of ted-hor melted Mettal, is not yer determined : And 'tis moft probable they are of the former nature, by the various Circumftances that have heen taken notice of; but be they which feever, yet the whirling of the Sun would throw them off, were there not fuch an attracting Power that kept them from receding, fince 'tis evident they are loofe from the reft of the Body. The like may be faid for fupiter, in whofe Phafes great Alterations have been obferved by feveral ; and Monf. Caffini judges fome of thofe Appearancés to be caufed by fome kind of Waters. The like I conceive may be faid for the Body of Saturn, though our Telefcpes have not yet certainly diftinguifh'd Pbonomeria fufficient to prove its Rotation.

I fay moreover, that this Power is not only placed in the Earth; but that there is the like Power in every Globular Body in the Llniverfe, whether Sun or Fixed Star, Planer primary or fecondary, and in the Cometical Body included, as I hate fuppofed, within the Nuclezs or white Cloud appearing in the Head.
S. Its Pomer act sindefinite
ly uprar ly upwards.

In the third place, I fay, that this Power of Gravity, which is fufficiently evident on the Superficies of the Earth, and acts fo regularly every where round the Surface of the Globes, is not fuddenly extinguifhed, nor lofeth its Power at a little height above us: But, as I conceive; it is extended to a vaft diftance upivard, even indefinitely, and though it may be faid to be fenfibly finite, yet this fenfible Boundary has its Limits prodigioufly large; and when the Degree of its Power, which fhall be called fenfible, is ftated, then thefe Limits alfo or Diftance of fuch an imaginary Surface, may be Geometrically determined, and the Proportion of the Semi-Diameter of it to that of the Globe of the Body in the iniddle, exactly determined and demonftrated. I conceive further, that this Power thus extended; does act with various Degrees at feveral Diftances from this Body; which Degrees I thall alfo endeavour to ftate, and, as I conceive, evidently demonftrate from my Hypothefis, founded, as I conceive, upon the Pbenomena of Nature, and not taken up at random, or by chance. Thefe my Conceptions (as being, I think, wholly knew, and not yet afferted by any Perfon whatfoever) may feem ftrange and extravagant, and I muft be content to have them fo efteemed, by fuch as may either have a Prepoffeffion for fome other Hypothefis, or fhall not allow of the Arguments I fhall bring to confirm them as fufficient for that purpofe. It cannor, I fuppofe, be expected that I - Should try or fhew Experiments at Diftances fufficient to prove it experimentally and pofitively; and therefore all that I can bring is only this, that I find a certain Agreement and Coherence of this my Suppofition with other Operations in Nature, and that hereby the Appearances of Nature's working are explain'd': Several opini. Whereas I cannot find that by any other Hypothefes that have been hitherto made known, the Pbenomena of the Heavens can be intelligibly and clearly folved, without the granting of many fuch Actions or Motions, as are very abfurd, and Motions, which are within our reach to examine. Whence fome of them, that they may give a Caufe of the undoubted Appearances, have been fain to fuppofe underftanding Beings, Spirits or Intelligences, to be the Movents or Caufes of fuch Extravagancies. Others have fuppofed various forts of folid Orbs, Orbits, Epicycles, and I know not what other Wheel.work, to make out the fenfible Inequalities, and yet regular Periods; which being too grofs,
and contradicted by the Motion of Comets, others have rejected, but inftead thereof, have fuppofed Magnetifm, as Kepler and his Followers, who have to that end feigned a Friendly Side and an Enemy Side to be planted in the circumgyratiog Celeftial Bodies: And becaufe the Moon always keeps the fame Side very near, refpeetingthe Earth, and fo its Appearanices contradicted this Suppofition; therefore they fuppofed a Niucletis: within the Moon, which had a differing Motion and Pofition in refpect of the Putts of the Shell, or outward fuperficial Parts of the Moon which appeared. To help this yet farther, for this was not enough to do the bufinefs, they: fuppofed a radiatit Species to fland always ftiff, like the Spokes in the Nave of the Wheel, and to turn round as the Body placed in the middle is turned; which radiating Species or Spokes, like a kind of Befom, fweep along the Planet with them, not fo faft as they themfelves are moved, but with a fomewhat flower Pace; and, that fo much the flower, as the Body to be fweeped forward was farther diftant But befide this, another Actor is needed, and that is, a fecond fort of Spokes made of the Rays of Light; thefe alfo are fuppofed to help to fweep it on. Nay, befides all thefe there is another Help wanting, and that is, Magnetifm, like that of the Dipping Needle ; by which means there is feigned alfo to be a kind of Libration, fometimes of the Body, fometimes of the Orbiti And after all thefe and feveral other lame Helps fuppofed, we find they are fain to be lmoft thrown afide, when they come to Calculation. Others, asjDesCartes and hisFollowers, have fuppofed a Whirling of the .Ether round each Star, or Planetary Body, and a fwimming of the Planet that moves round it in this Vortice : But how uncertain Effects and Motions of the Planetary. Bodies muft this way be produced, any one that confiders well the Hypothefis; will quickly find, and as readily conclude, that if this Hypothefis be true, there can be no Aftronomy; befides, that were it granted, the Pbrenomena themfelves could not be folved. It may ftill be faid, that the difproving of all thefe will fill be no Argument why what I have here fuppofed thould be true.

But then it may likewife be farther urged, ift, That this Hypothefis or Affertion which I have laid down, doth not create or fuppofe any new or unheard of Powers or Motions, but fuppofes only fuch as are altogether uniform and fimilar to Powers, Operations, Effects or Motions, which are within our reach and command, which we daily try, fee, and find the regular working of.

My Arguments therefore to prove this Suppofition, are only thefe.:
Firf, That what I here fuppofe in all Bodies, I can prove to be in fome, and pofitiono fo fuppofe nothing abfurd or impoffible.

Secondly, That the Principles I ground it upon, are (according to the working of Nature in all things) the moft fimple and the fhorreft that can be : And 'tis generally afferted fo to be by all Philofophers, and found by all inquifitive Searchers into Nature. Natura nibil agit fruftra, Sed fruffra fit per plura, quiod fieri poteft per pauciora.

Thirdly, That Nature feems to take fimilarWays for producing finilar Effects; without granting of which we cannot reafon or make any Conclufion from fimilar Operations. And then it would be no Abfurdity to fay, a Man grew out of the Earth like a Plant, or a Plant had Underftanding and fpoke.

Fourthly, That more or lets of thefe Principles is to be found in every Body in Nature, but more remarkable in fome of the Bodies in which I here fuppofe it, and that there is nothing that I have met with that does feem to fhew a contrary or contradieting Quality in any one of them.

Fifthly, That from there moft fingle and eafy Principles of Body and Motions here afferted, there will follow fuch a Regulated Motion, as will a priori Thew what are, have been, or thall be at any time affigned the true Places and Motions of the Celeftial Bodies, confonant to the Appearances themfelves: And this not in one ${ }_{j}$ but in all, as I hope I thall fhortly make more evident.

ThatPlanetary Firft then, that what I here-fuppofe to be in all Celeftial Globular Bodies, I Bodies have a can demonftrate to be in fome; I think will readily enough be granted, when I prove that the Earth, on which we live, is one of thofe Celeftial Bodies: And that Part I think I have proved by the Obfervation which I made of the Parallax of the Orb of the Earth to the bright Star in the Dragon's Head, which paffes very near the Zenitb of London; an Account of which I have already given in my Attempt to prove the Motion of the Earth, which Attempt (how trivial foever it mey be fuppofed, yet confidering, that withnat foime fuch Proof we were condemned to the wortt Place in the Univerfe, and fo thought unfitand unable to underttaud any thing of Celeftial Bodies) has given Mankind one. Argument at leaft to believe fomewhat better of theirMotherEarth and themfelves than they did before, viz. that the hathOrigo Colcfis, and that we our felves are Incole Coleffes: And fo being granted able, at leaft, to confider, examine and reafon about the Nature of the Earth on which we live, we areat the fame time granted to be able to confider, examine and underftand the Nature of fome Celeftial Body. This being granted, all the Ptolemaick folid Orbsimmediately vanifh, and all the ingenious Clockwork which has fince that time been added to his. For fince we are affured by this Obfervation, that the Body of the Earth is moved round the Sun once in a Year, and that the Earth fwims or is incompaffed with a fluid Air only, or a more fluid Wether, and that the other Planetary Bodies are moved about the Sun in the fame manner as the Earth, and have the fame Pafions and Affections as the Earth hath of acceding towards and receding fromwards the Sun, of moving fwifter and flower, according to feveral Diftances from that Body, of turning round upon their Axes, of carrying peculiar leffer Planers along with them, which move about them as the Moon doth about the Earth, of ectipfing and being eclipfed by thofe Bodies, of being inlightned by the Beams of the Sun, and of being dark where that Light cannot thine, and the like; why fhould we any more fuppofe it neceffary that the orher Planets thould have folid Orbs to guide their Motions, than we find the Earth it felf, which is one of them, really hath ? not now to urge the Arguments drawn from the Morions of Comets. This trivial Obfervation then was neceffary to introduce us into the Expanfum of Heaven, and to manifelt to us how great a Voyage we make in a Year, and what wealfo do in the fpace of twenty four hours, and to inform us what Opportunity we have of furveying and knowing more of the World than before we thought our felves capable of. And though the Notion was perhaps fully underfood and believed long before the other of Ptolemy was broacht; yet being only a Probability, there could be no pofitive and undoubting Affent given unto ir, without fome fuch Experiment or Obfervation as I have formerly produced. The Earth then being found to be a Planetary Body, it will be no difficult matter to prove, that it hath that Propriety which we call Gravity; that is, that all Terreftrial Bodies, or fuch Bodies that feem to be part of it, or that are of a like nature with it, are continually moved, or have an Endeavour to move towards the Center of the whole, which Endeavour is called the Gravity of fuch Bodies: And confequently a Planetary Body is proved to have Gravity, and 'twill not be difficult to prove the fame in all the other.

It remains only to enquire what is the Caufe or Principle of this Gravity, and what invifible or infenfible Power it is that caufes this Endeavour. Various have been the Attempts of feveral to explain it, but no one, that I have yet met with, to me feems fatisfactory; nor would they make out the Pbenomena, tho' all they have fuppofed, how extravagant foever they be, fhould be granted; whatever the Power be that doth thus caufe Bodies to move towards the Center.

Ift, It is wholly infenfible by any other Means than by the Effects. There are no hamous Particles underneath to be difcover'd to pull down the Body, nor any hammer Particles above to beat it down. A Body is not lefs heavy though there be never fo thick, nor never fo denfe a Body placed between that and the Earth to break the Chains, or above it to hinder the Strokes of the Hammers or ftriking Particles; nay though included every way within the denfeft Body; as the middle Parts of a great Stone, or Piece of Mettal, weigh as much when whole, as when the fame is broken in pieces.
$2 d l y$, The Endeavour of Gravity acts or tends always towards the Center of the Globe of the Earth, as far as any Obfervation has been made. This is generally granted and believed by all, though I doubt whether it hath been ever proved ; for though I believe it nearly probable to be fo, yet I am not affured of it by any Experiment yet fo much as attempted to be made. The beft way that I know how to prove it, is, to meafure the parts of a Meridian upon the Earth from Pole to Pole, and compare them with Celeftial Meridional Altitudes : For if they every where correfpond and anfwer one another, then the Perpen. dicular Line is true in all thofe Places; but if otherwife, not. And till this be done, we are not by any certain Experiment affured, that the Body of the Earth it felf is perfectly Globular ; for it may be fomewhat either of an Eggform, the longeft Diameter being in the Axis, or elfe of a Turnep-form, the longeft Diameter being in the Equinoctial. Nor is the Shadow of the Earth eclipfing the Moon, fufficiently diftingt to determine this Point. This Gravitating therefore to a Central Point, though it be probable, is not yet pofitively proved by any Obfervations hitherto made, nor is it very eafy to be made to fufficient exactnefs. But though we have no Experiment here made on the Earth, that does pofitively evince it; yet this fetcht from the other Planets, may do fomething towards it : Namely, that moft of the reft of the Planets (fome of which are certainly bigger than the Earth it felf, 'aṇd, as I but now mentioned, have the fame Qualifications) are obferved to be very near Globular. Here by the by, I cannot but take notice, that there are in Philofophy many things that are generally taken for granted; which yet when we feek for the grounds of thofe Opinions, none certain are to be found, and thence all that is built upon them muft be uncertain. For inftance, in Experiments that have been made to prove the Magnitude of a Degree, ${ }^{\text {'twill }}$ be infufficient to prove the Magnitude of the Earch, till by comparing feveral made in feveral Latitudes, they are all found to agree, and fhew the fame Quantity : For if the Earth be Oval, as there feems to be good reafon to fuppofe, then the Length of a Degree in one Latitude will not be equal to the Length of a Degree in another Latitude, and the Perpendicular of Gravity will not always point to the Center of the Earth. For if the Principle or primary Caufe of Gravity; which I conceive an internal Motion in the Earth, be every way uniform, and fo caufe an equal Attraction to the Center, then any other Caufe that alters the Difpotions of Bodies to receive this Power, or that fuperinduces another Power that in fome parts of the Earth has a greater Renitency againft the Power of Gravity than it hath in other Parts; then the uniform Eftect which Gravity alone would operate, will be altered by the adventitious Power. Now the Diurnal Rotation of the Earth doth fuperinduce fuch a Power; for the Parts near the Equinoctial mult have an Endeavour outwards, or from the Center; whereas the Parts nearer the Poles muft have lefs, and fo much the lefs, by how much the nearer they approach the Poles: And this Renitency, as it will be directly oppofite to Gravity under the Equinoctial, fo will it be in all other Parts oblique unto it . Wherefore from the confideration of thefe two Caufes, there feems to be a probability that the Perpendicular does not always and every where point to the Central Point of the Earth, how generally foever that Opinion be received which afferts the contrary; and may poffibly deferve fome further Enquiry, as opportunity fhall offer; and there muft want a Demonftration till this Queftion be determined. And by the way 'tis very remarkable, that by comparing of former with later Obfervations of the Magnitude of a Degree, the Earth feems to have continually grown lefs. But of thefe and feveral other Remarks I fhall fpeak more, when I come to read concerning the Earth it felf: 1 fhall therefore return to the confideration of Gravity in general. This believed Roundnefs of the Figure, fhews Gravity to act regularly in every part of the Earth's Superficies, otherwife it could not be nearly round.

In the 3 d place then, the tendency of Grave Bodies refpects the middle Parts 3 dly, This of the Earth, though thefe Central Parts be carried with a very fwift Motion Gravitation from Weft to Eaft by an annual Motion about the Sun. And therefore 'tis pro- exdends to andond bable that it carrys with it the Principle or. Power that acts; and thence, that it beyond the
muft there be fought for. This will need no other Proof, its Motion being already proved by the Perpendicular Obfervation.

4 thly, Gravity is a Power which at all times acts equally; that is, a Body which remains the fame, will always be found to have the fame weight. This I conceive, none will doubt, but yer 'ris not very eafy pofitively to prove it; for Scales cannot examine it, becaufe if the gravitating Power alter, the Counterpoife will be affected as well as the Weight; nor can it be try'd with my Philofophical Scales made by a Spring, becaufe it may be faid, the Alteration is in the Spring, and not in the Weight. The only way that I conceive it may be try'd, is by the Defcent of Bodies, compar'd with the time of their defcending a certain Space, or becaufe that will be very nice, by the Vibrations of a Pendulum, whofe time and number of Vibrations may be ttinted: But here alfo will come fome Objections, that there may be other Caufes of altering the Velocity of the Vibrations, befides Gravity, as the fhrinking and ffretching of the Rod; the thickning or thinning of the Air or Medium in which the Pendulum moves, unlefs it be in Facuo , and the like. Yet I conceive thefe and others may be obviated, and the Matter determined, if that were neceffary ; but another Argument hereafter to be mentioned of the Moon, will better clear it.

5 thly, Gravity is obferved to accelerate the Velocity of defcending Bodies with equal Accelerations in equal times. This hath been fufficiently proved by falling Bodies and Pendulums, to certain Degrees pretty near, but not exactly. And therefore in the
$6 t b$ place, Gravity is a finite Power, and acts. with a determinate Degrée of Force ; that is, the Gravitating Power can never accelerate any Body beyond its own Velocity. That it is finite, we eafily find from the Power we have of throwing or hooting Bodies upwards, which could not be, did not the Power of the Arm, Bow or Gun exceed it : And comparative to other Powers of Nature, "tis weak.

7 thly, That it acts on all Bodies promifcuoufly, whether fluid or folid: So that the fame Body which can be made fluid or folid, provided nothing be added to it or taken from it, will have, in both Forms, the fame weight quam proxime.
$8 t b l y$, The Bodies moft receptive of it are fuch as have their Particles of the greateft bulk and of the clofeft Texture. This the whole Series of grave Bodies will fufficiently manifett; and I fhall afterwards prove, when i come to thew the Texture of Body, what it is that caufes Bodies to be grave or heavy, and what makes them light, and that'tis not the quantity of Matter contained within the fame Space, but the Modification of that Matter, and the Receptivity it hath of Uliform Power.

9tbly, I cannot find by any certain Experiment, that grave Bodies do fenfibly decreafe in Gravity, tho' further removed from the Surface of the Earth; which was the Intent of an Experiment I formerly tryed at the top of the Steeple of St. Paul's and at Weftminfter-Abby, and may now again be repeated with much more conveniency and greater advantage at theColumn on Fifhfrect. Hill. For by counterpoifing twoWeights in a curiousPair of Scales, firt at the top of the Steeple, and then letting down one of theWeights by aWire of two hundred and four Foot in length, the Counterpoife remaining at the top in the Scale, the Riquipondium retnained; whereas if the Gravity of the Body had increafed by Approximation to the Earth, the Weight let down to the bottom muft have weighed the heavier. But though the Difference were infenfible in fo fmall an height, yet I am apt to think fome Difference may be difcovered in greater heights, and by fome more curious ways than thofe I then ufed, even in that height: For 1 thall in my following Difcourfes plainly fhew, from the Theory thereof, that there is neceffarily a Difference, and that the Power of Gravity does decreafe at farther and farther Diftance from the Center of the Earth, and confequently that the Line of a projected defcending Body is not truly Parabolical, but Elliptical,
though it thould be made in vacui, where the Impediment of the Medium could make very little or no Alteration.

Having enumerated fome of the moft remarkable Proprieties of Gravity, we come in the next place to confider what may be the Caufe thereof.

And firft, I believe I fhall not need to fay much againft the Opinion of Intelligent Matter, which fuppofes every part of Matter to att underfandingly; for that being fuppofed, all Philofophy is vain, and there needs no farther Inquiry into Nature.

And fecondly, I have as little to fay to its Coufin-german Opinion, viz. the Regimen of an Hylarchick Spirit.

And 3ly, The Epicurean Atoms feem to me to give as little of Explanation almoft as either of the former.

And 4 ly , For the Peripatetick Doctrine of tendency to the Center of the Univerfe, befides that the Foundation is falfe, the Earth being proved not to be in the Center, 'tis not yet underftood what the tendency is.
sly, The Cartefian DoCtrine, anid that of Mr. Hobbs, are both infufficient, becaufe they do not give any reafon why Bodies fhould defcend towards the Center under or near the Poles.

6 ly , Nor will the Magnetifin of Gilbert or Kepler ferve; for, as I thall afterwards fhew, that is a Propriety diftinct from Gravity, and of quire another
nature. nature.

It muft therefore be fomewhat elfe differing from all there, which by reafon what thecourle of its a cting by the means of fome very infenfible Body, it will be very hard to of Gravity iso demonftrate, yet not altogether impofible. We find then that a Propriety fomewhat like this is to be found in the Attraction of the Magnet and Iron. Ano. ther fomewhat like it is to be found in Amber, Jet, Glafs, Chryftal, Diamonds and feveral hard Bodies upon Rubbing: And more infructive yet to this Irquiry is the Experiment of Mr. Newoton, of rubbing a Plate of Glafs, which is laid over fome fmall bits of Paper, or other light Bodies, at fome diftance, by which Rubbing the Papers are made to rife, up towards the Glafs, and ftick faft to it. Now in all thefe Experiments there is a fenfible Attraction of Grave Bodies to the refpective attracting Bodies, or at leaft a Motion of thofe Bodies towards one another; though in all, the Medium, that caufes this Endeavour of Motion, be infenfible. Some have fuppofed for Amber, that the fame being a very unctuous Body, certain ftringy unctuous Effluvia are fent out, which fticking to the light Bodies, are drawn into the Amber again, and fo bring back with them the light Bodies. But this is very hard to be fuppofed of 'Glafs or Chryftal, and leaft of all of a Diamond, which yet will have a confiderable Electricity, as 'tis called, upon Rubbing; Befides, 'tis evident by Mr. Newoton's Expe.' riment, that the greateft Electricity of Glais' is at the very time when it is hardeft rubbed, which fhould be the time when thefe unctuous Strings fhould be fent out ; 'tis neceffary therefore that fome other Medium muft be found than thefe unctuous and ftringy Emanations.

If we farther confider of thefe Experiments, we fhall find that there is in all thefe a neceffity of an internal vibrative Motion of the Parts of the Electrick Bodies; and that fo foon as ever that Motion ceafes, the Electricity alfo ceafes: We may therefore conclude, that there may be fuch an internal Motion of the Parts of fome Bodies, as may caufe an Electrical Virtue in them, whereby they will be able to draw, with fome fmall Degree of Power, fome Bodies to them.

I have already here produced feveral Experiments, whereby I have fhewn how mechanically to produce fuch an Attraction towards the acting Body. The firf was that of a Body placed upon a wooden Rod, the one End of which was kept in its place by a Spring, and the other was ftruck by a Hammer, whereby it plainly appeared, thatat every Stroke the Body was moved on the Rod towards the Hammer that truck. Here the Ftber was refembled to a Solid. By the fecond Experiment, where a Ball poifed in Water defcended oward the ftriking Part, I hewed how the fame Effect might be done by a fluid Medium, as in the other was done by a Solid. In the third was Thewn how a Fluid alfo might

See more Expe-be affeted by a like Pulfe; for that the Water it felf, by means of a vibra* viments in the che tive Motion in the Parts of the Glats, acquired a Morion towards the vibrating Parts. I fhould have proceeded, if not interrupted, to have experimentally proved the Effect of this Power in Media much more infenfible. The Obvioufnefs poffibly of there and fuch like Experiments may make thein be looked upon as flight and trivial; and the Paucity of them, for that they come not in by whole Shoals, but are only caught, fingly, may make them not regarded. But as the, Miracle was not lefs of the fingle Firh caiched by a Hook, with the Tribute in his Mouth, than of the Shoals which were ready to fink the Veffels, and brake the Nets : So fome one plain but pertinent Experiment, apply'd with Judgment, may bemore fignificant than thoufands of fuch as are pompous, amufing, and excite Admiration. And Iam fatisfied that more Difcoveries in Nature may be made by the moft plain, obvious and trivial Experiments to be everywhere met with, than by the far-fetcht and dear bought Experiments which fome feek after.

Nor is this way of working at a diftance, by means of the internal Motion of the Particles of the Body; fo ftrange a thing in Nature, that we need much to infift upon thefe few Experiments to prove it. For if we confider the Totum Senfibile in Nature, we thall find it to be little elfe than what is this way produced. I have already, I think, fully proved in Light and Colour, the Object of Sight, that the Motion which is produced in the Eye, proceeds from an internal Motion made in the Sun fo many thoufands of Miles diftant, or from the fame in fome Stars fo many thoufand times as much farther off. I could alfo as eafily prove, that Sound in the Ear, which is a realMotion in fome part thereof, is produced by the internal Motion of the Parts of the Bell fome Miles perhaps diltant. Somewhat like to this may alfo be faid of the Smell, and of the other Senfes; but the Inftances of the firlt two will be fufficient; efpecially the latter is the molt evident; and that becaufe both the Motion in the Bell, and the Motion in the Ear, or fome other Body there placed, is difcovered by the other Senfes, namely, by the Sight and Touch, as well as by the Ear.

Thefe Particulars I could more largely explain by particular Experiments, and plainly evince, that the Motions of feveral Bodies at a diftance, are caufed by the internal Motion of the founding Body; and that this Power of moving is every way propagated by the ambient Medium, which excites in folid Bodies at a diffance, a fimilar Motion. I could farther alfo prove, that every one of thefe diftinet internal Motions of Bodies, as that of Light, and that of Sound, have diftinet and differing Mediums, by which thofe Motions are communicated from the affeaing to the affected Body : And fo I conceive alfo that the Medium of Gravity may be diftinet and differing both from that of Light, and from that of Sound. I conceive then, that the Gravity of the Earth may be caufed by fome internal Motion of the internal or central Parts of the Earth ; which internal and central Motion may be caufed, generated and maintained by the Motion of the external and all the intermediate Parts of its Body: So that the whole Globe of the Earth may contribute to this Motion, as it will happen' to a Globe of Glafs or folid Mettal, to any part of which no internal Motion can be communicated, without at the fame time affecting the whole with the fame Motion. And I Thall moft plainly and evidentiy prove, when I come to the Explication of Magnetifm, that this is undeniably performed and effected by this means.
The Hypothefis Suppofe then tbat there is in the Ball of the Earth Juch a Motion, as I, for diffin. of tbe Causf of aion fake, will call a Globular Motion, whereby all the Parts thercof bave a ViGravity. bration towards and fromzoards the Center, or of Expanfion and Contraltion; and that this vibrative Motion is very hort and veryquick, as it is in all very bard and very compalt Bodies: That this vibrative Motion does conmunicate or produce a Motion in a certain Part of the Æthet, which is interSpersed between thefe folid vibrating Parts; which communicated Motion does caufe this intersperfed Fluid to vibrate every way in Orbem, from and towards ithe Center, in Lines radiating from the fame. By wobich radiating Vibration of this exceeding Fluid, and yet exceeding dense Matter, not only all the Parts of the Earth are carried or forced dowon towards the Center, but the Motion being continued into the 历ther, intersperjed between the Air and otber kinds of Fluids, it caufetb thofe alfo to bave a tendency towoards the Center; and much more any Senfible Body wobatJoever, tbat is any
where placed in the Air, or above it, though at a vaft Difance; which Difance 1 Jball after wards determine, and hero witb wobat proportioned Power it alls up. on Bodies at all. Diffances both weithout and witb bin the Earth: For this Power propagated, as I Joall tben Jhew; does continuaily diminifh according as the Orb of Propagation does continually increafe, as we find the Propagations of the Media of Ligbt and Sound alfo to do; as alfo the Propagation of Undulation upon the Superficies of Water. And from bence I conceive the Power thereof to be alvays reciprocal to the Area or Superficies of the Orb of Propagation, that is duplicate of the Diflance; as uill plainly follow and appear from the con fideration of the Na. ture thereof, and reill bereafter be morc plainly eviñiced by the Effeets it caufes at fuch feveral Diftances.
This propagated Pulfe I take to be the Caufe of the Deffent of Bodies towards the Earth. But it way perhaps feem a little frange how the Propagation of a Motion ourward Thould be the caufe of the Motion of heavy Bodies downwards. To make this the more intelligible, I fhall mention an Obfervation very commonly known amonget Tradefmen; and that is, the driving of a Hammer or Axe upon the Helve, which to do the eafieft way, they commonly ftrike the End of the Helve, holding the Helve in their Hand, and the Axe or Hammer at the lower End hanging downward, by which means they not only make the Axe to go on upon the Heive, but make it afcend, if they continue friking, even to their very Hand. To apply which Obfervation to my preifent Theory, I fay, that the Medium of Propagation is the Helve, and the Axe or Hammer is the grave Body that defcends: So that at every Stroke that is given by theGlobe of the Earth to the propagating IHedium, one Degree of Velocity of Defcent isgiven to the Grave Body, which is as it were the Axe. Now according to theV Velocity of this vibrative Motion of the Earth, fo muft the Power it communicates be ffronger or weaker. Suppofe for inftance, there fhould be 1000 of thefe Pulfes in a Second of Time; then muft the Grave Body receive all thofe thoufand Impreffions within the fpace of that Second, and a thoufand more the next, and another thoufand the third Second; fo that in equal Times it would receive equal Degrees of Acceleration. And if a Second of Time were again fubdivided into a thoufand Moments of Time, the Body would receive one Degree of Acceleration in the firft moment, one more in the 2 d , a 3 d in a 3 d , and fo onwards: So that the compounded Acceleration would be as one the firft Second, thiree the next Second, and five the next, and fo onwards; according as it is obferved in the Motion of defcending Bodies.

The Medium that propagates this Motion, 1 fuppofe to be one part of that wbich permeates moft Bodies, which wee call by the general Name of Æther, and thence it proceeds that the Motion is communicated to every part thereof: And so the Momentum of every Body becomes proportioned to its Bulk or Denfity of Parts, difform to the fuid Medium that communicates the Puife.
TheObjections that I expeet againft thisHyporhefis may be fome fuch as thefe.

Abstract

yf. How does it appear there is any fuch Motion in the internal Parts of the Body of the Earth ? For who can defcend thither, and if they could, how thould they find it, it being from the Hypothefis fuppofed not within the reach of Senfe?

To this I anfwer, that though this be hypothetical, yet that there is fome fuch Motion in thofe Parts, I fhall prove clear enough, whin I come to the Explication of Magnetifm. In the mean time, there is nothing abfurd or contradietory to the reft of Nature. The folideft Body in the World can receive an internalMotion of its Particles from an outward Impreffion; as has been found in Diamonds, which upon Rubbing would fhine, and upon fo rubbing would become Electrical, and attract Bodies to them ; as I obferved in the Diamond which was formerly thewed this Society by Mr. Henfhaw. Befides, that it is receptive. of internal Motion, is farther evident by the fplitting or cleaving of a Diamond by a fmart Stroke; which is well enough known to our Jewellers and Lapidaries. The hardeft Chryftal, Porphyrys, Agates, Flints, E̛C. that I have yer met with, will receive an internal Morion, as may be plainly argued from the Tone they give upon being briskly ftruck. The hardeft of Mettals always give the beft and longeft Sounds, and confequently are the lefs hindred by the ambient Medium. The Autbor breaks off bere abruptly.

The following DISOUURSE is a Lecture of Light, which I found among the Authors Manufcripts: And tho' I found by another Paper that it was read before the foregoing Lectures of Light; yet I judged it mould not prove unacceptable for the Experimentsrelated in it; froms polich it will appear, that the Picture of the Sun tranjmitted through a fmall Hole into a dark Room, does not anfter to what it ought to be by the received Lams of Opticks ; and alfo that the Rays of Light do not proceed in Arait Lines, as be endeavours to fien by Experiment. I fall not vienture at any Deductions, but leave that matter to the more intelligent Reader.

> R. W.

Experiments the beft way to rateObfervation and it is a much fpeedier and by Trials and Experiments. And though, I confers, ready known, to read and ftudy fuch Notions of them as are already deliver'd in Authors treating of that Subject; yet, as 'tis that way quickly attainable, fo you will as quickly find your felf at a non plus ultra in your Information, and much fuller of Doubts and Queries as to a perfect Knowledge of the thing you feek, than poffibly you were, when you firft enter'd upon that Inquiry. For the more you are informed, the more able you are to inquire for and feek after what is confiderable to be farther known cencerning that Subject ; and that Knowledge is much more apt to flip out of the Memory, and be forgotten: Whereas that Knowledge which is attained by a Man's own Obfervation and Study, as it always remains fixt in his Memory, fo it fo thoroughly informs his Imagination with a true and right Idea of the thing he inquires into, that he is able thereby readily to folve many Doubts and Difficulries that may at firft occur to him; and it puts him in a capacity of pertinently inquiring farther into the Nature and Caufe of the thing he feeks after. And let me tell you, whofoever has a Knowledge of things made up only of what he finds in Bocks of that Subject, thall find it to be very little, confufed and imperfect ; efpecially if he comes to converfe with fuch as have experimentally and fagacioufly enquired thereinto. And in very many cafes he will not only find his Knowledge little, confufed and imperfect, but notorioufly and dangeroufly falfe and erroneous: So that this kind of Knowledge, inftead of leading and directing of him in the right way, oftentimes feduces him, and hurries him into the broad Way of Error and conceited Ignorance. I could give you many Inftances of this Truth in Phyficks, nay even in Mechanicks, whofe Principles feem moft obvious; and fhew you, that for want, I fuppofe, of accurate Trials and Experiments, feveral Axioms, which have been received and builded on as Truths, both by all the antient and modern Philofophers and Mathematicians, are yet notwithftanding by fome few Trials and accurate Obfervations, found notorioufly falfe: But thefe I thall referve for fome other Opportunities. Ithall now rather chufe to give you an Inftance in another Subject.

I have formerly endeavoured to explain feveral things concerning the Nature and Effence of Light, which I thall not now repeat; but having ftill many Doubts in my own Thoughts concerning the fame, I have made it my aim, according as I had opportunity, to examine and inquire farther into the Nature thereof, by fuch Obfervations and Experiments as I judged might be any ways helpful to the Manifeftation thereof. And herein I have not been altogether unfuccefsful, having difcovered feveral Proprieties therein, whereof before I had no Notion or Information.

To this purpofe I prepared a Room fit for Trials of this nature, by fo perfectly ftopping all ways by which the Light could find its Entrance into the fame, that the whole remained perfectly dark; at leaft fo much, that though a

Man ftaid a long time in the fame, yet the Eye could not perceive any Light. For though that in many cafes be not abfolutely neceffary, yet in molt 'tis gene. rally very convenient, and fit to make the Trial moreaccurate and certain. For as in a Mixture of divers Liquors, 'tis very difficult to diftinguifh and deter. mine the true Tafte of any one of them ; fo the Effects and Properties of any one Ray is more obfcurely perceived, when it is blended and mixed with the Effects of a thoufand others. In this darkened Room I provided fuch Conveniency for admitting or excluding the Rays of Light, that I could let in what quantity of Light I pleafed, and in what manner; and thereby had the opportunity of finding feveral Proprieties thereof, which are not otherwife difcoverable. Having then thus darkened a Room, by a very fmall Hole through a Brafs Plate in part of the Shutter, I let through the Light of the Sun, which by degrees fpreading it felf, feemed to make up a Cone, whofe Apex was in the Hole, and whofe Bafe was on the Paper expofed to receive the fame at a diftance. In this Image of the Sun thus painted on the Paper, it was very obfervable that the Middle thereof was very much brighter than the Edges, and that there was a kind of dark Penumbra that went round about the Limb of the fame, about a 16 th part of the Diameter of the Circle; the which Penumbra could be no ways afcribed either to the leffer Light of the Parts of the Sun near the Limb there. of; or to any thing defective in the make of the Hole or Paffage through which it was admitted ; but to fome other Caufe, or Propriety of Light, which I fhall hereafter explain. Having obferved this, at about the diftance of two Inches I A nemp Properlet in another Cone of Light, and receiving the Bafes of them upon a Piece of tov of Light difPaper, at fuch a diftance from the Holes, as that the Circles did interfect each other; I did manifeflly obferve, that there was not only a Penumbra or darker Ring incompaffing the lighter Circle, but a manifeft dark Line or Circle, which did manifeftly appear even where the Limb of the one interfered with the Limb of the other.

As in the Figure, where $a b c g h, a d c k l$ reprefent the Bafes of thofe Cones Piate 2. Fig. $\%$. of Light, whofe middle Parts ii ii 0000 , appear brighter; but the Parts thereof next the Limb, ece ec, $u \boldsymbol{u} u$, appeat much darker, with a kind of Penumbra, or Faintnefs of Light; and the extream Circumference, or terminating Lines of each, appear perfect dark Strokes; nay though the parts thereof $a b c$ and $a d c$ intermix with the brighter Parts of the other Bafe, as at b and d. Examining the bignefs of this Bafe with the diftance of it from the Apex or Hole, I found it no ways anfwer to that Proportion it ought to have, fuppofing the lateralRays from oppofite Parts of the Limb of the Sun's Disk, did interfeet each orher in the above-mentioned Hole, and did proceed on by ftrait Lines to the Paper or Bafe; but according to the various bigneffes of the Holes, and according to the various difances of the Receiving Papers from thofe Holes, fo were the Pro. portions of the Diameters of thofe Circles to their Diftances varied: Which in Aftronomical Inquiries will produce no fmall Errors, if not carefully prevented by proper Remedies. I proceeded farther to make Experiments concerning the Nature of Light ; and holding an opacous Body between the Hole or Apex, and the Bafe or Paper, I obferved that there was, notwithftanding all the care I ufed to exclude other Light than what came in by that fingle Hole, a certain faint Light caft even into the Shadow of the Body; and in that part of the lucid part of the Bafe, which was not thaded by the opaque Body, there was a certain Fafcia or Zone of Light which went parallel along with the terminating Line of the Shadow of the opacous dark Body; the which Zone of Light was manifeftly much lighter than any part of the lucid Bafe befides. Nay this lucid Zone did not only crofs the Circle of the Bafe, but did manifeftly proceed and extend it felf a good way beyond the lucid Circle of the Bafe, friking pretty far into the incompaffing opaque Medium. To make this more evident to you by a Scheme, ler O reprefent the Hole in the Shutter of the Window, through which the Light of the Sun is let pafs: Let C O N reprefent the Cone of Light Plate 2.Fig.s. tranfmitted, and PA the Paper upon which the Circle or Bafis of the Cone is caft : Let B B reprefent the opaque Body interpofed between the Hole and the Papers, and SS TT the Shadow thereof upon the Paper. That which I obferved was this: The Shadow of the opaque Body B B was fomewhat all over inlightned, but feem'd mof inlightned towards the Edge thereof. Several Per-
fons that were prefent, and faw and diligently obferved thefe Phenomena, conceived and objected, that the lucid Zone, or brighter part, which edged the Shadow of the opaque Body, was produced by fome kind of Reflection from the Side of the faid Body by which the Light paffed; it being indeed a round Body, and fo fome of the Rays might poffibly reflect, to as to fall upon the lucid Zone : But I could fee no reafon why it fhould not as much inlighten any other part of the bright Bafe or Figure of the Sun on the Paper; for the fhading Body being only a round Piece of Wood, not bright and polifht, nor of ro certain a Reflection, as to direct the Rays that fell on it exactly to a determinate Place, I could not conceive any reafon why that fhould produce fuch a lucid Zone. Others fuppofed that it might proceed from fome Reflection of the Brafs Hole through which the Light was admitted into the Room. But to obviate both there Objections, and to inquire farther into the Nature of this Pbo. nomenon, I placed inftead of the Cylinder of Wood, a very fharp and fmooth edged Razor, fo that the Edge of the Razor was that which caft the Itrait Line of Shadow which divided the lucid Bare; from which there could be no Refleetion, at leaft fo very little, that if we do fuppofe a Flatnefs or Breadth in the Edge thereof, it could not amount to a 500 th part of the breadth of the lucid Zone; and confequently there could be no imaginary Reafon drawn from the Reflection thereof to folve the Pbenomena: And it was believed that the Appearance would have been confiderably differing, but upon trial thereof, the fame Pbenomena wereas obfervable as before, without any fenfibleVariety. The fame Appearance allo, was vifible, when inftead of the Razor, a piece of Pattboard was ufed for an opaque Body. And to obviate the other Objection, inGead of the piece of Brafs placed in the, Shutter, which by a Hole in it let in the Light, there was placed a piece of Paftboard, with a fmall black Hole burnt through it : But upon trying over all the aforefaid Experiments with it, we found the very fame Appearances as when the Light paffed through the piece of Brafs. So that upon the whole matter it was very manifeft, that it was fome new Propriety of Light much differing from the common Rules and Laws thereof deliver'd in Optical an\$ Phyfical. Writers. Having difcovered thefe Proprieties, I proceeded farther to examine into the Nature of Light, by placing the Razor as before, fo as to divide the Cone of Light into two Parts, the tranf mitting Hole remaining as before: And I placed the Paper (expofed to receive the Circle of the Bafe) fo as that none of the enlightned part of the Circle fell thereupon, but only the Shadow of the Razor or opaque Body; and to my wonder, I found a very brisk and vifible Radiation Atriking down upon the Paper, of the fame breadth with the Diameter of the lucid Circle, or at. leaft (if the Shadow did not divide the Circle into two equal Parts) as big as the Subtenfe made on the faid Circle by the Shadow; and this Radiation always ffruck perpendicularly from the faid Line of Shadow, and did not only extend fo far as the bredth of the semaining part of the Circle; but like the Light or Tail of a Comet, extended more than 10 times that length, and in probability more than a 100 times; nay, as far as I could find by many Trials, the Light from the Edge did ftrike downards into the Shadow very near to a Quadrant, though ftill I found, that the greater the Defleetion of, this new, Light was from the direct Radiations of the Cone, the more faint they were.
It was hereupon objected by fome, that this Deflection of the Light was to be afcribed cither to the Reflection of the Particles of Duft flying to and fro in the Air of the lucid Cone, or to fome kind of Tranfpasency and Refraction in the Edge of the Rafor.

But to obviate thefe Objections, I took care firft fo to hide that part of the lucid Cone that was between the Hole and the Razor, that little or nothing thereof could come to fhine on that part where the Radiation appeared : And next by changing the Sides of the Razor, I placed the thick Back thereof inftead of the

The Effeet wholly to be afcribed to a nex Property of Light. Edge: So that if there were any thing afcribable either to the Tranfparency, or Figure and Superficies thereof, all thofe Proprieties might be altered, and confequently the Effeets producible thereby : But upon all the variety of Changes and Alterations and Examinations of it, this way and that way, I found the Fffects and Pbanomena the fame; fo that it was manifeft, that the Effect was afcribable wholly to a new Propriety of the Rays of Light, and not at all to
any Reflection or Refraction, or any other common Propriety of Light.
I proceeded yet farther to examine into rhe Nature of Light, and finding thefe Rad a. that there were feveral brighter Parts of this Radiation into the Shadow, and tions of $L . i g h t$ others that were darker and more obfcure, and that they did all ftrike perpen- might be modicularly into the Shadow; and finding alfo that there brighter and darker Parts ved. would be moved to and fro, and difappear, and orher new ones appear, according as I moved and flipt the Razor or fhadowing Body to and fro : After feveral Trials I found, that wherefoever there was a part of the fhadowing Body more high than the reft of the Superficies, there the Radiation into the Shadow wad brighter and more frong; and wherefoever there was a Notch or Gap in the faid Superficies, there a darker Stroke or Radiation would be : Infomuch that if I fixt upon the Side of the fhadowing Body, a Piece of Lead, or the like (whether reflecting or not reflecting Body, 'rwas the fame thing)' there would ftrike a brisk Radiation from the Shadow thereof into the Shadow of the opaque Body perdendicularly to the Line of Shadow. If the Superficies or Bulk of the Knob was confiderably big, the Radiation would ftrike perpendicularly to the Sides thereof; fo that if the fhadowing Body were circular, it. would ftrike towards a Center; and if it were concave, it would ftrike with Radiations, as it were; from a Center: If it were a tharp Angle, or Corner, it would Atrike' by a Line dividing the Angle into two equal Parts. This alfo, after feveral Examinations and Trials thereof, by varying Experiments, I found to be afcribable to a new Propriety of the Rays of Light, and not at all to Reflections or Refractions, or any orher commonly known Propriety of Light.

Proceeding farther to make Obfervations of the bignefs of the Figure of the Sun, painted by the Rays of Light admitted through the fmall Hole in the Brafs Plate, upon the Table or Paper expofed to receive them; I obferved that the Limb of that Figure was always much darker than the middle Parts, and that it was not only darker, but ragged, and not neatly and diftinctly defined, by reafon of a kind of Penumbra which fringed the edge thereof. Comparing this Penumbra with the bignefs of the Hole in the Plate through which the Light was admitted, I found that it was confiderably broader than that, fometimes five or fix times as broad ; fo that I was fufficiently fatisfied that it could not proceed from a Penumbra caufed by the bignefs of the Hole upon the common Principles, that is, from the Suppofition of the Rays from every point of the Sur proceeding in ftrait Lines: For had that been fuppofed, the Penumbra could not have been broader than the Diameter of the admitting Hole, as it will be made very evident, if we examine the Progrefs of the Rays Geometrically, fuppofing them to move always exactly in ftrait Lines.

Let SN in the sth Scheme reprefent the Diamerer of the Sun flining through Plate 2. Fig o the Hole HO, and painting upon the Table TT the round Figure of the Sun, whofe Diameter fuppofe is DI, terminated by the Rays SOI and NHD, proceeding from the Extreams of the Sun's Diameter SN, to the oppofite Sides of the Hole HO. Draw then from the Extremes of the Sun's Diameter S and N, two other Rays, SM and NE, paffing by the correfponding Sides of the Hole H and O , and terminating at the Table or Paper at M and E ; which latt Rays, with the preceding, will cut off from the fhining Circle of the Sun MI and ED. And becaufe of the vaft Diftance of the Body of the Sun from us, thore Rays which we have here drawn diverging, will notwichftanding be Phyfically and fenfibly parallel ; and confequently the breadth of the Penumbra MI and DE , muft be equal to HO the Diameter of the Hole, by the 34 pr. ift Euclid. the Paper or Table being fuppofed parallel to the Diameter of the Hole HO ; or if we will proceed according to the ffriftnefs of Geometry, the Breadth of the Penum. bra MI will be fo much greater than the Diameter of the Hole HO, as the Diftance SI is to theDiftance SO . For as SI is to SO , fo is MI to HO , by the 4th of the fixth of Euclid; the which Proportion being, as to the greateft accuratenefs of Senfe, a Proportion of Equality, it follows that the Penumbra of the Disk mult he equal, as to all fenfe, to the Diameter of the Hole; and to make the Penumbra double to the Diameter of the Hole, the Diftance of the Hole and Pa per muft be equal to the Diftance of the Sun from the Hole; that is, as SI is double to SO, fo will MI be double to MO. It follows therefore that this extraordinary Penumbra can no way be afribable to the common Principles of Of Comets and Gravicy.

1 ight, bur to forme new Propriety, whereby the Light doth defleet from ftrat Lines, contraty to what is hitherto afferted by Oprick Writers. Nor will the bright. Zone which I mention'd, be explicable by any of the common Kules of Upicks: For according to the common Principles of ()pticks, all the Parts of the flining or lighr Pieture of the Sun, which lie between M and E, molt be equally inlightned, that is, fuppofing the Light to proceed only by right Lines : For every Point berween E and M will be inlightned by an equal Space of the Diameter of the Sun. From the Point E of the Sun draw the Line EHL; then fhall LN , reprefent fuch a part of the Dianeeter of the Sun, as can at once inlighten the Point E through the Hole. Then take any other Point in the Picture of the Sun thetween M and E, as fuppofe the Point C, and from the Point C druw two Lines touching the Extreams of the Diamerer of the Hole H and O ; that is to fay, CHB and COA , terminating at the Points B and A of the Sun; I fiy, that BA fhath be equal to LN. For fince SN, HO, and TT are Parallels, HC will be to BC , is HE ro LE. But as HE to LE , fo is HO to LN ; and as HC to BC, fo is HO to BA. Therefore as HO is to LN, fo is HO to BA ; and conlequently BA and LN are equal; and confequently every Point of the Pifure of the Sun painted by the Rays on the Table TT, between the Poinis E and M, ought to be equally inlightued by the Rays paffing through the Hole HO; fince every of them is inlightned by an equal part of the Diameter of the Sun's Difck, which is contrary to the Obfervations that 1 have made; and therefore the Rays of the Sun which crofs each orher in the Hole of the Shutter HO, do not pro. ceed on in ftrait Lines, but deflect, fome this way, fome that way, as I thall hereafter more at large declare, when I thall thew divers other firange Pbanomena of Light, horh in Direct, Reflected and Refracted Rays; whereiy are produced Colours, Light and Heat, and various Pictures of: the Objects without: For according to this or that Variety of the quantity of Light admitted, fo would the Effects be exceedingly differing as to Light, Heat and Colours. And I alfo further obfervec, that the widening or ftreightning of the Hole would alter the Penumbra, and that a fmaller Hole would make a larger: Penumbra, which is contrary to the common Principles of Opticks : For if the Rays went in fl rait Lines, the bigger the Hole were, the bigger would te the Penumbrait Thefe things I have deliver'd to you as briefly and fuccinctly as I could. The other Pbonomena, God-willing, I Thall hereafter deliver to you more at large. N reference to the foregoing Experiment of.Light, I found a Paper to this
 " cerning the Nature and Properries of Light, in which was contained feveral " new Properties of Light not ohferved, that he knews by any Optick Writers:
"Thefe were, That there is a Deflection of Light differing both fromkeflection
" and Refraction, and feeming to depend upon the unequal Denfity of the cor-
"fticuent Parts of the Ray, whereby the Light, is difperfed from the Place of
"Condenfation, and ratify'd or gradually diverged into a Quadrartil 2dly, He
" ohferved that this Deflection is made toward the Superficies of the opacous
"Body perpendicularly. : 3dly, That in this Deflection of the Rays, thofe Parts
" of diverged Radiation that are deflected by the greatett Angle from the firait or
"direct isadiations. are fainteft, and thofe that are deflected by the leaft; are
is trongeft. 4 ly, That the Rays cutting each orehr in one common Foramen,
"s do not make the Angles ad Verticem equal. 5 ly, That Colours may be made
"without Refraction. Gly, That the true bignefs of the Sun's Diameter camnot
" be taken with common Sights. 7 ly , That the fame Rays of Light falling
" upon the fame point of the Objea, will turn into all forts of Colours only " by the various Inclination of the Object. $81 y$, That Colours begin to appear,
"when two Pulfes of Light are blended fo well and near together, that the
"Senfe takes them for one.
The twoo following Fragments of Gravity and Magnetifm, I found amongft fome ot ber lonfe Papers, wibich I fuppofo the Reader will laccept of, tho be fhould judge tben of little worth. R.W.

Of GRAVITY.

AL L folid Bodies take in and emit Fluids for their Suftentation.:
All fuch Huid Bodies have fomewhat of Solidity in them, when admitted, but are emitted more fluid.
The Sun and Stars continually emit ; they muft therefore admit, otherwife a Vacuum.

The Earth, Planets, Moon, and Secondary Planets, admit, therefore muft emit; o herwife Penerration; neither poffible therefore a Circulation. $\quad 1+4$

All Animals and Plants fenfibly admit and emit.
Of Minerals. The Magnet admits and emits. Electrical Bodies the fame; and the flining Diamond.

All Bodies are in motion : Motion and Body equipollent.
Similars work moft powerfully on each other.
Similar Bodies join together more eafily.

The tremulous Motion of Solids work on or move, the incompaffing Fluids, and comminute, grind or divide the included or interfperfed.

All Fluids by degrees without this Comminution, become more folid, Part agreeing with the Part in Motion, as Saline Liquors, Waters, Air, Eic. and.

Coherence nothing but Similitude of Parts and Motions.
Where the Motion of thedenfer prevails, Coagulationsw where of the fluid, Diffolution.

The more fluid, the quicker the Motion is; the more folid, the more flow.
The vibrating Motion of all Globular Bodies is from the Center to the Superficies, and vice verfa. This thewn by the Bell, Water in a Glafs, © c.

The Motion to and fro at the Center infinitely fwift, becaufe condenfed conically.

The comminuted Parts receive a rapid Motion according to their Smallnefs, Shewn by the Burning Glafs, $\vartheta^{c} c$.

They mult recede or be emitted with that Velocity. Their Recefs every way equal.

The Earth turbinated and roafted by the Sun; whilft Equinoctial Parts contract, Polar recede.

This Recefs not at once, but fimilar ; whence a circular vibrative Motion, or Pulfe of Gravitating Matter. This confirmed by Magnetifm, Bell, Water in a glafs, \mathfrak{F}^{c}.

Central Parts of the Earth poffibly Huid.
Heat or Excefs of Motion fhakes the Parts of Solids fo, as to make them Fluids,' which is when a minute Fluid can get between.

Thence more eafily divifible by Supreme Fluid, which is Fire:
Supreme Fluids always recede from the Center radiating; Ieffer Fluids follow in their place.

Of Comets and Gravity

Of MAGNETISM.

AFter the Explication of Light and Gravity, I come in the. 3 d place to the Explication of Magnetifm. Magnetifm then is a certain Power in the Body of the Earth, or any other Celeftial Globulous Body, by which a certain Motion is produced in an appropriate Medium, that affects or moves certain Bodies capable of receiving the Impreffions thereof according to deter rinate Laws.

The Power in the Body of the Earth is the vibrative Motion of the internal Parts thereof from North to South, and from South to North.

The Medium appropriate for receiving and communicating this Motion, is an Ethereal fubtil Matter, which penerrates and pervades, and fills the Interfices of all Terreftrial Bodies.

The Bodies capable of receiving Impreffions or Morions from the Morion of this Medium, are thofe we call Magnetical, viz. Loadftones and Iron, $๕ 火$ c. which are homogenious or unifonous, or equally great with the Magnetick, or fo vibrated Parts of the Body of the Earth.

The Caufe of this Motion is firft from the Circular Motion of the Body of the Earth, or other Globe upon an Axis.

And fecondly, the Obliquity of this Axis to the Plain in which it is moved, with a Motion of Lation.

This imperfell Fragment is all I find of this Hypothefis, tho' there are other MLutters relating to Magnetifm fcattered in bis Difcourfes. R. W.

ThisDif courfe gives an Explication of a Glade of Lighs firt obferved in the Heavens by Dr. Childrey,

 about the VernalÆquinox, and by Monf, Caf fini and others. This Lecture was read before the Royal Society, June the 3d 1685.DOttor Cbildrey, at the End of his Britannia Baconica, which he pulifhed in Page 183. the Year 1660 , containing feveral very curious Obfervations made by himfelf and others, has this Advertifement to the Curious and Ingenious. There is a thing which I muft needs recommend to the Obfervation of Mathematical Men, which is, that in February, and for a little before, and a little after that Month (as I have obferved feveral Years together) about 6 in the Evening, when the Twilight hath almoft deferted the Horizon, you thall fee a plainly difcernable way of the Twilight ftriking up toward the Pleiades, or Seven Stars, and feeming almoft to touch them. It is to be obferved any clear Night. There is no fuch Way to be obferved at any other time of the Year, that I can perceive, nor any other Way at that time to be perceived darting up elfewhere. And I believe it hath been and will be conftantly vifible at that time of the Year: But what theCaufe of it in Nature fhould be, I cannot yet imagine. So far theDoctor difcourfing with this Gentleman about a Year or two after this Publication, he could not then think of any Caufe of it, unlefs perhaps it might be fome extraordinary Reflection of the Sun.Beams; caufed by fome part of the Weftern Ocean ; but could not be pofitive, but doubted whether this might be a. Caufe or not. This Tract of Dr. Cbildrey's was tranflated into Frencb, and printed in the Year 1667, as appears by the Mifcellanea Curiofa Academic Natur ce Curioforum; and by that means the Advertifement was fipead in France, and the reft of Europe. In the inth Journal des Scauans of the Year 168.3 . we have an Account of a Sight the moft rare that has been obferved in the Heavens, defcribed by Mr. Caffini thus. "A Light, like that which blanches the Milky Way, Mr. Caffnis "but more clear and thining in the middle, but more faint towards the Ex-objervations, " treams, was expanded over thofe Signs which the Sun was fhortly to pafs "" through. I began to fee it at the Royal Obfervatory, the 18 th of March St.N. "two Days before the 压quinox, upon the occafion of turning the Telefcope " (with which I had been viewing the Changes of Saturn) to fee the in Star" of Aries, which is compoled of two, diftant only the Sum of their Dia" meters. I faw this Conftellation, and that of Taurus more light than ordi" nary, about 3 after 7 of the Clock, which was $\frac{2}{2}$ an hour after the Evening "Twilight. The Weft End of this Light was terminated by Horizon-Clouds "about ${ }_{3}$ Degrees high, the Breadth of the cleareft part was about 8 or 9
"Degrees: It was extended obliquely :near theZodiac, and theer'd by the North
" fide of the two brighteft Stars in the Head of Aries, comprehending all the
"Body. It extended in Length over the 7 Stars, and ended infenfibly in the
"Head of Taurus. That part of the Heaven was fo very clear; thatStars of
" the 6th and 7th Magnitude could be plainly feen, even in the middle of it,
"which was the brighteft, as is fometimes feen in the Tails of Comets. . But
"twas toogreat for the Tail of a Comer, tho' it refpected thei Sun, and defcen-
" ded behind the Clouds, without altering its Situation among the Stars. It
" continued to appear for fome Days, but alter'd not its Pofition, tho' it grew
"f fainter by degrees. The 26th of March (St. N.) which was the laft
"Night he then faw it) it feemed to be moved fomewhat more towards the
"North than at firft, which fome Obfervations of it in April following farther
"c confirmed. I pafs over his comparing of it to other Pbenomena, becaufe I
"s take them to be of another nature. As for the Caufe of it, he takes it to be
" either from the Head of fome Comet hid under the Sun's Rays, which yer he
"doubts to affert, becaufe of its Breadth, or from the Sun's Body it felf; but " determines nothing. He takes its Diftance to be great, approaching towards "the Fixed Stars, above the Planets, becaufe it chang'd its Place fo very little * in the time it appear'd.

In the Nouvelles des Livres of Marcb laft, is inferted a Letter of Mr . Choü̈̀t, Profeffor of Philofophy at Gencva, giving a further Account of the Obfervation of it at that Place the laft Spring; viz. 1684. by Mr. Fatio de Duillier, to this effect. "That 'tis a great Light, like the Tail of fome Comet, whofe Head " is abfconded in the Sun's Rays, a ppearing fometime in the Weft, fometime in " the Eaft, after and before the Twilight, but always near the Sun. 'Tis al" ways near the Plain of the Ecliptick, and refpects the Sun. The End next "the Sun is about 14 Degrees broad, ar about 40 Degrees from the Sun, and " from thence goes about 30 Degrees farther, diminifhing in Breadth and Bright" nefs, and ending in almoft a Point. It is brighteft through the middle, yet " even through that fmall Stars may be feen.
This admirable Appearance, fays he, was firft obferved by the Illutrious Caffini in March and April 1683, where Mr. Fatio was prefent and affiftant in the Obfervation: And returning to Geneva, he obferved it in March, but was much furprized to find it again by chance in Fe b. 1684. which made him frame the following Hypothefis, viz. that he was in part of the fame Opinion with Mr. Caffini, that the Light was caufed by fome more reflecting or refracting Parts expanded into the Atber in that place which conveyed the Sun's Beams to our Sight : But differ'd alfo from him, ift, In that Mr. Fatio fuppofes it fpread about the Sun's Body moft about the Plain of the Ecliptick, extending far beyond the Orb of Venus, and even almoft to the Orb of the Earth. $21 y$, In that he fuppofes this Luminous Matter about the Sun not to be a Globe, but only a tapering Circle in the Plain of the Ecliptick : So that it is much thicker near the Sun, where it doth to a great thicknefs inclofe him; but as it fpreads further and further from it, fo it grows thinner. : 3ly, That this Matter is carried round about the Sun by the Motion of the Heavens, in the Plain of the Ecliptick, and terminates at the Orb of Verius.
To make out which Hypotbefis, he affirms to have feen the like Glade of Light in the Morning before the Twilight in September, and both before the Morning Twilight, and after the Evening Twilight in December. But this I do not find obferved by any one elfe.
But thefe Hypothefes, tho' ingenious, do not give fo fatisfactory an Account of this Appearance, as I conceive; efpecially the firft, which is indeed not limited enough to make it deferve the Name of an Hypothefis; and for the 2 d , I conceive no reafon why it thould not every Night and every Morning that is clear, and without much Moonlight, be vifible round the Year ; efpecially in the Torrid Zone, where the Ecliptick rifes more perpendicular. Which'I do not find hath been noted, nor does it appear every Year: For I my felf (for two or three Years after I firft faw the beforemention'd Advertifement of Dr. Cbildrey, which was, as I remember, in 1662, 1663, and 1664) looked diligently for it, but found it not. And Dr. Childrey himfelf told me, that he had never found it at any other Time of the Year: However it will be very well worth looking after.
Comparingall thefe Obfervations together, my Conjectures are, that this Appearance is caufed by fome Efluvia from the Body of the Earth it felf, produced by the near Approach of it to the Sun, when in and near its Peribelium, which Peribelium being about the 5 th or 6 th Degree of Tauris for the Sun's Place, or of Cancer for the Earth's Place, is on the 16 th or 17 th Day of December. By which Approach of the Body of the Earth to the Sun, I conceive that a more than ordinary Ratifaction is made of the Parts of the Atmofploere, and the Dimenfions thereof accordingly extended to a much greater diftance than at any other times of its periodick Revolution: And the annual Motion being then alfo proportionably increafed in Swiftnefs, many of the more than ordinarily rarify'd Parts of this Atmofplere may be for a time converted into a kind of Fther, and be thereby intimately mixed and united with it, and fo be left by the fwiffly moving Ball in the Vicinities of its Paflage through the Fther; where for fome time after it may remain perfectly incorporated with the Parts of the死tber: But the extraordinary Heat reflected from the Body of the Earth, hav
ing left it tor fome time, thefe Aerial Vapours begin to lofe that Form, and condenfe again into a Subftance fomewhat like the tarify'd Air, out of which they had been generated by the Coaction of the Sun and Earth. Which Condenfa(i)n makes them of a differing Tranfparency from the reft of the ether, and rhereby capable both of reflecting and refracting the Rays of the Sun paffing that way, and fo make them to become vifible to the Earth in that place of its Orbit where they had been left, and fo continue, till by Degrees they be difperfed and fcatter'd into a greater fpace or quantity of the Ætber, and at length wholly difappear. To make this the more conceivable, and alfo more fenfible and probable, I could produce an Experiment in more fenfible and tangible Bodies, that would perfeetly reprefent all the Particulars remarkable in thefe Oblervations, making ufe of Fire to reprefent the Heat of the Sun, of Water to reprefent the Air or Aitzoosphere, and of Air to reprefent the Erber; whereby the fame Pbonomena, at leaft very fimilar, would he plainly vifible, refpeet being only had to the proportionate Differences between the Bodies reprefenting and reprefented, and the Times of producing the Changes necelfary to exhibit the mention'd Pbenomena both of the one and the other Ob . fervation. But that I think will not be neceffary, fince none that has made any Obfervations at all, can be ignorant of them. ${ }^{\text {S }}$ Tis known to all, that Heat, whether of the Sun, Fire, or an Animal Body, will make Water fo incorporate with the Air, as to wafte away into it, without being at all vifible, or altering the Tranfparency of it, as we every moment are fenfible of it in our Breathing. 'Tis as well known likewife, if the Air be very cold into which we breath, the Vaporous Parts will prefently condenfe, fo as to become vifible. 'Tis as well known alfo, that fuch Vapors, if the Air be warm, do fpread themfelves into the circumjacent Parts of the Itber, and will by degrees be wholly loftand difperfed. 'Tis likewife known, if fuch a reaking Body be moved through the Air, it will leave the Air through which ir paffes, infeeded by it ; which InfeAtion will fpread laterally, and be broader than the Line of Motion. And the like may be faid of all the other Pbenomena neceffary to make a fenfible Reprefentation of this notable Appearance.

Suppofing then that this is the Caufe of this Appearance, the Reafon will be plain, why it appears at that Place, at that time of the Year, of fuch a breadth at the Weft end, and fo Tharp at the Eaft; why of fuch a Length, why ? brighteft in the middle, why fainter towards the Edges, why extended in or near the Plain of the Ecliptick, why it varies this way or that way, why it keeps its placeamong the Srars fo long, and the like; which I am ready to explain more fully, if any Doubr.

Againft this Hypothefis feveral Objections may be made, as

Firff, If this were the Caufe of this Appearance, the Atmofphere of the Earth, objerions aand confequently the moift or watery part thereof would in time wafte and be gainft the H H. confumed, and fo the World would be unfit for the Ules it was defigned, of pothefis annourifhing Vegetables and Animals.

To which I anfwer, that it may poffibly be true, that the Moifture of the Earth may have always for the time paft, and may alfo at prefent, and for the future, proceed to wafte; and confequently the Earth may have grown drier, and continue fo to do. There is fufficient ground to believe, that a great part of the Land that is now dry, and a confiderable height above the Level of the Sea, hath been in former Times covered by the Sea, which the Shells now found do fufficiently evidence; and by what means it comes to be fo, is not fo well known or proved. There are other Parts, as Paleftine, which have in former Times been much more fucculent and fruitful than they are at prefent, being now Rocky, Sandy, and Barren.

But fecondly, To fupply this Wafting, it may be alledged, that the continual Gravity of the Earth doth make the heavier Parts thereof to get lower, and clofer together; and thereby the Watery and Aerial Parts, that have fill'd the former Cavities and Interflities thereof, may be fqueezed out into the Sea and Atmofphere: And fo as the Body of the Earth may have by this means fhrunk,
and be grown leffer and fhrivelled；fo the Watery and Atmofpherical Parts about its Surface，may in fome proportion to its prefent bignefs be fupplied．
Thirdly，＇Tis not unlikely，but that，as the extraordinary Heat of the Sun up－ on the Earth，when it is in its Peribelion，may＇for a time convert fome parts of the Atmiosphere into Wtber；and the extraordinary Swiftnefs of the Earth may leave them behind；fo the leffer Heat＇of the Sun upon the Earth，when in its Apbelion，may fuffer the Parts of the 压ther to be converted into Air，and by the flower Motion of the Earth in that part，＇he taken hold of and carried with it， and afterwards be further converted into Water，and fo repair what was loft in the Peribelion．I－fhall not mention that we find further，that Waters do petri－ fy，and＇petrify＇d Subftances again revert into watery，that being more proper to anothér Hêad．

Seitbndly，It may be objected，That if this were the true Caufe，why fhould not the like happen to the other Planets，as particularly to the Moon，whofe Glade would be feen every New Moon，efpecially in Noucmber，December，and Fanuary．

To this I anfwef，
Firff，That＇tis not undeniably proved，that any of the primary Planets have Water，or Atmolphere about them；and fo though they may have as great or greater Viciffitudes than the Earth in refpect of the Sun；yet this Tail would not be produced without an Aerial or Atmofpherical Subftance fitly prepared to receive thefe Changes．－And for the Moon，＇tis moft probable it hath none，and if it ever had，may have been thus waitted，and be now grown dry and rocky．

But＇recondly，Suppofing they really have the fame Subftances abour them，as the Atmofphere is about the Earth，and that fuch a Tail fhould be really produ－ ced by them；yet for two Reafons they could not be feen by us．The firt is from the great Diftance of them from our Sight in the Primary Planets；and fecondly，the direet Viéw of fuch ä Tail，if it were produced by the Moon： For the Moon moving about the Earth，the Eye on the Earth muft always look uponfuch a Tail or Stream tranfverlly，and fo being but thin，cannot be feen： But in this of the Earth，the Eye looks upon it endways；and fo，though rare of it felf，yet the Length of it being turned towards the Eye，it appears much the more denfe，and becomes vifible in a dark and clear Evening．

This Pbinomenon I thought the more worthy confideration，becaufe it was firt difcovered and publifhed to the World，by an Englifh Gentleman，and be－ caufe，that if the Reafon thereof be what I have here fuppofed，it may help to give an account of abundance of other Pbonomena，whofe Caufes have been afcribed to very differingPrinciplés and Agents．

vist

I propounded the laft．Wednerday an Hypotbe $/$ is for the Solution of that $P b \propto$ ． nomenon，that appears in the Weft after the Twilight，like the Tail or Glade of a Comet．And having fince mer with feveral orher Objections againft it，be－ fides thofe I then anfwer＇d，I thought it might not be impertinent to give a fur－ ther and more compleat Explication of it；and that the rather，becaufe I find that feveral of them have proceeded from a miftaken Conception of the Theory it felf．
It fhall therefore explain all thofe Particulars more exactly by Schemes and Delineations，which may ferve to give a more perfect Idea thereof．

Plate 3．Fig．1．The firft reprefents the Ball of the Earth encompaffed with an Atmofpherical Shell or Cover，compofed the greateft part of 庄访er，but tinctured by rarify＇d Particles of Water，Vapours or Air，which are ftill more rarify＇d and expanded， and fewer；and the nearer to the Nature of the 历tber，the further they are diftant from the Surface of the Earth．
Fig．2．The fecond reprefents this enveloped Ball moving by its annual Motion in a
pait of its proper Orbit or Line about the Sun，and fo pafting through the Body
of the Etber ，which I－fuppofe altogether flagnant，and not moving round with

it in a Vortice, as Des Cartes fuppofed; but quiefcent, according to that Theory of Celeftial Motions which I long fince have explained and fhewn to this Society, which deduces the Caufe of their periodick Motions from an impreft direct Motion, and an attractive or protruding Impulfe towards the Center of the Sun

By means of the fwift Motion of which Body thro' this flagnant ether, conceive there may be fome of the higher and more rarify'd Parts of the Atmo. sphere left behind, and not carried along with it, they being for that time more intimately united to the 原tber; but that thofe Parts, after they have for fome time been feparated, may alter or lofe their Rarefaction, and fo become for a time vifible to the Eye upon the Earth, now removed at a great diftance from them.

The third reprefents the fame in the Orbit of the Earth about the Sun, fhew: ing this Subftance left in that part of the Orbit which nearelt approaches the Body of the Sun, where its Power and Heat is more intenfe, and where the Motion of the Body of the Earth is much more rapid than in other Parts of its Orbit. From which two Caufes, I conceive, the Earth leaves an Impreffion or Sign of its way through the $\mathscr{F} t h e r$, fomewhat like the Froth left in the Wake of a Ship pafling fwiftly through the Water, which may be feen by one looking from the Poop of the Ship a good way behind, like a white Line, and has fometimes in a dark Night appeared to Chine.
Nor is this the only Inftance; for I conceive there are very few, if any, here prefent, who have not feen the fhining Line left behind by the Meteors called Falling Stars, or Star Shootings.

This alfo reprefents the Pofition or Angle of it in refpect of the Sun, as alfo the Length of it, and the manner how that End of it which is next the Sun, fpreads, and the other End is Tharp, and how the middle becomes more bright and confpicuous than the reft.

The 4th reprefents the fame Orbit of the Earth drawn in fmall, and fo ma. nifefts the Reafon why that part of the Orbit appears to the Earth in Virgo and Libra, amongtt the Fixt Stars of the Conftellation of Aries and Taurus.

The right underftanding of this Theory will plainly fhew a Reafon why it had fo little, if any Parallax at all; which made Caffini fuppofe it higher than the Planets, and Cbouet that it was about the Sun : For by the Scheme it plainly appears, that it muft be for the moft part of it further diftant than the Sun.

The chief Objections that I have fince met with are thefe.

1. How the \mathscr{E} ther, which is fo exceeding thin and fluid a Body ${ }_{3}$ can detain or ftop any part of the atmofphere in the Tranfit of the Earrh, and why the Gra. vity of the Earth, which carries along with it the Moon, actording to myTheory, which is fo vafly much more diftant, hould not be able to carry with it all the Parts of the Atmofphere.
2. Tho' the Etber fhould thus retain part of the Atmofphere, as I fuppofe, yet why this retained Subftance fhould not appear fooner, and how it fhould continue fo long after, without being whally. difperfed into the A Etber.
3. Why thisSeparation, or marked Way, thould be left only when the Earth is in its Peribelion, and not all the Year, in every part of its Orbit.
4. Why this Glade fhould nor appear the fame every Year, fince the Earth moves the fame Trace through the fame Ether; and fo at the fame Times or Places of its Orbit, it has the fame Influences both from the Sun and the Ether.
To the firt I anfwer, That tho' the Fther be exceeding fluid, yet both' from Obfervation and Experiments it affords fome Refiftance to Bodies moved through it. Firft by Obfervation it has been, I think, always found that the Tail, Blaze or Glade of Comets, has not been exactly directed or pointed from the Sun, but hath always had an Inclination backwards, that is, towards the Place from whence the Comet is moved, as I have publifhed in my Obfervations concerning Comets; the Blaze of a Comet in this fomewhat refembling the Afcent of the

Flame of a Candle, when it is moved fideways through the Air. But fecondly, by experiment we find, that though the Motion of a Pendiluin in vacuo will be much more free, and laft a confiderable time longer thian the Motion of a Pendulum in pleno Aïre; yett even this will in fome fhort time alfo lofe its Motion, and ftand ftill, as I have manifefted to this Society by former Experiments purpofely made. 3 ly, 'Tho' the gravitating or attracting Power of the Earth be able to retain and carry the Moon along with it in its annual Otbit, the Moon being a: Body of a vaft Bulk of Solidity, compard ${ }^{2}$, rd the Fluidity and Imall Refiftance of the Jether thirough which it moves : Yet, as I Thall afterwards prove-in my Theory of Lunar Motions, the Impediment of the Fiber hath a very :confiderable Influience upon it, and produceth very fenfible Effeets, tho' they are afcribed to differing Caufes. But on the other hand, the Solidity of the Parts which ferve to exhibit this Pbonomenon, are fo very fmall, and fo near approaching to the Nature of the Ntber, that the Stagnancy of the Ftber hath a confiderable Influence and Effect upon them.

For anfwer to the 2 d Objection, ift, I fay, that I fuppofe it when feparated from the Atmofphere, to be fo near of the fame Nature of the Ither with which it is mixed, that it difcovers not its effential Difference, till it hath been for fome fime feparated from the Atmofphere; but then when the Reflective Influence of the Earth hath been for fome time wanting to it, it doth by degrees re-alfume its preceding Form, and by degrees revert into the Form of Air, Vapours or Water, and fo becomes of a differing Nature from the Fther, and ferves to reflect the Rays of the Sun towards the Earth.

2 2ly, The Nearnefs of its Qualification to the. Жiber, makes it more flow in altering its Form. Of this we have Inftances enough in the Atmofphere in a dry Seafon, as at this prefent, when though the Air be plentifully charged with watery Vapours and Exhalations, yet they continue for a lotig time in the form of the Air, being not difcoverable from the more permanerit Body of the Air it felf, by any difference of Refrativenefs, till by fome other Caufe unknown, they be converted again into the Form of Water in frall Globules, or Drops, and fo appear in form of Clouds, many of which Drops uniting into one, form a Drop of Rain, and fo fall down to the Earth. This unknown Caufe feems to be fometimes extraordinary Heat," whereby one part is converted into Lightning, upon which another prefently reverts into Water or Rain, and falls down in Thunder Showers. At other times it feems to be extraordinary Cold, as one may.judge by the falling down of thofe Drops in the form of Ice, as in Hail Showers.
3 ly, If we confider the vaft height from the Surface of the Earth, to which the Parts of the Atmofphere afcend, which exhibit the Twilight, which Cardan believes to bealmoft 800 Miles, tho' Ricciolzs, and others more moderate, fuppofe it not above 100 Miles high; we may, eafily affent, that fome of thofe Parts may be left in the IEtber, confidering the Stagnancy of the Fitber, and the exceeding great Swiftnefs of the folid Globe of the Earth through the fame. But then if we confider the Parts of the Atmofphere not Refractive, they may be fuppofed very much more elevated, even to the height of a Diámeter of the Earth. But if they are fuppofed lefs than 50 , which the moft moderate allow, yet they will be high enough to be left behind by the fwiftly moving Ball of the Earth.

To the Third Objection, why this Train or Stream fhould be left when the Earth is in its Peribetium, and not as well at all other Times and Places of its Revolution, I anfwer, That there being a manifeft difference of a Caufe, 'tis rational enough to fuppofe there may be a fenfible difference of Effect. 'Tis by other ways proved that the Earth is in that part of its Orbit nearer the Sun, and that its Motion is then and there proportionably fwifter; if then we can obferve a different Phenomenon, 'tis rational to afcribe it to that different Caufe, till a more certain be found. Now that fuch a Caufe may have fome confiderabie Influence, I fhall produce an Obfervation of the before-mentioned. Dr. Cbildrey, in the fame Book, viz. his Britannia Baconica,

Moon's Infusuce on Flods. pag. 97 \&x-98. "I forgot (fays he) to fay, that feveral great Inundations fpeak in favour of my Opinion touching the Moon in Periged, her greatning the
"Tides; for I can affure you, that for that great Flood Arno 1532. Novemb. S. ". on which was made this Diftick.

Anno ter deno cum Sefqui mille Novembris 2uintá. Fat falfis Zelandia tota fub undis.

"That in the Year 1551 and 1552, Fan. 13th; that horrible one 1570 , on $A l$ l
"Saints Day, the firtt of Noveimber; and that notable one $160 \frac{5}{7}$ Fan. 30th,
"the greateft that ever was known in Severn, and fo fatal to SomerSet/bire,
"Glocefterfhire, and Monmouthfire; they were all when the Moon was in
"Perigeo, as he that lifts to calculate, or fearch the Ephemerides for thofe
"Years, will find. And the fame Doctor, in the beginning of his Book, adds an Advertifement of an Obfervation he made before that Book was quite printed off, viz. "That on the ift of November 1660, between 10 a Clock at "Night, and 5 next Morning, happen'd" an unufual hifting of theTides in the "Thames at London ebbing and flowing three times, as "tis reported, in that " fpace; which, fays he, was when the Moon was almoft in the very place of " her Perigaum.

To which let me add one Obfervation more to the Doctor's, That all there Phanomena hapned when the Earth was very near its Peribelium, and within the Limits of this fuppofed Luminous Glade or Wake, as 1 . may call it, of the Earth; and 'tis not impoffible but that this greater Nearnefs of the Body of the Earth to the Fire of the Sun, may make it emir more copious, and other natured Steams than at other times, when not fo much roafted by the Heat of the Sun.

As to the 4 th Objection, why this fhould not appear every Year the fame, I anfwer, that there may be many Caufes or Reafons to make one Yeár confide rably differ from another, as is fufficiently manifert by the Variety of Weather of one Year from another. But to determine pofitively what is the Caufe, does require a greater number, and more exact Obfervations than have been hitherto made of it.

Having underftood that there yet remains one Objection againft the Hypot befis, I have propofed for folving the Glade of Light appearing in the Weft in Februa$r y$, March, and April ; and that is, againlt the Stagnancy of the Ætber, and its ftaying of Atmofpherical Parts within it from following the Motion of the Earth. I thall thereupon mention twoPhenomena, which I conceive, when they are well confidered, will give fome probable Argument for this Opinion; and thofe are two of the fame Kind or Nature, but obferved at different Times and Places. The firf I thall mention, tho' the laft in time, was the Fax or Lampas of a Lampas Volans obferved after Sun-fet the ift of March 1676, at Falu...- by Petrus de Volanso Lauina; at Rome by Monf. Auzout; at Florence by Mattbias del Arpi; at Ve. nice by 70 . Facob Hertz, and in feveral other Cities of Italy; in all which it was feen alfo by very many others, and at the fame time alfo was obferved in the Lower Parts of Germany, as at Triers by the Fefuits there; Places very far diftant one from another; yer the Time and Manner of Appearance in all was much the fame. It feemed to rife out of the North Eaft, and to pafs by the Meridian to the South Weftern Parts of the Heavens, near the fame Tract that the Sun had gone that Day, and difappeared behind thick Clouds, where with a mighty Noife it was fuppofed to be blown to pieces and difperfed. It appeated about the bignefs of the Full Moon, and left behind it a Tail about 3 Diameters, of a reddifh Flame at firlt, but turning bluifh towards the laft. It lafted about a Minute or two. Its Noife ar latt was like the Noife of an Earthquake at a diftance, and made the Glafs in the Windows fhake. From the comparing of feveral Obfervations, 'twas fuppofed about 90 Miles high, and near a Mile in Diamerer. The feveral Authors that have writ concerning it, have explicated it by an Hypothefis very different from mine. My Conceptions of it are thefe.

Firft, That it was a vaporous Steam much of the fame nature with that which makes Lightning raifed into the Suparier Parts of the Air by means of its own
innate Heat and Ratefraction, which might poffibly proceed from fome fubterraneous Operation in fome Parts of the Eaft lying far diftant from Italy, as China, or fome other Part where there might be fome Earthquake, or poffibly fome Irruption, by which it might be fent out in great plenty, and forced up with great Power and Swiftnefs, that remaining there fome time, it might from the Cold or want of Heat of thofe higher Regions, by degrees be condenfed and conglobated nearer together, and by the Operation of the more 不thereal part of the Atmofphere, be prepared for Accenfion ; and fo being kindled, it would continue fome frall time before it fet fire to the middle Parts thereof, at which time it feemed to imitate the Noife of Thunder afar off. Now that Particular for which I mention it, is the way of its apparent Motion, which was faid to be much the fame with the Sun that Day, rifing Eaftward, and paffing by the Meridian towards the Weft. This, I conceive, was caufed by the Diurnal Motion of the Earth, whereby the Parts where it was feen being moved very fiwiftly towards the Eaft, viz. about 12 or 14 Miles in a Minute, the higher Parts of the Atmofphere in which it was kindled, being left behind, it appeared as if it had been carried by a fwift Motion of irs own from Eaft to Weft. And by reafon, I fuppofe, that even that part of the Atmofphere was moved a little towards the Eaft, thence was the Appearance of the Tail or Blaze it had that way, of about 3 times its' own Diameter: Which will, I conceive, give a probable Caufe of its apparent rapid Motion, and very well agree with the Hypothefis I lately mentioned.

And the fame Hypothefis will folve a like Phenomenon, which, as well as I can remember, was fome 10 Years befcre obferved, both here in England, and in Holland. It was feen by Sir Robert Murray, if I mifremember not, and by Mr. Shortgrave, and I think alfo by Monf. Hugens in Holland. It was as big as the Italian Meteor, and was judged to be of an exceeding great height in the Atmofphere, being feen at Places fo far diftant at the fame time. It appeared firft about the North Eaft, and paffed by the North Weft, not rifing, as I remember, fo high as 10 Degrees above the Horizon. For fuppofing that in the fame manner to beleft behind by the fwiftly moving Parts of the Earth, the Phenomena will be very naturally folved; and therefore deferve, I conceive, to be taken notice of in the Hiftory of Nature.

An Account of Dr. Ifaac Voffius's Hypothefis of Gravitation, with fome Animadverfions thereupon.

HAving perus'd a Difcourfe of the Learned Dr. Voffus, wherein he endeavours to explain the true Reafon and Caufe of the Gravitation of Bodies towards the Center of the Earth,. I thought it might not be unacceptable to give an account of my Thoughts concerning it, it being a Subject well worthy the confideration of this Society, there having not been to this day any one Hypothefis given by any Writer, that is fufficient to folve the Pbienomena thereof, or to explain the Multitude of Effects produced by it, much lefs to demonftrate the Power and Limits thereof, concerning which ! have heretofore fomewhat more largely difcourfed in this Affembly. I fhall not now fpend time in the enumeration of the various Hypotbefes of feveral other Authors, but confine my felf only to the confideration of that which is propounded by tbis Worthy and Ingenious Perfon. He conceives then, that the fole reafon why heavy Bodies defcend towards the Center of the Earth, and why light Bodies afcend from it, is the Diurnal Rotation thereof upon its $A x i s$, and wonders that it was never found out before, even by thofe who patronized the Copernican Pytbagorick (or, as he affirms; the Cbaldean and Egyptian Opinion, long before Pythagoras) of the Motion of the Earth. The Reafons he affigns, why this Motion muft infallibly and neceffarily produce this Effect, is becaufe heavy Bodies having an inaptitude to Motion, do therefore endeavour towards the Center, where there is none, or the leaft that can be. This he explains by, two forts of Experiments tried or obferved by him ; the firft is that of a Vortex, or Whirl of Water in a large Tub, the fecond that of a large Top. By the firft, he fays, he found that the Water being put into a fwift Circular Motion, all thofe Bodies which were heavy, and funk to the bottom, were drawn to the middle, and the heavieft of them got neareft to the Center, and thofe lefs heavy were removed farther and farther off, according to their proportionate Degree of Gravity, as Lead would get neareft, Iron next, then Stones, or other lefs heavy Bodies. On the other fide, fuch Bodies as were lighter than the Water, and fo fwam upon it, would recede and Hy off to the Sides of the Tub. The like Pbenomena he obferved alfo in Whirlwinds of the Air. His fecond Experiment of the Top, he produces to anfwer fome Objections which are ufually made againft the Motion of the Earth, and fo will confequently be againft this Hypotbefis : For'risufually, fays he, objeCted, that if the Earth move, then all fuch Bodies as are loofe upon it, would be fo far from growing more heavy towards the Center, that they would all of them be rather thrown off into the Air or $\not \subset t b e r$ with a great violence, and tend outwards or upwards.fromit, fince 'tis plain, that a Body put into a Wheel, and turned fwiftly round, has a tendency from the Center, and not at all to it. For, faith he, tho' it be true, that a Wheel turned thus perpendicularly, do's caufe the heavy Body to recede; yet if the Wheel were moved Horizontally, as a Top is, with its Axis erect, and at right Angles with the Plain of the Horizon, it would not. But I conceive both there Arguments are gratis difa, as are all the Conclufions deduced therefrom, and the Phenomena they exhibit are to be afcribed to quitedifferent Caufes to thofe he afligns. For firft, as to Whirl-winds and Vortices, 'ris clear, that by the violent Circumrotation of the Air or Water, the Endeavour of thore Bodies is to recede from the Center of that Rotation, and by that means there is lefs Refiftance in the Center for Bodies, whether heavy or light (for both will move towards it) to get into it, but the lighter much eafier than thofe that are heavy, as 'tis common to fee frmall Whirles of the Wind to gather together Leaves and Straw, and light Duff, and raife them up into the Air; but Stones and heavier Bodies are not at all

Hitred by it. And for the fame reafon, I fuppofe, it is, that large and violent Whirlwinds upon the Sea do caufe the Water to rife up from the Sea, and afcend upwards, and the Clouds on the other hand to defcend downwards into the Center, now made almof like an empty Pipe by the recefs of the Air in whirling tound, as is obferved in the Spouts ar Sea; which quantity of Water fo raifed, furdenly falls again, fo foon as the whirling Morion ceafes. Now, as in Whirlings of the Air, the Water rifes in the Axis or middle, fo "tis very obvious in Whirl-pools of Water, the Air defcends, and fills that Cavity that is deferted by the Water in the middle. But neither of thefe afford any Argument, as I conceive, of Gravitation to the Center of the Earth: For 'tis not here the fluid Medium that is whirled round fafter than the folidBody of the Earth, bur this Body is whisled round fatter than the Air; and that is fuppofed to be the reafon why the Winds in the Torrid Zone do for the moft part move from the Eaftern Parts of the Earth towards the Weftern, making that Wind they call a Trade Wind. Now brth Monl: Des Cartes, and Mr. Hobbs have been of this opinion, that the Diurnal Motion of Rotation might be the caufe of this Tendency of Bodies to the Center of it; but neither of them have explained the manner how, fuppofing the Fther to be the moft compact Body, and fo to be thrown off by this Rotation, and thence the more fenfible and tangible Bodies of the third Element to be forced towards the Axis of Rotation: They have not, I fay, explained how thefe lighter Bodies come to tend towards the Center; for granting what they fuppofe, thofe Bodies would not tend to the Center of the Glohe, bur to the Center of each Parallel Circle of Latitude, and confequently under the Pole there would be no Tendency at all. Now tho', 'tis true, it would be a hard matter to confute them, to affert experimentally a Gravitation at the Pole; yet 'tis evident enough in all other Degrees of Latitude, that. the Tendency is not to the Center of the Parallel of that Latitude, but always towards the Center of the Globe. Again, if the Rotation of the Ether were the Caufe of this Tendency towards the Center, and that this Rotation were differing from the Rotation of the Earth, that is, either fafter or flower, which feems to be the Caufe fuppofed in the firft Experiment of the Vortex of Water; then falling Bodies would not defcend in a Line tending to the Center, but in fome Oblique Line, either inclined towards the Eaft or the Weftward of it. If, on the other fide, it were from the fwifter Rotation of the Body of the Earth, as feems to be hinted by the 2d Experiment of the humming Top, then would falling Bodies not defcend and fall perpendicularly, but to the Weftward of it in the fame Parallel of Latitude. Again, whereas Dr. Vofsus fays, that a Vertiginous Motion, whofe $A x i s$ is perpendicular to the Horizon, does, not throw off Bodies from it, as the Motion of a Wheel, whofe Axis is parallel to the Horizon; 'tis clear by Experiment that it doth, in the fame manner, which may be plainly feen, if Water be dropt upon the top, whilf in that turbinated Motion; for it will difperfe it every way with grear violence. And as to the ftanding ftill of the Top upon its End, when it is fo violently moved round upon it, and of its running away with a great Swiftnefs fo foon as its Sides touch the Ground, I conceive the Reafons of both are fo plain, that I need not infift upon them. Again, whereas Dr. Voofius lays great itrefs upor the Pèrpendicularity of the Axis of the Earth to the Plain of its annual or progreffive Motion. It is evidently otherwife; for the $A x$ is is always declined $23 \pm$ Degrees from that perpendicularity. So that I fear we are yet to feek for the true Caufe of Gravity, as well as we are of the Degrees of its Power, and the Limits of its Extent : For tho' there have been many that have fuppofed its Power not to extend beyond the Air or Atmofphere, and upon that have given the reafon of the Sufpenfion of Water in the Clouds, and of the flying of Kites, and other Fowl, to a great height into the Air, and the like; yet 'tis very evident by many Arguments I produced in my Lectures about the Comet, that the Power thereof is not limited within fo fmall an Extent, but rather that it hath a ftrong and powerful Effeet, not only as far as the Moon, but vaftly far heyond it; and that it is one of the moft effential Properties of all the large Globular Bodies of the Univerfe.

Of Dr. Dee's Book of Spirits.

Tho' this Difcourfe be of a quite differing nature from all the other Subjects treated of in this Book, yet I thought it would not be unacceptable for the newnefs of it, fince it gives a quite different Explication of that unufual Sort of Treatije of Dee's Converfe woith Spirits, from all other Interpreters. This Paper was bought by a Gentleman in the faid Book, at the Auciion of Hook's Library, who woas pleafed to . end it to me. To bim therefore my Self and the Reader are obliged for this Tract. To which is added an Account of Dr. Dee and bis Studies, tranfcribed by Dr. Hooke out of Mr. Alhmole's Theatrum Chemicum.

HAving lately met with a Book, which though it hath been publifhed nows above 30 Years, I never had the Curiofity to examine further into, than upon opening here and there to read fome few Lines, which feeming for the moft very extravagant, I neglected any further Inquiry into it: Yet having not long fince met with a fmall Pamphlet of the fame Author, intituled, A Letter, con. taining a moft brief Difcourfe Apologetical, with a Plain Demonftration and Fer. vent Proteftation for the lawoful, fincere, very'faitbful awd Cbriftian Course of the Pbilofopbical- Studies and Exercifes of a certain fudiousGentleman, an antient Servant to ber Moft Excellent Majefty Royal. Written to the Moft Reverend Father in God, the Lord Arch-Bifhop of Canterbury, ${ }^{5}$ Primate and Metropolitan of all England, and one of her Majefty's moft Honourable Privy Council, ξc. And fubfcribed by fohn Dee: Wherein, befides his Proteftation before Almighty God, uponthe peril of his Soul's Damnation, if he lied, or took his Name in vain therein, that with all his Heart, with all his Soul, Strength, Power and Underftanding (according to the meafure thereof which the Almighty had given him) for the moft part of his time from his Youth hitherto, he had ufed, and did ftill ufe, good, lawful, honeft, Chriftian, and Divinely prefcribed Means, to attain to the Knowledge of thofe Matters which were meet and neceflary for him to know, and wherewith to do his Divine Majefty fuch Service, as he had, did or fhould call him unto during his Life, for advancing his Honour and Glory, and for the Benefit and Commodity Publick of this Kingdom, fo much as by the Will and Purpofe of God Thould lie in hisSkill and Ability to perform, and of his Profeffion of being a Chriftian. Befides this Profeffion (I fay) I found it contained a Catalogue of moft of his Works, either publifhed before that time, or then in Manufcript ; by the Titles whereof he feeming to be an extraordinary Man, both for Learning, Ingenuity and Induftry, I had a deffre to perufe the Book with a little more Attention than I had formerly Thoughts of; to fee if by the Contents thereof it might have contained any of thofeSubjects, which he, in the faid Apologetical Difcourfe, had afferted himfelf to have written concerning. Nor was I frighted from this my Purpofe, either by the fix pretended Conjurers prefixt to the Title, Mabomet, Apollonius Tyaneus, Kelly, Friar Bacon, Paracelfus, and Dr. Dee himfelf; nor by the Title, viz. A true and full Relation of wokat pafjed for manyYears between Dr. John Dee (a Matbematician of great Fame in $2 u e e n$ Elizabeth and King' James, their Reigns) and Some Spirits, tending (had it fucceeded) to a General Alteration of moft States and Kingdoms in the World, \&c. Since I conceived both thefe to have been the Ingenuity of the Publifher, to make the Book fell the better: No, nor thirdly by the long and frighting Preface of the Publifher, Dr. Merick Cafaubon, who certainly did believe him, the faid Dee, to be a Conjurer or Witch, and to have dealt with the Devil all along through the whole Courfe of this Relation of his Travels inro Germany, Poland, and other Parts of Europe; he underftanding the fame all
along in the plain literal Senfe, as indeed moft Readers have, and do as yet conceive of it, as he, befides what he hath faid in his Preface, doth more particularly fhew in his Contents of the feveral Sections of it, and his feveral Notes difperfed here and there in the faid Book. But proceeding to perufe the faid Difcourfe, I upon the firft View and Confideration of the 3 Copper Sculptures prefixed, immediately conjectured what the Subject of the Book was likely to be, which by divers other Circumftances afterwards I was more confirmed in, as I Thall by and by fhew.

But firft, it may feem needful that I premife fome Difcourfe Apologetical for my felf,
Firft, for perufing a Book fuppofed to be a Book of Conjuration, and dealing with the Devil and his Imps.
Next, For difcourfing in this Place concerning a Book which has been publifhed fo many Years, and paft under she Cenfure and Judgment of moft Learned Men, and fo is at beft but ftale, and what every body knows, ormay have known already.

3dly, That it contains a Difcourfe of a Subject fo much befide the Defign of the Inttitution of this Honourable Society ; this feeming to have nothing to do with the Improving Natural Knowledge.

4 thly, For that it feems not to have relation to the Hiftory of Nature or of Art, and fo falls not within the Limitation of the Subject of this Lecture.
sthly, For my Prefumption in interpofing my Conjectures and Sentiments concerning the Subject Matter of the fame, after it hath been cenfured by fuch Eminently Learned and Judicious Men, as Bp UJher, Dr. Cafaubon, and others.

As to the firlt of thefe, I found in the very Title Dr. Merick Cafaubon's Opinion fpecified to be, that the Relation was real (as to the Point of Spirits) and that a fober Chriftian might make feveral good Ufes of all: And in the Preface it felf the Doctor hath very much inlarged upon this Subject, and fays in the firf Page of his Preface, that he was the more confirmed in his Sentiments concerning it, when he was told at firft by thofe that knew very well, that the moft Reverend, Pious and Learned Arch-Bifhop of firmagh, then lately deceafed, upon reading the faid Book before his Death, had declared himfelf to the fame purpofe, and wifhed it printed. His firft Ufe is for an Argument againft Atheifts, and fuch as do not believe Spirits and Devils. 2dly, Againft Enthufiafts, who altogether depend upon new Revelations, zealoufly and fervently praying for fuch Infpirations and extraordinary Affiftances, faying, that this Bufinefs of Prayer and Praifing is a Bufinefs, as of great Comfort, fo of much more Danger and Delufion than many do believe ; upon which account he tells many ttrange Stories. 3 dly, For to deter Men from prefumptuous unlawful Wifhes and Defires; and thence of making ufe of Witches, Conjurers, Aftrologers, and Fortunetellers, and all Books of thofe Subjects, which he conceives were the Caufe of Dr. Dee's Delufion: So that I was fatisfied there could be no great Danger or Harm in the looking farther into the Contents of it. But more than this, I conceived it not reafonable altogether to depend upon the Opinion and Sentiment of others concerning ir, when the Book was by, to give Teftimony of it felf; for that divers Books have been condemned for fuppofed Crimes, of which yet, upon further Inquiry, they have been found innocent, and to have quite a differing Defign from what they feemed at firft fight to intend. Witnefs the Steganograpbia of the Abbot Trithemizs, which was to fiercely accufed of Conjurations by Carolus Bovillus his Contemporary, by Wierus his Follower, alfo by Cardinal Bellarmine, Antonius Pafferinus, and by moft others fince, who underftood not the Art and Ingenuity of the Book; but others more judicious and knowing have vindicated and cleared him from thofe Calumnies, and proved the Art and Ingenuity of the Book, as above all other, Guftavus Selenus, or Auguftus Duke of Lunenburgb, pag. 37. Ut profanum Vulgus ab occulte fcrio bendi bac Arte arceret, atq; adeo quibufdam Terriculamentis abfierreret, ingeniofiffimus nofter Abbas, cam Magie, vulgo invifi Ev odiofi Nominis specie venditavit, quaft infernalium Spiritum ope, dirifq; Incantationibus, fub borrido confragofo, at $q_{;}$ad terrorem pene confilio idiomatijmo res perageretur, quem Scopum non ob-
fcure innuit in duabus ad ElectoremPalatinumPbilippumPrafationibus. Addamus nos, ipfum porro tali involucro ingenuium Ingenil Lufum cogitafle, in gratiam Eru* ditorum artem banc filo Ariadnes fido adepto addifcentium. Ludit enim fubNowine Spirituum ad Literas, quibus occulte aliquod Negotium alteri Jignificatur; vel quad illa Junt Animi E Spiritus noffri indices voluntatem noftram abferiti quo vox non penetrat; fideli E mirabili modo perferentes; vel quod inter plures lite. ras (que prooccultando infituto in Epifola aliud Thema tractante tranfmittenda adbibentur.) iffa, quibus quafi aliud agendo Secretum alteri indicatur, uti Spiritus, Vita E Anima; cetera vero eo non pertinentes, pro Mortuis babende fint. And To he proceeds to thew the Reafon, why he calls fome of thofe Spirits Dukes or Princes, others Captains, others miniftring and fubfervient; and in fhort; detects the whole Artifice of the whole Book, which had nothing of that Defign for which the illiterate and unskilful Readers did generally condemn it.

But fecondly, As to the Stalenefs of the Book, it having been now printed and publifhed about 32 Years, I anfwer, that as to my felf, tho I had often feen the Book, and heard many. Difcourfes of it, and of its Contents, yet as to my own knowledge of it, it was perfectly new, and poffibly it may be fo to a great many others, confidering the Subject of the fame, and the manner of the Delivery thereof, which indeed feems to be (bating fome Parts that relate to a kind of Hiftory of Dee's particular Affairs and Tranfactions with fome Great Men) a Rapfody of incoherent and unintelligible Whimfies of Prayers and Praifes, Invocarions and Apparitions of Spirits, ftrange Characters, uncouth and unintelligible Names, Words and Sentences, and Relations of incredible Occurrences. So thiat wherever you open and begin to read, you may find caufe enough in a very little time to throw it afide and negleat it, till you have quite forgotten what you then met with, as it happen'd to me, who had in that manner feveral times feen and read here and there a few Paragraphs.

Bur next I anfwer, that there are many Books that have been a long time printed; nay fome folong, that they are many of them almoft quite loft, and very hardly and rarely to be met with, which yet deferve to be looked into, and an account given of, as much as many new Books, which now almoft every Day are brought forth into the World, upon which Subject I need not inlarge, becaufe I believe I may have many others of the fame Opinion: For there are many things which are now produced for Novelties and new Difcoveries, which yet may be found to have been long fince publifhed, and either have not been taken notice of, or through Length of time have been forgotren and loft, as if they had never been. Again, there are many. Books, that have flipt into the World at fuch times, as no body, or very few, at leaft, have taken notice of them upon their firit coming, by reafon they were of Subjects then not much regarded, or in vogue, or when Mens Minds were taken up or more concerned. for other Subjects, or Matters of greater import, which by the Time of the Printing might poffibly be the Fate of this very Book, which probably at another time would have made more Noife, and, it may be, have met with more Notice, if not alfo more Oppofition. And it has been the Fate of many good Books to be neglected for fome time after their firt Publication, which yet in time come to be better look'd into, and the Ufefulnefs of them underftood, and thento begin to be prized, as I underftand was the Fate of Mr. Purchas his Pilgrims and Pilgrimage, and feveral others.

As to the 3d Objection that may feem to need an Apology, namely, the He: terogenity and Unfinefs of the Subject for the Confideration of this Society, as being reputed a Treatife about Supernatural Fiffeets or Productions, I muft confefs, that if it be to be underfood according to the plain literal Meaning, it would be truly fo ; but whereas I conceive the true Meaning and Defign of the whole to be quite another Matter, I think it may be as properly referred to the Improvement of Natural Knowledge to underftand it, as of any other Book that has plainly and exprefly treated of the Hiftory of Nature and Art. For I take it to be a concealed Hiftory of that kind, which may alfo apologize for my treating of it upon this occafion in this Lecture.
It may alfo ferve for my 5 th Apology : For tho' I confefs it may feem to favour of too much Confidence, to differ from the Sentiments of moft Men concerning it; yer fince what I propound-is not pofitive, but rather as Queries to
be refolved by fuch as have betfer : Abilities and Opportunities to folve them than I haves and that I am ready to fubmit to fuch well-grounded Determinations. I hopemy Attempt in this kind will not appear to exceed the Limits of the Charter of Pbilofopbia libera, nor be repugnant to the Doctrine of Nullius in Verba: For whatever may feem rational to others to judge of the faid Book, to me, I conferf, it feems to be defigned to comprehend a nother Meaning than what is plainly legible in the Words of it, which poffibly many others that have read it, may have no Sufpicion of; neither may they have ever reen or confidered the Cryptography of Trithemius, or any other Author on the like Subjects. Non omnia.pofismus omnes. Thus much by way of Apology.
To come then to the Book it felf. Upon turning it over, and comparing feveral Particulars in it one with another, and with other Writings of the faid Dr. Dee, and confidering alfo the Hiftory of the Life, Actions and Eftate of the faid Author, fo far as I can be informed, I do conceive that the greateft part of the faid Book, efpecially all that which relates to the Spirits and Apparitions, together with their Names, Speeches, Shews, Noifes, Clothing, AEtions, and the Prayers and Doxologies; Ecc. are all Cryptography; and that fome Parts alfo of that which feems to be a Journal of his Voyage and Travels into feveral Parts of Germany, are alfo Cryptograpbical; that is, that under thofe feigned Stories, which he there feems to relate as Matters of Fact, he hath concealed Relations of quite another thing; and that he made ufe of this way of abfonding it, that he might the more fecurely efcape difcovery, if he thould fall under fufpition as to the true Defigns of his Travels, or that the fame fhould fall into the hands of any Spies, or fuch as might be imployed to betray him or his Intentions; conceiting the Inquifition that thould be made, or Profecution, if difcovered, would he more gentle for a Pretended Enthufiaft, than for a real Spy.

What his Defigns or Bufinefs, with the Emperor, the King of Polaxd, and others, was, is hard to determine, i.e. firlt whether he were fent upon fome private Meffage by the Queen, or any of the then Minifters of State, to inquire into and difcover the fecret Defigns or Actions of that Court, is hard now to determine; but 'tis likely. For in his Apology he alledges, that the Lord Treafurer had by the Queen's Order written to the Arch Bithop, to fignify that he weent beyond Sea by her goodiFavourand Licenfe; and we find alfo that the Queen did fend feveral Letters and Meffengers to call him home, and that upon his Return the Queen received him kindly at Ricbmond, and that The ufed to call at his Houfe at Mortlack, and fhewed herfelficourteous to him upon alloccafions, and againft Cbriftmas 1590, fent him 200 Angels to keep his Cbriffmas, and 100 Mark for the fame purpofe 4592 . We find alfo, that in his Return for England, he prefented the Landgrave of Heffe with 12 Hungarian Horfes; which feems too much for any Man in a private Capacity. And when hẻ returned, he left Kelly with the Emperor, who for feveral Years after kept Correfpondence with Dr. Dee here, which might poffibly continue to execute the fame Defign; Kelly being now grown Sir Edward Kelly, and the Emperor's Chymift. And in probability Dr. Dee might have fufficiently furnifhed him with Cryptograjly enough to fend what Intelligences he pleafed, withour fufpition, which was eafily conceived under any other feigned Story. I will not determine whether this were his Bufinefs. I fay, or whether it might not be upon his own account, to fee if he could make a Fortune under the Emperor by means of Chymiffry, or Mathematicks, or Aftrology, or Mechanicks, all which I find by his Writings he was well verfed in, and efpecially in the Bufinefs of ()pticks, and Perfpeaive and Mechanick Contrivances; an effect of which I conceive his Chryftal, or Angelical Stone, or Chryfallum Sacratum, as he terms it, to have been, for that it was of a confiderable bignefs, and was placed upon a Pedeftal, or Table, which he calls a Holy Table, which might contain the Apparatzus to make Apparitions, when he had a mind to be feen in it, as likewife to produce Noifes and Voices, if there were occafion. All which might be done by Art, as has been thewn, both formerly by Roger Bacon, and of late by the Echoing Head. He likewife pretended to the Philofophers Stone and Elixir, for which I take Kelly to be his Engine. I find alfo, that he affirms to have had 2 Ounces of the Pouder of Projection, which, as Mr. Afhmole, in his Notes upon the Tbeatrum Cbymicum, publifhed by him 1652, fays, was fo fich in Virtue (being

One upon 272330) that they at firft loft much by making Projections for Trials, before they found out the true height of the Medicine. He was like. wife well verfed in Cabalifical Learning and Cryptography, as appears by the Tirle of a Treatife written by him upon that Subject, and by that Book which he feems to have prized fo much, and calls the Book of Enoch, which T take to be of no other ufe, than for Cryptograpby and Cabalifms. I will not determine, I fay, wherher his Defign might not be by thefe and fome other fuch Ingenuities (as particulatly a Glafs, which he trientions, Pag. 256. (the Seerer of which he opened to Dr. Curtz the Emperor's Phyfician) for Battering in a dark Night, ' \mathcal{c}. which what he means by it I underfanid not ; but Dr. Eurtz told him that Conclufion would be very acceptable to the Emperor. He had alfó written Six Books despeculis Combur ntibus, Two Books of the Aftronomical Ring; or Ring Dial, and cwo Books alfo of Clockwoork) to find Entertainment and Encoüb ragement from the Emperor. ${ }^{3}$ But I do rather conjecture, that he was employed by Queen for fome private Affair of State, and that he made ufe of thefe his Inventions, in order to obtain the freer and more unfufpected Accefs to the Emperor; which having not fucceeded as might have been expected, he was recalled, and returned into England inNov. 5 589. That a great part of thisTreatife isCryptography, I conceive is very probable from thefe and divers other Confiderations: Firft, for that he took fuch care to preferve the Book of Enoch, which I conjecture to contain the Methods and Keys of what was concealed in this Book. Next, for that the Method and Manner thereof is fo like to that of Tritbemius his Cryptography, that I conceive (were it worth while) it would not be difficult to decipher a great part of it, by analogy thereunto. Now tho at that time the Key or Merhod of that Book were not fo well and commonly known, yet I do not doubr but this inquifitive Man had got Knowledge of it in his Travels and Enquiries in Germany, pofibly when he prefented his Monas Hieroglyphica to the Emperor Maximilian 1564 ; and pofibly it might be upon the fanie ac count, that he made choice of this way of Invocations and Revelations to conceal his Meaning, that I fliewed before Trittiemius had done in his. Tritticmius. alfo pretended to Revelation, as may be feen in the Hiftory of his Life, tho' not fo frequent as this Author has done in this Book, at leaft if the Senfe thereof be underftood literally'; but that I conceive to be nothing but the outward Form, Appearance or Drefs of the Subffance and Subject of the Book, which lay abfcoro ded from common Difcovery under that Mask or Difguife; tho' yet I am apt to believe he had fome artificial Contrivances to perform this alfo, when he faw caufe Thirdly, for that there are very many plain Inttances of Cryptography, borh by changing and putting fome Letters for othets, and Numbers for Letters, and Num. bers alfo for Words, and Tables for difpofing or placing Letters according to feveral Orders and Methods, to be feen in the Book it felf: And the Book which he calls the Book of Enoch; feems to be nothing elfe. Befides, the Words that he fets down, as delivered by his Spirits, are many of them inarticulate, according to the commonly accepted Sounds or Pronunciation of thofe Characters they are written with, and therefore were not put to fignify thofe Letters. It would be too long to give Inftances out of the Book it felf of thefe Particulats, and 'tis needless, fince they are fo very many and frequent in every part of the Book. He hath likewife divers Polygonal Figures, as I conceive, for the fame purpofe, and many other fuch Indications of Cryptography.

And to conclude for the prefent, any one that does without prejudice perufe the Libri Myftici Apertorii Cracovienfis Sabbatici, pag. 115. will fee a hundred Arguments to convince him of the Probability, if not Certainty of this my Con' jecture: And fome other time I thall give fome other Arguments, which may poffibly give fuller Satisfaction. -But I would not detain too long upon this Subject.

PAG. 480. [Mr.Afbmole's Notes.] As touching Dr. Dee, he chiefly bent his Studies to the Mathematicks, in all Parts of which he was an abfolute and perfect Mafter; witnefs his Mathematical Preface to Euclid's, Elements, wherein are enumerated many Arts of him wholly invented (by Name; Definition, Property and Ule) more than either the Grecian or Roman Mathematicians have left to our Knowledge; with divers Annotations and Inventions Mathematical added in fundry places of the faid Book, together with feveral Pieces of Navigation Perfpective, and other rare Mathematical Works of his in Manufcript.

His Epiftle prefixed to 70 ohn Field's Ephemerides 1557. de Ufu Globi Caleffis, to Edw. 6. de Nubium, Solis, Luna, छ reliquorum Planetarum, छ゙c. Diffentiis, Evc. to Edw. 6. Aftronomical and Logifical Ganons to calculate Epbemerides by.; de Stella admiranda in Cafiopea Afterifmo; an Advice and Difcourfe about Reformation of the Vulgar Year; " fpeak him a Learned Aftronomer.
Lattly, Hé was a good Aftrologian, and a ftudious Philofopher: His 300 Aftrological Aphorims; his 120 Aphorifms de preftantioribus quibufdam Nature Vivtutibus; Monas Hieroglyphica; Speculum Unitatis (being an Apology for our famous Friar Bacon); his Cabbale Hebraica Compendiofa Tabula, with many others, afford no fmall Evidence to the World.

All which, and many more in feveral kinds of Learning, as Hiftory, Heral. dry, $\mathcal{E C} c$, written by himbefore the Year 158.3. Some time he beftowed in Vulgar Cbymiftry, and was therein Mafter of divers Secrets; amongtt others he (Dec. 28. 1519.) revealed to one Roger Cook, the great Secret of the Elixir (as he called it) of the Salt of Metals; the Projection whereof was one upon a: hundred. His great Ability in Aftrology, and the more fecret Parts of Learning (to which he had a ftrong Propenfity and unwearied Phanfy) drew from the Envious and Vulgar, many rah, hard; and lying Scandals upon his moft honeft and julifiable Philofophical Studies, and many times forced him, out of the Bitternels of his Soul (which was even crucified with the Malice of impudent Tongues) moft ferioufly and fervently to apologize : Nor could he enjoy Tranquility in his Studies, but was oft difquieted and vexed with the fower Difpo, fitions of fuch as fcandalized moft injurioufly both him and them: Infomuch that (1581) the Year he went beyond Sea, his Library was feized on, wherein were 4000 Books, 700 of them Manufcripts. (A Caveat for all Ingenious and Eminent Pbilofopbers to be more zoife than to keep any dear or excellent Books in their own Houfes.) And 'tis moft probable that at this time his Speculwm Unitatis might fall into fome Hands that would never fince fuffer it to fee Light.; which might occafion the Learned Selden to fay [in the Preface to Hopton's Concordance] this Apology was long fince promifed by him, but intimating it was never writ. Anno 1592, [Novemb. 9.] Mr. Secretary Walfingbam, and Sir Tho. George, were fent to his then Dwelling houfe at Mortlack (by virtue of a Commiffion) to underftand the Matter and Caufes for which his Studies were fcandalized ; and for fome things in the like nature, was he neceffitated to fend his Apologetical Letter to the Atch.Bifhop of Canterbury.

Thefe kind of Perfecutions were ftill multiplied upon him, and he fometimes perfonally aggrieved by them : For about the Year 1594, he was under fome Reftraint, which occafioned him to write to the Lady Scudamore [OA. 28. 1594.] to move the Queen, that either he might declare his Cafe to the Body of the Council, or elfe under the Broad Seal have Liberty to go freely where he pleafed.
——'Tis generally reported, that Dr. Dee and Sir Edward Kelly were fo Itrangely fortunate, as to find a very large Quantity of the Elixir in lome Parts of the Ruins of Glaftenbury Abby, which was fo incredibly rich in Virtue (be. ing one upon 272330) that they loft much in making Projection by way of Trials, before they found out the true height of the Medicine. And no fooner
were they Mafters of this Treafure, then they refolved to travel into foreign Patts, when falling into acquaintance with one Albertus. Lasky, a Polonian, Prince, which came into England in the beginining of May 15^{83}, on the 2 Ift of September following, they, their Wives, Children and Families, went beyond Sea with the faid Prince. And whether they found it at Glaftenbury, as is afore: faid, or however elfe they came by it, 'tis certain they had it : For at Trebona in Bobemia, whither they were come to dwell [Sept.4. 1586.] Sir Edward Kelly made Projection with one fmall Grain thereof [Dec. 9.1586.] in proportion no bigger than the leaft Grain of Sand, upon one Ounce and a quarter of common Mercury, and it produced almoft an Ounce of moft pure Gold. This was done to gratify Mr. Edward Garland and his Brother Francis;: and in their Prefence; which Edward was lately come to Trebona, being fent thither to Dr. Dee from the Emperor of Mofcovia, according to fome Articles before hrought by one Tbomas Symkinfon. I alfo find this Note' of Dr. Dee's, Fan.9.1586. Donum Dei 2 Ounces, E.K. Moreover, nearer the later Teftimony, 1 have received it from a credible Perfon, that one Broomfield and Alexander Roberts told him, they had often feen Sir Edward Kelly make Projection, and in particular upona Piece of Metal cut out of a Warming-pan, and without Sir Edward's touching or handling it, or melting the Metal, only warming it in the Fire, the Elixir being put thereon, it was tranfmuted into pure Silver. The Warming-pan, and this Piece of it, was fent to Queen Elizabeth by her Ambaffador, who then lay at Prague, that by fitting the Piece into the Place from whence it was cut out, it might exactly appear to be once part of that Warming.pan. Theaforefaid Perfon hath likewife feen in the hands of one Mr.Frye and Scroop, Rings of Sir Edward Kelly's Gold, the Fafhion of which was only Gold Wire twifted thrice about the Finger ; and of thefe fafhioned Rings he gave away to the value of 4000 l . at the Marriage of one of his Servant-Maids. This was highly generous; but to fay truth, he was openly profufe bey ond the modeft Limits of a fober Philofopher.

During their abode at Trebona they try'd many Chymical Experiments, to fee whether they could make that Jewel they poffeft; (The particular Account of their Operations I need not here relate.) yet I cannot hear that ever they accomplifht any thing: Only I find the 27 th of April noted by Dr. Dee with feveral Expreffions of Joy and Gladnefs, as; Hac eft. Dies quam fecit Dominus: Again, Mifericordia Dei Magna; and lattly, Omne, quod vivit, laudet Dominum. And to teftify what they meant, he writes upon the 3oth Day following, Mr. Edward Kelly did open the Great Secret to me, God be thanked. . While they lived at Trebona, Sir Edward Kelly went divers times to Prague, and the 15 th of fan. 1587, he went into Poland, but returned the gth of February after. And ${ }^{3}$ tis probable thefe Journies were made in queft after fome famous Chymitts. Things were not carried here fo privately, but Queen Elizabetb had notice given her of their Actions; whereupon fhe ufed feveral means by Letters and Meffages to invite them back into England, where it was believed The had fo far prevailed, that Mr. Symkinfon and Mr. Francis Garland's Brother Robert coming from England to Trebona [Dec. 8. 1587.] fuppofed they had been ready to comeover to England upon the Queen's Letters formerly fent them. And tho' Sir Edzoard Kelly ftaid hehind, yet Dr. Dee left Trebona [May 1. 1589.] and came for England. But whether occafioned by fome Ulnkindnefs received from Sir Edw. Kelly, or falling out of their Wives, or Sollicitation of Queen Elizabeth, or all of thefe concurring, I am not yet certain. Not unlike but each of thefe might contribute to their Separation. For that there was fomegreat and wonderful Unkindnefs paft from Sir Edward Kelly, appears by his fending for Dr. Dee, the beginning of Fan. 1588 , under thew of Reconciliation, and difcovering more than ordinary In. timacy and Complacency about that time; which fair Shews the Good Doctor notes with thefe Prayers, God lead bis Heart to all Charity and Brotberly Love. As alfo Letters fent by Dr.Dee to Sir Edvoard Kelly and his. Wife the end of March following, requiring at their hands mutual Charity; which [May 9.] after, upon Mrs. Kelly's receiving the Sacrament, the gave her Hand to Dr. Dee and his Wife in token of Charity. But it feems things were not cordial, but only outward : For the6th of September following, the Lord Chancellor coming to Trebona, the Ran: cour and Difimulation was more evident to him, and it feems grew up to a greater height than he could bear. And thereupon he thought wifely to avoid the Hhh
further
further Danger by leaving Gerwany, which occafioned him [ifun. 4.1589 .7 xo deliver to Sir Edward Kelly the Powder, the Books, the Glafs, with fome other things, and thereupon received his Difcharge in Writing under his Hand and Seal While thefe Difcontents continued, feveral Létrers paft between Queien Elizabét) and Dr. Dee, whereby perhaps he might promife to return. At lengrh' it fo fell out, that he [March 1. 1589.] left Trebona, and rook his Journy for Englanat The 9 th of April he came to Breame, and had not-ftaid there 3 Days, but the Landgrave of Heffe fent Letters of civil Complements to himg and within 3 Days after Dr. Dee prefented him with his it Hungarian Horfes; that he bought at Pria
 Dr. Henric Kunrath of Hamburgh came to vifit him. The 16 ith of Novemb. he went thence to Stade, where he met with Mr. Edward Dyer going Embaffador for Denmark, who the Year before had been at Trebona, and carried back Letters from the DoEtor to Queen Elizabeth. He was a great Correfpondent of Dr. Dee's, and as earnelt a Searcher after the Stone. The 23 d of Nov. following he arriv'd at Gravefend, having been out of England 6 Years, 22 Months, and 2 Days; and the 9 th of Dec. prefented himelf to the Queen at Richmond, where he was fa: voured with a kind Reception.

Being fettled again at Mortlack; the Queen ufed to call at his Houre to vifit him, and thewed her felf very courteous to him upon all occafions. Againft Cbriftmas 1590, The fent him 200 Angels wherewith to keep his Cbriftmas, and 100 Marks againtt Cbriftmas 1592. She likewife fent him word by Mr. Thomas Candifh, to do what he would in Alchymy and Philofophy, and none fhould con: troul or moleft him : And not unlike, by the Queen's Example, divers Perfonal ges of Honour at Court frequented his Company; and fent him many Gifts from time to time ; amonglt others Sir Tho. Fones moft nobly offer'd him his Caftle of Emlin in Wales to dwell in free with all Accommodations.

His Favour was fair at Court, the Queen her felf bad him find out fomething for her to beftow; yet all the Preferment he gained was (Dec. 8. 1594.) the Grant of the Chancellor/hip of St. Paul's; and the 27th of May 1595, his Patent paft the Great Seal for the WardenJhip of Manchefter, whither he, his Wife, Children and Family came the 14th of Feb. 1596. and the 20th Day following was inftalled, and in this WardenThip, (wherein he had the Unhappinefs to be often vext with the turbulent Fellows of that College) died, deferving the Commendation of all Learned and IngeniousScholars, and to be remembred for his remarkable Abilities.

After Dr. Dee came to England, as is before remembred, Correfpondence was fill maintained between him and Sir Edward Kelly, in Letters fent by Mr. Francis Garland and others (and fome Expectancy of Sir Edward's coming over (Dec. 23. 1589.) Mr.TbomasKelly his Brother putting the Doctor in hopes thereof likewife.) But at length Sir Edward was clapt up clofe Prifoner by the Emperor (for he had fo unwarily and openly managed the Secret, that it had given the Emperor occafion to carry a friet eye over all his Actions, out of a defire to he Sharer with him in his good Fortune) yet it feems the Emperor fet him at Liberty (Nov.4.1593.) and Dr. Dee had notice of it the 5 th of December after. And tho 'he began to grow into the Emperor's Favour, in hopes to be entertained into his'Service (for fo he certify'd Dr. Dee by Letters in Auguft 1595.) never. thelefs he was clapt up again into Prifon, and attempting to make his Efcape out of a high Window, by the tearing of his Sheets, which were ty'd together to let him down, he being a weighty Man, fell and broke his Leg, and thereof died. This is one Report of his Death. Others there are, but Dr. Dee mentions none at all, of the manner thereof, only this: Nov.25.1595. News that Sir E. K. was תain.

[^6]
Lectures and Difcourfes

0 F

EARTHOUAKES,

$$
\mathrm{A} N \mathrm{D}
$$

Subterraneous Eruptions

EXPLICATING

The Caufes of the Rugged and Uneven Face of the EARTH;

$$
A N D
$$

What Reafons may be given for the frequent finding of Shells and other Sea and Land. Petrified Subftances, fcattered over the whole Terreftrial Superficies.
Aaaa

THE Treatije our Autbor mentions in the beginning of this Difcourfe. I bave not bad the bappinefs to meet with among bis Papers; poflbly be might formerly bave read fome 'Difcour jes upon thefe Subjects, but if fo they are lost, as I am fatisfied fome otber valuable Papers are; if not, I know not well wout be means, except fome Hints, in bis Lectures of Ligbt, and at the end of bis Tract of Comets; Tho I am ratber of Opinion fome of the following Papers were wrote before that of Comets: But of this Matter I can affrminotbing pofitively. This. Difcourfe more particularly relates to the rugged and inequal appearance of the Earth's Surface, which be bere endeavours to folve by fucce (five Eartbquakes and Inimidations. I Sall not (were I abie) attempt to prepofefs the Reader, nor longer detain Bim from the Authors owom Difcour Ces ; only defire it may be obferved, that the following P apers were read at Several diftinct times to the Royal Society, and upon that Account not fo methodically digefted as they would bave been baid they been publijhed by bimfelf,
 shorlur orlt varobowitajl

$$
\operatorname{sis} \mathrm{A}
$$

A Dijcourse of Earthquakes.

Have formerly endeavour'd to explain feveral Obfervations I had made The Introdugia concerning the Figure, Form, Pofition, Diftance, Order, Motions on to the foland Operations of the Celeftial Bodies, both as to themfelves, and one lowing Di/with another, and likewife with refpect to the Body of the Earth on which foure account of we inhabit. But conceiving it may more nearly concern us to know more its Defign. particularly the Conftitution, Figure, Magnitude and Properties of the Body of the Earth itfelf, and of its feveral conftituent Parts, I have endeavour'd to collect fuch Obfervations and Natural Hiftories of others, as may ferve to give fome Light toward the making a compleat Difcovery of them, fo far as the Power, Faculties, Organs, and other helps that Nature has furnifh'd Màn with, may affift us in performing and perfecting thereof.
The Subject is large, as extending as far as the whole Bulk included within the utmof limits of the Atmofphere: And 'tis not lefs copious and repleat with variety, as containing all the feveral Parts and Subftances included within thofe Limits, namely, The aerial, watery and earthy Parts thereof, whether Superficial or Subterraneous, whether Expofed or Abfconded, whether Supraterraneal, Superterraneal, or Subterraneal, whether Elemental or Organical, Animate or Inanimate, and all the Species and Kinds of them, and all the conftituent Parts of them, and the Compofits conftituted of them; of which alfo there will fall under Confideration, the Artificial as well as the Natural Caufes and Powers effective of things; then their Generation, Production, Augmentation, Perfection, Vertue, Power, Activity, Operation, Effect; Confervation, Duration, Declination, Deftruction, Corruption, Transformation, and in one word, the motion or progreffion of Nature fenfibly expreft, or any other ways difcernable in each of thofe Species. Which Subject, if we confider as it is thus reprefented, doth look very like an Impolfibility to be undertaken even by the whole World, to be gone through within an Age, much lefs to be undertaken by any particular Society, or a fmall number of Men. The number of Natural Hiftories, Obfervati, ons, Experiments, Calculations, Comparifons, Deductions and Demonftrations neceflary thereunto, feeming to be incomprehenfive and numberlefs: And therefore a vain Attempt, and not to be thought of till after fome Ages paft in making Collections of Materials for fo great a Building, and the employing a valt number of Hands in making this Preparation; and thofe of feveral forts, fuch as Readers of Hiftory, Critick's, Rangers and Namefetters of Things, Obfervers and Watchers of feveral Appearances, and Progreffions of Natural Operations and Perfections, Collectors of curious Productions, Experimenters and Examiners of Things by feveral Means and feveral Methods and Inftruments, as by Fire, by Froft, by Menftruums, by Mixtures, by Digeftions, Putrefactions, Fermentations and Petrifactions, by Grindings, Brufings, Weighings and Meafuring, Preffing and Condenfing, Dilating and Expanding, Diffecting, Separating and Dividing, Sifting and Streining; by viewing with Glaffes and Microfcopes, Smelling, Tafting, Feeling, and various other ways of Torturing and Wracking of Natural Bodies, to find out the Truth or the real Effect as it is in its Conftitution or State of Being.

To thefe may be added Regifters or Compilers, fuch as fhall Record andExprefs in proper Terms thefe Collections; add to thefe Examiners and Rangers of Things, \cdots fuch as fhall diftinguifh and marfhal them into proper Claffes, and denote their Excellencies or Gradations of differing Kinds, their Perfections or Defects, what are Compleat, and what Defective, and to be repeated, and the like.

So that we fee the Subject of this Enquiry is very copious and large, and will afford Work enough for every Well-willer to employ his Head and Hands, to contribute towards the providing Materials for fo large a Fabrick and Strukture, as the great quantity of Materials to be collected do feem to denote. However, 'tis poffible that a much lefs number may ferve the turn, if fitly qualified and done with Method and Defign, and it may be much better and eafier.

When this mighty Collection is made, what will be the ufe of fo great a Pile? Where will be found the Architect that fhall contrive and raife the Superftructure that is to be made of them, that fhall fit every one for its proper ufe? Till which be found, they will indeed be but a heap of Confufion. Who fhall find out the Experiments, the Obfervations, and other Remarks, fit for this or that Theory? One Stone is ton thick, or too thin, too broad; or too narrow, not of a due colour, or hardnefs, or grain, to fuit with the Defign, or with fome other that are duly fcapled for the purpofe: This Piece of Timber is not of a right Kind; not of a fufficient Drinefs and Seafoning; not of a due length and bignefs, but wants its Scantlings, or is of an ill Shape for fuch a purpofe, or was not fell'd in a due time: 'Tis Sap-rotten, or Wind-fhaken, or rotten at Heart, or too frow, and the like, for the purpore for which 'tis wanted.

The Use of predefign'd Theories, and Modules of $E n$ quiry.

I mention this, to hint only by the by, that there may be ufe of Method in the collecting of Materials, as well as in the ufe of them, and to fhew that there may be made a Provifion too great, as well as too little, that there ought to be fome End and Aim, fome pre-defign'd Module and Theory, fome Purpofe in oưr Experiments, and more particular obferving of fuch Circumftances as are proper for that Defign. And though this Honourable Society have hitherto feem'd to avoid and prohibit pre-conceived Theories and Deductions from particular, and feemingly accidental Experiments ; yet I humbly conceive, that fuch, if knowingly and judicioufly made, are Matters of the greateft Importance, as giving a Characteriftick of the Aim, Ufe, and Significancy thereof; and without which, many, and poffibly the moft confiderable Particulars, are paffed over without Regard and Obfervation. The moft part of Mankind are taken with the Prettinefs or .the Strangenefs of the Phænomena, and generally neglect the common and the moft obvious; whereas in truth, for the moft part, they are the moft confiderable. And the greateft part of the Productions of Nature are to be feen cvery where, and by every one, though, for the moft part, not heeded or regarded, becaufe they are fo common. I could wifh therefore that the Information of Experiments might be more refpected, than either the Novelty, the Surprizingnefs, the Pomp, and Appearances of them.

The obvioufnefs and eafinefs of knowing many Things in Nature, has been the Caufe of their being'neglected, even by the more diligent and curious; which neverthelefs, if well examined, do very often contain Informations of the greateft value. It has been generally noted by common, as well as inquifitive, Perfons, that divers Stones have been found, formed into the Shapes of Fifhes, Shells, Fruits, Leaves, Wood, Barks, and other VegetaBle and Animal Subftances: We commonly know fome of them exactly refembling the Shape of Things we commonly find (as the Chymifts fpeak) in the Vegetable or Animal Kingdom; others of them indeed bearing fome kind of Similitude, and agreeing in many Circumftances, but yet not exactly figured like any other thing in Nature; and yet of fo curious a Shape, that they eafily raife both the Attention and Wonder, even of thofe that.are lefs inquifitive. Of thefe beautifully fhaped Bodies I have obferved two forts: Firft, fome more properly natural, fuch as have their Figures peculiar to their Subftances: Others more improperly fo, that is, fuch as feem to receive their Shape from an external and accidental Mould.

Of the firt fort, are all thofe curioully figured Bodies of Salts, Talks; Spars, Cryftals, Diamonds, Rubies, Amethyfts, Ores, and divers other Mineral Subitances, wherewith the World is adorned and enriched; which I at prefent omit to defribe, as referring them for a Second Part, they feeming.to be, as it were, the Elemental Figures, or the $A B C$ of Nature's working,

A Dijcourfe of Earthquakes.

working, the Reafon of whofe curious Geometrical Forms (as I may fo call them) is very eafily explicable Mechanically : And fhall proceed to the fecond fort of Bodies.
3. Of thefe are two kinds; either firft the very Subftances themfelves conver- of Petrif in ted into Stone, fuch are Bones, Teeth, Shells, Fruit, Wood, Mors', Mufh' ©ions. rooms, and divers Vegetable and Animal Subitances: Or fecondly, fuch other Mineral or Earthy Subftances, as Clays, Sands, Earths, Flinity Juices, coc. which have filled up, and been moulded in divers other Bodies, as Shells, Bones, Fruits, ©ic. but efpecially Shells. Thefe, according to the Reprefentations they bear of other Bodies, have received divers Names; of which Aldrovandus, Baubinus, Imperatus, Wormius, and others, reckon a great number: Such are, Cornu ammonis, fine armatura, Helicoides, Hoplites, multiplex obf cure lucens, murlcatum, criftatum, criftatum pertufum, ftriatum Campoides, Campoides Echinatum, Caprinum cornu, Cornu Arietinum, Sceleton: Sorpentis. Conghites bivalvis, ftriatus, Mytulus biforis, cinerius rugofus, Coclites, Chama lapidea, Levis, rugata, Oftracites, Pectenites, Bucardia, Strombites, Belemnite, Cornu foffle, Glofopetre, Aftroites, Entrochos, Colonetta, Lapis judaicuis, Fungites, fungus faxeus, Lapis Indicus, Brontias, Brontias, favoogineus, Owibria, Ovum angrinum, Lignum petrifactum. Of there I fhall defribe fome few, becaufe every one has not the Opportunity of feeing and examining them.

AS to the fioured Stonesior Petrifactions bere, mention'd, I found only ione Sheet of the Defariptions of feveral of the Cornu-Ammonis fort, with. Jome of the Echini, or Helmet-ftones, which Defcriptions follon: As for the Defogis of them; they mere, I know not by what means, not to be found amonggt bis: Manufcripts; but by the Favoulr of Dr. Sloane, into who Te Hands they bappily felt, I procured them for the Gravers to whom the World and my Jelf are obliged for this, as well as for other more valuable Communications. The Five firft Tables mere defign'd by Dr. Hook himfelf; and tho? he has not perfected the Deforiptions of them all, yet I have procured them all to be graved, fupplying in - ome meafure my Self thofe Figures which were left undefcribed by bim. The Tivo laft I drem my felf from fome figured Stones I happen'd to meet with, not far from Brittol, Some Years fince; about which time I gave the Defigns to Dr. Hook, together with a Particular Explication of the Figures; but by Misfortune did not keep an exact Copy of what I then gave him, which, amongt others of his Papers, is loft. I have endeavoured to fupply, this, as well as I now can, as the Reader may fee by a fhort Account of a Letter I then Sent him, with thefe Draughts; which I bave for far prefumed upon the Readers Acceptance, as to infert after the Explications of the. Author's omn Draughts.
R. W.

I have deligned is feveral forts of Snail rather than Snake-ftones, calld by fome Authors Cormua Ammonis, or Sceleta Serpentum, all of them, both of different Subftances and various Shapes; but yet all of them agreeing in thefe Proprieties, that they were made of a Tapering or Pyramidal Body, coil'd up together, fo as that the Tip or Point of it was in the Center, and the Bafe outmoft; next that, in the coiling up, the Axis of this Pyramidal Body kept exactly in the fame Plane. 3. That all of them were ridged or furrow'd with Rings, Furrows,' or Proturberances and Depreffions, which refpected the Center of the Spiral, for the moft part, but were moulded and rang'd. each of them different ways, all of them very regular, and exceedingly ornamental. 4. That in the coiling the leffer and inner Parts funk, as it were, always into the infide of the greater encompaffing Part. 5. That all of them had Diaphragms, or Reparating Valves, whereby the Parts might oft-times be eafily feparated. 6 . That the Fimbria, or Edges of thefe Diaphragms, were in moft of thefe Stones very vifible; in others of them, where they were fomewhat more obfcure, they might be made apparent, by fcraping or rubbing away the outlides of them. 7. That thefe Fimbria or Edges appear'd on the Surface, like the Out-lines of fome curious Foliage, a Specimen of fome of which I have given in the 3 d and 10 th Figures. This,
inon Examination of them, I found to proceed from the Fulnefs of the Edges of the Diaphragms.whereby the Edges were waved or plaited fomewhat in the manner of a Ruff. 8. That moft of them were covered with a very curioufly polifh'd, as well as curioully carv'd Surface, fome of them thining like burnifh'd Brafs, as thofe of the ift and 2d Figures; others like Brafs, tarnifh'd black, but rubb'd finooth; others of them like tranfparent Horn, as the i2th Figure; others like Coperas-ftones; others Jike a coarfer fort of white Marble; others like black Marble. 9. That from thefe polifht Surfaces one might oftimes eafily pick off a Subftance exactly refembling the plaited thining Subftances of a Shell; and this did very vifibly in many of them cover the internal ftony. Body, with a Coat two or thrce times as thick as a Snail's Shell. 10. That the biggeft end of there Spiral Bodies was always imperfect without any determinate Figure. 11 . That many of thefe Spiral Bodies feem'd, as if they had been broken and fhatter'd, and had grown together again in an irregular Pofture. 12. That many of them were compounded of feveral Subitances, the Spaces between the Diaphragms being fometimes filld with one kind of Subftance, fometimes with another, and fometimes they were found empty, only all the fides of the Diaphragm were cover'd with a kind of Tooth-Sparr. 13. There were many of thefe which were at firf included in Stones', out of which they might eafily be feparated, fo as to leave a perfect Impreffion like themfelves; but in moft of thofe incompaffing Bodies, the Impreffion was bigger than the imprefling Body, by the thicknefs of a thin Shell, which feemed to have been heretofore the Caufe of both Impreffions, but was worn away and decay'd by the Injury of time; they differ'd one from another chiefly in thefe Particulars: Firtt, That the Bafes or Planes fuppofed to cut thefe fpiralld Bodies at right Angles, with the Circumference and Plane thro' the Axis, were of different Figures; as that of the firf. Figure was much like that of a common Nautilus, being fomewhat like the Figure of a Turkifh Crefcent; but the Diaphragms were not fmooth and plain like thofe of a Nautilus, but full and ruffed like the Leaves of Sea-wrack, and feveral other luxuriant Vegetables, and that (which appear'd by the Foliage vifible on the Surface) the Diaphragms were much thicker and clofer together : This on the outfide was like polifh'd Silver, but the infide of a Subftance not much unlike blue Slate, but clofer, harder, and heavier. That of the 3 d -Figure was of a Figure, as if the former had been prefs'd quite flat; fo that inftead of the round Back in the 2d Figure, this has a Back terminated with a fharp Edge, as in the 4th Figure, 'tis all over almoft cover'd with a fhining Subftance not unlike a Subftance we call Alchimy, or whited Brafs; on this the Foliage of the Edges of the Diaphragms is very vifible, one of which I have defcribed in its pofture, as at a, and 3 others of them, that the Curiofity of them might be the more vifible, I have defcribed by the help of a Lens in the sth Figure. Somewhat like to this is that of the 6th Figure ; but that inftead of an edged Back, this is hollowed or furrowed not unlike the Wheel of a Pully, with two protuberant Ridges on either fide, as' is vifible in the 7 th Figure; the Surface is undulated like the former two, but fomewhat more manifeftly, the Fafhion of which Waves afe not unlike the Ribs of wicker Screens, 2, 3, 4, and fometimes more of them uniting at laft together into one more confpicuous Rib which croffes the Center; the other fide of this was broken fo that the Diaphragms and feveral hollow Cavities between them were to be feen, 'twas of a Subftance fomewhat like the Ruft of Iron. That of Figure the 8th was of a Subftance fomewhat like Portland-ftone, but clofer and harder. The tranfverfe Section of it was much like the former, as may be feen in the gth Figure: The Back of it was gutter'd and knobbed very like' a Fapan Nautilus, one of which I have in Mr: Colwall's Gift: The Ribs alfo, or Furrows of the Side were not much unlike, only they were fomewhat finer wrought with Knobs or Buttons, as may be perceived by the Figure. The Knobs and Surface of the Ioth was fomewhat like this, but that they were a little more grofs, as is vifible by the Figure; this was of the Colour of a Bone that has been long buried in the Ground, and of a ftony Subftance almoft as hard as a Flint; the outward Shell that feems to have cover'd it, was quite worn away, and all the Partitions

or Edges of the Diaphragms were moft confpicuous, the tranfverfe Section you have in the inth Figure. The Suail-ftone defcrib'd by the 12 th Figure was of pellucid Pebble, and look'd almoft like Horn; that this had Diaphragms alfo, is evident by the end of it, which is bounded by one; as may be feen by the 13 th Figure, which fhews alfo the traniferfe Section of it. It had a Spine or Quill a, coilcd about the back of it, the biggeft part of which was broken off, and only the hollow part of the Quill' of the Shell was left, as at b in the 12 th: But at c the Quill was intire, and the Subftance that filld the hollow of it, was tranfparent Pebble like the reft of the Stone; the incompaffing Shell was much worn away, only in fome Parts of it 'twas vifible enough.

The fmall one in the 14th Figure was much of the fame Make, the Shell that covered it was black like the other, its End was alfo terminated by a Diaphragm, as is vifible in the 15th Figure, where the tranfverfe Section is alfo defcrib'd; but the Subftance that filld it was quite differing, being a kind of Pyrites or Coperas-ftone. The fmall one of the i6th Figure was of a Shape participating of the ift and 3d; the tranfverfe Section of it fhewing it-to be thinner than the ift, but thicker than the 3 d , was terminated by a Diaphragm very finely leav'd, and with viewing it very intenfely, 1 could perceive the Sutures very finely wrought, much like thofe of the 5 th Figure : It was fill'd with a black, ftony Subftance, and on the other Side of it (being a little broken) feveral of the Cavities between the Diaphragms appear'd empty. The little Part of one defrib'd in the I 8th Figure, was compounded as it were of the 8th and 14th, as may be feen by the tranfverfe Section of it. Fig. 19. This, as the reft, had vifible Diaphragms alfo, 'twas of a Subftance like rufty Iron: Thefe preceding were all of them of a Figure that taper'd very much, fo as the Spiral from a very large Circumference, was prefently contracted into a little one; but the following were of a Figure more protracted, and made many more Revolutions before they ended. Of this kind the 20th was the plaineft, refembling that of the firt of the other kind; 'twas ribb'd not much unlike it, and the tranfverfe Section was much the fame with that of the 2 d Figure, as is vifible in the 21 ft Figure.

The 22d was fomewhat like the 12th, but of a fmaller Spiral; it was terminated with a Diaphragm, and had a fmall Spine or Quill which was laid round the Back of it, as may be feen by the 23 d Figure; the Shell of it was yet fticking on it, and it look'd very like burnifht Brafs; it feem'd to be a very hard Stone. The 24th fomewhat refembled the 14 th, the Surface of it may be perceiv'd by the 24 th, and the tranfverfe Section by the 25 th Figure; 'twas a Pyrites, and one part of it was diffolv'd into Salt by the Air: I had two or three others of the fame flape, one of a kind of grey Marble, another of a Flint, a third of an iron Stone, which I have defcrib'd in the 26 th Figure; the Stone incompaffing it, and the filling of the Shell it felf being both of the fame Subftance: One of thefe was bruifed in the hardning, fo that the Cracks of the Shell were very vifible; the like Accident was common to many of the reft, and the Shell encompaffing was of a diftinct Subftance from the reft, and was eafie to be pick'd off. But the prettieft of all the reft was the 27 th, where the feveral Coats of the Shell and Diaphragms were very diftinct, tho' they feem'd to be all petrify'd and turn'd to another Subftance. It had been very much broken before the hardning, and all the Cracks of the Shell were very diftinet; and which feem'd a little ftrange, fome Parts of it were thruft outward, as if it had been fill'd with Water; and, by Congelation, the Ice had fwell'd and broken out the fides of it, which probably might be the Caufe; for all between the Diaphragms it was fill'd with a tranfparent Spar or Caulk, fuch as is ufually dug out of Lead Mines, a Subftance between Cryftal and Talk; the Original of which Subftance feems to me not unlikely to be congeal'd petrifying Water; the Voluta of it was curioufly ribb'd or moulded, and the Foliage or Edges of the Diaphragms were very'Ornamental: It had a Spine or Quill went round the back of it, as feveral of the former; the tranfierfe section you have in the 28 th Figure.

The Surface of the 29th was of a peculiar kind of carving, as is vifible by the Figure; it was of a reddifh Flint, the outfide very fmooth and polifh'd, the fide not vifible was not fo perfect, being broken in feveral places, and difcovering the Diaphragms, and that fome of the interiacent Spaces were empty: The greater End of this looking very irregular, I broke with a fmart ftroke of a Hammer a little picce off from it, and difcover'd two fmall Snakes-ftones within it, which probably had been tumbled into the Mouth of it before it was concreted; for they were of the very fame Subftance, but of a differing Figure from any I have yet defcrib'd, being ribb'd like the 24 th, but only they were bigger and farther diftane, and they went quite round the back. This laft, and another like the 24 th were taken up near Keingham, about. 4 or 5 Miles from Brifol, and fent by Dr. Beal, whence alfo I fuppofe feveral of the other may have come.

Had they not been much too large, I would have defcrib'd alfo one or two of thofe Cornua Ammonis, prefented to the Repofitory by the Right Honourable Henry Howard of Norfolk, which are in Diameter, about $2 \cdot \frac{1}{2}$ Foot, and the concave Impreffion of one of a greater Magnitude, which I found in a Piece of Portland-ftone. Thefe large Stones are between 300 and 400 Weight, and of a Stone in all Particulars much like Portland-ftone, whence I fuppofe they were at firt fetch'd: They are all fhap'd much like that of the 20 th Figure; but the coiled Cone is not altogether fo round, nor fo flender, or of fo acute an Angle, but the Undulations of the Surfaces are alike, and fo are allo the Diaphragms. I have been alfo told by Perfons of very good Credit, that they have feen in Darbybhire and Yorkfbire Snail-ftones of a much more prodigious bigners, 3 or 4 times as big as thefe; which I have not had an Opportunity to fend to enquire more curioufly into, though I have much defired; and fo much the rather, becaufe it feems much more to excel in bignefs all other Shell-fifhes we know, than the Giants (Stories tells us of) did exceed the ordinary Size of, Men now living:

I have, to parallel thefe Snake-ftones added in Table II. a Defcriptions of three feveral forts of Nautil-fhells, becaufe 1 had no greater variety by me, though I have feen many other kinds. The itt Figure reprefents a large Nautilus-fhell cut per axin, and manifefts the manner how the Diaphragms are placed in that kind of Shell in the concave, Part, thereof; and the 2d Figure fhews how they are placed up the convex fide; this being a fmall Piece of the middle of a Nautilus-fhell, and the wreathed Lines; fhew where the Diaphragms join'd upon the back thercof. The 3 d Figure reprefents a Fapan Nautilus-fhell, crenated on the fides, and knobbed on the back, much in the manner as feveral of the Snakes-ftones are. The 4th Figure reprefents a finall Piece of a peculiar kind of Nautilus, whore conical Body is divided by finall Diaphragms under every of the black circuling Lines, and is coild fo as its roundnefs is kept, and the Parts do not touch one another. The Name of it I know not, being no where defcrib'd by any Author.

In Table III. I have defcribed fome forts of Helmet-ftones, of which I have a very great Variety, and it would have been tedious to have added them all in this Place. I have likewife defcribed three forts of Button-ftones, all, and every of which feem to have, been nothing elfe but the filling up of feveral forts of Echini-fhells, of which the European Coafts afford a great Variety. The 1ft, 2d, and 3 d Figures, reprefent three feveral forts of But-ton-ftones, all of them of very hard Flints, two of them, namely the two lefs, join'd to, or fliap'd as'twere out of irregular Pieces of Flint of the fame Subftance. They have all of them this in common with all the other forts of Helmet-ftones, that they have two Parts, which feem to have been the fillings up of tivo:Holes or Vents in the Shell, and they are divided into five Parts, though every of them of diftinct Shapes, as may be feen by the Figures. That of the ift Figure alfo hath this Property, in common with the finer fort of Helmet-ftones, that it exhibits the Sutures or Junctures of the Shell, as are more plainly to be feen in the 4 th, 5 th, and σ th Figures. The 4th Figure reprefents a Helmet-ftone, look'd down upon almolt di-

A Dijcourje of Earthquakes.

rectly exhibiting the Impreffions of the feveral Holes, Sutures, and Cracks that appear upon the top of one of thefe Stones. The 5 th and oth Figures reprefent another Helmet-ftone of the fame kind with the former, but lefs look'd upon againft the bottom and fide, exhibiting the Impreffions of the feveral Holes, Sutures, and Cracks, that were in the imprinting Shell from which thefe Stones receiv'd their Shape: Thefe were both of a kind of grey Flint. The 7 th Figure reprefents the bottom of another fort of Helmetftone; where the Vents "a and b are placed in another manner, than they were in the ift, $2 \mathrm{~d}, 3 \mathrm{~d}$, or 5 th Figures. The 8th and 9 th Figures reprefent the bottom and top of another fort of Helmet-ftonc, which feems to be the filling up of a kind of 'Echini-fhell, very like to thofe found in Devonflire and Cornmal, one of which I have delineated in the 1oth Figure: This laft kind was of Chalk. I have feveral other forts, which I have not now time to delineate, fome of tranfparent Pëbbles, fonie of Marble, fome of a Stone as hard as Portland, fome of black, red, grey, and other Flints, fome of Co-peras-ftone, fome of other kinds of Stone, none of Spar. I would to this have added the Defcription of a great Variety of Echini-fhells, divers of which I have by me in the Repofitory of the Royal Society, and others that I have met with elfewhere, but that I fhall do it ellewhere: They are indeed almoft infinite, but all concur in thefe Properties which all-Helmet-ftones likewife have. Firft, that they are diftinguifh'd into five Parts, by Sutures, Ribs, and Furrows. Secondly, that they have two Vent-holes: They have divers of them alfo little Edges, being the Impreffions of the Sutures, and divers little rows of Pins, being the Impreffions of the fmall Holes; and any one that will diligently and impartially examine both the Stones and the Shells, and compare the one with the other, will, I can affure him, find greater reafon to perfwade him of the Truth of my Pofition, than any I have yet urged, or can well produce in Words; no Pefwafions being more prevalent than thofe which thefe dumb Witneffes do infinuate.

T A B LE IV.

THE Figures of this and the next Table mere left undefcribed by Dr. Hooke, which Defect I bave endeavoured to Jupply in fome meafure. Fio ift and 2d reprefent a fort of Shell, of which I think we bave no Species now defcribed; they are very thick and beavy: Of this fort I found one upon the Sand, on the fide *'Tis figured of the Severn about 8 or 10 Miles from Gloucenter; it was a perfect Stone. by Dr. Plott, Fio. the 3d, another unufual fhaped Stone exceeding thick and heavy. I know in his Natunot what the $4^{\text {th }}$ is, it Shems fomething like the Spine of fome Fihb. Of, the $\mathrm{s}^{\text {th }}$ ral Hiffory Figure'I have feen feveral, and is well reprefented; they call them in that Country Screw-ftones. * The reft of the Figures in this Table fiem Several Sorts of Sharksof oxford fhire,
Tab. 4. Fig. 1. teeth, except the 18 th and 19 th, which feem to be the Shells of fome Fijh. The thefe have roth Figure Shews the Make of the infide of one of thofe lono Teeth, if they are fo, by former of which I think not many nom doubt, in this the manner of the Fibres radiating Writers been from the Center, is very conspicuous. I At the Bafis of the 8 th Figure, is obfervable thought L_{L-} the very great Cavity, as likemife the largenefs of it. The I 4 th Figure reprefents pides fui geneone of thi largeft Gloflopetre that has been feen. Upon the 16 th and 1∇ th Figure Belemnites. I Dr. Hooke makes this Remark, that there are 220 of them in the Fijhes Mouth. fhall wave What the 15 th is I know not, except it be a petrify'd Grinder bedded in Stone. the Difpute.

TABLE. V.

FIGURE the ift, the petrified Grinder of fome large Animal, poffibly of a Whale or Elephant. Dr. Grew, in bis Mufeum, fays of a Sea-Animal. Fig. 2. a petrify'd Crab, very much refembling the' Fijh it Self.
Figure the $3^{d}, 4^{t h}, 5$ th, 6 th, 7 th, 8 th, and 9 th, I take to be Pieces of petrify'd Wood, tho I know they bave been otherwife effeem'd by Jome Writers. Whether the $14^{\text {th }}$ may not be the fame, I will not determine. The 10 th, 11 th, 12 th, and 13 th, I take to be fome forts of petrify'd 'Fruits, or poflibly fome of them Seed-veffels. The 15th and Ioth Figures are the Aftroites or Star-ffones, of which one is given

Separate in the 16th. Thefe in our Author's Opinion mere Pieces broken off from the numerous Legs of that fort of Star-fifh, of mbich one was many Years fince Jent from New England, if I miffake not, and is nom in the Society's Repofitory: It is defcribed in the Philofophical Tranfactions, publifh'd by Mr. Oldenburg by the Name Philof.Tranf. of Pifcis Echino-ftellaris Vifci formis. The 17 th Figure I take for a fort of N. So.p.1153. Fungus petrify'd.
 mongIt the Papers, if they mere ever drawn up, which. I fomembat queftion; for the Fryures were not number'd: For had he done it bimfelf, be would bave made fetempt; nor confiderable Remarks; which if I could, is not 0 o proper for me to atwere found, or the like. However I judged it not convenient they fhould be loft and therefore ordered them to be graved, and have ventured this imperfect Defoription. What follows next, is the Abfract of a Letter I Sent him from Briftol, 1687.

$S I R$,

R.W.
Erifol, Allg.

IN anfwer to fome of your Enquiries, as to the Cornua Ammonis, and other Shell-like Stones found about Keinham, and other Places, I fhall give you this fhort Information of my Difcoveries, and prefent you with the Draughts of fome I happen'd to meet with there, and in other Places not very far diftant, that is, in Part of Gloucefter and Somer \int etfluire.
The Cornua Ammonis, near Keingham, lie moft of them upon a little Hill, or rifing Ground, above Keinfham-Bridge; the Place, as I take it, is about is Foot above the River: The River there runs half round the Foot of the Hill, where they lye very thick almoft to touch each other, and are all of the large fort bedded in an hard Rock or Stone; fome alfo I found near a Mile from thence in the Stone-walls of their Fields, and on the way in the Lanes; and at Stowey, four or five Miles from Keinham, I faw fome Snake-ftones, Oyfter, and Cockle-fhells petrified and bedded in hard Stone, where is alfo a petrifying Spring incruftating the Mofs and Grafs, and all the wooden Troughs, by which it is conveyed with a ftony Subftance. Where they are not found faftned to a Rock, 1 found them encompaffed in a pretty large irregular Mafs of Stone, not fandy, but rather like a whitifh Clay harden'd, and thefe ftony Maffes bedded in a loamy kind of Earth; in which foft Earth are alfo found Star-ftones, and a fort of petrified Cockle-fhells, fuch as Fig. 7. Tab. VI. I found none of the Snake-ftones to have above 6. Turns, except one Mr. Beaiumont fhewed me of feven, and another amongit Mr. Cole's Rareties. But that which I efteemed the greatef Curiofity, was a large Store of the true Shape and Figure of the common Nautilus, or. Mother of Pearl-fhell, which tho' but a part of the whole Shell, weighs about 30 pound.: This I found in one of the dry Walls, near Keinh ham, and not far from it another Piece of the fame; thefe are figured in the VIIth Table, Fig. 1, 2, 3, 4; and in thefe not only the Diaphragms are very vifible, but the Holes alfo in the middle of them, by which the Gut or String paffes from one to another, in all refpects anfwering to that of the Nautilus-Chell; which, I think, will evince this at leaft to be a petrify'd Shell, tho' much larger than any of that kind that have been yet mention'd. Going down from Mendip-hills to okey-fole, I found a fmall Mufcle-fhell petrify'd, on this the Shell was yet difcoverable in fome Places; this is figured, Tab. VI. Fig. 1.
On the Face of the Rocks that are on the fides of the Avon, not far from St. Vincent's Rock, I found feveral wood-like Pieces of Stone ftanding out a little from the Rock it felt; fome of which I have broke off, and have reprefented them in the Figures; Tab. VII. Fig. 5,$6 ; 7$, and 8 , and fome fuch like Bits of Wood in the Earth between the Layers of Stone unpetrify'd. . But I thall at prefent detain you no longer, but for a more exact Information refer to the Figures themfelves; which I can affure you are truly defign'd, and are all Stones or Petrifactions, except the 6 th Figure.

Tab:VII . page 287.

Tab. VI. Fig. r. reprefents two Views of a fort of Mufcle-fhell found near Okey-hole.

Fig. 2. a fort of Cockle, on this likewife part of the Shell was vifible.
Fig. 3. a Piece of a Belemnites, thefe are of the true bignefs.
Fig. 4. a large Cornu-Ammonis, about 18 Inches Diameter; there are much larger to above 2 Foot, but this was one of the moft perfect and neat I could find ; on this the curious Foliage (as I may call it) of the Diaphragms was very vifible, as is reprefented in the Figure, and near the Center feveral fmall Shells petrify'd : This I had from Keinhans.

Fig. 5. I know not what to make of, except it be one joint of the Spine of. the Back of fome Fifh; fomething like it I have feen in the Backs of Salmons.

Fig. 6. a fort of Nautilus-fhell not petrify'd, being ftill vifibly a Shell broken, fqueezed and flatted to the thicknefs of an Half-crown; the feveral Fragments were each roundifh, and ftuck together with a kind of blewifh Clay. This was given me by Mr. Cole, who told me there had been feveral of them found amongft the Rocks and. Stones in Quarries.

Fig. 7. another fort of Mufcle or Cockle; thefe are frequently found a bout Briftol, particularly on the top of St. Michael's Hill on the Road, and near the Gallows bedded in the Earth, not Stone, but are themfelves an hard Stone, and rery thick and ftiong.

Fig. 8. a Piece of a broken Cornu-Ammonis, in which feveral of the Diaphragms are very vifible, the hollows not being fill'd up, but fhot on the fides with a fort of flinty, hard, and tranfparent Spar.

Fig. 9. a fmall Cornu-Ammonis of but three Turns, yet feems perfect and unbroken; I know not whether it has any Diaphragms.

T A B L E VII.

F$I G$. I. Thews the large Stone of the Common Nautilus-fhape, in which $d d d d$ fhews the Diaphragms to be feen on the outfide of the Stone; as far as f is the larger Piece, which weigh'd near 30 Pound; from f to g is a leffer Piece, in which alfo the Diaphragms are vifible on the outfide $d d d$, and likewife on the infide, where the Piece was broken crofs, fome of the Diaphragms appear; as at $a a a, e e$, fhews part of the Shell ftill fticking to the outfide: $i i_{i} i^{\circ}$ is a fmall Piece of the Center of the Stone, being only as much as makes 3 Diaphragms; the prick' \dot{d} Lines b and c fhew where the Stone fhould have been to have made it perfect: This is drawn not a quarter fo large as the Stone it felf.

Fig. 2. another Piece of the fame fort found at another Place in $d d d$; are the Diaphragms, e a part of the Shell remaining: Thefe fhelly Parts are of a different Subftance from the reft.

Fig. 3. a Piece of the fame Stone near the Center, with the leffer part c; there have at a and c a protuberant part, being the hole of the Diaphragm.

Fig. 4. a Piece taken off from the former, in which at a and c are two fmall Cavities, anfwering the Protuberances a and c in the third Figure; e the edge of the thin Shell which covers all the part from e to a.

Fig. $5,6,7,8$, Pieces of Stone refembling Wood petrify'd; of which the 6th is of feveral fmall Bits fticking to the hard Stone; this' broke off from the Rock; as alfo the 7 th, wherein the crofs Lines thew the ends of the long Fibres cut aflope; this exactly refembled a fmall Stick cut flanting. In the middles of the 5 th and 7 th was a Cavity in the place of the Pith. The middle of the 8th was filled with a ftony Concretion very hard, as were all thefe Pieces, but fomething different from the reft of the Stone:

> rours, R. W:

There, and the like Shapes, becaufe many of them are curious, have fo far wrought on fome Men, that they have endeavoured to give us an Explication of the manner of their Formation, in doing of which they have fo far rambled from the true and genuine Caufe of them, that they have left the Matter much more difficult than they found it. 'Amongft the reft, Gaffarel, a

French Writer, feems not the leaft miftaken, who has transferr'd them over to the Confirmation, as he thinks, of his Aftrological and Magical Fancy; and thinks that as they were produced from fome extraordinary Celeftial Influence, and that the Afpects and Pofitions of the fix'd Stars and Planets conduc'd to their Generation, fo that they alfo have in them a fecret Vertue whereby they do at a diftance work Miracles on things of the like Shape. But thefe, as fantaftical and groundlefs, I fhall not fpend time on at prefent to refute, nor on the Conjectures and Hypothefes of divers others; which though perhaps fomewhat more tolerable than that I laft recited, yet moft of them have recourfe to fome vegetative or plaftick Vertue inherent in the Parts of the Earth where they were made, or in the very parcels of which they confift, which, to me, feems not at all confonant to the other workings of Nature ; for thofe more curioully carved and beautiful Forms are ufually beftow'd on fome vegetable or animal Body. But my Bufinefs 'at prefent fhall not be fo much to confute others Conjectures, as to make probable fome of my own; which tho' at the firft hearing they may feem fomewhat paradoxical, yet if the Reafons that have induced me thereunto be well confider'd and weigh'd, I hope at leaft they may feem poffible, if not more than a little probable.

The particular Productions of this kind that I have taken notice of my

Enumeration of the Phenomena. felf in my own Enquiries, and which I find difperfed up and down in the Writing of others, may be reduced under fome one or other of thefe General Heads or Própofitions.

Firft, That there are found in moft Countries of the Earth, and even in fuch where it is fomewhat difficult to imagine (by reafon of their vaft diftance from the Sea or Waters how they fhould come there) great quantities of Bodies refembling both in Siubftance and Shape the Shells of divers forts of Shell-fifhes; and many of them fo exactly, that any one that knew not whence they came, would without the leaft frruple firmly believe them to be the Shells of fuch Fifhes: But being found in Places fo unlikely to have produced them, -and not conceiving how elfe they fhould come there, they are generally believed to be real Stones form'd into thefe Shapes, either by fome plaftick Vertue inherent in thofe Parts of the Earth, which is extravagant enough, or elfe by fome Celeftial Influence or Afpect of the Planets operating at a diftance upon the yielding Matter of the Parts of the Earth, which is much more extravagant. Of this kind are all thofe feveral forts of Oyfterfhells, Cockle-fhells, Mufcle-fhells, Periwinkle-fhells, and the like, which are found in England, France, Spain, Italy, Germany, Norway, Rufia, Afia and Africa, and divers other Places; of which I have very good Teftimonies from Authors of good Credit.
2. Secondly, That there often have been, and are ftill daily fonnd in other Parts of the Earth buried below the prefent Surface thereof divers forts of Bodies, befides fuch as I newly imention'd, refembling both in Shape, Subftance, and other Proprieties, the Parts of Vegetables, having the perfect Rind or Bark, Pith, Pores, Roots, Branches, Gums, and other conftituent Parts of Wood, though in another pofture, lying for the moft part Horizontal, and fometimes inverted, and much differing from that of the like Vegetables when growing, and wanting alfo, for the moft part, the Leaves, fmaller Roots and Branches, the Flower and Fruit, and the like fmaller Parts, which are common to Trees of that kind; of which fort is the Lignum Foffile, which is found in divers Parts of England, Scotland, Ireland, and divers Parts of Italy, Germany, the Lon Countries, and indeed almoft in every Country of the World.

Thirdly, That there are often found in divers other Parts of the Earth; Bodies refembling the whole Bodies of Fifhes, and other Animals' and Vegetables, or the Parts of them, which are of a much lefs permanent Nature than the Shells abovemention'd, fuch as Fruits, Leaves, Barks, Woods, Roots, Muhrooms, Bones;-Hoofs, Claws, Horns, Teeth, Ơes. but in all other Pro-

A Difcourfe of Earthquakes.

prieties of their Subftance, fave their Shape, are perfect Stones, Clays, or Earths, and feem to have nothing at all of Figure in the inward Parts of them. Of this kind are thofe, commonly call'd Thunder-bolts, Helmetfones, Serpentine-ftones, or Snake-ftones, Rams-horns, Brain-ftones, Starftones, Screw-ftones, Wheel-ftones, and the like.

Fourthly, That the Parts of the Earth in which thefe kinds have been found, are fome of them fome hundred of Miles diftant from any Sea, as in feveral of the Hills of Hungary, the Mountain Taurus, the Alpes, ©̛c.

Fifthly, That divers of thofe Parts are many Scores, nay, fome many Hundreds of Fathoms above the Level of the Surface of the next adjoining Sea, there having been found of them on fome of the moft Inland, and on fome of the higheft Mountains in the World.

Sixthly, That divers other Parts where thefe Subftances have been found, are many Fathoms below the Level both of the Surface of the next adjoining Sea, and of the Surface of the Earth itfelf, they having been found buried in the bottoms of fome of the deepeft Mines and Wells, and inclofed in fome of the hardeft Rocks and tougheft Metals. Of this we have continual Inftances in the deapeft Lead and Tin-mines, and a particular Inftance in the Well dug in Amferdam, where at the Depth of 99 Foot was found a Layer of Seathells mixed with Sand of 4 Foot thicknefs; after the Diggers had paft through 7 Foot of Garden-mould, 9 Foot more of black Peat, 9 Foot more of foft Clay, 8 of Sand, 4 of Earth, 10 of Potters-clay, 4 more of Earth, 10 Foot more of Sand, upon which the Stakes or Piles of the Amferdam Houfes reft; then 2 Foot more of Potters-clay, and 4 of white Gravel, 5 of dry Earth, 1 of mix'd, 14 of Sand, 3 of a Sandy Clay, and 5 more of Potters-clay mix'd with Sand. Now below this Layer of Shells immediately joining to it, was a Bed of Potters-clay of no lefs than 102 Foot thick; but of this more hereafter.

Seventhly, That there are often found in the midft of the Bodies of very hard and clofe Stone, fuch as Marbles, Flints, Portland, and Purbeck-Itone, Gc. which lye upon, or very near to the Surface of the Earth, great quantities of thefe kind of figured Bodies or Shells, and that there are many of fuch Stones which feem to be made of nothing elfe.

Thefe Phænomena, as they have hitherto much puzled all Natural Hiftorians How the Diffiand Philofophers to give an Account of them, fo in truth are they in themfelves fo culty may be really wonderful, that 'tis not eafie without making multitudes of Obfervations, folved. and comparing them very diligently with the Hiftories and Experiments that have been already made, to fix upon a plaufible Solution of them. For as on the one fide, it feems very difficult to imagine that Nature formed all thefe curious Bodies for no other End, than only to play the Mimick in the Mineral Kingdom, and only to imitate what the had done for fome more noble End, and in a greater Perfection in the Vegetable and Animal King ${ }_{-}$ doms; and the ftricteft Survey that I have madde both of the Bodies themfelves, and of the Circumftances obvious enough about them, do not in the leaft hint any thing elfe; they being promifcuoufly found of any kind of Subftance, and having not the leaft appearance of any internal or fubftantial Form, but only of an external or figured Superficies. As, I fay, 'tis fomething harfh, to imagine that thefe thus qualified Bodies fhould, by an immediate plaftick Vertue, be thus Shaped by Nature contrary to her general Method of acting in all other Bodies; fo on the other fide, it may feem at firt hearing fomewhat difficult to conceive how all thofe Bodies, if they either be the real Shells or Bodies of Fifh, or other Animals or Vegetables, which they reprefent, or an Impreffion left on thofe Subftances from fuch Bodies, fhould be, in fuch great quantities, tranfported into Places fo unlikely to have received them from any help of Man, or from any other obvious Means.

A Difcourfe of Eartbquakes.

The former of thefe ways of folving thefe Phenomena, I confers I cannot for the Reafons I now mention'd, by any means affent unto; but. the latter, tho it has fome Difficulties alfo, feems to me not only poffible, but probable.
The greateft Objections that can be made againft it, are, Firft, by what means:thofe'Shells, Woods, and other fuch like Subfances (if they really are the Bodies' they reprefent) fhould be tranfported to, and be buried in the Places where they are found ? And,
Secondly', Why many of them thould be of Subiftances wholly differing from thofe of the Bodies they reprefent; there being fome of them which reprefent Shells of almoft all kinds of Subitances, Clay, Chalk, Marble, foft Stone, harder Stone, Marble, Flint, Marchafite;' Ore, and the like.
In anfwer to both which, and fome other of lefs Importance, which I fhall afterwards mention, give me leave to propound thefe following Propofitions, which I fhall endeavour to make probable. Of thefe in their Order.
I. My firt Propofition then is, That all, or the greateft part of thefe curioufly
 thefe Propofisions.
figured Bodies found up and down in divers Parts of the World, are either thofe Animal or Végetable. Subftances they reprefent converted into Stone, by having their Pores fill'd up with fome petrifying liquid Subfance, whereby their Parts are, as it were, lock'd up and cemented together in their Na tural Pofition and Contexture; or elfe they are the lafting Impreffions made on them at firft, whilf a yielding Subitance by the immediate Application of fuch Animal or Vegetable Body as was fo fhaped, and that there was nothing elfe concurring to their Production, fave only the yielding of the Matter to receive the Impreffion, fuch as heated Wax affords to the Seal; or elfe a fubfiding or fardning of the Matter, after by fome kind of Fluidity it had perfectly fill'd or inclofed the figuring Vegetable or Animal Subftance, after the manner as a Statue is made of Plaifter of Paris, or Alabafter-duft beaten, and boil'd, mixed with Water and poured into a Mould.

Secondly, Next that there feems to have been fome extraordinary Caufe, which did concur to the promoting of this Coagulation or Petrification; and that every kind of Matter is not of it felf apt to coagulate into a ftrong Subitance, to hard as we find molt of thofe Bodies to confift of.
3. Thirdly, That the concurrent Caufes affifing towards the turning of thefe Subitances into Stone, feem to have been one of thefe, either fome kind of fiery Exhalation arifing from fubterraneous Eruptions or Earthquakes; or fecondly; a Saline Subftance, whither working by Diffolution and Congelation, or Gryftallization, or elfe by Precipitation and Coagulation; or thirdly, fome glutinous or bituminous Matter, which upon growing dry or fetling grows härd, and unites fandy Bodies together into a pretty hard Stone; or fourthly, a very long continuation of thefe Bodies under a great degree of Cold and Compreffion.
Fourthly, That Waters themfelves may in traft of time be perfectly tranfmuted into Stone, and remain a Body of that Conftitution without being reducible by any Art yet commonly known.
Fifthly, That divers other fluid Subftances have after a long continuance at reft, have fettled and congealed into much more hard and permanent Subftances.
6. Sixthly. That a great part of the Surface of the Earth hath been fince the Creation transformed and made of another Nature; namely, many Parts which have been Sea are now Land, and divers other Parts are now Sea which were once a firm Land; Mountains have been turned into Plains, and Plains into Mountains, and the like.

A Dijcourje of Earthquakes.

Seventhly, That divers of thefe kind of Transformations have been effected in thefe Illands of Great Britain; and that 'tis not improbable, but that many very Inland Parts of this Ifland, if not all, may have been heretofore all cover'd with the Sea, and have had Fifhes fiwimming over it.

Eighthly, That moft of thofe Inland Places, where there kinds of Stones are, or have been found, have been heretofore under the Water; and that either by the departing of the Waters to another part or fide of the Earth ${ }_{2}$ by the alteration of the Center of Gravity of the whole Bulk, which is not impoffible; or rather by the Eruption of fome kind of fubterraneous Fires, or Earthquakes, whereby great quantities of Earth have then been rais'd above the former Level of thofe Parts, the Waters have been forc'd away from the Parts they formerly cover'd, and many of thofe Surfaces are now raifed above the Level of the Water's Surface many fcores of Fathoms.

Ninthly, It feems not improbable, that the tops of the higheft and moft confiderable Mountains in the World have been under Water, and that they themfelves moft probably feem to have been the Effects of fome very great Earthquake, fuch as the Alpes and Appennine Mountains, Caucafus, the Pike of Tenariff, the Pike in the Terceras, and the like.

Tenthly, That it feems not improbable, but that the greateft part of the Inequality of the Earth's Surface may have proceeded from the Subverfion and tumbling thereof by fome preceding Earthquakes.

Eleventhly, That there have been many other Species of Creatures in former Ages, of which we can find none at prefent; and that 'tis not unlikely alfo but that there may be divers new kinds now, which have not been from the beginning.

There are fome other Conjectures of mine yet unmention'd, which are more ftrange than thefe; which I fhall defer the mentioning of till fome other time; becaufe tho' I have divers Obfervations concurring, yet having not bsen able to meet with fuch as may anfwer fome confiderable Objections that they are liable to, I will rather at prefent endeavour to make probable thofe already mentioned, by fetting down fome of thofe Obfervations (for it would be tedious to infert all) I have collected, both out of Authors, and from my own Experience.

The Finf was, That thefe figured Bodies difperfed over the World, are The firf Iroeither the Beings themfelves pretrify'd, or the Impreflions made by thofe pofition confrBeings. . To confirm which, I have diligently examin'd many hundreds of med. thefe figured Bodies, and have not found the leaft probability of a plaftick Faculty. For firft, I have found the fame kind of Impreffion upon Subitances of an exceeding differing Nature, whereas Nature in other of her Works does adapt the fame kind of Subftance to the fame Shape; the Flelh of a Horfe is differing from that of a Hog, or Sheep, or from the Wood of a Tree, or the like; fo the Wood of Box, for Inftance, is differing from the Wood of all other Vegetables; and if the outward Figure of the Plant or Animal differ, to be fure their Flefh alfo differs: And under the fame Shape you always meet with Subftances of the fame kind ; whereas here I have obferved Stones bearing the fame Figure, or rather Impreffion, to be of hugely differing Natures, fome of Clay, fome of Chalk, fome of Spar, fome of Marble, fome of a kind of Free-ftone, fome like Cryftals or Diamonds, fome like Flints, others a kind of Marchafite, others a kind of Ore. Nay; in the fame figur'd Subftance I have found divers, forts of very differing Bodics or kinds of Stone, fo that one has been made up partly of Stone, partly of Clay, and partly of Marchafite, and partly of Spar, according as the Matter chanced to be jumbled together, and to fill up the Mould of the Shell.

Another Circumftance, which makes this Conjecture the more probable, is, that the outward Surface only of the Body is form'd, and that the inward

Part has nothing of Shape that can reafonably be referr'd to it ; whereas we fee that in all other Bodies that Nature gives a Shape to, fhe figures alfo the internal Parts or the very Subftance of it, with an appropriate Shape. Thus in all kinds of Minerals, as Spars, Cryftals, and divers of the precious Stones, Ores, and the like, the inward Parts of them are always correfpondent to the outward Shape; as in Spar, if the outward Part be fhap'd into a Rhomboidical parallepiped, the inward Part of it is- fhap'd in the fame manner, and may be cleft out into a multitude of Bodies of the like Form and Subftance.

Another Circumfance is, that I have in many found the perfect Shell inclofed making a concave Impreffion on the Body that inclofed it, and a convex on the Body that it did inclofe; which I have fometimes been able to take out intire, and found it to be both by its Subftance and Shape, and reflective fhining, and the like Circumftances, a real Shell of a Cockle, Periwinkle, Mufcle, or the like.

And farther, I have found in the fame place divers of the fame kinds of Shells, not fill'd with a Matter that was capable of taking the Impreffion, but with a kind of fandy Subftance; which lying loofe within it could be eafily fhook out, leaving the inclofing Shell perfectly intire and empty; others I have feen which have been of black Flint, wherein the Impreffion has been made only of a broken Shell, which ftuck alfo into it; the other Part of the Surface of that Stone, which was not within the Shell, remaining only form'd like a common Flint.

And which feems to confirm this Conjecture much more than any of the former Arguments, I had this laft Summer an Opportunity to obferve upon the South-part of England, in a Clift whofe Bottom the Sea wafh'd, that at a good heighth in the Clift above the Surface of the Water, there was a Layer, as I may call it, or Vein of Shells, which was extended in length for fome Miles: Out of which Layer I digg'd out, and examin'd many hundreds, and found them to be perfect Shells of Cockles, Periwinkles, Mufcles, and divers other forts of fmall Shell-Fifhes; fome of which were filld with the Sand with which they were mix'd; others remain'd empty, and perfectly intire,: From the Sea-waters wafhing the under part of this Clift, great quantities of it do every Year tumble or founder down, and fall into the Salt-water, which are waft'd alfo by feveral Mineral-waters iffuing out at the bottom of thofe Clifts. Of thefe founder'd Parts I examined very many Parcels, and found fome of them made into a kind of harden'd Mortar, or very foft Stone, which I could eafily with my Foot, and even almoft with my Finger, crufh in Pieces; others that had lain a longer time expofed to the Vicifitudes of the rifing and falling Tides, I found grown into pretty hard Stones; others that had been yet longer, I found converted into very hard Stone, not much yielding to the hardnefs of Flints. Out of divers of thefe, I was able to break and beat out divers intire and perfect Shells, fill'd with a Subftance which was converted into a very hard Stone, retaining exactly the Shape of the inclofing Shell. And in the part of the Stone which had encompafs'd the Shell, there was left remaining the perfect Impreffion and Form of the Shell; the Shell it felf remaining as yet of its natural white Subftance, though much decay'd or rotted by time : But the Body inclofing and included by the Shell, I found exactly ftamp'd like thofe Bodies, whofe Figures Authors generally affirm to be the Product of a Plaftick or Vegetative Faculty working in Stones.

Another Argument, that thefe petrify'd Subftances are nothing but the Efferts of thofe Shells being fill'd with fome petrifying Subftance, is this, That among thofe which are call'd Cornu-Ammonis, or Serpentine-ftones, (found about Keingham, and in feveral other Parts of England, and in other Countries, as at the Balnea Bollenfia) which are indeed nothing elfe but the moulding off from a kind of Shell which is much fhap'd like a Nautilus-fhell, the whole Cavity being feparated with divers fimall Valves or Partitions, much after the fame manner as thofe Shells of the Nautilus are commonly. obferved to be. Among thefe Stones, I fay, I have, upon breaking, found fome of the Cavities between thofe Partitions remain almoft quite empty;
others I have found lined only with a kind of Tartareous, or rather Cryftalline Subftance, which has fuck to the fides, and been figured like Tartar, but of a clear and tranfparent Subftance like Cryftal; whereas others of the Cavities of the fame Stone I have found filled with divers kinds of Subftances very differing: Whence I imagine thofe Tartareous Subftances to be nought elfe but the hardning of fome faline fluid Body, which might foak in throuigh the Subftance of the Shell. Others of thefe I have, which are quite of a tranfparent Subftance, and feem to be produced from the Petrifaction of the Water that had filld them; others I have found filld with a perfect Flint, both which I fuppofe to be the productions of Water petrify'd : And I may perhaps hereafter make it probable, that all kinds of Flints and Pebbles have no other Original.

1 could urge many other Arguments to make my firft Propofition probable, that all thofe curioufly fhaped Stones, which the moft curious Naturalifts moft admire, are nothing but the Impreffions made by fome real Shell in a Matter that at firft was yielding enough, but which is grown harder with time. To this very Head alfo may be referr'd all thofe other kinds of petrify'd Subftances, as Bones, Teeth, Crabbs, Fifhes, Wood, Mofs, Fruit, and the like; fome of all which Kinds I have examin'd, and by very many Circumftances, too long to be here inferted, judge them to be nothing elfe but a real petrifaction of thore Subftances they refemble.

My Second Propofition will not be difficult to prove, That if there be The fecond Prothe Effects of Petrifaction or Coagulation, it muft be from fome extraordi-pgetiton confirs nary Caufe. And this becaufe we find not many Experiments of producing med. of them when'and where we will; befides we find that moft things, efpecially Animal and Vegetable Subftances, after they have left off to vegetate, do foon decay, and by divers ways of Putrefaction and Rotting, loofe their Forms and return into Duft; as we find Wood, whether expofed to the Air or Water, in a little time to wafte and decay; efpecially fuch as is expofed to the alteration of both, and even in thofe Places where thefe petrify'd Subftances are to be met with. The like we find of Animal Subftances; and we have but fome few Experiments of preferving thofe Bodies, to make them as permanent as Stone, and fewer of making them into a Subftance of the like Nature.

The Third thing therefore, which I fhall endeavour to fhew, is, That the The third Prow concurring Caufes to thefe Petrifactions feem to be either fome kind of petri- pofition confirs fying Water, or elfe fome faline or fulphureous Mixture, with the concur-med. rence of Heat, from fome fubterraneous Fire or Earthquake; or elfe a very long Continuation of thofe Bodies under a great degree of Cold and Compreflion, and Reft. That petrifying Waters may be able to convert both Animal and Vegetable Subftances into Stone, I could, befides feveral Trials of my own, bring multitudes of Relations out of Natural Hiftorians : But thefe are fo common almoft in all Countries, and fo commonly taken notice of by the Curious, that I need not inftance. Cambden and Speed will tell you of abundance here in England, as the Peak in Derbyfhire, and in feveral other fubterraneous Caverns in England. The Water it felf does, by degrees, produce feveral conical pendulous Bodies of Stone, fhap'd and hanging like Icicles from theRoof of the Vault; and dropping on the bottom, it raifes up alfo conical Spires, which, by degrees, endeavour to meet the former pendulous Stiric. And indeed I have generally obferv'd it, that wherever there is a Vault made with Lime under Ground, into which the Rain-Water foaking through, a pretty thicknefs of Ground, does at laft penetrate through the Arch; I have in feveral places, I fay, obferv'd that that Water does incruflate the Roof with Stone, and in many places of it generate finall pendulous Icicles. This Water I have found in a little time to incruftate Sticks, or the like Vegetable Subffances with Stone, and in fome places to penetrate into the Pores of the Wood, filling them up with fmall Cylinders of Stone. This I have obferv'd alfo in divres of the 'Arches of St. Paul's Church, which have been uncover'd and have lain open to the Rain, though there be

A Difcourse of Earthquakes.

no Earth for it to foak through. And tho' I have never yet been able to petrify a Stick throughout, yet I have now by me feveral pieces that retain fo perfectly all the Figure of,Wood, and are yet fo perfectly in all other propreties Stone, that I find not the lealt Reafon of doubt to believe that thore pieces have been actual Wood, having ftill the Bark, the Clefts, the Knots; the Grain, the Pores, and even thofe too which, for their fimalnefs, I have elfewhere call'd Microfcopical; tho' I confefs fome of thefe more perfect pieces feem to have been petrify'd from fome more fubtile and infinuating petrifying Water, than thofe I newly mention'd; and 'tis not improbable but that fome Subterraneaous Steams and Heat may have contributad fomewhat towards this Effect. But firft I hall endeavour to make it probable, that thefe petrify'd Bodies may have been placed in thofe Parts where they are found, by fome kind of Transformation wrought on the Surface of the Earth, by fome Earth-quake : And to this end, 1 fhall by and by mention fome ftrange alterations that have been made by Earthquakes, after I have firft made probable my fourth Conjecture.
Ibe fourthero- The Fourth Propofition therefore to be explain'd and made probable is, pofition confir- That Waters themfelves of divers Kinds, are, and may have been tranfinuted med. perfectly into a ftony Subftance, of a very permanent Conftitution, being fcarcely reducible again into Water by any Art yet commonly known. And that divers other Liquid or Fluid Subftances have in tract of time fettled and congealed into much more hard, fixt, folid and permanent Forms than they were of at firf.
-The probability of which Propofition may appear from thefe Particulars.
I. That almoft in all Streams and running Waters there is to be found great quantity of Sand at the bottom, many of which Sands both by their Figure in the Microfcope, and tranfparently, feem to have been generated out of the Water.

Firft, I fay, That their tranfparency which they difcover in the Microfcope is an Argument, becaufe I believe there is no tranfparent Body in the World that has not been reduc'd to that Conftitution by being fome ways or other made fluid, nor can I indeed imagine how there fhould be any. All Bodies, made tranfparent by Art, muft be reduc'd into that Form firf; and therefore 'tis not unlikely but that Nature may take the fame Courfe; but this as only probable I fhall not infift on. Next, I fay, that the Figures of diverfe of them in the Microfcope difcover the fame things; for I have feen multitudes of them curioully wrought and figured like Cryftal or Diamonds, and I cannot imagine by what other Inftrument Natuie flould thus cut them, fave by Cryftalizing them out of a Liquid or Fluid Body, and that way we find her to work in the formation of all thofe curious regular Figures of Salts, and the Vitriols (as 1 may call them) of Metals and divers other Bodies, of which Chymiftry affords many Inftances. Sea-Salt and Salgem chryftylizeth intoCubes or four-fided Parrallelipipeds; Niter into triangular and hexangular Prifins. Alume into Octoedrons, Vitriols into various kinds of Figures, according to the various kinds of Metals diffolved, and the various Menffrua diffolving them; Tartars alfo, and Candyings of Vegetables are figured into their various regular Shapes from the fameMethod andPrinciple. And in truth, in the formation of any Body out of this mineral Kingdom, whofe Origine we arre able to examine, we may find that Nature firft reduces the Bodies to be wrought on into a liquid or foft Subftance, and afterwards forms and thapes it into this or that Figure. But this Argument drawn from the Sarid, found in all running Streams, I. fhall not inift on, becaufe fome imagine it to be only wafht off from the Land and Shores the River paffes over, and perpaps much of it may: But yet that Sand may be made of clear Water, this fecond Argument will manifeft, and that is this:

That 'tis a ufial Experiment in the making of Salt in the Salterns, by 2d. Arg. the boyling up, or evaporating away the frefher part of the Sea-water, to collect great quantities of Sand at each corner of the Boyler; which, after it has been well wafht with frefh Water, is, in all particulars, a perfect Sand; and yet the Water is fo order'd before it is put into the Boyler, that nothing of Sand or Dregs can enter with it, the Brine being firft fuffer'd to ftand agood while and fettle in a very large Fat, fo that all the Sand and Dregs may fink to the bottom; after which, the clearer Water at the top is drawn off, and fuffer'd to run into the Boyler. 'T is not impoffible, perhaps, bit that Subftance which made this Sand, might be diffolved in Water, and afterwards by evaparation coagulated; which, if fo, makes not at all againft, but rather argues ftrongly for my fourth Propofition.

But that the other Solution is fomething more probable, nameiy, That 3d. Arg 'tis made out of the very Subftance of the Water itfelf, this third Argument will make probable; and that is, that any Water of what kind foever, tho' never fo clear and infipid, máy, by frequent Diftillations, be all of it perfectly tranfmitted into a white infipid Calx not again diflolvable in Water, and in nothing differing from the Subftance of Stone; this I have been affured by an eminent Phyfician, who has divers times made tryal of it with the fame fuccers. If therefore the whole Body of any Water may, by fo eafy an Operation in fo very fhort a time, be tranfimuted into a ftony Subftance, what may not Nature do that can take her own time, and knows beft how to make ufe of her own Principlés?

But 4 thy. We have many Inftances by which we are affured that Nature realy 4 th. Arg. does change Water into Stone, both by forming in a little time confiderable Stones out of the diftilling Drops of Water foaking throngh the Roofs of Caves and fubterraneous Vaults, of which we have very many Inftances here in Enoland; as to name one for all at the Peak in Derbyhhire, the pendulous Cones of this petrify'd Subftance directly point at, and oftentimes meet and reft on the rifing Spires, generated by the drops' of Water trickling through the Roof, as I mention'd before

And sthy. there are divers other Waters which we need not feek after in sth. Arg. Caves that have a petrifying vertue, and incruftate all the Chanel they pars through, and the Subftances foak'd in them with Stone; thefe are fo common almoft in all places, that I need not inftance in any; only I cannot pafs by one, which is taken notice of by Kircher in his Mundus Subterraneus, being Obfervations made by himfelf, and it has in it two Circumftances very confiderable; the firft is, That Vegetables fhould grow fo plentifully in a very hot Water. The fecond, that only fuch Herbs as grew in it, and not fuch as were Steeped in it, will perfeatly, after drying, be turned into Stone, of which I fhall afterwards have occafion to make more ufe. If fhall give the Hifory in his own Words, as they are fet down in the 7th Paragraph of the 2d Sect. of the 5 th Book of his Mundus Subterraneus, Hac (fays he) experientia didici in Itinere meo Hetrufco, in quo prope Roncolanum fenenfis territorii Oppidum (a Town near Siena in Tuifcany) duos fontes calidos obfervavi, quorum aqua per Canales ad molares Rotas vertendas ducebatur. In bifce canalibus cyperus, junci, ranunculus fimilefg; berbe tanta adolefcebant facunditate, ut quotaunis eas, ne aqua motum interturbarent, extirpare oporteret. Extirpatas vero projectafg; in vicinum $10-$ cum berbas omnes' in Lapidem converfas non fine admiratione fpectavi. Cujus rei caufami cum a molitoribus quarerem. Refponderunt aquas iftiulmodi bujus virtut is effe, ut quecunc q; inter canales, aut ipfa aqua excreverint berbe mox ac extirpate fuerint, Lapidef cant; quecung; vero extra aquam in campis patentibus excreverint 'berbe ${ }_{y}$, iftas extirpatas nunquam Lapidefcere. I pafs by his Reafons and Explications, becaufe I think them very little to the Purpofe: But the Obfervations themfelves are very confiderable, and ferve for the explaining of fevereal Phenomena I have obferv'd in petrify'd Bodies, as I fhall indeavour hereafter to fhew 2 as in Corals, both Red, White, and the feveral Rarities of them, in Coral-
lines alfo, and petrify'd Mufhromes, of each of which I have examined a very great variety. But this only by the by.
moft part very clear and limpid; fo that to the Sight 'tis not diftinguifhable from other Water: But only by the Effects, and therefore by the newly mention'd Obfervations of Kircher, we find that Vegetables, that uppn drying turn'd into Stone; whilft green and growing flourifhed and fpread fátter than others; fo that the petrifying Subftance paft through the fine $\overline{f t}$ and clofeft Pores of the living Vegetables, and therefore muft certainly be very intimately mixt with the Water that could not be feparated by fo fine and curious Strainers.

7th. Arg.
But 7 thly. To confirm this Propofition yet further, there are found in feveral parts of the Earth, fuch Waters will be intirely converted into Stone. Of this kind there are feveral Hiftories in the newly-mention'd Book, which 1 pafs over, and fhall only take notice of one for all, and that is in an Account fent to the Roman Coledge of Jefuits from the Mafters, Surveyors and Clerks of the Hungarian Mines, in Anfwer to fome Queries propounded to them. Page 183. of Kircher's Mundus Subterraneus, to the Query concerning the Properties and Metallick Experiments about Meneral Waters, they anfwer, That Datur in fodinis aqua genus quod in Figuram faccaro baud absimilem degenerat, viz. in Lapillos albas.
And again, Page 185. of the fame, from another Prefect of the Emperial Mines in Hungary in anfwer to the fame Query, we have this Account. Reperitur quoq; aqua quedam alba que in Lapidem durum abit. Sivero bec aqua ante fuam congulationem mineram cupream tranfiverit, tuncigeneratur ex ea lapis qui Malochites socatur, quando vero aqua illa perfluit cupream mineram continentem argentum fiet ex ea pulcher lapis ceruleussimilis Turcoidi. Hac aqua autem nullibi frequentius reperitur quam in mineris Lapidibus fliceis copiofis, © cuprum cum arreento continentibus. Whence I am apt to think, and I have many Obfervations and Arguments to confirm my Conjecture,

8th. Arg. That 8thly, All kinds of Talk and Spar, moft Ores and Marchafites: Alumen Plumeum, © Asbeftus; Fluores, Cryytalls, Cornifh-Diamonds, Amethyts and divers other figured Mineral Bodies, may be generated from their Cryftalization, or Coagulation, out of fome Mineral Watters.

And to make it yet more probable, I could in the gth place add divers Experiments, by "which feveral of thefe Concretes may be in a fhort time made artificially by feveral Chymical Operations, which would very much illuftrate the former Doctrin. But I hope what I have mention'd may fuffice to make the fourth Propofition probable, that Waters of divers kinds may be turned in time to Stone, without being reducible again to Water by any Art yet commonly known, which being granted, my

Fifth Propofition will follow of confequence, viv. That divers other fluid pofition prov- Subftances, have, after long continuance of reft, fettled and congealed into ed. much more hard and permanent Subitances: For if Water it felf may be fo changed and metamorphofed, which feems the fartheft removed from the nature of a folid Body, certainly thofe which are nearer to that Nature, and are mixt with fuch Waters, will more eafily be coagulated: I fhall not therefore any farther infift on the Proof of this, than only to mention two Particulars, and that becaufe we have almoft every where fo many Inftances and Experiments; and the firft is that of Pliny in the 13th Chap. of the 35th Book of his Natural Hiftory, in all which Chapter he gives us divers Inftances of feveral kinds of Earth, which, by the Sea-water and Air, converted into into folid and hard Stones; his. Words are thefe: Verum © ipfius Terra funt alia Segmenta. Quis enim fatis miretur peffimam ejus partem ideog; pulverem appellat am in puteolanis collibus oppone maris fuctibus, mier \int amq; protinus fieri lapidem unum inexpugnabilems undis, co fortiorem quotidie, utig; fi cumano mıfceatur Comiento.

Eadens

Eadem eft Terre Natura civ in Cizicena Regione, Sed ibi nori pulvis verum ipfa Terra, qualibet magnitudine exicifa co demerfa in mare, lapidea extrabitur: hoc idem circa Caffandriam produnt fieri: Et in fonte Gnidio dulci intra octo menfes Terram lapidefcere. Ab Oropo quidem Aulidem ufque quicquid Terre attingitur mari, mutatur in $S_{a x a}$, ©c. to the end of the Chapter lie goes on to telate divers Places where Earths, $宀$ c. are turned into Stones. Alfo in the Ioth Chapter of the of the 3 Ift Book, fpeaking of the Nature and Kinds of Niter, he tells about the middle of the Chapter. Nitraric egregic eAgyptiis nam circa Naucratim © Memphim tantum folebant effe, circa Memphim deteriores; nam $\mathcal{o j}^{\circ}$ lapidefoit ibi in acervis, multiq; funt Tumuli ea de causa Saxei, funt q; ex bis vafa, cic.

The Second is an Obfervation of my own, which I have often taken notice of, and lately examined very diligently, which will much confirm there $\mathrm{Hi}-$ rtories of Pliny, and this my prefent Hypothefis; and that is a Part of the Obfervation I have already mentioned, which I made upon the Weftern Shore of the Infe of Witht. I obferved a Cliff of a pretty height, which, by the conftant walhing of the Water at the bottom of it, is continually, efjecially after Frofts adid great Rains, foundering and tumbling down into the Sea underneath it. Along the Shore underneath this Cliff, are a great number of Rocksand large Stones confufedly placed, fome covered, others quite out of the Water; all which Rocks I found to be compounded of Sand and Clay, and Shells, and fuch kind of Stones, as the Shore was covered with. Examining the Hardnefs of fome that lay as far into the Water as the Low-Water-mark, I found them to be altogether as hard, if not much harder than Portland or Purbeck-ftone: Others of them that lay not fo far into the Sea, I found much fofter, as having in probability not been fo long expofed to the Viciffitudes of the Tides: Others of them I found fo very foft, that I could eafily with my Foor crufh them, and make Impreffions into them, and could thruft a Walking-ftick I had in my Hand a great depth into them: Others that had been but newly foundered down, were yet more foft, as having been fcarce wafh'd by the Salt Water. All thefe were perfectly of the fame Subftance with the Cliff, from whence they had manifeftly tumbled, and confifted of Layers of Shells, Sand, Clay, Gravel, Earth, ©r. and from all the Circumftances I could examine, I do judge them to have been the Parts of the Neigbouring Cliff foundered down, and rowl'd and wafh'd by degrees into the Sea; and, by the petrifying Power of the Salt Water, converted into perfect hard compacted Stones. I have likewife fince obferved the like Phenomena on other Shores. And I doubt not but any inquifitive Naturalift may find infinite of the like Inftances'all along the Coaft of England, and other Countries where there are fuch kind of foundering Cliffs. I fhall not now mention the great Quantities of toothed Spar, which I obferved to be cryftallized upon the fides of thefe Rocks, which feem'd to have been nothing elfe but the meer cryftallizing or fhooting of fome kind of Water, which was prefs'd or arofe out of thefe coagulating Stones; For the Hiftory of theife kinds of figured Stones belong more properly to another Difcourfe; nameiy', of the Natural Geometrical Figures, obfervable in Oares, Minerals, Spars, 'Talk, eic. of which elfewhere.

One Inftance more I cannot omit, as being the moft obfervable of any I have yet heard of; and that is, (Dr. Cafte's Relation) of a certain Place at Alpfy in Bedfordfhire, where there is a corner of a certain. Field, that doth perfectly turn Wood and divers other Subftances in a very fhort time into Stone as hard as a Flint or Agat. A Piece of this kind I faw; affirm'd to have been there buried, which the Perfon that buried it had flot fmall Shots of Lead into; the whole Subftance of the Wood, Bark and Pith, together with the Leaden Shot it felf, was perfectly turn'd to a Stone as hard as any Agat, and yet retain'd its perfert Shape and Form ; and the Lead remain'd round, and in its place, but much harder than any Iron. Of this I am promifed a Sample, but have not yet receiv'd it.

But to fpend no more time on the proof of that of which we have almoft The oth Proz every. where Inftances, divers of which I have already mention'd, I fhall pro- pofition conceed to the σ th Propofition; which is, That a great Part of the Surface of the firm'd.

A Difcourfe of Earthquakes.

Earth hath been fince the Creation transform'd, and made of another Nature : that is, many Parts which have been Sea are now Land, and others that have been Land are now Sea; many of the Mountains have been Vales, and the Vales Mountains, cco
For the proving of which Propofition, I thall not need to produce any other Arguments, befides the repeating what I find fet down by divers Natural Hiftorians, concerning the prodigious Effects that have been produced by Earthquakes on the fuperficial Parts of the Earth; becaufe they feem to me to have been the chief Efficients which have tranfported thefe petrify'd Bodies, Shells, Woods, Animal Subftances, ơc. and left them in fome Parts of the Earth, as are no other ways likely to have been the Places wherein fuch Subftances fhould be produced; they being ufually either raifed a great way above the level Surface of the Earth, on the Tops of high Hills, or elfe buried a great way beneath that Surface in the lower Valleys: For who can imagine that Oyfters, Mufcles, and Periwinkles, and the like Shell-fifh, fhould ever have had their Habitation on the Tops of the Mountain Caucafus? Which is by divers of our Geographers accounted as high in its perpendicular Altitude, as any Mountain in the yet known World ; and yet Olearius affords us a very confiderable Hiftory to this purpofe of his own Obfervation, which I fhall hereafter have occafion to relate, and examine more particularly. Or to come a little nearer home, who could imagine that Oyfters, Echini, and fome other Shell-fifh, fhould heretofore have lived at the tops of the Alps, Appennine, and Pyrenian Mountains, all which abound with great ftore of feveral forts of Shells; nay, yet nearer at the tops of fome of the higheft in Cornmal and Devonflire, where I have been informed by Perfons whofe Teftimony I cannot in the leaff fufpect, that they liave taken up divers, and feen great Quantities of them ? And to come yet nearer, who can imagine Oyfters to have, lived on the Tops of fome Hills near Banftead-Downs in Surry? Where there have been time out of Mind, and are ftill to this day found divers Shells of Oyiters, both on the uppermoft Surface, and buried likewife under the Surface of the Earth, as I was lately informed by feveral very worthy Perfons living near thofe Places, and as I my felf had the Opportunity to obferve and collect.

The effeis of Toproceed then to the Effects of Earthquakes, we find in Hiftories Four Eartbluzkes. Sorts or Genus's to have been performed by them.

Firt fort or The firft is the raifing of the fuperficial Parts of the Earth above their Gemus of Ef. felts. former Level : and under this Head there are Four Species. The ift is the raifing of a confiderable Part of a Country, which before lay level with the Sea, and making it lye many Feet, nay, fometimes many Fathoms above its former height. A $2 d$ is the raifing of a confiderable part of the bottom of the Sea, and making it lye above the Surface of the Water, by which means divers Iflands have been generated and produced. A 3 d Species is the raifing of yery confiderable Mountains out of a plain and level Country. And a 4 th Species is the raifing of the Parts of the Earth by the throwing on of a great Accefs of new Earth, and for burying the former Surface under a covering of new Earth many Fathoms thick:

Second Sort or Genus of EfA fecond fort of Effects perform'd by Earthquakes, is the depreffion or feits. finking of the Parts of the Earth's Surface below the former Level. Under this Head are alfo comprized Four diftinct Species, which are directly con- trary to the four laft named.

The Firft, is a finking of fome Part of the Surface of the Earth, lying a good way within the Land, and converting it into a Lake of an almolt unmeafurable depth.

The Second, is the finking of a confiderable Part of the plain Land, near the Sea, below its former Level, and fo fuffering the Sea to come in and overflow it, being laid lower than the Surface of the next adjoining Sea.

A Third, is the finking of the Parts of the bottom of the Sea much lower; and creating therein vaft Vorages and \dot{A} byjfes.

A Difcourfe of Earthquakes.

A Fourth, is the making bare, or uncovering of divers Parts of the Earth, which were before a good way below the Surface; and this eitlier by fuddenly throwing away thefe upper Parts by fome fubterraneous Motion; or elfe by wafhing them away by fome kind of Eruption of Waters from unufual Places, vomited out by fome Earthquake.

A Third fort of Effects produced by Earthquakes, are the Subverfions, Con- Third Sort or verfions, and Tranfpofitions of the Parts of the Earth.

A Fourth fort of Effects, are Liquefaction. Baking, Calcining, Petrifaition, Transformation, Sublimation, Difillation, \& \& .

Fourth Sort or Genus of Ef: fects.

The Firft therefore of the Effects of Earthquakes, which I but now named, The Firft Spewas, that divers Parts of the Surface of the Earth which lay before, either below or level with the Sea, have been raifed a good height above that Level by Earthquakes. Of this Pliny gives us Feveral Inftances in the 85 th Chapter of the 2 d Book of his Natural Hiftory, Eadem nafcentium Caufa terrarum eft, cum idem ille Spiritừs attollendo potens folo non valuit erumpere. Nafcuntur enim nec fuminum tantum invętu ficut Echinades Infule ab Acheloo amne congefte; majorg; pars e Eoypti a Nilo, in quam a Pbaro infula noctis oj Diei curfum fuife Homero credimus: Sed ©i Receffu Maris ficut eidem de circeiis. Quod accidife et. in Ambracia portu decem Millium paffum intervallo, ©. Athenienfum quing; Millium ad Firceum memoratur: Et. Ephefi ubi quondam adem Diana alluebat. He-: rotodo quidem $\sqrt{2}$ credimus, mare fuit fupra Memphin ufg; ad Aitbiopum montes. Itemq; a planes Arabic. Mare et circa Ilium et tota Teutbrania quaq; campos intulerit.
Meander, and Sandys alfo, in his Travels thro' Italy, and the Parts of the Levant, gives this Inftance, pag. 277. Speaking of the new Mountain, which was produced in the Kingdom of Naples, in the Year 1538 . The Lake Lucrinus, fays he, extended formerly to Avernus, and fo unto Gaurus, two other Lakes; but is how no other than a little Sedgy Plafh, choaked up by the borrible and aftomifh? ing Eruption of the new Mountain, whereof, as oft as I think ${ }^{\prime \prime}$ I am apt to credit what foener is poonderful. For who in Italy, fays he, knows not, or who elferwheres will beliere, that a Mountain Should arife partly out of a Lake, and partly out of the Sea in one Day and a Night, to fuch adbeight, as to contend in Altitude with the bigh Mountains adjoining.
itit the Year of our Lord 1538 on the 29th of September, when for certain Days foregoing, the Country thereabouts, was fo. vext with perpetual Earthquakes, as no one Houfe was left 50 intire, as not to expect immediate Ruine, after that the Sea bad retired 200 Paces from the Shore, leaving abuindance of Filh with Springs of Frefh Water rifing at the bottom, this Mountain vifibly'afcended about the fecorld Hour of the Night, and fo forwards. And again, pag: 281, fpeaking of the fame Place, he fays, The Ser was accuftomed, when urged with Storms, to flow in thro' the Lake, Lucrinus driving Fifhes in mith it; but now not only that Palfage, but a Part of Avernus it felf is choaked by the Mountain. In which Hiftories I take notice only of thefe two Particulars at prefent. Firft, That that Part of the Land which lyes between Lucrinus and the Sea, that was oft-times before overflowed by the Sea, fince this Earthquake, has been fo far raifed, as that now fuch Effects are no longer to be found. To confirm the rifing of which the more, the other Circumftance of the Sea's departing fiom the Shore 200 Paces does much contribute. But not to infift on this, Mr. Childry in his Britannia Baconica, a Book very ufeful'in its kind, being a Collection of All the Natural Hiftory of the Iflands of Great Eritain, to be met with in Cambden, or Speed, and fome other Hiftorians, together with fuch of his own as he had opportunity to obferve, relates to us many confiderable Paffages to this purpofe. In his Hiftory of Norfolk; he faith, That near St. Benet's in the Holm, are perfect Cockles and Periwinkles fometimes digg'd up out of the Earth, which makes fome think it was formerly overflowd by the Sea. The Fenny Grounds alfo of Lincolnfhire and Chefhire, feem to have pioceeded from the rifing of the Ground; and thofe in Angle y, where lopp'd Trees are now dug up with the perfect Strokes of the Ax remaining on them, feem to have
been firft funk under Water, then overturn'd and buried in their own Earth, and afterwards the whole Earth feems to have been raifed again to its former height. Of the raifing of the Surface of the Earth, by the overflowings and ftopping of Rivers and Waters, I fhall afterwards feak.

Linfchoten gives us a Relation of the like Effects of an Earthquake that hapned in the Terceras. The Relation, as I find it epitomi\%'d by Purchas in the 1677 Page of the 4 th Part of his Pilgrims, is this:, In Fuly; Anno 1591. 'there happen'd an Earthquake in the Inand of St. Michael, which lyeth from
' Tercera South-Eaft about 28 Miles, an Ifland 20 Miles long, and full of
${ }^{\text {E }}$ Towns, which continued from Fuly 26. to Aug. 12. in which time none durft ' ftay within his Houre, but fled into the Fields, fafting and praying with ' great Sorrow, for that many of their Houfes fell down, and a Town, called - Villa Franca, was almoft razed to the Ground, all the Cloyfters and Houfes ' fhaken to the Earth, and therein People flain. The Land in fome Places rofe $i \quad i p$, and the Clifts removed from one Place to another, and fome Hills were ' defaced and made even with the Ground. The Earthquake was fo ftrong, ' that the Ships that lay in the Road, and in the Sea, fhaked as if the World ' would have turn'd round. There fprang alfo a Fountain out of the Earth, 'from whence for the fpace of four Days there flow'd a moft clear Water, and © after that it ceafed. At the fame time they heard fuch Thunder and Noife ' under the Earth, as if all the Devils had been affembled together at that ' Place, wherewith many dy'd for fear. The Ifland of Tercera fhook four times 'together, fo that it feem'd to turn about ; but there happen'd no other Mif' fortune unto it. Earthquakes are common in thofe Inlands: For about 20 - Years paft there happen'd another Earthquake, when a high Hill that lyeth - by the fame Town Villa Franca fell half down, and covered all the Town with ${ }^{\text {E }}$ Earth, and killed many Men. I have tranfcribed here once for all the whole Relation, becaufe there are many other confiderable Circumftances in it befides the rifing of the Earth, which I fhall have occafion to refer to, under others of the Heads or Propofitions to be proved, and therefore fhall not need repetition. Two other Relations I find collected by Purchas, confirming this and feveral of the other Propofitions: The one is that of Dithmar Blefken's, in his Hiftory of IRand, Page 648 of the 3 d Part of his Pilgrims. 'On the 29th 'of November about Midnight, in the Sea, there appear'd a Flame near Hecla, ' which gave Light to the whole Ifland: An hour after the whole Ifland trem--- bled, as it would have been moved out of the Place: After the Earthquake ' follow'd a horrible Crack, that if all warlike Ordnance had been difcharg'd ${ }^{c}$ it had been nothing to this Terror. It was known afterwards that the Sea 'Twent back two Leagues in that Place, and remain'd dry.

A Second Hiftory Purchas has collected out of the Hiftory of Fofeph Acofta of the Weft Indies, Page 940 of the 3 d Part: omitting for the prefent divers other Circumfances he takes notice of, I fhall only mention that of the receding of the Sea. 'Upon the Coaft of Chile, (fays he) I remember not well ' in what Year, there was fo terrible an Earthquake, as it overturn'd whole - Mountains, and thereby fopt the Courfe of Rivers, which it converted into
' Lakes: It beat down Towns, and flew a great number of People, caufing the ${ }^{6}$ Sea to leave her Place fome Leagues, fo as the Ships remain'd on dry Ground ${ }^{6}$ tar from the ordinary Road, An Example fomewhat like this happen'd lately in the Eaff-Indies, as I was inform'd by a Letter fent thence to Mr. D. on London-Bridge. The thing in fhort was this: At, a Place, about 7 Days Journey from Ducca, the Earth trembled about 32 Days; and the Sequel was, that it raifed the bottom of a Lake, fo as to drive out all the Water and Fifh upon the Land, fo that a Place which was formerly a Lake is now dry Ground. This was written from Ballafore, Эan. 6. 1665. The Words of the Letter I Thall give afterwards.

The Second Species under the firlt Head or Genus of the Effects of Earthquakes.

The fecond Species of Effects of Earthquakes, is the raifing of a confiderable Part of the bottom of the Sea, and making it lye above the Surface of the Water, by which means divers Iflands have been generated. Of this Pliny, in the 86 th and 87 th Chap. of the 2d Book of his Nat. Hift:gives us feveral Inftances. Nafcuntur, fays he, or alio modo Terre, (having in the prece¿ivu:
ding Chapter fpoken of the Shore's rifing above the Water, or the Water's deceding from the Shore, ac repente in alto mari emergunt, veluti paria Secum faciente Natura, queque bauferit biatus alio loco reddente. Clara jam pridem In-
 phe, (of which Strabo makes mention in his Tenth Book.). Inter Lemnum oo Helle fpontum Nea. Inter Lebedum © Teon, Alone: inter Cycladas, Olympiadis cxxxv ann. 4 to Thera © Therafia. Inter eafdem poft ann. cxxx Hiera: © ab ea duobus Stadiis poft ann. cx in Noftro avo Thia. Two of which Hiftories are alfo confirm'd by Seneca, in the Sixth Book of his Natural Queftions and twenty firft Chapter, where explicating the effects of Earthquakes by the commixture of Fire and Water, he fays, Theren of Therafiam oi banc noftre ctatis infulam, fpectantibus nobis in éEgeo mari enatam quis Dubitat quin in hucem Spiritus vexerit. Sandis fpeaking of the Folian Illands, faith, 'Of thofe ${ }^{\text {' }}$ there were only Seven, now there are Eleven in Number, which heretofore ' all flamed, now only Vulcano and Strombylo, two of that Number do burn. Vulcano is faid to have firft appear'd above Water about the time that Scipio Africanus died. But we have much later Inftances to confirm this our Affertion : for about twenty eight Years fince, an Ifland was made among the Azores by an Eruption of Fire; of which divers have related the Story. But Kircher in his Mundus Subterraneus, from the Relation of the Jefuits, has added the moft particular one. Having fpoken of the exceeding height of the Pike of Teneriff in the Canaries, and of the Eruptions of Fire in it, and the hot Springs found about it, he adds, that in the Azores alfo there are found places having almoft the fame Proprieties. The Pico de Fayal de Santo Grearorio, being almoft of equal hight, and St. Michael's Illand having heretofore had feveral Vulcans, and having been troubled with many Earthquakes, and very notably about thirty eight Years fince, wherein all the liland was fo terribly fhaken, that the utter Ruin and Submerfion of the whole was feared. The Hiftory of which, in fhort, is this; That ' Fune 26. ' 1638. the whole Ifland began to be fhaken with Earthquakes for eight days,
${ }^{\text {' }}$ To that the Inhabitants left Cities, Caftles and Houfes, and dwelt in the
${ }_{i}^{6}$ Fields, but efpecially thofe of a Place call'd Vargen, where the Motion was ' more violent. After which Earthquake, this Prodigy followed; At a place of ' the Sea, where Fifher-men us'd' to fifh in Summer, becaure of the great
' abundance of Fifh there caught, call'd La Femera, about 6 Miles from Pico
'Delle Carmerine, upon the firft Sunday in Fưly, a fubterraneous Fire, notwith-
' ftanding the weight and depth of the Sea in that Place, which was 120 Foot,
'as the Fifhermen had often before that found by founding, and the multi-
'tude of Waters which one would have thought fufficient to have quenched
'the Fire: A fubterraneous Fire, I fay, broke out with a moft unexpreffible
'violence, carrying up into the Clouds with it Water, Sand; Earth, Stones,
and other vaft great bulks of Bodies; which to the fad Spectators, at a di-
' Itance, appear'd like Flocks of Wool or Cotton, and falling back on the Sur-
${ }_{6}$ 'face of the Water look'd like Froth. The Space of this Eruption was about ' as big as a Space of Land, that might well be fown by two Bufhels of Grain. ${ }^{\text {}}$ By great Providence the Wind blew from the Land; otherwife the whole ${ }^{\text {}}$ - Illand would, in all probability, have perifhed by the mercilefs Rage of thefe © devouring Flames, fuch vaft bulks of Stone were thrown up into the Air, ${ }^{6}$ about the height to feeming of three Pikes Lengths, that one would rather - think them Mountains than Rocks. And which added further Horror to ${ }_{s}$ this dreadful Sight, was, that thefe Mountains returning again, often met ${ }_{6}^{3}$ with others afcending or being thrown up, and were thereby dafht into a ${ }_{6} 1000$ Pieces; divers of which Pieces being afterwards taken up and bruifed, 'eafily turn'd into a black fhining Sand. Out of the great multitude and va"riety of thefe vaft rejected Bodies, and the immenfe heaps of Rocks and Stones, ' after a while was form'd a new Illand out of the main Ocean,' which at firft 'was not above' 5 Furlongs over; but after a while, by daily acceffes of new -Matter, it increafed after 14 Days to an Ifland of 5 Miles over. From this 'Eruption,fo great a quantity of Fifh was deftroy'd and thrown upon the next 'adjoining Illand, that 8 of the biggeft Indian Galeons would not be fuffici'ent to contain them; which the Inhabitants fearing, left the Stink of them

A Difcourre of. Earthquakes.

 , might create a Plague, for 18 Miles round collected and buried in deep Pits. , The Stink of the Brimftone was plainly fmelt at 24 Miles diftance. Thus far he. But we have one Inftance more of the Generation of an Inland out of the bottom of the Sea, by an Eruption; which becaufe it happen'd very lately, namely in 1650, and near an Inand in the Archipelatgo, which Pliny relates to have been herctofore after the fame manner produced, I fhall in fhort relate, as it is more largely recorded by Kircher, in his Mundus Subterraneus, from the Mouth of Father Francifcus Riccardus, a Jefuit, who was at the fame time in the adjoining Illand, and was an Eye-witnefs of all the Pbenomena.- From the 24 th of September to the 9 th of OEtober, 1650 , the Ifland of San ' terinum, formerly call'd by Pliny Thera, was dreadfully fhaken with Earth' quakes, fo that the Inhabitants expected nothing but utter ruine; and were ' yet more amazed by a horrid Eruption of Fire out of the bottom of the
${ }^{6}$ Sea; about 4 Miles to the Eaftward of the Inand: Before which the Water
' of the Place was rais'd above 30 Cubits perpendicularly, (I fuppofe he means
' as to appearance from the Inland, otherwife 'tis but very little). which
- Wave fpreading it felf round every way, overturn'd every thing it met, de-
' ftroying Ships and Galleys in the Harbour of Candie, which was fourfcore
'Miles diftant. The Eruption fill'd the Air with Afhes and horrible ful-
'phureous Stinks, and dreadful Lightnings and Thunders fucceeded. All
${ }^{6}$ things in the Illand were covered with a yellow fulphureous Cruft, and the
${ }^{6}$ People almoft blinded as well as choak'd. Multitudes of Pumice, and other
${ }^{6}$ Stones were thrown up, and carried as far as Conftantinople, and to Places
' at a very great diftance. The Force of this Eruption was greateft the
' two firft Months, when all the Neighbouring Sea feem'd to boil, and the
'Vulcan continually vomited up'Fire-balls. Upon the turning of the Wind,
' great Mifchief was done in the Inland of Santerinum, many Beafts and Birds
' were kill'd: And on the 29th of October, and 4th of November, about 50
- Men were kill'd by it. The other four Months it latted, tho' much abated

6 of 'its former. Fiercenefs, yet it ftill caft up Stone, and feem'd to en-
' deavour the making of a New lland; which though it do not yet perfectly
' appear above Water, yet 'tis cover'd but 8 Foot by the Water; and the
' bubbling of the Water feems to fpeak another Eruption, that may in time

- finifh Nature's Birth. And in the Year he writ this, which he fays, was 1656 , there was an extraordinary boiling of the Sea, and an Eruption of Smoke. And though our Natural Hiftorians have been very farce in the World, and confequently fuch Hiftories are very few ; yet there has been no Age wherein fuch Hiftorians have liv'd, but has afforded them an Example of fuch Effects of Earthquakes. And I doubt not, but had the World been always furnifht with fuch Hiftorians as had been inquifitive and knowing, we fhould have found not only Thera or Santerinum, and Votcano and Delos, and that in the Azores, and one lately in the Canaries, but a very great part of the Iflands of the whole World to have been rais'd out of the Sea, or feparated from the Land by Earthquakes: for which Opinion I fhall afterwards relate feveral Obfervations both of my own and others, which feem to afford probable Arguments.

The third Species under the firft Genus of Effells.

But to proceed to the third Kind or Species of Effects produced by Earthquakes, which is the raifing very confiderable Mountains out of Plains. Of this 1 Thall add a few Inftances'; but none more notable, than that of the new Mountain near Naples, of which 1 Caid fomewhat before out of Sandys's Travels. In the Year 1538 . Septemb. 29. this Mountain vifibly afcended about the 2 d hour of the Night, with a hideous roaring, horribly vomiting Stones, and fuch, ftore of Cinders, as overwhelm'd all the Buildings thereabout, and the falubrious Baths of Tripergula, for fo many Ages celebrated, confuming all the Vines to Alhes, and killing Birds and Beafts, and frighting away all.the lnhabitants, who fled naked and defiled through the dark: And ras advanced its top a Mile above the Bafis : the Stones of it are fo light and pory, that they will not fink when thrown in the Sea. This new Mountain, when new rais'd, had a number of IIfues, at fome of them fmoking, and fometimes flam-
ming; at others difgorging Rivulets of hot Water, keeping within a terrible rumbling; and many perifhed that ventured to defcend into the hollownefsabove. But that hollow at the top is at prefent an Orchard, and the Mountain throughout bereft of its Terrors. 'It is reported, faith Cbildrey, that in a - Parifh by the Sea-fide, not far from Axbridge in Somerfet fhire, within thefe 50 ' Years, a Parcel of Land fwell'd up like a Hill; but on a fudden clave afun' der, and fell down into the Earth, and in the place of it remains a great ' Pool. Our Englifh Chronicles Fay, at Oxenhal, in the Bifhoprick of Durham, on Chriftmas Day 1679, the Ground heav'd up aloft like a Tower, and continued all that day immoveable, till Evening, and then fell with a horrible noife, finking into the Earth, and leaving three deep Pits, call'd Hellkettles. Varenius tells us of a new Mountain likewife raifed.in Java, in the Year 1586 , with the like Effects of thofe I formerly named of the new Mountain ; firft fhaking the Earth, then heaving up and throwing up into the Air the upper Parts of the Earth, afterwards the Rock and inner Parts, then fiery Coals and Cinders, overwhelming the circumjacent Fields and Towns, and killing above 10000 Men , and burning what was not overwhelmed. I have not time to reckon up the multitude of Inftances I have met with in Authors; fuch as eAtua in Sicily, Vefuvius in Italy, one in Croatia, near the City Valonia, the Pike in Tenarif, and the Pike in the Azores, Hecla, Helga, and another in Ifland: The Mount Gonnapi in one of the Iflands of Banda, which made an horrid Eruption at the fame time with that in Fava: The Mount Balavane in Sumatra: Others in the Molucca Iflands, in China, Fapan, and the Pbilippines, and in fome of the Theurician Inlands, and feveral other Parts of the Eaft Indies. In the Weft Ipdies alfo we have multitudes of Examples, feveral in Nicararua, and all along the Ledge of Mountains in Peru and Cbile, and in Nem Spain and Mexico: In the Illands of Papoys, difcover'd by Le Mair, joinng to the South Continent in Mar Del Zur: All which are as fo many fhining Torches to direct us in the fearch after this Truth. There are many other Inftances of Mountains, that have but lately as it were left to burn, and are cover'd with Wood and grown fruitful. So the new Mountain I formerly mention'd, has an Orchard growing where the Fire at firf flamed. Another in the Illand Quimeda, near the River Plat in Brafil: The Inands alfo of St. Helena, and Afcenfion, difcovered by the great plenty of Cinders, and the Fafhions of the Hills to have formerly contained Vulcanoes, and probably were at firft made by fome fubterraneous Eruption, as indeed moft of thofe Iflands in the main Ocean; fuch as the Canaries, and the Azores and the Eaft. Indian, and the Cariby Iflands and divers others feem to have been. A Paflage, to make this Affertion fomewhat more probable, I have mét with in Linfohoten's Defcription of the Ifland of Tercera, which as Purchas has epitomizedd Ihave here added. Pag. 1670 . of the 4th Part of his Pilgrims (he faith, fpeaking of the Iflarid of Tercéra) 'The Land is very' high, and as it 'feemeth hollow; for that as they pals over an Hill of Stone, the Ground - foundeth under them as if it were a Cellar. So that it feems in divers Pla-- ces to have holes under the Earth, whereby it is much fubject to Earth-- quakes, as alfo all the othcr Inlands are; for there it is a common thing: - and all thofe Illands, for the moft part, have had Mines of Brimftone; for - that in many Places of Tercera and St. Michael, the Smoke and Savour of - Brimftone doth ftill iffue out of the Ground, and the Country round about - is all finged and burnt: Alfo there are Places wherein there are Wells, ' the Water whereof is fo hot that it will boil an Egg, as if it were over a - Fire. Belides which, the fhape of the Hills, and feveral other Circumftances mention'd in Linfchoten, do make it probable that thofe have been all Vulcana's.

But to proceed to the Fourth Species of Effects of Earthquakes under this Fourth Species 'Head; and that is, the raifing of the Parts of the Earth by the throwing on under the firf a great accefs of new Earth: Of this I have already given many Inftances in Genus of Ef: the newly mentioned Hiftories of Eruptions, where I mentioned the overwhelming of Fields, Towns, and Woods, and the like, by Materials thrown out by thefe Eruptions. I fhall only add one Inftance or two more to confirm

A Dijcourfe of Earthquakes.

this Head, and then proceed. The firft is that mentioned by Olaus Wormius, in the sth Chapter of the ift Section of the ift Book of hisMufoum, wherein he gives an Account of an extraordinary Earthquake in Iceland, which fill'd the Air with Duft, Earth, and Cinders, and overwhelmed Towns, Fields, and even Ships a good way diftant on the Sea; and which fent forth its Fumes with fuch violence and Plenty, as covered all the Decks and Sails of Ships lying on the Coaft of Norway, fome hundred Leagues diftant. His Words are Page the 18 th thus, Alterum portentofe Terre gerns, oic. And to make this of Wormius the more probable, I have now by me a Paper of Duft, which was rained out of the Air upon a Ship lying at Algier upon the Coaft of Barbary, upon a great Eruption of Vefuvius in the Year 16--- The Relation of which, as 1 received it together with the Paper of Duft from that eminent
*This was omitted by the Autbor. Virtuofo, Fohn Evelyn, Efq; I hall here annex. * But which is beyond all, is the late Eruption of Mongibell or eAtna.

And to confirm this Propofition yet further, I cannot pafs by a very remarkable Rain of Earth and Afhes, that happen'd in Peru, Anno 1600, mentioned by Garcilaffo De la Vega, one of the Off-fpring of the Incas of Peru, in his Hiftory of America. The Epitome of which by Purchas, is this, pag. 1476 of the 4 th Part of his Pilgrims. 'I might add, fays he, the great Earth' quakes, An. 1600, in Peru at Arequepa, the raining of Sand, as alfo of - Afhes, about 20 days from a Vulcan breaking forth: The Afhes falling in - Places above a Yard thick, in fome Places more than two, and where leaft - above a quarter of a Yard, which buried the Corn-grounds of Maize and - Wheat, and the Boughs of Trees were broken and fruitlefs, and the Cattel - great and fmall dy'd for want of Pafture. For the Sand which rained covered a the Fields 30 Leagues one way, and above 40 Leagues another way, round © about Arequepa, they found their Kine dead by 500 together in feveral Herds, © and whole Flocks of Sheep; and Herds of Goats and Swine buried. Hou - fes fell with the weight of the Sand; others coft much Induftry to fave them; - mighty Thunders and Lightning were heard and feen 30 Leagues about A -

- requepa. It was fo dark whilft thofe Showers lafted, that at mid-day they - burned Candles to fee to do bufinefs.--I could add divers other Inftances to confirm this Propofition; but thefe may at prefent fuffice.

But this is but one way by which divers things have been buried: there is another way which I can only at prefent mention, and mult refer the Probation and Profecution to fome other occafion; and that is, that very many of the lower fuperficial Parts of the Earth, have been and continually are covered and buried by the accefs of Matter, tumbled and wafhed down by Exceffes of Wind and Rain, and by the continual fweepings of Rivers and Streams of Water. Under this Head, I fhall fhew feveral Places and Countries in the World, that are nothing elfe but the Productions of thefe Caufes. To this purpofe, Peter de la Valle gives fome Obfervations which he made in Egypt, in the inth Letter dated from Grand Caire, Fan. 25. 1616. 'Of the - former féven Mouths of Nile (fays he) there are only four left, and of - thofe but two Navigable; the reft are either fill'd, or run no more, or are - Imall Streams not taken notice of, or only Torrents in the time of great - Rains; but I could learn nothing of them, becaufe the great Expence of ${ }^{-}$the Ancients for cleanfing the Ditches, has been intermitted for feveral - handreds of Years, He is likewife of Opinion with Herodotus; that the Delta, and all the Lower Egypt, where the Greeks navigated in his time, was in the firtt Ages of the World made by the Sand and Mud of Nile.

All which Hiftories and Particulars do manifeftly enough evince, that there have been in very many Parts of the World confiderable Mutations of the fuperficial Parts, fince the beginning; and that therefore thofe Places where there figured petrify'd Bodies are found; though they now feem never fo much foreign, and differing from the likely native Places of fuch animated Bodies, may notwithftanding heretofore have been in fuch another kind of condition, as was moft futable to the breeding and nourifhing of them: Which I fhall yet further manifeft, by comparing the other Effects produced by Earthquakes, fuch as the finking, and burying, and tranfpofing, and overturning of the fupetficial Parts of the Earth.

Another Sort of Effects, is the finking of the fuperficial Parts of the Earth, and placing them below their former Pofition, both in refpect of fome Parts The fecond fort newly raifed, and in refpeet of fome otheradjacent Parts not difplaced. And or General this feems to be caus'd by the fubfiding or finking of thofe Parts into fuch Ca- Head of Effverns, as by the ftrength of the Eruption pafling below before it breaks out quaket. are made underneath: For fo great is the Violence of thefe fubterraneous Fires, that nothing almoft is able to refift their Power of expanding ; but fpreading themfelves, and rufhing that way which is mofteafy, they carry along before them Earth, Sand; and Rocks, and Mountains, and whatever lies in their way, and raife the fuperficial Parts of the Earth whilit they pafs underneath. And if the Parts of the Earth underneath are fo loofe or obnoxious to the Force of the Fire, as to be diflodged, unle's the remaining Parts are very ftrong and conftitute a very firm Stony Arch, the Earth doas eafily tumble into the Holes and Hollows made by the Fire. Now it cannot be imagin'd but thatall thofe vaft Congeries of Earth, which I have already mention'd to haye been thrown up, and to create nēw Iflands and new Mountains, and the like, muft leave vaft Caverns below them, to be filld either with the Parts of the Earth that hang immediately over them; or with the Sea, or other fubterraneous Waters, if the Roofs of thefe Cavities be ftrong enough to fuftain the Earth above them from finking. And fome fuch Power as thefe fubterraneous Fires, feems to me to have been the Caufe of the ftrange Pofitions and Intermixture of the Veins of Ores and Minerals in the Bowels of the Mountains, where, for the mott part, they are now found ; and even of bringing thofe Subtances fo near the Surface of the Earth, which, from the Confideration of very many fircumiftances, feem to me to be naturally fituated at a much greater Depth below within the Bowels of this Globe. And hence may be rendred a Reafon of the Figures of there Minerals, and other Subftances mix'd with them, and of the compounding and blending of feveral of thofe Subftances together, whereby fome of them are very frangely united and alter'd. But this I mention only by the Bye, and fhall not infift on it, belonging more properly to another Head. To proceed then under this General Head, are comprifed feveral Kinds of Effects, differing only according to the Parts of the Earth they have been wrought upon.

The firft is, The finking of feveral Inland Parts, which were before emi- The firf Spinent, and laying them much lower into Vales. Sometimes, the finking of a ${ }_{\text {Effets, }}^{\text {cies of thater }}$ Part of the Earth to a very great Depth, and leaving behind, inftead of a the fecondgencfirm Ground, a Lake of Salt or Sea-watet. Of thefe we have feveral In-ralFeadorGeftances in Natural Hiftorians. And, to pafs by many others, I fhall only nus of Earthmention fuch as havè lately happen'd. Of this kind Mr. Cbildrey, in his Bri-quakes: tannia Baconica, has collected feveral Inftances; two out of our Englifh Chronicle. His, Relations are thefe, Pag: $62 .{ }^{6}$ Auguft the 4 th, i 585 . after a ve${ }^{\text {' ry }}$ volent Storm of Thunder and Rain, at Nottingham in Kent, Eight miles 'from London, the Ground fuddenly began to fink; and Three great Elms 'growing upon it, were carried fo deep into the Earth; that no Part of them ${ }^{\text {c }}$ could any more be feen. The Hole left (faith'the Story) is in Compafs 80 EYards about, and a Line of 50 Fathoms plummed into it finds no Bottom. Alfo,
'Dec. 18. 1596. a Miile and half from Weftram, Southward (which is not 'many Miles from Nottingham) a Part of an Hedge of Afhes, 12 Perches ${ }^{6}$ long, were funk 6 Foot and an half deep; the next morning 15 Foot more; ' the third morning 80 Foot more at leaft, and fo daily. (And prefently af${ }^{6}$ ter, he fays) Moreover, in one Part of the Plain Field, there is a great Hole ' made by finking of the Earth, to the Depth of 30 Foot at leaft, being in
${ }^{6}$ Breadth in fome Places 2 Perches over, and in Length 5 or 6 Perches. ${ }^{\text {' }}$ There are fundry other Sinkings in divers other Places, one of 60 Foot, a-
${ }^{\text {' }}$ nother of 47 , and another of 34 Foot; ; by means of which Confufion it is 'come to pafs, that where the higheft Hills were, there be the loweft Dales ${ }_{j}$ ' and the loweft Dales are become the higheft Grounds, ©cc.
And again, Pag. 131. he gives an Inftance, upon his own Knowledge, much to the fame purpofe, which lately happen'd; namely;. 'Tuly the 8th $\alpha 657$.
' about 3 of the Clock, in the Parifh of Bickly, was heard a very great Noife 'like Thunder afar off; which was much wonder'd at, becaufe the Sky was 'clear, and no Appearance of a Cloud. Shortly after (faith the Author of 'this Relation) a Neighbour came to me, and told me, I fhould fee a very ' ftrange thing if I would go with him. So coming into a Field, called the ' Lay-field, we found a very gfeat Bank of Earth, which had many tall Oaks 'growing on it, quite funk into the Ground Trees and all: At firtt we dur't - not go near it, becaufe the Earth, for near 20 Yards about, was exceeding'ly much rent, and feem'd ready to fall: But fince that time, my felf and ' fome others have ventured to fee the bottom, I mean to go to the Brink, fo 'as to difcern the vifible Bottom, which is Water, and conceived to be about - 30 Yards from us; under which is funk all the Earth about it, for 16 Yards 'round at eleaft, 3 tall Oaks, a very tall Awber, and certain other fmall 'Trees, and not a Sprig of them to be feen above Water. 4 or 5 Oaks - more are expected to fall every moment, and a great Quantity of Land is 'like to fall, indeed never ceafing more or lefs; and when any confiderable 'Clod falls, it is much like the Report of a Cannon. We can difcern the 'Ground hollow above the Water a great Depth; but how far hollow or how ${ }^{\text {' deep, }}$, is not to be found out by Man. Some of the Water, (as I bave been 'told) drawn out of this Pit with a Bucket, was found to be as falt as "Sea' water, ơc.

A confiderable Circumftance alfo to confirm this Propofition, is a Paffage in that Hiftory I have mention'd out of Linfchoten, of the Inland of Tercera; where he fays [and Some Hills were defaced, and made even with the Ground.]
Kircher in the Preface to his Mundus Subterraneus, Chap. 2. tells us a very remarkable Hiftory of the finking of a Town, and the Land about it, and the Generation of a Lake inftead of it. Contigit (fays he). bac eadem bora res aterna ac immortali Memoria digna, fubverfio videlicet celeberrimi oppidi quod SanEtam Euphemiam dicunt, erat boc in extrema Sinus ora fitum fub equitum Melitenfrum Furifdittione. Cum itaq; ad Lopicium ex vehementi Terra fubfultatione veluti exanimes in terra proffrati tandem fubfidente Natura paroxyfmo, oculis in circum jasentia Loca conjectis, ingenti nebula, paulo ante memoratum oppidum circumdatum vidiffemus; ter fane poft Meridiem, bora tertia prafertim Calo fereno mira of infolita nobis videbatur. Diffpata vero paulatim nebilla, oppidum quafivimus fed non invenimus. Mirum Diiftu, Lacu putidifimo in ejus Locum enato. Quafivimus Homines qui de infolito rei eventu nonnibil certi nobis enarrare poffent, Jed formidabilis cafus. tantag; frag is nuncium non reperimus, ©̌c...-- Nos itineri infflentes Nicaftrum, Amanteam, Paulam ${ }_{2}$ Belviderium tranfeuntes nil aliud ad 200 Millia paffum nifi cadavera Vrbium, caftallorum, ftrages horrendas reperimus, Hominibus per apertos campos palantibus of pretimore veluti exarefcentibus. That is,

- At this very time happened a thing worthy never to be forgotten, viz. the
- Subverfion of the moft famous Town, call'd St. Euphemia: 'twas fituated at
c the fide of the Bay under the Jurifdiction of the Knights of Mälta. When
© therefore we had come to Lopiz, almiof dead from the vehement fhak-
${ }^{6}$ ing of the Earth, and lying proftrate on the Ground, at laft the Paroxy $f m$
c of Nature remitting, cafting our Eyes towards the Neighbouring Places,
* we faw the forementioned Town encompaffed with a great, wonderful, and
c unufual Cloud, which was feen by us three times, efpecially at Three-a-clock
' in the Afternoon, the Heavens being clear. This Cloud being, by degrees,
' diffipated, we look'd for the Town, but found it not, a ftinking Lake (to
6 our wonder) appearing in the Place of it. We fought for fome Perfon or
E other, to give us fome certain Account of this unufual Event-; but could
6 not find one to tell any News of this dreadful Accident and great Deftru-
- Ction, ©ic. We profecuting our Journey, paffing by Nicaftrum, Amantea,
*Paula, and Belvedere, found nothing for 200 Miles, but the remaining Car-
- caffes of Cities and Caftles, and horrid Deftructions; the Men lying in.
' the open Fields, and, as it were, dead and withered through Fear and
- Terror.

To this purpofe, give me leave to adjoin an Extract of a Letter, fent from Balafore in the Eaft Indies, Fan. 6.1665 . 'The fame Star appeared in our
?Horizon, about the fame time 'twas feen with you. The Effects in part
e have already been felt here by unfeafonable Weather, great Mortalities a-
' mongtt the Natives, Englifh, and others. We have had feveral Earth-
"quakes unufual here, which, with hideous Noifes, have in feveral Places

- broke out and fwallow'd up Houfes and Towns. But about 7 Days Journey
- from Ducca, where were at that time 3 or 4 Dutch, they and the Natives
- relate, That in the Market-Place the Earth trembled about 32 Days and
- Nights, without Intermiffion. At the latter end, in the Market-place, the
- Ground turn'd round as Duft in a Whirlwind, and fo continued feveral
${ }^{\text {c }}$ Days and Nights, and fwallow'd up feveral Men who were Spectators, who
${ }^{6}$ funk and turned round with the Earth, as in a Quagmirc. At laft, the
- Earth worked and caft up a great Fifh bigger than hath been feen in this
© Country, which the People caught: But the Conclufion of all was, that the
${ }^{6}$ Earth funk with 300 Houfes, and all the Men, where now appears a large
- Lake fome Fathoms deep. About a Mile from this Town was a Lake full
c of Fifh, which in thefe 32 Days of the Earthquake calt up all her Fifh on
' dry Land, where might have been gather'd many, which had run out of the
- Water upondry Land, and there died: But when the other great Lake ap-
- peared, this former dried up, and is now firm Land.

To the fame purpofe alfo we have feveral other Inftances, fome later and fome nearer home. ' Near Darlington (fays Cbildxey, in his Britannia Baconi"ca, fpeaking of the Rarities of the Bifhoprick of Durham) are three Pits, ${ }^{6}$ whofe Waters are warm (hot, fays Cambdent) wonderful deep, call'd Hell-

- Kettles. Thefe are thought to come of an Earthquake, that happen'd
- Anno 1179. For on Chriftmas Day, fays our Chronicles, at Oxenhall, which

6 is this Place, the Ground heaved up aloft like a Tower, and fo continued
${ }^{6}$ all that Day, as it were immovable, till Evening, and then fell in with a
' very horrible Noife, and the Earth fwallow'd it up, and made in the fame
${ }_{4}$ © Place 3 deep Pits. The fame in the Section of Brecknock, fays, ${ }^{\text {' Two Miles }}$

- Eaft from Brecknock, is a Meer, called Llinfavathan, which (as the People
' dwelling there, fay,) was once a City; but the City was fwallowed up by
${ }^{6}$ an Earthquake, and this Water or Lake fucceeded in the Place: The Lake
${ }^{6}$ is encompaffed with high fteep Hills, ơc.-.
${ }^{6}$ Near Falkirk, faith Lithoow, remains the Ruines and Marks of a Town, ' Erc. fwallowed up into the Earth by an Earthquake, and the void Place is
' fill'd with Water.---- Pliny alfo, in the 88th Chap. of his 2 'd Book of Nat. Hift. records a like Inftance. Mox of in his Montem Epopon cum repente flamma ex eo emicuifet campeftri aquatum planitie. In eadem ơ oppidum bauftum profundo aliog; motu Terra Stagnum emerfiffe. Et alio provolutis Montibus infulam extrtife Prochytam, orc. 'Prefently the Mountain Epoporr (when fuddenly a ' Flame had fhon out of it) was levelled with the Plain; and in the fame 6 Plain a Town was fwallow'd up inte the Deep, and by another Motion of 'the Earth became a Lake. And in another, Place, the Mountain being ' tumbled down, the Ifland Prochyta arofe, ofr.

The Dead Sea alfo in Paleffine, was the Production of a moft terrible Earthquake, and a Fire fent from Heaven: For, methinks, the Relation of the fad Cataftrophe of thofe Four Cities,Sodom, Gomorrha, Zeboim and Adma, mentioned in Scripture, feem fomewhat like that I have newly related out of Kircher of St. Euphemia. There are a multitude of other Inftances which I could bring on this Head, of the finking of Mountains and Hills into Plains, and all thefe into Lakes: Of which Pliny gives feveral Inftances, in the 90 , 91 , and 92 Chap. of his Second Book. The Pico in the Moluccas, accounted of equal Height with that of Tenariff, was by a late Earthquake quite fiwallow'd into the Earth, and Ieft a Lake in its Place. Vefuvius and Strongylus, are by late Earthquakes reduced to almoft half their former Height. Many of thofe vaft Mountains of the Andes in Chile, were by an Earthquake, An. 1646. quite fwallow'd up and loft, as Kircher relates. I could add many Hiftories of the fatal Cataftrophe's of many Towns, and other Places 'of Note; but thefe, I hope, may fuffice to fhew this kind alfo of Mutation in the fuperficial Parts of the Earth, to be effected by Earthquakes:

The fecond Spe- Nor does Earthquakes only fink Mountains and Inland Parts; but fuch cies of thofe Parts alfo as are near to, equal with, and under the Surface of the Sea. Of Efferts under the fecond General. this we have Inftances hear home, of Winchelfea and of the Goodwin-Lands, and of the Towns in Freezland, that have been about 400 Years fince fwal- low'd up by the Sea; and nothing but fome Towers, and the Goodwin-Sands, -are now to be found of them. The like happen'd to feveral Parts of Scotland, as Hector Boethius relates. Linfchoten, in his Hiftory of the Weft-Indies, relates among many other Hiftories of the Effects of Earthquakes, this confiderable Paffage. 'Since, in the Year 1586. in the Month of Fuly, fell another c Earthquake in the City of Kings, the which, as the Vice-Roy did write, c had run 170 Leagues along the Coaft, and athwart in the Sierra $5 \circ$ Leagues. c It ruin'd a great Part of the City. It caus'd the like Trouble and Motion c of the Sca, as it had done at Cbile, which happen'd prefently after the © Earthquake ; fo as they might fee the Sea to fly furioully out of her Bounds, 6 and to run near 2 Leagues into the Land, rifing above 14 Fathom. It co${ }^{6}$ ver'd all the Plain, fo as the Ditches were filied and Pieces of Wood that were - liere, fwam in the Water. There are multitudes of Infances of the like Effects in Ceveral other Parts of the World, which have been wrought by Earthquakes, which may be found in Natural Hiftorians; which, for Brevity-fake, I omit, they ferving only to prove a Propofition, which, I fuppofe, will be granted by any that have either feen or heard of the Effects of Earthquakes.

The third Spe- Now, though I find a general Deficiency in Natural Hiftorians, of Inftaneies of Efferts ces to prove that the fubmarine Parts have likewife fuffer'd the like Effests of under the fi-finking, they lying out of view, and fo cannot without fome Trouble and iond General. Diligence be obferved; yet if we confider from how great a Depth thefe Eruptions proceed, and how little Diftinction they make between Mountains and Plains, as to the weight of removing, we may eafily believe, that the Bottom of the Sea is as fubject to thefe Mutations, as the Parts of the Land. And fince, by the former Relations, we have many Infances of the raifing of the Bottom of the Sea, 'tis very probable that what Quantity of Matter is thrown to and raifed in one Place, is funk, and falls into that Cavity left by another. An Illand cannot be raifed in one Place, without leaving an Abyfs in another. And I do not doubt, but there have been as many Earthquakes in the Parts of the Earth under the Ocean, as there have been in the Parts of the Dry Land: But being, for the moft part, till of late un-
 i, that what happen are never feen; and a 100 to 1 , if they have been feen, whether they be recorded: For how few Writers are there of Natural Hiftory? There is fomewhat of Probability in the Story related by Plato, in his Timiaus, of the Illand Atlantus in the Atlantick Ocean, which he fays was fwallow'd up by an Earthquake into the Sea. And 'ti's not unlikely, but that moft of thofe Illands that are now appearing, have been either. thrown up out of the Sea by Eruptions, fuch as the Canaries, Azores, St. Helena, evc. which the Form of them, and the Vulcanes in them, and the Cinders and Pumice-ftones found about them, and the frequent Earthquakes they are troubled with, and the remaining Hills of extinguifh'd Vulcanes, do all ftrongly argue for: Or elfe, that they are fome of them at lealt fomeReliets of thatGreat Illand which is now not to be found; and yet we have no Records hereof. That there is as great Inequality in the Depth of the Sea, as there is in the Height of the Land, the Obfervations of Seamen, experimented by their Sounding lines, do fufficiently inform us: For Hills, we have deep Holes; and for Mountains and Pikes, Abyffes and Malftroons: And that thefe muft have in all Ages becn filling. with Parts of the Earth, tumbled by the Motion of the Waters, and rowling to the loweft Place, is very probable; and fo they would in time have been fill'd up, had not Earthquakes, by their Eruptions and Tumblings, created new Irregularities. And therefore that there are Itill fuch Places, is an Argument, that there have been of later Ages Earthquakes in fome of them. Of thefe I Thall mention one or two Inftances, which I meet with in Voyages, and Relations of Travellers.

In the Relation of the Circum-navigation of Sir Francis Drake, peaking of the Straights of Magellane, he fays, Pag. $35,^{-6}$ They faw an Ifland with a very high Vulcano; and the nextPage, he fays, 'They had need to have carry'd no-- thing but Anchors and Cables, to find Grouind, the Sea was fo very deep:
${ }^{〔}$ Which Depth is explain'd more exprefs, Pag. 42 . where 'tis faid, 'Being
${ }^{6}$ driven from our firlt Place of anchoring, fo unmeafurable was the Depth,
${ }^{6}$ that 500 Fathoms would fetch no Ground. And in Page 99. of the fame Relation, the Author tells, how their Ship ftruck upon a Rock, which Page 102. he fays, at lbw. Water wás but 6 Foot under Water, and juft by it no Bottom to be foind, by reafon of the great Depth.

Mr. Ricut, in a Letter of his to the Royal Society, dated frome Confantinople, Noy. 1667 , fays,' 'That the Water runs out of the Euxime Sea into the Pro"pont is with a wonderful fwiftnefs, which is more wonderful in regard of the - depth of the Bóphorius being in the Channel fifty or fifty five Fathom Wa' ter, and along the Land in moft places the Ships may lye on the Shore with ${ }^{6}$: their Heads, and yet have twenty Fathom Water at their Sterns.

Befides there effects of raifing and finking the parts of the Earth, there is The third Ge* a third fort, which is the tranfpofing, converting, fubverting and jumbling neral Head or the parts of the Earth together; Overthrowing Mountains, and turning the third fort of them upfidedown, throwing the parts of the Earth from one place to another, effeifsof burying the fuperficial parts; and raifing the Subterraneous. Of thefe kinds of changes there are many inftances in the former Relations I have mention'd, as particularly that of Linfchoten of the Earthquake in the Terceras, and that of Folephus Acofta, of the Earthquake upon the Coaft of Cbile: And there are a multitude of others I'could here fet'down, but I fhall only mention fome of them. 'Soon after, (fays Fofephris' Acofta; in the fame place I mentioned be' fore) which was in the Year 1582, happiened, that Earthquake of Arequipa, which in a manner overthrew the whole City. And a little before in the fame place, he tells of a terrible Earthquake in Guatimala, in the Year 1586 , which overthrew almoft all the City, and that the Vulcan for above fix Months zogether continually vomited a Flood of Fire from the top of it. And a litcle after, the fame Author, in the fame place,' fays, "In the Year of oui Lord ${ }^{\text {G }}$ I581, in Cugiano, a City of Peru, otherwife call'd the Pear, there happen'd
© a Itrange accident touching this Subject'; a Village call'd Andoango (where

- many Indians dwelt that were Socerers and Idolaters) fell fudenly to ruine,
' fo as a great part thereof was raifed up and carried away, and many of the
- Indians fmothered; and that which feems incredible (yet teftified by Men
- of Credit) the Earth that was ruined and fo beaten down, did run and flide
' upon the Land for the fpace of a League and a half, as it had been Water or
- Wax melted, fo as it ftopt and fill'd up a Lake, and remain'd fo fpread all cover the whole Country.

Nor are there wanting Examples of this kind even in this Iffand. Mit. Cbilo drey in his Britannia Baconica has collected feveral out of Cambden; as that in Herefordhire, ${ }^{\text {c }}$ Where, in the Year 1571, Marcley Hill in the Eaft part of ${ }^{6}$ the Shire, with a roaring noife, remov'd itfelf from the place where it ftood, ${ }^{c}$ and for three Days together travell'd from its old Seat. It began firft to ' take its Journey Feb. 17. being Saturday, at fix of the Clock at Night, and ${ }^{6}$ by feven the next Morning it had gone forty Paces, carrying with it Sheep - in their Cotes, Hedge-Rows, and Trees, whereof fome were overturn'd, ' and fome that ftood upon the Plain, are firmly growing upon the Hill;

- thofe that were Eaft were turned Weft, and thofe in the Welt were fet in
- the Eaft; in this remove it overthrew Kinaffon Chappel, and turn'd two
- High-ways near a hundred Yards from their old Paths: The Ground that
- they remov'd was about twenty fix Acres, which opening itfelf with Rocks
- and all bore the Earth before it for four hundred Yards fpace, without any
- ftay, leaving Pafturage in places of the Tillage; and the Tillage overfpread
- with Pafturage. Laftly, overwhelming its lower parts, it mounted to a

Hill of twelve Fathoms high, and there refted after three Days travel.
\therefore At Hermitage in Dorfet fhire, fays Stom in his Summary, Fanuary the third is 52 , a piece ơf Ground of three Acres remov'd from its old place, and was - carricd over another Clofe where Alders and Willows grew, the fpace of ${ }^{\text {b }}$ forty Rods or Pearches, and ftopt up the high-Way that led to Cerne, a Market-Town, and yet the Hedges that it was inclofed with enclofe it ' fill, and the Trees ftand bolt upright, and the place where this Ground ${ }^{6}$ was is left like a great Pit.' And 'tis not a little oblervable, that at the fathe time that thefe changes happened in America, the like alfo happened in England, of which I thall hereafter give divers other Inftances, and fhall alfo deduce Corrolarys, that may otherwife feem very ftrange, and yet I queftion not to proye the truth of them. Maximus (fays Pliny, Cap. 48. Lib. 2. Hift. Niat.) Terre memoria mortalium extitit motus Tiberii Ccefar is principatu. XII. urbibus Afie une rocte proftratis. 'The greateft Earthquake that ever hapaen'd in the ${ }^{t}$ Memory of Man was in the Reign of Tiberius Cofar, twelve Cities of Afia ' being thrown down byit in one Night.' Andagain, (Cap. 83.ibid.) Factum eff femel (fays he) quod equidem in Hetrufca difcipline voluminibus inveni, ingens terrarım portenıum L. Martio, Sex. Fulio Ccff. in Agro Mutinenfinamg; montes duo inter fe concurrerunt, crepitu maximo affultantes recedentefg; inter eos flamma fumoq; in ccelum exeunte inter diu, Spectante evia Amilia Magna equitum Romanorum familisrumq; © viatorum multitudine: Eo concurfu ville omnes elife, animalia permulta qua intra fuer ant exanimata Sunt, anno, ante Sociale bellum. Quod baud fcio an funeftius ipfl terra Italia fuerit quam Civilia. Non minus mirum oftentum oj noftra coonovit atas. Anno Neronis Principis Supremo, ficut in rebus ejues expo Juimus, pritis olei $\int_{q ;} ;$ intercedente via publica in contrarias fedes tran $\int g r e \int f i s$, in Aoro Marrucino Pradiis Vectii Mercelli Equitis Romani res Neronis Procurantis. Thus Englif'd. 'There happen'd once (which I found in the Books of the Tufcane ${ }^{6}$ Learning) within the Territories of Modena, L. Martius and S. Fulius, be-- ing Confulsa great wonder of the Earth; for two Hills encountred each - other charging one anothêr with a great crafh, and retiring again, a great 'Flame and Smoak in the Day-time iffuing out from between them to the ${ }^{6}$ Sky, while a great many of the Koman Knights, their Friends and Travel${ }^{6}$ lers beheld it from the etimilian Road. With this conflict and meeting to © gether, all the Country Houfes were dafht to pieces, many Animals that ' were between them perifh'd. This happen'd before the Social War. I ' know not whether it were not more pernicious to Italy than the Civil-Wars.'

- No lefs a wonder was that in our Age, in the laft Year of Nero (as we have - Hhewn in his Acts) when Meadows and Olive-Trees. (the publick Road lying ' between them) went into the contrary places, in the Marrucine Territory, in ${ }^{6}$ the Lands of Vectius Marccllus, a Roman Knight, Procurator under Nero.

There are many the like Inftances to be met with in Authors, of the placing Parts perpendicular or inclining, which were before horizontal; fo the turning of other parts upfide downwards, of throwing parts from place to place; of ftopping the Paflage of Rivers, and turning them another way; of fivallowing fome Rivers, and of producing others a new; of changing Countries from Barren to Fruitful, and from Fruitful to Barren; of making flands join to the Continent, and feparating parts of the Continent into I1lands. There are other Relations that mention the vaft fpaces of Ground that have been all at once Thaken and overturned, fome of five Hundred Miles in length, and a hundred and fifty in bredth. Of the communication of Vulcanes (which are as it were the Noftrills or conftant Breathing places of thefe Monfters) tho' plac'd at a very great diftance one from another by Subterraneous Caverns. Other Relations furnifh us with Initances of the Subftances they vomit out; fuch as Pumice Stones, and feveral other forts of calcin'd and melted Stones, and Rocks, Ahes, Minerals, hot Water, Sulphur, Flame, Smoak, and various other Subftauces.

The foursh general Head of
bee Effets of Eartbquakes.

In others we find inftances of Liquefactions, Vitrifications, Calcinations, Sublimations, Diftillations, Petrifactions, Transformations, Suffocations and Infective or deadly. Steams deftroyingall things near them, which polfibly may beone caufe of the fcarcity of Relations where 'tis probable there have been fo very many effects wrought in the World of this kind. But thefe I fhall
not infift upon, having I fear too long digrefs'd on this part to thew the variety of effects produced by Earthquakes.

There is only one thing more that. I think pertinent to our prefent pur-of the Unlvers pore, and that is the univerfality of this active Principle: There is no Coun-fality of this try almoft in the World but has been fometimes or other fhaken by Earth-ative Pomer quakes, that has not fuffered rome, if not moft parts of thefe Effects. Seneca or Princities. fays in the Preface to the 6th Book of his Natural Queftions. Omnia ejufdem fortis funt, et $/ \mathfrak{i}$ nondum mota amen mobilia; erramusenim, fi ullam terrarum partem, exceptam immunemg; ab boc periculo credimus, omnes fub eadem jacent lege, nibil, ita ut immobile effet, Natura concepit: Alia temporibusaliis cadunt; © quem: admodum in urbibus magnis nune bac domus nume illa fupenditur, ita in boc orbe Terrarum, nunc hec pars facit vitium nunc illo. Tyrus aliquando infamis ruinis fuit. Afra duodecim Vrbes Simul perdidit. Anno priore Achaiam ei Macedoniam quacungue eft ifta vis mali que incurrit, nunc Campaniam lefit: Circuit fatum, ei fiquid diut prateriit, repetit. Quadam rarius, Solicitat, Sepius quedam. Nibil immune effe ơ innoxium finit. Non bomines tantum, qui brevis ơ caduca resnafcimur; Vrbes oreque terrarum © Litora of ipfum mare in fervitutem fati venit. Quo ergo nobis permanfura promitt imus bona fortund, ơ fälicitatem (cujus ex omnibus rebus humanis velociffima eft levitas) babituram in aliquo pondus © moram credimsus? Perpetua fibi omnia promittentibus in mentem non venit: Id ip fum Jupra quod ftamus ftabile non effe. Neque enim Campania iftud aut Achaia, Sed omnis Soli vitium eft, male cobarere of ex caufis plurimis refolvi; ơ fumma manere partibus ruere. Which I Englifh thus. 'All things are fubject to the fame chance; tho' they are ' not yet moved, they are movable; for we err, if we believe any part of 6 the Earth excufed and free from, this hazzard; all are fubject to the fame - Law; nothing is made by Nature fo fixt as to be unmoveable; fome fink at ' one time, fome at another: And as in great Cities, now this Houfe, now ${ }_{6}$ that Houfe hangs tottering on Props; fo on the great Face of the Earth, ' now this part fails, now that: Tyre formerly was remarkable for its De-

- Itruction: Afia loft at once Twelve Cities. Whatever the Power may be, ' the former Year Achaia and Macedonia felt it now Campania: Fate goes s round, and repeates what it had long before acted: It brings fome things 6 often on the Stage, fome feldom; but fuffers nothing abfolutely free and - untouch'd. Not we Men only are brought forth fhort Liv'd, frail Beings: - Cities, Countries, Shores, nay the Sea itfelf are the Slaves of Fate. Why - therefore do we flatter our felves that the gifts of Fortune will ftick by us, ' or that Happinefs will obferve any Rule or Meafure, Happinefs the molt ' fleeting of all humane Things? They that promife to themfelves all things - fixt, furely never think that the very Ground we fand on is it felf unfixt. ' Nor was that the frailty only of Campania or Acbia, 'tis the fame in all 'Soils and Countries, to be loofely. join'd and compacted, but eafily and by ' many ways diffolved; the whole remains while each part-changes and finks ' into Ruine and Alteration.'

Thus we fee all Countries in the World are fubject to there Convulfions, but thofe moft of all that are moft Mountainous: Such are ufually all the Sea Coafts, therefore Pliny fays, That the Alps, and Appnnine Mountains have very often been troubled with Earthquakes. Aaritima autem maxime quatiuntur (fays he) nec montofa tali malo carent. Exploratum eff mibis Alpes Appenninumq; fapius tremuiffe. Martine places are moft fhaken, nor do the Mountainous efcape, for I have often found the Alpes and Aperinines tremble.

For moft probably thofe that are moft Mountainous; are moft Cavernous underneath them; to countenance which Opinion, I remember to have taken notice in certain very high Cliffs towards the Sea fide, where the Hills feemed, as it were, cleft afunder, the one half having been probably foundred and tumbled down into the Sea, and the other half, as it were remaining, that at the bottom, near the Water, for almoft the whole length, there were very many large Caverns, which, by feveral Circumftances, feem'd to be made before the accefs of the Sea thereunto, and not by the wafhing and beating of the Waves againft the bottom of there Cliffs; for I obferv'd in many of them, that the Plates or Layers, as I may fo call thofe parts between the Clefts in

Rocks, and Clifis to lean contrary ways, and to meet; as it were, at the top like the Roof of a Houre, and others of them in other forms, as if they had becn Caverns left between many vaft Rocks tumbled confufedly one upon anether. And indeed I cannot imagine, but that under the fe Mountains, Iflands, Cliffs or Lands, that have been inuch rais'd above their former level, there mult be left valt Caveins, whence all that Matter ivas thrown, where probably may be the Seat or Place of the Generation of thofe prodigious Powers. But this, only by the Bye; for I intend not here to examine the caufes of their beginnings, force, and powerful Effects, nor of their remaining, ceafing, renewing, or the like. It being fufficient, for my prefent purpofe, to mew, That they have been certainly obferv'd to produce thofe extraordinary Efiects from what Caufe foever they proceed. That they thave been herctofore in many places where they have now ceas'd for many Ages; and that they have lately happen'd in places, where we have no Hiftory that does affure us they have been herefofore. That they have turn'd Plains into Mountains, and Mountains into Plains; Seas into Land, and Land into Seas; made Rivers where there were none before, and fwallowed up others that formerly were; made and deftroy'd Lakes, made Peninfuls Inands, and Inlands Peninfulas; vomited up Iflands in feme places, and fivallowed them down in others; overturn'd, tumbl'd and throwin from place to place Cities, Woods, Hills, cic. cover'd, burnt, wafted and chang'd the fuperficial Parts in others; and many the like ftrange Effects, which, fince the Creation of the World, have wrought many very great changes on the fuperficia! Parts of the Earth, and have been the great Inftruments or Caufes of placing Shells, Bones, Plants; Fifhes, and the like, in thofe places, where, with much aftonifhment, we find them.

Concerning the Vicifitudes that places are fubject to, in relation to Earthquakes, I find a memorable Paffage fent by Paul Ricaut Efguire, now Confule of Smyrna, Dated Novomber 23.1667. 'Conftantinople, fays he, is not now fo ${ }^{6}$ fubject to Earthquakes as reported in former times, there having not hap« pen'd in the laft feven Years, in which I have been an Inhabitant there, above \& one of which I have been fenfible; but within thefe twenty Days in Smyrna c fell out an Earthquake which dangeroufly fhook all the Buildings, but did ' little or no harm ; the Ships in the Road, and others at an Anchor, about ' three Leagues from hence, were fenfible of it. It is reported that this ' City hath been already feven times devoured by Earthquakes, and it is pro' phefied, that it fhall be fo again fo foon as the Houfes reach the old Caftle c upon the top of the Hill, on the fide of which remains the Ruins of the old - City and the Tomb of St. P'lycarpus, St. Fobn's Difciple, ftill preferv'd by " the Greete in great Vencration.

The Monion of :we water ant other caute of alterations oil the Earth.

Another Caufe there is which has been alfo a very great Inftrument in the promoting the alterations on the Surface of the Earth, and that is the motion of the Water; whether caus'd iff. By its Defcent from fome higher place, fuch as Rivers and Streams, caus'd by the immediate falls of Rain, or Snow, or by the melting of Snow from the fides of Hills. Or, 2dly. By the natural Motions of the Sca, fuch as are the Tides and Currents. Or, 3 dly. By the ac-

- cidental motions of it caus'd by Winds and Storms. Of each of thefe we have very miany Inftances in Natural Hiftorians, and were they filent, the conftant Effects, would daily fpeak as much. The former Principle feems to be that which generates Hills, and Holes, Cliffs, and Caverns, and all manner of Afperity and irregularity in the Surface of the Earth; and this is that which indeavours to reduce them back again to their priftine Regularity, by wafhing down the tops of Hills, and filling up the bottoms of Pits, which is indeed confonant to all the other methods of Nature, in working with contrary Principles of Heat and Cold, Drinefs, and Moifture, Light and Darknefs, crc. by which there is, as it were, a continual circulation. Water is rais'd in Vapours into the Air by one Quality and precipated down in drops by an other, the Rivers run into the Sea, and the Sea again fupplies them. In the circular Motion of all the Planets, there is a direct Motion which makes them indeavour to recede from the Sun or Center,

A Difcourfe of Earthquakes.

and a magnetick: or attractive Power that keeps them from receding. Generation creates and Death deftroys; Winter reduces what Summer produces: The Night refrefhes what the Day has fuorcht, and the Day cherifhes what the Night benumb'd. The Air impregnates the Ground in one place, and is impregnated by it in another. All things almoft circulate and have their Vicifitudes. We have multitudes of inftances of the wafting of the tops of Hills, and of the filling or increafing of the Plains or lower Grounds, of Rivers continually carrying along with them great quantities of Sand, Mud, or other Subftances from higher to lower places. Of the Seas wathing Cliffs away and wafting the Shores: Of Land Floods carrying away with then all things that ftand in their way, and covering thofe Lands with Mud which they overflow, levelling Ridges and filling Ditches. Tides and Currents in the Sea act in all probability what Floods and Rivers do at Land; and Storms effect that on the Sea Coafts, that great Land Floods do on the Banks of Rivers. e Egypt as lying very low and yearly overflow'd, is inlarg'd by the fediment of the Nile; efpecially towards that part where the Nile falls into the Mediterranean. The Gulph of Venice is almoft choak'd with the Sand of the Po. The Mouth of the Thames is grown very fhaliow by the continual fupply of Sand brought down with the Stream. Moft part of the Cliffs that Wall in this Ifland do Yearly founder and tumble into the Sea. By thefe means many parts are covered and rais'd by Mud and Sand that lye almoft level with the Water, and others are difcover'd and laid open that for miany Ages have been hid.

Of this kind the Royal Society received a memorable Account from the Learned Dr. Brown concerning a petrified Bone of a prodigious bignefs, difcover'd by the falling of fome Cliffs; the words of the Relation are thefe. ' This Bone (which he prefented the Royal Society; and is now in the Re' pofitory) was found laft Year 1666. on the Sea Shore, not far from Win-- terton in Norfolk; it was found near the Clift after two great Floods, fome - thoufand Loads of Earth being broken down by the rage of the Sea, as it ' often happens upon this Coaft, where the Cliffs confift not of Rock but of ${ }_{6}$ Earth. That it came not out of the Sea may be conjectur'd becaufe it was 4 found near the Cliff, and by the colour of it. for if out of the Sea it would - have been whiter. Upon the fame Coaft, but as I take it, nearer Hasboi rough, divers great Bones are faid to have been found, and I have feen a lower - Jaw containing Teeth of a prodigious bignefs and fomewhat petrified. All - that have been found on this Coaft have been found after the falling of fome ' Cliff, where the outward Cruft is fallen off, it cleariy refembles the Bones c of Whales and great Cetaceous Animals, comparing it with the Scull and - Bones of a Whale which was caft upon the Coaft near Wells, and which I 'have by me, the weight whereof is 95 Pounds.' Thus far he on this Sub"ject. To this may be added the Chartham News, or the difcovery of Riverchorfe, or the Hippoporamus Teeth printed in the Philof. Tranfactions. N. 272s 6 p: 882

Nor are thefe Changes now only, but they have in all probability been of as long ftanding as the World. So 'tis probable there may have been feveral viciffitudes of changes wrought upon the fame part of the Earth; it may have been of an exact fpherical Form, with the reft of the Earths or Planets, at the Creation of the World, before the eternal Command of the Almighty, that the Waters under the Heaven fhould go to their place, which before co-
 τ_{8}^{\sim} a $\beta \dot{\cup}$ and the Darknefs of the Deep was over it (being all over cover'd with a very thick fhell of Water-which environ'd it on every fide, it being then in all probability created of an exact Spherical Figure, and fo the Waters being of themfelves lighter than the Earth, muft equally fpread themfelves over the whole Surface of the Earth) and where the Breath of the Lord moved above or upon the Surface of thefe Waters. It may, I fay, in probability have been then a part of the exact Sphorical Surface of the Earth, and upon the command that the Waters under the Air or Atmofphere (which feems to be denoted by s ssiealuz or Firmament; for the Hebrew Word fignifies an Expanfum) K k k k
fhould

Thould be gatliered together into one place, and that the dry Land Thould appear. It may have been by that extraordinary Earthquake (whereby the Hills and Land were rais'd in one place, and the Pits or deeper places; whether the Water was to recede and be gathered together to conftitute the Sea were funk in another) rais'd perhaps to lye on the top of a Hill or in a Plain, or funk into the bottom of the Sea, and by the wafhing of Waters in motion, either carried to a lower place to cover fome part of the Vale, or elfe be cover'd by adventitious Earth, brought down upon it from fome higher place; which kind of alterations were certainly very great by the Flood of Noah, and feveral other Floods we find recorded in Heathen Writers. If at leaft there were not fomewhat of an Earthquake which might again fink thofe Parts which had been formerly raifed to make the dry Land appear, and raife the bottom of the Sea, which had been funk for the gathering together of the Waters (which Opinion Seneca a cribes to Fabianus) Ergo (fays he) cum affierit illa neceflitas temporis multa fimul fata caufas movent ner fine concuffione Muindi tanta Mutatio eft ut quidam putant inter quos Fabianus eft. His defcription of the Manner and Effects of a Flood, is fine and very futing to my prefent Hypothefis. This Part being thus covered with other Earrh, perhaps in the bottom of the Sea, may by fome fubfequent Earthquakes, have fince been thrown up to the top of a Hill, where thofe parts' with which it was by the former means, covered, may in tract of time by the fall and wathing of Waters, be again uncovered and laid open to the Air, and all thofe Subftances which had been buried for fo many Ages before, and which the devouring Teeth of Time had not confumed; may be then expofed to the Light of the Day.

Troo otberCallfes of the changes on the filperficial parts of the Earth: fivlt from overflowing of the Streams and Inundations of zbe Sea.

There are yet two other Caufes of the mutation of the fuperficial Parts of the Earth, which have wrought many great changes in the World, and thofe are either the Sea's overflowing of a Country or Place, when forced on it with fome violent Storms or Hurricans of Wind, or from the over-flowing of Rivers from great falls of Rain, or from fomething ftopping their Courfe, of there we have many Inftances in Voyages, and we have very often times here at London felt the effects of the Wind driving in the Tide with fuch great force, as that it has off times overflow'd the Banks, fill'd the Streets and Cellers to the no fmall damage of the Inhabitants." At Chatmofs in Lanka-, ${ }^{6}$ Bhire (faith Cbildery) is a low mofly Ground very large, a great part of which (faith. Cambden) not long ago, the Brooks fwelling high carry'd quite away " with them, whereby the Rivers were corrupted, and a number of frefh Filh "perifíd. In which place now lies a low Vale watered with a little Brook, - where Trees have been digg'd up lying along, which are fuppos'd by fome ${ }^{r}$ to have come thus. The Channel of the Brooks being not fower'd, the 'Brooks have rifen, and made all the Land moorifh that lay lower than o-
'ther's, whereby the Roots of the Trees being loofned by reafon of the bog-
© ginefs of the Ground, or by the Water finding a pallage under Ground,

- the Tres thaye either by their own weight, or'by fome Storm, been blowil
down, and fo funk into that foft Earth and been fwallowed up: For 'tis ob-
fervable that Trees are no where digg'd out of the Earth but where the
- Earth 15 boggy, and evel upon Hills fluch moorifh and moift Grounds are
- commonly found, the Wood of the Tre Tres burning very bright like Touch-
wood (which perhaps is by reafon of the bitunilious Earth in which they
Ghave been fo long) fo as fome think them to be Fir-Trees.: Such mighty
Trees are often found in Holland, which are thought to be undermin'd by the
${ }^{6}$ Waves working into the Shore, or by Winds driven forwards and brought
© to thoferwer places where they fettled and funk. . Brit. Bac. Page 167,
1168
The Sea (as is faid before) has eaten a great part of the land away of
"there Weifern Shires. There are on the Shore of this Shire (Cumberland)
- Trees diflovered by the Winds fometimes at low Water, which are elfe co-

6. verd over with Sand , and it is reported by: the People dwelling there-
${ }^{6}$ abouts, that they dig. ap. Trees without Boughs out of the Ground in the

' places of the Shire. Child:p. 17 r . Many Trees are found and digged out ' of the Earth of the Ifle of Man. Ide. p. 178.'
'In divers places of the Low Grounds and Champian Fields of Anglefy, the ' Inhabitants every Day find and dig out of the Earth the Bodies' of huge ' Trees with their Roots, and Fir-Trees of a wonderful bignefs and length: - Page 150 .
'At the time when Henry. II. made his abode in Ireland were extraordina' ry violent and lafting Storms of Wind and Weather, fo that the Sandy Shore 6 on the Coafts of the Pembrockfhire, was laid bare to the very hard Ground, - which had lain hid for many Ages, and by further fearch the People found ' great Trunks of Trees, which when they had digged up, they were ap"parently Lopped, fo that one might fee the ftrokes of the Ax upon them, ' as if they had been given but the Day before; the Earth look'd very black,
c and the Wood of there Trunks was altogether like Ebony. At the firft
' difcovery made by thefe Storms, the Trees we fpeak of lay fo thick, that
' the whole Shore feem'd nothing but a lopped Grove. Whence may be ga-
' ther'd, faith Cbildry, that the Sea hath overflow'd much Land on this
${ }^{6}$ Coaft, as it has indeed many Countries bordering upon the Sea, which is
'to be imputed to the ignorance of the Britans and other barbarous Nations,
' which underftood not thofe ways to reprefs the fury of the Sea which we
${ }^{6}$ now do. p. 142 . 143 .
' In the low Places on the South fide of Cbefloire, by the River Wever, Trees ' are oft times found by digging under Ground, which People think have lain ' buried there ever fince Noab's Flood. p. 129. 'St. Bennets in the Holme hath
'fuch fenny and rotten Ground, that (faith Cambden) if a Man cut up the
\& Roots or Strings of Trees it flotes on the Water. Hereabout alfo are

- Cockles and Periwinkles fometimes digged up out of the Earth, which makes
' fome think that it was formerly overflowed by the Sea.' Divers of thefe Effects do feem to be caufed by Inundations of the Sea, tho' there are others of them that do rather feem afcribable to Earthquakes, than to Inundations caus'd by Storns; for that Earthquakes have produced fuch Effects as the burying of Trees and Plants, divers of the formerly mention'd Hiftories do fufficiently manifeft.

The Lignum Foffile which is found in Italy, of which we have a good account given by Francefoo Stelluti (tho' by that Author it be fuppofed to be generated out of the fubterraneous Parts of the place where it has been found; yet)from many remarkable circumftances in this Hiftory, it feems very probable to me to have been firft buried by fome Earthquakes, and afterwards to be varioully metamorphofed and changed byithe Symptoms which ufually follow the Co the Country of Italy, to wit, the emitting of hot Steams and Snoaks proceeding from fubterraneous Fires, which do their often fhift their places, burn the parts of fome of thofe Trunks into black and brittle Coles; melt a kind of Ore into the Pores of others ; petrify the Subitance of another fort; bake the Dirt and Clayifh Subftances which have foaked into the Pores of a fourth fort into a kind of Brick; rot the Parts of others, and convert them into a kind of Dirt or Muddy Earth ; and fo act varioully and produce differing Effects upon thofe buried Subftances, according to the Nature of the Earths, Minerals, Waters, Salts, Heats, Smoaks, Steams, and other aftive Inftruments cafually applied to the parts of the buried Trunks, by the confufion of the Earthquakes, and by immediate application, and long continuance and digention, as I may call it, in this Laboratory of Nature, transformed into other Subitances, and exhibit all thofe admirable Phænomena mentioned by that Author, whereby the bury'd Bodies are transformed. Nor is it fo much to be wondered at, that fuch Subftances as Vegetables (which being expofed to the Viciflitudes of the Air and Water, are quickly corrupted and confumed, and many of them much fooner if buried in the Earth) fhould after fo many Ages perhaps, remain intire, and rather more fubftantial found and permanent than if they were newly cut down. Since if we confider the Nature of the decaying and corruption in all kind of Animal and. Vegetable
\square

Subftances, we fhall find that the chief caufe of it feems to be from the Action of the fluid Parts upon the folid for the diffolving of them: and wherefoever the Internal Fluid is cither firft changed or altered by the mixture of fome other hetcrogenous Subftance, fo as to loofe that diffolving property as by the intermixture of Salt, Spirit of Wine, cic. or by incorporating with it and hardning it into a folid Subftance, as in Petrifactions, orc. Or, fecondly, exhaled by a gradual and gentle degree of heat, and fo the folid Parts only left alone, and kept either dry, or fill'd with a fluid of an heterogeneous Nature, fuch as unctuous and fpiey Juices with watery Subftances. Or, Thirdly, Congealed and hardened either by cold or the peculiar Nature of the Juice itfelf; fuch is fieezing and the hardning of Coralline Plants, or Submarine Vegetables, Horns, Gums, Bones, Hair, Feathers, of. wherefocver, I fay, Bodies are by , thefe means put into fuch a Conftitution, that the Parts aft not upon one another, and continue in that fate by being preferved by adventitious Moifture or foft'ning by homogeneous Fluids, they are, as it were, perpetual, unlefs by extraordinary Heat, many of thofe otherwife folid and unactive Subftances are made fluid by fuch active Difolvents; and unlefs they be immerfed in fuch Liquors or Menftruums as do of themfelves diffolve and work on them; we fhall not, I fay, wonder at the laftingnefs of thefe buried Subftances, if we confider alfo the various Juices with which feveral parts of the Earth are Furnifh'd, Uņtuous, Watery, Styptick, Saline, Petrifactive, Corrofive, and what not. There are fome Juices of the Earth which do, as it were, perpetuate them by turning them into Stone. Others do fo decply pierce and intimately mix with their parts, that they wholly, as it were, change the Nature of thofe Subftances, and deftroy that property of Congruity which all Bodies generated in the Air and Water feem to have; which are very apt to be diffolved and corrupted by innate aerial and aqu ous Subftances. Such are all kinds almoft of oleaginous and fulphureous Subftances, and divers faline and mineral Juices. Others indeed do not preferve the very Subftance of thofe Vegetables,: but infinuating into the Pores, and there, as it were, fixing, they retain and perpetuate the Shape and Figure, but corrupt and diffolve the interpos'd part of the Vegetable; of all which kinds I have feen fome Specimina, as I have alfo of divers other Subftances Pickled, Dried, Candyed, Conferv'd, preferv'd, or Mummify'd by Nature : where therefore the Subftances have happen'd to be bury'd with prefervative Juices, they have withfood the injury of Time; but where thofe Juices have been wanting, there we find no Footłeps of thefe Monuments of Antiquity.

A ad Caufe of
But to return to what I was profecuting, another caufe which may make alterations on the Eartb b
fide Eartbquakes, is yiolent motions of the Air. alterations on the Surface of the Earth, is any violent motions of the Air, whereby the parts of the Earth, in dry Weather, are tranfported from place to place in the Form of Duf:. Of this kind Travellers tell us very ftrange Stories of the removal of the Sands in the Deferts of Arabia, and other Deferts in Africa; and we have fome inftances of it here in England, to wit, in Nor- folk and Devonhhire (in the former of which there are often found natural Mummies which have been buried alive by thofe removing Sands, and by their drinefs preferv'd) But thefe greater and more fuddain removals of Sand and Duft are not fo univerfal, and therefore not fo minuch to my prefent purpofe; tho' ponfibly they may have been more frequent heretoforc, which the Layers of Sands to be found in digging Pitts and Wells feem to hint: But that which is moft univerfal, is very flow, and almoft inperceptible, and that is the removing of the Duft from the higher Parts, and lettling in the lower by- the Wind or motion of the Air. This tho' its effects be almoft infenfible, yet being conftant, muft needs, in length of time, nuch promote the levelling and fmoothing of the Surface of the Earth.

3dy, Agradu-
al finking of hrivy Bodies into the Surface.

I might name alfo another caufe of the tranfpofition of the fuperficial Parts of the Earth; and that is from the gradual fubfiding or finking into the Earth of the more heavy, and the Ebullition or refpective infivg of the more light Parts upwards:- Hence we may obferve, that may of thd yaft Buildings
and Towers have funk into the Earth. And the like we judge of thofe valt Stones in Salisbury Plain, and we find conftantly alinoft in all Stone Monuments placed in Church-yards, and in all: old Churches unlefs placed on avery high place, and founded on fome Rock. The Caufe may poffibly have great Influence where the Earth is very foft, 〔pungy, or boggy; and poffibly many of thofe Trees which are found in boggy. Grounds, may have been buried, by having been either fell'd, or blown down by Wind, or waifh'd down by fome Inundation well impregnated with mineral Juices, and fo made heavier than the fubjacent Earth, and fwallowed into it. Several of the former Relations do indeed prety well agree with this Hypothefis; and I am very apt to think that where the Surface of the Earth has not been much alter'd fince the Creation, if any fuch there be, if itwere fearch'd into it would be found that the lighteft Parts, lye next the Surface, and fo heavier in lower Parts, which makes me imagine that the natural place of Minerals is very deep under the Surface of the Earth, and (poffibly) to be found under, every ftep of Ground, were fearch made under it to a fufficient depth; and that the reafon why we find it fometimes near the Surface of the Earth;' as in Mountains, is not becaufe it was there generated, but becaufe it has been by fome former Subterrancous Eruption- (by which thofe Hills and Mountains have been made) thrown up towards the Surface of the Earth. And as Gold is the heavieft, fo it is the fcarceft of all Mettals. And I do not at all queftion but that there may be other Bodies or Mettals as much heavier than Gold, as Gold is then common Earth. To make thefe Conjectures the more probable, fee what Sir Pbiliberto, Vernatti. writes from Batavia in the Eaft-Indies, in anfwer to fome Queries fent him by the Royal Society. 'I 6 have often (fays he) felt Earthquakes here, but they do not continue long. - In the. Year 1656, or 57, (I do not remember well the time) Batavia was * covered in one Afternoon about two of the Clock, with a black Duft, which ${ }^{6}$ being gathered together, was fo ponderous, that it exceeded the weight c in Gold. It is here thought that it came out of Hill that burneth in Sumatra - near Endrapeor.

Thefe fiery Eruptions in all probability come from a very great depth and with a great violence; and poffible even that golden Powder that is fometimes thrown up may have fomewhat conduced to the caufe of the violence of it. We know not what Method Nature may have to prepare an Aurum Fulminans of her own, great quantities of which, being any ways heated and fo fired, may have produced the Powder. However, whether for not, it were very well worth trial to examine, whether the Flower that may be catch'd in a Glafs Body, upon fulminating a quantity of fuch Powder gradually by fmall parcels, would, by being ordered as common Gold, make again an Aurum Fulminans: Or whether this Fulmination, which is a kind ofInflaming of the Body of the Gold, does not make fome very confiderable alteration in the Nature and Texture of it. Since we find that kind of Operation, to wit, inflaming or burning does confiderably alter the Texture of all other Bodies fo wrought on. This only by the way.

But to proceed to the laft Argument to confirm the 6th Propofition I at firlt undertook to prove, namely, that very many parts of the Surface of the Earth (not now to take notice of others) have been transform'd tranfpos'd and many ways alter'd fince the firft Creation of it.) And that which to me found shells, $\& c_{c}$ feems the ftrongeft and moft cogent Argument of all is this, That at the tops in the Earth. of fome of the higheft Hills, and in the bottom of fome of the deepert Mines, in the midit of Mountains and Quarries of Stone, eic. divers Bodies have been and daily are found, that if we thoroughly examine we fhall find to be real fhells of Fifhes, which for thefe following Reafons we conclude to have been at firft generated by the Plaftick faculty of the Soul or Life-principle of fome animal, and not from the imaginary influence of the Stars, or from any Plaftick faculty inherent in the Earth itfelf fo form'd; the ftrefs of which Argument lies in thefe Particulars.

1f. Proof that they are true skells.

2d. Proof.

3d. Proof. ftances, we find that fhe always joins the Body fo fram'd with fome and SubThus the Shells of Animals, whilf they are forming pejoin'd whe Animal to which they belong. Peculiar Flow are Leaves, and Fruit are appropriated to peculiar Roots, whereas thefe on the contrary are found mixt with all kind of Subftances, in Stones of all kinds, in all kinds' of Earth, fometimes expos'd to the open Air without any co' herence to any thing. This is at leaft an Argument that they were not generated in that pofture they are found; that very probably they have been feretofore diftinct and difunited from the Bodies with which they are now mixt, and that they were not formed out of thefe very Stones or Earth, as fome imagine, but deriv'd their Beings from fome preceding Principle.

4th. Proof.
Fourthly, Wherever elfe Nature works by peculiar Forms, we find heralways to compleat that form, and not break off abruptly. But thefe Shells that are found in the middle of Stones are moft of them broken, very few compleat, nay, I have feen many bruifed and flaw'd, and the parts at a pretty diftance one from another, which is an Argument that they were not generated in the place where they are found, and in that pofture, but that they have been fometimes diftinet and diftant from thofe Subftances, and then only placed, broken and disfigured by chance, but had a preceeding and more noble Principle to which they ow'd their. Form, and by fome hand of Providence, were calt into fuch places where they were filled with fuch Subftances, as in tract of Time have condenfed and hardened into Stone: This, I think, any impartial Examiner of the fe Bodies' will eafilygtant to be very probable, efpecially if he take notice of the Circumftances I have already mention'd. Now, if it be granted, that there have been preceding Moulds, and that thefe curiounly figured Stones do not owe their form to a plaftick or forming Principle inherent in their Subftances; why might not thefe be fuppofed Shells, as well as other Bodies of the fame Shape and Subftance, generated none knows how, nor can imagine for what.

5th. Proof. Further, if there be the apifh Tricks of Nature, Why does it not imitate feyeral other of its own Works? Why do we not dig out of Mines everlafting Vegetables, as Grafs for inftance, or Rofes of the fame Subftance, Figure, Colour, Sniell? ©oc. Were it not that the shells of Fifhesate made of a kind of fonny Subftance which is not apt to corrupt and decay. Whereis, Plants and other animal Subfances, even Bones, Horns, Teeth and Claws are more liable to the univerfal Menfrum of Time.' 'Tis propable therefore, that the fixeduefs of their Subftance has preferved them in their priftine Form, and not that 2 new plaftick Principle has newly generated
them. Befides, why fhould we not then doubt of all the Shells taken up by the Sea-fhore, or out of the Sea (if they had none when we found them) whether they ever had any Fifh in them or not? Why fhould we not here conceipt alfo a plaftick Faculty diftinet from that of the Life-principle of fome Animal; is it becaufe this is more like a Shell than the other? That I am fure it caninot be. Is it becaufe 'tis more obvious how a Shell fhould be placed there? If fo, 'twould be as good Reafon to doubt if an Anchor fhould be found at the top of a Hill, as the Poet affirms, or an Urn or Coins buried under Ground, or in the bottom of a Mine, whether it were ever an Anchor, or an Urne, or a coined Face, or made by the plaftick Faculty of the Earth, than which what could be more abfird:- And thofe Perfons that will needs be fo over confident of their Omnifcience of all that has been done in the World, or that could be, may, if they will vouchfafe, fuffer themfelves to be asked a Queftion, Who in form'd them? Who told them where England was before the Flood; nay, even where it was before the Koman Conqueft, for about four or five thoufand Years, and perhaps much longer; much more where did they ever read or hear of what Changes and Transpofitions there have been of the parts of it before that? What Hiftory informs us of the burying of thofe Trees in Chefhire and Anglefy? Who can tell when Tenariff was made? And yet we find that moft judicious Men that have been there and well confidered the formand pofture of it, conclude it to have been at. firft that way produced. But I fuppofe the moft confident will quickly upon examination, find that there is a defect of Natural Hiftory; if therefore we are left to conjecture, then that muft certainly be the beft that is backed with moft Reafon, that Clay, and Sand, and common Shells can be changed and incorporated together into Stones vety hard. I have already given many inftances, and can produce hundreds of others, but that I think it needlefs, that feveral parts of the bottom of the Sea have been thrown up into Inands and Mountains. I have alfo given divers Inftances, and thof fome of them within the Memory of Man, where 'tis not in the lealt to be doubted but that there may be found fome Ages hence feverat shells at the tops of thore Hills there generated; and as little, that if Quarries of Stone fhould be hereafter digged in thofe places, there would be found Shells in corporated with them; and were they not beholding to this inquifitive and learned Age for the Hiftory of that Eruption, they might as much wonder how thefe Shells fhould come there, and afcribe them to a plaftick Fa-: culty, or fome imaginary Influence, as plaufibly as fome now do. I have alfo fhewed, that Water and divers other fluid Subftances, may be, in tract of Time, converted into Stone and fony Subftances; and fo fuch Liquors penetrating the Pores of there Shells, and efpecially if they be affifted by the benumming Steams that fometimés iffue from Subterraneous Erruptions, may very much contribute to the prefervation of thofe Shells from Corruption and cruinbling to Duft under the crufhing Foot of Time. Befides, that the Shells themfelves are fo near the Nature and Subftance of Stone, that they are little fubject to the injuries of the Air or Weather; fo that thefe fmall pyramidal Houfes of Shell-Fifhes feem not lefs lafting Monuments than thofe vaft piles of Stones erected by the antient Inhabitants of Egypt, which outvye all the more curious Fabricks of Grecian and Roman Architecture both for their Antiquity and prefent Continuance. Nor do they exceed the Works of Architects for lafting only, but for Ornament, for Strength, and for Convenience.

Now if all there Bodies have been really fuch Shells of Fifhes as they moft refemble, and that there are found at the tops of the moft confiderable Mountains in the World as Caucafus, the Alps, the Andes, the Appernine, and Pyrrenean Mountains, to omit other Hills nearer and of lefs note, and that tis not very probable that they were carried thither by Mens Hands, or by the Deluge of Noah, or by any other more probable way than that of Earthquakes; 'tis a very cogent Argument that the fuperficial Parts of the Earth have been very much chang'd fince the beginning, that the tops of Mountains have been under the Water, and confequently alfo, that divers parts of the bottom of the Sea have been heretofore Mountains: For tho 1
confers I have butifew Inftances to prove it; befides, that of Plato's Atlantis, and fome others that I have already mention'd ; yet 'tis very probable, that whenfoever an Earthquake raifes up, great part of the Earth in one place, it fuffers another, to fink in another place; for Gra-1 vity is a Principle that will not long fuffera fpace to, remain unfill'd under fo waft a pile of Earth as a Mountain, unlers the Subftances, fo thrown up, be i of very hard, clofe and vaft Stones that may; as it were, vault it . In which cafes 'tis very probable (and Kircher and divers other Authors that write of Mines and Quarries, gives us many, inftances to confirmit) that thefe Cracks and Cliffs foleft, are fill'd up with fuch Petrifying or Mineral Waters as domake great varieties of Stones, Marbles, Sparrs; Caulks, and Ores, iand, fo there is made a tranfpoiltion as well as a transformation. Which fuppofition: (by the way) I think will furnifh a very probable Reafon of the fhape of the Veins and Cracks of feeckled Marbles and other Stones, of the form alfo of the Veins of Ores, Stones, Clays, or of the Earth, and of their fo mixing together ; of the lying of Mettals in Mountains and other Mines, erc. but of thefe only here by the Bye, becaufe I refer what I have to fay of that to another Subject, viz. A Hiftory of the Forms and Proprieties of Minerals and Metals. To proceed then.

The feventh The Seventh Propofition that I undertook to make probable, was, That propofitioncon- 'tis very probable that divers of thefe Tranfpofitions and Metamorphofes frmed. have been wrought even here in England: Many of its Hills liave probably, been heretofore under the Sea, and divers other parts that were heretofore high Land and Hills, have fince been covered with the Sea. Of the latter of there I have given many Inftances already, and that which makes the firft, probable, is the great quantities of Shells that are found in the moft InandParts of this Ifland; in the Hills, in the Plains, in the bottoms of Mines and in the middle of Mountains and Quarries of Stones. Of this kind are thofe: Shells, which any inquifitive Man may find great quantities of in Portland-ftone; Furbeck-Itone, Burford-ftone, Nortbamptonfhire-ftone, out of which I have often pick'd Mufcles; Cockles, Periwinkles, Oyfters, Scallop, and divers other Shells that are buried in the very Body and Subftance of the Stone; and indeed they may be found of fome kind or other in almoft all kinds of Stone. That the Kainfham Snail Stones, and thofe found in feveral onher parts of England, have been the Shells of Fifhes, I hope the Arguments I have already urged may fuffice to evince. As alfo, that thofe Helmet Stones (of which fort I my felf have found in many places of England, and others have furnifh'd me with many more found in other parts of it) are nothing but the fillings of the Shells of a fort of Echini or Egg Fifhes.

Now 'tis not probable that other Mens. Hands, or the general Deluge which lafted but a little while, fould bring them there; nor can I imagine any more likely and fufficient way than an Earthquake, which might heretofore raife all thefe Iflands of Great. Britain and Ireland out of the Sea, as it did heretofore, of which I have already mention'd the Hiftories; or as it lately did that Ifland in the Canarys and Azores, in the fight of divers who are yet alive to teftifie the Truth and Manner of it: And poffibly England and Ireland might be rais'd by the fame Earthquake, by which the Atlantis, if we will believe Plato, was funk. And I doubt not but any inquifitive Man that has opportunity of traveling and examining feveral of the Mountianous Parts and Cliffs, and of the Mines, Quarries, and other fubterraneous Parts of Enoland, will meet with a great many other Arguments to confirm this Suppofition, befides thofe I have already alledg'd: But thofe I hope may fuffice for the prefent to excite Men to this Curiofity, which was the chief reafon of this prefent exercife. And this makes way for, the Eighth Propofition, which is

The cightbFropoftion confirmed.

Eighthly, That mof of thefeMountains and Inland places whereon there kind of Petrify'd Bodies and Shells are found at prefent or have been heretofore, were formerly under the Water, and that either by the defcending of the Waters to anothicr part of the Earth by the alteration of the Center of Gravity of

A Dijcourje of Earthquakes.

the whole bulk, or rather by the Eruption of fome kind of Subterraneous Fires or Earthquakes, great quantities of Earth have been deferted by the Water and laid bare and dry. That divers places have been thus raifed by Earthquakes has been already proved from many Hiftories; and then why may not all of them have the fame Original, efpecially fince there is no other more probable Caufe that we know of, that fhould convey and place thofe Shells on the tops of Mountains? That they really are Shells, and have been the receptacle of Fifhes, I hope the Arguments I have already alledg'd may fuffice to perfuade: If then they - have been Shells, and have been there placed, why fhould we not conclude that That part hath been under the Water with as much reafon as feeing Towers, occ. under the Water near--..... ------we do that thofe parts have been heretofore above Water, which Hiftorics inform us of, or as we might have done if we had had none even from what the thing itfelf fpeaks. I think we may with as much reafon doubt if an Urn fhonld be digg'd up full with old Coins, ftamped with the fame impreffion, made of the fame Subftance and Magnitude of thofe ufed by the ancient Romans, or any other Nation, of which we have good Hiftory; Firft, Whether ever thofe Coins were made by Mens Hands, or by a plaftick Faculty of Na ture; for it is certainly no more difficult a task for Nature to imitate the one than the other. And, Secondly, Whether ever that Urn were made and thofe Coins were put into it and fhaped by Mens Hands, or that they were fhap'd and thrown into it meerly by Nature ; perhaps thofe fuppofitions might not be impoffible, but fure all Men will judge them very improbable: And I think the Cafe in this particular I am fpeaking of very much the fame. Firft, That there is much greater reafon to imagine the Shells fo found to have been the Exuvia of fome Iiving Creature, and next, that they have been placed there where they are found when that part was under Water, and that part to have fince been rais'd up to that height above the Sea by foine preceding Earthquake. There is no Coin can fo well inform an Antiquary that there has been fuch or fuch a place fubject to fuch a Prince, as thefe will certify a Natural Antiquary, that fuch and fuch places have been under the Water, that there have been fuch kind of Animals, that there have been fuch and fuch preceding Alterations and Changes of the fuperficial Parts of the Earth : And methinks Providence does feem to have defign'd thefe permanent fhrpes, as. Monuments and Records to inftruct fucceeding Ages of what paft in preceding. And thefe written in a more legible Character than the Hieroglyphicks of the ancient Egyptians, and on more lafting Mionuments than thofe of their vaft Pyramids and Obelisks. And I find that thofe that have well conlider'd and ftudy'd all the remarkable Circumftances to be met with at Teneriffe and Fayale, do no more doubt that thofe vaft Pikes have been raifed up by the Eruption of Fire out of their tops, than others that have furvey'd the Pyramids of Eoypt, or the Stones on Salisbury Plain do doubt that they have been the effects of Man's Labours. And they do it with as much reafon; for all Conclufions that are not immediately grounded on Senfe, or the refult of it are but Hypothetical and from a Similitude; for fince it has been heretofore and lately feen, that fuch Eruptions have produc'd fuch kind of Hills and Illands, and that the tops of thefe Hills. do as yet burn, and that there are all about the fides of them huge Stones and Rocks, and even Mountains lying in Poftures as if they had been tumbled down from the top; 'tis a rational Conclufion to fay, that 'tis very probable thefe have had the fame Original with thofe:

But as to thofe vaft tracts of Ground that lye very far from the Sea, it Change of the may perhaps ito fome feem not impoffible, that the Center of Gravity or Earths Centet Method of the attraction of the Globe of the Earth may change and Thift of Gravity places, and if fo, then certainly all the fluid parts of the Earth, will conform thereto, and then'twill follow that one part will be coveri'd, and overflow'd by the Sea that was before dry, and another part be difcover'd and laid dry that was before overwhelm'd. Now, tho' this Conjecture may at firt reading feem a little extravagant, yet if we confider, that as great alterations have been really obferv'd, we may a little moderate a two fevere Cen-

322 A Dijcourje of Earthquakes.

fure ; That the Mjagnetical Poles and Meridians of the Earth have been alter'd, and that they do at this prefent continue to do fo is granted almoft by all, a and confirmed by a multitude of Obfervations made in divers Parts of the World, and by collecting and comparing the Obfervations I have met with: I fuppofe the Pole of the Magnetifm to be at'a certain diftance from the Pole of its daily Motion, and that it does move round that Pole at a certain diftance in a certain number of Years, and that it does annually proceed in this Circle forne parts of a Degree: So that whereas the Magnetical Pole was formerly North-Eaft of Ruffia, it is now grown North-Weft of it, and a little to the Weftward even of England's Meridian: Monficur Petit Engenier to the French King, is of Opinion, That the Pole of the diurnal motion of the Earth alters, but I confefs I cannor in the leaft affent to it from any of thofe Arguments that he alledges, but I do rather think that divers of them do make againft his Hypothefis; yet 'tis not impolfible but that a very great Earthquake altering the Center of Gravity, may alfo alter the Pole of Rotation; for we find by experience, that if any thing be laid upon one fide of a large Ligmum Vite Ball fufpended by a String, and that Ball be turned round upon the String, it fhall not turn exactly about the Point by which 'tis, fufpended, but about fome other Point. Befides this, we know that the direction of thefe Poles, as to the Heavens, doth vary, for whereas, it pointed at a part of the Heavens many, degrees diftant from the Star in the top of the tail of the little Bear, now it points almoft directly towards it. Befides this, we find that the Points of the Interfection of the 厄्quinoctial and Ecliptick varies, and poffibly even the motions of all may vary. A diurnal Revolution of the Earth may perhaps have been made in a much fhorter time than now; polfibly there may have been the fame alterations in the Annual; and theri a Year, or a Day at the beginning of the World would not be of fo long a duration as now when thofe motions are grown flower; for if the motions of the Heavens be analogous ito the motion of a Wheel or Top, as I think I can by very many Argarments make probable, then if the Earth were (as it were) at firft fet up or put into a rapid circular Motion, like that of a Top, "tis probable that the fluid Medium in which it moves, may after a thoufand Revolutions, a little retard and flaken that motion, and if fo, then a longer fpace of time will pafs while it makes i:s Revolution now than it did at firft.

Pofibly the old Pautriarchs livedno longer in fome fenfe than Men do now.

Hence poflibly the long Lives of the Pofterity of Adam before the Flood, might be of no greater duration then Mens Lives are ordinarily now; for though perhaps they might number more Revolutions of the Sun, or more Years than we can now, yet our few Years may comprehend as great a fpace of time; this perhaps might deferve to be inquired into had we a certain meafure of time, fuch as fome would have a ftanding Pendulum of a certain length; but fince we are upon fufpecting, we may even doubt whether the power of Gravity itfelf may not alter in time; we find that the Poles of the Loadfone may be changed, that it does take up more at one time than another; that its virtue may be wholly deftroyed by Fire, and fome other ways; and befides that, one of thefe changes is really wrought in the Earth, and therefore 'tis not impoffible but that even the attractive Power of the Earth (tho' I confefs I think it quite differing from that of the Loadfone) may be intended or remitted; if fo then the Pendulum will be no certain Standard for the examination of the length of Time by; for the more the gravitating Power is increas'd, the quicker will be the Vibrations of any Pendulum and the more weak it is, the flower are the Vibrations: But this Digreffion only by the bye. To return then, I fay, tho' fomewhat may be faid for this Suppofition I have ftarted, yet I confefs I do more incline to believe that what Mutations there have been of the Superficial Parts, have been rather caus'd by Earthquakes and Eruptions, which ufhers in my Ninth Propofition. Namely,

That it feems very probable，that the tops of the mof confiderable Moun－Tpe nintb Proo tains of the World have been under Water，and that moft probably they pofition con－ feem to have been raifed to that height by fome Eruption：So that thofe pro－frmed． digious piles of Mountains are nothing but the effects of fome great Earth－ quakes．This the Poets feem＇d to vail under，the feign＇d Story of the Giants， thofe Earth－born Brothers waging War with the Gods，where they are faid to heap up Mountains upon Mountains，Offa and Olympus upon Peleon，and to caft up huge Stones and Fire at Heaven，but that at laft overcome by Fove with his Thunder，they were buried under Mountains，the chiefelt of them， nancly，Typhous under Sicily，according．to Ovid Metamorph．Lib．5．

```
Vafta Gigante is imjecta eft Infula membris
Trinacris, \&c.-----

> Thus Englifh'd by Sandys.
```

Trinacria mas on micked Typhon thrown， Who ünderneath the Iflands weight doth groan； That durft attempt the Empire of the Skies： Oft be ertempteth，but in vain to rife． Aufonian Pelorus bis right Hand Doron meighs；Pachyne on the left doth ftand； Hi：Legs are under Lilybæus／pread； And Ktna＇s bafes charge bis horid Head： Where，lying on bis Back，bis Faws expire Tivick Clouds of Duft，and vomit flakes of Fire． $O_{i} t$ times be ftrusoles with the weight belom， And Tomns and Mountains labours to overthrom． Earthquakes theremith：The King of Shadoms dreads For fear the Ground hould Jplit above their Heads，\＆c．

And that nothing elfe but an Earthquake is underfood by that Giganto－ inachia of the Poets feems yet plainer from what Virgil in the Third Book of his eEneis，fpeaks in his－Defcription of the Shores of Sicily．

[^7]Thus Englifh＇d by Ogilby．

The Port ras great and calm with foelt＇ringShores， Eut near from horrid Ruins Ætna roars； There in black Whirlwinds pitcly Clouds afpire， With Sparkling Cinders mixt with blazing Fire， And Globes of Flame bigh as the Stars are born； Out are the Mountains Marble Entrails forn， Then uppards vomited，and melted Stones Belcht from bis Stomach，bos nith borrid Groans．

Enceladus with Thunder Struck，they tell， Vnder the weight of this buge Burthen fell， Above him roas the mighty Ætna laid， Who now breaths Fire，through broken Trunks （convey＇d
And as be weary turns，a Thunder crark Sicilia fbakes，and Heav＇n is bung with black．

And as the Poets above－mention＇d had particular Stories and Giants for Sicily and Ætna，fo，had they alfo for other Vulcans，and from the frequency of them in former Ages，about Greece and the other Parts of the Mediter－
 of the Giants；and that nothing but Earthquakes were deciphered by thefe Giants may be further collected from the place where they were faid to be bred，namely，the Phlegrean Fields in Campania，a part of which is now cal－ led the Court of Vulcam，a place that is the vent of many Subterraneous Fires． ${ }^{\prime}$＇Tis（fays Sandys）a naked Level，in form Oval 1246 Foot long，and 1000 ：broad，environ＇d with high clify Hills that fume on each fide and have their fulphureous
© fulphureous Savour tranfported by the Winds to places far diftant; you would think the huingry Fire had made this Valley with continual feeding, t which breaks out in a number of places. Here the Fire and Water make a ${ }^{-}$-horrible rumbling, conjoining together as if one were Fuel to the other, ${ }^{-}$- here and there bibling up, as if in a Cauldron over a Furnace, and fpouting ' aloft into the Air at fuch time as the Sea is inrag'd with Tempents, ơc. Befrides, how well do their Actions agree with the Effects of Earthquakes, for they are faid to throw up burning Trees againft Heaven, and huge Rocks and valt Hills; which falling into the Sea became Iflands, and lighting on the Land became Mountains. Nor does the manner of their Generation fpeak lefs, for they are faid to be generated by the Blood of Heaven falling down on the Earth, that is, by the heat or influence of the Ce Ieftial Bodies operating within the Bowels of the Earth, and brought forth of her Womb in revenge to the Gods, or that they break forth with fuch horrot and violence as if they threatned the Heavens. And he that fhall read the Defcription of the inof notable of them Typhens, and compare it with the natural Defcription of an Earthquake, will eafily explicate the feveral parts of the Poets myifical Defcriptions.

This Theory which I have endeavoured hitherto to evince, tho' indeed it be very hard pofitively to prove, we being, as I inftanced before, very deficient in Natural Hiftory, yet if we confider what has been already faid, and compare it with the late Obfervations of divers Travailers over them, we may find it altogether more than probable. I have been inform'd by feveral . worthy Perfons, that there are great fore of SheHs found at the tops of the Alps, Appenine and Pyrenean Hills, which are by much the higheft of Europe. And I have now by me feveral of thofe shells which have been dug out of them and brought into England. If therefore thefe have been real Oyfter-Shells and Scallop-Shells as upon viewing the Subftance and Make of them, I fee not the leaft caufe to doubt ; and that there are great quantities of them to be found in divers Parts which lye buried in the Cliffs and incorporated with the Stones; and if that thefe Mountains have been infefted with Earthquakes both formerly and lately, as we have feveral Hiftories that teftifie; and if that other Eruptions and Earthquakes have raifed Mountains even out of the bottom of the Sea, and that the power of included Fire is fufficient to move and raife even awhole Country all at once for fome hundreds of Miles, as Hiftorians aflure us: If to this we add the univerfal filence in Hiltory of any part of Europe, or any of other certain places of the World before the Flood, or indeed for almoft two hundred Years after the Flood, I think there will be much lefs fcruple to grant it propable that the Alps, and divers other high Mountains, on whofe tops are found fuch numbers and varieties of Sea-Shells, may have been heretofore raifed np from under the Sea, and now fuftain'd by the finking of other Parts into the places from whence they were raifed. This the very form of them. will alfo very much argue for; for I have been inform'd by feveral that took diligent notice of it, that the parts are continually tumbling down from the higher parts to the lower, and that fome of them do feem to overhang very ftrangely, which cannot in any probability be imagin'd to be the form of the firt Creation, it being contrary to that implanted Power of Gravity, whereby all the parts of it are held together and equally drawn towards the Center of it, and fo all the parts of it ought to have been placed in their natural pofition which muft have conftituted an exact Sphere, the heavieft loweft, and lighter at the top and the Water muft have covered the whole Surface of the Earth, which feems to have been indeed their firft pofition, according to the Defcription of Mojes in Genefis, befides all thofe Hills that have been made by fubterraneous Eruptions are of the like Structure; fuch as the Pike of Tenariffe, the P ike of Eayale, the new Mountain in Italy, Aitna and $V_{e} f_{u}$ vius, all which feem to have been made up of great Stones thrown up out of the Mouth of their feveral Vulcans, many of which lie in fuch tottering poftures that oft times they tumble down to the bottom, and make great deftruction of the parts beneath; of this we have lately had feveral memorable Examples: To mention only:two or three, we are inform'd by Hiftorians, that among the

A Dijcourfe of Earthquakes.

Alps in the Grifons Country, a Town nained Plura, feated in a Plain at the Foot of the Alps near the River Maira, and continuing by eftimation at the time of its fatal Cataftrophy, at leaft fifteen hundred People was, by the falling down of a great part of a huge high Mountain that hung over the faid place upon the twenty fixth of Augiuf: 1617, together with the Inhabitants, in a moment crufht and buried deep in the Earth, and that there is nothing now left in the place thereof but a vaft abyfs or bottomlefs Gulf. And we are now newly inform'd by Letters brought out of Italy that a great part of the City of Ragufa has been this Year deftroyed by the like falling down of
fome part of the Mountain above it.

The Tenth and laft Conjecture which I hall at prefent mention (as referv- The tenth Froo ing fome others which will feem at firt fight much more ftrange and extra-pofition confmvagant, till-I can by a fufficient number of Obfervations make them more ed. plaufible) is, that it feems not improbable but that the greateft part of the inequality of the Earths Surface may have proceeded from the fubverfions and overturnings of fome preceeding Earthquakes.

And for making this Conjecture probable, I might repeat all the Arguments I have already urged to make probable the Generations of Iflands, Mountains; Abyffes, ovc. but that I fuppofe will be needlefs, they having been fo lately mention'd. I could alfo inftance in a multitude of other fmaller effects produced by Earthquakes, of making the Surface of the Earth irregular; but thofe are fo numerous, and fo very well known in thofe places where Earthquakes are more frequent, as in Italy, Turky, the Ealt and Weft Indies, \&c. that I fhall not infift on them. To this I might add the univerfality of Earthquakes, there being no part of the World of which we have any good account, but we find to have been fome time or other Chaken by Earthquakes; and 'tis very probable had we receiv'd any certain account of the State and Conftitution, and being of the Earth in its Infancy (as I may fay) or firft Being of the Earth after its Creation, when 'tis not improbable but the parts of it that lay uppermoft and next the other were more fluid and foft, we might, have had a thoufand otherobfervables. Of which I fhall fay more hereafter when I mention fome other Conjectures.

Thus much only I fhall add at prefent, that from what I have inftanced about Petrifactions and the hardning of feveral Subftances, it feems very probable, that in the beginning the Earth confifted for the moft part of fluid Subftances, which by degrees have fetled, congealed, and concreted; and turn'd into Stones, Minerals, Mettals, Clays, Earth, erc. And that in procefs of time the parts of it have by degrees concreted and loft their Fluidity, and that the Earth itfelf doth wax old almoft in the fame manner as Animals and Vegetables do; that is, that the moifture of it doth by degreesdecay and waft either into Air, and from thence into the Æther; or elfe, by degrees the Parts cominunicating their motion to the Fluidether either grow movelefs and hard, almoft in the fame manner as we find the Bodies of Animals and Vegetables when they grow old in their feveral proportinate times, all the Parts tend and end in folidity and fixtnefs, the Gelly becomes Griftes, and the Griftles a Bone, and the Bone at length a Stone, the Skin from fmooth and foft grows rough and hard, the motions grow flow, and the moveable Parts and Joints grow ftiff, and all the Juices decay and are deficient. The fame thing happens in Trees and other Vegetables. If therefore the Parts of the Earth have formerly, in all probability, been fofter, how much more powerful might Earthquakes be then in breaking, raifing, overturning, and otherwife changing the fuperficial Parts of the Earth? Befides; 'tis not unlikely but Earthquakes might then be much more frequent before the Fuels of thofe fubterraneous Fires were much fpent. That the Parts of the Earth do continually grow harder and fixt and concrete into Stone, I think no one will deny that has confider'd the Conftitution of Mountains, the Layers and Veins of them, the Subftances mixt with them, the Layers of the feveral Earths, Sands, Clays, Stones, Minerals, ©ic. that are met with in diging Mines and Wells, The Nature of Petrifying Waters, the fhapes of Cryftals, Ores, Talks, Sparrs, and molt kind of precious Stones, Marbles, Flint,

A Dijcourse of Earthquakes.

Chalk, and the like, every of which "are by their forms fufficiently difoover'd to have been formerly fluid Bodies, and whilft fluid, fhaped into thofe forms: One or two undenjable Inftarices I Thall add of the fluidity of Flints, and that fhall be that I have now by me, a Flint that has fo perfectly filled the Shell of an Ecknius, and inclofed it alfo that it has received all the irmpreffions of the cracks of the Shells both on the Concave and Convex Part thereof, and has exactly filled all the Holes and Pres thereof, and has fo perfectly received all the thape thereof as if it were nothing but Plaifter of Paris tempered, Wax, or Sulphur that had been melted and caft on it; notwithitanding which it is a Flint fo hard as to cut Glafs very readily, and is of a very fingular and uniform Texture; to this I might add many others of the like kind, which have the impreffions of there and other Shells, and yet are fome Marble, fome Pebbles, fome Agats, fome Marchafites, fome Ores; fome Cryftals, foc. Some Flints I have marked with impreffions as exactly as if they had been foft Wax ftamp'd with a Seal.

Further, That the Sabterraneous Fuels do alfo waft and decay, is as evident from the extinction and ceafing of feveral Vuldans that have heretofore raged; which Confiderations may afford us fufficient Arguments to believe that Earthquakes have heretofore, not only been much more frequent and univerfal, but much more powerful. If to this we do add what I formerly mention'd, that there feems to be no other more probable and intelligible Caure in Nature of the inequality of the Earths Surface, the natural Principle of Gravity reducing the Parts of it as near to an exact fpherical Figure as their Solidity and forc'd Poftures will permit, and confequently (as I mention'd before) the natural form produc'd by Gravity would be a multitude of Spherical Shells concreted of the feveral Subftances of which it confifts, incompanfing each other, not unlike the Orbits or Shells (for we have no proper name for that kind of hollow Spherical Figüre) of an Onion, or as the Ptolemaick Aftronomers do fancy the folid Orbs of the Heavens, ranged every one in its diftinct Oider according to its Denfity and Gravity; that is, that which hath been heavieft would have approach'd neareft the Center, or at leaft neareft to that part which is attractive and the caufe of Gravitation, if fuch a Body there be in the middle of the Earth, and the next lighter in the fecond place, and fo on to the third, fcarth, fifth, orc. according to their feveral degrees of Gravity and Denfity, they would have taken their feveral Quarters, and fo Water would always have covered the Face of the Earth; and the lighteft Liquor would always have been at the top, and the Air above that, and Æther above that; and as in Fluids fo alfo in Solids, the Shells of Gold would have been the loweft of any Body we yet know, that of Quickfilver next, that of Lead next, and fo the reft in their order, which feems alfo really to have been the form of the Earth, till difturbed by Earthquakes, which I conceive to be the reafon of the fcarcity of thofe heavy Bodies of Mietal near the Surface, and of the greateft fcarcity of Gold which is the mof heavy, and that it is not to be found but in fuch places where there have in probability been great fubverfions by Earthquakes, as in Mountains, or in Rivers running out of Mountains, or in Earth wafht and tumbled down from Mountains, and fuch like places, as by many Circumftances may be gueft to have been formerly deeper under the Surface of the Earth.

There is yetone Argument more that to me feems very good, and that is fetcht from no lefs diftance than the Moon and the Sun by the help of Telefcopes. There Bodies, as I have formerly hinted in the latter end of my Micrography, feem to have the fame Principle of Gravity as the Earth, which, as I have there argued, Seems probable from their Spherical Figure in general, and the feveral inequalities in particular, vifible by the help of Telefoopes on the Surface of the Moon, and the feveral Smoaks, and Clouds, and, Spots that appear on the Surface of the Sum; and as they have that Principle in common with the Earth, fo it feems to me that they are not free from the like motions with thofe of Ean Earthquake: For as to the Moon 'tis eafily to be perceiv'd through a Telefcope, that the whole Surface of it is covered over with a multitude of fmall Pits or Gavities which are incompaffed round with a kind of protuberant Brimp much like the Cavities

A Difcourse of Earthquakes.

or fmall Pits, which are left in a Pot of Alabafter Duft boyled dry by the Vapours which break out of the Body of it by the heat of the Fire ; and all the inequalities that appear on the Surface of that Body, feem, by their form, to have been caus'd by an Eruption of the Moon, fomewhat Analogous to our Earthquakes; all thofe Pits in the Moon being much like the Caldera or Vent at the top of Vulcans here on the Earth, or like thofe little Pits left at the top or furface of the Alabafter Duft by the natural fubfiding of that Duft in the place where the Vapours generated within the Body of it break out. I need not, I think, fipend time in urging Arguments to prove the fufficient powerfulnefs of the Caufe to produce Effects as great as any I have afcribed to it, as being able to raife as great and high Mountains as thofe of the Alps, Andes, Caucafis, Montes Luna, \&c. efpecially fince even of late we are often informed of as great effects elfewhere, and even of the fhaking and moving thofe vaft Mountains by our latter and more debilitated Earthquakes, tho' thofe Mountains are now in probability much more compacted and tenacious by the fince acquired Petrifaction, than they were before their firft accumulation; and tho' 'tis not unlikely but the Fuel or Caufe of the Subterraneous Fire may be much wafted and fpent by preceding Conflagarations; Yet poffibly there may be yet left in other Parts fufficient Mines to produce very great effects if they fhall by any accident take Fire; and 'tis not impoffible but that there may be fome Caufes that generate and renew the Fuel, as there are others that fpend and confume it.

Fromall which Propofitions, if at leaft they are true, will follow many others meer Corollaries which may be deduced from them.

Firft, That there may have been in preceding Ages, whole Countries ei- The Corollairs their fwallowed up into the Earth, or funk fo low as to be drown'd by the from the foritcoming in of the Sea, or divers other ways quite deftroyed; as Plato's Atlan- going Propofstis, ofc.

Secondly, That there, many have been as many Countries new made and produced by being raifed from under the Water, or from the inward or hidden Parts of the Body of the Earth, as England.

Thirdly, That there may have been divers Species of things wholly deftroyed and annihilated, and divers others changed and varied, for fiace we find that there are fome kinds of Animals and Vegetables peculiar to certain places, and not to be found elfewhere; if fuch a place have been fwallowed up, 'tis not improbable but that thofe Animal Beings may have been deftroyed with them ; and this may be true both of aerial and aquatick Animals: For thofe animated Bodies, whether Vegetables or Animals which were naturally nourifhed or refrefh'd by the Air would be deftroy'd by the Water. And this I imagine to be the reafon why we now find the Shells of divers $\mathrm{Fi}-$ fhes Petrify'd in Stone, of which we have now none of the fame kind. As divers of thofe Snake or Snail Stones, as they call them, whereof great varieties are found about England, and fome in Portland, dug out of the very midit of the Quary of a prodigious bignefs, one of which I have weighing near Pound weight, being in Diameter about Inches, which I obtain'd from the Honourable Henry Howard of Norfolk: We have Stories that there have been Giants in former Ages of the World, and 'tis not impofible but that fuch there may have been, and that they may have been all deftroyed, both they and their Country by an Earthquake, and the Poets feem to hint as much by their Gigantomachia.

Fourthly, That there may have been divers new varieties generated of the fame Species, and that by the change of the Soil on which it was produced; for fincewe find that thealteration of the Climate, Soil and Nourifhment doth often produce a very great alteration in thofe Bodies that 'fuffer it; 'tis not to be doubted but that alterations alfo of this Nature may caufe a very great change in the Jhape, and other accidents of an animated Body. And this I imagine to be the reafon of that great variety of Creatures that do properly belong

A Difcourfe of Earthquakes.

to one Species; as for inftance, in Dogs, Shecp, Goats Deer, Hawk', Pigeons, erc. for fince it is found that they generate upon each other, and that variety of Climate and Nourifhment doth vary feveral accidents in their Shape, if thefe or any other animated Body be thus tranfplanted, 'tis not unlikely but that the like'variation may follow; and hence I fuppofe 'tis that I find divers kinds of Petrify'd Shells, of which kind we have none now naturally produced ; of this fort are many of thofe Helmet Stones which have been made by the Petrifactions of Subftances in the Shells of feveral forts of Echini, whofe forts have been deftroyed by the alteration of the Nature of that part of the Sea where they were produced; and hence 'tis we find fcarce any Shell-Fifh in our Englifh Sea that has a Shell like thofe forts of Nautili; from whence our Keinfham and other forts of Snake-Stones are produced.

Fifthly, 'Tis not impoffible but that there may have been a preceding learned Age wherein poffibly as many things may have been known as are now, and perhaps many more, all the Arts cultivated and brought to the greateft Perfection, Mathematicks, Mechanicks, Literature, Mufick, Opticks, ©rc. reduced to their higheft pitch, and all thofe annihilated, deftroyed and loft by fucceeding Devaftations. Atomical Philofophy feems to have been better underftood in fome preceding time, as alfo the Aftronomy cvinc'd by Copernicus, the e太igyptian, and Chinefe Hiftories tell us of many thoufand Years more than ever we in Europe heard of by our Writings, if their Chronology may be granted, which indeed there is great reafon to queftions.

Sixthly, 'Tis not impoffible but that this may have been the caufe of a total Deluge, which may have caufed a deftruction of all things then living in the Air : For if Earthquakes can raife the Surface of the Earth in one place and fink it in another fo as to make it uneven and rugged with Hills and Pits, it may on the contrary level thofe Mountains again, and fill thofe Pits, and reduce the Body of the Earth to its primitive roundnefs, and then the Waters muft neceflarily cover all the Face of the Earth as well as it did in the beginning of the World, and by this means not only a learned Age may be wholly annihilated, and no relicks of it left, but alfo a great number of the Species of Animals and Plants. And 'tis not improbable but in the Flood of Noab, the Omnipotent might make ufe of this means to produce that great effect which deftroyed all Flefh, and every living thing, fave what was faved alive in the Ark.

Seventhly, 'Tis not impoffible but that fome of thefe great alterations may have alter'd alfo the magnetical Directions of the Earth; fo that what is now under the Pole or Æquator, or any other Degree of Latitude may have formerly been under another; for fince 'tis probable that divers of thefe parts that have fuch a Quality may have been tranfpos'd, 'tis not unlikely but that the magnetick Axis of the whole may be alter'd by it, after the fame manner as we may find by experiment on a Loadftone, that the breaking off and tranfpofing the parts of it, do caufe a variation of the magnetick Axis.

I could proceed to fet down a great many other Corollarys that would naturally fo!low from thefe Principles if certainly proved. But this Efayy I intended only as a hint or memorandum to fuch Gentlemen as travel or any other inquifitive Perfons, who for the future may have better opportunities of making Obfervations of this kind, that they may be hereby excited, or at leaft intreated to take notice of fuch Phænomena as may clèar this Inquiry tho' never fo feemingly mean and trivial, fince it feems not improbable but that they may difcover more of the preceding duration and alterations of the World than any other Obfervations whatfoever, and that thence may flow fuch inftructions as may be of fome of the moft confiderable ufes to humane Life and Society, to which end all our Philofophical Studies and Inquiries:tend. Ended Sep. 15.1668.

A Difcourje of Earthquakes.

THE precoeding Difourfe of Earthquakes was wrote, Anno. 1668, as apo pears by the Date at the end thereof, and lay by the Author for a confiderable time, till aftervards be took the Subject into confideration again, and read feveral Lectures in confirmation of his-formor Hypothefis, and in them produced Several Obfervations and Collections quoted from divers Authors Ancient and Modern, and anfwered many Objections, which I hall in the next place prefent the Reader with as near as I can in the order they mere read to the Royal Society, not doubting but the Cirrioss will find Entertainment and Satisfactiou in them. The firft that If ind to this purpofe, is a leiture which was among bis other Papers, tho' I know not the exnit sime roljen it mis reaid, yet fince it contains feveral Arguments to prove that the firured Stones fornd in many parts of the World are real Petrifactions, I flall here
give ir inothe firft placr.

R. W

IAm not, I fuppofe, the only Perfon who hath heard fome Perfons (with what Reafon I difpute not.) ask what the Royal Soriety hath done for fo many rears as they have met. And other Perfons as confidently affirin that they of the Rogalsohave done juft nothing. Nor am I ignorant that the fame Reflections have been made upon me in particular with more fevere Aggravations. As to what concerns nuy felf I fhall not now fpend time in anfwering, defigning to do it by another way. But as to what concerns this Honourable Society, I conceive it might be a fatisfactory Anfwer to aflure fuch Objectours that this Society have been imployed in collecting fuch Obfervations, and making fuch Experiments and Trials as being fitly apply'd and judiciounly made ufe of, will very much tend to the advancement of Natural Kinowledge: And tho the things fo collected may of themfelves feem but like a rude heap of unpolifh'd and unfhap'd Materials, yet for the moft part they are fo qualified as that they may be fit for the beginning; at leaft of a folid, firm and lafting Structure of Philofophy.

But becaufe fome of thofe may doubt whether really there be any fuch Collection made, and more of the practicableners of making fuck a Ure and Application of them, and will not acquiefce and be fatisfied with the effects hereof that future times may produce, but are defirous to fee fome Specimen of what may be hoped for, by feeing the Ground defigned and fet out, the Foundation laid, and the Workmen beginning to raife the Walls, and make ufe of the Materials that are faid to be got in readinefs for fuch a Fabrick.
I conceive, it may not be altogether unfeafonable this following Year nor improper for this Honourable Society's Care to make fome attempt of that kind by fhewing fome Specimen of fuch a Structure raifed from Obfervations and Collections of their own, that it may appear that they have not difquieted themfelves in vain, in heaping up fuch a Treafure which they know not who fhall enjoy or make ufe of; that is, to fee whether any of thefe things they have been collecting, will afford fufficient Evidence to ground a deduction of a higher Nature upon, fuch as is more obfcure to be feen, or more difficult to be afcertained of, to fee whether, when a weight comes to be laid open the Stones or the Bricks, the natural Obfervations, or the Artificial Trials and Experiments, they will not crufh under it, and fail of fuffcient Solidity; and if they do, whether fuch may not be fit for other places, and whether it will not be neceflary to feek out for fome others that may be more firm and folid, and fuch as are of a clofer and better concocted qualification, which may be more powerful to fuftaine a higher Superftructure, and a greater
weight of Argument to be laid upon them. weight of Argument to be laid upon them.

In order to this it is neceffary (for the Architects at leaft) to know, ift. What makes al What are the particular qualifications neceffary for the feveral Materials of Coliefion of $E x-$ their defigned Fabrick. $2 d l y$. The Methods by which thefe qualifications periments obmay be examin'd. 3 dly. The place where, and the means how Materials fo fervations ufequalified may be proved, without which præmeditated Defign, Knowledge, fur

A Dicourre of Earthquakes.

and Care ; a Collection, tho' very great, made at a venture muft needs contain abundance of fuch as will be of little ufe for the end aimed at, and not only fo, but will alfo prove a great Obftruction and Confufion in finding out fuch-as are proper', and in feparating the Good from the Bad.

The Structure aimed at, is a true and certain knowledge of the Works of Nature, and this is defigned to be attained as faft as may be, and to be perfected as far as may be; or the end of the Inquifition is the promotion and increafing of Natural Knowledge.

The Analytick Method.

The Synthetick Method.

The methods of attaining this end may be two, either the Analytick, or the Synthetick. The firft is the proceeding from the Caufes to the Effects. The fecond from the Effects to the Caufes : The former is the more difficult, and fuppofes the thing to be already done and known, which is the thing fought and to be found out; this begins from the higheft, moft general and univerfal Principles or Caufes of Things, and branches itfelf out into the more particular and fubordinate.

The fecond is the more proper for experimental Inquiry, which from a true information of the Effect by a due procefs, finds not the immediate Caufe thereof, and fo proceeds gradually to higher and more remote Caufes and Powers effective, founding its Steps upon the loweft and more immediate Conclufions.

An Inquifition by- the former Method is refembled fitly enough by that Example of an Architect, who hath a full comprehenfion of what he defigns to do and acts accordingly : But the latter is more properly refembled to that of a Husbandman or Gardener; who prepares his Ground and fows his Seed, and diligently cherifhes the growing Vegetable, fupplying it continually with fitting Moifture, Food, Shelter, ovc. obferving and cherifhing its continual Progreffion, till it comes to its perfect Ripenefs and Maturity, and yields him the Fruit of his Labour. Nor is it to be expected that a Production of fuch Perfection as this is defigned, fhould in an inftant be brought to its compleat Ripenefs and Perfection; but as all the Works of Nature if it be naturally proceeded with, it muft have its due time to acquire its due form and full maturity, by gradual Growth and a natural Progreffion; not but that the other method is alfo of excellent and neceffary ufe, and will very often facilitate and haften the progiẹfs to Perfection. An Inftance of which kind I defigned fome Years fince to have given this Honourable Society in fome of my Lectures upon the motions and influences of the Cæleftial Bodies, if it had been then thought fit; but I underftand the fame thing will now be fhortly done by Mr. Nemoon in a Treatife of his now in the Prefs : But that will not be: the only Inftance of that kind which I defign here to produce, for that I have divers Inftances of the like Nature whercin from an Hypothe f is being fuppofed or a premeditated Defign, all the Phenomena of the Subject will be a Priori foretold, and the Effects naturally follow as procceding from a Caufe fo and fo qualified and limited. And in truth the Syathetick way by Experiments Obfervations, of c. will bevery flow if it be not often affifted by the Analytick, which proves of excellent ufe, even tho' it proceed by a falfe pofition; for that the difcovery of a Negative is one way of reftraining and limiting an Affirmative.
But not to fend more time at prefent upon the more particular explications of Thefe Methods, which would make of it felf a very large Difcourfe, I fhall proceed to the Subject which I began to difcourfe upon the laft meeting, premifing only in general what Ithink neceffary thereunto, an Explication of what I underfand by natural Knowledge, or the Knowledge of Nature.

What Know By Knowledge then in the higheft Idea of it, I underftand a certainty of bedge is and information of the Mind and Underftanding founded upon true and undenikow acquired able Evidence.

A. Dijcour fe of Earthquakes.

True and undeniable Evidence is afforded either immediately by Senfe withคut Fallacy, or mediately by a true Ratiocination from fuch Senfe.
I call that Senfe without Fallacy, where the fallacies of Senfe being detected and known, the Evidence produced thereby is examined and found to be free and clear of all fuch Fallacies.

I call that true Ratiocination from fuch Senfe, where being fure of the Pre- The true Mre mifes, the Conclufion neceflarily follows from them; which is the method thod of Reaof Reafoning, made ufe of it Geomotry, and by which we arrive at as great a cer- foning. tainty of things unfeen as feen. Thus Ovid defrribes the method of Pythago. ras, in fcaling the Heavens.

> Ifg; licet cali Regione Remiotus
> Mente Deos adiit, © quie natura negabat
> Vifibus humanis, oculis ea pectoris haulfit.

Now tho' in Phyfical Inquiries, by reafon of the abftrufenefs of Caufes, and the dificulty the limited Power of the Senfes we cannot thus reafon, and without many thereof in Inductions from a multitude of Particulars come to raife exact Definitions of Natural Phio things and general Propofitions; yet by comparing of varieties of fuch In- - 0 fopky. ductions we may arrive to fo great an affurance and limitation of Propofitions as will at leaft be fufficient to ground Conjectures upon, which may ferve for making Hypothefes fit to be enquired into by the Analytick raethod, and thence to find out what other Experiments or Obfervations are necelfary to be procured for the further progrefs in the Syathetick, which will queftionlefs fo far inform us of the general and univerfal progrefs of the Operations of Nature, that nothing but what is really the truth Thall be propofed but the abfurdity and infufficiency thereof will prefently be detected and proved.

So that tho' poflibly we may not be able to produce a Pofitive Proof, yet we may attain to that of a Nerative, which in many cafes is as cogent and undeniable, and none but a willful or fenfelefs Perfon will refufe his affent Thus much I thought was neceffary to' premife in order to what I cogent as an haye fur to propoud to Coniderainn of the have further to propound to the Confideration of this noble Society upon the Subject I have difcourfed of formerly only by way of Queries; it being my aim at prefent to fee what Pofitive or Negative certainty at leaft may be attained concerning the fame, either from the information of Senfe freed from Fallacies or from the fuperftructures of Reafoning.

I propounded then two Hypothefes for the folution of the Phenomene, ob - of Petrifed ferv'd in Petrified Bodies, of the refemblance of Animal and Vegetable Bodies; Subftancesfueh as the Shells and Bodies of Fifhes; the Bones, Teeth, Hornes, corc. of Fifh, and alfo of Terreftrial Animals, the Wood, Leaves, Bark, Roots, and Fruits of Plants and Vegetables; which refembling Bodies are found to be of variety of Subftances, fometimes of Stone, as Flint, Marble, Black, White, Gray, and of various other Colours, of Free-ftone, Portland-ftone, Chalk, and an infinite variety of other Stone, fome harder, fome fofter: Of various kinds of Clay, Earth, Sand, orc. they have been found near the tops of the higheft Hills, and the bottom of the loweft Wells and Mines, in the middle of the folid Quarries of Stone and other Minerals, and thofe the moft remote, or at leaft very far diftant from the Sea. Some of thefe have the perfect reprefentation of the Figure of fuch Creatures and other Subftances as are now well known, others of fuch as have fome analogy and likenefs to them, yet different from what are known of thofe Species to which they feem to belong, either in Magnitude, Figure, Colour, ©ic. yet retain fuch characteriftick marks as feem to indicate then to belong to this or that Species of Animals or Vegetables. Some of thefe are nothing but perfect Stones of feveral kinds, others are inclofed with a Subftance fecting to be the fame, with that of the very Animal or Vegetable they refernble. Add to this, that in as many varieties of places there have been found others of the fe Figured Bo-
dies, which have as to Senfe the very fame Subftance and Figures with thofe of the correfponding Species of Animals or Vegetables, and do not feem to be at all of a petrify'd and ftony Subftance, but rather of an Animal or Vegetable; of every of which Particulars I have viewd and examined Inftances. And if it were not for detaining you too long, could have here produced a more particular Account and Defcription. But they being fo generally known at leaft fo univerfally almoft fpread over the whole Earth, fo that no Country almoft but doth afford them, I thought it would be needlefs.

Hoir to come to zerviainknowleitge of the me. cerning them, by which we way be cone And Sody, Whe we be difpored placed or made in thofe parts where they are, or have been e ilpored, placed, or made in thore parts where they are, or have been found. Fourthly, Thefe Difcoveries being made to fatisfaction, of what ufe or benefit will it be to Mankind, or how fhall we be the wifer, or how will this Knowledge be an improvement of Natural Knowledge? Which is the aim of this Eociety.

For Anfwer then to thefe feveral Queries I fhall propound thefe following Confiderations.

To know whist Sulffezne they are of.

Firff As to the way of knowing of what Subiftance they are, I conceive there can be no better way than what we generally ufe when we inquire into the true Nature or Subftance of any other Body when it is delivered to us to be examined or denominated; for inftance, if a peice of Metal be delivered to be examined, it will firlt be viewed to fee what Metal it refembles in Colour and Cunfiftence, or in fuch other obvious and fenfible Qualifications as may enable one to judge or guefs what kind of Metal it is; as fuppofe it refembles Gold for clofenefs and ponderoufnefs, there give intimation enough of examining it yet a little more curioufly, fince all is not Gold that glifters, and it may be that fome Counterfeit in thofe more obvious Qualifications has mimicked that noble Metal, to do this, it is tried further by being put into good Aqua Fortis, to fee whether that will diffolve it, for if it doth, it cannot be Gold.' Secondly, The Specifick Gravity thereof is more curioufly and exactly found by the help of Scales and Weights, by which it is weighed in and out of Water, becaufe if thereby it be found to be lighter than Gold it cannot be Gold. Thirdly, By Hammering and a Gold' Beater, 'tis found to be Malleable, and by looking through the Leaf, 'tis found of a tranfparent Greenefs and reflects a true Golden Colour, then 'tis tried by copelling and found fixed in the Fire, then it tarnifhes not in the Air, and Amalgams Readily with Mercury, then its Solution in ARtinges', the Skin and Nails red, and a further trial fhews it to tinge Glafs of a Ruby Colour. Now if it bear all thefe feveral ways of Examination, and anfwers to the propertics of Gold, it may fafely be concluded to be true Gold, and whoever fhall deny it to be fuch mult be looked upon as one that doth it without Reafon, unlefs he can produce a further Criterion by which it fhall be found to be very differing from it. Now, tho' this Metal were found at the bottom of a Mine a hundred Foot under Ground, or at the top of a Hill a hundred Foot above the Level of the Plain; or in the Pores of a growing Vegetable; or in the Tooth or Thigh of an Animal, tho' polfibly it may be difficult to affign the Reafon or Caufe how it came to be placed there; yet the Examiner hath the Evidence of Senfe to affure him that this Metal is Gold, and he ought to conclude and acquiefce in it, that fuch it is; otherwife there can be nothing at all known that it is this or that Body, and then there is an end of all further Inquiry or Experiment.

Now though there may not be known fo many various ways of examining every other kind of Body, as, by rearon of the value of it, there have been found out for Gold ; yet in many Bodies at leaft a much lefs number will ferve the turn to give antance, that the Body fo examined is of this or that kind and in many the very outward form as vifible to the naked Eye, but efpecial ly if the inward vifible appearance of the Subftance be joined with it, will
be affurance fufficient to force an Affent or Conclufion of what kind the Body is that is fo examined, and it ought. not to be denied to be fuch without as evident a manifeftation to the contrary.

This Difcourfe I have been the larger in premifing, becaufe, till it be agreed what is fufficient evidence to prove a natural Body of this or that kind there can be nothing done. If Experimental Philofophy, and if Poofs of this kind will not fuffice, I cannot expect that all that I fhall bring to provethe $H y$ porbefis will be of any validity. That then which I fhall indeavour to prove is;

Firft, That there have been, and daily are found, the real Shells of Fifhes ARecapitulatiin fuch parts of the Earth as are much above the prefent Level of the Sea, on of the Heads and others buried at a very great depth under the Surface of the Earth, where mentiond 288 . Suprag notwithfanding, 'tis evident that they were not there placed by any humane Power or Defign.

Secondly, That many of thefe Shells are of a form differing from any of thofe Shells of that Species to which they feem to belong, which are commonly known at this Day.

Thirdly, That there are others of them which to all appearance are of the very fame Species now known and to be found living.
Fourthly, That there are many of thefe Shells which are and have been in procefs of time, filld within and inclofed without with divers forts of Earth, fuch as, Clay, Lome, Sea Sand, and divers other kinds of Sand, Mud, Chalk, ớc.

Fifthly, That thofe filling and enclofing Bodies have been, and are by degrees, in process of time, petrify'd and hardn'd into Stones of differing Natures, Hardnefs and Contextures retaining the Impreffion, Form, or Signature of thofe Shells, fo inclofed.

Sixthly, That thofe Shells fo filled and inclofed, as above faid, are according to the differing Nature of the Petrifactive Liquor or Juice: fometimes alfo Petrify'd retaining ftill the fame Figure they were of when the Petrifactive Juice began to operate upon them.

Seventhly, That others of them remain yet perfect Shells without Petrifaction or Alteration, when as yet both the Subftance that fills them, and that which enclofes them is converted into Stone of differing Natures and Textures.

Eighthly, That many of thefe Shells are either by length of Time, or by the Nature of the Petrifactive Juice perfectly rotted and decayed fo as to be eafily frangible between one's Finger and Thumb into a very fine Powder and yet ferve to give a perfect Mould or Shape to the inclofed and inclofingStone.

Ninthly, That in many cafes the Shell is not only Petrify'd by the faid Juice, but fometimes after the impreffion hath been made as aforefaid, the Shell hath been clearly diffolved and carried away from the inclofing and inclofed Subftances, leaving only the Space empty where the faid Shell hath been placed.

Tenthly, That it fometimes happens that the Subftance that filled the Shell hath been Petrify'd, and after the Shell hath been rotted away, the Petrify'd Body that was inclofed and had received that Impreffion, hath been - afterwards inclofed with a Subftance which hath afterwards Petrify'd and fo inclofed it in Stone.

Eleventhly, That thefe kinds of Shells or the Petrify'd Subftances that have been formed by them, have been for all Antiquity, and are at this Day to be found in moft parts of the known World.

Twelvethly, That they are moft of them differing from one another, tho' all referable, to fome Species of Shell-Fifhes now to be found; yet in many particulars each of them alfo differing from them; that is, throfe that are found in one Country or Region, are very differing from thofe of another Country or Region, and that not only as to the Nature of, the Petrify'd Subftance inclofed and inclofing, but alfo as to the Figure and Make of the Shells themfelves; and many of thofe alfo differing from the fhape even of

> P P P p
thice Shell-Finhes which are now to be found in fuch parts of the Seas which are fituated near to the places that they are found in.
Concinring to this Head I hall prove that Shell-Fines of the fame Species in dfating Countries now to be found, have many differences oite from another as much as any one of thofe Petrify'd Bodies have fiom any of the prefent shells.
The end of the I have in my former Difcourres explain'd the end and aim of the fe my InquiAirbor's Dif fitions, namely, to make fome Ufe and Application of feveral Obrervations courfes . and Experiments that have been Collezted in order to dedace fome Doctrine

4w ${ }^{\text {a }}$ from them, which may ferve to direet fuch further Inquifitions as fhall be neceflary for the perfecting of the fame, or at leaft to find whether fuch arc wanting, and of what Kind and Nature they are.
The Doctrine ainied at, is, the Caúfe and Reafon of the prefent Figure, Shape and Confitution of the Surface of this Body of the Earth, whether Sea or Land, as we now find it prefented unto us under various and very inreggular Forms and Fafhions and conftituted of very differing Subftancos.
Hiftories deficient, and Nery few, hecaufe when we look into Natural Hiftorics of paft. Times, we find ture have been performed, we munt be fain to make ufe of other helps than what Natural Hiftorians will furnifn us with; to make out an account of the Hiftory thereof: Nor are there any Monuments or Medals with Literal, Graphical, or Hieroglyphical Infcriptions that will help us out in this our Inquiry, by which the Writers of Civil Hifto ies have of late Years been much affifed from the great curiofity of modern Travellers and Collectors of fuch Curiofities.

The gicat tranfactions of the Alterations, Formations, or Difpofitions of the Superficial Parts of the Earth into that Conftitution and shape which we now fiñd thein to have, preceded the Invention of Writing, and what was preferved till the times of that Invention were more dark and confufed, that they feem to be altogether Romantick, Fabulous, and Fítious, and cannot be inuch relied on or heeded, and at beft will orily afford us occa, ions of Conječure:

Proofs of the foregoing Pro-poffiionsmentioxed Pag. 333.

For Proof then of the firft Propofition that, ce. I could produce a multitude of Authorities fetched out of printed Authors, and as. many others that I have received from tlie Relations of very credible Perfons that have found them thenfelves, but it would be too long, I fhall therefore only name one who was formerly, a worthy Member of this Society, and well known to divers here prefent, and that was Dr. Peter Ball, he pafing over the Alps to go into Italy by a narrow Paflage, where there was on the one hand a prodigious high Cliff above him, and on the other hand, as prodigious deep Precipice below him, obferved in the Cliff a Layer of Sea Sand and Shells. for a very great length buried under that high Mountain above; he had the curiofity to take up and bring honie with him into Enoland divers of them which he dugg out of the faid Layer of Sand which he fhewed me, and I found them to be true Oyftér-fhells, not Petrified but remaining perfect Shells, one of which he gave me, and häd divers others which he kept; he obferved alfo, that there were divers other Subftances among the Sand as if it had been upon the Sea-fhoar. To this I fhall add an Obfervation of niy ofvn hearer Home, which others poffibly may lhave the opportunity of feeing, and that was at the. Weft end of the Inle of Wight, in a Cliff lying within the Needles almoft oppofite to Hurft-Cajlé, it is an Earthy fort of Clif made up of fevcral forts of Layers, of Clays, Sands, Gravels and Loames orie upon the other. Somewhat above the middle of this Cliff, which I judge in fome'parts may be about two Foot highi, I found one of the faid Layers to be of a perfect Sea Sand filled with a great variety of Shells, fuch as Oyfters, Limpits, and feveral forts of Periwinkles, of which kind I dug out many and brought them with me, and found them to be of the fame kind with thole which vere very plentifully to be found upon the Shore beneath, now caft out of the Sea.

This

A Difcourfe of Earthquakes.

This Layer is extended along this Cliff; I conceivenear, halfi a. Mile, and may: be about fixty Foot br more above the high Water mark.

Another Inftance Iobferved nearer this place, and that was in St. Fumes's Fields, where St: fames's Square is now built, in which place when they were making Bricks of the 'Brick' Earth there, dug, they'had funk feveral Wells, which I judge might be near twenty Fobt in depth, to procure Water for that parpofe; going down into feveral of thofe, I found, at the bottom; a Layer of perfect Sea Sánd, with variety of Shells' and feveral Bones, and other Subftances, of which kind I dug out enough to fill a finall Box and fhewed them to Mr. Boyl, and allo to this Society. And I was informed alfo, that the fame kind of Subftances were found in digging of a Snow Well in St. Fames's Park; and I doubt not but whoever fhall fink any where thereabout to that depth will find the fame things. Now whoever will confider the Pofftions and Circumftances of the faid places, will eafily grant, I fuppore, that they could not be there placed by the Induftry of Man, but muft be afcribed to fome other caufe to be fetched from Nature.

As to the fecond Head, That, coc. I fhall produce feveral Oyfter and Cockle Shelis which have been and are to be found in many Parts of England, which in many particulars of their fhape, do differ from thofe of the Oyfters and Cockles now to be found; yet upon examination of them they may be found to be true and perfect Shells by all fenfible Qualities, except only their exact Shape, and therefore I conceive that to be fufficient Evidence to prove them to be really fuch, becaufe it is all the Evidence the Matter is capable of. If in digging a Mine, or the like, an artificial Coin or Urne, or the like Subftance be found, no one frcuples to affirm it to be of this or that. Metal or Earth he finds them by trial to be of: Nor that they are Roman, Saxon, Norman, or the like, according to the Relievo; Impreffion, Characters, or Form they find them of. Now thefe Shells and other Bodies are the Medals, Urnes, or Moniuments of Nature, whofe Relievoes, Impreffions, Characters, Forms, Subfances, ơc. are much more plain and difcoverable to any unbiaffed Perfon, and therefore he has no reafon to fcruple his affent: nor to defift from making his Obfervations to correct his natural Chronology, and to conjecture how, and when, and upon what occafion they came to be placed in thofe Repofitories. Thefe are the greateft and moft lafting Monuments of Antiquity, which, in all probability, will far antidate all the moftancient Monuments of the World, even the very Pyramids; Obelisks, Mummys, Hieroglyphicks, and Coins, and will afford more information in Natural Hiftory, than thofe other put altogether will in Civil. Nor will there be wanting Media or Criteria of Chronology, which may give us fome account even of: the time when, as I fhall afterwards mention.

As to the Proof of the third Propofition, viz. That, wor, All thofe Inftances I have named are of fufficient evidence, for that thofe which- 1 found inboth thofe places I mentioned were of the fame kinds with thofe that are now to be found near thofe places, as whoever fhall examine will find.

And the fourth will allo from the fame, and hundreds of others be as evident, and therefore I fuppofe none will fcruple to affent to this Propofition, viz. That, cjc. Page 333 , efpecially if the truth of the former be granted, which I conceive cannot be denied.

For Proof of the fifth Propofition, namely, That, coc. The place I mentioned before near the Needles in the Ile of Wight afforded a moft evident and convincing one as could well be defired, which was from the following Obfervation. I took notice that the aforefaid Earthy Cliff did founder down and fall upon the Sea-fhoar underneath, which was fmooth and Sandy, and bare at low Water fo as to be walked on, but at high Water a great part of itwas covered by the Sea. I obferved feveral great lumps of the faid Founderings lying below, fome whereof, which lay next the Cliff, tho' they were fomewhat harden'd together more than they were above in the Cliff, were yet not
hard enough to be accounted Stone; others of them that lay further into. the Sea were yet more hard, and fome of the furtheft I could not come at for the Water, were as hard I conceived as Purbeck Paving (which is taken up from the Shore of Purbeck, lying juft oppofite to it on the Weft fide of this Channel or Paffage) divers of thefe Stones I obferv'd to be made up of the peices of Earth that had foundred down from the Cliff, which I was affured of by carefully obferving and finding divers of them to confift of the feveral Layers, and in the fame order as I faw them in the Cliff; among the reft I found divers that had the Layer of Sea Sand and Shells which I had obferved in the Cliff inferted in the Stone with the adjoyning Layers all petrify'd together into a hard Stone. Here I found multitudes of the faid Shells I before mention'd to have obferv'd in the Cliff, mix'd loofely with a Sea Sand; now together with the faid Sand both fill'd, inclos'd, and petrify'd altogether, and I broke off many peices of the faid Rocks, where I found the, faid Petrifactions, and found them much like other Stones I had feen from other Inland Quarries here of England, wherein I had obferv'd alfo fuch kind of petrify'd Shells, tho' how they came there to be fo Petrify'd I could not be fo well inform'd. For that which I conceive was the caufe of this fuddain Petrifaction (for I conceive thofe that I examin'd had not been Stones for very many Years, which I judged by their diftance from the prefent Cliff, and from the quantity thereof, which Communibus Annis did founder down) was that clofe by this Cliff, there is a vitriolate or aluminous Spring or Rill which runs into the Sea, where formerly thofe Salts have been made of it by boyling, but has been now omitted for many Years. Thefe faline Springs or Rills I conjecture mixing with the Sea-Water, may be the caufe of the faid Petrifaction, and the want of it is the caufe why other founderings in other parts of the faid Cliff are not at all fo Petrify'd. Now from the affur'd Obfervation of thefe Petrifactions, I cannot but judge that the truth of this Propofition will moft evidently appear, and needs no other to confirm it. However I doubt not but that any one who. fhould there lay a part of the faid Cliff fhaped and marked as he pleas'd for his own affurance, would find the fame very hard Petrify'd in two or three Years, which may not be unworthy of farther Inquiry and Trial for fuch as have opportunity.

As to the Proof of the fixth Propofition, it will not be difficult, the preceding being once granted for that there may be thoufands of Inftances of that Nature found in the Stones dug out of divers of our Englifh Quarries; fome of which Stones are found full of fuch Petrifactions.
Upon this occafion I think it not improper to mention an Obfervation which I have often taken notice of, which is of the Flints which are generally found intermix'd with Chalk in Quarries of that kind of Stone. I have obferv'd then that thefe Flints are nothing elfe but the Body of the Chalk united together, and, as it were, firft diluted by a petrifick Juice, and by that diffolved into it, and fo make a uniform clofe Body which by degrees doth all petrify and harden together into that folid hard Body of the Flint. This I found by taking notice of the Nature of thofe Flints when broken, and how the Grain, Colour and Hardnefs of them was fituated efpecially towards the edges; for there where the Juice feem'd to be almont fpent, the Flinty Body appears of a midling Nature between Chalk and Flint, befides I have obferv'd fometimes other Bodies inclofed, and fometimes lumps of Chalk alfo, toward which the Limb-parts of the Flint were colour'd and terminated juft as towards the incompalling Chalk. And from the curious and fharp runLiquid Suld mouldings which I have obferved in Flints, I conceive that the firft may be much more plainly manifefted by fuch a peice of Flint than 'tis poffible for any one to defcribe by words; and.therefore I fhall omit the farther mention of them tiil I can meet with a Flint to fhew them. I mention this here only to fhew that the petrifactive Juice is often found to infinuate itfelf into the clofeft Pores of Body, by reafon of its great fluidity which inables it oft to petrify even the very Bodies and Subftances of the Shells themfelves.

But tho' fome of thefe Petrifactive Liquors be thus fluid, yet they are not all ; and thence it comes that many Shells remain unpetrify'd, tho' the Subftances that fill'd them and enclos'd them be fo wrote upon, which was the feventh Propofition I undertook to prove. This I can make evident by divers of the Petrifactions that are kept in this Repofitory, and by thoufands of others which I have feen: And any one that will but diligently examine them will find the very Shells themfelves preferved Shells; tho' inclofed in the middle of a Stone, as of Portland, Purbeck, and divers other Inland Stones here dug in England. And I am promifed to have fent me a flake of a Stone which is very hard, which notwithftanding is all over full of Shells. I fay Shells, for that I cannot call them any thing elfe, fince to all fenfible trials they are fo, both as to Figure and Subftance.

As to the Proof of the Eighth, I cannot produce a more pregnantone than the Echinus or Helmet-Stone, found by-Mr. William Ball upon the Shore of Devonghire, near Exeter, which he prefented to the Society, and I fuppofe may yet be feen in the Repofitory, for by that alone it will plainly appear, that there had been formerly a shell that had caufed both the formations of the containing and contained Flint, there being juft the due thicknefs of fuch a Shell vacant between them, but there may be hundreds of others produced of the like kinds if it were needful.

A Proof of the Ninth and Tenth, viz. Ithink the large Cornu Ammonis may afford; for here it feems plain, that a great part of the Shell was wafted away before the perfect Petrifaction of both the inclofing and inclofed Stone, tho' part of the Shell be yet remaining fticking between thein.
'Tis a hard matter to make a pofitive Proof of the Eleventh, viz. Becaufe of the infinity of them that would be neceffary; yet Ithink it would not be difficult to bring credible Teftimonies enough to fupply one for each Country, and that I fuppofe may fuffice to make it probable that they may be found in all others, fince, as I fhall afterwards prove, they have been produced all by the fame caure.

As to the Twelfth Propofition which I undertook tô prove, viz. That moft of thofe Shells or other Subftances found as above, whether Petrify'd or not Petrify'd, are in the firft place differing from one another in many particulars both of Figure and Subftance, tho yet they retain fuch particular Characterifticks as are fufficient to denote and fhow to what Species they belong, either of Vegctables or Animals, whether of Fifhes or terreftrial Creatures, fuch as are now to be met with alive; that is, not only that fuch as are thus found in one Country, are differing from thofe which are found in another: And in Petrify'd ones this is not only remärkable in the Subftance inclofing and inclofed, butalfo in the magnitude, Figure and Make of the things themifelves; and in the fecond place many of them do confiderably differ from the fhape of thofe Shell-Fifhes, and other. Subftances which are now to be found alive in fuch parts of the Seas as are neareft fituated to the places where thefe Foffil or Land Shells are now to be found. For the proof of which I have no better means than to have recourfe to the Subftances themfelves, which have been fo found, of which there is an excellent Collection in the Repofitory of this Society; though I have alfo feen divers other inftances in other Collections and Obfervations which I have elfewhere met with, which I cannot now produce. Yet one Inftance for all I fuppofe may be this great. Voluta which I have here produced, that was taken out of a Quarry in Portland (and I believe that thofe two other great ones in the Repofitory which I begg'd of the late Duke of Norfolk, for the Repofitory are of the fame kind and from the fame place) for by thefe I think it plainly enough appears, that they are very differing from all the other Subftances or particular Petrifactions that are in the Repofitory, both in Maggnitude, Colour, Shape and Subftance including and included, and even in the very Subftance of that which I call, and fhall prove the Shell; and not only do they thus differ from the Petri-

338 .22 Difcouirje of Easithquakes.

factions. Foffile or Land found Shells, but they differ alio from ath the known forts of Shells of that Species of Eifhes, to which I would refer them, which are now to be found any where near that place alive, nay, in any nart of the World that I yet knew of; notwithftanding all which, they do retain, I conceive, certain Characterificks of their Form, which fhow them to have belong'd to that Species of Shell-Fifhes which are call'd Nautiliz. There Noutiti are dercrib'd by Gefner, Aldrovand, Gobnftom, and others, where you have their Names and a Picture or tivo of the Shells, and fome Stgnes alfo tending to a Defcription of the Creature and two Species of them; but he that fhall think to find any fuch Characterifticks by reading their Defcriptions and, feeing their Pictures of them, will be much miftaken. And indeed it is not only in the defcription of this Species of Shells and Fifhes, that a very great Defect ar Imperfection may be found among Natural Hiftorians, but in the Defrription of moft other things; fo that without infpection of the things themfelves, a Man but a very little wifer or more infructed by the Hittory, Picture, and Relations concerning Natural Bodys; for the Obfervations for the moft part are fo fuperficial, and the Defcriptions fo ambiguous, that they cieate a very imperfect Idea of the true Nature and Characteriftick. of the thing defcribed, and fuch as will be but of very little ufe without an oculay Infpection and a manual handling, and other fenfible examinations of the very things themfelves; for theie are fo many confiderable Inftances that may by that means be taken notice of, which may be ufeful to this or that purpofe for which they may be inftructive, that tis almof impoffible for any one Examiner or Defcriber to take notice of them, or fo much as to have any imagination of them. It were therefore much to be wifhe for and indeavoured that there might be made and kept in fome Repofitory as full and compleat a Collection of all varieties of Natural Bodies as could be obtain'd, where an Inquiver might be able to have recourfe, where he might perue, and turnover, and fpell, and read the Book of Nature, and obferve the Orthography, Etymologia, Syntaxis, and Profodia of Natures Grammar, and by which; as with a Dietipnary, he might readily turn to and find the true Figure, Compofition, Derivation and Ufe of the Chatacters, Words, Phrafes and Sentences of Nature written with indelible, and moft exact, and moft expreffive Letters, without which Books it will be very difficult to be thor oughly a Literatus in the Language and Senfe of Nature. The ufe of fuch a Collection is not for Divertifement, and Wonder, and Gazing, as 'tis for the moft part thought and, efteemed, and like Pictures for Children to admire and be pleafed with, but for the moft ferious and diligent ftudy of the moft able Proficient in Natural Philofophy. And upon this occafion tho' it bea digreflion, I could heartily wifh that a Collection were made in this Repofitory of as many varieties as could be procured of thefe kinds of Fofile-Shells and Petrifactions, which would be no very difficult matter to be done if ary one made it his care: For England alone would afford fome hundreds of , varicties, fome Pctrify'd, fome not. There are few Quarries of Stone here in England 1 believe, but if they were look'd into fome kind or other of thefe Petrifactions might be found in them: I have obferv'd them in Marbles almoft of all varieties of Colours,' as Black, White, Red, and otherwife Speckled: I have feen them in great varieties of Flints and Pebbles, in various forts of hard Stones, as Purbeck, Portland, Torkfhire, Kentijh, Nortbamptonghire, \&c. I have feen many of them of Coperofe or Vitriol Stone, or Pyrites; and Fohn Baubine, and others have defrribed many of them of that Nature. Others of thefe are found above Ground, and others alfo under Ground very deep. fometimes unpetrify'd and remaining perfect Shells, Bones, Wcods, Roots, cic. and have been found by feveral forts of trials to be triuly fo, not only in External Figure, but alfo in the Internal and Subfantial Parts of them; fo that in truth there is no manner of Reafon to doubt them to be of thofe very Subitances they fo perfectly and fully refemble.
But if yet there fhould be fome one that fhould make a doubt of their identity or famenefs with füch subtances as they feem to refemble, fwould willingly know what kind of Poof will fatisfic fuch his doubt, and by what Indications or Characteriftcks he will know a Shell of an unknown Spécies (tor
fuch may be fhewn him) when it thall be prefented to him, or a peice of Wood of fome ftrange Tree brought from an unknown place; if he will fay by the relation of the bringer, that I conccive is not becoming a good Na turalift; and fo one might have been impos'd on by the Relation of the incombuttible Linnen which was here examind, ; but if he will fay by its Propertics, which he finds the fame with that of Shells, or Vegetables, or other refembling Subfances, then I anfwer, that the fame will in thefe be manifeftly fhew.n. Now, the more of thefe. certain Characterifticks of the feveral Species of Bodies there are known, the greater certainties and affurances will be afforded by the artificial and Ariet Examination of them. As for inftance; the knowing the Exiftence and Form of the microfcopical Pores of Wood, is a better Characteriftick to know that a Subitance is Wood than the outward Figure and Appearance thereof, which may be artificially or accidenta!ly imitated, by which means I found that a peice of Lignum Foffile fent from FraLy by Cavalier Pozzo to Sir George Eut. and by him fuppofed to be only Earth fhaped into that form and not to be real Wood, as Stelluti alfo indeavours to prove. By the examination, I fay, and difcovery of the microfcopical Pores thereof with a Magnifying-Glafs to be like thofe of Firr, I produced a better Argument that it was really Firr than any Francifeo Steluti has argued to prove it Earth. Another was, that it burnt as Wood, and made Coles like thofe of Wood, with microfcopical Pores; had I had enough of it I could have examin'd it by Diftillation, and various other Chymical Probations; for the more of Teftimonies and Confeffions are fetch'd from there Examinations and Wracking, the greater will be the Evidence of the true Nature of thofe Subftances fo examin'd, tho' oftimes the Evidence afforded by fome one, may be fufficient clearnefs to fave all further Enquiries: Such as thefe the Lord Verulam calld Experimenta Crucis, which ferve to direct the Inquierer to proceed the right way in making his Judgment. Thefe are fuch marks as I call Characterifticks, which exprefly determine and limit the Nature and Species of the Body under Confideration. For Inftance, I conceive that all thofe Petrify'd Subftances which are calld Snake-ftones in Englifh, from fome refemblance imagin'd of a Snake coyled up; and in Latin (Cornu Ammonis, on Sand Horns polfibly from their being found in thofe Sandy Deferts.
There Petrifactions, I fay, I conceive to be nothing elfe but the Petrifactions of feveral forts of Subftances that the Shells of fome forts of Nantili happened to be mix'd with, whilft thofe Subftances were yet very foft and Liquid, and before, they came to be hardned into Stone by the Petrifactive Agent. This Concepton I grounded upon thefe Characterfticks, which in examining a great many of them I have found. Firft, That in very many of them I have manifeftly feen the the real moulding Shell there preferved, together with the moulded Subftance.
Next I conceive, that this Shell did belong to the Species of the Nautili, or failing Fifh, from thefe Characterifticks. Firft, That the Shell is of a true Co nical Eigure from the Bafe to the Apex. Secondly, That this Cone is turned into a Volutd or Spiral Cone, fo that the Azis thereof doth perfectly lye in the fame Plaine. Thirdly, That this Spiral being a true proportional Spiral, is continually at certain diftances intercepted by Diaphragmes; fo that thofe Diaphragmes being taken as Bafes of feveral Cones, the Cones, thall be found to diminifh in a feries Geometrically Proportional. Fourthly, That every one of thefe Diaphragmes is perforated with a hole fimilar and proportional alfo according to a Geometical Series.

To thefe I might add other accidental Proprieties of the flating, crenating depreffing, ridging, ftringing; and the like, ornamenting, as it were, of the outward fides of this voluted conical Body, and the undulation and foliation, as I may call it, of the Diaphnagme, and the Fringing and Ruffing thereof; all which are found of great variety in this or that Subalternate Species, as is alfo the Section of the Bafe, or that of the Diaphragme; but thefe are not to be looked upon as Characterifticks or Differences to denominate a new Species.

And here by the bye I' cannot but take notice of the imperfect and inaccurate Defcription of this fo curious a Fifh as the Nautilus muft needs be, if one may guefs at the curiofity thereof from thofe defcriptions, which I find in Fobnfton out of Arifotle, Pliny, Bellonius, Pifo, Cardan, Faiconerius, and others, and from the curious make of the Shell, for by all thofe defcriptions. I cannot imagine any one can get any tolerable Idea or Notion, what the make of fo wonderful a Fifh muft be that has fuch an admirable quality as to buoy himfelf as Pliny fays, ex alto mari from the bottom of the Sea, and make himfelf to fwim and fail upon the top of the Water, and at pleafure, or for fear prefently to fink himfelf down again to the bottom. "This will appear fo much the more wonderful to one that fhall confider the great preflure of the Wa ter at the bottom of the Sea, and in how differing a ftate of compreflion this Animal muft be at thofe two places, and by what power it becometh able to make itfelf fo light at the bottom to rife and feem half out of the Witer, and yet prefently fo heavy as to fink down to the bottom, and this withoit Finns or Tail to move itfelf. Now as this Property is peculiar to this Fifh only, fo is the make of the Shell differing from all the Species of Nature befides, and as I conceive is the Engine by which he performeth this admirable Exploit; for the whole Shell is divided into a multitüde of Cells or Cabins feparated and diftinguifhed one from another by feveral Diaphragmes or Partitions without any other perforation, fave one fmall one, through which pafleth a fmall Pipe, which I take to be the Gut of the Animal; this Gut doth not fill a two hundred part of the Cavity through which it paffeth, and the remaining part muft either be filled with Air or Water. Now if it be filled with Water, as probably 'tis, when he finketh himfelf to the bottom, 'tis prety hard to conceive how he filleth it with Air under fo great a preflure and at fuch a diftance from it as to buoy himfelf up, unlefs it be caus'd with fuch a fermentation of the Excrements of the Gut, or other Juices of the Body as doth produce an artificial Air, which ferves for that purpofe; which feems to me to be the true Caufe, efpecially fince I find Gulielmus Pifo to add this Remark to his Hiftory and Defcription of it. Cum damio meo Plinit Difcriptionem veriffimam effe compertus fum namdum taiem pifciculum (fpeaking of the Nantilus of China) in mari captum imprudentius manibus meis contrectaffem, tantus ardor manum invafit, tanguam fi aqua ferventi fuffufa effet, nifi appofito ftatim allio conrafo cum aqua mibi ipfe fubveniffern, procul dubio pra dolore in febrim incidiffem: Unde ego ipfum pifcem de Holothuriorum effe genere contenderim, ut quia omnia in maria fuctuantıa, eam aerem calorem attrect ant tibus inurunt quod of fallaciffmi omnium mortalium Chinenfes noverunt, qui illa Orjzie mifcent, ut liquorem fum Deffillatitium (quem Arac bos bic vocamus) tanio callidius reddant, perniciofo invento, quod binc miferi noffri Socii navales, Janguinis Sputam, phthijin, marafmum denig © ipfam tandem mortem incurrant. By which it plainly appears, that the Juices or Excrements of this Fifh are of a ftrange fermenting or burning Nature which may be the caufe of fo fingular and wonderful an Indowment, which whether it be fo or not, I could heartily wifh that fome Perfon curious in Anatony that has the opportunity of meeting with them alive would give us a more accurate Defcription of its external and internal Formations and Qualifications.
But to leave this Digreflion, which I have the longer infifted upon to frew the great imperfections of the Defcriptions of the Species of Nature and their Qualifications and of the varieties of them (for that I have feen two Species of this fort not defcribed or mentioned in any Author) and of how great ufe a good Collection and Defcription of them would be, as particularly concerning this very Fifh I thall have occafion fhortly to mention. To leave, I fay, this Digreflion, we may from this perceive how little able we are from the want of this Knowledge and Collection, to conclude, that becaufe we do not already know a Fifh or Shell exactly of the fhape of this or that Cornu Ammonis, therefore that it could never have been any fuch Shell, fince it then cannot prefently be proved that there is at prefent, or ever was any fuch Fifh in being, which fome poffibly too confident of their Omnifciency may Object, becaufe they know none fuch themfelves, or have read of them; and therefore that there is more reafon that fuch Arguments as are drawn from the examina-

A Difcourre of Earthquakes.

tions of the Subftances, and the Charaterifticks of the Form fhould be of fufficient evidence to evince that thefe Bodies that have thefe Qualifications could not be formed but for fuch purpofes, as thofe Animals which we are informed of, we know have all parts fitted for each fingular and furprizing ufe defigned; for it is certain that Nature doth nothing fruftra, but manifeftly with an admirable and wife defign, the truth of which Maxim will more and more evidently appear, the more the Works thereof are curioufly examined and fearched into; and no unprejudiced perfon that thoroughly examins them can fail of being convinc'd of the Truth and Certainty thereof, there being fuch a Harmony, Confent and Uniformity, as I may fo fpeak, in all its Operations, and a gradual tranfition from one to another, that it is evident that all thefe kinds of Petrifactions have been moulded by fome Animal or Vegetable Subftance, as by Shells, Bones, Teeth, Fruits, Woods, oir. and that many of them are the Subftances themfelves, yet unaltered.

Now this being proved or granted, which I conceive the infpection and examination of the things themfelves will moft powerfully effect ; it muft follow as a Confequence of that Pliænomenon, that all parts almoft of the prefent Earth extant and appearing above the Sea, have been for fome confiderable time under it, and covered therewith. Since I conceive there is fcarce any Country in the World where thefe Monuments of Antiquity, thefe Medals of Nature, or thefe Sea Marks and Evidences are not to be found either above, or at fome depth under Ground, and fome not very deep; particular Teftimonies of which Truth I have collected many out of the few Natural Hiftorians I have had the opportunity to perufe fince I have had this Notion; and I doubt not but that abundantly more may be collected even out of Books. But inquifitive Natuarlifts, if it were made an Head of Inquiry, would queftionlefs meet with multitudes of other Inftances almoft every where not as yet handed by any Hiftorian, of which truth I have been affur'd by many Teftimonies from other Perfons; but of this I have fpoken already fufficiently.

From the comparing of which Evidences with feveral other pertinentCircumftances that may be obferv'd may be deduced Conclufions very inftructive as to the preceding and fubfequent State alfo of this World... Nam Res accendunt lumina Rebus, and the underftanding the Hiftory of the Courfe and Progrefs of Nature preceding will afford fufficient information of the Method of proceding, which in moft things we may find to be very conftant, uniform and regular. By fuch means we have arriv'd to the prefent Knowledge of Cæleftial Motions, and by the like, to that we have of the Motions of the Seas and Winds, and tho' none of thefe are yet come to their higheft perfection, yet Inquiry, and Ratiocination, and Comparifon will carry us much further towards that end, which the comparifon of the prefent fate thereof with what it was two or three hundred Years fince, will give us good reafon to hope:

It remains then to inquire by what means there prominent Parts of the Earth which at prefent are dry Land, came to be fo, fince by thefe Teftimo-nies it is, I conceive, evident that they have been for fome time under the Water.

And here in the firft place I think it will be evident, that it could not be this could not from the Flood of Noah, fince the duration of that which was but about two befrom Noah's hundred Natural Days, or half an Year could not afford time enough for the Flood. production and perfection of fo many and fo great and full grown Shells, as thefe which are fo found do teftify ; befides the quantity and thicknefs of the Beds of Sand with which they are many times found mixed, do argue that there muft needs be a much longer time of the Seas Refidence above the fame, than fo fhort a fpace can afford.

Nor could they proceed from a gradual fwelling of the Earth, from a Sub- Nor from a terraneous fermentation, which by degrees fhould raife the parts of the Sea gradual fwolabove the Surface thereof; fince if it had been that way; thefe Shells would have been found only at the top of the Earth or very nearit, and not buried at

A Dijcourse of Earthquakes.

fo great a depth under it as the Inftances. I mentioned of the Layer of Shells in the Alps buried under fo vaft a Mountain, and that near the Needles in the Ifle of Wight found in the middle of an Hill, could not rationally be fo caufed.

Nor from the wraflhing atoay by the Water.

Nor could it proceed wholly from a wafhing of the Water from off the Face of thofe parts of the Earth, for the fame Reafon, for how fhould the Mountain come to be placed on the top of them.

Now, if after all thefe topicks of Proofs, there fhall yet remain fome who will not allow any of them to have been Shells, becaufe they are found in the middle of Stone; I have, as a fuppliment, added my Obfervation of the Place where, and the Manner how they may be obferv'd to be fo inclofed into the Body of a folid Stone, namely, at a place near the Needles, at the Weft end of the I Ile of Wight.

With fuch now as fhall not think all, or any of thefe convincing Arguments to prove them Shells, 1 cannot, I confefs, conceive what kind of Arguments will prevail, fince thefe fenfible Marks are, in all other things, the Characteriickfts and Proofs by which to determine of their Nature and Relation, and why they fhould not be allow'd to be fo in this particular Cafe l cannot well conceive.

The chief ob jettions.

The great fcruples I find are thefe; Firft, That they know not how they could come to be placed where they are and have been found; fome Conjectures at which I fhall after fhew.

And, Secondly, That many, nay moft, of them are of fomew hat differing, Shape, and of a much greater Magnitude than are the Shell-Fimes of the like Animals to be found upon the Coaft of Portland, or nearthe places where they have been found ; and indeed againft this my Hypothefis or Affertion I. find none more preffingly urged than this, that there is not one to befound either in the Seas near thofe Parts where fuch are found, nor in any part of the known World, any fuch Animals or Vegetables as thofe which are fuppofed to have afforded the Subftances of fome of them, or the Moulds of fome other, and particularly it has very much been urged upon the Confideration of the Petrifaction or Cormu Ammonis taken out of the Quarry of Stone in the Ine Portland, whether it could be reafonably fuppofed that ever there were in the the World a Species of the Naurilus of this fhape, and of fo valt a bignefs, of which it is fuppofed the World has not afforded an equal in a living Species. And I perceive that the very fuppofition is looked upon as very extravagant and ridiculous. : However, it may be poffibly worthy fome Mens Confiderations to inquire, Firft, Whether there may not yet be found in the World many Species of Shell-Fifh they have not hitherto heard of, or feen in the Writings of Natural Hiftorians, or in relations of Voyages, or by their own Experience.

Secondly, Whether the exceeding greatnefs of this Shell be a fufficient Argument to conclude it ridiculous to fuppofe, that there could be a living Fifh that might fill fogreat a Shell, fince I fhew'd the laft Day out of M audelflo and Olearius's' Travels, an inftance of Oyiters found in Fava, that feem'd much to exceed this Magnitude : And poffibly fome here prefent may have feen, as well as my felf, the great pair of Shells in the Mufaum Harveanum before the Fire in 1666. And that the Shells of a Pinna Marina are now to be feen in this Repofitory, which exceed the common bignefs of a Mufcle as much as this Cornu Ammonis doth the finaller forts of Nautili, and Varieth alfo as much - from them in Shape: And that hotter Countries, fuch as are in the Torricd Zone, produce Turtles or Sea Tortoifes, abundantly more exceeding the finaller fortsof thefe of colder Regions, of which there are Teftimonies enough to be had both from Natural Hiftorians and Travellers, which. it were neceflary I could produce.

A Dijcourse of Earthquakes.

But becaufe it may be upon this Head further Objected, That all thofe extraordinary great Species are the productions of the Torrid Zone, or the hotter Climates, and not of the colder, and fuch as lie fo far remov'd towards the Poles as Portland or England do, about which there are now no living Fifhes to be found that any wife come near to that Magnitude, but are of much fmaller fize and of different fhapes.

Therefore before the Opinion be wholly rejected, I would defire them to That England confider, whether it may not have been poffible, that this very Land of Eng-lay formery in laind and Portland, did, at a certain time for fome Ages paft, lie within the the Torrid Torrid Zone; and whilf it there refided, or during its Journying or Paffage Zone, and was through it, whether it might not be covered with the Sea to a certain height there cover'd above the tops of the higheft Mountains. And further, how deep this may have lain below the Surface of the Sea, when it might have been in that Paffage, and how long time it may have fpent in fuch a ftate, and how long fince it may have been emerged. Such as are better verfed in ancient Hiftorians than I ever have been or hope to be, may pofibly refolve fome of thefe Doubts, or at leaft may prove the impoflibility thereof, which may fave further trouble of inquiry: But if after inquiry is fhould be found that Natural Hiftory is defective in that particular, then I will indeavour to fee what Helps and Hiftories will be pertinent towards the determination of thefe Queries.

And in order to determine the Poffibility or Impoffibility of this Matter, I could wifh it were well confidered further, whether the Superficies of the O cean be equally diftant from a Central Point in the Bowels of the Earth, and where cqually whether any other perpendiculars to the Surfa Surlace thereof, befides thole of every she Ceniser. fingle Parallel, and its Poles, do tend to any other Point of its Axis; and if there fhould be found more than one Point, then what are the limitung or terminating Points of a Line of fuch Points; that is, at what diftance they muft be from one another, or from a Central Point? This I mention'd in two of my preceding Lectures, the one read about ten or twelve Years fince, and in the other about two Years fince; in both which I indeavour'd to thew that the form of the Earth was probably fomewhat flatter towards the Poles than towards the Equinoctial, fince which I have met with fome Obfervations that do feem to make a probability in my Conjecture and Hypothefis.

The Antipodes wereonce thought a Chimera, length of time hath made that notion more reconcileable to Senfe and Reafon; thefe may poffibly at firft hearing appear much more extavagant, and Time that brings all to Light, may poffibly evidence them to be nothing but Chimara's; I will not prejudge, nor pre-poffefs, but leave them to their Fortune. However it were defirable by the Experience and Inquiry of a fhort time to difpatch and haIten the Growth and Ripenings of the Productions of Nature, fince the Experience and Duration of a Man, whether he looks forward or backward, is very fhort in comparifon of what feems requifite for this Determination; his, Sight is weak and dim, his Power and Reach much fhorter, yet may it be worth confidering (tho' he cannot lengthen or prolong his limited time either paft or to come), whether by Telefcopes or Microfcopes he may not fee fome hundreds of Years backwards and forward, and diftinguifh by fuch Microfcopes and Telefcopes Events fo far diftant both before and behind bimfelf in time, as if clofe by, and now prefent? And whether by Inftruments he may not extend his Power, and reach things far above his Head, and far beneath his Feet, in the higheft parts of the Heavens, and the loweft parts of the Earth; for could he perform things of this Nature and Quality as they ought to be, he would lengthen his Life and increafe the injoyments thereof by a multiply'd and condens'd knowledge of times paft, and of times aifo yet to come.
${ }^{3}$ But before we come to this laft Expedient, I could wifh we had a good Account and Collection of what Hiftories pertinent to this, or any other Natural Inquiry are to be found in Printed or Written Authors, which I conceive is yet a $D e f i d e r a t u m$; and that this is poffible to be fo I fhall mention one Obfervation, tho' not pertinent to this prefent Enquiry, yet to another which I have read formerly before this Society, viz. about the Chinefs Character and about the Chinefe Printing. Inquiring then about Tartary
and China, upon occafion of the Difcourfe that was here lately made, I found that in Purchás his Pilgrims there is a part of the Works of Roger Bacon publifh'd, whereby I find that he fo long fince knew they had a way of Printing, Page 58. Part and had a better actount of their Character than any one, or all we have fince that time. Sciendum quod a principio Cataie Magne Nigre ufg; ad finem ofrientis Sunt principaliter Idololatre fed mixti Sunt inter eos Saraceni O- Tartari σ Neftoriani, qui funt Cbriftiani imperfecti, habentes Pativiarcham fuum in oriente. This Cataia magna nigra is one of the North Provinces of China, and the Patriarcha is the Lamos mention'd in the Voyage of Verbieft.

Fugres qui babitant in terra ubi Impertor moratur,----Sunt optimi, Scriptores, unde Tartari acceperant Litteras corum coilli Sunt magni Scriptores Tertarorum e~ Scribunt a fur fum in deorf fum ơ a Siniftra in dextram, multiplicant Line ess © legunt. Zebeth Scribunt ficut nos or babent figuras Similes Noffris. Tangue Scribant a Dextra in Siniffram ficut Arabes ơ multiplicant Lineas afcendendo. Cataii orientales Scribunt cnmpunctorio, quo pingunt Pittores, ev faciunt in una fioura plures literas comprebendentes unam Dictionem, of ex boc veniunt Characteres qui babent multas Literas fimul. Vinde veri Characteres of Philofophici funt, compofiti ex literse of babent fenfum Dictionum. Thus much concerning the Charafter, where I fhall note only by the bye, that both the Fiores and Cataians, thofe of Tebet and Tanout, may be faid to write all the fame way with us, for that they differ only in the Pofition of the Page as to the Eye when read or writ. Next; as to the ufe of Printing, he fays in the fame Page, fpeaking of the Money of the Cataians. Iftorum Cataiarum moneta vulgaris eft charta de bombafoo in qua imprimuint quafdam Lineas. This I fuppofe he took in part out of the Voyage of Gulielmus de Rubriques, a French Frier, who wrote an account of his Travels into thofe Eaftern Parts to the King of France, and for divers Reafons I believe it to be a very true Relation, for I find in the thirty fixth Chapter of his Book as follows. 'The-common Money of Cataia is Paper made of Bombalt the ${ }_{6}$ - length of an Hand, upon which they imprint Lines; like the Seale of Man${ }^{6}$ gu, they write with a Penfil wherewith Painters Paint, and in one Figure ' they make many Letters comprehending one word. The People of Thebet ' write as we do, and they have Characters very like ours. They of Tangu
' write from the right Hand unto the Left, as the Arabians, and multiply ' the Lines afcending upwards. Fugur, as aforefaid from above downwards. This is very much the fame with Roger', Bacon, whereby we had above four hundred Years fince a hint of the Chinefe Printing; as alfo that the Chinefe Characters were compounded of certain Elements, which expreffed both a literal and philofophical Word. I have one Obfervation more to add before I leave this Digrellion, and that is in anfiwer to another Objection which was made againft my Conjecture of the deducing the Name of Cornu Ammonis, or Sand Horns from a probability that they might poffibly be found in thofe Sandy Deferts of Pentapolitana in Africa, now call'd Barca, which lieth Weft of Egypt, between that and Africa Minor, almoft oppolite to the Morea of Greece, a large and barren fandy Defert, troublefome to be travailed in, by reafon of the inftability of the Footing, and for that the Sand is thrown to and fro by the Wind, in the midft of which flood the Temple of Fupiter Ammon whofe Effigies was adorn'd with Horns fuppofed to be Rams Horns, but I conjectur'd they might poffibly be the refemblance of thofe petrify'd Nautili, found in that Sand. To this Conjecture I have only this to add, Firit, That Lucan in the defcribing this Idol, calls him Corniger, whicl feems to argue, that the Statue had Horns. But which feems more to agree with my Conjectite, is what is related of the form of this Idol by Curturs, that it was without the form of any Creature, but like a round Bofs or Navel, (でmbilicus is the word) befet with Jewels; this was carried in Procellion by the Priefts-in a guilded ship hung with Bells on both fides, cic. by which it fhould feem that the very Idol itfelf was nothing but fuch a Nautilus Petrify'd, as I have produced, befet round with Jewels for ornament, and carry'd in a Ship poffibly as a Hieroglyphick, to fignifie the manner of fome eminent Delivcrance of that Country from a former Flood, or the ufe of Ships in that place, whilft an Ifland and that Defert was cover'd with Water But this is only Conjectural, which I fubmit to furthei examination.

A Difcourfe of Earthquakes.

But to leave this Digreffion and proceed. I fay, it were very defirable in Searching of order to the folution of this and divers other Inquiries in Natural Philofophy; Natural Hijtothat we had a Collection of fuch Obfervations as are to be found, already ${ }^{\text {ries }}$ ufeful. made and recorded in Natural Hiftories, to fee what Light fuch Hiftories would afford, which may be perform'd by the joint Labour of many Perfons who would perufe and collect fuch Matters; but poffibly it may be believ'd that little can be found pertinent to this Inquiry, as indeed I fear there will be no great matter; yet Pliny in the tenth Chapter of his thirty fixth Book takes notice of a matter which is not altogether impertinent, affirming, that an Obelisk fet up by Auouftus for fhewing the length of the Day, was found after fome time to go falfe.
But upon this I build no great matter, and I fear the ancient Obfervations. will in general help us no great matter, though they may give us caufe of fufpicion, as particularly concerning the Latitudes of Places, of which Mr . Vernon takes notice that the prefent Latitude of Athens is near two degrees differing from that affign'd it by Ptolomy, which is remarkable, it being .of a Place fo eminently known in fermer Ages. But upon neither of thefe can much be built as to the accuracy of determining fuch a motion; tho' they may ferve well enough for hints for Inquiry farther concerning them. Monfieur Pettit has alfo written a Treatife to prove that the Latitude of Paris is difting from what it was formerly. Scaliger alfo had a notion of fome fuch himfelf. The place is tell what he would have, nor do I belieye he well knew others alfo have mentionded in Chilmedes Englifh Edition of Hues de Globis; certainty. I did therefore upont none have determin'd it or brought it to a cerning the general Form and the proprietion, where I am difcourfing conof the Earth, think fit to infert it as aprieties or Motions of erisinat Body 'tis not improbable but that there may be fome fuch motion of the Earths Axis as may alter both the Latitudes of Places, and alfo the pofition of the Meridional Line. And that this may not feem fo abfurd, we may confider the alteration of the $A x i s$ of the Earth in refpect of the fixt Stars long fince difcover'd, and the variation of the magnetical A_{x} is difcover'd firft abouit fifty Years fince by fome of the Profeffors of this Colledge.

But now the Queftion is how thefe general Queries can be determin'd ; Some Generat that is, Firit, Whether there be any alteration of the gravitating Center of the Earth.? 中eries.

Secondly, Whether the Body of the Earth be of a true Spherical or Oval Figure, and thence whether it hath one or infinite Centers of Gravitation.

Thirdly, Whether the Avis of its Rotation do change its Situation or Pofition
in relpect of the Parts of the Earth; and thence; Whether the Latitudes and Montion: dional Lines of places do differ in process of time, and if fo in the

Fourth place to determine What is the particular motion that caufeth it, and by what fteps it bath devolved for the time paff, and will proceed for the time to come.

A Dijcourre of Earthquakes.

The CONTENTS.

TTHE beginning of this Lecture being loft I cannot certainiy find wheri it was read, but judge it precceded that tohich I have here placed after it.' It contains Several Pofitions to folve the Phenomena before-mention'd relating to the great alterations of the Figure and Motion of the Earth: Of the ee there are enumerated fifteen; tho' this be propofed only as an Hypothelis, yet the Author thinks it deferves examination before it be wholly rejected, the difcovery of Truth being his only aim: And adds, That Ift. 'Ti.is not impoflible for three Reafons. 2dly. 'T is no more Folly to invent this Hypothefis, than'twas to invent feveral others. 3 dly. 'Tis not only poffible but probable. He inlarges upon the Proof of two of them, viz. The prolated Spharoidical Figure of the Earth and Sea, and the variation of the Axis of Rotation.
R. W

MY Firft Propofition then is this, That we fhould fuppofe Firft, That this Globe or Ball of the Earth was carried round the Sun in the plain of the Ecliptick, making an entire Revolution in that Plain once in a twelvemonth, and thereby making the Sun to appear to pafs continually in the Ecliptick Line, as Pythagorus, Ariftarchus Samius, Copernicus, \&c, have fuppofed.

Secondly, That this Globe or Ball whilft it maketh one fuch Revolution, is likewife whirled round three hundred fixty and five times, and about $\frac{2}{4}$ upon an $A x i s$, or imaginary Line paffing through, or near the Center thereof, which $A x i s$, is all the while kept in an Inclination to the faid Plain of $23 \frac{1}{2}$.

Thirdly, That this Axis doth continually keep a Parallelifin to itfelf very near; all which Axes at prefent refpect a Point in the Heavens, not far diftant from the laft Star of the Tail of the little Bear call'd the Pole-ftar, but heretofore 'twas at a greater diftance from it.

Fourthly, That this Axis doth, in procefs of time, vary its refpect to that Star or Point of the Heavens, and by degrees proceed nearer towards it, not directly, but in a Circle parallel to the Ecliptick, or whofe Center is the Pole of the Ecliptick. Thus far I take the fame with the Hypothefis of Copernicus and his Followers. But

Fifthly, I fuppofe yet further, that the Axis of the Diurnal Rotation of the Earth hath alfo had a progreffive motion, and hath, in procefs of time, been chang'd in pofition within the Body of the Earth, and confequently that the Poler points upon the Surface of the Earth, have alter'd their Situation; fo that the prefent Polar Points have formerly been diftant from thofe Poles that were then; and confequently that thofe former Polar Points are now remov'd to a certain diftance from the prefent, and move in Circles about the prefent.

Sixthly, I fuppofe that the Form of the Surface of the Water at leaft, is, and hath been, ever fince the duration of the Earth, of an Oval Form, whofe longeft Diameters lye in the Plain of the Equinoctial, and whofe fhorteft is the $A x i s$ itfelf of the faid Rotation.

Seventhly, As a Confequent of this I fuppofe the Center of Gravity of the Earth to be drawn out into a Line into the $A x i$ s thereof, and confequently into infinite Centers, there being one for every Parallel Line upon the Surface of the Earth, and that no Perpendiculars but thofe of the Poles and Æquinoctial, refpect or tend directly to the Central Point , but that all the Per- $^{\text {, }}$ pendiculars from the other Parallels refpect certain Points in the oppofite Parts of the Axis which are fo much the further remov'd from the Center, by

A Dijcourse of Earthquakes.

how much the nearer the Parallels approach the Polar Points; which Points of Gravitations and Pofition of Perpendiculars in refpect of the Axis, may be determin'd both a Priori by Theory, and alfo a Pofteriori by Experiments or Obfervations.

Eighthly, As a Confequent of thefe, I fuppofe, that in procefs of time there will be caufed an alteration of the gravitating Power and Tendency of the Parts of the Earth, both Solid and Fluid, and that according as the Pofitions of them are alter'd in refpect of the Polar Points, either prefent Precedent or Subfequent, there will be caufed in the

Ninth Place, an indeavour of fliding, fubfiding, finking and changing of the Internal Parts of the Earth, as well as External, tho' the latter will be more powerful, as being more affected by the Rotation thereof; and this may caufe in the

Tenth Place, an alteration in the Magnetical Power and Vertue of the Body of the Earth, efpecially of fuch Parts as are *more loofe and of a more fluid Nature. And

In the Eleventh Place, may be a caufe alfo of fome of thofe Tremores Terre, or Earthquakes which have in all -Ages been in the Earth, tho' we have no Hiftories or Records that have preferved the Memory of them, but only fuch Signs and Monuments as they have left by the unequal ragged and torn Face of the Surface of the Land and the Bodies that are difcovered; which proves that they had fome time an other Pofition than they are found to have at the prefent.

Thefe two laft notwithftanding I do not fuppofe the only caufes of thefe Effects of Earthquakes, no nor the Principal, but only as concurring and adjuvant Caufes which may have their Effects in fome meafure, but how.far and how powerful they may be fuppofed, will be proper to be refolved under the Heads of Magnetifins and Earthquakes, and more efpecially under that of the Air. The fame Principles or Suppofitions will alfo produce in the

Twelfth Place ; a more than ordinary fwelling or rifing of the Sea in thofe Parts which are near the 压quinoctial, and a finking and receeding of the Sea from thofe which are near the Poles; fo that as any Parts do increafe in their Latitudes, fo will the Sea grow fhallower, and as their Latitudes decreafe, fo muft the Sea fwell and grow high; by which means many fubmarine Regions muft become dry Land, and many other Lands will be overflown by the Sea, and thefe variations being flow, and by degrees will leave very lafting Remarks of fuch States and Poiftions, in the fuperfieial Subftances of the Earth.

And hence alfo will follow in the Thirteenth Place, a great alteration and variety of the Productions of thofe Parts which are thus alter'd in their Pofition, whether they are parts of the Sea or parts of the Land; for as there feems to be fomewhat which is peculiar to this or that Soyl or Spot of Land whereby this or that Animal or Vegetable doth grow and thrive and increafe both in Quantity and Quality, and the contrary : So is there alfo fomewhat in the Climate and Pofition to the Sun and. Heavens, which doth as powerfully at leaft, if not much more, affect the Productions, Propagations, cic. of Plants and Animals. And as 'tis a known Obfervation, that in the fame Country, this or that Field, or Soil is more effective for this or that ufe; fo 'tis as well known that the tranfplanting of arimate Subjects to differing Climates, tho' the Soil feems of the fame Nature, doth as effectually co-operate in the changing or alteration of them. And hereby a fruitful Land may be turned into Barrennefs, and be made unfit for Production as well as Barrenand Ufelefs may be made Fruitful ; for that the Temper and Conftitution of a Soil may be fuch as to befit for many purpofes in fome Climates, which in others is fit for nothing.

From

From hence alfo will follow in the Fourteenth Place, That many places which by degrees are made Submarine, will be cover'd with various Coats or Layers of Earth; fo that the former Surface of it, when Land will not only be drown'd with Water, but buried under Earth; for that, as the parts of the Land, are continually wafhed down, and by the Rivers carried into the Sea, and there depofited in the Submarine Regions, fo much more powerfully and plentifully are the higher parts of the Submarine Regions by Tides, Currents, and other Agitations of the Water, removed and tranfported into the lower, partly by finking out of the muddy Water, but principally by tumbling and rowling down from the higher, which forts of covering or burying Earth mult be pofited in certain Layers or Stratifications of divers kinds of Subftances according to the nature of thofe which are this or that way brought thither, and there depofited. Hence alfo it will follow, that the Earth itfelf doth, as it were, wafh and fmooth its own Face, and by degrees to remove all the Warts, Furrows, Wrinckles and Holes of her Skin, which Age and Diftempers have produced.
15. And hence in the Fifteenth Place will follow, That fuch Regions as have for a time been Submarine, and produced Subftances of Animals or Vegetables proper for them, when they come to be dry Land and to lye above the Waters, muft produce Animats and Vegetables proper and peculiar to that Soil, Element and Climate they are then furnifh'd with; preferving in the mean time the Characterifticks and Marks of the former Qualifications, when in another Condition.

But fome poffibly may be ready to fay before thorough examination, that this is only a fuppofition, and that there are no fuch Phænomena as here are put for the Suppofition: Others, that'tis foolifh to make an Hypothefis for the folving of any one Phænomenon. Others may poffibly demand how comes this to be now difcover'd, which none hath hitherto known? Or how is this to be proved? By what Hiftory? By what Signs and Tokens? I muft leave every one to his own freedom to judge as he fees caufe, and cenfure as
 Momus or the Mimick. Sed ficuis-quid rectius iftus nofcat, candidus impertiat. But if he know better let him not, hold his Tongue but tell us. I fhall not impofe on any; I propound it only as an Hypothefis, and have fherved what will be the Confequences of it, whether there be Phxnomena ainfwerable to be obferv'd. let it be examin'd ; and let there be produc'd another Hypothefis that will folve the various Phænomena that are to be every where met with better; for that I have no farther defign in propounding it than to have it ftrictly exanin'd, and in order thereunto to have fuch obfervations madeand taken notice of for the future as may afcertain the Truth whether for or againft it.
Yet give me leave to add a word or two, before I wholly leave it to its Fortune.
Firft then, I fay, That what is here fuppofed is not impoflible. Firft, 'Tis Tise fiuppofit or
ift. not impof
nut impolible from the Natural Hiftory now to be met with of the things fuppofed; for that all things may be the fame as they now appear, and yet this may be true; for no one Phænomenon, that I can think of, is contradicted by it, either fetch'd out of ancient Hiftories, or yet Collected by prefent Obfervation. A's there are no Obfervations of Latitudes, or fixed, accurate meridian Lines, or Eclipfes for the Oval Shadow of the Earth, or Menfuration of Degrees to find their difference in differing Latitudes. Nor Secondly, Is it impoffible from the Nature of the things fuppofed, for that there is as yet no certain Caufe affigned, why the Earth doth move upon the A xis, it now doth, and not upon another, nor why it fhould always continue and remain the fame without change, contrary to all other motions in Nature. Nor is it impoffible becaufe not difcover'd before, which yet is more than can be pofitively proved; for if fo, then would Magnetical Motions fall under the fame Confiure, as allo, Optick-glaffes, Guns, Printing, and other ncw dif-
coveries. And by the fame Argument the Motion of the Sun, and Fupiter upon their Axes, the Reality and Revolution of the Satellites of Fupiter and Saturn, the Ring of Saturn and the Belts of Fupiter, and the like mightbe condemned.

Secondly, I fay for it, that'tis no more folly to invent new Hypothefes to folve Phænomena in the Earth, than it was in Pythagoras, Ptolomy, Copernicus, culous. Ticho, Kepler, and others in the Heavens; for that each of them conceiv'd by fuch Hypothefes to folve the Phrnomena more agreeably to the other appearances of Nature; whereas yet no one of them has hit the right I conceive, and I fhall, I hope, in due time demonftrate.

But in the Third Place, for Affirmative, I Fay, 'tis not only poffible, but probable, and altogether confonant and agreeable to the reft of the Works bable. of Nature, and even to the very Conftitution and Phænomena to be obferv'd upon the Earth itfelf:

And Firlt for the Oval Fioure of the Sea and Body of the Earth in fome mea- of the oval fure. If the gravitating Power of the Earth be every where equal, as I know Figure of the no reafon to fuppofe the contrary, then muft this Power be compounded with Earth. a contrary indeavour of heavy Bodies to recede from the Axis of its Motion; if it be fuppofed to be mov'd with a diurnal Revolution upon its Axis, and confequently a part of the gravity of fuch Bodies towards the Center muft be taken off by this Conatus, which is every where oblique, but only under the Equinoctial, which muft therefore moft diminifh its Gravitation, and confequently the gravity will act the moft freely and powerfully under the Poles, and the more powerfully the nearer the Bodies are plac'd to thofe Poles; and that Phrnomena do anfiwer to this Theory, has been verify'd, firft by Mr. Hally at St. Helena, and fince by the French in Cayen, and now lately in Siam, in all which places it is affirmed, that'twas neceffary to fhorten the Pendulum to make it keep its due Time.

In the Second Place for the variation of the Axis of Rotation in the Body of of the variao the Earth. I fay it is confonant to all the other motions of Nature : For tion of the $A x$ firlt it is found that the Axes of the Ellippes of the Planets do vary a little, I ${ }^{\text {is. }}$ fay a little (tho' Mr. Street only will have them not to vary at all) becaufe all Aftronomers have hitherto affirmed, that they do, and froin my own Mathematical Hypothefis. I collect the fame, tho it be but a little, yet it is formewhat, fince there is fome impediment in the Medium. Next there is alfo a motion in the Nodes, all which are very eminent in the Moon. And again, the direction of the $A x i$ in the Earth is varied as to its refpect to the Heavens, which the preceffion of the 庄quinoxes do manifet. Nay yet further, the Axis of the Magnetical Motions which is within the very Body of the Earth, and feems even to go through its very Center, hath, about fifty Years fince, been prov'd to vary alfo fomewhat analogous to this which I have fuppofed, whereby both the Magnetical'Latitudes, and Magnetical Meridians have moft certainly been varied; which feems abundantly more diffcult to be granted than this which I propound, did not certain Obfervations both here at home and all over the World confirm the truth of Matter of Fact, and that becaufe this doth feem to prove a motion of a Magnetical Core or Magnetical Globe of the Earth, within this outward earthy and watery Shell; whereas this which I fuppofe is nothing but a progreffion of the Axis of Rotation, which may be caus'd by the vifible accidental Mutations of the outward and fuperficial Parts, as well as by other unknown alterations which may fucceed within the Bowels of the Earth. So that 'tis very probable that there is fome fuch motion of the faid Axis, fince we are certain both of outward and inward changes.

It only remains then Pofitively and Experimentally, or Hiftorically to prove the Reality thereof. Now the motion of the Mutation thereof being but flow, as I conceive, and the Obfervations of the Antients Recorded in Hiftories neceffary for this purpofe, being fo unaccurate and uncertain for fuch a determination as this, 1 fear they cannot be rely'd upon; but whatever fhall be alledg'd as a proof of this Theory, will be attributed to a fault in the Antient Obfervation, as that Ptolomy puts the Latitude of London 5210 and the longeft Day 17 Hours. Nor will I infift on the Latitude of Athens

A Dijcourre of Eartbquakes.

found by Mr. Vernon, to differ near a Degree: Nor on the Latitude of the Herculean Streights, which varies as much from the prefent, as that of London, tho' all thefe were remarkable places, as was alfo Conffantimople; but rather rely upon Obfervations to be made for the future; the way of performing which I fhall treat of hcreafter, whereby I fhall fhew, how, in a fhort time, the fame thing may be determin'd as well as by fo long a time.

The CONTENTS.

TH IS Lecture was read Feb. 2. 168 $\frac{6}{1}$, and contains the Confirmation of what was offer'd in the preceding... Ift. As to the fuperficial Figure of the Sea; and for this purpofe he propofes fome Experiments, the fuccefs of which owas fheron to the Royal Society; and next feveral Obfervations are brought to the fame purpofe, mbich are ranged under tmo Heads, ift. Confequential Proofs. 2 dly. More immediate Proofs. 2dly. As to the alteration of the Axis of the Earth's Rotation.
R. W.
suppojitions as extravagaut bave been made.

WHat I propounded the laft Day by way of an Hypotheris, may poflibly be look'd upon not not only as very extravagant, but very improbable; from the laft of which I hope I did then clear it; and as to its extravagancy, I hope I may be able to fheiv, that there have been fuppofitions altogether as extravagant, which yet have not only been made, but accepted and imbraced, and for many Ages as ftifly defended as the moft probable. My'Inftance fhall be in the Ptolomaick. Hypothefis of the Heavens, which, that you may the better judge of, I have here a Book to fhew the whole Defign and Intrigue of it, in which the fame and all its parts are mofe curioufly delineated, whereby all the Wheel-work may be at once difcover'd; and if it be defir'd to be made in Clock-work, I have another Author that fhall give the bignefs of the Wheels, and the number of the Teeth and Pinions neceffary to accomplifh the fame in Clock-work: And yet when all is done, there will want as many more to make out all the irregularities of appearances exact ; the reafon of which proceeded from one falfe Principle, that one Body was capable of no more than one fimple motion, whereas in truth there is no body mov'd but is capable of, nay, actually mov'd by thoufands.

But it may polfibly be faid, that this Hypothefis was the Product of an Age not fo inquifitive and able to judge as the prefent, which will hardly be impos'd on with fuch improbabilities; nor was all this clutter thought neceffary at firft, but the maintainers of that Opinion, to make out the appearances, as well as they could, have fince found it neceffary to help out the firlt Invention by additional Expedients; and if thefe were fufficient, I conceive it might yet be an acceptable Hypothefis, tho' we have no Medium to prove that there is any fuch thing in Nature as a Solid Orbe, or a moving Genius.

The like favour I hope may be allow'd to what I propound, if upon due examination the Pbonomena are anfwerable to what the Hypotbe is does hint.

Now what would be confequential to what I have propounded, I fhew'd the laft Day; it only now remains to examine whether Phænomena do anfwer.
rft. of the Fi- Firft then todetermine whether the Figure of the Sea from North to South gure of thesen. be Oval, fiwelling towards the Equinoctial and deprefs'd towards the Poles, it will be necelfary to make fome few Trials, Obfervations and Experimcnts.

And Firft for Experiments that may be made here. Let a Bowl or Bubble

Experiments to prove it. of Glafs be made and melted in a Lamp, and when fo melted let it be blown into a hollow Ballor Babble, which will naturally form and shape itfelf into a round and fpherical Body, efpecially if the Subtance be of an equal thicknefs and equal heat, which let be examin'd, then let the farne be melted again as before, and as it is blowing, let it be mov'd round μ poin the, Pipe, by

A Dijcourse of Earthquakes.

which it is blown, by a pretty quick Circular Motion, and you will find that inftead of the Spherical Figure it will receive an Oval one, fuch as I fuppofe the Surface of the Sea to have. This Experiment I fhall by and by fhew here (which was accordingly done).

Now in; this Experiment here are evidently two kinds of Powers that cooperate in the production of this Form: The firft is that of the Congruity of the Matter, which, as I have many Years fince in a finall Treatife, Printed in the Year 1660 , proved, doth fhape the Glafs into a true Spherical Figure, and fo maketh every part to indeavour towards the Center of the whole. The next is that of the vertiginous Motion, which giveth to every part, an indeavour to recede from the $A x$ is of the vertiginous Motion; this driveth the fhape of the whole into that Oval Form it receiveth and retaineth.

The fame Experiment may be much better made at the Glafs-houfe, where a greater quantity of Glafs may be melted, and that more equally and a quicker Motion may be given, which will make the Experiment the more fenfible, the Glafs retaining its melted heat much longer. Befides, it may be there tried with a folid lump of Glafs which will receive the fame Figure from a vertiginous Motion about the Puntilion. And again, to make the Glafs Oval the other way, the fame is whirled round with a motion wherein the Puntilion is made the Radius of the vertiginous Motion.

A fecond Experiment to fhew that the Water doth naturally recede from the Poles towards the Æquinoctial is this. Take a round Difh of Water, and let it be fet upon a Stand where it may be gently mov'd round upon an an Axis paffing through the Center of the Difh perpendicularly; firf obferve the Surface of the Water when it ftands ftill without motion, there you find it fmooth aud horizontal; then move the ftand gently round by degrees, till you find the Water begins to reeceive the motion of the Difh; then examine the Surface thereof and you will perceive the Water to fink in the middle, and to recede and fwell towards the Circumference of the Difh : And the better to fatisfie you I have prepared the Experiment which 1 will by and by fhew. The Experiments are plain and common, yet I humbly conceive not lefs inftructive to the prefent Controverfy, than the moft pompous and more chargeable Experiments.

This laft Experiment doth hint, that the Convexity of the Sea near the The Superficies Poles of the Earth muft neceffarily be much flatter than elfewhere, and not of thesea nexi only lefs Spherical than the reft of the Sea, but poffibly plain, nay, beyond a plain, poffibly Concave, for that the Water cannot but have or receive from the vertiginous Motion, an endeavouir to recede from the Center of that Motion, and the Gravity of the Earth working there more powerfully, and treely. But this only by the bye. But which feems more material, I conceive that a Degree of Latitude, if there meafured would be very much longer than a Degree of Latitude under the Æquinoctial, of which I fhall fpeak more by and by.
In the next place then we are to confider what other Obfervations and Tri-obfervationsto als will ferve to the direct and politive proof of this Hypothe is, That the Figure prove the Theo of the Earth is that of a prolated Spharoide, not of an oblong Spharoide, nor of a Sphare. ory. And thofe may be ranged under two Heads, Firft, Such as are confequential Proofs drawn from the fimilitude in Nature's Operations, on other Bodies fimilarily affected. And Secondly, Thofe which more immediately and pofitively prove the Effects thereof upon the very Body of the Earth itfelf.

The firft fort of Obfervations are to be fetch'd from the Cæleftial Bodies; fuch as we are affur'd by Obfervation have a vertiginous Motion about their Axis, as Hypothetically only we fuppofe the Earth to have; fuch are the Body of the Sun Primarily and Principally, which was difcover'd by Galileo, and: prov'd and perfected by Scheiner; next the Body of Gupiter, which was firft found to move about its own 'Axis, in the Year 1664, and which has fince. been perfected by Caffini. Now, if by exactly examining the true Diameters of the Sun when we are in the plain ofits Equinoctial (which is in the beginning of Fune and of December), if I fay by Trial, we find that the Diameter per Axin of the Sun is fhorter than the Diameter of its Equator, then there will be a
further probability that the like may be in the Earth if it be fo mov'd, as is now generally fuppofed: The liketrial may be made of the like Axis of Fupiter though the Trials will be therein more difficult, as being much lefs fenlible, from the fmallnefs of the Difference; however 'tis worth examining, as it will be to examine alfo the Diameters of Mercury and Venus when they pafs under the Sun, tho' we are not yet affur'd of their vertiginous Motion, and if Monf. Gallets. Obfervation may be credited, fuch aPhanomenon was taken notice of by him in the late tranfit of ' \ddagger Sub Sole, as appears by his account of the Paffage of Sub Sole, Printed in a Treatife by itfelf, and in the Journal des Scavans. Now, if this Obfervation do anfwer in the Diameters of the Sun, it will afford us alfo a further information of the Nature of that Glorious. Body, and will, I conceive, prove it to be of a fluid and yielding Subftance, efpecially the fhining and fuperficial parts thereof. Trial alfo may be made of the like Diameters of the Moon, tho her vertiginous Motion in comparifon of her bulk, be the floweft of all we yet know as turning round on her Axis but once in a Month. The like may be made of the Body of Saturn, when the Ring is fo pofited as that the Diameters that lye in the longer and 'horter Diameters of the Ring may be plainly difcover'd; what the reafon of that Ring may be I fhall difcourfe of elfewhere. Thefe I fuppofe will be the eafieft and fuoneft made, and if judicioufly and accurately perform'd with a due regard of Refraction, and the true pofition of the Axis, will give a great probability or improbability to this fuppofal, but ftill I confefs it will afford no more than a probable Argument either for or againft it: However, that probability being very great, and the trial not very difficult; it will be well to make the Obfervations, efpecially thofe of the Suns Diameter, with all imaginable accuratenefs, which may be done to a very great one, if there be fit Inftruments and fufficient Care ufed therein, fo as very many times to out Atrip all that I have hitherto met with of that kind, the whole method of which will be too long and tedious now to explain; however, if I can procure Affiftance, I refolve to try it this following foune, which is much the beft time of the whole Year to avoid the inconveniency of Refractions, and the true Phænomena thercof I will produce here, without being biafied for this Hypothefis, for which I have no further concern than as it fhall be found agreable to the truth of Appearances. Now, tho' I confefs alfo, that I cannot expect that the difference of the longer Diameter in the Sun from the fhorter will be very much in regard of the very ftrong power of Gravity in that Glorious Body whereby it is able to detain all the planetary Bodies in their Orbs from running from him, and even that of Saturn fo vantly remov'd ; yet when I compare that with the Magnitude of its Body, and the time of its Rotation, I am apt to think that accurate Trials may, difcover fome fenfible difference, which I muft leave to 'Trial.

The fecond fort of Obfervations or Trials necelfary to prove this Hypothefis, which are direct and pofitive, and may be truly call'd Experimenta Crucis, according to the Lord Verulam are principally two, which are fufficient to prove it thoroughly, tho the other fiould fail; the firft is to procure an exact trial to be made of the Time that a Pendulum Clock will keep under or near the Equinoctial, which is adjufted exactly to the time by the Sun or Stars in a much greater Latitude; or the trial of fuch a Clock in two places very much differing in Latitude after the Clock hath been exactly adjufted in time, to one of thofe places; becaufe fuch a difference if it be found and determin'd will be of fufficiency to determine the proportional co-operation of there two Powers. "As'for inftance, this may be fufficiently examin'd by a Clock adjufted in Enoland, and tried in the Barbedoes'; if Care and Accuratenefs be ufed in both thefe places, which I conceive' night be eafily procur'd by the Favour and Affiftance of this Honourable Society. The. fecond which is a much nore difficult Experiment, but yet much more pofitive and convincing than any other, is the meafuring of the quantity of a Degree of Latitude upon the Earth, in two places very much differing in Latitude; the one as near as might be towards the Pole, as upon the Ice in the Finniek Gulf, as Monfieur Thevenot propofeth, which might be procurd by Mr. Hevelius at Dantzick, or Dr. Rudbeckat Stockbolm in Sweedeland, who might do it himfelf or

A Dijcourfe of Earthquakes.

Abstract

procure it to be done at the North end of that Gulf; which would be yet bet ter, and by fome Perfons in Famazca, or other parts nearer the e Equaton There laft trials, if accurately made, would be undeniable Proofs of this fuppofition, if it'fhould be certainly found that a Degree in the more Northern Countries were more large than a Degree in the more Southern Climate, and the Experiment with the Pendulum Clocks would likewife more exactly adjuft the true Gravity of the Earth confider'd fimply without the compofiti-; on of the vertiginous Motion. And thus much for the firft part of the Hypothefis, that the Figure of the Water above the Earth is that of a prolated Sphæroeid whofe fhorteft Diameter is that of the Axis of its Rotation.

Next for the examination of the fecond Part thereof (namely, whether the ${ }^{2 d l y}$, of the Axis of its Rotation hath and doth continually by a flow progreffion, vary its the axis of of Pofition with refipect to the Parts of the Earth; and if fo, how much, and the Earths Red which way, which muft vary both the Meridian Lines of Placess, and alfo rationo their particular Latitudes) it had been very defireable, if from fome Monu-: ments or Records of Antiquity, fomewhat could have been difcover'd of certainty and exatnefs, that by comparing that or them with accurate Obfervations now made, cr to be made, fomewhat of certainty of information could have been procur'd : But I fear we fhall find them all infufficient in accuratenefs to be any ways relied upon; however, if there can be found any thing certain and accurately done, either as to the fixing of a Meridian Line on fome Building or Structure now in being, or to the pofitive or certain Latitude of any known place, tho' polfibly thofe Obfervations or Conftructions were made without any Regard or Notion of fuch an Hypothefis, yet fome of theni compared with the prefent fate of things might give much Light to this Inquiry. Upon this account I perus'd Mr. Graves his Defrription of the great Pyramid in \mathcal{E} Egypt, that being Fabl'd to have been built for an Aftronomical Obfervation, as. Mr. Graves alfo takes notice. I perus'd his Book I fay, hoping I hould have found, among many other curious Obfervations he there gives us concerning them, forme Obfervations perfectly made, to find whether it flands Eaft, Weft, North and South, or whether it varies from that refpect of its fides to any other part or quarter of the World, as likewife how much, and which way they now ftand ; but to my wonder, he being Aftronomical Profeffor, I do not find that he had any regard at all to the fame, but feems to be wholly taken up with one Inquiry, which was about the meafure or bignefs of the whole and its parts, and the other matters mention'd, are only by the bye and accidental, which fhews how uffeful Theories may be for the future to fuch as shall make Obfervations; nay, tho': they fhould not be true, for that it will hint many Inquiries to be taken notice of which would otherwife be not thought of at all, or at leaft but little regarded, and bat fuperficially and hegligently taken notice of. I find in-: deed, that he mentions the South and North fides thereof, but not as if he had taken any notice whether they were exactly facing the South or North, which he might eafily have done. Nor do I find that he hath taken the exact Latitude of them, which methinks had been very proper to have been retain'd upon Record with their other Defription. [Here by the bye becaufe it agrees with a former Conjecture, I here propofed, concerning thofe ftupendious Works, namely, that the Core of them was probably fome natural Rock cut and flaped fit to be cafed or cover'd with another fort of Stone, which was at that time much contradicted, by Affirmations, that the whole Country and Place of their Station was nothing but Sand.' Give me me leave to take notice that Mr. Graves doth affirm, That the great Pyramid is founded upon a natural Rock which rifeth above the reft of the Sand, and that the Rooms about the fecond Pyramid are hewen and fhapen out of the natural Rock; and I doubt not but that if they were all examin'd, they would be found to be fo and nothing elfe, which would much alleviate the fupendious Labour and Work of Men that muft otherwife have been fuppofed to be made ufe of; but this only by the bye.] To proceed then where I left, I fay that I conceive it were very defirable for the future, that thofe I have mention'd, and feveral other particular Obfervations, were purpofely
made for that fuch would give a great light to judge and make a true valuation of the State and Nature of places and things, which in moft Defcriptions we find altogether wanting. As among many other things I could hint, I hould be very glad to find fuch a Defcription of the Nature of the Sand of thore Parts as would inform me whether it have not been all a Sea-Sand: I fay, not only of this Country of Aigypt, which is fo exceeding plain, and fo exceeding Sandy, with many cragged Rocks riling out of it; but of Arabia Deferta, and Arabia Petrea, and all the parts near the Tioris and Eupbrates, and all the parts on this fide of Egypt, as the Region of Barca and Pentapolitana, and many other which are faid to be all fmooth and cover'd with Sand; for Obfervations defignedly made, would eafily difcover whether fuch Sands had been owing to the Sea, or to fome other Caufe, which, by fome curious Obfervations I have met with in the Travels of Peter de la Ville and Bellonius, and others, I judge they have. I fhall here prefent you: with one of them. Pietro della Valle parte terza Lettera irda d'Aleppo Aug. 5. 1625. Vidiper terra molte Conchiglie marine, luftre dentro comme Madre Perle, parte intere, e parte Spezzate, che in Luogo tanto lontano dal mare mi marvigliai come. pote \int fero trovar \sqrt{h}, vidi anco \int par \int per tutto molti pezzi di Bitume, che in queli' terre-: uo Jalmaftro, e che in qualche tempo dell anno per allaaar $\sqrt{2} d^{\prime}$ acqua $\int i$ genera, des. quali ne pref̂ e tengo moftra appreffo di me. NB. This Place is betwixt Baffora. and Aleppo, in the Deferts of Arabia, fourteen Days Journey from the Sea. In Englifh thus, ${ }^{2}$ I Saw on the Ground many Sea-Shells fhining within like - Mother of Pearl, fome whole, fome broken, I much wonder'd how they. ' could be found in a place fo far diftant from the Sea; I faw alfo fcattered ' every where many bits of Bitumen, which in this falt Earth and Soil is ge' nerated and rifes upon the Water at fome times of the Year, of which I © took fome, and keep the Specimens by me to fhew. Noreover, I. hoped to have found fomething remarkable to iny purpofe in the Voyages of Sir George. Wheeler, where he hath defcrib'd Greece and Atbens in particular, and all the remarkable places about it, which are Places the beft defcribed of any thing of Antiquity, and more efpecially in his Defcription of the Temple of the Eight Winds, which is faid by Vitruvius to be given to the City of Athens by Andronicus Cyrrbaffes, and is remaining intire to this Day, all except the Vane or Weather-Cock at the top. I expected, I fay, I hould have met. with fome very exact and curious Obfervations, which methinks the very defign of the place fhould have hinted; of the true Pofition of it as to thofe eight parts or Plag a mundi; but I find nothing more to this purpofe but that each Wind anfwer'd exactly to the compars, in the mean time not telling what was the variation of that compafs at that time pr place; however, he doth fhew that the Pofition and Latitudes of places do much differ from what they had been defcribed to us, but then how far we may relie upon antient Obfervations, will be a further doubt.
I fhould be glad that fuch as are better read in ancient Records would for: the future at leaft take notice of any Obfervations they meet with which may afford fome light to this Inquiry; and fo for that Matter I muft there leave it ; for tho' I could accumulate many Obfervations which do feem to make for it, yet the uncertainty and unaccuratenefs of the Obfervations of the Ancients in this particular make me omit them.

And fo I am reduced at laft to fuch Obfervations as have been made in latter times, and with more accuratenefs and diligence, and with better Inftruments, and to what may be purpofely made with Inftruments a hundred times nore axact, and with defigned and pertinent Obfervations for this very end; and fuch Obfervations will be principally of two kinds, Firft, Such as examine and ftate the exact Pofition of the Meridian Line of places evento a fingle fecond, or to a greater accuratenefs if required. And Secondly, Such as examine and ftate the true Latitude for that from fome few fuch Obfervations accurately made, as they ought, more may be proved by feven Years Obfervations than by feven hunder'd YearsObfervation of the Antients, nay tho' they wereagain multiplied by feven. But of this I fhall difcourfe in my next.

A Difcourfe of Earthquakes.

The CONTENTS.

THis Lecture was read Feb. 9th. $168 \frac{6}{\text { T }}$, the defono of which is to prove tbat the diurnal Motion of the Earth muft caufe a receffon of the exquinoctial Parts thereof, and an acceffon of the Polar, and Jo make it of thej Jppos'd prolated Figure, and this is performed by a horrt and plain demonftration deduced from the Eart tis diurnul Mation: A principal of Motion premifed, viz: That a Body moved will perfevere to move with that velocity received in a frait Line; from bence fome deductions are made, and a Short and plain demonftration that the Figure of the Terraqueons Superficies is a prolated Spheroid, and that gravity tends no where to the Center but at the Poles and under the Aquator; and then the Author defires that Experiments may be made for that purpofe. Next follows the propojal of a way to determine by accurate Obfervation, whether the Axis of the Earths Rotation changes or not.
R. W

IHoped I had by my Difcourfe at the laft meeting evidenced the firtt part of my Pofition which I deduced as a Corollary from the diurnal Motion of the Earth, namely, that fuch a motion muft caufe a receffion of the Sea from the Polar parts towards the Æquinoctial, which muft neceflarily make the Surface thereof of. a prolated Sphxroidical Figure. But I perceive fome notwithftanding the Experiment, which fhewed of the recefs of the Water from the Center, do yet doubt of the Confequences thence deduced with reference to the Earth, and feem'd not to be fatisfied that the two Methods which I propounded for the examination and determination thereof were fufficient.

Now that I might not leave any rub behind which might be a ftumbling Block at the entrance, I have now prepared a fhort demonftration of the neceffity and infallible certainty thereof, as it is a deduction from an Hypothefis which is now by moft Philofophers and Aftronomers granted, namely, the diurnal Motion of the Body of the Earth upon its Axis.

In order to which Demonftration I muft premife this principle of Motion, A Sody moved That every Body that bath received, or is moved with any degree of motion if it reve will perfevere ceives no other motion from any other Body what Joever, will conffantly perfevere or in that motions continue moved mith the fame velocity in the freight Line of its tendericy inffunitely produced. The reafon of which is this, that no Reafon can be alligned why its Motion fhould ceafe where there can be no impediment. Nor is there any reafon why it fhould deflect to any fide out of its diret way, fince from the fuppofition there can be no new motion added to it from any other Body. Now this being a Principle will not admit of any other Demonftration than that of Induction from particular Obfervations in Natural Motions, by which all fuch Principles are made; for whofoever thall ftrictly and accurately examine and analyfe all local Motions, will find hundreds of inftances that after a due analyfis is made do fufficiently evidence the univerfality and certainty of this Principle in all local Motions.

From which Principle it will follow, that any Body moved Circularly with any degree of velocity (whillt fome way continu'd to move about that Center) will at the inftant that containing Power is remov'd, proceed to move directly forward in the ftraight Line of its tendency, which ftraight Line is a tangent to that Circle in which it aquired, or had its impreft velocity, for the conteining Power, which by a continual atraction or otherwife towards the Center, kept it in that Circulation, ceafing, and no other Body whatfoever imprefling any new motion upon it (as is fuppofed in the firft Propofition) the Body mult continue to move in the ftreight Line of its Direction without any Deflection, Retardation, or Acceleration.

From hence it will follow, that the farther it is moved in that Line, the more and more, will it recede from that Center of Motion to which it was detained, and that for a fhort time with Spaces in a duplicate proportion of the times it fpendeth, or of the Spaces it paffes in that tangent Line, namely, in the proportion of the fmaller Secants. This, as fhewa by Gelileo and others, I pafs over without farther proof:

A Difcourfe of Earthquakes.

T\&b. 8. Fig. io
From hence it will follow, that in all Circular Motions that make their Revolutions in equal times about the fame Center, but in Circles of differing Radii of thofefs in equal times will always be in the fame proportion as the the Center; this will be plain by the Scheme, where a reprefents the Center of the Motion, eg, di, cl, evc. Similar Arches of different Circles on the fame Center a, the Bodies placed in b, σ, d, e, are put to pafs their refpective Arches $b n, c l, d i, e g$, all in the fame time; now the Tangents $e f, d b ; c b$, bm being in the fame proportion with their refpective Radii, and their refpective Secants, their refpective receding from the Center a, will be in proportion to their Radii.
Hence it follows; that the recefs of the Parts of the Earth from the Axis of the diurnal Rotation will be in the fame proportion as the Sines complement of the Latitude of thofe places, which recers is no where directly from the Center of Gravity, but under the 压quinoctial it being every where perpendicular to the Axis of Rotation.

Now the fimple Gravity of the Earth as a Globous Body at reft can be no other than to the Center of that Globe, it being confider'd only asa Globe without any Circular Motion, as I fhall prove when I fpeak of Gravity. And this Gravity every way equal, it will thence neceffarily follow, that by the compofition of thofe two Powers acting on Bodies, there will neceffarily follow thefe Confequences, Firf, That every Meridian Line upon the Surface of the Sea, is of an Elliptical Figure, whofe fhorteft Diameter is in the Pole, and whofe longeft is in the Plain of the Equinoctial. Secondly, That the Gravitation of the Earth, as moved on an Axis, is in every Latitude different, the leaft under the 正quator and the greateft under the Poles.

Thirdly, That the Perpendiculars or Lines of Gravity or Defcent do no

Demonftration of the Figure of the Earth.
Tab.8. Fig. 2

Earth; but other Centers in the Axis of its Rotation, let $A b c$, reprefent a quarter of the terreftial Globe Orthographically projected upon the plain of a Meridian, where let a, reprefent the Center, b, the Pole, $a b$, the Axis, ac, the Equinoctial, let $\quad \sigma_{\varepsilon} \beta \sigma \gamma^{i}$ reprefent the Radii of certain parallels of Latitude, whofe Rotation about the Axis $a b$, gives each of them a' proportion of velocity correfponding to their length or diftance from their Axis of Motion $a b$, that is in proportion to the Sine complement of the Latitude of the place or parallel. Let $\dot{c}, \boldsymbol{g}, b, r, n, y$, reprefent a very thin Superficies of the Globe of the Earth or Sea; let $a c, a e, a g, a i, a b$, reprefent the natural Lines or Rays of Gravity tending to the Center of the Earth all of equal length and equal power as to Gravity. The parts then in the Figure being underftood, I proceed to the Expofition of the Doctrine, let g, then reprefent a Body fomewhere placed upon the Superficies of the Earth; I fay, this Body will be affected or moved with a double Power : Firft, By a Power gravitating towards the Center a, which is the fame where ever the Body be placed; this gives it a power of defcending from σ, to n, in a certain pace of time. Secondly, by a levitating power in the Line $\beta \sigma$, whereby in the fame fpace of time it would afcend from the Center of its motion β, from g, to h. Now draw, no, parallel and equal to, $g h$, and draw, $0 g$, and oh. Now becaufe in both thefe Motions the acceleration is in duplicate proportion of the times it fpendeth in paffing them, it follows, that the Motion compofed of both thofe Motions fhall be made in a fraight Line, namely, in the Diagonal Line g^{0}, for g, being by Gravity carried to n, and by Levity, as aforefaid, removed from n; to o, the place of the Body g, at the end of that time, fhall be found o. The fame Demonftration will ferve for c, e, i, and b, Mutatis Mutandis; whence it follows neceflarily, that the Lines of Defcent of fuch a Body are not to the Center of the Earth at a, but to fome other point of the Axis of Motion, as t, v, cic. Secondly, The Figure of the Water wili be Oval, or truly Elliptical, as $x \quad m, 0, q, r$, becaufe $x y, m_{3}$ on, $9 p$, éc. are all proportioned to their refpective Radii. Thirdly, The power of this compounded Motion will affectall Bodies in differing L'atitudes with differing Gravity, which were the proprieties to be proved.

From which demonftration it plainly appears, that the Confequences I have deduc'd from the Hypothefis of the diurnal Rotation of the Earth are neceffary, and cannot, according to the Laws of Motion, be otherwife than what I have deduc'd, not frivolous Suppofitions taken up at random to folve one Phænomenon, but fuch as will give light to many other confiderable effects of Nature, as I fhall demouftrate in explaining feveral other Phænomena both of the Earth and of the Heavens.

It further appears alfo, that the Experiments or Criteria I have propounded, are both pertinent and fufficient to determine and ftate this Enquiry without any .other, and that they are neither impoffible nor very difficult to be procur'd to be try'd with accuratenefs enough.
Now as thefe may eafily enough be procur'd by the mediation of this $\mathrm{H}_{0}{ }^{-}$ nourable Society; fo I doubt not but they may, with little more trouble, procure fuch Obfervations and Experiments to be made as would afford great Light towards the perfecting feveral other parts of ufeful Knowledge, fome few of which, if judicioufly and pertinently contriv'd fo as to be plain and eafy, would give us the determination of many old, yea, and many new Theories poffibly not hitherto thought of, fome of which I fhall hereafter liave occafion to mention. Such Obfervations will be worthy the Caire of this Society, and will be better than accidental and cafual Trials, which, tho' furprifing and pleafant, are at beft but like thofe of the feekers of the Philofophers Stone and perpetual Motion, who generally make trials at a ventire, to fee if there good Genius or Fortune will direct them to meet with what they feek; whereas indeed all Experiments ought to be directed to fome end for the examination of fome fuppofed Truth; and for that end to take notice of all fuch Circumftances as may give any information concerning it, whether it be $f r$ Confirmation, or Confutation of fuch a Doctrine, and if fo, the plainer and the more obvious the Experiments are, the better.
If yet there fhall remain any doubt either in the deduction of this Conclufion, or the fufficiency of the Experiments to determine and ftate the truth thereof, I would very willingly explain any part thereof.

The next part of my Hypothefis is, that by many Obfervations I conceive A Method of that there may be in the Rotation of the Body of the Earth, a change of the determining Axis of that Rotation, by a certain flow Progreflive Motion thereof," where- whetber the by the Poles of the faid Motion appear to be in fuperficial parts of the Earth, Axis of the which heretofore were at fome diftance from the then polar Points or Parts. on alters. I have waved all the Obfervations that I have hitherto met with in Hiftories which might feem to favour this Hypothefis, as having found them irregular and unaccurate enough in Obfervations of this kind, and have put the whole ftrefs of its Proof, or rather Examination, upon trials to be made for the future. But becaufe this Motion, if any, feems to be very fmall and flow, and therefore fince the Age of Man, which is very fhort comparatively, feems infufficient for fuch a purpofe; I have therefore indeavour'd to carry Mahomet to the Mountain, fince I cannot bring the Mountain to Mahomet, and that is by contriving fuch ways as may perform that in a fhort time, which, by the Methods of the Antients, could not be perform'd in lefs than fome Ages. This Contrivance confifts only in the exactnefs' of Inftruments, and the accuratenefs of making Obfervations; for if for inftance we are not fure of the truth of the Latitudes of places recorded by Ptolomy and Strabo to a degree or two, as I can fhew hundreds of places that differ more than that from the Truth; and if by any new Method we may be able to make $\mathrm{Ob}-$ fervations either of the Latitude of a Place, or of the true Meridian of any fuch place to a fingle fecond Minute, than we may by fuch a means arrive to a certainty in a three thoufand fix hundred part of the time that could be arriv'd at by fuch Obfervations as theirs are; wherein their Defects lay whether in their Inftruments, or their way of ufing them, or their negligence in computing, or the want of our prefent arithmeticial Art, and of proper and accurate Tables, or in the Doctrine and Practife of plain and Sphærical Trigonometry, 1 do not inquire; but certain it is, we have at prefent a great advantage of them in all thefc particulars, but above all, moft eminently by the Knowledge and Ufe of Optick Glaffes, efpecially as they are
applied to Mathematical Inftruments, for by them only we are truly made Gygantick, and our Eye from the little Ball of lefs than an Inch in Diameter is grown to be of fifty, fixty, nay a hundred Foot and more in Diameter, and may be madeable to do fome thoufands of times more than what our bare Eye alone without the ufe of fuch helps can perform; and therefore tho' Hevelius might have fome reafon to be uneafy, and fo to rail at me for afferting of this Truth to the World after he had publifh'd his Maching Caleffis to fhew he had made ufe of the beft Inftruments in the World for his Obfervation; yet why Dr. Wallis and his Adherents, fome of which have made ufe of the very Contrivances which I Publifh'd, fhould with fo much Gall write againft me for it, I cannot but wonder: But I doubt not but to prove to all the World in my own Vindication, that neither the one nor the other had any reafon but i!l Will for what they did, and at the fame time to prove the truth of every particular which I have afferted in that Book to any that will believe his own Eyes; but not to trouble you any further with this Controverfy at prefent, defigning fuddainly to publifh my Anfwers to them where they may be feen more at large, I fhall proceed to the Methods of making Obfervations both of the Meridian Line of any place, and alfo of its true Latitude in refpect of the Heavens to the accuratenefs of a fingle Second.

And here only I have one or two Poftulata to premife, which I fuppofe every one that hears it will readily grant; it is no more but thefe; Firft, That it is poflible, nay, practicable, to find a Point below perpendicular, to a a Point above, tho' the diftance between them be a hundred Foot, and to be certain of the truth thereof to the exactnefs of a Second Minute.

Secondly, That the Refraction of the Air at fixty Degrees Altitude above the Horizon does not at vary the Azymuth of a Body a fingle Second Minute.

A Third Truth 1 will put by way of a Poftalutum, that 'tis poffible, nay, eafily practicable to diftinguifh the parts of a far remov'd Object by the help of Telefcopes long enough, tho' they really appear to the Object Glafs of that Telefcope lefs than that of a fingle Second-Minute.

Thefe. I conceive fo eafy and certain, that I have put them as Poffulata; but yet if any doubt of their certainty, I do undertake to prove the Truth of either of them both by Experiment or Demonftration, which of the two fhell be judg'd moft convincing.

The next thing to be fhewn is how to order a Telefcope fo that it may be made a fight, that the true Line in which the Object appears may be certainly determin'd, and this, be the Telefcope fixty or a hundred Foot or more-in length, and how to make by this, an Inftrument as large as the faid Telefcope is a fight.
For the performance of there Qualifications there will be no greater difficulty, than the making a. Tube for fuch a Telefcope, or, if that be thought too much, it may be done by two fmall Scaffold Poles joyned together in the middle with convenient Lines to keep them ftreight, or if this be ftill thought too difficult, it may be done by fitting the Object Glafs in one Cell, and the Eye Glafs and Thread-fights in another, with Lines frained between them to keep them directly parallel to each other; but the beft way is by a Telefcope Tube of a duelength and bignefs for the Object-glafs made ufe of.

- Inftrumentsfor that purpofe.

Suppofing then a Telefcope of fixty, eighty, or a hundred Foot in length thus fitted with a Tube, to find the true Line of Direction, I faften to the Cell that holds the Object Glafs a Needle with the point outwards againft the middle of the Glafs. And the like I alfo fix in a fmall fliding Plate, that lieth upon the Cell, that holdeth the Thread-fight together with the Eye-glars: This Plate, by a very fine Screw, I can caufe to ilip out or in at pleafure, till it. be adjufted to a Line from the point of the Needle faften'd ta the Cell of the Object-glafs: To adjuft this Telefcope then for a fight, Idirect it to fome very remote Object in the Horizon, and fix a Pin or Wire juft touching the point of the Ncedle at the Object-glafs; then having foind and remarked fome convenient Point of the Object in the Horizon, I move the Tube till the Thread of the fight exactly lie upon it; then inverting or turning the. Tube, making the under fide upermoft, and the uper fide undernoft, the right the

A Dijcourse of Earthquakes.

left and the left the right; I caufe the point of the Object-glafs Needle, as alfo, that of the Cell of the Threads to touch the fame Points as before inverfion, then looking at the point of the Horizontal Object, I fee whether the a-fore-faid Line of it do cover the fame part of the Object as it did before inverfion. If it happen fo to do, then I am certain that the Telefcope is already adjufted; but if it do not, it will be adjufted by moving the fliding Plate with the Needle at the Eye-cell: When thus adjufted, there two Needies points become the Indexes to my Inftrument, for exactly taking the vifual Line of the Object, I obferve to as great accuratenefs as is defired. Having thus prepar'd the fight for my Inftrument, I make choice of fome Tower of a convenient height for the refting the end of the Tube that holdeth the Object-glafs, and order it fo that the Needles point may touch a fixed point upon the fame; then 1 -make a Board below upon the Ground lying. Horizontal, whereupon the other end of the Tube may be flid Horizontal and eafily remov'd at pleafure. The Object I make choice of is the Poleftar, or the Star in the tail' of the leffer bear. I by this means obferve its moft Eaftern and Weftern Excurfion the fame Night; or if it happen that one is in the Night and the other in the Day, by means of this Telefcope I can plainly fee it, tho' the Sun Chinc. Now the Needles point at the Objectglafs touching in both Excurfions, and the Needles point at the Eye-fight thewing the two Azymuthes of the faid Excurfions, wherein the Refractions can have no effect to make the Ray bent, it will be eafy enough accurately to divide the fpace between the two Excurfions into half, and as eafy to fine the Point below perpendicular under the Point above marked by the Needles Point of the Object-glafs, or which for this purpofe will be better to find a point above upon fome building of equal height with that of the Object-glafs, by which two Points I direct my Telefcope to the Horizon either Northwards or Southwards, and find what Object lies directly in the Meridian Line, which I diligently note and draw the Landfcape of that part of the Horizon which appears through the Glafs when fo pofited with the very point of the fame cover'd by the Thread-fight; which done, I continue the faid Landfcape by the help of the Telefcope till I bring in fome remaikable known Object, by means of which I Thall be able a Year or two after to find the fame again, when the fame trial is again to be repeated with the fame care. In order to determine this Queftion, whether the Meridian Line upon the Surface of the Earth do change; by which means if it be alter'd but a Second or two, I fhall be able to diftinguifh it in the Horizontal Landfcape. Now tho' this Experiment upon the whole Matter may feem troublefome and difficult to be perform'd duely as it ought, yet if we confider the Impor: tance thereof in this Matter, and how much can be done by the Care of one Man in a fhort fpace, which by the Method of the Antients was to not be expected from the performances of any one or many under the expectation of fome Ages, I conceive the Experiment may be look'd upon in the whole as compendious, cheap and eafy; there being nothing therein 50 difficult but that two Men may every day, for fome days together, repeat the Obfervations and Trials after the apparatus is made ready and put in order, and need not fpend above four Hours in twenty four to make them fufficiently accurate.

Nor will it be very difficult in this City to find a convenient Building or Tower for the refting the end of the Telefcope of a hundred Foot long if it be made ufe of; or of finding a good profpect of a far diftant Meridional Object in the Horizon, whether towards the North or South, they being both or either equally fufficient for this Obfervation: And if a fifty or fixty Foot Telefcope be made ufe of, which will be able to perform the Obfervation accurately enough, with a little more - Care and Circumfpection, tho' with lefs Labour, and Pains, and Charge, there are Houfes enough to be found of fufficient height.

Now this Experiment I conceive fufficient to perform what is defign'd, of to be expected from it, as to this Inquiry, and all things confider'd, I conceive the beft, tho' I could produce fone others if there be occafion; and further, I conceive the fame to be free from all material Objections: As

Firft, If it be Objected, that the Refraction of the Air doth make the Cileftial Objects to appear out of their true places. I fay, that in this Experiment it can have no effect, becaufe the Azymuth and Circle of Pofition only are fought and thofe the Refraction of the Air alters not; for the Star being only. to be obferv'd when it it is either afcending in its moft Eaftern Azymuth, or defcending in its moft Weftern Azymuth, the effect of any would be the fame, fince they are fo found and obferv'd at the fame Altitude both afcending and defcending; and tho' the Refraction fhould raife them, and the whole Circle, and the faid Star to a fenfible higher Pofition than the' Truth, yet the Points to be obferv'd being both of equal Altitude, the effect will be the fame, which will no way difturb this Obfervation.

Next if it be Objected, that this Star doth alter its diftance from the Poleftar every Year, and that will make the Excurfions lefs in the fucceeding Year. I fay, as to this Inquiry, it would have no effect, tho' it fhould alter ten times more, becaufe the middle between the Excurfions in the fame day, is that which is fought in this Experiment.
If the parallax of the Earths Orb be Objected, which is the moft material, I Anfwer, That the fucceeding Experiments are to be try'd again when the Earth is in the fame part of the Ecliptick, which will fully anfwer any Scruple thence.

And, upon the whole, I cannot think of any other, ; but if any of this Honourable Society can think of any Material, I would defire to be inform'd of them, that I may think of fome means of remedying them; or if they think of any other more convenient and certain, that I may put them in practife. Some other of my own I hall propound the next Day and leave them to the Judgment of the Society to chufe the moft fit.

This, 1 hope, may fave the Labour of fearching into Records of Antiquity, of all which ifI may be allow'd to judge by thofe I have met with, I believe they will at beft afford us but uncertain and unaccurate Obfervations, and I do very much doubt whether ever there were above two thoufand Years fince, any Meridian truly fet to the certainty of lefs than one Degree; fo that tho' we had found by the great Pyramid, that there was either fome confiderable variety from the prefent Meridian, or that it were now in the very Meridian Line, the Conclufions drawn from either of them would have been but conjectural, fince it might have been placed true, and have fince varied, as it is found, or it might have been placed wrong, and fince have mov'd to a Truth, or the contrary.

Whereas, fince by this Experiment, we may be able to find the Meridian true to the three thoufand fix hundred part of a Degree, and thefe Obfervations may be made by one and the fame Man, and with the fame Inftrument in the fame place, and at the fame time of the Year, and of the Day; I conceive that one Years Obfervation will more afcertain us in this particular, than if we had Records of Obferyations made, as thofe I haye met with 3600 Years fince; which is the Expedient I have thought of for redeeming or expanding the power of the fhort line of the Life of a Man.

Other Methods of determining the fame Queftion, read Feb. 16. 168\%.

In order to determine whether the Meridional Line of Places didalter, 1 did in my laft Difcourfe wave all antient Obfervations, as fearing there might be wanting in them that certainty and accuratenefs of Obfervations that might be fufficient to affure us of the Matter of Fact, and that might be convincing as to the Reality or Nullity of fuchan alteration, as I fuppos'd.

Af. By anciens But becaufe poffibly there may be fome Obfervations of a latter, date which 5uildings. - have been here made within our prefent reach, which are of more accuratenefs, I would propound it a thing not unfit to be examin'd, whether the Pofition of feveral of the moft eminent Cathed rals built by the Gotbick Architecture, wherein great regard, if not Religion, feems to have been had of the Pofition of them, according to the four quarters of the Horizon, viz. $\mathrm{E}_{0} \mathrm{~W}_{\mathrm{o}} \mathrm{N}_{2}$ and S . And to this end, becaufe neareft this place, I could wifh
it were tried at Weftminfter Abby, which is intirely'built after that Mode; whether that be truly fo plac'd that the four Ends or Fronts thereof do exactly face thofe Quarters, and if not, which way the variation may be, and how much it really is at this prefent. The fame Obfervation may be procur'd to be made at feveral other Cathedrals, as at Salisbury, Winchefter, Chicheffer, York, \&c. where there are fuch Buildings, which will be with no great difficulty procur'd by the Mediation of this Society.

Among other places worth examining, I could wifh that the great Dialftone in the Privy Garden at White-Hall, were one, for that I conceive there was very great Care and Accuratenefs ufed in the placing thereof; and tho' this may feem, if compar'd with others of a very fhort continuance fince its firft placing, yet it may be with probability enough fuppos'd to have been fo much more accurately plac'd, that That alone may poffibly make it preferable to any other whether Ancient or Modern.

Now becaufe the ways publifh'd for finding the truie Meridian Line have really much of difficulty in them, and require both a great Apparatus and a confiderable time to make the Obfervations neceflary for this parpofe, without which the Informations and Examinations will be very unaccurate and fcarce to be rely'd upon, therefore I have contriv'd an Inftrument by which, in a few Minutes of Time, the exact Meridian Line, at any place, may be eafily and with accuratenefs enough, that is, to ten Seconds, if need require; and this free from Exceptions of Refraction, Declination, erc. by which the true Pofition of any Building, Monument, ovc. may be prefently difcover'd and computed.

The firft Inftrument from this purpofe, is a Telefcope of what length fhall 2 diy. By fit be thought convenient to be eafily ufed and manag'd; as fuppofe one of fix, Inftruments. twelve, or fifteen Foot, this muft in the firft place be fitted with Eye-fights, plac'd upon a thin piece of Looking-glafs Plate, on which muft be drawn with a very fine Diamant, fuch Lines and Circles as I fhall direct, the Center of all which Circles is to reprefent the true Polar Point in the Heavens, at the time of the Obfervation of which more by and by.

This Sight-glafs being fix'd in the Trbe, the next thing to be done is to fix two pieces of Brafs, or fome other convenient Metal, which may have each of them a fmall hole to hold a fmall clew of Silk fit to bear a Plumbet or fuch other Inftrument as I fhall direct ; thefe holes mult be fo place'd as that an imaginary Line drawn over the ends of them may be exactly' parallel to the Axis of the Telefcope which paffeth through the Center of the Sightglafs.

Thirdly, Into thefe holes mult be fitted fmall Silken Lines with Plumbets hanging at them, which two Plumb-Lines will (when the Axis of the Telefoope paffing through the Center of the Sight-plate is directed to the Polar Point) hang in the plain of the Meridian.

Fourthly, The Axis of the Telefcope may be eafily directed to the Polar Point, by bringing three or more Stars of the Englifh Rofe into their proper Circles and there fixing it.

Fifthly, The Enolifh Rofe is a Conftellation in the Heavens difcoverable only by a Telefcope, confifting of fix Stars in the Rofe itfelf, and feveral other, in the Leaves and Branches, one of thefe is in the Center of the Rofe, and five in the five green Leaves of the Knob: This I have fomewhere defcrib'd about ten Years fince, but have millaid them at prefent; the way of finding them I then Chew'd to Sir Chr. Wren, and fome others of this Society at the time when my Inftrument was fixed for that purpore.

The Inftrument or Telefcope being fix'd in this Pofition, the two Plumbholes reprefent the true Axis of the Earth, and accordingly will ferve to determine both the plain of the Meridian, and alfo the inclination of the Axis to the plain of the Horizon; fo that by the fame Obfervation both the Meridian Line may be determin'd, and alfo the elevation of the Polar Point,

A Dijcourre of Earthquakes.

which may be various ways moft exactly meafur'd and deterıin'd. Now this is a fecond way of determining the true Meridian Line to what accuratenefs Thall be defir'd, for that the length of the Telefcope is not limited, but may be us'd of what length foever may be made, tho' it may be three hundred or four hundred Foot, for that the Object-glafs may be fix'd at the top of fome Tower or Steeple, and the Sights and Eye-glafs at the Ground. But on this I fhall not at prefent inlarge, beeaufe, whenever there fhall be occation of trial, I can eafily direct the whole Apparatus.

As to the fecond Ufe thereof, which is for taking the Altitude of the Polar Point above the Horizon; this way is far beyond any' I have met with, and is liable to one only Objection (as I conccive) and that is the Refraction of the Air, which elevates the fame fomewhat beyond its due Limits, but then if compar'd with the beft yet propos'd, I conceive it to be lefs fubject than any other, and to come nearer to a certainty and exactnefs: However I grant it to have that Objection good againft it; but if we contider the ufe of this Obfervation as it is defign'd to examine the Latitude of one and the fame place after the interval of fome few Years, the Objection is of no validity, for that the Refraction of the Air at the height proper for London, viz. S1, 32, is hardly fenfible; but then the difference between the Refraction of the firft and fecond Obrervation is yet much lefs difcoverable, fo that for this purpofe 'tis as effectual as the beft.

But becaufe fome may yet further defire to free the Obferyation from Rcfraction, I have contriv'd another way, much lefs fubject to it; which way will alfo find the true Meridian Line to great exactnefs : Not to make any long preamble to it 'tis this; Make choice of fome notable fix'd Star that paffert over or near the Zenith of the place, as here, for London the Lucida Draconis, or the laft Star in the tail of the great Bear; 'tis cafy, by the way I have already publifh'd in Print to find the Zenith, and the Meridian Line paffing through it.

Having fix'd all things requifite for this, about an Hour or two before the Star comes to the Zenith or Meridian near it, find and obferve exactly its bearing, which máy be done with a Telefcope of fifty, fixty, or more Feet in length, then by an exact Pendulum Clock number how many Seconds or half Seconds of Time pafs before it arrive at the Mcridian, which note and remember, then prepare to obferve the place of the fame Star after fo many Minutes, Seconds, and half Seconds have pais'd, after the Star hath pafs'd the Meridian, note the Point alfo. There are then given threc Points, which; with the help of Calculation, the time being taken, it will give the Latitude of the place to a great exactnefs; and if a Line be drawn from the moft Eaftern to the moft Weftern Obfervation, this will give the true E, and W, line; and if the fame be divided in half and through the fame, and the Meridional place of the faid Star, a ftraight Line be drawn, this will give the true Mcridian Line.

- So much for the methods of obferving the Latitudes and Meridian Lines of places for the time to come.

But becaufe there have been fome of our later Obfervations of the Latitudes of fome places which have been with very great Care and Accuraterlefs made; I could likewife wifh that the Latitudes of thofe places where they have been fo made, might be a new examin'd, to fee whether any confiderable difference can be found which cannot well be afcrib'd to the defect of the preceding Obfervations. As the Latitude of Vraniburg, London, Pares, Rome, Bolonia, \&c. tho' yet I fear we fhall be apt to afcribe what difference Thall be found to the faileur of the preceding Obfervations.

This is all I have at prefent to propound concerning the external Figure of the Water and Earth. As to the motions thereof 1. Thall propound fome Conjectures after I have confiderd the Figure and-Conftitution of the next great Fluid in compalling the Earth, which is the Air; after which I fhall propound fome Conjectures at the various internal motions of thofe great Fluids, which concern the Currents and Tides in the one, and the Winds in the other.

ฝ.. $\%$

The CONTENTS.

T1 His Lecture voas read March the 9th. $168 \frac{6}{7}$, and treats of the Figure of the Air or Atmosphere; and firft three known Properties thereof are premis'd, from whence, and the tendency of the Lines of Gravity before proved, is demonftrated, that the Figure of Air is more prolatedly Spheroidical than that of the Earth, which, the Lecture being fhort, I forbear to Epitomife, and only obferve that the Author concludes this Lecture with naming the two great internal Motions of the Earth, Gravitation and Magnetifm; of the firft be bad before treated at the end of bis Difcourje of Comets, of the later be only gives here his Hypothefis in fhort.

R. W.

IHave in my former Lectures propounded my Thoughts, and the Reafons of them concerning the Figure of the Body of the Earth, and the tendency of the Perpendicular Lines of Gravitation; as alfo concerning the probability of a variation of the Axis of Rotation in the Body of the Earth. I have likewife fhew'd the influence of thofe Principles upon which I grounded thofe Thoughts, upon the Body of the Waters incompaffing this Earthly Body.

I come in the next place to confider the Figure of the next great fluid Bo- Tbree known dy, incompafling both the one and the other, and that is the Atmofphere or Mals of Air.

And here for the prefent I Thall only confider fo much of the Nature and mifed. Conftitution of this Body, as feems neceflary to the explication of the Figure thereof.

It is now very well known, that this Body is of fuch a Conftitution, that a greater degree of Heat, or a leffer degree of Preffure will effect a greater degree of Expanfion, that is, will caufe the fame parcel of Air to occupy or fill a larger fpace of rome; next that the fame parcel of Air, when rarify'd, will weigh no more than when condens'd, tho' it fill a greater fpace, becaufe the real quantity of the parts that compofe this Air, are ftill the fame, tho there may be a greater quantity of other matter that fill the Interfitia or Spaces between them.

Thirdly, That the Atmofphere is compos'd of three kinds of Subftances, one more fluid than the other, two of which, namely, the lefs fluid Caufe : confiderable effects upon the fubjacent parts of themfelves, and upon other Aqueous and Terreftial Bodies by their Weight or Gravitation. Thefe I only name at prefent, defigning more fully to explain them and their Caufes when I difcourfe of the Subftance and Conftitution of the Air.

Thefe three things then for the prefent being taken as Suppofitions, and The Atmofiphere the tendency of the Lines of Gravitation, being, as I have prov'd, to differ- under the \mathbb{E}^{-}ing and various Centers, it follows that the Figure of the two lower parts quator bigher. of the Air muft be of a prolated Sphæroidical Figure, and that much more confiderably differing from that of a Sphærical Form than that of the Earth or Water.

For Firft, It is very evident, that the more grofs Parts thereof are car- Ift. From its ry'd along with the fubjacent Parts of the Earth, with an almoft. equal fwifter motion fwiftnefs; fay almoft, becaufe in the wide and open Ocean there is fome kind of lofs of fwiftnefs and lagging behind, which, as I conceive, (as Galileo and many others have done) is the Caufe and Original of the Eattwardly Winds within or near the Tropicks; from this Rotation then will follow a confiderable levitation of fuch parts of the Air as are whirl'd round from Weft to Eaft with fuch a Rotation; that is, thole parts which are mov'd fwifteft will have the greatelt indeavour of Recefs from the Axis of Motion; and thofe which are mov'd flower will have a lefs, as I fhew'd before in my Explication of the Figure of the Water.

2ly. Fromits Spriney Nature.

Next it is evident from the fpringy Nature of the Air, that the lefs the prefling is upon the Body thereof, the more will it expand and ftretcla it felf and poffefs a greater fpace. Now the quantity of Air towards the equinoctial, having a greater Levitation upwards, or lefs ' Gravitation towards the Earth, a greater quantity of the Air muft go to make up the Cylinder that gives an equal Preffure, and confequently the Surface or Extent of the Air towards the Æquinoctial muft upon this account be much higher than towards the Poles.

3 dly. Fromits greater beat there.

But in the Third place this Oval Figure of the Air muft neceffarily be increas'd by the differing Degrees of Heat and Cold; for that a greater Degree of Heat doth expand, and of Cold doth condenfe the Body thereof. Now it is evident that the Degrees of Heat near the 压quinoctial are very great in comparifon to what they are near the Poles. And confequently, upon this account, alfo the Body of the Air towards the Æquator, muft be very high and rarify'd, and the Body of it towards the Poles muft be very low and condens'd ; from which two Caufes it will neceffarily follow, that the Figure of the Body or Mafs of Air, incompaffing the Body of the Earth and Water, muft be of a prolated Sphæroidical Figure, much more prolated towards the 不quator than that of the Water.
From which Confiderations, I conceive, fome Reafons may be drawn of

Reajoins of dif-

 ferent Pbanoment in differ ent Climates.A Circulation of the lower of upper parts of the Air. feveral Phænomena taken notice of by Travellers; fuch as the frequency of Foggs and Mifts and various forts of Parbelia and Parafelena, in and near the Polar Regions; all which argue a denfe and heavy Air. And of the Hurricanes, Tornadoes and the Storm call'd the Bulls Eye; which defcends from a great height with great precipitation into the lower Regions of the Air, and of the frequent and violent Rains in the Torrid Zone; all which Pbanomena are indications of an Atmofphere much more extended upwards, and of the vaporous Parts carry'd to a much greater height than elfewhere.
From thefe Confiderations alfo will follow a neceffary motion or tendency of the lower Parts of the Air riear the Earth, from the Polar Parts towards the Equinoctial, and confequently of the higher Parts of the Air from the Æquinoctial Parts towards the Polar, and confequently a kind of Circulation of the Body of the Air, which I conceive to be the caufe of many confiderable Pheriomena of the Air, Winds and Waters, which I fhall more fully ex"plain when I come to confider the Conftitution and Motion of the Body of this great Mafs, whofe Figure and external Form only at the prefent I am confidering.
Nor fhall-I at prefent explain any thing farther concerning the two mare fluid Subftances that help to compofe or fill the fpace which is taken up by the Atmoíphere, becaufe my prefent Subject leads me only to confider that part of the Air which is call'd the Atmofphere, and to fpeak only of the Figure thereof, of which I have no more to add at prefent, but fhall return to confider the Nature and Motions of each of thefe three great Maffes, viz. the Earth, the Water and thie Air.

Firtt then for the Internal motions of the Earth; there are two principally taken notice of; the firft is that of Gravitation, the fecond is that of Magnetifm:

Of the firft of thefe I have fome Years fince difcours'd more particularly, and therefore fhall omit it at prefent.
Of the fecond of there, namely, Magnetifm, I fhall only propound my Hypothefis now and explain it more particularly in my next Difcourfes.
My Hypothefis then is this, Firlt, That all magnétical Bodies have the conftituent Parts of them of equal Magnitude and equal Tone.
Secondly, That the Motion or Tone of one Magnetical Body is convey'd to that of another by means of a Denfe Medium.
Thirdly, That the motion of the Denfe Medium is Circular and Vibrating.
From which three Suppofitions all the Phonomena of Magneticks will be moft evidently and clearly, even a Priori, deduc'd.

SInce the following Difcourle treats of that furpriing Experiment of the Mercuries ftanding fo much above the ufual ftandard, and gives our Authors. Explication of that Phanomenon, I thought fit to join it to the foregoing of the Figure of the Atmo/phere, and the rather becaufe it alfo gives feverali very good bints of the Nature of that fluid, as likewife concerning the Fther. This Difcourfe was firft readin one Thoufand fix bundred feventy odd to my Lord Brouncher, and with fome fmall alteration in the firft Page produced again to the Royal Society 168_{4}, as it is here Printed.

> R. W.

Of the flanding of the Mercury in the Tube to the beight of 75 Inches, read May the 28th. 1684.

THat Theories are not altogether ufelefs, we may perceive by the happy invention of the ingenious Galileo, and the addition of the acute Torricellius, which two compleated the Experiment of the eEtherealVacuum; the further Improvement and Obfervation of which hath produc'd the Barometor, now ufeful for predicting the variation of the Weather, and the Pneumatick Engine much more prolifick of difcoveries; the caufes of moit of whofe Phænomena are fufficiently obvious, and certainly known to be the Gravitation and Spring of that part of the Atmo ppere, which is call'd Air, and agreed to by the moft accurate of the Modern Philofophers. 'But Mr . Hu gens about twenty Years fince having tried Mr Boyle's Experiment of making Water defcend in a Tube, the Orifice of which was inclofed in an exhaufted Receiver, found that if the Water were firf well freed from the Air that is ufually latent in it, and then inclofed, the Water would not defcend in the Pipé, tho' the preflure of the Air were wholly taken off; this occafion'd the trial to be made here with Quickfilver inftead of Water; and by many Experiments it was at laft found by Mr. Boyle the Lord Broucher, and feveral 0 thers, that the Quickfilver alfo when the Tube was very well freed from the latent Particles of Air, would not part from the top of a Tube, tho' it were twice as high as the ufual height the Quick filver ufed to ftand at ; and tho' there were no more preflure upon the flagnant Veffel than was ufual, and that the bottom of the Tube were as open and free for the Mercury to run out, as was ufual for Experiments of the Mercurial Standard. This feem'd at firf to overthrow the Theory of the Gravity of the Air, and was made ufe of by fome Antagonifts to that purpofe, but with little reafon; for it was obferv'd, that in the making this Experiment if a little Jog were given to the Tube in which the Mercury thus remain'd fufpended, the Mercury would immediately leave the top and fall down in the Tube to the ufual height of about thirty Inches, and there exhibit all the fame Phonomena as the common Mercurial Standard or Torricellian Experiment had been obferv'd to do. However it could not but affect the inquifitive after the caufes of things, with a difire of fatisfying themfelves with fome probable Conjectures at the caufes of this to ftrange an Effect, fome fuppofing one thing, fome another; what my Conjectures were, and ftill are, I fhall in brief declare and leave them to be confider'd by fuch as have better Abilities, and fhall pleafe to trouble themfelves with fuch inquiries.

Since I firft made the Experiment, I faw an abfolute neceffity of a preffing proof of the Fluid very much more fubtile than the Air, and yet confifting of parts of adeter- 灭ther. minate bulk, which would eafilyftrain through and pervade the Pores of Glafs, Water and other Bodies impervious to the Air, but could be kept out by the nearerConjunction of fome of the conftiuent parts of thofe Bodies which conftitute Pores of a much lefs Magnitude or Capacity, which fluid I fuppos'd might be fomewhat of the Nature of the fecond Element of Defcartes, tho' for many Reafons drawn from Experiments, I fuppos'd it to have many differing Proprieties from thofe which he arcribes to his, and I faw alfo, a neceflity of fuppofing a third Element confifting of a matter yot more fubtile and fluid,
as he fuppofes, and more then that, of feveral other fluid Matters, fome more fubtile than others, each of which have their proprieties diftinet, and are the caufes of this or that Phænomenion in the World, of which there hath as yet been no intelligible rearon given of their Power and Original, as I may hereafter fhew in the Explication of fome of them:. And I do believe, from that little infight I have had of the Operations of Nature, that all the fenfible part of the World is almof infinitely the leaft part of the Body thereof, and but, as it were, the Cuticula, or outward Filme of things; whereas that which fills up and compleats the face incompafs'd by that Filme contifts of a multitude of infenfible Bodies, each of thein as diftinet in their Natures and Operations, as Air and Quickfilver, or any other two fenfible Bodies we can name; for fo many, fo curious, and fo minute are the infenfible workings of Nature, that without fuppofing fome fuch Inftruments as thefe we fhall quickly find a non plus in the explication of any one appearance in Nature. . But for the finding out the Number and Nature, of thefe Elements we can proceed but by flow and fingle fteps, and 'tis not to be expected but from a long and clofe profecution of Nature as we fee that the proffure of the Air was not detested till Galileo and Torricellius happily light upon that Notion, and this fecond Element was not experimentally manifefted till the making of this Experiment of the Mercury's. ftanding much above the height difcover'd by Torricellius. The matter on which the Loadftone works will perhaps be found another, and that which caufeth Gravity a Fourth. But this by the bye.
My Notion and Explication of this Phænomenon is this, That there is another fluid Body; this Fluid is the Menftruum or Liquor into which the Air is diffolv'd like a Tincture of Cochencel into Water, which, as 1 have explain'd in the 1 sth Obfervation Microfcopical, Page 96 , and 97 , doth penetrate the Pores of the Glafs Water, and feveral other terraqueous Bodies (poffibly all fuch as are tranfparent, for that I have not a fufficient fupellex as yet to determine pofitively, nor isi it material for the Explication of this Phxnomenon, as other more curious and critical Experiments fhall be found out, it will be time enough to determine it.)
Next that this fluid, as all other fenfible fluids we meet with, hath a greater Congruity or Incongruity to this or that Body it is contiguous to, and therefore doth more rcadily join to this Homogeneous than to that Heterogeneous Body, whether Solid or Fluid, and doth more eafily penetrate the fmall Pores of the Homogeneous, and not without fome difficulty the Pores of the Heterogeneous Bodies. And in thort, that this Congruity or Incongruity of it to other Bodies doth make it perform the fame kinds of Effects with thofe we find perform'd by fenfible Fluids and Solids, fuch as I have explicated in my fixth Mycrofcopical Obfervation.
Thirdly, That this Fluid doth not at all penctrate the Body of Quickrilver, tho' Quickfilver may be penetrated by a great number of other more fubtile. Fluids, fuch as thofe which caufe Gravity, Magnetiin, Fluidity, orc. if at leaft it fhall be found neceffary by future Experiment's to afcribe thofe three. Properties to more than one fluid.

Fourthly, That feveral other Liquours whofe greater Pores are penetrated by this Fluid, may yet be fuftain'd by it above the level cquivalent to twenty nine Inches of Quick filver, fo long as the Pores are not fo far feperated as to admit the parts of this Fluid between them where they are more neerly contiguous, and have fome more fubtile fluid Body only between them: Of this kind Water well purged of Air may be one, as the Experiment of the not fubfiding of Water purg'd of Air doth maaifeft.

Fifthly, That this Fluid hath a preffure every way analogous to the preffure of the Air, and that this preffure is much greater than that of the Air.
Sixthly, That there is no need (for the explicating any Experiment I have yet heard of of fuppofing it to have a Springy Nature like that of the Air, fince all the Phænomena may be folved without it.
For the more intelligibe Explication of this Solution, I fhall indeavour to fhew an Experimentvery much like it, in fenfible Bodies. I took then a fmall Glais Cane \tilde{a}, b, c_{2} open at both ends, then having procur'd a long fimall Glas

Pipe in a Lamp almoft as fmall as a Hair, I brake it into a great many fhort ones and made of them a Stopple by binding them together Fagot-wife with thread, and melting Wax or Cement about them, fo as that none of their Perforations were ftopt, I put them into the end a, b, for a Stopple, then I had another Cane of Glafs big enough to contain the former wholly as Def. which was filld with Water; then the firft Tube with the open end downwards was immers'd into the faid Tube Def. till the Water had fill'd the whole, and the ends of the fmall Pipes iiiii, then gently raifing up the Tube a, b, c, out of the Water, I found I could raife it fo high as that the Water in the Tube a, b, c, did ftand above the Surface of g, b, the Water in the Glafs Def. fome Inches. Wherein 'tis obfervable, that tho' all the ends of the Pipes iivi were pervious to the Air, yet by reafon of a greater Congruity of the Water to Glafs than of Air, the Air was not able to force its way thorough without the help of the Gravity of the Cylinder of Water a, g, b, b; the fame Experiment I tried alfo with Quickfilver, by making the Stopple k, of Brafs, and inftead of the fmall Pipes caus'd to be drill'd, thro' the fame a.great number of fmall holes, then by the help of Aqua Fort is I caus'd all thofe holes to be whited with Quickffllver then holding my Finger againft thofe holes, and filling it with Mercury, and ftopping the other end, and immerging it under other Mercury in a Difh, by degrees I rais'd the fame, and found that the Air would not force its way in at the above-faid drill'd holes, till the end A, b, was rais'd above the level of the Mercury in the Difh fome Inches.
From both which Experiments'twill not be difficult to underftand my explication of this Phænomenon of the extroardinary hight of the Mercury in a Tube, well fill'd, and perfectly cleans'd of Air: For if we fuppofe in the former Experiment, that the Ambient Air doth reprefent the Ambient Fluid, whofe preflure we do fuppofe, and that the Perforations of the fmall Pipes do reprefent the inaginary Pores of Glafs, and that the Water with which it is fill'd doth reprefent the Quickfilver in the new Experiment, and that we fuppofe that Quickfilver hath a greater Congruity to Glafs than the other, and that confequently it keeps the other from getting a Body within the hollow of rhe Tube by fopping it at its firf entry, 'twill be eafie to imagine how, tho' the Glafs can be fuppofed all over Porous, through which the 压? ther can pafs, the Ambient new Fluid can by its more free preffure on the Surface of the bottom, keep the Mercury fufpended forty five Inches above the former Standard of thirty Inches.

Nor doth the fecond Experiment explicate it lefs naturally; for the Air reprefents the Æther, or what other name foever it be call'd by: The Quickfalver in the one reprefents the Quickfilver in the other. Immerfe that Difh in a Bucket of Water, and you thall find that the top of the Tube will be rais'd confiderably higher above the Surface of the Mercury in the Difh before the Mercury will leave the top; Then the Water, under which the Mera cury is immers'd, will reprefent the Air or Atmofphere, and the holes in the Brafs Stopper, the Pores of the Glafs, the additional raifing of the lieight of the Mercury, after 'tis put under Water will fhew how part of the feventy five Inches is afcribable to the preffure of the Air, and the other height will Shew how another part of it is afcribable to the preffure of the Ether. I think I need not explain it farther, only 'tisobfervable, that tho' the Air finds a difficul ty to make its firft entry into the fmall holes of the Glafs Pipes; or of the Brafs Stopper, yet after it hath got through, and that there is Air within the Tube as well as without, it very readily and freely maintains its Paffage, and the fame Phenomenon alfo happens in the Quiokfilver Experiment, for as foon as ever the Mercury begins to feperate from the top of the Tube, and the Ether hath a Body within the Tube, it readily falls down to the height fupported by the preflure of the Air. The Reafon of the two preceding Experiments, to wit, of the fufpenfion of Water in the Tube whofe end is Itopped with a bundle of finall Glafs Pipes, as alfo of the fufpenfion of the Mercury in the Tube whofe end is ftopp'd with the perforated peice of Brafs, of congruity will be, I think, fufficiently manifeft to him that fhall thoroughly confider Incongrxitys the Nature of the Congruity and Incongruity of Bodies to one another; fomewhat of my Thoughts concerning the fame I have formerly deliver'd in the

368 A Difcourfe of Earthquakes.

fixth Obfervation of my Micrography, which was indeed but a curfory Meditation for the folving of the Phænomenon then mention'd; but whofoever fhall thoroughly examine the Nature and Power of it, will, I dobut not, find it much more univerfal. To me indeed it feems to be not only the caufe of this extraordinary Pbenomenon, but of the Conglobation and Tenacity of moft Liquors of the Tenacity Springynefs, Sonoroufnefs, Malleability, cic. of all folid and hard Bodies: But of this clfewhere when I have occafin to examine what is the caufe of Congruity itfelf, which I do not fuppofe a firft Principle, but rather of a fecond, third; or fourth Rank, which being more univerfal, muft be afcended, to by degrees, after the Synthetick method.' To proceed then, I did heretofore propound in the twenticth Page of my Micrography as a thing worthy trial to examine what Power was requifite to force a Liquor through holes of feveral bignefes made in a Heterogeneous folid, and filld with fóme Liquor Homogeneous to that folid; for were that accurately done 1 judge this Experiment of the extraordinary height of the Mercury above the ufual Standard would give us a demonftration of the bignefs of the Pores of Glafs; for fince we find that a hole of-----of an Inch will make the Mereury ftand fufpended one lnch in height a hole of----of an Inch will make it ftand fufpended two Inches; a hole of----of an Inch will make it ftand three Inches, it will follow that a hole of-----of an Inch will make it ftand forty five Inches, and a hole of----of an Inch will make it ftand a hundred Inches, which minds me of feveral other Experiments worth trial, for determining this controverfy; fuch as thefe; made of Glafs of a more opacous or more refracting Subftance than in Tubes of a more tranfparent or lefs refracting Subftance. perfectly cleans'd of Air and rubb'd with Mercury that doth every where ftick to the fame; if the faid Tube be fill'd with very well cleans'd Mercury, the Quickfilver will not fand fuifpended to a much greater height than it doth in Tubes of Glafs, for if Lead, Silver, eic. be impervious to this fluid Subflance that fo freely penetrates Glafs; it feems not improbable, but that the Mercury may ftand fufpended to a very much greater height, and if fo it will be a certain way of finding out the force or preffure of this fluid; from the determination of which will follow probably the reafon of the Strength, Weight, Sonoroufnefs and Springynefs of Mietals. And I am the more inclin'd to believe that this Experiment will fucceed, becaufe I judge that the fame fluid that conveicth height, is the caufe of this Phænomenon; and whatfoever Body is perfectly impervious to Light, is alfo impervious to this fluid. But herein I would be underftood not to mean fuch Bodies, as by the thicknefs of their bulk and fome degree of opacoufnefs, do intercept the direct paflage of this fluid Matter, and fo by confequence caufe a kind of opacoufnefs, as a thick Body of Red and Blew, orc. Glafs which notwithftanding are not perfectly opacous Bodies, becaufe, when madewery thin, they are tranfparent of a Red or Blew Colour: For fuch Bodies tho' they may intercept the direct paflage of the Light, yet may they admit the fluid freely to pars through their winding Pores, and fo may not perhaps keep the Mercury fufpended much higher than a Tube of Cryftal-glafs; whereas I am very apt to think, that it there could be a Tube made of a Subftance perfectly impervious to this fluid Matter, the Mercury may poffibly remainfuipended as many Feet as it doth now Inches; but othis trial will more fully inform. Now

A way to difirojcopical Pores of EOaies. that a Body may be-pervious to fome liquors and yet not pervious to Light, is evident by the Experiment of forcing Mercury through the Pores of Wood; for if you take a Pipe of Beech, Elm, Oak, Firr, Ah, or the like, of four, five, fix, eight, or ten Foot long, and fopping one end thereof, you crect it with the open upwards and fill it with curckfilver, you fhall find that the Quickfilver will as freely and plentifully pafs through the Microfcopical or Imperceptible Pores of the fame, almoft as it will be ftrain'd through the

Pores

Pores of Cloath, Linnen or Leather, and will thereby fo fill the Pores of the Wood as to make it feel almoft as heavy as Lead; by this way I have been able to force Mercury into the Pores of Charcole; and diversother Végetable Subftances, whereby the Pores of the fame are made very confpncious, by placing fimall peices of thofe Subftances at the bottom of a Glafs Tube of four, fix, eight, or ten Foot long, and filling the Tube with Mercury over them; for thofe and moft other Vegetable Subftances, will; by the preffure of fuch a Cylinder of Mercury, be filld with Quick filver, and thereby plainly difcover the Shape and Texture of their Pores. I have not had the opportunity to try Bones, Horns, Teeth, Hair, Quills, and the like animal Subftances this way, tho' it feems to me very probable, that their Pores may be difcover'd this way, at leaft by lengthing the Cylinder, and making the preffure yet greater, or by a condenfing Engine: Nay, I am inclin'd to believe, that Mercury may be forc'd even through the Pores of Glafs itfelf if the Cylinder preffing be fufficiently lengthried; for by this Experiment of the fufpenfion of Mercury at feventy five Inches higli, it feems that Mercury has a greater Congruity to Glafs then the preffing Fluid or 厄ther hath to the fame, and therefore 'tis not improbable but that a force as great in proportion to the' bulk of Mercury, as the force of the Æther is to the bulk of the Æther, may force. it through the Pores of "Glafs, that it may be fubtile enough to do it, feems probable from this, that it doth fo readily perietrate the Pores of Gold, Tin, Lead, Silver, ©ic. thofe Bodies with whom it hath a perfect Congruity even with meer appofition and contiguity; and therefore tis not improbable but that a degree of force may make it penctrate the Pores of Glafs, which in probability are much greater than thofe of the congruous Metals, efpecially fince we find it can be forc'd into the Pores of Wood, Cork, Pith, Coles, corc fo as to drive out the Juices contain'd in them; whereas thofe Juices having a greater Congruity, do penetrate them by meer appofition. Now that this penetrancy of Mercury into Glass is not meerly conjectural, I Thallifhew you by taking notice of certain Spots or Stains which I have found in polifh'd Looking-glafs-Plates after they have remain'd a long while foil'd, and then being unfoil'd, for I have very plainly feen with a Microfcope that there hath been in the place, where fpots appear, an infinite number of exceeding minute Parts of Mercury which feem to be gotten into the very Pores of Glafs, and can by no kind of rubbing be fetcht out without wearing away fo much of the very Subftance of the Glafs itfelf: What therefore is thus done accidentally by duration, might in probability be much better done by pieffure, if we were able to make it confiderable enough, as by letting down Glafs in Mercury to a very great depth under Water, where that can be done; or to a confiderable depth under the preflure of Mercury. It may poffibly bel Ob jected, that if Mercury hath a greater Congruity to Glafs than this fuppos'd Fluid, why doth not the Mercury without much force penetrate the Pores of Glafs at firft, and fo running through it, make it appear opacous. To which I Anfwer, That tho I fuppofe Mercury to have a greater Congruity to Glafs than this Subtile Fluid, yet that it hath not a perfect Congruity, but rather an Incongruity in refpect of other Fluids that are more Congruous; as liAir. Nor hath that a perfect Congruity, but rather an Incongruity in refpeet of Water; for there may be infinite degrees of Congruity, as Water falt hath more Congruity to Glafs than Water frefh, Waters than Vinous Spirits, Vinous Spirits more than Oils, Oils more than Airs and Fumes, and they more than Mercury, and Mercury than this fluid Ether, or what other Name foever we call it by; and in every one of thefe degrees of Congruity or Incongruity there may be a multitude of other Subdivifions; as for inftance, under the firft Head there may be a very great variety; I know fome, acid Liquours that will of themfelves, without any force, penetrate the Pores of Glafs fo as to diffolve it into a Powder, whereas others will not at all penetrate or diffolve it by any means 1 have yet found: But this part of Congruity and Incongruity by which folid Bodies become diffoluble by Fluids, and whereby Fluids readily penetrate each other, and unite with one part of a Fluid, and feparate or precipitate another, belonging to another Subject, I fhall pre-
termit at prefent, and only take notice of fome things that may be pertinent to the Inquiry under Confideration; and thofe may be there;

Firft, That there is no difficulty at all in admitting, that within the fame Variety of $f u$ - Liquor, which to the fight appears uniform, there may be a greater variety of ids in tbe \int ame Fluids of differing penetrancy, for we find in Aqua Regis for inftance, that Liquor. there are the Sal Armoniack parts that help to penetrate Gold; the Nitrous that penetrate Silver, Copper, ofc. the Flegme that will penetrate netther: There have been few Experiments made of the penetrating of one Fluid by an other, befide that I formerly fhew'd of Water and Oil of Vitriol, 'tis a copious Head, and contains much of information; Copper and Tin melted are an example of it. From which Obfervation we may without difficulty fuppofe the Air (as it is commonly taken) to be a Body confifting of a great variety of Fluids, of which this 在ther we fupppre may be one; and pollibly the principal which takes up the greateft fpace, and whofe Effects are the fufpenfion of Mercury above the height fufpended by the preffure of the Air and the like; tho' yet I fuppofe it not the fubtileft, there being many Experiments that do feem to require a much more fubtile and penetrant Fluid, of which more elfewhere. The Elaftical Part of the Air that caufes the Phænomena of Springing a Second, the Steams of Bodies a Third, the Nitrous part a Fourth, each of which have feveral degrees of penetrancy, and may poffibly be feveral diftinct Fluids, tho' when blended altogether they make that compound Body, which we call the Element of Air. Now as the Air confifts of a variety of Fluids; fo 'tis not unlikely but that each of thefe may differ in their proportionate quantity, and in their refpective Gravity ; fo that if we Thould take the whole bulk of the Air or Atmofphere we might poflibly find 7ab. 8. Fig.4- it made up of divers Fluids, as of the Fluids $A, B, C, D, E, F, G, H, \& c$. and each of thefe of differing proprieties, both as to penetrations, Quantities and Gravity, Congruity, and the like ; and that That part of it which is next the Earth might be a compound of the Fluids A, B, C, D, and G, H, extending to a certain number of Yards above the level of the Sea, the next part of the Atmofphere immediately above it may confift of B, C, D, E, and G, H_{3} and have nothing of A, or F. The third Region may confift of C, D, E, F, G, H, and have nothing of A, or B : And this feems probable, Frft, becaufe we find that there are feveral diftinct Surfaces of the Air, upon which the feveral Regions of the Clouds feem to fwim like Froth upon the Surface of Water; for tis obvious to any that fhall obferve it, to fee the under Surface of the Clouds fmooth and level, and the upper in confus'd heaps, and further, that all the under Surfaces of Clouds appearing at the fame time lye as near asone can judge by the Eye in the very fame Level. Next that the make of the Clouds in a higher Region are quite differing. Thirdly, that the parts of the Airs in feveral heights from the Earth, have differing propriezies, as it hath been found in very deep Wells, that the lower twenty Fathoms were all poffefs'd by a Damp, or an Air in which no Fire would burn, or Animal live. We are inform'd aifo, that the Air at the top of fome excceding high Mountains is of fuch a Nature as will not ferve for Refpiration. Poflibly the prefence of A, in the loweft, may be the caufe of the firt Effects and the want of B, at the tops of Mountains may be there the caufe of thofe other Effects.

A Dijcourfe of Earthquakes.

IN the following Lectures the Reader will find a Confirmation of the foregoing Treatife of Earthquakes and their feveral Effects or Confequences, as likemife of the Corrollaries raifed from them, and tho' they are not all here Printed in the order of time they were read, I think that is exculable, fince I thought it more proper to joyn thofe Tracts together that related to the fame Subject thian interpofe others of far different Matters. In thefe our Author endeavours to confirm his former Hypothefis by Hiftories; and in the firft place by two very remarkable ones, the firft that related by Plato in bis Timxus, the other that of the Circumnavigation of Hanno the Carthaginian. The next $D_{i} f_{\text {cour }}$ es contain the interpretation of Several of the Fables of Ovid's Metamorphofis; how the Learned will receive them I know not, but in my Opinion they are at leaft very plaufibly explain'd.

> R. W.

IHave indeavour'd to difcover and prove the true Figure of this Body of the Earth upon which we Inhabit, and likewife to give fome Conjectures concerning the Form and Shape of the Superficial Parts thereof. This I have done in order to comply as near as I could with a Natural Method of Natural Hiftory': This great Body being the Mother of all Terreftial Productions, which make up the greatelt part of Natural Hijfory; and the Foundation, as it were, upon which, not only all that Hiftory, but all the other Parts and Superftructures almoft do reft; for from the Productions of this we take our Principles, we raife our Axioms and Maxims, we form our Similitudes, we make our Obfervations, Experiments and Trials, and by Analogy from Comparifon and Similitude we deduce our Conclufions. I thought it therefore not improper, fince Natural Hiftory will carry us into forein Parts of the World, very far remov'd from this our Country of the Earth, to be firlt of all a little acquainted, at leaft, with what we have at home, that thereby we may the better be able to obferve and judge of what thofe far remote Parts may prefent us with, whether they be like our own or not, in what they agree, and in what they differ, that thefe we know at home may be the Standards and Touch-ftones of all the reft we meet withal Abroad.

In profecution of this Method, I began firft to fhew what feem'd to me to of the Figure he the moft likely Figure of the whole Body, which I fhew'd for feveral Reá- of the Earth, fons feem'd to be of a prolated Sphæroidical Figure, not of a perfectly Glo- \& . bular, as moft Authors fuppofe and affirm, much lefs of an Oblong Oval, as the ingenious Author of the facred Theory of the Earth, and fome others, have indeavour'd to make probable.
From this I deduc'd the prolated Sphæroidical Figure of the Waters alfo; and more eminently of the Air or Atmofphere, and from that deduc'd thefe Conclufions, That the Lines of Gravitation or Perpendicularity did not tend to one fingle point, as all hitherto have afferted, but to infinite points in the middle parts of the Axis.

And that a Degree, or a 360 th part of the eEquinoctial did not agree exactly with any one Degree in a Meridian, and thence that the Magnitudes of the refpective Parallels were not to be eftimated as if the Body were truly Globular.

From this I deduc'd a neceffity of a differing Gravitation of the fame Body in differing parts of the Earth, and thence a neceflity of a differing length of Pendulums to meafure by their Vibrations the fame quantity of time, by which the univerfal Standard of Meafure, by foine fuppos'd from the length of a Pendulum, became queftionable and dubious.

I have likewife fhewn what Obfervations of Celeftial Bodies were likely to be affiftant to the perfecting and confirming of thefe Matters, at leaft of difcovering the Truth whether really fo or not.

I have alfoinquir'd concerning the fixednefs and inftability of the Terreftial Axis, and thewn fome Arguments to induce us to believe that it may have and fuffer a mutation, and not be always fixt in the fame parts of the Earth, and by what methods that may be afcertain'd in a fhort time with more exactnefs
than many Ages of Obfervations made with lefs accuratenefs would have done.
And from thence I have deduc'd what would be fome of the neceflary Confequences of fuch a mutation; fuch as the differing Latitude of places in differing Ages. The differing Azymuth of Places as to one anothers Pofition; the differing Altitudes of Places with refpect to the Superficies of the Sea, as the Emeiging of fome places. from below that Surface and the finking under, and the being overvhelm'd by that Surface in others, and confequently of changing the Nature, Soil, Climate, ovc. of the fuperficial Parts of the Surface; to which, as I conceiv'd, fome alterations might be afcribed.
But Laftly, I fhew'd that the ruggednefs and inequalities of Hills and Dales, Mountains and Lakes, and alfo the alterations of thefe fuperficial Parts of the Earth, as to the feeming Irregularities thereof at prefent, feem'd to me to be moft probably afcribable to another Caufe, which was Earthquakes and Subterraneous Eruptions of Fire. That there had been many fuch alterations 1 indeavour'd to prove from the almoft univerfal Difpofition of thofe curious Medals of former Ages noiv found in the petrify'd Monuments of the parts of feveral both Terreftial and Aquatick Animals and Vegetables, but efpecially by thofe Productions, of the watery Element found in places now far remov'd from the Sea, and far above its Level; of which I have produc'd feveral Inftances, fome of which, and thofe very conliderable, were procur'd by the inqnifitivenefs of a Perfon here prefent.
I have made fome Excurfions out of this Method; as Firft, in order to anfiwer the Doubts and Scruples of fome, and the Obloquies of fome other Perfons, who, I hope, are now, or will be fomewhat better fatisfy'd, which I with all might be, for I have no defire-to impofe Conjectures and Inquiries as Demonftrations, but only to fhew what Arguments have inclin'd mie to be of thefe Opinions, which, whether fufficient, I muft leave to their better Judgments and Examinations, hoping at leaft that no prepofeffion will hinder them from examining them with Candor and Indifference, as I indeavour to do in all my Inquiries. Next by fome Experiments made for the clearing fome accidental Difcourfes at the meeting, as thofe about the beft ways of communicating force at a diftancé, and of making a Pendulum to obferve by Trials the Velocities of the parts of Pendulous Vibration, and to make a Pendulum that fhall, wi thout Clock-work, continue moving twelve Hours or longer. And Thirdly, By accidental Obfervations made of the growth of Trees and fome others; nor will it, I hope, be taken amifs that I indeavour to produce fuch Arguments as occur to me, that feem to favour thefe Conjectures, tho' poffibly much better may be fhewn by others eithers for or againft them; however give me leave to alledge what I can to anfiver fuch as I conceive are not fufficiently cogent Arguments againft what I have fuppofed.

One of the moft confiderable Objections I have yet heard, is, that Hiftory has not furnifh'd us with Relations of any fuch confiderable changes as I fuppos'd to have happen'd in former Ages of the World ; I do confefs our Natural Hiftory as to thefe and many other matters of the firft Ages is very thin and barren, but yet I conceive not wholly devoyd of Inftances, nay, poffibly if they be look'd into with a little more attention than hitherto has been ufed, they may be found to contain many more than has of late Ages been imagin'd. Some things of this kind, I fancy I have detected, of which I fhall produce fome, together with fome Remarks upon them, which I have added, they are, I conceive, related as true Hiftories; but whether fo or not 1 muft leave others to judge who are better Antiquaries and Criticks.
An Account of What Learning and Acccunts of Ancient Times the Aigyptians might have the Atlaylis out of Plato's of great alterations in the World for nine thoufand Years before Solon, which Tinnexs. is now above two thoufand Years fince, it is rery hard to guefs from that fhort account that is there given of it; yet fince of all the Records that are to be met with in the Ancient Hiftorians to this purpôfe, this is the mblteonidefable, I thought it would not be improper to relate it on this occiafion, by reafon that tho' it ffould be accounted fabulons, as fome have thought, and
to be only a Fiction in Plato in order to lay a Scene for his Republick; yet there is fo much of Probability in it (bating only his number of Years) and fo much of Reafon and Agreement with the State of things, that if it be not a true Hiftory, it will at leaft hew that Plato himfelf had, at that time, fome fuch Notion or Imagination of the Preceding State of the Earth, and that he faw, or found at leaft, fome very good Aiguments for his being fo; ; Plato then in his Dialogue maketh Critias thus fpeak, ' Hear, O Socrates, a won'derful indeed, but yet a true Hiftory, which Solon, the wifeft of the feven ${ }^{6}$ Wife Men, related to my Grandfather Critias, as the old Man hath - fince ' told me ; among other things he told me of the memorable Actions' of this
'City (Athens) by length of Time, and Death of many, quite obliterated.
'But among the reft he related one remarkable Paffage, which I think now
${ }_{\text {' }}^{\text {' }}$ proper to acquaint you with, and it was an old Hiftory, which he being
'then about ninty Years old, told to me when I was about Ten, upon a folemn
' Day, when I, with divers other Boys, as the Cuftom was, were wont'to re-

- cite divers Verfes by Heart to fee which could excel; among which were
'divers Verfes of Solon: And I remember I heard my Grandfather then' fay, 'that if Solon had but committed to Verfe, not what he did for refrefhing of his Mind, but ferioully, and like other Poets, the Hiftory, which he, ' returning out of Egypt, refolv'd to have written (from which, by difturbances ' which he met with at home, he was interrupted in perfecting) neither Ho' mer, Hefiod, nor any other Poet, would have been comparable to him. This'
' was of the greateft Affair that had been tranfacted by this City, of which
' we have no remains at prefent, by reafon of the length and injury of Time."
${ }^{6}$ 'The fumm of what I remember, was, That Solon going into Egypt to Saim, at the ' Mouth of the Nile, when Amafis was King, was there receiv'd honourably.
' There he inquiring of thofe Priefts which were moft skilful in thofe Matters ' concerning the Memorials of great Antiquity, found, as he related, that ${ }^{6}$ neither himfelf nor any other Greek knew any thing of Antiquity; and ' when he to provoke the Priefts to tell him fome of their Knowledge, had, in' ${ }^{6}$ there prefence, fpoken concerning the moft antient Actions of the Athenians C of Phoroneus and Niobe, and of Pyrrba and Deucalion, after the inundation of ' the World, and of the times when thofe had happen'd ; one of the Seniors ' of the Priefts cried, O Solon, Solon, you Greeks are all Boys, not one Old 'Man among you. Solon asking him why fo? The Prieft anfwer'd, beeaufe ' you have young Heads always that contain nothing of ancient Hiftory, ' of ancient Opinion, or of Old Mens Science, which has happen'd to you by ' reafon that there have been already, and fhall be many and various De' ftructions of Men: But the greateft of all will be caus'd neceflarily, either ' by a Conflagation of Fire, or an Inundation of Water; but the leffer by ${ }^{6}$ innumerable other Calamities: For what you tell of Phaeton, the Son of the 'Sun to have got into his Father's Chariot, and not knowing how to Drive ' like his Father, had fired the Earth, and with that Flame had almoft fet 'Fire to the Heavens, tho' it may feem fabulous, yet 'tis not without its ' truth in fome fenfe. For in long procefs of time there is a certain permuta'tion of the Celeftial Motions which a vaft Inflammation muft neceffarily follow: ' Whence fuch as inhabit high and dry Places will fuffer more than fuch as are ' nearer the Sea and Rivers. Now our Nile, as it is in moft other things ve'ry wholefome for us, fo will it preferve us from fuch a Deftruction. But ' when the Gods of the Waters fhall wafh away the Filth of the Earth by a 'Flood, thofe which feed Sheep and other Cattle at the tops of the Moun' tains will fcape the danger; but your Cities that are fituated in the Plains, ' by the impetuofity of fuch Floods will be fwept into the Sea. But in our ' Region we have no Water defcends from above, but all ours fprings out of 'the very Bowels of the Earth; which is the reafon that with us the Re'cords and Monuments of the moft antient things are fafely preferved. ' Whence it comes to pafs, that where neither too great a Storm of Rain ' nor any extraordinary Fire happens, tho' fometimes more, fometimes fewer, 'yet ftill fome Men always efcape. Now whatever we hear that is worthy ' notice, either acted by our felves, you, or any other Nation we keep defcrib' ed in our Temples: With you indeed, and other Nations things lately

A Difourfa of Earthquidakes.

'done have been committed to Writing, and preferved Bỳ other Moinu ' ments. . But in certain periods of Time there come from the Heavens cer-
${ }^{4}$ tainDeftructions which depopulate all ; whence the followingGenerations are
'depriv'd both of Letters and Learning. Whence you are all again made
©Boys, rude, and altogether ignorant of preceding Matters. Hence 'tis that © what-but now you fpeak of, O Solon, differs very little from Childifh Fa-
' bles. Firft, In that you make mention but of one Inundation, whereas 'many have preceeded. Next, That the ftock of your Anceftors' which was ' moft Eminent, and of the beff; you know nothing of; whence both thy felf 'and the other Atheneans had your Birth, which was a fmall Remnant that' - feaped the publigk Deftruction: Which becomes unknown to you'; for that 'this Remnant and their Pofterity for many Yeas wanted the ufe of Let--ters; whereas your City before that had excelled both in the Arts of War cand Peace, of which we had a full account. [So hie proceeds to tell how they had Records of their own City for nine Thoufand Yeais, and of the Laws, oc. as alfo, of long times for Atbens, which I pafs over, anid only mention what feems to relate to Natural Hiftory.] He proceeds then, 'Many wonderful Actions of your City are preferved in oui Monaments; © but one above the reft for Greatnefs and Virtue exceeds; for'tis faid, that © your City refifted a numberlefs company of Enemies, which coming out of - the Country where the Atlantick-Sea. now is, had conquer'd almoft all Eu' rope and Afia ; for at that time was that navigable Streight which is call'd 'that of Hercules Pillers which had near the Mouth, and as it were in the 'wery entrance of it, an Ifland then faid to be bigger than Lybia and Afia, ' through which was a Paffage to other INeighbouring Inands, and from the 'Iflands, was a profpect to the main Lands lying near the Shoar, but the' "Mouth of the Streights was very narrow. This Sea was truly the Ocean" 'and the Land was truly a Continent. In this Atlantick IJand was a moft ${ }^{6}$ great and wonderful Power of Kings, who Rul'd over, not only that whole 'Ile and many others; but over the greateft pait of the Continent, and e-- ven over thofe which were near us, for they Reigned over a third part of the ${ }^{\text {C W W World, }}$, which is call'd Lybia even unto efgypt, and over Eirope even to the ${ }^{\text {E }}$ Tyrrhene Sea; the whole power of thefe colleetcd together, invaded both ${ }^{\text {cours and }}$ your Country, and even all the Lands within the Herculean © Streights, but both your and our Country repell'd them; the manner Io${ }^{6}$ mit. Afterwards by a prodigious Earthquake, and Inundation which hap' pened in a Day and a Night, the Earth cleaving fwallow'd up all thofe War-
© like Men, and this Ifland of Atlant is was drown'd by a vaft Inundation of 'the Sea, by which means that Sea becameunnavigable, by reafon of the Mud ' of that funken Inland which was left. the reft I omit.' Now,

Whether this Relation be a Fiction or Romance invented by Plato, or a true Hiftory, I Thall not now difpute, only by all the Circumftances of Plato's relating of it, I conceive he defign'd to have it to be rcpitied a true Hiftory and not a Romance, for that his defign for laying a Scheme for his imaginary Government, needed no fuch Fiction, and accordingly he made very little, if any, ufe of the Circumftances of it that relate to Natural Hiftory. However, be it what it will, it cvidently fhews that Plait did fuppofe and believe that there had, been in many preceding Ages of the World, very great changes of the fuperficial Parts of the Earth by. Floods, Deluges, Earthquakes, cic. for as much as he could fuppofe a Continent or Ifland as big as the third part of the known Earth, to be by one Earthquake funk into the sea and overwhelmed by it.

Ithink therefore I may at leaft conclude, that divers of the Antients, and particularly Plato, had fome knowledge of paft Cataftrophys of fome parts of the World. And thofe to have been caus'd by Earthquakes aind fiery Eruptions, fuch as had funk fome places.into the Sea and rais'd other places out of it, of great Floods alfo and Inuindations by Rains and Eruptions of the Sea: And that fome of thofe had happened in Greece, others without the Streights Mouth, and others elfewhere, and at another opportunity I fhalr produce a Cloud or Witneffes to this effect, which, I conceive, wiil put it patt difpute. but becaufe this Relation has been pofibly too long, I thallonly add one Re-

A Difcourfe of Eaxthquakes.

Tation more, becaufe it feems to relate to the remainders of the Illand of Atlantis, and it feems to be of a later date much than the Egyptian Stories.

That which Imean is the Hiftory of the Periplus of Hanno the Cartbaginian. When it was writ I know not, but fure it was very ancient, "tis lately in the Year 1674 , Publifh'd by iAbrathamus Rerkelius, with fome fragments of Stephanus Byzantinus, with the Commentaries of Gefnerus and Bochart, being but fhort I have put it into Englifh.

It pleas'd the Carthaginians that Hanno fhould fail beyond theColumns of Her- The Hiftory of cules and build Lybyphenician Cities, he went then with fixty fail of Ships eàch Hanno's Cirrowed with fifty Oars, in thefe were tranfported to the number of 30 Thouf cumnavigation and Men and Women with neceflary Provifion and Stores. After we had failed two Days without the Columns $;$ the firlt City we built we call'd Thymiaterium; under this lay a large Plain, thence carried Weftward we made Solunte a Cape of Lybia cover'd with Wood; where having built a Fane to Neptune, we tacked about and failed चिpos й 1.00 .towards the South, half a Days fail intoa Lake not far from the Sea, filled with many and large Canes; where were fed Elephants and various other wild Beafts; having paffed this Lake in one Days fail, we built thofe Maritime Cities, viz. Caricus, Gytte; Acra, Meliffa and Aranibys; failing thence we arriv'd at the great River Lixus which falls out of Libya. Near this the Nomades (a fort of Grafiers or Cattle-herds) and Lixita feed their Cattle, with thefe having made Friendfhip we ftay'd fometime. Beyond this the favage extbiopians live, whofe Country is full of wild Beafts, and intercepted with great Mountains from which the Lixus flows. Thofe Mountains the Troilodite inhabit a ftrong fort of People fwifter in Running than Horfes, as the Lixite told us. From hence we coafted two Days Southwards, and then one Day more Me's मैं 1.00 and in a Bay found a fmall Ifland five Stadia in Compars, where we left fome Planters and called it Cerne; this, by the Journal of our Voyage, we judged to be in the fame parallel with Carthage, and as far without the Columns as Carthage was within. Hence we enter'd a great Lake, through which paft a great River, which we called Chrefes. There we found three Iflands bigger than Cerne. From thefe in a Days Voyage we reach'd the inermoft parts_of the Lake: It was incompafed with valt Mountains, inhabited by Savages, who threw Stones at us. Thence failing we paft a large River full of Crocodiles and Hippopotams, and return'd to Cerne. From hence we paft twelve Days by the Coaft towards the South, all inhabited by eEthiopians, much afraid of us, and not underfood by our Interpreters; the laft day we difcover'd great Mountains covered with Woods, which were of various Kinds and Odoriferous. Coafting round thefe Mountains we found an immenfe opening of the Sea, that fide which was next the Continent was a plain Country, from whence by Night we perceived Fires from all places; fome greater fome-leffer Watering herewe Coafted along for five Days till 'we came to a great Bay, which they called eotréer нeous Here we found Lakes and Iflands, where landing we found nothing by Day but Woods, but in the Night we faw many Fires, and heard an innumerable noife ofl Drums, Trumpets, Cymbals, and the like; wherefore being afrighted, and our South-fayers
 the burning Coaft of ftinking Vulcano's, from wherce there run out into the Sea Rivers of Fire, and the Earth was fo burning hot that our Feet could not indure it. Hence therefore we hafted and for a Days fail we faw all the Land full of Fires in the Night; but in the middle of thefe was one vaftly bigger than the reft, fo that it feem'd to touch the Stars; this; in the Daytime, we found to be a prodigious high Mountain calld θ हैं or the Chariot of the Gods, in three Days fail more we paft all the fiery Rivers, ©̛c.

The reafon why I have been fo particular in tranflating the whole Story, is becaufe I conceive it is an inftance in Hiftory fo confiderable, efpecially as to the preceding Relation of Plato, that I can hardly believe there is a better Inftance to be found. Plato tells us of the Illand of the Atlantis that it was by an Earthquake fome Thoufands of Years before him funk into the Sea, but yet fo that it left many Lakes and unnavigable Places. This gives us a

A Dijcourfe of Earthquakes.

Relation of a Navigation (over the very place where the Atlant is was placed and funk by the former Relation) in the times of Pbilip. of Macedon, or fooner, as fome fuppofe; thefe Navigators find the Coalt of Africa, without the
 um. Gefner, in his Notes upon this place; feems allittle ftartled, and fays, Atqui mibi videtur ambientibus. Africam omnis poft columnas Navigatio converti vel ad Meridiem vel ad Orientem Ơpofiremo ad aquilonem; not thinking; I fuppofe, of this Suppofition. He feems alfo to be as much to feek about thie fituation of Cerne, but at laft he thinks it may be the Maderas (p. 85.) which I conceive to have lain North-weftward from it; bit with divers Gulphs and Bays in which were divers great Lakes and Illands, divers Mountains likewife and fome Rivers. But which is moft confiderable, a great part of this Ifland to the South was then all on Fire. Now comparing this Relation to the prefent State of thofe parts, we find all that Continent which they paffed by between the Columns and Cerine, to be wanting, for 'twill be hard to reconcile the Relation with the prefent State of that Country, fo in probability funk and cover'd with the Sea; for Cerne by this Defcription, lying in the fame Latitude with Carthage, and as far from the Pillars without as Carthage was within, it muft have lain to the North or North-weft of the Maderas, from which place the Coaft of the main Land feemed then to trend South for twelve Days Voyage as far as the Canary Ifands are now found, or fomewhat farther, from whence it turned away to the Eaftward. About there Iflands, I conceive, was the Land that was all on Fire, multitudes of which they faw in the Night, and heard the noife of the Vulcanes, and Rivers of Fire running into the Sea, and in fome places found the Earth folot as to burn their Feet. That which directs me the better in this Conjecture, is the prodigious Vulceno mention'd, called $\theta \varepsilon \tilde{\omega} v 0^{\prime \prime} \times n \mu \alpha$ the Chariot of the Gods, by reafon of its prodigious height, feeming to touch the Stars. This, in all probability, feems to have been the fame with the prefent Pike of Tenarif, which tho' it burns not now, yet, yet there are prefent Evidences enough, as I have been told by thofe who have been at the top of it, to prove it to have formerly been a Vulcano. And if they had now been wanting, yet no longer fince than Sebaffian Munfer's time it was known to be fo, and in his Geography he has fo defcribed it. Befides, this by late Example, as in 1639, and by a latter in Ferro, which I have Printed, it appears, that thofe Vulcanoes are not Strangers to thofe Parts even in this Age: But I have detained you too long with thofe Conjectures, yet if all Circuftances be examined in the Relation of Plato's Atlantis, and in that of Hanno's Periplus and compar'd with the prefent Condition of thofe Parts, I conceive there will appear many Reafons to make us conclude that there have been in thofe parts prodigious alterations fomewhat like thofe I have fuppofed in my Hypothefis, which may ferve as an inftance of Hiftory for fuch Mutations. The next opportunity I fhall produce many other, which, I conceive, will as plainly fpeak the fame thing, according to the Mind and Intention of moft of the Ancients, and this is to take off the odium of Novelty.

After the foregoing Paffages quoted out of Plato's Timans and the Periplus of Hanno, I hall adventure to prefent this-illuftrious Affembly with fome of my Conjectures at the meaning of the Fables of the Poets, but firft to fay fomething as to that of Plato and of the Periplus, which laft is fuppos'd by feveral Authors to be very Ancient. From both thofe Relations compar'd together, there feems at leaft to refult a probability, that there has been fome great changes of the fuperficial Parts of the Earth, where the now Atlantick Ocean without the Streights of Gibraltar, as they are now call'd, is; and then we have certain Hiftories now to prove that the main of Africa or Libya hath extended Weftward beyond the Maderas, and Southward as far as fomewhat farther than the Canaries. I have given the Reafons why I entertain'd thofe Conjectures, which 1 fubmit to the Judgment of fuch as are more knowing and better read in Hiftorical Matters.

Varro has diftributed the Ages of the World into three, viz. the $\dot{\alpha} \delta_{n} n$ dov,
 of the $\mu \nu \theta$ inov we muft look for an account from the Fables of the Poets, Homer, Hefiods Ovid, \&c. Ovid, to pafs by Hefiod and Homer, is faid to have imitated the Greek Poet Parthenius, and has left us a very large Hiftory of the changes that had anciently happened in the World, his whole Metamorphofis, being, as I take it, written for that purpofe: We are extreamly obliged to Pliny and fome few others, as all well know, for what they had collected out of others, or wrote from their own Obfervation and Knowledge.

Now, that Ovid's Metamorphofis was penned for this end we may find by the 4 firft Verfes.
In nova fert animus mutatas dicereformas
Corpora, Dii captis (nam vos mutaffig, civ illas)
Afpirate meis, primaq; ab orizine mundi
In mea perpetuum deducite tempora carmen.
I fing of Beinos in nem Shapes arrayd , wormot oH
Allit ye Gods (for you the Changes made,
$\begin{aligned} & \text { Ably ye Gods for you the Changes made, } \\ & \text { That from the Worlds Beginnino to thefe Times }\end{aligned}$
That from the Worlds Beginning to thefe Timies
I may comprize their Series in my Rimes.

That is the time of Auguftus Cefar in which he Lived.
The Hypothefis in Ovid (for I conceive it only an Hypothefis in him) is this, that the pre-exiftent Matter of the World was firft, a quantity of Matter without any particular form, Rudis indige.ftag; moles, a rude diforder'd Mafs, and yet it had the property in it which (when directed afterwards to fome Genter) was weight, which as yet he calls Pondus iners unactive weight. Secondly, It had in it the feminal Principles, which were afterwards to effect the Productions, thefe he calls difordia Jemina rerum, the jarring Seeds of things, as being then non bene junctarum, not well conjoined, no not to form the Sun, Moon, or the Earth, the primary or fecundary Planets, Nec cirfumfufo pendebat in aere Tellus, ponderibus librata Juis, not did the felf-poiz'd Earth encompaft round hang in foft Air; thefe Verfes do feem to glance at an Hypothe is I have formerly acquainted this Society with, fomewhat of which Mr. Neepton hath Printed. Tellus, Pontus Gi Aer, Earth, Water, and Air were yet all confounded with each other, like Mortar or Mud. Inftabilis Tellus innabilis unda. The Earthunftable, Waves for, Keels unfit, which it comes to attain afterwards, and remains fo for fometime, till by degrees again it loft it when Afrea left it, which was juft before the Gy: gantomachia; for Aftrea, as I fhall by and by make appear, is the Virgin and primitive Smoothnefs and Stability of the fuperficial Parts of the Earth, from (α) the firft or Primitive, as (α and ω) Alpha and Omega, and oह̀mno ftability, Et Virgo cade madentes ultima Calicolum terras Aftrea religuit. The laft of Deities from Blood polluted Earth Aftrea flies; for like moift Pap or Mud, by degrees the watery and Aerial exhaleing, it fettled into a fmooth,tender, and uniform Subftance, like the Youthful and Virgine Conftitution, but a farther feparation of the Fluid Parts makes the Earthy, Dry, Rough, Rincled and Chopt; inclining to the Countenance and Conftitution of Age, and the Virgin Beauty is fled: For a while there was a jumble, Corpore in uno, frigida pugnabant Calidis, bumentia ficcis, mollia cum duris, the Cold, the Hot; the Moift, the Dry ones fight ; the Soft, the Hard, all incorporated ftrove together, Sine pondere babentia pondus with weight, yet weightlefs, that is, they all being Bodies had a capacity of being weighty, but a gravitating or attracting Center not yet being exifent, they had no actual Gravity any way; but fo foon as banc Deus cir melior litem Natura diremit, God and the better Nature ends this War ; that is, God and Nature had made the gravitating Center, prefently the heavier defcend towards it, the lighter rife from it

37. A Difcourfe of Earthquakes.

Et Colo tarras ©i terris abfcidit Ondás
Et Liquidum \int priffo Jecrevit ab aere calum.
From Sky the Earth; thence Floods divided were, And liguid etther from the thicker Air.

The Atmofphere inclofed the Ball, and was diftinct from the жther; 'tis remarkable that he makes the Water the loweft in this and the following Account.

Ignea convexi vis oj fine pondere Cali
Emicuit.
Of the convex: and meightlefs Heav'n the bright
And fiery Power Jhin'd forth.
He feems to make it by the word Emicuit to be at the firf encompaffed with a fhining Fire like a Star orsun, for its place was in arce, above all; within this was Air.

Proximus eft aer illi levitate Tocoque.
The next to this in weight and place is Air.
The Earth is afligned next.
Denfor his Tellus Elementaq; grandia traxit, Et preffa eft gravitate fui.

Preft by its tweight Earth finks, to which repair The heavier Elements.

'And the Water lowert.

> Circumfluus humor Vitimapoffedit Jolidum; ;oercuit orbem.
> The Floods at laft fink in
> Fromevery fide, yet leave a Jpherick Skin.

So that it feems there was a notion that the middle part of the Ball of the Earth was filled withWater as well as the outfide covered withit: To which alfo agrees Des Cartes Theory and that of the ingenious Dr. Burnet in his Theoris Sacra. Thus far, I fuppofe, it will eafily be granted that the Poet gives us a fhort Hiftory of the formation of the Earth, and 'tis as plain that the twenty eight Verfes following are to the fame effect, wherein he defcribes the cutting and forming the Face of the Earth into Lakes, Seas, Rivers, Hills, Dales, occ. the dividing the whole into Zones, and affigning the ufe of Air, for Clouds, Rain, ơc. nor has he yet Perfonated or Mithologized any thing, but in the twenty ninth Verfe following, viz. The fixtieth Verfe of this firft Book he begins calling the Winds Brothers, Tanta'eft difcordia fratrum, \&c. the Senfe of all the reft is plain till the eighty fecond Verfe, where he begins again to perfonate Actions Mythologically ; for fpeaking of the formation of Man,

[^8]Man's Born, ©̛́c. --------Or th' Earth new Gain'd From nobler eAther, Some Seeds fill retain'd To Heav'n ally'd, wobich Eartb Prometheus took And mixt mith Waters of a living Brook Made Man like th' all-commanding Deities.

From this place onwards he feems to Mythologize the moft part of his Hiftory, of which he gives notice in the eighty fixth and eighty feventh Verfes.

> Sic modo que fuerat rudis © fine imagine Tellus Induit ignotas hominum conver $\sqrt{\text { a }}$ Figuras.

So what was rude and 乃hapelefs Earth, puts on When chang'd, the unknown Character of Man.

Hitherto he had fpoken of things as Dead and Unactive Earth, but from hence furth he will defcribe the Earth as changed and clothed with the various fhapes of Men and Perfons, and fo having defcribed the Formation or firt Generation of all things Phyfically and plainly, he comes next to tell the Age or Ages of the World, and what Periods of Life or Being it hath had, and the States it hath been in during thofe feveral Periods.

The firt Age or Chilhood of the World he calls the Golden Age : Gold is foft, flexible the moft ductile of Metals, it has the beft Luftre, and has aIways had the greateft Efteem. This ftate of the Earth he reprefents to be like that of Childhood, wherein all things are gay and pleafant, all things flow plentifully and fimoothly; the Skin or Shell is yet fmooth, fucculent and foft, moifture and heat abound; fo that things fprouted forth and flourinh: There is a continued Spring, all things are Budding, Bloffoming, and bear* ing Fruit at the fame time, no need of Art as yet to help the progrefs of Natmre forwards; or to regulate it, no one part of Nature intrenched, invaded, or hindred the free progrefs of another; there was plenty and enough, for all Rivers flowed with Milk and Nectar, and Honey drop'd from the Leaves of Trees.

All thefe Poetical Expreffions, which the Author feemeth to fpeak, as of Men, and their Actions, and Enjoyments, I take to be fignificative of all acting Powers of the Earth whether Vegetative or Animal, Per Se dabat omnia tellus, Ver erat aternum. Sponte fua fine lege fidem Rectumg; colebant. The Earth gave all things of itfelf, Spring was Eternal, and Juftice obferv'd without

Now, tho' all that happened in'thofe times of the World, fell within the Age which Varro calls the Adelon Tempirs; that is unknown as to the Heathen Writers, yet I look upon this Account almoft as confiderable, if not more, than thofe things which fall within the Mythologick; for I take this to be the Summe and Epitomy of the Thoughts and Theories of the moft ancient and moft knowing Philofophers among the efigyptians and Greeks; and howmuchfoever there may be fome who flight and neglect and villify the Knowledge, Doctrines and Thebries of the Ancients, which Humor 1 am apt to think proceeds from their ignorance of what theywere, and the difficulty of attaining the knowledge of them : Yet certainly former times wanted not for Men altogether as eminent for Knowledge, lnvention, and Reafoning as any this prefent Age affords, if not far before them; for if we do believe a time of the Creation or Production of this Earth (as we have fomewhat more of Argument to perfuade us than poflibly the Heathens had from the Hiftory thereof written by Mofes) then 'tis very rational to conclude, that in the more Youthful Ages of the World, there was a much greater Perfection of the Productions of it, and that before thofe many and great Alterations and Cataftrophies that have fince happened, and before the fenile Iron and deeaying Ages of the fame, wherein every thing by degrees grew more Stiff,

Rocky, Unactive and Barren, and fo a degencration of the Productions thereby feems a neceflary Confequent. In the times, I fay, that preceded all or many of thefe, it feems very rational to conclude, that it might produce Men of much longer Life, bigger Stature, and with greater accomplifhments of Mind (of all which we have very good Teftimonies without the Argumentations, Hiftories, Traditions or "Theories of the Heathen Writers) upon which account tho' this Defcription of the Genefis of the Earth, and the firft Age of the World fhould be fuppofed to be but the Theory or Philofophy of fome of the moft eminent Men, as Orpheus, Pytbagoras, \& cc. in Ages fo much nearer to thofe more active Ages of the Earth, yet, ipon that account, they may, I conceive, be well worth our inquiring into', to fee, at leaft, how Confonant thofe things are which they thought Reafon, to that of ours at this prefent. Some pofibly may be of Ariftotle's Opinion that the Earth was eternal: But I am apt to think that fuch as are fo, have not fo, fully confulted their own Reafon and Experience, nor much troubled themfelves with that Speculation. We found that the efgyptian Priefts by that Paffage I quoted out of Plato, had the notion of the Gene is Mutations, Cataftrophies, by Fire and Water, and the like of the Earth, if we will not allow them to have the Hiftory of them, or the Accounts of fo many 1000 Years as Plato mentions. But it will by fome be required perhaps, by what means can we judge of any fuch preceding Age? I anfwer, That ponibly the petrified Shells that lye in the Repofitory, and the prodigious Bones and Teeth that have been found buried in the Earth, of which the Repofitory affords fome inftances, and more might be fetched elfewhere: There, I fay, might to fome unprejudiced Mien prove Arguments, but for other's'tis beft tolet them enjoy their own Thoughts. But to return to the Subject I was indeavouring to prove, namely, That the Metamorphofis of Ovid was a continued account of the Ages and Times of the duration of the Earth. I fay, fo far as I have gone, namely, to the end of the Golden Age, none will doubt but that this was the defign of it, to relate what were the moft celebrated Opinions concerning its Formation and firft Ages, and as I conceive more particularly that of Pythasaros, who had fpread and left his Doctrines in Italy long before Ovid's time.
We come next to the 313 Verfe where he begins to give an account, tho very fhort, of the Youthful time of the Earth, which he calls the Silver Age. Poftquam Saturno tenebrofa in Tartara miffo, Sub Fove Mundus erat, Subiitq; argentea proles. After a long time was paft and buried in Obfcurity, the World had got a new Face and was under the Regiment of Fupiter, which fignified the exther and Celeftial Fire; before this'tis faid in the Golden or Infant Age of the World, Ver erat aternum; placidiq; repentibus auris, mulcebant Zephiri natos fine Semine flores. The Air and Earth was moift and tepid, which made a continual Spring, but now that moifture is dried up, and fervour, heat and drinefs is got into the Air. Subiit argentea proles, now Gupiter antigui contraxit tempora veris, perq; biemes aftufg; co inaquales Autumnos, ė brene Ver, Spatios exegit quatuor annum. This ingrefs of Fupiter caufed thofe ftrange changes in the Air, that we in part now feel ; for 'tis not immediately the heat of the Sun that makes that difference in the heat of the Air, tho' that be alfo a Caufe. But as I fhall have occafion to treat in an other place 'tis the Conftitution of the Air, nor is it the oblique Radiation (as all which one confent affirme) nor the nearnefs to, or diftance from the sun, but it is the ingrefs of Fupiter that makes the Air fufceptible of thefe Mutations. Tunc. primum fiecis aer fervoribus uftus canduit, \&c. then entered Lightening and extraordinary Heats; and fo he proceeds in the defcription of the other Seafons and Conftitutions of Air, Semina tum primnm longis cereolie Sulcis, obrnta funt, \& The Earth being now dried having loft much of its. Infant foftnefs and moifture, needed fome helps to make the Seeds grow. After this iuvenile Age was paft over, then Tertia poft illem fucceffit a benea proles, Sevior Ingenio co ad borrida prompior arma, non Seclerata tamen. All the aforefaid Qualities increafed, the Earth growing drier and drier, and the Air more intmperate, but yet it produced no direful Effects of terrancous or aerial Cataftrophies. But De Duro eft ultima ferro. Now the Shell of the Earth is Petrified, and the Iron Con-

A Dijcourje of Earthquakes.

flitution is introduced, all its Rocks and Iron Mines. Protinus Erupit vene pejoris in avum omne Nefus. Then followed all the difmal effects of Subterraneous and Superterraneous Difentions, Conflagrations, Floods, Earthquakes, the Sea overwhelming. the Lands, and the Lands getting out from under the Seas, here Mands, there-Lakes, here Mountains, there Voragoes and Abyffes, and multitudes of other Confufions which rafed and mangled the fuperficial Parts of the Earth, fo that no place was free from the effects of thefe difcordant Principles. Afrea, as I faid before, which fignified the Virgin, Fuvenile fmooth, foft, and cven Face and Conftitution.of the Earth which it firft received from the gentle Influence of the Heavens, and preferved in the Infant, ffuvenile and pretty well in the Virile or brazen Ages. Now, that the Earth was arrived to its old Age, Wrinkles, Chóps, Furrows, Scarrs, and the like, had not left one fpot of Afrea unblemifh'd, then fhe is faid to have left it. This is a fhort account of this Iron or old Age of the World, of which I fuppofe the whole following Metamorphofis is written; this in good part falling within the Mythologick Hiftory of the Poets, but the Genefis and three preceding Ages, I look upon to belong to Varroe's 'Ad n n ov tempus, and to be the Epitome of the Theories of the moft antient and moft approv'd Philofophers. This I could in part prove, as I could alro many other Paffages of this Difcourfe, by Quotations out of other Authors among the Antient, and alfo by the confent of many more Modern Writers. But that poffibly might feem too tedious, and I doubt not but there are others who having more applied their Studies that way will do it more fully. The firft of the memorable events of the Iron or old Age of the World is, defrribed in the next following Verfes.

> Neve foret terris fecurior arduus cether, Affectafe ferunt Regnum calefte Gigantes Altaq; congeftos fruxiffe ad fyder a montes.

But leaft high Heav'n Should unattempted reft, A/piring Thoughts the Giants. Mindspoffef, Mountains they rais'd'gainft the atherial Throne.

Now the difmal effects of the old Age of the Earth appear, the outward Shell of the Earth being now hardned and petrified, and the Pores of Emanation Itoped fo that the fiery and watery Vapours and Rarefactions below the fame, could not now find their ufual tranfits; thefe are faid to confpire againft Heaven to break out of that Prifon of Tartarus, where Fupiter had lately thruft down and inclofed Saturn, Saturno tenebrofa in tartara miffo, and to furce their Paffage into the open Heaven, where Fupiter now prevails; thefe therefore fermenting together had raifed the fubterraneous Parts into many Cavities and Crypta, and therefore were faid to have a thoufand Hands, being fo many Caverns and far extending Crypta, wherein thefe fubterraneous Sprits convened, in which lay their ftrength; and becaufe fuch Crypta are winding and not ftreight, they were called Anguipedes like Snakes; thefe at laft break forth and make Mountains, lay Pelion upon Offa, Altaq; congeftos ffruxiere ad fidera montes. Then Fupiter is faid to have rent the Heavens with his Lightning and to have buried them at laft with Mountains heaped on them; that is, the \int e Vapours having made Eruptions and thereby carried the Earth up with them, fo as to make Mountains one of the top of the other, the Vapour got into the Air where it produced hideous Lightning and fo fpent it felf in the Air, and the Mountains being left, and the Vapours that raifed them fpent, Fupiter is faid to have deltroyed them and buried them under thofe Mountains: One of thefe is faid to be buried under Sicily, and to breath through the Mountain Atna. But I muft not flay too long upon the particular Explication.of every thing concerning it, it may be fufficient for me at prefent to hint the meaning in general ; only 'tis to be noted, that the Blood of thefe produced a generation that was of the fame kind; that is, that the remainders in the Earth were of the fame kind.

Thefe remainders of the firf Effects' were fo prodigious that they made Fupiter groan and grow white hot with Anger, that is, made Thunder and Lightning, and call a Council of the Gods,

> Terrificam Capitis concufit terq; quaterg;
> Cafariem, cum qua terram, Mare, fydera movit, Talibus inde modis, or a indignantia folvit. Non Ego, pro mundi Regno mag is anxius illa Tempeftate fui, qua centum quifg parabat Injicere anguipedum captivobrachiá Celo.

> The Thund'ree oft this dreadful Treffes Shakes, At which the Heaven, the Earth, and Ocean quakes, And thus he bis affronted Mind expreft. Not a more anxious thought my Mindipoffeft
> For the Worlds Empire, when the captive Skies
> With hundred Hands the Snake-feet did furprize.

It feems this was as great a Conflagration, or Collection of fubterraneous Spirits, and like to be asdreadful as the preceding, nay greater, for that was but one fingle Enemy, but one fmall part to be deftroyed; but now there is an univerfal defection, all mult be deftroy'd; for fpeaking of the laft Eruption,

> Nam quanquam ferus bof is erat, tamen illud ab uno Corpore, © ex una pendebat Origine Bellum. Nunc mibi, qua totum Nereuscircumfonat orbem, Perdendum eft mortale genus, \&c.
> For tho' the fir f was a fierce ragoing. Foe,
> From one Original the whole did flom, And allthe War depended on one Head. Now wherefo'ere the filver Waves are Jpread, I muft deftroy Mankind.

The Fable of the Lycaon explain'd.

And why muft all this be? Why Fupiter being informed of this defigned Confpiracy, coming down found Lycaoin had laid a defign to deftroy not only the Semidei, Fauni, Nymphe, Satyri, and Syluni, that were the terrerftrial Deities of the Plains, Rivers, Woods and Hills; but even Fupiter himfelf, who ruled the celeftial Deities, the 压ther, Air and Meteors, all which he had call'd together, who

> Confremuere omnes fudius ardentibus. A Murmur rais'd with an inflam'd defore.

But who is this Lycaon? surácu, as the Word fignifies, is Diffolution, the general Congregation of the Sulphureous, Subterraneous Vapours being every where pent in, threaten'd a general Difolution and Cataftrophy of the whole World at once, and fo would not only overturn Hills, Plains, Rivers and Woods, but fet on Fire and deftroy the Air; for, as in another place he exprefles it,

A Difcourfe of Earthquakes.

> Winds raging force within clofe Caverns pent Defirous to break out at any Vent, Long ftrives in vain t'injoy a freer Field Of Air, the weoll-clos'd Pris'ns no Crannys yield; At laft it ftretches out Earths hide-bound Sbell, As with frong Breathblown up tight Bladders swell.

The whole Earth was big with thefe collected, fubterraneous, fiery Spirits and watery Exhalations.

> ---.---Partim ferventibus artus
> Mollit aquis, partim fubjecto torruit igne:

He----Part Soft with the boyling Waters, part
Hith Flames beneath.
Fupiter therefore defcending deftroys him vindice flamma, that is, fires in to Lightning fuch as had broken out,

> Territus ipfe fugit, nactufg; filentia Ruris Exululat.
> Frighted, to dark and flent Groves he fies In theefe be bowles aloud.

This made the fubterraneous Vapours fly to other places and make a noife under Ground, and in fome places where it broak out, it had
-------Veteris veftigia forma:
Canities eadem eft, èdemviolentia vultus,
Iidem Oculi lucent, eadem feritatis Imago
He ftill the marks of his old Form retains: The fame gray Hair, the Same ftern Look remains; The fame Eyes ftare with wildnefs fill the Same.

The fame white tops of Mountains, the fame gaping devouring Mouth, the fame flaming Eyes, the Caldera at the top yielding Fire, the fame frightful and terrible Afpect, like that of a devouring Wolf; and that this is the meaning of the fhape of a Woif which Lycaon is faid to be transformed into, is more plain by what is faid in the eleventh Book, Verfe 365 , of Pfamathes being turned into a Wolf, where Antenor is introduced telling a ftory to Peleus of a devouring Wolf deftroying. Men and Cattle which had come out of the Sea: It will be plain to any that fhall read it, that an Earthquake is there meant by the defcription of the Wolf, but I muft not now infift uponit.
But to proceed, there was yet but a ftop put to fome fmall Vulcano or Eruption which had deftroyed but fome fmall Country de Gente Moloffa, fome of which it had overflowed with Water, and deftroy'd fome other parts with Fire.
---------Sednon Domus una perire
Digna fuit, qua terra patet fera regnat Erýnis. In facinus jurafe putes.

Thus one Houfe perifh'd by revenoing Flame
Deferv'd by all, the Furies all poffefs; .
You'd think the World confpir'd in Wickednefs.
But this was not fufficient to vent thefe fubterraneous imprifon'd Spirits; but an univerfal Cataftrophy was neceffary, becaufe Erynnis ruled over the whole Globe; Fupiter therefore is faid to have confidered which way to effect it, whether by an univerfal Conflagration by fiery Eruptions

A Dijcour \int e of Earthquakes.

Famc; erat in totas Sparf urrus fulmina terras,
Sed timuit ne forte Sacer tot ab ionibus eAt ${ }^{\text {ber }}$
Conciperet flammas, totufq; ardefceret Axis.
His Light ning, but he fear'd the facred Sky
Should catch the Flame, and Heav'rus whole Axis blaze.

He concludes at laft to do it by an Inundation.
But I muft not dwell too long upon the Explication, which with this notion will plainly appear to him that reads the Poet's Defcription. Next this follows the Story of Python, which is nothing but the Corruption and ill effects of it from the Mud and Stagnations left by the Flood, which the Sun by its Rays by degrees deftroys, drying it up. And the next of Daphne turned into a Laurel by Apollo, is nothing but the pleafant verdures the Sun produced upon the Earth, inriched by the Inundation after it was dried. I could proceed, but I fear I have already wearied you with this Recital, which was only defigned as a Specimen to !hew what I hinted the laft Day, namely, That this Mythologick Hiftory wasa Hiftory of the Production, Ages, States and Changes that have formerly happened to the Earth, partly from the Theory of the beft Philofophy; partly from Tradition, whether Oral or Written, and partly from undonbted Hiftory, fcr towards the latter end we find accounts of mariy things our Hiftories reach, as Orpheus, the Trojan War, Pythagoras, Romulus, Rome, Numa, and it comes down even to the Death of Fulius Cafar, and the Reign of Auguftus, under whom he lived.

IN Confirmation of what is faid in the foreroing Page concerning the Giants, I Jhall here infert a loofe Paper, as I found it among Dr. Hook's Manufcripts, infrribed, A Copy of $D r$. Thomas Gale's Paper concerning Giants.

> R. W.

S I R,

IN Anfwer to your Queftion about the word Rephaim and Gigantes, I make this Short return.

1. There is no rudical mord in the Hebrem Language mbofe fionification doth at all lead us to underftand Gigantes by the word Rephaim, fo that the Radix of Rephaim is either loft as to the prefent Hebrem Language (as many otbers are) or elfe that word Rephaim is a foreign word to that Language, as many more fuch are noto found in the Bible.
2. The Septuagint Tranflators do often render Hebrem words not according to their Natural. Senfe, but with refpect to fome Hiftory or Tradition; or general belief prevailing at that time: The reafon mas becaufe thofe Tranflators lived among Greeks. at Alexandria: And they were defirous to them that the Bible was not uniquainted with the Greek Stories, where the thing could be done without injury to their Books.
3. In their rendring of the mord Rephaim by Gigantes and Mortui, and the Verb—they plainly point at the Story of the Titanes, who in the Greek Mythologies are Jaid Ta@Tngciथñou. St. Jude ufes the fanze mord when be fpeaketh of the Hellihh Angels, e「agTMgciorioc". Another Greek Trangator rendereth the fame word Rephaim by Titanes.
4. As to the Jufpicion that the Gigantomachia was an Earthquake, or perbaps Several Earthquakes, but by the Poets put altogetber, the true notation of the mord Gigas 'Jeems to make' for you. In Hebrem the Radix Gagafh, is terra commota fuit. And the Subftantive Gigas, tho commonly takon for a Creek word, is indeed of Hebrew or Phanician Original. In that place of Ifaiah where the 70 ufe Gigantes, Symmachus uifes brouáxo1, both alluding to the Pcétical Fable, but the 70 do it more marily, Symmachus mere plainly.

But to me I confefs it feams rather to allude to the fourth Verfe of the fixth Chapter of Genefis, where it is faid, that there were Giants in the Earth in thofe Days, becaufe the word yryourfes is made, ufe of by the Septua-
 Period, befides we find that God immediately after this Paffage, is faid to be very highly difpleafed with the wickednefs of Mankind at that time upon the Earth, and to refolve their Deftruction and Extirpation, which Thews that there is a great agreement of the Poets Mythology with this Hiftory of Mofes: For Ovid makes this Gigantomachia to precede the Flood of Deucalion, as the Scripture doth make this to precede that of Noab. And befides joins the Fable of Lycaon to that of his Giants, which feems plainly to allude to the wickednefs of Men mentioned by Mofes upon this occafion. Further, I do not know whether the word may not fometime have been ufed, to denominate Earthquakes, or fubterraneous Powers'; for in the ninth Verfe of the fourteenth of Ifaiab where the fame word is ufed by the feventy. It feems plainly to fignify fome fuch thing; but this is befides my Province, and I fhall rather leave it to the Divines to determine: For Gig as is the fame word with the Greek word y lyas; which Euftachius derives from $\gamma \tilde{n}$ and $\gamma \alpha \omega$ that is an Off-fpring or Progeny of the Earth, i. e. fomewhat generated in the Bowels or Womb of the Earth and thence Born, brought forth or protruded, which is a very proper Appellation and Defcription of that production of Nature, wherewith the Earth feems to be firf impregnated and made tame, then to be in great Agony and Pangs, and to have many pangs and throws before it is delivered of it; and laft of all to produce Illands, Mountains, or the like Monfters, which feem to threaten or afpire at the Celeftial Manfions.

When I gave an account the preceding Meeting, Fuly the thirteenth, of what I conceived thePoets meant by theMythology of the Giants warring with the Gods, fome of the Society then prefent were very Inquifitive to be informed what fhould be meant by the Hiftory of Python which was deftroy'dby Apollo, of which though I had made fome mention in a former Difcourfe concerning the Mythology mention'd by Ovid, yet being then only mention'd in trangitu, I have now fomewhat more particularly drawn up my Sentiment concerning it. I mention'd before then Ovid by this Mythology (as I corceived) did deiign to defrribe the ftate of the Earth fromits firft beginning and formation out of a Chaos, through all the various Alterations, Changes and Metamorphofes it had indergon even to that time in which he lived. And therein to comprife the Traditions and Opinions of the Antients; and poffibly alfo fome of the Moderns of his Times, and fome allo of his own, thereby to give fome Account and fome Reafons of the then prefent Phænomena of the World. I need not repeat what I have formerly inftanced in, about the Chaos and the Ages fucceeding, nor what I faid concerning the Fable of the Giaints : But to make the probability of my Conjectures the more manifeft, I would obferve to you the Co-hærence and Connexion of the Mythologies, as they are ranged in this firft Book. After the Warof the Giants which had raifed up Mountains that feemed to threaten the very Heavens by their height, and, the difturbances that had thereby been caufed in the Air by Lightning and 'Storms which he makes to be the means by which the Gods deftroy'd their fury, he comes to confider the Face of the Earth as it was left, which he Mythologizes by the Story of Lycaon, whereby he defcribes the confufion there was left by the fubverfion, finking, overwhelming and deftrustions that had been made, the Rufica Numina as the Fauri, Nymphe, Satyri, and the Sylvani of the Mountains, were all likely to be deftroyed for the future; that is, the fine Plains, the Woods, the Rivers and Rivulets, the Woods on the Hills were all deformed; confounded, and put into confufion, and not only fo but the Air itfelf was from the Clefts and Chafms poiloned and continually filled with noxious Expirations out of the Earth, the People remaining were diftracted and grown barbarous, preying upon and deftroying one another; it was thought therefore by \mathcal{F} upiter, i. e. Divine Power, neceflary, that all muft be fet to rights again by a general Deluge, whereupon the Poet,brings in Fupiter Swearing,

386 A Difcourfe of Earthquakes.

> Nunc mibi qua totum Nereus circumfonat orbem Rerdendum eft mortale Genus: Per flumina juro Infera, fubterras Stygio labentia Luco. Cuncta prius tentanda, fed immedicabile Vulnus. Enfe recidendum eft, ne pars fincera trabatur.
> Non wherefo'ere, refounding Waves are fpread, Allmortal Beings muft die; by. Streams that run Beneath, I fwear, Streams that ne'er fee the Sun. All ways firft try; But th' incurable Wound Muft be cut off, left it infect the Sound.

The Fable of Deucalion and the Flood explained.

The Fables of Python ex-(1.7i-ad

The Flood then follows that was to reduce this torn aud confounded Face of things into fome better Form and Order, by which the Caverns left frould be filled, the ruggednefles plain'd, the fuperficial Parts, now Rocks and Stones, and the Recrements of the Eruptions fhould be cover'd by a more foft, and fine, and fatter Skin of Earth, which fhould be fit to produce and nourifh Vegetables and Animals as before. The Poct then defcribes the Flood, and thereby makes all Men and other Creatures to perim by it, except only Deucalion and Pyrrba, who were to be the reftorers of Mankind, whom he fuppofed to have fomewhat more Divine than all the reft of the Creatures, which he conceived to be generable out of Corruption, as you will fee by and by; but Man only by propagation, yet his method of Propagation looks at firft glance but very extravagant, namely, from Stones cdft behind them by Deucalion, and Pyrrha, Deucalion's being generated into Men, and Pyrrba's transformed to Women (quis hoc credat nifi fit protefte Vetuftas) fays Ovid; and I am very apt to think that Ovid himfelf was one of the Unbelievers, notwithftanding the Teftimony of the old Traditions, that is, that he did not take it to bc a truth in the plain Senfe of the Words, tho he feems to draw a Confequence from them. [Inde genus durum fumus experien \int_{9}; Laborum.] But that he underfood what was meant or intended to be fignified by this MythologickDefcription [Et Documenta a amus qua Jumus origine nati.] But to proceed. After he has told us how Mankind was preferved and propagated after the Deluge, he next comes to the other Creatures.

> Catera diverfis, Tellus animalia, formis Sponte fua peperit; pofquam vetus bumor ab igne Percaluit Solis, Cenumque udoq, Faludes Intumuere rftu, facundaq femina rerum Vivaci nutrita folo, feu Matris in alvo Creverunt, faciem aliguam cepere morando.
> All other Creatures took, their numerous Dirth And Figures voluntary, from the Earth, When Rimy Marתhes from the Suns vaft heat, And with his Pomer impregnated grow great With Child, and Seeds, as from the Mothers Womb, By Steps and Time both Gromth and Shape aflume.

And here he is for eAquivocal Generation to the height, if you underftand him literally, or according to the words, Quippe ubi temperiem Sumpfere Humorg; calorq; concipiunt co ab bis oriuntur cuncta duobus. All came from two Principles; for he feems to make all things to arife or be generated out of a temperature of Heat and Moifture, and by that means the Earth, when left by the Deluge, abounding with muddy and boggy Places the heat of the Sun working thereupon produced, according to him, not only all the feveral Creatures anew which had been loft and deftroyed by the Deluge, but divers others of ftrangê, and before unknown, and monftrous Forms, which were terrible and deftructive to Mankind, and amongft the reft he mentions a Itrange, venomous and prodigious Serpent, which he calls Python, which he

A Difcourse of Earthquakes.

relates to be killed or deftroyed by the Darts of Apollo. By which I conceive no more is meant, but that thofe boggy Places after a time corrupted and produced peftilential, dark, Clouds and Vapours, which frighted and was noxious both to Men and Beafts.

But that in fome time after the Rays of the Sun and Lightning having prevailed, did thereby burn off and difcharge the poifonous Exhalations, and put an end to that monftrous off-fpring, nor need we be much concerned for what the Damonologers had thereupon fuperftructed for the promoting and carrying on of their Theourgy. After this drying of the boggy places of the Earth by the Sun ; we have the account of the production of Woods and Trees by the Power of the Sunin the Story of Dappne: And then the defcription of the Rain, Dew and the Foggs that moiftened the Air, and made Rivulets and Streams producing Grafs in the Fields, and greennefs on Trees and Plants by Io then Funo, the Air finding thefe Vapours to be drawn up into her Bed or Refidence by the Sun or Fupiter, is faid out of jealoufy to fet Argus, that is, the Stars to watch it by Night and caufe it to fall: But Mercury, or thelight of the Morning cuts off the head of Argus, that is, makes the Stars difappear and the Sun return to raife them, and I_{o} is then reftored to her former Shape, or the Dew or Moifture on the Ground is raifed into Vapours. "By the bye he inferts the Generation of Water, and River-plants by Syrinx, and Syrinx. the production of the Rain-bow by the Head of Argus, placed by Funo or the power of the Air in the Feathers of Funo's Bird, which are the Clouds of the Air. By thefe Mythologies having defcribed the pofdiluvian ftate of the Waters, and the Air and watery Meteors, he ends the Book with the Pedigree of Phaeton which he compleats in the beginning of the next, of which hereafter.

But as to Python, which gave the occafion of my prefent Difcourfe, tis Fython. plain that its Name fignifies Corruption, and by the manner of its Generation, 'tis evident that he fuppofes this Corruption to be caufed by the Bogginefs or Floods that remained in the Plains, Lakes, or Holes, lower Grounds or Vales incompafed with higher Grounds that the Water could not run off: From the fermentation of the foftned Earth he fuppofes the Animals to be formed that were of the fame form with the Antediluvian; but from a longer ftay of the Waters this fermentation turned to Corruption, and then produced not only Monftrous Creatures, but noxious and dreadful Exhalations, whence proceeded Diftempers and Difeafes, becaufe thefe Waters by feveral Streams moved (as moft commonly they do) to lower Places and Gavities and there made a great Body which pofferfed a confiderable part of the incompaffing Hills or Mountains: Apollo or Fupiter, that is, the Sun by many Days and Years irradiating with its Darts, Rays or Beams, doth partly dry by Exhalations, partly by flafhes of Lightning, diffipate, and difpel, and laft of all it caufeth Clefts and openings of the Earth which fwallow it up, and leave thofeCavities like the black Wounds which the Poet affirms to remain for a witnefs to Pofterity.

[^9]
388 A Difcourfe of Earthquakes.

> Huge Python th' Eaith arainft ber will thenbred, A ferpent mhom the nem-born People dread:
> Whofe bulko're fo much of the Mounttain Jpread.
> The dazling God that bears the filver. Bow, (Inured before to ftrike the flying Doe)
> That Terror with a thoufand Acroms fem,
> His Quiver empty'd, and the Poifon drem
> Thro ${ }^{\text {a }}$ the black Wounds: Then leaft the Memory
> Of fuch a mork in after times fhould die,
> He inftituted celebrated Games
> Which from this Serpent he the Pythian names.

The Earth produced various Creatures fome monftroufly fhaped, thefe were invita terria contrary to its proper teeming Vertue brought forth: Of there one was more corrupt than the reft, and more contrary to Nature ; this poffeffing fo much room of the Mountains, wrigling on all fides by the Rills that ran into its vaft Body or Lake, by its Poifon became dreadful to the new produced Creatures: This Celeftial Power that kept the. Tower of Heaven (50 I Englifh Arcitenens) that is, the Sun, Fire, or Heat, by its Rays and by thoufands of flathes of Lightnings (infomuch that one would have thought they had been all fpent and the whold fock fired off and whereas thofe Rays before, had been only ufed to difpel and fcatter fmall Clouds or Foggs) did hereby at laft deftroy or difperfe this ftagnant and corrupted Body of Water, by caufing it to rife into Thunder Clouds difcharging by Lightning its poifonous Vapours with which it. fwelled; befides the heat of the Sun and the Lightning alfo kindling the Subterraneous Spirits, caufed Clefts and Chafms in the Earth, which fwallowed up moft of the remaining fagnant Waters, and fo deftroy'd the Caufe or Original of thofe Evils, leaving in feveral places divers of thofe Chafms or black Wounds which the Poet defcribes.

To this purpofe there is a notable Paffage in Lucian, which, among others, to another intent, is quoted by Dr. Burnet, Theor. Sacr. Part 2. Chap. 4. 'Thefe ${ }^{6}$ are the Matters (fays Lucian) which the Greeks have related concerning ' the Flood of Deucalion. But among the things that have happened foon af'ter it, there is a certain relation of the Inlabitants of Hierapolis, which is - juftly looked upon with great admiration, namely, that in their Country e there had happened to be made a great Chafine in the Earth, which had 'fwallowed up all the remaining Waters'; whereupon Deucalion had built Al-- tars and a Temple dedicated to Funo over the fame. Now for a fign that ' this Relation is fo, they do thus twice every Year, Water is brought from the ' Sea to this Temple, and not only the Priefts bring it, but all Syria and A -- rabia, and many which dwell beyond the Eupbrates, go to the Sea and fetch© ing the Water from thence bring it to this place :- And firft indeed they 'pour it out into the Temple, and then it runs into the Chafm, and tho' 'this Chafm be but fmall, yet it fwallows an immenfe quantity of Water. © When they perform this Ceremony, they fay that Deucalion inftituted this

- Riteand Law of this Temple, that it might be a Memorial as well of the
' Deftruction by as of the Deliverance and Safety procured againft the Flood.
- This(fays Lucian) is the old Story concerning this Temple. This Tradition, 'tis very probable, Ovid was notignorant of and might therefore add to his Relation Fufo per vülnera nigra veneno. Neve operis famam poffet delere vetufias. And 'tis very probable alfo that the Mythology of Arous has a refpect to the Generation of the Rainbow foon after the Flood as it is mentioned by Mofes. For 'tisplain that their Signs or Hieroglyphical Reprefentations and Notions, were many of them abuidantly more incongruous with the things fignified than this is; for Clouds" inay by an eafy Figure be fancied the Fowls or Birds of the Air, as we - ufually fay when great Hlakes of Snow fall, the Winter is plucking its Geefe or Fowls: And which among all Fowls, or indeed Creatures, does betterreprefent the Rainbow then the Peacock when it fpreads its Tail, whereby it reprefents fuch a glorious Arching of a moft ftupendious Va-

A Dijcourse of Earthquakes.

Hety of Colours as numerous and as refplendent as the very Rainbow. And to make the coherence the greater thofe Rings being made up of a Circular Order of beautiful Spots, what could he better Metamorphofe it frön than from a Head adorned with abundance of Eyes, which he makes to be of one Argus? I fuppofe for want of Microfcopes he knew not that the Eyes of Flies were planted in fo curious an order, otherwife poffibly that might have ferved for a Hieroglyphick for the Star-light-Night as' well as Argus.

I have formerly difcourfed concerning the great and ftrange Effects that The ocoafion of have been produced on the fuperficial Parts of the Earth by means of Earth-tbis Leifures quakes, the raifing of Hills, the finking of Vallies and Lakes, the fwallowing and new producing of Rivers, the raifing and finking of Iflands, the cleaving of Hills and Rocks, and the tumbling and difordering of the fuperficial Parts of the Earth, by which means have been produced the Veins and various mixtures in Marbles and other kinds of Stone, and moft of the petrifactive Productions, befides the Production of Mines and Metalline Bodies, as well as of other Saline, Sulphureous and divers other mineral Subftances. And in fhort I conceive that the whole Surface of the Earth, as it is at prefent, has been fome ways or other influenced and fhaped by them : I have on feveral occafions alledged feveral Arguments and Obfervations to make thefe Conceptions probable, and have produced feveral Hiftories that feem to be that way conducing. But moft of the greatelt Mutations having in probability been performed in the "A夫"घगov or untindv the uncertain or fabulous Times, as they are termed by Varro, there is not to be found in the Hiftorical time very many that do make much for it; the greateft Inftance I conceive to be had of it, is the Hiftory of Pbaeton, which, tho' among the tians bad ReGreeks it be included within the fabulous times, yet it feems by that Paflage ton in their of Plato which he relates concerning what Solon had learned from the ifoypti-Hiftories. an Preift that the eEgyptians had Records thereof in their Hiftory; as in probability they had of many others, of which the Grecians were wholly ignorant, as may in part appear by the Relation of the Ailantis; for the Greeks had nothing of Hiftory elder than the Flood of Oygoes, which, as Eufebius. fays, happened about the times of Facob, which was long after that of Noah, and long before that of Deucalion, which was about the latter end of Mofes's Life. All which time according to Varro, and many hundred Years after even to the beginning of the Olympiads (which was but 776 Years before, Chrift) was included in the Fabulous Age, which was likewife 776 Years after, Mofes his Death, he dying in the 1552 Year before Chrift's Nativity; within which fpace of time the Cataltrophy Mythologifed by the Story of Phaeton that happened. feems to have happened; for Orofius relates it to have been much about the time of the IIraelites departure out of eAgypt; as he doth alfo affert that of Deucalion's Flood, in which the greatef part of the People of Theffaly were loft, only fome few efcaping who fled to the Mountains, efpecially Parnafus, near the Foot of which Deucalion then reigned. Nowif we confider the Story as it is related by Ovid in the fecond Book of his Metamorphofis, making allowance for what is Poetically fpoken, one may plainly enough from the whole drift of the Fable conjecture at the Hiftory or Tradition that is couched under it, as well as fomewhat alfo of the Philofophy; as for the morality, thereof enough have taken notice of and writ concerning it. As for the time of it, Ovid places it foon after the Fable of Deucalion which is the feventh Fable of his firlt Book, and the eighth, ninth, tenth, eleventh, twelvth, are of Matters confequential of that Flood which muft have followed it in a very fhort time (as I may on fome other occafion make more probable) or rather pravious to this, as being indeed part of it. But to let that pafs for the prefent, I fhall only take notice now of the Phylical or Philofophical part thercof, which to me feems to contain a Defcription of fome very great Earthquake or fiery Eruption which affected a great part of the World then known.
Firlt then we find Pbaeton to be termed a Son or production of the Sun, AnExplication which is the biggent and moft powerful Fire of the World, that we who live of the Fable of upon the Earth do know, but by the Mothers Side, to be the Son of Clymene Phaton. which is an epithite of Pluto and denotes Phaeton, or this afpiring Fire to be generated by the Sun in the Bowels of the Earth; all the proeme of the Fffff

Story is Poetical and of a moral Signification to denote a Genius afpiring and undertaking more than what it was able or fit to perform and manage, yet it is fa ordered as to comprife the main Defign and Phyfical meaning of the Poet, viz. that by fome extraordinary or univerfal influence of the Suns Beams the Subterrancous Vapours had been kindled, and that a fore-runner of this was Lightning and Thunderings in the Air, which feems to be expreffed by the defcription of the Horfes that drew the Chariot of the Sun.

> Interea volucres Pyroeis, Eous \&i eEthon Solis equi, quartufq; Phlegon, binnitibus auras Flammiferis implent, pedibufg; repagula pulfant.

Mean while the Suns fwift Horfes, hot Pyroeis, Light Æthon, fiery Phlegon, briobt Eous, Neighing aloud inflame the Air with beat, And with their Thundring Hoofs the Barriers beat: Metam. Lib. 2. V. I 53 , ơc:

The Managery and Courfe of the Horfes and Chariots through the Heavens is all poetical, accommodated to fhew the Conftellations of Aratus, and to the Cofmography of the Poets, to fignify the concurrence of the other Ce leftial Bodies and Powers: But the effects it produced on the Earth as the flaming and buinning of Mountains, the cleaving and chopping of the Earth, the fwallowing up of Rivers, the rifing of Lands out of the Sea, as efpecially that about exigypt, and the Sandy Deferts on the Weft fide of it, feem to be Hiftorical as well as Poetical.

But I confefs the whole is fo Poetical that much certainty of Hiftory cannot be fetched out of it; yet for the prefent let me add thus much that I conceive may be deduced therefrom, and that is this, That there was an ancient Tradition among the Greeks, and that there was an ancient Hiftory among the of fiery Streans of fome very great and almoft general Conflagration or Eruption of fiery Streams which made very great Devaftations on the Earth, efpecially of thofe parts mentioned by the Poet in this Relation; fuch as Athos, Yda, Oete, Tmolus, Taurus, Helicon, e Emus, eEtxa, Parnaffus, Otbrys, Cynthus, Erix, Mimas, Rhodope, Dindyma, Caucajus, Mycale, Cytheron, Pindus and offa, Olympus, the Alpes and Appenine, all which Mountains are faid to have been on Fire, and to have caft up Smoak, Ahes, and burning Coles, and to-have thickned and darkned the Air.

> Tum facta eft Libye raptis humoribus aftu Arida, tum Nymphe pafis, fontefg; lacufgue Deflevere comis, \&c. v. 237.
> Then a dry Defert Libya became, Her full Veins empty'd by the thirfty Flame ; With their fcorcht Hair the Nymphs 'the dry'd up Streams And Lakes, their ancient feats, bewail.

Then were cart up the Libyan Defarts and many Lakes and Rivers fivallowed up and perverted, the names of which the Poet mentions, which are too many now to repeat; then the other parts of the Earth were cleft and tumbled to and fro.

[^10]
A Dijcourife of Earthquakes.

> Earth cracks, to Hell the hated Light defcends And frighted Pluto mith bis Queei offends; The Ocian''grinks and leaves a Field of Sand,' Where new dif covered Rock a and Mountainss farind, Which mult iply the fcatter'd Cyclades.

Then was the Sea contracted into a narrower but deeper Ceftern, the Hills and Lands on each fide of it raifed from under the former Sea and made diry Lands and Mountains, the Illands that are now difperfed in it wefe thruft up out of its bottom, and fand in that Pofition to this time: In fhort not to detain you at prefent too long upon this Mythologick Story, I conceive it to contain the Hiftory or Cabala of the Production or Birth of the prefent Mediterranean, EEgean and Euxine Seas, and of all the bordering Shores and Countries near adjacent to them, together with all the Inands, Peninfulás? Cliffs, Promontories, Mountains, Hills, Lakes, Rivers and Countries which had been before that time all covered with the Sea, but by a prodigious Cataftrophy which Divine Providence then caufed to be effected, the former Face of thofe Parts wastransformed and metamorphofed into much what it is now found, in General, tho' not in all Particulars; for that there may have fince been by the fame Divine Providence produced other particular Cataftrophies and Mutations, of which there are many Inftances mythologically Recorded in this our Author, fome of which I have already mentioned; and divers others which I may have occafion to mention fome other time; befides divers others of which we have plain and not hitherto doubtedor difputed Hiftories. Now, tho' I confefs what I have here afferted to be feemingly very Extravagant and Heterodox from the general Conceeptions of moft that have had occafion to mention this Fable; and tho it had been lefs improbable, I fhould not have expected any Concurrence of Opinion: Yet poffibly when the Matter has beeen more fedately and without prejudice thought of and examined, it may, as well as fome of my former Extravagancies, receive at leaft a more mild Cenfure, tho' it fhould not be wholly accommodated to the Gufto of every fuch Examinant. In thefe Matters Geometrical Cogency has not yet been applied, and where that is wanting, Opinion, which is always various and unftable, prevails. However, I may on fome other occafion thew that there is to be found in Phyfick, as well as Geometry, uninnfwerable Probation.
And when the Extravagancy and Novelty of the Doctrine has run the Gauntlet of Cenfures, I thall indeavour toadd fomewhat to cover and cureèits Scars.
I did the laft day indeavour to fhew what I conceived was veiled by the Poet under the Story of Pbaeton, and that was this, That by this Mythology the Grecian and Latin Poets did preferve the memory of fome extraordinary great Cataltrophy, which all the parts of the Earth or Countries not far removed from the Mediterranean, efigean, Euxine, and Cafpian Seas had fuffered by fiery. Eruptions or Meteors, effecting Earthquakes.

This to me feems probable from the Order and from the Manner of the whole Relation.

For the Order of it; we find it placed by Ovid foon after the Flood of Deucalion, and fo we find it is related by Paulus Orofurs (which I hinted the laft day) for in the ninth and tenth Chap. of his firft Book of Hiftorys he makes the Flood of Deucalion to have happened much about the time of the Plagues of eEgypt, and the Paffage of thé Ifraelites through the Red Sea; by which Flood the greateft part of the People of Theffaly were deftroyed. Cuo (fays Orofius, fpeaking of that Flood) Major pars populorum Theffalie abfumpta eft, paucis perfugio Montium Liberatis. Maxime in monte Parnaffo, in Cujus Circuitu Deucalion tunc Regnabat; qui ad fe confugientes Ratibus Suifcepit ©f per gemind

Pernafle
 bumanum diceretur. His etiam temporibus adeo jugis co gravis aftus incanduit ut Sol per Devia tranfvectus, univerfum orbem non calore affeciffe, fed igne torruiffe Dicatur. Impreffniq; Fervorem é exthiops plus Solito, ©i infolitum Scytha nona tulerit. Ex quo etiam quidam, dum non concedunt Deo ineffabilem potentiam fuam, Inanes Ratiunculas conquirèntes Ridiculam Phaetontis Fabulam texuerunt. Thus far he, by which it feems that Orofus did, in the Stories of Deucalion and Phaeton for the main, believe the Matters of Fact to be true, but.he was not for giving a Philofophical Conjecture at the Caufes of it, or the afcribing them to the Pagan Deities, but for afribing it immediately to the ineffable Power of God.
Now I do not conceive it doth any ways detract from the Omnipotency and Power of God, to explain the Caufes that he was pleafed to make previous to thofe Effects: For the Power of God is not lefs wonderful, in producing and difpofing the Caufes of things, than in producing the things more immediately. But fuch a Story as this Fable of Phaeton is, and to give fuch an account of its Caufes, as the Pocts have there given, it underfood literally, feems fufficiently ridiculous, and impious. But it is eafy enough to be feen that thofe who made this Fable knew better things, and only made ufe of Mythology to conceale their knowledge from the Vulgar, and yet communicate it to fuch as had the Key to unfold the Myitery contained therein.

And this appears plain enough from the whole feries alfo of the Hiftory ; for as I noted before, Phaeton is faid to be produced or generated by the Sun in the Womb of Clymene, an Epithite of Pluto, that is, in the Subterraneous Regions; and that it is fo underftood, appears plainly by the behaviour of Clymene, who is faid, after the Death of her Son, to have been Lugubris oo amens, ơ Laniata Sinus totum percenfuit orbem, exaninefg; Artus primo, mox offa requirens. Which feems to denote the murmuring and tumbling in the Earth that continued after the Conflagration was over, and the Story of the Sifters of Phaeton feems very confonant alfo thereunto if I had time now to confider them.

Phaeton being grown to maturity, is faid to have a great defire to know his Father, whom Clymene directs to go to the Palace of the Sun; that is, the Vapours being copioully generated in the Earth are expelled into the Air afcending towards the Sun. Pbaeton is faid to have come at length to the Palace of the Sun, and there to have been much pleafed with the glorious work thereof, and more efpecially with the Workmanfhip of Vulcan in the Gates. Nam Mulciber illic EEquora collarat medias cingentia terras, terrarumq q_{2} orbem $\mathrm{Ca}-$ lumq; quod imminet orbi. Caruleos babet unda Deos, Tritona Canorum, Proteag; ambiguum Balenarumq; prementem, AEgeona Suis immania terga.lacertis, \&c. Terra Viros, Urbefq; Gerit, Sylvafg; Ferafg; Fluminag; © Nymphas © Coutera numina Ru* ris. Häc Super impofita eft Coli fulgentis Imago Signag; fex foribus dextris totidernq; finiftris, \&c. Then approaching the Sun--.... Sedebat, in Solio Phobus clar is Lucente Smaradis, a Dextra Lavaq; Dies ơ Menfis \& Annus, Saculaq; Ơ pofite Spatiis aqualibus Hora. Verg; Novum Stabat Cinctum forente Corona : Stabat nuda eEftas oj Spicea certa gerebat. - Stabat, © Autumnus calcat is fordidusuvis, Et Glacialis Hyems Canos birfuta Capillos. The meaning of all which feems to be this, That the ftate of the World before this Cataftrophy was much the fame (facies non omnibus una, nei diverfa tamen) with the State of it afterwards; that is, the Courfe of the Sun was through the twelve Signs; there was a Spring, Summer, Autumn, and Winter, as there has been fince; no alteration of the Axis or obliquity of the Ecliptick: But there were Ages; and Years, and Months, and Days, and Hours as now; and Pbibus defrribing the way to drive his Chariot through, doth name the fame Conftellations: So that the Philofophers who made the Theory, or the Poets that made the Fable, did not underftand or fuppofe the obliquity of the Ecliptick to be made by that Deviation of the Chariot, or that this Cataftrophy had altered the Axis of the Earth, with refpect to the Heavens: But neither did they defign to fignify, even by this Story, the Deviation of the Sun it felf at that time, as if that had defcended and fired the Earth: For Phabus did not accompany the Chariot, Occupat ille levem juvenili corpore carrum, v. 150 . But
they rather feem to make Phaeton a fiery Meteor proceeding from the Eaft, and moving Weftward by another way and courfe than the Sun ufually took, and differing from the Direction that Phabus had given to Phaeton to obferve: But his Horfes now mounted upwards towards the fixt Stars, now downwards towards the Earth, now far to the North, then as much to the South; and laft of all he was broak all to peices by Lightning, and fell down like a Meteor upon the Earth, and like fome fuch Meteors as have of late Years been obferved, but much greater. At Pbaeton, Rutilos flamma populante capillos, volvitur in preceps, Longoq; per aeratractu Fertur, ut interdum de calo Stella Sereno, que finon cecidit potuit cecidiffe videri. Whether there might ever have been any fuch Comet as in its Courfe might come fo near the Earth as to fet the fuperficial part on Fire, and to kindle or excite the Subterraneous, Sulphureous and Nitrous Minerals, or whether it were fome Exhalation collected into a great Body in the upper Regions of the Air, and being kindled might feem to pafs near thofe Conftellations, through which Pbaeton is faid to be hurried and to come fonear the Mediterranean parts as to burn the fuperficial Parts, and to inkindle the Subterraneous Mines of combuftible and inflammable Subftances; or whether it were fome prodigious quantity of inflammable Steams collected in the Air, and fo burnt off by continual Lightning, it is hard pofitively to determine, becaufe that part of the Story I conceive to be Hypothetical, and Conjectural, or Philofophical, and not meerly Hiftorical. But the Effects produced, thofe I conceive to be Hiftorical ; that is, that there were divers parts, which were before covered by the Sea, that by this Eruption, were raifed from under it and left dry. Tum facta eft Libye, rapt is humoribus, aftu arida: Tum Nympha pafis fonte $\rho_{q} ;$ lacufq; Deflevere comis. 237, 238. Et Mare contrabitur, Siccoq; eft campus arene, quod modo pontus erat. 262 263. Then alfo were raifed from under the Sea both Illands and Mountains. $Q u 0 \rho 9$; altum texerat aquor Exiftunt montes, oj Sparsas Cycladas augent. 263,264. Then alfo did other parts fink under the Water. Ipfum quog; Nerea fama eft, Doridag; or Natas, tepedis latuife fubundis. Other parts were overflowed by the Sea and again deferted. Ter Neptunns aquis cum torvo brachia Vultu, Exerere aufus erat, ter non tulit aeris ignes. 272. Then were alfo caufed great Earthquakes, and overturning and tumblings of the Earth. Alma tamen Tellus, ut erat circumdata ponto, inter. a-
 Suftulit Omnifenos Collo tenus arida Vultus : Oppofuitg; manum fronti, Magnoq; tremore omnia Concutiens paulum SubJedit; or infra, quam Solet efe fuit. Then alfo was the Air filled with Fumes and Smokes, and the Surface of the Earth covered with Afhes and Cinders. 231, 232. Et neque jam Cineres ejectamq; favillam ferre poteft, calido involvitur undiq; fumo. And again, 283, 284, fpeaking of the Earth, (Prefferat ora vapor) toftos en afpice crines, ing; oculis fumum; volitant Super or a faville. The fuperficial parts of the Earth, Vegetable and Animal, were deftroyed. 210, ơc. Corripitur flammis quag; a'tiffimatellus, fiffaq; agit Rimas, G Succis aret ademptis, pabula canefcunt; tum frondibus uritur arbor, Materiamq; Suoprabet Seges arida Damno: Fluminea volucres medio caluere Cayfro.
The Earth was rent and cleft, and all the high Hills' on Fire like eftna or $V e-$ fuvius: Thofe 1 named the laft day. By this means many Rivers were fwallowed up into the Earth; others dried up by evaporation and boyling Heat. Mediis Tanais. fumavit in undis. 243 , \&c. Nili Oftia Jeptem Pulverulenta vac ant, Septems. fine fumine Valles. And, to be fhort, all the effects that have ever been obferved in.Earthquakes, are here eminently expreffed. So that there can be no manner of doubt of the defign of the Story, viz. That it was defigned to denote or defcribe a Cataftrophy of the Mediterranean parts of the Earth by Earthquakes; fince all things are fo properly delineated and reprefented for that. end, as if the Poet or Maker thereof had been §pectator or Eyewitnefs of it, or at leaft a Contemporary with it. And we may here find the whole Progrefs or Phænomena of an Earthquake from its very firft beginning to its very latt end, and the effects alfo that precede it, and thofe that are fubfequent to it, as I could plainly fhew if it were not too much for this prefent Difcourfe, by explaining the Mythologick Hiftories immediately prefixt and following it. Nay, there has not been in this late Earthquake in Sicily
which feems to be the greatef mentioned in Hiftory) any one Phanomenon which cannot be fhewn in this of Phaeton, and indeed moft of the Phænomena mentioned in this of Pbaeton have been exhibited on exemplified in this laft of Sicily; which I could eafily manifeft by comparing Ovid's Defcription with that of' the Italian Frier; but I fhall pafs it by for the prefent.
Part of another Leaure to the fame purpofe. babilite, in lome of myormer Difoures, indeavoured to thew fome Probabilities, that .the Mythologick Stories of the Poets did couch under thofe monftrous and feemingly impofible reprefentations of Actions performed byhumane Powers, fome real and actual Cataftrophies that had been caufed by the Body or Face of the Earth by other Natura!' Powers, of which the e \mathbb{E} gyptians, Cbaldeans, Greeks; or fome other learned Nations had preferved fome Hiftories or Traditions among the more learned part of them; which, that they might the better conceale their Knowledge, and keep it to themfelves, and abfcond it from the Vulgar, and fuch as were not initiated and' admitted into their Fraternities, they had contrived and digefted into fabulous Stories, which, as they might ferve to amufe and awe the Vulgar by the Dxmonology they had thereupon fuperftructed, fo they might ferve to inftruct and inform the Adepti, or fuch as were admitted to the true interpretation and underftanding of what they knew, of the real Hiftory that was concealed thereby, as allo of their Philofophical or Phyfical Hypothefis for the Explication and Solution thereof. I thinkit cannot be doubted that the Theogonia of: Hefood was of this nature, which if it was He fod's (of which, yet I confefs their are fome Moderns make a doubt) it feems to have been fome of the firft Notions which the Greeks had obtained of thefe Matters from the eAgyptiansor Phanicians, or fome other of the Eaftern Nations; except we fuppofe that Orpheus, who preceded both Hefiod and Homer near five 100 . Years', might in thofe times have known and communicated fome what of what they had by the fame Methods procured. The Hiftories of thofe times are very dark and uncertain, and nothing convincing can be built upon them. It will be therefore but loft Labour to indeavour to prove my Conjectures from Hiftories, or hints to be fought among thofe few Fragments which are now to be met withal among the Relicks of written Antiquities. Thofe, if fuch there were, (as being committed to fmall and perifhableSubftances) have been more eafily drowned and fivallowed by.time, or buried and overwlielmed with the Duft of Oblivion:-And the Copy or Counterfeits of fome of them, which have been made by fome of thofe we now call the Ancients (thongh with refpect to them they are to be accounted Modern) feem to have been but very imperfect, and to have been like Structures made up and peiced of the Rubbifh, Ruins and Fragments of thofe Antiquities which they in thofe times could rake together, fo that though fome great Buildings have been by thefe fecundary Ancients erected; yet being made up of fuch Fragments or Parts of thofe moreancient facredpiles by the newDifpofition andOrder of them they now appeara prepofterous Moles, yet we'cannot bat conceive that they had fome better and more certain informations of thofe more ancient Hiftories or Traditions than what we now can find; and we cannot think fo mean of them as not to believe they did in fome meafure comprehend the Intention, Meaning, and Drift, or Defign of thofe that preceded them; and tho' they wanted a compleat knowledge, yet from the knowledge they had of the then Ruins, they were better inabled to Judge and Conjecture concerning them, than we now can. And tho' their Conjectures inight not be all right, yet we. cannot but think they might be tollerably ncar the matter, and that' they did acquaint Pofterity by their Writings what thofe their Conjectures were. And of this Nature I take the Metamorphofis of Ovid to be, who, I conceive, had made it his ftudy to inform himfelf as fully as he was able of what was then to be found concerning that knowledge, and out of thofe informations he compiled that Book which was to cumprife all the Records of Antiquity concerning the Changes and Cataftrophies that had happened to 'the' Eatth from the Creation unto his own time, which his four firt prefactory Verfes do plairily enough declare. In Nova fert animus muthtas dicere formas, Corpord dit capt is nam vos mutafte eillas, Afpirate meis, Primag; ab Origine mindi, Lis mea perpefuum deducite tempoia Carmen. Which is as much as to fay, Nty defign in

A Dijcour fe of Earthquakes.

this Book is to ipcak concerning the various alterations and transformations which the Bodies or fuperficial Parts of the Earth have, by the Divine Powers, undergone; for to thofe he doth afcribe them, Nam vos mutafis of illas, and therein to comprize all the knowledge I have beenable to procure from the very firft Creation or Original of it, even to thefe very times in which I live. And accordingly we find him to begin this his Hiftory, even with the beginning of the Creation of the Earth itfelf, and thercin to have followed the Traditions, Opinions, and Doctrines of the moft Ancient Sages concerning its manner of Formation out of a preceeding Chaos; which DoEtrine that it was very ancient,' and indeed the moft ancient of all others concerning the Origination of it, I think the Learned and Ingenious Dr. Burnet in his Arcbaologia has fufficiently proved, and therefore I hall not need to fay any thing concerning it; only I would make this one occafional Remark, That how ancient foever it was, it did not favour of an unlearned or ignorant Age or of a firft beginning of real Knowledge, for that we find by 0 vid's Copy of it, that it contained a more refined Conception concerning the Figure, and Shape, and Properties of the Earth, than many of the Greek Philofophers (who in probability were many hundreds of Years after thofe firft Sages) had concerning it. Some of thofe Greek Philofophers making the Earth to be of the form of a Drum or Cylinder, others of an infinite Columin, others of a Skiff or Boat, or of a floating Ifland in the midit of an infinitely extended plain Ocean, and others of other extravagant Shapes; whereas we find that the Doctrine of the Chaos made it to be of a Sphærical Form; Solidumq; coercuit orbem, to confift of Land and Water, to have a proper Gravity that kept all its parts in that hape, or his Tellus (Elementag; grandici traxit of preffa eftgravitate fua) to be lnvolved with the Air, and that again with the 不ther. Hac Super impofuit liguidum G'gravitate carentem eftheranec quicquam terrana facis haberitem, to be fufpended in the Air, or 不ther, or space of Heaven without being fupported by any imaginary Foundation, as thofe Greeks fancied. Circumfufo pendebat in aere tellus, Ponderibus libratia' fuis. Nay, and by feveral other Paflages and Expreffions of this Book; it is clear, that in thofe very ancient times, whenever they were, for 'tis hard certainly: to limit them; the Learned Men that then lived, had arrived to a very great height of Natural Knowledge, efpecially of that part which concerned the Cofmography or Conftitution of the Univerfe; and by that Expreffion, Ig nea convexi vis oj fine pondere Cali emicuit, fummag; Locum fibi legit in" Arce! It feems plain that they placed the Sun in the Center of the univerfe, and made the Earth to move about it. Principio terram, ne non aqualis ab omni Parite foret, magni Speciem glomeravit in orbis. But this only by the bye'; for I know the common interpretation of thefe places, is altogether differing from what I now give, yet were it now my bufinefs, I think I can fhew fufficient Reafons to perfuade any unprejudiced Perfon that what I have given is the defigned meaning of them; but I proceed to thew the general defign of Ovid in this Book. After the Defcription of the formation of the Earth, he comes to defcribe the firft times of its continuance; that is, the " $\alpha \delta^{\prime} \psi \lambda o v$, or unknowi Ages of the World, of which he makes four, the Golden, Silver, Brazen and Iron, in the laft of which comes in the Mythologick and Hiftorick, for that he himfelf hath Mythologized alfo fome of the Hiftorical Times and Events. What fpace of Time he allows to each of thefe Ages it doth not fo readily appear, but it is ceitain that the Cbaldeans, eAoyptians, Brachmants; and fome Heathen Hiftorians have affigned fpaces large enough and even béyond beliefalmoft; and Mr. Graves tells us, that the Chinefe do make the World 88640000 Years old.He begins the Mythologick Times with the Gygantomachia, which to me feems to be nothing elfe but a Defcription of fome prodigious Earthquakes or Eruptions. And that by the Giants he plainly means nothe ing elfe but the Sübterraneous Fires or Accenfions which break out, and throwing up before them the Earth, feemed to threaten the very Heavens by piling Mountain upon Mointain (Afectaffe ferunt Reghum Calefte Gyg dintes Altaq; congeftos Struxiffe ad Sidera montes) I hewed before in the interpreta: tion of the Rape of. Proferpine, where it plainly appears what was meant by Typheus one of thofe Giants, who is faid to lie buried under the Inland of Si-
cily, and therefore fhall not need to fay more upon that Subject. After the
breaking forth of thefe Subterraneous Streams and Flames, we find Ovid defcribing them to be burnt off with Lightning. Tum Pater omnipotens miffo perfregit Olympum Fulmine or excufit Subjectam Pelion Offa. Obruta mole Sua cum corpora dira jacerent, perfufam multo Natorum Sanguine terram immaduiffe ferunt, Calidumq; animaffe cruorem. This we find to be a general Concomitant or Subfequent of fuch Eruptions, and it were eafy to produce many Examples of it in our late Eruptions; and 'tis alfo as ufual for many of thofe places that have been thrown or raifed up into Hills to be funk or tumbled down again, Excuffr. fubjectam Pelion Offa. So we are told of a Hill that lately rofe up by Catanea, which foon furk again. [Obrut a] by this, I think, is plainly fignified the Eruption of fiery Streams or Rivers of melted Minerals out of thofe Orifices or fiery Vents, fuch as in the two laft Earthquakes in Sicily have broke out of eAtna, and overflowed and burnt up and deftroyed feveral Towns, Villages, Fields, ©ic. for what can better exprefs the moving, raging and devouring Qualities of fuch a fream of Liquid Fire, than to call it an animated, or living fcalding Gore from its red and fiery Colour, its fcalding and burning Heat, its fluidity and rapid Motion, and its devouring and confumingPower; but it would be too tedious to infift on all the remarkable Circumftances and Expreffions, which, I conceive, makes it plainly enough appear what was the Defign and Scope of the Story; nor need I mention the Defcription of it by other Mythologers, as Claudian, Hygynus, Antoninus, Liberalis. Nor will it, I hope, be needful to anfwer any thing to thofe who would interpret it another way : Some making it to be only a Defcription of a Rebellion; others a difguifing of the Hiftory of the Tower Babylon. I fhall rather leave it to the Judgment of every one to make choice of which interpretation he fhall, upon duly confidering the relation, think to be moft aggreeable to the whole drift of the Book. And what I now deliver I would not have to be taken otherwife than only as my Reafonings and Conjectures upon the like Confiderations: For as I obferved before, the Poet has fo couched all his Relations and Expreffions as to comprize a Phyfical, a Moral, and an Hiftorical Meaning in them. And it may be fo interpreted as if it were defigned to defcribe fome particular Earthquakes, or fome particular Rebellion, or the general Rebellion of wicked Men againft Heaven, and the Divine Powers, or the attempt of thofe at Babel, and at the fame time it may alfo be found defignedly to contain in brief the Theory of Opinions of the mort antient Phyfiologers which they held concerning the Caufes and Effects of Earthquakes upon the uper Face of the Earth; which to me, I confefs, feems to be the principal aim and defign of this Story of Ovid, as well as of the moft part of the reft of the Book, which I defign, God willing, to prove more exprefly and particularly in a Treatife upon this Subject, fo- foon as I have fettled fome Affairs, which have hitherto hindred me from perfecting that and many other Subjects.

I fhall not need here to fay any thing concerning the Cuftom of the Grepks: in thofe formier Ages of turning all their Hiftories into Mythologick Poetry; 'tis plainly enough proved by that Relation I read the laft day out of Plato's Timaus; and it was not only ufed by them but by divers othen Nations, as the Engligh and Germans, as you will know. I fuppofe the reafor was for the better fixing it into the Minds of the Youth by a kind of indelible Character, as Plato expreffes it: Which could not be forgotten; for extravagant Marks we know are the great helps of - Artificial Memory, for that they raife extraordinary Attention; and that extraordinary Attention and Wonder does ftigmatife or burn in as twere indelible Ideas in the Memory. Pleafure alfo is another help to fix Ideas, and that Poetry and Songs contribute to, and the: activity of the Spirits in Youth wark the Effects more powerfully, and make them more durable. Thefe, I imagine were the Reafons why the efoyptiens; Greeks and other Nations converted their true Hiftories into there Romantick Fables: Not that I do here undertake for the truth of Hiftory in every Fable, for I conceive that there are as various kinds of Fables as there are of Hiftories. Some are repeated and believed Fables which are true Hiftories, others are believed true, but are really Fables: Some are believed Fables

A Dijcourre of Earthquakes.

and are really fo, and others are believed trae and really are fo. But of this fourth Head I fear is the fmalleft number; but we mult take the beft Evidence we can to confirm our Belief of thofe that are generally fo reputed: Among which none has been more looked after of late thair Medalls, Inferiptions, and real Monuments, yet remaining of the preceding Perfons and Actions, thefe are by all looked upon as a moft undeniable Proof to confirm a written Hiftory, and yet we know that many things of this kind have been counterfeited, yet that cannot-be faid of all: Now, if thefe that may be counterfeited be yet looked upon as more Authentick than Written Hiftory, then certainly thefe Medals, Infcriptions, or Monuments of Natures own ftamping, (which I alledged to prove an Hypothefis) which 'tis impoffible for Art to counterfeit, might in reafon be looked upon as Proof fufficient tho' no Hiftory could be produced. If I faw a perfect Medal, tho' I could not be affertained whether it were Antique or Counterfeit, yet I could certainly conclude it had been made by Art from the fenfible. Characterifticks of it; now it feems very ftrange to me that fo many evident Characterifticks as may be plainly difcovered in thofe figured Bódies fhould not force an affent; but truth will in time prevail ; but to give as much fatisfaction as I can to all Doubts, I will pitch upon one or two of the Fables of the Metamorphofis for inftances, to fhew that they were defigned to convey a certain Hiftory very much differing from the firf appearance of the Fable. I will begin with thofe of Ferfeus, Atlas, Andronseda and Medufa, becaufe, as I conceive, they have relation to the Herculean Columns, and to the Atlantis, or thofe parts of Libya which were near it; they are fomewhat long, however I mult beg your Patience to explain them a little more fully, and I will be fhorter in the reft.

Perfeus from wep! $\xi^{\prime} \omega$ circumferveo, I take to fignifie hot inflamed Air or of Perfeus. Lightning which is the Earthy Exhalations fet on fire by the Air difolving them; he is faid to be the Son of fove, that is of Etherial or Elementary Fire begotten in a fhower of Gold or Fire from Heaven, that is Lightning He carries with him the Gorgons Head haired with Vipers, the Picture of Lightn: ing.

> Viperei referens folium mirabile Monflri Aera carpebat tenerum ftridentibus alis.

Bearing the fpoil adorn'd with fnakey Hair With clafbing Wings he rends the yielding Air.

This I take a proper Defcription of Thunder and Lightning, fiery Serpents reprefenting the Emanations of Lightning, or the wrigling flafhes of it darting out fometimes: 'Tis reprefented as held in the Hand of Fupiter, fometimes in the Mouth, fometimes in the Claws of his Eagle, and we fhall find afterwards in the Fable, that the Actions of Perfens againft the Sea Monfter or the Flood are compared to thofe of Fupiter's Eagle.

> Cumq; Juper Libycas Victor penderet arenas Gorgonei capitis, gutte cacidere cruenta, Quas bumus acceptas varios animavit in angues.
> And while the Victor hover'd in the Air, The dropsthat fell from Gorgon's Bloody Hair, By Earth received, were turn'd to various Snakes.

Thefe are the effects of Heat in thofe fandy, hot, burning Countries, and I conceive this alludes to the Snake-Stones, or Thunder-bolt-ftones, as well as the living Serpents; for the vertue of the Gorgon's Head, which is Subterraneous Eructations or Damps, was the petrifying Quality converting all things to Stone.

A. Dijcourre of Earthquakes.

> Inde per immenfum vent is difcordibus at̃us, Nunc buc, nunc illuc, exemplo Nubis aquofe
> Fextur, ó ex alto, feductas ixthere longe
> Defpectat Terrat, totumq; fupervolat Orbein:
> Ter gelidos Arctos, ter Cancri brachiavidit,
> Sepe fub Ocicafus, fape eft fublatus in Ortus.
> Thence carry'd by di cordant Winds he's burl'd,
> As watery Clouds through the expanded World;
> Now here, now there, on the far diftant Plains
> He cafts aglance, then Heav'nly Arches gains;
> Thrice the cold Bear, thrice the hot Crab his Eyes
> Survey, as oft to IV eft or Eaft he flies.

This I conceive very properly apply'd to Lightning, which is now here, now there, all over the World.

> Tamq; cadente die veritus fe credere Nocti,
> Confitit Hefperio, regnis Atlantis in Orbe
> Exiguaneq; petit requiem, dum Lucifer ignes
> Evocet Aurora, Curfufq; Aurora diurnos.
> And now not trufting to approaching Night, Doth on th' Hefperian Realms of Atlas Light,
> And craves fome Reff, 'till Lucifer difplays
> Auroras blufb, and abe Apollo's Rays.

This defcribes the fettling of this fiery Vapour about the Weftermoft parts of Africi; where

Hominum cunct is ingenti corpore praftans
Japitionides Atlas fuit': Vltima Téllus
Rege fub hoc \& Pontus erat, qui folis anhelis
Equora fubdit equis, \& feffos excipit axes.
Gigantick Atlas Empire here poffeft.
O're Lands extended to the fartheft Weft;
Where Titans paniting fteeds bis Chariot fleep,
And bath their fiery Fet-locks in the Deep.
It was a Country that lay fartheft Weftward where the Sun feemed to fet. in the Sea.

Mille greges illi, totidemq; armesta per herbas
Errabant-......-
A thoufand Flocks, a thoufand Herd's there $G r a z^{2} d$
On verdant plains.-.....
It was a delicate Country for Pafture and Cattle.

> Et Humum vicinia nulla premebat.
> No Neigbbouring Lands offended this.

It was an Illand not joined to any Continent.

A Difcourfe of Earthquakes.

Arborea frondes auro Radiante nitentes
 Ex auro Ramos, ex auro poma ferebant.
 The dazling Trees thereglitter in the Air, Which golden. Fruit and gilded. Branches bear.

Its Rivers and Rivulets all abounded with Gold oi golden Sand.
Rivers are very properly Mythologifed by Trees, the greater Body of Water refembling the Trunk, the leffer Rivers the Branches, the Rivulets, Fountains, Springs and Sources, the Twigs and Leaves; and the Hills and Mountains the Fruit: For as I have already, upon another occafion, hinted, Trees receive the greateft part of the Sap from the Air and little from the Earth : And they diftribute moie moifture to the Earth from their Bodies by their defcending Sap than they draw from it by their Veffels, and as the Sea Returns the Water it receives out of the River's into the Air, whence it circulates again into the Fountains and Rivulets by condenfation and Rain, 1 fö doth the procers of Nature alfo operate in the manner of returning the mo fture into the Leaves, as I fhall upon another occafionmore particillatly cex plain, having mentioned it only upon this occafion to fhew how properily the Rivers are Mytholcgifed by the Trees, Branches, Leaves and Fruit. 1 , ind
The next Verfes expreffing Perfeus's Addreffes to Atlas is Poetical, as alro of Atlas's Refentiment, upon remembrance of an old Prophefy that Parnaffian Themis; or all knowing Predeftination had fore-fhewn, viz:. That time fhould come when an Off-fpring of Celèttial Fire Thould deftroy that golden Comntry; for fear of which it is faid,

$$
\begin{aligned}
& \text { Id Mentriens folidis } P \text { omaria clauferat Atlas } \\
& \text { Menibus, of vaffo dedit fervanda Draboni, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { This fearing, he bis Orchard bad inclos'd } \\
& \text { With folid Cliffs : A Dragon too oppos'd } \\
& \text { All Entrance-b---, }
\end{aligned}
$$

This HefperianGarden was incircled with high Gliffs and encompafed round by the Sea.

Huic quog; viade procul, ne longe glonia rerum.
Quas mentiris, ait, longe tibi: IGpiter abfot.
$V i m q$; minis addit, manibufq; expellere tenitut
Curitantem, co placidis mijcentem fortia sidctis.

> Begon, faid be, for fear thy Glories prove
> But Counterfeit, and thou no Son of Jove.
> Then adds incivil Violence to Threats; M
> With frength the other feconds his intreatr.

This Ifland had not been troubled with Thunder, Lightning, Earthquakes, or Eruptions, poetically thus defcribed; and how there came on by degrees, and Barrennefs with Drouth increafed, and how the Inhabitants endeavoured to prevent it by their Labours; but at laft becaufe they ftrove againft the Courfe of Nature, the Poet makes Per.jeus fay,

> Accipe Mupus, ait, Lavaq; a parte Medufes Ipfe retro verfusfquallentia protulit ora.

> Take then, faid be, thy due Revard, to's vielp Shewing Medufa's Head, his own mithdrew.

That is, the fubterraneous Eruption, and therewith the petrifactive quality exerted itfelf, upon that Country, and as a Confequence thereof,

Ouantus erat; Mons'factus erat nam barbai comeque
In Sylvas abeunt, juga funt bumeriq; manufq;
Quod caput ante fuit, fummo eft in monte Cacumen:
Offa Lapisfiunt, tum partes Atlas in omnes
Crevit in immenfum----.

> Atlas to a Mountain, equal to the Man, Was turn'd, where Hair and Beard was, Trees began To grow, bis Shoulders into ridges Jpread, And ivhat was his, is now the Mountains Head: Bones turn to Stones, and vafly all increafe-...

A prodigious Mountain is raifed, and the Hefperian Garden or Country 1oft, this Mountain being the only remains thereof. Now before this Metamorphofis of the Country of Atlas into that Mountain, Perfeus had deAtroyed the Gorgons, and cut off the head of Medufa. Thefe Gorgons were faid to inhabit certain Inands lying near Atlas, they were called the Phoriide, of which there were two which were faid to have but one Eye between them; poffibly a Vulcano.i

> Dold Gelido jub Atlante jacentern Effe locum folida tutum molimine molis, Cujus in introitu, geminas habitaffe forores Phorcidas, unius fortitas Luminis ufum. There lay ar frofain A with Mountains fortify'd, In whofe accefs the Phorcidx did lye Two Sifters, both of them had but one Eye.

This he takes with him; that is, I fuppofe there began the Earthquake or the Subterraneous Vapour kindled, and thence extended to the fartheft extreamity of thofe Inands, poffibly the Atlantick.

> Id fe folerti, fürtim dum traditur, aftu Suppofita cepiffemanu; perq; abdita longe, Deviaq; \& Sylvis horrentia fana fragofis Gorgoneas tetigiffe domos, pafimq;per agros Perq; vias vidijfe hominum fimulacra ferarumq; In (िlicem ex ipfis, vifa converfa medufa.
> How cunningly thereon his Hands he laid, As they from one añother it convey'd;
> Then thro' blind Waft and rocky Forrefts came
> To Gorgon's Houfe, the way unto the fame
> Befet with forms of Men and Beafts, alone
> By Seeing of Medufa, turn'd to fone.

By which it feems to have extended a great way and to have been very Rocky, Cragged and Uninhabitable, where Men and other things had been before that time petrificd. Being there arrived, he finds Medufa afleep; that is, I fuppofe, the Vulcano not burning : But by this new Eruption the Head of Medu $\int a$ is taken off, and the Vapour or Eructation rifeth into the Air, partly in Flames and Lightning and fiery Vapours, which is Perfeus; partly in watery Vapours and Wind, which is,'

Dumq; gravis fomnus Colubros ipfamq; tenebat Eripuiffe Caput collo; pennifq; fugacem Pegafon \& fratrem, matris de fanguine natos.

> And how her Head he from her Shoulders took,
> E're heavy fleep her Snakes and her for fook;
> Then told of Pega fus, and of his Brother,
> Sprung from the Blood of their new Jlaughter'd Mother.

This may reprefent the mounting of fiery Eruptions, which rife as fwift as Pegafus, and fhine like his Brother, who was fuppofed to brandifh a golden flaming Sword. But I muft haften, Perfeus having performed thofe Exploits of finking the Atlankick, and raifing Mount Atlas.
> ------Pennis ligat ille refumptis, Parte ab utraq; pedes, teloq; accingitur unco, Et liquidum motis talaribus cera findit:
> Gentibus innumeris circumq; infraq; relictis
> Athiopum propulos Cephaaq; confpicit arva.

His Wings at's Feet, bis Faulcion at his Side He fprung in th' Air: Below, on either Hand, Innumerable Nations left, the Land Of 再thiope, and the Cephean Fields furvey'd.

The fiery Vapours flies over feveral Countries till it comes to the Country of the Atthiopians, and the Plains of Cepheus or the Drones. Here he finds Andromeda chained to a Rock expecting to be devoured by a Sea Monfter. Andromeda's Name and Defcription agrees with that of an half drowned and The Fable of Rocky Country, by turns overflowed with the Sea at High Water and cover- Andromeda ed with Sand (Fufferat Ammon) and feems to be that part of Africa where Fupiter Ammon's Temple was built; which fince raifed, is all Sandy, and therefore is called Ammon or Sandy. Perfeus, its faid would have thought her Marble, but that he faw the waving of her Hair by the Wind, which may fignifie that fome Reeds, or fúch Water-plants, might grow among the Sand and Rocks fometimes overflowed by the Sea. Here (to make it hort) Perfeus, or the fiery Eruption, raifeth the frontier Parts to the Sea, and repelleth the Tide of Flood from overflowing and drowning the Land. And fo Andromed abecomes 'Avadè μ, m, raifed and freed from the Inundation; this is fo very plainly fpecified in the Defcription, that bating a little poetical Expreffion about Love; which Ovid had well ftudied, having a guft for it. It feems plainly to defign the Hiftory of fuch a Metamorphofis, and very probably of that very Country I before-mentioned; and were it worth while, I am apt to believe, that the Hiftories defigned by all the other Fables may be difcovered; for that they have all fuch Hiftories couched under them, I do no ways doubt; not only for the Arguments I at firft mentioned, but for feveral others. Moreover I do conceive, that there is a Chronologoe of the preceding times to be difcovered out of them, and that they are written, not fortuitoufly, but with great Care, and according to the due Order in which they happened. And tho' poffibly this do not at firft view fo plainly appear, nor can be fo undeniably demonftrated without a more perfect knowledge of the Hieroglyphick and MythologickCharacters, yet I am almoft certain that fome fuch Chronogick Account is couched in the Fable, and may, if well examined, be detected; and to conclude, I am apt to believe, that in this Mythology is contained the greateft part of the etigyptian and Grecian Hiftory of the preceding Ages of the World; the truth of which I do not undertake to defend; we muft take that as we do all other Hiftories, upon truft till we can have better

Proof either for or againft them. And if there be fo admitted, this Book will furnifh a fufficient number of fuch Cataftrophics that have happened in former Ages to make the Hypothefis, I have indeavoured to explain, to feem at leaft probable, if not neceflary, and neither fo abfurd or impofible as fome have afferted.

The Fable of the Rape of Proferpina.

Read March 8, $169^{\frac{2}{2}}$. I have fome Years fince propounded in this place my Conjectures for the explication of the Mythology delivered by Ovid in his Metamorphofis, namely, That he thereby defigned to comprife a Hiftory of the changes which had happened to the World from the beginning thereof to the times wherein he lived, which he fignifies 开nigmatically by the firft four Verfes. The method of which is by perfonating Things and Powers: The one by Mortals, namely, material Things, the other by Immortals, riamely, Powers, or Energies and comprifing therein a thrce fold Cabala or Tradition, namely, A Pbyjical, comprehending the Caufes, Effects and Reafons; an Hiftorical, comprehending the Times, Ages, Perfons and Places, And a Moral, to make them Inftructive and Ufeful for the Regiment, and. moralifing the more vulgar part of Mankind. In which he has indeavoured to follow the method of the Greek Poets, who, as I have formeriy exemplified in Homer, Hefiod, and the reft of the Mythologers, did profecute the fame defign. By the interpretation of which Mythology, if-we could difcover and find out the true Key, I conccive it would open and make manifeft much of the Hiftory of the Cataftrophies that have happened in the World, and of the places and Ages wherein they were produced.

That which makes me repeat this Notion at this time, is the dreadful Effects of the late Earthquake in Sicily, which put me in mind of what I had here formerly inftanced, on the Story as it is delivered by Ovid in his fifth Book concerning the Rape of Proferpina by Pluto, which I then conceived and am ftill of the fame Opinion (however others were of a contrary) was defigned by the Poet to reprefent fome dreadful Earthquake that had formerly happened in Sicily, not far, nor much differing from the Place and Eficets of this late dreadful Cataftrophy: 'Saye only that we do not yet hear of the fwallowing up, or'the finking down into, or under the Water of any confiderable Country or Town, which 1 conceive is plainly fpecified by the Poet to have been effected by that which he defigns to delineate : For Proferpina or. Abrepta, as the Name fignifies, is plainly defcribed to have been feated in that place of the Illand where the Lake Pergufa was in Ovid's Time, and where it remains, I fuppofe, to this Day: It is defcribed to be the Daughter or Off-fpring of Ceres, that is, a City or Place flourifhing in a much civilifed and well cultivated Country; for that Ceres doth plainly denote, and is fo fignified by the Poet.

Prima Ceres Unco Glebam Dimovit aratro, Prima deditFruges alimentaq; mitia tẹrris; Prima dedit Leges: Cereris funt Omnia Munus.

Ceres with crooked Plough Gleabes firft did turn, And firft taught Men to feed on Fruits and Corn: She firft gave Lams Ceres did all adorn.

ThisPlace orCountry was alfo very pleafant and flourifhing with Fruits, Flowers, Fountains, efpecially Woods, in whichProferpina is faid to be difporting and innocently gathering Flowers, when Pluto fuddainly feifed her and cargied her into the Earth; that is, whatever the place were, whether Town, Village or City before the Rape, it feems to have the fame fate with St. Euphemia mentioned by Kircher in his Mundus Subterraneus; that is, to have been by an Earthquake fwallowed up into the Earth, and to have funk'fo low, as to 'have left a Bafon for a Lake for after Ages to this Day. Now, that this is plainly the Phyfical meaning of the Poet will appear plain ifthe whole Story be taken in. Firft, The Poet tells you the place to be Trimacria or Sicily. This Country, tho' moft Delicious, Pleafant, rich in Soil, well Cultivated and Tilled, and

A Dijcourje of Earthquakes.

very much Civilifed and Governed by good Laws, as is figured by Ceres, as I have mentioned, was yet feated on a Sulphureous, and Fiery, Cavernous Foundation, fubject to Heavings, Tremblings and Earthquakes, expreffed by the Giant Typheus, who had endeavour'd to invade Heaven, that is, to belch up Flames? and throw Stones and Rocks againttit, but at length came to be covered with this Illand. Verfe 345 , to 356 . Hereupon Dis or Pluto, that is, the Spirit of the Earth is fained by the Poet to be roufed up to fee leaft the Vault of the Earth over his place of Refidence; fhould be broken by the fury of the Giant Typhaus; that is, by the working of the Sulphureous Vapours and Fulminations, Ver. $356--$-Et Rex pavet ipfe filentum, Ver. 362. That is, the Earth rofe and, fwelled, and there were Eruptions of Smoke fignified by the Black Horfes his Chariot was drawn by, and there was a general Earthquake over all the Ifland, but the great Eruption was at the place where the Lake Pargufa is. Here the Poet fains that Pluto, or the Subterraneous Powers were in Love with the Beauty of this Goodly Place perfonated by Proferpina. Venus, or Youthful Beauty or Thoughts doth excite Cupid or Love and Defire in this Terreftrial or Subterraneal Power to take away this pleafant Place, Proferpina from its curious Situation, and fwallow it up, or hurry it away on a fudden into his own, or the Subterraneous Regions. Ver. 363, to 385. All Poetical to exprefs how Dis was thus enamored of Proferpina from 385 , to 395 . The pleafant Situation of Proferpina is defcribed. from 395, to 408. The Cataftophy is defcribed, which manifefts, that th is terrible Earthquake extended from the place where the Lake Pergufa now is to the Place where the City of Syracufe ftood, now called Saragofa, where the River Anapis runsinto the Sea: By this the Lake Anapis was broken open and made a Bay to the Sea, and no. remainder of Cyane, but fome finall Brooks that run into that Bay. This I take to be the meaning of the Poet from 409 , to the end of 437. The remaining part of the Story feems to be a defcription of the Devaftations made in the Country, being made unfit for Tillage, and therefore Ceres is faid to feek her Daughter Proferpina all over the World, the remaining Husbandman feeking for other places fit for Tillage, but returns to Sicily, at Verfe 463.
It would be too long to interpret all which I think I could eafily do, and thew plainly the meaning of the Phyfical Cabala. But I defigned to mention this only at prefent as an example pertinent to this prefent time, when we yet have the noife of the Sicilian Earthquake, and fome others, yet founding in our Ears: As to the Moral Cabala many ha ve handledit; and for the Hiftorical, I. Thall take fome other time to Difcourfe of it, and to give my Cons jectures.

A Lecture read Feb. 15, $168_{\frac{2}{2}}^{2}$. confirming what the Author bad before faid as. to Earthquakes and their Effects.

I need not repeat what I have formerly faid as to the feveral curioufly figured Stones found in many parts, nay, I may fay, all parts of the Earth, that they are really the feveral Bodies they reprefent, or the mouldings of them Petrified, and not, as fome have imagined, a Lufos Natura forting her felf in the need lefs formation of ufelefs Beings.

I fhall only add fome Confirmations of the Conclufions I then deduced from an Hypothe is, which I took the liberty to propofe. And Firft,

As to the SphæriodicalF igure of the Earth, and thence of the Decreafe of Gravity towards the \#quator inftead of the Increafe, as moft of the followers of Des Cartes, Mr. Hobbs, and divers others of the Modern Naturalifts affert; tho' it were at firft much oppofed, yet I find that it is now by divers not thought fo improbable but that it may be fuppofed; and tho' I find the confequent Suppofition as yet oppofed, yet I queftion not but in time to make that appear to be neceflary alfo; but every thing mult have its time. As to that alfo which I have Publifhed, how unlikely foever it may appear, Ihope

A Dijcourse of Earthquakes.

allo to be able to produce very good Arguments for it, and that it was not an Hypothefis propojed at random, as fome may imagine.

But becaufe thefe in themfelves, tho' fully proved, were not fufficient to. folve all the Phenomena of Nature as to the Difjofition of thofe figured Bodies, whether Shells or other Subftances; therefore in the fourth place I laid down as a Suppofition, that the fuperficial Parts of the Earth had been very much altered by Subterraneous Eruptions, whereby divers Parts that had before fuch Eruptions or Earthquakes been under the Sea, had been raifed out of it and been made Iflands; and that other parts that had been dry Land had been funk into and covered by the Sea; that Vallies had been turned to Cliffs, and Hills to Vallies or Lakes, and the like.

This was likewife oppofed and thought very improbable, becaufe for fo long time as our Hiftory will reach backwards, it was affirmed there had happened no fuch change ; and therefore, becaufe it. was fuppofed no fuch Hiftory could be produced, this alfo was to be rejected, and we muft again have

Confirmationof the Atlantis. recourfe to the Lufus Natura as the only expedient to give fatisfaction; only fome kind of Súbterrancous Paffages were thought of, by which Oyfters and other Fifh might be conveyed to the middle of the Alps, going along with the Stream of the Water from the Sea to fupply the Springs and Fountains at the top of the Hills.
I confefs it feemed to me a little hard, becaufe I could not give the Pedigree of the Fifh, therefore I hould not be allowed to believe it a Fifh, when I faw all the fenfible marks of a Fifh; and that, becaufe I could not tell who it was, or upon what occafion that caufed the Stones on Salisbury Plain to be difperfed in that irregular Regularity, that therefore I muft allow them to be a Lufus Natura, or placed there by Merlin or, fome fuch unknown way, and not by the Hands, Labour or Workmanfhip of fome fuch Men as are now living. Neverthelefs that I might, as far as I was able, fatisfy thefe Objections alfo, I produced the Hiftory of Plato as brought out of eEgypt by Solon, concerning the Ifland of the Atlantis. But this tho' related by Plato, with all the Circumftances, as if he believed it a true Hiftory, was yet fuppofed to beonly a Fiftion of Plato to lay the Scene of his Common-wealth, or at beft a Fable of the Egyptian Prieft to magnify the knowledge of the efogptians as to the Hiftory of preceding Ages. I confefs the account of the nine thoufand Years is Argument enough to make the whole Hiftory to be fufpected as a Fiction; but yet till we are certain what pace of Time is there fignified by a Year it will be a little hard to reject the whole for that Circumftance, fince moft of the other Circumftances of it are more probable.

And that they were thought fo by divers of the Ancients, is plain fromfeveral Teftimonies that might be alledged; I fhall only mention what Strabo fays of it in his fecond Book, whereexamining whether Eratofthenes had duly
 yйv $\pi 0 \tau \grave{\varepsilon}$, \&ci. Eratoftheres (fays he) has done wellin expounding the manner how the Surface of the Earth may be changed, by relating how the fame may fometimes be raifed, and fometimes be funk by Earthquakes, and various otherways changed, as wealfo have in many particularsEnumerated, by which alfo he hath properly fhown how the Hiftory, which Plato relates concerning the Ifland of Atlantis, as it was brought out of etgypt from the Priefts there, by Solon, may be: well believed not to be a Fiction, but a true Hiftory. From which Paffage it is plain, that both Strabo and Eratofthenes did look upon this Hiftory of Plato, or rather of the EEgyptians, as very probable; Pliny alfo was of the like Opinion, as appears, notonly by his mentioning the Hiftory of Plato, but by the feveral other Mutations, which he relates to have been made by the means of Earthquakes.

But becaufe the Scene of this Tragedy of Atlantis was placed very far backwards in times remote, and that we have no other Hiftory of this change but what Plato is pleafed to relate, I did therefore indeavour to produce fome Hiftory concerning the changes that had happened fince that time, namely, within the reach of the Greck Hiftories, in the fameplace where this Atlant is

A Dijcourre of Earthquakes.

was faid to be funk down into the Sea. For this I produced the Hiftory of the Periplus of Hanno, the Carthaginian, as it is fet forth by Derkelius; from which I collected that at the time when this Expedition was made, the place where the Atlantis was faid to be funk, was found to be partly Sea and partIy Iflands, and that the fame extended, as I conceive, as far to the Weftwards almoft as the Madera Illand, about which place was then found a fmall Iland called Cerne; from which Coalting Southwards for twelve Days, they found the Land all on Fire, and one prodigious high Mountain flaming out at the top, called Theon Ochema, or the Chariot of the Gods; which, by all Circumptances, I conceived to be the fame with the now Pike of Teneriff. Suppofing which Relation true, I deduced thence that there muft needs have happened great changes in thofe Parts between the time of this Expedition and the prefent ; for that all thofe places which feem to be defribed by that Hiftory are not now to be found in the places where they are by that Relation placed. But this Relation was alfo looked upon as fabulous, becaufe I produced no other Authority for it befides the Relation itfelf and the Teftimony of Pliny. But thofe who are better read in Ancient Hiftory, may find that it was by moft of the Ancients fuppofed real; and all agree that the Phenicians, of whom the Carthaginians were a Colony, were very skillful in Aftronomy, Na vigation, Arithmetick aud Traffick, and that they were the firf introducers of thefe among the Greeks, together with the Knowledge and Ufe of Letters. And from thofe Particulars I noted in the faid Relation, it feems to me very evident, that they underfood what Longitude and Latitude was, and knew how to keep account of thelr Courfe and Diftance; and tho' the Interpretation thereof which I produced, be differing from all the other I have yet known : Some fuppofing it to relate wholly to the Coaft of Africa as it is Thaped, at prefent, and others in other Situations, yet whoever (taking this Notion of their skill in Aftronomy and Navigation along with them) Ihall ftrictly examine the Relation itfelf, he will, I conceive, be perfuaded to be fomewhat of my Mind. Strabo therefore fays of them. The Sidonians were reported to be good Actifts in various things, as it is alfo manifeft by their Aitions; as alfo, good PbiloJophers, Afronomers and Arithmeticians, and fuch as well knem the fecret of Numbers and of Sailing in the Night alfo. From, which confideration I conceive, that 犯 $\varepsilon^{\prime} u s v$ in the Relation can fignify nothing elfe but the fame Parallel of Latitude, or the fame ftraight Line with that from Carthage to the Month of the Streights.

I was not then able to quote the place in Ariftotle which relates to this difcovery of the Carthaginians, tho' I was well aflured I had met with fuch a Relation; 'Tis in his Book, ©e ìav

 ${ }^{6}$ Hercules, they fay, that, by the Cartbaginians, there has been difcovered an 'Ifland deferted, but abounding with variety of Woods, and rich Rivers' fit - for Navigation, abounding alfo with variety of Fruits, diftant from the ${ }^{6}$ Continent feveral Days Sail. Pomponius Mela alfo mentions the extream Atlantick to be inhabited by a wild fort of Pcople, which he calls e Egypanes; Blemmee and Gamphafentes, anda kind of Satyrs. And in his Third Book and
 vehiculum Deorum perpetuis ignibus flagrat, \&c. Diodoriss Sicuius alfo mentions
 That is, 'Againft Libya there is fituated an Illand in the Ocean, confiderable 'for Magnitude, feveral Days Sail diftant towards the Weft, orc. I could cite feveral other Authors who mention fome fuch Place, which may have relation to the difcoveries of the Carthaginians in Hanio's Expedition; all which do plainly make it appear, that his difcoveries were towards the Weft, and not towards the South; and therefore it feems very probable, that at that time there were Illands both greater and fmaller to the Weftwards of the Streights Mouth, which are not now to be found, and confequently they mult have fuffered a Submerfion by fome intervening Cataftrophies, which was the thing Iindeavoured to deduce from it. Nor will it feem fo unlike!y if we will
but confider the alterations by Eruptions out of the Sea near the Iflands of the Canarys, and in one of the Iflands alfo within thefe few Years; the former was the Eruption out of the Sea, in the Year 1639, whith Athanatius Kircher has given a defeription of, and I have received a relation of it by Word of Mouth from two Perfons who were both upon the Tenariff Ifland at the fame time, and had each of them often obferved it tho' at a confiderable diftance: "The latter Eruption happened withina few Years fince in one of the fame Inlands, of which I have Printed the Relation in one of my Collections.

And thus, I hope, I have given fome ground to believe that the Antient Hiftorians knew and gave fome Credit alfo to both thefe Relations, namely, that of Solon and that of Hamno, which, by that Paflage of Arifotle, appears to have been made either before or in his time.

I came in the next place to fhew that the Metamorphofis of Ovid contained many Hiftories of great Chañges and Cataftrophies that had happened long before his time to the parts of the Earth; which, tho' rapped up in MythoIogy and Mafcarade, yet thofe difguifes being removed, it will not, I conceive, be very difficult to make appear what the true Hiftories are, which now pafs Incognito. To this purpofe I did obferve that Ovid has in fome part or other of his Fable, given Marks or Characterifticks by which it may be found what the Hiftory is which he doth there Mythologize; this he doth very often in that part which ferves as a Link to join the Story into a continued Chain or in the Etymology of the Names, tho' oftentimes alfo in the procefs of the Poem. And 'tis ufual with him all along to have and mix a treble Defign in each of them, namely, an Hiftorical, a Phyfical, and a Moral; and this he hath done with great Judgment and Subtilty of Invention, and upon feveral occaions, he makes Excurfions into this or that Defign, and profecuting it for a time, as if he had no refpect to the other two; but yet, if well examined, it will be found, I conceive, in moft that he influenceth, even there alfo, that defign by the other two. If I had leifure to profecute this Speculation, I conceive I could trace mof of thefe his Defigns, but it would be toolong a Work; however, I hope in a fhort time to be able to give feveral Inftances and Examples out of thore I have more attentively ex amined, which may fuffice to fhew that there is a probability in this Conjecture how differing foever it be from other Commentators.
But thofe perhaps may not be thought fufficient for the prefent Difpute to fatisfy fuch as demand pofitive and direct Hiftories, and undoubted Records. of fuch Changes, as I have fuppofed neceflary to make out the Hypothefis of the figured Bodies, which are found to be real Shells, cic. and to have been by them difpofed and fituated in the places where they are now found : For fuch therefore I fhall prepare a Cloud of Witnefles, which, unlefs they will deny all Hiftory, will ftand the Proof.

I confers I cannot fee any Circumftance in the Story of Hanno that fhould render it furpected, fince'tis granted by all, that the Phonicians, of whom the Garthaginians were a Colony, were fo early eminent in Arts, efpecially in that of Navigation and Traffick; fo that we find. Solor made ufe of them; and that Sanchoniathon Beritius before, the time of the Trojan War, did write the Theology of the Phenicians' (as Porphyyius relates) in the Phenician Language: And that the Philofophy of the Greeks was derived principally from them; as alfo Aftronomy, and even the knowledgeand ufe of Letters. For Thales was a Phenician, and Pherecides who was the Mafter of Pythacoras; and the founder of the Italick Phylofophy, and co-equal with Thales learmed it out of the occult Books of the Phanicians. And from Pythagoras his Philofophy fprang and flowed both the Platonick Philofophys and alfo the Philofophy of his Scholar Arifotle, tho' fomewhat altered by the Pipes it ran through. So that tho' we have but very little of the Hiftory of thofe Times, yet by thofe few Fragments difperfed here and there, ive may be fufficiently, fatisfied they were able, and actually did make as great Voyages and Difcoveries, as that of Hanno; of which : there are divers Relations mentioned by Herodotus in his fecond Book.

But tho' (notwithftanding what I have alledged) all thefe Hiftories fhall be Tho' Hiftory looked upon as Fictions and Romantick without any real Ground, yet what fhould fail ExI have indeavoured to fhew by Experiment and Infpection, and the deducti- periments are ons made therefrom, will not be found deftitute of good Authority, proved from very eminent Authors both Antient and Modern, to make out the Truth and Certainty thereof. A's firft to prove; that thofe Bodies were found at the tops of Mountains, and that they were notwithftanding afferted to be Shells ; we have the Teftimony of Herodotus in his Euterpe or fecond Book, and twelveth Section, where fpeaking of the Country of \mathcal{A} Egypt, as having been moftly raifed by the Mud and Sand of the Nile, he fays, the whole Country was of fuch a Soil, only the Mountain above Memphis was Sandy, and had Conchilia or Fifhes Shells upon it, and abounded with Salt, fo that it corrupted the Pyramids. Which Paffage is very pertinent to my prefent purpofe, and is alfo fully confirmed by Ariftotle: For it feems all the lower \mathcal{E} gypt was a Plain, which had rofe by the fettlement of Mud of the Nile, which he fays, in the fpace of nine hundred Years, had been raifed eight Cubits, or twelve Foot; for that eight Foot rife of the Nile, in the time of Myris, overflowed all efigypt, and in his time there was neceffary fixteen Cubits, or twenty four Foot fwelling to overflow it. So that he feems to underftand, that all the lower efgypt had been at firft Sea, and that the Nile, by degrees, had filled it up to the height of the Plain, and fo had coveredall the bottom or Sand of the Sea, only theMountainous part above Memphis was above that level, and fo that kept its old bottom or covering of Sand and Shells. This feems to be the meaning of what he argues for; but yet I muft needs fay; that does not folve all the Difficulty ; for how comes this Mountain to be fo much higher than the Plain, as it was then raifed by the Nile, and thence that Plain to be much above the Sea that was thereby excluded, unlefs we do fuppofe alfo that fome Subterraneous Power did raife that Mountain above the level it was of when covered by the Sea, or that the Sea had fometimes been fo high as to cover that Mountain, which, tho' Herodotus takes no notice of, yē Ariftotle does fully folve it ; but be it which way foever, 'tis Teftimony enough of the matter of Fact, that Herodotus himfelf calleth them uoy xuni α
\qquad . --
\qquad
\qquad
\qquad
\qquad

\qquad

[^11]\qquad

 The Pyramids
are founded on and obferved the exudation of the Salt. But this Place is alfo obfervable for another Paffage, and that is to confirm Conjectures I formerly acquainted the Society with, concerning the Pyramids of exgypt; namely, that I conceived them to be founded on and Ajbler'd, as it weere about a Core of Rock, and by this Difcourfe it is plain, that the place where they ftand is fo qualified; for by this Defcription 'tis plain, that it is defrribed as Rocky, and covered with Sea Sand ; for that Herodotus takes notice it had both Sea-fhells, and Salt mixed with it; but this here only by the bye. Before 1 leave Herodotus his Teftimony, I cannot but take notice of another Paffage in the fame Book, in the 74th. and 75th Paragraphs; the tranflate runs thus, Circa Thebas funt Siat cri Serpentes Nibil omnino hominibus noxii, puflllo corpore, binis praditi cornibüs e fummo vertice enatis, quos defunctos in Fovis c. Fide fepeliunt, buic enim Dred Sacro's illos effe predicant; thus far is the flory he is told by the etoyptians: Eft antem Arabia Locus, ad Butum urbem fere poftus ad quem Locum ego me contulil quiod audirem volucres effe Serpentes. Eo cum perveni, Offa Serpentum afpexi 0 Spinas multitudine Supra fidem ad Enarrandum quarum acervi erant magni, \oplus bis alii at ${ }^{\circ}$ alii minores ingenti. Numero:. Eft autem bic Locus ubi Spina projecta Facebint busjufcemodi, ex Arctis montibus exporrigitur in vaftam planitiem © Eyyptie Contiouinum. Fertur ex. Arabia Serpentes alatos, ineunte ftatim vere, in e foyptum volare, - -ed eis
ad ingrefum planities oncurrentes ad ingreffum planities occurrentes aves Ibides, non permittere fed ipos interimeré, oob id opus Ibin magno in bonore ab eEgyptiis baberi, Arabes aiunt.

Part of this fory is what he was told, part what he faw; he was told of flying Serpents, which the Bird, Ibis met over that Valley, and fo devoured them leaving only the Back-bone. I have heard many ftories told of our Snake-ftones or Cornuia Ammonis, and I have feen fome to confirm the fory with a very formal Head carved on them; I think not long fince here was one Thewed in this place; I am apt to think the Spines of the Serpents Herodotus there found in fuch plenty and fuch variety of bigneffes; were no other than thofe Cornua Ammonis, and thence, I conceive, proceeded the fuperfitious

Cuftom

Cuftom when they found any of thefe Stones or spinx they carried and buried them in the Temple of Gupiter Ammon, and it feems to me a farther confirmation of what 1 formerly hinted concerning the Stone adorned with Jewels, and carried in proceffions by the Priefts of that Temple, mentioned by Pliny and feveral others. But to proceed, to this Teftimony and Opinion of Hercdotus, I fhall add that of Pythagoras, as related by Ovid in his isth Book of the Metamorphofis, ver. 262, and fo onwards. Vidi ego quod fuerat quondans Solidifima tellus, effe fretum. Vidi factas ex equore terras: Et procul a pelago conchas Facuere Marina. Et vetus inventa eft in montibus anchora fummis. From which Teftumonies 'tis plain that this Phænomenon of Shells was taken notice of by the Antient Hiftorians and Philofophers: And I am apt to think that this might, in fome meafure, fpread among them, the Notion of general Deluges that in preceding Ages had happened, as Pytbagoras feems to hint in this place, by fuppofing them to happen after a certain long Revolution of time; and that Thales, and many others, fuppofed that the Principle, from which all things fprung, was Water: And that the Paflage in the Fragment of Sanchoniathon, where he fpeaks of the firft Original of all things, fays, That in the Ph.snician Language it was called $\mu \grave{\omega} \tau$, which poffibly may be much of the fignification of in the Hebrew, which fignifies Motion; that is, Fluidi-

 yéveorsö $\lambda \omega \%$. Which fome will have to be Mud, others the Corruptions of watery mixtures (as if $\mu \grave{\omega}$ т were derived from $\boldsymbol{T l} 10$, Mors Death or Corruption) from which fprung the Seeds of all living Creatures, and the Generation of all things. That the efgyptians threw the Hiftory of the Flood fo far backwards, and make it fo differing from the Chronology of the Bible, 1 take it to be for no other Caufe but to make the World believe they were preceding to all others in Antiquity of Hiftory and Chronology: To which purpofe Herodotus tells a pleafant Relation of Pfammiticus, that the EEgyptians before his time had vaunted themfelves to be the firft People upon the Face of the Earth, but he having a mind to be informed of this by Experiment, caufed two Children to be bred up in a Defert Place by a Shepherd, fo that they fhould not hear any Language at all fpoken, to the end to fee what Language they would naturally fpeak of themfelves; from hence he fuppofed they would fpeak the firft and moft Natural Language. This having been done, and the Children grown two Years old, the Shepherd opening the Door of the place where they were fo kept and fed with Milk, they both reached out their Hands to him crying Beccos, which the Shepherd taking notice of acquainted P fammiticus with, who inquiring what that word might fignify in any Language, was informed that Beccos fignified Bread in the Pbrygian Language; from which time Herodotus fays, the exoyptians lof their feniority, and granted the Phrygians to be the firft and themfelves the fecond People for Antiquity. So that tho' their account of Years.may be hence fuppofed to be uncertain, yet their Learning and their lafting Monuments of their former greatnefs, namely, the Pyramids, Obelisks, Coloff, Labyrinths, and the like, fhewed them to have been long before Herodotus his time very confiderable for Arts and Literature. And that they had fome Records of a preceding. Flood, I have before mentioned, whether the fame with that of Noah, or fome more particular Flood, which thofe of Deucalion and Ogyoes feem to have been, Ileave to the learned Antiquaries to determine. I could produce feveral other Teftimonies to fhew they had the notion of a Deluge.
But it feems to me very improbable, that thefe Shells fhould have been the
of Noah's Flood. effect of Noab's Flood by reafon of its fhort duration; which was not long enough of continuance to produce and perfect thofe Creatures in fo fhort a fpace to the bignefs and perfection they feem to have had. It mult therefore have been either fome particular Eloods of a longer duration; or elfe the places where they are found, mut have been fome times on other the bottom of the Sea, and afterwards raifed by Subterrancous'Motions, Swellings, or Eruptions: Which, whither thofe juft immediately preceded the end of the general Deluge in the time of Noah, and that That part which before the Flood was Land, did fink, and became covered by the Sea, and thofe
parts which were before under the Sea, did, by degrees, towards the determination of that Cataftrophy, rife and fwell up into Land, Hills and Mountains, Ileave to the Learned to determine. Certain it is, that there were fome very great changes of the fuperficial Parts of the Earth at that time; fince it is faid, that all the Fountains of the Deep, or Abyfle, were broken

 of Water to caufe this Flood, the one by the opening of the Stereoma or Fir-

 Sea, and the parts of the Earth that were uncovered thereby he called dry
 Moon, Fic. and has always the Epithet of rẽ requz joined with it. Ovid likewife who feems to allude in fome meafure to this Hiftory of the Creation delivered by Mofes in the firtt Chapter of Genefis, fays, Circumfluns bumor ultima poffedit folidumq; coercuit orbem. I think, were it proper to the prefent Subject, I could give a very plaufible account concerning the manner of that Deluge, as it is expreffed by M_{0} ofes; tho' it differ from all that I have yet met with, yet I can prove it warranted both by the Text and by genuine Phyfical Principles; but it would be too long a digreffion for the prefent Subject $_{2}$ and I fhall fhortly have a more proper opportunity to demonftrate the inner Parts and Conftitution of this Globe, my prefent Bulinels being to explicate the Phænomena of the outward and fuperficial Parts, and to prove that the Bodies, which I have afferted to be Shells, have been fo reputed by the Antient as well as the Modern Hiftorians: Next to fhew that they are, or have been, found in moft Parts of the World. And if thofe two be proved, then will neceffarily follow that there muft have been fome time or other fuch Cataftrophies, Metamorphofes, or Mutations as mult haue caufed thofe parts, which were once the bottom of the Sea, to be now, or at the time when they were fo obferved, to be dry Land.

That they were fo efteemed by divers of the Antients I have in part fhewn and could inlarge upon that Head, but that I would likewife fhew that they have been fo efteemed by the moft eminent of our Modern Naturalifts, and for this I could produce the Teftimonies of Georgius Agricola, Cardan, Gefner, Aldrovandus, Ferranti Imperatus, Wormius, Calceolarius, Baubinus, Belonius, Fracafforius, Cijalpinus, Fabius Columba, Stevinus, and a great many others yet more Modern, befides the Teftimony and Opinion of divers others, who have themfelves declared their Judgment by word of Mouth ; but this would be too great a wafting of Time to prove that which carries in itfelf the true Medium of its Proof and Demonftration, which is by fenfible examination. I fhall therefore only give one Inftance or two for all, and that is, Firft, That of Fabius Columba, who has writ a Treatife on purpofe to evidence this Truth by many Arguments; 'tis at the end of his Treatife De Purpura. Nituntur quidam (fays he) acanis Nature in medium adductis, omní Re/ponfione Seclufa, Linguas Serpentinas aut Glofo-petras; quia non Solum mari, proximis σ_{0} infulis, fed etiam Longe diffit is, copiofe Reperiri traduntur, ab ipfa formatrice natura, fic geniaut ejusdem zeneris Cetaceorum, fed illis fimiles fponte forcharie, Lamia, Malthe Naturam produxiffe eo loci, quod ratione, materiei aptum erat ad formam illantum cipiendam affirmant. Hoc Argumento in dubium Revocare ad formam illam ReLocis illes mare fuerit, Quod probatiflimi antiquiores Philofophi \& Hiftorici af firmarunt. Nos quidem dicimus bujusmodi concretionem non effe lapideam, ex ipfo afpectu, Effigie rei, ac tota fubftantia : Ac neminem cenfemus tam Crafa Minerva Natum, qui ftatim primo intuitu non affrmarit Dentes effe Offeos non lapideos, Sed prater afpectum omnia que Ligncam, offeam, Co Carkeam Naturam babent, Uftione in Carbonem prius abeunt, quan in Calcem, aut Cinerem. Ea vero qua tophace vel Saxea Sunt Natura, non in Carbonem fed in Calcem abire, nifi liquuntur propter vitream ant Metallicam mixtionem. Cum igitur bi dentes ftatim affatitranjeant in Carbonem or topbum adbierentem minime clarum crit offeas effe dentes non Lapilleas. He hath many other Arguments to confirm this Truth,
which would be too long to trouble you with at this time, and I only proceeded fo far that I might give an occafion to have the Experiment now tried in the prefence of this Society, there being feveral of that kind in the Repofitory, and the trial being very eafy will not be long in making, all things being in a readinefs for it: I fhall only add one more Teftimony, which is of Andreas Cifalpinus in his firft Book de Re Metallica and fecond Chapter. In fodinis metallorumn Seu Marmorium (fays he) aliorumq; Saxorum Nunqüam vivents Corpus Reperitur. Et f e enim aliquando in eorum Cafura oftrearum tefte aut catera Conchilia Reperta funt; bac recedente Mari ơ Lapidefcente Solo inibi derelictia in Lapides concreverunt. Ubiq; enim vbi nunc eft arida aliquando affurfe Märe teftatur Arifoteles. Hoc enim modo Cenfere mad is Confonum eft rationi, guam putare vimz animalem, intra Lapides,rudimenta animalium ac plantarum Gionere ut quidam putant. He hath not told where Arifotle hath maintained this Doctrine ; but whofoever fhall examine his Writings, fhall, by many Paffages in them find, that he was fully of this Judgment: And more fully in the fourteenth Chapter of the firft Book of Meteors, where alfo he confirms the fame Sentiments of Herodotus, which I have newly quoted; and concurs likewife with the DoEtrine of the alterations that are caufed by flow degrees of Progrefs, which I have Hypothetically explained by the Oval Figure of the Earth, and the alteration of that fhorter Axis to differing parts of the Earth : But this only by the bye to fhew how much foever that Hypothefis were exploded by a learned Dr., by reafon of the Confequences that would follow from it ; yet Ariftote (though he hath not explained by what means and in what mamer) hath afferted Mutations as great and much after the fame method of Progreffion, as thofe which are alledged to be the extravag ant Confequences of that Hypothefis, fome of which I thall have occalion to mention at another time. So that to conclude for this time I hope I have fhewn good grounds to evince. Firft, That thefe kind of Bodies are either Animal or Vegetable Subftances. Secondly, That the places where thefe are found muft have fometimes been covered with the Sea. Thirdly, That the general Deluge of Noab was not of duration enough to effect it, unlefs the manner of its effecting were after that which I propofed, by changing that part which was before dry Land into Sea, by finking, and that which was Sea inte dry Land, by rifing underneath it. Fourthly, That the univerfality of the Phenomena over the whole Earth feem to argue for this manner. Fifthly, That there have been feveral particular Floods, as that of Deucalion, the Atlontick, \&c.. which being caufed, for the moft part, by Earthquakes, may have been the caufes of divers particular Phenomiena, fuch as the raifing of fome parts from under the Sea, and the finking of others into it, or into Lakes.

The former Lecture was read $F e b$. I 5 th. 1688.
Feb. 29. 1688. I have, in my former Lecture, proved how early and how generally the Phænomena of Shells were taken notice of by the moft antient Hiftorians and Philofophers, and I could have given many other Inftances to confirmit, if it had been thought neceffary. And thence, I conceived, might be continually revived the Traditions and Theories concerning preceding Floods and other Cataftrophies that had happened to the Earth in Ages long preceding. But becaufe, among the Philofophers, I only quoted that place in Plato about the Atlantis, which was thought to be a Fietion (however that fhewed he had fuch a notion) and the Doctrine of Pyphagoras as reported by Ovid, which was thought Poctical (tho' as I conceive all thofe Mythologies have certain Hiftorical and real Truths thereby reprefented) I fhall therefore add one out of Arifotle which I hinted the laft Day out of his firf Book of Metcors. 'The fame parts of the Earth (fays he) are not always dry or ' moift, but they receive a change from the increafe or defect of Rivers; ${ }^{6}$ t therefore parts bounding Sea and Land change often, nor is the fame part ${ }^{\prime}$ ' always Sea or always Land, but is changed in time, and that which was Sea ' 'is Land, and that which was Land is Sea; but this is in a long procefs: 'This arrives from interior changes of the Earth, which from a long Confti${ }^{\text {' }}$ tution grows old, as the Bodies of Plants and Animals, and that not fingly the

A Difcourre of Earthquakes.

'Parts but the whole. It may therefore for a time be moift, and by degrees
' grow dry and old: This may happen both by the decreafing of Rivers and alfo
' of the Sea; but thefe happen not, but in a long time, in comparifon of our
${ }^{6}$ 'Thort Life, which is the caufe they are not noted, the change being fo little
' in the fpace of one Life, and fo feveral Ages pafs before they are finifhed;
' whence the memory of them is loft. (He adds' much more to the fame effect
' to explain his Notion) Exemplifying his Doctrine by efoypt, which (fays
${ }^{\text {' }}$ he) has been all made by Mud of Rivers, and is obferved continually to
${ }^{6}$ grow drier, and the Lakes filling up by degrees have been inhabited, and
' length of time has obliterated the memory of fuch changes; for all the pre-
' Fent Mouths of Nile, except the Canobic, have been cut by Art; for old
' Agypt was that only about Thebes, as Homer teftifies, who lived not long
' after thefe Changes; for he mentions Thebes only as if: Memphis had not yet
' then been, fo he proceeds in explicating, and inftances again in faying, fo
${ }_{i}$ ' marthy places grow better by draining, but dry grow worfe and barren, as
${ }^{\text {' }}$ it has happened to the Country about the Argives, and the Mycerican's, and
'what has happened to thefe parts, the fame may be conceived of the whole.
'So many parts which have been Sea have been added to the Continent; and
' the contrary, thofe that do refpicere ad pauca, afcribe thefe changes to the
'Heavens, but they are miftaken ; but they are to be afcribed to Caufes that
' happen after a long procefs' of time, as that of Deucalion's Flood, which' hap-
'pened only to Greece about that part which is called old Hellds, which is
'that about the prefent Dodon and Achelows; this happened from great abun-
' dance of Rains which are generated by the Mountains, which are by de-
'grees changed and fo produce differing effects. He exemplifies lis Döctrine further by eforpt, and the Country where the Oracles of Fupiter Ammion was, faying, "Twas formerly Marfhy, but by degrees dried and grew parched; ' fo not only the prefent moft famous Rivers will come in long procefs of time
'to be dried and changed, but the Sea alfo; and that which was Sea will be - Land, and the Land will be Sea. I have here given the fum of his Doctrine which he doth much inlarge upon to explain it; but to fave time, I have only abftracted the meaning, and given you the Epitomy of it that may eafily enough be more fully explained or read at large in the fourthteenth Chapter of his firft Book of Meteors. By the whole it plainly appears, that Arifotle was of the Opinion that all the dry Land of the Earth had been fometimes covered with the Sea, which he feems to be informed of by the then prefent. Phenomena, as he plaialy expreffes in his defcription of $e \notin g y p t$, and of the Country about the Oracle of Fupiter Ammon; and 'tis not to be doubted but one of thofe Phenomena and poffibly not the leaft confiderable was that of the Seafand and Shells, which I fhewed the laft Day Herodotus had taken notice of. I do therefore humbly conceive (tho' fome poffibly may think there is too much notice taken of fuch a trivial thing as a rotten Shell, yet) that Men do generally too much flight and pafs over without regard thefe Records of Antiquity which Nature have left as Monuments and Hieroglyphick Characters of preceding Tranfactions in the like duration or Tranfactions of the Body of the Earth, which are infinitely more evident and certain tokens than any thing of Antiquity that can be fetched out of Coins or Medals, or any other way yet known, fince the beft of thofe ways may be counterfeited or made by Art and Defign, as may alfo Books, Manufcripts and Infcriptions, as all the Learned are now fufficiently fatisfied, has often been actually practifed; but thofe CharaEters are not to be counterfeited by all the Craft in the World, nor can they be doubted to be, what they appear, by any one that will impartially examine the true appearances of them: And tho it muft be granted, that it is very difficult to read them, and to raife a Chronology out of them, and to fate the intervalls of the Times wherein fuch, or fuch Cataftrophies and Mutations have happened; yet 'tis not impoffible, but that, by the help of thofe joined to other means and affiftances of Information, much may be done even in that part of Information alfo. And tho' poffibly fome may fay, I have turned the World upfide down for the fake of a Shell, yet, as I think, there is no one has reafon for any fuch affertion from any action I have hitherto done; yet if by means of fo flight and trivial Signs and Tokens as thefe are,

412
 A Dijcourfe of Earthquakes.

there can be Difcoveries made and certain Conclufions drawir of infinitely more important Subjects; I hope the attempts of that kind do no ways de-, ferve reproach, fince poffibly 'tis not every one that takes notice of them, nor one of a hundred that does, that will think of a reafon; befides, much greater conclufions have been deduced from lefs evident and more inconfiderable Marks, if we refpect Bulk, Magnitude, or Number, and much more weighty Confequences may, and will in time, be drawn from feemingly more trivial, and much lighter and flighter Indications, yet where the Teftimonies are clear, certain and felf-evident, they are not to be rejected for their bulk, tho' it be fo finall as no Eye or Senfe can reach it unlefs affifted by Engines, as the Sight by a Microfcope, Telefcope, and the like: In how few Letters, Words, or Characters is the Hiftory of the World before Noab's Flood? Is, it therefore not to be believed becaufe we have not as many Volumes of its Hiftory as there are now to be found words? In how little roon will the Hiftory of the Flood be contained if. Homer's Iliads could be boxed in a Nutthell? But to leave every one to the freedom of his own Thoughts, I thall proceed to what I thought was further neceffary to be added to what I hinted the laft Day, which was concerning the Flood of Noab, becaure 1 find the generality of thofe who indeavour to give a folution of thefe Phenomena, are inclined to afcribe them to the effects of that Flood, and becaufe what I then faid was but in brief, and fo poffibly what I. defign might not be fo plainly apprehended, or it may be mifoonftrued, I thought it might be necelfary to explain it a little more fully. I faid then, that I conceived that thofe univerfal Fhenomena of the remainders of the Sea which are found in all parts almoft of

A further explication of Noah's Flood. and the form. 1 tion of the World. the prefent fuperficial Parts of the Earth, could not be caufed by the general Flood of Noah, if the manner of performance and executing thereof were fuch as is for the generality fuppofed and explained by Commentators by reafon that they make the time of the continuance of the prefent fuperficial Parts of the Earth under the Waters to be no longer than the time of the duration of the Flood, as it is recorded in Holy Writ. Suppofing that the prefent Earth and Sea is in the fame places with refpect to the Body of the Earth as they were before the Flood; nor will the Hypothelis or Explication of the ingenious. Author that has lately writ of that Subject, reach it, he fuppofing there was no apparent Sea before the Flood, but that the Sca was all covered by the Earth, if at leaft I do rightly comprehend his intentions; for that fpace of time will not be found of duration long enough to produce de novo fuch multitudes of thofe Creatures, and to fuch Magnitudes and Ages of growth as many of them feem to have had, and it will be difficult to be imagined, that fuch Creatures as do not fwim in the Water, fhould, by the Effects of that Deluge, be taken from their Relidences in the bottom of the Sea and carried to the top of the Mountains, or to places fo far remote from thofe Refidences. So then, if we will afcribe thofe Plimnomena to that Flood, it will be neceffary to confider which way that Cataftrophy might be effected that it might be the occafion of fuch effects. I therefore faid, that unlefs we fuppofed that there were thereby a change wrought of the fuperficialParts of the Globe, and that thofe Parts which before the Flosd were dry Land became Sea, and the Parts which were before covered by the Sea after the faid Deluge, became the dry Land, it feems to me, that thefe appearances cannot be folved by Noah's Flood.
Tho' poffibly this may feem a little improbable upon the firft mentioning of it, yet poffibly alfo upon a little further examination, it may be thought to have fomewhat more of liklyhood than is yet imagined, at leaft I hope the manner will be conceivable.

We have no other means of being informed of the true Hiftory of it, but what is to be found recorded in the facred Writings of Mopes; and therefore thofe are to be confulted, and the true meaning. of them, as far as can be, mult be obtained; for whatever elfe may be fattered here and there in other Authors that feem to relate theicunto in all probability, were fome way or other fetched from his Informations.

I conccive then, that confidering the Defcriptions of Mofes both of the Gencration of the Earth and manner of the Flood, the Hiftory of both may be this explained.

Firf, For the Fabrick of the Earth, the Defcription is but fhort in the firt Chapter of Genefis and $2 d$ Verfe. Et terra erat Solitudo ơ Inanitas, ov CaLiro Super facies abyfi, © Spiritus Deimanabat Saper facies aquarum, ơ dixit Dens fit lux © fuit luti. This doth feem to reprefent the order of the four Gradations, Earth in the middle, Water next, then Spiritus, then Light; the Central Earth is defcribed only" as a Vacuum, and called the Abyfe, and Darkncfs inclofing it; that is, the Water follows next above it, which covered it all round: Above this the Air, and lafty the Fire, 厄ther, or Light in the fourth Verfe, according to the Hebrew, Et divifot Deus inter Lucem ©

 middle of the Light or Æther, and another in the middle of the Darknefs, which covered the Face of the Abyfe or Central Earth; which covering of Darknefs was the Water, which is often called the Abyffe or great Deep;

 there be a Firmament in the middle of the Waters, and let it be a divifion between the Waters and the Waters: And in the feventh Verfe; and God made the Firmament, and God made a feparation of the Waters that were below the Firmament, from the Waters that were above the Firmament. And in
 and God called the Firmament Heaven; I conceive it may be rendered, Alfo God called the Heaven the Firmament, for to thew that there was alfo a Fir-
 reavis. But this I fubmit to Divines.
 and hard Sphxrical Shell, as it were, which incompaffed the Ball of the Earth Central, not clear without the Liquid Water, as the hard Shell of the Egg is without the White, and fo the Egg-fhell doth inclofe the whole White of the Egg, as well as the White inclofeth the Yolk: But it was, as I conceive ${ }_{3}$ meant, that this Firmament or Sphærical hard Shell was placed, as it were, in the midule of all the White, or of the incompaffing Water; the Circumferential half of it being without the Shell, and the Central half of it within the Shell. So then at its firf Creation, the order was firft the Central Earth or great Abyffe; this was in the middle as the Yolk of the Egg round or Spherical; this was inclofed in Darknefs by the Shell of Water underneath the Firmanent, being half the whole Body of the Water which was inclofed perfectly within this Firmament, as the White of the Egg by the Egg-fhell; and by that hard Shell it was perfectly feperated from the other half of the Water which was above the Firmament, and as it were a fecond White of the Egg without the Shell, and was the Water upon the Face of which the Spirit was faid to move; fo that the whole Globe, for that time, was all covered with Water. This Ovid feems to allude to, when he faith, Circumfluius humor ultima poffedit, Solidumg; coercuit orbem; which I took notice of in my Lecture about the Hiftory of the World, as expreffed by that ingenious Mythologick Poet; for he feems to make the Water to be both below the Shell of the Earth and to encompafs it.

Plato alfo was of that Opinion in making Tartarus the place of the Waters, that is, the middle and Central parts of the Ball or Globe of the Earth; and fo che hard part of the Earth to be nothing but this Shell near the Superficies, and it feems alfo, that Pyihagoras, yea, and the cAgyptians and Cbaldeans likewife were of the fame Sentiment, and divers are of Opinion that Mofes alfo underftood the fame by the great Abyffe which he mentions in the Defription of Noab's Flood. Biat by thisDefcription of the Creation he feems to be underfood otherwife, when he fays, Et teriaerat Solitudo co Inanitas ej Caligo fuper facies $A_{\mathrm{c}} \mathrm{by} \int \mathrm{f}$. For by this he feems to make the form of the Terraqueous.

$$
\mathrm{Mmmmm}
$$

A Dijcourre of Eartbquakes.

Globe to be no other than that of a Bubble, fitch as Children blow into the Air, that is, only a Spherical Film or Orb of Water, which within it had
 ousúascs, and only that this Film of Water was diyided in the middle by the folid hard Shell of the Firmament which inclofed half the Film; that is, the inner fide; and excluded the other half of the Film; that is, the outwand fuperficial Parts : And hence 'tis poffible that Virgil in the eighth Book of his eAneids, fays, Spiritus Intus alit, totamq; infufa per Artus ment agitat molems of magno fe Corpore mifcet. Inde bominum pecudumg; genus viteq; volantum © gria marmoreo fert monftra fub aquore pontus, \&c. He feeming there to make the place for the Soul of the World; others there are who would have it to be Fire, and thence to proceed the Caufes of the Vulcanos and fiery Eruption; but Ariftotle there places the pure Element of the Earth; fome of the Mom dern Philofophers would have it to be all one great Load-ftone. I could produce various other Opinions, but they are all but Opinions; and it matters not much what the Subftance be that fills it, as to the prefent incquiery; I flati therefore proceed.

This Firmament then in the middle of the Waters, I take to be that which in many places of the Bible is faid to be the Foundation of the Earth, as in P.fal. 24. 2. The Earth, is the Lords and the fullnefs thereof, for he bath founded it upon the Seas. (Prov. 3. 19.) The Lord by wifdom hath founded the Earth, by underftanding bath be eftablifhed the Heavens, (this feems to refer to the two Firmaments) and in the following Verfe, By bis knowledoe the depths are broken rup, and the Clouds drop down their Dew. (This feems to refer to the Caufes of the general Deluge by opening of thofe two Firmanents, as I fhall by and by fhew. So Fob. 38. 6. Whereupon are the Foundations of the Earthfaftned?
This Sphrrical Firmament or Shell then in the middle of the Waters, we may fuppofe, was in fome places raifed or forced outwards, and fome other parts were preffed downwards or inwards, and funk lower, when in the ninth Verfe, God commanded the Waters under the Heaverr to De gathered together to one place, and the dry Land to appear; for by deprefling in of fome parts of that Spherical. Shell-(to make room to receive all the Waters that had before covered the whole) other paits muft be thruft out, the Contents within being the fame, and forequiring equal Space ni Extenfion; fo that what went below the former. Sphrrical Surface, muft be equalled by other parts afcending without that'Surface, and fo the quantities of the Waters both within it, and thofe without it, remained/each the fame, and ftill diftinet: and feparated by this Firmament in the middle of the Waters, tho altered from its Spharical Figure; and the outward Surface of the outward Water, as well as the inward Surface of the inward Water, muift remain Spherical, becaufe of the Power of Gravity from without a Central Earth; or Yolk within, formed of a Spharical Figure.
In this State the Earth feems to remain till the time of the Flood, which is accounted between fixteen and feventeen Hundred Years according to the Hebrew. When God looked upon the Earth, and bebold it was corrupt, for all fiejh bad corrupted their may upon the Earth, as Chap.vi. v.'12. And in the thinteenth told Noah, that he would deftroy all living Creatures with the Flood. This Deftruction began in the fix Hundred Year of Noab's Life, Chap. Vi' i. v. in. The manner of which was expreffed thus in the Septugint ejé gno
 tains of: the great deep were dramn up, and the windons of Heatien wére-opened. This
 As for that of theHeavens the effects of the opening of them was, that it Rained 40 Days and 40 Nights; but the Confequents of the other are not expreffed any otherwife, but that the Flood was upon the Earthforty Days, that is; the Sea continued to flow in upon it.- And the Waters increafed, end bare up the Ark, and it mas lifted up above the Earth, v. 17. And the: Waters'prevailed exreedingly upon the Earth, and all the high Hills, that neve inder the -whole Heaver, were cozered, v. 19. Fifteen Cibbits uppards did the! Waters'prevail, and the Mountains were covered, v. 20. Every living ! fubfance was deffriyed which was upon the Face of the ground, Noah onlys and thofe with bim in the Ado, remained :a-

A Difcourfe of Earthquakes.

livie, v.23. By which it appears, that not only allMen, Beafts, Cattle, Fowls, Infects, Worms, ovc. perifhed by the Flood, but every living Subitance; that is, all Vegetables alfo ; for all Animals were enumerated before: We fee therefore that here was a double Caufe of the Waters. Firft, The Rain from above. And, Secondly, The pulling up of the Fountains of the great Deep: What I underftand by the great Deep, I hewed before; that is, the finkingsinward of the Firmament in the middle of the Waters; and the forcing up of the Fountains of the great Deep, I conceive to fignify the raifing again of thofe parts that were before funk to receive the Sea; and a Confequent of that would neceffarily be a finking of that which was the dry Land, and a Confequent of that, flowing and increafing of the Sea from out of that which was the great Deep, and a prevailing and increafing upon that which was a finking Earth; and this motion being forty Days in progreffion before the rifing Surface of the Sea, and the finking Surface of the higheft Land met. So long the Waters were faid to be flowing and increafing before it was wholly covered; nay, the Hiftory goess on with the Journal of its progrefs, till the. Waters were gotten fifteen Cubits above the higheft Mountains; but then the account ceafeth, and adds only, that the Waters prevailed on the Earth a hundred and fifty Days, and fo long the whole Firmament was covered with Water. So that in probability the progrefs of the alteration of the Firmament proceeded fo far till it recovered its, perfect Sphærical Figure truly in the middle of the Waters, as it was at its firft Creation placed at about feventy five Days after the forty; but as I conceive it ftaid not there, but the progreffion of both the parts went onwards; that is, the finking parts went as much below the Level, as before they were above, and the rifing parts by degrees afcended as much above as they had been below, and that which had been the bottom of the Sea under * the Water, became the dry Land, and that which had been before the dry Land, now became the bottom of the Sea, whether the Waters retreated from off thefe parts which were raifed when the Flood was finifhed; for it is faid in the eighth Chap. That God remembred Noah, and what was with him in the Ark, to prepare them another Habitation, by making dry Land for them again; and, Firft, The Heavens were cleared from Raining. And, Secondly, By turning of theWater that had fallen, into Vapours, and by turning all thofe Vapours, which fuch a Commotion of the Earth and Sea had caufed, into Wind, and by caufing the Waters to return from thofe parts which it had covered into the Deeps that were appointed for their Reception; fo that at the end of the hundred and fifty Days the new Earth began to appear. Ver. 3. And the Waters returned from off the Earth continually, and after the end of the bundred and fifty Days the Waters mere abated. And, v. 4. And the Ark refted in the feventh MiLonth, on the Jeventeenth day of the Month, upon the Mountains of Ararat, which probably was the Name of the Mountain after the Flood in the time of Mofes. "Ver. 5. And the Waters' decreafed continually until the tenth month, when the tops of the Mountains were Seen. Forty day's after this, Noah opened the Windows of his Ark and Sent out a Kaven. So that it feems that as the old was forty Days in being covered, fo the new was forty Days in being difcovered ; but Noab ftaid yet many Days longer before the Surface of the Ground was dried." This Explication, I think, doth fully anfwer to the words of the Hiftory of the Flood as they are written by Mofes, and will likewife fhew a probable Caufe how thofe Phænomena of Sea-fand and Shells are become fo univerfal over the Face of the whole Earth, as it is at prefent, which were the two things which I now indeavoured to máke intelligible. I have not, I hope, given any Explication, or made any Suppofition, how differing foever it be, from all the Explications I have yet met with, that will any ways diftort the plain words of the Text; for I have in this, as near as may be, guided my progrefs by that Direction, and I hope I have hereby fhewed a very plain and intelligible way how the Flood became fo perfectly univerfal, and the Earth returned perfectly to its primitive and firf Created Figure, without any extravagant fuppofition of new Created Waters, or bringing them down from above the highef Heavens; nor is here any great need of Calculation to know how great a quantity of Water would need to be new Created and afterwards Annihilated, or firft fetcht down from the

Heavens, and then fent back again; nor is there any need of furpponfing the Earth to be broken to pieces fince the Flood, and the Antedilevian Wordd without any vifible Sea. And if it were much to the purpofe, I could thews how all this, that I have fuppofed, may be Phyfically explained, and the I-quilibrium natintained: And, in fhort, to fhew how confonant this Hypothefis may be both to feveral Expreflions in the moft antient Authors, and, in a word, with the Rules of Nature itfelf, of which I have formerly. given divers hints to this Society, and may fome other time more fully explain, but I fear I have detained you toollong at this time.

THE following Treatifes were Lectures read at feveral times relating to the Aur-, thors Theory of Earthquakes, and their Effects, and contain Severial very remarkable Hiftories of the Alterations that have been cauled by them in the feveral parts of the World ; the firft is an account of an Earthquake in the Leeward Iffands. Thefe are backt by a Citation out of Ariftotle, and feveral deductions from it, are made by the Autbor. The next is a Difcourfe explaining fome Effects of Earthguakes by the Phenomena of Thunder and Liohtning, and relates to the'Caufes of Earth-
 quakes. That Nature is altways chainging. That Earthguakes were formerly more
frequent, \&c.

July 23. 1690. A Difcourfe of Earthquakes in the Leeward Ifands.

TH E greatef Objection that has hitherto been made againft a Theory which I have feveral times difcourfed of, to give a rational and probable account of the Reafons of the varieties obfervable in the prefent fuperficial Parts of the Globe of the Earth; which was, that all thofe incqualities of its surface had been caufed by the Power of Earthquakes, or Eruptions of fiery Conflagrations inkindled in the Subterraneous Regions, which by that mean's did fometimes raife Mountains, Hills, llfanids, \&-c. and fometimes Produce the quite contrary Effects, by levelling of Eminences or finking of Places, fwallowing up Rivers, and making Lakes of Land, or finking Lands under the Sea, and the like.
The greateft Objection, I lay, againft this, I find hath been, that there were wanting Inftances to confirm it from Hiftory. For that, ail Places, Countries, Seas, Rivers, Iflands, cic. have all continued the fame for fo long time as we can reach backwards with any Hiftory : All Greece and the Greecian Ilands, Italy, etigypt, \&c.are all the fame as they were above two Thoufand Years fince, and therefore they were fo from the Creation, and will be fo to the general Conflagration ; and as t) the effects of Earthquakes, Firft, They have happened but feldom: And, Secondly, They have not produced any notable Change, fuch as I have fuppofed them to be the Authors and Efficients of, fo that it feems but a bare Conjecture and without Ground or Foundation fufficient to found and faife fuch a Superftructure of Conclufions as I have thereupon raifed.
For Anfwer to which I hall not now repeat what I have formerly produced here, and alledged to that purpoofe, fuch as were the Infances that were to be met with here and there difperfed in antient Writings; fince many of thofe Occurencies having, been long fince produced, and the relations of themmare by fuch as were not Eye-witnefles, many of the particular matters of Fat have been doubted or difputed; I fhall therefore take notice of fime particular Inftances which bave happened within our own Memory, apd more particularly of this late inftance which hath happened in the Antilles, of which we have an account but this laft Month in the Giazet, namely, in that of Finne the 30 , , and another in that of fune the 16 th. proceding ; both which Relations' tho they are but fhort and imperfect, as to what I could hare wifned and fhail indeavour to obtain, yet as they are, they will be fould to eontain

A Dijcourfe of Earthquakes.

many Particulars, which do very much illuftrate and confirm my Conjectures. And tho the particular effects were not fo great as to equalize thofe which I have fuppofed to have been the productions of former Eriuptions, fuch as the raifing of the Alpes, Pyreneans, Appenniwes, Andes, and the like Mountains, or the making of new Lands, lllands, efc. or the finking of Countries, and drowning of Inands as the Platonick Atlantis and contiguous Iflands, yet if they be confidered they will be found to be of the fame Nature, and to differ only in Magnitude, Secuidum Magis © Minus, but not in Effence:

The firft Account is dated from Nevis; April the thirtieth, in thefe words, Of Earthquakes
' [On Sunday the fixth Inftant, about five a Clock in' the Evening, was, for in the Lee
'fome few Minutes, heard a frange hollow noife, which was thouht to pro${ }^{\text {c. }}$ ceed from the great Mountain in the middle of this Ifland, to the admira-
'tion of all People; but immediately after, to their greater Amazement, be-
'gan a mighty Earthquake, with that violence, that almoft all the Houfes
"in Charles Town, that were built of Brick or Stone, were in an inftance le-
'velled with the Ground, and thofe built of Timber fhook, that every Body
${ }^{\text {' }}$ made what haft they could to get out of theni. In the Streets the Ground
'in feveral places clove about two Foot afunder, and hot ftinking Water
' fpouted out of the Earth a great height. The Sea left:its ufual Bounds more
'than a third of a Mile, fo that very large Fifh lay bare upon the Shoair,
© but the Water prefently returned again. And afterwards the fame ftrange
' motion happened feveral times, but the Water retired not fo far as at firft.

- The Earth, in many places, was thrown up in great quantities, and thouf-
' ands of large Trees' went with it, which were büried and no more feen.
;Tis ufual almoft at every. Houre to have a large Ciftern, to contain the Rain-
4 water of above nine or ten Foot deep; and fifteen or twenty Foot Diameter,
- feveral of which; with the violence of the Earthquake, threw out the Wa-
"ter: eight or ten Foot high;; and the motion of the Earthall over the Ifland
'was fuch, that nothing could be more terrible. 'In the Ifland of St. ChriAophers (as fome French Gentlemen, who are come hither to treat about the exchange of-Prifoners, do Report) there has likewife been an. Earthquake, 'the Earth opening in many places nine Foot, and burying folid Timber, Sui-'gar-mills,: ofc. and throwing down the Jefuits Colledge, and all other Stone
- Buildings. It was alfo in a manner as violent at Antego and Montferrati;
' and they had fome feeling of it at Barbadoes. Several fmall Earthquakes
- have happened fince, tliree or four in twenty four Hours; fome of which
' made the biggert Rocks have a great motion, but we are now in great hopes
' there will be no more.]
This is the whole of the Relation from Nevis. But the other Account from Barbadoes, of the 23 d . of April, taketh notice of other particulars than what are mentioned in this Letter; the Printed Account is this that follows. "[About three Weeks-fince there were felt moft violent Earthquakes in the - Leeward IJands of Montferrat, Nevis and Aitego; in the two firft no confii derable hurt was done, moft of their Buldings being of Timber; but where
'there were Stone Buildings they were generally thrown down, which fell ve-
'ry hard in Antego, molt of their Houfes, Sugar-mills and Wind-mills being
' of Stone. This Earthquake was felt in fome places of this Inland; but did
' no manner of hurt to DiNen or Cattle; nor was any loft in the Leeward IRands,
' it happening in the Day-time. It is reported to have been yet more violent 6 in Martinico, and other French Iflands. And feveral Sloops who came from "Nevis' and Antego pafling between St. Lucia and Martinico felt it at Sea: The ' agitation of the Water being fo violent, that they thought themfelves on ¿Rocks and Shelves, (the Veflels fhaking as if they would breakin pieces. - And others paffing by a:Rock and unhabited Illand, called Roduida, found 'the Earthquake fo' violcut there, that a great part of that Rócky Ifland fplit 'and tumbled into the Sea, and was there funk, making a noife as of many 'Cannon, and a very great Cloud of Duft afcending into the Air at the fall.] [Two very great Comets have lately appeared in thefe parts of the World, and in an Hour and a quarters time the Sea Ebbed and Flowed to an unufual 'degree three times.'] In thefe Relations are many confiderable Effects produced, which will much confirm my former Doctrine about the Effects of
obfervables in Earthquakes. And Firft, It is very remarkable, that this Earthquake was not thisEarthquake confined to a fmall fpot or place of the Earth, fuch as the Eruption of © Etna or Vefuvius out of one Mouth, but it extended above five Degrees, or three hundred and fifty Miles in length; namely, from Barbadoes to St. Cbrifophers, and poffibly, upon inquiry, it may be found to have gone a great deal further, and to have produced Effects in Statia St. Martin, Aviguilla, Porco Rico, on fome other of thofe Illands in the North-weft of St. Cbriftophers, where, by the Relation, it feems to have been the moft violent : And tho' poffibly there might not be opportunities of feeling or taking notice of the effects in all places of the Sea where it might have been felt; yet by thofe few Inftances which are related, we may probably conjecture, that its effects might be very confiderable, and fenfible a great way in breadth under the Sea; for we find that the Strokes or Succufions thereof were felt by the Veffels fayling over fome parts of the Sea fo affected; and thofe fo violent as if the Veffels had ftruck upon Rocks, which could be from nothing elfe but the fuddain rifing of the bottom of the Sea, which raifed the Sea alfo with it, like Water in a Tub or Difh: And that this was of that Nature docs further appear by the unufual Tides at the. Barbadoes mentioned in the laft Relation, viz. That in an Hour and $\frac{1}{4}$ the Sea Ebbed and Flowed three, times in an unufual Degree; which, in probability, were nothing elfe but Waves propagated from the places where the Ground underneath, and the Sea above, had been by the Concuffions of the Earthquake raifed upwards. Thisappears alfo farther by the recefs of the Sea from the Shore at Nevis $\frac{1}{3}$ of a Mile; for the whole Ifland being raifed by the Swelling or Eruption of the Vapour or Fire underneath, made the Sea run off from the Shores, till it fettled down again into its place after the Vapour had broken its way out through the Clefts that were made by thofe Swellings : From all which Particulars, and feveral others; 'tis manifeft, that the fpace of Earth raifed or ftruck upwards by the impetuofity of the Subterraneous Powers that caufed it, was of great Extent, and might far exceed the length of the Alps, or the Pyreneans, \&c. But there may be other Inftances alfo produced of the great extent of the Powers or Effects of Earthquakes, as thofe I have formerly mentioned to have happened in Norway about thirty Years fince; and thofe which happened in the Northern parts of America of a later date.
Another particular notable in this,' is the Recefs of the Sea from the Shore', and the leaving the Fifh upon the fo raifed bottom; and tho this part foon after funk again, fo that the Sea returned to its former bounds, yet if fome other parts of the Subterraneous Ground had filled up the made Cavity or that they had fo tumbled as to fupport the fo raifed parts, Inftances of which kinds of Accidents may be produced from other Earthquakes, then it would have left fome fuch kind of Tract as it is now in Virginia, where, for many Miles in length, the Low-land is nothing but Sea-fand and Shells, which have been, in probability, fo raifed into the Air, and there fupported and continued from linking again and being covered with the Sea : Of Shells taken up from this Tract, there can be no doubt that they have belonged to Fifh of their kind, they remaining hitherto perfect Scallop Shells; of which kind there are fome in the Repolitory.

A Third particular Remarkable, is the overturning and burying of thoufands of Trees which were no more feen, being covered by the Earth which was thrown up by the Eruption. This gives us a very plain Inftance of the manner how Trees that are now found in divers parts of England buried under the Ground, may have come to have been there fo difpofed and depofited ; for tho poffibly in thofe places there may be no fuch Trees now growing; and tho' we have no Hiftory when there were, or of any fach Eruption that might have fo overturned and buried them; yet the Records that we have of the antient or former State of thofe Parts; are not fo fill and particular, but that we. may well enough fuppofe that fuch Cataftrophies may have happened long fince we have begun to have Writings and Records in-England; that is, fince the time that the Romans firft conquered this Ille; and yet not find any mention thereof there made, fince pofibly thofe that might be in or near thofe parts might have perifi'd with it, and thofe which were at, a
diftance
diftance took little notice or regard of what they had little concern for : Befides, in thofe Days very fimall were the number that could Write and Read, and fewer were thofe that minded any thing the effects produced by Nature: What was written was either fomewhat relating to Religion or Civil Hiftory, very few and rare are the Inftances that can be met with of Natural Hiftory; and it has not been a Defect peculiar to thefe parts of the World only, but was taken notice of two Thoufand Years fince by Ariftotle upon this very account, as we find in the fourteenth Chapter of his firft Book of Meteors; - Morcover (fayshe in the beginning of this Chapter) the fame Parts of the - Earth are not always dry Land, or always covered with Water, but they - fuffer a change from the rifing of new Rivers, or decay and drying of old; ' therefore alfo in places niear the Sea there are wont to happen thefe changes. 'So that thofe which are Land, or thofe which are Sea do not always re' main fo ; but where was Land there is Sea, and wherewas Sea there is Land; ${ }^{6}$ and we are to conclude thefe changes to happen according to fome order.
' Now (fays he) becaufe many of thefe changes happen but flowly in com'parifon to the quicknefs and fhortnefs of the Life of Man, therefore they Sare hardly taken notice of, a whole Generation having paffed away before
${ }^{6}$ fuch changes have come to perfection. Other Cataftrophies that have been
' more quick, have been forgotten, by reafon that fuch as efcaped thein were
${ }_{6}$ ' removed to fome other parts, and there the Memory of them was foon loft; ' at leaft a longer tratt of Time did quite obliterate the remembrance of ${ }^{6}$ them, and the tranfplanting and tranfmigration of People from place to 'place much contributed thereunto. This is made plain enough by the litthe remembrance was found in America of their preceding Eftate, when they were firlt vifited by the Spaniards and other Europeans.

A fourth particular Remarkable in thefe Relations, is the Chapping and of the Veins in cleaving of the Earth and Rocks, and the fpouting out of them of ftinking Marble, Water to a great height; as alfo of Smoke or Duift, which ferves to explain the Reafon and Caufes of the Flaws and Veins in Marbles and other Stones; for by the Power and Violence of the Subterraneous.Heavings or Succuffions the ftony Quarries become broken, flawed and cleft, and Subterraneous Mineral Waters impregnated with Saline, Metalline, Sulphureous, or other Subftances are driven into them and fill them up; which having petrified Qualities in them, do, in procefs of time, petrify in thofe Clefts, and thereby form a fort of ftony Veins of different Colour, Hardnefs, and other Qualifications, than what the parts of the broken Quarry had before, and oft time inclofe divers other Substances by their petrifying Quality, which have happened to fall into thofe Clefts, and thence fometimes thereare found Shells petrified in the middle of the Vein, as I have feen, and other Subftances. Thefe Clifts or Chaps hapening not only'upon the Land; but even under the Sea; fo that not only the Sea-water may defcend and fill up thofe Clefts, but it may carry withit Sands, Shells, Mud, and divers other Subftances from the bottom of the Sea, that then lay above it, there to be, in procefs of time, changed into Stone fomewhat of the Nature of that which hath been Fb cleft.

Fifthly, 'Tis worth noting, that this Earthquake happened at fo great a diftance from the main Land and great.Continent, and that the noife of the fame was firf obferved to begin at the great Mountain in the middle of the Ifland of Nevis, not but that it might in other parts have begun fooner or at other times; from which I draw thefe deductions. Firft, That it feems probable, that this great MLountain may have been formerly vifited with Eruptions; and poffibly might have been firft produced by fome fuch Power, and fo have great Cavities within its Bowels produced by fuch a preceding Eruption, the diflocated Parts not returning each to its own place. And next, that it may hence feem probable, that fome fuch preceding Earthquake (tho' then poffibly more violent before the foment of the Fire was by inkindling exhaufted) might, not only be the caufe of raifing this Mountain, but of lifting up from the bottom the whole Inle, nay, poffibly of all the Iflands of the Antilles, fince one feems as poffible as the other, and the Northern of them all feems to hint as much, if confidered, in the Map; befides, there feems to
be many Inftances of a like Nature, as in the Canaries, Tenariff feems to be a moft remarkable Character of fuch a Suppofition; to this may te added Del.Fuogo among the Azores and the Ifland of Madera; Sicily, Strombulo, and Lipary in the Mediterranean, Ifeland in the North Sea; Mafcarerobs near Aradagafcer; to this I may alfo add the many Iflands of the Archipileso o, which, tho' they have now no great figns of burning Mountains, yet to this Day Earthquakes are very frequent, and antient Traditions do pieferve fomewhat of the memory of very great alterations that have happencd in thofe Parts by fuch forts of Caufes; but I will not now meddle with that kind of Hiftory, nor of Mythology, laving faid more concerning it in a moré proper place; but I hall rather on this occafion take notice of thofe Iflands that have Vulcanoes in or near them, which to me feem to proceed from the fame Caufe and Principle. And I do not queftion; but that all thofe Ilands which. lie fo far in the Sea, if they were thoroughly examined, would phainly manifelt whence they have proceeded by Characters of Nature's Writing, which to me feems far beyond any other Record what foever. Here I conceive it Lawful and Philofophical to Furare in Verba, when Nature fpeaks or dietates; however, I hall leave it free to every one to judge, as he thinks moft reafonable.

Sixthly, 'Tis very remarkable that the Ille of Rodunda, which it feems is all an uninhabited Rock, was fplit, and a part of it tumbled down and funk into the Sea; upon which occafion it feems it made a prodigions noife as of many Cannon, and fending up at the fame time a greaticloid of Duft, as they term it, which, in probability, was alfo mingled with Smoak. Which puts me in mind of the Phænomelia I obferved lately, when the Pouder-mill and Magazine at Hackny blew up; for befides the very great noife of the Blow which I heard; being within a Mile of it, in the Fields, I obferved immediately; a great white Cloud of Smoke to rife in a. Body to a great lreight in the Air, and to be carried by the Wind for two Mlites and better without difperfing or falling down, but perfectly refembling the white Sumıner Clouds: But this only by the bye... From thefe. Phenomena of the Earthquake it feems very probable, that it proceeded from fuch Subterraneous inkindling as refembles Gun-powder, both by the noife it yielded, and in the fuddennefs of its firing, and its powerful Expanfion when fred; for the noife was as of many Cannon; this alone proves it to beivery fuddain. Next the fplitting of the Rocky:Illand proves its Power to be very great; this is proved yet farther by the Blow and Strokes it comminicated to the Sea, and fo to the Ships that failed upon it; for fo flow motion whatever could have communicated fuch a Concuffion through the Water to the Velfels' upon it; but it muft be as fuddain as that of Pouder, otherwife the ftroke of the Earth upon the incumbent Seas, would never have had the like ficcefs; for if had been a gradual rifing of the bottom, the Sea would gradually haver run off from it, and upon its finking again have gradually retiurned, and the Veffels on it would only have been fenfible at moft but of a Current or Ruming of the Water to or from the place finking or rifing, fomewhat like the effect that happened at Nevis; which doth plainly fhew, that, befides the fuddain Strokes or Concuffions, there was alfo a confiderable rifing aud finking of the whole Iflandas to the Ievel of the Sea. But that which I principally note under this Head is, that a good part of the faid Ifland tumbled down and was funk into the Sea, which gives an account how many parts of the Earth come to be buried under Ground and difplaced from their former Situations, and thence how, Ships, Ankers, Bones, Teeth; wic. that have fometimes been digged up from great depths, may have come to be there buried.
Seventhly, 'Tis remarkable alfo, that this Eruption fent up into the Air great Clouds of Duft and Smoke, which for the moft part muft foon fall down again into the Sea, or contiguous parts of the Illand. This willigive a probableataccount how the Layers of the Superficial Parts of the Earth may come to beimade; for the bigger, part of this Dutt muft come downito the bottom firft and fettle to a ceitan thicknefs and make a. Bed of Gravel, then will follow. Beds of coarfe sand, then Beds of finer and finer Sand, and laft of Clays or Moulds of feveral forts; again much of that which fell upon the
higher parts of the Inand, will, by the Rivers, be wathed down into the Vales, and there produce the like Beds or Layers of feveral kinds, and fo bury many of the parts that were before on the Surface. Thus Plants and Vegetable Subftances may come to be buried, and the Bones and Teeth of the Carcaffes of Dead Animals: Thefe may alfo fometimes be buried under Beds or Crufts of Stone, when the parts that thus make the Layers chance to be mixed with fuch Subterraneous Subftances as carry with them a petrifying Quality. But I hall not detain you any longer with farther Deductions from there few Remarks we find in thefe two cafual Relations of this Earthquake; I fhall only add, that I could heartily wifh that fome care were taken that a more particular account might be procured of it whilf the effects thereof are frefh in Memory, that they might be Recorded and added to the Collections of Natural Hiftory. And for the fame end it were defireable to know what. former Earthquakes have been taken notice of in thefe, or any other of thefe Iflands, as Famaica, Cuba, Hifpaniola, Porto Rico, \&c. for that the Memory of fuch Accidents, if they be not Collected and Recorded whilt the Spectators are in being, are foon forgotten and loft or not regarded by the fucceding Generations, as Arifotle has taken notice of alfo in the Chapter II before quoted.

What is molt remarkable in thefe Earthquakes in the Leemard Iflands, is, Why Ifands \& that they have all happened to places not far diftant from the Sea, or even sea-Coafts are under the Sea itfelf, though the Eruptions have been, for the moft part on moft fubjeat to the Land. So that there doth feem to be fomewhat of Reafon to Conjecture Earthquikes. as Signior Bottoni in his Pyrologia Topographica, that the faline Quality of the Sea-water may conduce to the producing of the Subterraneous Fermentation with the Sulphureous Minerals there placed, which the Experiment lately here exhibited at a Meeting of this Society, does yet make more probable; for by that it was evident, that the mixing of Spirit of Salt with Iron, did produce fuch a Fermentation as did produce a Vapour or Steem, which by an actual Flame was immediately fired like Gun-pouder, and if inclofed, would, in all probability, have had a like effect of raifing and difperfing of thore parts that bounded and imprifoned it. Now, 'tis evident that the melted Matter which was vomited out of efitna in the Year fixty nine (of which we have a part now in the Repofitory) was very much like to melted or caft Iron, and I dotibt not but that there may be much of that mineral in it; befides, the Foot of that Mountain does extend even to the very Sea, and in all probability may haveCaverns under theSea itfelf, which is argued alfo from theCone currency of the Conflagration of Strombolo and Lipary, Inlands confiderably diftant from it by Sea, at the fame time, where it is generally belieyed that there may be Subterraneous Cavernous Paffages between them, by which they communicate to one another; fo that fometimes it begins in $\mathcal{A t n a}$, and is communicated to Strombolo, and reciprocally communicated to Mongibel.

This poffibly may afford a probable Reafon why Inlands are now more fubject to Earthquakes than Continents and inland Parts; and indeed how fo. many Illands came to be difperfed up and down in the Sea, namely, for that thefe Fermentations may have been caufed in the parts of the Earth fubjacent to the Sea, which being brought to a Head of Ripenefs, may have taken Fire, and fo have had force enough to raife a fufficient quantity of the Earth above it, to make its way through the Sea, and there make itfelf a vent, as that of the Canaries did in the Year 39, which, if fufficiently copious, may produce an Illand as that did alfo for a time, though it hath "fince that time again funk under the Surface of the Sea. But the Ifland of A fceifion, which, by all appearances; doth feem to have been the fame way produced, doth fill remain as a witnefs to prove this Hypothefis. A like Teftimony to this, of the Caufe and Manner of their Production, I take the Inland and Pike of Tenariff to be, fo Hecla of Iceland, fo Dearenberg of Fobn Mayens or Trinity Ifland, fo diel Fuego of the Icelnds of Cape Verd, fo Ternate of the Moluccas, and the Inand of Mafcarenas, of the Inlands about Madeigaf-. car among the Antillas or Caribes, all which do feem to me to be rernaining Teftimonies how, and in what manner, and by what means thofeother Iflands which have now worn out the marks of their firf Origination, were at firft
produced. And tho' the Fires be extingt in many of the other Infands, yet ${ }^{3}$ tis obfervable, that the prodigious high Mountains or Sugar-lofe Pikes of Hills do yet remain as marks of what they had been heretofore; fo the Piite of Fayal among the Terceras, and the whole Illand of St. Helena; and feveral others of thofe about Madagafcar and of the Eaf-Indies, and of thofe of the - Antilles, and that of St. Martha mentioned by Dampire, do feem to me to be plain evidences of the former and Original Caufes of them all.

Nor do In the leaft doubt but that an inquifitive Perfon who fould purpofely furvey all other Iflands that wanted thefe Marks or Tokens of fuch Eruptions, might find enough of other Indications to manifeft by what means they fo cane to be placed in the Sea, fo far from any part of the Continents they are oppofite to.: Nor do I conceive they were all thus formed at once, but father fucceffively, fome in one, fome in other Ages of the World, which may probably be in fome meafure collected from the quantity or thicknefs of the Soil or Mould upon them fit for Vegetation ; whence the Inand of Afrent fion may be rationally concluded to have beena Production of notmany Ages, and the Bermoodas alfo of not very many more, becaufe of the thinnefs of fuch a Soil. So alfo the Ifland of Barbadoes, and fome others; whofe Mould is yet but thin in refpect of what it is in fome others, and efpecially in thofe of greater Magnitude and in the greater Continents:

Hereupon poffibly it may be inquired why thofe greater Illands and Corio tinents fhoild be of greater Antiquity than the fmaller llands. To which I anfwer that in the firft Ages of the World there were much gieater Magazines, or Stores of the Materials fitted for this purpofe, which being firf kindled threw up from under the Sea; with which they were covered, vaft quantities of it all at once, and thereupon thofe Magazines became in a mannier exhaufted, yet not fo tetally as not to leave fome fmaller parcells of thofe Subftances fo difpofed, as not to be ready for inkindling together with thofe greater; befides there remained other fmaller parcels of it difpofed and placed in other parts of the Globe fufficiently diftant from them, not to be affected or inkindled at the fame time, as thofe I have mentioned to have been the caufes of the Inlands far diftant from the Continents. Nor do Iconceive that all thofe Clufters were all thrown up at once, as the Greecian Inands in tine Archipelago the Eaft-Indian in that part called the South-Seo, the Maldivia Ihands near the Coaft of Malabar, the Inlands fcattered at the North of Madagaciar, the Illands to the South-weft of St. Helena in the Atlantick Ocean, Finidada dos picos, the Ines of Cape. Verd, Canaries, Terceras, Orcades, \&c. alio the Gallopegas and others in the PacifickSea or Mar del Zur, bat rather that fome were made in one Age, fome in other Ages of the World. And this was timed as the feveral Magazines came to be ripened and then fired; they only indicating, as I conceive, that in thofe places of the Terreftrial Globe, there were placed the proper mineral Foments or Sceds as it were of them, which, when the convenient times were come and accomplifhed, then they were put into Act, and then they produced their. Effects, which are the Inands that now remain the lafting Monuments of them. Nor can I fuppofe that all the Magazines of the Earth of this kind are blown up and fpent, but that there may be many other yet remaining for future Ages to be made fenfible of their Effects. Nor can I be fully fatisfied that all the main Continents were thrown up or made Land all at once. Nor have we any proof that the Continent of Americi was in the time of Noab's Flood, nor indeed how large the habitable World then was, but certain we are, that what was then in being was all overflowed and drowned by it, and all living Creatures, except thofe preferved in the Ark with Noah, perifhed by it. But whether the dry Land that appeared after the Flood, were the fame with that before the Flood; is a queftion not eafily determinable; to me it feems that the preceding Earth was wholly changed and deftroyed, and that there was. produced a new Earth which before that had not appeared; and this Doctrine feems to be indicated by that. Text in Genefis vi. 13. And God faid unto Noah, the end of all Flefh is come before me; for the Earth is filled with violence through them, and behold T will defray them with the Earth. And again Chap. viii. 21. I mill not again curfe the ground any more for Man's fake. And 2 Per. iii. 5. By
the word of God the Heavens were of old, and the Earth ftanding in the Water and out of the Water. (ver. 6.) Whereby the world that then was, being overflowed with Water, perifhed. But the clearing this Doctrine by the Expreffions in Scripture I hall leave to the Divines; nor hall I in the leaf interfere with them : However, it fees to me, that the Expreffion of Breaking up the Fountains of the great Deep, might lignify the railing up of the bottom of the Sea; and the Water prevailing So as to cover the top of the bigheft Mountains, might denote to us the finking or fubfiding of the former part. of the dry Ground: So as the former was wholly drowned and defrayed, which was Cur fed for Man's fake, fo a new one was raifed, which God promifed fhould not be Surfed for Man's fake, as the former had been; but this only by the bye. Certain I am that I have nevery yet met with my felf, or heard of any other that bath any Records of the Age of America, which, for any thing appears, may have been much younger than the Flood of Noah: Nay, I believe it will be pretty difficult to prove e even there Iflands of England, Scotland and Ireland to have been in being ever fince that Flood, and much more that there were fuck before it. And tho rome may Conjecture that they have been fo (which is the mont that any one can do) yet others may Conjecture that they have not (which is every deal as valid). The fame may be faid of a very great part of the Earth, without any trefpaffing upon our Faith or Religion; nay, it was we know, not long fince, that a Bishop was condemned of Herefy because he afferted Antipodes. So skillful were forme of our Fore-fathers in the Geography of the Habitable Parts of the World, or of the Figure of the Earth; and I dovery much queftion, whether any Inhabitant of Europe, Afra, or Africa had ever any knowledge of America till within there aft three hundred Years. But my prefent fubject is not fo properly to fearch and inquire into the Hiftory, as to find out what have been the Natural or Phyfical Caufes of their Productions,' Situatons and Forms, and that, I think, I have Shewn to have been in probability forme preceding Earthquakes, which Earthquakes may have been caufed by Subterraneous Fermentations and Accenfions.
But forme perhaps may, except againt this Doctrine as fuppofing it Derogatory to Divine Providence to affert any other Cause but the immediate Hand of God. To which I Anfwer, That 'is not denying of Providence to inquire into, or to affign the Proximate Cafes of Phenomena in Phyfical Subjets. For that we have Inftances in the fared Scriptures of fuch Explicatons, as in the cafe of the Ifraelites through the Red Sea; where 'tic faid, The Lord caused an East Wind to blow, which made the Sea to go back and to leave the bottom dry Ground. And at the Waters of Marat God fhewed. Mopes a Tree, which, when he had catt into the Waters, the Waters were made fret. So in the Defcription of the Deluge, we find that God caufed it to Rain forty Days and forty Nights, and the Foundations of the great Deep to be broken up, and the Windows of Heaven to be opened; which denote by what Natural Means God was pleafed to effect and Collect the great quincity of Water that was to drown and overflow the then Habitable Earth; and many other fuch Inftances there are to be met with in Holy Writ, where the Phyfical Causes are explained, for it is the fame Omnipotent Power which does influence the remote Caufes as well as the proximate; and the univerfal Providence that ordereth all the effects, doth alfo determine and appoint all the Caufes and Means conducing thereunto; nor is there a neceffits of fuppofing new created Causes for all the effects that we are ignorant how they are brought to pars, or to believe every thing effected fupernaturally, of which we cannot find out the Natural Cause; the Divine Providence is not left Confpicuous in every Production that we call Natural, and think we know the Caufes of it, than in thofe we are less skillful and knowing in : 'This the Contemplation of the wonderful Order, Law and Power of that, we call Nature, that does molt magnify the Beauty and Excellency of the Divine Providence, which has fo difpofed, ordered, adapted and impowered each part fo to operate, as to produce the wonderful Effects which we fee; I fay wonderful, because every natural Production may be truly fail to be a Wonder or Miracle, if duly confidered; for who can tell the Caufe of the Growth, Form, Figure, and all the Qualifications and peculiar Proprieties

A Dijcourse of Earthquakes.

of each, or any one Vegetable or Arimal Species or individual ? An obferving Naturalift may perhaps tell the Steps or Degrees he has taken notice of in its Progrefs.from the Seed to the Seed : Again, how he has obferved the Seed to fprout, how that Sprout increafeth and forms itfelf of this or that Magnitude, Shape, Colour, oic. and how it produceth fuch a Flower, and after that Flower fuch other Seeds as that from which it fprung: He may alfo tell the Times and Seafons in which thefe Progreffes have been or will be performed; but if it be inquired how the Progrefles come to be acted, what is the moving Power, or what is the inlivening Principle that orders, difpofes, governs and performs all thefe wonderful Effects, there he finds the. Ne plus ultra, there is the Miracle that he may truly admire but cannot underftand; however, Eft aliguid prodire tenus finon datur ultra, let us firft find the proximate Caufes, and then proceed to the more remote; I think no one ought to be blamed or difcouraged from fearching after thefe Caufes and Reafons of Natural Productions fo far as the Powers he is endowed with will enable him; for this will more powerfully convince him of a Divine Providence that Rules and Regulates the things of this World, than all the other methods of Contemplation or Argumentation whatfoever.

July 30. 1699. A Difcourfe of the Caufes of Earthqnakes.
I mentioned in fome Lectures that the Earth did feem to grow old and to have loft many of thofe Parts, which, in the younger times of the World, it feemed to me to have more abounded with; that which I inftanced in, was the Foment or Materials that ferve to produce and effect Conflagrations, Eruptions, or Earthquakes. Thefe Materials I conceive to be fomewhat an; alogous to the Materials ofGun-pouder, not that they muft be neceffarily the very fame, either as to the Parts or as to the Manner and Order of Compofition, or as to the way of Inkindling and Accenfion; for that as much the fame Effect may be produced by differing Agents, fo, the Methiods and Order of proceeding may be altogether as differing: A clear Inftance of this we may find in the Phænomena of Lightning, wherein we nay obferve, that the Effects are very like to the Effects of Gun-pouder.
For we have firft the flafh of Light, which is very fuddain, very bright, and of very fhort continuance, being almoft momentaneous, at leaft every fingle flafh is fo, tho' the kindling of feveral parts at fome diftance from one another does fometimes continue a fucceffion or longer duration of the Light.
Next we may obferve the violence of the Crack or Noife which is likewife as momentaneous as the Fire, if it be fingle, but if there be many particular flafhes that contribute to this effect, and thofe made at feveral diftances, then the duration of the Thunder heard is longer than the duration of the flafhes of Lightning, which procceds, as I conceive, from two Caufes; Firlt, For that thofe flafhes that are farther diftant, have their Thunder a longer time, in paffing to the Ear, than thofe which are nearer, by reafon, that tho' the Pallage or Motion of Light be almoft inftantaneous, yet the progreffion or ${ }^{*}$ motion of found is temporaneous, and requires a certain fenfible time to pafs a fenfible finace, and the times are proportionably longer as the fpaces paffed are greater. But a fecond Caufe of the duration of the Thunder, I conceive, procceds from Echoes that are rebounded both from parts of the Earth, and likewife parts of the Air, as from charged Clouds; of both which I am fenfibly, affured both by natural Reafoning and from fenfible Obfervations, and I have obferved much the fame Effects produced by the Echocing and Rebounding of the found of a peice of Ordnance, from places at feveral diftances adapted for the production of fuch Repercuffions.

But, Thirdly, We have alfo the Power and Violence of the force of the Fire and Expanfion, in fireing feveral things that are Combuftible, in fuddenly melting of Metals and other Materials, which are difficult and flow enough otherwife to be made to flow, in rending, taring, throwing down and deftroying whatever ftands in its way, and the like ;-and yet after all, that
which caufeth thefe and many othci frange Effects refembling thofe of Gunpouder, feems to be nothing but a Vapour or Steem mixed with the Body of the Air, which is inkindled, not by any actual Fire, but by a kind of Fermentation or inward working of the faid Vapour. Again, we find that the Pulvis Fulminans as 'tis called, which hath fome of its materials differing from that of common Pouder; as alfo Aurum Eulminans, which is yet more differing both as to its materials and as to its way of kindling, have yet moft of the fame effects with Gun-pouder, both as to the flafhingand thundring Noife, and as to the Force or Violence. So that as thefe are differing in many particulars, and yet produce much the fame effecis, fo'tis probable, that what is the caufe of Earthquakes and Subterraneous Thundring, Lightning and violent Expanfion, as I may fo call thofe Plixnomena obrervable in thofe Crifes of Nature, may be in divers particulars differing from every one of thefe, both as to the materials, and as to the form and manner of Accenfion, and yet as to the Effects they may be very Analogous and Similar. So that tho' I cannot poffibly prove what the materials are, yet the Effects fpeak them to be fomewhat Analogous to thofe of Gun-pouder, or Pulvis Fulmizians, Aurum Fulminans or Lightning, which, tho' they feem very differing in many particulars, yet when I come to hew the Caufes and Reafons of thofe Effects, \mathbf{I} flall manifeft, that'tis but one Operation in Nature, and that which caufes the effect in one, caufes the effect in all the reft; and the outward appearances of the differing materials, and the differing way of Operating; are nothing but the Habits, and Drefles; and Vizards of the Actors, and the differing Modes and Dances by which they Act their feveral Parts, which, when they have done, they are at an end, and have exerted their whole Power, and there muft be a new fet of Actors to do the fame thing again; the Oil of the Lamp will be turned all into Flame, but you muft have frefh Oil, if you will have the Flame continued. So the Materials that make the Subterraneous Flame or Fire, or Expanfion, call it by which name you pleafe, is confumed and converted to another Subftance, not fit to produce any more the fame Effect ; and if the Conflagration be fo great as to confurme all the prefent Store, you might fafely conclude that place would no more be troubled with All things are fuch Effects; but if there be remainders left, cither already fit and prepared; in a perpertuat but fheltered from Accenfion by other interpofing incombuftible Materials; Or that there be other parts not thoroughly Ripe, and fufficiently prepared for fuch Accenfion, then a concurrence of after Caufes inay repeat the fame Effects, and that toties quoties'till all the Mine be exhaufted, which I look upon as a thing not only poffible, but probable, nay, neceffary, for that If find it to be the general method of Nature, which is always going forward, and continually making a progrefs of changing all things from the State in which it finds them in at the prefent; all things as they proceed to their Perfection, fo they proceed alfo to their Diffolution and Corruption, as to their preceding Eftate; and where Nature repeats the procefs, 'tis always on a new In' dividual.

Now, tho it may be Objected, of the material that produceth Lightning, tho' it feemeth to be all kindled and fo burnt off by the flafh, yet we find that after fome time the fame is again renewed, and fo from time to time, and therefore as one Operation doth deftroy and confume it, fo another doth generate and produce it anew, and therefore it doth feem probable that the fame may be done in the Subterraneous Regions, and thence, tho' there were many Accenfions and Confumings of the foment of Earthquakes in former Ages, yet if Nature did thus again repair it, there would be little reafon to fuppofe, that former Earthquakes fhould be greater than thofe which have in later, or in this prefent Age, been obferved; to which I Anfwer, That tho' it feem plain, that the foment of Lightning is renewed, yet I conceive that to be only by new Emanations from the proper Mincrals in the Body of the Earth, and not for that the fame Subftance which is burnt off in the Lightning, is again reftored into its former State and made fit for a fecond Accenfion; for tho' there may be neceffary a previous Digeftion of the Steams, which is performed by the Air and heat of the Weather, yet that does only prepare it with a proper fitnefs, but it muift be fome proper Mine-
ral that muft furnifh the Materials : And the fame thing is more evident in V Vlcanoes and burning Mountains, which are there only oberved to break forth and burn where there is plenty of Brimftone and other proper Subftances for fuch Conflagrations; for if the lame were only a continual new Generation of Combultible Matcrials for the Fire, then I fee no Reafon why thofe Incendiums fhould not be equally frequent and equally great in all places, as well as in thofe where they are now frequently oblerved; for why fhould it not as frequently happen in our Hills and Mountains, as it does in Sicily, or I/and, in eEtna, or Hecla, the one being as much colder then we, as we are then the other? - It follows therefore, that it muft be caufed, not by the Renovation of the Foment, but from the Duration of the Mines or Minerals that fupply fit Materiais, and confequently, that when thofe fhall be quite confumed, then, and not 'till then will the Fire go quite out. Nay that there are fome fuch Inftances of preceding Vulcanoos, which have heretofore burned and are now almoft quite fpent, may be conclided from the P ike of Tenariff, which, by all Circumftances, feems to have been formerly a burning Mountain, but is now quite extinet, and the Inand of $A f_{\text {cen }}$ fon frems to be another fuch an Inftance. All which Conflagrations are the feveral Symptoms of the progrefs of Nature in the determined Courfe and Mcthod, which, tho' it be differing from that of Life or Vegetation in leffer Bodies, yet it may be poffibly as Natural and Neceffary in the greater.
I cannot therefore fee any Abfurdity in thinking or afferting that this Globe of the Earth on which we inhabit is in a fate of Progreffion from one degree of Perfection to that of an other degree, which may be termed of Perfection, for as much as it is the Progrefs and Operation of Nature; and at the fame time it may be conceived in a progrefs to Corruption and Diffolutlon in as much as it continually changed from its preceding State, and acquires a new and differing one from what it had before, which new Eftate may be upon fome accounts confidered as more perfect, tho' upon other accounts it may be accounted corrupting and tending to its final Diffolution; and as 'tis certain that it is continually older in refpect of Time and Duration, fo I conceive alfo that it grows olderas to its Conftitution and Powers, and that there have been many moreEffects produced by it in its more Juvenile Eftate, than it doth or it can now produce in its more Senile, as more particularly to Earthquakes and Eruptions; for to me it feems moft evident and paft doubting, that there have been in fome preceding Ages of the World Eruptions and Conflagrations which have infinitely furpafled any that have happened of later Years, or indeed any that we have any certain account of in Hiftory. Some kind of Memory of fome antient. Traditions concerning a very great one that fometimes happened, feems to be preferyed by the Poetical or Mythological Hiftory of Phaeton, of which Plato alfo telis us, that the Agyptians had a more perfect knowledge and account, than erer the Greeks were Mafters of, who, at beft, as to Hiftories of preceding Ages, were, by the eAigyptiann Priefts, accounted but Boys and Children; however, Ovid, by his wording of that Fable, does feem plainly to have had fome knowledge of what was meant or underftood thereby; and tho' he feems to afcribe the Caufe tinereof to fome extraordinary heat of the Sun, yet that might be, nothing elfe but the relating the Opinion of the Antients preferved by the fame Tradition, by which the Memory of the prodigious effests that had been wrought had been retained.

In which cafe we are to diftinguifh between Hiftories of Matters of Fact, and thofe of Opinion; and Plato takes notice of as much when he mentions the Relation. The Matters of Fact feem to have bcen the Conflagration of many parts of the Earth at once, and thofe the moff eminent, fuch as the Mountains, which, whether they were in being before the Conflagration, or made by that Eruption, does not appear by the Story, but it feems moft probable, that that was the time of their Production; and the calling of them by feveral Names, yet retained, does fignify no more, but that thofe Mountains, which are now called fo or fo, were then on Fire and burning

But having before explain'd this Fable of Phaeton, and feveral others of Earthquakes that ingenious Mythologick Poet Ovid, I Thall forbear the repetition of them formerly more here, and for the prefent would only infer, that in former and younger Ages frequent, and of the World thofe kind of effects, produced by Eruptions and Earthquakes, have been much more confiderable than thofe which are now produced, or which have been produc'd fince we have had any Records kept of fuch Events; and therefore we are not to conclude that fuch hugeMountains, as the Alpes, the Andes, Caucafus, Atlas, or the like, could never be produced by means of Earthquakes or Eruptions, becaufe we do not now find Inftances of Effects of the fame Grandure produced in our prefent Age, or in the Ages of which we have fome more perfect account; for that in the former Ages there have been a much greater plenty of thofe kinds of Minerals which have been confumed, and for that the Reliets which are now left are but very fmall, and in probability not fo apt for Conflagration, nor fo ftrong and efficacious in their Operations; befides many of their Subftances that were left may have fince been petrify'd and converted into Subftances, wholly unfit for the Foment or Fuell of fuch kinds of Fire ; for that fuch Mutations have been effected by length of Time, I think no one that has obferv'd and confider'd the Nature of Petrifaction can at all doubt, any more than he can whether there be any fuch Subftance as Stone; for that all Places and Quarries efpecially will furnifh him with Evidences enough to convince any that will not be wilfully ignorant.
This effect of Petrifaction is a Symptom of old Age ; for as plenty of Spirituous, UnCtuous andCombuftible or Inflammable Juices and Moifture is afign of Youth : So the want of them, and of the Effects produced by them, is a fign of old Age, in which thofe unctuous Juices are confumed and the Spirituous Fluids wafted, and the Parts become dry, and hard, and Stiff, and unactive; neither fit to inkindle the active Flame or to maintain it ; neither fit to make The Earth other Subftances fluid, nor to be made fluid themfelves; which Fluidity is an grows old and infeparable Concomitant of that we call Spirituous Subftances: And 'tis the lefs fruifful. plenty of thofe kind of Subftances that maketh the Youthful Ages both of Plants and Animals to flourifh, and the Confumption and want of them, that makes both Plants and Animals to decay and grow old, as we call them, to grow ftiff, and dry, and rough, and fhrivelled ; all which Marks or Sypmtoms may plainly be difcovered alfo in the Body of the Earth, and I am apt to believe would be very much more if we could be truly inform'd of the former and younger Condition thereof; for I have very good Reafon to believe, that there has been times of the Earth wherein it hath had a much fmoother and fofter, and more fuccous Skin than now it hath, when it more abounded with Spirituous Subftances, when all its Powers were more ftrong and vegete, and when thofe Scars, Ronghnefs and Stiffnefs were not in being; and tho ${ }^{3}$ poffibly fome may think all thefe Conceptions to be groundlefs and meerly Conjectural, yet I may in good time manifeft, that there are other ways of coming to the difcovery of many Truths than what have been to this purpofe hitherto made ufe of, which yet are not lefs capable of Proof and Confirmation, than Hiftories or Records are by Coins, Infcriptions or Monuments. And tho' it may feem difficult to underftand or be informed of the State of the fubterraneous and inacceffible Regions, and of the Ages before Hiftory, yet Ido not look upon either as an impoffibility, no, nor as infuperable by the Induftry of a few, nay, of a fingle Perfon. And poffibly I may. fome other time fhew divers other ways of Inquiry, and other Methods of Demonftration of Caufes than what have been yet applied to thofe purpofes.

Nor is this Affertion of the growing old of the Earth to be looked on as to great a Paradox, or as Heterodoxical, or Scifmatical, for we find in Scripture that the Kingly Prophet David in the 102 PJalm has an Expreffion that doth plainly affert it, not only of the Earth but even of the Heaven. Of old haft thou laid the foundations of the' Earth, and the Heavens are the works of thy bands, they ghall perijh, but thou hhalt indure; yea all of them frall wax old like a garment, as a vefture fhalt thou change them, and they frall be changed. Which Expreffion is almoft verbatim repeated by the Prophet IJaiah, Chap. 51.v.6. Lift up your eyes to the heavers and look upon the earsh beneath, for the heavens Shall vanijh
away like Smoke, and the Earth fhall wax old like a Garment. Nay, this Expreffion of the Pfalmift is verbatim repeated by St. Paul in the ro. I1. and 12 . Verfes of the Epiftle to the Hebrews. By all which it is evident at leaft, that David, Ifaiah and St. Paul were all of that belief. I could produce many Expreflions to the like purpofe both in Sacred and Prophane Hiftories, both of Chriftian and Heathen Writers, but thofe I have quoted I fuppofe may be fufficient to anfwer Objectors of that kind.

As for any other Objections that may be brought againft this Doctrine, fuch as the equal Stature and Ages of Men for fo long time as we have had any Hiftory; from the want of Hiftories of fuch Juvenil Eftates, from the Permanency and Duration of all the Species of Plants and Animals in the fame Eftate, from the Incorruptibity of the Heavens and Caleftial Bodies, and fo of their Influences, Caufations, and many other of the like Nature; I doubt not to be able to give a fatisfactory Anfwer if any of them fhall be preffed or infifted upon, tho' at the fame time I cannot hope that all will be convinced, much lefs, thatall will confefs themfelves to be fo, tho' really they are. All I can fay, is Valeat quentum volere poteft, let every one enjoy his own frcedom.

AN Extralt of a Lecture read July 18. 1688. relating to the Confequences and Concomitants of Earthquakes, and the alterations caufed by them in the Confritution of the Air as to Sicknefs, \&c. Ne.xt. follows an account of an Earthquake in China, and another in Spain.

TH E Aim of my prefent Difcourfe is rather a Progreflion in the Theory of the Nature of the Air, than of any of the formerly mention'd Effects of Earthquakes, and the rather by the way of Query and Inquifition, than of poffitive Theory and Affirmation.

As Firft; Whether the late Fcaverifh Diftemper that was here fo fre-

of the Conffi

 tution of the Air after Earthquakes, quent, fuppofed by fome to be inclined to Peftilential, tho not fo Mortal, might not be caufed by fome Infections or poifenous Vapours caft into it by thofe late Eruptions in Italy or America?Secondly, Whether the coldnefs, unfeafonablenefs of the Spring, the ftrange Rains, Storms and Tempefts, and other fuch unufual Accidents, , that have lately happened in the Weather, may not have been caufed by the faine Efficients that caufed the Eruptions?
Thirdly; Whether it may be reafonable to conceive, that there could be any Communication Subterraneous between thefe places of thofe Eruptions in Naples and Lima; or whether it were Superterraneous through the Air and更ther?
Fourthly, Whether it may be rationally conceived, that Steems raifed into the Body of the Air in Lima or in Naples could becontinued fo long in it as to be conveyed from either of thofe places to England, L.ondon, \&c. ?

Fifthly, How long time may be judged neceffiary for fuch a Conveyance?
Sixthly, Whether fuch Diftempers of the Air may be precedent to the Diftempers within the Earth, and fo be of the Nature of a Procatarctick caufe of the Earthquakes, and if fo, whether thofe Diftempers may arife from the Nature of the Air itfelf, or from fome external and influential Caufe, either from the Ether, Comets, or fome of the more Confyicuous Cæleftial Bodies?
Seventhly, Whether there may be not fome general, tho yet unknown, Caufe, that may produce both thofe effects in the Earth and thofe in the Air, nay, and thofe in the Æther alfo, fuch as Comets and fome kinds of Meteors alfo ? becaufe of the ufual Concomitance of them; as will in part appear by fubfequent Relations.

A Dijcourre of Earthquakes.

Thefe pofibly may be looked upon as not very eafily folvable, and therefore not fo proper to be propounded as Queries, unlefs they could affo be as fatisfactoraly anfwered. I muft leave every one to Cenfure as he thinks meet, only this I muft add, that the firlt ftep towards Knowledge is Inquifition.

And that I may manifert that thefe Queries are not altogether at random, I fhall add fome Natural Hiftories, that may poflibly give fome hints of their Solution ; and thofe fhall be the Accounts of fome Accidents or Effects fimilar to thofe, which have lately happened at other Times, and in other Places; from whofe Congruities one would be apt to conjecture a fimilitude of Caufes, and if not a necelfary, yet fomewhat more than an accidental Concurrency of Effects, and a kind of Periodick Revolution of them.
In the Year 1672, in the Iflands of the Archipelago, that is, the Inlands of Greece, this Winter was fo Stormy and Tempeftuous, that not only the Trees and Plantations, but the Houfes alro were deftroyed by the Lightning and Hail ; fo that both the Towns and Villages became almoft unknowable, being reduced to Rains.

In the Barbadoes alfo was a moft violent Hurricane, in which many of our, Nation Perifhed.

- Near Ancona, Fauno and Rimini, there were this Year, in April, many Houfes overturned by an Earthquake; and more efpecially in Romania and St. Marc, there were above fix hundred People killed, and above quaruple that number hurt:. At Rimini the Cathedral Church was overthrowed, the Bells fhaken out of the Tower, and many People loft their, Lives. At Fauno twenty eight Perfons were killed by the fall of a Bell. The Churches of the Theatines, St. Agnie, St. Apollonce, St. Mary de la Gomia, St. Innocent; St. Bernard, St. Mary della Colonolla, and all the others except only thofe of the Capuchines, and of Mariade Mari, were endamaged. A great number of Palaces and Houfes were ruined: This happened whilft People were at Church; fo that above fifteen Hundred were killed, and many more were hurt. At Pe faro and Senegallo the Walls of the City and many Chimnies were thrown down. Ancona and Rimini were abandoned by their Inhabitants, who were conftrained to lie under the open Canopy of Heaven.
- September the 30 th., of the fame Year, there was a Hurricane paffed trough all Spain, but it was moft furious about Madrid, infomuch that it bley down the Roofs, Chimnies, nay, and the Houfes too; as allo the Towers and Churches; infomuch that the Damage was exceeding great along the Prado' and at Buon Retiro. But all this was nothing in comparifon of what happened the fame Day inalmoft all the Countries of Spain; for this furious Tempeft caufed fuch Ravages in Andalufia, Gallicia, Caffil, Grenadr, Valencia and Bifcay, as wére truly Amazing: But what was moft remarkable was this, that three Days after the Gallions of the Plate-Fleet, which came from the Weft-Indies, being arrived at the Iflands of Terceras, felt not the leaft of it.

In this Year were alfo feen two Comets,---one in Fanuary another in Aprit.
Eight Years before this, namely, in 166_{4}, were two Comets alfo; but all the other Natural Hiftories, or Phyfical Accidents of that Year I have not yet procured.----

But eight Years after this, viz. 1680 , which is now alfo eight Years fince; Firf, For the Comets they are yet in moft Mens Memories, and befides' there are Hiftories enough extant; but next for the Earthquakes: Firft, By a Letter from Botavia we have an account of a great Earthquake that happened in China about Peking the preceding Auguft, viz. That the ${ }^{13}$, of "Augiuft 79, about ten in the Morning, there happened a moft terrible' Earthquake' which overturned almoft all the Houfes of that great City and the parts thereabout, whereby a World ofPeople were deftroyed in a moft dreadful inaniner, befides multitudes that were hurt, whofe number we cannot yet learn to this Hour: Two Heads of certain Beafts, which were Carved and fixed over the Imperial Palace Gate, were beaten off and thrown down to the Ground by the force of the fhake. All the Palaces of the Mandarines, and their Families, and the Courts of Juftice round the Palace were tumbled down; the Emperor commanded the principle Mandarines, that had command over the five parts of
the City of Peking, to examine themfelves in their proper Perfons, and to give him an account of all the damages that had happened, that he might the better advife of ways to help the Poor People that had fuffered. This they did, and advifed, that if his Majefty would diftribute to each two or three Crowns of Silver at twenty five Frecks the Crown, it might be a fufficient fupply: But he thinking this was too little, commanded ten Thoufand Crowns to be taken out of his Treafury and diftributed for the prefent Neceffity. The firft, fecond, and following Days that it lafted, the Earth was fhaken five, fix, or feven times a Day, but not with fo much violence as by the firft; fo that the Inhabitants were in fuch Confternation as to forfake their Houfes; the Soldiers and their Wives were moft afflicted having nothing left to fubfift ; by Day they were expofed to the Sun, and by Night to the cold Heaven, which much incommoded them. The Emperor alfo was in great Pain to know the Damages that had happened in the Neighbouring Parts by this Earthquake, and commanded one of his great Mandarines, named Sansolio, to inquire and inform him of them, who returned this Report, That the $\frac{13}{23}$ of Auguft, whilft the Heaven was covered all over with dark Clouds, the Earthquake fhocked extraordinarily the City of Tongfuabout a Days Journey from Peking, that all the Imperial Magazines there had been overturned, as likewife the old Walls of the City; fo that of ten Parts of. the City fcarce one remained which had not been indamaged, whofe pitiful Condition was-deplored by every one. The Commiffioners of the Magafines Emperial who had efcaped, render'd themfelves prefently to His Imperial Majefty to give him an account of the flying of the under Officers for the Confternation, and of their fear of the Robbing of the remaining Rice and Provifions by Thieves, which caufed him to fend them fixteen Hundred Soldiers.for their Guard. The Primier Intendant of the Navy was killed by the overturning of his Houfe. The Emperor had alfo reported to him, how the Robbers had wafted much of his Treafury in the Magazines that had been overturned; and upon the confideration of the general Calamity, the Emperor makes a moft Pious Speech to the principle Mandarines, which I fhal not trouble you with, only my Author adds, What Chriftian could have fpoke better? Will not fuch as he rife up in Jurdgment againft many Chriftians? This is a fhort Account of what happened to two Cities of Cbina: I fay Cities; for tho' generally we have only an account of the Damages caufed to Cities, Towns and Men, yet we are not to conceive, as if the fhaking and diforders of an Earthquake were only aimed at Cities like Marks and Goaleg to be fhot at ; no, certainly, there may, in all fuch Concuffions and Devaftations have happened much greater and different Effects from thofe which come to our knowledge; for that the moft part of the World have little concern for what may happen in the Mountains, Hills, Plains, Forrefts, Seas, *夭c. which make not any great or publick Calamity to the more confiderable fort of Men ; wherefore queftionlefs, tho' many frange Effects of this kind may alfo have happened, and may have been feen and obferved by fome Men, yet they are but as it were In tranfitu, and quickly forgotten, fince there is none to Record them. So that many thoufands of fuch Effects have been fwallowed up by the Oblivion of Time, where one has chanced to get by fome accidental hint to lie Recorded by chance among the heap of other Hißtories. Cometsindeed, as glaring in every ones Eyes, have found, among the multitude of Obfervers, fome that have Recorded fomewhat of them to Pofterity, but even among them alfo, I doubt we fhall not find that one of ten has obtained a Hiftory. But this Earthquake in China was not the only Accident of this time which I would mention; for upon the Coaft of Coromandal, the Sea fo overfowed the Country, that infinities of Men and Cattle were deftroyed, many Cities and Villages were drowned. This overflowing was alro found at fafnapatnam, where it did much mifchief to the Fortification, and to the Country, and the Cattle, but not fo much to theMien.
Nor were thefe kind of Accidents only felt in India, but the fame Year there happened a conficlerable Earthquake in Spain, and particularly at $M a^{-}$ baga.

A Difcourre of Earthquakes?

All Spain was this Year fo perifhed with Drouth, that not only the Pits, Fountains and Rivers were dried, but the Harveft was fpoiled, and many perifh'd by this means: On the other fide in the Autumn arofe fuch horrible Tempefts and Earthquakes as were felt long after. After the beginning of September they had continual Thunder and Lightning, by which divers perifhed. The Hail fell fo on Pardo, a Pleafure-houfe of the Kings of Spain, that it rooted up the greateft Trees, and kill'd fo many Beaft and Foul, that not only the Fields were almoft cover'd, but the River Mancanarez; it much indamaged the Village Foncarral ; the old Bridge de Aranda de Duerro was born down by the Waters of the River Tagus, which run under, and did much damage to Ar anivez, fweeping away divers People, Cattle, Trees, Bridges, and Houles: The like Ruins were caufed almoft over all the Kingdom, infomuch that in one Village, only, forty People were loft. The greatef violence was at Madrid the twenty fixth of September, where the Water overflowed fo as to mount into the Garden of the Auguftines and throw down the Wall; alfo into the fair Parterres of the Countefs Ognate, and run into her Houfe, ruin'd the rich Furniture of Pistures, $\dot{\sigma} c$. of the lower Story; ruin'd the Stables and razed one Houfe. The River alfo bore away fifty Foot of ftrong StoneWall made to ftop the Paffage into the River Prado: This River one of the leaft in Spain, fo fwelled as to carry away almoft all before it, as four Iron Gates, and the Crofs of the Via Sacra. - It beat down the Bridge before Buon Retiro, and broke through the middle of the Stone Bank. It rulh'd into the Gardens of Noftre Damie de Arocha after it had beat down the Wall; it run into the general Hofpital carrying with it an Arch of Stones. The twenty feventh the overflowing continued with conftant Thunder and Lightning, when the River Mancanarez bore down the fair Bridge of Toledo of fixty Arches. The twenty eighth the Streams of Prado fo fiwelled by the Torrents from the Mountains, that all the Champain near it was drowned, the King and Queen of Spain were like to be loft in their return from Noftre Dame de Arocha; Malaga, a City of the Kingdom of Granada, fituated on the Mediterranean, twenty five Miles from the Streights, a Place Great, Rich and well Peopled, had, the ninth of this Month, fuch violent Shocks of an Earthquake, that all were frighted, the Sea was fo difturbed; that the Fifh leaped out of the Water, and the Ships in the Harbour were caft above twenty Foot from their places, which the Mariners believed to be funk; the Harbours and Walls were funk, together with the Bulwarks, Towers and Fortifications of four Parifhes, of which the City confifted, having 4284 Houfes, 1057 were ruined to their Foundations; 1259 fo decay'd, that they muft be Rebuilt to be Habitable. Divers Churches and Palaces felt the effects alfo ; five Cloyters of Religious with the People were utterly ruined, and above all, that of St. Francis, where Stone was not left on Stone, where fourteen Perfons Perifh'd, four Hofpitals, one Colledge, the Bifhops. Palace, the Palaces of d Diego de Argote, de Fo. de Torrez, de Diego de Cordua, and a fair Houfe joining to the Cathedral was thrown down, yet the Church which had been Repairing and Beautifying ever fince 1521 fcaped, tho' divers times flaken. In the Suburbs Los Perchelez two hundred and twenty five Houfes were thrown down, fo that in all 1282 Houfes were deftroy'd. Many Houfes in the Confines of Malag a were overturned; befides the Earth opened in divers places and difgorged Waters in great abundance, which fwelled the Rivers and made them overflow. Many Houfes in the Villages were deftroyed, as at Pizaria four Miles from Malaga, fifteen of twenty four Houfes were overturned ; fome Mountains were difplaced, and divers Perfons and Cattle loft: The Wall of Albaurin de la torte, two Miles from Malaga, opened four Foot, but clofed again: The Jafper Columns of the Church were lifted up and fetled down again on their Pedeftals. At Competa, fix Leagues from the City, nothing but the Tabernacle and the Crofs of the Church remained wholê. At Aloizana forty Houfes were tumbled down, as many at Cartama, and thereabout alfo at Coin, and a great number of People perifh'd. At great Alhaurin two hundredand forty Houfes and the Church were deftroy'd, of which only fifty three were fomewhat Habitable. In the City of Minorz five Leagues from Malaga, thirty feven Houfes were tumbl'd down, and fif.

A Dijcourfe of Earthquakes.

teen Perfons crufh'd. The Church at the City Binal-Medera fell on a heap, and all the Houfes render'd unhabitable. The Earth opened at Veles Malag.a, and fo fwelled a River, which run fome fpace from thence, that it rofe ten Pikes above the tops of the Houfes, which it fquafh'd in rumning. Many Houfes were ruin'd at Aloro, others much endamag'd, with the Cloifter of St. Francis. All.the Churches of Granada were fhaken, and a Chappel in the Church of Mercy ruin'd: All which were fad Spectacles.
I have given the Particulars of the whole Relation, moft of which concern Buildings, Men and Cattle, thofe being the Particulars moft People are affeicted with and fo obferve, and you find only two hints, as it were, of other Effects, the one is of the removing feveral Mountains, the other of the Earths opening and difgorging a Flood. But'tis not to be thought but that an inquifitive Naturalift might have fournd ten times more remarkable Effects in the Country than the fhaking down a few Houfes in the Towns and Villages, all, which, if taken notice of, are foon forgot and loft, and fo have been in former Ages, and therefore no wonder if we hear nothing of them in Books : But Nature itfelf has preferved fomewhat of the memory of them by the Medals or indelible Characters of Shells or other Petrify'd, or otherwife preferved Subftances, which any, that have Senfes and Underftanding, mayeread. But this is not the aim of my prefent relating thefe Hiftories, but to give an example of a Contemporarinefs of Earthquakes at great diftances upon the Earth, and a fimilitude of Effects with thofe we have this Year heard of from Italy and America; nay, and let me add what we have had in London and England, viz. a kind of Agueifh Diftemper, yet not Peftilential, which, 'tis well known, has been very general; for I find that 'in Ottober Agues were as frequent this Year in France, as the late Cold or Diftemper was here : It was then that Dr. Tabour cured the Prince of Conde, and many other Perfons of great Quality, among the reft the Dauphinefs firft, and afterwards the Daupbin himfelf, by a Medicine he had invented; tho' Tabours demanding five Thoufand Crowns for difcovering his Receipt, made the Dauphin firf make ufe of other means, but without effect. (I will not like an Aftrologer name to you the Occurrences that then happened at Cologne, nor make comparifon with the prefent, but leave thofe to the Aftrologians, © © c.) The Plague alfo this Year 1689, was very much at Prague, fo that fome judged there died in that City thirty Thoufand, at Drefden above four Thoufand, at Leipfick about three Thoufand; I cannot fay there hath been a Comet this Year, but I have been confidently told; that there appear'd one in the Mornings about a Month fince, but I could not have the luck to fee it, tho' I looked for it divers Mornings after I heard of it, but 'tis more likely it may appear in October, or later; but that belongs to anpther Head, the Affected Earth and Infected Air:being thofe I defigned at prefent to compare; and in thefe we find the effects in Chinin and Coromandel eight Years fince to anifiver thofe of America this prefent Year, and that then of. Spain to this now of Italy; and thofe then of France and Germany to the late here in England, tho' in all particulars thofe of the Year eighty feem to exceed thofe of the prefent Year. But as the Relations of that are but fhort and imperfect, fo are thofe of the prefent as yet much 'more; but 'twere to be wifh'd fome more full might be obtained and Recorded before they be forgotten, which a little fpace of time will otherwife effect, and:'tis not to be doubted but we might hear of much ftranger effeis of the Lima Earthquake, than yet have-arrived, if care were taken to procure a fuller account of them. And by the'Yefterdays Bruffels we are informed of a Cleft in a Mountain belonging to the Marquis de Tarracufa, of four Spans broad and two Miles long, of which they can find no bottom, and of a Fire fhot into the Heavens like a great Beam, of which they loft the fight, nct knowing whether it went.
But in the mean time ponibly it may not feem altogether unreafonable to fuppofe, that fuch an Eruption may emit poifenous Vapours, as well as fometimes poifenous Waters; as appears by that of France which I have Printed in one of my Collections. Nor may litfeem fo frange to fuppofe its effect may operate at fuch diftances,-and not at the very place; when we confider how fiery and volatile fuch Steams may be, how violently fhot into the Air,
and blow far off the Duft and Afhes of Fecla, ettna, the Palma, and many others have been carried in the Air before they have fallen, of which Inftances may be produced. And that, in probability, the lefs active or dead Earthy Materials are thofe, which fall near the place, whofe Qualifications may be of differing Natures. Nor will any very long time bethought requifite for their tranfport to far diftant Countries imbody'd in the Air, when I have proved the velocities of its motions. Nor will it feem frange to one that fhall well confider the known Effects of the feveral Winds, to fuppofe fuch kind of tranfports: But of thefe Particulars I fhall fay more ujon fome other occafion.

THis Lecture was read May the 29th. 1689, and Anfwers two Objections againft the Athor's Theory of Earthquakes, particularly as to Petrifactions.

> R. W.

IDelivered in my laft Lecture in this place, the Methods I had made ufe of for the founding and eftablifhing the Doctrines or Conclufions I had made concerning the Caufes and Reafonis of the prefent State and Phænomena of the Surface ofthe Earth, which was by a methodical Induction from thePhxnomena themfelves of the moft remote, as well as the more approximate and immediate Caufes thereof. But notwithftanding all the Arguments I have alledged, and the Proofs I have produced in the delivery of this Theory, I fill find that there remain upon the Minds of fome fuch Doubts and contrary Perfuaions, that they cannot forfake their former Opinions; and therefore (tho' I think I have already fully proved every part, fo that the Confutations of fuch Objections would be but the neceffary Corollaries from the faid Doetrine, yet fince I find they are ftill infifted on as material Objections that will need a more particular Difcuffion and. Examination) I thought it not impertinent to examine them more ftrictly, to find the Power and Efficacy, or to difcover the Weaknefs and Infufficiency of them for the purpofe they are defigned. That thereby the Idola (as my Lord Verulam fays) which pre-poffers the Minds of fome Men, and moleft them in the difcovery and imbracing of Sciences may be detected, and, as much as may be, removed and diflolved, thereby to leave the Mind more free to Difcourfe and Reafon aright, without the prejudices of any unfound, unaccountable and unwarrantable Doatrines formerly imbrac'd.

The Objections I fhall at prefent examine are only two, viz:
Firft, That if thefe large Petrified Bodies, fuch as the Ophiomorphite Stone which I did formerly fhew to this Society in the place, be fuppofed to have objo iff. As to been the Production of this Shell of a certain kind of Neiutilus of that big- 10 .of nefs and fhape, which, in preceding Ages of the World, had been produced and perfected to that Magnitude in the bottom of the Sea, which then was near the place where they are now found, as I have argued for; then it will, neceffarily follow, fay they, that there have been, in former times, certain Species of Animals in Nature, which in fucceeding and in the prefent Age. have been and are wholly loft; for neither have we in Authors any mention made of fuch 'Creatures, nor are there any fuch found at prefent, either near the places of their pofition (as on the Shores or Sea about this Ifland) nor in any other part of the World for ought we yet know. Now, to fuppofe. fuch a Doctrine as doth neceflarily infer fuch a Confequence, is looked upon by fuch as abfurd and extravagant; for that it would argue an imperfection of the firft Creation, which fhould produce any one Species more than what was abfolutely neceffary to its prefent and future State, and fo would be a great derogation from the Wifdom and Power of the Ominipotent Creator.

To this firft Objection I Anfwer, Firft, That tho' it may póffibly be true, oft. Anforer. that there is at prefent no fuch Nautili to be found upon the Coaft or Shores
of the Lands where thefe forts of figured Stones are found, yet no one is affured that there are not fome of the fame Species, and as big in fome other parts of the World, as polfibly at the bottons of fome of the great Oceans. Of fuch Productions and thofe Multifarious both Vegetable and Animal, no one can doubt that has found in foundable Depths fuch variety of tefaceous and cruftaceous Animals there refiding, as in their proper and Natural Regions; which would by no means poffibly be produced or kept alive in parts of the Sea where they fhould want their natural Accommodations; one of which may poffibly be a fufficient degree of Preflure from the incumbent Column of Water, which, if fuch be necefary to their Life and well Being, we are no more to wonder that they fhould not be found in fhallower Waters, than thatMen thould not be found inhabiting the tops of the Andes, of the Atlas, Alps, or Caucafus, which from the thinnefs and coldnefs of the Air at thofe heights, are no ways fit for Refpiration and fuftaining Life. Now, that the prefent Land of England may have in formerAges had fome fuch Pofition with refpect to an incumbent Sea, I could produce feveral Arguments were they now material to the anfwering the prefent Objection, but I will not now infift upon it.

2d. Anfwer. But in the fecond place I anfwer, That tho poffibly there may be no fuch Nautilis to be found defcribed in any Natural Hiftorian at this Day yet 'tis poffible there may be many of the fame Species, and of as great Magnitudes in divers parts of the World, fuch as have been either not yet difcovered by The Europeans or but of late, or but little frequented; and fo tho' they may be there frequent and plentiful enough, yet none may have been brought thence into Europe as yet, or poffibly fo much as feen there; 'tis not to be doubted that there teally are great multitudes of differing Species of Vegetables, Infects, Beafts and Fifies yet in places lefs frecquented, of which we in Europe have hitherto had no knowledge or information; and tho' many ftrange things have been of late Years brought to our view, yet we may with Reafon enough affert, there are many more yet latent, which Time may make manifeft: For if we confider the fmall knowledge of things of this Nature that we yet have acquired, of places remote, even the moft frequented, we need not much wonder at the leffer information of fuch, as are not known or 1 lés frequented ; for not to infift.ipon the multitudes of Vegetables that have been newly fhewn to us by the Authors of the Hortus Malabaricus, and by Brennius, and others, we are put in liope, to fee the Defcriptions of as many more yet by the fame Authors, from the fame places, which yet are but two fmall fpots in refpect of the vaft Spaces, and variety of Soils and Climates yet unfurvey'd; and 'tis not to be doubted but that the Earth; and Air; and much nore yet, the Seas of feveral Countries and Climates would afford as great varieties of Birds, Beafts, Infects and Fifhes, if there were found knowing and diligent fearchers and defcribers of them: And that this is fo, I thall mention only one Inftance, becaufe 'tis pertinent to the prefent Subject, nameIy, that I have had a peculiar, kind of Nautilus brought from the Caribys, where they are in great plenty, and yet I do not find any Author has taker notice of them, nor could I ever meet with more than one Man that had taken notice or knew any thing of them, tho' the fland has been long inhabited and planted by the Englifh; which Shell I have formerly fiewn to this Society, who were fatisfy'd by the Characteriftick that it is a Species of the Nautili.

And as we yet waht a Hortus. Sinenfis, Yaponenfis, Tartaricus, Canadenfis, Virginianus, Brafilianus, Peruvianus, Americanus, \&c. fo we want the Natural Hitories of the Animats of moft kinds, of thofe places, and even of the Fifhes which are frequently enough met with by Navigators, tho' not further taken notice of than as they may be ufeful for their prefent Food, or the like. We are therefore tiwo hâfty in our Computations and fumming ap all we have, and concluding that muft be the fumme of all that can be had for that there are yet many particulars behind, that muft come into the fame account before the inclofure be fully made and the Books be fhut, if at leaft a full Account be expected. We are informed by Mr.-----Cole, and divers other late inquifitive Men, how many new things have been difcover'd here at home, where

A Dijcourje of Earthquakes.

yet there have not formerly been wanting inquifitive Men; what then may we not expect from other places where none fuch have ever come, at leaft; that we know of ?

Again, how apt fhould we have been, if there had been found a Petrify'd Stella arborefceus Rondeletii, before we had been certify'd of the exiftence of fuch a ftrange fhaped Fifh of the Species of the Stellc, to have concluded there had never been fuch a Filh, becaufe it differs fo very much from the Star-fifhes or five Fingers, as they term them, commonly taken on our Coaftsं? The like may be infer'd concerning the ftrange variety I have feen of the E en chini brought from feveral parts; for they differ much more from one andethet than the Helmet Stones, which I have hitherto feen, do from feveral forts of them: The like may be faid of the varieties of Sharks Teeth, as to one another, and as to the Glofopetric found upon the Land:

So that upon the whole we may conclude, "that it does not neceffarily fol low, that thofe Species of Nautili, mult be now wholly loft that produced the moulding Shells of thefe: Ophiomorphite Stones, we find here in England, becaufe they are not now found upon out Shores; nor becaufe we caniot nowt certainly affirm where they are to be found, and therefore that the :induction or inference is made from too few Particulars, and may, nay, ought to bee examined a-new, when we can procure a more full Account of the Productions of the Shores and Oceans, which Time:and Induiftry may poffibly effect.
But not further to infift upon this way of Defence, we will, for the prefent, take this Suppofition to be real and true, that there have been in former times of the Word, divers Species of Creatures, that are now quite lof, and no more of them furviviug upon any part of the Earth. Again, That there are now divers S pecies of Creatures which never exceed at prefent à certain Magnitude, which yet, in former Ages of the World, were ufually of a much greater and Gygantick Standard; fuppore ten times as big as at prefent; we will grant alio a fuppofition that feveral Species may really not have been created of the very Shapes they now areof, but that they have changed in great part their Shape, as well as dwindled and degenerated into a dwarfifh Progeny; that this may have been for confiderable, as that if we could have feen both together, we fhould not have judged them of the fame Species. We will further grant there may have been, by mixture of Creatures, produced a fort differing in Shape; both from the Created Forms of the one and other Compounders, and from the true Created Shapes of both of them. And yet I do not fee how this doth in the lealt derogate from the Power, Wifdom and Providence of God, as is alledged, or that it doth any ways contradict any part of the Scripture, or any Conclufion of the moft eminent Philofophers, or any rational Argument that may be drawn from the Phznomena of Nature; nay, I think the quite contrary Inferences may, nay, muft, and ought to be made.
For firft we do find that all individuals are made of fuch a Conftitution, as that beginning from an Atom, as it were, they are for a certain period of Time increafing and growing, and from thence begin to decay, and at laft Die and Corrupt. And in every part of their Life they are in a continual change or progrefs, from möre perfect to more imperfect, there being a continual growth of Death and Decay to the final Diffolution; yet this is not Argument againft the Omnipotence, Providence and Wifdom of the Creator, who thought fit fo to Create them. Again, we find that the Powers and Faculties of the animated Bodies do continually exert a fucceffion of differing Effects, and continually change the Figures and Shapes from one degree to another. As we fee that there are many changings both within and without the Body, and every ftate produces a new appearance, why then may there not be the fame progreffion of the Species from its firf. Creation to its final termination? Or why fhould the fuppolition of this be any more a derogation to the Perfection of the Creator, than the other; befides, we find nothing in Holy Writ that feems to argue fuch a conftancy of Nature; bat on the contrary many Expreffions that denote a continual decay; and a tendency to a final Diffolution ; and this not only of Terreftial Beings. but of: Celeftial, even of the Sun, Mioon and Stars and of the Heavens themfelves. Nor have

I hitherto met with any Doctrine among the Philofophers; that is repugnant to this Doctrine, but many that agree with it, and fuppofe the like States to happen to all the Celeftial Bodies, that is, to the Stars and Planets that happen to the Individuals of any Species; and confequently if the Body of the Earth be accounted one of the number of the Planets; then that alfo is fubject to fuch Changes and final Diffolution, and then at leaft it muft be granted, that all the Species will be loft; and therefore, why not fome at one time and fome at another ? This Objection therefore, I conceive, is of little validity againft the Doctrine I have delivered, and therefore I hhall proceed to the fecond Objection, and examine the Validity thereof.

2d. Obj. As to figured Spars and Chryfals.

It is Objected then in the Second place, That fince it is manifeft, that there are many curioufly figured Bodies found in the Earth, which cannot be imagin'd to be produc'd by the Caufes and Means that I have alledg'd, as the Shapes of Salts, Sparrs, Ores, Chryftals, and divers other kinds of regular mineral Bodies, alfo, Agates Mochufes, curioufly fpeckled Marbles, and the like. Now, fince it mult be granted, that they are made by a Plaftick Faculty, why may not that Faculty extend alfo fo far as to be the caufe of thofe other Figured Stones, which refemble Shells or other Animal or Vegetable Subftances?

To this I anfwer, That tho' it be manifeft, that Salts, Chryftals, Sparrs, Ơ. . do plainly receive their regular Figures from the Texture or Nature of their own Parts, as is evident, moft efpecially in the Chryftallization of Salts, and the Petrifactions of the like Figur'd Subftances, yet the Figures, and painted and ftained Shapes, as it were of Agates, Mochus's and the like, are not to be afcribed to the Defigns of Nature, but to the Productions of Chance; for inftance, the Pictures that in Mocbins's feem to reprefent Trees, Hills, Houfes, and other perfpective Reprefentations; they are no otherwife caured than by fome Clefts, or Flaws in the faid Stones, into which fome colour'd Juices have infinuated themfelves, and by that means formed thofe Reprefentations which appear in the Body of the Stone, and that this is $\mathrm{fo}_{\text {, }}$ and may be Artificially produc'd by feveral Bodies and Liquors; which have no affinity, either with Agate, Mochus, or Marble, I can make it plainly appear by Experiment, which, if it be thought fit, I fhall produce either now, or the next Meeting.

THe Experiment here mention'd, was by taking two flat Marbles or Glafs-plates, and laying upon one of them Jeveral drops of a dark Oil-colour, fuch as Painters ufe, and prefing the other flat Stone or Glafs upon it, by that comprefure feveral curious Reprefentations, like the branchings of Vegetables, and the like, mere exbibited; which explain'd the Reprefentations in Agates, ovc. a different colour'd mineral fuice infinuating itfelf into the Clefts or Interffices of the Stone, and aftermards petrify'd to an equal bardnefs with the reft of the Stone; tho' many times there is a different bardme/s in the Veins, or Reprefentations from the other parts of the Stoze, as is feen in Marbles and other veined Stomes.
R. W.

We have lately had an Account from Mr. Tentzelius Hiftoriographer of the Duke of Sa.xony, of the Skeleton of an Elephant found buried in Germany, at the Foot of a Hill or Mountain at fourteen Foot deep, and cover'd with Feveral Layers of Earth, but butied in a Sand, which the whole adjacent Mountain is found to confift of, being at a place call'd Tomna near Erfond in Germany: [I take notice of thefe Particulars, becaufe they may be found to give fome light as to the explication of an other Phænomenon which I fhall by and by relate.] Now, tho' Tentzelius really judged and pronounced it to be the Skeleton of an Elephant, yet it was not without the Contradiztion of many others of divers differing Opinions; the greateft number of which were for afferting it to be a Lufus Nature, as it feems the whole Colledge' of Gottha, and divers other Learned Profeffors; but their Arguments are prov'd infignificant, and his own Doctrine fufficiently Eftablifh'd in the Epiftles which he wrote to Snr. Magliabschi and Publifh'd in Print, and this Honourable So-

A Dijcourfe of Earthquakes.

ciety were yet farther convinc'd of the certainty of it, by the Fragments andSpecimens of the trials he had made of feveral of thofe Bones: But, after all,great Difficulties arofe concerning the Means and Caufe of the burying of itat fuch a place, and at fuch a depth and the covering of it, to be the natural Layer of the Earth, and not the Artificial filling upof a Grave or Pit dug by Art to bury it: Some attributed it to the effect of Noab's Flood, as 'tis ufual for moft to do in the like Cafes, where they can think of no other Caufe; to me, 1 'confers, it feem'd rather to be the effect of fome preceding Earthquakes, as I formerly here deliver'd in a Difcourfe on that Subject, when I firft met with a Relation of it, as I have in other Difcourfes alfo about Lignum Foffle or Subterraneous Trees, and other Subftances found buried, and now dutg out from under the Ground, not only in Italy, Germany and France, \&c.' but even in England ${ }_{2}$ Scotland and Ireland. Now, becaufe by our forreign Gazets, and allo by our own from them of a late Phænomenonin the Eaft-Iadies, we have the Hiftory of a late Earthquake that happened there this prefent Year, whofe effects do give an evident Proof of the Doctrine which I fuppofed, and indeavour'd to maintain, I thought it would not be improper to mention it here, and to add it as a further addition to the Hiftory of Nature. I fhall indeavour to get the full Account of it Printed at Batavia in Fava, an. Abftract of which was Printed in the Harlem Currant in Ottober laft, and an Epitomy of that in our Weekly News-papers, which was this. Tranfcrib'd out of the London Poft for Sep. 30. 1699. Printed for Ben. Harris.

- Amflerdam OEtober 2. Our Letters from Batavia in the Eaj-Indies of the ' 8th of February, fay, That on'the fifth of Fanuary, about two in the Morn' ing, a moft terrible Earthquake happen'd, which was fo violent, that one
' and twenty Brick Houfes, and twenty others were overturn'd, fo that if it
' had lafted a little longer they muft have been all thrown down. About 40
- or 50 Perfons were Buried alive under the Ruins of the Houfes that fell, and
' near the fame number were Lamed. Some fmall time before the Earth-
- quake, the Blew Mountain, otherwife call'd Mount Sales, burft with fuch
' a terrible Flame and Noife, that it was both feen and heard there, tho' fix
- Days Journey diftant. Next Morning the River which falls into the Sea ' here, and has its Rife from that Mountain, became very high and Miuddy, ' and brought down abundance of Bufhes and Trees half Burnt, and the ' Paffage being ftopt, the Water overflow'd the Country round, all the ' Gardens about the Town, and fome of our Streets; fo that the Fifhes lay - Dead in them: It was a whole Month before the River could be clear'd, 'altho' 3000 Indians were daily imploy'd to clear the fame, during which ' time we were oblig'd to fetch frefh Water from Bantam, which is forty Miles.
' All the Fifh in the River,except the Carps, were kill'd by the Mud and dirty ' Water: A great number of drown'd Buffaloes, Tigers, Rhinocero's, Deer, ' Apes, and other Wild Beafts, were brought down by the Current $;$-and - notwithftanding a Crocadile is Amphibious, feveral of them were found ' Dead among the reft.

The Phænomena of this Earthquake, tho' they afford a probable folution of the more common Phænomena of, foffile Trees, Wood, Nutts, Leaves, or. of Vegetables, and of the foffile parts of Animals, ov. fuch as Teeth, Hornes, Bones; yet there are fome other ftrange Phænomena, which I conjecture to have been effected by the fame efficient Caufe. If it be inquir'd what thofe ftrange Phænomena are, that I may give you an Inftance, I fhall acquaint you with one I late met with and receiv'd from a curious Perfon, who made the Obfervations himfelf, of which I have fince been confirm'd by another curious Perfon who had feen and obferv'd all the fame Particulars. The Relation, in fhort, is this.

A Defription of the Ridge of Mary Burrow in the Oueens County in Ireland.

'This Ridge runs North and South, from Tymoboe to Mary-burrom, about ${ }^{6}$ feven Miles, from thence towards Montmelick, four Miles further, and as ' this Author was inform'd through the King's County of Weftmearh, towards
' Atblone, but in thefe laft mention'd Countries is much lower than' in the
${ }^{6}$ Queens County.
'From the faid Tymohoe to Montmelick, being both in the Queens County,
' it is about fourteen or fifteen Foot high, where higheft, as near as this Au-
${ }^{6}$ thor can conjecture, being laid as irregular as the Sands are ufually laid by
'the Waves on the Sea-hoar, with feveral bendings in and out, high
© and low; the Sides fo fteep, that in molt places not eafy to ride up, and in
${ }^{6}$ many places Trees growing on the Sides, and a little thin Skin of Grafs,
' apt to be burnt or fcorch'd with the leaft dry Weather.
${ }^{6}$ It is fo broad on the top as to afford room enough for four Horfe-men to
${ }^{6}$ ride a Breaft, the Road, in many places, lying on the top thereof.
'It is compos'd altogether of fmall rough Pebble grayifh Stones about the
© bignefs of a Mans Fift, and other fmaller ones mix'd with Sand or Gravel,
' but no mixture of Clay or Loam, as this Author ever obferv'd, which feveral

- times he fought after as he travell'd that way.
'None of the Lands adjacent to this Ridge have any of the materials where-
cof it is compos'd, mix'd with their Soils; in moft places there are Boggs to
© within a very few Yards of its Foot, and where any Arrable lies near if, there
s is no mixture of the above Pebble or Sand therewith.
'So that it fhould feem probable that this Ridge of Pebble and Sand was
${ }^{6}$ brought from fome remote places by fome violent motion of Waters, and
${ }^{6}$ difpos'd into the form it now remains in, which induc'd the Author re-
- veral times to fay, he believ'dit to be the effects of Noab's Flood, the Con-
${ }^{6}$ fideration whereof he refers to better Judgments.
' If any farther Particulars relating to this Ridge are defir'd, and a few - Lines fent by the Poft directed to the Author at Rathdowney near Burris, is
'Ofory, Ireland, they fhall be carefully inquir'd into and anfwer'd by
Nov. the 14th
Your moft bumble Serjant

1699. Ric. Prior.
This Ridge is diftant from the Sea about thirty Miles.
The fame curious Perfon who is now return'd to his Eftate, which lies in the Queens County not far from it, has promifed me to make many other Ob fervations about it, which I defir'd, and has promis'd to fend me an account of his fuccefs, by which I hope I thall be better enabl'd to explain the Caure and Reafons thereof; 'till when I Shall forbear for the prefent to make any further Reflections on it.

THis Lectiure treats of Animal Subftances found buyied in the Ground in fevers! parts of the World, and of a Ship found in Switzerland with the Bodies of forty Men in it at aconfiderable depth under ground. Secondly, An account of a Sibip found in the bottom of a Lake in Italy, fuppofed to be ever fince Tiberius's Time, with feveral Deductions and Queries thereupon.
R. W.
of Animal subftances found buried.

MAT 26. I697. We have lately had feveral Accounts of Animal Subftances of various kinds, that have been found buried in the fiperficial Parts of the Earth, that is not very far below the prefent Surface ; as particularly the parts of the Head of an Hippopotamus at Chartham in Kent, that of the Bones of the Mammatoroykoft; or of a ftrange Subterraneous Animal, as the Siberians fancy; which is commonly dug up inSiberia, which Mr. Lidolphus judges to be the Teeth and Bones of Elcphants; and indeed that peice which I faw of it was much like Ivory in its Texture, only the out fide of it feem'd to have been cover'd by a kind of Skin, which I never heard of or faw any Elephants Tooth fo cover'd with; then the Bones and Teeth of a large Elephant lately dug up in Pomerania, of which I fome while fince tranfcrib'd the Relation out of one of the late Monthly Mercuries, and read it at one of the Meetings of

A Difcourse of Earthquakes.

this Society; alfo the great Bone in the Repofitory prefented to the Society by Sir Tho Brown, which was found upon the foundering or calving of fome Cliff in Norfolk, which feems to have been the Leg-bone of fome Elephant, if it be not fome Bone of the fore Fin of fome Whale; 'tis equally admirable which foever it may be found to be by one skill'd in the Ofteology of thofe Creatures; and laftly the greatHornes that have been often found and dug up in Ireland, of which the account is Printed in the laft Tranfaction; all which, and divers others which I could mention, do thew that the prefent fuperficial Parts of the Earth have fuffer'd very great Alterations, which I in my Lectures in 1664. indeavour'd to prove to have been the effects of fome preceding Earthquakes, without which Suppofition I cannot conceive any probable Caufe can be affigned, much lefs can there be any fuch rational Caufe affigned for the Pofition of many other Phænomena which have been obferv'd of fuch like Subftandes found and dug up at much greater depths, that is, of more than two or three Fa. thoms below the prefent Surface, at which depth thofe I have mention'd are faid to be found. I conceive it will be very improbable to aflign the Caufe to the univerfal Deluge of Noah, and müclymore fo to afcribe it to any particular Deluge, as to that of Deucalion, \&cc.for how could theFlood bury theShells of Fifhes in the middle of fome of the higheft Alps, andc over them with a prodigious height or thicknefs of RockyMountains? Or how fhould the bottom of the Sea come to be raifed to fuch a prodigious height above the prefent bottom of the Sea at the Shore next fuch places? To me, I confefs, it feems a moft improbable, and groundlefs fuppofition: Improbable, for that'tis hardly conceivable how the Water thould heap up thefe Subftancess, fuch prodigious maffes of Stony or Earthy Concretions; and groundlefs, for that we have no mention in Sacred or Prophane Hiftory of any fuch effects produced by a Flood. However, tho' we thould grant that Elephants might be carry'd by the Waters of the univerfal. Deluge from the more Southern or 不quinoctial Parts to thofe Northern of of aship found Siberia or Pomerania, yet how fhall we conceive by what means the univerfal buried deep ir Deluge fhould bury a Ship and forty Men at a hundred Fathom under Ground, and that at fo great a diftance from the Sea, as Switzerland now is, of which neverthelefs we have an undoubted Hiftory? I fay undoubted, becaufe I have not found any Author that' has queftion'd the truth of this Relation. Now, tho' I confefs I did not know 'till lately (upon perufing Dr. Wagners curicus Natural Hiftory of Switzerland) who inform'd me who was the firft Hiftorian that had acquainted the World with this difcovery; tho'I had met with the account in feveral other Hiftorians, yet none of them fpeaking of it with any doubting Expreffion I conceiv'd.it muft be related by fome Hiftorian of good Repute. This Enquiry then Dr. Wagner anfwer'd by telling me the firft relater of it, which whas Baptifta Fulgof Duke of Genoua, which Author's Book I have fince procur'd, and have read his Account of it, which I will prefently give you as I' find it exprefs'd by Camillus Gilnus in Elegant Latine, being by himfelf, and his Father tranflated from the Original, Publifh'd by the Author in the Year 1483, but the Book tranflated into Latin was Printed 1565. In this Book I find an account of the Author, and the Efteem he had, and the occafion of the writing of it, which was partly to drive away melancholy Reflections on his paft Misfortunes, having loft his Dukedome, and partly for Inftruction to his own Son. In which Relation 'tis remarkable, that this Ship and Men fhould be buried fo deep in the Earth as a hundred Fathom or fix hundred Foot. Next, that the Bodies of forty Men fhould be found in the Ship itfelf.. 3dly. That this fhould be a Ship of the Ocean, and not of fome River, becaufe of the great diftance of it from the Sea. 4 thly. That the Anchors and Sails, tho' torn, fhould yet remain and be plainly difcoverable. sthly. That he did not take this Story from uncertain Reports but from divers grave Men, who had been Eye-witneffes of it, who had inform'd him themfelves. σ thly. That it was fo remarkable in that time, that the Learned Men had meditated and reafon'd on it to affign the Caufe of it; that is, to give a rational Hypothefis, by which to hew how it might come to pafs, they having it feems pitch'd upon two efpecially, which do both of them to me feem very infufficient, not to fay very abfurd. So that upon the shole Matter, there feems to me no Reafon or Caufe to doubt the matter of

A Dijcourre of Earthquakes.

Fact or the ort, but all the difficulty lies in the dors that then fhall be the next thing to be examin'd, and that the rather, becaufe this feems to be a true Experimentuma Crucis to diftinguifh between my Hypothefis and thofe of fome other Authors. As firft, concerning the two Solutions fpecify'd by the Author, not as his own, but as of fome other Philofophical Men, who then lived, and who were fatisfy'd, it feems, of the truth of the difcovery, and 'tis not unlikely it might be fome of thofe. Plurimi Graves viri qui rem perfexerunt O qui in Re prefenti fuere a quibus ipfe accepit. For as for himfelf he ventures not at any Solution, but fays only Caterum utcung; res fuerit admirationis nors Mediocres relinquit Caufas.

That it could not be from
Noah's time.

Firft then, for the Hypothefis of Noab's Flood, 'tis not faid in any Hiftory, that Navigation, efpecially on the Ocean, was grown to fuch a perfection in Noah's time'as to make Ships of that bignefs and perfection of Anchors, Sail and Rigging, as this by this fhort Defcription feems to have been; and 'tis very likely if any fuch Navigation had been, it would have been taken notice of in the Hiftory of the Bible; for it cannot be fuppos'd that Noab: fhould not be inform'd of it, if ây fuch Art had been then practiced in any part of the World how remote foever from the place of his Abode. Next, if fuch fhould have been, it might have happen'd that fome other Men or Creatures might have efcap'd with Life befides thofe in the Ark. Next, fuppofing that there had been fuch a perfection of Navigation at the time of the Flood, I cannot conceive how a Ship of that bignefs, as this feems to have been, fhould be carry'd down fo deep under the Surface of the Earth as 600 Foot: Certainly a twelve Month foaking of the Earth, much lefs forty Days, could not reduce the fuperficial Parts to fuch a hafty pudding Confiftence as this Phænomenon does feem to require, fince I doubt whether there can be found in the World any part of the bottom of the Sea, that has been foaked for fome thoufands of Years, that is fo foftned.

Next for the fecond Hypothefis of a Subterraneous Navigation, to me, I confers it feems a ridiculous Suppofition, tho' I know a late Author has imbrac'd fuch an Hypothefis to folve the "Phenomena of Sea-Thells, and the like Subftances found in Mountains and 'Mines.; tho' Mr.. Purchas has Publifh'd a like Story of Andret Knivet, but I am apt to think that moft Readers will look upon it as told by a Seaman and a Traveller.

But the Matter of Fact being fo well attefted, it mult at leaft be fuppos'd to be there plac'd by fome Natural Caufe, as muft alfo all thofe other Phænomena I have ment'on'd.
Now for afligning a Caufe fufficient, I conceive there cannot be a more probable one, than the effect of Earthquakes, which have, and do ftill produce as confiderable Effects as any of there; the late Relations we have had of the effects wrought by them in Lima, Famaica, among the Cariby Inands, among the Eaft-India Illands, about Vefuvius, in Norway, and in the. Inand of Sicily; will furnifh us with Phænomena almoft as ftrange ; befides it feems rational to believe, that Earthquakes in former Ages before we had Hiftory, were not only more frequent, but much greater and more powerful.
There, I conceive, have not only produc'd wonderful Effects in this or that part of the Earth at one time, but at many times fucceflively, poffibly at the diftance of many Ages; fo that at one time they may have raifed the bottom of the Sea to make a dry Land, and funk other parts fo as to be overflow'd by the Sea, ${ }^{\text {a }}$ which were before far above the Surface of the Water, or to make Inland Seas or Lakes, as that of Geneva and divers others thereabouts: But by fucceeding Earthquakes thofe effects may have been quite differing, fo as to fink again thofe parts it had raifed, and raife again and fill up with other Earthy or Stony Matter, thofe it had formerly funk, and fo alfo by various Efforts at various. Times it may have overturn'd and turn'd upfide down, or otherwife tumbl'd and confounded the parts of the Earth, which feems plainly to be hinted to us by the Mythologick Story of the Giants fighting with the Caleftial Powers, and heaping Mountains upon Mountains; and (1 do confefs) I conceive there can be nothing more reafonable and conformable to the proceeding of Nature in thefe Times, than to fuppofe there have beentthe like and much greater, in former Ages of the World.

1 con-

I conceive then, that whenever that part of Switzerband was the bottom of the Sea, this Veffel (which the Author calls Navis or a Ship) was upon that Sea over this very place, when there happen'd an Earthquake juift underneath it, which did raife the fame above the level of the Water, as much as it now is; and that by this there having happen'd to be an Opening, Cleaving, or Chafm in the Ground under it which fwallow'd up fome of the Sea, and with it this Veflel, and afterwards clofed again, and inclofed what it had fwallowed ; or elle that this part had been fome very deep Inland Lake, as that of Geneva, and divers others there about, that this Veffel was Navigating in this place when fome Earthquake happen'd, which overthrew fome Neighbouring Mountain, Hill or Lands, which, falling into this Water, did not only fink the Ship, but fill'd up and levell'd the Lake with the Contiguous Lands or Shoars of it; neither of which ways of explicating it do need any other effest, but fuch as we are by antient and much more iater Obfervations afcertain'd, are the ufual effects of Earthquakes.
I have confider'd the Paffage mention'd by Leo. Bapt. Alberti in the fifth Book and Twelfth Chapter, concerning Trajan's Ship found in his time in Italy. Now, I find that this Alberti was a Florentine Gentleman, who flourifh'd about the Year 1483, and was accounted the IVitruvius of his Time: He being a Scholar, an excellent Painter, Sculptor and Mechanift, and an excellent Architect, he was the firt that indeavour'd the Explication of V itruvius, in which he made great progrefs, much to the improvement of that Age; in order to which he furvey'd and meafur'd the remainders of Antiquity; heunderftood Perfpective alfo, and writ a Book on that Subject, which was not well underftood by the Antients, nor much by the Moderns in his Time. But my prefent Inquiry is chiefly about this Paffage mention'd in his Book De Ree edificatoria, produc'd the laft Day by Mr. Bridgman concerning Trajans Ship difcover'd in Alberti's Time, which had lain funk in a Lake of Italy, which he calls Nemorenfis, everfince the time of Trajan, which was near one hundred Years after Chrift, for he died in the Year ninty eight, which is now full fixteen Hundred Years fince, and fo was more than thirteen Hundred in the time of Alberti. The Paffage is as follows. Leo Baptifta Albertus De ReeAidificatoria. Parifiis, 15128°. Libro V. Capite XII. Materiam omnemreprobant que. fiflilis, frag ilis, findens, putrico faque fit, clavofq; © ligulas eneas praferunt ferreisjex Navi Trajani, per bos dies dum que fcripfimus commentarer, ex lacu nemorenfi eruta, quio loci annos plus mille trecentos demer $\int a$ ơ deffituta jacuerat, adverti pinum, materiam, - cuprefum egregie duraffe, in ea tabulis extrinfecus duplicem fuperextenfam o pice atra perfufam, tela ex lino adglutinarant, fupraque id chartam plumbe iom claviculis ane is coadfirmarant. (Lacus Nemorenfis) a dix buit Milles de Rome vers COrient, il 'sappelle aujourd' buy Eago di Nemi. What this Ship was, and the Hiftory of it, I have not met with, nor can I find any fuch Lake as is calld Lacis Ne-. morenfis, or Nenorenfi Lago, as Petrus Laurus, in his Tranflation of this Book into the Vulgar Italian renders it. Bartoli, who Tranflated this Book into Italian after Caius renders it Lago della Riccia. Pliny indeed mentions a: Ship of Layus, which was purpofely funk at Oftia to found the Mole upon; 'but he could n)t fay any thing of this, he dying almoft 30 .Years before Trajans time; nor do I treat upon what occafion it was that caus'd them to dig it out, nor at what depth it was found, nor whether it were buried in the Ground; or were only funk into the Mud: If any have met with any further information concerning it in their Reading, I hould be glad to be inform'd concerning it. Fulgofus having writ his Book much about the fame time that Alberti writ this, I thought I might have met with fome account of it in him, it being "omewhat Analogous with his Relation of the Ship found in Switzerland, about the fame time; but I do not find he hath any mention of it. It feeins pretty frange how either of thefe Ships fhould come to betranfported into the places where they are faid to be found ; but 'till we know the Hiftory we canl at beft but conjecture concerning them. There are many other particulars I fhould have defir'd information of befides thofe which he has mention'd, and 'tis very likely fome of them may have been taken notice of in the Relation of its difcovery, which I am inclin'd to believe muft be fomewhat more at-large and more fully related than we find it here, which only hints two Remarkables
proper to the purpofe, for which it is mention'd, viz. About the durablenels of Timber fit for building of Ships in its own Nature: And, Secondly, Of the way of fecuring it againft the Corrofion of Worms, which it feems was fo long fince taken notice of and provided againft by the Shipwhrites of Trajan's Time; which they perform'd by a double Sheathing; the firft, next the double Planking, (Tabulis extrinfecus duplicem Superextenfam co pice atra perfufain tela ex lino adglutinarant) was a kind of Tarpollin, they covering the Planks with Pitch, and that Pitch with Linnen-cloth ficking to it; the fecond was a thin Sheet of Lead faftn'd by Brafs Nails to the Plank; that it was very thin, I think is denoted by Charta Plumbea, that is, fuch kind of thin Lead as they formerly us'd for Writing on, much like the thinneft fort of Mill'd-Lead now made by the new Engine; which how they made is not known, nor do we certainly know how they make the like Sheets of Lead in China, of which kind I have -feen a great variety, and all of it very even and regular: The Plumber will tell you 'tis done by Cafting the Lead on Ticking, but that I conceive will not make it fo thin and even as I have feen it ; we have a way of beating it after the manner of Gold-beating, which doth foliate it very thin and even; 'tis commonly call'd Tin Foile, and 'tis us'd for foiling Looking-glaffes; 'tis a mixture of Lead and Tin; as is alfo the Tootenag of China, and polibly theirs may be done the fame way; but the Rowlers in the Mill I take to be much the better way ; 'tis by fomefuch Engine they foliate Brafs and Copper in Germany, tho' they do fome forts alfo with theHammer, as Kettles, and the thin Iron Plates forLatton by beating many of them together at once,as they do alfo Leaf-gold, Silver and Brafs; but Afidue fomewhat thicker, is done by an Engine with Rowlers, as they flatten Wire for Threads; and fo alfo is a fort of Sheet Brafs fomewhat thicker: Poffibly both ways, may be known and made ufe of in China, where they have many other curious Inventions which we have not yet attain'd, and 'tis not unlikely but that the Antient Romains might for this foliating of Lead, have fomewhat the fame.
Sbeathingships Now as to the ufe of it for Sheathing of Ships, I find the Spaniards make ufe soith Lead known to the Romans. of it at this time, and have done fo for a long time. This I find Sir Ricls. Hawkins takes notice of in the account of his Voyage to the South Sea, Page 87, which fee.

Here we have an account of all the ways of Sheathing of Ships he knew, and his Judgment or Cenfure of them, which how juft they are muft be left to Experienc'd Men; however, I have been lately inform'd that the Spaniards make ufe of the fame way ftill for their Gallions, which 'tis not likely they would if they knew any way better ; they had indeed another help to keep out the Water in cafe of any failure in the outward Plank, and that is the filling all the Space between the Ribbs and Planks with a certain fort of Plaifter which may be a fecurity to the innermoft Plank, but not at all to the outermoft againft the Worm or Springing of them; however, 'tis of good ufe to keep off a fuddain overflow or entrance of the Water in cafe of either Defect. But the beft way of all feems to be the Chinefe, by the Varnifh, which neither - Worms nor Water, nor Heat will damnify; nor in their way of building their Junks, do they leate any vacuity in the thicknefs of the fides to need Plaifter, but what is filld with Damar, which is in itfelf lighter than Water, and will fwim on it. But that way is not practicable here in Europe where we want the Varnilh, whereas the others are, efpecially that of Sheet Lead, of which Metal this Nation affords us great plenty, and the late invented Mill doth certainly out do all other for giving it a proper Form ; befides, if Plaifter were neceffary, we have as good as the World affords, or which poffibly may be better, we can have Pitch enoagh (much of the fame Nature and Ufe with Damar) to prevent any fuddain gulhing in of the Water: But this only by the bye.
The ftrangenefs of the Relation or Hittory of the Ship found funk in a Lake, fome where in Italy, mentiond by Leo. Bapt. Alberti, and the fhortnefs and imperfection thereof as deliver'd by him, made me very defirio us to get a more full and perfect Relation thereof. I thought Bayfius in his Treatife De. Re Navali might have taken notice of it, he having Written fince that time ; but he has never word concerving it as I can find, nor do I find any

A Dijcourfe of Earthquakes.

mention of it in Daffe's Book de L' Architecture Navale; but Pere Fournier in his Hydrography (Book the Fourth, Chap. the Firf) treating of the Navigation which was before the univerfal Deluge of Noals; fays, it feems rational to think'that (confidering the long Life of Men before the Flood, and the populoufnefs of thofe Times) there was no part of the World uninhabited, tho' we have no Hiftory of them but the Bible, and tho' that has not one word concerning it ; and that not only the great Continents of Land, but there being Iflands hoth in the Seas and Rivers, thofe alfo were inhabited which could not be fuppos'd without the ufe of fome kind of Navigation. Add to this in the third place, that 'tis reafonable to think that the Antediluvians were as ingenious, if not much more, than the Poftdiluvians, for the inventing of Ships, and for the ufe of them, for the tranfplanting of Colonies, for Trading and for War. Morcover (fays he) in the Year I462, as is Recorded by Fulgofus, at Bern in Switzerland, as they were working in the Mines, at above a hundred Fathom deep in the Earth, there was found an old Wooden Ship built as ours are, whofe Anchors were of Iron and the Sails of Linnen, with the Carkaffes of forty Men. Peirre Naxis Relates a like Hiftory of another, fuch a one as was found under a very high Mountain. In like manner the Jefuite Eufebius Neurembergius, in the Second Chapter of the Fifth Book of his Natural Hiftory, fays, 'That near the Port of Lima in Peru, as ${ }^{\text {' }}$ they were working a Mine for Gold, thofe which follow'd the Vein in the

- Mountain found an old Ship, which had many old Characters very differing
' from ours, which all People believed to have been there buried by the uni-
'verfal Deluge.—Namq; Fuxixa portum Lima in Peru cum evifcerarar avaritia terram, infecuta auri venam, Navigium inventum eft fub ipfo monte, quod a noftris, ơ bactenus fama of Scriptes, antiquorum not is plurimum diffidebat. . Creditumq; ab univerfis illuvie fuife bumatum. There was found alfo in a very high Mountain of Mexico a prodigioufly large Elephants Tooth, tho' in all America there was never yet found any Elephant. 'Without doubt (fays he) all ${ }^{\text {' t }}$ thefe things have been thus buried by the tumbling and overturnings of a e univerfal Deluge, as well as the Wreeks of other Veffels which have been ${ }^{\text {c }}$ found at three Thoufand Stadiums or Furlongs from the Sea, as Strabo re${ }^{\prime}$ lates in his Firft Book. Thus far Father Fournier to this purpofe. Nor do I find that he hath taken any notice or made the leaft mention of this Veffel, mention'd by Alberti, which, methinks, he fhould not have been ignorant of, efpecially confidering the great Pains he has taken, and great Learning he hath fhewn concerning the Subject of Shipping.
The Heer Witfen in his Book intitled, Ael Oude en Heden dueysche Scheeps Bouven Baffier, in the Fourth Chapter of his Firft Book, hath given us a fomewhat larger account and more particular than Alberti, but quotes not the Authors from whom he receiv'd it; fo that we muft rely on his Reputation 'till we can be better inform'd. His Relation in Dutch is to this effeet. 'In ${ }^{6}$ 'the time that the Pope, Pius the Second, poffert the Chair (which I find was ' from Auguft 1458, to Auguft 1454) Men found in the Numidifche Lake twelve ${ }^{6}$ Fathom under Water, in the Mud, a Ship, in length thirty Foot, and in ${ }^{\text {Eb }}$ breadth proportionable; built of Cypress and Larix Wood (which is a Species 'of Pine-Tree Wood) which was become of fuch an hardnefs, that it could ' neither be burnt nor broken, if it were needful. This Ship had lain under ' the Water for fourteen Hundred Years without the leaft perceivable Rotting 'to decay it: It was on the Deck done over with Pitch, and that cover'd with ' a Coat or Cruft of a certain Pap or Morter made of Clay and Iron well tem'per'd or beaten together, which art of mixture is now conceil'd; tho' others © are of Opinion that this mixture was not made of Clay and Iron, but of Clay ' and Pitch well kneaded together. The Deck was cover'd with Paper, Lin' nen Cloth, and Plates of Lead, which were nailed to the Planks with Cop${ }^{6}$ per Nails guilded. This Ship (a wonder) was found fo ftanch, that not the - leaft drop of Water was found to have foaked into its Hold; it had the length ' of an old Trireme Veflel, and the breadth of a Hulk. In the Hold was ' found the Hangings of fine Velvet of an Orange Green, and in the mid'dle of the Floor a Copper Coffer faftned by four black Strings, which being ' open'd there appear'd an Earthen Urne or Veffel, which was ornamented

444
 A Dijcourre of Earthquakes.

' with a Gold Plate, and fill'd with Afhes; and becaufe Nien faw the Name

- Tiberius feveral times engraven upon fome Leaden Plates about the Border
' of it, they conceiv'd this might be the place of his Sepulture.
This Accounit, tho' in divers Particulars different from that of Alberti, yet feems to be tranflated from the fame Original Hiftory, which neither for them having mention'd by what Author it was written, we are yet to feek of the true account, which probably may be much more particular than either of thefe, or both of them put together; for that it is ufual in fecond Hand Relations, to take notice of fuch Paffages of the Original, as concern the prefent Subject they are treating of, and to omit many other Particulars, tho' in themfelves much more remarkable; this therefore I further fought for in divers other Authors; and in Riccioli's Hydrography, I found a further account of it, which alfo gave me a hint of the true Author: Ricciol's Account is this, Chapter the thirty ninth of the Tenth Book, which whole Chapter treats of Ships that have been much celebrated for their Magnitude, Splendor, Voyages, or other very remarkable Conditions; among which, Page 340, he brings in the Ship of Tiberius as one very remarkable inftance, whofe Hiftory he thus defcribes, Narrat eEneas Sylvius, fuo tempore repertum in lacu Numicio Cubitis 12 Sub aquam, navem ex Larice Cubitorum 20 Bitumine \& mixtura ferri terreque; nefciö cujus incruftatam, que per annos 1400. non computruerat. Siquidem in multis canalibus, ac fiftulis incifum erat Tiberii .Nomen; Exijfimatumq; in ea Cineres illius Tyranni inclufos fuiffe.
Thus we have found at length the Bufh where this Game is feated 2 and whence it is to beftarted if we will have it, and I have follow'd it by its frent and Foot-fteps to its Seat; but in what part of the Volume of the Works of EEneas Sylvius it is to be found I cannot yet difcover, for his Tracts are many and make a bulky Volume together, which, whether it contain all that he writ I am not yet well inform'd ; for he wrote very many particular Tracts, and left fome imperfect and not ready for the Prefs, as Conrad Gefner informs us. This was the Man that, in 'Auguft 1458, was made Pope, and who died in Auguft i464, fo that he poffert the Chair fix Year; within which time it feems both thefe difcoveries were made, (if at leaft they were two differing Difcoveries, for poffibly they may be only two differing Relations of the fame Difcovery) the one noting one fort of Circumftances, and the other, anuther. I cannot fo well judge of the matter, 'till I find this Relation of Sylvius; however, 'tis obvious that what Riccioli makes to be only twelve Cubits, Mr. Witfen makes twelve Fathom, which is four times as much; and poffibly this twelve Fathom or feventy two Foot Fulgofus might make one hundred Cubits, and yet all of them innocently without a defign of impofing on their Readers, they writing from the Relations of others, and polfibly from the failing of their own Memory to boot; for we find how rare a thing it is to find out the truth of a Faet, tho' 'twas done but Yefterday and almoft at next Door, if allowances are not made for the Circuinftances of the Relators, and the de-

Vide Pbilof. Tranfati. No. 234, P. 757. fects of every one's Memory and Comprehenfion; upon which account it is that I could wifh that Relation concerning the Elephant lately found in Germany and made by the Colledge of Gothan might be inferted into a Tranfaction as well as that of Tentzelius, that Men might fee how much the Humour and Inclinations of the Relators will diverfify the Relation, and confound the Apprehenfion and Judgment of the Reader; and therefore I conceive it would not be amifs alfo to add to this laft account the Sentiments of this Society, or at leaft of fome of their Members, concerning the Subftances fent by Tentzelius to be perus'd and examin'd by them; for there is no better way, I conceive, in the World to give a fatisfactory account to Pofterity of this Fact than this Courfe ; for there cannot be made a good Hiftory, cither of things Natural or Artificial, without curious judicious and accurate Obfervations, and Pertinent and Critical Experiments, that may be as thoroughly examin'd and verify'd, as a Geometrical Propofition by Perfons fufficiently accomt plifn'd for fuch a Task. 'Tis not one pomibly of a hundred is fit for fuch a Bufinefs, and yet fuch are neceffary, and hence I conceive it is, that we have fuch a multitude of medicinal Obfervations made or pretended to be made by young Phyficians, and poffibly not one of five Hundred of any manner of real

A Dijcourse of Earthquakes.

Ufe or Benefit; for that the moft of fuch Writers are two much biaffed by precarious Hypotheres, and many likewife Compofe and Publifh them only for Intereft, that is, as Advertifements to make themfelves the more known, and fo to get Practice; and tho this ôr that Symptom may be true and matter of Fact, yet the true Caufe of the Diftemper, and the reafon of the Cure or Mifcarriage of the Patient poffibly was really quite differing from thofe affign'd by them; and tho' fome of them may have been truly defcrib'd, yet thofe that know how fimall and inconfiderable Circumftances in themfelves will yet make great and moft confiderable alterations in the Effects; will be more cautious than to take them all for true which are in reality quite otherwife; thofe therefore that relate an Experiment or Obfervation, fhould be both very underftanding in the Subject, and very diligent in taking notice of, and relating the Circumftances of it; for that all that can be done in this way will be little enough of information to him, that is to make ufe of it for making Deductions and Inferrences therefrom, and indeed it will be hazardous to build any thing upon Foundations fo uncertain; for even in the moft perfect Accounts of this Nature, a Writer or Applier of it for the founding or examining a Theory thereby will find a neceffity of ocular infipection and examination proper and fitted to his prefent Subject, either to obviate fome Objection, or to give fome further Light; for oft times the moft confiderable part of the whole Experiment may lie in fome one trivial Circumftance, which not one of a thoufand would otherwife have thought worth taking notice of, yet to him that knows what that Circumftance is that makes for or againft his Theory which he is inquiring into, will judge it very confiderable, and be fure not to omit the Scrutiny and Teft thereof; and 'tis prepofterous for any one to write an Experimental Natural Hiftory without making and examining the Experiments needful to the perfecting thereof, without making the Experiments himelf, nay, and without the repeating of them, as Doubts may arife after the firlt Trial; or as he may need further information upon them; nay, without making them whilft he is writing, that he may truft, as little as may be, to his own Memory and Judgment. Thus in Anatomical Experiments and Obfervations, how many confiderable Difcoveries do we owe to fuch repeated Trials omitted wholly, or fcarce hinted at in many preceding ; For every difcovery gives a new fet of Doubts and Inquiries, as well as a new Light, not only: ois yं τ eis Sed etiam decies repetita placebunt, as I have very often experimented my felf; nay, I have found it abfolutely neceffary, and even that not enough to make fome Spectator to apprehend the Confequences thereof: But.this only by the bye. Before I leave this Subject I cannot but take notice of a Doubt that arifes from the variety of thefe Relations, and that is, whether the Sheet Lead were ufed for the Sheathing of the outfides of the Ship under Water, or only for the Covering and Houfing of the Deck, as the Heer WitSen makes it; nor know I how to folve it without feeing the Original Relation, only I muft not, omit one Paffage of Riccioli, which feems to hint the ufe of Sheet Lead fomewhat Analogous to Sheathing, and that is this, defcribing the Ship of Hieron, whofe Architect was Archimedes.---Dimedia Pars navis per 300 operarios fex menfibus abfoluta, rime afferum laminis plumbeis tecite, \&\&. My doubt on this Paffage is, whether the Veffel were Caulked and Pitched in the Joints of the Planks under the Sheet Lead, or whether the Plates of Lead were only made ufe of inftead of Caulking and Pitching, the defcription is at large in Athenous, which I have not by me, and he, it feems, had it from -------, who writ a whole Book of the Defcription of it : It was in this Ship where Archimedes made ufe of his admirable Invention of his helical Pump, which he himfelf hath no where defcrib'd.

The fmall number of Authors that have recorded fo remarkable a Phænomenon as this, informs us how little curious the World have been in the matter of Philofophical Hiftory, and thence how vain a thing it is to expect to find every fuch accident as this to be Recorded, tho' very remarkable in its felf; for if thefe Ships were differing, then they have each but one Original Hiftorian; for all the other Authors that have fince mention'd them, feem to have borrow'd the Accounts from thefe two; but if the Relations were

446 A Dijcourje of Earthquakes.

only of one and the fame Veffel (as methinks the Circumfances of the time and the being funk deep into the Earth feem to intimate) then we have but two Hiftorians that take notice of fo remarkable a Fait ; and thofe fo difordant in their Stories, that one knows not which of them to give Credit to; the one making it to be found in the Lago de Nemi, about twenty Miles from Rome'towards the Weft; the other making it to be found near Berne in Spuitzerland, when 'tis not known that ever there was any Lake there, as Fulgofus mentions and Objects. It is therefore unreafonable to reject all Hy pothefes that fuppofe other Accidents to have been the occafions of producing Petrify'd Subftances, than thofe Recorded in Hiftory, efpecially if they happen'd before Printing was in ufe, or polfibly Writing commonly known; for even fince that time many confiderable Phænomena have been very flightly hinted only, and fearce taken any notice of; as for inftance, the comet that appear'd in 1580, which produc'd but one diligent Obferver and Hiftorian, which was Mich. Maftin, and the great Earthquakes and Cataftrophies in China, which are Recorded in the Mercurre Hollandois, and no where elfe that I know : So 'tis probable this newly happening Earthquake at Conffaintinople would have been quickly forgotten, and probably never tecorded to Pofterity, if the Gazett and News Papers had not taken notice of it : But this only by the way.

As to this accident of the Ship, I conceive it to have afforded fo many particular Informations worthy to have been Recorded, that I could wifh it had happen'd in a more curious Age; at leaft I conceive it very delirable, that the Original Hiftory of it, fuch as it is, might be fifted out and inferted in a more proper place to be found, than where it is faid to be at prefent.

The Memoires of the Parifian Academy have furnifh'd many curious Dif-

The misfortune of Inventors. coveries both Mathematical and Phyfical, yet divers of them or of the fame kind have been firft difcover'd in this Society, tho' not entertain'd with that approbation, which they have there met withal; nor are the Englifl fo nimble in Publifhing what they difcover themfelves, nor fo fharping to arrogate to themfelves what they know to have been firft difcover'd by others; (as I do find divers to be) who will leave no means unattempted to make all their own, tho' there be never fo evident Arguments againft their Caufe. But tho' this be a Practice to be abhor'd by every ingenious Man Man^{\prime} and the baflifulnels of the other be blameable, yet there is fomewhat to be faid both for the one and the other Party, that may feem to countenance thefe proceedings of them.' As firft, 'tis a difcouragement to any one to Publifh that which the finds by Difcourfe is generally difapproved. A Man may rationally enough diftruft his own Thoughts and Reafons, nay, and even his Senfes too, if he finds thofe he converfes with to be of another Opinion, tho' acquainted with the Arguments that prevail'd with him, at leaft'till he finds, that it was done for fome Sinifter Defigns to defraud him of his Difcovery. Next, when by publifhing, more Opponents or Emulators (which are both Enemies) are produced, than approvers or indifferent Perfons, who at beft will do him no good; 'tis thought better to abftain with quietriefs, than with Labour and Induftry, to create new Troubles. But on the other fide 'tis certain, however, that ambitious. Minds will try all means to obtain their Defigns; they find that fuch Practifes often prevail, and therefore Quid tentare Nocebit, they find that the generallity of Men are not much concern'd for the firft Difcoverer, and that they ufually take him for fuch, who firtt acquainted them with it'; and for one Reader that can difprove them, or detect them of Plagiary, there are a thoufand that can not, and for thofe that can, they find ways to evade and by Confidence carry the point, and even with a general. Approbation and Advantage: 'Tis, I confefs, a general Obfervation, that feldom the firf Inventer reaps either Honour or Advantage by his Invention, but on the contrary, thofe that come in at a fecond Hand acquire them several Mat- both. But be it as it will, certain it is, that many Difcoveries pretended to tersmention'd in the. Works, of the ${ }^{-1}$ French Academy, were firt made here and etfewhere', by the French nay, and many of them publifh'd too in Print, and fome of them allo in the Academy were Frenct Language, which yet they will not own, or mention to have feen. I

A Dijcourje of Earthquakes.

bout his Invention and Demonftration of the Solidum Acutum Hyperbolicum, which was Publifh'd by him, together with his other Works at Florence in the Year 1644, and that without Contradiction by Roberval ever fince; yet now a Letter is trumpt up, and fome Papers found that muft needs perfuade us that Torricellius ftoleit from Roberval. The like flur is caft upon the Works of Mr. Эames Gregory; both which Perfons have given fufficient Proofs by their other Works, that they had very little need of ftealing from Roberval, who has not yet made it evident, nor any other for him, that he was Mafter of either of their Problems, 'till fince the publication of them by the faid Authors.
The Second is the difcovery of the Glade of Light obfervable in the Evenings in Febr. and March each Year, which was firlt made by our Dr. Childrey, and an Advertifement of it Publifh'd in his Britannia Baconica, in the Year 1660; which Book was Tranflated into French, and Publifh'd at Paris foon after, which was long enough before it is pretended to be difcover'd there. However, the fecond Perfon has the Title of the difcovery, and the firft is defrauded of his due Praife. I could add a hundred other Inftances to prove this Affertion; but I fhall not at prefent fpend time thereon, tho' it may poffibly not pafs without fome Reflections on another Occafion, that every one, as near as may be, may have his due Praife. For my own part, I think it ingenuous to mention any thing of theirs, which I have occafion to make ufe of, and to own all fuch things as theirs, as I find to be new or ingenious; and that Firft, Becaufe I would give every one that which is due to him. But, Secondly, Becaufe I find it neceffary to back a Doctrine with a French Approbation. I know there are many things will not be regarded, 'till they have that Stamp to make them current, and then they will readily paif with the prefent Age and Humor.

In the Memoir of the 31 ft . of Fune 1692 , (10 'tis marked) I find an Obfer- A Remark out vation concerning a Petrify'd Subftance produc'd and examin'd by the Royal of the French Academy, with fome Reflections on it made by Mr. De la Hire, which becaufe Memoires. confonant to fome Difcourfes I have formerly made in this place, I thought might countenance, fomewhat the Doctrine I then deliver'd, I have aifo render'd the fame in Englif before I make Reflections upon the fame.
'The Cabinets (fays he) of the curious are filld with all forts of Bodies - Petrify'd, as of Plants, Fruits, Woods; and of divers parts of Animals,

- but Naturalifts are not yet agreed about the caufe of their Production; fome - fuppofing them to be Stones fo fhaped by accident, but others fuppofe them
- produced by a Water that has a power of converting thofe feveral Sub-
- ftances into Stone, after it has long pickled them; probable Reafons are ' alledg'd for each Opinion.
${ }^{\text {' Mr }}$ M' Abbe de Louvoys fent to the Academy; a Petrifaction, which may ' ferve to decide this Controverfy, namely, two peices of the Truink of a
'Palm converted into Stone, they were brought from A frica, with two other 'pieces of a Palm juft like them, but not Petrify'd, the better to compare 'them together; the Petrifactions are true Flints, as appears by their hard${ }^{6}$ nefs, by their Colour, and fomewhat of Tranfparency, by their Sound, ' which is clear and fonorous, and by their Gravity, which is more than ten ' times that of the unpetrify'd ; yet thefe two Flints are fo like to the two ${ }^{6}$ pieces of Wood, that there is no fhew of Reafon to conceive; they fhould © be fo formed by chance.
' One of there Flints which is two Foot long, and about four or five Inches - Diameter, is a piece of the Trunk of a Palm Barked of its Rind; in this ${ }^{\text {c }}$ may be feen all the Fibres of the Wood of the bignefs of $\frac{i^{3}}{3}$ of a Line, Come ' of which aref forked; they run the length of the Trunk and are hollow like ${ }^{6}$ Pipes. The Pulp, which is between the Fibres, which ferves to join them ' together, is chang'd into a kind of Gluten, but very hard.
' Mr. De la Hire gives a Reafon of the hollownefs of the Pipe, i. e. that ' the outward Parts being dry'd before the middle, when they are dry, they ${ }^{6}$ are by the outward Parts kept from fhrinking, and fo the Pipes become ' frretched from the Center outward (which is the fame Renfon with that I have ${ }^{6}$ Given for the blebbs that appear in the Gla/s drops.)

A Dijcourse of Earthquakes.

'Now, tho' fome might fancy (yet without the leaft probability) that this © with ftraight Fibres might thus be formed by chance, yet 'tis impolible to - conceive fo of the other piece, which is a part of the bottoin of the Trunk; 'for this is not only compos'd of ftreight Fibres as the other, but its Bark is ' all garnifh'd with fmall Roots as big as one's little Finger, and about three 'Inches long, which is cover'd with a thin Skin, which contains an infinite of
© Imall Fibres like Hairs; in the middle of each of thefe Fibres is a ligneous
' Chord, that one may call its Nuel or Pith, about $\frac{1}{3}$ of the bignefs of one's
' Finger, whofe hollow was fill'd with a Pithy extended Subftance. All which
"Parts are alfo exactly fhaped in the Flint, where are vifible not only the
' long ftreight Fibers, but the Roots and all the fmall Fibres of a blackifh
${ }^{6}$ tranfparent Subftance, but the Pith in the middle is of a whitifh opaque
'Subftance, and in the moft of the fimall Roots it is hollow'; which Mr. De la

- Hire conceives to proceed from the fame Caufe that he before affigned.
${ }^{\text {C }}$ It is evident therefore (fays the Author) that this was no Lufus Nature, ' but that thefe two Flints were originally two pieces of the Trunk of a Palm ' afterwards chang'd into the Subftance of a Flint; and what Father Duchatz ' reports in his Phyfical and Mathematical Obfervations, doth decide the - Controverfy, and leaves it without doubt.
'This Father there fays; that the River that paffes by Bran in the Kingi dom of Ava, has, for the fpace of ten Leagues, or twenty eight Miles, 'the vertue of Petrifying Wocd, and that hee had feen great Trees Petrify'd ${ }^{6}$ thereby fo high as the Surface of the Water reached, but that the other ' parts of them remained fill dry Wood. He adds, that thofe Petrify'd - Woods were as hard as the Flints of a Fire-lock; and fuch indeed was the © hardnefs of the two pieces of which we have been fpeaking.
' This Account of Duchatz is to be found in the Second Volume of OBfer' vations made in the Indies by the ${ }^{\prime} f(f u i t s$, fent thither by the King of France,
${ }^{6}$ but Corrected and Printed by the care of P. Gouye; I have not yet feen the
${ }^{4}$ Book; but by the Account of it I find in there Memoires, I conceive it will
- be well worth the procuring, as containing manyother curious Obfervations, ' and Hiftories of Matter of Fact.
Remarkjef De- This Memoire of Monfieur De la Hire is much the fame with what I have formerdutions from abe former Account. ly prefented to this Honourable Society, and have Printed among foine other Obfervations made with Microfcopes; wherein'l examin'd the Shape, the Colour, the Hardnefs, the Weight, the Brittlenefs, the Incumbuftiblenefs, the Solidity, $\dot{\sim}$. of it; for I found it to be for its appearance to the naked Eye, perfectly like a piece of Wood, and to have the vifible Grain of Wood, and farther by a Microfcope, I found it to have all the Microfcopical Pores. like Wood; I found it of the colour of Wood, but of the hardnefs of a Flint, and that it would cut Glafs : I found its Weight to be to Water as $3^{\frac{1}{4}}$, which feems to be much the fame with this of Mr. De la Hire; only he compares its weight to that of the Palm Wrod, which, by his defoription, mult be much lighter than Water, and mine was only comparative to Water. I found it incumbuftible in the Fire, tho' diffolvable by corrofive Liquors. I found it Brittle and Friable like a Flint, and to feel cold to the touch, as a Stone, or Mineral Body ufually doth; from all which I concluded it to have, at firft, been a piece of Wood, and afterwards, by fome Petrifying Water or Vapour, converted into the Subftance of a Stone or Flint. And I find that from the very fame Arguments, the French Academy draw the fame Conclufions as to this Subftance, and they confirm it by the Obfervation of P. Duchatz; this therefore paffing there for a good Argument, I fee no reafon why it may not:alifo be a good Argument here, and why the fame will not alfo pafs for the Petrifactions of other Bodies both Vegetable, as Leaves, Fruits; Roots, and alfo Animal, as Shells, Bones, Teeth, Scales, ©rc. which are found to have the fame Qualifications, that is, the Shapes, Colours, Textures, ©re. of thofe animate Subftances, nay, and often times the very Bodies themfelves not Petrify'd, tho' included in Petrify'd Bodies, as Stones or Winerals; mult there be queftioned or rejected, only becaufe fuch Subltances are found in places where we cannot give particular Hiftories of their priftine Eftate, and how they come to be there placed and transformed, or fo inclofed tor becaufe
poffibly we are not able to produce patteins of Creatures now at hand, and in being, which are exactly of the fame Shape and Magnitude as the Academy did produce, to Authorize, or at leaft incline them to be of that Sentiment ; certainly the fame Argument that is cogent for the one, ought not to be lefs valid for the other ; for if the finding of Coines, Medals, Urnes; and other 'Monuments of famous Perfons, or Towns, or Utenfils, be admitted for unqueftionable Proofs, that fuch Perfons or things have, in former Times, had a being, certainly thofe Petrifactions may be allowed to be of equal Validity and Evidence, that there have been formerly fuch Vegetables or Animals. Thefe are truly Authentick Antiquity not to be couns terfeited, the Stamps, and Impreffions, and Characters of Nature that are beyond the Reach and Power of Humane Wit and Invention, and are true univerfal Characters legible to all rational Men.

Now, if thefe are fuch (as to me they feem to be, notwithftanding I cannot tell the time when, or the certain Hiftory how, they came to be there difpofed and ordered as they are now found) then certainly it cannot be irrational to conclude at leaf, that there have been fome precedent means that have produced there Effects; and that thofe means have been fuch, as we have from Hiftories and Relations within the times of our own Memory, Experience and Information, that they have produced much the like, which tho' they are not exactly the fame, nor polfibly by much fo great and powerful as they muft neceffarily be granted, that did effect thofe we now difoover; yet I think it not unreafonable to conceive, that there may have been much greater and more powerful Agents than thofe we now have had; yet flill of the fame kind, and acted by the fame Powers; for if there are now newly fuch as have raifed, removed, cleft and torn Moüntains; have made Lakes, fill'd and levelled Plains, ftopped and turned Rivers, fpouted out Sea-water at a great diftance from the Sea; raifed the Sea-fhore above the Surface of the Sea and left it dry, with the Fifh, and the remainders of them to cover the Surface of it ; at other places to raife the bottom of theSea, which was manyFathoms under Water, and place it above the Surface, and many fuch other wonderful Effects; then certainly it cannot be unreafonable to fuppofe, that there may have been much greater in former Times, whilft the matter was yet unconfumed and difpers'd up and down in more places, and more Copioufly, and that more Powerful and Effective.
But it is Objected by fome, That for fuch Perfons, Places, or Things, of which we find now the Relicks; we have Hiftories that tell us what, who, and when they were; whereas for the other we have no fuch Hiftories in being, nor during the-times whereof we have any Hiftories, can we find any parallel Inftances that can countenance fuch Mutations, Changes, and Cataftrophies as are, and mult be fuppofed to folve the Phænomena. Greece, eEgyt, Italy, Spain and France have continued the fame; no new Lands have been raifed out of the Sea, much lefs Hills or Mountains. Beides, there are many of thofe Bodies that we now find, both Animal and Vegetable Subfances, that are as perfectly like the Species of thofe fuppofed Creatures now in being; and therefore we are not to fuppofe, that any Species could be utterly deftroyed, which yet that Suppofition feems to make necellary, if well confider'd, and the Confequences thercof produced.

To which I Anfwer, Firft, That tho we have no truc Hiftory, when, or by whom, or by what means the Pyramids of eEgypt were built; yet all that have feen them do conclude that they were built by Men, and that thofe Men were good Mafons and Architects and Engineers; and that they were not produced of that Shape or Magnitude, by a Vegetative Power, or by a Plaftick Faculty, or by meer chance, or the accidental concurrence of Petrifactive Atoms. Nor can I fee any reafon to conclude, that the vaft Obelisks that have been tranfported from place to place, and erected, were fo ordered by Conjureing or Diabolical Magick, tho' I may not be able to tell by what means they become fo ordered; I flould rather be inclin'd to believe that they were fo made and placed by the Induftry, and Invention, of fome knowing and ingenious Mechanick, who had fome Contrivances to perform his undertaking that I am ignorant of. Nor do we make it an Argument that thefe

Pyramids were never made by Men, becaufe no Hiftory does tell us when the like have been made fince. Befides, I conceive it would have !een a very abfurd Conclufion, if any one fhould have afferted that thofe. Horns, I lately mention'd here, were a Lufus Natura, and not the parts of any living Animal, becaufe he could not tell of what Creature they were; or if he fhould have conchuded that the Species of the Creature that produced thiem were loft, becaufe he knew not where to find it. Certainly there are many Species of Nature that we have never feen, and there may have been alfo many fuch Species in former Ages of the World that may not be in being at prefent, and many variations of thofe Species now, which may not have had a Being in former Times: We fee what variety of Species, variety of Soils and Climates, and other Circumftantial Accidents do produce; and a Species tranfjlanted and habituated to a new Soil, doth feem to be of another kind, tho' polibly it might return again to its firft Conftitution, if reftored to its firf former Soil.
The Conclufirin.
But I fay again, that we have, fince the times wherein Hiftories have been Written, many Inftances of the likeChanges andCataftrophies, as I have fuppos'd to be the neceflary Confequences of this Theory of Petrifaction, and feveral fo lately, that the found of them is hardly out ofour Ears; fo that we need not be beholding to antient Hiftorians, to tell us when and where they have actually been produced; for firft there is no place in the Earth that we do know, nor can we indeed know any fuch, that is now and ever has been exempt and free from fuch Mutations, as I have fuppofed; who can tell what part of it hath ever been and ever will be exempt and free from Earthquakes? And tho' Hiftories fhould inform us that during the times of which they writ, there had been no fuch Crifis of Nature (which yet would be a very improbable Alfertion as being a Negative) yet it were impoffible to be aflured by them, that there had never been any before that time, nor never would be for the fiture.

And, Secondly, There is no impoflibility in the Suppofition that every part hath, at fome time or other, been fhaken, overturned, or fome way or other fubject to Earthquakes, and transformed by them; and when we confider how great a part of the preceding Time has been adelon, or unknown, and unrecorded, one may eafily believe that many Changes may have happened to the Earth; of which we can have no written Hiftory or Accounts. And to me it feems very abfurd to conclude, that from the beginning things have continued in the fame ftate that we now find them, fince we find every thing to change and vary in our own remembrance; certainly 'tis a vain thing to make Experiments and collect Obfervations, if when we have them, we may not make ufe of them; if we muft not believe our Senfes, if we may not judge of things by Trials and fenfible Proofs, if we may not be allowed to take notice of and to make neceffary Confectaries and Corollaries, but muft remain tied up to the Opinions we liave received from others, and disbelieve every thing, tho' never fo rational, if our received Hiftories doth not confirm them, this will be truly Furare in verba Magiftri, and we fhould have no more to do but to learn what they have thought fit to leave us: But this is contrary to the Nullius in verba of this Society, and I hope that fenfible Evidence and Reafon may at length prevail againft Prejudice, and that Libertas Pbilofophandi may at laft produce a true and real Philofophy.

This was read in the Royal Society f̛uly the 25 th. 1694.

LECTURES

CONCERNING

Navigation and Aftronomy.

Several Lectures relating to the improvement of NAVIGATION read in the Year 1683.

IN thefe the Author at firft gives an account of his Defign, viz. to treat of the Theorical part, two things neceffaryto be known, viz. Ift. The Situation of places, in refpect to each other, and the diftance between them. 2dly. The fafeft and neareft Courfe to be kept to attain the Port defired. Sea Charts falle: The ufe of Fournals. Of the fituation of the places. Of the Figure of the Earth. Of an Antient Learned Age. Arguments for the Round and Oval Figure of the Earth: An Objettion againft the Oval Figure anfwered. The Earth pretty nearly of a Spharical Figure. Of the Meafure of a Degree by the Antients and Moderns; that they differ. Of an univerfal Standard for Meafure. The Pendulum propo'd, with Objectio ons againgt that way. A Degree propofed for a Standard. The ufe of an univererfal Standard. That the Earth Jhirinks. The ways of meafuring a Degree. itt. The Aftronomical ways. Methods to find the Latitude. The inconvenience of Refraction. Stars near the Zenith beft for this end. '2dly. The Geographical or Mechanical mays of meafuring a Degree. The ufe of the Inflective property of the Air. A may to difcover a Ships diftance off at Sea. Of the ways yet known of difcovering the place of a Ship on the Sea. I: Celeftial. 2. Geographical. Of the true notion of the Horizon. Whence the Looming of the Sea: A Propofal for a Natural Univerfal Standard for Meafure.
R. W:

NAVIG ATIO N is a pafling from place to place upon the Sea, by the help of fome Veffel fo that to Navigation the firf thin What Naviga the help of fome Veffel; to that to Navigation, the firlt thing ne-tion is. ceffary is the Veffel or Engine to Float or Swim upon the Water to the end that it may be moved to the Place, and by the way we defign.
For this there are requifite two helps; Firft, Somewhat to move it: And, Sécondly, Somewhat to guide or direct that Motion; in the fupply of which two in all particulars to the beft advantage, confitts the Art of Navigation.

Of the firft of the Three, namely, of the Ship, or of the Form, Structure, or Make of the Veffel, much more may be faid and done than has been hitherto, but I fhall fay nothing at this time, it being a particular Mechanical Art, and to more proper for another Occafion, where I may have Reafon to treat more largely and more particularly of it. Nor fhall I at all meddle now with the Second Head, namely, concerning the ways of giving Motion to the Veffel, which may be by various means performed, either by Animate or Inanimate Movers; but the moft commonly ufed are cither Sails by the help of the Wind, or Oares, by the ftrength of Men. Tho' there may be other Ways and Means (much more Advantageous and Commodious than what are at prefent) made ufe of for the fame purpofe, as poffibly I may afterwards manifett.

452 Lectures concerning Navigation and Afromomy.

The Author's chief defign in vhis Treatefe, viz. The Theorical part.

Two things to se known.

Errors in the prefent Soa chartes.

The principal Matter I here defign to treat of, is concerning the Third thing requifite to the Art of Navigation, and that is the way of guiding or directing a Ship or Veffel, fo as to pafs from Place to Place, or from Port to Port the neareft, furceft, fafeft, and fpeedieft way : In doing of which I fhall not meddle with the Mechanical Part, or the Bufinefs of the Mariner or Steers-man, or he that guides and moves the Rudder to Kun or Stecr the Ship in this or that Courfe or Rumb, that being more properly taught and learnt at Sea by Practice; but fhall confine my felf only to the Theorical part, which is proper to the Filot or Mafter, who directs the Steers-man, what Courfe to take, and which way to Steer the Veffel.

Things neceffary to be known in this part of Navigation are principally two ; Firt, The true Situation of places in refpect of one another, and of the interiacent Seas, both as to the Longitude and Latitude, and thence the Rumb and Diftance.

And, Secondly, The fafeft and neareft Courfe (all things confidered) that is to be kept for attaining the defired Port ; for the moft direet Courfe and fhorteft diftance is not always the beft way, but that way which is fafeft, that has the beft and fureft helps of Winds and Currents, is lcaft endangered by Rocks, Shoals and Storms.
For both thofe in part, but for the firf wholly we muft at prefent be beholding to the Difoovery and Obfervations that have been made by diligent and inquifitive Navigators, and other Artifts, who have been amfiftant to the making and rectifying our Maps and Charts, which tho' they may labour under many Errors and Imperfections, yet'tis to be hoped that the Induftry of ingenious and skillful Artifts may much amend and rectify thofe Failings, and reduce the Defcriptions to a much greater certainty and exactnefs; and in time give us fuch Maps, as may be a true Picture or Reprefentation of the Surface of the Earth and Sea, which is the firft principal thing. I need not inflance in the great Errors that are to be found in our prefent Maps, nor in the Difcrepancy they have one with another; fince none that has been any way converfant in them can be ignorant thereof: However fuch as they are we muft be content to make ufe of them, 'till by the collected Obfervations of fome that have already communicated their Knowledge, and others that may for the future labour in this Work, there be a compleater fet of Mapps and Charts Graved and Publifhed a-new for the Benefit of Mankind. For the doing of which I could fuggeft many things that would very much improve their ufefulnefs, both as to Geography, and Hydrogiaphy, or Navigation; of which I fhall fay more hereafter uponanother occafion.

Secondly, The other part is partly Theorical, and party Hiftorical.
The Hiftorical Part confits in the Relations of Voyages that have been or are now made to any known Part, whercin we may find an account of what Courfe they have hitherto obferved to be the beft to be kept from place to place, what Seafons of the Year, what Currents are to be met with, and at what times; what Winds blow at certain Places and Seafons, what fafe and convenient Harbours lie in the way for Victualling, Watcring, Carcening, and the like: What Sands, Rocks, Shoals, ecc. are to be avoided; what variation they have found of the Compafs at this or that part of their Courfe, or Ports they have touched at, and at what times they were obferved Becaufe of the continual Variation of the Variation; what figns they have of enfuing Storms, and what methods they have ufed to fecure themfelves; and many other of the like Nature----. And it were much to be defired that the Journals and Obfervations of all Navigators were in fome certain place retained and preferved, that Recourfe might thercto be had for extracting and methodizing all fuch Obfervations into a compleat. Hiftory of fuch particular Voyages, and for the compleating a general Theory Jor thid hiany confiderable things are known to divers skillful Navigators to thife parts, partly. from their own Obfervations, and partly from the infornations they have had froin others, yet a very great number of Obfervation's and Wiethods, that have been formerly and lately known and obferved by divers others, have. been loft and forgotten, and are not now to be found. And to fpeak o Artifts now living, 'tis to be feared that even thofe things which they them-

Lectures concerning Navigation and Aftronomy. 453

 felves know, when they Die, will be loft, and others that fhall follow them, will be fain to begin upon a new feore with their own Obfervations; feveral of thofe may poffibly be handed from one to another by Difcourfe and oral Tradition; but that at beft muft needs be very imperfect, fince we find that Men themfelves forget in a little time their own Obfervations, and this or that particular Circumftance will flip out of their Memory, efpecially in matters of number; and certainly there could be no better way to preferve them for future Ufe, than by treafuring them up in fome one certain place, where they might be fafely preferved: And it were as much for the obfervers Intereft fo to do, fince it would put him upon obferving as well as upon writing his Obfervations, and 'twould prompt him to recollect things taken notice of, whilft the impreffions of them are yet frefh in his Memory, by which means he would not only fix them more laftingly in his own Memory; but it would be an occafion to him of making his Obfervations much more certain and determinate, and of minding many other confiderable Circumftances, which he would otherwife not at all have regarded; as any one that makes trial will eafily be convinced of ; this therefore, we hope, Time may produce.The Theorical Part, which is that I aim principally to Difcourfe of, is a The Theorical knowledge or Art, by which Directions are obtained for Guiding and Steer-part. ing a Veffel from any one place to any other, whercof we have the Situation given and all the material Circumftances, that have been taken notice of to be ufually met with in Voyages made to thofe Parts; for 'tis with Voyages at Sea oftentimes as it is in Journies upon the Land, that the fartheft way about is oft times the neareft way thither: The caufe of which, in Sea Voyages, is to be afcribed either to the Winds or to the Currents and Tides; of which I flall fay more hereafter. And tho' the general Theory would direct you to Sail or Steer by the fhorteft and ftraighteft way through the open and free Sea from one place to another, yet the intervening of thefe and fome otherCircumftances do make you take a very differing Courfe, and go fometimes this way; and fometimes that way, for the better attaining your end. As when they Sail to the Barbadoes, they do not Steer on the direct Rumb that leads thither, but Sail a-way more towards the South, that they may get into the Trade or Eafterly Winds, which may carry them from thence. more directly and fpeedily towards their Port; whereas in the direct Rumb they meet with Calms or contrary Winds and Currents, which would take up much more Time, and caufe much greater inconvenience; 'tis plain therefore, that both thefe parts are neceflary, viz. Firf, True.Charts of the Situation of Places: And, Secondly, Atrue Hiftory of the Conveniences and Inconveniences of paffing by this or that Courfe.

For the firt of thefe, namely, for the knowing of the true Situation of For knorving Places to one another, it is requifite to underftand, Firft, the Figure of the the situation Body of the Earth: And, Secondly, The Magnitude. Concerning the Fi- of places. gure of the Earth ; there have been very many, and thofe very differing O pinions among the ancient Philofophers, but whether their Opinions are truly related to us, or whether they had any Grounds or Reafons for thofe O pinions we are uncertain, becaufe little is faid concerning them. Anaximander is faid to have fuppofed it like a Column; tho' yet confidering his skill in queous Fgyure, Aftronomy, 'tis hardly to be believed. Leucippus like a Cylinder or Drum. the opinions of Cleanthes like a top or double Cone, whofe Points were at the Poles, as fome Antientso fay; but others, that he fuppofed it like a Difh, hollowed in the middle, but, rifing towards the Edges, that the Sea might not run over, of which Opinion Heraclitus is alfo faid to be. Anaximenes and Empedocles are faid to have fuppofed it like a round Table, or a round Plain, being the top, as it were, of a mighty Cylinder or Column, for the bottom of which they affigned no bounds; of which Ariftotle in his Book De Calo, and Plutarch De Placitis PhiIo fophorum give an account. Of this Opinion are moft, Men who are ignorant in Aftronomy and Geography, and that becaufe the vifible appearance, they always have of the Earth, is a very large Plain covered with the Heavens as with a Hemifphere, and becaufe the Land was always bounded by the Sea, and that the Limits or Bounds of that Sea was not known, it was fuppofed

454 Leflures concerving Navigation and AAProñomy.

that the Sea was bounded by the hollow Hemifphere of Heaven, and thence that the Sun, Moon and Stars that Rofe and Set, did tife out of the Sea, and fet or defcend again into the Sea, which was the occation and ground of thofe Expreffons and Fables of the antient Pocts; and even to this day ignorant Pcople, that have been no better informed, are from the fame Caufe, as I have already mention'd of the fame Opinion; for this caufe alfo it was, that fome were of Opinion, that ro Täv, or the whole of the World was Water, and that there was a kind of Arch or Firmament of Heaven, which kept off the Waters that were above this Arch from coming to the Waters which were beneath the Arch, upon which the Earth floated, as it were a Difh; and that beneath the Earth that kept up the Waters above, was 'the fpace, wherein the Air and Metcors were placed---... This alfo was much countenanced by the vifible appearances both of the Earth and the Heavens, and fo needs not much of Arguments to make it pafs with the Vulgar and Illiterate, and fuch as have not been uifed to confider and reafon: about thefe Matters. Hence comes it, that even to this Day; we may cvery where find People who retain as abfurd Imaginations, and who ftill look upon Antipodes as impofible Fictions, and the Product only of the Authority of Sear men and Travellers to tell ftrange things; nor has it been only the Opinion of the Vulgar and Clliterate, but even of many otherwife very Learned and Excellent Men, fucli as were feveral Fathers of the Church, who, from their want of this fort of Knowledge, and from their mifunderftanding fome Texts of the Scripture, have zealoully oppofed the Opinion of the roundnefs of the Earth and of Antipodes.

Parmenides, among the Antients, is faid by Diogenes Laertius, to be the firtt that ever afferted thic Earth to, be a round Ball or Globe, and feated in the middlc of the. World, and the firft, that fet out or limited the habitable Parts of the World, and bounded them by the Frozen Żone on the one fide, and the Torrid or Burining Zone one the other fide, as is related of him by Plutarch in his Treatife De plecitis Pbilo opporum: This Man flourifhed in the fixty nineth Olympiad, thiat is, about five Hundred' Years before Chrift. But tho' this Perfon were an extraordinary Philofopher and great difcoverer of Nature, and fo might polfibly teceive this Opinion, yet we find by the fore-mentioned Book of Plutarch, that this Opinion is afcribed to Thales, who lived above a Hundred Years fooner; and if we had not bcen defective in the Hi ftory of antient Times, without doubt we fhould have been informed that Aftronomy and the Theory of the World, revived by Copernicus, was, long before Thales, well known, and if fo, then the roundnefs of the Body of the Earth could not be a thing unknown to fo learned an Age; of which fearned Age, beyond all the Hiftories now to be met with, Hugo Grotins has given us a Collection of Teftimonies.

Simplicius in his Notes upon Ariftotle, mentions, that Calijthenes (who upon the taking of Babylon was prefented by Arifotle to Alexander the Great) had feveral very antient Writings of Aftronomers very long before that time, namely, of 1903 Years, which, according to the common Account, muft fall abott threefcore Year's after the Flood, and confequicntly, if Aftronomy were fo early fo well knowi, the Figure of the Earth could not be unknown; for whatever ftrange Opinions fome of the Philofophers might have, who had only contemplated fome of the leffer Bodies and Productions of Nature which were within their reach, yet moft certainly thofe that were skillful in Aftronomy could not be ignorant of its Form, which we may plainly enough prove from their afligning the Eclipfes of the Moon to be from the fhadow of the Earth; but efpecially if the Syftem of Ariftarchus were fo very antient, wherein'the Earth is fuppofed a Planet.

But to omit any furthermention of the Opinions or Theories of the Anti-,
of the Spharical Figurr of the Eirth. ents concerning the Figure of the Earth, it is now fuppofed or granted by all Philofophers, Aftionomers, and Geographers, that the Figure of the Body of the Earth is Globular, or every way equally round, or of a Spharical Figure, and accordingly the Model of it is commonly made of that Figure, a Globe, and the Parts or places of it are fet down and defcribed upon the Superficies of a 'perfect Globe, aind fo the diftances from place to place are
computed

Lectures concerning Navigation and Afronomy. 455

computed as upon fuch a Sphærical or bending Surface; and many Arguments are commonly brought to prove this Opinion, which, becaufe they are to be met with in almoft every Geographical Writer, I fhall pafs by at prefent; fome only I would here 'take noticeof, that tho' it be fo gencrally aflented to, and concluded by all, yet I conceive there is no one pofitive and undeniable. Proof to evince it againft fome I have lately met with, who would have it to be fomewhat of an Oval or Egg-like Figure, the Axis of its motion being of the oval Fifuppofed the longeft Diameter; or of another, who fuppofes it may be of an gure thereof. Oval Figure the contrary way, and that the longeft Diameter of it is the 压quinotial, and the fhortef the Axis; the reafon of the firt was alledged to be, for that the Sun does exhale and draw up into the Air from the parts of the Torrid Zone a great quantity of Water and other volatile Materials from it into the Air, and drive them towards the two Polar' Parts, where they again precipitate and falldown in Rain, Snows, Hails, or and fo, turn to Ice, and fo raife the parts thereof towards the Pold, and diminifi the parts about the Torrid Zone: But the Anfwer to this Argument is very cafy, that if the Water be moft raifed within theTorridZone and rain'd down again in the Frigid, then it would follow, that there muft be a continual paflage of Water from the Frigid towards the Torrid, and poflibly it muft carry more parts along with it in its return towards the Fquinoctial in the Form of Water, than from the Torrid Zone back to the Frigid in the form of Air:- This therefore will be a better Argument for the fecond Hypothefis than for the firft, but 'tis judged no pofitive and certain Argument for either, fince what it carries thor mentions back towards the 平quinoctial, ferves only to fill up the Caverns in the bot- here of the otom of the Sea: The Aigument alledged for the fecond Opinion, was, that more largely the Globe of the Earth'being whirled round upon its. Avis, the parts near re ened of and the Equinoctial have lefs Gravity than the Parts near, the Poles; but tho demonffrated this be more fignificant than the former, yet it may be faid that the Body of supre 355° the Sun, tho' it be moved upon its 'Axis as well as the Body of the Earth, yet the Figure thereof, as far as we can difcover by the Telefoope, is fill per fectly round. Now the proportion of the Diameter of the Sun to the Diameter of the Earth being greater than the period of the Sun's Revolution to the Period of the Earth's; it' fillows that the parts of the Sun. move fyyfter, than the refpective parts of the Body of the Earth. Now, tho it balledgs ed that the Body of Mercury paffing through the Bod'y of the Sun in the, Latt Conjunction obferved by Monfieur Galfer, was by him faid to appear of this Figure, yet no fuch appearaince was talecinotice of by others that oberved the fame; and if it had, 'tis not yet knoth whether Mercury be moved round upon its Axis or not, and therefore no certain conclufioh can thence be deduced. But as neither of thefe Affertions is fufficientily poved, fo muit, needs fay that the abfolute roundnefs of the Ball of the Earth does yet want a pofitive Proof; for no one of the Arginents or Experiments', yet brought to prove that Figure, are fufficiently exact and pofitive to prove it ' for tho' they do moft of them prove it to have a Figure which is near a round, yet they do not prove it abfolutely ; for Firft, It cannot certainly enough be difcovered by the Eclipfes of the Moon; for the fhadow may be fomewhat Eiliptical either way, and yet the appearances not fufficient to determine the difference; for we find that no Obfervation hitherto made doth exactly agree with any Calculation yet made; and to what to aftribe the difference is not hitherto agreed. Next, none of the meafures of a Degree, tho fome of them, as particularly that of the Fiench lately Publifhed by the Royal. Ac ademy, are made with great exactnefs, for each of them only fhew what heafure was found of a Degree of the Meridian in that Latitude; but they differ enough one from another to fhew that no tiwo of them compared together will be fufficient for this purpofe. Furtlier, tho' two of them fhould pretty, near agree, as that of Mr. Normood here in England, and that of Mr. Ticart, yet to make them fignificant for this purpofe, the fame examinations thould have been made Eaftward and Weftivards, to fee whether the Parallels would have anfwered to the refpective Latitudes; and therefore if the fe. Proofs be not fufficient, much lefs will the Obfervation of Seamen', 'whofe computations of Leagues failed, are by no means accurate enough to determine this tnat-
ter; for there may be a conliderable difference, and yet they unable to detef it.

Objection againft the EllipticalFigure

Againft this the mof material Objection is, that if the Body of the Earth Thould be Elliptical, as there is Come probability that it is fo, not with the longeft Diameter in the Axis, which would make it of an Egg form, but with the longeft Diameter, in the plain of the 乍quinoctial, which would make it. of a Turnep or Bowl Form, and that becaufe the Rotation thereof num? neceffarily make the parts of the Earth; which are carried the fwifteft with that motion, have an indeavour outwards, or from the Axis of Rotation, as we find in all Bodies moved with fuch a motion; which indeavour mult neceffarily take off from the Gavitation of thofe Bodies towards the Center, and thence if the power of Gravitation be cvery ways from the Center equally forcing towards the Center, the parts of the Earth towards the Equinoctial muft have lefs Gravity than the parts of the Earth that are nearer the Poles; and confequently there muft be a longer Cone or Cylinder near the Æquinoctial to counterpoife a fhorter near the Poles, and confequently to keep the Water of the Sea in a Counterpoife, there mult be a rifing of the Sea above the Sphærical Surface near the Equinoctial, and a depreffion of the Sea below

From the point ing of the Per perdicular. that Sphrrical Surface near the Poles, which makes it of this Turnep or Bowl diape. Againft this, I fay, the greateft Objection is this, either the Perperidicular doth point direstly to the Center of the Earth, or it doth not: If it be afferted that it points directly to the Center of the Earth, then the Surface or the vifible Horizon would difcover fuch a variation from perfect

Ansmered.

Acrurate obfervations are yet marting.

The Earth pretty nearly of a Spharical Figure.

$$
21
$$ of diftances made accordingly; which brings me to the fecond necetfary to be known, and that is the true Magnitude of the Body of the Earth compared to the common known meafures; as that of a Foot, Pace, Fathom, Stadium, Mile, League, or the like.

The meafure of ${ }^{\text {a Degree at- }}$ tempted by feveral of the Antients and Maderns.

For this then we have an acco.
that have been made both herecofore, and of later Days; but if we compare them together, one would be apt to inagine, later Days; but if we compare perfectly made, or elfe that we are very ignorant of their feveral pary immeafures,

Lectures concerning Navigation and Aftronomy.

meafures, or elfe that there may be a real difference of the meafure of a Degree taken at feveral Latitudes of the Earth; for Arifotle makes it II I Stadia, Eratofteenes $\dagger 00$, Poffidonius 666 , and Ptolomy 500 , and the Arabians yet lefs; but in truth we know not what ways they took for exactnefs, nor what meafure any of them made ufe of compared with thofe in ufe at prefent among us; and therefore it will be much lefs difficult not to err our felves, than to know whether the Antients err'd or no.

If we confider the Modern Experiments for this purpofe, we may find that Mr. Normood in the Year 1635 , did find the Meridian Altitude of the Sun on the eleventh of Yune to be $\varsigma y, 33^{\prime}$; and that two Years before that, viz. on the eleventh of Fune 1633, he had found the Meridian Altitude of the Sun at London $62^{\circ} \circ 1^{\prime}$, whence he concludes (not making any allowance for declination, Refraction, or Parallax) that York, was more North than London 2. 28. Now by meafuring, the diftance by Chains of ninty nine Foot long, of fix Rod. of $16 \frac{1}{2}$ to a Rod, he found it to be 9149 Chains, or 905751 Feet; whence he concludes in a Degree there are 367196 or 367200 Feet, which is fitxy nine Miles and an half and 236 Feet, whence there will be 6120 Feet in one Mi-nute or a gradual Mile, which is 840 Foot more than ourstatute Mile which is 5280 Foot.

The laft Experiment that has been made for determining this meafure, is that of Monfieur Picart, and the Gentlemen of the Royal Academy of Pares, who with great exatnefs of Inftruments and great Skill and Care in performing, examin'd the meafure of a Degree and found the fame to be 57060 . Toifes or Fathoms of the Caftle of Paris, each Fathom or Toife containing fix Parifian Fect, and thence a Degree contains 342360 Parifian Feet ; and the Parifian Foot being to that of London as 16 to 15 , a Degree will contain 365184 Englifh Feet, or 69 Miles and 864 Feet; which is almoft ${ }_{6}^{\frac{1}{6}}$ part of a Mile, a fixth part of a Mile being 880 Fect, fo that by this Account a Degree is lefs than what Mr. Normood makes it by 2012 Feet, and confequently a Minute or gradual Mile will. contain $608 \sigma_{5}^{2}$ Feet, which is longer than a Statute Mile $806 \frac{2}{5}$ Foot, which is almoft a Sixth, viz. 880. Now having the mea ${ }^{-2}$ fure of one Degree, it will be eafy to find the meafure of the Circumference of the whole Earth, there being 360 fuch Degrees in a great Circle of it. 360 times 365184 gives 131506240 Feet in the Circumference of the Earth, or 24915 Miles and 504 Fect.

Thefe two laft Menfurations are lefs than that which was made by the Arabians about the Year of our Lord 827 by feveral skilful Mathematicians at the command of Almaiman an Arabian Prince, in the Plains of Mefopotamia, they finding a meafure of a Degree, which, reduced to our Englifh Meafure, amounted to 370222 Feet; fo that That of Mr. Normood is lefs by 3022 Feet, and that of Mr. Picart 5038 ; fo that Norwood is lefs by about $\mathrm{I}_{2}^{\frac{1}{2} 0}$ part of a Degree, or about halfa Minute, and Picart is lefs by a $72 \frac{1}{2}$ part of a Degree, or almoft an Englifh Mile.
What to afcribe the Reafon of thefe diferences one from another to, is pretty hard to fay, but moft probably it is partly the differing method each of ${ }^{\text {may }}$ be aforib'd d them took, and partly alro the uncertainty of the comparative Magnitude of ference of difthe meafures they each of them made ufc of; for to go no farther back than fures. Mr. Normood, we are not well affured but that the Foot he made ufe of was lefs than the Foot we now make ufe of by $18 \mathrm{I}_{2}^{\prime}$ part by which he differs from Pi_{-} cart, which is about half aCentefm; for the Standard Foot we now ufe was fince that time agreed upon by a Club of our Mathematical Inftrument-makers, of whom Mr. Elias Allen was the chief; we will not now mention any other caufe, tho' poffibly there may be another more confiderable than either But ${ }^{*}$ not to trouble our felves with what the meafure of a Degree has been, 'tis only neceflary for our prefent Eniquiry to know what really it is now, reduced to a known and certain and invariable meafure, in which all Nations may agree; for 'till that be done, our meafuring the Courfe at Sea by the Logline The Logline as is falfeand leads into great Errors and Miftakes; for if with the Logline prefent feads, we meafure a League, or the 60 th part of a Degree, and account it to hold into errors. but 15840 Foot, or 2640 Fathom, and it really contains $18259 ;$ Feet, or 3043 Fathoms, then the Coure rueafured by fuch an erroncous meafure muft needs very much confound our reckoning

45^{8} Lectures concerning Navigation and Afranomy.

of an univer- It will be neceffary therefore in the firt place to rectify our meafure and
fal Stundard for meafure. Ift. The Fendulum propos' for that end. the length of our Line.

Many have been the attempts and defigns both of Antient and Moderns to perform this necellary Precognitum, to Geography and Mechanicks, but to this Day it remains a thing to be fought after. The laft and beft way hitherto thought of is, that by the length of a Pendulum vibrating Seconds of Time meafured by the Sun's middle motion in the Ecliptick, reduced to the Iquinoctial or right a afcenfum, which, for ought I know, was-firf inveint ed byy the Royal Society, tho' it has been fince publifhed by Monficur Ifreezs, Monfieur Picart, and divers others. Or which were yet more eafy to be fuund and more certain, by reafon that the sun's true Anomaly is not yet afcertained by the length of a Pendulum vibrating a Second of Time, by the diurnal Revolution of fome notable fixt Star; becaufe, in all probability, that is always equal and the fame at any time of the Year, and ia any Year, either paft or to come. And tho' the ingenious Kepler has from his Hypothelis of the turbinating Power of Light fuppofed that the turbinating or diurnal Motion of the Earth upon its Axis is accelerated and retarded in that diurnal Rotrtion, according, as it moves nearer to, or further off from the Sun; yet there is no one certain and pofitive Experiment or Obfervation yet brought to prove any fuch inequality; and from another Hypothefis which I have of the caufes of that motion, which is very differing from that of Kepler, I fuppofe there can be none fuch, and therefore 'till by fome certain Obfervation, it be found to be otherwife, we may, with great Reafon, fuypofe it to be at all times of the Year, the fame; fo that if a Penduluri be made of fuch a length as to make 86400 fingle vibrations in the time that any fixt Star paffes from the Meridian, 'till'it return to the fame the next Night, that length may be taken for a perpetual meafure of length or a Standard Yard, to which all other meafures of Length; Breadth, Solidity, Capacity, Weight, or Power, may be reduc'd; and $\frac{1}{3}$ of that may be taken for the univerfal Foot, and two of thofe for an univerfal Fathom, and five of thofe may make a Rod or Pole ; or which were yet better, to divide this length into ten, for Decimals or Hands, and each of thofe into Decimals which may be called Digits or Fingers, and each of thefe into Decimals which may be called Threads, and each of thefe into Decimals which may be called Clews or Hairs, and fo onward by Decimal-fubdivifion, to continue downwards, 'fo as you have occafron, of a finaller or. fmaller meafure, which may be calid Tentlis, Hundreds, Thoufands, ten Thoufands, hundred Thoufands, cic. and for greater meafures to compute only by the number of fuch Yards, Arms, or Paces.

Monfieur Hugens has determined the length of a Pendulum vibrating Scconds by the Sun, to be three Foot $8 \frac{1}{6}$ I ines of the Parifion meafure, accounting the Limits of his meafure fo taken, to be from the Center of Sufpenfion, to the Center of Ofcillation or Vibration, which is a Point to be found by a proportion which he affigns, depending on the length of the Diameter of the Ball to the length of the String by which it is fufpended.

The Toife or Fathom of the Obfervations of Paris, which Monneur Ficart made ufe of for the meafure of a Degree, was, according to the laft eftablifhment at Paris, compared with the Standard of the jength of a Pendulum vibrating Seconds of Time conformable to the mean motion of the Sun.

The Toife contains fix Parifian Feet, and the Parifian Foot to the London Foot is in proportion as 16 to 1 ..-.-. Each of the re Parifian Feet is divided into Duodecimals or Inches, and each Inch into Duodecimals or lines.

Now, by many trials, he found the length of fuch a Isondulums to be thirty fix Inches, and cight Lines and an half.

The Pendulum he ufed, as he himzelf declares, was made of a Ball of Copper of one Inch in Diameter exactly turned, and the firft String, he uftd to furpend it by, was of a Hat Silk. The length of the Pendulum he reckons to be from the Center of Motion to the Center of the Ball, omitting the part proportional taken notice of by Mopfieur Hugeus, the Ball being buta thirty lixth part of the length of the Thread; otherwife if the Ball be bigger; the proportional part mult be taken notice of as making a confiderable variation, the Vibrati-

Lectures concerning Navigation and Aftronomy. 459

ons alfo obferv'd were very flort, otherwife there would have been a confiderable variation in their Duration or Time; but afterwards finding that the Silk was apt to fhrink and ftretch by the leaft drinefs and moifture of the Air, it was found much better for that purpofe to make ufe of a flake of Silk Grafs, which is a fort of long and very fine Flax brought out of America, which is very flexible and yet very ftrong, and not fubject to fhrink or ftretch. The upper end of this Flake was put between the Chops of a fmall Vice which held it very firm when pinched by the Screw, and the length was meafured by a fmall Rod of Iron made exactly of the length of the String, when the Bali hung Perpendicular between the Head of the faid Vice and the Ball,

This Pendulum was adjufted by two large Pendulum-Clocks, whofe Pendulum had been by trials adjufted to more Second. Minutes by the mean motion of the Sun, and which were fond flower by three Minutes and fifty fix Seconds, at every return of the fame Star to the Meridian; and that to fuch an exaetnefs, that they differed not one from another, one fingle Second during many Days; the fingle Pendulum was fo fufpended and put into motion, that it vibrated the fame way as the Pendulum of the Clock; and if it were of 36 Inches eight and an half Lines, it continued its Vibrations the fane with thofe of the Clock, but if it were never fo little either longer or fhorter: than that meafure, it became, in lefs than an Hours time, fenlibly differing; however he acknowledged that this length was not always found fo precife, but that it feemed it ought to have been a. little fhortned in Winter and lengtbned in Summer; but that, he conceives, ought to have been but the tenth part of a Line, and the excefs on both fides being pretty near equal, he therefore made choice of the length of 36 Inches, eight and an half Lines, as the medium or middle length between that of the Summer and that of the Winter.

Now, if this were made the general Standard for the meafures of all Countries, or that there particular meafures, whatever they be, were reduced to this, then the knowing the proportion ther bear to the Standard would manifeft the proportions they have to one another, and fo the meafures given of a Degree in one place, by the meafures of that Country might eafily be reduced to the meafures of any other; and fo Experiments truly made might be as accurately examin'd and compar'd together.

But againft this way of inding a natural, univerfal, and perpetual Stand-objertions a ard meafure of length there may be divers Objections not inconfiderable ; ;gainft this as, Firft, That if the Gravitating Power of the Earth be greaterin one place standard. than in the other, as towards the Poles more than towards the Æquator, then the length of a Pendulum to vibrate Seconds, muft alfo be confiderably longer towards the Poles than towards the Æquinoctid, otherwife the Pendulum of the fame length with what is determin'd in France, which is about the middle between the North Pole and the Fiquinoctial, will go too quick near the Poles, and too flow near the 不quinoctial. Now, what I many Years fince difcover'd in this place, reading about Penduls for Longitude, and what I have now before mention'd concerning a probability, if not a neceffity of fuch an inequality of Gravitation, and confequently of a Boul-like form of the Earth, does at leaft hint that fome Experiment of that kind ought to be try'd at fome place near the Æquator, to fee whether it be fo or not, and 'till that bedone there can be no certain Conclufion made thereupon.

Next, 'tis not imponfible but that the Gravity or attractive Power of the Earth may be at fome times greater than at others; for we fee that there is difer in may hardly any thing in Nature that ftands at a certain ftay, but does fometimes fame placee. increafe and fometimes diminifli; and if fo, then that Iron Rod, that is the exact meafure of the length of the String of the Pendulum this Year, will be differing from the length of the fame, which was three or four Years fince, and may be three or four Years hence; this therefore ought to be firft examin'd by Experience, before any certain Conclufion can be made thereupois.

Thirdly, It is not yet certainly known but that the Gravitating Power of And at differd; the Earth may be different at various Seafons of the Year, as when the Earth ent Seafonss is in its Apholion and Peribelion; for which poffibly there may be a plawfible Reafon afign'd; and if f_{0}, it will then be neceffary to mention at what time

Lectures concerning Navigation and Atronomy.

of the Year the meafure is taken; for if the gravitating Power flould be found to be leffer when the Earth is in its Peribelion in oir Winter, than when in its Apbelion in the Summer, then the Pendulums muit be accordingly proportion'd to the time of the Year.

Fourthly, If the Rotation or Diurnal Motion of the Earth mould be accelerated in its Peribelion in our Winter, and retarded in its Aplielion in ourSunmer, as the ingenious Kepler fuppofes, and feems to afert from Experiments, then the quite contrary will follow, and the Pendulum muft be fhorter for the Winter than for the Summer; which will be neceflary to be providby trials, before any thing can be built thereupon.

Fifthly, If both thefe two laft mention'd Effects are produc'd, and that they keep in fome proportion one to another, then a Pendulum of the fame length may ferve at all Seafons of the Year; but if either excced the other in that proportion, then muft the length of the Pendulum be accordingly lengthen'd or flortn'd.

Sixthly, If the, difiering Denfity of the Air have an influence ripon the Motion and Velocity of the Pendulum made in it, as moft certainly it has, and that a Body in a denfe Air moves not fo quick, Cateris paribus, as in a rarify'd. Air, then the Pendulum mutt be fhorten'd in the W'inter, and lengther'd in the Summer; and fo the fame meafure will not laft round the Year.

Seventhly, If the Pendulum be made of a Brafs, Silver, or Iron Rod, then the length of the fame Rod will be greater in Summer than in Winter, and confequently the 'fpace meafur'd. therewith will be found fhorter in Summer than in Winter; for thofe and the other Metals, when hot, will have larger Dimenfions than when cold, and fo cannot make an exact Standard for the meafure of length.

Eighthly, If the Pendulum be made with twifted Threads, then the Threads will be found to be longer in dry Weather than in moift, and fo 'twill be neceffary to take an account of the Seafons when the Experiments are made, and to reduce to exactnefs the limits of fuch fhrinking and ftretching.

I could mention divers other Objections againt this way, tho notwithftanding I conceive it to be the beft and eafieft that has been yet Publifh'd; and with finding out the true limitations to all thofe Qualifications, it may poffibly prove the beft for ufe.

There have been others who have thought the beft way for the making an

A Degree proposidfor anu-nニ̈rerfulStandard.
objections an gainft this way univerfal Standard for the meafuring of lengw, to be the finding the cact length of a Degree upon the Earth; and to do that by mof exatly determining two places upon the Earth that are both in the fame Meridian, and drffer from each other exactly one Degree of Latitude, obferv'd by a very large and curious Inftrument; which places being fo found out, their true diftance is to be exactly meafur'd and found fome one certain meafure ; then this length, to be divided into fixty equal Parts, which may be called Geographical Miles or Minutes, and each fixtieth part being fubdivided into a thoufand parts, may denote Geographical Paces, and each thoufanth part, being ăgain fubdivided into five parts, may denote a Geographical Foot, and each of thefe fifth parts being again fubdivided into twelve, may denote Geographical Inches; and thefe again fubdivided into twelve parts, may denote Geographical Lines; and fo fubdividing onward by Duodecimals the leaft fenfible length may be determin'd in proportion to the Circumference or Diameter of the Earth.

But againft this way of making a Standard for the meafure of length there may be thefe things Objected; Firft, The great difficulty that there will be, Firf, , To determine exactly by Aftronomical Obfervation two fuclo places to the certainty of five Hundred Foot. Secondly, In meafuring their true diftance.

Secondly, If the Body of the Earth be notexatly Spharical, then the meafure of a Degree, taken in one Latitude, will be differing from what it is in another, and fo it muft be determin'd, Firft, By trials exactly made in differing Latitudes, whether any fuch difference be or not, before any Conclufion can be made thereupon.

Lectures concerning Navigation and Aftronomy.

Thirdly, 'Tis not improbable but that the Body of the Earth itfelf may fhrink and grow clofer together, and fo grow leffer, that the Gravity thereof does continually prefs the parts thereof harder, and poffibly clofer together; and fo' 'tis poffible the irregular Surface of the Earth may have been, in part, caus'd by the puckering of the Cortical Parts thereof; and if fo, then the meafures, this way found, will cvery Age grow fhorter and fhorter; which, poffibly, may have been the Reafon why the meafures of a Degree, which have been taken in feveral Ages, have always been found fhorter and fhorter, the later they have been taken, as I before-mention'd.
Fourthly, The fame Objections do lie about the fhrinking and fwelling of the laft Subftance that preferves the Standard, as in the former way. I could inftance in forme other Objections, but that I conceive thefe will be fufficient to fhew the difficulty of procuring fuch a meafure.

I have been more particular upon this linquiry, for that this feems to be. the very Bafis and Foundation of Geography and Navigation; and, 'till this be well determin'd, all the Superftructure will be but infirm.

Fune 21. 168 3. I did the latt Day explain to you the neceffity there was of The ufe of and a certain and determinate Meafure or Standard of length; that might be davd for mise fo, not only to all the World at prefent, but that it be and remain to all Po- fard for miafterity for the future; that fo, by means of that, all things that could be reduc'd to a certain Weight, Meafure, Capacity, Power, ơc. might, by that means, be compar'd, Firft, To that common Standard-meafure, and afterwards one with another ; becaufe without fuch a natural and perpetual Standard, neither could the prefent quantities of things be compar'd with thofe of preceding Ages, nor indeed one with another at prefent; nor could future Ages have the true Ufe and Benefit in this Particular of the Obverfations and Inventions of this prefent; for to inftance in no other Particular at prefent, I fhew'd you how every one of the meafures of the Earth taken by any of the Antients differ'd both one from another, and all of them from the meafures now laft of all found; and how thofe quantities, which they took of a Degree, thereby feem'd to have diminifh'd ever fince the firft that was taken this way. So that it doth neceffarily follow, either that the Standard-. meafure, made ufe of by them, did continually increafe or grow bigger, the longer it remain'd in the World, or that the very Body of the Earth itfelf, did really, from time to time, as it grew older and older, fhrink into lefs and lefs Dimenfions, much after the fame way as we find divers animated Bodies, as Plants and Animals, upon growing old, really to do; whence, as I hinted, the Mountains and Vallies, and the like inequalities of the Earth's Surface might feem to be nothing elfe but the wrinkles and puckering of the Skin of the old $V_{e} f t a$. There is no impoffibility nor abfurdity in either of thefe Solutions or Suppofitions. Nor will I determine or prepoffefs any with a pofitive affertion of my Opinion, which is the moft likely; only this I may fay, that there feems a kind of necelfity to admit either the one or the other, If at leaft we will give any credit to the truth of the Relations, or to the certainty and exactnefs of their Obfervations (for it may lie alfo in either of thofe) but that feems not fo probable; for my part I am inclin'd to be-That the Earth lieve that the Body of the Earth doth really fhrink and grow lefs, by reafon fhrinks. that the Gravity of the Earth doth feem to prefs and ram the parts thereof continually clofer and clofer together, and for that it feemeth not fo natural to conceive that the common meafure fhould continually grow bigger and bigger, efpecially, fince it is believ'd rather that the fize of Men grows lefs and lefs, and confequently it feems lefs probable, that the Foot, Fathom, Pace, and the like, which are deduc'd from the fize of Mens Feet, fathoming and going, fhould grow bigger; but be that what it will, it feems at leaft to fhew the great UTe and Conveniency of a natural, univerfal, and perpetual Standard of length : I have already mention'd two ways that have been thought of and attempted for the making this univerfal Standard, and thofe were ; Firft, The length of angle free Pendulum vibrating Seconds of Time.

462 Lectures concerning Navigation and Aftronomy:

Abstract

Secondly, The length of one Thoufanth part of a Minute or Mile found upon the Earth by accurate Aftronomical and Geometrical Menfuration to be for, Geometrical Pace, and a fifth part of that for a Foot.

I told you alfo what Objections there lay both againft the one and the other way, and I fhew'd you alfo how thofe uncertainties might be afcertain'd, and the difficulties remov'd; but neither of them coild be perfectly regnlated and afcertain'd without a great deal of Care, Pains and Skill, which yct (for all accurate Obfervations) is neceflary to be done. I could have fhew'd fome other ways of making a univerfal, natural and perpetual Meafure; but for the purpofe of Geography and Navigation, thefe poffibly, when rectify'd as they ought, may prove the beft. I explain'd the laft time how one of thofe meafures might be found or made by Obfervation; I fhall now a little more particularly difcourfe of the fecond way, namely, That, by the true length of a Degree upon the level Surface of the, Earth, found by accurate Obfervations. Now there are many ways to find out and-determine the Magnitude of a Degree that are mention'd, by. Authors, and theremay be many more ; but they may be all reduc'd to two geineral Heads.

The ways of meafuring a Degree.

Firf, Such as require fome Cxleftial Obfervations to determine the Degree, or other certain part of a great Circle imagin'd upon the Surface of the Earth.

And, Secondly, Such as only require Obfervations made upon the Earth to deternine the fame. The Firft, for brevity's fake, may be call'd the Aftronomical ; the Second Geographical.

The Aftronomical ways are two, viz. Firft, The finding the difference of Latitude between two places lying due North and South of each other, or under the fame Meridian, by accurate Obfervations of fome Cæleftial Bodies, whether Sun or Stars.

And the Second, The finding the faid difference of Latitude between two places lying in fome other Pofition to each other, whofe true Pofitions are known, and not in or very near the Eaft and Wett of each other, and fo finding the proportional length of the part of the Azymuthal Circle, then finding by exact Menfuration upon the Earth, or otherwife with fome known meafure, the true diftance between them in a ftraight Line.
To find the Latitude of a place. of Atronomical obervations necelary for the finding the true Latitade of any place may be either made in the Day or in the Night; by the sun whofe. Altitude, Azymuth and Declination for any time of the Day Deing known, the Latitude may eafily be found, but the beft of all Azimuths is the true South and Meridian : For that Firft, The labour of Calculation to reduce it to the Meridian is fav'd: But, Secondly, Becaufe the Body of the Sun is there mov'd with a horizontal or level motion, and fo does not fo fuddainly change its Altitude, but remain fenfibly the fame for fome tims. Thirdly', Becaufe the Body of the Sun is there moft remov'd from the Horizon, and fo will there have the leaft Refraction, which, in this Cafe is very conliderable, and muft be avoided as far as may be. In the Night the Latitude of a Place may be found by the obfervation of the Altitude, of any one known Star, whofe Azymuth and. Declination is known; but herc alfo the belt Pofition of any fuch Star for this purpofe is, when it is in the Meri-: dian, and if it pafs the Meridian both Northwards and Southwaris, the Zenith; the beft is that to the Southwards; and of all Stars for this purpofe,
Shurs near the
zenitp beft for this purpofe. thofe are beft for fuch Obfervations as pals the neareft the Zenith of the place. (Becaufe, as I fhew'd before, the great incumbrance of all Altronomical Obfervations is thereby remov'd, namity, Refraction.) Now, the Refractions are always fo much the greater, the nearer the Body obfery'd is to the Horizon; but the nearer the Zenith the lefs; but the quantity of proportions of fuch Refractions is not fo certainly found, becaufe, ncither is the Refraction the fame at all places, nor the fame at one and the fame place at differing Seafons of the Year, nor in differing times of the Day and Night,

Lectures concerning Navigation and Aftronomy. $4^{6} 3$

tho' the Sun or Star be in both thofe times in the fame Altitude, and is not yet reduc'd to any certain Rule or Calculation: And therefore the beft way of all, is that which doth wholly avoid that Inconvenience, which is the way that I above twenty Years fince, for this very end and intention, explain'd to the Royal Society, and which, about fourteen Years fince, I made ufe of in making my Obfervations for the finding the parallax of the Orb of the Earth among the fix'd Stars, which had hardly been poffible any other way, efpecially to avoid all manner of Doubt or Objection; and that was the Obfervation of fome Star which pafs'd very near the Zenith of the place; where in a very clear Night there is no Refraction at all ; and this was the way which Morifieur Picart, and the Gentlemen of the Royal Academy of France, have, fince that time, made ufe of in their Obfervation for the finding the difference of Latitude between Paris and Amiens, which, upon this account, is much more accurate than any of the other ways which before that time had been taken by any, either of the Antients or Moderns who had made this Obfervation: For tho' I confefs we do not certainly know what ways fome of the' Anticats made ufe of, yet by confidering of the ways they might make ufe of, we may with probability enongh conceive, that it was not this way, by obferving the Stars in the Zenith, efpecially fince we do not find that they had any notion of Refraction at all, and therefore 'twas not very probable that they fhould provide againft it, the notion or invention of Refraction being not much before T_{i} cho Brabe, and he feems to be the firft that reduc'd it to Rule; for tho' Ptolo$m y$ and fome of the Antients did take fome notice of the alterations of the Air, and of fome alterations they caus'd in the appearances of Cixleftial Bodies through them, yet it feem'd to be no more than this, That they conceiv'd that the groffer Air and Vapours near the Horizon did caufe the Cxleftial Bodies to appear greater near the Horizon than near the Zenith, which was a miftake likewife; for neither does the Refraction of the Air any ways caufe fuch an appearance, but rather the contrary; nor is there indeed really any fuch appearance, if it be more curionly inquir'd into, it being only Opti- Refration does cal, and riffing from the imaginary greater diftance of the Sun and Moon not make bonear the Horizon, where the known diftances upon the Earth can be com-biggernear the par'd with them; for otherwife the Bodies of theSun and Moon would ap- Horizoot. pear lefs, as is very evident in the vertical Diameter, which is fometime a quarter lefs than it ought to be, as any one that will examine the Rifing or Setting San, will plainly perceive, by the help of a Telefcope fitted with a Micrometer. Again, The Refraction of the Air elevating the two extrean Points of the Horizontal Diameter pretty near peipendicularly in the two Vertical Circles that pafs through thofe Points ; and all thofe Vertical Circles meeting in the Zenith, it follows, that the greater the Refraction of the Amofphere is, the fhorter will appear the Horizontal Diameter of the Sun or Moon, nor was this Propriety, whether known or not, made ufe of by any before Ticho Brabe, tho' ever fince that time it hath been acknowledg'd and verify'd by all Aftronomers, and yet 'tis not agreed upon, what the Proportions of it are; but a fort of randum Numbers are fet down, of which the true ground is not affign'd, that I know, any where; and poffibly the thing itfelf in ftrietnefs may be almoft impoffible, being uncertain even in itfelf, and being in a continual ftate of change.

I need not, I fuppofe, mention the way how to come by the Latitude of a place where the Declination, Altitude and Azymuth is given, that being common and eafily enough known. Nor hall I need to mention any other diffis culties in this Aftronomical way, but rather proceed to the fecond way how to find two places in any Pofition whatfoever, which are diftant from eachiother a Degree of a great Circle of the Earth, or any other lefs affignable part without making any Obfervation of any Cæleftial Body; which is that which I call the Geographical or Meshanical way.

This Mechanical or Geographical Probleme then may, by various Means The Geograthbiand Inftrupients, be perform'd according to the particular way that is made cal way of ufe of for effecting thereof; the thing that is to be found being the inclination me.aising a of the Perpendiculars of two diftinct places one to another. This, as I told Degree. you, was moft certainly found by finding where thofe Perpendiculars pointed

464 Leflures concerning Navigation and Aftronomy.

in the Heavens, by feeing how far the Zenith of the place wasidiftant fromz this or that Star which pafs'd the Méridian, the Zenith of the place being the continuation or upper end of the Perpendicular or Plumb-line of the place. This alfo may be found by Calculation from the height of the Sun or fix'd Starstaken in any known Azymuth. But the Geographical ways are by the level Lines of any two diftant places, which level Lines are Lines at right Angles, to the Perpendiculars of thofe places; and in this way the Cucry is to find what Angle the two level-Lines make with one another, or with the Perpendiculars of the diftant places. This way, were the Ray of Vifion frour place to place a true ftraight Line, might, by convenient Inftruments', be made the cafieft and the moft exact; and it were poffible this way to determine the quantity of a Degree even to a fingle Third, which would come within two Foot by meafure, according to the quantity of a Degree collected from the beft Obfervations which have yet been made. So that could the Menfuration of the diftance be made as cxact as the Obfervation of the level Line, or the certainty of the magnitude of the Body of the Earth, or of the quantity ofa Degree, it might be adjufted to all imaginable exactnefs; andfince there are fome places upon the Earth which may be feen more than a Degree, nay, more than two Degrees diftant, it were poffible to determine it within one fingle Foot: For, Firft, By means of the level of Water, an Intrument to take the level Line may be made of any lengtlrdefir'd, fo as to be able to diftinguin Thirds of a Degree; and lince by the help of Telefcopes, which may be made and cafily ufed in a Horizontal Pofture almoft to any length, the fight can diftinguifh the parts of the Object to as great a certainty, there need to be no deficiency in the exaftnefs of fuch Obfervations, were the Rays of Vifion true right Lines. And by the fame means of long Telefope Sights, the diftances betweenfuch two Stations might as accurately be meafur'd, as I fhall mention by and by. There are various ways of performing it this way, mention'd in feveral Authors, bút I think none more plain and eafy than thefe I fhall inftance in.
As, Firft, From a very high Cliff adjoining to the Sea, the Altitude of thefame above the-level of the Sea being exactly meafur'd, the Angle that the Perpendicular makes with the vifual Ray, that touches the Horizon of the Sea, muft be exactly obferv'd; or elfe the Angle that the vifual Ray makes with the Horiozantal or level Line; for in both thofe Cafes the Efiect or Confequence is the fame; for the level Line being at right Angles with the Perpendicular of the aforefaid Angles fo found, muft be the complement of the other to a right Angle. As for inftance, let CD reprefent the Surface of the Sea, A the Center of the Earth, BC the Cliff, the height of whofe higheft Point B above the level of the Sea is exactly known by meafure, the Angle ABD is found by the Plumb-line BC, and the Telefcope BG dirceted at the Horizon of the Sea D, or the complement thercof the Angle FBG is found by the level EF, and Telefoope BG, having therefore the Angle ABD by Obfervation, the complement there of ABD is likewife given and in the fame manner, if FBG be given by Obfervation, BAD equal to it is alfo given. Now by the common Tables of Secants you may from the length of BC and the Angle DBF or DAB eafily deduce the Diameter of the Earth; for as the difference between the Radius and the Secant of the Angle at A is to the Radius, fo is the height of the Cliff BC, to the Semidiameter of the Earth. I could have inftanc'd in feveral other ways of finding the Diameter of the Farth from the knowledge of thefe two, of which Caffati in his Terra Machinis Mota, gives a great many, fome of them complicated enough, but I mention this as being the moft facile and fimple way that can be thought upon, there being hardly any difficulty at all, elther in the Inftuments necerfary either for the obferving the Angle, or of meafuring the height above the level of the Sea, or in computing the Confequence when the Experiment is made, or of finding the Meridian Line or Azymuth or Diftance or Latitude, Longitude, or the like; which are neceffary to be obferv'd in other ways, and that with great accuratenefs, I thought the beft to mention. So that one would imagine there could not pofibly be any other way to equalize it for this purpofe.

Lectures concerning Navigation and Afronomy. 465

But what I mention'd to you heretofore to be the incumbrance and per- The inconveo plexity of all Aftronomical Obfervations, viz. the Refraction, or rather In- niences of this flection of the Air, is abundantly more confiderable, and perplexing here in- $\frac{\text { and the }}{\text { ways }}$ frome R fomuch that how plaufible foever this may feem, yet this inconvenience in- frafion: terferring makes it almoft wholly impolible: For the Rays of Vifion which run as Tangents to the Surface of the Sea, are by the Refractivenefs or rather Inflectivenefs of the vaporous Air near the Horizon rais'd much higher than they ought to be, if they proceeded in direct Lines from the Eye or Sight of the Inftrument at the top of the Cliff to the Horizontal Point D of the Surface: Which Refraction or Inflection, were it alfo certain, might, by fome trials, be remedied and reduced to a Rule, but that being fo extreamly uncertain, and various, and differing almoft with every blaft of Wind, and every feveral Degree of Heat and Cold, Drinefs, or Moifture, Gravity, or Levity of the Air, the Effects thereby produc'd are fo various and uncertain, that 'tis impofible to reduce them to any certain Rule.

However, for variety, I fhall mention a fecond Geographical way which may a ceand Geobe made ufe of for this purpofe, viz. from two very high Hills which are very graphical may. far remov'd from each other, as fuppofe 60, 80, 100, or more Miles, which yet are fo fituated, as that by means of a great Plain between, or eife of an interjacent Sea, they are vifible each to other, whereof there are many inftances to be found in the World, and even in Fngland, Scotland, and Wales. Let the inclination of the common vifual Ray between them be exactly obferv'd with the Perpendicular's or level Lines of both thofe Places, and thence deduce the true inclinations of the two Perpendiculars, or the two level Lines of thofe places to one another, whereby you will certainly have the quantity of the Angle of the Perpendiculars at the Center of the Earth, or the quantity of the Arch of a great Circle of the Earth that is interjacent between thofe places; then if the diffance be over a Plain upon the Land by. meafuring the interjacent Space by Chains, Rods, Wheels, or Triangles of obfervation made from place to place, you will obtain the diftance between thofe Stations, and confequently the Magnitude or Semidiameter of the Globe of the Earth. Or if the fpace interjacent be over the Sea, then by meafuring a certain length of Ground at right Angles with the vifual Ray, if it may be upon either of the faid Hills, which is vifible from the other of thofe Hills, and by exact Oifervation finding all the Angles of fuch a Triangle, you will eafily and very exaatly, and much truer than by any Menfuration made between them, obtain the fame thing as the other way, namely, the true diftance between them, and confequently the Magnitude or Seniidiameter of the Globe of the Earth; for inftance, in the Figure, let B and C reprefent the tops of two very high Hills diftant from each other, by compute about threefcore common Englifh Miles, which are notwithftanding by means of a large Valeor Sca between them, vifible to each other. By Inftruments as before, find at B the Angle $A B C$ of the Perpendicular $A B$ with the vifual Ray $B C$, and by Obfervations at C find the faid inclination of the Perpendicular AC , and vifual Ray CB , namely the Angle ACB ; then either by an actual Menfuration of the Space or Diftance BC, or by Triangles of Obfervation in Snellius his way, or elfe by meafuring a certain length, as BD on the top of one of the Hills, as B, whofe extreams B a D are vifible to each other, and to the Point C of the other Hill, find any two of the Angles at $B C$ and D, and from thence find the fide $B C$, and having before all the Angles A, B, and C, you will eafily find the Sides $A B$ and $A C$ which are the diftances of thofe places from the Center of the Earth, and if the fpace interjacent be Sea, you will eafily obtain the fide AE, which is the Semidiameter of the Globe, or Sphærical Surface of the Sea, and confequently the true length of a Degree of a great Circle on the Sea, which, for Navigation, is the principal thing fought, and thence alfo collaterally may cafily be found the feveral heights of thofe Hills B and Cabove that level, and the like. This pody bas But this way, as the former, is alfo incumbr'd with the Refraction, or ra-its inconsenither Inflection of the Air; fo that the Line BC is not really a fraight Line, ences. but a crooked or bended Line, and fo thofe places B and C_{n} are vifible to each other much farther than they really could be, were there no inflection in the

466 Lectures concerning Navigation and Aftronomy.

Air, but that the Ray that touch'd the Sea interjacent, did alway's proceed Itraight.

We need not therefore trouble our felves either with thofe, or with any

Micrography. p. 217. other of the like ways, tho' there are divers to be found difpersd here and there in Authors, and more of that kind might be thought of, but they will be all in vain, fince the Refraction or Inflestion of the Ray neaf the Horizon, upon the exact obfervation of which fo much is built, do fo coffound the truth of the Angle, that fince great things are to be calculated from little, 'twill be in vain to think of coming at any poffible certainty by the ways of Obfervation. Now, that this is not Gratis dictum, befides what I my felf have obferv'd, and Publifh'd at large in the Year 166_{4}, let me acquaint you with what the French have lately taken notice of in their way of trying by a Level : They obferv'd then, that an Object which at break of Day appear'd in the Horizon, or Level-line, or a little above it, a little after Sun-rifing appear'd below it; and the fame appearance they found in the Evening, for the Object before Sun-fet appear'd below the Level, which foon after Sun-fet would appear in it or above it; infomuch, that in half an Hours time the difference has been obferv'd to be no lefs than three Minutes, which muit needs caufe a very great Error in the computation of the Magnitude of a Degree; and confequently the Magnitude of the Earth; for if there be-three or four Miles Error in the fpace of lefs than a quarter of a Degree, it will amount to an Error of a fifth or fixth part of a Degree in a whole Degree, and fo a vaft Error in the Compafs of the Earth. The caufe of which appearances they The caufe of conceive to be the Cold of the Night condenfing the Vapours, and fo makthis Infection. ing them to defcend towards the Earth, leaving the higher parts of the Air more pure, thin and ferene, which makes an Inflection of the Ray which is to pafs obliquely-through Media of fuch differing denfity, and fo the Refraction or Inflection is the lefs. But yet, even then the Ray doth not pals without a confiderable Refraction or Inflection; for which they give us Expériments of two Obfervations both made at Noon Day, by which the fame Perfons not. only found therewas a Refraction, but that there was a confiderable difference between one Day and another Day at Noon as to their Refractions. To this purpofe in the Summer time, at Noon, in a clear Day, they obferv'd the Tower of Montlebery from the top of the 'Tower' of Noftre Dame at Paris, and found the Foot of the faid Tower of Montlebery to appear exactly in the Level or Horizontal Line; but fome Days after, at Noon alfo, oblerving the top of Noftre-Dame Tower from the'Foot of the Tower of Montlebery, they found it to be 11^{\prime}. $30^{\prime \prime}$. below the level; but comparing the meafur'd diftance of thofe two places, and examining from the meafure of a Degree, found the other way namelefs by the Perpendicular Stars, they found that the Angle ought to have been $13^{\prime} \cdot 30^{\prime}$. which is two whole Minutes difference in the diftance of 8×894 Englifh Feet, or about fifteen Miles and an half; by which we may plainly fee what exactnefs is to be expected from any Menfuration of the Earth that Thould be this way made"; and therefore there can be no more certain way of determining the Magnitude of the Earth by meafure, than the way I firt of all propos'd, and that was by obferving the Stars near the Zenith.

Now, tho' this inflective quality of the Air be a great incumbrance and
7 be Ure and Benefir of Refrationor Infleation. confulion of Aftronomical Obfervations made both at Sea and Land, yet isit not without fome confiderable benefit to Navigation; and indeed in fome cafes the benefit thereby attain'd is much greater than would be the benefit of of having the Ray proceed in an exact ftraight Line. I fhall not need to inftance in the Obfervation made by the Hollanders that wintered upon Nova Zembla, who, by means hereof, found that the Night in that place fhortned no lefs than a whole Month, which muft needs be a very great Comfort to all fuch places as lie very far towards the North or South Poles, where the length of the Night, and want of feeing the Sun, cannot chufe but be very tedious and irkfome. But then it may be faid, that this benefit is only to a very fmall part of the World, and that the moft inconfiderable and leaft frequented of all, by reafon of the extreamity of the Cold, and want of other neceffary accommodations for the ufe of Man. But yet we find that fome of thofe Northern Parts have, of late Years, been frequented by Navigation

Lectures concerning Navigation and Afronomy. 4^{67}

not without very confiderable benefit and advantage in the returns, and mays intime, be very much more, when the Induftry and Skill of future Undertakers fhall difcover Paffages that way to the Indies or South Sea, which for feveral Reafons, I conceive, may in time be effected, and with very great advantage frequented: But this only by the bye. The great advantage I confider therein, is the firft difcovery of Land upon the Sea; for by means hereof the tops of Hills and high Lands are raifed up into the Air fo as to be difcoverable feveral Leagues farther off on the Sea than they would be, were there no fuch Refraction; which is of great benefit to Navigators for fteering their Courfe in the Night when they approach near Land, and likewife for directing them in the Day-time much more certainly than the moft exact Cxleftial Obfervations could do by the help of an uninflected Ray, efpecially in fuch places as they have no foundings.

And I doubt not but that by fome Obfervations carefully made, the Inflections of the Air may be reduc'd to exactnefs enough, for feveral forts of ships dijftance Terreftrial Obfervations which may be of great ufe in the practice of Navi-at. Sea. gation, tho' I very much doubt whether it will ever be exact enough for determining the meafure of a Degree, and confequently that of the Earth; the ufe that I chiefly intend of this difcovery may be for determining the diftance of a Ship at Sea by means hereof from a Land fo raifed: The way how I conceive this may be effected is thus. Firft. The defcent of the true Level-line below the apparent Level-line, for feveraldiftances, muft be known by Ca!culation, the true Level being a Circular Line upon a Sphrrical Superficies of the Earth, and the apparent Level-line being a tangent Line, it will be eafy enough from the knowledge of the Earths Semidiameter to find this Defcent.
Now the Semidiameter of the Earth from the moft accurate Obfervations that have been yet made being $20923500{ }_{3}^{4}$ Feet, or 3962_{4}^{3} Miles, and 180 Feet of 5280 , which is our Statute Engligh Mile, it will follow that the true Level-line will be eafily found by the help of a Table of Secants; the Defeent below the Horizontal Line for any determinate diftance being always to the Semidiameter of the Earth, as the excels of the Secant of the diftance above the Radius is to the Radius. But becaufe this Statute Mile is of no ufe in Navigation, Navigation always accounting the fixtieth part of a Degree of reduccirg to be a Mile, and three of thofe Miles to be a League, it will be necellary the meafure of to reduce the Mile, we account by, to the meafure of a Degree found, account- ${ }^{6}$ Mile. ing it to be a full fixticth part of the length thereof which is found, and accordingly ought to be the Meafures and Divifions of the Log-line. Now, by the aforefaid Obfervations there being no lefs than 365184 Enolifh Feet in a whole Degree, there will be $6086 . \pm$ Feet in a fixtieth part thereof, and therefore the meafure of every fuch Mile ought to be accounted 1014 Fathom two Foot and ${ }_{4}^{4} \circ$, and confequently a League will be 18259 , or 18260 Feet, or 3043 Fathom and two Foot; the Defcent then for fuch, Leagues will be as follows, for one fuch League, 7,976688 Feet, or to make ufe of round numbers eight Feet, at two Leagues diftance thirty two Foot, at three Leagues feventy two Foot, at four Leagues one hundred and thirty Foot; or if you will reckon by Minute Miles, then the defcent of one Mile is IO_{3}^{2} Inches almoft, at two Miles will be three Foot and an half, at three Miles eight Foot, at four Miles fourteen Feet, or theréabout; at five twenty two Foot and an half, at fix Miles thirty two Foot, at feven Miles forty four Foot, at eight Miles fifty fix Foot, at nine Miles feventy two Foot. Now the ufe that may be made of this knowledge I conceive to be this, that when a Land is approach'd by afcending the Shore or Maft with a fmall Perfpective Glafs, 'till the Surf of the Sea upon the Shore be difcover'd by knowing the height of the Eye, that fo difcovers it from the Surface of the Water by the Ship, a much nearer and truer compute of the diftance thereof can be made than by any other way yet practis'd: But this only here by the bye, becaufe hereafter when I come to fpeak of that Subject, I fhall mention feveral other feafable ways of doing it. I here only mention it upon the account of the Refractivenefs of the Air, which tho' it fpoil the accuracy of Obfervations for the meafure of a Degree, yet in fuch Obfervations as thefe it may ferve well enough, at leaft 'till better and more accurate" be made ufe of.

Thefe

468 Lectures concerning Navigation and Afronomity.

There two Fundamentals concerning the true Figure and Shape of the Earth, and likewife of its Magnitude being acquir'd, it remains. it the next place to find out fome means to diftinguifh every Point or Part of the Surface of this Globular Body in refpect of any other ; we are therefore to inquire what helps are to be found that are ufeful for this purpofe: For upori the Surface of a perfect Spherical Body, there is no one point but has the very fame Refpect to the whole Surface thereof, that any other Point hath ; as fuppofe the Sphrrical Body were of Chryftal or Glafs perfectly Polifh'd and Uniform, no one Point has any Mark or Characteriftick to diftinguifh from any other, and a Point being once loft, 'tis impoffible to find the fame again, tho' it be turn'd a thoufand times; becaufe there is fuppos'd to be no one Point of it that differs from any other, and they cannot be diftinguifh'd or meafurd from, and every point may be faid to be the middle of the whole Circumference ; and thence it is that the People of every Country and Place have thought themfelves to be in the middle of the Earth, and all the Neighbouring Ambient Countries to lic towards the Extremities. Which Opinion always hath and always will poffers the Minds of ignorant People, 'till by Learning and Art they are better inform'd ; for feeing an extenfion of Land or Seas round about them on every fide, and feeing the Sky whelm'd over them like a Difh or Hemifphere, the middle of which feems to be juft over their Heads, and the Brims to touch the Earth and Seas at a great diftance, they cannot without much thinking and confidering (which few People care to do, efpecially in matters which they think not of immediate concern) they cannot chufe but be impos'd on by the appearance to their Senfe, which feems fo to reprefent it; and if fo at Land, much more does it appear fo on the Sea where there is no fight of Land; when the Superficial Parts of the Sphærical Surface have no remaining vifible marks more than the Chryftal Ball. On the Land indeed, and in fight of Land there are many obvious helps to find and diftinguifh one place from another, and the Pofitions of one from all the other that are vifible and acceffible, as Hills, Vales, Mountains, Woods, ©rc. But the Surface of the ssea wants all thofe, and has nothing but a fluctuating changing Surface, which way foever you look 'tis all alike, you know not which way you go forwards or backwards, whether the Wind blows for you or againft you, or the Current fets you near to or further from your Port; which was the caufe why the Antients never durft venture out of the fight of Land but went along the Shores, they being not then able to diftinguif, efpecially in cloudy or clofe Weather, which way lay the Quarters of the Earth or Azymuth. And indeed before Aftronomy was known, the very Quarters of the Wind were not diftinguifh'd with refpeet to the Heavens, but only with refpect to the Countries from whence they feem'd to come. Thence we find that they call'd one Vulturnus, another Phenicius, a third Africus, Olympius, Throuius, Hellefpontius, and the like, which were the Names of the Countries from whence they feem'd to come.

But the Diligence' and Inquifitiveneis of fucceeding Ages has furnin'd us with better and more univerfal ways of diftinguifing and naming the Quarters of the Winds, or the Azymuthes, or Divifions of the Horizon, and Pofitions of the Parts of the Surface of the Earth, and not only fo, but of determining the diftance of any place from the Points certainly fix'd upon this Globe of theEarth.

I fhall therefore in the next place confider what means there are hitherto
of the ways yet known to difcover the place of a shi at Sea. found and made ufe of for dividing, and diftinguifhing, and defining of the Superficial Parts of this Globe of the Earth, fo as certainly to know any one Sea; for that there are no two Points of the whole Surface but that have fome ways or other their diftinct Characteriftiks.

There have been various way's invented of performing this Effec ; thofe that are thought of the beft, and fo apply'd at prefent to uré, may be reduc'd into two Heads, and thefe are Crleftial or Terreftial, namely, fome Refpects or Afpects of Cileftial Bodies, or Situation, Subftance, Qualification, Form, occ of fome Tereftrial Bodies.

Lectures concerning Navigation and Aftronomy. 469

The Cxleftial are fuch as are afforded by the Motion or Pofition of the Cæleftial Bodies, viz. the Sun, Moon and Stars.

The Terreftrial are either, ift. Magnetical, by the help of the Compafs, or Magnetical Needle: Or, $2 d l y$, Computatory, by keeping account of the Courfe and Diftance, fail'd from a known place: Or, $3 d l y$, By founding the depth of the Sea, and examining the Subftances that are to be found at the bottom: Or, 4 thly, By the Sight and Profpects of fome high and eminent Places which may be feen at a great diftance upon the Sea, and from thence collecting the Pofition bearing and diftance from them.

The Cæleftial, and the two former of the Terreftrial are of ufe in all places, the two laft are more particular, and reftrain'd only to fuch places wherc foundings are to be found; for there be many places where there is no Bottom to be founded, and many others where no part of Land can be difcover'd ; in which Cafes recourfes muft be had to the more general ways, by the Heavens, the Needle, the Courfe, and Diftance.

The helps which the Heavens afford for diftinguifhing of places on the Earth The Caleftiat either are, ift. Their Pofition in refpect of the Eaith: Or, $2 d l y$, Their ways. Motion. By their Pofition they ferve as helps to find the Latitude of a Place; and by their Motion they may, in time, ferve to difcover the Longitude.

Firf, By their Pofition they help us to difcover, that this vaft Globe on By their Pofitwhich we live, and which feems fo fix'd and fteadfaft, is mov'd round (like a ons. Globe which is commonly made to reprefent it) on an A xis, or an imaginary Line that paffes from fide to fide through the very Center thereof; or like a two Headed Top upon two imaginary Points, which are Diametrically oppofite to each other upon the Surface thereof; each Revolution of which is perform'd once in twenty four Hours from Weft to Eaft, and thereby each part of the Earth, according to its Situation or Diftance upon the Surface from one or other of thofe two Points, moves or is mov'd in a Circle round the faid Axis greater or lefs, according to its diftance from the neareft of them ; fo that all the Parts that lie at equal, and the greateft diftance from them both are mov'd in the greateft Circle of all the reft. By means hereof is difcover'd, Firft, The Pofitions of Places one to another, in refpect of their Revolution; that is, the Azymuths or Quarters of the Horizon, or ufual Limit of the Heavens; for by means hereof the Cæleftial Bodies firf begin to appear at one Quarter of the Horizon, and to crofs the Heavens over us, and to Defcend, and Set, and Difappear on the other ; whence the former is call'd the rifing part of the Heavens, and the other the fetting part, and the middle part between thefe two are call'd the Meridional, and the Polar, which is either North or South; and then an imaginary ftraight Line fuppos'd drawn between them either upon the Earth, or in the Heavens, is call'd the Meridian of that place where this Suppofition is made.

Now that end of this North or South Line which goes towards that Quarter of the Heaven where the Star is in the extreamity of the Tail of the little Bear, near which is the Polar Point in the Heavens, is call'd the North, and the other end is call'd the South. Now, one or the other of thefe is always vifible both at Land and Sea in all parts of the Globe in a clear Night; but the Polar Points of the Earth, either in the North or South, have not yet been difcover'd.

This North and South Line then is difcoverable by means of the Heavens in every point of the Surface of the Earth, and by means of that, the Poiiltion of Places with refpect to them, is eafily known, and thence alfo all the other Quarters or Parts of the Horizon of any Place are eafily difcover'd; for a Line imagin'd drawn in the Plain of the Horizon through any place, cutting the former Line at right Angles, points out in the Limb of the Hoxizon, the Eaft and Weft;

470
 Leftures concerning Navigation and Aftronomy.

Thefe two Lines diftinguifh the Honizon or vitible Limb of the Heavens into four equal Quarters or Quadrants, viz. The firft between the North and Eaft ; the fecond between the Eaft and South; the third between the South and Weft; and the fourth between the Weft and North. Now each of thefe Quadrants may be, and ufually are fubdivided into leffer Divifions. The Seamaen generally content themfelves in Steerings and taking Bearings, with a Divifion of each of thefe into eight parts, fo that the whole Horizon is divided into thirty two Parts, which they call Points, becaufe they are pointed out by their Compafs or Winds, becaufe of their taking notice in which of thofe Points the Winds blow; the firft are the principal Points, viz. N. S. E. W., the Lines that divide thefe four Quadrants in half are the half Winds or Points, namely, NE. SE.SW. NW.; the eight Points in the middle of thefe are the Quarter Winds, viz. NNE. ENE. ESE. SSE. SSW. WJW. WNW. NNW. all thefe together make fixteen, and thefe being again fubdivided into halves make fixteen more, which are the by Winds, viz. N. be. N.bW.S.b E: S. bW. E.bS. E.bN. W.bS. W.bN. and N. E.b N. N. E.b E. S. W. b. S. S. W. b W. Thefe again they do fubdivive into four Parts in their Accounts caft up, or protraction of their Comrfe: Aftronomoers divide the Circuit of Horizon as they do all other, into Degrees, Minutes, oir. And fo do Mariners in obfervations of Amplitudes and Variations of the Compafs, tho' not in the Bearings of Lands and Iflands.

Now, thus far the Heavens only ferve for determining the Pofition of any Place whatfoever, with :efpect to the bearing of thofe Polar Points of the Earth I but now mention'd, but hew nut at all how far they are remov'd or diftant from either of thofe Points. This alfo the Magnetical Needle or Compafs does in part difcover, but not wholly without Rectification by the help of the Heavens, as I hall, in its proper place, explain. But this docs little as to its determining the pofitive Point of this Place upon the Surface of this Globe, but only by the account of the Courfe Sail'd, 'tis knowu pretty near which way the Place lies, from whence the departure is made, and which way the Courfe lies to the Place bound to. Some further information therefore is requifite to determine the diftance from thefe Polar Points, or from an imaginary Circle incompaffing the Globe, lying at equal diftance between them, calld the Æauinoctial-Line, or more commonly the Liae ; of which 1 fhall fpeak more hereafter.

This then the Heavens afford an help for, namely, by their Pofition or height above the Horizon, or the vifible Limb of the Sky which feemeth to touch the Earth; but before I peak of this I fhall a little further explain the true notion of the Horizon.

The Horizon, or, as the Seamen call it, the Orifon, at Sea is the extream sion of the Ho. edges of the Sea which the Sky feems to touch, which, in clear Weather, is rizon. very eafy to be feen in the Day-time, like a black Line bounding the Sky, and may be alfo plainly enough difcover'd in a very clear Star-light-Night, efpecially when the Moon is pretty well inlighten'd, or in the time of the Twilight, when as yet the Stars are very vifible; but when the Air is thick and hazy, tho' the Sun, Moon, or Stars may be difcover'd when they are a pretty way above it, yet the Horizon cannot be diftinguifh'd, but the Sea and Sky gradually mix with one another, fo as no Obfervation can then be made of it, there being no diftinct vifible feparation.

This vifible edge of the Sea is nearer or further off, according as the Eye that fees it is nearer to, or higher from the level Surface of the Sea; the proportions of which one to the other I hinted the laft time, but fhall now fomewhat farther explain.

The fenfible Horizon Mathematically confider'd, is an imaginary Plain touching the Globe of the Earth or Sea in any Place or Point thereof, which is to be confider'd; and this Plain is fuppos'd to be extended to the extreamities of the univerfe every way; fo that when any Star or Cæleftial Body on the Eaftern fide of the Meridian appears in the Plain thereof, it is Rifing, and when they appear in the Weftern lide thereof, they are Setting; or ac: cording to the Copernican Hypothefis, the Horizon is an imaginary indefinite Plain, touching the Globe of the Earth at the place defigin'd, which,

Lectures concerning Navigation and Afronomy.

together with the motion of the Globe, is carry'd round once in a Day, and fo twice in that time paffes over the Cæleftial Bodies that lie in its Zone; when the Eafter-moft fide palfes them, they are faid to be Rifing, and when the Wefter-moft, they are faid to be Setting, both which Hypothefis equally folve the Phæn smena; and upon this fecculative notion of the Horizon, there is alfo fuppos'd a Rational Horizon, which is alfo an imaginary indefinite Plain paffing through the Center of the Earth, and parallel to the former, namely, at the diftance of the Semidiameter of the Earth; which diftance being extended to the fixt Stars, becomes wholly infenfible, being view'd from the Earth, and fo as to them, and even to the Planets fuperior or, farther diftant from us than the Sun, they become wholly the fame, and the ferifible and rational Horizon are one and the fame imaginary Plain or Circle in the Heavens; but in the Moon efpecially, and in the Planets nearer to us than the Sun, they are, by curious and nice Obfervation, fometimes difcoverable: But thofe Speculations more concern Aftronomy, than Geography or Navigation, and therefore I fhall fay no more of them at prefent, but rather fpeak of a third Horizon, which is a real and vifible Circle, and that which Navigators call the Orifon.
The fenfible Horizon, as it concerns Navigation, is not a Plain, nor a Sphærical, nor Conical Surface, but rather an imaginary conoeidical Surface touching the Sphærical Surface of the Sea in a Circle; which Circle is nearer or farther off from the Eye, which is in the Apex of the Conoeid, according as the Eye is lower or higher rais'd into the Air above the Surface of the Sea, and according as the inflective quality of the Air is lefs or greater ; and from the fame caufes that the diftance thereof from the Eye is diminifh'd or augmented, does the imaginary Limits or Bafe of it, which is a Circle in the Heavens, defcend lower and lower below the Rational, or notionally fenfible Horizontal Line, or imaginary Circle in the Heavens. This is a third Horizon differing from both the other, and below them both in the Heavens; fo that to the Eaftwards the Stars and Planets appear to have pafs'd the Naiutical or Mariners Orifon fome time before they arrive at the Speculative or Notional Horizons, and in the Weft they have pafs'd the Notional Horizons fome time before they touch or arrive at the Nautical and Vifible Orifon. So that all thofe Obfervations which are made at Sea, either for finding the Azymuths, or for difcovering the variation of the Compafs, or for Altitudes, or the like, are every one of them Erroneous, and there ought to be arectifying thereof made: For, Firft, How much the faid Line appears below the true Level or Tangent Line of the place, by fo much lefs is the Altitude of the Cæleftial Body taken from it, than what it is taken at; and the Amplitudes in an Oblique Sphere will thereby alfo be confiderably augmented more than what they fhould have been by the common Theory of the Sphere, Calculating as from a true Horizon; for all the Geometrical Rules that are made concerning the Notional Horizons, are produc'd from the confideration of the Globe, and of the Propricties and Affections thereof, and of Plains either paffing through the Center, or touching the fuperficies, and from the Hypothefis that the Rays of Light pafs in ftraight Lines from the Cæleftial Body to any Point of the Surface of the Earth, in which they fuppofe the Eye of the Obferver to be plac'd; but becaufe the Eye is never known to be exactly in the Superficies of the Surface of the Sea, but at fome height above it; therefore the vifible Orizon of the Navigator, if the Rays of Light were ftraight, would be a Conical Surface, and not a plain; and the higher the Eye is rais'd the fharper will be the Cone. But becaufe the Rays of bight are not really ftraight in their paffage through the upper and lower parts of the Atmoiphere, but are by the Inflection of the unequal Denfity of the parts of that Medium inflected into Curves, whofe Concave fide is towards the Earth, therefore the Superficies of every vifible Orizon is not a Conical, but a Conoeidical Surface, in the Apex of which is plac'd the Eye and the edge of the Sea, which is a Circle upon it, the Center of which is in the Perpendicular below the Eye, and thereof is very near as much below the Surface of the Sea under the Eye, as the Eye is rais'd above it ; and as this Orizon on the Earth is a leffer Circle, and not a greater Circle, fo the Bafis of this

472 Lectures concerning Navigation and Aftronomi.

Conoeidical Body, in the Heavens is not a great Circle, as is the Rational Horizon, but a lefler parallel Circle below it, and that fo much the more below it, as the Eye is higher elevated above the Surfaces of the Sea, and as the inflective quality of the Air is greater.

Now, if we firt confider the Rays of Light as, ftraight Lines, we fhall find the Angles of the feveral Conical Superficies adapted to the fevcral heights of the Eye, as I have already mention'd, and thence the diftance of Objects may be ghefs'd where they are difooverable; but that which I here mention it for is in order to find the true Situation of any place upon the Sea, in refpect of the two Polar Points where no Land is difcoverable, which I fhall next fhew you is difcoverable by the Heavens, by knowing the height of the Cæleftial Bodies above the true Plain of the Horizon, or as Navigators commonly above the Line, they call the Orifon. And I have been fomewhat the longer upon this Difcourfe of the Orifon, becaufe it feems to be the Foundation of all the Cxleftial Obfervations that are made it Sea, and if that be Erroneous, then all the Obfervations will be fo too. It will therefore be neceflary to have the true Theory thercof, both for Latitudes and Amplitudes, or Azymuths; I fhall therefore add one Obfervation concerning the Mariners Orifon, and for conclude this prefent Difcourfe.

Whence the Looming or Glaring of the sea.

The Obfervation then is this, That there are fome Conftitutions of the Air, near the Surface of the Sea, that do really elevate the Orifon above the true Horizon or Level-line, and that is at fuch times as the Sea is faid by the Sea-men to Loom and Glare, as if it were Smooth'd and Polifh'd, whereby the Surface of the Sea feems to be lifted up above its own level Surface into the Atmofphere incompaffing it: And this I have often taken notice of, and as near as I could ghefs from what Obfervations I was able to make; I judge it to proceed from a denfe, and, as it were, foggy Air which lieth equally fpread upon the Surface of the Sea, not extending above ten or twelve Foot, or there about, above the fame, and there terminating in a kind of Level, the Air above it being perfestly clear and tranfparent, but this under Air having a Fogginefs or Hazinefs in it, nothing can be feen through it but only what appears above it; fo that at a diftance (tho' nothing of it can be perceiv'd at the Ship) it appears to coalefce with the very Sea, and the Surface of this feems to he the Surface of the Water; fo that by this means the Mariners Orifon inftead of being below the true Horizon, is really rais'd above it'; and confequently Altitudes taken from that will be too low, and additions ought to be made to the Altitudes found, to bring them nearer to the true Horizon. Now, how to rectify this and the other Irregularities of the Orifon, I hall fome other time give an account.

THe Author baving mentioned in the foregoing Difcourfe feveral Methods that have been propofed for finding and Settling an univerfal Standard for Meafure, I thought it not improper to infert part of a Lecture read about 1683 upon that Subject, and omittinig the beginning of it, "phich treats only of the feveral waffuccefsful mays yet attempted, the reft of the Difcourfe is as follows.
R. W.

A new Stand- \mathbb{J} Hat I have farther to add, as to the finding a Natural Univerfal Standard for Meafure, is a Conception of my own, of a way differing from any other way whatfoever that I have ever heard of, which, I conceive will afford a Natural Standard for Weight and Meafure at all times, and in all places, and which, I conceive, will not be very difficult to perform, if trial be made with convenient Care and Accuratenefs; not that I pretend to dif: cover -any new Thing or Propriety which none have ever obferv'd before, no, ${ }^{2}$ tis that which all fee and all know, and as trivial as the pendulous vibrating Motion, which, in Contempt, hath been call'd Swing Swangs, tho' the Application and Ufe of it, found by Galileo, hath fince prov'd of fuch excellent ufe; and poffibly this alfo which I hall mention may not be unimproveable to much better ufes than I halll now mention.

Lectures concerning Navigation and Aftronomy:

It is I doubt not fufficiently known to all prefent, that all fluid Bodies whatfoever from the Homogeneity of their Texture and Heterogeneity to the incompaffing fluid Medium, have a power of Conglobation or forming themfelves, when in fmall parcels into Globular Bodies, and that the fmaller they are and the lefs difference of weight, the nearer they approach to a perfect Globular Figure, and the bigger and more differing the contain'd, and containing Fluids are, the more doth the form of the contain'd differ from that perfeet Sphærical Figure, and there is one certain quantity of every fimple Fluid, which, in fome certain Medium, will make the Conglobated Figure to be flatted or ovall'd; fo that the longer Diameter to the fhorter fhall bear a certain affign'd proportion; for inftance, to take the moft remarkable, name$1 \mathrm{y}, 2$. to 1 . I conceive then, that this quantity being certainly found, and moft accurately meafur'd, will afford a natural and perpetual Standard of meafurc; for inftance, let (uickfilver perfectly depurated, and Rain, or 'Diftill'd Water be the two Fluids; I fay, there is a certain quantity of Quickfilver which, in fuch Water will be form'd into an ovall'd or flatted Body, fo that the Horizontal Diameter to the Perpendicular fhall be as 2. to r. This longer Diameter I make a Primitive and Natural Standard of length, and the weight of this Body of Mercury fo ovall'd, I make the Primitive Sandard for Weight; the fame may be done with any other Fluid.
This may be alfo done by purely refin'd Gold or Silver, whofe Purity may be found by the proportion of weight it beareth to Rain-water ; for if a certain quantity of Gold be melted and pour'd out upon a perfectly fmooth and horizontal Surface of a Stone, this will form itfelf into an Oval Body, whofe Horizontal Diameter to the Perpendicular, will be as 2 . to I .
The fame may be done with any other Metal befides Gold, but only we cannot be fo fure of the purity and unmixednefs of the Metal, as we may be of Gold.
It would be too long now to mention the various ways there may be ufed for exactly finding, determining and meafuring this Figure, but I-defign at fome other time to entertain the Socicty with the Experiment and Trial thereof, which will make all things more evident and plain.

THe way mentioned at the end of this Difcourfe of exattly meafuring the \dot{F}_{i} gure and Shape of any Body, I find deforibed in another Papor, read December the third, 1683 . and is as follows.
R. W:

The knowledge of Nature and Art is advanc'd by the difcovery of fuch things, as ferve like Engins or Organs, to make fuch further Inquifitions - in cither as the Natural Faculties of Men, without fuch alliftances, are not able to perform; and therefore how trivial and flight foever a thing may feem before the Ufe and Application thereof be known, efpecially to fuch as have no accafion or curiofity for fuch Inquiries, or who have not confider'd the Confequencies that may be drawn therefrom, yet to fuch as really have, I doubt not but they will find Reafonto think them valuable. Of this Nature were the little Globules of Glafs apply'd to the ufe of Microfcopes, from whence have proceeded moft of thofe curious Difcoveries made by the inquifitive Mr. Lieuvenhook, I could inftance in the Pendulum, and feveral other fuch Apptications of things, in themfelves inconfiderable, to proper purpofes, which have produc'd admirable Difcoveries, which would hardly have been done without them; but that would be too tedious for fuch an Alfermbly, who are already well acquainted with them.

That which I fhall acquaint you with at prefent, is an Experiment or Mic- tbe great uje thod rather, by which feveral very confiderable Difcoveries may be made of the sums both in Nature and, Art. It is, in fhort, a way of contracting a very conli- Rays let into a derable quantity of the Rays of the Sun into a very fmall Point or Space, the dark Room. fmaller the better, from which they iffuing again with great Brightnefs and Radiancy may be able, by the differing Refraction and Reflection which thofe

474
 Lectures concerning Navigation and Aftranamy.

Rays fuffer in their way, to defribe upon a fmooth, white plain the true fhape of the Body interpos'd between that radiating Point, and that imooth expanded white Plain. This in itfelf is very plain and obvious, and is yery litthe differing from the way now commonly known, it being no other than the fitly placing one or two Convex Glaffes againft an hole cut in the Shitter of the Window of a darkn'd Room, fo as that the Rays of the Sun may pars in through the fame directly and be collected into a Focus, and from thence again fpread and diverge into the Room, fo to as be caft upon the Table aforefaid. The Experiment itfelf, tho' I cannot now exhibit, yet there are feveral of this Honourable Society who have feen and been witneffes of fome of its Effects. Tho' there are many more yet behind which I fhall hereafter fhew, fo foon as the Sun comes in the Room I have fit for it.

By this then I difcover various motions of the Medium or Air, not otherwife vifible, as alfo the Emanation of Steams out of Bodies of feveral kinds not otherwife vifible; likewife feveral other Natural motions of tranfparent Bodies; not otherwife, that I know of, to be feen.
By this you plainly fee the matter of a burning Candle or Lamp, which is diffolv'd by, and mix'd with the Air, to afcend from the fame like a great Stream of Water running at the Tail of a Sluce or Bridge, which doth alto plainly illuftrate the appearances of the Blaze of Comets.
Thefe are fome of the ufes of it for difcovery of the Operations of Na ture.

Next, for the ufes of it in Art; it moft refpects the Art of Painting and Statuary, as by this may be drawn the exact out Lines of any Body that is to be defcrib'd on a Plain, and thefe truly as they do appear to the Eye plac'd at convenient diftance, as that of a Marn's Head, Facc, Hands, or Body, in which it is fo curious, that every Hair that appears without the folid part of the Head, Hand, or Body, is truly reprefented in its Place and Magnitude.

By this the out-lines of Birds, Beafts, Shells, Fifhes may be taken: As alfo the true fhape of fmall Plants as they are whole and intire, or the Leaves; Flowers, Seeds, © c. of greater Plants.

By this the true out Lines of a Flower-pot, with all the variety of the Poftures of the Flowers that compofe it, may be reprefented and drawn; all which are very ufeful for Painters, or fuch as would draw fuch Delineations.

By the help of this, and a pair of Compaffes, may be truly drawn all Parabolas, Hyperbalas, and Ellipfes, which are of good ufe in projcctions of the Sphære, Dialling, Perfpective, and the like.

There are feveral other ufes that may be made of this Experiment or Method, which I omit at prefent, 'till I can exhibit again the Experiment.

And I have contracted this Difcourfe that I might only fumm up the Ufes and Applications thereof, without fpending your time in hearing the Caufes and Reafons thereof.

Lectures concerning Navigation and Afronomy.

THe following Difcourfes were read the later end of the Mear 1684 , and containn Several Matters relating to the former Subject of Navigation; there is in the beginning a Repitition of fome things formerly treated of, which could not well be fruck out, without breaking the thread of the Difcourfe; and the muft part. of the Author's Treatifes pin this Volume, being Lectures read at Several times, it wias neceffary for hims to make fome Kepetition of what bad been before faid for' ibe better underftanding of what was to follom; nior could they bave been omitted isere without a nem Modelling and Epitomizing the whole, which made me rather irefpafs upon the Reader's Patience, than attempt to Alter or Abridge any thing of the Author's, Senfe; and indeed I thought it more adverable to give them as be left them, thain adventure upon fuch an undertaking.

This treats firf of the Nature and Generation of a Globular Figure and its Proprieties. Of the Circles of the Terreffrial Globe. Of the Prime Meridian. Of the Parallels. Whether the Perpendiculars reepect the Earths Center. Of the Variation, and its unfitness for finding the Longitude: Of the change of the Latitude and Longitude of Places. Why the Circles have been divided into three bundred and sixty Degrees. Of the difference between the Eaftern and Weffern Literati. A new Duodec cimal Progreffion propos'd. Several Maxims laid down, and Several mays for finding a true Meridian and the Latitude.

$$
\mathrm{R} W .
$$

IHave, in fome former Lectures in this place, explain'd in general the Art of Navigation, fhewing by what Helps and Methods, and from what Principles the Navigator may be able to direct his Courfe through the Ocean to the place defign'd, and at any time to be able to know in what part of the Sea his Veffel is Sailing.
For the performing of which I fhew'd ia general, that it was requifite that The Requistes our Navigator fhould, Firft, Be very well skilld in Geography, or the truefor aNviviga:2r defcription of the Earth and Sea, upon the Surface of which he is to make and compute his Courfe. And, Secondly, That he Thould be very knowing in all thofe Particulars, which may ferve him for Marks or Directions to know and diftinguif the Parts one from another.

In order to underftand the defcription of the Earth more effectually for this purpofe, it will be requifite to determine,

Firft, The Figure of the Body of the Earth, and the feveral Proprieties Four tbingsto belonging to that Figure, that fo we may the better be able to comprehend bedeterminindo the difference betwcen a curve and a plain Superficies, and what Lines will be ufeful to be drawn or fuppos'd on it, and from the knowledge of thofe be the better able to find and determine,

In the Second place, the Magnitude of this Body by known Meafures, and to examine and prove the Ways and Methods of meafuring the fame; both fuch as have been already either experimented or invented, and fuch others as may be thought of or try'd for the future; for upon a true kngwledge of thefe two are founded all the other Superftructures in this Art; there two cannot be truly and exactly obtain'd without a clear knowledge.

Thirdly, Of the motions of this Body, and what Effects are thereby produc'd pertinent to this purpofe, namely, what Circular and other Lines are thereby defign'd, and ought to be underftood on the Surface of the Earth.

The motions of this Body are either Total or Partial ; the Total are, Firft, Gravitation. Secondly, Magnetifme. Thirdly, Rotation upon its own Axis. Fourthly, Circumvolutation about the Sun Excentrically . Fifthly, Menfrual, Cyclocidation or Undulation. Sixthly; Libration. The Partial are either of the Water or Air; of the Water are, Firft, The general motion of the Seas, as, Firft, Currents. Secondly, The Tides, or of Rivers running into the Seas. Of the Air are either conftant, or, secondly,

476 Lectures concerning Navigation and Aftronomy.

The uncertain Winds, and both of them either Moderate or Exceflive; all which ought, as near as may be, to be brought to a Standard of Menfuration, without which all the Art we hitherto know or make ufe of, will not fuficiently inable us to keep a true Reckoning or Account of the Ships way in paffing or crofling the Seas, or how we change our Situation Eaftwart or Weftward, efpecially in refpect of the fix'd parts of the Earth; for 'tis one thing to meafure our way through the Superficial Parts of the Body of the Water. in which we float, and another thing to know how great a part, and upon what Point or Azymuth we have pafs'd over the Earth at the bottom of the Sea; the parts of the Earth at the bottom remaining fix'd and Iteady, but the Waterof the Sea being carry'd various ways, and with differing Velocity over. the ' fame,' in feveral parts of it.

Fourthly, The differing Subftances of which the Superficial Parts of this Body confifts, as of Earth, Water, Air, and the feveral Extents, Boundaries, and Qualitics of each, and, how pofited with refpect to the Cxleftial Bodies and proper Motions of the Earth; that is, as to Longitude and Latitude, cic. for without the afliftance of Caleftial Obfervation, we have not as yet helps fufficient to diftinguifh the Superficial Parts of the Earth one from annther, at leaft not upon the Sea where there are no Land-marks to be difcover'd.

Having already treatedin the foregoing Lectures of the feveral Opinions touching, the true form of the Earth, I fhall not now-repeat any of them here, but proceed to fhew feveral other Properties thereof neceflary to be known, in order to the better underttanding the Sahject in Hand, The Art of Navigation, and, in the firt place,

Suippofing it, as 'tis belicv'd by moft, tho' prov'd by none, to be of a perfect Globular. Figure, and confequently the Surface of the Sea, as weil as that of the Land, to be Spharical, we will in the next place proceed to confider of the Proprietics of this Body, becaufe 'tis upon the Surface of this Body that all our Voyages and Menfurations are to be made and not upon a Plain; for tho the level of the Sea doth, to a vulgar Eye, feem to be a Plain, and gencrally moft common People do believe or fuppofe it to be fo, yet 'tis paft difpute that it is Sphriocidical, and has a Curviture anfwerable to the Curvity of the Superficies of the Earth, tho it be not fo eafily found by the profpect of the naked Eye.

And that we may the better find out and cxamine the Properties thereof, it will be fit to confider how a Spherical or Globular Figure is generated. I need not premife either Definition, Poitulata or Axioms for this Explication, becaufe fo much, as I have here occalion to mention, will be eafily enough mnderfood without them, and common words of Expreffion will be fignificant and defin'd enough for this purpofe.

A Sphxrical or Globular Superficies may be conceiv'd to be gencrated by
A Globularsuperficies kow gencrated. the Converfion and whole Revolution of a Semiperiphery upon its Diameter; and a Globular Body may be conceiy'd, generated by a whole Revolution of á Semicircle upon its Diameter: As, let ACB reprefent a Diameter bifected at C , and upon the Center C , and diftance AC . Let ADB reprefent a Table IX. Fig. Semiperiphery, every Point of which is equally dittant from the Center C; s. fuppofe then this Periphery to be revolv'd round upon the Diameter $A B$ remaining fix' ${ }^{2}$ this Periphery fhall defribe a Globular or Spherical Superficies, every Point of which Superficies fhall be equally diftant from the Center C; for fince the Sphærical Superficies is defcrib'd by the Rotation of the Periphery $A D B_{2}$ no one Point of it can be further from, or nearcr, to the Center C, than any one Point of the Semiperiphery ADB; but every Point of the Scmiperiphery $A D B$ is equally dittant from the Center G; theicfore every Point of the whole Spherical Surface fo gencrated, is equally diftant from the Center C; this diftaince is always equal to the Semidiameter of the Periphery, vize AC , or CB .

Lectures concerning Navigation and Aftronomy.

Next by this Rotation upon the Diameter $A B$, every Point in the Semiperiphery ADB will defcribe a Circle in the Spherical Surface: All which Circles are parallel to each other ; for fince that any two of them are defcrib'd by two Points of the Semiperiphæry, which two Points retain the fame diftance or place in the Semiperiphery for the whole Revolution, and that That diftance is the fhorteft that can be meafur'd upon the Sphxrical Surface, it follows that any two of them will be parallel, and fince one of the tivo may always be one and the fame Circle, and any other Circle may be the other, it follows. that all thefe Circles, fo defrib'd, will be parallel to each other

Thirdly, fuppofing from any number of Points, as E E E; how many foever Perpendiculars, let fall or drawn to the Diameter AB , as $\mathrm{EF}, \mathrm{EF}, \mathrm{EF}$, which will therefore be parallel to each other, becaufe they are all Perpendicolar to the fame Line, and in the fame plain of the Semicircle ADB : By the Rotation of the Semicircle ADB; every one of the Lines EF, EF, DC, of. will def́cribe a Circular Plain, and every one of thefe Plains will have its Center in the Line AB. Thirdly, Every one of thofe Plains will be parallel to each other, becaufe the Lines defcribing them are parallel to each other, becaufe they are at right Angles with the Axis, therefore the imaginary Superficies defcrib'd by them, is a Plain. Next,

Fourthly, The Diameter AB will be Perpendicular to each of thofe Plains and will pafs the Plain in the Center thereof.

Fifthly, Thefe Plains will be bigger and bigger the nearer the Perpendicular that defribes them, is to the Center C; and the biggeft of all will be that defcrib'd by DC, that being the longeft Perpendicular; and becaufe DC is equal to AC, therefore the Circles defcrib'd by thofe as Radii, fhall be equal, that is, $A D B$, σc. and the Circle defcrib'd by the Rotation of DC; therefore thefe Circles fhall be great Circles, therefore great Circles fhall divide the SphæricalSuperficies into two equal Parts, becaufe $A D$ is equal to $D B$, and confequently the Sphrrical Surfaces defcrib'd by the Rotation of them. Therefore all great Circles upon a Globe are equal to one another; and becaufe ADB is half a great Circle, the Points whereof A and B remain fix'd, whilt the Simiperiphery is revolv'd round; and fo the fame will pafs through every Point of the Spherical Surface defcrib'd by it, all which concur in the Points A and B; therefore all thofe great Circles do bifect each other in the Points A and B: Therefore all the leffer parallel Peripheries cut thefe great Circles at right Angles, and are all bifected by them: therefore the Plains of the leffer Circles are at right Angles with the Plain of the great Circles that bifect them ; therefore the Angles made by any two Pofitions of the Semicircle at the Axis of its motion, make equal Angles in all the parallel Circles and equal parts of Arches in all the Peripheries of them.

And becaufe the Center C may be fuppo'd to remain fix'd, and the Points A and B may be fuppos'd fix'd in any other two oppofite Points of the Sphærical Surface already defcrib'd, as X and Y and the Semiperiphery ADB may be fuppos'd revolv'd upon thofe Points or Poles as AB upon the Axis ACB, therefore this Revolution of XDY will defcribe the fame Sphærical Surface with the former, which will defcribe other great and leffer Circles in it; all which will have the fame Refpects and Proprieties to each other, as the former had among themfelves; therefore the Plains of all great Circles pafs through the Center, the Diameters of them being always equal to the Diameter of the Sphære; therefore all great Circles bifect each other ; therefore the Plain of all leffer Circles cut or pafs through the Globe befide the Center; therefore all Plains paffing through or cutting the Globe, cut it in Circles, and if they pafs through the Center cut it in great Circles, and if they pafs befide and not through the Center, cut it in leffer Circles; therefore all leffer Circles are parallel to fome great Circle, which is in the middle between the Poles A and B ; therefore the fame Points that are the Poles of a great Circle, are

478 Lectures concerning Navigation and Aftronomy.

the Poles alfo of the leffer Circles that are parallel to it ; therefore all Sphxrical Surfaces that interfect each other, do cut each other in the Periphery of a Circle, and confequently in a Plain; therefore the I ine drawn between the Centers of two fuch interfering Globes fhall pafs the Center of that Plain at right Angles or Perpendicularly.

Thefe Proprieties of a Glohular Body and Spherical Surface, which follow as Corollaries from the way of the Generation of them, and fo need little Explanation for the evidencing the demonitration of them, will be fufficient at prefent for the Explanation of fuch Divifions and imaginary Circular Lines as have been made ufe of by Geographers, for the better Defcription, Limitation and Divilion of the Superficial parts of this great Globe of the Earth; as for the other kinds of Lines which are not Circular but. Sphærohelical, fuch as the Rhumbs or Magnetical Lincs, thofe I fhall hereafter difcourfe of in their proper places, and explain all thofe Proprieties which are peculiar to them, and of ure in Navigation.

Geographers then have reprefented this great Globons Body of the Earth by a great round Ball or Globe, whofe Surface is Spharical and Smooth, and on the Surface of that they have defcrib'd the various parts of the Superficies of the Earth bearing fuch Form, Pofition, Magnitude and Variety one to another, as the real parts of the Earth do one with another; and therein have taken notice of the Pofition, Shape, Magnitude and Boundaries of all Lands, and Continents, Illands, Peninfulas, Ifthmus's, Promontories, Mountains, Plains, Deferts, and other remarkable differences, as are known, of the parts of the Earth which appear above the Water; as alfo of all the Boundaries and Extents of Oceans, Seas, Gulphs, Bays, Channels, Strcights, Lakes, Rivers, and the like; where the Water covereth the Face of the Earth; as the beft Difooveries hitherto made, can furnifh them with the information of. Thefe, 1 fay, they have delineated and defrib'd upon' a Globous Body with what exactnefs and skill they are able ; and tho' I conceive it to be far from that fulners, exactnefs and truth of Reprefentation that is to be wifh'd; yet comparing what is now known and deferib'd, with what was known to the Antients, we fhall find more than a new World has been of late 'Ages difeovered:' And indeed'the very World itfelf.; for 'twas a long time before it was known what the Figure or Magnitude of the Earth was; and there was a time, when the beleif of Antipodes was accounted and punifh'd as a Herefy. Every one then believ'd his own Country to be the middle of the Plain of the Earth, and that the utmof Limits of it, which touch'd the Vault of Heaven, were the Sea, into which the Sur, Moon and Stars defcended when they Set, and out of which they afcended again when they Rofe; and the utmoft extent of Land feem'd no more than what a Conqueror was, in a little time, able to over run and vanquifh.
It is hard to conceive, how Men from fuch a fate of Ignorance fhould arriveat fuch a degree of certainty of Knowledge, as the World has at prefent attain'd; how they came to know that the Earth was a. round or globular Body; nor have we any Hiftories that do inform us; but we firft met with it among the Mathematical Philofophers of the Greeks, who, 'tis probable, from the curiofity of their Cxleftial Obfervations, and fiom the ftrictnefs of their Arguing came to find and demonftrate the truth thereof; and then to indeavour to find out alfo the certain Magnitude and Meaf ine thereof by Obfervations and Menfurations purpofly made. Thefe Caleftial Obfervations, I conceive; were the firft occafions of their difcovery of the true Fontm of the Earth, and 'tis by means of thofe that the Magnitude of it hath been, and is 'to be truly: difcover'd, there being fo many unanfiverable Objections againt all the other ways of attempting it, that I think it wholly impracticable to any tolerable degree of certainty.
Cæleftial Objects ther,' 'tis probable, were the Marks that guided them to this Difcovery, which were fufficient for this purpofe, whether they were fuppos'd to move round the Earth whilft that was fuppos'd to ftand fill and fix'd, or whether they were look'd on as fix'd and immoveable as to the Diurnal Motion; and the Earth itfelf, according to Ariftaichus Samius, or our

Lectures concerning Navigation and Afronomy.

late Copernicus, were fuppos'd to be whirl'd round upon an Axis once in twenty four Hours.

Before the revival of this Opinion the Body of the Erarth, tho' accounted but a Point in refpect of the expanded Univerfe, yet wasit fupposid to be of fuch a folid, Denfe and fluggifh Nature, as not to be mov'd out of its piace or pofture, tho' the whole Univerfe, which was fo many Millions of Nillions of times bigger and more noble, was fuppos'd to whirle about it with an incredible Velocity, and all to wait and adminifer to it; which yet at the fame time was faid to be damn'd to the worft of places (as it was accounted) the Center of the whole Creation, where it was affirm'd to be made up of the very Dreggs and Drofs of the Cbaos, to which all the vile and bafer parts of the Univerfe continually defcended, -and was there excluded, as it were, and thrown out of the very Communication of the reft of the Creation. To maintain this Opinion the whole Creation was Itrangely Metamorphos'd, the moft glorious Cæleftial Bodies were depriv'd of their greatef Powers and the beft places of the Univerfe: Firft, For their Powers they were' rarify'd almoft to be no Bodies, and fuppos'd more light and frungy than Air itfelf; and next they were wholly depriv'd of the Power of Motion, fo as to be fuppos'd to be carry'd about by certain Orbs, in which they were fuppos'd plac'd, and in them to be only Pallive and not Active at all; and thus as fitting in Chariuts to be whirl'd round this defpicable Point of the Earth, for the more State and Pomp. On the other fide to make this feem more probable, the whole Expanfum or Aether' was confolidated into more than adamantine Hardnefs and Tranfparency, and divided into Sphares or Orbs within Orbs Concentrical, Excentrical, Progreflive, Retrograde, and together with thefe qualities of Hardnefs and Tranfparency, there was added to this Subftance that filld the 压thereal fpace fo great a fmoothnefs, as that all thefe Orbs could pafs by each other without loofing any part of their motion by rubbing, and fuch an impenetrability as not to wear out or waft each other by Grinding or Fretting; and yet to heighten the wonder they were fuppos'd to be Sonorous and Tonick, and to out-do all the Mufick befides in the World, by the harmonious Melody of the Symphonick Sphæres; which Harmony yet was fo fublime as not to be heard or underftood by any but fuch as were gone out of themfelves and had left thofe Corporeal Senfes, which other Mortals here make ufe of, behind them, and were tranfported into an Exftacy of Contemplation and Attention. By this contrivance the Univerfe was all made folid and impenetrable, except only what fpace was left below the Concave part of the Moon's Orbe, which Concave part was the infide of the Walls of this Prifon to which the Earth was condemned, beyond which no Terreftial Matter could penetrate, nor any Earthly Power reach; nor indeed could they reach fo far, becaufe this Concave Superficies was lin'd with a very thick Coat of the Element of Fire which had Power to confume and difperfe all that which rifing from the Earth, or inferior Regions of the Air, fhould attempt to invade and penetrate the Heavens. Thence Comets or Blazing Stars were fuppos'd Sublunary and Aereal Meteors, and to bekindl'd by this Guardian Element of the Fire, and by that to be varioufly thrown from place to place like other Meteors and falling Stars, retorting their ill influence back again to the Earth from whence they were fent; or like Squibbs and powder-Serpents drove to and fro by the blaze of their own Tail. Thus former Artificers contriv'd the Heavens into Wheel-work, and fuppofing themfelves to have eftablifh'd their Machinations by Suppofitions, which freed them from the fear of Difcovery or Contradiction they did a long while amufe the World with their Hypothcfes. But later Aftronomers finding, by accurate Obfervations, that Comets did pervade all thofe fpaces which they had fill'd up, began to difcover their Fictions to be groundlefs, and foon after found out a much more probable Solution of all the Phrnomena of the Heavens, by placing the Sun in the Center of the Planetary Syfteme, and inftead of whirling round the Heavens once in twenty four Hours, they found. or believ'd at leaft, that the Body of the Earth itfelf turning round upon one of its Diameters as an Axis, caus'd all thofe appearances of change, whicls was formerly afcrib'd to the motions of the Heavens, fuppos'd to be caus'd

480 Lectures concerning Navigation and Aftronomy.

by the rapidity of the Sphare calld the Primum Nobile; but taking which Suppofition we will, as to what principally concerns the diftinguifing of Longitude and Latitude in Geography, it will come much to the fame thing.

We fuppofe then that the Earth is, by all common Ohfervations, found to be a round Body, and fuppos'd to be mov'd round upon two Points in its Surface or upon an imaginary Axis or Diameter of it, and that it makes a whole Revolution to the fame Pofition again in refpect of the Plain through the Sun once in twenty four Hours thereby making Night and Day; and fuppofing aia imaginary Plain paffing through the Center of the Sun and the two Polar Points of this motion, this Plain will defrribe upon the Surface of the Earth every moment that it moves a great Circle, and fo in a Revolution infinite of great Circles paffing through the Polar Points and dividing the whole Surface of the Earth into a Morning and Afternoon half; the Morning half will be that which is moving towards the Sun, and the Evening half that which is moving from it : Thefe great Circles are call'd Meridians, becaufe when any Point of the Surface of the Earth comes by its motion into this Plain, the Sun is in the Mcridian of that place, and are ufually drawn in Lines upon the Globe which is made to reprefent the Earth; but becaufe to draw them ali would perfectly cover the Surface of the Globe, there being no morisent par fing without an alteration of it in refpect of the Superficial Farts of the Earth, therefore on fmaller Globes they ufually draw but twelve of them, which divides the whole Surface into twenty four parts anfwerable to the Hours of the Day and Night, but in greater Globes they treble that number anfwerable to every third part of an Hour or twenty Minates of time.

And becaufe thefe imaginary Circles alter every moment, and all have the fame refpect to the Heavens, fo that from thence there is no reafon why they fhould not be drawn over fome places as well as others, that there might be a certainty where to begin to number them; there hath been feveral attempts or profers by feveral Authors to place under that which they call their firft or beginning Meridian, this or that remarkable place of the Earth. Ptolomy accounted his firft Meridian from one Degree Weft of the Weftermoft Fortunate I/ands or the Canarys, and thence accounted his Longitude or diftance Eaftward, 'till he arriv'd to the Eafter-moft Border of China, fuppofing thercby to have compris'dall the Habitable part of the World.

Upon the farther difcoveries of late times of Lands more to the Weftward than thefe Canaries; fome have taken the Meridian paffing through the Ifland of St. Nicholas one of the Inlands of Cape Verd. And Hoindius has chofen for his firft Meridian that which paffes through the Iliand of St. Fago; but Gerrardus Mercator has plac'd his firft Meridian over the Illand of Corvo, one of the Azores, becaufe at that time the Magnetical Needle or Compafs liad no variation from the true Meridian Line in that place, which he therefore judg'd would be a very good mark to find it again in fucceeding Ages: But as there are other Meridians in which the Compafs has no variation, fo it has been fince his time found that there is a variation of the variation of the Magnetical Needle; and tho' the Needle then varied hare at London to the Eaftward, yet fince that time, viz. about thirty Years fince, it had no variation here at London, and is now very confiderably gone towards the Weft. Some others have made the firft Meridian that which pafs'd by the moft Eaftwardly part of Brafile; Arnoldus, and Wendelinus have chofen the Ifland of St. V incent for their firf Meridian; and Fodocus Hondius has taken the fame in his Globe making it pafs through Iceland; Robert Dudley in his Arcano del Mare places it at the Inand of Pico one of the Azores; but Gulielmus Blaw, and moft of the Dutch Mapp makers, begin their reckoning from the Pike of Teneriff. The French Geographers, by order of Lewis the XIIIth. in the Year 1634 , plac'd their filft Meridian to pafs through the Ifland of Ferro one of the Canaries, as is teftify'd by Brietius in his Parallel between the Antient and Modern Geography, much the fame with that of Ptolomy. Another prime Meridian was conftituted by Pope Alexander the firft, as a Boundary between the Spanifh and Portuguefe Divifion or Conqueft of the World, and that was after a long Debate, but never any final Decifion or Determination fuppos'd to pafs through the Mouth of the River of Amazons and that of De

Lectures concerning Navigation and Afronomy. 48 I

la Platta, as Langrenus has made it in his Dap (which, whether they lie both. under one Meridian or not, no one yet knows) And the Spaniards were to be, proprietors of all Lands they difcover'd to the Weftwards of that Meridian, and the Portuguese all to the Eaftward; but there two meeting each other in the Eaft-Indies again, caus'd much Difpute. However, the Spaniards keep the Philippines, tho' it be thought to intrench upon the Portuguese half. Other Geographers have taken other beginnings, which has caus'd a very great Confufion, in particular Geographical Naps, it being difficult to know from what prime Meridian they begin their Account.

Befides the fe, the Aftronomers have made choice of other Meridians for their Aftronomical Calculations, as Ticho Brahe, and his followers, take the Meridian of Vraniboure, being in Huena an Inland in the Sound. Origanus takes that $^{\text {St }}$ of Frankfort, Maginus that of Venetia, Eichffadius that of Stettn, and indeed almoft every new Writer makes the Meridian of the place of his abode the frt Meridian, and refers all the reft to that, which breeds a great and needleft Trouble and Confufion in Geography; and it were very much to be withed that they had, or would for the future agree upon forme one to which all might be refeid. There is not yet found any very confiderrble ground in Nature why one gould be agreed to rather than another ; that of the direaction of the Magretical Needle in the true Meridian Line would have looked fo much like fuchizn indication of Nature, if the Hypothefis of Linton and Nantonier had beeltrue ; but fince Time has difcover'd that thole were but groundless Hypotheft. that pretence is vain.

That of the prodigious hrh Mountain of the Pike of Tenariff, which Wits liam Blear and the Dutch take notice of in their Charts, is likely enough to be a lifting Mark, and 'tic considerable enough to diftinguifh it from all: 0 the Mountains yet known in th. World; and lying conveniently in the way of Shipping, may, for ought 1 know, be as proper as any other place whatfoever, provided all agree to mate their Compute from it; and the computing Eaftwards may ferve well enow, fince it is now generally us'd ; but had it been to be now eftablifh'd, I fhoulathink it had been much more according to Nature to have computed the contrary way.

Next, the Earth being fuppos'd to be move round upon this Axis, may be fuppos'd to have infinite Circles defcrib'd uponthe Surface of it, by the infinite Points of the great Circle that thus it mares round withal, which will therefore be parallel to one another, becaufe all ce defcrib'd by the fame, motion upon the Axis; that Point of it which is in th middle between the two Poles defcribeth a great Circle, which is called the Equator or Fquinoctial Line, and all the other Circles will be lefter Circles, which, being of the Paris parallel to it are called Parallels; all the fe Circles cross the former Meridians at right Angles, and fo every one of them are, by every che of the formere, divided into two equal parts.

There parallel Circles are drawn upon the Globe that reprects the Earth, but not all of them, for that would cover the whole fuperficies of the Globe, but only fo many of them as may, together with the Meridnns, Serve to diftinguifh and divide the Surface thereof into Trapezia of a convelinest bigness, and are generally proportion'd to the number of Semimeridians, viz. fo many between the equinoctial, and either Pole, as there are Meridians, as at every Five, Ten, or Fifteen Degrees diftance from the Æquinoctial Circle, from which they begin to be accounted.

Nov. 13th. 84. I explain'd the lat Day various Opinions concerning the Fingre of the Earth on which we live, and fhew'd you why, tho' it has not been fufficiently proved by any Observations yet made, that it is pofitively of this or that Figure, yet by comparing all together it feems mot probable that the Figure of it is Spherical or Globular, or at leaf fo near it as not eafily to be difcover'd of any other, by the shadow of it in the Eclipfes of the Moon, nor by any other Obfervations yet made for meafuring the Quantity or Magnitude of a Degree upon the Surface of it, which is the only, certain and pofitive way of performing it : For tho' 'tis certain that the quantity of a Degree, or a three hunder'd and fixtieth part of the whole compass of it has been meafur'd in feveral Latitudes, and forme of them with care enough; yet 'ti

482 Lectures concerning Navigation and Aftranomy.

alfo certain, that moft of them have been made by unaccurate Methods and uncertain Meafures; fo that they are wholly ufelefs in this particular, by reafon we cannot make a pertinent comparifon between'them; nor do I know any other certain and uncontradictable way of proving it, than by either firft actually meafuring the quantity of a Degree upon the Earth in Latitudes very differing, as of one lying very near the Æquinoctial Line, and of another, as near as may be towards either of the Poles; and thofe Menfurations to be made as near as may be by the fame Perfons, with the fame Inftruments, and the fame Meafures, and with the fame Exactnels and Care; by the comparing together of which two Degrees fo meafur'd, it would plainly appear whether thofe Degrees would prove equal or unequal; for if they prov'd to be unequal, then it would plainly appear that the Figure of the

Earth was not of perfect Globular Form, but fome way or other Oval; if
Anvay to determixe the Earths zroDiametei the Degree near the 压quinoctial be found longer than near the pule, then the greatelt Diameters of the Earth are in the Plain of the Æquinotial; if on the contrary, then the longeft Diameter is in the Axis of its Rerolution: This is fuppofing that the Perpendicular Lines pafs through the Cinter of the and that when would follow a fecond method of examining the Figure of it, with the is by expamining whether the Horizontal Line beat right Angles the Perpendicular which is next the will the obture Anglf be on that fide of Acute towards that which is the longeft Diameter Apon the fame Place or Promontory where the Iorizontal Line of the S can be feen both Northwards and Southward with fome exáct Inftrum Sea fitted with a long Plumb-line and a large Telcope fet at right Angles with it, by which the vifible Horizontal Line ma be obferv'd to what exactnefs it fhall be defir'd, by turning the Inftrume, in the fame place, and viewing the level of the faid Line through it No hhward and Southward. But if upon examining the Horizontal Line tho way, it fhall be found that the Perpendicular is at right Angles with +ie Horizontal, and yet by the other way of trial, 'by meafuring a Degree in feveral Latitudes, it be found that the Degrees are differing, it will bedn Argument that the Perpendiculars do not always refpect the Center of-ne Earth, but that they crofs the Axis in fome ter.

The Needle refpects not the Poles of diurnal motion.
refpet the Cen- other part thereof, which j -out of the middle, fometimes towards one Pole, fometimes towards the 0^{+16}; which may be true, and yet none of the Obfer vers, that have hithertroeen, may have found, or taken notice thereof; one Reafon of which maviave been, that they have not hitherto fufpested it, and therefore did not in uire after it. But tho' it bee probable enough, that the Body of the Each is nearly Globular, or rather was fo fornid at firt, that being the mop perfect and regular Figure, and that, of which the other $\mathrm{Ce}-$ leftial Bodieseem to be of, yet fince we find that there are other varieties in Nature, a- that of the Ring about the Body of Saturn, and even here upon the Ear:n, that of the differing Variation of the Magnetical Power thereof, I nink it may not be improper to fuifpect, that there may be fuch an uncerainty of pointing in'the Perpendicular or Plumb-liine, 'till by certain Obfervations we are affur'd, 'and 'tis not fafe in Philofophy to leave inquiry 'till a certainty be found. It was for fome time believ'd, that the Earth itfelf was a great Load-ftone, and that the Poles thereof were the fame with the Poles of its diurnal Motion; and that the variation of the Needle from that North Point was occafion'd only by the approximation to the fides of great Continents, and according to that Theory, the caufes of the feveral variations of the Needle at feveral places were aflign'd to be for this or that Continent, or this or that Ocean near adjoyning. But upon further Inquiry it was found that there were feveral-Inftances, that contradicted that Theory, and that the Needle feem'd to refpect fome Poles that were not in the Poles of the diurnal Motion, but at fome diftance from them: Thefe were faid to be fome vaft great Rocks or Mountains of Load-ftone at certain diftances from the Poles of the diurnal motion; which Poles the Needle was fuppos'd always to refpect, and thereupon William Nautonier of Caftefrank in Languedock, wrote a large Book, which he Printed in the Year i603, wherein he defcribes

Lectures concerning Navigation and Afronamy. 483

defcribes his Theory thereof, and furnines it with Inftruments and Tables fitted to find the Longitude thereby. Much about the fame time one Mr . Variation znAnthony Linton, our own Country-mau, a: Minifter I fuppofe, Publifh d aft for finding fmall Tract in Enolifh, under the Title of News of the Complerment of the Art the Longitudes of Navigation, in which he pretended to fhew a way for difcovering the Con gitude by the help of the variation of the Needle, and goes upon the rame Hypothelis that the Earth was one great round Load-ftone, and that the Poles thereof were at a certain diftance from the Poles of the World, or thofe of the diurnal Motion; that there were, as it were, proper Magnetical Meridians, and a Magnetical Æquator and Parallels correfponding, all which bore the fame refpects to the Magnetical Poles, that the Meridians, Fquator, and Parallels of the diurnal Motion did to the Poles of the World; and thence he fhews a way how to find the Longitude of any place by Sea or Land, in the Day or Night. But later Obfervations have found, thate this Magnetical Variation varies, tho' yet the parts of the Earth do not feem at all to have alter'd their Pofition ; this was found by Mr. Fofter andigthers in the Year 1635.
Hereupon Mr. Bond makes a fuppolition, that there Magnetical Boles were in the Air, not in the Earth, and out of the Poles of the World ats a certain diftance from them, and that they were two, one North and ant other South; that the Magnetical Axis crofs'd the other Axis in the Center, but that the Poles made a Revolution about the Poles of the Earth in worcris tain period of Time, but that at the fame time all over the World the: Needles refpected thefe Poles both by variation and dipping; by this he fuppos'd the Longitude might be found in the fame manner as Linton and Nautomier kadi before fuppos'd ; but by comparing feveral Obfervations together it is found that this Theory will not hold neither. And the ingeniotis. Mr. Halley has Four Magnetiexamin'd and compar'd Obfervations fo far, that he judges it reafonable to cal Polesadmit four Magnetical Poles in the Earth, two of which are near the:South; and two others near the North Pole, by which he finds the moft accurate Obfervations of variation will be folv'd very rationally.

Thefe Infances I mention to fhew that tho' the Suppoition of Dr. Gilbert were very ingenous, and feem'a very rational, and in many things agreed with the Phænomena of the terrella or round Load-ftone; yet was it: not a fufficient Argmment for all others to defift from inquiring farther, and examint ing whether upon trial all the Phænomena would anfwer to the Theory; and whether it would always remain the fame that he in his time did firid iti; for things of this Nature being fo far remov'd from common and valgar Ob^{3} fervation, and the very Maxims and Grounds of them being taken up hoon I know not whofe, Credit, I conceive, it might be worth inquiry by Experiment to examine whether they be really fo or not, how generally foever thiey be believ'd or confented to; for'till that be pofitively prov'd by certain Ob fervations, there may be good Reafon to hefitate upon the Receptioniofany Hypothefis how plaufible foever it may appear.

This I mention on the occafion of confidering the form of the Body of the Earth, and of the pointing of the Perpendiculars to the very Centrapand middle Point thereof; which, tho' it be generally taken for granted, and ves ry agreeable to the general Phænomena, yet I think there are very good Arguments may be produc'd that may make the thing queftionable, fince Ido not find that there has ever yet been made any Obfervations or Trials:accurate enough to determine pofitively whether it be certainly fo, or otherwife. 'Tis true, that it is certainly near enough to that Figure of a Globe, that the common Obfervations and accounts of Seamen cannot difiprove it; and therefore as to that ufe, and fo far as the accuratenefs of that Art is hitherto practis'd, it can make no fenfible difference; but yet if that Art be carry'd to a much higher degree of Perfection, as 'tis not impoffible but that it may, it may be very confiderabie in that particular alfo: But 'till that be done we will be contented to agree to the common receiv'd Opinion, and confider of it as of a Globe perfectly round, at leaft as to the Surface of the Ocean, that part which is of principal confideration in the bufinefs of Navigation.

484 Lectures concerning Navigation and Aftronomy.

THe following Mort Difcourfe relating to the Maonetical Variation, and the more exact way of obferving that and the dipping of the Needle, 'I thought beft to infert it in this place; for I do not:find that the Aut our has any where perfelted this Tbeory of Magneti im, which it were to be wifh'd be had done, as likewife tbat he pad carry'd Several other Subjects on to a greater pitch of Perfecition, which indeed has been the misfortune of a great part of the Difcourfes publijh'd in this V olume.
R. W.

A Difcourre of tbe Magnetical Variation, read July 7 th. 1686.

THe caufes of Gravity and Magnetical Attraction are fo far remov'd beyond the reach of our Senfes, that the greateft part of Philofophers who have indeavour'd to give us an information thereof, have rather made us. more fenfible of their and our own Ignorance and Inability to do any thing therein, fome making it Corporeal, fome Spiritual; but what either of them. mean either by Corpufcles or Magnetical Effluvia, or Atoms, or Magnetick, Vertue, or Hylarchick Spirit, or Anima Mundi, when you come to inquire to the bottom you find, that neither they. nor we know what is meant, and we do as good as fay 'tis fo, becaufe it is fo; the Reafon of which I conceive to be, that Men are ufually very impatient of the Labour of examining and trying, and of going the long and tedious way of coming to a certainty of knowledge by Experiments, wherein the progrefs is very flow, and, as it were, ftep by ftep; but affect rather to leap into a Theory at once, and make to themfelves an Hypothefis upon fome few Obfervations they have met with; or fome few Experiments they have try'd, or fome pretty Conception or Hypothefis they have accidently pitch'd upon that pleafes them, to which with a little Shouldring they can make every caft to run, as it were, directly, though at laft it mifs the mark; yet, rather than they will indure the trouble of farther fearch by Trials or by Examinations and ftrict Reafoninings, they are contented to take up with fomewhat that may ferve to amufe.
It was for fome time believ'd, that the Magnetical Needle did always refpect the North and South Poles, not of the Earth, but of the Heavens, and that the Pole-ftar was that wherein the vertue did lie. In procefs of time it comes to be difcover'd, that this vertue was not in the Heavens, but in the Earth, and that the Magnetical Needle, had, in fome parts of the World, a confiderable variation from the Meridian of the place, the North end declining in this part towards the Eaft, in that towards the Weft, in fome places more, in others lefs; but that this variation was fix'd and perpetual to the place, and that by reafon, faid fome, for that there were to be found in the North certain Rocks or Mountains of Load-ftones, which attracted the North end of the Needle to them from all parts of the World. But this, in a fhort time, alfo vanifh'd as appearing ridiculous, and not anfwering to the Confequences that muft have follow'd from it. Inftead of which another caufe is introduc'd for the variation, and that is the great Continents that lie either on this or that Hand, and the great Sea that lies on the other: Hence it was fuppos'd that Variations would be found always regular, and the fame in the fame place at all times, as procceding from the greater attraction from the parts of the Earth; which were inore prominent and elevated, and which were not likely to be alter'd by time; at leaft; not enough to make a fenfible variation of the variation. This was Dr. Gilberts, but in procels of Time this was, by Mr. Gillibrand of this Colledge, and fome others, found to alter, and there was found a variation of the variation of the Magnetick Needle in the fame place, and that not verify'd in one, but in thoufands of places. This overthrew all the former Hypothefes, and we are now to feek a new one; Mr. Bond, and Mr. Pbilips, and fome others, have been hammering at a new Hypothefis, wherein they make the Magnetick vertue to be in the Air, and fo the Magnetick Poles to be moveable in Circles round about the Poles of the .Æquinoctial, and the Mag-

Lectures concerning Navigation and Aftronomiy. 485

netick Axis of the Earth to have a Conical motion about the Axis of the diurnal Revolution : Which Conical motion they fuppofe to be perform'd in a certain number of Years; fo that at length the Polar Points of the Magnetick vertue after they have revolv'd a periodick Circle, return from the fame Point from which they did begin. Others have taken other Hypothefes, and rais'd other Conclufions and Confequences from them; but ftilr atter all we are yet to feek whether this motion of the Magnetick Polar Points be in ftraight Line, or in a Curve as in a Circle, Ellipfe, or fome other more irregular Figure ; whether it move round the diurnal Pole or fome other Point ; whether it move Eaftward or Weftward; whether it move nearer or farther off from the Pole; whether it move quicker at one time than another; whether it will return or continually proceed; whether there are only two or more Magnetical Poles; whether the Magnetical Axis of one, or Axes, if there are more than one, pafs through the Center of the Globe, or befides it, and if more, whether parallel to each other, or Oblique, and whether one only hath a motion or whether both; whether thefe motions keep the fameVelocities or differing; and many other the like Queries might be made; I could add a hundred, of which we are ftill to feek, and cannot give a pofitive anfwer, becaufe there are not yet materials enough of Obfervations to build a certain Theory upon; and the Obfervations that have been hitherto made have been fo grofs and imperfect, that little of certainty can be concluded from them, and therefore fuch Obfervations can only be rectify'd by Time, by reafon that the Degrees and Steps of this progreflive motion are fo far undefin'd, that fome Years muft be ftay'd before the alterations that are made in the interim in the motion can be made fenfible, and when fenfible, they are very imperfectly defin'd. Hence, I fuppofe, it may have proceeded, that we have lately heard of fome fuch Magnetical Obfervations as have feem'd to prove a ftation of that motion, and fome others of a differing Nature, which, in probability, have proceeded from fome imperfection in the Obfervation.
For if we confider the Nature of fuch Obfervations, how many Requifites there are neceffary to make any one as it ought to be, we fhall quickly find that our ftore of fit materials to work upon will be exceedingly fmall ; and that upon examining into or querying upon fuch Obfervations as we meet with, we fhall be apt to throw by and neglect as ufelefs the greateft part: for there are but a very few in the World that are fit and able to make fuch Obfervations, or that know what is Pertinent and what Impertinent: Fewer there are that will be at the trouble of doing what they know fit, and thos Skill, and Will be joyn'd, yet if Inftruments and other affiftances are wanting, they will come fhort of Perfection.

As tho' an Obferver knows how to find the true meridian of the place, how to place his Needle, what inconveniences to look after for preventing (as the removing of all fuch Magnetical or Chalibeate Bodies as influence the Needle) how to obferve the Angle the Needle makes with the Meridian Line, and the like; yet if he wants fitting Inftruments, whether Mathematical or Magnetical, to do thefe Requifites and convenient Affiftances, and a fufficient ftock of Perfeverance and Induftry to profecute the trials to the utmoft:exactnefs, the effect will be imperfect, whatever is look'd after beyond that exactnefs: For inftance, after all other Requifites are found, if there be wanting fuch a Needle as will certainly diftinguifh to the fixth part of a Degree, then any fuch Obfervations are wholly ufelefs in fuch Inquiries where a much greater accuratenefs is requir'd ; and for the making them fignificant, there is no other way but ftaying a fufficient number of Years, and the courfer the Obfervations be, the greater number of Years are requifite to make them equally ufeful; and cven then they are altogether ufelefs for anfwering many other Queries; as if it fhould be queried, whether the progrefs for that whole interval have been equal or unequal, and if unequal, what thofe Degrees have been and at what times, whether in differing Years, or differing parts of the fame Year? © co.

486 Lectures concerning Navigation and Aftronomy.

Now fince Time is that which cannot be alter'd,' and that therefore Pofterity only are like to have the Fruit of our Labours and Indeavours of that kind, I thought it would be beft to make fuch Inftruments as would make that fenfible in a very fhort time, which, by the common, could not be but in a long, by thofe means if poffible to reduce our Obfervations to ufe within the compafs of our own Lives; for if a Needle could be made that fhould diftinguin the alterations or the variation of the Variation, as nicely to the parts of a Minute as the prefent Needles do to the parts of a Degree, then fhould we difcern as fenfible an operation or alteration in one Year, as by the other in threefcore, and in ten Years as in fix hundred; for that all other requifite accuratenefs can-be procur'd, as to diftinguifh the Meridian Line, the divifion of the Angles, the interpos'd fpace of time, the removal of impeding or altering materials that may influence the Needles.

Divers have attempted to procure Inftruments fit for this purpofe, fome by Needles of great length, others by fhorter view'd with Glaffes or Microfcopes, others by other ways, as by one of the late Leipfick Acta may be feen ; every of which I conceive to be fufficient for this purpore, and do only aim to difcover the divifions of the fame Angle; that which I am now defcribing does that indeed of Confequence, but directly and immediately it magnifies or multiplies the Angle, by making that a Degree which is really but a Minute, and fo by confequence contracting of time.
'Tis then, in fhort, is no other but this,
A Needle is fixd at right Angles upon a very light and ftraight Axis of Wood or Brafs, which Axis hath at each end the point of a very fine and fharp Needle, the fincr and fharper the better, which is eafily enough procurable : thef Needles points are to be put into two fmall Center holes, made fit for them in a Ring, or Frame made after the fhape in the draught.

THus far the Author. The Figure of the Inftrument is reprefented in the ninth Plate, Figure the firft, which may be underflood without farther Explanation; which the Author has omitted.

Nov. 20. 1684. In my laft Lecture I explain'd to you thefe two laft Lines or Circles which are ufually drawn upon the Superficies of a Globe made to reprefent the Body of the Earth, which were, Firft, All great Circls pafling through the two Polar Points of the Earth, or thofe Points upon which the Body of it, or the Primum Mobile is continually mov'd round once in twenty four Hours, or the time of a natural Day, which are call'd Meridians. And, Secondly, All thofe Circular Lines, which may be fuppos'd to be defrrib'd by all the Points of any one fuch Meridian, turn'd round upon the faid Globe, fuppos'd to ftand fill; or by the converfion of the Globe upon its Poles, the Meridian being fuppos'd to ftand ftill, the effect being the fame in both cafes as to this particular. Thefe Lines or Circles are call'd Parallels, either becaufe they are all parallel to one another, or rather becaufe all the leffer of them are parallel to the middlemoft and great Circle, which is call'd the Æquinoctial, Æquator, or moft commonly be Seamen, the Line.

Thefe two forts of Circles are the principal made ufe of in the Defcription of the Superficial Parts of the Earth, and to which all other Lines made ufe of either in Geography, Aftronomy, or Navigation are reduc'd, thefe alone ferving to fhew the Pofition and Situation of the feveral parts of the Earth to one another, and to determine the pofitive Point or Spot upon the Artificial Globe, every real place upon the Surface of the Earth ought to have, and Vice Verfa any place fituated on the Globe may be found upon the Earth: And being once fo determin'd, 'tis fuppos'd by moft, that it is always the fame, that is, the fame place upon the Superficies of the Earth being once adjufted both as to its Longitude and Latitude, fhall always remain and continue the fame both in refpect of the one and the other Pofition. As fuppofe this City of London, if the Latitude and Longitude be once certainly obferv'd and determin'd, and fo pofited on the Globe, it is fuppos'd that it fhall always remain and continue to have the fame in all fucceeding Ages,
without

Lectures concerning Navigation and Aftronomy. 487

without any Variation or Deviation from the fame, whatever Deviation or Variation doth happen in the Cæleftial Bodies without it. This, I fay, is fuppos'd or believ'd by the moft Geographers and Aftronomers: But yet not by all; for there have been, and there now are fome, as particularly Monfienr Pierre Pettit, who have not only fuppos'd, but pofitively afferted, that thefe alfo have a Variation, and that after a certain time both the Latitude and Longitude of many places, upon the Surface of the Earth, hath a fenfible change and difference; and to confirm this he hath compar'd many Obfervations Recorded by the Antients, of the Latitude of divers places, as particularly thofe of Paris, Rome, and fome other eminent places with later and modern Obfervations of the Latitudes of the fame places; whereby 'tis foud, fa, the to the which of places vaa afcribes to the variation of the Poles of the Earth. Certain it is, that la-ries. ter Obfervations concerning the Latitudes of feveral very eminent places of the World do very much differ from thofe that were affign'd them by the Antients; as particularly that of the famous' Accademy of Greece Atbens, whofe prefent Latitude is found to differ almoft two whole Degrees from what was formerly affign'd to it, as I have been inform'd by the Ingenious and Learn'd Traveller Mr. Fiancis Vernon, who with great care made the Obfervation. I could inftance alfo in Conftantinople, and feveral other eminent places not mention'd by Monfieur Pettit, but I fhall omit them at prefent ${ }^{\prime}$ till fome farther and more accurate trials be made for this purpore, and upon this occafion mention only, that, I conceive, it would not be amifs that there fhould be fome Obfervations purpofely made to examine this Theory, and reduce it to a certainty, for 'till that be done it is but Hypothetical to fuppofe the Polar Points of the Earth fix'd or moveable, there being as great a poffibility of their moveablenefs, as there was of the Magnetical Poles, before the difcovery thereof made by fome of this College in the Year 1635. That, I fuppofe, which prompt'd Monfieur P'ettit to make this affertion, or at leaft gave him a hint for this Inquiry, was a kind of miftake of Fofepl Scaliger in an Epiftle of his wrote to David Rivaltus upon the occafion of the Explanation of the variation of the Magnetical Ncedle from the true Meridian, made by Dr. Gilbert in his Book de Magnete, Publifh'd not long, before. This Epiftle was Printed with other Works of his at Pairis in the Year 1610. but written in the Year 1604. for by his Difcourfe he would feem to explain the Reafon of the Magnetical Variation of the Meridians themfelves, which he pretends mult needs follow from the Theory of the preceffion of the Æquinoctial Points, and yet at the fame time he fays, that the Cynofure or Tail of the lener Bear was never farther from the North Pole of the World than now it is. But in fhort (to fpend no more time upon declaring and explaining this Opinion) I fay, 'tis very evident he underftood not what he faid himfelf, or if he did, "tis certain he grolly miftook the Explanation of the matter, and has been long fince confuted by Marinus, who was then profeflor of Aftronomy at Padua.
Now if there be any ground for this Opinion, then mult alfo follow an alteration of all the Meridians and Parallels imagin'd to be made upon this Globe of the Earth; for if the Polar Points, or the Axis of the diurnal motion of the Earth does, vary, thofe mult alfo vary with it, and confequently the Pofitions and Diftances of all places, in refpect of them, muft vary alfo; and confequently, as Scaliger fays, the Pofitions or Meridians of Dials, will, after a certain time, be falfe, as will alfo the very Dial itfelf, as if it had been remov'd and plac'd in a wrong Latitude and wrong Pofition. However, the Pofition and diftances of places one to another will contain the fame, tho' they differ in refpect of the Heavens; and therefore if thofe be procur'd, tho' both the Latitude and Longitude of all fhould be alter'd, this Defcription or Picture of the Earth, upon the Artificial Globe, would remain true and unalter'd, and other Meridians and Parallels might be drawn over them.
But to leave this Digreffion for the prefent, I fhall proceed to confider of the Divifionsufually made upon thefe Circles defcrib'd upon the Artificial Globe.

Lectures concerning Navigation and Aftronomy.

All thefe Circles then both great and leffer are divided, or fuppos'd to be

The divifions ufually made oir the Globe.
of the reafon why the Circles are divided in 360 . divided into three hundred and fixty equal parts, which are callpd Degrees, Grades, Steps, but none of them are number'd quite round, fave only the Equinoctial, which noteth the divifions of Longitude, but all the reft are firft divided into four equal parts, which are call'd Quadrants, and each Quadrant into ninety ; what the reafon was at firft of pitching upon this number of three hundred and fixty, I know not, there being no Reafon in Nature for this more than for fome other Divifions, tho' the Aftrologers make much thereof, and build much thereupon; but the moft likely feems to have been this, that the Radius being equal to the Subtenfe of a fixth part of the Circle, did very naturally prompt them to that Primary and natural Divifion of it into fix equal Parts or Sextants; which divifion alfo did both bifect and trifect the whole Circle, and gave them the Halfs and Trines, or Thirds; then bifection being the eafieft of all other Sections, the bifecting the Bifection gave them the Quadrifection, Quadrants, or Quartiles of the whole; from thefe Quadrants fetting off the Sextants cither way, gave them the Duodecimals or Twelfs of the Circle, or the Thirds of the Quadrants or Quartiles. Thefe Duodecimals in the Ecliptick, of which I fhall hereafter fpeak, are call'd Signs, which fignifies Marks, Divifions, or Sections of the Ecliptick. Thus far the caufe of their Divifions fcen'd reafonable enough, more efpecially for the New Moons being twelve in the Year; as did alfo their next of fubdividing each of thefe into halves, making four and twenties or Hours, into which number they divided the Natural Day, or one whole Revolution of the Earth. But the Chinefe and Tartars contented themfelves with the Duodecimal, dividing the whole Revolution only into twelve Cha. which we muft call Bi-hours; tho' on the contrary, they divided their Zodiack into twenty four parts, which we muft call half Signs, being produc'd only by Bifection upon the firtt Sextants; but why the Eaftern and Weftern Literati differ'd afterwards, is not eafy to guefs.

And whether the Weftern Literati did divide thefe twenty fourths into

rifference be-

 twe ch the Eaffern and. Weftern Litevatio. fifteenths, that they might introduce into the Circle both Trifection and Quifection, whichare both neceffary to this fubdivifion, I dare not determine. That which feems to have been the moft likely occafion, I conceive to have been the nearnefs of this number of three hundred and fixty to the natural Divifion of the Zodiack, by the annual motion of the Sun, which every Day doth almoft meafure fuch a fpace, compleating its Circuit in three hundred fixty five Days and a quarter almoft, as the Revolutions of the Moon in a Year might prompt them to make ufe of the Duodecimal Scetion for the Zodiack. But whatever were the Occafions or Reafons that prompt'd them to thefe Divifions, certain it is that now all do agrec to make ure thereof, and call this twelfth part a Sign, and the three hundred and fixtieth part a Degree ; and thence each Sign containeth thirty Degrees, each of thefe Degrees they again fubdivide into fixty equal parts, which little parts they call Minutes or Primes, each of the fe Primes fubdivided by fixty, give Seconds or Second Minutes; a fixticth part of a Second is a Third, a fixtieth of a Third a Fourth, and fo onward by Sexagefimal Subdivifion, to Fifths, Sixths, Sevenths, in a continu'd Geometrical Progreflion, as far as is needful; for what Reafon they have pitch'd upon this Sexagefimal Progreffion, 1 cannot imagine, unlefs it were becaufe they had divided thé Sextant (which, as 1 told you, was the firft and moft natural Divifion of the Circle, its Subtenfe being equal to the Radius) into fixty Degrees; but certain it is, that it is much more incommodious for Calculation than the common Decimal 'way and much more than a Duodecimal, which might be invented; for that the Sexagefimal mult take two places for every Afeent, whereas the Decimal takes up one place only for one Step or Afcent. So alfo might a Duodecimal, if rightly order'd, by making two new fingle Charaters for ten and eleven, and making the Charater of ten ferve for twelve or Dozen; then the next or third place will be Groffes, the fourth Dugroffes, the fifth Grofs Groffes, the fixth Du grofs Groffss, and f o onward, anfiwerable to Unites, Tens, Hundreds, Thoufands, Ten Thoufands, Hundred Thoufands, ovr. 2. in the Decimal progrefion of places. And tho' poffibly the Names and
Lectures concerning Navigation and Aftronomy． 489

Practife of it may feem at firft a little uncouth and ftrange，yet a little ufe will eafily overcome that difficulty，and make it manifeft to be a much better Progreffion than the Decimal，which is now generally ufed：But this only by the bye．
I fhall next proceed to fhew how thefe Divifions are made ufe of in thofe two forts of Circles．Firf，Then，the 压quinoctial，and all the lefer Circles， begin their Divifions from the Section of them by that half of the Meridian which is call＇d the firft Meridian，which paffes through the Atlantick Ocean， of which I have already fpoken；and the Divifions of them are accounted from thence Eaftwardly，＇till the whole Revolution be compleated and end in this firt Meridian in three hundred and fixty．But the Divifions made upon the Meridians begin to be number＇d or accounted from the 压quinoctial，and end at each Pole in ninety，which exprefles the feveral Latitudes of thofe places that lie under them，or their breadth or diftance from the Æquinoctial Line， either towards the North or Sonth Pole．

Now，the next thing is to confider，how both thefe Lines and the divifions of them，proper and peculiar to any one place，may be actually found at that place，which is the ultimate cnd and refult of all that is fought for in the Art of Navigation ；for thefe being truly found for any place，they prefently thew its true Pofition and Situation in the refpect of all other known and de－ termin＇d places upon the Earth．

In order to perform which Inquiry the whole Art of Navigation is con－ triv＇d，and all the affiftances that can be procur＇d，either from Nature or Art，are fetch＇d in and made ufe of；and all indeed that can be found，Artito Navi－ tho＇very many and very curious and ingenious，are little enough，and too few to accomplifh the fame to that certainty and accuratenefs that is to be defir＇d，and is neceflary to compleat and perfect the fame．

The Helps then that are made ufe of are either afforded，Firft，By the Two Erelps： Heavens and the Cæleftial Bodies，fuch as the Sun，Moon，Planets and Stars．

Or，Secondly，By the Terreftrial，or fuch things upon and in the Body of the Earth itfelf，as afford Indications and Characterficks proper and fufficient to direct the Geographer and Hydrographer，for difcovering and determin－ ing，by known meafures，how every place is Pofited and Situated in refpect of thofe Lines I have already mention＇d ；and thence of determining their Pofi－ tion and Magnitude in refpect to one another in regard of other imaginary Lines，which are taken in from Art to affift the Mariner in his Computations and Accounts；fuch as are the Rhomb Lines and other great Circles which are neither Meridians nor IEquator，but fuch as are neceflary to be fuppos＇d ei－ ther for computing the way of the Ship，or Courfe fteer＇d，or for computing and refolving Triangles，or for giving the Pofition and neareft diftance be－ tween place and place，in a great Circle or determin＇d Azymuth．

Three things then may be found out by the help of the Cæleftial Bodies．
Three things to be found by the
Firft，The Meridian Line or North and South Line，and confequently all belp of Calefti－ the other Azymuth Lines or Points of the Horizon on either fide of the ${ }^{d l}$ Bodies． Meridian．
Secondly，The Latitude of any place，or the diftance of that place from the 压quinoctial or the middlemoit of all Parallels between the two Poles，

Thirdly，The Longitude of any place，or diftance of the Meridian of the place from the PrimeMeridian agreed upon．

But before I proceed to fhew how thefe three things are to be foand by several Max： the help of Cæleftial Bodics，I conceive it neceflary to premife fome few ims premis ${ }_{2}$ Maxims which are not obvious to any，but fuch as have by diligent Obfer－ vation found out and demonftrated the certainty thereof．The grounds and method of which Inventions would be as little to our prefent purpofe as it would be tedious here to repeat．I fhall rather chufe to acquaint you with the Refult or Conclufion which may be taken for granted，＇till fome more cu－ rious and exact Obfervers，than have hitherto been，fhall find and demonftrate
the contrary, fome of which may be done by Land Obfervations, but not by fuch as can be made at Sea.

The Firft Maxim then (of which we are fufficiently affur'd for this purpofe) is this, That the diftance of the fixt Stars is fo very great and immenfe in refpect of the Magnitude of the Earth, that its whole Body is but as it were an infenfible Point; fo that the Figure, Appearance, Pofition and Diftance of all the fixt Stars, to, or from, one another, doth to the naked Eye, or affifted by the beft common Inftrument, appear exactly the fame, whether the Eye be plac'd in the very Center of the Earth, or in any Point of the Superficies, or any other Point of the whole Body. So that not only the Center of the Earth may be taken to be the Center of the imaginary Concave Sphære wherein all the fixt Stars are plac'd, but any other Point whatfocver of its whole Extenfion or Corporeity.

A Second Maxim of the Ariftarchoans or Copernicans is this, That the diftance of the fixt Stars is fo incomprehenfibly great, that tho' the Earth be fuppos'd to move round the Sun in a Circular or Elliptical Line, whofe Diameter is ten thoufand times the Diameter of the Earth, yet that even this whole Circle, in comparifon of the imaginary Orb of the fixt Stars, is but a Point, and that therefore with the naked Eye and common Initruments no difference can be difcover'd of the Diftances and Pofitions of the fixt Stars in refpect of one another, tho', as I have elfewhere fhewn, there is a way to find a difference by the help of very long and good Telefcopes, fixt at Land, but no Inftruments at Sea can difcover it; which is enough for our prefent purpofe.

3: A Third Maxim is, That two Points of the Earth do feadily point or direct towards two Points among the fixt Stars in the Heavens, which Points are call'd the two Polar Points, the two in the Heavens being Perpendicular over the two on the Earth; and the Diameter of the Earth paffing through there Points, is call'd the Axis of the World, and fuppos'd to be continu'd to the fixt Stars: And tho' this Axis be carry'd round in the Orb of the Earth in a Parallelifm, and fo defcribes an Elliptical Cylinder, whofe longeft Diameter is the Diameter of the Earth's Orb about the Sun, yet fo vaftly are the fixt Stars diftant, that this whole Ellipfis, among the firt Stars, appears but a Point, and the Axis of the Earth feems to refpeet one and the fame Point among the fixt Stars quite round the Year.

A Fourth Maxim is, That all Perpendicular Lines refpeet the Center of the Earth, and that the level of Water, and other Liquors is a plain and at right Angles with this Perpendicular in every Point of the Surface of the Earth.

Fifthly, That every one of thefe Perpendiculars, fuppos'd continu'd to the fixt Stars, will, by the diurnal Rotation of the Earth, defcribe, among the fixt Stars, a Circular Line; which Circular Line, anfwering to the Perpendicular or Zenith of any place, will appear the fame roumd the Year, to any Inftrument that can be us'd at Sea.
6. Sixthly, That the level of the Water, or any other Liquor fuppos'd continu'd to the fixt Stars, will actually divide the whole Sphere thereof into two equal parts, tho' it be out of the Center of the Earth; and upon its Surface; and tho' the Body of the Earth itfelf be fuppos'd to be as far diftant from the Center of that Orb, as it is difant from the Center of the Sun.
7. Seventhly, That the vifible Angle of any Calletial Body, with this Perpendicular or Zenith Line of any place, or with the plain of the level of the Water or Horizon, will be the fame (as to any thing that can be difcower'd by Inftruments at Sea) as if the Center of the Intrument were in the

Lefures concerning Navigation and Afronomy. 491

Center of the Earth, and that Center of the Earth were always in the Center of the Sun, and that Center of the Sun were the true Center of the Orb of the fixt Stars; and thence

Eighthly, We are to conclude that all Obfervations of the fixt Stars; wherefoever made upon the Surface of the Earth and Sea, will give the fame appearances, as if the Eye or Center of the Inftrument (by which fuch an Angle is meafur'd) were at all times in the Center of the Orb of the fixt Stars.

Nincthly, That all Obfervations to be made of the Pofitionsof the Sun in refpect of the fixt Stars, will be the fame, as if the Eye and Center of the Inftrument were plac'd in the Center of the Earth; and that whether the Sun be fuppos'd to be mov'd about the Earth, or the Earth about the Sun, the vifible appearances of the Place, Line, or Point of the Sun among the fixt Stars, will be in both cafes the fame.

I fhall not now meddle with the appearances of the other Planetary Bodies, becaufe at prefent, for this purpofe, I fhall not have occafion to make ufe of them, but referve the confideration of their appearances to another part of this Difourfe, wherein I fhall more particularly treat concerning the ways for finding the Longitude of places by Caleftial Helps.

Firft then, for finding the true Meridian, or North and South Line of Ways for findany place, there are very many and very differing ways that have been in-ing the Merivented and Publifh'd by feveral Authors for this purpofe, of which fome are dian. much more difficult and complicated, and pre-fuppofe feveral things to be known which require another method than this I am now difcourfing of; which may be very ufeful for performing other kinds of Problems, but are not fo proper for what I here intend: Others that are more fimple and plain, and yet fufficient to perform this effect ; fome of thefe are more proper to be made ufe of at Land, others are more eafy and practicable, and can be made ufe of at Sea as well as on the Land.

Thefe ways are either, Firft, By help of the Sun in the Day-time, or by the help of the fixt Stars in the Night.

Thofe, by the help of the Sun, are twofold; Firft, By the help of an Azy- bythe Sun twe muth Compafs to obferve the true Azymuth or Amplitude of the Body of wayps. the Sun in its Rifing in the Morning, and Setting at Night of the fame Day iff.Way. in the Winter half Year, or the faid Amplitude of the Sun in Setting at Night, and rifing the next Morning in the Summer half Year; for by dividing the Angle, made by thofe two Azymuths, into two equal parts, the Meridian Line for the place where it is inquir'd and obferv'd is given, the Meridian Line this way found, is that which is moft commonly us'd, and will be near enough the truth for any common ufe, as for finding the variation of the Compafs for the place where it is made, $\dot{\text { cos }}$. But yet, it is not exactly true, nor can it in fome more curious Inquiries, be made ufe of, and that, Firft, By reafon that all the times of the Year, unlefs it be on the very folltitial or longeft and fhorteft Days, and even then alfo unlefs the Solftice be exactly at Noon, the Sun is either increafing or decreafing its Declination; and to the Sun is really in a differing parallel in the Morning from what it was at Night of the fame Night, and in an other parallel at Night than what it was in the Morning of the fame Day, and confequently the Rifing and Setting Azymuths or Amplitudes do not make equal Angles with the true Meridian Line; but the nearer the Sun is to either of the Solftitical Points, the lefs the Error, and the nearer the Equinoctial, the greater.

Secondly, The Meridian this way found is not exact, by reafon of the differing Refraction of the Air in the Morning from what it is in the Evening, which I my felf have very often obferv'd here at London, and may be much more confiderable in more Southern Countries, where the difference between the warmth of the Air at Sun Rifing and Sun Setting is much more confiderable than in this more temperate Climate, tho' on the other fide that greater
greater difference of Refraction may, I confefs, make a much lefs diffe rence of Azymuth or Amplitude where, the Sun's Rifing and Setting is nearer to a Perpendicularity to the Horizon. However, fome uncertainty is thereby caus'd, and in no cafe, but what I before mention'd, is exact: However, this is better than the way that is moft made ufe of at Sea, for finding the variation of the Magnetical Needle or Compafs, tho' yet it be far enough from the accuratenefs defirable; for the way by them generally practis'd is not by comparing the Morning and Evening Amplitude together, but cither the Morning or the Evening alone efteeming the apparent Amplitude to be that which by Inftruments or Calculation for that Day and Latitude they are in, the true Amplitude ought to be, allowing nothing at all for Refraction; in which cafe the vifible Amplitude, by Refraction, makes more difference from what it truly ought to be, than two Amplitudes compar'd together, tho' fuffering differing Refractions, will produce.

A Second way of finding the Meridian of any place by the Sun, is this, Firft, By the help of an Azymuth Compafs to obferve the Azymuth of the Sun about three Hours before Noon, at the fame moment another Perfon with fome convenient Inftrument obferving the true Altitude of it above the Horizon, then ftaying 'till about three Hours after Noon, and watching diligently when the Sun is defcended to the fame Altitude or height it was ob)ferv'd at in the Morning, and noting the true Azymuth thereof, and proceeding to divide the Angle between the two Azymuths, this way found by the Azymuth Compafs, into two equal parts; this cloth give the Meridian Line, and at the fame time the variation of the Compars. This is abundantly more exact than the former way; for, Firft, The Sun is to be taken when at a confiderable height above the Horizon, and fo by that means is free for the moftpart from Refraction, whereas the Refraction in the Horizon is fometimes exceeding great. Secondly, The times between the two Obfervations being but fhort, as four, five or fix Hours at moft; the difference that is caus'd by the Sun's altering its Declination, is not fo fenfible as in a longer time; and therefore this of the two is much to be prefer'd, and is fometimes made ufe of at Sea alfo.

Now thefe Azymuths may be eafily enough obferv'd upon the Land, where a Horizontal Floor may be procur'd convenient for this purpofe ; but at Sea, where the Ship is roul'd and turn'd by the unfteady Surface of the Waves, it feems more difficult. But even there alfo Art has not left the Mariner without a convenience of a Horizontal Plain, which may be call'd fix'd, and that is the Compars Needle or Chard conveniently fufpended in a Box ; for by its fufpenfion it maintains its Level, and by the Magnetical Vertue of the middle it keeps its Pofition in refpect of the Points of the Horizon, notwithftanding all the unfteadinefs of the Veffel in which it is carry'd: But of this and other Inftruments, I hall hereafter difcourfe more at large.

There is another way of finding the Azymuth by the Sun or Stars at all times, cither of the Day or Night, and that is by the help of exact Clocks, either with a Pendulum, or fome other exact way of equally and exactly meafuring and dividing of Time; and this method will be the moft eafy, the moft exact, and moft practicable at Sea, fuch a Clock at all times giving the true time of the Day or Night, if it be fet with care at the Rifing and Setting of the Sun, and then either by fome one of the Projections (for it may be done by all the three ufual Projections with eafe) or by the Doctrine of Triangles; the Azymuth of the Sun or Star, for that time, is given, the Latitude being fuppos'd known; but the Meridian is given, tho' the Latitude be not fuppos'd known, and without either Projection or Trigonometrical Calculation, if the times of Rifing and Setting be noted; for if by the faid Clock the exact time when the Sun is rifen juft above the Horizon in the Morning, fo that the under Limb of it juft touch the Horizon, be taken notice of and fet down; and the time when the under Limb of the Sun juft touches the Horizon in the Evening be conftantly obferv'd, it will be cafy to know what Hour and Minute by the faid Clock, will denote either the

Lefures concerning Navigation and Affronomy. 493

Hour of Twelve at Noon, or the Hour of Twelve at Night; that is, when the Sun fhall be in the Meridian of the place; for by halfing the time interjacent between the Rifing and Setting, ot between the Setting and Rifing, you have the time of the Sun's being in the Meridian to be fhewn by the faid Clock; and, if it be defir'd, the Clock may, by this way, be daily adjufted to the Meridian of the place. As fuppofe by the Clock (not yet adjufted to the Meridian of the place, but yet going equally and adjufted to the length of the Day) it be obferv'd, that the Sun in Setting juft touches the Horizon at Ih. 26. by the Hand of the Clock, and that the next Morning, when the Sun in Rifing be juft got clear above the Horizon, the Hand of the Clock points at 11.48^{\prime}. it will be eafy to find what Hour, by the Hand of the faid Clock fo continuing moving withour altering or fetting the Hand, fhall denote the Hour of Twelve for the following Day; for halfing the time between 1h. 26°. and 11 h . 48^{\prime}. which is 10 . 22^{\prime}. you have 6h. 37°. for the Hour of Noon the following Day; for half the difference between mh. $2 \sigma^{\prime}$. and In. 48'. being sh. 11^{\prime}. this being added to ih. 26^{\prime}. the Hour of Setting will fhew the time of Midnight to be by the Clock $6 \mathrm{~h} .37^{\prime}$. and confequently the Hour will be the fame when the Sun will be in the Meridian the next Day. Againft this way it may be Objected,

Firt, That tho' the Clock be adjufted to the middle notion of the Sun, An objeation yet that That will not be true for the length of any Day in the Year with-againff this out regard to the proper Æquation of Time for the Day of Obfervation, way obviateds This I grant is fo; but as the difference between the length of any one Day and any other is not very great, fo will this difference be yet much lefs confiderable, if it be made ufe of for to fhew them, when is the time to obferve $\%$, $12, i n$ the height of the Sun in the Meridian; and not much more confiderable, if .3 .2. the knowing the time when the Sun is in the Meridian, the Line of Narth and South be to be fourd, or the variation of the Needle; but yet if it be thought neceffary or confiderable, it is eafily provided againft by a Table of
Fquation of Tinv.

But then there may be a Second Objection made againft this way and A fecond obs that is, that a Ship being fuppos'd under Sail doth continually alter. either jection obviate its datitude, or its Longitude, or both ; and fo, tho the Clock fo obrerveded. and adjufted, would at Land, or when the Ship lies at Anchor, ferve to find the time when the Sun is in the Meridian, yet, by reafon of this motion and progreflion of the Ship, the direction'this way obtain'd cannot be juft. This I grant is alfo a real caufe of variety, and much'greater than the former; yet 'tis not fo great, but that it may be provided againft, allow'? ance being made for the fame according as the cafe fhall require; for by the Courfe Steer'd in the mean time, and the progrefs in that Courfe being taken notice of by the common way of keeping the Courfe, and diftance saild by the Logline and Compafs, it will be eafy to know, near enough for this purpofe, what allowances are to be made, both in regard of the alterations of one and the other; and fo the time of Noon (when the Sun is in the Meridian) may be accurately enough (for all ufes at Sea) known and obferv'd. And as this may ferve to find the time, when the Sun is in the Meridian, in the Day, fo may it ferve to find the time when any notable Star, whofe tight Afcenfion is known, comes to the Meridian at Night; and fo confequently (the declination of the Star being alfo known) of finding the Latitude of the place, by taking the Altitude of the faid Star, when thus known, to be in the Meridian.---Which is the fecond way of finding the Meridian by the help of Cæleftial Bodies in the Night.

Now as the Meridian may be found by Stars, with the help of fuch a Clock, fo may it be found out by the Amplitudes of their Rifing and Setting, or their Azymuths obferv'd with an Azymuth Compafs, when they are found to be of the fame Altitude, before they come to, and after they have pafs'd the Meridian; the fame methods being us'd, as I have already fhewn, are neceflary to be obferv'd in finding the Meridian by the Sun.

494 Lectures concerning Navigation and Aftronomy.

A Fourth way of finding the Meridian Line by the help of Cxleftial Bo-

A fourlb wiay of finding the Meridian by the Starsindar the Pole. dies is by fuch of the fixt Stars near either of the Poles, as in the place where the Obfervation is to be made, do meither Rife nor-Sct, but 'continually appear above the Horizon ; this is done by noting their greateft Eaftern and Weftern Digreffions, by the help of an Azymuth Compafs; for by comparing thofe two together, and halving the difference, the Meridian Line is eafify known, and at the fame time the variation of the Needle for the place, where fuch Obfervations fhall be made. Now the Times and Politions of thefe Stars, when intheir greatef Eaftern and Weftern Digreflion; may be eafily found, if the Day of the Year be known, and the right Afeen fions and Declinations of thofe Stars be alfo known, and a Mapp be at liand to flew the Situation of thofe Stars in refpect of one another, and in refpect of the Polar Point, about which they'feem to move; which is in part done in the Infruinent calld the Nocturnal. In making thefe Obfervations aliro, fuch a Glock, a I but now mention'd, will be of very good ufe to find the time jrecifely, when they are in their greatef Elongation from the Meridian!

Thefe are (among multitudes of ways that have been propofed by Aftronomers, Geographers and Natural Writers) the moft eafy, plain, and obvious ways to be undertood and practis'd by any one, not otherwife skill'd in A. ftronomy, nay, moft of them even without knowing the Latitude of the piace where the Obfervation is made, on the declination of the Suf, or place of the Planets or fixt Stars; which I have chofen the rather, becauf to me they feem more fimple and pravions to them all; and therefore I chofe firte to difcourfe and explain them, after the ways of finding the Meridian, and cor: requently the variation of the Compars.
of finding the The next thing that is to be obtain'd by Obfervations of Cæleftial Bodies, Latitude.

Cist:
$\therefore 128: 1200$? is the Latitude of the place, or the diftance of that place either Northwards or Southwards from the fquinoctial Linc. This is found various ways, both in theDay by theSun, and in the Night by the Stars; and that with much eafe after the true Mcridian by the former method, and. confequently the variation of the Compafs for the place of inquiry, are firt known, lfor by means of the Compafs, fo examin'd, the true Meridian Line is continually pointed out upon the Sea; and fo it will cafily appear when the Sun or Stalstate in. that Azymuth. The fame thing is allo found by the aforefaid Clock; ther the declination of the Sun, or the true place of the Sun, for that time, being known for the Day, and the declination of the Star, to be obfervd, being known for the Night Obfervation, both which arc exprefs'd in Talsles calculated for that purpofe, by obferving the Altitude of cither, when in the Meridian, above the Horizon, and making allowance for the declination of the Body fo obferv'd, either by Addition on Subduction, as the Cafe requires, you find the height of the Equinoctial Citcle; which is the fame with the diJtance of the Pole from the Zenith, the Complement of which is the Altitude of the Polar Point of the Heaven, or the diftance of the Zenith of the place from the Fquinoctial Circle in the Heaver, or the Latitude of the place from the Line or 庄quinotial, fuppos'd to be drawn npon the Eath.

Lectures concerning Navigation:and Aftronomy.

THe Author having, in the foregoing Defcourfes treated of the Refiaction or Inflection of the Air, as likewife concerning the draming a true Meridian Line, and taking the Latitude of the place exactly at Land, T' thought beft to infert bere the Abftracts of fome Aftronomical. Lectures of that Subject, and sive the defcriptions of fome Inftruments contrived by bim for the nice taking and dividing of Minute Angles, and fome other ueful Aftronomical inffriments and Contriviances; efpecially, fince I do not find them any wbere Publifhed in any of isis Works. When thefe Lectures were read, I knom not, there being no date to them; but I judge by the Hand, and fome ot her Circumftances, that they were read fome rears before thofe of Navigation in 1683 , and the folloming Years; bonever, the time not being as to this, material, I hope the Reader will not be difpleafed with them: They treat of the Sun's Diftance, Refraction and Inflection of Rays: Of the Moon's diftance: Inflruments to take the Diameters of the Planets: Totake Angles:. To dran a true Meridian, and feveral other Aftronomical A1atters.
R.W.

IHe Perfection of Aftronomy (a Science that has been cultivated in all Ages, but more highly improv'd in thefe laft Centuries) depends very much upon the knowledge of the diftance of thofe Caleftial Bodies; whofe ways we would know, and whofe motions and velocities we would calculate. Of which how certain we hitherto arc, we need go no farther to be fatisfy'd than to examine a few of the moft famous Aftronomers in their Opinions about the Diftance or Parallax of the Sun. We find the noble Ticho to make the middle diftance of the Sun ilyo Scmidiameters. The ingenious Kepler. in the Rudolphine Tables almoft thrice as much, namely, 3381. The learned of the differBullialdus 1460 ; but Vendelius ten times more than he, and near fourteen ence berween times as much as Ticho, viz. 14656 . with the half of which Riccioli is icon- Aftronomers as tent making it only 7580. And thefe being deductions from their own fe-ftance. veral Parallaxes, and perhaps not any one of them from the true Parallax of the Sun, we fhall not wonder to fee them there alfo difagree as much Titho making the Parallax of the Sun in its middle diftance to be full $3^{\prime} \cdot 0^{\prime \prime}$. Kepler only $1^{\prime} .0^{\prime \prime}$. but Bulliald $2^{\prime} .21^{\prime \prime}$. Vendeline $4^{\prime \prime}$. and Riccioli:2 $8^{\prime \prime}$. And as itiere? cules ex pede, we may hence guefs what is likely to bel the Hypotheffs DE all the other Planets. Nor indeed fhall we wonder if we confider, Fifft, The accuratenefs requir'd both in their Calculations and Obfervations, and next the uncertainty of the Horizontal Refraction; and till this laft beisbrought to a very great degree of accuratenef and certainty, it is not to be expected that we fhall ever certainly know the true diftance of the Planets by the moft accurate Calculations and Obfervations imaginable; for not to ftay now on the confidcration of what I fhall by and by more largely manifert, :vix: the fmall and fuddain mutations of the internal parts of the Air from: Heatiand: Cold, and Winds and Rains, and the like; we may from the differing Grati vitation of the Atmofphere, which has been obferv'd fiom/the rifing and fal ling of theQuickfilver in the Torricellian Experiments to be very conliderable, namely, almoft a fourteenth greater at fome times than at others; we may? I fay, from hence collect how uncertain the Refractions muft be, which are caus'd by fo unftable and uncertain a Medium. If therefore we that are thus plac'd this in Atmofinere, have yet almind to knowas much as conld be known of thofe greatWorks of the Creator that feem to whirle about us and incompafs us, we fhould, for that end, firtt confider well, and indeavouri to aco quaint our felves with the Nature of the Air or Medinm, through which we look, that lying the firft Obftacle in our way towards thofe Bodies, we would contemplate. And therefore the examination of the Nature of this tranfparent Medium which thus incompaffes us, and through which we are fain to fee all the Cæleftial Bodics as through a Glafs. Window, will deferve and require our indeavours in the firft place; for being ignorant of the Nature of this ambient pellucid Body, it will be very difficult to determine any thing pofitively and exaitly about the diftance and true place of the Planets. And to this end I do notat all like their way of examining it, who firft choofe an

496
 Lectures concerning Navigation and Aftronomy.

Hypothefis of the Plancts diftance, and from that collect the height of the Air and the Refraction of it , and by that means reconcile what Parallax they pleafe to the Planet they obferve. Nor yet their way who fancying an imaginary Surface of the Air, at I know not what height, and there giving it an arbitrary refractive Quality; ftill make the Refraction of the Air as would reconcile all their Theories and Obfervations. Nor theirs who, from the Ecclipfe of the Moon and fhadow of the Earth, collect great matters; for (as I fhall anon fhew) all thofe Phænomena may be explicated, tho' the Diametcr of the Sun be no bigger, nay, tho' much lefs than that of the Earth, by means of the Refraction in the Atmofphere, we being hitherto uncertain how great it may be, and 'till we are affur'd of it nothing can be concluded as to the diftance of the Sun or Moon from the Ecclipfes. But I rather therefore fuppofe it neceffary for him that will know the true Nature of the Air as to Refraction, and the true Parallax or Diftance of the Cæleftial Bodies, to go quite other ways to work to find each of them a part. And for the examination of the Air it will be requifite to collect and cxamine as many Phænomena of that kind as can be met with all. Such as thefe I fhall now acquaint you with. It has been often obferv'd, by the naked Eye, that the Sun and Moon, when near the Horizon, appear oval ; but fince the Invention-.....-

The remainder of this Lecture is loft.
I did the laf Termindeavour to Thew, from very many Experiments and Obfervations, that the Air or Atmofphere, wherewith we are incompals'd, had in it two Proprietics not taken notice of before, which, 'till they were well underftood, examin'd and regulated, would fo far fpoil all the moft accurate Horizontal Obfervations that were not fomewhat regulated according to them, that there could be no certain deductions from them of the Diftance or Parallax of any Cæleftial Body; no, not of the Moon itfelf, which is neareft to us, and confequently has the moft fenfible Parallax: For I then fhew'd, that notwithftanding all the Affirmations, and Theories, and Calculations, and Obfervations of the beft and moft accurate Aftronomers, it was poflible to folve all the Phænomena, tho' the Moon, for inftance, were

Of the Iagleati on of the Atmofphere. fuppos'd not above a third part of the diftance, fhe is commonly by thein fuppos'd to be: For the Inflection of the Rays of Light, which is made in the feveral Regions and Spaces of the Air from the differing degrees of Expanfion and Condenfation of the parts of the Air in thofe places, does fo uncertainly bend thofe Rays before they come to the Eye, that 'tis hardly pofible by the moft accurate and diligent Obfervations that can be made in any one place, to regulate one already rais'd Hypothetis, or to found and eftablifh a new one; and therefore I fhew'd, that certainly the beft way to redrefs this inconvenience, will be to get certain Obfervations made of the way of the Moon among the fmall or Telefcopical fixt Stars, by two. Perfons very far remov'd from each other in Latitude, tho' as exactly as could be feated under one and the fame Meridian as to Longitude; each of which two Perfons fhould obferve exactly with an excellent Telefcope fitted witha divided Ruler, the way of the Moon among the fmall fixt Stars; and thereby we fhould (by firft regulating the diftance and knowing certainly her apparent, Diaineter at that time when fhe was at that diftance) be able at all times by a fingle Obfervation of her Diameter, with a good Telefcope, without any further Calculation, certainly to obferve and know her true diftance at that time, and then it would be eafy very to know alfo what mult be her Parallax in all, Altitudes above the Horizon, and confequently it will be extreamly cafy by the deduction of the Parallax of the Altitude of the Moon, to know, by the Obfervation, what is the then fenfible Inflection of the Rays.

For the performing of which Obfervations, there feem to be very many things requifite, which I fhall indeavour to explain. And the firt is a good Telefope about fome ten or twelve Foot long; for this, if it be well fitted into a finall and light Tube, is eafily cnough managable by any one fingle Perfon without much trouble. This Telefcope is beft adapted' for, Cxléftial Obfervations, if it have only at that ead which is next the Eye, one pretty

Lectures concerning Navigation and Afronomy. 497

deep Convex Cryftalline Glafs well Polifn'd and of clear Mettle; for thereby the Objects will appear much plainer and diftiacter, tho' there cannot be fo much feen at a time, as throngh a Telefcope fitted with two, or more Convex Eyc-glafes: Then to fit this Influment for the Obfervation of the Diameters of the © © $F_{2} \notin \cdot 8$ \& or ξ, the moll convenient and moft eafy way is to take a fmall piece of Wirc, and to place it.fo within the Tube, at fuch a convenient diftance from the Eyc-glafs, that the Eye indeavouring to look through the Tube may ice it moft diffinctly; that is, it muft be plac'd within the Tube juft in the focus of that Eyc-glafs; then having by the Eye found the true diftance of this Ruler to take it out and divide it into Inches, and Decimal parts of Inches, cutting with the edge of a Knife, or the like, very fmall crofs Strokes or Gutters, in each of thofe Divifions, and every fifth or tenth Notch, to cut much deeper, fo to make it more confpicuous. Having thus divided and mark'd it, this Ruler or Wire fliould be again put into its place, and the Tube directed againt fome Star in or near the Fquator, and in that Pofition fo fixt, that the motion of that Star may be plainly óbferv'd paffing along by the divided Ruler. Then having fo adapted it, there fhould be provided a Pendulum made with a Thread and Plummet and adjufted to fuch a length, as may make it vibrate once every fecond Minute of Time; having this ready, the next thing to be done, is to place the Tube fo, as that the Star may appear juft coming into the Glafs, then fixing the Tube, and obferving 'till the Star be juft upon one of the Divifions, let go the Pendulum, and obferve the paffage of the Star along by the Ruler, 'till by the vibration of the Pendulum you find a minute of Time paft, or any other determinate number of Seconds you fhall think fit, obferving exactly how many Divifions on the Ruler the Star has paft by in that time; for by this meansit will be exceeding eafy to obferve how many of thofe Decimal divifions anfwer to the Subtenfe of a Minute of a Degree ; for fince we know that the motion of thofe Stars which are in, or very near to the Equinoctial, is near a Minute of Longitude in four Seconds of Time, or a Degree of Longitude in four Minutes of Time, 'twill be very eafy by obferving the motion of the Star along the Ruler, and comparing it with the Vibrations of a Pendulum, to find what length of the Ruler does anfwer to a Minute, or the five Thoufand four Hundredth part of a Quadrant; which having found, it will be eafy to place feveral divifions on the other fide of the Ruler, that each Minute may be divided into Seconds.

As in the fifth Figure of the eighth Table; fuppofe ABCD to reprefent Deffription of the bright Area of Light appearing through the Telefcope; let BD reprefent the Infruthe Wire or Ruler, which feems, to one that looks through it, to divide that ment. Area into two equal parts; let the fmall divifions on the under fide be the ${ }^{\text {Tab. } 8 . \text { Fig. }^{5} 50}$ Inches and Decimals; and let the divifions on the upper fide EF GHIK, ©ic. reprefent thediftances, which, by the Vibrations of the Pendulum, have been found to anfwer to a Minute; for having, by the Pendulum, found the Star to have mov'd from K to E in twenty Seconds of Time, it is manifeft, if that diftance be divided into five equal parts, each of thefe muft anfwer to a firlt Minute of a Degree; each of which firft Minutes or Diftances EF FG GH HI, ©゚c. may be again fubdivided into a determinate number of equal parts, each of which will anfiwer to fo many fecond Minutes of a Degree; fo that by this means not only the Diameters of the Sun and Moon may be found pretty exactly to Seconds, but the Diameters alfo of all the other Planets. The diftances alfo of the fmall Telefcopical Stars one from another, may, by this means, be very eafily obferv'd.

THo' this Infrument may ferve very wellf or many ufee, efpecially for obferving the Velocities of the Motions, yet If hall fubjoin the defcription of a murch nicer divider for a Telefcope, as I found it delineated and defcribed oni a loofe Paper among the reff of the Author's Mannufcripts; it wwas intitted The divider for Hevelius.
R. W.

The defoription of an Infrument for meafuring the Minute diffances of Objects at the focus of the Telefope.

Aaaaa, a Ruler or Frame of Box, or other clofe Wood, of the form defrib'd in the Figure, into which it is let in, a fmall Plate of Brafs bbb upon which the equal divifions are made; there may be alfo a bended Plate let into the Circular Limb for meafuring the Angle at e; cccce, two Arms of Wood which open, on the under fide of the Ruler or Frame upon a Joint, whofe Center muft be plac'd as ne̊ar the point e, as conveniently as it can with ${ }^{-}$out hindring the Profpect. dd a pair of Forceps, with a Screw like a Vice, one of whofe fides is fix'd to the Ruler and the other moveable; for the holding the end of the Hair or the Silk-worms-clew ef, ef at the Point e, the other ends thereof being faftned to the ends of the Arms nn. gg, a diagonal Hair or Clew upon which the Divifions are to be meafur'd fix'd into the Ruler at gg. eh, the middle Hair or Clew croffing the other at right Angles; kk two Screws, by which the Inftrument is fix'd to the Tube of the Telefoope. .11, two Arms of Wood faften'd to the other Arms cccce at qq, ferving fcr the opening of the Arms equally from the middle Line, and for fixing them in any pofture by the help of a Button or Screw, the end of which is m , the faid Screw flipping in a fmall grove or flit 0000 . The Line of divifion bb , I have here plac'd at ten times the cliftance of gg from the Point $\mathrm{c}:$ So that the divifions are made ten times more diftinct at bb than they could be at gg ; but this diftance may be either increas'd or diminifh'd, as there is occafion, and the whole Inftrument may be made either bigger or lefs, according to the ufe thereof. Thus far the Author's Defcription of it, the refi of the Contrivance is plain by the Figure.

Now, becaufe for making a compleat Hoop or Zone of all the fixd Stars in the Zodiack, the Angle afforded by the help of a fingle Tclefcope, is not fufficient. for taking the true diftance of Stars when many Degrees remov`d from each other; therefore for fuch kind of Obfervations there is an Inftrument which by the opening or fhitting, or the moving of two fix Foot Telefcopes on a Joint in the manner of a loint-Ruier, and a fmall diagonal Scale

A double Telefocope for taking Angles, this is afterwards slefirib'd which meafures the Angle they make with each other, when any two Stars, by two Obfervators, are at the fame inftant feen through thofe two Tubes; which Inftrument I flall, on fome other occafion, defcribe; for it is indeed one ofthe beft for the obfervations of the diftances and places of theStars that has been yet thought on, and may ferve alfo for meafuring the Diameters of the Sun and Moon, tho' nothing near fo exastly as the newly mention'd twelve Foot Telefcope; for by the divided Ruler the Diameter of the Planets may be diftinguifh'd even to Seconds. Whercfore, if by means of Obfervations made at very far remov'd Stations, we can be affur'd of the diftance of any of the Planets, and by this means, at the fame time, we have the apparent Diameter of that Body, it will be exceeding, eafy at any other time, by obferving the apparent Diameter with this Tube, to know the then true diftance of the Planet at that time alfo; for the fines of the apparent Angles of the Diameter, and the refpective diftances will be very near reciprocal; that is, as the fine of the apparent Angle of the Body in the fecond Oblervation, to the fine of the apparent Angle in the firft, fo the di-
Tat. 8. Fig. 6 . fance of the Body in the firft Obfervation, to the diftance of the Body of fecond very near. As in the eighth Table, Fig. 6. Let A reprefent the
Eye on the Earth, BC the Semidiameter of the Moon; for inftance, in its

Lectures concerning Narigation and Afronomy.

Perigeum; AB the true difance of the Moon at that time from the Eye, BAC the apparent Angle of the Moon's Semidiameter; let DE reprefent the apparent Semidimameter of the Moon in its Apogeum; EAD the Angle under which it appears. Then on A, and the diftance $A C$ defcribe the Circle CFG, and from F drav FG Perpendicular to $A D$; I fay, as $F G$ the fine of the apparent Diameter in the fecond Obfervation to BC the fine of the apparent Diameter in the firft fo is AC to AE; that is, fo is the Radius of the leffer Circle of diftance to the Radius of the greater, that is, very near as the leffer diftance of the Center of the Planet is to the greater diftance of the Center of the Planet : For DE is very near equal to CB by the fuppofition, as being the vifible Diameter of the fame Body; tho' why'tis otherwife I fhall by and by fhew; and AC is equal to AF, as being the Rays of the fame Circle; therefore by the fecond of the fixth Book of Euclid, as FG to $E D$, that is, to $C B$; $f 0$ is $A E$, that is $A C$ to $A E$; which $A C$ and $A E$ give the diftance of the Center of the Planet from the Eye much more exactly than the Lines AB or AD ; tho' neither of them are exact but both fomewhat lefs than the truth. To demonftrate which let DEF in the feventh Figure repre-Tab. 8. Fig. 70 fent the Body of the Sun, Moon, or other Planet, A the Eye, B the Center of that Body, $A B$ the true diftance of that Center from the Eye, $D A B$ half the apparent Angle of the Budy, AD a tangent Ray that touches the Globe $D E F$ in D; from D let fall the Perpendicular $D C$ on $A B$. I fay then, that the Line $A D$ fhall be much nearer an equality to $A B$ than $A C$; for by the eighteenth of the third of Euclid, ADB fhall be a right Angle, and the Angle ACD is a right Angle by the Conftruction, and the Angle DAC is common to both Triangles; therefore as $A C$ to $A D$, fo $A D$ to $A B$: $A D$ therefore will be a mean proportional between AC and AB , and confequently will he nearer to an equality with $A B$ than $A C$ will be. Nor is the vifible Diameter of a Globe exactly the fame at a neaier and farther diftance, as I even now hinted : Nor indeed is it at any tume exactly the true, but tho' the appearing Dianieter be really always lefs than the true Diameter, yet does it always fubtend a bigger Angle at the Eye. To demonftrate which, let us fuppofe DEH to fignify a great Circle drawn on the Body of the Moon, or other Globular! Body, A the Eye, DC the Semidiameter of the vifible part, BG the true Semidiameter of the Body. I fay therefore firft, that DC is really lefs, tho' it appear bigger to the Eye than BG; for drawing the Line $B D$ in the Triangle $B C D$, the Angle C is a right Angle, and confequently $B D$ is bigger than $D C$, there fore DC is lefs than BG which is equal to BD . But Secondly, I fay, that DC fubtends a greater Angle at the Eye than BG; for AD being by the fuppofition a tangent to the Circleat D, a Line, as AG drawn from any other point of the Semicircle HGE ts the point A, muft neceffarily divide the Angle DAC into two parts, DAG and GAC ; therefore GAC being but a part is lefs than the whole DAC. Further, I fay, of the apparent Diameters at feveral Diftances, that the fhorter diftance has always really the fhorter apparent Diameter, but that that fhorter Diameter does fubtend a bigger Angle at the Eye. That the fhorter diftance has really the fhorter vifible Diameter, is evident, becaufe the Bodies are Globular. To demoniftrate which, fuppofe ADFG, in the third Figure, to be a plain paffing through the ${ }^{\text {Tab.9. Fig. 3. }}$ Eye and the Center of the Sun. Let A be the Eye farther remor'd, and B the Eye nearer plac'd to C the Center of the Sun. DEFH therefore being the interfection of this Plain, and the Superficies of the Suin or Planet will reprefent a greater Circle on that Body. From the Points A and B draw the Lines AE and AH and BDBJ ; which may touch the Circle in EH_{2} D and I, and from thefe two points draw the Lincs EH and DI. I fay therefore firft, that the Diameter EH of the Disk. of the Sun apparent to the Eye A, is bigger than DJ the Diameter of the Disk. apparent to the Eye B; for drawing the Lines $E C$ and $D C, H C$ and IC, 'tis evident DCJ is lefs than ECH , and confequently by the fifteenth of the third of Euclids Elem. that DI is lefs than EH. Next, I fay, that the apparent Diameter DJ fubtends a bigger Angle at B than EH does; for BD and BI being tangents to the Circle DGI, whatfoever Lines are drawn from the point B to any point of the Circle, mult neceflarily be drawn between BD and BI , and confe-

500 Lectures concerning Navigation and Aflronomy.

quently any two of them muft make a leffer Angle than DBJ. But to omit thefe Niceties, which indeed are fo inconfiderable in the obfervation of the Diftance or Diameter of the Sun or Moon, and much more of the other fimaller Manets, that with the moft accurate Inftruments that the Art of Man hath hitherto invented, they will hardly be difcernable, as not amounting to $\frac{1}{10000}$ part of the Diameter of the Sun or Moon, when biggeft, as may be feen by a Table of Natural Sines: It will be therefore fufficiently exact to make the Diameters and Diftances Reciprocal. So that if by a good Telefcope order'd, as I have directed, the apparent Diameters be heedfully obferv'd, we may, fuppofing any one diftance known, by means of two obfervators, cafily enough know the diftance at any time, and confequently the prefent Parallax, and from that the Refraction, or rather Inflection of the Rays in the Atmofphere: We muft therefore rectify our Refrations or Inflections, caus'd by the intcrpos'd Air, by our certain fore-knowledge of the prefent Parallax.

And this Mcthod, tho' it be fomewhat prapofterous to the ways yct practis'd by the beft Aftronomers, is certainly the mof Natural; for having once the certain Parallax ofthe Moon, we may very cafily, from Obfervations, collect exactly in what kind of Line or Orbits he is mov'd about the Earth, and with what Velocity in what parts of that Orbit, and conferqucntly fiom fome few Obfervations, her true motions may be known, which we are hitherto not fo fure of; and thence confequently 'twill be no dificult matter to Compofe and Conftitute a true and real Theory of the motion of the Moon, and to calculate Tables accordingly; which, tho' it has been hitherto pretended by very many, yet 'till fome fuch Courfe as this be taken for the regulating of Obfervations, I fear 'twill not bein haf donc. From which Tables, and a Hoop, or Zone of all the Tclefcopical Stars as well as vifible, what could be lefs expected than an eafy way for finding of the Longitudes of places? For 'twould be no more difficulty to know the true Longitude of any place then by a fix Foot Telefcope, which is very cafily manageable at Sea to make an Obfervation of the appulfe of the Moon to fome fixt Star in that Zone, and from thofe exast Tables to calculate at what time that fhould be in the place for whofe Meridian they are calculated, and at the fame time to what a Clock 'twere in that place where the Obfervation is made.

Having, by this means, got the true Theory of the Moon, it will be fo much the eafier to find out the true Theory of the Sun; for by that of the Moon we fhall be able to know the Inflection of the Rays in the Air, and e confequently the Parallax of the Sun, if fenfible, will be quickly found, and having its apparent Diameter meafur'd with a good Telefcope at that time when the Parallax was calculated, it will be very cafy from thi apparent Diameter of the fame at any other time, thro' the fame or any other Telefcope fitted accordingly, to know the true Parallax of the Sun at the time of the Obfervation; and confequently both the Obliquity of the Eccliptick will be exactly known, and the place or Velocity of the Sun in that Eccliptick (or of the Earth in its Orbit which is all one) will be more eafily found, which becaufe the ways hitherto us'd of obferving only the Meridian Altitudics, are not fo accurate as might be defir'd, I fhall propound a way which I think will be very eafily practicable, and will afford moft certain information of the apparent place of the Sun as to its Pofitions among the fix'd Stars at all times; and confequently a Year or two's Obfervations, made after this manner, will very exastly inftruct onc how to make exact Tables of the Vclocity of the Sun or Earth in the Eccliptick, and confequently to be the better enabl'd to raife a true Thenry of the motion of the Sun or Earth; and fo to be able more exactly to calculate the Ecclipfes of both the Luminaries, and to foretel all the vifible Phrnomena of the Pofitions of thofe two Bodies one to another.
The way, I propounded is this, Firft, To get in a convenient place for Obfervation, an exactly true Meridian Line drawn. This may be done very many ways, fome more eafy, others more cxact: The moft eafy and plain way, and which is pretty exact alio, if the Sun be near either of the Tropicks, is by procuring a large fmooth Plain, which muft be exactly levcl'd Horizontally and fyst in that Pofition; then finding the middle part and tak-

Lectures concerning Navigation and Afronomy. 50f

ing there a Point, defcribe about that Point, at feveral diftances, feveral Cir. cles one lefs than another; then erecting a Perpendicular file in the Center, and obfervihg a Morning and Afternoon fhatow of the Sun, where the fhadow of the top touches the fame Circle in two diftant places, and dividing' the interpos'd Arch between thofe two parts into two equal parts, a Line drawn through that middle Point fo found, and the Center of the Plain will give the true Meridian or North and South Line of the place.

And this fuppofing the Sun near the Tropick of Cancer or Capricorn will be pretty near the true Meridian. But in this Obfervation care fhould be had, that the Sun be pretty much elevated above the Horizon, before the fhadow be obferv'd, becaufe of the varying Refractions at feveral times of the fame Day. The Meridian likewife may be found when the Sun is in either of the Æquinoxes, by obferving any tiwo fhadows of the Stile, and drawing a Line through them, and then to that Line from the Center, drawing another Line at right Angles; for this Perpendicular Line fhall be in or very near the Meridian of the place.

A third way, but not fo certain as either, may be, by a pretty large Magnetical Needle, fuffer'd to play or move upen a very fharp Point; for in many places, as at the prefent, here in London, the Needle will, by the Magnetifin of the Earth, be directed very near the North and South Line of the place. But none of all thefe being exast, the two firft being uncertain, by reafon of the annual motion of the Sun or Earth; and this laft by reafon of the variation of the Magnetical direction of the Needle, ' t will be requifite to make ufe of fome other that is more accurate.

And among thefe may bereckon'd the way by taking the Altitude and Azymuth of any known Star, which will require the calculation of a Triangle or two; or to obferve the Azymuths of any Star when it is in the fame ${ }_{\text {wor }}$ mof exait Eaftern and Weftern height ; or, which is beft of all, to obferve Azymuths of the moft Eaftern and Weftern excurfions of a Star within or near the Artick Circle, which, how it may beft be done, I fhall thew in my next Difcourfe, as likewife defcribe fome ufeful Inftruments for Aftronomical Obfervations.

I did, the laft Day, propound three things that were requifite for the Perfection of Aftronomical Theories by Obfervations; and they are fuch as, without which, we fhall have but little certainty of any Hypothefis whatfoever. And indeed they were fuch as fhould never be feperate; for either of them being wanting, the other would be imperfect : Afid therefore whenfoever any Obfervation is made of the one without taking notice of the other, that Obfervation muft need be imperfect and infignificant. The things to be obferv'd, I fhew'd, were three; the firft was the true diftance of the: Body, whofe way and motion was to be obferv'd from the Center of the Earth; the only accurate way of doing which, I fhew'd, was by mearis of two Obfervators very far remov'd from each other on the Surface of the. Earth. I fhew'd alfo, that the moft convenient places, for fuch ftations, would be fome two places as far remov'd from each other in point of Latitude, as could be conveniently found, and as near under the fame Meridian or Degree of Longitude. That their beft method of Obfervation would be to begin with the Moon, and to find her true diftance; and next with the Sun, obferving at the fame time their apparent Diameters; for by that means \mathbf{I} fhew'd how the apparent Diameter of any one known diftance being given, the true diftance, at any other times, would be eafily found from the apparent Diameters, and that therefore there needed no more trouble but only to obferve the apparent Diameters by means of a good Telefcope; and the true diftance might, by Calculation, be prefently known; for I then fhew'd, that the apparent Magnitude of the Diameter, and the diftances were Reciprocal. I flew'd likewife by what means a Telefoope might be fo prepar'd as to be fit for fuch Obfervations.

And therefore it were extreamly defirable, that fome, whofe leifure would permit them, would fet upon this Work, and if they were not able to go through with the whole, to indeavour to do as much as were requinite for

502 Lectures concerning Navigation and Aftronomy.

the Obfervations to be afterwards made, of the ways and motions of the Planets.
The fixt Stars And for this end, if they did only regulate exactly all the places of the Stars in the Zodiack within, or pretty near the Zodiack, that were either of the firft, fecond, to be obferv'd. or third Magnitude; it would be fufficient for any Obfervations that were to be made of the Planets, efpecially if the Obfervator were furnifh'd with an Inftrument which I the laft Day mention'd, and promis'd then more fully to defcribe; and that is with a double Telefcope, as I may fo call it, or an Inftrument, which, by means only of two Telefcopes, mov'd on a Joint, and a Ruler divided by a Line of Chords anfwerable to the length of the Telefcopes, does, by the help of two Obfervators, eafily and moft exactly determine the Angle of diftance of any two Objects. This Inftrument was invented by Sir Chrif. Wren, a Perfon fo eminent in all kind of Knowledge, and moft efpecially in Mathematical and Mechanical, that the naming him the Author will be a fufficient commendation of the Inftrument itfelf. Omitting therefore any further Praifes of it, I fhall indeavour, in as few words as may be to defcribe the Inftrument itfelf, and the feveral parts of it, the manner of rectifying it and ufing it for any Cæleftial Obfervations.
Defoription of The Inftrument confifts of two fquare Tubes or Boxes $A B$, and $C D$, which the double T_{e} - are each of them at, B and D furnifh'd with a good Object-glafs of fix Foot, lefopi. and at the other ends A and C are likewife furnifh'd with a very deep Lens or Eye-glafs $\mathrm{M} \mathbf{N}$; each of them alfo have a fmall Cell to keep the Eye at a due diftance from the Glafs; and at a convenient diftance within thofe Eyeglafles, as about O and P , are plac'd two fmall Plates of Brafs, out of which a round hole is cut in the manner of the Figure R, only leaving a fimall Triangle, whofe Point juft comes to the Center or middle of this Circle at S; this I call the Sight, the ufe of which I fhall by and by deferibe. Thefe two Tubes, thus fitted, are join'd together by a very firm Joint at E; which Joint is made fo. ftrong and fo exact, that the Tubes always, whether open or fhut, keep in the fame Plain: Thefe Tubes, being thus join'd, are firft rectify'd to an exact Parallelifm one with another, by being directed fo againft fome Star, and mov'd to and fro 'till the Star be feen through both of them at the fame time to touch the Apex or Corner of the Triangle in the Sight; at which time, by means of a contrivance at the other end; they are fir ${ }^{2} \mathrm{~d}$ in that Parallelifin; fo that againit whatfoever Star one of them be directed, the other will, in the fame manner, be directed alfo; the conetrivance for fixing there Tubes at the ends A and C, is this: On the Tube CD is fuften'd a peice of Brafs. JK , at the end J , of which, is made a Center or Hole L , at the fame diftance from the Tube that the Center E is of at the other end; and on to the Tube AB is likewife placed a correfponding picce of Brafs FG, which is not fo fixt to the Tube as the other, but is made to flide a little, as occafion fhall require, between two pieces of Brafs T and V, but \S_{0} as by means of a fmall Screw H to be fuddainly fix'd in any pofture; this piece of Brafs has likewife a fmall Center or Hole L, at the fame diftance as near as may be, that the Center E is remov'd from the Tube AB ; thefe two Centers are both join'd together by means of a fimall Screw which pafles through both of them ; which being done the Screw H is loofn'd, and the Tubes are, by being both directed againft the fame Star, reduc'd to an exact Parallelifm; which being done, by the turning of the Screw H, the Plate FG is firmly fixt in that pofture to the Tube AB, and the Inftrument is rectify'd for Obfervation.
This being done, the exact diftaince of the Centers E and L is meafur'd, and by that diftance as Radius a Ruler YY is divided, either into a Line of Chords, or, which is better, into fuch equal parts whereof ten- Thoufand make the whole Radius; then the Screw being remov'd that held the two Centers together at L , and two fmall Sockets Xz fcrew'd on, through whicli this divided Ruler may flide, the one on the Center of the Plate FG, the other on that of IK. And the one end of the Ruler being fix'd in onie of the fe Sockets, fo as the beginning of the divifions lies juft over the Center of it; and the other part fliding in the other Socket, according as the Tubes are more or lefs open'd from each other on the Center E ; the two Obfervators

Lectures concerning Navigation and Aftronomy. 503

are to direct each of them his own Tube to the Star, which they have agreed upon to obferve; fo that at the fame time one directs his Tube to one of thofe Stars, the other directs his to the other Star, and when each of them has at the farme inftant rectify'd his Tube to the Star, he obferves fo that the Apex or Point of the Triangle in the fight does juft touch the Star, then he that has the Tube through whofe Socket the divided Rulef flides by turning a fmall Screw YZ, fixes thofe Tubes in that pofture, and by the number of the equal divifions of the Ruler, which meafures the diftance of the two Centers, the apparent Angle or diftance of thofe two Stars, is moft exactly found to Minutes. And indeed, by means of a fmall additional contrivance, which I fhall elfewhere fhew, it may not only be made to diftinguifh Angles to Minutes but to Seconds alfo. Now this Inftrument, befides this great exactnefs, has many other conveniences which may render it very confiderable; for it may be made very light, and is alfo exceeding eafily manageable, and by being clos'd together takes up but a little room; and may be eafily tranfported from place to place, and made ufe of almoft in any Chamber; and indeed ail Particulars confider'd, it is a worthy Product of its excellent Inventor: By this, not only the places of the fixt Stars may be regulated, but even the places of the Planets may moft exactly be found.

IShall here add the Defcription of an Inftrument for taking Angles at one Profpect, Tab. 11.Fig. 2s as I found it defcrib'd upon a loofe Paper. ee, ff, two long Rulers or Arms opening upon a Goint or Center g, hb a Kuler divided into a thoufand parts, meafuring the Angle at g by a Table of Chords j_{i}, ab, a Telefcope fixt on the Rulerff, $f 0$ as that the middle of it may lie Perpendicular over the inner edge of the Ruler; a the place of the Crofs-fight, b the Objert-gla/s, it the Eye-glafs, oc the Reflex-glafs whofe edge juft touches the Center g, and mhofe Surface $c c$ is in the fame plain with that of the inner edge of the Ruler ee: On the backlide of which Glafs is a Drafs Flate with two Ears dd, at right Angles, by which it is forewed to the Fuler ee.

R. W.

If therefore by the Inftrument defcrib'd Page 502, all the Stars within or near the Zodiack were regulated and affertain'd, it would then be much more fecure, taking the true diftance of the Planets to be obferv'd from them, and much more eafy to find their true place in the Zodiack; and confequently a much lefs number of fuch kind of Obfervations would fuffice to determine their true Ways, Motions and Velocities. Now, tho' that eminent Aftronomer Hevelius has promis'd fhortly to publifh to the World a perfect Catalogue, not only of all the fix'd Stars already taken notice of in other Catalogues, but even of multitudes of others fufficiently manifeft to the naked Eye, yet we think that Expectation fhould no ways difcourage any from making Obfervations himfelf, fince, at beft, no Man can be fo fure of anothers Obfervations as of his own. And next, fince it would not be a labour of very great difficulty to regulate the places of all the Stars of the firlt, fecond and third Magnitude within or near the Zodiack; becaufe theirnumber is not very great.

And, Thirdly, It cannot but be a great fatisfaction to any fuch Obfervator to find when thofe others, promis'd by Hevelius; fhall be Publifh'd, that his own Obfervations do concur with thofe of the other, or that he is affur'd that his own are more exact than thofe.
But, Fourthly, And, moft efpecially, lie fhould not be deter'd, but much rather excited, fince without fuch Corrections of the places of the fixt Stars nothing can be done in any other Cæleftial Obfervation, and confequently fuch a part of a Man's time, as to this defign, will be wholly loft. But to obferjations proceed with what I was faying concerning the Obfervations requifite for the in order to re : regulation of the Theorics of the Planets; I fay, fuppoling the true places gulate the Plaof the fixt Stars, as to their Longitude and Latitude, were known, and fup- ${ }^{\text {nets motions. }}$ pofing we had, from diftant Obfervations, the Moons true diftance from the Center of the Earth, and her apparent Diameter at that time, we might eafily, by the Telefiope, find her diftance at all other times, and by

504 Lectures concerning Navigation and Aftronomy.

her appulfe to certain Stars, or diftance from them, together with the time of the Obfervation and her apparent Diameter, we might eafily know her truc Pofition among the fixt Stars, in refpect of the Center of the Earth; and if fuch Obfervations were continu'd every Day for fome Months, or rather fome Years, we might expect another kind of Theory than any we have hitherto had of the Moon. Now the beft time for making all thefe Obfervations of the Moon, fhould be when it can, with convenience, be perform'd when the Moon comes juft to the Meridian; at that time the Moon being leaft incumbr'd with Refraction and Parallax; and as for the reducing of hei Orbit to the Eccliptick, that will be eafily enough done afterwards, when her paffage among the fixt Stars is once well known; and, by the way, methinks it would be the beft way for any fuch Obfervator not to puzzle or prepoffers himfelf with many Notions, Suppofitions, Theorics and Hypothefes, but rather to lay afide for a while, at leaft, all thofe Opinions of determinate Orbs, and Epicycles and Excentricks, and Circles and Elipfes, or any other pre-conceiv'd Notion, and only to make and regulate the Obfervations fo (the manner of which I have alrcady fhewn) that the true Place or Pofition of the Moon, a mong the fixt Stars of the Zodiack, in refpect of the Center of the Earth; and her true diftance from the Center of the Earth in that Pofition, might be accurately found out and Regifter'd; for by a good number of fuch Obfervations and Collections, we fhould not only be able to examine more narrowly all the already famous Hypothefes, and to overthrow them perhaps, but to raife and excogitate divers others, fuch as would at leaft reft upon a more fure Foundation, and if carefully and conliderately built be of a more found and fubftantial Structure.

Nor fhould thefe kinds of Obfervations be made of the Moon only, but of the Sun. Mercury, $8,{ }^{\circ}, 4$, and 5 ; for tho' indeed their true diftances from the Center of the Earth are not fo eafily known (tho' indeed we know not yet neither to how great a certainty Induftry may bring us even in this particular alfo) tho', I fay, the true diftances of thefe Bodics from us be very difficult to be found, yet their comparative diftances may much more eafily; for, by the help of a very good Tclefcope, we may at all times obferve their apparent Diameters moft exactly, and confequently fince, as I have fhew'd the laft Day, the apparent Diameters and Diftances are Reciprocal, we might have their comparative diftances, and perhaps alfo from comparing feveral Circumftances we might come by their true oncs alfo. For fuppofing we had the diftance of the Sun and Earth (the mof likely way for finding which I fhall anon explain) we might polibly find thofe of the other Planets by fome fuch way as this, namely, by the accurate Obfervation of their apparent Diameters with an excellent Telefcope of forty or rather threefcore Foot long, when they are neareft approaching their being hid by the Beams, and when they are in their oppofition to the Sun; for by the comparing of thefe two we might be inform'd of the proportion between their diftances at thofe times, and confequently the difference of thofe two, feeming, for the moft part, to be afcribable to the great Orb of the Earth. It will not be difficult, from many of thefe Obfervations, to determine the proportion of the Diameter of the great Orb of the Earth to the Diameters of the Orb of Saturn, of the Orb of Fupiter. and of that of Mars; the Diameters alfo of Venusin her retrograde Conjunction with the Sun, and in her direct ; that is, when fhe is in her neareft and fartheft diftance from the Earth, will very much help towards the finding the proportion of the Orb of Mercury about the Sun to that of the Earth.

As for the finding the true diftarice of the Sun, the beft way would be by means of two Obfervators, plac'd as far afunder a as they could be conveniently ; which two fhould either at certain times of the Year (namely, when the Sun is in or very near either of the Solftices) obferve by the help of a Quadrant (which I fhall another time inore fully defrribe) by which the Altitude of any Cæleftial Body may be obferv'd to fecond Minutes; they fhould, I fay, with fuch a Quadrant obferve moft exactly the Meridian heights of the Sun when in the Solftice, being each of them moft exactly affur'd of the true height of the Pole by obferving the greateft and leaft height of fome

Lectures concerning Navigation and Aftronomy.

notable Star within the Artick Circle by means of this Inftrument. And 'tis not unlikely but that by this means, thefe two Obfervators, comparing their Obfervations, may be able to deduce the Parallax of the Sun. But fuppofing that be exceeding difficult and fcarce feafable, yet fome Ecclipfe of the Sun may fo fall out as to be difcernable by both; and then from the comparing of fuch Obfervations made by each, 'twill be no difficult mattcr, fuppofing the diftance of the Moon known, to know that of the Sun alfo: And having its true diftance once given, together with its apparent Diameter at that time, its diftance at any/ other time will be eafily enough found, fuppofing its Diameter only obferv'd.

Having found this, it will be eafy, by Obfervations, to find out the Orbit of findivg of the Sun or Earth, and the Velocity of either of them in any part of it; the Earth's orand this will be by accurately obferving and comparing the Appulfe of the bito Sun and any notable fixt Star, whofe Longitude and Latitude is certainly known to the Meridian; obferving likewife the exact Meridian Altitude of the Sun, together with its apparent' Diameter. For performing of thefe Obfervations as they fhould be, there will be three things requifite befides Three things what I have already defcrib'd, which was the Telefcope; and thofe three neceflary. things are, Firft, An exact Meridian Line or Inftrument for Azymuths. Secondly, A moft exact and manageable Quadrant for obferving Altitudes. And, Thirdly, A moft accurate Time-keeper, Watch, or Clock, each of which I fhall defcribe in their order.

I did, the laft Day, hhew the neceffity of regulating the places of the fixt Stars before they could be made ufe of for finding the true place of any of the Planets, for I then hinted how much many of them had been found to deviate from the places affign'd them by Ticho. But becaufe it would be very difficult to rectify all the Conftellations 1 then hinted; that it would be fufficient for moft Obfervations, if only thofe Stars were regulated, which were the inot confpicuous or notable in or near the Zodiack; 'and for this purpofe I did likewife then delineate and defcribe a new and moft exact Inftrument, which I judg'd the moft convenient for that purpofe, of any that has yet been made ufe of, it being an Inftrument very eafily manageable, very little fubject to Error from the make, and if diligence be us'd, fuch as will eafily enough diftinguifh every four Seconds. I did indeavour likewife to fhew the manner of rectifying it, and ufing it for thofe Obfervations. And indeed, if only a Cæleftial Globe of all the fixt Stars were to be made, wherein only the Refpect and Pofition of the Stars one to another were to be noted, there needed no other Inftrument; but becaufe their particular Refpeets alfo, both to the Poles of the World, and to the Poles of the Eccliptick, that is, to the Poles of the diurnal and annual motion of the Earth, or rather indeed the places of thofe Poles among them are to be taken notice of, therefore other Inftruments alfo will be requifite. Thofe I mention'd the laft Day would be three, and thofe were, Firft, An exait Meridian Line. Secondly, A moft exact Quadrant for taking Altitudes. And, Thirdly, An exact Watch or To draw a true Time-keeper. As for a Meridian Line the moft exact way of obtaining it Meridian. (to omit now feveral more common which I before hinted) is by oblerving by the help of certain Perpendiculars, the moft Eaftern and Weftern Excurfions of forme Star not far remov'd from the Pole at leaft fomewhere plac'd within the Artick Circle. The manner of doing which may, in fhort, be this, Fix to fome convenient Beam a very long Perpendicular or Plumb-line, whofe fufpending String fhould be of Brafs-wire of a fmaller fize, to theend of which fhould be hung a Plummet of Lead, almoft as big as the Wire will conviniently bear; this Plummet fhould be fo inclos'd within a Box, that it may conveniently move, fo as to draw the Line Perpendicular, and yet be fheltered from the motions and difturbances of the outward Air. To the North of this, at a good diftance, the farther the better, from a convenient Beam fufpend two other Perpendicular Lines carefully prepar'd and fitted according to the directions I gave for the former, and fix them fo, that by looking by the firft, and one of there, you may be able to fee the moft Eaftern Excurfion, and by the firft and the other of them, the mof Weftern Excurfion of the Pole-ftar, or any other within the Artick Circle. And having thefe

506 Lectures concerning Navigation and Afironomy.

three Perpendiculars thus exactly regulated, it will not be difficult to furpend a fourth, fo as that by looking by the firft and fourth, the Angle made by the fecond, firft and third, may be divided into two equal parts: Between the tops of thefe two Perpendiculars, extend alfo another fimall Wire which frall lie moft exactly in the Meridian Line. And this I judge to be the moft accurate way of any I have yet met with for finding the Meridian Jine, and the moft convenient for the ufes hereafter to be mention'd. This Linewill denote out the imaginary Circle which paffes through the Pole of the World or of the diurnal Motion of the Earth, or the Pole of the Horizon or the Zenith of the

Of the Exiths annual motion and Ioles of the Eccliptilik. place: And this being found it will be exceeding eafy to find the exact place of the Pole in it. Not by the Meridian Altitudes of the Sun; which is to fuppofe that already moft exactly known, which we fhall afterward examine and find out ; but by taking moft exactly the height of any Star within the Artick Circle, when by thefe Perpendiculars it be found to be in the Meridian ; for if by an exact Quadrant its height be obferv'd when it croffes the Meridian below and above the Pole; and half the difference of thofe two heights be added to the leaft clevation or height found, it will give the exact Point among the fixtStars, to which thePoles of theEarth do at that time tend: If fay at that time, becaufe it has been found that the Poles of the diurnal Motion of the Earth do in time change and alter their piaces among thefixt Stars, fo as to defcribe a kind of Circle about a Point, in or very 'near thaPoles of the Eccliptick or Annual motion of the Earth. I fay, in or very near, becaufe it has not been yet certainly determin'd what the variation of the Poles of the Eccliptick or the annual motion of the Earth is ; and tho' various Aftronomers have excogitated feveral Hypothefes, whereby they indeavour to make the variation of the Obliquity of the Eccliptick regular, and tho' fome have afcrib'd that variation of that Obliquity to procced from a motion of the fixt Stars, others from the variation of the very Orb of the Sun or Earth, others to the variation of the Fquinoctial ; yet I cannot find by all the Obfervations that have hitherto been recorded, that the matter can be accurately determin'd ; for fince the places of the Stars, fet down by the Antients, have been found by the noble Ticho to be in many particulars very falfe; and fince that even of thofe exact and diligent Obfervations of Ticho, there are lately found, by the excellent Hevelius, as I hinted the kaft Day, fo many of them moft egregioufly differing from thofe Places and Politions they are plac'd in by Ticho, what hope is there of bringing, that to any certainty where the Ground-work or Foundation of Obfervations on which the Theories are to be built, are founftable and uncertain? For either there can be no certain credit given to any Cbfervations to be met with in Authors; or if there be, I fee, no reafon why we may not affirm even the very apparent diftance of the fixt Stars one from another, or their Pofitions or Refreets among themfelves to be alter'd, and this or that Star to be really in an other Pofition to the Circumambient fixt Stars; that is, really to appear in an other place of the Heaven at this Day, than it did in the times of the Antient Aftronomers. Now if this be fo, it will be yet a further difpute, whether this has been caus'd by fome flow motions of thofe Stars one among another ; or whether by the alteration of the very Syfteme of the Sun in refpect of them; and tho' the firft feem the more probable, there having of late Years been obferv'd very ftrange variations and alterations as to Magnitude even among thofe fixt Stars; witnefs thofe feveral new Stars which have appear'd and difappear'd, and vary'd their Maguitudes to all degrees almoft [witnefs alfo thofe Comets which have been by the lateft and beft Aftronomers judg'd to be above the Orbs of the Planets, and to be equal'd with the Region of the fixt Stars; [as to inftance in no other than that new Star which has fo many times appear'd and difappear'din the Neck of Cetus which was obferv'd by Hevelius in the Year 1600, and docs not, that I can find, appear at this time, no not through a Telefcope.] Tho, I fay, thefe particulars might make it moft probable, that thofe tranfpofitions have heen made even in the Regions of Stars; yet tis not impoflible but that fome variations even in the Syfteme of the Sun, may make fome fenfible difference. And. this, by the way, minds me of a thing which I have feveral Years fince pro-

Lefures concerring Navigation and Afronomy． 507

pounded as a thing worthy examination and experiment，and that is to be， by fixing a long and good Telefcope directly againft that Star of the Dragon， which is little more than three Degrees diftant from the Pole of the Ecclip－ tick，when in the Meridian，and to obferve whether by that means there To examine cannot be found a manifeft difference between the Elevation or Altitude of that motion： it at two diftant times of the Year；that is，fuppofing thofe two Obferva－ tions to be made at half a Years diftance；for to me it feems not unikely but that the anmual Orb of the Earth（if fuch a motion it have）may，by this means，be perceiv＇d to defribe a fimall Circle about the Pole of the Ecclip－ tick．

For fince by a thirty fix Foot Telefcope it is exceeding eafy to diftinguifh This was wrote the Seconds of a Degree，nay，almoft Thirds，＇tis uot improbable but that before the $A u_{-}$ the annual Orb of the Earth may defribe a Circle about the Pole of the thors dttempt Eccliptick，whofe apparent Diameter may at leaft amount to fome Seconds if for the Eartb＇s not Minutes．And there feems not any more likely way in the World of motion． determining the Truth or Fallity of the Copernican Syfteme than by this means．Now，tho＇thefe Stars which lie neareft the Pole of the Eccliptick，if other particulars be anfwerable，were the beft for this kind of Obfervation， yet the Obfervation of the Pole－ftar may perhaps be fufficient；for if the difference of the Meridian Altitudes of thofe Stars that are near the Poles of the Eccliptick be confiderable，thofe Stars alfo which are very near the Poles of the World，cannot chufe but have a fenfible variation；and confe－ quently alfo the Pole of the diurnal motion of the Earth will defcribe a fmall Ellipfe near the Pole－ftar，which＇tis not unlikely but fome fuch way as this may，by feveral Circumftances，detect．But to return to what I was faying a－ bout the manner of examining the places of the fixt Stars．I fay，it were extreamly defirable that a Cæleftial Globe were fo made，that the exact Place and Pofitions of all the Stars，in refpect of one another，were moft acturate－ ly determin＇d and delineated，without any regard at all to the Eccliptick or Equator ；that is，that the diftances of the Stars from one another might， by accurate Obfervations to be made with the double Telefcope，be defin＇d， after which，from a fufficient number of accurate Obfervations to be made， as I Thall by and by direct，the true Eccliptick or way of the Sun or Earth a－ mong thefe Stars fhould be exactly found out and delineated：For it is fufficiently evident from the various Theories and Hypothefes，and Tables of Aftronomers，and by the variations of them all from Obfervations，how much they are all of them hitherto to feek in many particulars，not only in a great meafure of the true Mootion or Velocity of the Sun or Earth in the Eccliptick Line，but fomewhat alfo of the very Pofition of the Eccliptick－ line itfelf，and confequently all the Æquations of times which are deduc＇d from thefe，are fomewhat uncertain ałfo．Now for finding out the Ec－ cliptick，the beft way would be，Firft，To find out the true Point or Pole of the World，which may with care be moft accurately done．Next the 不qua－ tor or Equinoctial Circle fhould be found，and for the Time and Year when the Obfervations are to be made，the Declination and right Afcenfion of fome of the moft notable Stars near the Æquator；that is，taking for the time the Longitude and Latitude of the Stars to be reckon＇d after the fame manner as the Longitude and Latitude of places on the Earth are，namely，by tak－ ing a Meridian or great Circle paffing through the Pole of the World，and any notable fixt Star，and for the prefent placing that as the firft Meridian， as＇twere；then taking notice of the right afcenfion of the moft notable Stars in refpect of that Point where that great Circle cuts the 压quator，making fome allowance in all the following Obfervation for the proceffion of the Equinoxes，according as I fhall by and by direct；and inftead of the true Latitude of the Stars from the Eccliptick，which we will fuppofe yet to be fought，at－leaft which we delign hereby to examine，to take their Declina－ tion protempore，from the 压quinoctial Circle．But becaufe neither thefe nor the following Obfervations can be well made without the two other Inftru－ ments I formerly hinted；therefore in the next place I fhall indeavour to des fribe thofe and the manner of ufing them．

And，

508 Lectures concerning Navigation and Aftronomy.

And Firf, For a Quadrant to obferve the Altitudes and Angles of the 7he defaription of the Yuadratt。 Jab. 10.Fig. 2 . fixt Stars or Planets, which fhall be exceeding light, finall and eafily manageable, and yet fhall be adapted fo as to diftinguifn an Angle as exactly as a Quadrant made the ufual way, fhall be capable of performing, tho' it be twenty times bigger in Diameter, I fhall add this following Defcription.

Prepare a Quadrant of Brafs or Wood, or any other convenient Subftance, that will neither warp nor fhrink, fuch as $A B C$ in the Figure, whofe Radius PB may be about fixteen or eighteen Inches long, more or lefs; let, to one fide of it, be fafted a long, fquare, hollow piece, as $A D$, of the fame fubftance, and about a Foot longer than the Radius of the Quadrant having a perforation through the whole length of it, of about an Inch over, to ferve for the Tube of a three Foot Telefcope on the out fide of the piece; fufiended a Perpendicular or Plumb-line FE, whofe Plummet F may be large and heavy; then prepare a fmall long Index, fhaped in the manner of that in the Figure IHG, which fhould be of fome matter that is exceeding light and ftiff, fuch as the outfide of a Cane, or the like; and fo order'd, that the fhort and GH may counterpoife the longer HJ; which longer HJ fhould be taper'dinto a very fmall and flender Stem, and point towards I: Into the part H of this fhould be let in a fmall picce of Brafs k, into which fhould be drill'd an exceeding finall and fine Hole or Center, the fmaller the better, fo that it will indure the fineft Steel Wire tho' as fmall as the Hair of a Man's Head to pafs through it, and no more; for the more curious and exact this contrivance be made, by fo much the more exact will the Inftrument itfelf prove: At the bigger end of this flender Index G, fix a mall piece of brafs which may fand above the Plain about a quarter of an Inch, as X, and in the midft of it cut a very fmall ilit only juft big enough for the Plumb-line FE, to flide or be thruft between it. Having thus prepar'd this Index, by means of a finall Stcel Wire coming out of a hole in the middle Line of the Tube AD, at a convenient place of it, put on this Index, fo that the fmall top of it, I, may reach and point to the fimall crofs at F ; the other end of this Wire paffes through the hole of a fmall bended Arm of Brafs $\mathrm{N}^{\mathrm{N} H}$, and is there faftned. Having thus fitted on this Index and hung on the Plumbline EF, making it pafs through the fimall fit of the Brafs X, that is erected upon the bigger end of the Index GHI, fet the piece AD Perpendicular, which you will be able to do to the greateft exactnefs imaginable; for by means of this fmall Index, if the piece AD be never fo little out of its Perpendicularity, the top of the Index I, will make it moft vilible; fo that by this means you may come to as great an exactnefs as if the piece $A D$, and the Plumb-line, were above fixty Foot long; for the end of the Index HI being near thirty Inches, and the Plumb-line being fomewhat longer, and the fhorter end of this Index being but one Inch, or the thirtieth part of the length, it will follow, that whatfoever motion is imprefs'd on the fhorter end of the Index G, will be thirty times more fenfible at the fmaller end of the Index F, and confequently that the fame exactnefs of Perpendicularity will be found, as if the length of the Perpendicular or Plumb-line were thirty times increas'd or lengthen'd, which would amount to more than threefcore Foot. But thus far I have only explicated the way of fetting the Quadrant moft exactly Perpendicular. The next thing I am to fhew is, how it will be able to determine Altitudes, not only to Minutes, but even to Seconds. The contrivance for performing which effect, for meafuring, is this, Let the edge of the Quadrant BC be made of Brafs, tho' the reft of the Quadrant be of Wood; let this edge be an Inch thick at leaft, and rounded moft exactly and truly to the Center P; upon which Center P, make a Ruler PR to move, and on this fix a finall Telefoope MO of the fame length with AD, namely, about three Foot long, having a very good Object-glafs at M, and a very deep Eye-glafs at O, and by this Glafs the Pofition of an Object may more nicely be diftinguifn'd than it can be by any commonfights, tho' they be placed more than fixty Foot afunder: And for the cxact determination of the Angle that this vifual Ray, makes with the Perpendicular I, caufe to be plac'd upon this Tube and Ruler a flat Circular Plate VXY, of about two Foot Diameter, the Limb of which I divide into three equal farts, and each of

Lectures concerning Navigation and Aftronomy.

thofe I fubdivide again into fixty Parts, and each of thofe fixty I again fubdivide into fixty more; fo that the whole Circumference, which will be about fix Foot and a quarter, will be divided into ten Thoufand eight Hundred parts; for thrice fixty will be one Hundred and Eighty, and fixty times one Hundred and Eighty will make one Thoufand eight Hundred; which number of divifions it will eafily enough bear, by means of Diagoinals. This Circle is fo fixt on the Ruler, that the Center of it Q may be diftant from the edge or limb of the Quadrant BC, exactly one One Hundred and twenticth part of that Diameter; then prepare a fimall Cylinder of $\mathrm{Brafs}_{\text {; }}$ whofe Diameter may be exactly the fixtieth part of the Radius PB, and whofe length may be equal to the thicknefs of the edge or reim of the Quadrant; let this, by means of two fmall Centers or Pins, be mov'd in the hole, on the end of which Axis is put a finall light Index ST; thefe things being fo prepar'd, by medns of a fmall String which is ftretcl'd on the broad edge of the Quadrant BC, and at the fame time rould about and fix'd to the Cylinder Q; this Cylinder Q is fo held by it, that, by the moving the Ruler PR three Degrees on the edge of the Quadrant, the fmall Cylinder Q makes a perfect Revolution, and confequently alfo the Index ST will make a compleat Revolution alfo: So that the Hand making a Revofution every three Degrees, and every of thofe three Degrees having a fpace or length of above twenty five Inches, it will not be difficult, as I fhew'd before, to divide each of thofe Spaces into fixty Minutes, and each of thofe fixty Minutes into fixty Seconds. And this is that Inftrument, which, if great Care and Art be us'd in the making of it, and in the manner of obferving will be found as exact as a Quadrant of thirty or forty times that Radius, if not more, and for its lightnefs and fmallnefs will be eafily manageable and portable. I fhall not now ftay to fhew the manner of rectifying and ufing it, but fhall refer it to fome other opportunity.

[^12]R. W

The CONTENTS.

THE following Lectures were read in the Year 1685. and contain Difcourfes relating to the knowledge of the Longitude, with feveral Methods that have been or may be made ufe of for that end; of which feven are bere enumserated, and the firff and fecond farther enlarged upon, viz. the Aftronomical and Hodometrical; by the way, Some curious Subjects are touch'd upon, in relation to objerving Ecclipfes of the Moon, the Satellites of Jupiter, ©.c. and aftermards proceeding to treat of the Hodometrical method, the Author difcourfes of the Nature of the Rumb-line and its Proprieties: In order to which be treats of Some matters relating to Prattical Geometry, as of a Point, Line, Circle, \&c. and of the difficulty of draiving either a ftrait Line or Circle, of any confiderable length, or Radius true; and baving Jhewn fome methods of dividing a Line given into all its aliquot parts, he concludes with fome Reflections oin the Nature and Proserties of the Logarithmick and Rumb-line, but leaves the Subject unfinifhed.
-To thee are added a may of drawing Arches of great Circles, and an account out of the French Memoires, and another of Senr . Coffini's, touching the alteration of the Latitudes of Places, iwith the Author's Remarks thereon.

R. W.

JZne 25.1685. I have, in my former Lectures, explain'd thofe imaginary Lines upon the Surface of the Earth, which are of ufe in Navigation, and are found by the belp of Cxleftial Obfervations, viz. Firf, Meridians, being great Circles which pafs through the two Poles of the Earth. And, Secondly, Parallels; namely, lefler Circles which are parallel to the Equi:tor, that great Circle which divides the Surface of the Earth into the Nothern and Southern Hemifpheres: And have fhewn your, that all indeavours in the Art of Navigation, is to be able to find out the proper Circle of both kinds, which is peculiar to the place of the Ship. How the Paralel Circle is found I have alfo flew'd, viz. how the Latitude of a place, or the diftance of it from the Equinoctial Line, is to be found by Caleftial Obfervations, either of the Sun in the Day time, or of the fixed Stars in the Night; the methods of which arc very eafy, and commonly known and practis'd, tho' not without confiderable defects both in the Inftruments and the common practife of Obfervation, as I fhall explain more at large when I treat concerning the Nautical Inftruments, 'and their ufe at Sea.
I have Jikewife explain'd the ways of finding the Pofition of the Meridian, or the North and South Line of a place, by the help of Caleftial Obfervations, and of the Magnctical Needle, and at the fame time of finding how much that Magnetical Needle or Compafs doth vary there-from either towards the Eaft, or towards the Weft. But this is only the finding of the Meridian confider'd as an Azymuth Circle, and not the finding of the Meridian peculiar to the place in refpect of any other Meridian which paffeth through fome other place; which is that which is requir'd to the detcrmination of the Pofition of a place upon the Surface of the Earth in refpect of the Parallel and Meridian, which is the main end of Gcography and Navigation.
What the Lon- The finding then of the Meridian of a place, which I here intend, is the find$g^{\text {itulde }}$ is. ing which of all the infiniteMeridianCircles which pafs through the two Poles and cut the Æquinoctial at right Angles, is the Meridian that pafes through the place where, or for which the inquiry is made; that is, what Angle that Meridian maketh at the Pole with any otber known or determin'd Meridian that paffes throigh any. other known and affign'd place, or what part or parts of the Æquinotilal Circle are intercepted between the two Points where the faid Meridians cut the faid Circle. This is that Ploblem which

Lefures concerning Navigation and Aftronomy.

is call'd the finding of the Longitude of a Place, and which hath for fo long a time puzzl'd all the Geographers, Aftronomers, and Geometricians to find out a demonftrative and practical way to refolve; and which, nothwithftanding the mpltitude of ingenious attempts that have been made for that purpofe, doth hitherto remain an unfolvable Problem, efpecially at all times and at Sea, where the moft ufe of it would be. Not but that much hath been done towards it, by various inventions, which, tho' not compleat and perfect in their kind, are yet of very great ufe in Geography and Navigation, as I hall by and by fhew. But the perfecting of this Art is, yet as a thing wanting in the World, and very much fought for. And this the more, becaufe Geography and Navigation are lame without it, having but one of its two Leggs good and found, the other being but a Stilt or Prop; however it hath hitherto ferv'd to carry on the practice of Navigation, by which the greateft part of the World hath been not only difcover'd but Traded to, and by means hereof every one part almoft of the Earth, efpecially of Maritine Parts hath Communication with every other. It will therefore deferve to be inquir'd into and defcrib'd as to that fate of Perfection and Practice which it hath now attain'd ; that from the knowledge from what fate it is in at prefent, we may be the better able to difcover its Defects, and what it further wants to make it compleat and perfect.

The helps then that have been propounded or made ufe of hitherto for finding the difference of Longitude between two places, or the Angle that their refpective Meridians make at the Pole, may be reduc'd to thefe feven general Heads.

Firft, Aftronomical, fuch as depend only upon Cæleftial Motions and Soven metbods Obfervations.

Secondly, Hodometrical ; fuch as depend upon the Menfuration and Computation of Courfe and Diftance.

Thirdly, Magnetical ; fuch a depend wholly upon Magnetical Proprieties and Inftruments.

Fourthly, Chronometrical ; fuch as depend upon an exact Menfuration and Computation of Time.

Fifthly, Mechanical ; fuch as depend upon fome Mechanical Inventions, and have no relation to any of the former.

Sixthly, Phyfical ; fuch as depend wholly upon fome Phyfical Proprieties of the Body of the Earth.

Seventhly, Mixed or Compounded ways, making ufe of two, or more, of the former fix principal Heads.
Firft, Then, for the Aftronomical Methods, or fuch as depend wholy up-The Aftronoon Cæleftial Motions and Oblervations; there have beendivers ways thought mical metheds. of, all which may be reduc'd to two Heads.
Firft, Such as depend only upon fome Cxleftial appearance made for the effecting of this Inquiry in feveral parts of the fame Hemifphere, without refpect to Aftronomical Tables. Or,
Secondly, Such as depend upon the truth of Aftronomical Tables, calculated for fome known Meridian, to which fuch Obfervations may be referr'd, and the Longitude of any place, where fuch an Obfervation is made, may be prefently deduc'd. Now, tho' no Aftronomical Tables have been fo perfect and compleat as to perform what is neceflary, yet they have notwithfanding been founded upon a true Ground and Principle, and have failed only upon the account of the Imperfection of the Theories yet known of Cieleftial motions, a help for which I intend fhortly to publifh.

512 Lectures concerning Navigation and Aftronomy.

six of thent.
The firft way is by the Ecclipfes of the Moon, obferv'd cither at feveral places, or at one place only.

The fecond way is by obferving the place of the Mioon crofling or reduc'd to the Eccliptick.

The third way is by obferving the true place of the Moon in any part of her Orb or Dragon, which is various ways perform'd, either by taking her diftance from one or more fix'd Stars, or from Altitudes taken in known Azymuths.
The fourth way is by obferving, with a good Telefoope, the progrefs of the Light and Darknefs over the fpots and marks in the Face of the Muon. Thefe four laft ways fuppofe a perfect Theory, and Tables of the Lunar motions, both which are yet wanting.

The fifth way is by the Satellites of Yupiter, or by the fix'd fpot in one of the Belts of Yupiter; and this either obferv'd at divers places, or at one only. This laft fuppofeth a perfect Theory and Tables of the motion of Fupiter's 2 Satellites, which are yet wanted.

The fixth is by the Satellites of Saturn. Thefe two laft ways are to be obferv'd by the help of long Telefcopes, without which, the motions and appearances requifite for this purpole, cannot be obferv'd; and therefore 'till better Telefcopes be found than thofe we have at prefent (fuch as, tho' of but a fhort and manageable length, as of three or four Foot, will yet make the appearances as plain as one of thofe we now ufe of thinty or thirty fix Foot long) thefe ways will be of little or no ufe upon the Sea, tho' they may be of very confiderable ufe upon the Land in thofe Towns or parts where the Ship has occafion to ftay. Firft, Becaufe they happen very often in comparifon of Lunar Ecclipfes: And, Secondly, Becaufe by Obfervations of thefe kinds made on the Land at fuch places, compar'd with Obfervations made at any other known place, the difference of Longtitude between thofe places will be rectify'd, and confequently they will much help to the rectifying Mapps or Chards, which is one very neceffary Inftrument to be made ufe of in Navigation.

Now for the better underfanding of all thefe Aftronomical ways of inquiring the Longitude of a place, it is neceflary to premife fome præcognita which are neceflary to be known, in order to a better comprehenfion of them.

It is to be obferv'd then, that every place upon the Surface of the Earth hath a Cæleftial as well as a Terreftrial Meridian, that is, the imaginary plain of the Meridian of each place fuppos'd extended to the Orb of the fix'd Stars, duth defign an imaginary Line among them; which, as the imaginary Meridians upon the Earth are fuppos'd to pas through the Arctickand Autarctick Poles or Points upon the Surface of the Earth, fo the imaginary Meridians anfiwering to them in the Heavens, are fuppos'd to pafs through the two Poles of the Æquinuctial in the Heavens, upon which is made the diurnal motions of the Heavens in the Ptolomaick Hypothefis. When therefore the Sun is feen in any place to be in the Meridian of that place it is twelve of the Clock at that place, but at no other place whatioever but fuch as lie under the fame Meridian, for to all other places it is either before or after Noon. So that as many Degrees as a place lies Eaftward of the place in which the Sun is at that prefent in the Meridian, by fo many Degrees doth the Sun there appear to have paft it, and by how many it lies more Weft, by fo many doth the Sun want of coming to its Meridian; and becaufe the Sun paffeth three hundred and fixty Degrees in twenty four Hours, and confequently fifteen. Degrees in an Hour, and fifteen Minutes in a Minute, and fifteen Seconds in a Second of Time, therefore it is eafy to reduce the Degrees and Minutes of the difference of Longitude to Hours and Minutes of Time, and contrary wife, to reduce Hours, Minutes and Seconds of Time to Degrees, Minutes and Seconds of Longitude.

This being premis'd, I come next to the Explication of the Aftronomical methods

The Firft then, and principal, which hath been often practic'd, and which hath been of very good ufe for difcovering the Longitude of Places, is that by an Ecclipfe of the Moon, obferv'd firtt in differing places at the

Lectures concerning Navigation and Afronomy. 513

fame moments of univerfal time, but at different Local times: This Eclipfe of the Moon being an accidental darkning of the whole or fome part of the Moon's Face, by reafon of the Moon's paflage through fome part of the conical hadow of the Body of the Earth, becomes vifible to more than a Hemifphere of the Surface of the Earth. So that if the fame were obferv'd accurately in as many places as it could be feen at, this alone would fhew the true Longitude of all thofe places in refpect of one another, and would be a means to rectify the Mapps for all fuch parts. By Local time, I mean that Local time denomination of one and the fame inftant of univerfal time which it receives in feveral places, from the refpect that the Cæleftial Bodies have at that inftant to the Horizons and Meridians of thofe feveral places; becaufe the fame inftant that is call'd twelve a Clock in one place where the Sun appears in the Meridian, is in other places call'd, $1,2,3,4,5,6,7,8,9,10,11$, a Clock, and all other denominations of Minutes, Seconds, ©̛c. that can be in the twenty four Hours of the Day. Now the beginning and end of an Eclipfe of the Moon being made in lefs than a Minute of time (for it is cafy, by the naked Eye, to difcover, within lefs than a Minute, when the real fhadow juft touches the Limb of the Moon, and by the Telefcopes to difcover to lefs than a quarter of a Minute) if thofe times be diligently obferv'd in feveral places, and adjufted exactly to the Local times of thofe places, the different Local times being compar'd will give the different Longitude of thore places in refpect of one another; for every Hours difference of time gives fifteen Degrees difference, and every minute of time gives fifteen minutes of a Degree of Longitude: And by fo much the fooner or earlier in the Local time of the Natural Day of each place it appears, by fo much the more Weftwardly is the place fituated; and by fo much the later the fame appearances are feen in each place, by fo much the more Eaftwardly is the fituation of that place. 'Tis true, that in fuch places where the Eclipfe appeareth near the Horizon, refpect ought to be had of the Refraction and Parallax of the Moon, in giving the vifible Pofition of the Moon in refpect of the fix'd Stars that may pafs under or very near to it, when fo Eclipfed; but if we only regard the Local time, that may be exactly found by the fix'd Stars, either by taking their Altitudes or obferving their Tranfits by the Meridian, without having any regard at all to either of them.
The whole uncertainty that happens to Obfervations of this kind, is only from the difficulty of difcovering the very moments of the beginning and end of the Ecclipfe, becaufe of a certain penumbra or leffer fhadow which the Moon and incompaffeth this Conical fhadow of the Earth; infomuch, that I have of- bow to obviate ten obferv'd this Penumbra to dusk that Limb of the Moon which is next ito the Cone for near half an Hour before the real fhadow toucheth it; and for as long after the real fhadow is gone off from it, after the end of an Eclipfe. But generally the Uimbra is fo much differing from the Penumbra, that one may, with eafe, be certain; to lefs than a minute of time, when it toucheth the Limb, efpecially in Immerfions and Emerfions out of the totaldarknefs in total Eclipfes. Thofe that have the convenience of Telefcopes may have the particular intermediate times when the Umbra doth cover or pafs through the middle of fome remarkable fpots. in the Face of the Moon as the fhadow comes on or goes off; becaufe the Limb of the Umbra is much more defin'd upon the Face of the Moon, when both the light and the dark. parts can be feen together; and 'twill not be difficult this way to be certain ro lefs than fifteen Seconds of Time, and confequently to be fure of the difference of Meridians to lefs than four minutes of a Degree; which is as near to exactnefs as need be, for moft Geographical or Nautical Ufes. For the ufefulnefs and practicablenefs of this way I could produce you multitudes of inftances of the Rectification of the Longitudes of places from one another, and confequently of the true ground of making or rectifying of Mapps; but I fhall only inftance in one or two: The firt fhall be that which was made by Captain Thomas Fames at Charlton in Hudfon's Bay, OCtober the 29th 1631, and by Mr. Henry Gellibrand profeffor of Aftronomy in this Houfe, where he, with feveral other Friends, made the Obfervation of the fame Eclipfes. Now, after the return of the faid Captain James, Mr. Gellibrand comparing

514 Lectures concerning Navigation and Agronomy.

the two Obfervations together, found that the Meridian of Charlton was Weftward of the Meridian of London five hours eighteen minutes in Time; or in Degrees of Latitude, $79^{\circ} \cdot 30^{\prime}$. This he verify'd allo by another method, of which I hall have oecafion to Speak hereafter, and found the difference of Meridians of thofe two places to be in time 5 h . 14 m . or in Degrees of Longitude $78^{\circ} \cdot 30^{\prime}$. which differs from the former account but four minutes of Time, or one Degree of Longitude. Now what difference did thus arife between the account of the former, and the latter way is certainly to be afcribd to the latter method, which was more complicated and depended upon the truth of Tables, there being no Obfervation made here at this place to correfpond with Captain Games's made at Charlton: However, Mr. Gellibrand in his appology thinks it may be the better born withal, fince it could come fo near the truth in the finding the difference of Longitude of Places fo far remov'd; fince very famous Authors, who have fought the Longitude of Places by other methods, have differ'd from one another, and from the truth fo much more; for giving an inftance of the fituation of two eminent Cities here in Europe, not, very far from one another, and which have each of them had very eminent Mathematicians and Aftronomers, viz. Rome and Norimberg: Regiomontanus makes their difference of Longitude 36; Werner 32; Appian 34; Mefline and Orig anus 33; Stofler 18; Meginus 26; Schonerus 12; Mercator and Hondiuso 12. Stadius I3; Janfonius 10; Longomontanus 16 ; Lausbergius :10; but Kepler by two Obfervations of two Lunar Eicclipfes, made according to this method, deftroys them all, and proves them to be different but: only four minutes of Time.

- So that we may plainly perceive that this method, if it be duly obferv'd, and the Obfervations accurately and judicioufly made, is much to be preferr 'd before divers others. And therefore I do very much wonder why the Leain'd Dr. Voflus in his late Treatife, that he hath publifh'd concerning the rectification of the Longitudes of places, fhould reject this way as fallacious and uncertain, whereas this oft undeniably certain that 'ti infinitely to be preferr'd before the other ways which he there mentions: And indeed confidering the facility and obvioufiefs of it to any ones underftanding, and thence the practicablenefs of it by any of the mont ordinary Capacity, and with the leaf apparatus of Inftruments, and without a fuppofition of the perfection of Aftronomical Tables; ' I think I may pronounce it the mort generally practicable way yet known; not but that feveral of the other Afronomical ways which I am to explain; will, with great Care and Circumflection, and convenient Inftruments, together with intelligent Aftronomers to perform the Observations and Calculation, bring us to a much greatter precifenefs. But fince thole Requifites are not at all times and places to be procur'd, there is more of real good to be expected from this one methad, than from any other yet known; and to hint that only by the bye, If ind that this Observation of Captain James and Mr. Gellibrand doth prove, that the molt part of the Dutch Maps have made that place in HudfonsBay above ten Degrees of Longitude too much to the Weftward.
There are other inftances of this Nature might be produced to flew that feveral parts of the Eat Indies are, in the Mapps, placed too far to the Eatward, contrary to the fuppofition of Dr. VofIzs in his late Treatife. But I shall not now infin upon further proof of that which will be fo eafily underftood by any one, who fall well confider of its Principles.
The fecond mine- Next to this way I fall annex that of obferving the Satellites of Jupiter, betoed by the cause they are of the fame Nature, and proceed upon the fame Grounds. Satellites of And fuppofing the ufe of Telefcopes to be practicable at sea, would be Jupiter. there of very great ufe, which I do not defpare to fee effected in a fort time: But for determining the Longitudes of places upon the Land, Obfervations may be made twenty times more exact, if a convenient apparatus of Inftruments be procur'd, and diligent and knowing observers be made fe of, and this by reason of the almoft momentary continuance of the appearance, that is to be obferv'd, which will thence be feed by all the observers at the fame infant almoft of time; whereas there is a greater Latitude of uncertainty in Eclipfes of the Non by reafon of the Penumbra.

Lectures concerning Navigation and Aftronomy. 515

This way then by the Satellites of Fupiter to knowing and diligent Aftrono- This way pros nomers is much to be preferr'd before that of Eclipfes of the Moon, upon ferrableo three accounts. Firft, By reafon of the frequency of appearances fufficient for determining, this Inquiry.

Secondly, Upon the account of the diftinctnefs, exactnefs and precifeners of the time of the appearance.

Thirdly, Upon the account of the eafinefs and facility of making the Tables, and of calculating the time; there being little elfe to be confider'd, but only the middle motions of them; at leaf, what inequalities foever it be in their Anomaly, it is hardly fenfible or worth taking notice of them.

Firft, For the frequency of appearances fufficient for this purpofe; whereas of Lunar Eclipfes we feldom have above one or two in a Year, of thofe may be had one, two, or more almoft every Night; and thefe for fo long as $\mathfrak{F u}$ piter is more than a Sextant from the Sun, are very confpicuous by the help of a large Telefcope; nay, within half that diftance if the Pofition of the Ecliptick do favour the appearance either in the Morning before the San Rifing, or in the Evening after the Sun Set: But the Satellites are moft conficuous, when \because Fupiter is more than a Quadrant from the Sun. Now, that this may be the better underftood, it will be neceffary to explain, in fhort, the Mundus fovialis: We are to know then, that Fupitar being the higheft Planet but one, namely, Saturn, being view'd through a Telefcope, is difcover'd to have a round Body in Diameter, when acronical about $50^{\prime \prime \prime}$. . This Body is obferv'd to have feveral darker or dusky Belts which crofs the Face of it parallel to the Eccliptick, and by a confpicuous fpot, which I firf difcover'd, this Body is found to move round upon its Axis in about ten Hours time; befides this, Galileo firft difcover'd that it had four fmaller Planets, which he call'd Satellites, which continually mov'd round about it; thefe, Satellites firlt by later Obfervations, compar'd with former, have been reduc'd to fuch a Galileo. Perfection, as that by Tables, made of their periodick Revolutions, the Pofitions and Affections of them, for any certain time, can be pretty near afcertain'd.. The firft and innermoft of thefe is diftant about- three Semidiameters, and performs its Revolution in about $42^{\frac{1}{2}}$ Hours: The fecond is diftant about five Semidiameters, and performs its Revolution in eighty five hours and twenty minutes: The third is diftant about $8 \frac{1}{2}$ Semidiameters, and performs its Revolution in about one hundred feventy two Hours. The fourth and outermoft is diftant about fourteen Semidiameters, and performs its Revolution in near fixteen Days, eighteen Hours and a Quarter ; or $402{ }_{4}^{\text {fi }}$ Hours.

THo the diftances and Revolutions of the efe fecundary Planets differ very confiderably from what the Learned Dr. Gregory in his late accurate Aftronomix, Phyficx or Geometricx, Elementa, yet I have not prefumed to alter them, but have Printed them as the Author has left them: They are placed by Dr. Gregory as follows. The innermoft Satellite of Jupiter makes its Revolution in one Day ${ }_{4}^{3}$, and is diftant 5_{3}^{2} Semidiameters from the Center of Jupiter. The fecond furrounds bim in 3^{3}, Days, and is diftant nine Semidiameters. The third in the Jpace of $7 \frac{1}{6}$ Days, mbofe diftance is $14 \frac{1}{3}$ Semidiameters. The fourth and laft in 16_{4}^{3} Days, $_{\text {, }}$ and is diftant $25 \frac{1}{3}$ Semidiameters. The diftances are almoof double ${ }_{3}$ whence the miffake of our Author proceeded, I know not, but 1 thought beft to give the intelligent this 马ort Advertifement of it.
R. W.

Every one of thefe four in every Revolution, have at leaft two remarkable Pofitions fit for this purpofe ; fome have four, fome may make fix remark- The Satellites Pohtions fit for the pay ferve for able Signals. The Signals fit for this purpore, are, Firft, Their touching finding the the Limb of the Body of Fupiter, either at their ingrefs or egrefs, and that:Longitude ins is alfo in every Revolution double: Firft, When they are in their fuperior ${ }^{f} 1 x$ Pofitionso half of their Epicycle, and fo move direct, they have their Ingrefs and Egrefs behind the Body of fupiter.

516 Lectures concerning Navigation and Aftronomy.

Secondly, When they are in the lower half of their Epicycle and appear Retrograde, they have their Ingrefs likewife, and their Egrefs from the Face of Fupiter. Next when the outermoft of them does not touch, but either move above to the Northwards, or below to the Southwards, their Orbit or Epicycle then appearingan Ellipfis, then there are at leaft two remarkable Pofitions of them which will be fit for this purpofe; that is, thcir dircet Conjunction and their Retrograde Conjunction. Befides thefe, there are two forts of Eclipfes; the firft fort are thofe n the Satellites, that is, when the Satillites enter into the dark Cone of the fhadow of the Body of Fupiter, or when they emerge or get out of it, both which may be fometimes plainly difcover'd in the fame Revolution of the Satellite, at other times only one of them, that is, either the Immerfion or Emerfion.

Secondly, There is an Eclipfe alfo caus'd upon the Body of Gupiter by the fhadow of the Satellite, by which means one may, with a good Glafs, plainly perceive a dark fot or fhadow entring the Eaft Limb of fupiter, and paffing over fome part of its Face, to leave the Body of Fupiter at its Weff Limb: Each of thefe Tranfits of the fhadow will afiord three remarkable Inftants or Times fit for this purpofe, namely, Firft, The Ingrefs of the Shadow or Spot into the Face. Secondly, Its Pofition in the middle of the Line of its Tranfit, which by reafon of either of the Belts upon the Face of Jupiter, or the lateral Pofition of fome of the other Satellites, may be eafily difcover'd. And, Thirdly, The Inftant when it goes off or leaves the Limb of $\mathfrak{F u p i t e r}$, which are plainly enough difcover'd by good Telefiopes and diligent Obfervers. So that fince thereare fo many remarkable Accidents obfervable, fcarce any Night can pafs without affording fome one or more of thofe opportunities. Hence it will be fufficiently evident, that there will be above a hundred convenient times to make fuch Obfervations more than can poffibly happen by means of Ecclipfes of the Moon.
Befides thefe, there are other remarkable Conjunctions of the Satellites themfelves one with another, which will ferve for proper Remarks, efpecially at fuch times as fupiter is in or very near the Eccliptick; for then the plains of the Orbs of the Satellites are very near in the plain of the Ecliptick, and the apparent motion of the Satellites is very near in a ftraight Line, and fo the Conjunction of one of them Retrograde in the lower part of its Epicycle with another of them direct in the upper part of its Epicycle, is very fhort and momentary, and fo becomes a fit mark for fuch an Obfervation. The like may alfo be obferv'd when Fupiter having a confiderable Latitude the way of the Satellites appears Elliptical; for then the Conjuction of two Satellites, may, with fufficient accuratenefs, beobferv'd.

Now any one of thefe remarkable appearances being view'd and exactly obferv'd by two Perfons at differing places, if the times of fuch appearances be exactly taken at both places, they will certainly give the difference of the Longitude of thofe two places in the fame manner, as I before fhew'd, might be done by Eclipfes of the Moon; and confequently if the fame appearance were obferv'd with the fame care in a hundred places, the Longitudes of all thore places would be thereby afcertain'd, and that in the next place to a much greater precifenefs than 'tis poffible to do by the help of Eclipfes of the Moon ; becaufe fome of thefe may be diftinguifh'd almoft as eafily to a Second of Time, as thofe of the Moon may be to a Minute, which appears yet farther, Firft, By reafon of the fmallnefs of the Body of the Satellites. Secondly, By reafon of the great Velocity of all and much more of the innermoft or firft, which is next the Body of Fupiter. Thirdly, By reafon of the fmall diftances of them, and efpecially of the two innermoft from the Body of Yupiter, and coufequently of the fmall Penumbra the fhadow of the Body there affords, which is alfo fo much the more diftinguifh'd by reafon of the valt diftance of the Sun, and thence of the great Dimination of its Diameter, when view'd from the Body of Fupiter, and thence the fmallnefs of the Angle of the Penumbra; for whereas the Angle of the Penumbra at the Earth is about half a Degree, the Angle of the Penumbra at Fupiter will not be more than ${ }_{9}^{2}$ part of a Degree, the diftance of the Earth from the Sun to that of Jupiter. being but as io to 45 , or as 2 to 9 . All which Particulars

Lectures concerning Navigation and Afronomy.

do contribute to the quicknefs and fhort duration of the appearance : So that the Time is very precife and feen by a whole Hemifphere of the Earth; as it were, in a moment; and there is no regard to be had of Parallax, and nothing elfe to be taken notice of but the very precife time of the appearance; for this only gives the true difference of Longitude between all thofe places where it fhall be fo obferv'd by the fame method, as I mention'd before in Eclipfes of the Moon.

The Difficulties that occur in this method, are, Firf, That pretty long The dificulties Telefcopes are requifite for making the Obfervations and accurate Pendulum in this method. Clocks, both which are as yet not practicable at Sea. But, as I faid before, notwithftanding this it may be made ufeful in Harbours and on Shore in fuch places where Ships may refide, which will be of great ufe for rectifying the Longitudes of Charts and Mapps.
A fecond Difficulty in this way, is the diftinguifhing of one of the Satellites from the other: But for this the Theory of them is fo far brought to perfection, and was above twenty five Years fince much advanc'd by my Predeceffor the ingenious Mr. Laurence Rook, that the Pofitions and appearances of the Satellites can be certainly Predifted and Calculated for any certain time; and 'tis not difficult to make an Automaton or piece of Watch-work which fhall, at all times, give the Pofitions and appearances accurate enough for fuch Obfervations, at leaft to direct an Obferver at what time he is to expect or watch for fuch an Appearance; and I have verify'd very many of Mr. Rook's Predictions and Ephemerides for thofe.Appearances, and found them pretty exact, even to lefs than a minute of Time. By which method if Ephemerides be made for one, two, three or more Years, and fent abroad into the Eaft and Weft Irdies, and othér parts of the World, 'tis not unlikely but many fuch Obfervations might be procur'd from; feveral parts of the World, which would be of great ufe, efpecially if at the fame time there were fome in England that fhould conftantly make the like Obfervations here with equal care. And I have good reafon to hope, that by this means we may obtain the Longitudes of feveral places in the Eaft Indies, fince I underftand that the French King hath fent feveral very able Aftronomers into the Eaff-Indies with an apparatus of fit Inftruments; almoft on purpofe to make thefe and fuch other curious and ufeful Obfervations.

Befides this I am certainly inform'd, that it hath been of late much practifed in France, whereby they have fix'd the Longitudes of the principal Towns in France, and alfo that of Vraniburge in Denmark; and of Cayen in Iceland, in the Poffeffion of the French upon the Coaft of Guiana in Americasi But this only by the bye

But to proceed, the fame thing may be done by the Satellites of STatures; but they being difcover'd but of late, and fo not yet brought to fo perfect a Theory, and befides requiring much longer and better Telefcopes to obferve the Appearances; I hall forbear to difcourfe farther of them.'till thofe $D e \sqrt{\text { I- }}$ derata are procur'd ; but whatever Invention will ferve to detect their Ap ${ }^{-}$ pearances, will be much more ufeful for obferving the fame of $\mathscr{F u p i t e r}^{2}$, which are much more near, and fo much more vivid and confpicious.

The fame thing may be done by obferving the Appulfes of the Moon to any fix'd Star that lies in its way, when obferv'd at feveral places of the Earth, wherein the Appearance is fo very fhort and precife, that even in the fpace of a fingle Second of Time, a Star is feen and quite difappears behind the Body of the Moon; but then by reafon that both Refraction and Parallax are to be accounted for, which are differing to every place where the Obfervation fhall be made, it is not fit for common ufe, but requires fome better skill in Aftronomy than moft-Obfervers are furnifh'd with, which I fhall therefore pretermit for the prefent, becaufe I fhall have occafion to treat more largely of it when I explain thofe ways that do neceffarily require a knowledge of both thofe.
But ftill all thefe methods are ufelefs as to the main defign for which the knowledge of the Longitude is defir'd ; which is from Obfervations made upon the place wherever it be, whether at Sea or on Land, and to determine prefently what is the Longitude of that place from any known Meridi-

518 Leatures concerning Navigation and Aftronomy.

an. This is that Invention which has bitherto puzzl'd all the Learned Men, whether Mechanicks, Navigators, Geographers, Aftronomers, Geometers and Philofophers; among which, tho' there have been many" pretenders, yet no one has perform'd it, or fhewn the way how to do it: 'Tis true, there have been enough have fhewn what things: are requifite to do it, but no one has produc'd thofe Requifites. 'Tis certain', that an exact Theory and Tables of the motion of the Moon, or of the motion of Gupiter, and his Satellites would perform it ; but thofe Theories and thofe Tables are hitherto wanting; as are alfo exact Clocks that will move exactly upon the Sea, and fuch Telefcopes as tho' but of three Foot length, and fo might be made ufe of at Sea, would yet do as much as thofe we now have of thirty Foot; 'till which be'procur'd, thefe ways, that I have hitherto nam'd, will be of little ufe for this purpofe.

November 12. 1685 I explain'd to you the laft Term, feveral precognita neceflary: to be known, in order to the finding the Longitude of any place upon the globous Body of the Earth; that is, of finding the Angle that the Meridian of that place maketh with any other determinate Meridian, whether it be the prime Meridian generally agreed upon, or any other particular Meridian of Some notable : place from which the Ship departs; whofe refpect to the prime Meridian, or the Meridians in the Chart made ufe of, is *nown In order to which I enumerated the feveral general ways that have

The feve ral ways for finding the Long tude.

The Hodometrical waje been hitherto thought of for effecting this end, namely, Aftronomical. Hodometrical, Magnetical, Chronometrical, Mechanical, Phyfical, and Mixt. Each of thefe ways I did more fully explain the laft Term, and fhew'd the feveral bounds: of them; as alfo the feveral Objections, Difficulties and Imperfections each of them was fubject to $;$ and what they wanted to make them compleat and ufeful; which I fhall not now trouble you with the repetition thereof, but rather proceed to the fecond method or general way of finding the Longitude of places, or difference of Meridians. Namely, The

Hodometrical, or by the obfervation or computation of the way of the Ship between place and place; that is, of obferving the feveral Rumbs or Lines in which the, Ship faileth, and what way it hath made in every of thore Rumbs'; that is, how many Leagues or parts of a League the Ship hath pafs'd in every Rumb it hath faild upon, and how to compute the fame, and thence to deduce the trie place of the Ship at any time, in refpect of the place from whence the departure is made, or the difference of the Meridians of the Ship, and that place, which is the Longitude defir'd. In order to the better explication of which it will be neceflary to explain the feveral parts that are neceflary Ingredients in every fuch Inquiry or Operation, that fo it may be perform'd the more knowingly and fcientifically, and not by wrote and ignorantly as it is now perform'd, for the moft part, by practical Navigators'; and to that 'end it will be neceffary to explain, Firft, What
What the kind of Line it is a Ship defcribes upon the Surface of the Earth or Sea in its not onily differing. from all other Lines upon the Surface, but becaufe every one of thofe Lines differ from every other of the fame kind; and not only How it differs fo, but every part of each Line differs from every other part thereof in many from all other refpects; as Firft, In its flexure or bending : Secondly, In refpect of its pro-
Lines. portion to the Meridians and Parallels, namely, as to the menfuration of Latitude and Longitude :: And, Thirdly, In refpect of any other great or leffer Circles that may be drawn, or fuppos'd drawn upon the Surface of the Earth; fuch as lefler Circles of diftance from any one Point or Place; or greateí Circles, fuch as Lines of Polition or great Azymuthal Circles. Nor have I hitherto met with any Globe whereon the faid Lines have been truly defcrib'd, or any other that has prefcrib'd a Scientifical or practical way of defrribing the fame.

The chicf propriety then of this Rumb-line, upon the Surface of the Globe,

The chief Propriety of the Rumb Line. is, that it always makes the fame Angle with all the Meridional Lines or Circles that it cuts or croffeth, and confequently that it is a Soberical-Sifal or

Lectures concerning Navigation and Aftronomy.

Helix which incompaffeth the fame with infinite Revolutions which will never bring it to the two Polar Points which'are the Centers, towards which it tends both towards the North and towards the South; notwithtanding the infinite Revolutions, yet it is a finite Line which beareth a certain proportion to the length of a Meridian, and may be defin'd, determin'd and divided as exactly as any other Line or Circle drawn upon the Face of the Globe, and alfo the refpect or proportion that any part of the whole Line beareth to the Meridian or Parallel that it croffeth.

Firft, As to the length of any Rumb-line; I fay, that it beareth the fame of its lengtb proportion to the length of a great Circle, that the Secant of that Rumb and proporitions Angle from the North or South, hath to the Diameter of the Globe ; fo to a great Cirthat tho' it maketh Infinite Revolutions about each Polar Point, and will the never arrive at it, yet are all thefe infinite Revolutions equal to a finite and determinable length of a ftraight Line, and that to as great an exactnefs as the proportion is or can be determin'd between the Radius or Diameter of a Circle and the Circumference thereof. Both which Propiricties, and feveral: other tending to the menfuration and computation of the parts thereof, and for manifefting the refnect they bear to the Meridians or Parallels, or for determining of the refpective Variation of the Longitude and Latitude which: it maketh in its Progrefs either way towards the North or South Poles, 1 fhall, in fome following Lectures, demonftrate ; whereby all fuch Difputes, as? have arifen about that Subject, will be remov'd, and the Nature and Proprieties thereof will be manifefted by a much eafier method of Demonftration than what hath been hitherto by any one us'd or produc'd for that purpofe. I fhall alfo fhew fome other forts of Projections of the Sphrere in Plano, than have hitherto been produc'd, very apt and pertinent for this purpore, whereby the Navigator may more eafily, with his Ruler and Compaffes, meafure the Rumb-line, and refolve all Queftions that concern the failing; by the faid Line with as great certainty and exactnefs as is neceffary to work withal from any Obfervations or Menfurations that can be made at Sea by the Logline and Compars.
But before I can well proceed with the explication of this Head, it, will, be neceffary to premife fome Præcognita of practical Gcometry, which will' be ufeful for the knowledge and more eary defcription of the Rumb-lines, and for the meafuring of the parts of them; efpecially by reafon that the Rumb-line as it is, or ought to be, defcrib'd upon the Globe, as it is very difficult and almoft impracticable to be made ufe of at Sea; fo do I not find that the faid Lines are hitherto truly laid down upon any Globes yet extant, or any certain way prefcrib'd for the true drawing or laying down of the fame upon the Surface thereof, but they are fet off by fome Points from Tables calculated for that purpofe, and the interjacent parts of the Lines are fitted up by hand and by guefs, which is very imperfect and inartificial.
But by an Infrument that I have invented, it may be moft exactly drawn, not ondy upon the Surface of the Globe itfelf, but alfo upon feveral fros jections of the Globe in P'lano or upon a Plain, whereby not only the feveral Proprieties of the faid Line may be exprefs'd, but alfo the menfuration of 'it by the help of Ruler and Compafs, will be more facile, expedite and tractable for ufe, and the true Nature of this perplex'd Line more eafily comprehended and conceiv'd: And this I do the rather, becaufe I judge, that by means of this way the true Courfe of the Ship may be more fpeedily, eafily, and with lefs fubjection to miftake, be computed and protracted, than by refolving of Triangles or Arithmetical Calculationt; for if by the Inftrument can be difcover'd as finall a part as one can be affur'd by the Log-line in Sailing one Watch, then all nicety beyond that is lofs of Labour and Time.

By Practical Geometry then I underftand that part of Geometry, which teaches an eafy way of performing that by Operation, which is requir'd to ${ }_{\text {mean }}$ is here be done by Theory, in order to put it into effect and practife. The bufinefs meant by pragest then of this Practical Geometry, is principally to defcribe, defign and lay down all thofe Things or Lines exactly, according to the Theory which are requir'd to be done, and to determine and meafure the quantities of the parts defir'd by, or from that Defcription.

520 Lectures concerning Navigation and Aftronomy.

I know that into Practical Geometry, is ufually alfo taken all the Bufinefs of Obfervation, fuch as the taking or meafuring of Angles, of. Altitudes of the Cæleftial Bodies or Terreftrial, as Mountains, Clouds, and the like, and the meafuring of Sides or Angles upon the Earth in furveying; and the meafuring of the Contents of folid Bodies, as Timber, Stones, orc. and the meafuring of Liquors, or the capacity of containing Veffels, as is done in Gauging, and other practical parts of Mathematicks; but thefe as not at all pertinent to my prefent purpofe, I fhall now omit, and only confine my felf to fpeak of fo much of Practical Geometry as ferves to teach the true defcribing and dividing of fuch Lines, Surfaces or Bodies as are, or may be ufeful for this part of Mathematicks upon which I am difcourfing, which is of the Art of Navigation ; namely, how any Probleme that is requir'd, or is neceffary for this Art, may, by the help of Ruler and Compaffes, be truly protracted and meafur'd upon a Plain, with as great exactnefs as 'tis poffible, by the help of the Inftruments and Methods that are hitherto us'd to make Obfervation on which to ground the Calculation.

In this then I have four things to be confider'd, which makes up the Pythagorick Tetractys, namely, Point, Line, Superficies and Solid; of each of which I fhall difcourfe.

What is bere meant by a Point.

By Point then I do not here underftand an imaginary nothing, which, in fpeculative Geometry, is defin'd to be a Negation of Quantity, or an Entity that hath no Part or Quantity; but I underftand fuch a Point as hath Quantity and Extention, but yet fo fmall and minute, as that the fenfe cannot diftinguifh that it hath any Parts; fuch as the Point of a very fharp Needle, or the Point of a very curious pair of Compaffes; or fuch a mark with Ink as is made with a very fharp nibb'd Pen upon fine fmooth Paper, which tho' it may be eafily enough prov'd, either by Microfcopes and other Glaffes and by Reafons too to have breadth, and fo both Longitude and Latitude, nay, and Profundity too or thicknefs, yet as to the ufe, for which it is here defign'd, it is fufficient, and may pafs for a true Mathematical Point, if at leaft we will but fuppofe the middle of it to be that which is aimed at in our Operation.

A Point is determin'd or given or found when the refpects it hath to fome other Point or Points, Line or Lines that are alfo given and known, and are fufficient to determine its true place., as if it be defir'd to find or place a Point upon a plainSuperficies that fhall have the fame diftance from each of the two other Points given that they have one from another: The Proprieties can but agree with two Points in all that Plain, which two Points are one on the one fide, and the other on the oppofite lide of a Line drawn between the two firft Points given, and therefore the place of the Point is not determin'd unlefs the faid reípect be alfo given.

But if a Circular Line be given, and it be defir'd to find or make a Point which fhall be equally diftant from every part of that round line, then is the Pofition of that Point truely defin'd, and can be plac'd but in one place to have that Refpect or Propriety.

But further, if two Points be given in a Plain, and it be requir'd to find or place another Point in that. Plain that Chall have this Propriety, that the ftraight Lines drawn from the third Point to be found, fhall make a right Angle, or any other Angle at that third Point, then are the Data not fufficient to determine the Point, becaufe there may be infinite of fuch Points found, which will all fall in fome part of a Circle which paffes through thofe two firft Points; and to determine fuch Point it will be necellary either to give the determinate diftance from one of thofe two firft Points, or the Angle that is made at one of them. Again, if from two fuch Points it be requir'd to find or place a third Point, whofe diftances from the firtt two fhall be to each other of any known or determin'd Proportion, as 2 , to 3 , or the like; the Data are not fufficient to determine the third Point, becaufe there may be infinite of fuch Points, all which will fall either in a Circle or a Itraight Line; and therefore there is fome other Propriety requifite to determine the third Point to a certain Pofition. In the like manncr I could inftance a hundred other Cafes, to fhew the neceffity there is of giving Pro-

Letures concerning Navigation and Aftronomy. $52 \mathbf{I}$

prieties fufficient to determine the Pofition of any Point which is to be plac'd, otherwife the Practife or performance thereof cannot be done. But I hall not here further infift upon it, becaufe that I fhall difcourfe of it more fully in the confideration of Lines, Superficies and Solids; and the only thing to be. obferv'd in the placing of a Point, is to fet it exactly in the croffing of two lines which are to determine its Pofition.

The next we are to confider is Lines; that is, not a length without bredth, of Lines. as in pure and fpeculative Geometry, buta length that.hath the leaft fenfible bredth that can be defcrib'd, fuch as a Line drawn with the point of a very fharp Needle, or point of a Compafs, or fine nibb'd Pen, which may paifs for a length without bredth at lealt, if we contider the middle of it.
Now Lines may be either ftraight or bent; a ftraight line is that which is the fhorteft that can be drawn between two Points given, and confequently there can be but one fuch drawn, and therefore that Line is perfectly given, which is fo determin'd by two given Points, and therefore in fpeculative Geometry, 'tis put for a Poftulatum, that fuch a Line may be fuppos'd drawn, or is eafy to be drawn; but in practical Geometry we muft confider of the me:ins how to draw it actually, which in fome cafes is not fo eafly perform'd, if extraordinary truth and exaetncfs be requir'd: For, Firft, if the Line be The difficulty to be drawn upon a plain, a ftraight Ruler being laid fo as that the ftraight of draving 2 edge of it juft paffes over the two Points, then moving along by that edge aftrait Line。 fine pointed Needle or Charp nibb'd Pen, we draw a line from the one Point to the other, and for common ufe the thing is done; but if any thing of Nicenefs or Curiofity be requir'd, we fhall find it very difficult to lay the Ruler fo as that it equally refpects the two Points, but that it will lie a little nearer one Point than the other. Again, 'tis difficult to carry the Needle or Pen along with the Hand, as always to keep the fame refpect to the fide of the Ruler. And, Thirdly, 'Twill be rery difficult to find or provide a Ruler that is perfectly ftraight, but that it will have fome bending in it one way or other, be it fhot never fo true with a Plain; for tho' the Plain be true that fhooteth it, vet if the Ruler be not fecur'd from warping it will bend under the Plain; befides, there are very few Plains that are fo true, but that, if they are of Wood, will, in a fhort time, have fome little warping or bending; and I know an ingenious Workman that affur'd me he could never fhoot any thing true 'till he had made a Plain of Steel,' which he had ground down to a truth of fmoothnefs and plainess by rubbing and polifhing it upor another Plain, and to have a true Plain to rub it upon, it is no eafy matter to procure as I have been fulficiently fatisfy'd by fuch as have indeavour'd to have them for grinding of Optick or Perfpeftive Glaffes; for I could never yet meet with any one but that, by a way I had to examine them, I have found them either a little Concave, or a little Convex, tho' that were folittle, as not, by the common ways of examination, to be eafily found. But it may be faid, that ftreigning a fine Wire, or Hair, or fine Silken Clew bétween two Points, will defcribe or draw a ftraight Line between two Points; to which I anfwer, that if the Plain on which fuch a Line be to be drawn be exactly plain, and that plain lie exactly Horizontal, then fuch a Wire or Hair will perform it ; but if the Plain be inclin'd or ftand Perpendicular, and the two Points are not Perpendicular one over the other, then fuch a Line can never be ftreign'd ftrait whatever ftrength it be frreign'd withal; for its own weight fhall make it bend down in the middle, as has been fufficiently demonftrated by the ingenious Galileo, and Merfemus, and divers others; efpecially if there be any confiderable diftance between the two Points. Thefe things I mention to fhew, that tho' it be taken for granted, that this which feems the eafieft of all things in practical Geometry to be done, yet is not performable without great difficulties where nicenefs and great exactnefs is requir'd: And poffibly this might be the reafon why Geometricians will not allow fuch Lines to be Geometrical, whofe way of defcribing requires the fliding of a point along by the ftraight fide of fuch a Ruler as the Ellipfe, and feveral other Curve Lines, whofe Proprieties are as exactly known and calculable as that of the Circle, and this only granted may be as eafily defcrib'd, and therefore may as reafonably be fuppos'd defcribable as the Circle or a ftraight Line,

522 Leflures concerning Navigation and Aftronomy.

Since from what I-have alledg'd 'tis evident, that it cannot be done exactly without conliderable difficulties; but if the two Points be very far diftant; it is almon impofible by any way to cxhibit or draw fuch a Line; for not again to mention the bending of Rulers or Line, which 'tis impoffible to prevent, even the fight itfelf, that is the Ray of Light, paning from Point to Point through the Air, is not a ftrait Line as to its Pofition, by reafon of the differing Refraction which is in the Medium of the Air, which I my felf have very often prov'd by Obfervation, finding the fame three Points which appear at one time in a ftraight Line, at another time, fometime within half an hour, have appear'd out of it very confiderably, which I have very often diligently remark'd.

I have been the more large and particular in fhewing you the difficulties that occur in the actual or practical perfornance of that which feemeth, and is fo fuppos'd, the eafief fort of Line that can be drawn, that you may not think it Itrange if hereafter when I fhew you the way of drawing Rhomblines of feveral foits, and fome other Curve-lines' ufeful in Navigation, you meet with fome kind of Difficulties and Obftructions in the methods and ways of defcribing and meafuring of them, which yet I fhall fhew you as to the true ufe that is to be made of them in Navigation, will be as fufficient as the Circle or ftraight Line ; but upon this I hall not now further infift, but procecd in the next place to thew how on a given Line about a Point given, a 'Circle may be defcrib'd ; this, in Speculative Geometry, is a Poftulatum and fuppos'd as cafy and obvious to be done, and in fmall Circles on a Plain or

The difficulty of drawing Arches of great Ciriles. Table, it is fo by opening the Compaffes to the length of the Line having fet one Point of the Compaffes in the Point given, and with the other ftriking round the Circumference'till it return to the place where it began, by which means a Circular Line may be defcrib'd much eafier and more exact than a Atraiglit Linc, or any other can be drawn. But for the defcribing greater Circles the thing to be done is not fo eafy, nay, fo difficult, that'tis almoft impofible, efpecially where exactnefs is requir'd, as I was fufficiently fatisty'd by the difficulties that occurr'd in ftriking a part of the Arch of a Circle of fixty Foot Radius for the gage of a Tool for grinding Telefcope Glaffes of that length; whereby it was found that a Beam Compafs made with all Care and Circumfpection imaginable, and us'd with as great Care, would not perform the Operation nor the way by an Angular Compafs, fuch as is defrrib'd by Guido Vbaldus in his defcription of the Planifphere, and alfo by Blagrave in his Mathematical Jewel, and feveral other Authors, there being found fo great a difficulty in making the cdges of Rulers cxactly fmooth and ftraight, as I'did formerly mention, there being indeed no other practical way of making fuch edges but the gaging of three fuch edges all true to one another by rubbing and grinding, as there is hardly any other practical way of making the edge of a Ruler to be a part of a very large Arch fit to be a gage for a Tool for grinding Telefcope Glaffes, then by grinding and rubbing the cdges of two fuch Rules together, the one whereof is Convex and the other Concave. The difficulties in this kind I do the more infift upon here, becaufe of the ufe of fuch parts of large Arches in the drawing of the Projections of the Sphere, which the Work-men ufually perform by the help of a Steel Bow, which is bent lefs or more, as is defir'd, by means ofa Screw againft the middle of it, the two ends of the faid Bow being held by the frame of the Inftrument in which the Screw is alfo mov'd. But this Infrument as it is much more eafy and applicable to this purpofe, fo is it far lefs true and exact than the Angular Inftruments. The true Figure of fuch a Steel Lath for bending Circularly being not yet known, which I affirm notwithfanding what Marchetty in his Treatife de Refiffentia Solidorum, has demonftrated feemingly to the contrary; and if it were, and were exactly made, yet thofe that have been converfant or experienc'd in the Nature and Ufe of Steel for Springs or bending, will quickly be fatisfy'd how difficult a matter it is to procure fuch a uniform peice of Steel, and how much harder it is to temper it equally. But I fhall not infift further on this Matter at prefent, having only mention'd what I have here alledg'd, to thew, that tho' thefe two Lines which are the fimpleft and moft eafy to be drawn and

Lectures concerning Navigation and Afronomy.

defcrib'd are yet not of fo eafy performance in fome Cafes where great exactnefs is requifite, but that there is great care neceflary in the preparing and ufing Inftruments fit for that purpofe; and likewife to fhew that if the fame care be taken in the providing and ufing of Inftruments for defcribing the Rhomb-lines, they may alfo be defcrib'd and drawn with the like certainty and exactnefs, and be every way as fit for ufe and practife in bufinefs of Navigation.

Nov. 19. 1685. I begun the laft day to explain fome part of Practical Geometry, in order to reduce Mathematical Theories about Navigation into UTe and Practife, and explain'd the ways and the difficulties alfo of drawing the fimpleft and plaineft of all Lines, viz. the ftraight and the Circular Lines whith are taken for granted in Speculative Geometry to be fo eafy to be done, which notwithftanding, when there is requir'd great exactnefs in the performance, are not fo eafy actually to be effected. It may therefore be in-Why fpeculaquir'd, why then are they put as Poffulata as if performable by any? To which tive Geometry I anfiver, That the bufinefs of Speculative Geometry being only to demon- puts fome frate the propriety of fuch quantities, as Lines, Superficies and Solids from ftulata the their Definitions or Defcriptions; it is fufficient to have only a right Con-cannot be per ception of what is to be underftood by thofe Appellations, and that they areformed. things pofible to be done, or conceiv'd fo to be, for grounding the Demonftrations thereupon, and that the actual drawing and delineating of them there, is only to help the Imagination to conceive the notion of them aright. But when we confider them in reference to Practical Geometry, we are to confider, not only that the things to be done are poflible, but to teach the Ways, Inftruments and Operations how they may be actually perform'd; and therefore 'tis not here enough to conceive, that there may be a right Line drawn between two Points, or there may be a Circle defcrib'd about a Point or Center at a diffance given or determin'd, and then to demonftrate by reafon that thofe Lines muft have fuch and fuch Proprieties; but we are to draw them actually, and to fhew by practife and actually doing, the thing requir'd, and thereby to exhibit the thing done to Senfe, which is one of the ends and ufes of Speculation. But it may be Objected by fome, or at leaft thought fo; but what need is there of all this Curiofity, Precifenefs and Care of placing Points aright, and drawing Lines fo curioufly ftraight, and of Circles fo exactly round and true? To which I anfwer, that this is not a needlefs Curiofity, nor fo flight and infignificant a Matter as not to be regarded, but a matter of great Ufe, nay, a thing of abfolute Neceffity; and without which, all the real ufe of Practical Geometry, efpecially in Geography, Navigation and Aftronomy, will be lame and imperfect : for all our deductions and, conclufions in the fe Arts are founded upon proper and true Obfervations made; and all our Obfervations are made by the help of Inftruments; and thence it will follow, that if our Intruments, us'd for fuch Obfervations, be not exactly made and divided, our Obfervations cannot be true, and if our Obfervations are not true, our Deductions from them will not be true neither, but erroneous and falfe, and confequently all the reft of our Labour and Care and Skill will-be needlefs and infignificant: And that this is fo any one will eafily grant, when he confiders, that in moft Inftruments that are us'd for the Sea, which feldom exceed two Foot Radius, the finallef Point almoft that is fenfible is the reprefentation of a Minute; and that Minute upon the Surface of the Earth, is no Iefs than 60866_{30}^{17} Englijh Feet, there being found 365184 Feet in one Degree of the Earth, which amounteth to fixty nine Miles, and eight hundred fixty four Feet, or about $\frac{1}{6}$ part, the Statute Mile containing 1760 Yards, or 880 Fathoms; fo that in the make of an Inftrument of fuch a Radius, the error of the bredth of a Needles Point in the placing the divifions of the Limb or the drawing the Diagonal Lines or Circles, or the other parts of it, will eafily make an error of a Mile in Latitude upon the Face of the Earth, and much more in Longitude.

And indeed confidering the careleffinefs that is at prefent in the make of the defeat of the ordinary Sea Inftruments made for SaIe, and feveral other Imperfections, the common it is well if they can be certain to ten or twelve Minutes, that is, twelve or Sea Infru-

524 Leitures concerning Navigation and Aftronomy.

fourteen Miles. Now what fignifics the refolving and calculating of Triangles to fingle minutes or Jeffer parts, when you are not fure by Obfervations to ten. If therefore by the help of Inftruments, fuch as a Planifphere, a Sector and Compaffes all Problenis may be truly protracted and refolv'd more exactly than the Obfervations can be made, on which they are grounded, what need will there be of more curious Calculations? But that this may be donc, I fhall prove by the fequel of this Difcourfe, if at leaft due care be taken in the materials making and dividing the Inftruments, whereby I fhall fhew that it will not only be fufficiently accurate for all fuch ufes; but it will have this of advantage alfo, that whereas the other method by refolving Triangles Arithmetically is done blindly and by wrought, and without a true Conception of the reafon of thofe Operations; this will be done more knowingly by protracting ; fince that alone will be fufficient to fhew the reafon of the Operation, and to prevent a World of miftakes of one thing for another very ufual in the other way, fince this way things are plac'd and and meafured in their proper places. This I thonght necellary to acquaine you with, that you might thercby fee the great necefity and fignificant ufe of fuch Nicenefs and Curiofity, as I mention'd to you the laft Day, in finding and making the Points and drawing both the ftraight and circular Lines true, and that fuch as may have occation to make ufe of fuch Inftruments, or to make them themfelves, as I hope fome here may do, would be very careful to fee that they are made with fufficient exactnefs, and that the Materials be fuch as may continue and preferve their form without warping or fhrinking. But on this Subject I fhall fay more hereafter when I treat of the feveral Inftruments themfelves: I fhall therefore at prefent proceed to the other parts of Practical Geometry, and in the next place explain what is underftood by the refpects that two right Lines drawn upon the fame Plain, bear to one another: This will fall under two general Heads; Firft, Such as are equally diftant from one another, and fo caild Paraliels: Or, S'condly, Such as fome ways crofs each other, and fo form an Angle between them; for an Angle is nothing elfe but the Refpect, Tendency, or Inclination of two Lines in the Point wherein they cut or crofs each other.

This Inclination of two right Lines in the Point of Interfection is computed by the part of the Arch of a Circle drawn about the Point of interfection as a Center intercepted between thofe two Lines, and computed or compared with the whole Circumference of that Circle; as if $A B$ and DG cut each other
Fis.j.7al. 10 . in the Point C, and upon the Point be defcribed the Circle FHKl; FE mealures the Angle FCE, for what part FE is of FHKIF, FCE is of four Right Angles.

If the intercepted part be one quarter of the whole Circumference, then that Angle meafured by it is call'd a Right Angle, and the Lines are call'd Perpendiculars to each other; as if AB and HI croffing each other in the Pois t C, FH be: of the whole Circumference, then is HI Perpendicular to $A B$ and AB to HI .

If the intercepted part be lefs than a quarter of the whole, 'tis call'd an Acute, as the Angle ECF or BCG, becaufe FE or KG are each of then lefs than a quarter of the Circumference, FCE and ECH making one quarter of the Circlc.

If the intercepted Arch be more than a quarter'tis call'd an obture Angle, as ECB or FCG, which are compounded of a Right Angle and an Acute, viz. ECH and HCB , or FCl and ICG.

Hence 'tis obvious that Perpendiculars make four equal or right Angles about a Point as $\mathrm{FCH}, \mathrm{HCB}, \mathrm{BCI}$, ICF.

And that all other croffing Lines make two Acute and two Obtufe, which four are equal to four right; and any two adjoining are equal to two Right Angles as FCE and ECB are equal to FCH and HCB. So,
From hence proceeds the neceflity of dividing and meafuring the parts of a Circle, and finding the proportion they bear to the whole Circumference ; which is various ways performed, the moft ufual and ufful of which are perform'd by the help and meafure of ftraight Lires, which have certain refpects Eoth as to lengths and pofition to fome Diameter or Radius of the faid Cir-

Lectures concerning Navigation and Aftronomy.

cle, of which 1 fhall afterwards fpeak; fuch as are Chords, Sines, Tangents, verfed Sines or Darts.

A Diameter of a Circle is any ftraight line drawn through the Center, and ter minated at each end by the Circumference, as FB, HI, or EG .

And a Semidiameter, which is alfo call'd a Radius, is equal to half the former, being any ftraight line drawn from the Center to the Circumference, and terminated by them; as the half of any of the former lines terminated at one end by the Center C , as FC or CB, HC, or CI , $\mathrm{C} \%$.

All Diameters of the fame Circle are equal to one another, as are alfo all Semidiameters or Radij, becaufe every part of the fame Circumference is equally diftant from the Center.

If a ftraight line be drawn within the Circle cutting the Circumference thereof in two Points, the part of the line intercepted between thofe two Points is call'd a Chord or Subtenfe in fimilitude to the String of a Bow, fubtended or ftretched from the ends thereof, as HG is the Chord of the Arch HKG being extended between the ends of it H and G, ind 'tis call'd the Subtenfe or Chord of both thofe Arches or parts of the Circumference which it divides or under which it is drawn; as of HKG, and of HFG. So a Diameter is always the Chord of a Semicircle.

All Chords that are equal fubtend equal Arches of the fame Circle, becaufe a Circle is a bent or curve Line, whofe bending or curviture is every where equal and uniform, every part thereof therefore which is equal in length muft have the fame curviture, and confequently the fame length of a ftraight line extended or fubtended from its ends.

Thefe Definitions or Defcriptions will be enough for my prefent Ufe and Difcourfe, I Thall therefore proceed.

In Practical Geometry, as every regular line is drawn or defcribed by fomé proper Inftrument; fo every length is meafured and every divifion alfo made by fome proper or known meafure, by which the fenfible truth thereof is experimentally verify'd and exhibited; I do not fay demonftrated, as fome I perceive are very apt to do both in their Writings and Difcourfe, who fuppofe the fhewing a thing drawn upon Paper to be that which is underftood by Demonftration; but that, I conceive, may proceed from a common, tho' falfe Acceptation of that Word, fince the ftrict and proper fenfe thereof is much an other Notion, of which I formerly more largely difcourfed: And therefore I now take it for granted, that the Principles of Speculative Geometry are already known, and as fuch I fhall refer to them where I have occafion to make ufe of Demontration ; and fhall not oblige my felf to follow the method of Euclid, but only treat of fuch parts of Practical Geometry as relate to the Subject I have in hand.
Now becaufe I hall only difcourfe of ftraight Lines and Circular, I have no need at prefent to mention any other Inftrument than a ftraight Rule and Compaffes, which are the moft plain Inftruments ufed, and fo are fufficiently known fo as not to need any thing more tobe faid of them than what I have already premifed.

I need not alfo, I fuppofe, now mention the feveral ways how to draw or let fall a Perpendicular from a Point given to a line given, nor how to raife a Perpendicular from a Point in a line given to that line; nor how to divide a line into two equal parts, thefe being fufficiently obvious and commonly enough known. And therefore taking thefe for granted as already known, I proceed to other ways of dividing a line given into fuch a number, or fuch forts of parts as thall be required.

And Firft for dividing a given Line into any number of equal parts, the way of proceeding is as follow eth. Let AB be a line given to be divided in- of dividing a to nine equal parts, Firft, Open your Compaffes to the length of the line, given Line. and having one point of them in A , defcribe the part of an Arch CB , then ${ }^{\text {Tab. } 10 . ~ F i j . ~} 4$. from the Center B defrribe the Arch AD , then taking with your Compaffes the diftance of any point in $A D$ as D from the point A; fet off the fame diftance from B in the Arch BC to C : Then draw the lines ACE and $B D F$, through the points $A C$ and $B D$: Then opening your Compaffes as near as you can judge to the length of a ninth part of the Line $A B$, the

526 Lectures concerning Navigation and Afronomy.

nearer you guefs the better; and beginning at A , fet off that length on AE eight times, as $1,2,3,4,5,6,7,8$, then with the fame opening of your Compaffes, beginning at B , fet of the fame length eight times on BF , as $\mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{n}, \mathrm{o}$, laftly, laying the Rule on i and $\mathrm{o}, 2$ and n , draw the fercral lines $\mathrm{j} 0,2 \mathrm{n}, 3 \mathrm{~m}$, ơ c , Thefe parallel Lines fhall divide the line $A B$ into nine equa! parts as was defired in the Points p, q, r, s, t, orc. the demonftration of which is fo eafy that I fhall not ftay to infift upon it.

To divide a
Next let it be required to divide a line given into all its aliquot parts, or Fine into aliquot parts. a leries of parts which thall be reprocal to a feries in Arithmetical proportion, as, $1, \frac{2}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \frac{1}{8}, \frac{1}{7}$ ofc in infinitum. The method of doing it practically may be either of thefe three following ways.
Tab. II. Fig.4. Let AB be a line given to be divided into all its aliquot parts, as $\frac{1}{2}, \frac{i_{2}}{3}, \frac{1}{4}$, at one of its ends, as B ; crofs it with the Perpendicular KI, and produce it towards I, as far as there fhall be occation. Then taking any Point in the line $B K$ at pleafure as D, draw $D C$ equal and parallel to $A B$ and compleat the Parallelogram AKDB. Then with your Compaffes taking the length BD fet it off from B towards I, as many times as you defire aliquot parts, as $B E, E F$, FG, GH, $\dot{\sigma} c$. then laying the Rule on the Point C, and thofe other Points E, F, G, H, fucceflively draw ftraight lines which fhall cut the line $A B$ in the points $2,3,4,5, \sigma c$. then fhall the line AB be thereby divided in as many aliquot Sections as fhall be defir'd ; for A_{2} fhall be half of $A B, A_{3} \frac{1}{3}, A_{4}$ ${ }_{4}^{4}$, A $\rho_{5}^{\frac{1}{3}}$, and fo onward fo far as you will proceed; for fince DC is parallel to $A B$, and equal to it the Triangles DEC, and BE2 fhall be fimilar, and DFC and BF 3 are alfo fimilar; and DGC likewife to BG_{4}, and fo onward in infinitum. It follows therefore that as $E D, 2$, is to $E B, r$, fo $C D=$ to $A B, r$, to $\mathrm{B}_{2},=$ to $\stackrel{i}{2},=\mathrm{A}, 2$, in like manner as $\mathrm{FD}, 3$ to $\mathrm{FB} 2 ;$ fo CD, I, to $\mathrm{B}, 3, \frac{2}{3}$, which taken from $A B$ leaves $A 3=$ to $\frac{1}{3}$, and fo for all the reft, which is obvious enough.

The fame might have been thus demonftrated; AC being made equal and parallel to $\mathrm{BE}, \mathrm{EF}, \mathrm{FG}, \mathrm{GH}$, the Angle CiAB will be equal to ABE , therefore the Triangle CA2 will be fimilar to $E B_{2}$; and therefore as $C A$ is to A_{2} in the Triangle CA2; fo EB will be to B_{2} in the Triangle EB2; but CA is put equal to $E B$, therefore A_{2} is equal to $B 2$, therefore $A_{2}=\frac{1}{2} A B$. Again, for the fame Reafons, CA_{3} will be fimilar to FB_{3}, and confequently CA. $A_{3}:: F B . B_{3}$; but $F B$ is double CA, therefore B_{3} is double A_{3}, therefore $A_{3}=\frac{1}{3} A B$, and the fame for all the reft.

Here in the practical performance of this Problem will appear the neceflity of that nicety and exactnefs I preferib'd in drawing of ftraight lines curious and true, and placing of the points precifely in the middle of the line and of laying the exactly ftraight edge of the Rule over the very middle of the points, through which the lines, are to pafs, and of carrying the Needle or Point with which you draw very equally and uniformly ; for if all thefe particulars be not carefully obferv'd, and accordingly practis'd and perform'd, tho' the Problem be true in the Theory, yet the divifions made upon the line $A B$, will be but imperfect and lame, efpecially if the line $B J$ be far produced, and the repetitions of the equal parts be made fome fores or fome hundreds of times, becaufe the lines drawn from the point C through thefe Divifions on the line BI produced, will be fo oblique that a very little error in any of thofe obfervables, will be apt to make an error of a whole divifion, and fo 'twill be difficult to diftinguifh for inftance between a 99 th part and a rooth -part, moreover becaufe the effecting of the Problem this way, if the Reciprocals run far, will require the line BJ, to be drawn out to a great length, and requireth as much room as the performing it by the Hy perbola, which in many occafions cannot be fo conveniently done, therefore the fame Problem may be effected by another way in a much lefs room and with fhorter Inftruments, which therefore will be the lefs fubject to warping, and may bemore carefully perfected.
7.h. 11. Fit.4. The fecond way then of effecting this Problem is this: Let $A B$ be a line given, all whofe aliquot parts are defir'd, as its $\frac{T}{2}, \frac{1}{3}, \frac{\pi}{4}, \frac{1}{5}, \frac{1}{6}$, cicc. which are reciprocals to a rank of numbers in Arithmetical progreffion, as $1,2,3,4,5,6$, cir. Upon the line AB make a Parallelogram Square or Rhombus ABCD,

Lectures concerning Navigation and Aftronomy. 527

then draw the Diagonal AC. Now for finding the half, draw the Diagonal $D B$ croffing $A C$ in E; through E draw $F E G$ parallel to $A D$ or $C B$, cutting the line $A B$ in G : Through D and G draw DHG cutting the Diagonal AC in H ; and through H draw IHK parallel to AD ; then through D and K draw DLK croffing the Diagonal AC in L ; and through the Point L draw MLN parallel to AD, and fo proceeding fo far as fhall be needful or defrr'd, you thall find as many aliquot parts of AB as you thall defire ; for as AB is the whole, fo AG is the half, AK the third, AN the fourth, and fo you may find the fifth, fixth, feventh, eighth, ninth, and fo onward as far as you pleafe. For Firft, the oppofite fides of the Figure ABCD being equal and parallel, the Diagonals muft interfect each other in the middle, becaufe $A E D$ is fimilar to $C E B$, and therefore as $A D$ is $=C B$, fo $A E=C E$ and $\mathrm{UE}=\mathrm{BE}$. Next becaufe the Triangles ABC and AGE are fimilar, as AE is half $A C$, fo $A G=\frac{A B}{2}$.

Secondly, AK is $\frac{1}{3}$ of AB ; for the Triangles AHG and DHC are fimilar ${ }_{;}$ becaufe the oppofite Anglesat H are equal, and the alternate Angles at A and C are equal, as alfo the other alternate Angles at D and G; therefore as DC is to AG , which is as 2 to r , fo CH to AH ; AH therefore is $\frac{\frac{x}{3}}{3} \mathrm{of} \mathrm{AC}$, and becaufe $A B C$ and $A K H$ are fimilar, therefore as $A H$ is $=\frac{A C}{3}$, fo $A K=\frac{A B}{3}$
The like Demonfration will ferve for all the reft how far foever continued.

This Problem I have been the more particular in explaining for that I fhall have feveral occafions to make ufe of both in projections, and likewife in the contrivances of feveral ufeful Inftruments for Navigation, as particularly in a way of founding the depths of the Sea in fuch places as Lines will not reach, and in computing the way of a Ship through the Water, and feveral other inventions, of which I fhall fpeak hereafter.

Now becaufe the drawing of parallel Lines fo often as there are Divifions made, may feem fomewhat troublefome, therefore I fhall fhew another way Tab. 11.Fig.9o how to effect this Problem without drawing parallel Lines; which is thus. Let $A B$ be a line given to be divided into all its aliquot parts. Through the Points A and B draw right Lines parallel to each other, as $C D$ and $F E$, whether at Right Angles or not with the line AB it matters not. Set offon each fide of each of the Points A and B in the lines fo drawn parallel a Point, as $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, of equal diftance from the refpective Points A and B . Then draw $C E$, which fhall cut $A B$ in the Point G in half; the draw $A E$ and $D B_{2}$ which likewife interfect each other in half in H ; then draw CH and Dg , which fhall interfect $A B$ at I, making $A I \frac{2}{3}$ of $A B$, and $A E$ at K, making $A K \frac{2}{3}$ of $A E$; draw CK and DI, thefe fhall interfect the lines $A B$ and $A E$ at L and m , making $\mathrm{AL} \div \frac{1}{4} \mathrm{AB}$ and $\mathrm{Am} \frac{1}{4}$ of AE , and fo proceed in infinitum : This will alfo give you all the aliquot parts of AB or AE . Or a $\mathrm{Se}-$ ries decreafing in reciprocal proportion to any Arithmetically increafing Series, as $\mathrm{I}, 2,3,4,5,6,7,06 c$. in infinitum. The Demonftration of which Problem is much the fame with that in the preceding Problem, and therefore I hall not fpend time in the repetition thereof.

And thus far I have proceeded to fhew how any line given may be divided into an infinite Series of Reciprocals to a Series in Arithmetical Progrefion, of which fort I have only inftanced in that Reciprocal to $1,2,3,4,5,6$, ojc. but the fame method will ferve to give the Reciprocal to the Series that expreffes the differences between fquare numbers of the prime Arithmetical Series, as 1, 3, 5, 7, 9, or any other fuch Arithmetical Progreffion, whatfoever the common excefs or difference be, as I could plainly demonftrate if it were material to my prefent defign, and may hereafter more at large upon another Subject; but I fhall now rather proceed to thew how any line given may be divided into an infinite feries of Parts in Geometrical Proportion continually decreafing or increafing, according to any proportion whatever
 is $\frac{1}{x+3}$, and fo onward to any proportional lefs then can be affign'd, and how

528 Lectures concerning Navigation and Aftronomy.

to find the fum of fuch an infinite decreafing Series or a line equal t, them, all added together.
T.lb: 11.Fig. 6 . To effect which, let AB be a line given to be divided into an infinite feries of Geometrical proportionals, according to any Ratio given; as fuppofe of 1000 to 999 , or any other Ratio whatever; for inftance, let it be of 8 , to 7 crofs the line AB at the point or end A with another ftraight line, as SAD, which may be drawn at Right Angles, or any other Ancle pretty near it, for the fame effect will follow; then opening your Compaffes to any diftance, but as near as you can guefs to an eighth part of the length of the Line CD , viz. according to the conveniences you may have of drawing or producing the faid Line on the Plain or Table you are delineating upon and fetting one Foot in A, fet off the fame eighth part from A to C on one fide of the Point A: Then on the other fide fet off the faid diftance $A C$ feven times, viz. to D. Then draw from the Point C the Liae $C E$ parrallel to $A B$, and from the Pomt B to draw $B E$ parallel to $A C$, fo as to compleat the Parallellogram or Rhombus $A B E C$; then through the Points D and E, draw the Line $D E$, cutting the Line $A B$ in F; through F draw. FG parallel to $A C$ or $B E$; and through D and G draw $D G$ cutting the Line AB in H ; through H draw HJ parallel to AC or BE , and draw DI , cutting $A B$ in K; and through K draw KL parallel to $A C$, and fo proceed to draw DL. Mn, Dn, op, edc. as far as you pleafe. Thefe Points F, H, K, M, O, 6 . Shall divide the Line $A B$ into a feries of Geometrical continued proportionals in the Ratio of 8 to 7 , as was defcrib'd or requir'd to be done: For AB fhall be to AF, as 8 to 7 , and AF.AI, $: \therefore 8.7$, and AH. AK $\therefore: 8.7$, and fo onward in infinitum, or as far as fhall be requir'd; and not only fo, but the whole line $A B$ fhall be made up or compounded of an infinite feries of continual proportionals, in proportion as 8 to 7 , all which infinity of proportionals being joined or added together into one line will be equal to the line $A B$, and neither exceed it, nor be florter than it.

Now that this divifion will be rightly done, will appear by the following Demonftration, AB and CE being parallells to each other, and equals as by the Conftruction is requir'd to be done; DC alfo being a fraight Line touching the Line $A B$ in A; and $D E$ being a ftraight Line cutting the Line $A B$ in F; the two Triangles' $D C E$ and ${ }^{\prime} D A F$ will be fimilar; and confequently as DC to DA, which, by the conftruction, is made, is as 8 to 7 , as was requir'd; fo $C E$ (which was put equal to 'AB) to $A F$. In the fame manner FG being drawn parallel to $A C, C G$ and $A F$ are equal, and the Line DG being drawn cutting the remainder AF in H ; he two Triangles DCG and DAH are alfo fimilar, and confequenty as DC to DA; fo is CG (which is equal to AF) to AH. Now DC to DA is put as 8 to 7 , therefore alfo AF to AH is as 8 to 7 , as was requir'd: By the fame Ratiocination, may all the reft of the infinite proportionals be proved to be to one another, as 8 to 7, and confequently they will be all an infinite feries of continned proportionals, decreafing infinitely in proportion as 8 to 7 ' which was the thing requir'd.
Now fince the whole Line $A B$, and the $A b l a t a A F, A H, A K, A M$, are in continual proportion, as 8 to 7 , as is prov'd, the Reliqua, $\mathrm{BF}, \mathrm{FH}, \mathrm{HK}$, KM, ofc. will be alfo in the fame Gcometrical continu'd proportion one to another, as 8 to 7, as is evident by the 17th of the 5th of Euclid, \&rc.
To exprefs thefe Proportionals in Numbers is very difficult, but if this Series be exprefs'd Algebraical it will be eafily perform'd, for putting the firlt difference a, and the fecond b, it will be this, $a, b, \frac{b b}{a} \frac{b_{3}}{a_{2}} \frac{b_{4}}{} a_{3} b_{5}$, $\dot{\sim} c$.

[^13]
Lectures concerning Navigation and Aftronomy.

Problem, if the continual Proportionals $\mathrm{BF}, \mathrm{FH}, \mathrm{HK}, \mathrm{KM}, \mathrm{MO}$, and all the reft be put for the abfolute Numbers: Then $\mathrm{B}, \mathrm{BE} \div \mathrm{FG}, \mathrm{BE} \div \mathrm{FG}$; $\div \mathrm{HI} . \mathrm{BE} \div \mathrm{FG} \div \mathrm{HI} \div \mathrm{KL}$, will be the Logarith ms to thore Numbers, that is. $1,2,3,4,5,6, * c$. for Logarithms are nothing elfe but the Numbers of the proportionals that are in the Series pitch'd upon, or made choice of between any two abfolute Numbers (or becaufe a unite is the firft and root of all other Numbers) between one and any other abfolute Number whatfoever. And to that end in the making of Logarithms, becaufe if the proportional difference between the antecedent and the confequent be very great, it will hardly fall out, that any of the proportional Sections will either fall in the equal Section of the abfolute Number exactly, or fo near the fame as will. be fufficient to make the number of the proportional differences exact enough to ferve for the Logarithm; therefore the greater the number of thofe proportionals are between the unite and the other abfolute number, the nearer will the equal divifions of the interjacent fpace approach the proportional Sections of the fame; and by the increafing the numbers of the intermediate proportionals, if the equal divifions do not coincidere with the proportionate exactly, yet the approach may be made within any difference whatfoever required, which is all that the nature of the thing, in 「ome cafes, will bear, they being infinite and incommenfurate ; for the making of which Logarithmick Numbers or Tables various ways have been made ufe of by feveral Authors, fome more eafy in the Invention than others, yet they are all to the fame effect, tho' fome of the Progreflions are more accommodated for ufe than others; as that of Mr. Briogs, where the Logarithm of one is, put $a_{,} \mathrm{o}_{2}$. and the Logaritthm of 10,1 of 100.2 of $1000 \cdot 3$ of 10000.4 with a certain number of Cyphers after them, as Mr. Brigos puts 14. So that he fuppofeth One hundred Millions of Millions of proportional parts between one and ten, culd between 10 and 100, and between 100 and 1000 , and fo onward in the Decimal progreffion; or between I and $\frac{1}{10}$, and $\frac{1}{10}$, and ioo, and $\frac{1}{1000}$, of which in 100 Millions of Millions, there are thirty Millions of Millions, One Hundred and Two Thoufands; 999 Millions, 566 Thoufands, 368 continual proportionals between one and two; and becaufe it would be impoflible ever to enumerate and calculate all thefe, therefore there have been various Expedients found to facilite this todiurn of working proportionals by Multiplications and Divifions, and extractions of the Roots, and to perform the fame thing for finding the Logarithms or the number of proportionals in the feries pitch'd upon, anfwering to each abfolute number, by little more trouble than bare addition, which doth fave an infinite of troubles and confidering the great Ufe and Benefit of them in folving many difficult and almoft infolvable Queftions of Geometry by any other way, is a part of Geometry extreamly defirable to be thoroughly known and underftood, neverthelefs it being not fo much to my prefent purpofe, and belonging more particularly to the buifinefs of Arithmetick, I fhall not further proceed in the explication thereof at prefent.

But rather proceed to the Explication of the Logarithmick Line, and fhew how it depends upon the Problem I have now explained, of dividing a Line given into any infinite feries of continual proportionals, becaufe, as I Thall after prove, the fame is the true Line of the Rumb in thofe projections which I defign to defcribe.

Let AB then in the fecond Figure reprefent the Radius, BC a line at right $T_{a b}$. 12.Fig.1. Angles with it, and equal to it the tangent of forty five Degrees, which is to be divided into an infinite feries of continual proportionals; fo that BC to BG fhall be as any one number to any other number affigned. For inftance, as 100000 to 99999 , make Bd equal to $2_{2} \frac{\mathrm{x}}{0} 0000$, part of AB , and draw d e parallel to BC ; then make ds , st , tv, vx, $\sigma \mathrm{c}$. each equal to dB , and draw the Lines $s, 1 . t, 2 . v, 3 . \times 4 . \sigma_{c} c$. parallel to $B C$. Then proceed to divide the Line BC into the feries of proportionals $\mathrm{cg}, \mathrm{gi}, \mathrm{jl}, \mathrm{ln}, \mathrm{np}$, ơ c. as I fhew'd in the preceeding Problem; and through the Points g, $i, 1, n, p_{2}$ draw the Lines gf, i i. $12 . \mathrm{N}_{3} . \mathrm{P}_{4}$, *'c. parallel to the Line AB meeting or cutting the fore-faid Parallels de s I. f 2 . V 3 . X_{4}. in the Points $\mathrm{f}_{2} \mathrm{I}, 2,3,4$, orc. the Curve Line drawn through the Points $\mathrm{C}, \mathrm{f} \mathrm{I}, 2,3,4$, will reprefent

530. Lequres concerning Navigation and Aftronomy.

the Logarithmick broken Line being compofed of the Diagonal Lines fC , hig, ki, ml, on, cir. in which $\mathrm{BC}, \mathrm{df}, \mathrm{Si}, \mathrm{f} 2, \mathrm{v} 3, \mathrm{x} 4$, the ordinates to the Line $A B$, fhall reprefent the abfolute numbers which are here a rank of continual proportionals anfiwering to the numbers.1, 2, 3, 4, 5, B or nought; and $\mathrm{Bd}, \mathrm{Bs}, \mathrm{Br}, \mathrm{Bv}, \mathrm{Bx}$. The refpective Logarithms to them increafing as the abfolute do decreafe, according to Neiper's method, or elfe BX, DX, SX; TX, VX, X, or O , will reprefent the Logarithms decreafing as the abfolute decreafe, according to Mr . Briggs and moft others.

This Line which I have here defcribed is not a true Curve Line, but a Line compos'd of fragments or flort pieces of fraight Lines, viz. of the ftraight Lines of $\mathrm{cf}, \mathrm{gh}, \mathrm{ik}, \mathrm{lm}, \mathrm{no}, \mathrm{pq}$, © c c. which are all Secants to the Radius db of the continual proportionals put as tangents, becaufe $\mathrm{fg}, \mathrm{hi}, \mathrm{kl}, \dot{\sigma} c$. are all equal and parallel to it; and as $A C$ the Secant of 45 is to $A B$; fo fc to $\mathrm{fg}=\mathrm{dB}$ as Radius; fo fi=gh, $12=\mathrm{ik}$, Gr. focf $2,3,4,5$, is equal to the feveral Secants Cf; gh, $\mathrm{ik}, \mathrm{Im}, \mathrm{nO}, \mathrm{pq}, \dot{\sigma} \mathrm{c}$. and fuppofing dB one infinite part of $A B$, thefe fractures will be infinitely fmall, and fo the Logarithmick Line or Rhuimb-line will be a true Curve Line compos'd of infinite of thefe infinitely finall Secants.

From which Generation of this Curve Logarithmick or Rhumb-line, may be deduc'd, Firf, That the Line AB being infinitely continu'd towards A, fhall be the Afymptot Line to the Logarithmick Curve cf, $1,2,3,4$, © $\cdot c$. nearer and nearer, to which it fhall always approach, but never touch it.

Secondly, That if from any Point of this Line infinitely continued either way a perpendicular or ordinate to $A B$ be drawn, and alro a tangent, the diftance between the ordinate and tangent interfection of the Afymptot fhall always be equal to the diftance $A B$; from which propriety the mechanical Defcription thereof, with great exactnefs and certainty, I fhall prove to be eafy.

But becaufe this Line may be various other ways defcrib'd allo, which will alfo give light to the Nature of it ; it may be conceived to be generated by the compofition of two differing kinds of motions croffing each other ${ }^{2}$ right Angles with differing tendency and velocities.

As fuppofing a Point or Atom at C , actuated by two equal tendencies or velocities, the other towards W. Suppofing the velocity towards C to remain always the fame, and uniform the motion or velocity towards W will continually increafe fo that when the Atom has paft, for inftance, $x^{\frac{1}{0}}$ of the diftance between $C W$ and $A B$, the velocity from $B C$ towards $A W$ will be as ${ }^{\circ} \circ$, and at the end of the fecond fpace of time, as 8, of the third, as $\frac{10}{7}$, of the fourth, as $\frac{10}{8}$, and 10 年, $\frac{10}{4}, \frac{10}{3}, \frac{10}{3}$, and 10 , and fo onwards in infinitum.

If on the other fide we fuppofe the tendency, velocity or motion from BC towards AW, to be always equal and uniform, that is, in a certain fpace of time, to move a fpace equal to one tenth of the length CB, then the motion or velocity from $C W$ towards $A B$, will decreafe continually by an infinite feries of continual Proportionals, according to the differing velocities of the two tendercies. Thefe Proprieties I have not now time to demonftrate fully as they ought, but I fhall referve them to another opportunity.

THere being mention made at Page 524. above, of an Infrument for drawing. Spirals or Rhumbs but not dejcribed I have bere added a Short defcription of an Inflrument I remember be Shewed the model of to the Royal Society with its performance. Let there be made a thin flat Ruler a $b c$, baving a nit through the middle of it cd to gip freely upon a Center Pin fixt perpendicular in a plain, upona which the Line is to be drawn: At the end of this Ruler cthere muft be cut a rourid bole with a Ring of Brafs exactly fitted to it, and in this Ring a fmall Truckle Wheel with its Axis well fixt at right Angles: Then by moving this Ring in its Socket in the Ruler, the plain of the Wheel may be fet to any Angle with the fit in the Ruler; which done, by moving the Ruler upon the Plain round the Center, the edge of the faid Truckle-whbeel will defcribe, upon the Plain, the Spiral with the Angle required at every revolution proportionally approaching the fixt Center. Eis the Tru skle-wheel and Ring taken out of its Socket in the Kuler.

THe Author baving mentioned the great difficulty of draming the Arches of very large Circles at Page 523 Supra, and finding a Leeture of his propofing feveral methods of performing it, I thought beft to infert it here, the mays being, as I judge, new and ingenious.
R. W.

MAy 8 th 1685 . It is a Poftulatum in Geometry, that'tis pofible or practicable to draw or defcribe a Circle to any given Radius, and alfo from a Point given to any other Point to draw a ftraight Line; but tho' in Speculative Geometry it be only to be underfood, that a Circle of any bignefs may be conceived as drawn about a Center given, or a ftraight Line may be conceived to be drawn between any two Points given; yet in Practical Geometry where the Poftulata are to be produc'd to effect and to be actual-The dificulty ly executed, if either of them are very large, the difficulties are greater of draning a than every one will eafily imagine, and neither the one nor the other can, fitrait Line. with any tolerable exactnefs, be perform'd:' 'Tis true that a Line may be extended and ftreined between two Points at a confiderable diftance, and fo that Line may be faid to be a ftraight Line as to its fwarving laterally; but as to its ftraightnefs in the Perpendicular Plain that paffes through thofe two Points, 'tis not in the power of Art to make it ; for that the power of gravity acting on it will bend it into a Curve (which has of late Years much excercifed the Speculative Geometers to contemplate, and they have given it the name of the catenaria) but none have found any ways of defcribing it otherwife than by Points, which are very troublefome and tedious, and at beft but imperfect (which yet I fhall Thew how to do fome other time) but I at prefent only mention it by the by, to fhew, that tho' a Line may be ftrained between two Points, yet gravity will bend it from its ftraightnefs; and tho' 'tis Poffible in great part to take off that gravity by a fluid, in which the faid Line fhall be imners'd, yet that for a great length will not obviate the Objective. 'Tis true, if the Points be plac'd perpendicular one over another, a Line may be extended ftraight without any impediment from gravity, but then any motion of the Air, through which it paffes, is apt to bend it fome ways or other, fo that even that way is not free from Objections. And I found in my Obfervation of the Parallax of the Earth, that there was very much trouble and difficulty to find the true Perpendicular Point under the Center of the Object-glafs, which yet with perfeverance, I conceive, I did at laft attain. However fome have propounded ways of performing that Obfervation which have ten times the difficulty to execute it to any tolerable fatisfaction that was found in mine.

Now as this firt Poffulatum of actually drawing a ftraight Line between any two Points has its dfficulties, fo the next of drawing a Circle to a Center $\begin{gathered}\text { Or the } \operatorname{Arch} \text { of }\end{gathered}$ and Radius given, has many more, efpecially when the Radius is large. ?Tis almoft impoffible to make a Beam for the Compafs that is to defcribe it that fhall not bend and warp, and flrink and fretch in the ufing of it; and I remember when Mr. Reeve was to make a Gage for a Tool to grind an Objectglafs for a Telefcope of fixty Foot, after much Charge and Labour to perform it, tho' all poffible care and caution was imploy'd to effect it, yet after all he was near a Month in Gaging his Tool before he could bring it to any tolerable perfection, and even then he found it not to be of a Sphere of its due length, but confiderably lefs; which caus'd me to contrive a way how to do it true at once with a much lefs aparatus, and that of as great a Sphere as fhould be requir', as of fix hundred as well as of fixty Foot, which I publifh'd in my Micographia in the Year 1664 ; but one Campani an Italian above ten Years after publifh'd the fame thing as his ownInvention, not taking any notice of what I had done. 1 know Mr. Auzout Objected, that there were fome difficulties in adjufting the Machin, but I foon fatisfy'd him that they were all infignificant.

53^{2} Leftures concerning Navigation and Afronomiy.

So that we fee, that tho' Science can eafily fuppore and conccive things as poffible to be done, yet Art doth find many difficulties in the actual performance of them, and both ought to be call'd in for affiftants in the profecution of experimental Philofophy: Wherefore there ought to be as much care taken for the improving and perfecting of Art, as there is requir'd Sagacity and Perfpicacity in obferving the effects and methods of Nature.

Now Nature in its Operations, is, for the moft part, Regular, Conffant, Exact, Potent and Effective, and whatfoever is thereby defign'd, it accommodates all things neceffary to the performance thereof; it not only makes the Materials of a proper Subftance, but it fhapes the parts of their due Figure, and joins them in their due order, and actuates or moves them with proper motions. But Art, which at beft does but mimick Nature, muft fearch for materials where it can find them, and make ufe of fuch as can be procur'd. Thefe it muft fhape and fit for its purpofes as the Matter will indure, and as the Tools and Inftruments, made ufe of, will perform, and they muft be join'd and compos'd together as other circumftances will permit, and actuated by uncertain, irregular and infufficient Powers. So that at beft the productions of Art in refpeet of thofe of Nature, are very much inferior in perfection.

And yet they are of great fignificancy for the accommodating the productions of Nature to the ufe of Mankind. Thus Art doth form a Ship to pafs the Seas as big as the largeft Fifh, which it animates and directs with Men, and makes the Wind to move and convey from Port to Port. Art doth often alfo help and promote Natures Operations; as it improves the Sight by Spectacles, Microfcopes and Telefcopes. It divides and meafures the parts and intervals of Time by Watches: It converts Corninto Bread by feparating the Husks and Bran by the Sive and Searce, kneading the more nutritive part into Dough, and laft of all baking it in the Oven. And the Fruit of the Vine it improves to a moft pleafant Spirituous Liquour for drink. We owe almoft all our Accommodations of our Life to the productions of Art. Nature puts us into the World more naked than moft other of our fellow Creatures; but Art has abundantly fupply'd that Defect, by accom:modating the teguments of other Animals and Vegetables for that purpofe. Nay, Minerals alfo and Metals have been made fubfervient. I might inftance alfo in infinite other accommodations and conveniences of Life. So that tho' Art be far fhort of Nature in perfection of acting, yet fince the power of it is placed in Man, it feems to be of as great a concern to him to be knowing and potent therein; for every new difcovery therein gives him a new Power which he had not before. Thus the difcovery of the Magnetical Needle inabl'd him to crofs the Ocean and difcover a New World; and to incompafs the Earth and converfe with the remoteft Inhabitants. Thus the difcovery of Telefcopes inabled him to difcover Cæleftial Bodies never fo much as dreamt of before; and the Mifcrofcope has difcover'd a New World which was before wholly invifible. The difcovery of the Pendulum has actually proved the inequality of the length of Days, and divided the intervals of Time more exactly than the Sun.
The difcovery of Gun-powder and Guns has chang'd the whole method of offence, and defence both by Land and Sea. I might inftance in many other effects of Art to fhew how much the Power of Man is increafed by them : but thefe are fufficient, and by thefe we may be inabled to judge of their fignificancy when they are made ufe of as they ought.

By thefe alfo we may be fufficiently inform'd bow much a new Difcovery or Obferration may be confiderable when duly apply'd, tho ${ }^{\circ}$ in itfelf it feems never fo obvious, ilight and common, as to inftance in the Pendulum, or in Printing, the grounds of which were fufficiently obvious to all, and therefore flighted, whereas the due application of them has perform'd almoft miracles. And there are other things as obvious as them, which being duly apply'd, will be as effective tho' in another kind. An Experiment or Difcovery is not therefore to be flighted, becaufe, when it is fhewn, it feems eafy, and obvious, and trivial, and becaufe the confequences or ufes thereof are not prefently detected.

Lectures concerving Navigation and Afrenomy.

What I fome Weeks fince propounded concerning the drawing of a Circle true to a large Radius, I do very much doubt whether the beft Mechanick; it fhould be propounded to, would prefently be able to effect it ; which I am thie more inclin'd to believe from the Experimets I have feen try'd to that effect, by the moft accomplifh'd Perfons both for Science and Art ; and yet wher difcover'd, Idoubt not but almolt every one will be apt to fay, he knew as much; and yet Ido not find that any one has mention'd it in their Writings. Guidus Ubaldus and Stoffler have fhewn a way of drawing a part of a Circle of a large Radius by the help of two Rulers fix'd at a proper Angle, and fliding againft two Pinns at the extreamities of the Arch to be defcrib'd, which is founded on a propofition of Euclid; but our Mathematical-Inftrument-makers feldom or never make ufe thereof, becanfe of the difficulty of its ufe, and imperfection of its performance; and tho' Mr. Reeve had procur'd one made with great exartnefs, yet it did not perform its effects; but he made a Beam compafs of fixty Foot Radius, which did it not much better, by reafon of the warping at fo great a length, which I conceive alfo Sir Cbr. Wreaz complain'd of in friking the Circle for the Dome at St. Paul's, tho', for that effect, it were accurate enough. The Mathematical-Inftrument-makers inftead of the Angular Rule miake ufe of a Steel Bow, which they can, by a Screw, bend more or lefs as they have occafion, and fo can ftrike a fmall Arch of a Curve, which, tho' not exact, is yet near enough to the Arch of a Circle they have occafion to make upon their Inftrument, and ferves well enough for common ufe in fmall Inftruments; but where the Inftrumonts are large and the Arches great, the irregularity may be difoover'd; and if a Planifphericali projection of a Sphere of twenty or thirty Foot Diameter were to be drawn, both thefe Inventions would be infignificant.

The contrivance which I fhall at prefent defcribe is fuch as will perform The method for 2 what is neceffary for the defcribing a Circle of two hundred or three handr-drawing large ed Foot of Diameter; which for moft ufes in making Inftruments or Mapps Circlec: of the Planifpherical Projection as iarge as any I have yet feen, or for ftriking Gages for Glafs Tools or Difhes larger than any have been yet made; tho' for fuch Tools indeed, the method I have deférib'd in my Micrography is much better, becaufe it doth at once, gage the Mould for cafting, or the Tool for working of the true Spherical Surface requir'd, whereas this only making or defcribing a Line, the Mould and the Tool mutt be turn'd by that Gage to make the Surface thereof, of the Sphere requir'd. But there are other confiderable ufes of it as I fhall hortly have occalion to fhew.

Thur $\int d a y$, May 16 . The Royal Society met, I difcours'd of my Inftrument to draw a great Circle, and produc'd an Inftrument I had provided for that purpofe, and therewith, by the direction of a Wire about a hundred Foot long, I hew'd how to draw a Circle of that Radius; which gave fatisfaction; the way was by a fmall Truckle-wheel fix'd in a thin Ruler, fo that the Axis of the Truckle kept parallel to the extended Wire Radius. Which Ruler had two fmall Staples fix'd in it, through which the Wire could eafily flip to and fro. I explain'd alfo to them the other way of fixing the Truckle at the end of a fmall long Pipe of Brafs that had a hole at the Center of each end, through which holes that Wire was to pafs that was extended from the Center, and the fame Truckle being always at right Angles with the Radiant Wire, and the Wire being free to flip to and fro in the holes, the edge of the Truckle would defcribe the Arch of the Circle exact.

Wednefday May 22. 1695. I have the laft Meetings indeavour'd to explain the difficulties there are in making confiderable difcoveries either in Nature or Art ; and yet when they are difcover'd they often feem fo obvious and plain to be underftood or to be difcover'd, that it feems to be more difficult to give a fatisfactory Reafon why they were not fooner difcover'd than how they came to be detected now. How eafy it was (we now think) to find out a method of Printing of Letters, ecc. and yet except what may have happen'd in China, there is no Specimen or Hiftory of any thing of that kind done in this part of the World. How obvious was the vibration of Pendulous Bodies? And yet we do not find that it was made ufe of to divide the fpace's of time, 'till Galileo difcover'd the Ifochronefs of its motions, and

534 Lectures concerning Navigation and Aftronomy.

thought of that proper ufe for it. What I fhew'd an Experiment of and explain'd the laft Meeting, may poffibly be thought obvious and eafy enough to have been fooner thought of, by fuch as may have had occafion for its ufe, and yet I never found the leaft mention made of it in any Author I have yet met with. That contrivance will ferve very well for defcribing a Circle of two, three or four hundred Foot Diameter, and will defcribe it as exactly and curioufly as any finall Beam Compafs will do a Circle of two, three or four Foot. But when it doth exceed a certain length, even that alfo will begin to fail, and the difficulties will much increafe; for that a Wire will be too weak to bear a weight fufficient to ftrain it near enough to a ftraight; fo that there is in this way alfo a a non plus ultra, but eft aliguid Prodire tenus; this is much farther than could be done any other way; and by this way, if a true plain be given, any part, or even a whole Circle may be defcrib'd of as great a Diameter as I have already mention'd.

But if a greater be yet neceffary, Mechanicks do hitherto fail us, and Nature alfo gives us none greater nor lefs than the Circumference of the Earth, and that in the Surface of the Water, when the Air is Stagnant, or without Wind, or in the Surface of fuch Water frozen into Ice. But this is fo great a Spherical Surface, that it can be of no Mechanical ufe that I yet know of, unlefs it be to afford us a Plain large enough to defcribe a large Circle upon, which is otherwife difficult enough to be procur'd. But when we have procur'd fuch a Plain by the help of Nature in this manner by freezing, yet to defribe a Circle of a thoufand or two thoufand Foot Diameter, will be impoffible by any way I have yet met with; and yet I think it not beyond the power of Art, nay, tho' one of twice that magnitude were it neceffary.

And tho' it may be difficult enough to find a way before it be fhewn, yet when difcover'd, every one will be ready enough to fay, 'tis eafy to do, and that it was obvious to be thought of and invented; for that indeed every one fees the Experiment of it daily, and yet no one has thought of applying it to this purpofe, as in the inftance I juft now mention'd of the Pendulum: And that I may the more plainly evidence this, I have prepar'd an apparatus for the effecting thereof experimentally; which, tho it be not a compleat Inftrument, fuch as I defign to have made (when I can procure a proper Workman at leifure) yet by this, and the demonftration of the truth of the Grounds and Reafons thereof, it will be put out of doubt. This Apparatus, and the demonftration, I will prefently produce.

THe Author not baving given any farther defcription of his way, and the Apparatus of performing it, I thought it might be acceptable to tranforibe the account of it as I found it enter'd in the Gournal of the Royal Society as follows. May 22. 1695. Dr. Hook produced and read an account of an Inftrument for defcribing a very great Circle, being, by the helpof two rouling Circles or Truckles in the two ends of a Rule, made fo as to be turn'd in their Sockets to any afigned Angle, thereby to become the two Tangents of any great Circle to be defcribed; the inclination of the plains of the two little rouling Circles being always equal to the Angle, the length of the Ruler Jubtends to the Radius of the Circle propofed.

This is all I find concerning it; it weere to be wifht there had been Some draught thereof preferved; but this may may be better apprebended by the next following.

R. W.

Fune 20. 1695. I have in my former Difcourfes or Lectures fhewn fome new methods of defcribing the Arches of very large Circles, fuch as are very hardly poflible to be defcrib'd by any other way, at leaft not to that exactnefs, nor without almoft infinitely more trouble and labour; and thefe by Inftruments eafy enough to be made and ufed, and as eafy to be underftood and demonftrated, and thofe founded on Experiments and Practices fo univerfally known, that one would wonder how fuch an application as this
thould

Lectures concerning Navigation and Afronomy.

fhould not he thought of by any one that had occafion for the ufe of it; and this the rather, becaufe we know it to be the reafon on which is founded the practice not ony of turning the Waggons, Coaches, and fuch other four Wheel'd Carriages, but alfo of Boats, Lighters, Ships, and other Veffels; as alfo Fifhes for moving upon and through the Water, and of Hawks, Kites, and other Birds which move through the Air. But we need not much wonder neither, when we confider at the fame time how obvious the grounds of the Art of Printing were by the ufe of Seales, and of rectifying Clocks by the ufe of Pendulums, and yet how long the World was without thofe Arts before they were thought of for thofe purpofes and reduc'd to practice. The true caufe of which is the unwillingnefs that Men generally have to be at the trouble of thinking and meditating, efpecially when they 'obferve that thofe that are fo, do generally reap nothing for all their Labour, but either Contempt, and the nicknames of Madmen and Projectors, or the Emulations of others, which creates them continual troubles. Nor is there lefs difficulty in procuring the Inftruments or Apparatus neceflary to put a new Invention into ufe and practice, than to invent andicontrive the fame; for Workmen are generally very unwilling to be put out of their commonRoad of working, and make a hundred Objections before they will undertake, and very often make as many miftakes in the performing, before they will rightly execute what is defir'd; and the inventer muft be content not only to afford them his patience, but hisPurfe alfo, otherwife no further progrefs is to be expected, and often alfo, tho' both are fupply'd, yet nothing will procure any further trials; and new hands muft be fouglit, where poffibly the inventor fpeeds little better; but fuppofing him at laft to have executed his defign and made his purchafe, what has he got but fome Difficiles Nuga, fome new Sming Swanos, which were the names that the Barometer for the Weather, and the Pendulums for Clocks did a long time bear; but when Truth at length doth prevail, and the ufefulnefs of an Invention appears, then every one claims it for his own, tho' ponibly he never had the thought of it, 'till all the World knew it. Thefe may be fome of the reafons why inventions have come fo thin and feldom into the World: And why many parts of ufeful Knowledge do yet remain undifcover'd; nor can we well expect that they fhould be more frequent, 'till the allurements that fhould prompt the Inquiry have another appearance. However, whether from the Genius of thefe later Ages, or from the increafe of Literature by the propagation and communication of Knowledge by Printing, or from fome other happy influence from above; we have found that the prefent Age has been much more fruitful in that kind than many preceeding, and we may hope that the approaching may be yet more, if at leaft invenire difcambs invienendo, ut Scribendo difcimus frribere; Nam Kes dat lumina Rebies. This was one caufe why I contriv'd the following addition to what I have already explain'd concerning the methods of defcribing very large Circles. The firt of which was how to defcribe fucha Circle about a Center given, and the length of the Radius, and that of fo great a length, that it is almoft imponible for to make any Beam Compafs long enough to perform it without warping and bending, or any ftring ftrong enough to do it without ftretching and firinking; all which inconveniences I have thereby fhew'd how to obviate mofteafily by making ufe of one fmall Truckle put upon a Wire ftrain'd from fuch a Center to its Circumference. The fecond way was how to defcribe a Circle, or any part of it be the Radius almof never fo great, and that without knowing or making any ufe of the Center, but only upon knowing the length of the Radius of the defir'd Magnitude of fuch a Circle, or:the Magnitude of the Subtenfe of the Arch of a Degree, Minute or Second, ơc. of fuch a Circle. Now becaufe there may' be yet another condition defirable for fome occafions, which cannot be well'perform'd by either of thofe methods' and yet may be of neceflary ufe for the folving of fome Problems, or the actual execution of fome Defigns; upon further contemplating this 'Subject I have contriv'd this prefent Addition; and that is to draw the Arch of a Circle to a Center at a confiderable diftance, where the Center cannot well be approach'd, or where, by reafon of incumbrances interjacent, a Wire cannot be extended; as from

53^{6} Lectures concerning Navigation and Aftronomy.

the top of a Pole fet up in the midit of a Wood, or from the fpindle of a Vane at the top of a Tower in a City, or from a point on the other fide of a River, or in a Lake or Morafs; in all which the Center cannot conveniently be approach'd or come at otherwife than by-the Sight. This Requifite then I perform by the help of two Telefcopes, fo plac'd at the Truckles as thereby to fee through both of them the fame Point which is propos'd for the faid Center, and, by thus directing of them to fuch a Center, to fet the Truckles in their due pofture, fo as to defcribe by their motion any part of fuch a Circle as fhall be defir'd, whofe Center fhall be the point of the Pole or Spindle mention'd. The qualifications of the Inftrument neceffary for this Effect are, Firft, That the Centers of the Truckles be exactly equi-diftant from the Center of the Compafs; that is, that the Arms of the Compafs be of equal length. Secondly, That the plains of the edges of the Truckles do exactly interfect in the Center of the Compafs. Thirdly, That the two Telefcope Sights be exactly Perpendicular to thofe two Plains at two Points, as near as may be over the Centers of the Truckles.
Tab.12.Fig.3. This will be more plain by a delineation, where $a b$, $a b$ are the two Telefcopes directed to the inacceffible Center E. c, c the two Truckles plac'd at right Angles to the Telefcopes. cd , cd , two Rulers jointed at the Center d, b a Ruler upon which the two. Telefcopes flide, fo as to be fixt upon occafion after being directed to the diftant Center.

An Extract out of the Parifian Academies. Memoires relating to the alteration of the Axis of the Earths motion, Read to the R. S. July the third 1695.

As there are fome Inventions that are the Products of Defign and Ratiocination, fuch as are acquir'd by the ufe of known Principles by the way of reafoning, Application or Contrivance; fo there are others found out by meer chance upon Trials made for other purpofes, as Gun-powder, the Magnetical Vertue, Telefcopes, circ. But there is alfo a third fort of Inventions which may be afcrib'd partly to the one, partly to the other, partly to Defign and Ratiocination, and partlyalfo to Chance and Obfervation: Of this kind was that of the caufe of the Cæleftial motions and of the Spheroidical form of the Earth; of which I have long fince difcours'd, as alfo of the Parallax of the fixt Stars, and likewife of the alteration of the Poles of the Earths diurnal motion. Now tho' this Doctrine has hitherto met with great oppofition on the one Hand and contempt on the other, becaufe the later part of the invention has not been compleated by fome lucky chance to prove it pofitively, by finding out fome inftances among the many Obfervations that are record-, ed that might put it beyond difpute, nor by hitting upon a medium, by which that might be verify'd in a fhort time; which, according to the known methods of Obfervations, require a very long one, yet I hope that a little time will produce fome fuch proof as will put it out of doubt; and if that does not fucceed according to my expectation, yet I hope I fhall in fome little time be able to fhew a way how to effect it. I am not difpleas'd that Monfieur Caflini thinks it worth his inquiry, and 1 am apt to believe is confcious of the truth of it, and that he begins to think of expedients how to folve the Phænomena when they fhall be certainly found to concur with this Hypothefis, if he be not already convinc'd of it, and to be able to loofe the in-' venter of it by finding a great number of old pretenders to it. 'Tis true, that many have mention'd fuch a fufpicion, and have indeavour'd to prove it, but they feem to have grounded their Conjectures only upon Experiments or Obfervations made at feveral times in the fame place, but not upon the Theory of the caufes of fuch a variation, whereas my Conjectures concerning it were deduc'd from a Theory, which I conceive may be confonant to the procelfes of Nature; I know, indeed, that 'tis a very difficult matter to find out fuch a Theory, and almoft impolfible to make it fo evident as the Principles of Geometry; for that the Nature, Compofition, and internal Operations and Powers of mixt Bodies are far beyond the xeach of the Senfes; nor will

Tab: xII

Lectures concerning Navigation and Aftronomy. 537

the Analogy hold between the motion of grofs and fenfible Bodies and thofe of minute and infenfible, as can plainly enough be prov'd. And upon that account the Data, upon which the Ratiocination is founded, being uncertain The ufe of Tbeand onfy conjectural, the Conclufions or Deductions therefrom can at beft be no other than probable; but ftill they become more and more probable, as the Confequences deducd from them appear upon examinations by Trials and defign'd Obfervations to be confirm'd by Fact or Effect. So that the Effect is that which confummates the demonftration of the Invention itfelf; and the Theory is only an affiftant to direct fuch an Inquifition, and by what means to procure the demonftration of the Exiftence or non-exiftence thereof. Thus by my Theory I was led to believe that the body of Fupiter had a motion upon its Axis, and thereupon I had a long time indeavour'd to difcover by my fight, whether it were really fo as I fuppos'd ; but I could not perceive it 'till I procur'd and made ufe of a very good Telefcope, and there was a Concurrence of a due pofition of the permanent Spot in Fupiter, and a clearnefs of the Air, and poffibly of my Eyes that affifted me in the Obfervation; however therefore, tho' the Obfervation were the Demonftration; yet the Theory was the occafion of feeking after it: And the fame was that difcovery of the Parallax of the Earth, and of the Cxleftial Motions, which I have mention'd in my Difcourfe, Printed on that Subject. Now, tho' I do not find that any have given themfelves the trouble to repeat the Experiments and Obfervations neceffary for that purpofe; and tho' I think there is no one that can find a real Objection againft the way and method of verifying it, which I made ufe of, yet there have not been wanting divers who have fo far taken notice of it as to fuggent other ways of doing it, tho', I conceive, much more troublefome; and abundantly more liable to Objection than that which I contriv'd. But let every one take his own method (for there may be many, but I believe it will be hard to find a better or fo good) provided they do actually make the difcovery of the reality thereof; and I am very apt to believe that the fame has been verify'd in France and elfewhere alro by my way, tho' they feem unwilling to own it, and have not publifh'd the Fact; and that poffibly may be, becaufe they (that have made it) are unwilling to be thought to learn from others; and becaufe I fear they cannot find another way of their own that will be fo good as mine. And this I am inclin'd to think from a late Difcourfe Publifh'd in the Memoires of the Parrfian Academy and elfewhere, by which they would have it be believ'd, that the Well in the Obfervatory of Paris was made for that purpofe before the publication of my attempt, tho' 'twas two Years after I had made thofe Obfervations, and read them to the Royal Society; and that Monfieur Caffini has purpofely made Obfervations of the Latitudes of Places to find whether they do alter or not, and that thereupon he had detected fuch a variation of the height of the Polar Star, which might ferve to make him the difcoverer of the annual Parallax. The mode of the whole Difcourfe is fomewhat fingular, which I have therefore extracted, to fhew what methods are us'd by fome to raife Arguments againft a truth they are unwilling to have known; and the rather, becaufe it is alfo fomewhat akin to Difcourfes for the fame purpofe of our own Enolifh Manufacture.
"The irregularity of the Seafons of fome late Years, and the frequent "Earthguakes which have happen'd in divers places has made fome fufpect a "change in the aconomy of the World, and there have been fome Aftrono" mers who believ'd that there has been of late fome confiderable changes " of the height of the Pole. Mon. Caffini having been confulted on this affair " frons divers places, has computed the prefent pofture of the Heavens; is with the Obfervations he has made for above thirty Years, as alfo with "thofe of the moft antient Aftronomers, to fee not only whether there has " been any change of late, but evenfor many paft Ages.
"The Antients took great care to compare the parts of the Heaven with Alieration of "thofe of the Earth, obferving the Circles of the Heavens which corre- the Latitude of
" fponded with the Mountains, Promontorys, and other notable parts of ${ }^{\text {places. }}$
"the Earth; and from time to time took notice whether thefe did alter :
"Twas not long before they found fome. Eratofthenes about two Thoufand

538 Letures concerning Navigation and Aftronomy.

". Years fince found by preceding Charts (as' Strabo relates) that the Moun-
"tains plac'd on the Eaft part of the Continent, had chang'd their Site,
"décliniing more to the North, as had alfo the Indies. He corrects thofe,
"and by a new Chart draws a parallel paffing between Hercules's Pillers, thro"
" the Streights of Sicily, over the South extreams. of Peloponefus, and con-
" tinu"d through Cilician to the Gulph of Iffus, and from thence to the Indies,
"over the Mountain Taurus parting Afia into the North and South.. There
" in Ptolomy's time, four hundred Years after, had changed places, Taurns
" lying three Degrees more North than the Streights of Hercules. But if
" the heights of the Pole in Ptolomy, now. isso Years fince, were exact,
"the Poles are gone back and are come to the places where Erat of thenes found
" them, Taurus and the Streights being both plac'd at 36°, but this paralle1
" runs two Degrees South of Sicily; and indeed the moft part of the heights
"the Pole, obferv'd by the Antients" differ very much from thofe found at
"sprefent. If any could be rely'd of, thofe fhould be at Marcilles and Byzan-
" i ium ; the one made by Pytheas, and the other by Hipparchuts, two of the
" moft famous Obfervators of their times. Thefe were made by Gnomons
" of great height, and at the Summer Solfice, well circumftantiated, and
"with all the exactners Aftronomy was then able to effect.. Now if there
"were exact, 'tis certain great alterations have 'happen'd fince the times of
"Hipparchus; for Hipparchus found Byantium in the parallel Pythias had plac-
"ed Marfeilles; yet Strabo, who liv'd 150 Years after Hipparchits; affirms
"Byzantium to be more North than Marfeilles: For the Parallel that palt
". through the Streights, was only $3{ }^{\circ}$, 34 , South of Mar feilles, but from Bi-
"zantium it was remov'd feven, whole Degrees. The Oriental Aftronomers,
"who liv'd divers "Ages'after Strabo, make Byzantium two Degrees more
"North than it was in Hipparchus's times, as is plain by the Tables of Nafer.
"E Eddir. and Vlư Beg.
"But in this Age on the clean contrary, Marfeilles is two whole Degrees"
" more North than Bizantium; for Cafint going on purpofe to Marfeilles in
"10.72, found the Latitude of it 43,17 . and Defchales at Byzantium obferv'd
" its Latitude only $4 \mathrm{I}^{\circ} \cdot 6^{\prime}$. which agrees alfo with " the Obfervations of Fa -
"ther Befnier, from all which, if fuppos'd true, there muft have happen'd
"tgreat changes.
"The difference alfo between the Latitudes of divers places recorded by
"Ptolomy, and thofe obferv'd in'the fame places by other Attonomers, finca
" may be argument enough for our Beleif, that the Pole has chang " much.
"Fince the time of Ptolomy. This difference appear"d fo convincing to Do-
"minickMaria of Ferrara (a Man of'an excellent Genius as Mitinus affirms",
" and who was Tuitor to Copernicus) that he afferted that the licight of the
" Pole did continually change, and that places now in the Torrid Zone, would,
" in process of time, come into the Frigid and the contrary; and that the
"Mountains of extbiopia, now roafted by the Sun, would in time be co-
"vered by Snow and Ice. Magimusalfo, and the Aftronomers of his time,
"affirm the Poles alfo to have changed. And Ticho was fo far mov'd by this
"Opinion, that he defir'd the State of Venice to fend" an able Aftronomer
" on purpofe to fee, if the prefent Latitude of Alexandria were the fame that
"Ptolomy had found it; but this without effect; however "tis expected from
"fome, fince fent for that purpofe by the French King. 'Tis true, the ex-
"actnefs of antient Obfervations was not to be compar'd to the Modern,
"and therefore no more fhall be faid on that head at prefent.
". But next to come to Obfervations lefs to be fufpected, as being made
"this laft Age: Rothman aflures Ticho by a Letter, that he had found a dif-
". ference of the height of the Pole of a Minute or two, between the Win -
"ter and Summer of the fame Year. Snillius and Ricciolus, who are both a-
" gainft this Opinion, do yet repoit Obfervations that confirm it, as that
"Ticho obferv'd the Latitude once $50^{\circ} \cdot 6^{\prime}$ another time $50^{\circ} \cdot 4 \cdot 30^{\prime \prime}$. fuch are
"theLatitudes of P aris found by feveral Men, 48. 39'. [48.45.] 48.50 . and
" fome 48. 55. Great differences are alfo found of the Latitude of the fame
"place taken at different times by Riccioli and Grimaldi with the greatelt ex" actnefs. Grimaldi, in 1645 , finds the Tower of Modeni in $44^{\circ} \cdot 37^{\prime}$. exは. - :

Lecfures concerning Navigation: and Aftronomy.

6
"

c.

 Acidents than to a change in the Healvens."And yet it is moft- probable that there is fome fmall variation of the

540
 Lectures concerning Navigation and Aftronomy.

" ready feen, that thofe of Pythias made at Marfeilles three hundred Years " before Chrift, and Caffini's in 1672 . differ but fome Minutes, and we may " mortly expect, whether thofe fent by the King on purpofe to Alexandria, " will find any difference from Ptolomy's Soliftitial Altitudes.
" It is of great importance in Aftronomy to know to what precifenefs the " height of the Pole can be found; for ifwe cannot with all our care, be fure " of it within half a Minute, 'tis in vain to make ufe of it for finding the "Parallax of Planets above the Moon, or for fetling the hour of the Sol"ftice, where fome few Seconds are confiderable; but indeed for Ceogra"phy, Navigation, or Chorography, this is curious enough".

The Authors Fefleilions.
of the Meridian line at

What the defign of this long Difcourfe of Mr. Caffini may be I cannot gather, unlefs it be to feem to deny the variation of the Altitude of the Pole. becaufe poffibly he is oblig'd fo to do, and yet at the fame time exactly prove it ; or by a new way to folve the annual Parallax of the fixt Stars; which he feems to grant, but yet 'tis by a new fancy of his own, for which I can conceive no reafon. Me thought Monfieur Comars was much more conceivable, tho' extravagant enough, that evcry Star mov'd in a little Epicicle o. a Minute in Diameter, once round in a Year. Next: I cannot but wonder to find him at the fame time relying on Obfervations of the Antients to prove what he would have to be fo, and rejecting as far (and befpattering indeed all) that are not for him; an eafy way to prove or difpove any thing. Thirdly, I obferve, that tho' what I had formerly fooken of the alteration of the Center of the Gravitation of the Earth, were look'd upon as a very extravagant and improbable Opinion, yet I conceive it is not fo efteem'd by the Parifian Academians ; otherwife it would not have been Printed. I am alfo now apt to fufpect that Ticho Brabe did doulein Hypotbefei; fince, by Rothman's, he was advertis'd of fuch an annual Phænomenon or Change, and that he might cafily have fatisfy'd himfelf by his own Obfervations, without fending toc Egypt for information. To conclude, as Monficur Ca.fini conceives thefe little variations or fwayings of the Poles and Solftices will, in fome fhort time, fettle and fix in their true places; fo I conceive that all thefe ftruglings to make it this or that, fomewhat or nothing, more or lefs, will at laft terminate in that Explication thereof, which I have long fince propounded.

La Meridiana del Tempio di S. Petronio, \&c. i.e. The Meridian Line of the Church of St. Petronio, drawn and fitted for Aftronomical Obfervations in the Year 1655, Revis'd and reftor'd in the Year 1695. by Foh. Dominico Caffini primary Aftronomer. Pontificial, Mathematician, and one of the Royal Accademy of Sciences; Printed at Bolognia 1695, in twenty two Sheets in Folio.

In this Book written by Mon. Cafini, but Publifh'd by Dominico Guglielmini; there is an account given of the occafion of making this Meridian Line in the Year 1650 , of the method of doing it, and of the exactnefs with which it was perform'd by Mr. Caffini at that time; then of the ufes that have been made of it, and of the alterations that have happen'd to this Church fince that time, and of the Reftauration and Examination of it in the Year 1695, by Monfieur Caffini himfelf; and laftly, of the ufes that may be ; made of it for the future.
To this is adjoined a Difcourfe of Snr. Dominico Guglielmini, Mathematician and publick Lecturer of Bolognia, giving an account of the Operations made, and of the Inftruments us'd in this laft Reftauration of the faid Meridian Line. Monfieur Caffini in the firf Section, fays, this verifycation was the more confiderable, Firft, Becaufe it fell out to be the Year before the laft intercalation of the Gregorian Year, before the omitting of one Leap Year (which is to be done in the Year 1700, in order to make the vernal \mathbb{E} quinox to be on the twenty firft of March) and fo would give an opportunity to obferve exactly the time of the Suns entrance into Aries. And, Secondly, For determining a Controverfy much agitated now among the Learned, whether the Pofition of the Meridians and Parallels on the Earths Surface

Difference of Meridians among she MO derns. do really alter ; for that not only the prefent pofture of them are found very different from thofe of the Antient Geographers; but differences are found alfo among the more modern Obfervations, as the prefent Meridian of Ura-

Lectures concerning Navigation and Aftronomy. 54I

neburg has been lately found by Monfieur Pisart and others, to vary 1 $^{\circ}$. towards the Eaft from that fixed by Ticho Brabe above a hundred Years fince; and the Pyramid of Egypt has been found newly to ftand in a pofture that two fides of it refpect the South. Now he having found that the Meridian and Parallel of Bonozia have not alter'd at Bononia in fourty Years, conceives thofe other alterations, fuppos'd to be found, are to be afcrib'd to the defects of the Obfervations themfelves. In the next place he relates the firft occafion of making a Meridian Line in this Church of St. Petronio, to be for rectifying the time of Eafter, and the Fealts of the Church which depend on the true time of the Vernal Æquinox. Now the Prelates of Alexandria (who were deputed by the Council of Nice to ftate that time) found it then to be on the twenty firft of March; but Pope Gregory being inform'd, that it, in this time, fell on the elcrenth of that Month; he alter'd the Julian $\bar{A} c$ count, and made the eleventh to be the twenty firft. This was the occafion of Ignatio Dante's firft making a Meridian Line in the Pavement of that Church in the Year 1575, before this alteration which was in 1683; but this Line being found to vary from the prefent Meridian, and to be ferviceable only for obferving the Solftices, and being fufpected to be fo mifplaced by reafon of the obftruction of the Pillars of that Church was the occafion of Monfieur Caffini's finding a fitter place, and fixing there his new Meridian Line in the Year 1555 . the place where, and manner how he more particularly and fully expreffes, becaufe it was of fo confiderable, and, as it were, of facred ufe to the Church: He names all the eminent Aftronomers who were his Conconitants in the Operations, as witneffes of the exactnefs of it. After this he relates feveral variations that have happen'd to that Fabrick fince he firft fixed this Line, and thereby fhews the necellity and ufe of the Reftauration, and adjufting itis for the time to come, by which any further alteration that mav happen to that Building for the future, may be fo far remedied, and the eifential parts of this Line fo far reftor'd and rectify'd, that they fhall be as effectual as if no alteration had happen'd. The ufes of which will be not only to fhaw the true time of the Suns ingrefs into the Tropicks and Æquinoctial Points, but likewife into all the other Signs, and fo ferve for the verifying or rectifying the Calender. The fame being now fo plac'd as that the Perpcndicular height of the hole by which the Light is admitted (which is an Inch in Diameter) is a thoufand Inches of the Paris Foot above the Pavement and the Meridian Line which is as a tangent to it, as the tangent of 45°. divided into 100000 parts upon one of the Marble Cheeks that border the Ruler of Iron that expreffes the Meridian Line, and upon the other Cheek of Marble are mark'd the Degrees of the diftance of the Sun from the Zenith, whereon are alfo mark'd the places of the Signs of the Ecliptick. From the Obfervations made by this Line Monfieur Cafini calculated his Tables of Refractions, which have been fince verify'd by other Obfervations.

Thefe confiderations induc'd the Senators of Bononia who had the care of the faid Edifice committed to them to be at the charge to repair the faid Line, and to take care that it fhould be preferv'd for the future; to which intent they not only caus'd the Indruments made ufe of in the fixing this Line to be fafely preferr'd, but they alfo defir'd D. Guilelmini to make fo good a defcription of them, that in cafe of decay it may be known how to fupply and make ufe of them for this purpofe for the future; which intention and defire the faid Learned Profeflor hath fully perfected and compleated in his Difcourfe fubjoined to that of Monfieur Caflini, and has like wife added fome ufeful Tables, as that of the parts of the Radius anfwering to the divifions of the Tangent into Degrees, Minutes and Seconds. Second1y, That of the Refractions and Parallaxes of the Sun at feveral Altitudes. And, Thirdly, A Table of the Declination of every Point of the Ecliptick, anfwering to the Minutes of Declination for the obliquity of the Ecliptick, which he makes to be $23^{\circ} \cdot 29^{\prime}$. $12^{\prime \prime}$. He fays alfo, that he by accurate Ob fervations, find the height of the Pole at that Church to be $44^{\circ} \cdot 30^{\prime} \cdot 15^{\prime \prime}$. which is $\mathfrak{1}^{\prime} .15$ ". greater than what Monfieur Caflini had found it in the Year

542 Lectures concerning Navigation and Aftronomy.

7he Authors Remarks.
1655. All which Particulars, and many other remarkable will be found in the Treatife itfelf, to which the Reader is referr'd.

That the Meridian Line which was fix'd by Dante, was not plac'd in the true North and South Line, but did vary a little from it at firft I can eafily grant; by reafon of the Pofition of the Church and the Pillars thereofwhich would not fupply a fitting Room and Space for a more convenient Situation of it; and for thatI find the Author Dante to acknowledge as much in his Anemographia, Printed 1578. namely, that it did deflect a little towards the North-Eaft, for that he fays, that the Sun, when it come to pafs his Line, was a little fallen from its Meridian Altitude; but whether the fame did then refpect the Meridian with the fame Inclination as now it is found to do; namely, with an inclination of $9^{\circ} \cdot 6^{\prime} \cdot 20^{\prime \prime}$. as Riccioli obferv'd it, we have no Evidence; and I do very much doubt whether we fhould have been acquainted with it if there had been found a real variation; becaufe the very imagination of fuch a variation was condemned in Galileo, who brought it as an Argument to prove the motion of the Earth; who, as Riccioli words it, ex nimio Pruritu ammum motum telluris undecumq; fulciendi, Statim ac audivit mutationem Linic Meridiana aMarflio affertamconcepit animoSpem binc argutumaliquid proterra motu annuo excudendi. And fuchias are zealous to defend a Profeffion of their own, or receiv'd Doctrine of the Religion they profefs, or of the Church of which they are a Member, are very unwilling to hear any Argument that fhall be urged againft it; much lefs to produce or publifh any new Argument or Evidence of their own finding; however, 'tis very hard to fuppofe the noble Ticho Brabe to have been fo negligent. or ignorant as to place it eighteen Minutes wrong, and the variation obferv'd by Guilelimni of the Latitude of Bononia to be different from that obferv'd by Senr. Cafjini, feem to argue fomewhat for a variation. But let Time determine this Controverfy to Pofterity, and every one for the prefent fatisfy himfelf as well as he can with what evidence he can meet with: That there are as great mutations as thefe in the Globe of the Earth, and of fome of the other Globes I hope I fhall be able fome other time to prove.

HAving met mith the following Paper among the Authors loofe Manufcripts, I judged it might not be unacceptable in regardthe foregoing Difcourfes, concorning the Rumb-line, is left 50 imperfect.

> R. W.

Sep. 25.85. The projecting the Rumb-line from the Pole, maketh it a proportional Spiral upon a plain parallel to the 压quator, and confequently the Rays from the Center being Meridians, are the true tangent Lines of half the Angles from the Center, or of half the Degrees of the Complement of the Latitude, and confequently the interfection of the Rumb-line is eafily found by the propriety of the proportional Spiral, equal differences of Longitude dividing the faid Meridian or Tangent Lines into continual Proportionals; which continual Proportionals are eafily found by the Logarithms, and by the Logarithms of the half Tangent Lines the Degrees of the Complement of the Latitude are alfo found; and in a plain projection upon a Cylinder, the divifion of the Meridians are made in proportion of the Logarithm of the half Tangents of the Complements of the Latitude; but if it be made by the projection beyond the Fquinoctial, then the Logarithms of the half Tangent of the Latitude will give the divifions of Latitudes upon the Meridian.

Lectures concerning Navigation and Aftronomy.

THe Author not proceeding any further in the former Difquijition as to the other methods of finding the Longitude at Sea, except fome fragments relating to thei;improvement of Time-keepers, which poffilly I may fome time or other give ain Abftract of, if I can reduce them to any Order, they coming to my Hands very imperfect, many parts of the Difcour fes being loft: I Say, the Author breaking off the former Difcourre abruptly, I hall bere prefent the Reader with a meethod by bim propounded for finding the Latitude of Places.
R. W.

Read before the Royal Society, May It th. 1687*

Imention'd, in fome former Difcourfes, fome ways of difcovering the Latiudes of places at Sea without knowing the Meridian, and without taking an Altitude, which were perform'd by the help of fome true Projections of the Cæleftial Hemefpheres, whereof the Polar Points were the Centers, by finding and obferving fome remarkable Stars in fome one Azymuth or Perpendicular, and two other remarkable Stars in fome other; and this to be performed either when fuch Obfervations happened to be made both at the fame inftant, or the one of them fome known or noted time after the other.

The former of thefe two ways, which fuppofeth both the faid Obfervati-ways of findons to be made at the fame inftant, I fhew'd by the Tangent Projection up- ing the Latipon a Plain touching the Polar Point, or any other Point of the Sphere that tude. comprehended all the four Stars; the Zenith Point of the Place, and the Polar Point or 不quinoctial Circle, was very eafily perform'd by the help of a Ruler and Compaffes, by drawing a ftraight Line crofs the Projection with black Lead, paffing through two of them that were obferv'd in one Azymuth, I do not reand then laying the Ruler over the other two that were obferv'd in the o-member to bave ther Azymuth, and noting the Point where the faid Ruler fhall cut the for - feen the mer Line drawn with black Lead upon the Projection; for that That Point ceding phis. of Interfection will reprefent the true Point of the Heavens then in the Zenith of the place where fuch Obfervation fhall be made. Now by finding the true diftance of that Point of Interfection cither from the Polar Point, if it be comprehended in the Projection, or from the Æquinoctial Circle, if that be comprehended, it will not be difficult to find the true Latitude of the place; and, if it be defir'd, the Pofitions of thofe Azymuths and the hour of the Night, and the true Meridian Line, and the like, which would be too long to explain and exemplify at this time and place.

The former of thefe two kinds of Obfervations may alfo be perform'd by the planifpherical Projections, or the half Tangent Projections, where the Polar Points are made the Center of the Projections more eafily, or fomewhat more difficultly where any other Point of the Sphere is made the Center of the Projection; which is perform'd by drawing great Circles upon the faid Projections with black Lead which fhall pafs through each of the two Stars obferv'd in the one and the other Azymuth or Perpendicular; for that the Point of Interfection of the two great Circles thus drawn, will fhew, upon the faid Projection, the true Zenith Point of the place, whofe diftance from the Polar Point of the faid Projection (which is eafly meafurable) will give the Complement of the Latitude of the place. The greateft difficulty in this way, is the drawing of a great Circle upon the Projection, which fhall pafs though the two Stars obferv'd in the fame Azymuth or Perpendicular. But this, as it may be perform'd divers ways, fome more eafy, fome a little more difficult, fome of which are Printed, and others may if occafion require; fo I think none fo difficult, but that an ordinary Capacity may, in a fhort fpace, be inform'd how to effect and perform the fame with accuratenefs enough. But the explaining thefe ways would be coo long for this prefent Meeting.

544 Lectures concerning Navigation and Aftronomy．

As for the fecond fort of Obfervations，wherein the two Azymuths are obferv＇d at two differing times；that is，the fecond Obfervation of any two noted Stars in fome Azymuth is taken，fome known or meafur＇d fpace of time after the firft hath been taken notice of：Thefe may be made alfo ferviceable for the finding not only the Latitude of the place，but alfo of all the other Poffulata mention＇d to be found by the former way，but with fome－ what more of Operation，and that not only by the Projections of the Sphere made according to the Tangents，but alfo by thofe of the fame made by the half Tangents of diftance from the Central Point thereof：And both thefe may be divers ways effected upon the faid Projections；but the mof eafy，and that which is accommodated to both thefe kinds of Projections， is by fuppofing that part of the Heavens to ftand ftill，wherein the firlt Obfervation was made，whilft the reft of the Heavens have pafs＇d on their ufual progrefs proportion＇d to the interval of Time between the firft and fecond Obfervation；for by that means the two Azymuth－Circles both paffing through the Zenith of the place，both the ftraight Lines reprefent－ ing them in the Tangent Projection crofs each other in the Zenith Point，or in a Point as far diftant from the Pole of the Projection，as the Zenith of the place is from the true Pole in the Heavens；and alfo the Circles in the half Tangent Projection reprefenting thofe great Circles of Azymuths will crofs each other in the Zenith Point at the later Obfervation．

To make this the more intelligible，let $\mathfrak{d} \mathfrak{r}$ ，\Rightarrow reprefent four notable Stars truly plac＇d in a Tangent Projection of a large part of the Northern Hemifphere，whofe Polar or Central Point let P reprefent．
Let $\not \approx t$ ，by Obfervation，be found to be in the fame Azymuth or Per－ pendicular one above the other at fome time of the Night；lay a Rule over thofe tivo Stars in the Projection，and draw the Line FA r 民 ；this Line therefore muft reprefent the faid Azymuth Line or great Circle in which is the Zenith－Point at the time of Obfervation；which Zenith－Point we are yet to feek and find out，becaufe the great Circle that paffeth＂through the other two Stars $\mathfrak{y} \mathfrak{g}$ ，doth not crofs the former now in the Zenith－point， but in fome other Point，as A at an unknown diftance from it；but by watch－ ing them they are found by fome good Time－kceper，as a Pendulum－watch， or the like，to meafure the Time，and a convenient Inftrument to find when they are in fome one and the fame Perpendicular，at two Hours after the firft Obfervation，to be in one Azymuth Line．Now，tho＇not before，a Atraight Line drawn through them，reprefenting a great Circle，will alfo Ec a true Azymuth Circle，and will pafs through the Zenith－point of the place at the time of the later Obfervation．Let a, n, g ，reprefent the An－ gle made at the Pole by the Heavens moving Weftward in the fpace of two Hours，viz．thirty Degrees．Suppofe then the Azymuth Circle firft taken， viz．FA \mathfrak{r} 狈 to ftand fill，and all the reft of the Heavens or the two Stars $\mathcal{\xi} \ddagger$ to be mov＇d forwards or Weftwards thirty Degrees，and $\mathcal{g} \ddagger$ be now at $\mathrm{S} \mathrm{s}_{2}$ draw the ftraight Line through them，viz．bS s ，cutting the other FA敢 \mathfrak{r} ，not in A as at the time of the firft Obfervation，but，at Z ，I fay；this Point of Interfection Z，fhall reprefent the true Zenith－Point of the place， both in the firft and laft Obfervation；for APB is made equal to a $n \mathrm{~g}$ ，de－ noting the interpos＇d time，and Pb s S is made equal to the Angle $\mathrm{PA} \ddagger \subseteq$ ， which fhews their refpects to the Pole in the later and firt Obfervation． Now FA丸̉ and bs S both paffing through the Zenith；there can be no other Point in them to reprefent the fame，but where they crofs each other，viz． Z ．Z therefore is the true Zenith Point，and its diftance from the Polar Point P being meafur＇d upon the Projection，will give the Complement of the Latitude of the place．

The fame thing may be perform＇d upon the half－Tangent Projection，and with more convenience，by reafon of its great Capacity，and the lefs ine－ quality of divifions：It hath only one Operation fomewhat more difficult than the other，and that is the drawing great Circles through the faid Stars inftead of ftraight Lines in the preceding way；but in all things elfe the Method and Demonftration is the fame with that，and the Point of Inter－

Lectures concerning Navigation and Aftronomy. 545

fection of the fixt Azymuth, and remor'd Azymuth is the Zenith-Point of the place.
Now the ways of drawing a projected great Circle which fhall pafs thro' two Points given of this kind of Projection, being many, and moft of them eafy enough; I conceive this method of finding the Latitude of places may be of very good ufe for Navigation, efpecially at fuch, times, as, by reafon of Foggs or other Impediments (as the unknown declination of the place) Altitudes cannot be fo well obferv'd or made ufe of at Sea.

But for the finding the exact Latitude of places upon the Land where great Inftruments may be us'd, I have other methods, not depending upon the fuppos'd true placing of the Stars, whereby that inquiry may be anfiver'd to what accuratenefs fhall be defir'd, which will be of very good ufe for that other queftion which I have propounded; that is, whether the Latitude of places alter and vary upon the Earth in procefs of time; and fince, if there fhould be any fuch, the variation is but fmall, and therefore very flow, and the unaccuratenefs poffibly of former Obfervations cannot much be depended upon; I conceive that by thofe ways it may be poffible to refolve that in a very few Years, which, by the commonly known methods, cannot be expected in lefs than fome Ages, which is the beft way of redeeming Time by making the beft ufe of what we have yet to come.

This Lecture, and the following, treat of the inequality of the Earths Motion, and of the methods of obferving and examining it.
May 25. 1687. It has been no fmall difcouragement to my progrefs in explicating fome Phænomena of Nature by fome new Hypothefes, to find that they have been mifreprefented, or at leaft mifunderftood or mifconftru'd ; mifreprefented I mean, when, Firft, I have been faid to affert that abfolutely and pofitively; which I only propounded as an Hypothefis, or as Queries to be further examin'd by Reafon, Experiments and Obfervations. And, Secondly, When I have been reprefented, as affirming things which I never did nor could have done with coherency to the Hypothefis; as that the Earth hath been many times, befides in Noah's Flood, all cover'd with Waduc'd were not rightly confiderfood 1 mean, when the Arguments I proferent to the Examiners to conceive of the matter as I had argued for indifthe quite contrary: As to conceive that the Figure of the Earth may be or ther a prolated Sphæroeid, or ari oblong Sphæroeid, or neither of thefe Mifconitrued I mean, when that which I propounded for one end and ufe, is wrefted to quite another; as becaufe I had doubted of the fufficiency and certainty of the Aftronomical Obfervations for this purpofe, only for determining whether the true Latitude of places, or their true Meridian Lines, had varied, therefore I am reprefented as calling in queftion all Hiftory, both Divine and Humane. Thefe kinds of proceeding might have been expected from a provoked Adverfary; but why they come, whence they they do, I know no reafon. However, by the Sequel I doubt not but that even thofe who fhew the moft prejudice, will make it evident by the benefit and ufe they make of them, that there was no reafon for fuch kind of treatment; nor fhall it deter me from proceding to propound fome other Conjectures; which, whether rightly propounded or not, I fhall leave to further examinations by Experiments and Obfervations, as 1 did the former ; all I defire is a fair trial ; let the Teftimonies of Nature itfelf be examin'd, and their Evidence not wrefted nor bafled.

The thing I hall at prefent propound, is what I hinted in my attempt to of an inequatiprove the motion of the Earth. Page the 27, Line the 31, 32, Frc. I did tyof the Earths there hint, that I had then, in fome of the foregoing Obfervations therediurnal motimention'd, difcover'd fome new motions even in the Earth itfelf, which ${ }^{0 x}$ perhaps were not thought of before; one of which was this which follows, which whether it were afcribable to this or any other caufe, I will not contend; let trials more accurate and curious than poffibly thofe firft were may determine it; I propounded it only as a query for examination. It is eighteen

546. Lectures concerning Navigation and Aftronomy.

Years fince I made the Obfervations, and they were made by a Clock which went three Years, without winding up more than once, which was the firf of that kind, where the wcight of the Pendulum was very near as big as the weight that kept it going for fo long a time; whether the caufe of the inequality were to be afcrib'd to the Clock, or the Earth; or fome other unheeded Circumftance, I will not now contend; yet I did, with what care I then could, confider of all I could think of, and upon the whole conceived them to be afcribable to fome inequality in the motion of the Earth; but let further trials determine it.

I conceiv'd then that there was fome inequality in the diurnal Revolution of the Earth, not fuch a one as Kepler fuppofeth, only of the Earth turning quicker when nearer the Sun, and flower when further from it, but an inequality in every Revolution; that is, that in one part of the Revolution it was flower, ill another fomewhat quicker; which, whether to afcribe it to the power of the.Sun, or that of the Moon, or both, let farther examination determine; for there may poffibly be caufes, why both of them may effect it in its diurnal Revolution. I do therefore propound as Queries, whether there may not be in the Body of the Earth fome parts which, tho' as to the gravitating powers of the Earth, mày be duly dituated and poifed for its equal Revolution upon its Axis, yet with refpect to the gravitating Power of the Sun or Moon may not be counterpois'd, but be over ballanc'd on one fide of its Axis.
That there may Se a difference in the kinds of gravitation
different $B o-$ different Sodies.
of the Moons Librativg and Conftitution of its Body.

I know that if the gravitating Power in the Sun and Moon be exactly the fame with that of the Earth, the Query I propounded can have no ground; but tho' they may in moft particulars be confonant, as I fhall prove in my Theory of Gravity, yet there may be a caufe (and there feems to be fome affignable) why there may be fomething Specifick in each of them, of that kind which I now propofe, as may be poffibly conceiv'd from the Moons Libration, or -its turning or keeping pretty near the fame fide of its Body to the Surface of the Earth. For tho the fuppofing it to turn upon its Axis in refpeet of the Sun, fo as to make a Revolution Ifocrone to its Synodick Revolution about the Earth, be án ingenious Hypothefis; yet the Phyfical Reaf fon of fuch ant cquality feems pretty difficult to be conceiv'd, unlefs we fuppofe fome caufe from the Conftitution of the Body of the Moon itfelf, which makes one part of it gravitate more towards the Center of the Earth than another in fuch a Revolution. And if fuch there be (as I fee yet no clear teafon to the contrary) then muft the unequal progreffes of the Moon produce a kind of Vibrating, Librating, or Pendulous motion thereof; fo that - the equal motion fuppos'd will be blended or compounded with a Pendulous motion of that part towards the Center of the Earth. I will not prefume to aflign what this caure may be in the Body of the Moon; whether one fide of its Body next the Earth be more denfe and folid, and the oppofite more porous and fpungy, or whether the one be conftituted of Bodies more heavy in Specie than the other, as that thofe parts which refpect the Earth, fhould be more of the Nature of Eartlp, Stone, Rocks or Minerals, and the oppofite of Waters, Seas, Atmofphere, Air, or fomewhat anologous to thein; which fome appearances do feem to favour, and fome others purpofely and defignedly contriv'd and perform'd, may give us further infurmation of: But upon the whole it feems to me there is a neceflity of fome fuch fuppofition to folve the Phænomena hitherto taken notice of; and there may be a neceflity of fome other fuppofitions to folve fome other Phænomena which I fhall on another occafion mention. As to fuppofe that the Body of the Moon, tho' it be Sphærical as to its Circumference which appears in the Full and New Moon, in Ecclipfes of the Sun, when view'd from the Earth, yet that its Body may be in that Diameter of it which refpests the Earth much longer than in any other Diameter; that is, it may be of an oblong oval Figure whofe longeft Diameter refpects the Earth; whofe Centers of Gravity, tho' they are in the Axis, are yet not in the middle thereof, but nearer towards the Earth. Now if there be fuch a diverfity of the Body of the Moon with refpect to the Earth, why may there not be fome fuch in the Body of the Earth with refpect to the Sun, nay, tho' it have a Rcvolution upon

Lectures concerning Navigation and Aftronomy. 547

its own Axis ? For fuppofing the Earth fufpended on its Axis of motion, if any of the caufe of
one part of that with refpect to the Gravitationtowards the Sundo more than the inequulity
over-ballance the part oppofite to it on the other fide (tho' as to the Gravity of the Earths
to the Earth they are ballanced) then mult that part have a tendency to-diurnalmotion.
wards the Center of the Sun, if at any time it be remov'd out of that Pofi-
tion; and that tendency muft be Analogous to that of a fingle Pendulum (here
fufpended) towards the Center of the Earth; fo that when the motion of
Rotation is carrying it towards its loweft or direct Point, that power muft.
accelerate that motion, and when it hath pars'd that Point, and is beyond
it, that power muft retard it according to the Degrees or Proportions by
which a vibrating Pendulum is accelerated, when mov d towards the Perpen-
dicular, and retarded when mov'd from it; and this Accelerationand Re-
tardation muft intermix and blend itfelf with the equal Circular motion, and
Accelerate it in one part, and Retard it in another part of its Revolution;
as will be more conceivable by the Experiment I fhall by and by fhew with a Wheel whofe Axis lies Horizontal, and one of whofe fides is fomewhat heavier than the other. Now, as I Conjecture or Query, whether there be not fome fuch Principle acting with refpect to the Sun; foI do fomewhat farther query whether there be not fome fuch Anomaly with refpect to the Moon, between which and the Earth there feems to be a much nearer kindred and affinity than between that of the Earth and of the Sun; and poffibly fomewhat of the Phænomena of the chànge of the Sea by Tides and Currents, and of the Air by Winds or Motions thereof may be found to be influenc'd by fuch a Difcovery.

What ever the event may be upon a frict examination by Experiments, I conceive it will not be unacceptable, fince it will be a truth in Phyfick afcertain'd, which will influence many other; and I know no other way of trying it, than by that which gave me the firft hint of it, which was the obferving the Velocities of feveral Stars at feveral times of the Night in their paffing by the Zenith, by comparing the feveral Arches they make in a certain fpace of time with one another, and with the time exactly kept by a curious Pendulum Clock; for if we find that feveral Stars plac'd in or very near the parallel of Declination which paffeth over the Zenith in feveral parts thereof do all of them pafs a certain Arch thereof when they tranfit the Zenith in the fame fpace of time exactly, then we may conclude that the diurnal Rotation is equal and uniform in a whole Revolution; but if it fhall be found that fome of them pafs an equal Arch in a longer, fome in a fhorter time; (which was the Phrnomena I took notice of) then it will be further requilite to profecute fuch other Obfervations as may determine the Reafons and Caufes thereof, and farther Light will follow from it whatever way the Experiment fhall determine it, provided they be carefully and accurately made with accurate Clocks, and with Inftruments fitted with Telefcope, Sights.

Now becaufe the things to be obferv'd, which are neceffary to compleat the Obfervation, are only two, namely, Firft, The length of an Arch mov'd by a Cæleitial Body. And, Secondly, The time wherein that Body that moves fuch a determinate Arch ; therefore 1 have contriv'd two Inftruments of fu ficient accuratenefs in their refpective kinds for performing thefe Obfervations; and they are, Firft, A Telefcope for the Sights of the firft Inftrument for determining the parts of the parallel Circle, or Circle of Declination in which the Calential Body moves. And, Secondly, A Pendulum to meafure and divide the time, during which the Body doth actually move fuch an Arch.

As for the firf, namely, the Telefcope, I have already fufficiently defurib'd it in my Difcourfe of a way for accurately finding the Meridian Line formusents and the Axis of the Earth; and therefore I fhall not here need to repeat it. varion Vide. p. 358. Supra.

But for the fecond becaufe of the curiofity of the Obfervation to be made by it, I fhall be fomewhat more particular in its defcription.

There are then three forts of Pendulums, which may be fo adapted, as Ibe Penduluma that, by the help of them, the time between the tranfits of a Star over two for this obferMeridians, atten, twelive or fifteen Degrees diftance may be meafur'd to the vation.

548 Lectures concerning Navigation and Afronomy.

fifteenth part of a fecond of time, if by the ufe of the Telefcope Sight there be occafion for fo great exactnefs.

The contrivance of them all confifts in there particulars; Firft, That they all move during the whole interpos'd fpace by the firt imprefs'd force when they are firft put into motion, without any addition of new force to continue their motion, and by that means all irregularity, caus'd by the Wheelwork, is avoided.

Secondly, That they are all made with very heavy Weights, and of the moft proper Shapes for pafling through the Air, fo that they receive very little Impediment from it, and much lefs of Irregularlty by reafon all extraneous motion of the Air is kept off by the cafe in which they are included.

Thirdly, That their decreafe of motion is regular and certain; fo that tho' their extream. Excurfions do approach nearer the Center or Perpendicular, yet that being always done in the fame proportion, the fame number of Vibrations will always be made in the fame quantity of time; that is, how many Vibrations, and what part over doth meafure the time of an hour at one time, fo many and fuch part will meafure the time of an hour at any other time, whether of the fame Day or Night, or at times diftant more than a Day.

Fourthly, For that the motion of them is fo adjufted, that be the Vibrations greater or lefs, they fhall be all ifocrone and of equal duration.

Fifthly, That the time of the motion through the whole length of one excurfion, whether longer or fhorter, fhall be actually divided into equal parts by unequal divifions, but proportion'd fo as to anfwer exactly to the given Proportions or Divifions of time.

Sixthly, That they are all fo contriv'd, that the obferver fhall be able to mark the very moment of the laft Tranfit himfelf, and the fame of the firft Tranfit by the help of an affiftant; and this to as finall a time as a humane Moment, or as quick as Thought : So that he fhall be able certainly to know in what point or part of the excurfion, the weight of the Pendulum is in, when the Star is obferv'd to be in the Zenith or Meridian of the place, or in any other Meridian where the Stars there appearing does terminate and firifh the fecond Tranfit, or the end of the time to be obferv'd.

This contrivance confifts in two parts, Firft, To let go, or. fet in going, the Pendulum bya touch of the Finger at the very moment of the firft Tranfit of the Star to be obferv'd, which hath this alfo of convenience or perfection rather, that the Pendulum is always fet in going, or beginning with the fame Arch of Defcent, and not at an uncertain heighth. Secondly, That with the like touch of the Finger at the moment of the fecond or laft Tranfit, there is a part of the Inftrument that marks the very point of the whole excurfion, through which the Center of the moving Pendulum is at that moment paffing.

It may be perform'd with three forts of Pendulums, namely, theCircular, the Slope and the common Perpendicular Pendulum; each have their advantages wherein they exceed the other two, and each their difadvantages wherein they are exceeded by them; but upon ballancing the whole three I do moft approve of the laft before either of the other, for the fimplicity of its make and thence its exactnefs and certainty of going; its Regularity in not loofing its power and motion, but by Degrees very flow, which bear a proportion to the number of Vibrations, and the regularity of its motion as to the dividing the Excurfions into parts anfwering to equal Moments or Spaces, arid the eafinefs for letting go, and alfo for taking notice of the laft moment; all which particulars I fhall more particularly explain in the Module I fall produce, which will much more intelligibly exprefs it than a Draught or Scheme.
What this. Module was I never knew, but the ingenuous will eafily apprebend dering the contrivance and meaning of the Author without any Scheme, by conflder with a Conjedtral. Draught of my own.

Lectures concerning Narigation and Aftronomy. 549

As to the divifions of the parts of an Excurfion, the whole length of the Excurlion on each fide of the Perpendicular Point is to be made as the Radius of a Circle of that length, and to be divided into a Line of Sines anfwering to fuch Divifions of an Arch of a Circle, anfwering thereto, as fhall be convenient for the Divifion of the time of an Excurfion; as if the whole Excurfion be perform'd in a Second of Time; then for Thirds the Scmicircle is to be fuppos'd divided into fixty equal Parts, and accordingly the Radius into a Line of Sines anfwering to every three Degrees, which make thirty in the half, and fixty equal times in the whole Vibration; for the Velocities in the Diameter being in proportion to the ordinate Sines, the times will be as the Secants complement, and confequently as the parts of the Arch.

Wenfday Füne 25.1687 . I Thew'd here, at the laft Meeting, one fort of Inftrument for the meafuring and dividing the parts of time to as great an accuratenefs, as I conceive, 'tis poffible to be done by any kind of Mechanical Invention whatfoever ; for that it is capable of dividing and meafuring it, not only to the accuratenefs of the Thoughts of a Man, but, if need require, even to Moments that are fhorter fome hundred times than humane Moments. What I mean by humane Moments, I have formerly, in fome of thefe my Cutlerian Lectures explain'd to this Honourahle Auditory; and becaufe I find that fometimes the repetition of former Experiments and Obfer- At the end of vations are not ungrateful to fome, I fhall now again fhew that the Thoughts the Leighures of of a Man move or change in a limited fpace of Time; not fo quick but that fuch moments are yet divifible into moments infinitely finaller or thorter of duration, and thence that each humane moment is capable of Divifion into any definite Number of Parts, how many foever fhall be affign'd; as if the divifons of humane monents be as finall as a third Minute of Time, which yet, I cone Time. ceive, very few are able to diftinguifh by their Thoughts, yet that Third of Time containcth fixty Fourth Ninutes, and each Fourth containeth fixty Fifths, and each fifth containeth fixty Sixth Minutes of Time, and fo onwards, which we find Aftronomers will take notice of, and account for in their Computations of equable Divifions, tho' they are in themfelves but very fmall and altogether infenfible parts of one humane moment: I fay infenfible, by reafon that they are quicker than the Thought of a Man can diftinguifh a Prior from a Pofterior moment: For who is there that can diftinguifh the 3600 part of the Time of a: Second, which yet is but a fourth minute of Time? Much lefs will any onc be ahle to diftinguifh the 216000 part, which is a fifth or a 12960000 part thereof, which is a fixth, and yet we muft acknowledge that fuch parts there really are included in every second minute of Time, tho' never fo much fmaller or fhorter in duration than a humane moment, and that they really have their Power and Effect in natural motions and alterations proportionable to fuch their duration, and are meafurable or conceivable there, tho they are fo much quicker than our Thoughts and Abilitics to diftinguifh one from another: For if we take for a round Number that a Semidiameter of the Earth be four thoufand Miles, and thence find that the Circumference under the Equinoctial Line be 25132 Miles, and $7412287183+59,10000000000000$, which is 01200888208550 of a Mile in a Second of Time; or to omit the accuratenefs of the Fractions and to keep to round Numbers, which, in this cafe, ferve better where the Matter and Defign aim'd at is but, Mlluftration, and to help Coricepti* on, let us conceive that a part of the Earth, under the Æquinoctial, moving in a Second of Time an 86400 part of that Circumference of the Earth; which, to keep fill to round Numbers, we may conceive to be near x^{2}. of a Mile, of 6000 Foot to each Mile; then will each part of the Earth there move every Second of Time 1800 Foot, and in every Third of Time thirty Foot, and in every Fourth of Time fix Inches, and in every Fifth of Time $\frac{1}{\circ}$ of an Inch. Now, tho the Conception of this jart of Time be really impoflible, otherwife than by Proportion and Analogy to the fenfible parts, yet the motion of Nature doth really meafure it, and its progrefles are adæquate to fuch moments, and each fifth Minute of Time the part hath mov'd a tenth of an Inch forward into another place, in refpeet of its Pofition to the

55° Leifures concerning Navigation and Aftronomy.

Heavens, or to the parts of Space confider'd as immovable: And the progreffes of progrefive or local motion being fuppos'd equal or commenfurate to the moments of Time (how fmall foever) the Body mult move in every fixth Minute of Time, a fix hundred part of an Inch forward; which length our Senfes can reach and diftinguif, tho it caniot the minim of Time, which is not fo to be magnify'd.

This Speculation I have been the more large upon, to fhew that there mat be a ufe of this Inftrument for diftinguifhing and numbering the parts of Time, which are abundantly much lefs than a humane Moment; which, tho' not diftinguifhable by our Thoughts, yet have their effects, in Nature, and, in many Experiments, are very confiderable and pertinent to be taken notice of; as I fhew'd by many Experiments try'd before this Socicty above twenty Years fince, by an Infrument fomewhat like this, for the meafuring the times of falling Bodies, which poffibly fome here prefent may well rimember.

Tho', I fay, thefe fmall moments of Time are not diftinguifhable by a Man's Thought, yet by many Mechanical Contrivances thicy can be made dittinguifhable, and therelyy they can be made ufeful in multitudes of Phyfical and Philofophical Inquirics, and even in this, which gave the occafion of the mentioning of it ; namely, the meafuring of the exact time that any Star that fhall be obferv'd, is moving from any one Pofition to any ot lier ; and that even to a fhorter or lefier time than that of one third Minute of an Hour, which, if the motion of the Star be in, or near, a great Circle, is about a quarter of a Second of a Degree. The way of effecting which, is the making the Telefcope to move along with the Star, and when the Star is come to a certain point, and confequently the Telefope that follows it, then doth that Telefcope let go the Pendulum, and fet it going with a certain degree of Velocity; and again, the fame Tclefcope being kept moving along ivith the Star, at leaft, fome fmall time before it arrive at the fecond fation; then doth it, in its motion, let go the Stopper, or Stay of the Pendulum, or Index thercof, juft at the very moment as the Star is paffing the Point of the fecond Station; which denotes the precife moment of fuch Touch or 'Tranit. Now, tho' this be abundantly more quick than Thought, and fo cannot be perform'd fo nicely by the motion of the Finger, yet by this means I feak of, where the Telefcope is kept in motion with the Star, which is eatily cnough perform'd, as I have often had Experience, the moments, tho? exceeding fmall, will yet be nuzbied thereby. To this I could add the defcription of a fecond Inftument, which is made with a Pendulum alfo, but moving Circularly fuipended by a round Steel Wire, and is to be let 'go, and to be ftay'd in the fame manner, by means of the motion of a Telefcope, which follows the motion of the Star; in which Inftrument the circulating motion of the Pendoulus Weight doth defcribe a Spiral Line, which, by equal Angles from the Center, is divided into equal Spaces of Time, and thereby the number of the Spaces in that Spiral, paft by the Pendulum between the two Tranfits of the Star, being computed, do give the exact sumber of third Minutes of Time that have pars between the two Obfervations; but this Inftrument being fomewhat more complicated than the former, and that being fufficiently accurate for fuch trials, I fhall omit the further defeription thereof at this time.

And becaufe I underfood that the Demonftration I read of the true way of dividing the Arch of its motion, into parts of equal duration, of of equal Time, was not fo fully comprehended by fome then prefent, which was this I now read;

Therefore for a more full Demontration, and particular Explication thereof I have drawn fome Schemes, by the explaining of which I doubt not to make it evident, in every particular thereof, to any one that nall doubt of any part thereof, whereby the truth and certainty thereof will more plainly appear.
Fifune. 29. 1687. I Ipent fome time in my laft lecture upon the confideration of fenfible Time, and of the equal Divifion and AIenfuration thereof; for: which purpofe I cxplain'd two Infruments, the moft exact that have been

Leitures concerning: Navigation and Aftronomy.

thought of, far cxcecding, as I conceive, any that have been yet publickly known, and capable of performing, or of helping to perform, fuch Obfervations of Cæleftial Bodies as no Iftrumeut, yet made ufe of, has perform'd ; at leaft, not the beft that I had ever heard of ; fome Inftances of which i fhall fhortly acquaint you with; for tho' our Methodifts have made compleat Syftems of Sciences, yct, when they come to be a little more nicely furvey'd by a doubting Examinant, Many of thofe Maxims, that are fo Dogmatically and Pofitively aflerted, will be found not altogether fo Congrous to the truth of Nature as they have hitherto been believ'd ; and thofe none of the leaft Confiderable and Fundamental.

I could carry this Mechanifn yet further, by fhewing fome Inftruments by which to meafire the parts of infenfible monents; I mean fuch moments as a Man cannot diftinguifh by his Thoughts into a preceding and fubfequent moment, or is able to number or diftinguifh one from another by his Eye or Ear, far lefs than that I call infenfible; not but that the Senfe doth really diftinguifh moments, yet prodigioufly lefs above a thoufand times, nay, ten thoufand times, as I fhall afterwards prove; but it is not under the Idea of Time and Number, but under that of found, Tone, Harmony, and the like; wherein how curious the Senfe of Hearing is, I appeal to fuch as are skilfulin Mulick, who can cafily, by their Ear, -tell you when the Vibrations of Mufical Strings are one as quick again as the other, that is, when Diapafons, when their Proportions are as 3 to 2 , or as 3 to 4 , or as 8 to 9 , that is, as a Diapente or Fifth, that is, a Diatefferon or Fourth, that is, a whole Note or Tone, and the like, and when they are of fuch or fuch a determinate Tone, as Gam ut, Are, Bmi, and the like, which they diftinguifh, fay, by the Ear, or the Senfe of Hearing, tho' not under the fame Idea or Phantom as they do when the Vibrations are fo flow as to be fingly diftinguifh'd one from another, but under the Idea of Sound; which, when the Vibrations are Ifocrone, as I haveformerly here prov'd thofe of ftrained or extended Strings to be, which act upon the principle of Spring ; as alfo Bells or founding Metals, and the Vibrations of the Air, which depend allo upon the Spring and Power of Recoile, they are Mufical Sounds'; but when they are not Ifocrone they are not Mufical. In thefe cafes the Senfe runs a ftep higher and brings us into another Region, where we find another profpect of Time, and the Partitions thereof far differing from that of the firft and inferior Region, wherein we diftinguifh the parts of Time by Monades or Unites; for: in this we diftinguifh them by Aggiegates, Bodies; Bulks, Armies, Thoufands, and the like great Numbers, not confidering them fingly, but together ; for this purpofe I fhall hereafter produce fome Mechanical Contrivances, by which thefe quick motions and minims of Time may be reduc'd to Number and Computation, which I conceive abfolutely neceffary in all Philofophical or Phyfical Experiments; but I fhall not now digrefs into Experiments of that kind, but proceed in that method which I have begun, to fhew the ufe of this Inftrument I have already defcrib'd, and Thewin the Module thereof, by explaining how the fame may be of ufe for finding the Latitude of a Place without the incumbrance of Refraction, at leaft by fuch a way as is the leaft of any I have yet known difcover'd by any, in Print, or any other ways.

This method I defcribe in order to the profecution of that Inquiry which I Lately propos'd of examining, whether the Axis of the diurnal Rotation of the Earth did, or doth change its Pofition in refpect of the parts of the Earth; that is, whether the Latitudes of Places do, in procefs of time, vary as well as the Meridian Line, for if the faid Axis doth vary, one of there two ways, or both, will be fufficient to difcover it in any part of the Earth what foever; for if fuch motion of the Axis as I have propounded fhall happen to move in the Meridian Line of the place where the Obfervation of the Meridian, for that purpofe, fhall be made' 'then, tho' no fuch yariation of the Meridian Liue can be, by that means, obfersd, there being none, yet this way for examining the Latitude of the Place will foon detect it. Again, if that motion fhould happen to be at right Angles to the Meridian of the Place, then this way would be ineffectual, and the former way of finding

552
 Lectures concerning Navigation and Aftronomy.

the true Pofition of the Meridian Line, with refpec. to the known parts of the Horizon, would perform it; and in cafe its motion be any other way inclin'd to the Meridian, then the comparing of both thefe two ways together will ftate and determine it, as it doth alfo in hoth the preceding Cafes, becaufe it determines which way and how much in all.
It was necefiary therefore that the way of finding the Latitude of a place mould be as accurate and as little liable to Objections, as the way I have already fhewn of finding the Meridian Line; which I conceive is the moft exact that has been hitherto difcover'd, and may be as eafily made, and is fufficient to perform what is requifite in the Inquiry propos'd.

The method then for finding the Latitude of a Place, is by finding out the true Zenith-Point of the Place where the Obfervation is to be made; how to do this I have elfewhere Shewn, and therefore fhall not need here to repeat it: This may be done to what accuratenefs fnall be defir'd ; for that longer and longer Telefcopes may be made ufe of for the determination thereof; and it is rot difficult to procure Object-glafles of any length defir ${ }^{\circ} d$, accurate enough for performing fuch Obfervations: Having detere min'd that, I obferve what Stars pafs ovcr the Zenith-Point, or pretty near it, whofe diftance from that Point, in the Meridian, I can accurately meafure; then the following Night I obferve that Star, I pitch upon, an Hour, or an Hour and half, or fome certain time before it come to the Zenith, marking exactly the Point where I fo obferve it at the time I let go my Pendulum or Time-keeper, and meafuring exactly the Angle that Ray maketh with the Perpendicular, finding aifo, if I pleafe, the polition the Plam thro' thofe two Lines hath to the Plain of the Meridian; tho' that may be omitted, when it is only us'd for finding the Latitude: Then I compute the Time exactly that pafies between fuch and fuch Obfervations, and the time it paffeth the Zenith or Meridian; and at an equal time, after fuch Tranfit, I again obferve it on the other fide of the Meridian, and find the Point or the Angle that Ray alfo maketh. From the comparifon of which two 'tis evident, that the Declination of that Star is certainly determin'd, and confequently that the Latitude of the place, where fuch Obfervation is made, is alfo given. Now the reafon why I obferve it on both fides of the Meridian is this, becaufe I thereby almoft wholly avoid the Refraction of the Air, and yet meafure a large Arch; for that the Refraction of the Air is hardly fenfible even to Telefcopes of fo great a length, as may be made ufe of for this Obfervation, when the diftance from the Zenith is not greater than what is requifite to determine this Inquiry, to what accuratenefs almoft hall be requir'd, and the Obfervation on both fides doubling the Angle at the Zenith, or the Arch of the Parallel, when it is only made on one fide, the Refraction, what it is, is fill made more infenfible when an equal fubtenfe of an Arch of the faid Parallec is obtain'd by Obfervation on both fides, that when on one fide only. This way of finding the Latitude of a Place, I did, at the fame time, formerly acquaint this Society with, tho' not fo particular, when I told them alfo the way of making ufe of the Stars in the Perpendicular for finding the difference of Parallels for meafuring a Degree upon the Earth; but this part of the Contrivance I do not find that the French have made any ufe of in their Obfervation of a Degree, tho' they have of the other; poffibly it might be, that he that acquainted them with the one, did not fo well comprehend the other, and the rather too, becaufe the Invention of the meafuring and determining the fmall parts of time was not at the fame time defcrib'd, but fome of them before, and fome of them afterwards upon fome other occations; as that of the direct Pendulum was upon the occation of the Experiments of falling Bodies, and that of the Circular-Pendulum æquated by its motion in a Parabolical Conoeidal Surface at another, tho' both thefe parts or inventions which were omitted by the French, have been Publifh'd by Mr. Huygens as his own, in his Book De Pendulo, Ofcillatioar many Years fince.

Lectures concerning Navigation and Aftronomy. 553

THe following Lectures contrin the Deforiptionand ufe of fome Sei Influumerts: They there firft read before the Koyai Society on the third of December, 1690 . and aftermards on the fifth and treiffth of December 1504. with fome additions, as they are here Printed. The Inftruments aie the Porrable Eavo meter, a Quedrant, and fome bints relating to the improventent of Telefcopes. As to the firft there is forie Account Publigh'd in the Pbilofophical Tiainfactions N.I $85 . \%$. 241. and for the laft I hall fomet ime prefent the Ingenious mith what, I fuppofe, new, when I am a luttle at leifure to make fome Experiments of a Hint given by Dr. Hook ina a Paper about the improvement of Optick-glaffer, wherein I mill candidly relate the fuccefs, and what I know of the Invention.
R. W.

DEcember 3. 1690. As the Defign of this Lecture was for the improve-The increafe of ment of the Hiftory of Nature and of Art, fo was the Inflitution of Knowledge this Honourable Society for the improvement of Natural Knowledge, which, like the groot/s in other words, amounts to the fame fenfe. This as it was at firt (upon ve- of a pinnt. ry mature deliberation, and with great Sagacity and Judgment) fettled in a fuitable and proper method to attain the end, fo, "till better methods be prov'd, it onght not to be alter'd and laid afide.? The Defign was for promoting the Growth and Increafe, and Vegetation, as I may fo call it, of Natural Philofophy from the firft Seed or Embrio through all the Ages and Increafings of it, 'till it attain to a State of Perfection of Flowering and" Blooming, and of producing Seed, and become Fruitful; for Natural Knowledge may not unfitly be compar'd to a Vegetable, whether Plant or Tree ${ }_{2}$ which fprings from a Seed fow'd in a Soil, proper and adapted, by a skillful Gardener, for thatPlant. For as the Sced, by finall Fibrills or Roots it fhoots out, receives, from the Soil or Earth, a nourifhment proper and adapted for afcending into the Body or Stalk, to make it grow in bulk and frength to. fhoot upward, and from thence to fioot forth Branches, and from them Leaves, thereby to draw and receive out of the Air a more refin'd, firirituous and inlivening Juice, which defceriding back into the Body or Stock; increafes its Stature, Bulk, Circumference and Strength by new incirclings, and thereby inables it to fend forth more Fibrills and greater Roots, which afford greater and more plentiful Supplies to the Stock or Trunk, and in-. ables that to exert and fhoot forth more Branchings, and greater numbers of Leaves; which, repeating all the Effects and Operations by continu'd and conftant Circulations, at length bring the Plant to its full Stature and Perfection: Nor will a skillful Gardener fuffer it to be tapp'd to have the nutritive and vital juice drawn off to be us'd for other purpofes than the nutrition of its own Body; well knowing it would hinder its Growth, prolong the time of its coming to Maturity, weaken its Conftitution at leaft, if not render it wholly barren.
So Natural Knowledge doth receive its firt informations from the fupplies afforded by Select and proper Pbenomena of Nature convey'd by the Senfes; thefe improve the Underftanding and inable it to raife fome Brànchings out into Conclufions, Corollarys andMaxims; thefe afford a nutritive and ftrengthening Power to the Underfanding, and inable it to put forth new Roois of Inquifitions, Trials, Obfervations and Experiments, and thereby to draw new fupplies of Informations ; which further ftrengthening the Underftanding, inable it toexert and produce new Deductions and new Axioms: Thefe circulate and defcend downwaids, increafing and ftrengthening the Judgment, and thereby inable it to make more ftrikingout of Ronts of Inquiries and Experiments, which caufe the like Effects as before, but nore powerfuliy, and fo by confent and continu'd Circulations from Phenomena to make Deductions, and from Deductions to inquire Pbenomena, it brings the Underftanding to a compleat and perfect comprehenfion of the Matter at firft propos'd to be confiderd; nor muft the Natural Courfe or Circulation be flopp'd or diverted, 'till the utmoft Perfection be attain'd, if at leaft it be aim'd to compleat and' make it prolifique.

554 Lectures concerning Navigation and Aftronomy.

of the difference of Gravitation.

It was a Conclufion by fome fuch method as this produc'd by me, and made known to this Society near thirty Years fince, that the Gravity of the Earth was differing in differing Latitudes, and that it was greater under the Poles than under the efiquator, and the nearer to the Poles the greater; and the nearer the eEquator the lefs. This I firft propounded to this Society upon the occafion of the trials of the Pendulum-Clocks Carry'd at Sea; and again, upon the occafion of the Pendulum apply'd for a Standard Meafure of length, $\dot{\sim} \cdot c$. But as things new and Hetcrodox to the Opinions in Vogue, it met with a check, and fo the further profecution of it could not proceed, I have many times fince again repeated the Suggeftion; fometimes upon one, fometimes upon other occafions, but, as Extravagancies, they have heen pafs'd over ; the laft time I repeated it Dr. Wallis wrote a long Epiftle to confound it, but Mr. Nemon, it feems, upon examining it, found fome reafon for it, and fends up (a Fortnight after Dr. Wallis) his confiderations upon it, confoinant to what I had demonftrated to the Society: This made it begin to be taken notice of, and to be thought worth examining; however many other Doctrines that were deduc'd from as evident premifes have been fufferd to lie by, in expectation of a better opportunity, which I hope Time may afford; which, when I meet with, I fhall not be unmindful of laying hold of; and I much rejoice at this which I have now met with of Captain Knox his Voyage to India, who has promis'd to be very obfervant of it, and to keep an account thereof; and in purfuance of the Order of this Society, I have got a Pendulum Watch fitted for that purpofe, which I now produce.

There is yet another Inquiry which will, if accurately tried with fit Inftruments, afford great and ufeful Information, both for ufe at Land, and alfo for the Sea and Navigation; and that is to find the Pofture and Gravitation of the Air. This I propounded to the Society as a thing very well worth Trial and Examination fome twenty five Years fince; but as the ufe of the Barometer, even at Land, was not then heeded, tho' I had then reduc'd it to as much of Theory for foretelling the Weather, as is is known at this Day; fo the Inquiry, after the ufe of it at Sea, was the lefs regarded; and when afterwards the thing came to be taken notice of by means of King Charles his obferving it to follow the Rules that were then fet; which was about ten Years after, many had thoughts of having it carry'd to Sea, but attempting it only by the common way of the Baiometer, not knowing, I fuppofe, the way I had propos'd; the ufe of it at Sea was indeed impracticable, and, as fuch, laid afide. I fhall not trouble you with a new Defcription, but if you pleafe to afford me your Patience, I fhall read the Defcription which I then produc'd, and it hath ever fince remain'd in your Regifters.

The Contrivance of this Inftrument is much the fame with what I explain'd to this Society about thirty Years fince.
This being thus prepar'd will fully be fufficient to exhibit all the varieties of Preflure in the Air; and 'tis capable of Shewing all thofe Variations with as great nicety and exactnefs as fhall be requir'd even upon the Sea, tho' ftormy and turbulent: Nor is there any great difficulty of preparing or making ufe of it; fave only that, if the Gradations be requir'd to be very large, it will require a very long Tube of Glafs; and that Tube to be doubled or folded to and fro to lie in a little room, which I have my felf been able to do with no great matter of trouble; but it would be yet much better if a very long Tube of Glafs, of forty or fifty Foot in length, were coiled round a Cylinder, after the manner of Sir Chriftopher Wren's Weather-glafs; which, with fome few trials, I do not queftion may be effected; for that thereby it would be eafy to make the difference of Gravitation in the Air as large and fenfible, as it need to bedefir'd; befides it will be, ơc.
But tho' it will not in thofe other Tubes, which I propofe, be capable of fo great an Augmentation of that difference, yet thefe, if well adjufted, will, I conceive, be found of great ufe for fore-fhewing the approaches of Storms and Calms, which extreams of the motion of the Air are very unwelcome and troublefome Conconitants at Sea. It will alfo give an account of
the comparative Gravity of the Air in feveral Climates and Latitudes; and thereby afford Indications, by which the Figure, Form, or Coniftitution of the Shell of the Air, which incompaffes the Earth, may be judg'd of. It will likewife fhew the Nature and Qualities of feveral Winds as to Prefliure, and alfo as to Heat and Cold ; that is, whether an Eafterly Wind be every where the heavieft, and the Southern the lighteft; as they are generally obferv'd to be in England. What Winds are hotter or Colder; that is, whether Sea-Winds or Brizes, or Land-Winds or Brizes; whether there be any certain difference between the Preflure in the Night and in the Day, as there is conftantly in the Heat and Cold; whether the Rains or the dry Seafons are the Hotter ; and many others. And to this end it will be well to note the ftate of this Inftrument at Noon and Midnight, and in the Morning and Evening.

Decemb. 12.1694. The Inftrument I mention'd the laft Day, which I had about thirty Years fince invented and hhew'd to this Society, is, I conceive, an Invention of fo great ufe, that if the Knowledge and Practice of making, adjufting and manner of obferving with it, be once attained, it may be a means of faving many thoufands of Pounds in a Year to the Merchant, and which is more, many hundreds of Mens Lives; and therefore I think it ought not to be any longer neglected, but rather to be made and try'd as foon as poffible; and tho' we cannot as yet procure the means to make it of the moft perfect and moft convenient form for tranfportation and ufe on Ship-board, yet fince it is eafy and practicable enough to make it to fhew all the differing Preffures of the Air as exactly as the common fingle Barometer does at Land, nay, twice as exact; l think it may be firt try'd, of the perfecteft form we can now make it, and poffibly that form may be moft fit for the firft trial, fince the other being more nice, may fo much the more perplex the unexperienc'd Mariner, and may better be introduc'd after the practice thereof, for the ufe of the Sea, hath made the Theory thereof more inteliigible, and the benefits thereof more fenfible and evident.

The method and grounds of my Invention, I conceiv'd, were very plain and obvious, as many others are after they are once difcover'd and explain'd, and fome are then fo obvious, that even that becomes the caufe why they are flighted, neglected, and not taken notice of; and poffibly that may have been one Reafon why it has fared fo with this, it being fo eafy to be concciv'd; I did not therefore fpend much time in the explication thereof; bat having the laft Day apprehended, by fome Difcourfes, that the Theory thereof was not fo perfectly comprehended, but that there remain'd fome hefitancy or doubts concerning it, I have now made a fomewhat more particular Defcription of the Inftrument itfelf, and of the Ground and Reafon of the contrivance thercof.
It is now about fixty Years fince the Thermometer was invented for the ufe The Hijfory of of indicating the degrces of Heat and Cold in the Air, by certain and deter- the Thermomemin'd meafures, which was done by means of a bolt Head, or long necked ter. Glafs, as they are now commonly call'd, the Ball or Head of which, and part of the Neck, was fill'd with Air, but the Mouth or lower end was fill'd with fome colour'd Liquor, and immers'd in a fmall Ceftern or Receptacle of a quantity of the faid Liquor; by which means the included Air, which is rarify'd and expanded by Heat, and condens'd with Cold, did either deprefs the faid tinged Liquor into the Ceftern, or draw it up higher into the Neck of the Glafs; which property of the rarification and condenfation of the Air hath been known ever fince the time of Hero, and probably long before; yet the Application of that knowledge for this ufe, I do not find was put into practice or taken any notice of, 'till about the Year 1630 ; fome fhort time after which I find Robertus de Fluctibus or Flud did write a particular Treatife to explain the faid Inftrument and fome ufes of it; but Blencanus afcribes the Invention of it to Sanctorius much about the fame time; but I will not difpute which of them we ought to afcribe it to; but whoever it were, it was an ingenions Thonght, and adæquate enough to the Theory of the Expanfion of the Air then underftood. But Experimental Philofopity hath fince made a further difcovery, and fhew'd us that the Air
may not only be more or lefs expanded by the Degrees of Heat and Cold in the Ambient Air, but alfo by the alteration of the preflure of the Atmofphere, which doth lefs or more deprefs the Surface of the fagnant tinged Liquor in the Ciftern or Receptacle; fo that That Inftrument, commonly call'd a Weather-glafs, is no longer a true Standard to meafure the Degree of Heat and Cold, but ferves only to give us the refult of two Powers acting upon it promifcuoufly; fometimes with a Concurrency both tending one way, and fometimes with Contrariety and Oppofition, the one promoting the Expanfion, the other the Condenfation thercof; if therefore we can by any means difcorer the effects of the one at all times upon it, we prefently find the Power and Effets of the other. If therefore we can by other means difcover the Effects of Heat and Cold, we fhall thereby difcover what is to be afcrib'd to the Gravity or Preffure of the Air.

Now to do this effectually I make ufe of the Séaled Thermometer which was firtt invented, as I have been inform'd, by the Grand Duke of Tufoany, and the firf that I ever faw or heard of was a frall one brought into England by our Honourable Prefident; by which I improv'd it by making feveral very large, and tinged the Liquor to make it more fenfible to the Eye. This In-
ftrument being Hermetically feal'd, and fo a!l the influence of the Prefliire of ftrument being Hermetically feal'd, and fo a!l the influence of the Prefliire of
the Air being excluded, the included Liquor can only be acted upon by the Heat and Cold of the Ambient Air; fo that hereby at all times I am afcertain'd of the Degree of that quality; knowing then what the Power of that quality is upon the Weather-glafs, I can eafily fee what part of the Indication is to be afcrib'd to the Preflure or Gravity of the Air or Atmofphere.
For this purpofe having produc'd two convenient Glaffes, the one for the open Weather-glafs, and the other for the feald Thermometer, by a Standard Thermometer made and adjufted, according to the method I have prefcrib'd in my Mricrography, I adjuft the Thermometer, putting all the Degrees of Heat and Cold above and below the freezing Mark where I begin my Account, or o, and making them with $\dot{1},-12,+3$, cic. above that mark; and with $--1,--2,-3$, © c. below the fame, I wait'till fuch time as the Barometer ftands at twenty nine and half Inches high, which is here in England, at leaft the ftandard Altitude between Fowl and Fair Weather; then puttung the Balls of both the Glaffes into Water heated to a certain.Degree, which may be hot cnough to anfwer to the greateft Degree of heat that I I conceive the Air will furtain in any part of the Torrid Zone, I fuffer them both together to remain in that Degrec of heat, 'till the Liquor in the Thermometer, and the Air in the Weather-glafs, be reduc'd to the fame Degree of heat ; then I obferve the mark'd Degree of the Thermometer, and mark the Weather-gla is with the fame; then I permit the Liquor, in which the two Balls are plac'd, to cool by degrees, and thereby obferve how the Liquor in the Thermometer, and the Air in the Weather-glafs, do contrat by the motion of the Liquors in their Stems, and by the Degrees of the Thermometer, I mark the Degrees in the Weather-glafs that anfiwer thereunto; and when the Liquor is cold, I intend that Cold, with Niter, and Ice to procure the Divifions below the freezing mark; by which means I find all the marks of the Weather-glafs that anfwer to all the marks of the Thermometer, when the Gravity of the Air is equiponderant to twenty nine and half: Whenever therefore the Gravity of the Air is more or lefs, I Shall eafily difcover it by the difference there is between the two Glaffes; for that a greater Preffure will more condenfe the included Air in the Weather-glafs, and a leffer will fuffer it to expand more than it would have otherwife done by the Degrees only of Cold and Heat. And by this method it will not be difficult to adjuft two fuch Glaffes as will receive no manner of alteration from the motion of the Ship, and may be fafely and eafily carry'd and made ufe of in all parts of the World, to the extreameft hot or extreameft cold, that can be indur'd by any one that is to obferve with them. For as there is no doubt to be made of the Experiment of the Spirit of Wine feal'd in the Thermometer, fo there is no fear of loofeng or freezing of the Quickfilver in the Weather-glafs, if it be made after the way that I have herein propos'd; the varying of which Inftrument I have

Lectures concerning Navigation and Aftronomy. 557

many ways contriv'd, and fome other methods, if I can procure Glaffes made, 1 fhall fome other time acquaint the Society with.

As the Subject of my laft Difcourfe was the Defrription of two feveral of a new sea Inftruments that I conceiv'd would be of great benefit to Navigators and Na- puadians. vigation in general, fo I defign in this Difcourfe to add the Defcription of a third, which, I judge, will be much more advantagéous, by reafon of.its frequent, nay conftant, ufe and becaufe fo much of information concerning the true Latitude of the place, where the Ship is, depends upon the exactnefs and practicablenefs of it, I have propounded it by way of Query to divers very skilful both in the Theory and Practice of Navigation; but (like things of this Nature before they are known) they have all judg'd it to be impracticable, if not impoffible, and yet I doubt not (when it comes to be known) fome of them may fay, they knew as much as this before: Others poffibly may perfift in the ufe of fuch Infruments, as they have been hitherto acquainted with, and others be offended at it becaufe it is new; and yet I doubt not but that, after fome time, it may become of general ufe. The Inftrument which I Thew'd the Society, fome Years before the Sicknefs, by making ufe of a Telefcope-glafs, inftead of the fmall hole or flit of the Shadow-vane of a Back-ftaff, was not made ufe of 'till about ten Years after, and yet now it meets with general approbation, and is of continual ufe, and pretended to be the invention of another, tho' my fhewing thereof was Printed in the Hiftory of the Royal Society. It cannot well be expected that I fhould fpend my Time and Studies in inventing Inftruments, and be at the expenfe of making and putting in practice thofe which I have contriv'd, without receiving any Benefit or Affiftance from thofe to whom they may be of ufe, or any other. It may, I conceive, be judg'd fufficient, by reafonable Men, for the inventor to contrive and deferibe the Means and Ways how fuch as have occafion, or defire of experimenting the thing, may, with eafe enough, put the fame in practice; at leaft, if his Reward be confider'd, which, as the Learned Author of the Hiftory of the Royal Society has obferv'd, is commonly ill Treatment, and not only rough Ufage from thofe that envy his acquifts, but even from the Artificers themfelves, for whofe fake he has labour'd; whilft another that adds fome fmall matter to it, is inrich'd thereby, but the firft difcoverer is difmift with Contempt and Impoverifhment.
The Inftrument which was for a long time us'd for taking the Altitude of The Inftruo the Sun at Sea, was an Aftrolube, which is yet in ufe amony the Spaniards, as menns now I am inform'd; the Inftrument is, by many. Authors, very fully and fufficient-us α. Iy defcrib'd that it need not be here repeated, Since that, the Einglif, Dutch, and French have made ufe of a Crofs-ftaff, Back- ρ taff, or Quadrant for that purpofe, as being found by Experience to be much more exact and certain, and the adding of a Telefcope-glafs to the Sights, hath, as I mention'd before, much improv'd both thefe qualifications; but they are yet liable to fome Inconveniences and Defects.

As, Firft, They are of little ufe in a dark Night, by reafon of the diffi- ibeir Defelfs. culty of exactly feeing the Horizon.

Secondly, They are ufelefs alfo in the Day time, if Foggs on Mifts do hinder the diftinet difcovery of the Horizontal Line:

Thirdly, They are uncertain when Refraction doth elevate or change the true Horizon, which a certain vaporous Air, near the Surface of the Sea, doth often caufe.

Fourthly, They are ufelefs when the Sun is in or pretty near the Zenith.
Fifthly, They are troublefome and require great Dexterity and much Practice to be us'd fo as is neceffary .

Sixthly, They can hardly be fo well made or fo well us'd, as to afford the - Obferver a nearer certainty than about halfa Degree.
${ }_{1}$ All which inconveniences I hope may be avoided by the Invention which I have here made a Module of, in order to make it the more intelligible. FFor:

558 Lectures concerning Navigation and Aftronomy.

Firf,; It is as proper and as practicable to take the Altitudes of the Stars in a dark but clear Night as in the Day, and that to as great exactnefs; tho' neither the Horizontal Line, nor any Stars near the Horizon, $b \bar{\xi}$ reafon of Foggs or Clouds that darken them, can be difcover'd.

Secondly, It is fufficient to take the Altitude of the Sun whenever it appears, tho' the Horizon be not difcoverable by reafon of Foggs or Vapours.

Thirdly, It will be fufficient for the fame purpofes, whenever the Horizontal Line may be difplac'd by Refraction, and thereby mifguide the diligent obferver in the other way.

Fourthly, It will be fufficient to find the true height of the Sun, tho never fo near to the Zenith, and that with as much eafe and certainty, as if it were near the Horizon.

Fifthly, The ufe and practice of making Obfervations with this Inftrument, I conceive to be no more difficult, than the eafieft way of obferving with any of the Inftruments now in ufe.

Sixthly, I conceive that Obfervations may be made with this Inftrument, much more accurate than 'tis poffible to make with thofe now commonly us'd; and as they may be made more exact, fo the inftrument itfelfdoth afford a greater certainty, by reafon that the Eye-glafs doth make the Divifions as large and diftinguifhable; as if the Inftrument, without that help, were four times as large at leaft, nay, I can fafely fay, as if the Inftrument were ten times as large.

Tab.1.2.7.5.5.5 THe Author bimfelf having given no Defcription or Draught of the aboremention'd Quadrant, I judg'd it would be acceptable to bave fome farther account of it; wherefore finding a Rude Model of fuch an Inffrument; I bave here attempted a Delineation and Defcription thereof, rather than it Miould be quite forgotten and loft, tho I am fenfible that I bave omitted Several Particularities, which if the Inventor bad' made the Defcription himself, mould bave render'd the Inftrument inore compleat and manageable; which Defect I hope Some ing enious Niechanician will at fome time fupply.
ABC the Quadraut, Ct the Center, which is Jo contriv'd, that the Socket, with the Eye-glafs, is fixt into it at right Angles to thie Q 讠iadrant. DE a Telefcope moving on the Center C upon the back of the Quadrant, on which alfo the Divifions of the Degrees are mademith Diagonats, as ufually. D the Object-glafs. At the end C, of the Telefoope, is placed a Reflecting-plate at an Angle of $45^{\circ} \div$ cafting the, it mage to the Eye-glafs. AF a Plumb-line paffing over the Center of the Inftruments between the Refleiting-plate and the Eye-glafs, by which means the Object and Perpendicular are - feen in' the Center at the Jame time, and So the true Altitude of the Object taken; by faftuing the Telefoope on the divifions on the backfide. GHIK an bollow Cover over the Plumb-line, which Serves alfo for an Handlo jor the Cuadrant. It may be likemife very convenient to have the Plumbet play in a fmall Veffel of Water faftened to the lower end of the, Handle at F, by mhich means the Plumbet will be lefs fubject to vibrate far, by the oppofition of a thicker medium than the Air, which yetwoill not in the leaft hinder its Perpendicularity.

The prefererice of this Inftrumient konjifts in the taking the Angle fram the Zenith, rather than from the Horizon, wibich many times is not diftinguflable, and alpays Ifubject to unizertainty from the difference of Refraction.

There is another Infrument which will be of great ufe for difcovering the
of a Sea Telefrope. Latitude: of places buth by Sea and Land, and that is a fmall Telefcope; whereby a skilful Navigator, or any other ingenious Perfon, may eafily difcover the teclipfes that happen of the Satellites of Fupiter upon the Sea; the ufe of which Eclipfes, as Galileo did firft mention, fo haye they been by mainy Perfons approv'd of for that purpofe, and feveral have indeavour'd, by - Obfervations, to perfect the. Theory of them, as Hodierna, Borelli, Mr. Rooke of this Society and Colledge, and now lately the French King's Aftronomer Monfieur Cafint, and a very curious difcovery has been made by Monfieur Romer the Dane, which is generally now approv'd of by knowing Aftronocildit
mers, tho' Monficur Cafini (poffibly becaufe the Invention of a Tramontane) feems to hefitate concerning the certainty of it. Mr. Fally alfo has lately indeavour'd to facilitate the ufe of Monfieur Cafini's Tables for calculating the true times of them, which; I conceive, he may yet make more eafy for vulgar Capacities, fuch as many of the Seamen are, who will have occafion for the ufe of them. But fuch difficulties, I confefs, will be eafily remov'd by Ephemerides, purpofely calculated by fome skillful Aftronomer, and Publifh'd in a Sheet of Paper for feven or ten Years before hand, which Mr. Hally can eafily perform; but yet they will be of no great ufe for the Sea, 'till fuch time as they are fupply'd alfo with convenient Inftruments for the Obfervation of them, which, I hope I may have the freedom and opportunity to communicate in fome fhort time, and fhould have done it long fince, if I had not been difcourag'd by undeferv'd Troubles. But I fee it to be the general Fate of all fuch as make any new difcoveries, and therefore bear it with more patience; however I do not doubt but that the humour of Mankind, in that particular, has flifled the Productions of many ufeful Difcoveries.

Certain it is, that the invention of Telefcopes is not yet brought to its greateft Perfection, no nor of Microfcopes neither, tho'. Mr. Leuwenhook feems to have fome of greater Perfection than ordinary; but I doubt not but that I fiall be able to fiew, that both the Telefoope and the Microfcope may be eafily enough' advanc'd to much higher degrees of Perfection than what have been hitherto produc'd. It is not very long fince the invention of Convex Eye-glafles was found out for feeing a larger Arca of the Object: which, tho it do not, I confers, make the Object more diftinct, yet is it of great ufe in Cxleftial Obfervations, efpecially at Sea for the eafy finding and retaining of the Object in the Telefcope, which, in Telefcopes, with Concave Eye-glafles, is extreamly troublefome, even in the fhorteft, and much more in long ones; however this feems not to have been found out 'till about the time that Reita Publifh'd his Book call'd Oculus Eñochi Ei Elie, i. e. about the Year 1645 . for perufing that Author in Sir Ch. Scarborough's Auction I accidentally met with two places, wherein he has, in a fecret Character, communicated fome Secrets about the making and ufe of Glaffes, which feem to have been unknown to the World at that time: Thefe, as finding little elfe confiderable in it, I tranfcrib'd, and having fince deciphred them, I find them to comprehend thefe words, Chartam patine leniflimo pulmento ingeniofe agglutina tripoli vitrum polito in ea. This feems to be much the fame way which Mr. Marfhal did here thew this Honourable Society, tho' what he apply'd it unto for Polifhing many Glaffes at once, is an addition of his own, of which he fays he took the hint from what I did Publifh in the Preface of my Micrographia, concerning the Polifhing of many Objectglaffes at once for Microfcopes. This Ænigma of de Reita is to be feen in Page 344 of his Book, now mention'd in thefe Characters,

Cphaatritnaa lpeunlimfefnitmoo jang ggelnuitoifnea
Turijtproulmi pionleiatt, \&c. Pag. 344
The other Ænigma or Secretum, as he callsit, is in Page 356 . in this Cypher.

Cgounaute uxoar--mdeitcituas--oebrijegcutnat
Maumlptluinff--qiuceat---ruietreo---tceorlt--2
Lioucma icnoprufnucffiuomnis---Suuenntoz--vtirtiraa-ó
Occöun luaer xiaa--oobujaercttuimuim--.
That'Deciphered I find to contain thefe words.

- Convexa quatuor melius, dicta Objecta erigunt multumq; amplificant. Rite vero tertium Colloca in punt um confufioniso. Sunt vero vitra tries ofularia comvexa, Objectivium quartum?

This it feems was then a fecret, tho' now generally known and made ufe of for Day Objects, and that even in fhort Lengths; but for the Cxleftial Obfervations where there is not great need of erecting the Object, one or two Eye-glaffes is much more convenient; for that they may be made to take in a much larger Area, and reprefent the Object much more bright and diitinct; howbeit they are both capable of much further improvement, and confequently be much more adapted for the ufe of the Sea, for which occafion I have at this time difcours'd of them.

And I will undertake to accommodate Navigators with Telefcopes of two Foot in length, with which they fhall be inabl'd, not only eafily to find the Object, but to difcover alfo the times of the Eclipfes of the Satellites of fupiter, as exactly as flall be needful.
Let therefore fuch Ephemerides be provided, and I fhall procure an ingenious Workman, who fhall provide fuch Telefiopes fit for that purpofe; to that nothing will then be wanting to compleat the ufe of thofe Eclipfes for the-difcovery of the Longitudes of fuch parts as they fhall be obfervable in, fave ouly an exact Time-keeper to obferve the precife times of fuch appearances, which I can alfo accommodate them withal; fo that if the precife time of the Setting of the Sun for that Night be known, they thall be fure of the time of the Eclipfe to a very few Seconds.

By fuch Methods and Inftruments as I have now defcrib'd, if carefully us'd, I doubt not but that the Sea-Coafts of all frequented parts of the World might be truly plac'd as to their Longitudes and Trendings; and the method of taking Latitudes being a little amended, the exact Situation of all fuch places in fone few Years, might be obtain'd, which would be of great benefit for the perfecting that part of Geography which at this time is very imperfect.

In my laft Difcourfes I explained three feveral Inftruments for the Ufe and Benefit of Navigation, two of which have not been ever yet thought of by any (that I have heard of) which yet I conceive will (if well made and put in practice) be of veiy great advantage to Navigators; for that they are new alliftants to them in giving them information of what they have no other ways of Iearning: For by means of the latt of the three they will be inabl'd to difcover the Latitude, when, by the commonly us'd Inftruments, they are neceffitated to depend only upon Conjecture; namely, at fucn times cither of the Day or Night as the Horizon is not rifible, and when the Sun paffes ncar the Zenith; and 'tis fo much the more ufeful, for that Nocturnal Obfervations may be made at ah times, when the parts of the Sky, near the Zenith, fhall be clear and free from Clouds. And Obfervations may be taken of fuch Stars as pafs over or very hear the Zenith with more eafe and certainty than of the Sun itfelf in the Day time; for that the Star obferv'd doth more precifely hew the very Points, when and where it paffeth the Zenith or the Meridian near it; and the Declination of the Star (which may be learncd from Tables ready calculated for that purpofe, efpecially for the moft notable and confpicuous) will readily give the Latitude of the place.
As for the affiftances the other may afford, it is hard to afcertain, yet fince it bath been found to be of very good ufe at Land to prejudge the Conftitution of the Weather, efpecially of great ftore of Wind or Rain, "tis very probable it may be of as much, if not more, bencfit at Sea, where the Air feems to be of more general uniformity, efpecially in fuch parts of it as are far remov'd from any Lands; for that the Situation of Mountains or other diverfify'd parts of the Earth, which are oftentimes the Caufes of Storms and Rains on the Land, have little influence upon the parts of the Sea far remov'd from them: Tho poffibly it may be found that the Gravity of the Air may be differing at Sea from what it is at Land'; which,' if fo, might be of no fmall benefit to the Navigator', if he could from that be inform'd of his approach to Land. Tis not impoflible neither, that it may afford him fome intimation of the depth of the Sea where he may be, and nany other things very defirable to be known, which I will leave to the difCovery. ff the diligent Obferver. There are many things, that before they are difcover'd, are look'd upon as impoffible, which yet, when the are found,

Lectures concerning Navigation and Aftronomy. 561

are faid to be known by every one, the inventor only excepted, who muft pafs for an Ignoramus.

I have many Years fince fhewn to this Society (as will, I fuppofe, appear of a way woifer by their Journals) an Inftrument to keep an exact account of the way of a for a shipas Ship through the Water; whether it has been fince try'd I know not, yet. I Sea. have many Years fince that, heard of one or two who were getting a Patent for a like Inftrument; whether they fucceeded or not, I have not inquir'd, for I freely imparted it for a general Good, and flould be glad to here that it were put in practice, and perform'd what may, in all probability, be expected from it, which, I conceive, will be a very exact and certain information of the way of the Ship that ufeth it through the Water, it not only meafuring the length of the Run, but the Rumb of the Leeward way; and the Angles made upon the feveral Tacks and Courfes; but yet 'tis defective for finding the true way of the Ship over the parts of the Earth fubjacent to to that Sea, becaufe it diftinguifheth not the current or fetting of that part of the Sea without fome other affiftances, whence, 'till they are added, 'tis ufelefs for the invention of the Longitude, which is to be found by other means: However, 'tis of great ufe to know the true Velocity of a Ship through the Water, in fhort Voyages, or in foggy or dark Weather; becaufe it is a great help to judge of their prefent Pofition as to the true Courfe they defign to hold, and in narrow places they, can better judge when 'tis fit to tack about and ftand another way.

There is another addition which I thought might alfo be of good ufe and A Contrivanct information to a Navigator, and would afford him a means of exactly mea-to know the furing that which he now knows only at random and by guefs, and that is an preint of the Inftrument, which being fixt at the top of the Antient or Flagg-ftaff, fhould, at Winnd. all times, give the true ftrength or velocity of the Wind; and the information thereof may eafily be convey'd into the great Cabbin or the Steeradge of the Ship. By the help of this and the former way of meafuring the way of a Ship, it would be cafy to find with what Winds, whether large or fcanty; with what Sails, whether more or fewer, or how plac'd ; with what Trim, with what Burthen or Lading, with what Ballaft, ©c. the Ship makes the beft way. This is a Propofition hitherto only, prov'd by guefs and ftrong Opinion, for the moft part very prcjudicate and precarious; but by this means it might be brought to a certain Standard of meafure. By this means alfo the comparative goodnefs of Ships for failing or making their way through the Water might be brought to a certainty of meafurement, which cannot fo well be done by any other way now ufed; for tho' two Ships may now fail not far afunder, and both intend the fame courfe, yet which ever has the better of it in failing faftef, it will be difputable whether that be the better Sailer; for tho' they are not far afunder, yet that which came firft to the Port, might have great advantages of the Wind, which the other had not ;and polfibly it might be the contrary, there being yet no certain way of determining it, unlefs by multiplicity of fuch trials, it fhall always be found that the fame Velfel has the advantage, and yet even in this way the probability indeed is greater, but yet 'tis but a probability, fince 'tis poflible that fuch advantages may happen for five or ten times together, and yet may fail the eleventh time; whereas by this Inftrument it will plainly appear which hath had the greateft quantity or ftrength of the Wind, and which the leaft; and by the fame Inftrument it may be certainly determin'd with what Sails, with what Trim, with what Burthen and with what Courfe, whether by or large, a Ship, comparatively, Sails beft; as alfo it may be practically examin'd with what Trim or fet of the Sails a Ship fails the beft when it goes'near a Wind, and the like to fee how far Experience will agree to the Theory; as alfo whether flat and taught Sails do better than bellying or bunting Sails, which I conceive they do, tho' the moft part of Seamen do believe and affirm the contrary with great confidence. I could enumerate many other ufeful informations thefe Inftruments duly made would afford, but it is needlefs at prefent, fince what I have mention'd are matters of fo great concern in Naval Affairs to be truly inform'd of, that they alone are fufficient (one would think) to induce fome Inquifitive Men concerned, to be
knowing in thefe Affairs, to caufe fome trials to be made thereof, fince no one cain deny but that the Confequences that I have afferted muft neceffarily follow; that is, that all thofe Particulars which are hitherto only acquir'd by Conjecture and Gucffing are by means hereof reduc'd to certainty of Number, Weight and Meafure; and tho' fome very skillful in thefe Affairs may fay they can do all that is requir'd well enough, without any fuch Invention, by their own Judgments and long Experience; yet, I conceive, that he that ufes a pair of Compaffes fhall be able to draw a truer Circle than cver Apelles, or the greateft Artift that ever drew Line with his Hand, would be able to do without them.

- The Inftrument I defign for this purpore, is but little differing from that which 1 long fince contriv'd for meafuring the velocity of the Wind, and caufed one of them to be made for the Weather-clock. It has been fulficiently feen and try'd, and thercfore will not, for this time, need a more particular Defcription; however, if any one defigns to make trial thereof, I fhall not be wanting to give the Workman, that makes it, fufficient Inftruction.

ALiL that I can find of the e Inftruments are only the two following Extracts out of the Regifters of the Royal Society, which I bave here publijht, boping they may give the Ingenious fome bints of improving them, which indeed bas beern my chief aim in Printing many of the foregoing Difcourfes.

R. W.

November 14. 1683 . Mr. Hook ghem'd an Inftrument to meafure the Velocity of the Air or Wind, and to find the ftrength thereof, which was by four Vanes put upon an Axis, and made very light and eafy for motion; and the Vanes focontriv'd, as that they could be fet to what flope fhould be defir'd: It mas feveral times try'd and examin'd in the long Gallery in Grefham College; whereby it appear'd, that by walking from one end thereof to the other, and carrying the fame above ones Head, the Doors and Windows of the faid Gallery being fhut, aird fo the Air mithin it being not in motion but ftagnant, the Inftrument made fo meny turns as there mvere Circumferential lengths of the Said Vanes in the length of the Gallery; and if by trial it were found to be more or lefs thain the due meafure of the Circumferential lengths, then by fetting the faid Vanes either flatter or Jiarper in refpect of the may of its motion through and againft the Air, the fame wass ealy to be adjufted; the ufe of which may be of very great confequence in the bufinefs of Sailing and feeering a Ship upon the Sea, and for examining the power and frength of the Wind upon Land in order to the Theory of Shipping for which it was defign'd.

A Way wifer for the Sea; November 28. 1683.

Abstract

I herv'd an Inftrument I bad contriv'd, and Shen'd fome of the Society above twenty Years fince, by which the way of a Ship through the Sea might be exactly meafur'd, as alfo the velocity of any running Water or River, and thereby the comparative velocity of it in its feveral paits; by this alfo the quantity of the Water vented by any River into the Sea, or any other River, might be found; it was one part of a way wifer for the Sea. The whole Engine being defign'd to keep a true account not only of the length of the Run of the Ship thro' the Water, but the true Rumbor Leeward may, together with all the tackings and workings of the Ship. This part of the Engine now Shewn was the Vane, Fly, or firlt mover of the whole, feeling, as it were, and diffinguijbing the feveral Uualifications of the Ships Courfe, but was to be regulated by feveral other Additions in the compleated Engine, which I defign Shortly to get executed.

Lectures concerning Navization and Aftronomy.

A Lecture of the preference of frait to Bunting Sails, Read March 5: $16 \% \%$

I have in this place formerly read feveral Difcourfes, and fhewn many Experiments concerning Light and Gravity; which are two gieat and univerfal powers in Nature; by the later of which all Terreftial Bodies are powerfully, and (if their way be not impeded by the Media, through which they pafs) moft rapidly mov'd towards the middle parts of the Earth, with velocities always accelerated in fub-duplicate propofition of the aggregate of Powers moving; of the effects of which Monfieur Hurgens hath treated no further than thereby to find what is the comparative Gravitation here upon the Surface of the Earth, with refpect to the Gravitation at the diftance of the Moon; by which Examination of the proportion of Gravity he is much convinc'd of the truth of that Theory which I had the happinefs firft to invent, arid of which I fhall have occafion to difcourfe more at large on another Subject. The other effects of Gravity upon Bodies here upon the Earth, which he omits, have been fully difcover'd by Galileo, Torricellius', and divers others fince that time, who have all proceeded upon the equal power of Gravity, and confequently fuppos'd an equal addition of Acceleration in equal fpaces of time; which in hort fpaces of Defcent near the Earth, is quoad fenfum true, there being no fenfible difference between the power of Gravity in fo fmall a difference of height, as Nature has allow'd Mankind a Liberty or Power of arriving at, to make his trials in: As the top of fome high Hill, or at the bottom of fome deep Mine; tho' yet poffibly with curious Inftruments and accurate Obfervations, fomewhat of difoovery might be made oul fuch a Hill as Tenariff, or the Alps: For which Inquiry therefore one of the Experiments, which I formerly propos'd, to be try'd at Tenariff (and which I try'd many times my, felf, both at the top of St. Pauis and at Weftminfter-- Abby, tho' without finding any fenfible difference) was intended; as will appear by the accounts of thofe trials, tho' they were unfuccefsful as to what they were defign'd for ; however feveral other Difcoveries were made not unufeful. But I fhall not further proceed upon that Contemplation at prefent, but, rather, in this following Difcourfe, confider a third Power of Nature arifing from the motions of the Airand Water, two fluid Mediums which incompais the Body of the Earth. And among the varions Effects they produce, I fhall at this time, confider only one which is procur'd by means of Art, and that is for the moving or regulating of Ships or Veffels by means Several matof Sails, Oares, Rudder, and the like artificial Methonds of gaining and ters to be making ufe of their Powers: It being of great ufe for Merchant Ships in thofe times of danger, to know the heft Methods and Means of making thefe Powers the moft ferviceable to them that may be for flying from and efcaping the purfuit of their Enemies. There are therefore very many things that muft be confider'd, in order to the perfecting of this effect to the greateft advantage that is poffible. As the Shape and Bignefs' of the Veffel with confideration of its Ufe and Delign, the manner of Rigging it and fitting it with Mafts, Sails, and other Tackle, and with Rudder, Oares, Keel, Leeboards, ofc. The Shapes and Magnitudes of each, and the ways of applying and ufing them to the beft advantage. And herein will come the confideration of the Power of the Wind upon Sails, Mafts, Rigging and Hulk of the Veffel: The power alfo of the Water againft the kudder, Oares, Leeboards, Keel, Head and Sides of the Veffel will come under confideration; for it muft be determin'd what quantity of Sails this or that kind of Veffel will bear ; and what the form of the Sail is beft to be, and how to be order'd or fitted to the Veffel ; how much Ballaft fuch Veffels fo built and rigged, will require, and what ftrength of Wind each kind of Veffel can indure; what the flrength of the Wind is with relation to its fivifter motion or higher blowing; what ftrength and length of Oares is neceffary for induring the powers to be apply'd to them; and what Powers, whether of Meaz or other, can be apply'd ; and what are the beft and moft ad-

564 Lectures concerning Navigation and Aftronomy.

vantageous ways for fuch applications: Thefe, and many other particulars, ought to be fully examin'd, both by the known Principles of Mechanicks, and byExperiments on the feveral Materials that muft be introduc'd into the Propofitions of fuch Ratiocinations; for that abfracted Notions will not be fo ferviceable in thefe Inquiries as the knowledge of the concrete Qualities and Propricties. And to be furnifh'd with thefe many an pertinent Experinents muft be invented, made, and diligently, as well as knowingly, obferv'd ; for that the preponderancy of fuch Effects, may, and do oftee lie in unheeded Circumftances, and in almoft infenfible differences, which, neyerthelefs, upon the refult of greater trials, prove very notable, and yet, by reafon of the Difficulty, Charge, lofs of Time, and many other Inconveniences, which, are the necelfary Concomitants of fuch greater Experiments, the fmaller trials, tho they require much more watchfulnefs and perfpicatioufness are much to be perferidd: For that more maty be examin'd and verify'd in a Ycar by thefe, than by the other in an Age. Aind tho' the bufinefs of Shipping and Navigation hath been many Ages in a way of improvement, and fomewhat very confiderable has been done towards it, info-much that the prefent ftate thereof is look'd upon as the higheft Peifection it is capable of, yet a few finall trials might eafily make the groundleffinefs of that Opinion plainly appear, almoft in every particular of the artificial Structure of Veffels fitted for that defign. I am not infenfible of the difficulties that attend any one thiat fhall be an afferter of this Doctrine; I have experimentally verify'd the effects of propounding new Inventions to improve fuch as are at the prefent in vogue; witnefs the improvment of Aftronomical Inftruments, the Spring-watches, the univerfality of Gravity, and the motions of the Heavens, according to the Rules and Laws of Mechanical Motions. And yet after all the obloquy and reproaches, and unhand fome treatment I have met with for making thofe difcoveries, I find the things themfelves, in tract of Time, become to be approv'd, and come to be of general ufe. There are, I believe, but very few in the World now that will adhere to Hevelims his magnify'd Contrivances forInftruments with plain Sights, tho' at the fame time they joyn with him in the Afjerfions he hath caft upon me. But to let thofe Reflections pafs at prefent, I know very well, that I fhall find, oppofite to this Doctrine about Ships, not only all the Architects or Ships Builders, but the Crue of Navigators alro, who are very hard to be brought to the Ufe and Practife of a new Method, and are not otherwife to be prevail'd with but gradatim by length of Time, and dear bought Experience. But tho' the molt are thus qualify'd, yet they are rot all: There are fome that are willing to be better inform'd in this or that Particular, and will make ufe and trial of things, tho' they carry with them but a probability; for the fake therefore of fuch, 'tis if any difcovery be made; but for the reft Si Populus Vult, decipiatur.
of fut sails. I have had many Difcourles both with fome of the ableft Ship-writes, and with as skilful Navigators, and both agree in their Opinions or Judgments, that a Bellying or Bunting Sail doth more promote or carry a Veffel to Windward, than a flat and fmooth Sail that bellies not at all; the contrary of which I have divers times indeavour'd to defend. In order to clear the reafonablenefs of this Affertion, I have, in the firft place, confider'd the Nature and Power of the Wind upon the Area of a Sail, various ways expos'd to it ; by which, by degrees, I fhall come to the evident Demonftration of what I have aflerted: But becaufe, poffibly after all that can be faid and manifefted by fuch a Demonftration; thofe that have afferted the contrary, will not grant the Conclufion, after the Demonftration; I fhall prepare an Apparatus for the trial of an Experiment where the effect itfelf fhall fpeak the Conclufion, and that beyond the power of Contradiction.

To come then to the Reafons that induc d me to make this Conclufion; 1 fay that fluid Bodies mov'd, do imprefs a motion to other Bodics, they are mov'd againt proportionate to their Gravity and Velocity: This may be prov'd by thoufands of Experiments: Next I find the Air to be a ponderous fluid Body, whofe integrant parts have both bulk and weight in them as well as the integrant parts of other fluid Terreftial Bodies; as Water;

Leflures concerning Navigation and Aftronomy. 565

Oil, Quickfilver, and the: like; and tho' they have a lefs proportion of Gravity, if compar'd to their bulk; or the face they feem to fill, and that fo very finall, that they have, for a long time, been afferted to have a contrary quality of lightnefs, yet; by undeniable Arguments drawn from Experiments, they are demonftrated to have their proportion of Gravity with relation to their bulk: Which proportion compar'd to the like proportion of Water, is, for the moft part, near as I to 800 or 900 . It follows therefore, that the motion of this fluid Body muft, according to the quadntity of its Gravity; imprefs upon another Body that it is mov'd againft, fuch a quantity of motion in the fame manner as the like quantity of another fluid Body, as Water, and if the motion be the fame, the motioncommunicated will be as I to 800. If the Motions Be reciprocal to the Gravities of the friking, Bodies, the motions or powers communicated will be equal; for if there be by the Velocity 128,3 times as much Air in bulk mov'd againft the Recipient Body as there lis of the bulk of Water in the fame time, and that the Velocity be 28,3 fwifter than that of the Water, then $28,3 \times 28,3$ will produce an equality of Motion with the eight hundred Gravitating parts in the Water mov'd with one degree of Velocity, as I hall more particularly prove afterwards. Thus, if on a Stilyard a weight of thirty Pound be hing at thirty times the diftance from the Center that a weight of nine hundred Pounds is hung, the Stilyard fhall remain in zquilibrio, and neither end prependerate; for the thirty Pound cannot be inov'd but it muft have thirty times the Velocity that the nine hundred Pound muft have, and therefore the Stilyard muft remain without any motion atall, but ftand in a xquilibititins : Since the product of the bulk and Velocity of the one is equal to the Product of the Bulk and Velocity of the other ; this therefore holds where effects equiponderate.

The Wind then is nothing elfe bit the Body of the Air mov'd as a fluid with a certain degree of Velocity towards a certain part of the Horizon upon the Surface of the Earthor Sea, and, as other fluid Mediums, it taketh the eafieft and forteft way it findeth to continue its direct motion; moving round the edges of the Body that ftandeth in its way; after it hath beat againft it, and been reflected from it, and the parts reflected are quickly again, by the fucceeding Parts', recruited in their motion, and move along with the other parts, which have received no Impediment The power of the Wind therefore is to be computed according to the bignefs of the Prifm of the Air, which cometh to dafh or ftrike againft the Body that is expos'd to it; and according to the Velocity that this Prifm is mov'd forwards to ftrike againft it: For: a fluid Medium, in motion, is to be confider'd as made up of an indefinite number of fmall Cylinders; Prifms, Wires or Strings lying clofe together, and fo making up the Solidity of the greater Prifm of the Body of the fluid that is mov'd towards the Obfacle; and again each of thefe fmall Prifms or Wires may be fuppos'd as made up of an indefinite number of frall Beads or Dies lying one behind another, and fo following each other immediately in the fame Line, and with the fame Velocity of motion, and every one of thefecompounding Beads or Dies coming to beat or ftrike againft, the Body that lieth in its way, itt fo ftrikes it and communicates a motion; what motion it doth not comminicate to that Body it meets with, is reflected dack from it, with, or by an Angle equal to the Angle of Incidence. So sthat upon this confideration each of the fimall Prifms may be computed as a fingle Bullet or Die, fo ftriking the Surface of the expossd Body with one degiee of power all of bulk equal to the mány fingle ones feparate; and the larger Prifm made up of an indefinite number of thefe leffer Wires or Prifms, may be conceiv'd and computed as as larger Bead ordie, relation being always had to the Gravity and Velocity of the impelling or ftriking Body. Now a round Body being niov'd againftanother Body, imprefeth on it fome degree of motion, and what it dothinot communicate, is reflected from it, according to the known Laws of Refiection; that is, the reflected Angle is equal to the Angle of Incidence upon the plain of the Body ftruck, and the Body ftruck receiveth a motion Perpendicular to the Surface of it that is fo fruck.

566 Lectures concerning Navigation and Afronomy:

To come then to the Application of the Power of the Wind upon, the Sails of a Veffel, we are to confider the Expanfion of the Sail; as it is expos'd to the Impulfe of the Wind; whether the Surface of it do cut the Prifm of the Wind that beareth againft it at right Angles or Oblique; if it cutteth the Prifmat Right Angles, then the whole power of a Prifm of Wind or Air that cometh to blow upon it for a certain time, whofe Balis is equal and at right Angles with the length of the Prifm, is to be computed as communicating all its motion: But if the Area of the Sail cut the Prifim at oblique Angles, then we muft conceive the Scalene Prifm as cut at right Angles, and compare the Arca thereof with the Area of the Sail; and this will give the magnitude or quantity of the impelling Prifm of Wind againf the oblique Sail. Again, to know with what force this Scalene Prifin doth prefs or impel the Sail fo obliquily pofited Perpendicularly to its Surface, we The Calculati-muft compare the Degrees of Velocity, with which it is mov'd diratly to-
on of the ftrength and sifference. wards the Area of the oblique Sail, and fee what proportion it holdeth with the direct and perpendicular motion upon the direct Sail; and by both thefe Examinations duly made, the comparative power of the Wind upon the A rea of the lloped Sail will appear. Let ab then reprefent the breadth of a Sail of a given height, and let a bcd reprefent a Prifinatical Body of the Air, which being mov'd from dc to $a b$ in a given fpace of Time, maketh a Wind of fuch ftrength bear or beat againft the Surface of the Sail ab directly oppos'd to its courfe, and in the given time all the parts of the Prifin $a b c d$ have ftruck againft the Surface of the Sail ab. Suppofe then abno, to reprefent a Prifm of Water, of equal Bafe with the faid Sail ab, and that an, or bo, the length of the faid Prifin be $\frac{1}{j}$ of the length ad or bc the Prifm of Air mov'd the contrary way with thirty times the Velocity, if the proportion of the Gravity of the Air be to the Gravity of the Water, as one to nine hundred: I fay, the Sail fhall not be mov'd either way, but remain in an æquilibrium: For as the Velocity of the motion of the Water an, I is to the Velocity of the motion of the Air ad 30 ; fo the Gravity of the Prifm of the Air abcd 30, to the Gravity of the Prifm of Water a bo 1900 . Now becaufe the fame power is impreft on the Sail, whether the Cylinder of Water be mov'd againft the Sail from no to ab, or the Sail be mov'd againft the Water from ab to no; if the faid Cylinder of Air be made one degree fwifter, it muft drive the fame Sail from $a b$, to no.

Next fuppofe Ef to reprefent the fame Sail, fet obliquely to the Prifin or Current of the Wind, draw eh, and fg , parallel to ad. Firtt then it is plain, that Nkh d and bcgi of the former Prifm do now not at all touch the faid Sail ef, but only the middle part of the fame, namely, kigh; now the quantity of this to the quantity of the former, being as ki to ab; that is, as pf , the fine of the Angle of incidence pef to the Radius ef, or ab; it follows that the quantity of Wind upon the direct Sail to the quantity ftriking the oblique Sail is, as Radius to the fign of the Angle of Incidence.

Again, the power of this Prifm upon the oblique Sail ef, is tos the power of it upon the direct Sail, equal to ki, as el to f1; that is, as fp to fe; that is, as the fine of thie Angle of Incidence pef to the Radius; therefore the power of the Wind upon the Sail ab, directly oppos'd to its motion is to the power of it upon the fame Sail fet oblique to its motion, as the fquare of Radius, to the fquare of the Angle of Incidence, or of the obliquity to the Wind pef.

Now that the motion of the oblique Sail is to the motion of the direct Sail by the fame Prifm of Wind as pf to fe, will plainly appear : Suppofe pfgh a folid Cylinder meeting with pf a direct Sail at pf , and fe the oblique Sail ; then pf will be carry'd on to ql^{1}, at the fame time that ef will be mov'd to lm , the motion therefore of pf is equal to f , but the motion of ef is equal to el): But as fito el, fo fe to fp, fo Radius to the fine of Inclination or Obliquity.

Now that the Arength or power of the Wind upon the Oblique Sail is Perpendicular to the faid Sail, is evident from this Confideration, that if the Sail be fuppos'd perfectly flat and fmall in its Surface, there is no part that the Wind can take hold of to drive it forward in its own way, and having no
part oppofite to the power thereof, but only the faid fmooth Surface that can only receive a Perpendicular preffure, and that preffure can only move or thruft it toward the Perpendicular of its Surface: If therefore a Sail be perfectly flat and fmooth, all the force it receives is towards the Perpendicular of its Surface. Which Perpendicular force notwithftanding may caufe it to move in any other direction which is inclin'd to the faid Perpendicular, by fome Angle lefs than a right, according as the faid Sail may be fo fix'd to a Body that fhall have a more eafy way for it to pafs that way than towards the Perpendicular. This may be explain'd from the confideration of the power of Gravity: The power of Gravity then we know tends to move the heavy Body towards the Perpendicular of the Horizon, that is, towards the Center of the Earth; but if the heavy Body be fo pofited on a Plain that has any inclination to the folid Perpendicular ; that is, maketh a lefs Angle with it than a right Angle; we know that the power of Gravity, tho' it acts directly towards the Perpendicular, yet it moveth and impelleth it to defcend obliquely in any other Plain dipping below the Horizon. Now the proportion of the power of the Wind upon the oblique Sail to drive it backwards towards the Perpendicular, is to the proportion of its power to drive it in any other Plain, is cafy to be determin'd, but that I fhall refer to another opportunity.

Now fince by this afore recited Canfe it is evident, that the power of the mov'd Air or Wind upon an oblique Sail, doth prefs or protrude it Perpendicularly to the Surface of the Sail, and thence, if there be as free a paffage that way, as any other, the Sail will be mov'd, and move the Veffel to which it is fix'd in the faid Perpendicular; it follows, that if there be any other part of the faid Sail that has a differing inclination, it will have a differing Perpendicular, and confequently every part of the bent Sail will have a differing preffure and a differing tendency; and becaufe that part of the Sail which is next the Wind, is lefs belly'd than that which is from the Wind, more of the Perpendicular Tendencies will be to fall from the Wind than to $g \supset$ nigh or towards the Wind, and confequently, the compolition of all the tendencies together, will have lefs power to prefs the bent Sail towards the Perpendicular of the fet of the Yard of the Sail, than if the Sail were all fmooth in the plain of the Yard ; for the fore part of the Sail next the Wind becometh, by the bellying, to ftand too fharp and near the Wind, and fo receiveth little power or force from the Wind, to promote it according to thofe Perpendiculars, and the Aft-parts of the Sail ftand too full, and fo receive moft of its power, whofe Perpendiculars tend too much from arid before the Wind ; and the-middle partsof the Sail which ftand only true, are fo finail a part of the whole, that the moft part of the effect of the Wind is loft or miftaken for the defir'd end.

This is one of the great Reafons why a Veffel, that is thus rigged, is not able to fail on any Rumb within four Points, and why even there folittle way is made to the Windward, tho' there are feveral other Reafons alfo; of which I Thall Difcourfe on another opportunity.

ALecture of the manner of Roming the Antient Gallies, Read July the 2 d .1684.

T$H 0^{\circ}$ this Lecture was read Several Tears before fome of the former, yet I thought it beft to referve it to the laft, the foregoing Serming to me more to depend uponeach other, and by fome fort of Connection join together. In this the Reader avill find the Authors Sentiments very differing from all that have rorote upon this Subject; I think bis Reafons have a confider able weight in them; but this is left to the Readers fradgment, as all otber matters contain'd in this Volume, which I Shall end with the ${ }^{2}$ Difcourfes, finding no more that properly belong to Navigation or Aftronomy, and referve fome Mijcellaneous Tracts, Fragments on feveral Subjects, fome. Inventions, accounts of Experiments, \&cc. for a Supplement or Second Volume, wohich I purpofe to publifh in fome Short time, if this fritt find any acceptance, and not increafe the bulk of this, which bas prov'd longer thin I at firt expeited.

A Lecture of the manner of Rowing of the Antient Gallies, read July 2.1684.

The greateft promoter of Mens Induftiy, Study and Invention for the dilcovery of Arts, has been the neceffity of ufefulnefs of them for humane Life. To which end next to Agriculture and Architecture, I conceive. Navigation may be rank'd, by means whereof Men have pafs'd to places of the Earth otherwife inacceffible, and the whole Surface of the Land has been inhabited and peopl'd. And as it has been very ufeful in itfelf, fo it has been the occafion of inventing and perfecting many other Arts and Sciences, as veometry, Afronomy, Geography; \&c.

And tho the devouring Teeth of Time hath farce left us any ferap of Hiftory that fhould acquaint us with the knowledge and practice of Men in the firf Ages of the World, yet fuch as we have do fufficiently inform us, that in the younger times of the World, Ships and Navigation were known? witnefs Honzer, Fafon, and the Aroonauts not now to infift ori, ivhat we find in Holy Writ concerning the Ark of: Noah, which, tho' the Shape, Dimenfions and Manner of building that Veffel, which was for a very peculiar and extraordinary Ufe, were divinely reveal'd to Noab, yet it feems not inlikely but that there might be manyother forts of Veffels known and in ufe long before that time, as in probability there were many Arks or Chefts for common ufe long before the Lord directed Mufes in the Bigneis, Form and Materials of the fecond Ark, which was the Ark of the Teftimony. But this I thall not infift on; I know the Accounts are but very fhort, and fo nothing politivively concluded from thence that there were Ships; much lefs can we find what they were, or to what perfection Navigation was practis'd: Nay, we are much to feek what was the true form of Ships in the more modern Times of the Greeks and Romans; of which times, notwithftanding, in refpect of other particulars, we have much more full and compleat Relations. That there were:Veffels of prodigious, bulk and burthen, we are affurd by Pliny, Plutarch, and others; that they carry'd prodigious numbers of Men, both of Soldiers and Seamen, that they had great numbers of Oars and Nien to manage them; and that they had Ballaft, Mafts, Sails and Rudders, and could Sail both before and by the Wind, is alfo evident:- But then what was the true Thape of the Veffel both under and above the Water'; what the form of their Oars and how they us'd them; what their greatelt velocity either of Siliting or Rowing; what their erength for beating Sail, or induring the Sea, and the like; of thefe Hiftories igive fo little an account, that the beft Judquents of the greateft Critucks, are but unceitain Conje?tures'and fhort of giving fatisfactory Anfwers and Solutions, And had not the antient Carvers helph the Hiftorians, we hould have been much more to feek; for according to the Defcriptions that Criticks have given us of the way of ufing their Oars, which is much after the Modern way of ufing them in Boats, Barges and Gallies; I fee not how it could be poffible to manage the uppermolt Oar of forty or fifty; for fo many; 'tis faid by Plut arch and Pliny and others, have been us'd in each order. I have therefore omitted all the Criticifms concerning this matter ; of which there is much to be found in $B u$ dous, Payfius, Scaliger, Snellius, Pancirollus, and more efpecially. Meibomius; and apply'd my felf to confider the thing as I find it exprefs'd in the remaining Bafo Relieves of the Antients. And upon the whole I conceive that the way of Rowing us'd by the Antients, was wholly differing from what we now nfe, and not at all like that which the Learned Meibomius has taken fo much pains so explain.

I Thall not trouble you with long Ambages either in confuting the. Opinions of others or Criticifing upon the Words, or Phrafes of Hiftorians, but rather in fhort tell you the fun of what I judge of this matter.

Firlt then, I conceive, that the Oars us'd by the Antients were very much like the Oars now us'd, but broader and flatter, fhorter and lighter, and managd oilly by one or two
Secondly, That they were mov'd not viblating forward and backwards as ours now are, but inwards and outwards.

Thirdiy,

Lectures concerning Navigation and Afronomy.

Thirdly, That they did not lie Horizontal as ours do, but almoft Perpenddicular; and when they lay a ground, the Ores ferv'd inftead of Legs or Props to fuftain the Veffel or Hull when its Belly was not broad enough to lie upright, and it was crank faded.

Fourthly, That they were not lifted out of the Water, but always remain'd iminers'd.

Fifthly, That they always promoted the Veffel whether they were moved outwards or inwards.

Sixthly, That the Rowers did feldonn fit with their Faces to the Poop of the Veffel, but fometimes with their Faces toward the Prow; and, for the moot part, with their Faces outward and forwards.

Seventhly, That in the finaller Veffels as Bireme, Triremes Quadrireme, and Penteres, the Ores wen t through round holes made in the fides.

Eighthly, That in the Triremes the Thranites fat formoft, and at the top the Zygotes jut behind him and below him; and 3 dily, The Thalamites behind the Zygotes and below him, and fo the Zygites Ore was mov'd up and down behind the back of the Tbranites and the Thalamites behind the Zygites.

Ninethly, That the Hull of the Triremes, \&c. were built much bredthing or fpreading upwards, and over hanging, fo that the holes that were made for the Ores of the Zygotes and Thalamates went out almoft Perpendicular ; and in forme there was an overfailing or projecture of the Hull at the place, but efpecially in greater Veffels; the Ores of the Thranites were either put tho' a hole of the checquer'd Railings at the top, or elfe laid in a Notch on the edge of the Ships fides, and bound down either with an Iron or Rope; fo that when the Thranites thruft the handle of his Oar from him, it would not rife out of the Notch.

Tenthly, That the Remiges or Rowers in greater Veffels, fuch as the Hepteres, Oitoeres, \&c, were plac'd in Galleries which overfail'd the Hull of the Veffel, which were made by Beams lying quite cross the Hull of the Ship and made a very broad Deck, not like the Modern Gallies, but fuch, as I conceive, was quite fluth from end to end of the Beams; at the other file of which Galleries there was made a grating or fide to defend the Rowers. In the fe kinds of Veffels the Remiges or Rowers did ftand fide to fide, and the Oar went Perpendicular into the Sea, in the out part of the orerfailing Beams, and the Rowers, in the way of Skulling, moved their Oars altogether, either outward or inward; by which means they were able to employ foch a vat number of Rowers, wherein every one fhould be able to exert his whole ftrength in promoting the Ship, and fo mut needs be able to make it move with a prodigious fwiftnefs, much beyond the fwiftnefs of any Gaily or Galliot.

By this means what Plutarch writes concerning the Veffel built by Polomars Philopator may be well conceived, which would otherwife rem incredible and impoffible; for 'twas 280 Cubits long, or, as Sneilius computes, 420 Cubits and 38 in breath, or 57 Foot ; the height from bottom to top was 52 Cubits; it carry'd 400 Mariners betides 4000 Rowers, and near 3000 Soldiers. How the fe Rowers Should be placed according to the forms they conceived, both Scaliger and Snellius were at a great loss; infomuch that Snellius thinks it impoffible to difpofe the Rowers, unlefs they were pack'd up like Salt Herrings. Ut nefas $\sqrt{2 t}$ credere bact tranftra a Remioibus occupari potuife, niff forfan cos tanquam balices oi falfameiita fipatos intelligas, are his words. And, according to the manner of Rowing they conceiv'd, it would have been very difficult. Nor would Meibomins his Contrivance have help'd them; but in the way I propounded of the fpreading of the Veffel upward ; it will not be difficult, where, tho' the higheft Oars will be til the longeft, and fo they will need a Counterpoife of Lead at the Handle to ballance the weight of the Shank, as Athenens affirms they had in this Veffel of Ptolomans' Pbilopator, yet going down into the Water nearer to a Perpendicular than a Horizontal Pofture, it may eafily enough be conceir'd ; but the fe kind of monftrous Veffels were rather for hew than ufe, as Snellius well obferves.

Eleventhly, That the flat of the Blade of the Oar did not go into the Water Perpendicular, and crops the length of the Velfel, as our Oars
now, but rather parallel with the length of the Veffel, and fo were canted with the foremoft edge outwards, when they were ftrained outwards and the foremoft edge inward, when they were ftrain'd towards the Veffel; by which means they always promoted and impell'd the Veffel forwards, and that in a very natural and efficacious way; in the fame manner, as all Fifhes do fivim and force their way through the Water.

Twelfthly, To confirm this Opinion, I fhall only inftance in the Modern Practife, which is yet in ufe in the Eaft-Indies, where this manner of Rowing is ftill in ufe, tho' fomewhat mixed with the Northern or our modern way of Rowing; for in their Barges the Rowers all ftand, and indifferently with their Face or Back to the Prow of the Veffel, and fometimes half one way half the other, and fo indifferently can make the Veffel move forwards or backwards without altering their pofture; as, without queftion, all the antient Veffels could likewife be mov'd ; which gives a Reafon why, in Ptolo$m y$'s Veffel, there were four Rudders, namely, one on each fide before, or in the Prow, and one on each fide behind or in the Poop. And the Indian Rudder alfo which is fill in ufe, is of the fame faffion with that of the Greeks and Romans, fave only, that inftead of planting it on each end the Veffel, they place it in the middle abaft, and fo it indifferently ferves for Steering the Veffel, whether going forward or backwards, and is much more convenient and eafy to manage than the way of Rudders now in ufe with us. The Curry Curries alfo are fill mov'd or row'd in the fame manner with thofe of the Antients, as I conceive, the Rowers fitting all on Bamboos at a diftance from the Veffel and Sculling the Veffel by canting the Oars in the manner I have defcrib'd ; and 'tis not unlikely but the Gallerys of Gallies might have been fome Remainder of the Galleries of the Antients, tho' they are accommodated to the Modern way of Rowing.

I amnot infenfible how great the Difficulties are in the introducing a new Opinion: Or to perfuade one, that has long believ'd a thing to be one way, that it is another, efpecially about fuch matters as are thought to be thoroughly underfood, and moft generally put in practice and approv'd. But then I know alfo, that how generally foever any thing be believ'd and afferted to be true, and the beft that 'tis poffible, yet that there may be, hath been, and always will be left room enough to find out farther Difcoveries and Improvements of Mens Knowledge and Underftanding, even in that particular, and that 'tis as hard to find and fet Bounds and Limits to the power of the Mind; as to fet what is the greateft or leaft Extenfion or Demenfion of Body in Nature : I expect the Criticks firft, next the Skilful in the prefent Naval Architecture, And, Thirdly, Such as have not fo much confider'd this part of Mechanicks, may be opponents to this particular Opinion and Explication of this piece of antient Hiftory, whofe fate it hath been hitherto either not to be underftood, or not to be believ'd; for what hath hitherto been the caufe of thefe Effects may ftill remain fo to have an influence upon Mens Minds, as not eafily to admit the entrance of a new or contrary propofal. However, as far as I am able, I fhall indeavour to fatisfy each of thefe Opponents in the explication of thofe things which may feem the moft difficult.

It cannot be expected, I fuppofe, that from fome few collected Rafts and Fragments which have fcap'd the devouring Sea of Time, in which the Arts and Knowledge of the Antients have been Shipwrack'd and loft, I fhould be able to give fo truc and pofitive aniaccount of every particular part, as could not be contradicted: But taking for granted that the Hiftories are true that afford us that information we have; I conceive there is no difficulty to thew a way how the fame might be effected which is affirm'd to have been done; and to begin with the fmalleft which was the Movóxwoos, or a Boat with one Oar: This was fafned to one fide behind, in the fame manner as the Temo or Rudder, by a Strap or Ring, ór elfe was put through a hole; the handle of which, the Rower fitting with his Face towards the Prow, and holding in his two Hands, mov'd fromwards and towards the fide of the Veffel, canting the Tonfa or Blade thereof with his Hands, by which the Veffel was both readily promoted and allo guided; of this Oar the Tonfa or blade was very broad,

Lectures concerning Navigation and Aftronomiy. 57 I

by which means the Rower could exert his whole ftrength the better. The Sixwros or sioxaxpus had two of the flat Oars behind on each fide one, which were either mov'd by two Men, or elfe fometimes by one who manag'd the two Oars in each Hand one. So Lucian brings in Charon in his Dialogues thus fpeakhg, Ego quamivis fenex duos remos concitans navigo Solus. Not like our common Scullers which manage their Oars almoft on a level, but aftere the fame manner, as I before mention'd was done by the Mov'roño: The manner of ufing thefe will appear plainly from the Baffo-Relievos on the Columna Trajana, which is a moft undeniable Record of Hiftory, and to be prefer'd before any Writings in Books of thofe times, fince there may have been fo many Tranfcripts or Coppies made one after another, of Hiftorians, and every one of thofe might multiply the Errors and Miftakes of the firt Tranfcriber, whence Criticks find and amend fo many Errors and make more, whereas this has undoubtedly ftood the fame fince it was firft erected, which was in the time of Trajan when thofe Veffels were actually made and us'd. This gave me the firf Hint or Conception of this way of ufing the Oars, and I cannot find any one paffage either in the Carving or Writings of the Antients that doth any ways contradict it; and taking that for granted, it will be eafy to explain all that is related in Hiftory concerning their greater, even their greateft Veffels which had the greateft numbers of Rowers and Oars, which I take to be almoft impoffible to be done any other way.
Now that this is not fo prepofterous a Conception as fome may imagine, nor fo fantaftical, ridiculous, filly and infignificant a way of uifing Oars, as fome have thought ; give me leave to add one Argument, and that is this, that Nature is generally the beft guide for Art to imitate. If this be doubted, I can produce Arguments enough to evince it; but if it be not, then, I fay, that this way of Rowing (which I propofe) comes the neareft to the method of Na ture in the making animated Bodies pafs through fluid Mediums, and there: fore 'tis probably the beft; for there is fcarce a Fifh in the Water, a Bird or Infect in the Air but moves itfelf through thofe fluid Media by the fame method with this I propound; that both the Tails and Fins of Fifhes are this way mov'd, is moft evident to any one that fhall ftrictly examine it ; and Borelli in his Book De motu Animalium, has well explain'd it, that feveral of thofe Birds that dive under Water, fuch as Didappers, Coots, Puffins, \&c. do under Water move their Wings in this manner, I have often times feen my felf and obferv'd: And that all Birds and Infects by the fame kind of motion of their Wings, fly in the Air : Any that will examine will fo find it. So that could there have been a better way, Nature would have takenit. Some motions indeed there are that feem a little toimitate this, and that is the motion of the Sea Fowl, Swans, Geefe, Coots, \&c. at the top of the Water, when they begin to rife and take the Wing; but then 'tis but by accident; for all thefe Fowl indeavouring to ufe their Wings by ftriking the Air, being near the Water, ftrike the Surface of it with the extreamity or blade of their Wings, after they have firft ftruck the Air; and with the flat of their Feet help to pufh themfelves forward to get a celerity of Progreffion, which is neceffary for their rife, treading, as it were, the top of the Water, and for want of that help, fome of the fhort Wing'd Fowl, as Puffins, \&c. are not able to rife into the Air from plain ground, but from the Rocks they precipitate themfelves on their Wings to acquire a neceffary velocity; which all other long Winged Fowl are able to procure by the help of their Feet, fwiftly treading the Ground, and with their long Wings beating the Air.

The greateft Objections I have yet met with are thefe, Firft, That'twas abfurd to conceive, that the Ships Row'd fometimes backwards as well as forwards, and had Rudders at both ends, but for this Suidas upon the word dixelos, fays fukt oi quadam que binis gubernaculis a prora © a puppi inftructa funt, ut ubiq; converfione in hoftes navis feritur aut Recedar, eo \tilde{q}_{9}; tam progreffu quam Receffu fallat. And that fome Ships had fuch Rudders. viz. two before and two behind, is evident from the Defcription of Philopator's Ship alfo in
 © bipuppis, a double bottom'd Veffel, or two join'd together; for otherwife I cannot conceive how three thoufand arm'd Mien could be plac'd between the

572 Lectures concerning Navigation and Aftronomy.

Rowers, on which there were two thoufand on each fide. Now by this way of Rowing, I fuppofe the Rowers could very eafily, with the fame motion of the Oar, Row the Ship either forward or backwards ; and tho' they had but one Rudder, yet they could eafily Steer the Veffel by it, tho' it le mov'd backwards; for the Blade Tonfa, or palm of the Rudder; was broâd and equally extended on both fides the Stalk or middle, and fo was always on a Counterpoife.

The manner how the Tonfa of the Oar cut the Water iwill be better underftood by the Figure than by the wordsalone. Let AB reprefent the Water Section of a Dicrotos; E and Nthe canting Section of the Palm of the Oars in the Water; thefe being mov'd outwards from the Boat, flide againft the Water from E to F , and from N to O , and at the fame time carry the Veflel from $A B$ to $C D$; then the Cants of the Oars being alter'd at G and P, and mov'd inward, they flide againft the fide of the Water by the Lines GH and $P Q$, and promote the Veffel from IK to LM, and fo fucceffively ; which is the fame motion with the Tail of a Fifh in the Water, by which its Body is moft powerfully carry'd forwards; which is eafy to be conceiv'd, and will effectually perform what it ought to do.

This fingle motion then once underftood, it will not be difficult to conceive all the reft in any of their other Veffels.

For the Moneres was nothing but feveral Couples of thefe Oars lying one before another, as thick as they could fit, leaving only room for the Perpendicular motion of the Handle of the Oar behind the back of the next Rower that fat before him, and not fo much fpace as is requir'd in the modern way of Rowing, where the motion of the Handle or Blade of the Oar is Horizontal.

The Dieres or Biremes were double Orders of thofe Oars or Rowers; the Roivers fometimes fitting fide by fide, upon the fame Bench, the Thranites fitting next the fide, and the Zygites next within; the Thranites Oar ufually lay at the top in a half round Notch, and in the infide was tied down with a Strap call'd Strappum by Vitruvius, or elfe it way thrult through fome hole of the Rails at the fides of the Veffel, the Oar of the Zygites pafs'd through a hole, a little below and nearer to the Poop, and cut the Water with the fame inclination.

The Trieres or Triremes had three Verfus or Files of thefe Rowers, there being three in each Ordo or Rank; the Thranites and Zygites, for the moft part, fat as in the Biremes, but the Thalamites fat upon the Foot-ftep of the Thranites; the Oars of the Zygites and Thalamites went through round holes in the fide of the Veffel.

The Quadriremes had four Rowersin a Rank, fitting upon the upper Bench, and two upon the Foot-ftep ; the Thalamites and Thramites fat next the fide of the Veffel, and the Zygites next within thent.

The Hepteres had all the Men fitting or ftanding in one Rank, and at one Height, but that Rank a little floped, to let the Oars have free paffage one by another.

Thofe of a greater number of Rowers in an order, had both feveral ftations of Seats and feveral Men upon each Seat; as the Dekeres might have three afcents of Seats, and have three Rowers on the loweft, three on the next, and four on the higheft Bench: But thefe are but Conjectures, as are, for the moft part, all the other above the Triremes, there being nothing that I have yet met with in the Writings of the Antient Hiftorians, or in the Baffo Rilievos now remaining that can clear that Doubt. But certain it is, that by this way of Rowing, as great a number of Men may conveniently enough be plac'd to manage each his Oar; and thereupon exert his own ftrength for the promoting of the Ship, as are Recorded to have been made ufe of by the Antients, which I conceive cannot be done by any other way of Rowing yet known.

I fhall not now infift upon the great ufe there may be made of this Principle in Shipping, but only hint, that how flight foever it may at firft appear, it may poffibly be prov'd to be of as great concern to England, as any thing hitherto done in Shipping.

- Fab: VIII. Place this \& the Tables Following

Fin:1. p:356. Final: 2. Pi 35^{6}. at the End of if Book.

B EFGHIK D घmomern

Tip: $6 . p: 498$.

$$
\text { * }+11
$$

－以涫．

An ALPHABETICAL

I N D EX.

Wherein thofe Matters that bave an * Prefix'd, refer to the Pages of the Author's Life.

A

ABortions, beft difcover the formation of the Fætus in the Womb. Page 45 $A b y \sqrt{5}$, or Tartarus, what was meat by it.

Academy, Parifian have publifh'd reveral Matters as their own, that were firft difcovered here.

446
Acceleration, of Levitation as well as Gravitation.

170, 171
Acerbity, in Fruits, turns by maturity to iwectnefs.

49
Isgypt, the Lower raifed by Mud brought down.

407
压ther, Queriesconcerning it. 29
Is the Caure of Gravitation.
167
Is exceeding Fluid and Denfe, the medium of Light and Gravity, a Body accordingly qualify'd may burn in it

171
Is more denfe thanGold, 2 , ther being all Æther, when Gold is not all Gold. ${ }_{72} 72$
it confifts of feveral degrees of Fluids, fome more fubtile than other.
Is the caufe of the fuftentation of the Mercury to 75 Inches.
ibid.
Ether or fupiter mixing with the Air, caufes the alterations of it .

380
Its impediment has a confiderable influence on the Moons motion. 198
Age, formerly a very Learned one. 105,
$379,405,454$.
Ages, of the Earth explained. 379
Air, or Atmofphere, Queries concerning it, and of the variety of its Parts, Mixtures, Motions and Qualities.30

Its Action on the Blood, in the Lungs, the caufe of Heat.
Why that in the upper Regions colder, tho' it has the fame effect on a burning Glafs.

Erefh Air, why neceffary to maintain Life.
It is the diffolvent of Sulpherous Bodies fo faras it has Nitrous Parts.
It has three known Properties, and is of a Prolated Sphereiodical Figure.

363
It circulates from the Poles to the Equinodial, Es vie verfi.

364
Its Nature farther explained. $\quad 365$
Is compofed of feveral Fluids mixed together.

370

Its Conftitution after Earthquakes: 420
Its Nature ought to be well known to recti-
fy Aftronomical Obfervations. 495
Its, violent motion caufes alterations on the Earth.

313
Air, Its various motions difcovered in a dark. en'd Room. 4740°
Is to Water $2 s^{\circ} I$ to between 800 and 900

* Its neceffity to Life and Flame. $\quad 564$

Its Inflecting Property. See Inflection.
Its Refracting Property. See Refractioni.
Algebra, Philofophick, how to be compored.
Alteration of the Earths Center of Gravity.
345; 540
Alterations in the Body of the Earth, with fifteen Pofitions concerning it. $\quad 346$
Alterations on the Earth caured by the motions of the Water. 312
Alteration of the Poles place in the Heavens and Axis of Rotation, with the motion caufing it.

32, 322, 345,349,353.
How to try it in a fhort time $357,359,55 \mathrm{I}_{\text {. }}$
Ancient Buildings to be examined for that end.
Auguftus's Obelisk at Rome altered in Pliny's time 345
Alteration of Latitude. See Latitude.
Of Longitude. See Longitudc.
Alternate Vicitude of Nature. $\quad 313$
America, polibly not fo old as Noab's Flood.
423
Ammon, fupiter's Temple, the place expreft
by the Fable of Andromeda. . 401, 402
Analytick, Method of the Ancients in their Explications of Nature hard to be known now:

173
Ancient Opinions feveral now found true.
Their Knowledge and Learning vindicated.
Andromed freed by Perfeus, the Fable ex. 379 plained 401
Anima Mundi, may befaid to be the Sun or Light.

97
Animals found buried. Sec Bones of Ani. mals.
Antidiluvi.nn Earth Perifh'd. 422
Animal and Vegetable Bodies Propogated much the fame way.

52
Anthelnes Opinion of Light refuted 104
IViiiii - Annual

An Alphabetical I N D E X.

Anrual Motion of the Earth
Argus, the Fable of him explained.
\star Arch, its true Fig.
Art compared with Nature
How it alters Nature.
Arts not yet perfect, and the mirchis 58 thinking them fo.
A Table of Artificial Things or Trades. 24 Its benefits.
Albesand Earth Rained. 304

Aftrea, the Virgin Face of the Earth Explained.
Affronomy. See Planets and Stars.
Aftronomical Inftruments. See Inftruments.
Atlantis of Plato where.
Atmojphere, a Body may burn out of it. 167 See more in Air.
Atmopplere about Comets 162
Atomes neèdlefs to be fuppored in Phyficks.
Attention what, and how performed. 144 Aurum fulminans, its effects.
Authority of what value in Natural Philofophy.

n ro anoitial B

BArometer, the caule of its ftanding fometimes at above 75 Inches. 365,368 ortable one for the sea.

553

* Barometer firft oblerved to vary according to the alterations of the Airs Gravitation at oxford.
Batavia, of an Earthquake there.
Blood acted on in the Lungs by the Air the caufe of its heat.
Bodies, their Nature to be difcovered. 35
What the Naked Senfes informs us of them.
All are rarified by Heat. 51
May operate at a diftance unperceived by the Senfes. 79
Sody, or Matter not to be bounded by our Imagination.

97
Gody and Motion are what only affect our Senfes, with what is underfood and meant by it.

171
That and Motion immutable but by the Power that made them, tho' Body or Matter be the firft Principle.
172.

Matter in it felf dark, void and without form, till motion the fecond Principle was given.
ibid.
Matter is unalterable in Quality. ibid.
By this and Motion the beginning of Genefis explained.

174
Bodies internal motions fometimes difcovered by the Ear.
Several very different have the fame Properties.
Such Bodies as yield Light.
All Globous ones have much the fame Na ture.
All that have a Gravitation to them muft be folid.

62
Terreftrial Luminous Bodies of five kinds.
Celeftial of two forts Solid and Fluid. 110
166
The leaft Body by an acquired Velocity may move the greatef.

17
Some more fenfible of Light than the Eye.
The bigger the Body, the nower its vibra-

$$
\text { tion, and the contrary. . } 135
$$

Body acts, and is acted upon by the Soul, tho we know not the Modus. 147
A Body may communicate different motions feveral ways. 133
Body once moved will continve fo to do. 335 Eody of the Earth. See Eurih.
Bodies their Criteria.
332
They decay from the astion of the Fluids on the folid parts.
315°
Bodies how naturally preferved. $\quad 316$
Some Bodies polfibly heavier than Gold.
Senfible Body the leaft part of the World, $\begin{aligned} & 317 \\ & 366\end{aligned}$
Natural Bodies in a continual change. 435
Bodies of the greateft bulk and clofeft texture moft receptive of Gravitation. 182
Bodies are not made grave from the quantity of Matter, but from the modification thereof.
ibid.
Bodies are all in motion, Body and Motion are equipollent.

191
Globular Bodies have a vibrative motion from the Center to the Superficies \& vice ver $\int \mathrm{a}_{\text {. }}$
ibid.
Bones of A nimals found at great depths. 313 ,
$436,438,444$
Bofphorus its depth. See Sea.
Bunting. Sails not fo good as frait.
C.

CArtefius's Notion of Indefinite incomprehenfible.
His Hypothefis of Grivity infufficient. 183 Gataraits in the Eye, what. 127.

* Catenaria Line a the true Figure of an Arch.

Caufes, the fame in appearance, have fometimes very different Effects, and whence.

51
The diftinguifhing between two or more co-operating Caufes, very difficult, a way. hinted for the doing this.

51,52
Celeftial Bodies, their, Nature difcovered mofly by fight, little elfe by the other Senfes, except of the Sun, which has a confiderable heat.
Celeftial Bodies are of two forts Solid and Fluid, the Fluid alfo are of two forts. 165 Celeftial Methods of knowing a Ships place atSea.

469,489
Center of Gravity of the Earth altered. 321 ,
This allowed by the parian Acedemy 345
This allowed by the Parifan Academy. 540
Center of the Earth not the Center of Gravity.

181
See more in the Earths Figure.
Central Parts of the Earth poffibly Fluid.
Changes in the Earth now vifible, not to be only allowed to Noab's Flood. 341
Change of the Axis of the Earths Rotation, and what motion caufesit, with the alteration of Meridians of Places, © ©. 345 ;

349,353
See more of this in alterations of the Earths Axis.
Changes in all Beings and that continually.
Chaos, the Opinion of it very ancient. 335
Chinefe Cbaralter, and way of Writing known to Friar Bacon
Chinefe way of Sheathing their Ships. 442

Circle, how it came to be divided in 360 parts 488
Circles of large Radii, how to be drawn. 331, 333
Circulation of the parts of the Air from the Poles towards the Equinoctial, © vice verfa.
Coberence is nothing but a fimilitude of Parts and Motions.

191
Its Power and Nature.
308

See Congruity.

Colletions of Natural things of what ufe. 338
Colours in Plants and tempered Metals confidered with their Tranfitions and Changes.
In Prifins, Flowers, $)^{\prime} c$ c. confidered. $\quad 49$
May be produced without Refraction. 190
Comets grow daily fainter and fainter. 45
Three Opinions of the Ancients concerning them. 101
Hevelius's Opinion cxamined and refuted.
Anthelmes Opinion refuted.
102
Ariftotelian Opinion exploded.
104
Galileo's Sentiment of their fance ibid.
The Accounts of them in Authors, from what Reafon not fatisfactory. 151
Their Nature largly difcourfed of. 149
They fhine by their own Light, and are an actual fiered Body, and have Nitrous and Sulphureous Particles. 196, 199
They are folid, proved from the Rapidity of their motion.

170
They have fo fenfible Paralax. 157
There is a Body in Diffolution in the Nucleus with an Atmorphere, it has Parabolical Emanations, like the flame of a Candle, with flafhings into the blaze with incredible fwiftnels.

156 , to 16_{3}
Telefcopical Stars feen through this Blaze.
157
Refraction or Reflection of the Suns Ray's are not fufficient to caufe the Phenomenena

163
Compafs Mariners, of its divifion. $\quad 470$
Conatus admotum of Fiobs infufficient to explain the motion of Light. 130
Congruity confidered, what the Author underftands by it.
Contemplation of Nature the beft proof of $\mathrm{Di}_{\mathrm{i}} \mathrm{-}$ vine Providence.

424
Continual Proportionals, how to defcribe a feries of them.

528
Copernican Syftem held by the Chaldcans and Egytians long before Pytbagoras. 201
Cornea of the Eye, its Defects how difcovered.

124
Corporiety of Ideas explained.
140
Corrofion, the Genus to Putrifaction. 59
Criteria of Bodies to know what they are, and Kingdom they belong to.

332
Cryptography of Trithemius, and Dee's Book of Spirits.

203
Cryftals and figured Spars andStones of their Shooting.

59, 280, 436

* Cyplers, Hooke's decy phered.
D.

D
Apbine, the Fable thereof explained. Darknefs or Shadow a defect of Light. ${ }_{1} 26$ Decay in Human Bodies deferibed.
A Decay or final Diffolution evident from Nature.

Devay of Bodies is caufed by the fluids a Eting on the Solids.

315
Defect of Natural Hiftories.
338
Degree of Latitude longer near the Poles.
Its meafure by the Ancients. 351
Of what length now. 456
The ways of meafuring it. $462,463,465$

* Propofed here to be meafured by much the fame method that was after obferved by the French.

14

How by it to forman univerfal Standard:
Dr. Dee's Book of Spirits, a Cryptograplsy:
Depth of the Sea. See Sea. 203
Defcending projected Bodies defcribe an Ellipfe.

Ducalion, the Fable thereof explained. 386
Diameters of the Planets. See Inffruments and Planets.
Divine Providence proved by a fearch into natural Canfes

423,424
Divifions of Time very nicely performed.
Diurnal motion of the Earth Ses E 54%

E.

EArtb and Sun agree in eight Particulars, and differ in three. 92
it muft neceffarily have vaft hollows. 305
Its Central Parts poffibly fluid. 191
Of its firft formation. . 313
It cannot have been eternal. $\quad 380$
The Antidiluvian Perifh'd. 422
Is in continual change. 426
Its final Diffolution thewn by Nature as well as Scripture. 435
Its different Layers how formed. 420
It grows old and is lefs fruitful and fhrinks:

$$
427,435,481
$$

Its a nnual motion difcourfed of | 427,435 |
| :---: |
| 180 |

Its Diurnal motion, the caufe of TradeWinds. 88
Its Center of Gravity altered. 345
Its Axis of Rotation changed, with the $\begin{array}{ll}\text { caufe thereof. } & 345,349,353\end{array}$
How to try this Change. $\quad 353,357,359$,
360, 36.2
Of the motions in the Earth. - 375
Its Orb how found. 505
The fwiftnefs of its Diurnal motion. 549
Earth, its Revolutions poffibly formerly fwif. ter.
Its annual Motion tried in England before the Well in the Obfervatory at Paris was made.

337

* Its Diurnal motion tried by the fall of a Ball. . 21
Eartbs Superficial Figure a prolated Oval. 181,
$345,349,350,453,454$
* The firft mention of its prolated Figure.

It fhrinks lefs and lefs. $\quad \begin{array}{r}20 \\ 181\end{array}$
It may have internal parts diverfly affected by a Gravitation to the Moon. 54%
Its Surface much changed fince the Creation.
Is altered by the violent motion of the Waters 312,314
Is altered by the motion of the Air. $\quad 316$
Its Surface at firft much fofter. $\quad 325$
Its Prolated Spheroeidical Figure demonftrated from the Diurnal Rotation com-
pounde屯

An Alphabetical IND E X.

pounded with Gravity
ts fom plato's sitlantiz $372,375,40$ Its alterations could not proceed from a gradual Swelling. 341
Fifteen Pofitions concerning its alterations
The Superficial Parts Inave been the Seas bottom.

319 Earthquakes, their Ends or Events. 46
Their Cauies and Effects largely treated of. 279
Their Effects under four general Heads.
Their throwing the Earth from one place to another.

309
All Places fubject to them.
Their violence may be increafed by meeting with Gold in the Earths Bowels. 317
Their powerful Effects proved by Hiftory.
372, 407, 409
The fame fhewn from Poetick Fables. 277,
Their Minera more plentiful formerly. 422 ,
Their Minera analogous to Gun-powder.
Their Effects upon the Conftitution of the Air.
They are frequent at Smyrna. 312
Eartbquaks in the Tersera's.
AtSt. Euphemia. 306
In St.Mibhael's Illand.
300
In the Leward Iflands.
301
At Pekin and other parts of Cbina. 429 At Batavia.429

Earthquakes may be in the Moon and other Planets.

326
Scven Corollaries from the Propofition of
Earthquakes. 327
Why they are moft frequent on Sea Coafts.
421
Earthand Athes rained down. 304
Eaftern Winds their caufe between the Tropicks.

363
Ecliptick, its obliquity altered. 506
Effets, their manner to be obrerved. 42,45
Effects different, fometimesattributed to the fame caufe.
Effeits of all kinds caufed by Matter and Motion.

172
Elephants Sceleton found 14 Foot deep. 436 , Eleflrick Bodies explained. $\quad 43,448$
Ellipre, and Come other Curves, why not reckonedGeometrical Figures as well as the Circle. 521
England has undergone the Catafrophies of Earthquakes.

320
Was formerly perhaps under the Torid Zone.
Eutide's Method of Demonftration, with Remarks on it.

67
Euphemin funk by an Earthquake. 306
Expanfion its caufes explained.
Experiments without a method confound the Mind.
They are to be repeated and entered with their value.
One plain Experiment better than many coftly far fetched and amufing ones. 184
Experiments are the beft difcoverers of Truth.
How they are to be contrived and made.

The difficulty of making them. 539
Thofe that are inade in finaller bulk require the greater nicenels and attention. 560 Eye, its admirable Erame and Contrivance explained.

120, 125
Its action explained by a burning Glafs. 123
Is not fo fenfible of Lightas fome other Bodies.
It lees nothing under a much lefs Angle than a Minute.
Where the Eyes fail, the Hearing affifts to diftinguifh the motions of the Bodies. 551

F.

FAbles in Ovid's Metamorphofis Phyfically explained from. 377 to 395
Failures in the Inventors and Sectators Natural Philofophy.
Fancy, all impreffions on it to be obferved as very inftructive.
Figure, Magnitude and Pofiton of Bodies, how difcovered.
Figured Stones, many defcribed.
Figures in Moibus's how caured. 43°
Figured Spars or Cryftals. See Cryftals.
Figure of the Earth. See Earth.
Fire why extinguifhed by Water.
An Explication of it, that it is a diffolution of Sulphurous Bodies by the Air fo faras it has Nitrous Particles.
Steams of Spirit of Salt and Steel-filings take Fire with explofion.

* Experiments to fhew the Nature of Fire.

Firmament in the middle of the Waters explained. 413
Fixt Stars at an unconceivable diftance. 77
What fort of Light they have. 109
Thofe in the Zodiack neceffary to be known to perfect Aftronomy.
They have altered as to their diftances. 506
Flaming Bodies may be beyond the Atmofphere. 167
Flints, of their formation and former fluidity.
326,336
Fluidity or Solidity has little to do in fpecifick Gravity.

48
That and Light have fome concern in heat.
The fluidity of the Æther caus'd by the motions of Light.

136
It confifts in the difformity of the motions of the Parts. $\quad 172$
That and Sonoroufnels feldom joined. 49
The action of Fluids on Solids caufes their decay.
Fluids made of Solids by heat. 191
Body near the Earths Center polfibly fuid. ibid. Fluids of feveral forts have been petrified. 296
There are feveral degrees of them to vaft diftances.

365
The fame Fluid may have great variety of Parts, and of their Penetration of other Bodies.

370
Why one hinders motion more than another.
Fluid Bodies impress a motion upon obviqus Bodies, in proportion to their own Gravity and Velocity.
Flying Fifh, and of Flying.i
50

* Some trials made about it.

An Alphabetical IN D E X.

Foghy Air ufually about ten Foot high at Sea,
472
Foggs and Parhelia, why frequent near the Poles.

364
Foot, its ftandard fettledat Iondon. 457
Iormation of the Eatus to be known very much from Abortions.
Formation of the World according to Mofis, explained. 412 Frenich Academy have publifhed fome Matters firft difcovered here. 446
Freezing why it expands Water.
Fruits fharp, turn fweet by marurity.
Fruftrations of Nature to be obferved.

G.

GAlileo's Opinion of Comets examined. Gatley, fuppofed Trajens found in a Lake.
Gallies of the Ancients how rowed. $\quad \begin{aligned} & 441 \\ & 568\end{aligned}$
Of their form and bulk, one carrying 7400 Men.
Generation of Hills. See Earthquakes:
Genefis, its beginning explained.
Geometry prastical, what. 469

Speculative puts fothe things down 519 ftulata, which are impracticable, and why,
Glade of Light feen in Evenings aboat the vernal たquinox.

193
Glafes Optick, fcarce any perfectly plain.
Glafs, fome more porous than others. $\begin{aligned} & 521 \\ & 368\end{aligned}$
Globous Bodies much of the fame Nature
Properties of the Globular Figute 88
Globular motion is a vibration from the Center to the Circumference, $\widehat{\delta}$ vice verfa.

God's Providence afferted by the fearch into Natural Caufes.

392, 423
Gold poffibly not the heavieft Body. 317
Made of Quickfilver by the Powder of Projection.

208
Its Oar may contribute to the violence of Earthquakes.
ibid.
Gravity Specifick what, has little to do with Fluidity.
Gravitation and Livitation to and from the Sun to a great diftance. 167,181
Gravity is the caufe of Roundnefs in Bodies. 166, 1\%8
Whether its tendency in the Earth be toward the Center.

181,321,356
Gravity andLight the two great Laws of Nature, are but different Effects of the fame Caufe.
Is in all the Planetary Bodies. 181
Gravitation to the Moon varioully affects the Earth, 546 Gravily and Gravitation, its power in different Bodies is different. 546
Being fimply confidered is to the Center.

* Some Experiments to explain itsCaufe. 14

Gravitation fhews Solidity in Bodies.
It may differ in the fame place at different times.

459
Some Properties thereof enumerated to find its caufe. $\quad 180$
What is underfood by it. 176
Divers Opinions ableut it. 377 Its Limits indefinite upwards. 177,178 It acrlerates the velocities of falling isodies.
is a finite Power, is moft in Bodies of the greateft bulk and clofeft texture. 182
An Hypothefis of its caufe. 167

Its Mendium different from that of Light and Sounds.

184
The proportion in which its power diminifhes.
Is caufed by an internal motion in the Body of the Earth.
A farther account of its caure. 180,184 Some affertions and obfervations concerning it.

19 t
A Confutation of Voffus's Hypothefis: 201
How far Fiuygens has tredted of it. $\quad 56 \hat{3}$
Growth of Individuals from an Atom. 435
Gunpowder and Thunder, their Effects much alike.
Gyants, the Poetick Fables of them explained. $323,38 \mathbf{r}$
Gyants mentioned in Genefis, what pofibly meant by them. $\quad 384$

H.

*TAil, Obfervation of an unufual fort: Hamno's Periplus quoted and confirmed. 375 ,
Hearing, as apprehended by us is very different from what it redlly is: 8
Heat, and an internal motion of the parts infeparable:

49,116
The caufe of that and Fire, with its caufe in the Blood.

50
It rarifies all Bodies! $\quad 5_{50}^{3}$
Is in fome degree joined with all actions of Light.

80
Why not fenfible in the Moons Rays. $80,8 \mathbf{I}$
At a certain degree makes Bodies thine, tho ${ }^{\circ}$ it be not fenfible in fome Bodies. $\quad 112$
It makes Solids Fluids.
IgI
Herodotus cited to prove the Hypothefis of Earthquakes.
Heyelius's Opinion of Comets difapproved of.

102
Hills turned to Lakes:- 305
Some removed: $\quad 309$
Of their generating and forming. $\quad 312$
Have been once at the Seas bottom. 319
Their tops fometimes fall. $\quad 324$
Hiftory Natural, how to be collected, and what its Subject. I8;21,22
Hiftorian Natural, his Qualifications. 19
Hobs Hy pothefis of Gravity defective. 184
Hodometrical Method for the Longitude. 518

* Hook firft chofen Curator of Experiments.
*Made Mechanick Leeturer by Sirfob ${ }^{9} 9$ ler, and Geometry Profeffor: Io
* Made City-Surveyor. 13
* Made Secretary to the R.S. I2

Horizon, the true Notion, and feveral acceptations of it.
Horizontal or level Lines difficult to be drawn. 521
Humaǹe Powers how to be improved. 12
Humane Thoughts change in a limited time.
Hurricans why near the Tropicks. $\begin{aligned} & 549 \\ & 364\end{aligned}$
Hypothefes, their ule in Natural Philofophy.
19, ${ }^{*} 279$
FFyporthefis of Light.
175
Of Gravity. 184
Of Magnerifin.
192,364
Of Eartilquakes from Shells found, Ec. 293
K kkkkkk Fypothefis

An Alphabetical IN D E X.

Hypothefis Copernican held by the ancient Chilideants and IEgyptiuns long before Pytbagoras.

I.

IDeas are corporeal, with their Explication, and the pofible number that may be formed in a Mans Life. 140, EC. We can have no Idea of Infinite. 175
Compound and Simple Iden's, what. 175, 176
Images in the Eye proportionably fmall to the Eye.

135
Imagination goes no farther than the leaft fenfible Point, or greatelt vifible diftance of Objekts.
It cannot fet bounds to Matter or Body. 97
What it is. 176
Inpreflions on the Fancy to be heedied as very inftructive.
Imprefion of Light on the Medium momentary.

130
Infinity of quantity.
We call framé no notion of it. 175
Inflexion of the Air what, andits caufe. 466,496
It is to be determined from the Moons place and diftance.
4.96

Inquiries. See Queries.
Inftantaneous motion of Light. See Light.
Inftriments to try the ftrength of falling Bodies.
To take the Planets Diameters exa\&ty. 497
A double Telefcope to take Angles. 498,
Inftruments to find the Meridian and I.atitude

354
To determine the alteration of the Axis.
357, 359
To take diftances at one Profpect by one Obferver, efpecially the Moons diftance from the fixt Stars.

503
A Quadrant with a Roler to divide the Degrees.
To draw the Rumb-lines. 530
A nice Pendule for minute divifions of time. $\quad 548$
A Magnetical one for the variation. 486
To draw the Arches of great Circles. 534
A Sea-Barometer. $\quad 553,556$
A Sea-Quadrant 558
A way wifer for a Ship. 561
One to find the Strength and Velocity of the Wind
ibid.
Of the preference of Strait Sails to Bunting.

* The Pneumatick Engine when firft made.
* The a pplication of a Spring to the Arbor ${ }^{3}$ of the Ballance of Watches.
* Circular Pendulum fhewn the R.S. in 1663.
* Sea-Barometer produced and defcribed in 1667.
Internal motions of Bodies how found. 16. operate at a diftance.

184 Ininds moft raifed out the Sea by Earthquakes. $301,302,422$ Inand of St. Michzel. See Michael.
Iroin and Sp. Salis take fire with explofion. 421.

Inaly, a Ship found in a lake there. 44 I ,

LAkes where Hills have formerly been Lake in the place of Sta Euphemia. See ${ }^{305}$ Euphemia
Lampis volans, a very unufual feen one at far diftant places
Latitudes of Places altered. $345,349,199$
487, 536,538
Its alteration obferved above 2000 Years fince.

538
Methods of obferving or taking the Latitude. $489,505,543: 552,561$
Laws of Nature are the Operations of Light and Gravity. . 173,175
Lead ufed by the Ancients for Sheathing Ships. 442,445
Learning of the Ancients vindicated. $\quad 379$
Of the Pbenicians very conniderable. 405
Level, or Horizontal Lines hard to be drawn.
Levitation. See Gravitation.
Libration of the Moon, its caure hinted. 546

* Life of Animals cannot be maintained without frefh Air.
What Air does to the prefervation of it.
Light, a Treatife of its Nature. IIt
Opinions of the Antients concerning it examined.

72
Ariftotle's Definition explained and vindicated. 75
The Author's Theory of it, that it is an internal motion of the parts. 76,113, IIS
In Luminous Bodies what it is. 108,112
Light or Lux, why a Body. 79, II 4
Light, of the Quantity, Quality and Power of its motion. II5, II6
The reafon of the decreafe of its power.
What it is in the Medium. $\begin{array}{r}1114 \\ 117,130 \\ 132\end{array}$
How it is propagated in Orbem. I3I
Its motions infinitely fwift. $\quad 77$
It may be called the Anima Mundi. 79
Its action in duplicate proportion to the dit fance reciprocally.
$79,93,117,132$
Its action on the Eye. 79
Its action faid to be ftrait in an uniformedium.

81
How bent. See Inflexion.
From what Bodies it proceeds. $\quad 83 ;$
In the Sun and fixt Stars from an actual Fire.
$94 ; 100,109$
It acts upon all created Bodies. $, 10,108$
Its motion is inftantaneous. $99,108,130$,
133
Every particle of it exerts its own particular power.
${ }^{1} 33$
Its motions are the caufe of the fluidity of the vaft Expanfum. 136
How it is produced in the head of a Comet 166.

How it is produced in putrifying Bodies. 48
It affects fome other Bodies more than the Eye.

14
A new property of Light difcovered, where. by it appears that it does not proceed in ftrait Lines in a uniform medium, whence Colours may be made out without RefraCtion.
from 187 to 190
That of the Evening Glade feen about the Vernal Equinox explained.

193
Light

An Alphabetical I N D E X.

Lioh much longer in Novi Zeinbla, Why. 466
Ligh'uine. See Thunder.
ifenum rolizle, what it is. 329
I ine of projected defcending Eodies Elliptical.

152
To divide a given lime into any number of equal parts.
To divide it into ail its aliquot partṣ. 525
The Properties of thofe drawn in a Circle.
Line frait, the difficulty of drawing it. 521
Line Logaritbmick explained. 529
Line of the Rumb. See Rumb.
Loge-line its faults.
454
Liquidity, what. 48
Zikctati Eaftern and Weßtern, their difference.
Local Time, what.
Log.rithrnick Line explained. 529
Logg-Line Erroneous.
Longitude what, and the ways to find it. from 510, to 517
The Celeftial ways how to find that and Latitude.
How to be found by fupiter's Satellites. 5 I4,

* Hooke's firf Propofal about the Longitude.

M.

MAgnetical motions in fome Properties are refembled by the motions of unifon-tuned Strings.
Magntifme in the Earth, is a vibrative motion of the internal parts there of from North to South, Es vice verfa. Its medium is an Etherial Matter, and its caufe is yf. The Rotation on its Axis: Anc, 2 dly. The Obliquity of the Ecliptick. 192, 364
Marnetical Poles and Meridians their alteration.

322
The Needle does not refpedt the Poles of the Earth. 483
Magnetial Variation unfit for the Longitude. ibid.
A Difcourfe concerning it, with an Inftrument for obferving it 484,485

* An Hypothefis of the Variation. I9
* Magnetical Experimentstried. ibid.

Magnitude of Bodiés how known. 15
Of the Earth. See a Degree, and Earth.
Malleability and Tranfparency hardly ever joined.
Mans Reafon the extent of its power. 160
Muriour's Obfervation about jeeing. I23,
Wary Borough Ridge of Hills in Ireland deicribed.

437
Matter or Body, what is underfood by it. 171, 172
That and motion the caule of all natural Effects. ibid.
It is inalterable by Condenfation and R a. refaction. ibid.
The Matter of the THeaven and Earth firf made, then motion given to it afterwards.
odity not to be bounded by our Imagination.
Miximum © Minimum in what Cenfe taken by the Author, with the exient of their imple Ideas.
mexfure, an univeraistandard propofed by a 1"ndule.

458

By a drop of Mercury, Esc.

* 14,472 Meafure of a Degree, what and how performed.
$456,462,463,465$, * 14
Medium conveying Light perfectly denfe and Huid.
$113,167,171$
That conveying Gravity differs from that of Light and Sound, tho it is one part of the incher.

184, 185
Memory, an Organ, with a Mechanical Explication of if.

140
Mercury tranfmuted into Gold. 208
Will enter into the Pores of Glass. $\quad 369$
Of its ftanding in the Barometer to 75 inm ches, which is caufed by the fame fluid that conveys Light. 365,368
Meridiains, of their alceration. 345,349 ,
$353,540,54 \mathrm{I}$
A true one, how drawn. $3.54,361 ; 491,492$;
$494,500,501$
The inconvenience.from Geographers no: determining upon one and the fame Prime Meridian.
Tenariffe propereft to be pitch'd upon 480
Metals, of the change of their Colours upon tempering.
How they came to bi 49

* Obfervables in their mixture, ... 22

Tranfmutation of Metals into Gold and Silver. $!208$ See Ninerals.

* Meteors reprefented by a Solution of Cop: per, sic.

I4
Metbod Analytick and Synthetick their ufe.
The way of making a Philofophical Alg bra.
Metbod very neceffiry in making Experiments.
How to collest a Natural Hiftory. I $\quad 5$
How to make and anfwer Queries. 27, 28,
How to collect Obfervations, and of difco vering the Nature of Bodies. 34,35
St. Michaels an Earthquake in it. 301
Microfiopical Pores of Bodies how difoovered.
Micrometer of new Contrivance 368
Micrometer of a new Contrivance. 498
Mile, of what length. 467
Minerals how they came to be blended with other Subftances. 305
They are underall places; if fearch were made deep enough. 317
Minds, Perfections and Imperfections. 8
Mochus Stones, the Eigures in them ex-
plained. 436
Moifture of the Earth wafts. $\quad 195$
Moment fenfible compofed of infinite others, andevery Creature has its fenfible moment proportionate to its bulk.., . 134
Moments infenfible, how divided and meafured.

551
Humane Moments are limited as to their quicknefs, whichare yet indefinitely divifible.
vilible.
Monkey's wherein different from Men. $\quad 549$
53
Moon, the caufe of the faint Light in the dark part. : 1 Io
Its motion confiderably impeded by the EEther. 198
Its Theory to befirf well known, and from that the other Planets Theories to be fettled with the method.
Caufe hinted of its Libration. 500,501
546
A Caufe hinted of its Libration. 546
Its Diameter refpeeting the Sun may be different from the other, and the Center of Gravity

An Alphabetical I ND E X.

Gravity not the Center of itsiMagnitude. ibid.
Itsinfluence on the Tides in Apogao. 589 Motion and Velocity of Bodies, how tried.

Motions of Air, how difcovered. 33, 474
Internal Motions of Bodies difcoverable by hearing.

339
An internal Motion the caufe of heat. 49 ,
Motions of Light. See Light.
Laws of propagated motions.
How it may be communicated foveral
133
Is not to be underftood what it is Metaphyfically.

133
What is underftood by Motion. I7I
Uniform make a Solid, Difform a Fluid. ib.
What fort of an internal motion is the caufe of Gravity.
Bodies once moved will continue fo to do.
Motion of Vibration in Globular Bodies, is from the Center of the Superficies, ES vice verfa.

191
Motion of the Earth.
505
Motion impreft by fuids on obvious Bodies, is in proportion to their Specifick Gravity and Velocity.

564
\therefore Of its communication Experiments. 23,

* Motion of the Planets from the inflexion of the dired into a Curve fhewn by an Experiment.

12
Mountain, a new one in Italy. 299,302
Some funk into Lakes.
305
Their tops falling.
Some raifed out of Plains. $\quad 302$
Have been the Seas bottom.

* Mufcles, their Strugture explained. 19,20
Helps to difcover Mufcular Motion. 52
* Mufical Notes produced by ftriking on the Teeth of a Wheel.

23

* Ey friking with a Bow on a Glafs of Water.
* 272 Vibrations of a String in a Second, make the found of G Solreut.

N.

NAked Senfes what they inform us of. 36 Natural. Hiftory how to be collected, with its defects hitherto. 18, 21, 338,343 Qualifications of a Natural Hiftorian. 19
A Table of natural things to be obferved.
Collections, of what ufe.
22
Natural Philofophy wherein deficient. 3,5 A Philofophical Algebra how to be made. 7 Science of Nature, is the knowledge of the the astings of Body and Motion in an Uniform Geometrical or Mechanical method. 172, 173
Natural Beings are in a continual change.
Natural Cāures inquired after, no derogatis
on from Providence and Scripture.
Nature of Beings may be difcovered by more remote Efferts.
Of her more fecret and referved Operations.
$\begin{array}{lr} & 43,46 \\ \text { Naturé ànd Art compared. } & 58 \\ \text { Natures two great Laws, Light and Gra- }\end{array}$
vity.
Diredtions for examining the Nature of Bodies.
from 35 to 88
Navigation, what. 451
What benefit it receives from Celeftial Ob fervations.

48, Ér.
A method to difcover feveral confiderable
Matters relating to it. . 56 :
Is capable of great Improvements. $\quad 564$
Its great Antiquity. 568
Of the Rowing of the Ancient Gallies. itb.
Navigator, what required in him. $\$ 75$
Nigbt in NovaZcmbla, how fhortned. 465
Noab's Flood difcourfed of. $341,401,412$ Number to defcribe a Series of continual Proportionals.

528

O.

OArs of the Ancients differently pofited and ufed from. what ours are, and of the manner of their Rowing their Gallies.
objeits muft be of a determinate bignefs to be feen, nor can any Eyes difcern one under the Angle of a Minute. 12,97
Thole near the Horizon are feen under a lefs Angle than when they are nearer the Zenith, tho' they appear bigger, which is only a defception of the Mind. 463
obfervation ought to be made how Nature diftributes the fame property in feveral Bodies.
How Nature produces the like parts in 48 veral different Species. $5 \geq$
Natures Tranfitions ought to be obferved.
See more under Queries.
$45,5^{2}$
Obvious Operations of Nature as well as more fecret to be heeded.
Operations Secret to be obferved. 46
optick-Glaffes farce any perfectly plain.
A new Difcovery in Opticks. See Light.
Orbicularity a confequence of Gravity. I66,
-178
Orbit of the Earths annual motion how to be found.
Orifon of the Mariners what. $\quad 505$
Oval Figure of the Earth and Sea, and of the Air.
$345,349,350,363,482$
ovid's Fables in his Metamorphofis explained.

$$
\text { from } 377 \text {, to } 402
$$

P.

PAralax of the Earths Orb obferv'd. 546 Parallels what Circles they are on the Globe.

481
Parbelia, why frequent near the Poles. 364
Parifian Philofophers evade Proofs from Obfervations, when they are unwilling to allow Confequences.

539
Patriarchs in fome fenfe, poffibly their Life no longer than ours now.
Pelluidity of Bodies how tried.
322
Pendulum. vibrating Seconds its length. 45^{14}
An exat one for nice divifions of Time.
Peudule for a Standard. See Meafure.

* Penetration of Bodies.

14,22 dark R dark Rom, is not proportioned to the hole.

189

An Alphabetical I N D E X.

Perfeltions of Man's Nature how improved.
Periplus of Hanno quoted.
375,405
Perpendiculars do not every where tend to the Center of the Earth. $181,356,483$
Perfeus, the Fable concerning him explained. 397
Petrifaltions of Bodies, Arguments for them.
Their Caufe.
318,333
Objections againft them anfwered.
A Petrifying River and Palm-tree petrify'd therein.

447, 448
Petrifattion, of Water and other Fluids. 294
Petrifaction of Wood in a River.
See more in Shells and Stones:
St.Petronio'sMeridian at Bolognia altered. 540
Pbanicians, their Learning and Skill in Navigation.

405, 406
Phaeton, the Fable thereof explained. 389 ,
Pbilofophy Natural wherein deficlent; and how to be reformed:
Philofophers take fome things for truths that may juftly be doubted of. 181
Planetary Bodies have a Gravitation toward them.
Some infufficient Hypothefes of their motions:
An Inftrument to take their Diameters. 497
Tho' their apparent Diameters are really lefs than the true, yet they fubtend a bigger Angle.
Their Theory to be known after that of the Moon, with the manner how. 501, 504
How their motions and places ate to be regulated.

503
Poffibly are not free from Earthquakes. 326
Whether their two Diameters differ. 352

* Their motions fhewn by an Experiment to be from the inflexion of a direct motion into a Curve, by an Attraction or Gravi tation towards the Center, $E_{c} c$.

12

* The caufe of their feeming different Magnitudes at the Horizon and near the Ze nith.
Plato's Atlantis quoted. $\quad 372,404$
Plates of Metal how made thin. 44^{2}
Plenum perfect and infinitely fluid. 78
Pofition of Bodies naturally according to their Specifick Gravity.
Powers of the Senfes how enlarged.
37
Power of God not leffened by explaining fecond Caufes.

392,424
Principles to be proved only by Induction. 355
Printing of the Chinefe known to Fryar Bacon.
Proportionals, how a continued Series may be defcribed.

528
Propriety, how Nature diftributes the fame in feveral Bodies to be inquired after. 48
Some forts feldom joined.
Profertins's Rape exphancd
Providence Divine proved from the Contemplation of Nature:

424
pupilles Contraction fecures the Eye from hurt by too ftrong a. Light. 124
pulfe of Light as long at the Eye as at the Luminous Body.

121
Putrifation, a fort of Corrofion. $\quad 59$
Pike of Tenarife beft for the firf Meridian.
Pyramids whether altered as to their Pofitions.

Are built upon the Core of a folid Rock:
Python explained.
353, 407

Q

QVadrant contrived with a Roler on its Limb.

508

A sed-Quadrant.
 558
 Vurlifications of a Natural Hiftorian. $\quad 19$

Of a Navigator. 475
Quantity Intinite, Cartes's Notiồn of Indefinite unintelligible.

76
Queries how made and anfwered: 27, 28, 33
Some concerning the Æther. 29
Concerning the Air. 30
Concerning the Planets and Stars: 29
Concerning the Nature of Bodies. $\quad \mathrm{SO}, 5^{2}$
Concerning the fruftrations of Nature. 53

R.

RAdiation of Bodies how difeernable: 13 Rain, how caufed. 198 Raining of Earth and AThes: $\quad 304$
Raifing up of the lower parts of 压gypt by Mut.

407 Rays. See Light.
Reafon of Man,the moft it can perform. 146,
165
Reflexivenefs of Bodies how dilfcovered. 1 if
Refration, its ufe in producing Colours. so
Sometimes not abfolutely neceffary to produce Colours. . 190
Refration of the Air firft oblerved about Ticko Brabe's time. 463
The great inconveniencies from it in Aftronomical Obfervations, with the ufes that may be made of it, from 463 , to 467
A Table of the Defcent of Bodies feen through the thick lower Air, calculated.
That quality, of the Air caufing Refractiont, alters in a very thort time. $\quad 522$
Requifites for a Natural Hiftorian. 19
For a Navigator. 475
River petrifying Wood, and other Bodies.
448
Romer's Experiment of the motion of Light treated of. 77,108
Roundne/s of the Celeftial Bodies how caufed.

166,178
Rowing of the Ancient Gallies how ordered, and is like the way at prefent ufed by the Indians.

568, 570

* Royal Society, when firft founded. 8

A Vindication of it. 329
Rumb-line, of its Properties and Difference from all other Lines, with its proportion to a great Circle.

519
A method of drawing it.
529

S.

SAils ftrait, preferable to Bunting ones. Sait Water how it becomes frem in the Clouds. 58 Of the fhooting of salts and Cryftals, and of Volatile Salts:

59
Sands of Arabia, and Fegypt, whether, SeaSand. 354 Satellites of fupiter, fix Pofitions fit for Ob . Cervation.

514,516
schreeking, whence its offenfivenefs, 135
L111111
sef

An Alphabetical I N D E X.

Sea, Eruptions from its bottom, and new Iflands made.

301
Of its gaining upon the Land. 315
Its prefent bottom formerly Mountainous, and the contrary.
Its oval Figure how to be proved. 343, 350
Its Surface near the Poles poffibly concave.

sea-fournals, how kept.	35 I
452	

Its Looming, what. 472
Sea-Inftruments at prefent defective. 523
See more under Inftruments.
Seas great depth at fome places. $\quad 309$

* Secrets,fome of the Authors decyphered. 21
seeing, how performed, with what it informs of. 12,13
Nothing feen under a lefs Angle than a Minute. 12,97
seeing explained by the Effects of a Burning G lass.

123
Practicablenefs of feeing in the dark. 126
Mariot's Experiment of Vifion. 123,126
A farther Explication of Vifion with a dark Box.
Images are proportionably fmall according to the Eye.

135
senfes in themfelves dfferent from what we conceive them.
What the Naked Senjes inform us of. 36
Their Power to be enlarged.
Senfible Qualities of Bodies to be made more powerful.
A fixth and feventh Senfe how procured. 46
They cannot difcover fome Operations of Nature which yet may be otherways difcovered.

79
senfes, why of diftinct forts in different Species.
${ }^{142}$
Senfible part of the World the leaft part of Body.

366
Shadow only a defect of Light. $\quad 128$
Sbapes in Mochus's, how caured. 436
Sbeatbing Ships with Lead known to the Ancients.

442, 445
How the Chinefe fheath their Veffels. 442
Sbells found every where, with the Argument from them.

318
Shineing Terreftrial Bodies. 11
Ship with the Bodies of forty Men found in Switzerland.

439, 441, 443
Another found in a Lake in Italy. 441, 443
Sbips place at Sea. See Navigation.
Skin of Animals compared to Paper and Hat making.

57
smelling treated of.
40, 49
Smyrna fubject to Earthquakes.
snake, or Shell-ftones defcribed. from 280
to 293
solids made by uniformity of motion. 172
They admit and emit Fluids for their Suftention:

191
soul a felf-mover that continually radiates into the Repofitory of Ideas, with more of its action.

145,モ゙c.
sournefs follows Sweetnefs. 49
sound how caufed. 116
Where the Eye fails Sounds diftinguilh the motions of Bodies.
Spars. See Stones.
species may be loft, or fo changed as not to
be known. 433,450
Spots in the Sun what theyare. $85,89,90$
\star Springinefs, its Theory. 20
Standird for meafure.
Stars why they a
472
Eye
bigger than through a Telefcope. 12,97
Several Queries concerning them.
Fixt Stars, their inconceivable diftance. 77
Of their different Magnitudes. $\quad 99$
Caufe of New Stars. ibid.
Light of the Fixt Stars from an actual Fire.

$$
100,109
$$

Stars near the Zenith beft for Obfervation.

An Inftrument to take their diftances from the Moon.

503
Thofe in the zodiack neceffary to be known.
Of their altering their diftances : 505
Of their altering their diftances. $\begin{array}{r}506 \\ \text { Their motions may be meafured to lefs than }\end{array}$ a quarter of a Second. 550 Stones fhort like Spars. $\quad 280,436$
Sulphureous Terreftrial Bodies. $\quad 110$
Sitn, whether a fired Bocly. $45,94,100$
Its vaft bignefs and diftance. $\quad 85$
Is fubject to alterations. 85
86
88

Its Rays carry Heat as well as Light. 88
Sun has an Atmofphere about it. $\quad 89,90$
Is folid and opaque, its Superfices only flnes.
91,92
It agrees with the Earth in feveral Properties. 89,92
It is the principal bright Body. $\quad 109$
If it had underftanding it would be fenfible of the actings of its Rays, and the Reactings upon them. 146
The ufes of its Rays let into a dark Room.
473
How Aftronomers come to differ fo much a bout its diffance, and how beft found.

495,504
Subterraneous Trees, or I.ignum Foffle. 3142
315,339
synthetick and Analytick methods, their ufe and difficulty.

173,330

T.

Able of Artificial Things or Trades. 24 Of Natural things.

22
Tariarus; or the great Abyfs. 413 Telefoopick Sights for Inftruments vindicated.

97, 357

* The Difpute with Hevelius about them. I5 What fort beft for Celeftial Obfervations.
A double Telefcope for taking Angles: $: ~ 496$
498,
Are not yet brought to perfection. $559,{ }_{50}^{502}$
Tempered Metals, their Colours. 48
Temple of the Winds, its Pofition fit to be obferved.

554
Tenariffe Pike fit for the Prime Meridian.
Tercera's, Earthquakes there.
Theories pre-conceived, their ufe. 279, 537,
$\& 55$
Theory of the Moon to be firft:fettled. 500 ,
Thermometers, their Hiftory. 501

* Their Standard when firtt fixt. $\quad 10$

Thinking explaired. i45
Thurder and Light'ning explained. 59,169 ,
Time, how we come by the notion of it. 139 Local Time, what meant by it. $\quad 513$
Time lefs than an humane. Moment howdivifible.

548,550

An Alphabetical I ND E X.

How the Minims of Time may be reduced Vifion. See Seeing.to number.551 Viciflyudes of Nature alternate.
313
Tranfparency neceffary to produce Colours. Volatile Salts, an hintabout them. 59
Voffius's Caufe of Gravity examined. 201
Tranfitions of Nature to be obferved. 49,52 Trivial things at firft a ppearance, prove af-

Upper Air why colder.

terwards of great ufe. 473
Tides regulated by the Moon, with a Queryof their Caufe.Typhaus explained.48, 198. 547323
Y.Aculm, what underftood by itVariation. See Alteration and Mag-netifm.
Vegetables, their Colours treated of 48
Both they and Animals propagated 5the fame way.
Velocity, how tried.52
A proportionate Vewuzty given to the leaftBody, may move the greateft contrary toa Principle of Cartes.

Velocity of the Earth under the 压quinoctial.
549
Vibration the flower, the bigger the Body.
Vindication of the Royal Society. 135
Vindiation of the Learning of the Ancients.

Ater, why frefh in the Clouds, tho
raifed from the Sea. Is fometimes tranfmuted into Stone. $\begin{array}{r}59 \\ 294\end{array}$ The motion of Waters caufe great changes on the Earth.
To know the quantity vented by a River. Pipes.
with a certain degrec of Velocity. $\quad 565$

Z.

W.

THEEND.

ERRATA.

N the Life. Page 24. Line 4. Read inverted, p. 27. 1. 16. r. often. In the Bookitielfo Page ${ }_{15}$. Line 36 . Read Huygens, p. 21. 1. 25. r. Luciferous, P. 5 I. 1. 14. for Colour ro Light, p. 57. 1. penult, r. muft, p. 63.1.37. r. wit. p. 75.1. 24. for their r. the, p. 77.1.14. r. a thoujand times, p. 32.1.3. r.black, p. 94.1.15. r. as much, p. 125. 1. 19. r. Role, P. 142. Io 44. for Senfe r. Soul, p.171. 1.46. dele that, p. 194. 1. 5. r. des Letteres, p. 279. 1. 32. r. in. comprebenfible, P.301. 1. 28. r. Subverfion, p. 303.1.9. r. 1179. p. 305.1.42. r. Mottingbam,
 17. r. finds out, P. 340.1.37.r. eum acrem, p. 355.1. 18. dele which, p. 380. 1.38. r. Regimen, P.
 p. 465.1.53. r. AE which is the Segment, p. 47 1. 1. 59. dele and thereof, P. 508. 1. 13. r. fufpend, for F. S. E, P. 526 . in the Margin Tab. XI. Fig. 3- P. 553.1 . 52 , for confent ro conftanto

B OOK S Printed by Sam. Smith and Benj. Walford (Printers to the Royal Society) at the Princes Arms it St. Paul's Church-yard.

OPticks; or a Treatife of the Reflexions, Refractions; Inflexionsand Colours of Light. Alfo two Treatifes of the Species and Magnitude of Curvilinear Figures: By. Sir 15. Newton, P. R.S. in 4 to. 1704.

The Anatomy of humane Bodies; with Figures drawn after the Life, by fome of the beft Mafters of Europe, and curioufly engraven in 114 Copper Plates, illuftrated with large Explications containing many new Difcoveries, and Chirurgical Obfervations. To whicl is added an Introduction explaining the Animal Oeconomy; with a copious Iudex. By William Cowper. oxford,-Printed at the Theatre on large Imperial. Paper in Folio. reg8.
Jo. Raii Hiftoria Plantarum, Species hactenus editas aliafque infuper multas noviter inventas \& delcriptas com plettens Tomi duo. Fol. 1636.

Ejurdem Tomus tertius, qui eft Supplementum duorum precedentium; cum accelfionibus Camelli \& Tournefortii, 1704.
Synopfis Methodica Strip. Britann. in qua tum Notx Generum characteriftic traduntur, tum Species fingulx breviter defcribuntur, \&c. 1690.
 Stirpium Europ, extra Britannias nafcentium Sylloge. 1694.
Synopfis Methodica Animalium quadrupedum \& Serpentini generis. 1693. Methodus Infectorum; feu Infecta in Methodum atiqualem digefta. 8vo. Methodus Plantarum emendata \&aufta, in qua Notx maxime characterifticæ exhibentur, quibus ftirpium genera tum fumma, tmm infima cognorcuritur, \& a re mutuo dignofcuntur, non neceffariis omiffis. Accedit etiam huic fecundæ Editioni, Methodus Graminum, Juncorum \& Cyperorum fnecialis. Amft, 1703.

Praxeos Mayernianæ in Morbis internis précipue graviorbus \& Chronocis Syntagn 2 2 -Ejufd. Syntagma alterum. 1. De Febribus. 2. De Morbis Externis. 3. Le Arthritide. 4. De Lue Venerea. 2 Vol. 8 vo.
D. R. Morton de Morbis Univerfalibus Acutis, Vol. I. 8vo.
_Id. de Febribus inflammatoriis, \& de Variolis, \&c. Vol. II. 8vo.
-Pbithifiologia, or Treatife of Confumptions. Engl. 8vo. ${ }^{1705}$ -
Pharmacopeix Colleg. Reg. Londini Remedia omnia fuccinfte defcripta. Edit. 3. A not. 1699 . per J. Shipton in 12 mo .
Pharmacopceia Bateana. Qua nongenta circiter Pharmaca, pleraque omnia e praxi Georgii Batei Regi Carolo Secundo Medici Primarii excerpta, ordine Alphabetico concife exhibentur cum viribus \& dofibus annexis. Quorum nonnulla in Laboratorio Publico Pharmacopceano Iond. fideliter parantur Venalia. Atque in ufu funt hodierno apud Medicos Londinenfes. Huic accefferunt Arcana Goddardiana item Orthotonia Medicorum Obfervata; \& Tabula Fofologica dofibus Pharınacorum accomodata cum Indice morborum curationum, \&c. Cura f. S. Pharmacopœi Lond. Editio tertia cum Appendice per Tho. Fuller, M. D. 12 mo . ${ }^{1700}$.

PharmacopœeiaExtemporanea, fivePrefcriptorumSylloge, in quaRemediorumElegantium \& efficacium Paradigmata ad omnes fere medendi Intentiones accomodata candide proponuntur; una cum viribus operandiratione Dofibus \& Indicibus annexis. Per Tho. Fuller, M. D. Editio tertia, aucta \& emendata. 1705.

Medicamentorum Eitoptsinv Thefaurus, fuccinete comprehendens ad omnes fere totius Microcofmi morbos. Experta nec non fpecifica Remedia ex celeberrimis tam Veterum quam Neotericorum, feriptis excerpta, ordineque alphabetico digefta. Opera \& Cura Johannis Crufo Pharmacop. 12 mo . 1701.
S. Dale Pharmacologia fell Manuductio ad Materiam medicam. 12 mo .
_ Ejufd Supplementum, Medicamenta officinalia Simplicia, priore libro omiffa, completuns. In i2mo. 1705.
D. Sydenhami proceflus integri in morbis fere omnibus curandis nec non de phthifi Tractatulo. 12 mo . Edit. 3. 1705 :
M.Lifter Exercitat. ofto Medicinales. 1. de Hydrope. 2. de Diabete. 3. de Hydrophobia. 4. de Lue Venerea. 5. de Scorbuto. 6. de Arthride. 7. de Calculo humano. 8. de Variolis. 12 mo .

- Sanctorii Sanctorii de Statica Medicina A phorifmorum Sectiones 7. cum Commentario. i 2 mo . lond. 1701.
The Anatomy of the Brain; containing its Mechanifin and Phyfiology; with Sculptures. By Dr. H. Ridely: 8 vo.
Medicinal Experiments; Or a Collection of choice and fafe Remedies, for the moft part fimple, and eafily prepared; very ufeful in Families, and fitted for the ufe of Country People. By the honourable R. Boyle, Efq; in three parts, containing above 500 choice Receipts. The 4 th Edit. enlarged with a Supplement. 12 mo . 1703.

The natural Hiftory of Chaly beate and purging Waters of England, with their particular Effays and Urés: By B. Allen. 8vo.
The Antiquities of Palmyra, alias Tadmor, built by King Solomon, containing the Hiftory of that City and its Emperors from its Foundation to this prefent time. 8vo. 170%,
The Philofophical Tranfactions, giving an Account of the prefent Undertakings, Studies and labours of the Ingenious, in many confiderable parts of the World, continued to this prefent Year 17-24. By Dr. H. Slone, Secretary to the Royal Society, 4 to.

[^0]: 2dly, A Method of making ufe of, or employing thefe Means and Affiftances of Hurnane Nature for colleeting the Phenomena of Nature, and for compiling of a Philofophical Hiftory: Confifting of an exact Defcription of all forts of

[^1]: To Earths and clays.

[^2]: 2. The Second way of difcovering Nature may be, by obferving how Nature procceds in diftributing the fame Propricty in feveral Bodies. As fuppofe Gravity be the Propriety inquired after, we may find among Fluid Bodies, that in Flame 'tis very little or nothing at all, in Air but very faint, in condenfed Air fomewhat more, in Oyl of Turpentine 'tis yet more prevalent, in ordinary reEtify'd Spirit of Wine a little more, in Water greater, in feveral Saline and Chymical Liquors' yet more prevalent; as Oyl of Vitriol, Oyl of Tartar, छ゙c. in Quick.filver moft of all, by which Progrefs we may learn that Gravity has little to do with Fluidity. ' for that almoft the heavieft Body in the World is fluid as is alfo the lighteft, and there are few intermediate Degrees of which there may not be found fome fluid Subftance. And this will be farther manifefted alfo, if we confider the Difperfion of it among confiftent Bodies, for
[^3]: Gg
 lhior As,

[^4]: I will fuppole further, that the Soul may every moment, partly by its own immidiat: Power, and partly by the help of the Impreffions produced by the

[^5]: 1．That there Firft then that there is fuch a Power in the Earth，in refpect of terreftrial
 is fuch a thing．Bodies，I think no one will deny in the general．Some Difputes there have been，I confés，among Philofophers，concerning the Nature of the Power it felf， and fome concerning the Subject in which it is inherent：Some fuppoting it t^{\prime}

[^6]: Note, That Troo Preffes being employed in Printing thefe Tracts, has caufed a Cbafme in tbe Pages.

[^7]: fortes ab ácreffic ventơtun inmotus，छ犬 ingens Ipfe，Eed horrificis juxta 2onat 庆maRuinis， Inter duma；Atram prorumpit ad Etbera nubem Turbine fumpntem picen © candeate favilla， Attollitq；globos flammarum ES fidera Lambit Interdump foppulos Avulfaq；vificra möntis

 Cum gemitu glomerat fundoque exxftuat imo． Fama eft Enceladi feminffum fulmine Corpus
 Uegeri molé bas，Ingentemq；infuper 压tnam
 Impofitam；ruptis flammam expirare caminis：
 Et feffum quoties motat Latus，intremere omnern
 Murmure Trinacriam © creco Subtexere fumo．

[^8]: -.-------Natus homo eff, \&c.
 Sive recens tellus Seductaq; nuper ab alto AEthere coonati retinebar Jemiña Coli; Quam fatius Fapeto, miftam fluvialibus undis, Finxit in efficiem moderantum cuncta Deonum.

[^9]: --------Sed te quog; maxime Pytbon
 Tum genuit : Populifa; novis, incognite Jerpens
 Terror eras; tantum spatii de monte tenebas.
 Hunc Deus arcitenens, ©̛ nunquam talibus armis
 Ante, nifí in damis Caprifg; fugacibus ufus,
 Mille gravem telis, exbaufta pane. Pharetra.
 Perditit effufo per vulnera nigra veneno.
 Neve oper is famam poffet delere vetuffas,
 Infituit Sacros celebri certamine Ludos;
 Pythia perdomiti ferpentis nomine ditfos.

[^10]: Difflit omne Solum penetratg; in Tartara Rimis
 Lumen © Infernum terret cum Conjuge Regem. Et mare Contrabitur Siccaog; eft Campus arena, Quod modo pontus erat ; quo 9 ; altum texerar aquor E.riftuns montes, or Sparfas Cycladas augent. V. 260.

[^11]: \qquad

[^12]: NB. I do not find any thing more relating to this Quadrant nor the defeription of the Time-keeper bere mention 2 .

[^13]: This method of finding and eafily defcribing a Rank or Series of continual proportionals, I have the rather chofen to explain and demonftrate by this Problem, becaufe by means hereof the true Nature of Logarithms and the Logarithmick Line will the more plainly be underfood and comprehended, which by reafon of the refervednefs and defign'd obfcurity of moft of thofe who have written concerning the method of compounding and forming the Logarithmick Tables, are not fo obvious to every Reader; for in this prefent

