NATIONAL

LIBRARYAD51
6250%
R31?P

POMENEY

PROBIT ANALYSIS

by

Richard IJ. Dawm 1/
 anc

Clyde Givens 2/

United States Department of Agriculture
Biometrical Services
Beltsville, Maryland

Masy 1963
U. S. DEPT. OF A GRICUITURE

FEB5-1964
C \& R-PREP.

I/ Biometrician, Biometrical Services, USDA, ARS. Present aderessM \& T Chemical Inc., Rahway, New Jersey.
2/ Programer, Biometrical Services, USDA, ARS, Beltsville, Maryland

This program obtains the potency (ratio of equally effective doses) and its 95% confidence 1 imits for upwards of five parallel dose-response lines through a regrassion of logedose on probit response employing the maximum likelihood procedure described by D. J. Finney in Probit Analysis (Cambridge University Press, 1952).

Input consists of a parameter card for the experiment followed by up to five subsets of data. Each subset of data is preceded by a subparameter card and each subset of data may contain from two to twenty data cards (doses). The parameter card for the experiment consists of three 4 -digit numbers which identify the "experiment", a dummy number identifying the first subset of data, and the number of subsets of data in the experiment. In addition to this, the first paranerer card also contains two Chi square values (for testing for homogeneity of the data and parallelism of the regression lines respectively), the value of Student's "t" for setting confidence limits for heterogeneous data, the critical value of F_{05} for testing significance of the regression, and a "Log Factor" for making all doses greater than unity before transforming dose to $\log _{10}$ (dose). Each subset of data that follows (up to five) must be preceded by a sub-parameter card.

Each sub-parameter card contains three 4-digit numbers which identify the experiment, the subset of data to which the sub-parameter card belongs, the number of data cards (doses) composing the subset, the number of animals that were observed, and the number that responded in each untreated control (check). The use of sub-parameter cards permits a different check for each subset of data.

Each data card contains two 4-digit numbers identifying the experiment and the subset to which the data belong (for ease of sorting and ordering of the data cards), followed by, three 6-digit fields which contain the dose used, the number of animals treated, and the number that responded.

The program computes the percent response in the untreated control, with provision for zero (0) observations and lor zero response in the untreated control. The progran, as it reads each data card, converts the dose to $\log _{10}$ (dose) and the numbers observed and responded to a proportion, adjusting each proportion for the untreated control by use of Abbott's Formula. The adjusted (net) responses are then transformed to probits by use of a polynominal approximation. (Hastings 1955, Approximations for Digital Computers). The program then types out the numbers identifying the experiment, the subset to which the observation belongs, the dose administered, the net response (as a percent) and the proportion that responded in the untreated control. After typing out this information the weighted regression of \log-dose on probit response is computed using an iterative procedure (maximum likelihood) with the restriction that the dose-response lines for all subsets are parallel.

Iteration continues until the last and next to last slope values (B^{\prime}) agree within $\pm .00005$ or until 20 cycles have been completed. After cycling until convergence the program types out the numbers identifying the experiment and subset, the number of doses in each subset, the weighted and corrected (for weighted mean) sums of squares of log-dose (X), probit-response (Y), cross products (XI), and the sum of squares attributable to regression for each subset (doseresponse line). The program continues, again typing out the number identifying the experiment, the number of doses in each subset, the weighted means of log-dose and probit-response, the sum of the weighting coefficients for each subset and the intercept of each weighted probit regression line.

Following this the program next presents a summary of the experiment in an analysis of linear regression format, which includes the degrees of freedom (computed), sum of squares (total, regression, deviations from regression, and parallelism), and pertinent parameters (F ratio needed, F ratio obtained, Chi

Equare velues used in the tests for homogeneity and parallelism). Parallelism is the difference becween the sum of squares attributable to regression resulting from fitting individual regression lines to each subset of data and from fitting a single regression line (the same slope) to all subsets of data. This definition of parallelism, because it is an over simplification, is not entirely correct as stated, and the reader incerested in the exact procedure is referred to either the accompanying flow sheet or to D. J. Finney's Probit Analysis.

Following the presentation of the analysis of linear regression, the program chen fest for homogeneity of the data before typing out the number of iteracions completed (first line obtained from a weighted regression of log-dose on probitresponse using the observed proportions that responded in the weighting coef. Ficients and is not counted in detemining the number of iterations), g (the precision of estimating the slope which enters in setting confidence limits about the potencies), the critical value of t_{05} used in computing the confidence limits about the potencies, the standard error, the standard error of the slope, and the slope of the regression lines (single slope for all regression lines). If the daca are heterogeneous, t_{05} is set equal to Student's t_{05} with degrees of freedom associated with the deviations mean square (total degrees of freedom minus the number of lines, where the total degrees of freedom is the sum of the number of observations in the experiment minus one for each doserresponse line within the experiment), and the square root of the deviations mean square is set equal to the standard error. If the data are homogeneous $t_{05}=1.96$ and standard error $=1.00$ are used in computing the 95% confidence limits of the potencies. The standard error of the slope (STDEB) is invariable $\sqrt{ }\left(\right.$ standard error) ${ }^{2} / S_{x x}$.

The program then test for parallelism. If the lines are not parallel LINES NOT PARALLEL is typed out, and the program proceeds without pause to read the parameter card for the next experiment, bypassing the reraining calculations
in the program. If the lines are parallel the program continues with the remaining calculations, testing next for significance of the regression.

If the regression is mot significant, as tested by the critical value of F_{05}, NON SIG REGRESSION is typed out and the program proceeds without pause to read the parameter card for the next experiment. If the regression is significant the program continues, computing and typing out the LD-30, LD-50, LD-70 and LD-90 for each regression line (subset of data). The program then proceeds to compute and type out potencies (ratios of LD-50 of first line divided by LD-50 of each succeeding dose-response lime) and their 95% confidence limits. The program then proceeds without pause to read the parameter card for the next experiment, which initiates another series of calculations for fitting parallel dose-response lines using the probit analysis procedure outlined by D. J. Finney in Probit Analysis.

The weighting coefficients and the procedures used in the program are similar to those used in a Probit Analysis program written by R. J. Daum, Clyde Givens and Gary Bearden (Biometrical Services, USDA, Beltsville, Md.) for fitting simple, individual, dose-response lines using the Maximum Likelihood procedure described by D. J. Finney (ibid). The reader seeking greater detail on these points is referred to this program. Running time with this program is approximately four minutes with typewriter output. If it is anticipated that more than an occasional set of data will be processed by this program it is recomended that a card-punch output be used. This change may be accomplished by simply changing the PRINT statements to PUNCH and recompiling the program.

The advantages of this program are (1) a neatly labeled and well organized print-out of sufficient information to permit plotting the original and computed dose-response lines, and to spot the subset(s) of data which resulted in either biological or statistical invalidity if such occurs, (2) the inclusion of numerous checks which permits the analysis to be completed only on data which are both
statistically and biologically valid, and (3) the use of procedures which permit an indefinite number of analyses to be perfomed without additional instructions or interference fron the machine operator.

10788
10898 $T 0982$ 17078 11134 T1158
PRINT 62，IDE，IDS，Z，B，C（J）
IF（0）99．3．4
$3 \mathrm{Q}=0001$
GO TO 8
4 IF（ $0-1$, ）6，5，99
Q $=0.9999$
if $(Q-.5) 8,8,7$
$\mathrm{Q}=1 .-\mathrm{Q}$
$E=S Q R T(L O G(1 . /(Q * Q)))$
$B=2.515517+E *(E * .010328+.802853)$
$E=E-(B /(1 .+(E *(E *(E *, 001308+.189269)+1.432788))))$
$Z=39894215 * E X P(-E * E * \cdot 5)$
$W N(1, J)=(V N(1, J) * Z * Z) /(Q+((1,-Q)+C(J) * G))$
1F（P（1，j）－．5）9，9，10
$9 Y(1, J)=5 .-E$
GO TO 11
$991 \mathrm{~T}=1$
$10 \quad P(1, J)=5 .+E$
11 continue
PRINT 51
$B=0$ 。
IF（IT）12，1，1
12 SSY＝0．
$S S X=0$ ．
SSXY＝0．
SSREG＝0．
$S S N W=0$ 。
B2＝B
DO $15 \mathrm{~J}=1, \mathrm{~N}$
$M=K(J)$
$X B(J)=0$ ．
$Y B(J)=0$ ．
$S X(J)=0$ ．
$S Y(J)=0$ ．
$S X Y(J)=0$ 。
$A \mathrm{I}=0$ ．
$A 2=0$ 。
$A 3=0$ 。
$\operatorname{SWN}(J)=0$ 。
DO $13 \quad 1=1, \mathrm{M}$
$B=W N(1, J)$
$A 1=A 1+B$
$A 2=A 2+B * \times(1, J)$
$13 A 3=A 3+B \times Y(1, J)$
$X B(J)=A 2 / A 1$
$Y B(J)=A 3 / A 1$
$\operatorname{SWN}(J)=A 1$
$A 1=0$ ．
$A 2=0$ ．
$A 3=0$ 。
DO $14 \quad 1=1, M$
$B=W N(1, J)$
$Q=X(1, J)-X B(J)$
$E=Y(1, J)-Y B(J)$

14074 14134 14194 14290 14338 14386 14434 14494 14530 T4566 14602 14698 14734 $\$ 4770$ 14806 14874 14942 15022 15102 15114 15186 15234 15378 $\$ 5510$ T5 15626 15662 15670 15694 15702 15858 15954 $T 6022$ 16058 T6066 $\overline{1} 6102$ $\$ 6234$ 16414 16786 16794 16818 $T 6842$ 16878 76890 17010 17082 17298 17322 17358 17394 17430 17466 17490 17514 17538

```
    A1=A1+B*Q*Q
    A2=A2*B*E*E
    14 A = A 3+B*E EO
    SK(J)=A1
    SY(J)=A2
    SXY(J)=A3
    SSNW=SSNW+SWN(J)
    SSX=SSX+A1
    SSY=SSY+A2
    SSXY=SSXY+A3
    1 5 \text { SSREG=SSREG+A3*A3/A1}
    B=SSXY/SSX
    SREG=B*SSXY
    | T=| | T 1
        IF(IT-20) 222,122,122
222 IF (B2-B)23,25,24
    23 IF (B2-B+.00005)122,25,25
    24 IF (B2-B-.00005)25,122,122
122 DO 22 J=1,N
    G=1./(1.-C(J))
    M=K(J)
    A(J)=YB(J)-B*XB(J)
    DO 22 :=1,M
    Q=A(J)+B*X
    E=(Q-5.)/1.4142136
    IF (Q-5.)16,17,18
    16 E=-E
    GO TO 18
    17E=.5
    GO TO 21
    18E=E*(E*(E*(E*(E*(E*D6+D5)+D4)+D3)+D2)+D1)
        E=(1.-1./(1.+E)**16.)*.5
    IF (Q-5,)19,21,20
    19 E=.5-E
    GO TO 21
    20 E=.5+E
    21 Z=.39894215*EXP(-(0-5.)*(Q-5.)*.5)
    Y(i,J)=0+((P(1,J)-E)/Z)
    22 WN(1,J)=(VN(1,J)*Z*Z)/((1.-E)*(E+C(J)*G))
    GO TO 12
    25 PRINT }5
    LTDF=0
    SSPAR=SSREG-SREG
    DO 26 J=1,N
    A3=SXY(J)*SXY(J)/SX(J)
    LTDF=LTDF+K(J)-1
    26 PRINT 63,J,K(J),SX(J),SY(J),SXY(J),A3
        LRDF=1
    LPDF=N-1
    LDDF=LTDF-N
    A2=LDDF
    A 3=LPDF
    C(4)=6.2816
    C(3)=5.5244
    c(2)=5.
    C(1)=4.4756
```


IDENT	SET	DOSE	NET RESPONSE	CHECK	
101	i	4.000000	16.666666	. 000000	
101	1	8.000000	40.000000		
101	1	24.000000	65.000000	. 000000	
101	1	48.000000	78.500000	. 000000	
101	2	4.000000	2.666666	. 000000	
101	2	8.000000	5.714285	. 000000	
101	2	24.000000	28.444444	. 000000	
101	2	48.000000	45.777777	. 000000	
101	3	24.000000	30.000000	. 000000	
101	3	48.000000	39.000000	. 000000	
SET NO.DOSES		SSX	$\begin{gathered} \text { SSY } \\ 154.699630 \end{gathered}$	SSXY	SSREG
1	4	63.918185		98.430363	151.577140
2	4	32.391504	105.296120	58.167962	104.456760
3	2	2.649517	1.705918	2.125996	1.705918
SET NO.DO	DOSES	XBAR 1. 189489 1.403076 1.541593	$\begin{aligned} & \text { YBAR } \\ & 5.080578 \\ & 4.419619 \\ & 4.609921 \end{aligned}$	$\begin{aligned} & \text { SNW } \\ & 446.358190 \\ & 332.977760 \\ & 117.564690 \end{aligned}$	$\begin{aligned} & \text { INTERCEPT } \\ & 3.172714 \\ & 2.169175 \\ & 2.137305 \end{aligned}$
1	4				
2	4				
3	2				
ANALYSIS OF LINEAR REGRESSION					
SOURCE VARIATION DF			$\begin{gathered} \text { SS } \\ 261.701660 \end{gathered}$	MS	7.710 F05
TOTAL		7		254.583740	
REGRESSION		1	254.583740		257.035 FCAL
DEV REGRESSION		4	3.961850	.9904621.578035	9.490 CHI SQ
PARALLEL	ELISM	2	3.156070		5.990 CHI SQ
$\begin{array}{r} 1 T \\ 4 \end{array}$	$\begin{gathered} G \\ .015089 \end{gathered}$	$\begin{gathered} \text { T05 } \\ 1.960000 \end{gathered}$	STDE ST	$\begin{array}{lr} \text { STDEB } & \text { SL } \\ .100524 & 1.6 \end{array}$	$\begin{aligned} & \text { SLOPE } \\ & .603936 \end{aligned}$
			1.000000 .		
$\begin{array}{r} \text { IDENT } \\ 101 \\ 101 \\ 101 \end{array}$	SET	$\begin{gathered} \text { LD } 30 \\ 6.490901 \\ 27.414292 \\ 28.697683 \end{gathered}$	$\begin{aligned} & \text { LD50 } \\ & 13.780042 \\ & 58.199950 \\ & 60.924561 \end{aligned}$	$\begin{gathered} \text { LD70 } \\ 29.254731 \\ 123.557240 \\ 129.341500 \end{gathered}$	$\begin{gathered} \text { LD90 } \\ 86.753000 \\ 366.400940 \\ 383.553880 \end{gathered}$
	1				
	2				
	3				
$\begin{array}{r} \text { IDENT } \\ 101 \\ 101 \end{array}$	UPP	ER LIMIT	POTENCY	$\begin{array}{r} \text { LOWER LIMIT } \\ .187233 \\ .167013 \end{array}$	
		. 299413	. 236770		
		.306311	. 226182		

IDENT	SET	DOSF
106	1	4.000000
106	1	8.000000
106	1	24.000000
106	1	48.000000
106	2	4.000000
106	2	8.000000
106	2	24.000000
106	2	48.000000
106	3	24.000000
106	3	48.000000

SET	NO. DOSES
1	4
2	4
3	2

SSX
45.918937
45.486714
2.645250
SSY
165.976230
182.911510
1.613487

SET	NO.DOSES
1	4
2	4
3	2

XBAR
1.032328

1. 213743

YBAR
5.572027
5.367373
1.518727
5.359741

SSXY
84.454855
91.017800 2.065932

SNW
345.789870
347.655920
117.510200

SSREG
155.330740
182.124380
1.613487

INTERCEPT
3.623315
3.076203
2.492857

ANALYSIS OF LINEAR REGRESSION
SOURCE VARIATION DF
TOTAL
REGRESSION
DEV REGRESSION
PARALLELISM

IT	G	TO5	STDE
3	.065720	2.776000	1.690607
IDENT	SET	LD 30	LD50
106	1	2.828115	5.361638
106	2	5.512247	10.450310
106	3	11.229392	21.289066

$\begin{array}{rr}\text { IDENT } & \text { SET } \\ 106 & 2 \\ 106 & 3\end{array}$

UPPER LIMIT

.794596
POTENCY
.513060
.251849
STDEB SLOPE
.1743251 .887686

LD70	LD90
10.164779	25.599054
19.812055	49.894826
40.360545	101.644290

LOWER LIMIT
.319843
.130873

IDENT

Bur
DOSE
NET RECPONSE
Chick
NO DOSES
SSX
S5x
SSXY
SSREG
XDAR
YBAR
SNW
INTERCEPT
TOTAL
REGRESSION

DEV REGRESSION

PARAILELISM

DF
F05

FCAL
CHI SQ
CHI SQ

Identification of the experfment ox set of data.
Identipiection of subset of data - subsets should be nunbered consecutively ior consistency of identifying numbers.
The dose administered.
The percent response andetat for response in untreated control. (rote ach subset may have a aiprerent control.)
The propertion that respowed in the untreated control. (wote each subset mey haw a diferert control.)
The number of doses ith each sribget of data.
The weighted sum of surares of 20 g dose corrected for its mean for each subset of daca.
The weighted sum of squares of provit response corrected for its mean sor each subset of dats
The sum of the wetghted crose products of log dose and probit response cotrectea fox their mans for each subset of data.
The sunk of squars of probit response attributable to linear regression of probits on log dose for each subset of data. The weighted meak of log dose $(x=x$ bar $)$, the mean may be negative it doses were less than ane and "log factor" not used.
The weighted mean of probit xeaponse.
The sum of the weighting coetficionts for each subset of data.
The interest of each regression lins, or the value of Y (probit

The sum of the SSy?s (see qbove).
The sum of SSXY squared and divided by the sum of the SSX's, which the the of squaree attributable to a single slope for a.11 Lnes (subsets of deta)

The suzn of the SSe?'s minus the sum of the SSREG's (see above, but do not confuse with REGRESSION), which is the weighted sum of squares of the deviations from paxallel regression lines corrected fof their means fioe., the within deviations sum of squeres).
The weightad sum of suares sttrbuteble to deviations from parallelism, which is the kifference between the sum of SSREG's and the sum of SSXP's scuared end divided by the sum of SSX's which is also the deveerence in swa of squares resulting from fitting one slope to all subsets of date and from fitting individuan slopes for earh suoset of deta. I/
Degrees of reedom associated with each source of variation.
The critical walue of F at 5% Ieval with 1 and $\Sigma\left(k_{i}-1\right)$-N degrees of freedom, whese K_{i} is the mumer of doses in each of the i subsets of denta ema in is the nuraber of subsets of data or numer of lines.
The calculated F values prout tast of sigmificance of the regression rhich his the rotio, RURESSLOW/DEV REMESSION mean squares.
Chi square value at 5% prowelillty level with $\Sigma\left(K_{i}-1\right)-\mathbb{N}$ degrees of freedom.
Chi squace velue at 5% probability level with N-1 degrees of freedoris.

I/ This definition is mot entirely cotrect, butis probably the procedure that should be used. The reader interested in exactiy how the "psrallelism" sum of squares io chaturter shoth examise the asenmpanting flow sheet or consult D. J. frameyra, Probit Anamysis.

Code
IT

STDE

STDEAB
SLOPE
LD-values

UPPER LIMIT
POTENCY
LOWER LIMIT

Definition of Code Used in Printed Output
The number of iterations required to obtain a difference between the last and the next to last estimates of the slope (B) of less than . 00005. The number of iterations is counted starting from the second estimate of B as 1 . The first estimate of B is obtained from a weighted linear regression of empirical probits on log dose, in which the net responses are used in the weighting coefficients rather than the proportions corresponding to the fitted provisional probits.
The precision of estimating the slope (will nomally be the ratio of $F 05 / F C A L$). If G is less than $.05, G$ is set ecual to zero in calculating confidence limits.
The critical value of students t at 5% probability level with $\Sigma\left(K_{i}-1\right)-N$ degrees of freedom which is used in setting confidence limits about the potencies. If data are heterogeneous T05 with ($K_{i}-1$)-N degrees of freedom will appear here. If data are homogeneous 1.96 will appear here.
The standard error. If the data are homogeneous, the value 1.000000 will appear here. If the data are heterogeneous, the value $\sqrt{D E V}$ REGRESSION mean square will appear here.
The standard error of the slope $=\sqrt{\text { STDE }} /$ SSX's .
The common slope of all regression lines for the data composing "experiment."
The LD-30, ID-50, LD-70, and ID-90 for each computed line. The computed lines may be obtained by plotting these values against $30,50,70$, and 90% values on log-probit paper. The observed percent responses may also be plotted to give a graphical presentation of the numerical results.
The upper 95% confidence limit of potency.
The ratio of each succeeding $L D-50$ to the first $L D-50$ listed.
The lower 95% confidence limit of potency.

One parameter card is required for each subset (up to five) of data. An adaitional. parameter card for the entire set of data (experiment) is also required and precedes the first parameter card.

PARAMETER CARD FOR THE EXPERTMENT

The parameter card for the set (experimental) mrectdes all other sards and is referxed to as the parameter card for the experinent.

Colums 1-4 Enter any 4 aidet humber to didentify the experiment.
5-8 Enter any 4-digit muber to identify the first subset of data (this field may be left blark but is useful in ordering cards).
9-11 Leave blank - not used.
12 Enter number, N_{y} of subsets of data in the set (experiment.). This mmber instructs the computer to read N subsets of data.
13-18 Enter Chi square value at 5f probability level uith $\Sigma\left(\mathrm{K}_{\mathrm{i}}-1\right)$-N degrees of freedom, where K_{i} is the number of doses in each of the i subsets of data, and $\frac{1}{2}$ the number of subsets in the set (experiment). The Chi square value may be entered any place whin this siz digit field but decimal must be punched (see FOTE at end of instructions).
19-24 Enter Chi square value at 5f probability level With N-I degrees of freedon. The Chi square value may be entered any place within this siz digit field but decimal must be punched (see NOTE at end of instructions).
25-30 Enter critical value of Student's t with $\Sigma\left(K_{1}-\cdots\right)-N$ degrees of freedon at 5 类 probability level. Decimal must be punched.
3I-36 Enter critical value of F et 50 probability level with one and $\Sigma\left(K_{i}-1\right)$-in degrees of freedom. Decimal point tust be punched.
37-42 Enter LOG FACTOR - 101 where i. is an integer betreen 0 and 6 such that when the lowest dose is multiplied oy 10° it will be greater than unity. If all doses are already sreater than unity the LOG FACTOR will be $10^{\circ}=000001$. If the lowest dose is .00005 the LOX FACTOR \$111 be $105=100000$. This LOG FACTOR eliminates the possibility of a negative mean for log dose, which may confuse the biclogist. Negative values will not effect the results nor interfere with the calculations.

PARAMETER CARD FOR EACE SUBSET

One parameter card precedes each subset of data.
Columns 1-4 Enter 4 -digit number identifying the experiment (see above Column 1-4).
5-8 Enter 4-digit number identifying the subset of data. For consistency of output these subsets should be numbered consecutively starting with 1 (one).
9-10 Leave blank - not used.
11-12 Enter number, M, of doses 01 data caxds (up to twenty) that comprise this subset of data. This number, M, instructs the computer to read the next M cards as data cards.

Colums $13-18$ Enter number of animais observed in the untreated control (check)	
for this subset of data. Note that each subset may have a	
	different value for the untreated control as well as a different
number of doses.	

POTENCY PROBIT ANALYSIS

INSITRUCTIONS FOR PREPARING DATA CARDS

Enter data for each dose (dose used, number of animals treated, number of animals that responded) in the following card columns using one card for each dose.

Assemble all data cards for each subset in either ascending or decending order of dose and precede each subset with its proper parameter card (see instructions for preparing parameter cards).

NOTE: If decimal points appear any place except between the designated fields, the decimal points should be punched. A punched decimal point, with FORMAT FORTRAN, will over-ride a FORMAT decimal point. Decimal points should not be punched for the numbers identifying the experiment and subsets of data, which are read as fixed rather than floating numbers (as I4 rather than F6.0).

POTENCY PROBIT ANAIYSIS

Operating Instructions for IBM 1620

1. Clear Memory.
2. LOad POTENCY PROBIT ANALYSIS program and FORMAT FORTRAN Subroutines.
3. Load data cards in following oxder:
a. Parameter card for "experiment" or for all subsets of data.
b. Parameter card for first subset of data.
c. Data cards in ascending or decending order of dose for first subset.
d. Parameter card for second subset of data.
e. Data cards in ascending or decending order of dose for second subset.

Additional subsets, up to five, may follow the first parameter card as outlined above.
4. Additional sets (experiments) may follow the first as indicated in (3) above.
5. Follow the last subset with 2 blank cards.

NOTES:
(1) Sense switches are not interrogated.
(2) When net response is negative, the program types out the doses for all subsequent subsets within this set, then goes to the next set of data ignoring the computations of the rest of the analysis. The decision to set the check for this subset in question to zero (O) and re-run the data is left to the experimenter or biometrician. It may be prudent for the biometrician to examine the reason(s) for different checks in each subset before submitting the data, and also to examine the numbers used in the checks for precision of estimating the proportion that responded in the untreated control. Abbott's formula assumes that the response in the untreated control is known without error.
(3) If a print-out "LINES NOT PARALLEL" or "NON SIG REGRESSION" occurs the remainder of the calculations are bypassed and the program procedes to the next set of date (experiment), ignoring the remaining calculations.
(4) Error F8 in the print-out may occur when the values are too large for the space allotted. When this occurs, the parameter and data cards should be examined for order and correctness of entry of the values.

POTENCY PROBIT ANALYSIS

Data Used in Example of Printed Output

Code	Set	Dose*	Number Observed	Number Responded
101	1	4	150	25
		8	200	80
		24	260	169
		48	200	157
101.	2	4	75	2
		8	175	10
		24	225	64
		48	225	103
101	3	24	100	30
		48	100	39
Check		--	000	---
106	1		150	52
		8	200	143
		24	260	224
		48	200	193
106	2		75	13
		8	175	71
		24	225	174
		48	225	201
106	3	24	100	60
		48	100	69
Check		--	000	---

*Data supplied by courtesy of Dr. Harrie M. Taft from a time-mortality study. Boll weevils were exposed for $4,8,24$, and 48 hours to treated foliage. Set one was from "immediately after application," sets two and three were from 24 and 48 hour weathering under artificial conditions. Purpose of study was to determine which of the 25 treatments (all recommended for boll weevil control) was the most toxic and which lost its effectiveness most rapidly. Loss in toxicity or loss in effectiveness is therefore l.-potency, and its confidence limits may be similarly expressed. Treatment 101 lost $1 .-.23677=76 \%$ of its effectiveness in 24 hours and 77% in 48 hours. Treatment 106 lost 1. $-.51306=$ 49% of its effectiveness in 24 hours and 75% in 48 hours. Treatment 106 was originally the most toxic (ID-50 $=5.36$ hours) while treatment 101 the least toxic $(L D-50=13.78$ hours $)$.

