SIMPLE RULES AND PROBLEMS IN NAVIGATION
 - CHARLES H.CUGLE REVISED BY BRADLEY JONES

This new and revised edition contains at the end of the volume answers to the problems in the text calculated for the year of 1921.

SIMPLE RULES
 AND
 PROBLEMS IN NAVIGATION

BY
CHARLES H. CUGLE
Licensed Master Mariner

Corrected and Revised by

BRADLEY JONES

SEVENTH AND REVISED EDITION

WITH ADDENDA CONTAINING ANSWERS TO THE NAVIGATION PROBLEMS FOR THE YEARS 1920 AND 1921

NEW YORK
E. P. DUTTON \& COMPANY

681 Fifth Avenue

Copyright, 1919
By E. P. DUTTON \& COMPANY
All Rights Reserved

Sixth Printing . . May, 1920
Seventh Printing, September, 1920

Printed in the United States of America.

CUT 281020
(c) A.A601136

TO

 FORMERLY DIRECTOR OF RECRUITING SERVICE UNITED STATES SHIPPING BOARD

As a mark of appreciation of the Service rendered by him in replacing the American Flag to its proper place upon the Seven Seas, this work is respectfully dedicated.

The Author also wishes to extend his thanks to
Captain Robert J. McBride
formerly united states local inspector of hulls
New Orleans, La.
Captain Ernest E. B. Drake
FORMERLY ATLANTIC COAST SUPERVISOR OF RECRUITING SERVICE UNITED STATES SHIPPING BOARD

Mr. Bradley Jones
instructor of navigation
UNITED STATES SHIPPING BOARD SCHOOL
Jersey City, N. J.
Mr. Walton B. Smith
FORMERLY INSTRUCTOR OF NAVIGATION UNITED STATES SHIPPING bOARD sChool

New Orleans, La.
For their kind co-operation in compiling the information containcd herein.

PREFACE TO THIRD EDITION

In this edition the problems have been worked to a finer degree of accuracy than before. The interpolations used are sufficient to satisfy the strictest local inspector or the most rigid sea practice.

While it is true that all positions obtained at sea, are subject to slight error; to the necessary observational errors there should not be added errors due to not using the tables to the limit of their accuracy.

Bradley Jones.

PREFACE TO SEVENTH AND REVISED EDITION

The purpose of this book is to lay before the student all the rules and problems of navigation used in everyday work at sea, with short definitions of the theory of navigation, and other useful information that the young officer should know.

In making up the rules for working the problems, the author may have repeated himself several times, but it has been his experience in teaching navigation that this is necessary to make the student understand.

All of the various problems are worked out in full, with no attempt to save figures or cut down the working in any way. It is recommended to the beginner that he names everything as he goes along in his problems, as it will help to memorize.

In addition to all the problems of the First Edition, there are examples for practice with their answers, and the abstract from the American Nautical Almanac for the year 1919 for working the different problems.

Several additional features have been embodied in this edition including "The International Rule of the Road at Sea"; "A Method of Preparing a Station Bill for Boat and Fire Drill"; "New Methods of finding latitude and longitude"; "Examples in How to Determine Distance from a Fixed Object by Four Point Bearings"; "Examples in How to Determine Speed of Ship by Propeller Revolutions"; "Examples in How to Determine Percentage of Slip of Propeller"; and "The latest Rules (adopted in April, 1920) of the Steamboat-Inspection Service giving the requirements necessary to secure a license as Master or Mate on Ocean or Coastwise Steam and Sail Vessels."

Also included in the Addenda are the Answers to the various problems for the years 1920 and 1921. This allows the student to not only work the problems contained by using the Nautical Almanac for 1919 which is bound in the book, but also enables him to find the answers for the current year with the help of that year's Almanac. It is the intention of the publishers and myself to keep this book up to date, and by adding these different features from time to time to greatly enhance its value to the purchaser.

This places the entire subject of navigation under one cover, and the author believes it to be the most easily understood one published.

There are many excellent books on the theory of navigation, but very few that the ordinary man can understand, and this book has been published with theory eliminated entirely.

One of the greatest faults with navigators of to-day is their tendency to try and cut down figures in their problems. There is no excuse for this, as a man at sea has plenty of time to work his problems, and it has been this tendency for rule of thumb methods that has been the loss of many a ship. It is time enough to learn the short methods after you know the proper way, and have had several years of practical experience.

The books used in working the different problems are Bowditch's American Practical Navigator, American Line of Position Tables, American Azimuth Table and 1919 American Nautical Almanac.

The books of the First and Second Edition have been gone over carefully by several competent navigators, and all the examples are worked to the closest figure.

It is hoped that this book will be a help to the reader, as the author has tried to make it in as plain language as possible.

1632 Pine St., New Orleans, La.

As the Ship＇s Course is usually expressed in degrees，the following table will be found useful for reference．

 POINTS

$B B F$

5	S32	$B B E$	ザブが
3	H゙づが		者

回国田

が入べが田田㶡
生国国
国国国
だがが

田国国田田回回 ががど

BBE

国国国

CONTENTS

CHAPTER I
PAGE
The International and Inland Rules of the Road
The International and Inland Rules of the Road 1 1
CHAPTER II
Useful Definitions and Information 30
CHAPTER III
Arithmetic of Navigation, Explanation of American Nautical
Almanac and Tablee in Bowditch's American Practical Navigator 56
CHAPTER IV
Day's Work or Ship's Position by Dead Reckoning 72
CHAPTER V
Mercator's Sailing 105
CHAPTER VI
Middle Latitude Sailing 114
CHAPTER VII
Latitude by Meridian Altitude of Sun 118
CHAPTER VIII
Latitude by Meridian Altitude of Star and Finding Time of Star's Meridian Passage 133
CHAPTER IX
Longitude by Sun 138

CHAPTER X

bagiLongitude by Sun to Find Noon Position 151
CHAPTER XI
Deviation by Azimuth of Sun 162
CHAPTER XII
Deviation by Amplitude of Sun 165
CHAPTER XIII
Latitude by Polaris (or North Star) 173
CHAPTER XIV
Altitude Azimuth, Longitude by Sun, Latitude by Sun and Mercator's Sailing Combined 178
CHAPTER XV
Latitude by Meridian Altitude of Planet 193
CHAPTER XVI
Latitude by Ex-Meridian Altitude of Sun 197
CHAPTER XVII
Longitude by Fixed Star and Planet 212
CHAPTER XVIII
Latitude by Meridian Altitude of Moon 226
CHAPTER XIX
Longitude by Sunrise and Sunset Observations 235
CHAPTER XX
Phee Prime Sight for Latitude 238
CHAPTER XXI
Sumner's Method 240

CHAPTER XXII

Marce St. Hrlarre Method
PAGE 244
CHAPTER XXIII
Finding Time of High and Low Water 257
CHAPTER XXIV
Examples for Practice with their Answers 270
Chart and Explanation of Plotting one Position Line. Facing 288
Chart and Explanation of Plotting Marce St. Hilaire Метнод. 289
Chart and Explanation of Plotting Sumner's Method. 290
Extracts from American Nautical Almanac for 1919 291
ADDENDA
To Find the Distance Off Any Fixed Object by a Four- Point Bearing 307
Determining Speed of Ship by Pitch of Wheel and Number of Revolutions per Minute 310
Determining the Percentage of Slip of Wheel 312
Abstract from General Rules and Regulations of the U. S. Steamboat-Inspection Service Giving the Require- ments Necessary for Securing License as Master or Mate of Ocean or Coastwise Steam and Sail Vessels 314
Answers to Problems for the Year 1921 end of volume

SIMPLE RULES AND PROBLEMS IN NAVIGATION

CHAPTER I

THE INTERNATIONAL AND INLAND RULES OF THE ROAD

INTERNATIONAL RULES

I.-ENACTING CLAUSE, SCOPE, AND PENALTY

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That the following regulations for preventing collisions at sea shall be followed by all public and private vessels of the United States upon the high seas and in all waters connected therewith, navigable by seagoing vessels.

Art. 30. Nothing in these rules shall interfere with the operation of a special rule, duly made by local authority, relative to the navigation of any harbor, river, or inland waters.

PRELIMINARY DEFINITIONS

In the following rules every steam vessel which is under sail and not under steam is to be considered a sailing vessel, and every vessel under steam, whether under sail or not, is to be considered a steam vessel.

The words "steam vessel" shall include any vessel propelled by machinery.

A vessel is "under way," within the meaning of these rules, when she is not at anchor, or made fast to the shore, or aground.

II.-LIGHTS, AND SO FORTH

The word "visible" in these rules when applied to lights shall mean visible on a dark night with a clear atmosphere.

INLAND RULES

I.-ENACTING CLAUSE, SCOPE, AND PENALTY

Whereas the provisions of chapter eight hundred and two of the laws of eighteen hundred and ninety, and the amendments thereto, adopting regulations for preventing collisions at sea [i.e., international rules of left-hand column], apply to all waters of the United States connected with the high seas navigable by sea-going vessels, except so far as the navigation of any harbor, river, or inland waters is regulated by special rules duly made by local authority; and
Whereas it is desirable that the regulations relating to the navigation of all harbors, rivers, and inland waters of the United States, except the Great Lakes and their connecting and tributary waters as far east as Montreal and the Red River of the North and rivers emptying into the Gulf of Mexico and their tributaries, shall be stated in one act: Therefore,
Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled. That the following regulations for preventing collisions shall be followed by all vessels navigating all harbors, rivers, and inland waters of the United States, except the Great Lakes and their connecting and tributary waters as far east as Montreal and the Red River of the North and rivers emptying into the Gulf of Mexico and their tributaries, and are hereby declared special rules duly made by local authority:

Sec. 3. That every pilot, engineer, mate, or master of any steam vessel, and every master or mate of any barge or canal boat, who neglects or refuses to observe the provisions of this act, or the regulations established in pursuance of the preceding section [see section 2, page 4], shall be liable to a penalty of fifty dollars, and for all damages sustained by any passenger in his person or baggage by such neglect or refusal: Provided, That nothing herein shall relieve any vessel, owner, or corporation from any liability incurred by reason of such neglect or refusal.

Sec. 4. That every vessel that shall be navigated without complying with the provisions of this act shall be liable to a penalty of two hundred dollars, one-half to go to the informer, for which sum the vessel so navigated shall be liable and may be seized and proceeded against by action in any district court of the United States having jurisdiction of the offense.

PRELIMINARY DEFINITIONS

In the following rules every steam vessel which is under sail and not under steam is to be considered a sailing vessel, and every vessel under steam whether under sail or not, is to be considered a steam vessel.

The words "steam vessel" shall include any vessel propelled by machinery.

A vessel is "under way," within the meaning of these rules, when she is not at anchor, or made fast to the shore, or aground.

II.-LIGHTS, AND SO FORTH

The word " visible " in these rules, when applied to lights, shall mean visible on a dark night with a clear atmosphere.

INTERNATIONAL RULES

Article 1. The rules concerning lights shall be complied with in all weathers from sunset to sunrise, and during such time no other lights which may be mistaken for the prescribed lights shall be exhibited.

STEAM VESSELS-MASTHEAD LIGHT

Art. 2. A steam vessel when under way shall carry-(a) On or in front of the foremast, or if a vessel without a foremast, then in the fore part of the vessel, at a height above the hull of not less than twenty feet, and if the breadth of the vessel exceeds twenty feet, then at a height above the hull not less than such breadth, so, however, that the light need not be carried at a greater height above the hull than forty feet, a bright white light, so constructed as to show an unbroken light over an arc of the horizon of twenty points of the compass, so fixed as to throw the light ten points on each side of the vessel, namely, from right ahead to two points abaft the beam on either side, and of such a character as to be visible at a distance of at least five miles.

STEAM VESSELS-SIDE LIGHTS

(b) On the starboard side a green light so constructed as to show an unbroken light over an arc of the horizon of ten points of the compass, so fixed as to throw the light from right ahead to two points abaft the beam on the starboard side, and of such a character as to be visible at a distance of at least two miles.
(c) On the port side a red light so constructed as to show an unbroken light over an arc of the horizon of ten points of the compass, so fixed as to throw the light from right ahead to two points abaft the beam on the port side, and of such a character as to be visible at a distance of at least two miles.
(d) The said green and red side lights shall be fitted with inboard screens projecting at least three feet forward from the light, so as to prevent these lights from being seen across the bow.

STEAM VESSELS-RANGE LIGHTS

(e) A steam vessel when under way may carry an additional white light similar in construction to the light mentioned in subdivision (a). These two lights shall be so placed in line with the keel that one shall be at least fifteen feet higher than the other, and in such a position with reference to each other that the lower light shall be forward of the upper one. The vertical distance between these lights shall be less than the horizontal distance.

INLAND RULES

Article 1. The rules concerning lights shall be complied with in all weathers from sunset to sunrise, and during such time no other lights which may be mistaken for the prescribed lights shall be exhibited.

STEAM VESSELS-MASTHEAD LIGHT

Art. 2. A steam vessel when under way shall carry-(a) On or in the front of the foremast, or if a vessel without a foremast, then in the fore part of the vessel, a bright white light so constructed as to show an unbroken light over an arc of the horizon of twenty points of the compass, so fixed as to throw the light ten points on each side of the vessel, namely, from right ahead to two points abaft the beam on either side, and of such a character as to be visible at a distance of at least five miles.

STEAM VESSELS—SIDE LIGHTS

(b) On the starboard side a green light so constructed as to show an unbroken light over an arc of the horizon of ten points of the compass, so fixed as to throw the light from right ahead to two points abaft the beam on the starboard side, and of such a character as to be visible at a distance of at least two miles.
(c) On the port side a red light so constructed as to show an unbroken light over an arc of the horizon of ten points of the compass, so fixed as to throw the light from right ahead to two points abaft the beam on the port side, and of such a character as to be visible at a distance of at least two miles.
(d) The said green and red side lights shall be fitted with inboard screens projecting at least three feet forward from the light, so as to prevent these lights from being seen across the bow.

STEAM VESSELS-RANGE LIGHTS

(e) A seagoing steam vessel when under way may carry an additional white light similar in construction to the light mentioned in subdivision (a). These two lights shall be so placed in line with the keel that one shall be at least fifteen feet higher than the other, and in such a position with reference to each other that the lower light shall be forward of the upper one. The vertical distance between these lights shall be less than the horizontal distance.
(f) All steam vessels (except seagoing vessels and ferryboats), shall carry in addition to green and red lights required by article two (b), (c), and screens as required by article two (d), a central range of two white lights; the after light being carried at an elevation at least fifteen feet above the light at the head of the vessel. The headlight shall be so constructed as to show an unbroken light through twenty points of the compass, namely, from right ahead to two points abaft the beam on either side of the vessel, and the after light so as to show all around the horizon.

INTERNATIONAL RULES

STEAM VESSELS WHEN TOWING

Art 3. A steam vessel when towing another vessel shall, in addition to her side lights, carry two bright white lights in a vertical line one over the other, not less than six feet apart, and when towing more than one vessel shall carry an additional bright white light six feet above or below such lights, if the length of the tow measuring from the stern of the towing vessel to the stern of the last vessel towed exceeds six hundred feet. Each of these lights shall be of the same construction and character, and shall be carried in the same position as the white light mentioned in article two (a), excepting the additional light, which may be carried at a height of not less than fourteen feet above the hull.

Such steam vessel may carry a small white light abaft the funnel or aftermast for the vessel towed to steer by, but such light shall not be visible forward of the beam.

SPECIAL LIGHTS

Art. 4. (a) A vessel which from any accident is not under command shall carry at the same height as a white light mentioned in article two (a), where they can best be seen, and if a steam vessel in lieu of that light two red lights, in a vertical line one over the other, not less than six feet apart, and of such a character as to be visible all around the horizon at a distance of at least two miles; and shall by day carry in a vertical line one over the other, not less than six feet apart, where they can best be seen, two black balls or shapes, each two feet in diameter.
(b) A vessel employed in laying or in picking up a telegraph cable shall carry in the same position as the white light mentioned in article two (a), and if a steam vessel in lieu of that light three lights in a vertical line one over the other not less than six feet apart. The highest and lowest of these lights shall be red, and the middle light shall be white, and they shall be of such a character as to be visible all around the horizon, at a distance of at least two miles. By day she shall carry in a vertical line, one over the other, not less than six feet apart, where they can best be seen, three shapes not less than two feet in diameter, of which the highest and lowest shall be globular in shape and red in color, and the middle one diamond in shape and white.
(c) The vessels referred to in this article, when not making way through the water, shall not carry the side lights, but when making way shall carry them.
(d) The lights and shapes required to be shown by this article are to be taken by other vessels as signals that the vessel showing them is not under command and can not therefore get out of the way.

These signals are not signals of vessels in distress and requiring assistance. Such signals are contained in article thirty-one.

LIGHTS FOR SAILING VESSELS AND VESSELS IN TOW

Art. 5. A sailing vessel under way and any vessel being towed shall carry the same lights as are prescribed by article two for a steam vessel under way, with the exception of the white lights mentioned therein, which they shall never carry.

INLAND RULES

STEAM VESSELS WHEN TOWING

Art. 3. A steam vessel when towing another vessel shall, in addition to her side lights, carry two bright white lights in a vertical line one over the other, not less than three feet apart, and when towing more than one vessel shall carry an additional bright white light three feet above or below such lights, if the length of the tow measuring from the stern of the towing vessel to the stern of the last vessel towed exceeds six hundred feet. Each of these lights shall be of the same construction and character, and shall be carried in the same position as the white light mentioned in article two (a) or the after range light mentioned in article two (f).

Such steam vessel may carry a small white light abaft the funnel or aftermast for the vessel towed to steer by, but such light shall not be visible forward of the beam.

LIGHTS FOR SAILING VESSELS AND VESSELS IN TOW

Art. 5. A sailing vessel under way or being towed shall carry the same lights as are prescribed by article two for a steam vessel under way, with the exception of the white lights mentioned therein, which they shall never carry.

INTERNATIONAL RULES

LIGHTS FOR SMALL VESSELS

Art. 6. Whenever, as in the case of small vessels under way during bad weather, the green and red side lights can not be fixed, these lights shall be kept at hand, lighted and ready for use; and shall. on the approach of or to other vessels, be exhibited on their respective sides in sufficient time to prevent collision, in such manner as to make them most visible, and so that the green light shall not be seen on the port side nor the red light on the starboard side, nor. if practicable, more than two points abaft the beam on their respective sides. To make the use of these portable lights more certain and easy the lanterns containing them shall each be painted outside with the color of the light they respectively contain, and shallibe provided with proper screens.

LJGHTS FOR SMALL STEAM AND SAIL VESSELS AND OPEN BOATS

Art. 7. Steam vessels of less than forty, and vessels under oars or sails of less than twenty tons gross tonnage, respectively, and rowing boats, when under way, shall not be required to carry the lights mentioned in article two (a), (b), and (c), but if they do not carry them they shall be provided with the following lights:

First. Steam vessels of less than forty tons shall carry-
(a) In the fore part of the vessel, or on or in front of the funnel, where it can best be seen, and at a height above the gunwale of not less than nine feet, a bright white light constructed and fixed as prescribed in article two (a), and of such a character as to be visible at a distance of at least two miles.
(b) Green and red side lights constructed and fixed as prescribed in article two (b) and (c), and of such a character as to be visible at a distance of at least one mile, or a combined lantern showing a green light and a red light from right ahead to two points abaft the beam on their respective sides. Such lanterns shall be carried not less than three feet below the white light.

INLAND RULES

LIGHTS FOR FERRYBOATS, BARGES, AND CANAL BOATS IN TOW

Sec. 2. That the supervising inspectors of steam vessels and the Supervising Inspector-General shall establish such rules to be observed by steam vessels in passing each other and as to the lights to be carried by ferryboats and by barges and canal boats when in tow of steam vessels (and as to the lights and day signals to be carried by vessels, dredges of all types, and vessels working on wrecks by [or] other obstruction to navigation or moored for submarine operations, or made fast to a sunken object which may drift with the tide or be towed) not inconsistent with the provisions of this act, as they from time to time may deem necessary for safety, which rules when approved by the Secretary of Commerce are hereby declared special rules duly made by local authority, as provided for in article thirty of chapter eight hundred and two of the laws of eighteen hundred and ninety. Two printed copies of such rules shall be furnished to such ferryboats (barges, dredges, canal boats, vessels working on wrecks) and steam vessels, which rules shall be kept posted up in conspicuous places in such vessels (barges, dredges, and boats).

LIGHTS FOR SMALL VESSELS

Abstract

Art. 6. Whenever, as in the case of vessels of lesis than ten gross tons under way during bad weather, the green and red side lights can not be fixed, these lights shall be kept at hand, lighted and ready for use; and shall, on the approach of or to other vessels, be exhibited on their respective sides in sufficient time to prevent collision, in such manner as to make them most visible, and so that the green light shall not be seen on the port side nor the red light on the starboard side, nor, if practicable, more than two points abaft the beam on their respective sides. To make the use of these portable lights more certain and easy the lanterns containing them shall each be painted outside with the color of the light they respectively contain, and shall be provided with proper screens.

Art. 7. Rowing boats whether under oars or sail, shall have ready at hand a lantern showing a white light which shall be temporarily exhibited in sufficient time to prevent collision.

INTERNATIONAL RULES

Second. Small steamboats, such as are carried by seagoing vessels, may carry the white light at a less height than nine feet above the gunwale, but it shall be carried above the combined lantern mentioned in subdivision one (b).

Third. Vessels under oars or sails of less than twenty tons shall have ready at hand a lantern with a green glass on one side and a red glass on the other, which, on the approach of or to other vessels, shall be exhibited in sufficient time to prevent collision so that the green light shall not be seen on the port side nor the red light on the starboard side.

Fourth. Rowing boats, whether under oars or sail, shall have ready at hand a lantern showing a white light which shall be temporarily exhibited in sufficient time to prevent collision.

The vessels referred to in this article shall not be obliged to carry the lights prescribed by article four (a) and article eleven, last paragraph.

LIGHTS FOR PILOT VESSELS

Art. 8. Pilot vessels when engaged on their station on pilotage duty shall not show the lights required for other vessels, but shall carry a white light at the masthead, visible all around the horizon, and shall also exhibit a flare-up light or flare-up lights at short intervals, which shall never exceed fifteen minutes.

On the near approach of or to other vessels they shall have their side lights lighted, ready for use, and shall flash or show them at short intervals, to indicate the direction in which they are heading, but the green light shall not be shown on the port side, nor the red light on the starboard side.

A pilot vessel of such a class as to be obliged to go alongside of a vessel to put a pilot on board may show the white light instead of carrying it at the masthead, and may, instead of the colored lights above mentioned, have at hand, ready for use, a lantern with green glass on the one side and red glass on the other, to be used as prescribed above.

Pilot vessels when not engaged on their station on pilotage duty shall carry lights similar to those of other vessels of their tonnage.

A steam pilot vessel, when engaged on her station on pilotage duty and in waters of the United States, and not at anchor, shall, in addition to the lights required for all pilot boats, carry at a distance of eight feet below her white masthead light a red light, visible all around the horizon and of such a character as to be visible on a dark night with a clear atmosphere at a distance of at least two miles, and also the colored side lights required to be carried by vessels when under way.

When engaged on her station on pilotage duty and in waters of the United States, and at anchor, she shall carry in addition to the lights required for all pilot boats the red light above mentioned, but not the colored side lights. When not engaged on her station on pilotage duty, she shall carry the same lights as other steam vessels.

LIGHTS, ETC., OF FISHING VESSELS

Art. 9. Fishing vessels and fishing boats, when under way and when not required by this article to carry or show the lights hereinafter specified, shall carry or show the lights prescribed for vessels of their tonnage under way.

INLAND RULES

LIGHTS FOR PILOT VESSELS
Art. 8. Pilot vessels when engaged on their stations on pilotage duty shall not show the lights required for other vessels, but shall carry a white light at the masthead, visible all around the horizon, and shall also exhibit a flare-up light or flare-up lights at short intervals, which shall never exceed fifteen minutes.

On the near approach of or to other vessels they shall have their side lights lighted, ready for use, and shall flash or show them at short intervals, to indicate the direction in which they are heading, but the green light shall not be shown on the port side nor the red light on the starboard side.

A pilot vessel of such a class as to be obliged to go alongside of a vessel to put a pilot on board may show the white light instead of carrying it at the masthead, and may, instead of the colored lights above mentioned, have at hand, ready for use, a lantern with a green glass on the one side and a red glass on the other, to be used as prescribed above.

Pilot vessels, when not engaged on their station on pilotage duty, shall carry lights similar to those of other vessels of their tonnage.

A steam pilot vessel, when engaged on her station on pilotage duty and in waters of the United States, and not at anchor, shall, in addition to the lights required for all pilot boats, carry at a distance of eight feet below her white masthead light a red light, visible all around the horizon and of such a character as to be visible on a dark night with a clear atmosphere at a distance of at least two miles, and also the colored side lights required to be carried by vessels when under way.

When engaged on her station on pilotage duty and in waters of the United States, and at anchor, she shall carry in addition to the lights required for all pilot boats the red light above mentioned, but not the colored side lights. When not engaged on her station on pilotage duty, she shall carry the same lights as other steam vessels.

LIGHTS, ETC., OF FISHING VESSELS
Art. 9. (a) Fishing vessels of less than ten gross tons, when under way and when not having their nets, trawls, dredges, or lines in the water, shall not be obliged to carry the colored side lights; but every such vessel shall, in lieu thereof, have ready at hand a lantern with a green glass on

INTERNATIONAL RULES

(a) Open boats, by which is to be understood boats not protected from the entry of sea water by means of a continuous deck, when engaged in any fishing at night, with outlying tackle extending not more than one hundred and fifty feet horizontally from the boat into the seaway, shall carry one all-round white light.

Open boats, when fishing at night, with outlying tackle extending more than one hundred and fifty feet horizontally from the boat into the seaway, shall carry one all-round white light, and in addition, on approaching or being approached by other vessels, shall show a second white light at least three feet below the first light and at a horizontal distance of at least five feet away from it in the direction in which the outlying tackle is attached.
(b) Vessels and boats, except open boats as defined in subdivision (a), when fishing with drift nets, shall, so long as the nets are wholly or partly in the water, carry two white lights where they can best be seen. Such lights shall be placed so that the vertical distance between them shall be not less than six feet and not more than fifteen feet, and so that the horizontal distance between them, measured in a line with the keel, shall be not less than five feet and not more than ten feet. The lower of these two lights shall be in the direction of the nets, and both of them shall be of such a character as to show all around the horizon, and to be visible at a distance of not less than three miles.

Within the Mediterranean Sea and in the seas bordering the coasts of Japan and Korea sailing fishing vessels of less than twenty tons gross tonnage shall not be obliged to carry the lower of these two lights. Should they, however, not carry it, they shall show in the same position (in the direction of the net or gear) a white light, visible at a distance of not less than one sea mile, on the approach of or to other vessels.
(c) Vessels and boats, except open boats as defined in subdivision (a), when line fishing with their lines out and attached to or hauling their lines, and when not at anchor or stationary within the meaning of subdivision (h), shall carry the same lights as vessels fishing with drift nets. When shooting lines, or fishing with towing lines, they shall carry the lights prescribed for a steam or sailing vessel under way, respectively.

Within the Mediterranean. Sea and in the seas bordering the coasts of Japan and Korea sailing fishing vessels of less than twenty tons gross tonnage shall not be obliged to carry the lower of these two lights. Should they, however, not carry it, they shall show in the same position (in the direction of the lines) a white light, visible at a distance of not less than one sea mile on the approach of or to other vessels.
(d) Vessels when engaged in trawling, by which is meant the dragging of an apparatus along the bottom of the sea-

First, if steam vessels, shall carry in the same position as the white light mentioned in article two (a) a tri-colored lantern so constructed and fixed as to show a white light from right ahead to two points on each bow, and a green light and a red light over an arc of the horizon from two points on each bow to two points abaft the beam on the starboard and port sides, respectively; and not less than six nor more than twelve feet below the tricolored lantern a white light in a lantern, so constructed as to show a clear, uniform and unbroken light all around the horizon.

Second, if sailing vessels, shall carry a white light in a lantern, so constructed as to show a clear, uniform, and unbroken light all around

INLAND RULES

one side and a red glass on the other side, and on approaching to or being approached by another vessel such lantern shall be exhibited in sufficient time to prevent collision, so that the green light shall not be seen on the port side nor the red light on the starboard side.
(b) All fishing vessels and fishing boats of ten gross tons or upward, when under way and when not having their nets, trawls, dredges, or lines in the water, shall carry and show the same lights as other vessels under way.
(c) All vessels, when trawling, dredging, or fishing with any kind of drag nets or lines, shall exhibit from some part of the vessel where they can be best seen, two lights. One of these lights shall be red and the other shall be white. The red light shall be above the white light, and shall be at a vertical distance from it of not less than six feet and not more than twelve feet; and the horizontal distance between them, if any, shall not be more than ten feet. These two lights shall be of such a character and contained in lanterns of such construction as to be visible all round the horizon, the white light a distance of not less than three miles and the red light of not less than two miles.

LIGHTS FOR RAFTS OR OTHER CRAFT NOT PROVIDED FOR

(d) Rafts, or other water craft not herein provided for, navigating by hand power, horse power, or by the current of the river, shall carry one or more good white lights, which shall be placed in such manner as shall be prescribed by the Board of Supervising Inspectors of Steam Vessels.

INTERNATIONAL RULES

the horizon, and shall also, on the approach of or to other vessels, show where it can best be seen a white flare-up light or torch in sufficient time to prevent collision.

All lights mentioned in subdivision (d) first and second shall be visible at a distance of at least two miles.
(e) Oyster dredgers and other vessels fishing with dredge nets shall carry and show the same lights as trawlers.
(f) Fishing vessels and fishing boats may at any time use a flare-up light in addition to the lights which they are by this article required to carry and show, and they may also use working lights.
(g) Every fishing vessel and every fishing boat under one hundred and fifty feet in length, when at anchor, shall exhibit a white light visible all around the horizon at a distance of at least one mile.

Every fishing vessel of one hundred and fifty feet in length or upward, when at anchor, shall exhibit a white light visible all around the horizon at a distance of at least one mile, and shall exhibit a second light as provided for vessels of such length by article eleven.

Should any such vessel, whether under one hundred and fifty feet in length or of one hundred and fifty feet in length or upward, be attached to a net or other fishing gear, she shall on the approach of other vessels show an additional white light at least three feet below the anchor light, and at a horizontal distance of at least five feet away from it in the direction of the net or gear.
(h) If a vessel or boat when fishing becomes stationary in consequence of her gear getting fast to a rock or other obstruction, she shall in daytime haul down the day signal required by subdivision (k); at night show the light or lights prescribed for a vessel at anchor; and during fog, mist, falling snow, or heavy rain storms make the signal prescribed for a vessel at anchor. (See subdivision (d) and the last paragraph of article fifteen.)
(i) In fog, mist, falling snow, or heavy rain storms drift-net vessels attached to their nets, and vessels when trawling, dredging, or fishing with any kind of drag net, and vessels line fishing with their lines out, shall, if of twenty tons gross tonnage or upward, respectively, at intervals of not more than one minute make a blast; if steam vessels, with the whistle or siren, and if sailing vessels, with the fog-horn, each blast to be followed by ringing the bell. Fishing vessels and boats of less than twenty tons gross tonnage shall not be obliged to give the above-mentioned signals; but if they do not, they shall make some other efficient sound signal at intervals of not more than one minute.
(k) All vessels or boats fishing with nets or lines or trawls, when under way, shall in daytime indicate their occupation to an approaching vessel by displaying a basket or other efficient signal where it can best be seen. If vessels or boats at anchor have their gear out, they shall, on the approach of other vessels, show the same signal on the side on which those vessels can pass.

The vessels required by this article to carry or show the lights hereinbefore specified shall not be obliged to carry the lights prescribed by article four (a) and the last paragraph of article eleven.

$$
\begin{gathered}
\text { SIMPLE RULES AND PROBLEMS IN NAVIGATION } 15 \\
\text { INLAND RULES }
\end{gathered}
$$

INTERNATIONAL RULES

LIGHTS FOR AN OVERTAKEN VESSEL

Art. 10. A vessel which is being overtaken by another shall show from her stern to such last-mentioned vessel a white light or a flare-up light.

The white light required to be shown by this article may be fixed and carried in a lantern, but in such case the lantern shall be so constructed, fitted, and screened that it shall throw an unbroken light over an arc of the horizon of twelve points of the compass, namely, for six points from right aft on each side of the vessel, so as to be visible at a distance of at least one mile. Such light shall be carried as nearly as practicable on the same level as the side lights.

ANCHOR LIGHTS

Art. 11. A vessel under one hundred and fifty feet in length when at anchor shall carry forward, where it can best be seen, but at a height not exceeding twenty feet above the hull, a white light, in a lantern so constructed as to show a clear, uniform, and unbroken light visible all around the horizon at a distance of at least one mile.

A vessel of one hundred and fifty feet or upwards in length when at anchor shall carry in the forward part of the vessel, at a height of not less than twenty and not exceeding forty feet above the hull, one such light, and at or near the stern of the vessel, and at such a height that it shall be not less then fifteen feet lower than the forward light, another such light.

The length of a vessel shall be deemed to be the length appearing in her certificate of registry.

A vessel aground in or near a fairway shall carry the above light or lights and the two red lights prescribed by article four (a).

SPECIAL SIGNALS

Art. 12. Every vessel may, if necessary, in order to attract attention, in addition to the lights which she is by these rules required to carry, show a flare-up light or use any detonating signal that can not be mistaken for a distress signal.

NAVAL LIGHTS AND RECOGNITION SIGNALS

Art. 13. Nothing in these rules shall interfere with the operation of any special rules made by the Government of any nation with respect to additional station and signal lights for two or more ships of war or for vessels sailing under convoy, or with the exhibition of recognition signals adopted by shipowners, which have been authorized by their respective Governments and duly registered and published.

STEAM VESSEL UNDER SAIL BY DAY
Art. 14. A steam vessel proceeding under sail only, but having her funnel up, shall carry in daytime, forward, where it can best be seen, one black ball or shape two feet in diameter.

INLAND RULES

LIGHTS FOR AN OVERTAKEN VESSEL

Art. 10. A vessel which is being overtaken by another, except a steam vessel with an after range light showing all around the horizon, shall show from her stern to such last-mentioned vessel a white light or a flare-up light.

ANCHOR LIGHTS

Art. 11. A vessel under one hundred and fifty feet in length when at anchor shall carry forward, where it can best be seen, but at a height not exceeding twenty feet above the hull, a white light, in a lantern so constructed as to show a clear, uniform, and unbroken light visible all around the horizon at a distance of at least one mile.

A vessel of one hundred and fifty feet or upwards in length when at anchor shall carry in the forward part of the vessel, at a height of not less than twenty and not exceeding forty feet above the hull, one such light, and at or near the stern of the vessel, and at such a height that it shall be not less than fifteen feet lower than the forward light, another such light.

The length of a vessel shall be deemed to be the length appearing in her certificate of registry.

SPECIAL SIGNALS

Art. 12. Every vessel may, if necessary, in order to attract attention, in addition to the lights which she is by these rules required to carry show a flare-up light or use any detonating signal that can not be mistaken for a distress signal.

NAVAL LIGHTS AND RECOGNITION SIGNALS

Art. 13. Nothing in these rules shall interfere with the operation of any special rules made by the Government of any nation with respect to additional station and signal lights for two or more ships of war or for vessels sailing under convoy, or with the exhibition of recognition signals adopted by shipowners, which have been authorized by their respective Governments, and duly registered and published.

STEAM VESSEL UNDER SAIL BY DAY.
Art. 14. A steam vessel proceeding under sail only, but having her funnel up, may carry in daytime, forward, where it can best be seen, one black ball or shape two feet in diameter.

INTERNATIONAL RULES

III. SOUND SIGNALS FOR FOG, AND SO FORTH

PRELIMINARY

Art. 15.-All signals prescribed by this article for vessels under way shall be given:

First. By " steam vessels" on the whistle or siren.
Second. By "sailing vessels" and "vessels towed" on the fog horn.

The words " prolonged blast" used in this article shall mean a blast of from four to six seconds duration.

A steam vessel shall be provided with an efficient whistle or siren, sounded by steam or by some substitute for steam, so placed that the sound may not be intercepted by any obstruction, and with an efficient fog horn, to be sounded by mechanical means, and also with an efficient bell. In all cases where the rules require a bell to be used a drum may be substituted on board Turkish vessels, or a gong where such articles are used on board small seagoing vessels. A sailing vessel of twenty tons gross tonnage or upward shall be provided with a similar fog horn and bell.

In a fog, mist, falling snow, or heavy rain storms, whether by day or night, the signals described in this article shall be used as follows, namely:

STEAM VESSEL UNDER WAY

(a) A steam vessel having way upon her shall sound, at intervals of not more than two minutes, a prolonged blast.
(b) A steam vessel under way, but stopped, and having no way upon her, shall sound, at intervals of not more than two minutes, two prolonged blasts, with an interval of about one second between.

SAIL VESSEL UNDER WAY

(c) A sailing vessel under way shall sound, at intervals of not more than one minute, when on the starboard tack, one blast; when on the port tack, two blasts in succession, and when with the wind abaft the beam, three blasts in succession.

VESSELS AT ANCHOR OR NOT UNDER WAY

(d) A vessel when at anchor shall, at intervals of not more than one minute, ring the bell rapidly for about five seconds.

VESSELS TOWING OR TOWED

(e) A vessel when towing, a vessel employed in laying or in picking up a telegraph cable, and a vessel under way, which is unable to get out of the way of an approaching vessel through being not under command, or unable to maneuver as required by the rules, shall, instead of the signals prescribed in subdivisions (a) and (c) of this article, at intervals of not more than two minutes, sound three blasts in succession, namely: One prolonged blast followed by two short blasts. A vessel towed may give this signal and she shall not give any other.

INLAND RULES

III. SOUND SIGNALS FOR FOG, AND SO FORTH

PRELIMINARY

Art. 15. All signals prescribed by this article for vessels under way shall be given:

1. By "steam vessels" on the whistle or siren.
2. By "sailing vessels" and " vessel towed " on the fog horn.

The words " prolonged blast", used in this article shall mean a blast of from four to six seconds duration.

A steam vessel shall be provided with an efficient whistle or siren, sounded by steam or by some substitute for steam, so placed that the sound may not be intercepted by any obstruction, and with an efficient fog horn; also with an efficient bell. A sailing vessel of twenty tons gross tonnage or upward shall be provided with a similar fog horn and bell.

In fog, mist, falling snow, or heavy rain storms, whether by day or night, the signals described in this article shall be used as follows, namely:

STEAM VESSEL UNDER WAY

(a) A steam vessel under way shall sound, at intervals of not more than one minute, a prolonged blast.

SAIL VESSELS UNDER WAY

(c) A sailing vessel under way shall sound, at intervals of not more than one minute, when on the starboard tack, one blast; when on the port tack, two blasts in succession, and when with the wind abaft the beam, three blasts in succession.

VESSELS AT ANCHOR OR NOT UNDER WAY

(d) A vessel when at anchor shall, at intervals of not more than one minute, ring the bell rapidly for about five seconds.

VESSELS TOWING OR TOWED

(e) A steam vessel when towing, shall, instead of the signals prescribed in subdivision (a) of this article, at intervals of not more than one minute, sound three blasts in succession, namely, one prolonged blast followed by two short blasts. A vessel towed may give this signal and she shall not give any other.

INTERNATIONAL RULES

SMALL SAILING VESSELS AND BOATS
Sailing vessels and boats of less than twenty tons gross tonnage shall not be obliged to give the above-mentioned signals, but, if they do not, they shall make some other efficient sound signal at intervals of not more than one minute.

SPEED IN FOG

Art. 16. Every vessel shall, in a fog, mist, falling snow, or heavy rain storms, go at a moderate speed, having careful regard to the existing circumstances and conditions.

A steam vessel hearing, apparently forward of her beam, the fog signal of a vessel the position of which is not ascertained shall, so far as the circumstances of the case admit, stop her engines, and then navigate with caution until danger of collision is over.

IV. STEERING AND SAILING RULES

PRELIMINARY

Risk of collision can, when circumstances permit, be ascertained by carefully watching the compass bearing of an approaching vessel. If the bearing does not appreciably change, such risk should be deemed to exist.

SAILING VESSELS

Art. 17. When two sailing vessels are approaching one another, so as to involve risk of collision, one of them shall keep out of the way of the other, as follows, namely:
(a) A vessel which is running free shall keep out of the way of a vessel which is closehauled.
(b) A vessel which is closehauled on the port tack shall keep out of the way of a vessel which is closehauled on the starboard tack.
(c) When both are running free, with the wind on different sides, the vessel which has the wind on the port side shall keep out of the way of the other.
(d) When both are running free, with the wind on the same side, the vessel which is to the windward shall keep out of the way of the vessel which is to the leeward.
(e) A vessel which has the wind aft shall keep out of the way of the other vessel.

STEAM VESSELS

Art. 18. When two steam vessels are meeting end on, or nearly end on, so as to involve risk of collision, each shall alter her course to starboard, so that each may pass on the port side of the other.

INLAND RULES

RAFTS, OR OTHER CRAFT NOT PROVIDED FOR

(f) All rafts or other water craft, not herein provided for, navigating by hand power, horse power, or by the current of the river, shall sound a blast of the fog horn, or equivalent signal, at intervals of not more than one minute.

SPEED IN FOG

Art. 16. Every vessel shall, in a fog, mist, falling snow, or heavy rain storms, go at a moderate speed, having careful regard to the existing circumstances and conditions.

A steam vessel hearing, apparently forward of ner beam, the fog signal of a vessel the position of which is not ascertained shall, so far as the circumstances of the case admit, stop her engines, and then navigate with caution until danger of collision is over.

IV.-STEERING AND SAILING RULES

PRELIMINARY

Risk of collision can, when circumstances permit, be ascertained by carefully watching the compass bearing of an approaching vessel If the bearing does not appreciably change, such risk should be deemed to exist.

SAILING VESSELS

Art. 17. When two sailing vessels are approaching one another, so as to involve risk of collision, one of them shall keep out of the way of the other as follows, namely:
(a) A vessel which is running free shall keep out of the way of a vessel which is closehauled.
(b) A vessel which is closehauled on the port tack shall keep out of the way of a vessel which is closehauled on the starboard tack.
(c) When both are running free, with the wind on different sides, the vessel which has the wind on the port side shall keep out of the way of the other.
(d) When both are running free, with the wind on the same side, the vessel which is to the windward shall keep out of the way of the vessel which is to the leeward.
(e) A vessel which has the wind aft shall keep out of the way of the other vessel.

STEAM VESSELS

Art. 18. Rule I. When steam vessels are approaching each other head and head, that is, end on, or nearly so, it shall be the duty of each to pass on the port side of the other; and either vessel shall give, as a signal of her intention, one short and distinct blast of her whistle, which the other vessel shall answer promptly by a similar blast of her whistle, and thereupon such vessels shall pass on the port side of each other. But if the courses of such vessels are so far on the starboard of each other as not to be considered as meeting head and head, either vessel shall immedi-

INTERNATIONAL RULES

This article only applies to cases where vessels are meeting end on, or nearly end on, in such a manner as to involve risk of collision, and does not apply to two vessels which must, if both keep on their respective courses, pass clear of each other.

The only cases to which it does apply are when each of the two vessels is end on, or nearly end on to the other; in other words, to cases in which, by day, each vessel sees the masts of the other in a line, or nearly in a line, with her own; and by night, to cases in which each vessel is in such a position as to see both the side-lights of the other.

It does not apply by day to cases in which a vessel sees another ahead crossing her own course; or by night, to cases where the red light of one vessel is opposed to the red light of the other, or where the green light of one vessel is opposed to the green light of the other, or where a red light without a green light, or a green light without a red light, is seen ahead, or where both green and red lights are seen anywhere but ahead.

INLAND RULES

ately give two short and distinct blasts of her whistle, which the other vessel shall answer promptly by two similar blasts of her whistle, and they shall pass on the starboard side of each other.

The foregoing only applies to cases where vessels are meeting end on, or nearly end on, in such a manner as to involve risk of collision; in other words, to cases in which, by day, each vessel sees the masts of the other in a line, or nearly in a line, with her own, and by night to cases in which each vessel is in such a position as to see both the sidelights of the other.

It does not apply by day to cases in which a vessel sees another ahead crossing her own course, or by night to cases where the red light of one vessel is opposed to the red light of the other, or where the green light of one vessel is opposed to the green light of the other, or where a red light without a green light or a green light without a red light, is seen ahead, or where both green and red lights are seen anywhere but ahead.

Rule III. If, when steam vessels are approaching each other, either vessel fails to understand the course or intention of the other, from any cause, the vessel so in doubt shall immediately signify the same by giving several short and rapid blasts, not less than four, of the steam whistle.

Rule V. Whenever a steam vessel is nearing a short bend or curve in the channel, where, from the height of the banks or other cause, a steam vessel approaching from the opposite direction can not be seen for a distance of half a mile, such steam vessel, when she shall have arrived within half a mile of such curve or bend, shall give a signal by one long blast of the steam whistle, which signal shall be answered by a similar blast given by any approaching steam vessel that may be within hearing. Should such signal be so answered by a steam vessel upon the farther side of such bend, then the usual signals for meeting and passing shall immediately be given and answered; but, if the first alarm signal of such vessel be not answered, she is to consider the channel clear and govern herself accordingly.

When steam vessels are moved from their docks or berths, and other boats are liable to pass from any direction toward them, they shall give the same signal as in the case of vessels meeting at a bend, but immediately after clearing the berths so as to be fully in sight they shall be governed by the steering and sailing rules.

Rule VIII. When steam vessels are running in the same direction, and the vessel which is astern shall desire to pass on the right or starboard hand of the vessel ahead, she shall give one short blast of the steam whistle, as a signal of such desire, and if the vessel ahead answers with one blast, she shall put her helm to port; or if she shall desire to pass on the left or port side of the vessel ahead, she shall give two short blasts of the steam whistle as a signal of such desire, and if the vessel ahead answers with two blasts, shall put her helm to starboard; or if the vessel ahead does not think it safe for the vessel astern to attempt to pass at that point, she shall immediately signify the same by giving several short and rapid blasts of the steam whistle, not less than four, and under no circumstances shall the vessel astern attempt to pass the vessel ahead until such time as they have reached a point where it can be safely done, when said vessel

INTERNATIONAL RULES

Art. 19. When two steam vessels are crossing, so as to involve risk of collision, the vessel which has the other on her own starboard side shall keep out of the way of the other.

STEAM VESSEL SHALL KEEP OUT OF THE WAY OF SAILING VESSEL
Art. 20. When a steam vessel and a sailing vessel are proceeding in such directions as to involve risk of collision, the steam vessel shall keep out of the way of the sailing vessel.

COURSE AND SPEED

Art. 21. Where, by any of these rules, one of two vessels is to keep out of the way the other shall keep her course and speed.

Note-When, in consequence of thick weather or other causes, such vessel finds herself so close that collision can not be avoided by the action of the giving-way vessel alone, she also shall take such action as will best aid to avert collision. [See articles twenty-seven and twenty-nine.]

CROSSING AHEAD

Art. 22. Every vessel which is directed by these rules to keep out of the way of another vessel shall, if the circumstances of the case admit, avoid crossing ahead of the other.

INLAND RULES

ahead shall signify her willingness by blowing the proper signals. The vessel ahead shall in no case attempt to cross the bow or crowd upon the course of the passing vessel.

Rule IX. The whistle signals provided in the rules under this article, for steam vessels meeting, passing, or overtaking, are never to be used except when steamers are in sight of each other, and the course and position of each can be determined in the daytime by a sight of the vessel itself, or by night by seeing its signal lights. In fog, mist, falling snow or heavy rain storms, when vessels can not see each other, fog signals only must be given.

SUPPLEMENTARY REGULATIONS

Sec. 2. That the supervising inspectors of steam vessels and the Supervising Inspector-General shall establish such rules to be observed by steam vessels in passing each other and as to the lights to be carried by ferryboats and by barges and canal boats when in tow of steam vessels, not inconsistent with the provisions of this act, as they from time to time may deem necessary for safety, which rules when approved by the Secretary of Commerce are hereby declared special rules duly made by local authority, as provided for in article thirty of chapter eight hundred and two of the laws of eighteen hundred and ninety. Two printed copies of such rules shall be furnished to such ferryboats, and steam vessels which rules shall be kept posted up in conspicuous places in such vessels.

TWO STEAM VESSELS CROSSING

Art. 19. When two steam vessels are crossing, so as to involve risk of collision, the vessel which has the other on her own starboard side shall keep out of the way of the other.

STEAM VESSEL SHALL KEEP OUT OF THE WAY OF SAILING VESSEL
Art. 20. When a steam vessel and a sailing vessel are proceeding in such directions as to involve risk of collision, the steam vessel shall keep out of the way of the sailing vessel.

COURSE AND SPEED

Art. 21. Where, by any of these rules, one of the two vessels is to keep out of the way, the other shall keep her course and speed.
[See articles twenty-seven and twenty-nine.]

CROSSING AHEAD

Art. 22. Every vessel which is directed by these rules to keep out of the way of another vessel shall, if the circumstances of the case admit, avoid crossing ahead of the other.

INTERNATIONAL RULES

STEAM VESSEL SHALL SLACKEN SPEED OR STOP

Art. 23. Every steam vessel which is directed by these rules to keep out of the way of another vessel shall, on approaching her, if necessary, slacken her speed or stop or reverse.

OVERTAKING VESSELS

Art. 24. Notwithstanding anything contained in these rules every vessel, overtaking any other, shall keep out of the way of the overtaken vessel.

Every vessel coming up with another vessel from any direction more than two points abaft her beam, that is, in such a position, with reference to the vessel which she is overtaking that at night she would be unable to see either of that vessel's side lights, shall be deemed to be an overtaking vessel; and no subsequent alteration of the bearing between the two vessels shall make the overtaking vessel a crossing vessel within the meaning of these rules, or relieve her of the duty of keeping clear of the overtaken vessel until she is finally past and clear.

As by day the overtaking vessel can not always know with certainty whether she is forward of or abaft this direction from the other vessel she should, if in doubt, assume that she is an overtaking vessel and keep out of the way.

NARROW CHANNELS

Art. 25. In narrow channels every steam vessel shall, when it is safe and practicable, keep to that side of the fairway or mid-channel which lies on the starboard side of such vessel.

RIGHT OF WAY OF FISHING VESSELS

Art. 26. Sailing vessels under way shall keep out of the way of sailing vessels or boats fishing with nets, or lines, or trawls. This rule shall not give to any vessel or boat engaged in fishing the right of obstructing a fairway used by vessels other than fishing vessels or boats.

GENERAL PRUDENTIAL RULE

Art. 27. In obeying and construing these rules due regard shall be had to all dangers of navigation and collision, and to any special circumstances which may render a departure from the above rules necessary in order to avoid immediate danger.

SOUND SIGNALS FOR PASSING STEAMERS

Art. 28. The words "short blast" used in this article shall mean a blast of about one second's duration.

When vessels are in sight of one another, a steam vessel under way, in taking any course authorized or required by these rules, shall indicate that course by the following signals on her whistle or siren, namely:

One_short blast to mean, "I am directing my course to starboard."

INLAND RULES

STEAM VESSEL SHALL SLACKEN SPEED OR STOP

Art. 23. Every steam vessel which is directed by these rules to keep out of the way of another vessel shall, on approaching her, if necessary, slacken her speed or stop or reverse.

OVERTAKING VESSELS

Art. 24. Notwithstanding anything contained in these rules every vessel, overtaking any other, shall keep out of the way of the overtaken vessel.

Every vessel coming up with another vessel from any direction more than two points abaft her beam, that is, in such a position, with reference to the vessel which she is overtaking that at night she would be unable to see either of that vessel's side lights, shall be deemed to be an overtaking vessel; and no subsequent alteration of the bearing between the two vessels shall make the overtaking vessel a crossing vessel within the meaning of these rules, or relieve her of the duty of keeping clear of the overtaken vessel until she is finally past and clear.

As by day the overtaking vessel can not always know with certainty whether she is forward of or abaft this direction from the other vessel she should, if in doubt, assume that she is an overtaking vessel and keep out of the way.

NARROW CHANNELS

Art. 25. In narrow channels every steam vessel shall, when it is safe and practicable, keep to that side of the fairway or mid-channel which lies on the starboard side of such vessel.

RIGHT OF WAY OF FISHING VESSELS

Art. 26. Sailing vessels under way shall keep out of the way of sailing vessels or boats fishing with nets, or lines, or trawls. This rule shall not give to any vessel or boat engaged in fishing the right of obstructing a fairway used by vessels other than fishing vessels or boats.

GENERAL PRUDENTIAL RULE

Art. 27. In obeying and construing these rules due regard shall be had to all dangers of navigation and collision, and to any special circumstances which may render a departure from the above rules necessary in order to avoid immediate danger.
[See article eighteen.]

INTERNATIONAL RULES

Two short blasts to mean, "I am directing my course to port."
Three short blasts to mean, "My engines are going at full speed astern."

PRECAUTION

Art. 29. Nothing in these rules shall exonerate any vessel, or the owner or master or crew thereof, from the consequences of, any neglect to carry lights or signals, or of any neglect to keep a proper lookout, or of the neglect of any pre aution which may be required by the ordinary practice of seamen, or by the special circumstances of the case.

Art. 30. [See page 2.]

DISTRESS SIGNALS

Art. 31. When a vessel is in distress and requires assistance from other vessels or from the shore the following shall be the signals to be used or displayed by her, either together or separately, namely:

In the daytime-

First. A gun or other explosive signal fired at intervals of about a minute.

Second. The international code signal of distress indicated by N. C.
Third. The distance signal, consisting of a square flag, having either above or below it a ball or anything resembling a ball.

Fourth. A continuous sounding with any fog-signal apparatus.
At night-
First. A gun or other explosive signal fired at intervals of about a minute.

Second. Flames on the vessel (as from a burning tar barrel, oil barrel, and so forth).

Third. Rockets or shells throwing stars of any color or description, fired one at a time, at short intervals.

Fourth. A continuous sounding with any fog-signal apparatus.

INLAND RULES

Art. 28. When vessels are in sight of one another a steam vessel under way whose engines are going at full speed astern shall indicate that fact by three short blasts on the whistle.

PRECAUTION

Art. 29. Nothing in these rules shall exonerate any vessel, or the owner or master or crew thereof, from the consequences of any neglect to carry lights or signals, or of any neglect to keep a proper lookout, or of the neglect of any precaution which may be required by the ordinary practice of seamen, or by the special circumstances of the case.

LIGHTS ON UNITED STATES NAVAL VESSELS AND REVENUE CUTTERS

Art. 30. The exhibition of any light on board of a vessel of war of the United States or a Coast Guard cutter may be suspended whenever, in the opinion of the Secretary of the Navy, the commander in chief of a squadron, or the commander of a vessel acting singly, the special character of the service may require it.

DISTRESS SIGNALS

Art. 31. When a vessel is in distress and requires assistance from other vessels or from the shore the following shall be the signals to be used or displayed by her, either together or separately, namely:

In the daytime-
A continuous sounding with any fog-signal apparatus, or firing a gun.

At night-

First. Flames on the vessel as from a burning tar barrel, oil barrel, and so forth.

Second. A continuous sounding with any fog-signal apparatus, or firing a gun.

CHAPTER II

USEFUL DEFINITIONS AND INFORMATION

Altitude.-The angular height of a heavenly body above the horizon.

Amplitude.-The bearing (never exceeding 90°) of a heavenly body at rising or setting, measured from East or West.

Apparent Time.-Time calculated by the sun. When the sun crosses the meridian of the observer it is apparent noon where he is, as well as at all places on his meridian from pole to pole.

Astronomical Time.-This commences at noon of the civil day, the hours being counted numerically from 1 to 24 , so that the day begins and ends at noon. To convert civil time into astronomical time proceed as follows: If the civil time is A. M. take 1 from the date and add 12 to the hours. If P. M. take away the sign P. M. and the answer will be Astronomical Time.

Azimuth.-The bearing (never exceeding 180°) of a heavenly body calculated from the north and south points of the heavens.

Chronometer.-A marine timepiece constructed with the idea of great accuracy, and set to the time of some first meridian. The Americans and English use the time of the meridian of Greenwich.

Civil Time.-The civil time consists of 24 hours; it commences at midnight and the first 12 hours are called A. M. and the second 12 hours P. M.

Compass.-The mariner's compass consists of a magnetized steel bar secured parallel to the north and south line of a circular card, which latter is balanced on a pivot so as to turn freely in the horizontal plane, and to indicate the magnetic meridian. The surface of the card is divided into 32 courses with their intermediate quarters, and, in addition to this, all steamships have the circumference of the compass card graduated into degrees.

Variation of the Compass.-The compass needle when uninfluenced by deviation points to the magnetic poles of
the earth, and as these do not coincide with the true or geographical poles, the magnetic meridians form an angle with the true meridians, and this is called the variation of the compass, which varies in extent in different parts of the world. The magnetic North Pole is situated in Latitude 70° North, Longitude 97° West. The magnetic South Pole is situated in Latitude 70° South, Longitude 145° East. The variation of the compass is not constant, but undergoes an annual change, and the amount of this yearly increase or decrease will be found plainly marked on charts.

Declination.-The angular distance of a heavenly body North or South of the celestial equator.

Departure.-The amount of easting or westing made by a vessel in miles.

Deviation of the Compass.-What is known as the deviation of the compass is the deflection of the compass needle from the magnetic meridian caused by the attraction of the hull, machinery, smokestacks, masts, or by certain elements of magnetism in the cargo. The manner of ascertaining the existence and amount of compass deviation is found by taking bearings of the sun or some fixed object. Deviation is named East or West according as to the North point of the compass is drawn to the eastward or westward of the magnetic meridian.

Equation of Time.-The difference between mean and apparent time.

Latitude.-The distance of a place on the earth's surface north or south of the equator, expressed in degrees, minutes and seconds.

Longitude.-The distance of a place on the earth's surface east or west of some given prime meridian, expressed in degrees, minutes and seconds.

Longitude in Time.-The position or distance of a vessel east or west of a given prime meridian, expressed in hours, minutes and seconds.

Magnetir, Bearing.-The direction pointed out by the magnetic meridian.

Compass Bearing.-The direction pointed out by the compass.

Mean Noon.-The time that the mean sun is supposed to cross the meridian of the observer.

Mean Sun.-An imaginary sun which is supposed to move uniformly, and to cross the same meridian at the same time every day, thus giving a value of exactly 24
hours to the day. This mean or fictitious sun sometimes crosses the observers meridian a little in advance of the true sun, and other times a little after it, and this difference or interval between the real and imaginary suns is known as the equation of time.

Mean Time.-Time calculated by the motion of the mean sun. All watches and clocks represent mean time.

Mercators Sailing.-A method of finding the true course and distance between two places by employing meridional parts instead of the middle latitude.

Meridian.-The highest point reached by a heavenly body from its rising to its setting.

Meridian Altitude.-The angular height of a heavenly body from the horizon line at the time the body is crossing the meridian.

Middle Latitude Sailing.-The method of finding the true course and distance between two places by employing the middle latitude between them.

Parallax.-Is the correction applied to observed altitude of sun, caused by observing the sun from earth's surface instead of center.

Parallel Sailing.-Sailing on a parallel; sailing true east or west.

Pelorus.-An instrument much used for observing bearings and for finding the deviation of the compass. It is a dummy compass with sight vanes attached.

Polar Distance.-The angular distance of a heavenly body from the pole nearest the observer.

Refraction.-The change of direction of a ray of light in passing through atmospheric mediums of varying density.

Semi-diameter.-Half a diameter, or the distance from top or bottom of the sun to the center.

Sextant.-An instrument of reflection used by navigators for measuring the altitudes of heavenly bodies.

The Sextant.-The sextant derives its name from the extent of its limb, which is the sixth part of a circle, or 60°, but being an instrument of double reflection it is divided into 120°.

The Quadrant.-The quadrant is properly an Octant, as the limb is only the eighth part of a circle, or 45°, but, like the sextant, being an instrument of double reflection, it is divided into 90°.

Both instruments are constructed on the same principle, and can be made equally accurate and perfect.

Siderial Time.-Time measured by the stars. Siderial time commences when the First Point of Aries is on the meridian, and is counted from 1 to 24 hours, when the same point returns to the meridian again.

Solar Time.-Time measured by the sun.
Variation.-The divergence of the compass needle from the true North due to pointing to the North magnetic instead of North geographic pole.

Zenith Distance.-The angular distance of a heavenly body from the zenith of the observer.

Zenith.-That point in the heavens directly overhead of the observer, and 90° distance from every point of the horizon.

Prime Vertical.-A heavenly body is on the prime vertical when it bears true East or West, and is the best time to observe a sight for longitude, as an error of latitude will have no effect on the longitude.

Right Ascension. -The distance in time of a heavenly body reckoned eastward on the equinoctial from the First Point of Aries.

First Point of Aries.-That point in the heavens which the sun's center occupies when its declination changes from South to North, or when the sun crosses the line bound North.

Mercator Chart.-The Mercator chart has a compass printed on it, with an arrow to represent the North point which is the top, the bottom South; East right, West left. Meridians are the lines running North and South, on the chart-those on the sides, are divided into degrees and minutes, and are called Graduated Meridians. Parallels of latitude are the lines running east and west-those at top and bottom are divided into degrees and minutes, and are called Graduated Parallels. Latitude is measured at the sides on the Graduated Meridians. Longitude is measured at the top and bottom on the Graduated Parallels. A Mercator chart is a distortion of the earth's surface, the meridians being equal, and the parallels increased from the equator to the poles. The outer compass is a true compass, and the inner compass is a magnetic compass. The variation is found printed on the compass, and also lines of variation will be found on chart. Soundings are given in fathoms in clear parts, and in feet in shaded parts, and the nature of bottom is given by letters abbreviated. The chart gives all information as to lightships, light houses, visibility of lights, and nature of lights.

Clinometer.-An instrument used for registering amount of list or heel, generally to be found on the binnacle. As one degree of list will frequently alter the deviation to a like amount, this will require careful watching. It also comes in handy when putting ship in dry dock to ascertain if ship is upright.

Hydrometer.-An instrument used for measuring the density or the specific gravity of liquids, used by seamen for finding the different drafts that a ship will float at, in fresh and salt water. The specific gravity of fresh water is 1000. The specific gravity of salt water is 1026 . To find the draft a ship can be loaded to in fresh water, in order to ascertain the amount of water she will draw at sea, proceed as follows: Take the density of water at wharf, from below the surface if possible, by hydrometer. Multiply mean draft of ship by this reading, and divide by 1026. The result will be mean sea draft. (By mean sea draft is meant adding forward and after draft together, and dividing sum by 2.) For example: Dock water reading of hydrometer 1006. Mean draft of vessel 21 ft .

$$
\frac{1006 \times 21}{1026}=20.6 \mathrm{ft} . \text { mean sea draft. }
$$

Mercurial Barometer.-The barometer is an instrument used for determining at any moment the weight or pressure of the atmosphere in its immediate vicinity. It is made by taking a glass tube sealed at one end, and placing the other end in a receptacle containing mercury. The mercury will then descend the tube until the weight of the column of mercury in the tube is balanced by the atmospheric pressure or weight on the mercury in the cup. The glass tube is graduated in proper ratio, so that the increase or decrease of pressure can be read on the scale at the side of the glass.

Aneroid Barometer.-Is another type of barometer, which, owing to its compact form, and the fact that no liquid is used, is coming into use more and more for sea service. The varying pressure of the atmosphere is registered on the dial by a hand, which is controlled by the expansion or contraction of a metal box, generally of a circular form with corrugated surface, from which almost all air has been withdrawn leaving a partial vacuum.

The instruments should not be removed from the ship, but frequent comparisons should be made to ascertain error of instrument by reading barometer at 12 -hour intervals

3 times ($8 \mathrm{~A} . \mathrm{M}$. or Noon preferable) and forwarding same to Local Weather Bureau.

To Find the Storm Center of Tropical Cyclonic Storms. In the Northern Hemisphere look into wind and 8 points to the right will be the center. In the Southern Hemisphere 8 points to the left will be center approximately.

Notices to be Posted on Steamers Carrying Passengers. Certificate of Inspection, 2 Copies of Pilot Rules, 2 Copies of Safety First, 3 Copies Excluding Certain Persons from Pilot House, 3 Copies of Station Bills required, 5 Copies of Line Carrying Gun Drill, Station Bills for Fire and Boat Drills for Deck and Engineer's Department, Life Preserver Notices to be posted in each stateroom and in conspicuous places around vessel. Also to have on board 2 Copies of Law Governing the Steamboat Inspection Service, and 1 Copy of General Rules and Regulations of the Board of Supervising Inspectors.

Dangerous Articles Forbidden on Passenger Steamers.No loose hay, loose cotton, or loose hemp, camphene, nitroglycerine, naphtha, benzine, coal oil, crude or refined petroleum, benzole, or other like explosive burning fluids, or like dangerous articles, shall be carried as freight or used as stores on any steamer carrying passengers. Gunpowder may be carried if the vessel is provided with a chest or safe composed of metal, or entirely lined or sheathed therewith, at a secure distance from any fire, after an examination has been made by the Local Inspectors of such chest or safe, and a license to carry gunpowder has been issued, such license to be kept conspicuously posted on board vessel.

Watchmen Required on Passenger Steamers.-Every steamer carrying passengers during the night time shall keep a suitable number of watchmen in the cabins, and on each deck to guard against fire or other dangers, and to give alarm in case of accident or disaster. All steamers while navigating at night shall keep a man on the lookout forward if weather permits, or at some other suitable place.

Reports to be Made to Local Inspectors.-The Master of every steamer shall make a report in writing to the Local Inspectors of any accident to vessel or loss of life. Notice shall be made in writing to Local Inspectors of number of passengers carried, and fire and boat drill practiced, each month.

Drills to be Entered in Log Book.-Fire and boat drill shall be practiced once each week on passenger steamers.

The line carrying gun shall be fired once every three months and such drills shall be entered in ship's log book.

How Fire Hose Shall be Carried. -Fire hose shall be carried connected to fire plugs, and ready for immediate use, with suitable spanners at each plug.

Lamp and Paint Locker Requirements.-All steamers carrying passengers shall have a metal-lined paint and lamp locker. This locker to have a $\frac{3}{4}-\mathrm{in}$. steam pipe run into it for smothering fires, and the valve of such steam pipe shall be plainly marked.

How Lifeboats shall be Carried and Marked.-All lifeboats on steamers carrying passengers shall be carried under davits of approved mechanical design, capable of sustaining the weight of boat and equipment and number of persons allowed to be carried. They shall be marked in numerical order, odd numbers on starboard side, even numbers on port side, cubical contents and number of persons allowed shall be painted on each bow in letters not less than $\frac{3}{4} \mathrm{in}$. high. Vessel's name and home port shall be painted on stern in letters 3 in . high. Number of persons allowed shall be painted on two thwarts in letters 3 in . high. All boats shall be in condition for immediate launching at all times and the falls shall not be painted or covered,and shall be stowed in covered tubs or reels on outside of boat.

Equipment of Lifeboats.-A properly secured life line the entire length on each side, such line to be festooned in bights not longer than 3 ft ., with a seine float in each bight; at least 2 life preservers; 1 painter of not less than $2 \frac{3}{4} \mathrm{in}$. manila rope; a full complement of oars and 2 spare oars; a set and a half of rowlocks, each rowlock to be attached to boat with a separate chain; 1 steering oar with rowlock or becket, or 1 rudder with yoke and suitable yoke ropes; 1 boat hook attached to staff of a suitable length; 2 axes; 1 bucket with lanyard attached; 1 bailer; 1 liquid compass with not less than $2-\mathrm{in}$. card; 1 lantern with attached lamp containing sufficient oil to burn at least 9 hours and ready for immediate use; 1 gallon of illuminating oil in a substantial can; at least 1 box of friction matches wrapped in a waterproof package and carried in a box attached to the underside of the stern thwart; at least 2 quarts of water for each person carried, in a strong wooden breaker or suitable tank fitted with a siphon, pump, or spigot for drawing water; 2 drinking cups of enameled metal; 1 substantial metal can containing 2 lbs . of hard
bread for each person carried, the metal bread can to be fitted with an opening in the top not less than $5-\mathrm{in}$. in diameter, properly protected with a screw cap of heavy cast brass with machine thread and an attached double toggle seating to a pliable rubber gasket which shall insure a tight joint in order to properly protect the contents of the can; 1 canvas bag containing sailmaker's palm and needles, sail twine, marline spike, and hatchet; 12 pyrotechnic red lights carried in a metal case; 1 drag sail; 1 gallon of storm oil; and 1 mast and sail with necessary rigging.

Equipment of Life Rafts.-A properly secured life line entirely around the sides and ends of raft festooned to the gunwales in bights not longer than 3 ft . with a seine float in each bight; 1 painter of $2 \frac{3}{4} \mathrm{in}$. manila rope of a suitable length; 4 oars; 5 rowlocks properly attached; 1 boat hook attached to staff of suitable length; 1 self-igniting life-buoy light; 1 sea anchor; 1 vessel containing 1 gallon of vegetable or animal oil, so constructed that the oil can be easily distributed on the water, and so arranged that it can be attached to the sea anchor; 2 lb . of hard bread for each person carried, carried in a receptacle same as in lifeboats; 1 water breaker containing 1 quart of water for each person carried; 2 enameled drinking cups; 1 metal case containing 6 pyrotechnic red lights; 1 water-tight box of matches. All loose equipment must be securely attached to the raft to which it belongs.

How to Mark a Lead Line.-Two fathoms, 2 strips of leather; 3 fathoms 3 strips of leather; 5 fathoms white rag; 7 fathoms red rag; 10 fathoms leather with 1 hole; 13 fathoms blue rag; 15 fathoms white rag; 17 fathoms red rag; 20 fathoms leather with 2 holes; 25 fathoms cord with 1 knot; 30 fathoms cord with 3 knots.

Explain the Use of the Deep Sea Sounding Machine. The deep sea sounding machine has a reel of fine wire to which the lead is attached by a line having made fast to it the lead and a brass tube. Into the brass tube is placed the depth recorder which is a long glass tube, which is placed sealed end up. When the lead is armed and everything is ready the brake is released, and the wire is allowed to run out until the bottom is struck. The amount of wire run out is shown by an indicator on the side of the machine. The amount of wire is not the depth of water obtained, as the amount run out varies with the speed of the ship. The
wire is then reeled back, and the glass tube is taken out. The pressure of the water causes the tube to become discolored a certain length up for a certain depth, and the amount of such depth is found by measuring the discoloration on a scale provided for that purpose.

How to Find Course and Distance by Mercator Chart and Parallel Rules.-Lay the parallel rules on the two places that the course and distance is wanted for. After obtaining proper angle, move the rules to the nearest compass rose on the chart and read off the course obtained. Measure the distance between the places on the side of the chart in the latitude column always, using the middle latitude between the places.

How to Find Ship's Position by Cross Bearings.-Take a bearing of two fixed objects by ship's compass, and correct for the deviation for ship's head and the variation at the place, making the bearings true. Lay off the bearings on the chart from the objects used, and where the two lines cross one another will be the ship's position at time of taking the bearings.

How to Find the Distance Off a Fixed Point by Four Point Bearings.-Take a bearing of the object when it bears four points on the bow and also when abeam. If the ship has held the same course while taking the two bearings the distance run between the two bearings will be the distance off the object when abeam.

What is the Duty of a Mate on Watch? Keep a good lookout, watch the steering, see that man on lookout keeps a good lookout. If it comes on thick or foggy, stop or slow the vessel, blow the whistle, and send someone to call the Master.

What Would You Do Should a Man Fall Overboard? Stop the ship, throw the stern of the ship from the man, send a man aloft to watch out and direct the boat, throw over a life buoy, and lower the lee boat.

What Would You Look After When Lowering a Boat, and How Would You Place Your Men in the Boat?See if the plug was in the boat, and the davit falls all clear. Place one man in bow and another in stern to unhook davit tackles, rest of crew sitting down ready with oars.

How Would You Handle a Boat in a Heavy Surf?-I would head my boat to the sea and pull towards it when it breaks. If about to beach a boat in the surf pull in close to the breakers, then back the boat in, pulling toward the sea
as it breaks. Do not let her fall broadside too, or the boat will swamp.

Your Ship is Ashore, Your Boats and Life Rafts are all Stove in, What Would You Do to Save the People on Board Your Vessel?-Send up distress rockets and make distress signals to attract the attention of the life-saving crew on shore. If not answered, build a raft out of anything that will float, bend a line to it, and throw the raft overboard and see if it will drift ashore. If so, haul it back again and put two good swimmers and a long line coiled on the raft, and then let it drift as near the shore as it will go, then let the men jump over and swim ashore with the line. Then haul the raft backward and forward until every one is off the vessel.

How Would You Find the Approximate Position of a Vessel by Taking One Bearing of a Point or Light?-Take a bearing of the point, and drop the lead. Then go to the chart and draw a line representing the bearing of the particular point, and hunt along this line until the depth of water and nature of bottom is found. The result will be the approximate position of the vessel.

In Case of Collision While in Command or in Charge of a Watch What are your Duties?-Stop the ship and ascertain the damage to my own vessel. Call all hands to attention, serve out life belts, man boats and get ready for lowering. Next ascertain if the other vessel needs assistance; if so, render it, if not, and both vessels are able to proceed, exchange names of vessels and port of registry, and immediately upon arrival in port send in a written report to the steamboat inspectors, and make out wreck report and file it at the custom house. If the report is not made the Master is liable to a fine.

What are the Duties of a Mate Towards the Master, Passengers and Crew?-The duty of an officer of a vessel is to obey all orders emanating from his superior officer; assist in the navigation of the vessel to the best of his ability; report to the Master whenever the officer is of the opinion that a danger exists if the orders of his superiors are carried out, show an example to the crew by obeying all orders promptly; keep the passengers out of dangerous places; see that the crew know their stations in case of fire or collision; do not molest passengers; see that all life saving and fire fighting equipment is kept ready for use and in good condition; and keep a good lonkout while on watch.

What do the Figures and Letters You See on a Chart Represent?-The figures represent the depth of the water in fathoms or feet, at a mean low water, and the letters represent the nature of the bottom.

If You Think You Hear a Fog Whistle on Your Bow, What Would You Do?-Stop my vessel, ascertain the position of the other vessel if possible, and then proceed with caution.

How Would You Approach a Sinking Vessel With a Boat in a Heavy Sea and Take the People Off, if it Was Too Rough to go Alongside?-Run dead to windward of the sinking vessel as close as safety will permit; stop my ship and make one side of my ship a lee side, lower away the lee boat, and at the same time throw overboard a can of oil to smooth the sea. Let the boat drift down toward the wreck, and when the boat is near the wreck, look out for wreckage and fall in on the lee side of the wreck as near as possible. If dangerous to go alongside, throw the boat head up and let a man stand in the bow of the boat and throw a heaving line with a bowline in the end of it on board the wreck, which one of the people on board will place around him, and then jump overboard, and who will be hauled into the boat. The vessel in the meantime will run to the leeward and wait for the boat, when she leaves the wreck with a boat load of people. This will be repeated until everybody is off the wreck.

How Would You Heave To in a Gale Under Steam, or With Engines Disabled?-Slow the engines, head her up to the sea, and get on some after canvas. If she will not lay to, use a drag over the weather bow. If disabled try to make her lay her head to the sea with a drag over her bow, and some after canvas, but if she would not lay to keep her helm amidship, take in the after canvas and pass the drag aft to the weather quarter and let her lay stern to.

How Would You Approach the Land in a Fog, and Wha* Precaution Would You Take?-Go slow and use the lead frequently. If in doubt stop and wait for weather to clear.

When Taking Soundings, What do You Use Besides the Depth of Water to Confirm Your Position?-The nature of the bottom which is brought up on the arming of the lead.

Buoyage System of U. S.-On entering channels nunshaped or peaked buoys, red with even numbers, starboard side. Can-shaped or flat-top buoys, black with odd numbers, port side. Black and white perpendicular striped
buoys are fairway buoys. Black and red horizontal striped buoys are obstruction buoys, give berth on both sides. White buoys are anchorage ground, anchor inside of buoys. Gas, Bell and Whistling Buoys are colored and placed according to the needs of surrounding and locality and are described in local buoy books. Buoys and beacons with cages are generally placed at turns in narrow channels, and may be colored with reference to background.

Danger Bearing.-If crossing a vessel or approaching the land observe a bearing. If this bearing does not change, risk of collision or grounding should be assumed.

U. S. WEATHER BUREAU SIGNALS

The Small Craft Warning.-A red pennant displayed alone indicates that, while the wind may not reach a velocity sufficiently high to justify the display of a regular storm warning, they will interfere with the safe operation of small craft, such as those engaged in fishing, towing, motor-boating, and yachting.

The Storm Warning.-A red flag (8 ft . square) with black center (3 ft . square) indicates that a storm of marked violence is expected.

Pennants.-The pennants displayed with the flag indicates the direction from which the wind is expected to blow.

The Red Pennant.-(Eight ft. hoist and 15 ft . fly) displayed with the flag indicates easterly winds.

The White Pennant.-(Eight ft. hoist and 15 ft . fly) displayed with the flag indicates westerly winds.

When the red pennant is hoisted above the storm flag, winds are expected from the Northeast quadrant; when below, from the Southeast quadrant.

When the white pennant is hoisted above the storm flag, winds are expected from the Northwest quadrant; when below, from the Southwest quadrant.

Night Warnings.-By night, two red lights one above the other, indicate winds from the Northeast quadrant; a single red light indicates Southeast quadrant; a white light above a red light indicates Northwest quadrant; and a red light above a white light indicates Southwest quadrant.

The Hurricane Warning.-Two storm flags (red with black center), displayed one above the other, are used to announce the expected approach of tropical hurricanes,
and also those extremely severe and dangerous storms which occasionally move across the Lakes and northern Atlantic Coast.

The Night Hurricane Warning.-Two red lights with a white light between in a vertical line.

INSTRUCTIONS FOR THE USE OF THE GUN AND ROCKET apparatus, AS PRACTICED BY U. S. LIFE SAVING SERVICE

If your vessel is stranded and a shot with a small line is fired over it, get hold of the line, haul it on board until you get a tail block with an endless line rove through it, make the tail block fast to the lower mast well up, or in the event the masts have gone, to the best place to be found. Cast off small shot line, see that rope in block runs free, and make signal to shore.

A hawser will be bent to the endless line on shore, and hauled off to your ship by the life-saving crew. Make hawser fast about 2 ft . above the tail block, and unbend hawser from endless line. See that rope in block runs free, and make signals to shore.

Life savers on shore will then set hawser taut, and by means of the endless line haul off to your ship a breeches buoy.

Let one man get clear into the breeches buoy, thrusting his legs through the breeches, make signal to shore as before, and he will be hauled ashore by the life savers, and the empty buoy returned to the ship.

The following signals have been adopted by the Coast Guard of the United States:

No. 1. Upon the discovery of a wreck by night the station crew will burn a red pyrotechnic light or a red rocket to signify, "You are seen; assistance will be given as soon as possible."

No. 2. A red flag waved on shore by day, or a red light, red rocket, or red Roman candle displayed by night, will signify, "Haul away."

No. 3. A white flag waved on shore by day, or a white light swung slowly back and forth, or a white rocket or white Roman candle fired by night, will signify, "Slack away."

No. 4. Two flags, a white and a red, waved at the same time on shore by day, or two lights, a white and a red,
slowly swung at the same time, or a blue pyrotechnic light burned by night, will signify, "Do not attempt to land in your own boats; it is impossible."

No. 5. A man on shore beckoning by day, or two torches burning near together by night, will signify. "This is the best place to land."

INTERNATIONAL CODE OF SIGNALS

The International Code of Signals consists of 26 Flagsone for each letter of the alphabet-and a Code Flag.

Letters " A " and " B " are Burgees.
Letters " C," "D," "E," "F " and " G " and " Answering Pennant" are pennants.

The balance of the alphabet are in square flags.
Two Flag Signals.-Are urgent and important signals. Such as "NC " which means "I am in distress."

Three Flag Signals.-Are general signals. Such as "CXL" which means " Do not abandon me."

Four Flag Signals.-Are Geographical, Alphabetical Spelling Tables, and Vessels' Numbers. Such as "AZOT" is the Geographical Signal for New York City. Alphabetical signals are the words spelled out by the flags, and answered by the Answering Pennant. Vessels' Numbers are given in the List of Merchant Vessels. Each vessel having a certain number.

Meanings of Flags and Pennants Hoisted Singly

" B" I am taking in (or, discharging) explosives.
"C" Yes, or, Affirmative.
" D" No, or, Negative.
"L" I have (or, have had) some dangerous infectious disease on board.
"P" I am about to sail; all persons to report on board.
"Q" I have a clean bill of health, but am liable to quarantine.
"S " I want a pilot.

How to Make a Signa!

1. Ship A, wishing to make a signal, hoists her Ensign code flag under it.
2. When Ship A has been answered by the vessel she is addressing she proceeds with the signal which she desires
to make, first hauling down her code flag if it is required for making the signal.
3. Each hoist should be kept flying until Ship B hoists her Answering Pennant.
4. When Ship A has finished signalling she hauls down her Ensign.

How to Answer a Signal

1. Ship B (the ship signalled to) on seeing the signal made by Ship A, hoists her Answering Pennant at the " Dip."
2. When A's hoist has been taken in, looked out in the signal book, and is understood, B hoists her Answering Pennant "Close Up" and keeps it there until A hauls her hoist down.
3. B then lowers her Answering Pennant to the "Dip" and waits for next hoist.
4. If the flags in A's hoist cannot be made out, B keeps her Answering Pennant at the " Dip " and hoists the signal OWL or WCX, or such other signal as may meet the case; and when A has repeated or rectified her signal, and B thoroughly understands it, B hoists her Answering Pennant " Close Up."

DOT AND DASH CODE

This method is used to converse with vessels at sea by means of flashlights, flags, or whistle.

With a little practice the reader will have no trouble in being proficient.

Alphabet

Numerals

1	.---
2	$\ldots-$
3	$\ldots-$
4	\ldots

$6-\ldots$
$7-\cdots$
$8-\ldots$
$9-\ldots .$.
$0-\ldots .$.

Additional Symbols

$\begin{array}{ll}\text { Cornet (follow) - } & \text { Code Inter } \\ \text { Letters } \\ \text { Signals (follow) } \ldots \text { nator } .\end{array}$

SIMPLE RULES FOR STOWAGE OF CARGO

When the cargo is discharged from the ship all the holds and 'tween decks, should be well cleaned and dunnage stacked up on the side ready for next cargo.

Dunnage is loose wood, laid on the bottom and 'tween
deck of a vessel ${ }^{-}$to prevent damage by vessel leaking, leaking water pipes, liquid cargo leaking, etc.

Dunnage should be laid in the holds fore and aft about 9 in . high, and in the 'tween deck athwartship about 3 in . high. The reasons for laying dunnage in this way is to allow any water that may get under the cargo to have free access to bilge suctions, and scupper pipes.

Casks are stowed fore and aft, bung up, and bilge free, with dunnage under the quarters, and well chocked off. Begin amidship for first tier, and work towards the wings.

To determine the location of the bung of a cask, if it is not visible, look for the rivets in the hoops, which will always be in line with the bung.

Bale goods should be stowed on their flat, with marks and numbers up.

Acids should be stowed on deck, so that it can readily be thrown overboard in case of leakage, and should be securely lashed.

When carrying a cargo of cotton special attention should be given that dunnage is well laid, and all iron work in holds properly protected, so that no friction may occur between the bands of the bales and the iron work.

A cargo of coal should be taken on board dry, and plenty of surface ventilation given to holds to avoid against the coals getting heated and taking fire. In fine weather at sea the hatches should be left open, and the temperature of the holds taken each watch. In case of fire batten down all hatches, ventilators, etc., and turn steam in holds, it is possible in some instances to hold the fire in this way.

On taking on board a cargo of steel rails operations should begin in the main hold, and the iron stowed fore and aft until level with keelson, then stowed grating fashion. To protect the sides of the vessel, place rails fore and aft and also have locking tiers of rails; when high enough lash all together with chains, and place battens across and tom all down securely from beams; also tom from the sides of the vessel.

A cargo of iron should be stowed in the body of the vessel, trimmed towards the wings, and raised up in the holds to a good height; by doing so the vessel will be in better trim for rough weather, and will not roll so heavily.

For general cargo have all the holds cleaned and dunnage laid down. Consider the nature of cargo, and stow it in the various holds so that the vessel will be kept in good trim.

The quantity of coal in the bunkers will have to be taken into consideration. If the vessel is to call at a number of ports, the cargo should be stowed so that at the first port of call the cargo for that place will be handy for discharging.

Deadweight should be stowed in the lower holds, and used for trimming the ship; bale goods, etc., on top; tallow and butter should be kept in a cool place away from fireroom bulkhead; liquors should be kept in a locker in the 'tween deck for that purpose.

A cargo of iron ore takes up little space in a vessel, as the ship is down to her draught before the holds are full. This cargo of dead weight should be placed in the body of the vessel, raised up in the main hold, and trimmed out towards the wings, also fore and aft to keep vessel in trim. By stowing cargo high up the vessel will behave better in a seaway.

To carry a cargo of grain in bulk, have all holds cleaned out, and bilges clear. The holds must be divided into compartments by means of fore and aft shifting boards 3 in . thick and athwartship bulkheads, the various compartments being grain-tight and strongly constructed from the bottom of the hold right up to the deck. The 'tween deck must be fitted with feeders to feed the lower hold.

When the grain is coming on board it ought to be well trimmed into all the corners and tramped down, otherwise if the vessel encounters bad weather, she will probably take a heavy list by the cargo settling over to the lee side. All grain cargoes must be properly trimmed, stowed and secured.

If the vessel is not fitted up with properly constructed feeders, she must have not less than one-fourth of the grain carried in each hold or compartment made up in bags, and before shipping the bags, matting and platforms must be laid upon the grain in bulk.

Weights should be distributed when loading, about two-thirds in lower holds and one-third in 'tween deck approximately.

Deck cargo should be well secured, and particular attention given to cargo stowed on after deck to keep it clear from steering chains or rods.

A practical rule for ascertaining strength of rope is given below:

Square the circumference and divide by 3 for breaking strain in tons, by 6 for working strain.

To find the weight rope will lift, when rove as a tackle:
Multiply the weight the rope is capable of lifting, by the number of parts at the moving block, and less one-quarter for resistance.

To find the number of parts of small rope required to equal a larger rope:

Divide the square of the circumference of the larger rope by the square of the circumference of the smaller, result will be number of parts the smaller rope requires.

SIMPLE RULES IN COMPASS ADJUSTMENT

Strip compass of all magnets. Suppose the ship to be at sea and intended to use the sun, proceed as follows:

Set your watch to A. T. S., take from the azimuth tables the sun's true bearing for every four minutes of the time during which you will be occupied in adjusting. Correct it into the correct magnetic bearing, and write it down plainly in a small pass book.

Ship's Head North.-Set the lubber's point of the pelorus at North, and the sight vanes clamped to the sun's magnetic bearing. Then starboard or port the helm until the sun's bearing is reflected and bisected by the thread of the pelorus vane. The vessel's head will now be North correct magnetic. If the compass agrees with the pelorus the compass is correct. If the compass shows easterly deviation, place either before or abaft a steel magnet with its red end to starboard above or below in the most convenient place, but on the fore and aft centerline of the compass. Reverse magnets for opposite deviation.

Ship's Head East.-Noting the A. T. S. and magnetic bearing of the sun, screw lubber's line of the pelorus East, and keep vanes set to the sun's correct magnetic bearing. Port the helm until the sun is bisected in the sight vanes of the pelorus, steady her carefully on this fresh course. If the compass agrees with the pelorus it should show East, should it fail to do so, the difference is the deviation. If westerly deviation is shown, place a steel magnet fore and aftways on either side of the compass with its red end aft, and center on the athwartship line of the compass. Move it slowly towards the compass until
half of the westerly deviation is corrected. Next place the Flinder's bar forward of the binnacle at such a distance as will cause the ship's head to appear due East, whence it may be securely bolted down to the deck. The semi-circular deviation of the compass is now corrected.

Quadrantal Deviation.-Put ship's head by the pelorus N E (Corr Mge), noting apparent time as before. In nearly every case the deviation is Easterly. Cast iron cylinders or globes are placed on each side of the compass bowl and moved near to or further from it until the ship's head points NE by the compass also, this adjustment properly made does not require touching ever after, unless some alterations are made in the ironwork near the compass or if the ship were to load a cargo of iron. Rule: The ends of the correctors must not be nearer to the center of the card than $1 \frac{1}{4}$ times the length of the longest needle. The compass is now fully adjusted, swing the ship for final deviation card.

Semi-circular deviation is so termed because it has contrary names, thus if it is Easterly on North, it is Westerly on South.

Quadrantal deviation is so termed because it is greatest on the four inter-cardinal points. It has the same name in opposite quadrants, thus, if it is easterly on NE , it will be easterly on S W also, but westerly on SE and NW. Thus the two kinds of deviation are vastly different.

Steel fore and aft magnets produce their greatest effect on East and West, diminishing to nothing on North and South when they become parallel to the compass needle.

Steel athwartship magnets produce their greatest effect on North and South, diminishing to nothing on East and West, when they become parallel to the compass needle.

Quadrantal correctors produce their greatest effect on NE; SE; SW; and NW; tapering to nothing on N; S; E or West.

A flinder's bar placed on the center line of the compass before or abaft acts in the same way as the fore and aft steel magnets.

EXPLANATION BELOW WILL EXPLAIN DIAGRAM

No. 1. The complement of an arc is 90° minus the arc. Thus B C is the complement of the arc A C.

No. 2. The supplement of an arc is 180° minus the arc. Thus F H is the supplement of the arc A B F.

No. 3. The sine of an are is the perpendicular let fall from one extremity of the arc on the diameter which passes through the other extremity. Thus C D is the sine of the $\operatorname{arc} \mathrm{AC}$.

No. 4. The cosine of an arc is the sine of its complement, or it is the distance between the foot of the sine and center of the circle. Thus C E or O D is the cosint of the arc A C.

No. 5. The tangent of an are is a line which is perpendicular to the radius at one extremity of the are and limited by a line passing through the center of the circle and the other extremity. Thus A T is the tangent of the are A C.

No. 6. The cotangent of an arc is equal to the tangent of the complement of arc. Thus B^{\prime} is the cotangent of the $\operatorname{arc} \mathrm{AC}$.

No. 7. The secant of an are is a line drawn from the center of the circle through one extremity of the arc, and limited by a tangent at the other extremity. Thus O T is the secant of the arc A C.

No. 8. The cosecant of an arc is the secant of the complement of the arc. Thus $0 \mathrm{~T}^{\prime}$ is the cosecant of the arc A C.

SHIP'S BUSINESS

Invoice.-Is a bill of goods for stores or supplies or a claim against a vessel for unpaid bills, also a claim to hold cargo for freight unpaid.

Bill of Lading.-A description of cargo, and an agreement to deliver same at a certain place for a certain condition. It is made out in 3 copies, 1 for consignor, 1 for consignee, and 1 for master, all signed by master.

Manifest.-A manifest is a description of cargo, also of passengers if any, and their baggage, also a description of the vessel and its voyage. It should be signed by master and should be handed to boarding officer upon arrival at port.

Bottomry Bond.-A bottonury bond is where a master pledges his vessel as security for money loaned to complete voyage.

Charter Party.-A charter party is where the master, owner or agent makes an agreement for the vessel to perform certain services for a certain consideration.

A Protest.-A protest should be sworn to by Master and members of crew before a notary, or consul if abroad. It is a description of some accident happening during the voyage, and protests against blame being placed on ship or crew for accident caused by the elements.

Average.-When it is found necessary to jettison cargo, and some shippers cargo is sacrificed to save the rest of the cargo and ship, a general average is made out so that each should pay_their proportionate part.

METHOD OF PREPARING A STATION BILL FOR FIRE AND BOAT DRILL ON AN OCEAN PASSENGER STEAMER

Steamer's crew consists of the following members:
One master, 4 mates, 1 boatswain, 2 carpenters, 3 quartermasters, 12 seamen, 1 chief engineer, 3 assistant engineers, 3 junior engineers, 6 oilers, 3 water tenders, 18 firemen, 9 coal passers, 1 deck engineer, 1 steward, 1 assistant steward, 4 cooks, 1 baker, 3 messmen, 2 pantrymen, 12 waiters, 2 wireless operators and 1 purser.

Vessel has 12 lifeboats allowed 36 persons each. Twelve fire plugs and 2 hand pumps.

FIRE DRILL

RAPID RINGING OF SHIP'S BELL

All crew to report at their proper fire stations, connect hose and have same ready to be run in direction as ordered.

Master in general charge on bridge, with 1 quartermaster as aid. Quartermaster on watch at the wheel.

First officer in charge of deck, and to see that orders of master are obeyed.

Chief engineer in charge of his department.
Third assistant engineer to take charge of engine room and fire pumps with his watch consisting of 1 junior engineer, 2 oilers, 1 water tender, 6 firemen and 3 coal passers. Fire pumps to be started and stopped when directed from bridge.

Hydrant No. 1
Third Officer (in charge)
Water Tender No. 1
Fireman No. 1
Coal Passer No. 1
Hydrant No. 2
Fourth Officer (in charge)
Seaman No. 1
Fireman No. 2
Coal Passer No. 2
Hydrant No. 3
Boatswain (in charge)
Seaman No. 2
Fireman No. 3
Coal passer No. 3

Hydrant No. 4
First Engineer (in charge)
Seaman No. 3
Fireman No. 4
Coal Passer No. 4
Hydrant No. 5
Second Engineer (in charge)
Seaman No. 4
Fireman No. 5
Officers' Messman
Hydrant No. 6
Junior Engineer (in charge)
Seaman No. 5
Fireman No. 6
Firemen's Messman

Hydrant No. 7
Junior Engineer (in charge)
Seaman No. 6
Fireman No. 7
Sailors' Messman
Hydrant No. 8
Oiler No. 1 (in charge)
Seaman No. 7
Fireman No. 8
First Pantryman
Hydrant No. 9
Oiler No. 2 (in charge)
Seaman No. 8
Fireman No. 9
Second Pantryman
Hydrant No. 10
Oiler No. 3 (in charge)
Seaman No. 9
Fireman No. 10
Chief Cook

Hydrant No. 11
Oiler No. 4 (in charge)
Seaman No. 10
Fireman No. 11
Second Cook
Hydrant No. 12
Second Officer (in charge)
Water Tender No. 2
Fireman No. 12
Third Cook
Forward Hand Pump
Quartermaster (in charge)
Seaman No. 11
Coal Passer No. 5
Fourth Cook
After Hand Pump
Deck Engineer (in charge)
Seaman No. 12
Coal Passer No. 6
Baker

Chief carpenter in charge of fire axes forward with 1 waiter as assistant.

Second carpenter in charge of fire axes aft with waiter No. 2 as assistant. Purser, steward, assistant steward and 10 waiters to take charge of fire buckets and fire extinguishers, and to take charge of and assure passengers.

Two wireless operators on watch in radio room.

BOAT DRILL AND ABANDON SHIP

SEVERAL SHORT BLASTS OF STEAM WHISTLE

All boat crews to report at their stations, uncover and swing out boats.

Officer in charge of each boat to see that his proper complement of crew and passengers report, and that plug is in and boat falls clear, ready for lowering.

Boats shall be loaded quietly without unnecessary excitement and overcrowding.

Lifeboats of this class are required to have at least 2 certificated lifeboat men, and officer in charge shall see that the proper men are put in charge of handling the falls for lowering the boat.

Notices shall be posted in every passenger stateroom of the number of the boat the passenger is to report to, in case of boat drill or to abandon ship.

Every passenger shall be required immediately after leaving port to participate in a boat drill, and also instructed in the proper way to adjust a cork life preserver.

No boat shall be lowered until ordered by master or a proper representative of him.

STATION BILL FOR BOAT DRILL

No. 1 Boat (Starboard Side)
Master (in charge)
Seaman No. 1 (Cert. Lifeboat Man)
Fireman No. 1 (Cer. Lifeboat Man)
Chief Steward
Oiler No. 1
Coal Passer No. 1
Chief Cook
Wireless Operator
No. 2 Boat (Port Side)
Chief Officer (in charge)
Seaman No. 2 (Cer. Lifeboat Man)
Fireman No. 3 (Cer. Lifeboat Man)
First Asst. Engineer
Water Tender No. 1
Fireman No. 3
Baker
Wireless Operator
No. 3 Boat (Starboard Side)
Second Officer (in charge)
Seaman No. 3 (Cer. Lifeboat Man)
Fireman No. 4 (Cer. Lifeboat Man)
Second Asst. Engineer
Water Tender No. 2
Fireman No. 6
Officers' Messman
Waiter No. 1

No. 4 Boat (Port Side)
Third Officer (in charge)
Seaman No. 4 (Cer. Lifeboat Man)
Fireman No. 5 (Cer. Lifeboat Man)
Third Asst. Engineer
Water Tender No. 3
Fireman No. 7
Fireman's Messman
Waiter No. 2
No. 5 Boat (Starboard Side)
Fourth Officer (in charge)
Seaman No. 5 (Cer. Lifeboat Man)
Fireman No. 8 (Cer. Lifeboat Man)
Junior Engineer
Coal Passer No. 2
Fireman No. 10
Sailor's Messman
Waiter No. 3
No. 6 Boat (Port Side)
Chief Carpenter (in charge)
Seaman No. 6 (Cer. Lifeboat Man)
Fireman No. 9 (Cer. Lifeboat Man)
Junior Engineer
Coal Passer No. 3
Fireman No. 11
Chief Pantryman
Waiter No. 4

No. 7 Boat (Starboard Side)
Second Carpenter (in charge)
Seaman No. 7 (Cer. Lifeboat Man) Fireman No. 12 (Cer. Lifeboat Man) Junior Engineer
Coal Passer No. 4
Fireman No. 14
Second Pantryman
Waiter No. 6

No. 8 Boat (Port Side)

Boatswain (in charge)
Seaman No. 8 (Cer. Lifeboat Man)
Fireman No. 13 (Cer.Lifeboat Man)
Oiler No. 2
Coal Passer No. 5
Deck Engineer
Waiter No. 5
Waiter No. 7
No. 9 Boat (Starboard Side)
Chief Engineer (in charge)
Seaman No. 9 (Cer. Lifeboat Man)
Fireman No. 15 (Cer. Lifeboat Man)
Oiler No. 3
Coal Passer No. 6
Assistant Steward
Waiter No. 8
Waiter No. 9
Sextant Adjustments.-No. 1. To Adjust the Index Glass.-This glass must be perpendicular to the plane of the instrument. To prove this, set the vernier to about the center of the arc and clamp it. Hold the instrument face up with the arc away from you, then look obliquely into the index glass and observe if the arc seen direct and its reflection form one continuous line; if so, the glass is perpendicular to the plane of the instrument, but if the reflected image appears to be lower than the other it proves the glass leans backward; if, however, the reflected image appears to be higher, the glass leans forward.

No. 2. Adjustment of the Horizon Glass.-This glass must also be perpendicular to the plane of the instrument. To test this, let the two zeros cut, and holding the instrument almost horizontal look at the horizon line, and note if the direct and the reflected images of the horizon line coincide-that is, if they show as an unbroken line both in the silvered and clear parts of the glass. If they do, the horizon glass is perpendicular, but if they do not, then adjust the glass to the required angle by the adjusting screw on back.

No. 3.-The Two Glasses to be Parallel.-With the two zeros cutting, hold the instrument vertically, and if the direct and reflected images of the horizon line show as an unbroken line the horizon glass is parallel to the index glass, but if they do not show in an unbroken line, adjust the horizon glass by the adjusting screw on back.

No. 4. To Find the Index Error.-Should it prove impossible to obtain a perfect adjustment, find the error of the instrument as follows: Let the two zeros cut, then holding the instrument vertically look at the horizon, and gently finger the tangent serew so as to move the vernier either forward or backward along the arc until the image of, and the horizon line itself show in an unbroken line across the glass, then the difference between zero on the vernier and zero on the arc will be the index error.

CHAPTER III

ARITHMETIC OF NAVIGATION

The arithmetic used in navigation consists of the plain rules of arithmetic (addition, subtraction, multiplication and division). The addition, subtraction, multiplication and division of decimal fractions, and the addition, subtraction and division of degrees, minutes and seconds and hours, minutes and seconds.

The plain rules of arithmetic it is taken for granted the student knows.

ADDITION OF DECIMALS

In addition of decimals place the numbers that are to be added so that the decimal points will be over each other, and add as a whole number. Place the decimal point in answer under the decimal points in the line.

For example: Add 2894.965; 238.6; and 28.65. 2894.965
238.6
28.65
(Ans.) $\overline{3162.215}$

SUBTRACTION OF DECIMALS

In the subtraction of decimals place the decimal point in the numbers so that they will be under each other, and the decimal point in the remainder will be under the decimal point.

For example: Subtract 2846.65 from 3897.286. 3897.286
-2846.65
(Ans.) 1050.636

MULTIPLICATION OF DECIMALS

In the multiplication of decimals multiply as in whole numbers, and count the number of decimal places there are in both numbers, which will be the number of figures counting from the right, where the decimal point goes in the product.

For example: Multiply 24.48 by 2.6 .
24.48
$\times 2.6$
14688
4896
(Ans.) 63.648

DIVISION OF DECIMALS

In the division of decimals divide as whole number. If the divisor has more decimals than the dividend, add that many decimal zeros to the dividend before making the division. To place the decimal point, subtract the number of decimals in the divisor from the number of decimal places in the dividend, and point off as many decimal places in the quotient as there are in the remainder.

Example: Divide 322 by . 26 .
.26) 322.000 (1238.4 nearly (Ans.)
26
62
52
100
78
220
208
120
104

ADDITION OF DEGREES, MINUTES AND SECONDS OR HOURS, MINUTES AND SECONDS

The degrees, minutes and seconds must be directly under their like numbers.

For example: Add together $26^{\circ} 47^{\prime} 36^{\prime \prime}$ and $51^{\circ} 27^{\prime} 42^{\prime \prime}$.

26°	47^{\prime}	$36^{\prime \prime}$
51°	27^{\prime}	$42^{\prime \prime}$
78°	15^{\prime}	$18^{\prime \prime}$

Adding the seconds gives $78-60=18^{\prime \prime}$ left, with 1^{\prime} to carry. Adding the minutes gives $75^{\prime}-60=15^{\prime}$ left, with 1° to carry. Adding degrees gives 78°.

SUBTRACTION

The numbers must be directly under their like numbers. For example: Subtract $40^{\circ} 52^{\prime} 48^{\prime \prime}$ from $76^{\circ} 29^{\prime} 36^{\prime \prime}$.

76°	29^{\prime}	$36^{\prime \prime}$	
-40°	52^{\prime}	$48^{\prime \prime}$	
35°	36^{\prime}	$48^{\prime \prime}$	

In subtracting degrees, minutes and seconds or hours, minutes and seconds, if the number of seconds in the minuend is less than the number in the subtrahend. You take 1^{\prime} or $60^{\prime \prime}$ from the minutes and apply it to the miniend. In this example $36^{\prime \prime}$ is less than $48^{\prime \prime}$, so borrow 1^{\prime} and make it $96^{\prime \prime}$, we then subtract $48^{\prime \prime}$ from this, which leaves $48^{\prime \prime}$. The minutes will then be 28^{\prime}. It is now necessary to borrow 1°, and add 60^{\prime} to the minutes for the next subtraction which will make $88^{\prime}-52^{\prime}$ which leaves 36^{\prime}. The degrees will be 75° left, from which subtracting 40° leaves 35°.

SUBTRACTION OF TIME

The problem of finding longitude resolves itself into finding the difference in time at the ship (L. A. T.) and at Greenwich (G. A. T.). In finding differences of time always put down astronomical time, i.e., a day starts at noon and runs through 24 hours till the next noon. Put down the day as well as the hours, minutes
and seconds. In case it is necessary to borrow, remember that a day has 24 hours.

For example: See Chap. IX., Prob. 1.

| G. A. T. 31st day
 L. A. T. 30th day1 h 58^{\prime} $13^{\prime \prime}$
 19 h 43^{\prime} $01^{\prime \prime}$
 6 h 15^{\prime} $12^{\prime \prime}$ |
| :--- | (Ans.)

The $1^{\prime \prime}$ may be subtracted from the $13^{\prime \prime}$ and the 43^{\prime} from 58^{\prime} without difficulty. In subtracting the 19 h a day (24h) is borrowed in the minuend making 25 h ; the days left in the minuend being 30d.

Example: See Chap. IX., Prob. 9.

$$
\begin{array}{llll}
\begin{array}{l}
\text { G. A. T. 15d } \\
\text { L. A. T. 14d }
\end{array} \begin{array}{lll}
4 \mathrm{~h} & 36^{\prime} & 00^{\prime \prime} \\
19 \mathrm{~h} & 25^{\prime} & 27^{\prime \prime}
\end{array} \\
\cline { 1 - 2 } & 10^{\prime} & 33^{\prime \prime}
\end{array} \text { (Ans.) }
$$

Borrow 1^{\prime} or $60^{\prime \prime}$ and subtract $27^{\prime \prime}$ leaves $33^{\prime \prime}$. The minutes left will be 35 . Borrow a day or 24 h , making 28 h , subtracting 19h leaves 9 h .

DIVISION

In dividing, if there is any remainder it should be changed into the next smaller unit.

Example: Divide $38^{\circ} 57^{\prime} 12^{\prime \prime}$ by 2.

$$
\begin{array}{cccc}
2 \lcm{38^{\circ}} 57^{\prime} & 12^{\prime \prime} \\
\hline 19^{\circ} & 28^{\prime} & 36^{\prime \prime}
\end{array} \text { (Ans.) }
$$

Two irto 57^{\prime} goes 28 times and 1^{\prime} remainder. This is changed to $60^{\prime \prime}$ and added to the $12^{\prime \prime}$ making $72^{\prime \prime}$. Two into 72 goes 36 times.

To change longitude in time to longitude in degrees, minutes, etc., and vice versa, it should be noted that

$$
\begin{aligned}
360^{\circ} & =24 \mathrm{~h} ; \\
15^{\circ} & =1 \mathrm{~h} \\
1^{\circ} & =4^{\prime} \\
15^{\prime} & =1^{\prime} \\
1^{\prime} & =4^{\prime \prime} ;
\end{aligned}
$$

To change time to arc:
Multiply the hours by 15 , gives degrees.
Divide minutes of time by 4 , gives degrees.
Remaining minutes of time multiplied by 15 gives minutes of arc.

Divide seconds of time by 4 , gives minutes of arc.
Remaining seconds of time multiplied by 15 gives seconds of arc.

Example: Change 9h $37^{\prime} 14^{\prime \prime}$ to arc.

37 divided by 4	$\begin{aligned} 9 \times 15 & =135^{\circ} \\ & =9\end{aligned}$			and 1^{\prime} remaining
	$1 \times 15=$	15^{\prime}		
14 divided by 4	$=$	$3 '$		and $2^{\prime \prime}$ remaining
	$2 \times 15=$		$30^{\prime \prime}$	
	144°	18^{\prime}	$30^{\prime \prime}$	(Ans.)

Example: Change 11h $15^{\prime} 26^{\prime \prime}$ to arc.

11
$\times 15$
165
4)26 and 2 remaining
6^{\prime} 15 $1530^{\prime \prime}$ 51^{\prime}

Ans. $168^{\circ} 51^{\prime} 30^{\prime \prime}$
To change arc to time:
Divide degrees by 15 , gives hours.
Remaining degrees multiplied by 4 , gives minutes.
Divide minutes of arc by 15 , gives minutes of time.
Remaining minutes of arc multiplied by 4, gives seconds of time.

Divide seconds of arc by 15 , gives seconds of time.
Example: Change $81^{\circ} 48^{\prime} 30^{\prime \prime}$ to time.

EXPLANATION OF THE AMERICAN NAUTICAL ALMANAC FOR THE YEAR 1919

Pages 2 to 3 is the Right Ascension of Mean Sun at Greenwich Mean Noon, and the table below is the correction to be added for Greenwich Mean Time.

For example: G. M. T. Feb. 18th, 6h 28^{\prime}. Required Sun's Right Ascension.
$\begin{aligned} & \text { Sun's Right Ascension Feb. 18th } \\ & \text { Corr. for G. M. T. } 6 \mathrm{~h} 28^{\prime}\end{aligned}+\begin{array}{rrrr}21 \mathrm{~h} & 49^{\prime} & 36^{\prime \prime} \\ 1^{\prime} & 04^{\prime \prime}\end{array}$
S. R. A. $\begin{array}{rrrr}21 \mathrm{~h} & 50^{\prime} & 40^{\prime \prime}\end{array}$
Pages 6 to 29 is the Sun's Declination, Equation of Time, and Semi-diameter for Greenwich Mean Noon.

The declination and equation of time are given for every day of the year, and on the even hour.

The declination is read in degrees and minutes and tenths of minutes, the sign + means North declination, the sign means South declination.

The equation of time is read in minutes and seconds and tenths of seconds, the sign + means to add to mean time, the sign - means to subtract from mean time.

To find the sun's declination and equation of time use always the Greenwich Mean Time; using the nearest 0.1 hour. The hourly difference will be found for each date at the bottom of each date. Take out the declination for the nearest even hour that has passed. Add to this a correction which the hourly difference multiplied by the difference in time since the last even hour, expressed in tenths of an hour. if the declination is increasing. If the declination is decreasing, the correction should be subtracted.

For example: Feb. 18, 1919. G. M. T. 9h 14'. Required declination and equation of time.
Decl. for the 18 th day, 8 th hour $11^{\circ} 46^{\prime} .9 \mathrm{~S}$
Hourly difference $0^{\prime} .9$
Corr. for 1.2 hours $=0^{\prime} .9 \times 1.2 \quad=\quad 1^{\prime} .1$ decreasing
Decl. for 18 th day 9.2 hours $11^{\circ} 45^{\prime} .8 \mathrm{~S}$
Eq. of time 18 th day 8 th hour $-14^{\prime} \quad 6^{\prime \prime} .8$
Hourly diff. $0^{\prime \prime} .2$
Corr. for 1.2 hours $=0.2 \times 1.2=0^{\prime \prime} .2$ decreasing
Eq. of time for 18 th day 9.2 hours $-14^{\prime} \quad 6^{\prime \prime} .6$

$$
\text { or }-14^{\prime} \quad 07^{\prime \prime}
$$

The semi-diameter is given for every 10 days and is in minutes and tenths and hundredths of minutes. Read semi-diameter to nearest date, and multiply the nearest tenth by 6 to give seconds.

For example: Required S. D. for Feb. 18th.
In N. A. nearest date given is Feb 21st $=16^{\prime} .20$ Therefore S. D.
$=16^{\prime} 12^{\prime \prime}$
Pages 30 to 75 is the Moon's Right Ascension, Declination, Semi-diameter and Horizontal Parallax given for each day, and on the even hour of that day.

The declination and right ascension are accompanied by the difference or change in every 2 hours; by means of these differences interpolation may be made to any Greenwich Mean Time by Table IV (Almanac) pages 112-114, using the difference in 2 hours at top of page, and the interval in minutes from nearest even hour on the left-hand side of page.

For example: Feb. 18th, G. M. T., 8h 15'. Required Moon's Declination.
Moon's Dec. 18d for 8h. $9^{\circ} 0^{\prime} .4 \mathrm{~S}$ Change 208 Corr. Table IV $+2^{\prime} .6$ Decl. increasing

True Decl. $9^{\circ} \quad 3^{\prime} .0 \mathrm{~S}$ or $9^{\circ} \quad 03^{\prime} \quad 00^{\prime \prime} \mathrm{S}$

For same Horizontal Parallax is 54.5 Semi-diameter $\quad 14.9$
Pages 76 to 77 is the time of Moon's Transit for Meridian of Greenwich.

To find time of transit in any other Meridian, enter Table IV (Almanac). Take the change of transit in small figures between the dates at top of page, and the longitude in time at right-hand side and read the correction.

For example: Required time of Moon's Transit on Feb. 18th in Longitude 90° West.

Long. $90^{\circ}=$ Long. in time 6 h .
Moon's Trans. 18d at Greenwich $=15 \mathrm{~h} 03^{\prime}$
Corr. from Table IV $=+\quad 11^{\prime}$
Time of Trans. Long. $90^{\circ}=15 \mathrm{~h} 14^{\prime}$
Correction is always to be added in West Longitude, su' tracted in East Longitude.

Pages 78 to 98 is the Right Ascension, Declination, and time of transit given for Greenwich Noon, of the planets " Venus," " Mars," " Jupiter," and " Saturn."

The interpolations for finding at any other meridian are made by using Table IV (N. A.) with G. M. T. at righthand side, and the difference at top of page.

For example: Required Right Ascension and Declination of planet "Venus " G. M. T. Feb. 18th, 8h 15 '.
R. A. 18d $=23 \mathrm{~h} 23^{\prime} 00^{\prime \prime}$ Change 273

Corr. Table IV $=+\quad 1^{\prime} 33^{\prime \prime}$ R. A. increasing
Corr. R. A. $=23 \mathrm{~h} 24^{\prime} 33^{\prime \prime}$
Decl. 18d $=5^{\circ} \quad 26.4 \mathrm{~S} \quad$ Change 304
Corr. Table IV $=-\quad 10^{\prime} .4 \quad$ Decl. decreasing
True Decl. $=5^{\circ} 16^{\prime} .0 \mathrm{~S}$
Pages 94 to 95 is the Right Ascension and Declination for fixed stars given for each month.

As the Declination and Right Ascension of a fixed star has a very small annual change, it will be close enough for practical purposes to take it for the month.

Example: Required Declination and Right Ascension* "Spica" on Feb. 18th.

Declination $10^{\circ} 44^{\prime} 30^{\prime \prime}$ S. Right Ascension $13 \mathrm{~h} 20^{\prime} 58^{\prime \prime}$.
The balance of the tables explain themselves.

EXPLANATION OF TABLES IN BOWDITCH NAVICATOR OR EPITOME

TABLE 2

Is to find the difference of latitude and departure in miles for any course in degrees.

The degrees of the course are found at top of page from 0° to 45°.

The degrees of the course are found at bottom of page from 45° to 90°.

When the course is less than 45° read the table as follows: Distance in first column. Difference of latitude in second column. Departure in third column.

When the course is more than 45° read the table as follows: Distance in first column. Departure in second column. Difference of latitude in third column.

For example: Course N 38° E. Distance 48 miles. Diff. lat. will be 37.8 N . Departure 29.6 E.

Course N 52° E. Distance 48 miles. Diff. lat. will be 29.6 N. Departure 37.8 E.

To find the difference of longitude ship has made, look for middle latitude as the course, and the departure in miles in the latitude column, in the distance column opposite will be the difference of longitude in minutes.

For example: Middle Lat. 38°. Departure 105.6 miles. At 38° look for 105.6 in latitude column, which will equal 134^{\prime}, which is the difference of longitude in minutes. By dividing this by 60 , we obtain Diff. Long. $2^{\circ} 14^{\prime}$.

Middle Lat. 52°. Departure 105.6 miles. By same rule we find distance 171^{\prime}, or difference of longitude $2^{\circ} 51^{\prime}$.

To find course and distance ship has run, compare difference of latitude in miles and departure in miles as close as possible, course will be found from top of page if latitude is greatest, from bottom if departure is greatest, and distance will be found on side in distance column.

For example: Diff. Lat. 151.3. Departure 118.2. Comparing these we find course 38° distance 192 miles.

Diff. Lat. 118.2. Departure 151.3 . We find course 52° distance 192 miles.

TABLE 3

Used in Mercators sailing for finding the Meridional difference of latitude.

The degrees of latitude are read from top of page, minutes from side.

For example:
Lat. A. $28^{\circ} 46$ Mer. Parts Table $3=1792.2$
Lat. B. $72^{\circ} 13$ Mer. Parts Table $3=6354.8$
The meridional parts are to be added together when degrees and minutes of latitude are added, subtracted when degrees and minutes of latitude are subtracted.

TABLE 7

Is to convert arc into time and the reverse.
There are 4^{\prime} of time to 1° of arc, and $4^{\prime \prime}$ of time to 1^{\prime} of arc, and this table is based on this principle.

For example: To turn Long. $94^{\circ} 32^{\prime}$ into time. By figures we multiply 94 by 4 and divide by 60 , or $94 \times 4=376$ divided by $60=6 \mathrm{~h} 16^{\prime}$. The same rule applies for the minutes, so $32 \times 4=128$ divided by $60=2^{\prime} 8^{\prime \prime}$. By adding these two together we get $6 \mathrm{~h} 18^{\prime} 8^{\prime \prime}$ longitude in time.

By using Table 7 we find that $94^{\circ}=6 \mathrm{~h} 16^{\prime}$ and that $32^{\prime}=2^{\prime} 8^{\prime \prime}$. By adding these together we get the same result as above.

The use of this table reduces the amount of figures in computing considerably, but the student should understand the principle it is based on.

To turn longitude in time into degrees and minutes proceed in figures as follows:

Multiply hours by 60 and add the minutes or $6 \mathrm{~h} \times 60=$ $360^{\prime}+18^{\prime}=378^{\prime}$. Divide result by 4 , or 378^{\prime} divided by $4=94^{\circ}$ with 2^{\prime} left over. Reduce minutes to seconds by same rule and add seconds. Or $2^{\prime} \times 60=120^{\prime \prime}+8^{\prime \prime}=128^{\prime \prime}$, divided by $4=32^{\prime}$ or Long. $94^{\circ} 32^{\prime}$.

To use Table 7 proceed as follows:
Take the hour and nearest minute that can be found, which will be $6 \mathrm{~h} 16^{\prime}$ will $=94^{\circ}$. We then have $2^{\prime} 8^{\prime \prime}$ left over. Looking for $2^{\prime} 8^{\prime \prime}$ we find 32^{\prime} or Long. $94^{\circ} 32^{\prime}$.

When using this table remember that degrees of arc are read as hours and minutes of time, minutes of arc as minutes and seconds of time, and seconds of arc as seconds and $\frac{1}{80}{ }^{\prime \prime}$ of time.

TABLE 11

Is used to find the time of Moon's Meridian Passage over any Meridian.

The difference between Moon's Transit is found from top of page, and longitude of place at side.

The numbers taken from this table are to be added to the time of Greenwich transit in West longitude, subtracted in East longitude.

TABLE 20A

Is the Mean Refraction. This table is used for the stars only.

The apparent altitude is read in first column, and the refraction will be found opposite to it.

The refraction is always to be subtracted from apparent altitude.

By apparent altitude is meant, the observed altitude corrected for Index Error if any, and Dip.

For example: Appar. Alt. $19^{\circ} 12^{\prime}=$ Refr. $2^{\prime} 46^{\prime \prime}$ to be subtracted.

TABLE 20B

Is the correction for the Sun's apparent altitude for Refraction and Parallax, always to be subtracted.

The apparent altitude is the observed altitude corrected for Index Error if any, Semi-diameter and Dip.

For example: Appar. Alt. $28^{\circ} 49^{\prime}=$ Refr. and Par. -1^{\prime} $38^{\prime \prime}$.

TABLE 24

Is the correction for the Moon's Apparent Altitude for Parallax and Refraction.

With the Horizontal Parallax as found in Almanac at top of page and apparent altitude at side, read the correction.

This correction is always to be added to Appar. Alt.
Example: H. P. 54.9 Moon's Appar. Alt. $22^{\circ} 12^{\prime}=$ Par. and Refr. $+48^{\prime} 30^{\prime \prime}$.

TABLE 26

Is the variation of altitude in 1^{\prime} from Meridian Passage.

It is used for finding the latitude by Ex-Meridian observations of a heavenly body.

With declination to nearest degree at top of page, and latitude to nearest degree at side, the variation of altitude in 1^{\prime} will be read.
(Note) Notice whether latitude and declination are same or contrary names.

Example:
Lat. $28^{\circ} \mathrm{N}$. Decl. $18^{\circ} \mathrm{S}=$ Variation $2^{\prime \prime} .3$.
By squaring the number of minutes from noon, and multiplying same by this number, will give correction for sun's altitude always to be added.

For example: Time 12^{\prime} from noon $=12 \times 12=144 \times 2^{\prime \prime} .3$ $=331^{\prime \prime}$ or $5^{\prime} 31^{\prime \prime}$ altitude correction to be added.

TABLE 27

Is the reduction to be applied to altitudes near the meridian.

This table is based on the principle of the number of minutes from noon squared, multiplied by number from Table $26=$ Alt. Corr.

Taking the number found in Table 26 in previous example $2^{\prime \prime} .3$ and time from noon 12^{\prime}, enter Table 27 with 12^{\prime} at top of page and 2.0 on side, we find $4^{\prime} 48^{\prime \prime}$ alt. corr. By interpolating between this and number below would give $5^{\prime} 31^{\prime \prime}$ alt. corr., if 2.3 was used.

By squaring minutes and multiplying by number from Table 26 eliminates this table.

TABLE 42

Is the logarithms of numbers from 1 to 9999.
For finding the logarithm of a number proceed as foilows: 1,2 , or 3 figures in the number the logarithm will be read alongside of the number in the 0 columi.

Four figures in the number, the first 3 numbers will be read on the side and the last number from top of page. Five figures in the number, the first 4 numbers as above; the fifth is obtained by interpolation.

In interpolation, the difference " D " between the logs of the nearest four-figure numbers, smaller and larger respectively, is found and divided by 10. This is multiplied by the last figure to give difference $d . d$ is then added to the smaller four-figure log.

For example: To find \log of 4.8883 .

$$
\begin{aligned}
\text { Log. } 4.888 & =0.68913 \\
\text { Log. } 4.889 & =0.68922 \\
D & =\frac{9}{9} \\
d & =3 \times .9=2.7 \text { or } 3
\end{aligned}
$$

Log. $4.8880=0.68913$
$d=$ 3

Log. $4.8883=0.68916$
Every logarithm has an index number i.e., the number in front of the decimal point; which is found by following rule:

Number between 0 and 1
Number between 1 and 10
Number between 10 and 100
Number between 100 and 1000

Index number is 0
Index number is 1
Index number is 2
Index number is 3

For example:

Log. of | 8 | $=0.90309$ |
| ---: | :--- |
| Log. of | 28 |
| Log. of | $=1.44716$ |
| Log. of | 4888 |$=3.56229$

At the side of the main table are small tables of proportional parts which give the corrections to be added to a log. of a four-figure number to give the log. of a five-figure number. The difference D is at the top of little table in heavy type, in the vertical columns are given the difference d.

For example: To find the \log of 4.8883.
Log. of 4.888 is 0.68913 and D is 9 .
Looking at side of main table and find small table with 9 in heavy type at top. d for 3 is 3 .

To find log. of 1.2934.
Log. of 1.293 is 0.11160 and D is 33 .
Looking at side of main table and find small table with 33 in heavy type at top. d for 4 is 13 .

$$
\begin{aligned}
\text { Log. } 1.2930 & =0.11160 \\
d & =+\frac{13}{0.11173} \\
\text { Log. 1.2934 } & =\text { 2 }
\end{aligned}
$$

TABLE 44

Is the logarithms of the sines, cosecants, tangents, cotangents, secants and cosines.

From 0° to 45° will be found from top of page and minutes in left-hand column reading down.

From 45° to 90° will be found on bottom, minutes on right-hand side reading up.

For example: Log. Sine of $18^{\circ} 48^{\prime}=9.50821$
Log. Sine of $71^{\circ} 12^{\prime}=9.97619$
To find log. sin, etc.; to nearest second of angle.
If angle is larger than 4°; between each two columns of logs there is a column of differences, the seconds corresponding being the left-hand column of minutes. Find the log. to the nearest minute, then look down the left-hand column to where the number of seconds is found; then look straight across to the vertical column of differences next to that in which the log. was found for the correction. The correction is to be added if the log. is increasing and vice versa.

If angle is smaller than 4° the difference for 1^{\prime} is given. This must be divided by 60 to give the difference for $1^{\prime \prime}$. It must then be multiplied by the number of seconds to give the correction.

For example: (See Chap. IX, Prob. 1.)
Find log. cos. of $73^{\circ} 39^{\prime} 24^{\prime \prime}$
Log. cos. $73^{\circ} 39^{\prime}=\quad 9.44948$
Opp. 24 in left-hand col. find in col. of diff.
Since cos. is decreasing sub. 9.44931
Find log. sin of $59^{\circ} 38^{\prime} 42^{\prime \prime}$
Log. $\sin 59^{\circ} 38^{\prime}$; $\quad=9.93591$
Opp. 42 in left-hand col. find in col. of diff.
5
Since sin is increasing add

TABLE 45

Is the Table for Log. Haversines and Nat. Haversines.
The Log. Haversine is in light type. The Nat. Haversine in heavy type.

When looking for Log. Haversine of L. A. T. if the sight is A. M., the hours and minutes of time are read from bottom of page, and the seconds from right-hand column reading up the page.

When the hours and minutes are taken from the bottom of page, the astronomical date will be the date before the civil date which is given in example.

For example: Feb. 9th A. M. at ship. Log. Hav. as found from sum of logs. $=9.38624$. Log. Hav. $9.38624=$ L. A. T. Feb. 8th, 20h $3^{\prime} 32^{\prime \prime}$.

If the sight is P. M. the hours and minutes will be found on top in light type, and the astronomical date will be the same as civil date, and the seconds will be found on lefthand side reading down the page.

For example: Feb. 9th P. M. at ship. Log. Hav. $9.38624=$ L. A. T. Feb. 9th, 3h $56^{\prime} 28^{\prime \prime}$.

For turning longitude in time into degrees, minutes and seconds proceed as follows: Read hours and minutes of longitude in time at top, seconds in left-hand column.

For example: Turn long. in time $3 \mathrm{~h} 56^{\prime} 28^{\prime \prime}$ into arc.
For $3 \mathrm{~h} 56^{\prime}$ we find $59^{\circ} 0^{\prime}$. For $28^{\prime \prime}$ we find $+7^{\prime}$ or Lcng. $59^{\circ} 7^{\prime}$.

To find the Nat. Hav. look for Log. Hav. and alongside of it will be Nat. Hav.

For example: Log. Hav. $9.38624=$ Nat. Hav. . 24335 and
Nat. Hav. . $24335=59^{\circ} 07^{\prime}$
Nat. Hav. . $24339=59^{\circ} 07^{\prime} 15^{\prime \prime}$
Nat. Hav. . $24342=59^{\circ} 07^{\prime} 30^{\prime \prime}$
Nat. Hav. . $24345=59^{\circ} 07^{\prime} 45^{\prime \prime}$

TABLE 46

is the correction to be applied to an observed altitude of sun or star to find true altitude.

This table does away with the necessity for applying the Semi-diameter, Dip, Refraction and Parallax to sun's altitude, and dip and refraction to star's altitude.

The height of eye will be found at top of page, and obs. alt. at side, and the correction for sun in first column to be added, and to the star in second column to be subtracted.

For example: Sun's Obs. Alt. $28^{\circ} 50^{\prime}$ Dip $28^{\prime}=$ Corr. + $9^{\prime} 13^{\prime \prime}$ or True Alt. $28^{\circ} 59^{\prime} 13^{\prime \prime}$.

Star's Obs. Alt. $28^{\circ} 50^{\prime}$. Dip $28^{\prime}=$ Corr. $-6^{\prime} 57^{\prime \prime}$ or True Alt. $28^{\circ} 43^{\prime} 03^{\prime \prime}$.

This shortens the work of correcting the altitude considerably, but the student should understand the other method before using this table.

CHAPTER IV

DAY'S WORK OR SHIP'S POSITION BY DEAD RECKONING

This problem is to find the ship's position when no observations are obtainable. It is accurate as long as the proper distance on each course is allowed, and leeway, deviation, and variation is correct.

The leeway is the amount the ship is drifting to leeward from the compass course, and is by the judgment of the navigator set to so many degrees or points of the compass.

The deviation is the difference between the compass course and the magnetic course, and is explained under Deviation of the Compass.

The variation is the difference between the magnetic course and true course, and is explained under Variation of the Compass.

To convert a compass course into a true course allow easterly deviation and variation to the right of the compass course; westerly to the left, always imagining yourself standing in the center of the compass and looking toward the course you are steering.

To convert a true course into a compass course, allow east to left; west to right.

The departure course is the bearing of the point of departure by a compass. This course must be reversed (imagining the ship to have sailed from the point to the place you are at time of taking the bearing), and corrected for the deviation and variation for the ship's head, making the bearing true, and entered in the traverse table as a regular course.

The courses are then corrected for Leeway, deviation and variation, and entered in traverse taple.

The current course is the amount and direction the current has set the ship for the day, and is corrected for Variation only, and entered in traverse table as a regular course.

The traverse table is drawn and the true courses and distance of each entered.

The difference of latitude and departure is found for each course and distance, from Table 2 (Bowditch) and entered in traverse table.

The difference of latitude is the amount of latitude north or south in miles the ship has run on the course.

The departure is the amount of easting or westing in miles the ship has made on the course.

The latitude and departure columns are then added up separately, and the less subtracted from the greater.

The amount of each left will be the difference of latitude north or south, and departure east or west.

The latitude left is now put down and the difference of latitude converted into degrees, minutes and seconds, allowing 60 miles to 1° of latitude from the equator to the poles.

Applying this difference of latitude to latitude left will give the latitude arrived at.

A degree of longitude is worth 60 miles on the equator or Lat. 0° but on account of the curvature of the earth there is no longitude at the poles or Lat. 90°. It is then necessary to find the value of a degree of longitude halfway between the latitude left and latitude arrived at, we then proceed as follows:

To find Middle Latitude: Add together, Lat. left and Lat. in, and divide sum by 2. Answer will be Middle Latitude.

The longitude left is now put down and the difference of longitude is found as follows:

Enter Table 2 (Bowditch) with Middle Latitude to nearest degree as a regular course, look in the latitude column for the difference of departure, and in the distance column will be the difference of longitude in minutes.

Convert this difference of longitude in minutes into degrees, minutes and seconds by dividing by 60 , and apply to longitude left. Answer will be longitude arrived at.

The latitude and longitude arrived at will be the position of the vessel by dead reckoning.

To find the true course and distance made in a straight line between the places, enter Table 2 (Bowditch) and compare the difference of latitude in miles with the departure in miles as close as possible.

Where these two compare will be the course and distance.

The course will be found from top of page if difference of latitude is greatest number.

From bottom of page if Departure is greatest number.
In the distance column opposite to where these agree will be the distance ship has run.

DIAGRAM
For Converting Compass Courses into True Courses
Allow easterly deviation and variation to the right. Allow westerly deviation and variation to the left.

To Convert a True Course into a Compass Course

Allow easterly deviation and variation to the left.
Allow westerly deviation and variation to the right.
To Convert a True Course into a Magnetic Course
Allow for variation only, to the left for easterly, to the right for westerly.

To Convert a Compass Course into a Magnetic Course

Allow for deviation only, to the right for easterly, to the left for westerly.

PROBLEM NO. 1
A ship takes her departure from Lat. $28^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{N}$, Long. $79^{\circ} 30 \mathrm{~W}$ and sails the following courses:

Courses	Distance	Deviation	Variation
N $20^{\circ} \mathrm{W}$	26	$4^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$
S $16^{\circ} \mathrm{E}$	31	$4^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{W}$
S $80^{\circ} \mathrm{W}$	35	$6^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$
S $70^{\circ} \mathrm{E}$	40	$12^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{W}$
N $40^{\circ} \mathrm{E}$	45	$6^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$
North	50	$3^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{W}$

Required Lat. and Long. arrived at. True course and distance made?

1st Course	2d Course
N $20^{\circ} \mathrm{W}$	S $16^{\circ} \mathrm{E}$
Dev. $4^{\circ} \mathrm{E}$ to right	Dev. $4^{\circ} \mathrm{W}$ to left
N $16^{\circ} \mathrm{W}$	S $20^{\circ} \mathrm{E}$
Var. $8^{\circ} \mathrm{W}$ to left	Var. $8^{\circ} \mathrm{W}$ to left
N $24^{\circ} \mathrm{W}$ (true)	S $28^{\circ} \mathrm{E}$ (true)
3d Course	4th Course
S $80^{\circ} \mathrm{W}$	S $70^{\circ} \mathrm{E}$
Dev. $6^{\circ} \mathrm{E}$ to right	Dev. $12^{\circ} \mathrm{W}$ to left
S $86^{\circ} \mathrm{W}$	S $82^{\circ} \mathrm{E}$
Var $8^{\circ} \mathrm{W}$ to left	Var. $8^{\circ} \mathrm{W}$ to left
S $78^{\circ} \mathrm{W}$ (true)	East (true)
5th Course	6th Course
N $40^{\circ} \mathrm{E}$	North
Dev. $6^{\circ} \mathrm{E}$ to right	Dev. $3^{\circ} \mathrm{E}$ to right
N $46^{\circ} \mathrm{E}$	N $3^{\circ} \mathrm{E}$
Var. $8^{\circ} \mathrm{W}$ to left	Var. $8^{\circ} \mathrm{W}$ to left
N $38^{\circ} \mathrm{E}$ (true)	N $5^{\circ} \mathrm{W}$ (true)

Corrected Courses	Distance	Difierence Lat.		Departure	
N $24{ }^{\circ} \mathrm{W}$	26	23.8			10.6
S $28^{\circ} \mathrm{E}$	31		27.4	14.6	
S $78^{\circ} \mathrm{W}$	35		7.3		34.2
East	40			40.0	
N $38^{\circ} \mathrm{E}$	45	35.5		27.7	
N $5^{\circ} \mathrm{W}$	50	49.8			4.4
		109.1	34.7	82.3	49.2
		34.7		49.2	
	Diff. Lat.	74.4 N		33.1	
	$\begin{array}{lrlll} \text { Latitude left } & 28^{\circ} & 14^{\prime} & 00^{\prime \prime} & \mathrm{N} \\ \text { Diff. Lat. } & 1^{\circ} & 14^{\prime} & 24^{\prime \prime} & \mathrm{N} \end{array}$				
	Latitude in	$29^{\circ} 28^{\prime} 24^{\prime \prime} \mathrm{N}$			
		2) $57^{\circ} 42^{\prime} 24^{\prime \prime}$			
	Middle Lat. $28^{\circ} 51^{\prime} 12^{\prime \prime}$ or 29°				
	$\begin{array}{lrl}\text { Longitude left } & 79^{\circ} & 30^{\prime} \\ \text { Diff. Long. } & & 38^{\prime} \mathrm{W} \\ \mathrm{E}\end{array}$				
	Longitude in $78^{\circ} 52^{\prime} \mathrm{W}$				

True course N 24° E. Distance 81 miles.

PROBLEM NO. 2

Ship takes her departure from a point in Lat. $37^{\circ} 03^{\prime} \mathrm{N}$ Long. $9^{\circ} 00 \mathrm{~W}$ bearing by compass $\mathrm{N} 48^{\circ} \mathrm{E}$ distance 15 miles. Ship's head $\mathrm{S} 67^{\circ} \mathrm{W}$.

	Courses	Distance	Wind	Leeway	Deviation	Variation
S	$67^{\circ} \mathrm{W}$	45	N W	6°	$11^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$
N	$39^{\circ} \mathrm{W}$	49	S W	3°	$17^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$
N	$22^{\circ} \mathrm{W}$	38	West	9°	$11^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$
N	$56^{\circ} \mathrm{W}$	31	S W	14°	$20^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$
S	$39^{\circ} \mathrm{W}$	36	S E	11°	$6^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$
S	$84^{\circ} \mathrm{W}$	41	South	6°	$14^{\circ} \mathrm{W}$	$22^{\circ} \mathrm{W}$

Current set S $65^{\circ} \mathrm{W}$ (Corr. Mgc.) 8 miles for day.
Required Lat. and Long. arrived at. True course and distance made?

PROBLEM NO. 2

Method of Converting Compass Courses into True Courses Before Entering in Traverse Table

No. 1
Bearing course $\mathrm{N} 48^{\circ} \mathrm{E}$ to be reversed and read
S. $48^{\circ} \mathrm{W}$

Dev. $11^{\circ} \mathrm{W}$ to left
S $37^{\circ} \mathrm{W}$
Var. $22^{\circ} \mathrm{W}$ to left
$\mathrm{S} 15^{\circ} \mathrm{W}$ (true)

No. 3
N $39^{\circ} \mathrm{W}$
3° Leeway to right
N $36^{\circ} \mathrm{W}$
17° W Dev. to left
N $53^{\circ} \mathrm{W}$
$22^{\circ} \mathrm{W}$ Var. to left
$\mathrm{N} 75^{\circ} \mathrm{W}$ (true)
No. 5
N $56^{\circ} \mathrm{W}$
14° Leeway to right
N $42^{\circ} \mathrm{W}$
20° W Dev. to left
N $62^{\circ} \mathrm{W}$
$22^{\circ} \mathrm{W}$ Var. to left
$\mathrm{N} 84^{\circ} \mathrm{W}$ (true)

No. 2
S $67^{\circ} \mathrm{W}$
6° Leeway to left
S $61^{\circ} \mathrm{W}$
Dev. $11^{\circ} \mathrm{W}$ to left
S $50^{\circ} \mathrm{W}$
Var. $22^{\circ} \mathrm{W}$ to left
$\mathrm{S} 28^{\circ} \mathrm{W}$ (true)
No. 4
N 22° W
9° Leeway to right
N $13^{\circ} \mathrm{W}$
11° W Dev. to left
$\mathrm{N} 24^{\circ} \mathrm{W}$
$22^{\circ} \mathrm{W}$ Var. to left
$\mathrm{N} 46^{\circ} \mathrm{W}$ (true)
No. 6
S $39^{\circ} \mathrm{W}$
11° Leeway to right
$S 50^{\circ} \mathrm{W}$
$6^{\circ} \mathrm{W}$ Dev. to left
S $44^{\circ} \mathrm{W}$
$22^{\circ} \mathrm{W}$ Dev. to left
$\mathrm{S} 22^{\circ} \mathrm{W}$ (true)

```
            No. }
S 84' W
        6 Leeway to right
W 90
    14* W Dev. to left
    S 76 % W
        220}\textrm{W}\mathrm{ Var. to left
S 54* W (true)
The true courses are now entered in traverse table with their distance in the distance column, and the difference of latitude and departure found for each in Table 2.
```


PROBLEM NO. 3

A ship takes her departure from a point in Lat. $28^{\circ} 16^{\prime}$ $15^{\prime \prime} \mathrm{N}$ Long. $93^{\circ} 26^{\prime} \mathrm{W}$ and sails the following courses: \qquad

Courses	Distance	Wind	Leeway	Deviation	Variation
North	50	West	4°	$6^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
$\mathrm{N} 20^{\circ} \mathrm{W}$	52	West	5°	$8^{\circ} \mathrm{W}$	$18^{\circ} \mathrm{W}$
West	53	North	6°	$7^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
$\mathrm{S} 49^{\circ} \mathrm{W}$	54	North	7°	$8^{\circ} \mathrm{W}$	$18^{\circ} \mathrm{W}$
$\mathrm{S} 79^{\circ} \mathrm{W}$	55	North	7°	$9^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
South	56	West	20°	$7^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
$\mathrm{S} 10^{\circ} \mathrm{E}$	57	West	8°	$6^{\circ} \mathrm{W}$	$18^{\circ} \mathrm{W}$

Current set east (Corr. Mg..) 8 miles for day.
Required latitude and longitude arrived at. True course and distance made.

ANSWER TO PROBLEM NO. 3

Corrected Courses	
N	
N	
8°	
N	

Distance	Difference Lat.		Departure	
	North	South	East	West
50	49.5			7.0
52	39.2			34.1
53		15.5		50.7
54		51.9		14.9
55		25.0		49.0
56		48.0	28.8	
57		42.4	38.1	
8	2.5		7.6	
	91.2	182.8	74.5	155.7
		91.2		74.5
	Diff. Lat	91.6 S	Dep	81.2W

Lat left $\quad 28^{\circ} 16^{\prime} 15^{\prime \prime} \mathrm{N}$
Diff. Lat. $\quad 1^{\circ} 31^{\prime} 36^{\prime \prime} \mathrm{S}$
Lat. in $\quad \begin{array}{cllll}26^{\circ} & 44^{\prime} & 39^{\prime \prime} & \mathrm{N}\end{array}$
Lat. left $28^{\circ} 16^{\prime} 15^{\prime \prime}$
2) $55^{\circ} \quad 00^{\prime} \quad 54^{\prime \prime}$

Mid. Lat. $27^{\circ} 30^{\prime} \quad 27^{\prime \prime}$ or 27°
Long. left $93^{\circ} \quad 26^{\prime} W$
Diff. Lon. $1^{\circ} 31^{\prime} \mathrm{W}$
Long. in $94^{\circ} \quad 57^{\prime} \mathrm{W}$
True course $\mathrm{S} 42^{\circ} \mathrm{W}$. Distance 123 miles.

PROBLEM NO. 4
A ship takes her departure from a point in Lat. $21^{\circ} 12^{\prime}$ N Long. $8^{\circ} 15^{\prime}$ E bearing by Compass $\mathrm{N} 20^{\circ} \mathrm{W}$. Distance 12 miles. Ship's head $\mathrm{S} 45^{\circ} \mathrm{W}$.

Courses	Distance	Wind	Leerway	Deviation	Variation
S $45^{\circ} \mathrm{W}$	40	South	3°	$8^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{W}$
$\mathrm{S} 80^{\circ} \mathrm{W}$	41	South	8°	$4^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{W}$
$\mathrm{N} 75^{\circ} \mathrm{W}$	42	S W	4°	$5^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{W}$
N $45^{\circ} \mathrm{W}$	43	West	3°	$3^{\circ} \mathrm{W}$	$7^{\circ} \mathrm{W}$
North	44	East	2°	$4^{\circ} \mathrm{W}$	$7^{\circ} \mathrm{W}$
$\mathrm{N} 10^{\circ} \mathrm{W}$	45	East	3°	$5^{\circ} \mathrm{E}$	$7^{\circ} \mathrm{W}$

Current set east (Corr. Mg..) 12 miles for day.
Required latitude and longitude arrived at. True course and distance made?

PROBLEM NO. 5

A ship takes her departure from a point in Lat. $18^{\circ} 14^{\prime}$ $12^{\prime \prime} \mathrm{S}$ Long. $156^{\circ} 12^{\prime} \mathrm{E}$ bearing by compass $\mathrm{N} 89^{\circ} \mathrm{E}$ distance 12 miles. Ship's head North.

Courses	Distance	Wind	Leeway	Deviation	Variation
North	60	East	2°	$12^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{E}$
N $20^{\circ} \mathrm{W}$	61	N E	4°	$8^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{E}$
N $50^{\circ} \mathrm{W}$	62	North	3°	$4^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$
$\mathrm{N} 80^{\circ} \mathrm{W}$	63	North	4°	$5^{\circ} \mathrm{E}$	$6^{\circ} \mathrm{E}$
S $80^{\circ} \mathrm{W}$	64	N W	5°	$6^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{E}$
S $15^{\circ} \mathrm{W}$	65	West	4°	$14^{\circ} \mathrm{W}$	$6^{\circ} \mathrm{E}$

Current set S $15^{\circ} \mathrm{E}$ (Corr. Mge.) 18 miles for day.
Required latitude and longitude arrived at. True course and distance made?

Corrected	Distance
$\mathrm{S}^{\text {Courses }}$ - $83^{\circ} \mathrm{W}$	12
$\mathrm{N} 8^{\circ} \mathrm{W}$	60
N $26^{\circ} \mathrm{W}$	61
N $43^{\circ} \mathrm{W}$	62
N $73^{\circ} \mathrm{W}$	63
S $75^{\circ} \mathrm{W}$	64
S $3^{\circ} \mathrm{W}$	65
S $9^{\circ} \mathrm{E}$	18

Difference		Lat.	Departure	
North	South	East	West	
	1.5		11.9	
59.4			8.4	
54.8			26.7	
45.3			42.3	
18.4			60.2	
	16.6		61.8	
	64.9		3.4	
	17.8	2.8		
177.9	100.8	2.8	214.7	
100.8			2.8	

Diff. Lat. $\quad 77.1 \mathrm{~N} \quad$ Dep. 211.9 W
Lat. left $\quad 18^{\circ} 14^{\prime} \quad 12^{\prime \prime} \mathrm{S}$
Diff. Lat. $\quad 1^{\circ} \quad 17^{\prime} \quad 06^{\prime \prime} \mathrm{N}$
$\begin{array}{llll}\text { Lat. in } & 16^{\circ} & 57^{\prime} & 06^{\prime \prime} \\ \mathrm{S}\end{array}$
Lat. left

Mid. Lat.

18°	14^{\prime}	$12^{\prime \prime}$	
35°	11^{\prime}	$18^{\prime \prime}$	
17°	35^{\prime}	$39^{\prime \prime}$	or 18°

Long. left $156^{\circ} \quad 12^{\prime} \mathrm{E}$
Diff. Long. $\quad 3^{\circ} \quad 43^{\prime} \mathrm{W}$
Long. in $\quad 152^{\circ} \quad 29^{\prime} \mathrm{E}$
True course N $70^{\circ} \mathrm{W}$. Distance 225 miles.

PROBLEM NO. 6
A ship takes her departure from a point in Lat. $62^{\circ} 12^{\prime} \mathrm{S}$ Long. $171^{\circ} 12^{\prime}$ E bearing by compass East distance 12 miles. Ship's head S $15^{\circ} \mathrm{W}$.

| Courses | | Distance | Wind | Leeway | Deviation |
| :--- | :---: | :--- | :---: | :---: | :---: | Variation

Current set $\mathrm{S} 15^{\circ} \mathrm{E}$ (Corr. Mgc.) 18 miles for day.
Required latitude and longitude arrived at. True course and distance made?

Corrected	ANSWER TO PROBLEM NO. 6		
	Distance	Difference Lat.	Departure
		North South	East West
N $80^{\circ} \mathrm{W}$	12	2.1	11.8
S $21{ }^{\circ} \mathrm{W}$	62	57.9	22.2
$\mathrm{S} 4{ }^{\circ} \mathrm{W}$	64	63.8	4.5
N $71^{\circ} \mathrm{W}$	66	21.5	62.4
N $43^{\circ} \mathrm{W}$	68	49.7	46.4
S $75^{\circ} \mathrm{W}$	70	18.1	67.6
$\mathrm{N} 35^{\circ} \mathrm{W}$	72	59.0	41.3
$3^{\circ} \mathrm{W}$	18	18.0	0.9
		$\begin{array}{ll}132.3 & 157.8 \\ & 132.3\end{array}$	Dep. 257.1W
		Diff. Lat. 25.5 S	
	Lat. left	$62^{\circ} 12^{\prime} \quad 00^{\prime \prime} \mathrm{S}$	
	Diff. Lat.	$25^{\prime} 30^{\prime \prime} \mathrm{S}$	
	Lat. in	$62^{\circ} 37^{\prime} 30^{\prime \prime}$ S	
	Lat left	$62^{\circ} 12^{\prime}$	
		2) $124^{\circ} \quad 49^{\prime} \quad 30^{\prime \prime}$	
	Mid. Lat	$62^{\circ} 24^{\prime} 45^{\prime \prime}$	r 62°
	Long. l	eft $\quad 171^{\circ} \quad 12^{\prime} \mathrm{E}$	
	Diff. Lo	ng. $\quad 9^{\circ} \quad 08^{\prime} \mathrm{W}$	
	Long. in	n $\quad 162^{\circ} \quad 04^{\prime} \mathrm{E}$	

True course $\mathrm{S} 84^{\circ} \mathrm{W}$. Distance 258 miles.

PROBLEM NO. 7

A ship takes her departure from a point in Lat. $36^{\circ} 56^{\prime}$ N Long. $75^{\circ} 51^{\prime} \mathrm{W}$ bearing by compass $\mathrm{N} 67^{\circ} \mathrm{W}$ distance 7 miles. Ship's head S 56° E.

Courses	Distance	Wind	Leenway	Deviation	Variation
$\mathrm{S} 56^{\circ} \mathrm{E}$	50	East	3°	$4^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{E}$
$\mathrm{S} 23^{\circ} \mathrm{E}$	40	East	2°	$2^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{E}$
South	20	East	4°	$12^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{E}$
East	60	North	8°	$3^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$
$\mathrm{N} 73^{\circ} \mathrm{E}$	30	North	4°	$4^{\circ} \mathrm{W}$	$8^{\circ} \mathrm{E}$
$\mathrm{N} 51^{\circ} \mathrm{E}$	40	North	3°	$3^{\circ} \mathrm{E}$	$8^{\circ} \mathrm{E}$

Current set $\mathrm{S} 46^{\circ} \mathrm{W}$ (Corr. Mgc.) 14 miles for day.
Required latitude and longitude arrived at. True course and distance made?

PROBLEM NO. 8
A ship takes her departure from a point in Lat. 0° $21^{\prime} \mathrm{N}$ Long. $178^{\circ} 21^{\prime} \mathrm{E}$ bearing by compass $\mathrm{S} 21^{\circ} \mathrm{E}$ distance 13 miles. Ship's head N 18° E.

Course	Distance	Wind	Leeway	Deviation	Variation
N $18^{\circ} \mathrm{E}$	60	East	4°	$7^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$
N $3^{\circ} \mathrm{W}$	61	N E	5°	$4^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$
N $45^{\circ} \mathrm{W}$	62	N E	3°	$1^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{W}$
West	63	North	2°	$6^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$
S $50^{\circ} \mathrm{W}$	64	N W	1°	$2^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$
South	65	West	2°	$6^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{W}$

Current set S $15^{\circ} \mathrm{E}$ (Corr. Mgc.) 24 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 8					
Corrected	Distance	DifferenceNorthLat.SouthSol		Departure	
				East	West
N $23^{\circ} \mathrm{W}$	13	12.0			5.1
N $12^{\circ} \mathrm{E}$	60	58.7		12.5	
N $13^{\circ} \mathrm{W}$	61	59.4			13.7
N $58^{\circ} \mathrm{W}$	62	32.9			52.6
S $85^{\circ} \mathrm{W}$	63		5.5		62.8
S $42^{\circ} \mathrm{W}$	64		47.6		42.8
$\mathrm{S} 5^{\circ} \mathrm{E}$	65		64.8	5.7	
S $24^{\circ} \mathrm{E}$	24		21.9	9.8	
		163.0	139.8	28.0	177.0
		139.8			28.0
	Diff. Lat.	23.2	N	Dep.	149.0W
	Lat. left	0°	21^{\prime}, $00^{\prime \prime}$	N	
	Diff. Lat.		$23^{\prime} 12{ }^{\prime \prime}$	N	
	Lat. in	0°	$44^{\prime} 12{ }^{\prime \prime}$	N	
		2) 1°	$05^{\prime} 12^{\prime \prime}$		
	Mid. Lat.		$32^{\prime} 36^{\prime \prime}$	or 1°	
	Long. le		$178^{\circ} 21^{\prime}$	E	
	Diff. Lo		$2^{\circ} 29^{\prime}$	W	
	Long. in		$175^{\circ} 52^{\prime}$		
True course N $81{ }^{\circ} \mathrm{W}$. Distance 151 miles.					

PROBLEM NO. 9

A ship takes her departure from a point in Lat. $3^{\circ} 10^{\prime}$ $12^{\prime \prime} \mathrm{S}$ Long. $0^{\circ} 15^{\prime} \mathrm{W}$ bearing by compass $\mathrm{N} 10^{\circ} \mathrm{W}$ distance 14 miles. Ship's head $\mathrm{S} 15^{\circ} \mathrm{W}$.

Courses	Distance	Wind	Leeway	Deviation	Variation
S $15^{\circ} \mathrm{W}$	40	S E	4°	$3^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{E}$
S $15^{\circ} \mathrm{E}$	41	East	5°	$8^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{E}$
East	42	South	6°	$1^{\circ} \mathrm{E}$	$40^{\circ} \mathrm{E}$
N $70{ }^{\circ} \mathrm{E}$	43	South	4°	$4^{\circ} \mathrm{W}$	$40^{\circ} \mathrm{E}$
N $45^{\circ} \mathrm{E}$	44	North	2°	$1^{\circ} \mathrm{E}$	$40^{\circ} \mathrm{E}$
N $15^{\circ} \mathrm{E}$	45	East	1°	$2^{\circ} \mathrm{E}$	$40^{\circ} \mathrm{E}$

Current set N $16^{\circ} \mathrm{W}$ (Corr. Mgc.) 18 miles for day.
Required latitude and longitude arrived at. True course and distance made?

PROBLEM NO. 10
A ship takes her departure from a point in Lat. $67^{\circ} 15^{\prime}$ $08^{\prime \prime} \mathrm{N}$ Long. $112^{\circ} 12^{\prime} \mathrm{W}$ bearing by compass $\mathrm{S} 80^{\circ} \mathrm{W}$ distance 20 miles. Ship's head North.

\quad Courses	Distance	Wind	Leeway	Deviation	Variation
North	50	East	3°	$4^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$
$\mathrm{N} 40^{\circ} \mathrm{W}$	51	N E	2°	$9^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$
$\mathrm{N} 15^{\circ} \mathrm{W}$	52	N E	3°	$3^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$
West	53	North	2°	$26^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$
$\mathrm{N} 70^{\circ} \mathrm{W}$	54	North	1°	$2^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$
$\mathrm{S} 89^{\circ} \mathrm{W}$	55	South	3°	$4^{\circ} \mathrm{E}$	$21^{\circ} \mathrm{W}$

Current set $\mathrm{S} 22^{\circ} \mathrm{E}$ (Corr. Mgc.) 14 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 10

Corrected Courses	Distance	Difference Lat.		Departure	
		North	South	East	West
N $63{ }^{\circ} \mathrm{E}$	20	9.1		17.8	
N $20^{\circ} \mathrm{W}$	50	47.0			17.1
N 54* W	51	30.0			41.3
N $36{ }^{\circ} \mathrm{W}$	52	42.1			30.6
N 87, W	53	2.8			52.9
West	54				54.0
S $75^{\circ} \mathrm{W}$	55		14.2		53.1
S $43^{\circ} \mathrm{E}$	14		10.2	9.5	
		131.0	24.4	27.3	249.0
		24.4			27.3

Diff. Lat. 106.6 N Dep. 221.7W

Lat. left	67°	15^{\prime}	08'
Diff. Lat.	1°	46^{\prime}	$36^{\prime \prime}$
Lat. in	69°	01^{\prime}	$44^{\prime \prime}$
	2)136 ${ }^{\circ}$	16^{\prime}	$52^{\prime \prime}$
Mid. Lat.	68°	08^{\prime}	$26^{\prime \prime}$

Long. left $\quad 112^{\circ} \quad 12^{\prime} \mathrm{W}$
Diff. Long. $\quad 9^{\circ} \quad 52^{\prime} \mathrm{W}$
Long. in $122^{\circ} 04^{\prime} \mathrm{W}$
True course N $64^{\circ} \mathrm{W}$. Distance 246 miles.

PROBLEM NO. 11

A ship takes her departure from a point in Lat. $0^{\circ} 00$ Long. $0^{\circ} 00^{\prime}$ bearing by compass South distance 18 miles Ship's head East.

Courses	Distance	Wind	Leeway	Deviation	Variation
East	70	S E	2°	$12^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
S $45^{\circ} \mathrm{E}$	71	South	8°	$5^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
S $15^{\circ} \mathrm{E}$	72	East	3°	$25^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
South	73	East	4°	$8^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
S $10^{\circ} \mathrm{W}$	74	East	2°	$4^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$
S $45^{\circ} \mathrm{W}$	75	S E	1°	$6^{\circ} \mathrm{E}$	$18^{\circ} \mathrm{W}$

Current set $\mathrm{N} 8^{\circ} \mathrm{W}$ (Corr. Mge.) 19 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 11

Corrected Courses		
N		

Distance	Difference	Lat.	Departure	
18	North		East	West
70				
70	9.7		69.3	
71		28.9	64.9	
72		71.7	6.3	
73		72.6	7.6	
74		74.0	2.6	
75		62.2		41.9
19	17.1			8.3
	44.7	309.4	150.7	52.1
		44.7	52.1	
	f. Lat.	264.7	98.6	p. E

Lat. left	$0{ }^{\circ}$	00^{\prime}	$00^{\prime \prime}$	
Diff. Lat.	4°	24^{\prime}	$42^{\prime \prime}$	S
Lat. in	2) 4°	24^{\prime}	$42^{\prime \prime}$	S
Mid. Lat.	2°	12^{\prime}	$21^{\prime \prime}$	

Long. left $\begin{array}{llll}0^{\circ} & 00^{\prime} & 00^{\prime \prime}\end{array}$
Diff. Long. $1^{\circ} 38^{\prime} \quad 45^{\prime \prime} \mathrm{E}$
Long. in $\quad 1^{\circ} 38^{\prime} 45^{\prime \prime} \mathrm{E}$
True course $\mathrm{S} 20^{\circ} \mathrm{E}$. Distance 281 miles.

PROBLEM NO. 12

A ship takes her departure from a point in Lat. $51^{\circ} 37^{\prime}$ N Long. $8^{\circ} 32^{\prime} \mathrm{W}$ bearing by compass $\mathrm{N} 45^{\circ} \mathrm{W}$ distance 12 miles. Ship's head S $17^{\circ} \mathrm{W}$.

Courses	Distance	Wind	Leeway	Deviation	Variation
S $17^{\circ} \mathrm{W}$	26	West	3°	$5^{\circ} \mathrm{E}$	$24^{\circ} \mathrm{W}$
S $53^{\circ} \mathrm{W}$	30	N W	3°	$9^{\circ} \mathrm{W}$	$24^{\circ} \mathrm{W}$
S $67^{\circ} \mathrm{W}$	50	N W	6°	$12^{\circ} \mathrm{W}$	$24^{\circ} \mathrm{W}$
$\mathrm{N} \quad 3^{\circ} \mathrm{W}$	38	N W	9°	$4^{\circ} \mathrm{W}$	$24^{\circ} \mathrm{W}$
S $51^{\circ} \mathrm{E}$	32	S W	0°	$11^{\circ} \mathrm{E}$	$24^{\circ} \mathrm{W}$

Current set N $79^{\circ} \mathrm{W}$ (Corr. Mgc.) 14 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 12

Corrected Courses	Distance	Difference Lat.		Departure	
		North	South	East	West
S $64^{\circ} \mathrm{E}$	12		5.3	10.8	
$\mathrm{S} 5^{\circ} \mathrm{E}$	26		25.9	2.3	
S $17^{\circ} \mathrm{W}$	30		28.7		8.8
S $25^{\circ} \mathrm{W}$	50		45.3		21.1
N $22^{\circ} \mathrm{W}$	38	35.2			14.2
S $64^{\circ} \mathrm{E}$	32		14.0	28.8	
S $77^{\circ} \mathrm{W}$	14		3.1		13.6
		35.2	122.3	41.9	57.7
			35.2		41.9
		f. Lat	87.1		15.8

Lat. left	51°	37	$00^{\prime \prime}$
Diff. Lat.	1°	27^{\prime}	06"
Lat. in	50°	09^{\prime}	$54^{\prime \prime}$
	2) 101°		54"
Mid. Lat.	50°	53^{\prime}	$27^{\prime \prime}$

| Long. left
 Diff. Long. | $8^{\circ} \quad$$32^{\prime} \mathrm{W}$
 $25^{\prime} \mathrm{W}$ |
| :--- | ---: | :--- |
| Long. in | $8^{\circ} \quad 57^{\prime} \mathrm{W}$ |

True course $\mathrm{S} 10^{\circ} \mathrm{W}$. Distance 89 miles.

PROBLEM NO. 13

A ship takes her departure from a point in Lat. $62^{\circ} 11^{\prime}$ N Long $5^{\circ} 08^{\prime} \mathrm{E}$ bearing by compass $\mathrm{S} 28^{\circ} \mathrm{W}$ distance 10 miles. Ship's head N $22^{\circ} \mathrm{W}$.

Courses	Distance	Wind	Leeway	Deviation	Variation
N $22^{\circ} \mathrm{W}$	39	N E	6°	$7^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$
N $68^{\circ} \mathrm{W}$	36	North	8°	$18^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$
S $28^{\circ} \mathrm{W}$	39	S E	3°	$9^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$
S $11^{\circ} \mathrm{E}$	40	East	0°	$3^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$
S $6{ }^{\circ} \mathrm{E}$	35	S W	11°	$2^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$
N $23^{\circ} \mathrm{E}$	31	N W	14°	$6^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$

Current set S $56^{\circ} \mathrm{W}$ (Corr. Mgc.) 36 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 13

Corrected Courses
N
N
N

Distance
10
Difference Lat.
North
10.0

Departure	
East	West
0.2	
	31.9
	32.9
	1.4

39.0
1.4
$35.3 \quad 18.8$
$28.7 \quad 20.1$
$28.5 \quad 12.1$
21.2
$\overline{60.9} \quad \overline{146.7} \quad \overline{51.2} \quad \overline{87.4}$
60.9
51.2

Diff. Lat. 85.8 S Dep. 36.2W

Lat. left	62°	11^{\prime}	$00^{\prime \prime}$	N
Diff. Lat.	1°	25^{\prime}	48'	S
Lat. in	60°	45^{\prime}	$12^{\prime \prime}$	N
	2) 122°	56^{\prime}	$12^{\prime \prime}$	
Mid. Lat.	61°	28^{\prime}	$06^{\prime \prime}$	r $61{ }^{\circ}$

Long. left $\quad 5^{\circ} \quad 08^{\prime} \mathrm{E}$
Diff. Long. $\quad 1^{\circ} \quad 15^{\prime} \mathrm{W}$
Long. in

$$
3^{\circ} \quad 53^{\prime} \mathrm{E}
$$

True course $\mathrm{S} 23^{\circ} \mathrm{W}$. Distance 93 miles.

PROBLEM NO. 14
A ship takes her departure from a point in Lat. $47^{\circ} 34^{\prime}$ N Long. $52^{\circ} 40^{\prime} \mathrm{W}$ bearing by compass $\mathrm{N} 70^{\circ} \mathrm{W}$ distance 17 miles. Ship's head N 84° E.

Course	Distance	Wind	Leeway	Deviation	Varration
N $84^{\circ} \mathrm{E}$	20	S E	14°	$9^{\circ} \mathrm{E}$	$31^{\circ} \mathrm{W}$
N $20^{\circ} \mathrm{E}$	33	East	6°	$11^{\circ} \mathrm{E}$	$31^{\circ} \mathrm{W}$
S $42^{\circ} \mathrm{E}$	35	N E	3°	$4^{\circ} \mathrm{E}$	$31^{\circ} \mathrm{W}$
N $70^{\circ} \mathrm{W}$	35	S W	5°	$6^{\circ} \mathrm{W}$	$31^{\circ} \mathrm{W}$
N $53^{\circ} \mathrm{E}$	37	N W	3°	$4^{\circ} \mathrm{E}$	$31^{\circ} \mathrm{W}$
S $64^{\circ} \mathrm{E}$	28	N E	5°	$3^{\circ} \mathrm{W}$	$31^{\circ} \mathrm{W}$

Current set $\mathrm{N} 73^{\circ} \mathrm{E}$ (Corr. Mgc.) 17 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 14

PROBLEM NO. 15

A ship takes her departure from a point in Lat. $38^{\circ} 43^{\prime}$ S Long. $77^{\circ} 35^{\prime} \mathrm{E}$ bearing by compass $\mathrm{S} 28^{\circ} \mathrm{E}$ distance 16 miles. Ship's head N 56° W.

Course	Distance	Wind	Leeway	Deviation	Variation
N $56^{\circ} \mathrm{W}$	35	North	11°	$16^{\circ} \mathrm{W}$	$25^{\circ} \mathrm{W}$
S $34^{\circ} \mathrm{E}$	40	S W	3°	$11^{\circ} \mathrm{E}$	$25^{\circ} \mathrm{W}$
S $6^{\circ} \mathrm{W}$	41	S E	0°	$2^{\circ} \mathrm{W}$	$25^{\circ} \mathrm{W}$
N $87^{\circ} \mathrm{W}$	37	North	6°	$26^{\circ} \mathrm{W}$	$25^{\circ} \mathrm{W}$
N $28^{\circ} \mathrm{E}$	34	N W	20°	$8^{\circ} \mathrm{E}$	$25^{\circ} \mathrm{W}$
S $11^{\circ} \mathrm{E}$	37	East	8°	$3^{\circ} \mathrm{E}$	$25^{\circ} \mathrm{W}$

Current set $\mathrm{S} 56^{\circ} \mathrm{E}$ (Corr. Mgc.) 39 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 15

Corrected	Distance		ce Lat.		
Courses		North	South	East	West
N $69{ }^{\circ} \mathrm{W}$	16	5.7			14.9
S $72^{\circ} \mathrm{W}$	35		10.8		33.3
S $51{ }^{\circ} \mathrm{E}$	40		25.2	31.1	
S $21^{\circ} \mathrm{E}$	41		38.3	14.7	
S $36^{\circ} \mathrm{W}$	37		29.9		21.7
N $31^{\circ} \mathrm{E}$	34	29.1		17.5	
S $25^{\circ} \mathrm{E}$	37		33.5	15.6	
S $81^{\circ} \mathrm{E}$	39		6.1	38.5	
		34.8	143.8	117.4	69.9
			34.8	69.9	

Diff. Lat. 109.0 S 47.5 Dep. E
Lat. left $\quad 38^{\circ} \quad 43^{\prime} \quad 00^{\prime \prime} \mathrm{S}$
Diff. Lat. $\quad 1^{\circ} \quad 49^{\prime} \quad 00^{\prime \prime} \mathrm{S}$
Lat. in

Mid. Lat. $39^{\circ} 37^{\prime} 30^{\prime \prime}$ or 40°

Long. left	77°	$35^{\prime} \mathrm{E}$
Diff. Long	1°	$02^{\prime} \mathrm{E}$
Long. in	78°	$37^{\prime} \mathrm{E}$

True course $\mathrm{S} 23^{\circ} \mathrm{E}$. Distance 119 miles.

PROBLEM NO. 16
A ship takes her departure from a point in Lat. $61^{\circ} 19^{\prime}$ N Long. $179^{\circ} 19^{\prime} \mathrm{E}$ bearing by compass $\mathrm{N} 56^{\circ} \mathrm{W}$ distance 18 miles. Ship's head N 23° E.

Courses	Distance	Wind	Leerway	Deviation	Variation
N $23^{\circ} \mathrm{E}$	34	N W	11°	$6^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$
N $56^{\circ} \mathrm{E}$	40	North	3°	$16^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$
N $86^{\circ} \mathrm{E}$	30	South	14°	$21^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$
S $23^{\circ} \mathrm{W}$	26	S E	28°	$7^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
N $73^{\circ} \mathrm{W}$	30	North	20°	$19^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
S $23^{\circ} \mathrm{E}$	36	S W	8°	$7^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$

Current set S $56^{\circ} \mathrm{E}$ (Corr. Mgc.) 38 miles for day.
Required latitude and longitude arrived at. True course and distance?

ANSWER TO PROBLEM NO. 16

Corrected Courses	Distance	Difference	e Lat.	Departure	
S $30^{\circ} \mathrm{E}$	18		15.6	9.0	
N $60^{\circ} \mathrm{E}$	34	17.0		29.4	
S $85^{\circ} \mathrm{E}$	40		3.5	39.8	
S $67^{\circ} \mathrm{E}$	30		11.7	27.6	
S $64^{\circ} \mathrm{W}$	26		11.4		23.4
S $88^{\circ} \mathrm{W}$	30		1.0		30.0
S $4^{\circ} \mathrm{E}$	36		35.9	2.5	
S $36^{\circ} \mathrm{E}$	38		30.7	22.3	
		17.0	109.8	130.6	53.4
			17.0	53.4	
		ff. Lat.	92.8	77.2	p. E
	Lat. left	61°	$19^{\prime} 0$		
	Diff. Lat.	1°	32^{\prime}		
	Lat. in	59°	$46^{\prime} 1$		
		2) 121°	$05^{\prime \prime} 1$		
	Mid. Lat.	60°	32^{\prime}	or 61	
	Long. le	t 179°	${ }^{\circ} 19$		
	Diff. Lo		${ }^{\circ} 39^{\prime}$		
	Long. in	178	$8^{\circ} 02$		
True cou	se $\mathrm{S} 40^{\circ} \mathrm{E}$	Distanc	ce 121	iles.	

PROBLEM NO. 17

A ship takes her departure from a point in Lat. $40^{\circ} 19^{\prime}$ S Long. $9^{\circ} 44^{\prime} \mathrm{W}$ bearing by compass East distance 20 miles. Ship's head N $39^{\circ} \mathrm{W}$.

Courses	Distance	Wind	Leeway	Deviation	Variation
N $39^{\circ} \mathrm{W}$	22	S W	3°	$3^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$
N $23^{\circ} \mathrm{W}$	23	West	3°	$8^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$
N $23^{\circ} \mathrm{E}$	18	N W	6°	$20^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$
S $48^{\circ} \mathrm{E}$	19	N W	0°	$6^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$
S $34^{\circ} \mathrm{E}$	10	S W	0°	$9^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$
N $3^{\circ} \mathrm{W}$	42	West	3°	$14^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{W}$

Current set N $73^{\circ} \mathrm{W}$ (Corr. Mgc.) 36 miles for day.
Required latitude and longitude arrived at. True course and distance

ANSWER TO PROBLEM NO. 17

True course N $36^{\circ} \mathrm{W}$. Distance 90 miles.

PROBLEM NO. 18

A ship takes her departure from a point in Lat. $49^{\circ} 42^{\prime} \mathrm{S}$ Long. $178^{\circ} 42^{\prime} \mathrm{E}$ and sails the following courses:

| Courses | | Distance | Wind | Leeway | Deviation |
| :---: | :---: | :---: | :---: | :---: | :---: | Variation

Current set $\mathrm{N} 56^{\circ} \mathrm{E}$ (Corr. Mgc.) 28 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 18

Corrected Courses		
N	72°	E
S	75°	E
S	50°	W
S	7°	E
N	32°	E
N	9°	E
N	70°	E

Distance	Difference North		Lat. South	
35	10.8		Dast Easarture	
West				

Diff. Lat. $\quad 27.0 \mathrm{~N} \quad$ Dep. 92.7 E
$\begin{array}{lllll}\text { Lat. left } & 49^{\circ} & 42^{\prime} & 00^{\prime \prime} \mathrm{S}\end{array}$
Diff. Lat. $\quad 27^{\prime} \quad 00^{\prime \prime} \mathrm{N}$
Lat. in
$49^{\circ} \quad 15^{\prime} \quad 00^{\prime \prime} \mathrm{S}$
2) $\begin{array}{rll}98^{\circ} & 57^{\prime} & 00^{\prime \prime} \\ 49^{\circ} & 28^{\prime} & 30^{\prime \prime}\end{array}$ or 49°

Long. left	178° 42^{\prime} E 2° $21^{\prime} \mathrm{E}$	
Diff. Long.		$178^{\circ} \cdot 57^{\prime} \mathrm{W}$

True course N 73° E. Distance 96 miles.

PROBLEM NO. 19
A ship takes her departure from a point in Lat. $28^{\circ} 14^{\prime}$ S Long. $102^{\circ} 16^{\prime} \mathrm{E}$ bearing by compass $\mathrm{S} 68^{\circ} \mathrm{E}$ distance 14 miles. Ship's head North.

Courses	Distance	Wind	Leeway	Deviation	Variation
North	60	West	4°	$7^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$
N $28^{\circ} \mathrm{W}$	61	S W	5°	$3^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$
N $28^{\circ} \mathrm{E}$	62	East	3°	$12^{\circ} \mathrm{E}$	$9^{\circ} \mathrm{E}$
S $87^{\circ} \mathrm{E}$	63	North	2°	$4^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$
S $15^{\circ} \mathrm{E}$	64	S W	4°	$14^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$
East	65	North	3°	$8^{\circ} \mathrm{W}$	$9^{\circ} \mathrm{E}$

Current set $\mathrm{S} 23^{\circ} \mathrm{W}$ (Corr. Mgc.) 19 miles for day.
Required latitude and longitude arrived at. True course and distance made?

ANSWER TO PROBLEM NO. 19

Corrected	
	$66^{\circ} \mathrm{W}$
N	$6^{\circ} \mathrm{E}$
N	$11^{\circ} \mathrm{W}$
N	$46^{\circ} \mathrm{E}$
S	$80^{\circ} \mathrm{E}$
S	$24^{\circ} \mathrm{E}$
S	$86^{\circ} \mathrm{E}$
	$32^{\circ} \mathrm{W}$

Distance

Difference	Lat.
North	South
5.7	
59.7	
59.9	
43.1	

Departure
14
60
59.9
11.6
43.1
$10.9 \quad 62.0$
$58.5 \quad 26.0$
$4.5 \quad 64.8$
16.1
$\overline{168.4} \quad \overline{90.0} \quad \overline{203.7} \quad \overline{34.5}$ 90.0
34.5

Diff. Lat. $\quad 78.4 \mathrm{~N} \quad$ Dep. 169.2 E

Lat. left	28°	14^{\prime}	00' ${ }^{\prime \prime}$	S
Diff. Lat.	1°	18^{\prime}	$24^{\prime \prime}$	N
Lat. in	26°	55^{\prime}	$36^{\prime \prime}$	S
	$2 \longdiv { 5 5 ^ { \circ } }$	09^{\prime}	$36^{\prime \prime}$	
Mid. Lat.	27°	34^{\prime}	$48^{\prime \prime}$	or

Long. left	102°	$16^{\prime} \mathrm{E}$
Diff. Long.	3°	$12^{\prime} \mathrm{E}$
Long. in	105°	$28^{\prime} \mathrm{E}$

True course N 65° E. Distance 187 miles.

PROBLEM NO. 20

A ship takes her departure from a point in Lat. $24^{\circ} 16^{\prime}$ N Long. $37^{\circ} 18^{\prime}$ W bearing by compass East distance 9 miles. Ship's head South.

Courses	Distance	Wind	Leeway	Deviation	Variation
South	70	East	$4{ }^{\circ}$	$5^{\circ} \mathrm{W}$	$10^{\circ} \mathrm{E}$
S $45^{\circ} \mathrm{W}$	71	N W	5°	$3^{\circ} \mathrm{W}$	$10^{\circ} \mathrm{E}$
West	72	North	4°	$9^{\circ} \mathrm{E}$	$10^{\circ} \mathrm{E}$
N $80^{\circ} \mathrm{W}$	73	South	4°	$4^{\circ} \mathrm{W}$	10°
S $15^{\circ} \mathrm{W}$	74	West	2°	$3^{\circ} \mathrm{W}$	10°
N $45^{\circ} \mathrm{W}$	75	N E	3°	$8^{\circ} \mathrm{W}$	$10^{\circ} \mathrm{E}$

Current set East (Corr. Mgc.) 17 miles for day.
Required latitude and longitude arrived at. True course and distance made?

PROBLEM NO. 21

I steered $\mathrm{S} 18^{\circ} \mathrm{W}$ by Compass, Error $18^{\circ} \mathrm{E}$, Var. $7^{\circ} \mathrm{E}, 16$ miles, $\mathrm{N} 18^{\circ} \mathrm{W}$ Magnetic, Error $18^{\circ} \mathrm{E}$, Var. $7^{\circ} \mathrm{E}, 16$ miles.

How would I have to steer to get back to where I started from, and if Cape Flyaway (Lat. $43^{\circ} 17^{\prime} \mathrm{N}$ Long. $73^{\circ} 18^{\prime}$ E) bore North (True) 21 miles, what would be my position?

Corrected Courses
S $36^{\circ} \mathrm{W}$
N $11^{\circ} \mathrm{W}$

Dist.	N	S	E	W
16		12.9		9.4
16	15.7			3.1
	$\overline{15.7}$	$\overline{12.9}$		Dep. 12.5 W
	12.9			
D. Lat.	2.8 N			

Course to steer to get back to point of Departure $\mathrm{S} 78^{\circ}$ E 13 miles.

Cape Flyaway Lat.
Difference Lat.
Ship's Position Lat.
$43^{\circ} \quad 17^{\prime} \mathrm{N}$ Long. $73^{\circ} \quad 18^{\prime} \mathrm{E}$ 21^{\prime} S
$42^{\circ} \quad 56^{\prime} \mathrm{N}$ Long. $73^{\circ} \quad 18^{\prime} \mathrm{E}$

PROBLEM NO. 22

At sea in Lat. $26^{\circ} 12^{\prime} \mathrm{N}$ Long. $88^{\circ} 13^{\prime} \mathrm{W}$. Received wireless that South Pass Light-Vessel had been adrift 47 hours. Current setting E. S. E. (Mgc.) 3 miles per hour. Now at anchor. Please find Light-Vessel and tow her back to her position Lat. $28^{\circ} 59^{\prime} \mathrm{N}$ Long. $89^{\circ} 07^{\prime} \mathrm{W}$, Var. 5° E.

Find true course and distance to Light-Vessel and course and distance back to her position.

Corrected

Long. of Light-Vessel	89°	07^{\prime} W
Diff. Long.	2°	$21^{\prime} \mathrm{E}$
Present Long. of Light-Vessel	86°	$46^{\prime} \mathrm{W}$
Ship's Position Long.	88°	$13^{\prime} \mathrm{W}$
Diff. Long.		${\underset{\mathrm{E}}{ }}_{27^{\prime}} \mathrm{E}$

Course and distance to Light-Vessel N 38° E 127 miles. Course and distance back to Light-Vessel's Station N 62° W 141 miles.

PROBLEM NO. 23

A ship sailed from Point Neverbudge, Lat. $41^{\circ} 00^{\prime} \mathrm{S}$ Long. $86^{\circ} 15^{\prime} \mathrm{E}$, the following courses:

South true 14 miles.
South by Compass, Error 6° E, Var. 6° W, 14 miles.
East by Compass, Dev. 4° E, Var. $6^{\circ} \mathrm{W}, 24$ miles.
West by Compass, Dev. $6^{\circ} \mathrm{E}$, Var. $6^{\circ} \mathrm{W}, 24$ miles.
North by Compass, Dev. 16° E, Var. $6^{\circ} \mathrm{W}$, 28 miles.
Find course and distance made good and latitude and longitude arrived at.

Corrected Courses	Distance	Difference Lat.		Difference	
				East	West
South	14		14.0		
S $6{ }^{\circ} \mathrm{W}$	14		13.9		1.5
N $88^{\circ} \mathrm{E}$	24	0.8		24.0	
West	24				24.0
N $10^{\circ} \mathrm{E}$	28	27.6		4.9	
		28.4	27.9	28.9	25.5
		27.9		25.5	
	Diff. Lat.	. 5 N		. 3.4	

Lat. left $41^{\circ} \quad 00^{\prime} \quad 00^{\prime \prime} \mathrm{S} \quad$ Long. left $86^{\circ} 15^{\prime} \quad 00^{\prime \prime} \mathrm{E}$ Diff. Lat. $30^{\prime \prime} \mathrm{N}$ Diff. Long. $4^{\prime} 30^{\prime \prime} \mathrm{E}$

Lat. Ar. at $40^{\circ} \quad 59^{\prime} \quad 30^{\prime \prime} \mathrm{S}$ Long. Ar. at $86^{\circ} \quad 19^{\prime} \quad 30^{\prime \prime} \mathrm{E}$ Mid. Lat. (41°)
Course $\mathrm{N} 81^{\circ}$ E. Distance 3 miles.

PROBLEM NO. 24

From Nantucket Shoals Light Ship (Lat. $40^{\circ} 37^{\prime}$ N Long. $69^{\circ} 36^{\prime} \mathrm{W}$) bearing North (True) 10 miles. Error $7^{\circ} \mathrm{W}$. I steered N $75^{\circ} \mathrm{W}$ by Compass Var. $12^{\circ} 30^{\prime} \mathrm{W}$ Dev. $7^{\circ} 30^{\prime}$ E for 95 miles. How would Block Island S E Light (Lat. 41° 09^{\prime} N Long. $71^{\circ} 33^{\prime}$ W) bear True?

Corrected	Dist.	N	S	E	W
$\begin{aligned} & \text { South } \\ & \text { N } 80^{\circ} \mathrm{W} \end{aligned}$	10		10		
	95	16.5			93.6
		$\begin{aligned} & 16.5 \\ & 10 \end{aligned}$	10	Dep.	93.6W
Diff. Lat. 6.5 N					
Nantucket Shoals Light Ship Lat. Difference Latitude				$40^{\circ} \quad 37^{\prime}$	$00^{\prime \prime} \mathrm{N}$
				6^{\prime}	$30^{\prime \prime} \mathrm{N}$
Position of Ship Lat.Block Island Light Lat.				$40^{\circ} \quad 43^{\prime}$	$30^{\prime \prime} \mathrm{N}$
				$41^{\circ} \quad 09^{\prime}$	$00^{\prime \prime} \mathrm{N}$
Diff. Lat. Mid. Lat. 41° Diff. Lat. 25.5 N.				25^{\prime}	$30^{\prime \prime} \mathrm{N}$
Nantucket Shoal Lightship Long.				69°	36^{\prime} W
Diff. Long.				2°	04' W
Position of Ship Long. Block Island Light Long.				71°	$40^{\prime} \mathrm{W}$
				71°	$33^{\prime} \mathrm{W}$
Diff. Long.					$7^{\prime} \mathrm{E}$

Dep. 5.3 E.
True bearing N 12 E 26 miles.

PROBLEM NO. 25
Steer East (Mgc.).
North (True).
West (True).
South (Mge.).
Steamed 12 knots for one hour on each course.
Variation for the 4 hours $7^{\circ} \mathrm{W}$.

Find position of ship if you left Lat. $43^{\circ} 17^{\prime} \mathrm{N}$ Long. $73^{\circ} 14^{\prime} \mathrm{E}$.

Corrected					
Courses	Dist.	N	S	E	W
N 83 E	12	1.5		11.9	
North	12	12.0			
West	12				12.0
S $7^{\circ} \mathrm{E}$	12		11.9	1.5	
		13.5	11.9	13.4	12.0
		11.9		12.0	

Diff. Lat.1.6 N Dep. 1.4 E
Lat. left $\quad 43^{\circ} \quad 17^{\prime} \quad 00^{\prime \prime} \mathrm{N} \quad$ Long. left $\quad 73^{\circ} \quad 14^{\prime} \mathrm{E}$ $\begin{array}{lllll}\text { Diff. Lat. } & 1^{\prime} & 36^{\prime \prime} \mathrm{N} & \text { Diff. Long. } & 2^{\prime} \mathrm{E}\end{array}$

Lat. Ar. at $43^{\circ} 18^{\prime} \quad 36^{\prime \prime} \mathrm{N}$ Long. Ar. at $73^{\circ} \quad 16^{\prime} \mathrm{E}$
Course N 41° E. Distance 2 miles.

PROBLEM NO. 26

A ship from Point Neverbudge (Lat. $42^{\circ} 25^{\prime}$ N Long. $86^{\circ} 15^{\prime} \mathrm{E}$), steered the following courses:

South (True) 14 miles.
East by Compass, Error 6° E, Var. 6° W, 14 miles.
$\mathrm{N} 15^{\circ} \mathrm{E}$ by Compass, Dev. $9^{\circ} \mathrm{W}$, Var. $6^{\circ} \mathrm{W}, 15$ miles.
$\mathrm{S} 4^{\circ} \mathrm{W}$ (Mgc.), Dev. $7^{\circ} \mathrm{E}$, Var. $6^{\circ} \mathrm{W}, 19$ miles.
$\mathrm{S} 17^{\circ} \mathrm{E}$ by Compass, Dev. $9^{\circ} \mathrm{E}$, Var. $6^{\circ} \mathrm{W}, 25$ miles.
Find course and distance made good and latitude and longitude arrived at.

Corrected Courses	Dist.	N	S	E	W
South	14		14.0		
S $84^{\circ} \mathrm{E}$	14		1.5	13.9	
North	15	15			
S $2^{\circ} \mathrm{E}$	19		19.0	0.7	
S $14^{\circ} \mathrm{E}$	25		24.3	6.0	
		15	$\begin{aligned} & 58.8 \\ & 15.0 \end{aligned}$	20.6	
		La	43.8		

Lat. left.	42°	25^{\prime}	$00^{\prime \prime} \mathrm{N}$ Long. left	86°	$15^{\prime} \mathrm{E}$
Diff. Lat.		43^{\prime}	$48^{\prime \prime} \mathrm{S}$ Diff. Long.		$28^{\prime} \mathrm{E}$
Lat. Ar. at Mid. Lat. 42°. 41^{\prime} $12^{\prime \prime}$ M N Long. Ar. at	86°	$43^{\prime} \mathrm{E}$			

Course S 25° E. Distance 48 miles.

U. S. NAVY METHOD

A ship takes her departure at Noon heading 210° (p. s. c.) with Point Pinos Lighthouse, Cal., abeam distance 7 miles. Pat. Log. read 81.

At 5 P. M. changed course to 280°. Patent Log 50. At 8 P. M. changed course to 350°. Patent Log 1. At 2 A . M. changed course to 270°. Patent Log 90. At 6 A. M. changed course to 180°. Patent Log 47. At 9 A. M. changed course to 110°. Patent Log 86. At Noon Patent Log read 28.

Current set for day 60° (Mgc.) at rate of $1_{\frac{1}{4}}{ }^{\prime}$.
Variation on all courses $22^{\circ} \mathrm{E}$. Use deviation table from Page 41 (Bowditch).

Required Noon position, and course and distance made. Point Pinos on California coast.
First course is bearing. If ship was heading 210° when bearing was taken, and lighthouse was abeam, the lighthouse must have been 90° from 210° or to the eastward of the ship, being on the California coast. So we find

$\begin{array}{r} 210^{\circ} \\ -\quad 90^{\circ} \end{array}$	
	$\begin{array}{r} 120^{\circ} \\ +180^{\circ} \end{array}$
	300°
Dev.	27°
	327°
Var.	22°

102 SIMPLE RULES AND PROBLEMS IN NAVIGATION
No. 2

Course	$210^{\circ} \quad$ Log 5 P. M.	50	
Dev.	$27^{\circ}+$	Log Noon	-81
	$\frac{237^{\circ}}{}$ Dist.	-29	
Var.	$22^{\circ}+$		
True	$259^{\circ}=69$ miles.		

No. 3
$280^{\circ} \quad \log 50$

Dev. \begin{tabular}{ccccc}
280°

4°

$\frac{4^{\circ}}{284^{\circ}}$ \& \& Log \& 50

Log \& 1

\quad Dev.

350°

$16^{\circ}-$

\hline 51
\end{tabular}

Var. $22^{\circ}+$
True 306° Dist. 51 True 356° Dist. 89.
$\frac{270^{\circ}}{\text { No. } 5}$
Dev. $\frac{10^{\circ}+}{280^{\circ}}$
Var. $\frac{22^{\circ}+}{302^{\circ}}$ Dist. 57^{\prime}

No. 7		No. 8	
	110°	24 hours at $1 \frac{1}{4}$ miles per	
Dev.	$9^{\circ}-$	hour.	
		Curr	60°
	101°	Var.	$22^{\circ}+$
Var.	$22^{\circ}+$		
	-	True	82°

True 123° Dist. 42^{\prime}

Corrected
Courses

349°
259°
306°
356°
302°
220°
123°
82°

Distance	$\begin{aligned} & \text { Difference } \\ & \text { North } \\ & 6.9 \end{aligned}$	$\underset{\text { South }}{\text { Lat. }}$	${ }_{\text {D }}$ Departure	
7				1.3
69		13.2		67.7
51	30.0			41.3
89	88.8			6.2
57	30.2			48.3
39		29.9		25.1
42		22.9	35.2	
30	4.2		29.7	
	$\begin{gathered} 160.1 \\ 66 . \end{gathered}$	66.0	64.9	$\begin{array}{r} 189.9 \\ 64.9 \end{array}$
Diff. Lat.	94.1 N		Dep	125.0W
Latitude left	t 36°	37^{\prime}	$55^{\prime \prime} \mathrm{N}$	
Diff. Lat.	1°	34^{\prime}	$06^{\prime \prime} \mathrm{N}$	
Lat. in	38°	12^{\prime}	$01^{\prime \prime} \mathrm{N}$	
	2) 74°	49^{\prime}	$56^{\prime \prime}$	
Mid. Lat.	37°	24^{\prime}	$58^{\prime \prime}$	
Long. left	121°	56^{\prime}	02 ${ }^{\prime \prime}$ W	
Diff. Long.	2°	37^{\prime}	$00^{\prime \prime} \mathrm{W}$	
Long. in	124°	33^{\prime}	$02^{\prime \prime} \mathrm{W}$	

True course 307°. Distance 157 miles.

U. S. NAVY METHOD

A ship takes her departure at 4 P. M. heading 93° Dev. 4° W (p. s. c.) with Nantucket South Shoal Lightship, Mass., abeam, distance 9 miles. Patent log read 77.

At 7 P. M. changed course to 170° P. L. 16 Dev. $9^{\circ} \mathrm{W}$. At 11 P. M. changed course to 189° P. L. 67 Dev. $10^{\circ} \mathrm{W}$. At 1 A . M. changed course to $115^{\circ} \mathrm{P}$. L. $94 \mathrm{Dev} .6^{\circ} \mathrm{W}$. At $4 \mathrm{~A} . \mathrm{M}$. changed course to $70^{\circ} \mathrm{P} . \mathrm{L} .32 \mathrm{Dev} .1^{\circ} \mathrm{W}$. At $8 \mathrm{~A} . \mathrm{M}$. changed course to $90^{\circ} \mathrm{P}$. L. $84 \mathrm{Dev} .4^{\circ} \mathrm{W}$.

104 SIMPLE RULES AND PROBLEMS IN NAVIGATION

Variation on all courses $11^{\circ} \mathrm{W}$.
At noon log read 36.
Current set 286° (Mgc.) at rate of $1 \frac{2}{3}$ miles per hour.
Required noon position. True course and distance.

Corrected	Distance	Difference	Lat.	Departure	
Courses		North	South	East	West
$168{ }^{\circ}$	9		8.8	1.9	
78°	39	8.1		38.1	
150°	51		44.2	25.5	
$168{ }^{\circ}$	27		26.4	5.6	
98°	38		5.3	37.6	
58°	52	27.6		44.1	
75°	52	13.5		50.2	
$275{ }^{\circ}$	33	2.9			32.9
		52.1	84.7	203.0	32.9
			52.1	32.9	
		ff. Lat.	32.6	170.1	p. East

Lat. left	40°	37^{\prime}	$05^{\prime \prime} \mathrm{N}$
Diff. Lat.		32^{\prime}	$36^{\prime \prime} \mathrm{S}$
Lat. in	40°	04'	$29^{\prime \prime} \mathrm{N}$
	2) 80°	41 ${ }^{\prime}$	$34^{\prime \prime}$
Mid. Lat.	40°	20^{\prime}	$47^{\prime \prime}$
Long. left	69°	36^{\prime}	$33^{\prime \prime}$ W
Diff. Long.	3°	42^{\prime}	E
Long. in	65°	54^{\prime}	$33^{\prime \prime}$ W

True course 101°. Distance 173 miles.

CHAPTER V

MERCATORS SAILING

This problem is to find the course and distance in a straight line between two places.

The latitude and longitude A is the point of starting, and the latitude and longitude B is the place bound for.

The latitude A and latitude B and longitude A and longitude B are put down under each other, and the difference between the places is found in degrees, minutes and seconds by the following rule:

Both of the same name, subtract. Different name, add the two.

If the degrees of longitude exceed 180°; subtract total from 360°.

The degrees and minutes are turned into minutes by multiplying the degrees by 60 , and adding to the result the minutes.

A Mercator chart is constructed on the principle that the earth is a flat plane, and the degrees of longitude are equal, and the degrees of latitude are increased from the equator to the poles to allow for the decrease in the degrees of longitude.

From Table 3 (Bowditch) take out the Meridional Parts for the degrees and minutes of each latitude.

Add or subtract these meridional parts, same as was done with the degrees and minutes of latitude in the problem.

In Table 42 (Bowditch) will be found Logarithms of numbers. All logarithms of numbers have an index number which is found by table below:

2 figures in the distance, the index number is 1.
3 figures in the distance, the index number is 2 .
4 figures in the distance, the index number is 3 .
When the number is of 2 or 3 figures the logarithm is read in the 0 column alongside of the number given.

When the number has 4 figures the first 3 numbers of the figures are read on the side, and the last number at top of page.

Take out from Table 42 logarithm of difference of longitude in minutes, adding 10 to the index number, and logarithm of meridional parts, index number by rule above.

Subtract logarithm of meridional parts from logarithm of difference of longitude.

The Logarithm Tangent in Table 44 (Bowditch) that agrees with answer will be the course in degrees and minutes.

If the index number for Tangent is 8 or 9 the course will be from top of page.

If the index number for Tangent is 10 or 11 the course will be from bottom of page.

Take out the Logarithm Secant from Table 44 for the degrees and minutes of the course, rejecting the 10 from the index number.

Take out the logarithm of difference of latitude (Table 42) applying its index number by rule above.

Add together Logarithm Secant of course, and logarithm of difference of latitude.

The logarithm that agrees with this sum in the body of the logarithms, Table 42 , will be the distance in the lefthand column for the first 3 numbers, and the number of the column logarithm was found in on top will be the last number.

If the index number is 1 the distance will be in 2 figures. If the index number is 2 the distance will be in 3 figures. If the index number is 3 the distance will be in 4 figures.

PROBLEM NO. 1
Lat. A $43^{\circ} 08^{\prime} \mathrm{N}$ Mer Parts 2858.0 Long. A $5^{\circ} 56^{\prime} \mathrm{E}$
Lat. B $39^{\circ} 29^{\prime} \mathrm{N}$ Mer Parts 2567.5 Long. B $0^{\circ} \quad 24^{\prime} \mathrm{W}$

$\overline{3^{\circ} 39^{\prime}}$	$\overline{290.5}$	$\overline{6^{\circ} 20^{\prime}}$
60		60
180		360
+39		+20

D. L. 219

Diff. Lon. 380

Log. of Diff. Long.
$380=12.57978$
Log. of Mer. Parts $290.5=2.46315$

Tangent $\quad 10.11663=$ Course S $52^{\circ} 36^{\prime} \mathrm{W}$
Secant of Course $52^{\circ} \quad 36^{\prime}=0.21654$
Log of Diff. Lat.
$219=2.34044$
Log. $2.55698=$ Dist. 360.6 miles

PROBLEM NO. 2

Lat. A $15^{\circ} 55^{\prime}$ S Mer. Parts 961.1 Long. A $5^{\circ} 44^{\prime} \mathrm{W}$
Lat. B $55^{\circ} 59^{\prime}$ S Mer. Parts 4052.7 Long. B $67^{\circ} 16^{\prime} \mathrm{W}$
Diff. Lat. $2404^{\prime} \quad$ Mer. Parts 3091.6 Diff. Long. 3692^{\prime}
Log. of Diff. Long. $\quad 3692=13.56726$
Log. of Mer. Parts $3092=3.49024$
Tangent $10.07702=$ Course S $50^{\circ} 03^{\prime} \mathrm{W}$
Secant of Course $50^{\circ} 03^{\prime}=0.19238$
Log of Diff. Lat. $\quad 2404=3.38093$
Log. $3.57331=$ Dist. 3744 miles
PROBLEM NO. 3
Lat. A $15^{\circ} 12^{\prime}$ S Mer. Parts 916.8 Long. A $2^{\circ} 12^{\prime} \mathrm{E}$ Lat. B $28^{\circ} 49^{\prime}$ S Mer. Parts 1795.6 Long. B $17^{\circ} 11^{\prime} \mathrm{E}$

Diff. Lat. 817^{\prime} S Mer. Parts 878.8 Diff. Long. 899^{\prime}
Log. of Diff. Long. $\quad 899=12.95376$
Log. of Mer. Parts $878.8=2.94389$
Tangent $\quad 10.00987=$ Course $\mathrm{S} 45^{\circ} 39^{\prime} \mathrm{E}$

Secant of Course
Log. of Diff. Lat.

$$
45^{\circ} 39^{\prime}=0.15550
$$

$817^{\prime}=2.91222$
Log. $3.06772=$ Dist. 1169 miles

PROBLEM NO. 4
Lat. A $17^{\circ} 15^{\prime}$ S Mer. Parts 1044.1 Long. A $92^{\circ} 21^{\prime} \mathrm{W}$ Lat. B $31^{\circ} 42^{\prime}$ S Mer. Parts 1994.9 Long. B $110^{\circ} 10^{\prime} \mathrm{W}$

Diff. Lat. 867^{\prime} Mer. Parts 950.8 Diff. Long. 1069^{\prime}
Log. of Diff. Long. $\quad 1069=13.02898$
Log. of Mer Parts $950.8=2.97809$
Tangent $10.05089=$ Course $\mathrm{S} 48^{\circ} 21^{\prime} \mathrm{W}$
Secant of Course $48^{\circ} 21^{\prime}=0.17745$
Log. of Diff. Lat. $\quad 867=2.93802$
Log. $3.11547=$ Dist. 1305 miles

PROBLEM NO. 5
Lat. A $18^{\circ} 12^{\prime}$ S Mer. Parts 1103.5 Long. A $18^{\circ} 10^{\prime} \mathrm{E}$ Lat. B $46^{\circ} 11^{\prime}$ S Mer. Parts 3114.5 Long. B $32^{\circ} 21^{\prime}$ W

Diff. Lat. 1679' Mer. Parts 2011 Diff. Long. 3031'
Log. of Diff. Long. $\quad 3031=13.48159$
Log. of Mer. Parts $\quad 2011=3.30341$
Tangent $10.17818=$ Course $\mathrm{S} 56^{\prime} 26^{\prime} \mathrm{W}$
Secant of Course $56^{\circ} 26^{\prime}=0.25735$
Log. of Diff. Lat. $\quad 1679=3.22505$
Log. $3.48240=$ Dist. 3037 miles

PROBLEM NO. 6

Lat. A $30^{\circ} 29^{\prime} \mathrm{N}$ Mer. Parts 1910.1 Long. A $179^{\circ} 47^{\prime} \mathrm{E}$ Lat. B $15^{\circ} 12^{\prime} \mathrm{N}$ Mer. Parts 916.8 Long. B $126^{\circ} 44^{\prime} \mathrm{E}$

Diff. Lat. 917^{\prime} Mer. Parts 993.3 Diff. Long. 3183'
Log. of Diff. Long. $\quad 3183=13.50284$
Log. of Mer .Parts $993.3=2.99708$
Tangent $\quad 10.50576=$ Course $\mathrm{S} 72^{\circ} 40^{\prime} \mathrm{W}$

Secant of Course $72^{\circ} 40^{\prime}=0.52589$
Log. of Diff. Lat $\quad 917=2.96237$
Log. $\quad 3.48826=$ Dist. 3078 miles

PROBLEM NO. 7

Lat. A $8^{\circ} 05^{\prime}$ S Mer. Parts 483.3 Long. A $18^{\circ} 02^{\prime} \mathrm{W}$ Lat. B $62^{\circ} 04^{\prime}$ S Mer. Parts 4762.8 Long. B $103^{\circ} 03^{\prime}$ W

Diff. Lat. 3239^{\prime} Mer. Parts 4279.5 Diff. Long. 5101' Log. of Diff. Long. $\quad 5101=13.70766$
Log. of Mer. Parts $\quad 4279=3.63134$
Tangent $10.07632=$ Course $S 50^{\circ} 01^{\prime} \mathrm{W}$
Secant of Course
$50^{\circ} 01^{\prime}=0.19208$
Log. of Diff. Lat
$3239=3.51041$
Log. $3.70249=$ Dist. 5041 miles

PROBLEM NO. 8

Lat. A $0^{\circ} 00^{\prime} \quad$ Mer. Parts 0000.0 Long. A $0^{\circ} 02^{\prime} \mathrm{W}^{*}$ Lat. B $51^{\circ} 12^{\prime} \mathrm{N}$ Mer. Parts 3569.7 Long. B $16^{\circ} 14^{\prime} \mathrm{E}$

Diff. Lat. 3072^{\prime} Mer. Parts 3569.7 Diff. Long. 976^{\prime}
Log. of Diff. Long. $\quad 976=12.98945$
Log. of Mer. Parts $3570=3.55267$
Tangent $9.43678=$ Course N $15^{\circ} 17^{\prime} \mathrm{E}$
Secant of Course $15^{\circ} 17^{\prime}=0.01564$
Log. of Diff. Lat. $\quad 3072=3.48742$
Log. $3.50306=$ Dist. 3185 miles

PROBLEM NO. 9

Lat. A $71^{\circ} 02^{\prime}$ S Mer. Parts 6129.7 Long. A $16^{\circ} 12^{\prime} \mathrm{E}$ Lat. B $22^{\circ} 05^{\prime}$ S Mer. Parts 1350.3 Long. B $102^{\circ} 15^{\prime} \mathrm{E}$

Diff. Lat. 2937 ${ }^{\prime}$ Mer. Parts 4779 Diff. Long. 5163^{\prime}

Log. of Diff. Long. $\quad 5163=13.71290$
Log. of Mer. Parts $\quad 4779=3.67934$
Tangent $\quad 10.03356=$ Course $\mathrm{N} 47^{\circ} 13^{\prime} \mathrm{E}$
Secant of Course $\quad 47^{\circ} 13^{\prime}=0.16798$
Log. of Diff. Lat. $\quad 2937=3.46790$
Log. $3.63588=$ Dist. 4324 miles

PROBLEM NO. 10
Lat. A $14^{\circ} 12^{\prime}$ S Mer. Parts 855.1 Long. A $178^{\circ} 02^{\prime} \mathrm{E}$
Lat. B $79^{\circ} 02^{\prime}$ S Mer. Parts 8033.2 Long. B $115^{\circ} 16^{\prime} \mathrm{W}$
Diff. Lat. 3890^{\prime} Mer. Parts 7178.1 Diff. Long. 4002'
Log. of Diff. Long. $\quad 4002=13.60228$
Log. of Mer. Parts $7178=3.85600$
Tangent $\quad 9.74628=$ Course $\mathrm{S} 29^{\circ} 08^{\prime} \mathrm{E}$
Secant of Course $29^{\circ} 08^{\prime}=0.05877$
Log. of Diff. Lat. $\quad 3890=3.58995$
Log. $3.64872=$ Dist. 4454 miles

PROBLEM NO. 11

Lat. A $3^{\circ} 12^{\prime} \mathrm{N}$ Mer. Parts 190.8 Long. A $118^{\circ} 00^{\prime} \mathrm{W}$
Lat. B $79^{\circ} 15^{\prime} \mathrm{N}$ Mer. Parts 8102.2 Long. B $142^{\circ} 12^{\prime} \mathrm{W}$
Diff. Lat. 4563' Mer. Parts 7911 Diff. Long. 1452'
Log. of Diff. Long
$1452=13.16197$
Log. of Mer. Parts
$7911=3.89823$
Tangent $=9.26374=$ Course $\mathrm{N} 10^{\circ} 24^{\prime} \mathrm{W}$
Secant of Course $10^{\circ} 24^{\prime}=0.00719$
Log. of Diff. Lat $\quad 4563=3.65925$
Log. $3.66644=$ Dist. 4639 miles

PROBLEM NO. 12
Lat. A $19^{\circ} 36^{\prime}$ N Mer. Parts 1191.8
Lat. B $21^{\circ} 42^{\prime}$ S Mer. Parts 1325.6
Diff. Lat. 2478^{\prime} Mer. Parts 2517 Diff. Long. 1218'
Log. of Diff. Long. $\quad 1218=13.08565$
Log. of Mer. Parts $2517=3.40088$
Tangent $\quad 9.68477=$ Course $\mathrm{S} 25^{\circ} 49^{\prime} \mathrm{W}$
Secant of Course $25^{\circ} 49^{\prime}=0.04566$
Log. of Diff. Lat. $\quad 2478=3.39410$
Log. $3.43976=$ Dist. 2753 miles

PROBLEM NO. 13

Lat. A $36^{\circ} 08^{\prime} \mathrm{N}$ Mer. Parts 2314.1 Long. A $159^{\circ} 00^{\prime} \mathrm{E}$ Lat. B $17^{\circ} 17^{\prime}$ S Mer. Parts 1046.1 Long. B $159^{\circ} 00^{\prime} \mathrm{W}$

Diff. Lat. 3205^{\prime} Mer. Parts 3360 Diff. Long. 2520'
Log. of Diff. Long. $\quad 2520=13.40140$
Log. of Mer. Parts $3360=3.52634$
Tangent $\quad 9.87506=$ Course $\mathrm{S} 36^{\circ} 52^{\prime} \mathrm{E}$
Secant of Course $36^{\circ} 52^{\prime}=0.09689$
Log. of Diff. Lat. $\quad 3205=3.50583$
Log. $3.60272=$ Dist. 4006 miles

PROBLEM NO. 14

Lat. A $9^{\circ} 18^{\prime}$ S Mer. Parts 556.7 Long. A $74^{\circ} 13^{\prime} \mathrm{E}$ Lat. B $42^{\circ} 17^{\prime}$ S Mer. Parts 2788.9 Long. B $47^{\circ} 17^{\prime} \mathrm{E}$

Diff. Lat. 1979' Mer. Parts 2232.2 Diff. Long. 1616'
Log. of Diff. Long. $\quad 1616=13.20844$
Log. of Mer. Parts $2232=3.34869$
Tangent $9.85975=$ Course $\mathrm{S} 35^{\circ} 54^{\prime} \mathrm{W}$

Secant of Course $35^{\circ} 54^{\prime}=0.09149$
Log. of Diff. Lat. $\quad 1979=3.29645$
Log. $3.38794=$ Dist. 2443 miles

PROBLEM NO. 15

Lat. A $14^{\circ} 06^{\prime} \mathrm{N}$ Mer. Parts 849.0 Long. A $81^{\circ} 59^{\prime} \mathrm{W}$ Lat. B $32^{\circ} 55^{\prime}$ N Mer. Parts 2080.8 Long. N $59^{\circ} 17^{\prime}$ W

Diff. Lat. 1129' Mer. Parts 1232 Diff. Long. 1362^{\prime}
Log. of Diff. Long. $\quad 1362=13.13418$
Log. of Mer. Parts $1232=3.09061$
Tangent $\quad 10.04357=$ Course $\mathrm{N} 47^{\circ} 52^{\prime} \mathrm{E}$
Secant of Course $47^{\circ} 52^{\prime}=0.17337$
Log. of Diff. Lat. $\quad 1129=3.05269$
Log. $3.22606=$ Dist. 1683 miles

PROBLEM NO. 16

Lat. A $0^{\circ} 06^{\prime} \mathrm{N}$ Mer. Parts 6.0 Long. A $0^{\circ} 00^{\prime} \mathrm{W}$ Lat. B $60^{\circ} 10^{\prime} \mathrm{N}$ Mer. Parts 4527.1 Long. B $41^{\circ} 02^{\prime} \mathrm{W}$

Diff. Lat. 3604 Mer. Parts 4521 Diff. Long. 2462 ${ }^{\prime}$
Log. of Diff. Long.
$2462=13.39129$
Log. of Mer. Parts
$4521=3.65523$
Tangent $\quad 9.73606=$ Course $\mathrm{N} 28^{\circ} 34^{\prime} \mathrm{W}$
Secant of Course $28^{\circ} 34^{\prime}=0.05638$
Log. of Diff. Lat. $\quad 3604=3.55678$
Log. $\quad 3.61316=$ Dist. 4103 miles

PROBLEM NO. 17

Lat. A $34^{\circ} 22^{\prime}$ S Mer. Parts 2184.9 Long. A $18^{\circ} 24^{\prime} \mathrm{E}$ Lat. B $15^{\circ} 55^{\prime} \mathrm{S}$ Mer. Parts 961.1 Long. B $5^{\circ} 45^{\prime} \mathrm{W}$

Diff. Lat. 1107^{\prime} Mer. Parts 1224 Diff. Long. 1449'

Log. of Diff. Long. $\quad 1449=13.16107$
Log. of Mer. Parts $\quad 1224=3.08778$
Tangent $\quad 10.07329=$ Course N $49^{\circ} .49^{\prime} \mathrm{W}$
Secant of Course $\quad 49^{\circ} 49^{\prime}=0.19028$
Log. of Diff. Lat. $\quad 1107=3.04415$
Log. $3.23443=$ Dist. 1716 miles

PROBLEM NO. 18

Lat. A $8^{\circ} 04^{\prime}$ S Mer. Parts 482.3 Long. A $34^{\circ} 53^{\prime} \mathrm{W}$
Lat. B $14^{\circ} 45^{\prime} \mathrm{N}$ Mer. Parts 889.0 Long. B $17^{\circ} 32^{\prime} \mathrm{W}$
Diff. Lat. 1369' Mer. Parts 1371 Diff. Long. 1041^{\prime}
Log. of Diff. Long. $\quad 1041=13.01745$
Log. of Mer. Parts $\quad 1371=3.13704$
Tangent $\quad 9.88041=$ Course N $37^{\circ} 12^{\prime} \mathrm{E}$
Secant of Course $37^{\circ} 12^{\prime}=0.09880$
Log. of Diff. Lat. $\quad 1369=3.13640$
Log. $3.23520=$ Dist. 1719 miles

CHAPTER VI

MIDDLE LATITUDE SAILING

This method is to find the course and distance between two places, when the distance is small.

Proceed as in Mercators sailing to find the difference of latitude and longitude in minutes.

Find the Middle Latitude between the places as in Day's Work.

Take the Middle Latitude to the nearest degree as a course, and in Table 2 (Bowditch) look in the Distance column for the difference of longitude in minutes, and in the latitude column corresponding to this distance will be the Departure in miles.

Compare the difference of latitude in miles and departure in miles in Table 2, and the course and distance will be found as in Day's Work.

Never cross the equator with this method.
PROBLEM NO. 1

Lat. A $28^{\circ} 17^{\prime} \mathrm{N}$	$28^{\circ} 17^{\prime}$	Long. A $14^{\circ} 16^{\prime} \mathrm{W}$
Lat. B $30^{\circ} 02^{\prime} \mathrm{N}$	$30^{\circ} 02^{\prime}$	Long. B $23^{\circ} 10^{\prime} \mathrm{W}$
$1^{\circ} 45^{\prime}$	$58^{\circ} 19^{\prime}$	$8^{\circ} 54^{\prime}$

Diff. Lat. $105^{\prime} \quad 29^{\circ} 09^{\prime}$ Mid. Lat.

$$
\text { or } 105 \text { miles }
$$

Diff. Long. 534'
Departure 467 miles
Course N 77° W. Distance 479 miles.
PROBLEM NO. 2

Lat. A $38^{\circ} 16^{\prime}$ S			
Lat. B $40^{\circ} 12^{\prime}$	S		
$1^{\circ} 56^{\prime}$		$\frac{38^{\circ} 16^{\prime}}{40^{\circ} 12^{\prime}} \quad$	Long. A $102^{\circ} 12^{\prime}$
:---			
Long. B $108^{\circ} 11^{\prime}$			
E			

Diff. Lat. $116^{\prime} \quad 39^{\circ} 14^{\prime}$ Mid. Lat.
or 116 miles
Diff. Long. 359^{\prime}
Departure 279.0 miles
Course $\mathrm{S} 67^{\circ}$ E. Distance 302 miles.

PROBLEM NO. 3

Lat. A $76^{\circ} 08^{\prime} \mathrm{S}$	$76^{\circ} 08^{\prime}$	Long. A $179^{\circ} 53^{\prime} \mathrm{E}$
Lat. B $74^{\circ} 16^{\prime} \mathrm{S}$	$74^{\circ} 16^{\prime}$	Long. B $178^{\circ} 10^{\prime} \mathrm{W}$
$\frac{150^{\circ} 24^{\prime}}{1^{\circ} 52^{\prime}}$	$\frac{10}{10} 57^{\prime}$	

Diff. Lat. $112^{\prime} \quad 75^{\circ} 12^{\prime}$ Mid Lat
Diff. Long. 117^{\prime}
Departure 30.3 miles
Course N 15° E. Distance 116 miles.

PROBLEM NO. 4

Diff. Lat. $297^{\prime} \quad 44^{\circ} 36^{\prime}$ Mid Lat.
or 297 miles
Diff. Long. 163^{\prime}
Departure 115.3 miles
Course N $21^{\circ} \mathrm{E}$. Distance 318 miles.

PROBLEM NO. 5
Lat. A $51^{\circ} 53^{\prime} \mathrm{N} \quad 51^{\circ} 53^{\prime} \quad$ Long. A $37^{\circ} 18^{\prime} \mathrm{W}$
Lat. B $56^{\circ} 18^{\prime} \mathrm{N} \quad 56^{\circ} 18^{\prime} \quad$ Long. B $40^{\circ} 17^{\prime} \mathrm{W}$
$4^{\circ} 25^{\prime} \quad 108^{\circ} 11^{\prime}$
$2^{\circ} 59^{\prime}$
Diff. Lat. 265
or 265 miles
$54^{\circ} 05^{\prime}$ Mid. Lat.
Diff. Long. 179^{\prime}
Departure 105.2 miles
Course N $22^{\circ} \mathrm{W}$. Distance 285 miles.

PROBLEM NO. 6

Lat. A $43^{\circ} 10^{\prime} \mathrm{S}$	$43^{\circ} 10^{\prime}$ Lat. B $40^{\circ} 08^{\prime} \mathrm{S}$	$40^{\circ} 08^{\prime}$
$\frac{\text { Long. A } 100^{\circ} 00^{\prime} \mathrm{W}}{\text { Long. B } 109^{\circ} 40^{\prime}} \mathrm{W}$		
$83^{\circ} 18^{\prime}$		$1^{\circ} 40^{\prime}$

Diff. Lat. $182^{\prime} \quad 41^{\circ} 39^{\prime}$ Mid. Lat.
Diff. Long. 100^{\prime}
Departure 74.3 miles
Course N 22° W. Distance 197 miles.

PROBLEM NO. 7
Lat. A $12^{\circ} 13^{\prime} \mathrm{S} \quad 12^{\circ} 13^{\prime}$
Long. A $14^{\circ} 18^{\prime} \mathrm{E}$
Lat. B $9^{\circ} 16^{\prime} \mathrm{S} \quad 9^{\circ} 16^{\prime}$
$2^{\circ} 57^{\prime} \quad 21^{\circ} 29^{\prime}$
Long. B $17^{\circ} 03^{\prime} \mathrm{E}$
$2^{\circ} 45^{\prime}$
Diff. Lat. $177^{\prime} \quad 10^{\circ} 44^{\prime}$ Mid. Lat.
Diff. Long. 165^{\prime}
Departure 162.0 miles
True course $\mathrm{N} 42^{\circ} \mathrm{E}$. Distance 240 miles.
PROBLEM NO. 8
Lat. A $49^{\circ} 06^{\prime} \mathrm{N} \quad 49^{\circ} 06^{\prime}$
Long. A $179^{\circ} 15^{\prime} \mathrm{E}$
Lat. B $51^{\circ} 10^{\prime} \mathrm{N} \quad 51^{\circ} 10^{\prime}$
$2^{\circ} 04^{\prime} \quad 100^{\circ} 16^{\prime}$
Long. B $179^{\circ} 32^{\prime} \mathrm{W}$
$1^{\circ} 13^{\prime}$
Diff. Lat. $124^{\prime} \quad 50^{\circ} 08^{\prime}$ Mid. Lat.
Diff. Long. 73^{\prime}
Departure 46.9 miles
Course N 21° E. Distance 133 miles.
PROBLEM NO. 9
Lat. A $38^{\circ} 07^{\prime} \mathrm{N} \quad 38^{\circ} 07^{\prime} \quad$ Long. A $13^{\circ} 12^{\prime} \mathrm{E}$
Lat. B $36^{\circ} 51^{\prime} \mathrm{N} 36^{\circ} 51^{\prime}$
$1^{\circ} 16^{\prime} \quad 74^{\circ} 58^{\prime}$
Long. $\frac{19^{\circ} 06^{\prime} \mathrm{E}}{5^{\circ} 54^{\prime}}$
Diff. Lat. $76^{\prime} \quad 37^{\circ} 29^{\prime}$ Mid. Lat.
Diff. Long. 354^{\prime}
Departure 282.7 miles
Course $\mathrm{S} 75^{\circ} \mathrm{E}$. Distance 292 miles.
PROBLEM NO. 10
Lat. A $14^{\circ} 28^{\prime} \mathrm{S} \quad 14^{\circ} 28^{\prime} \quad$ Long. A $0^{\circ} 06^{\prime} \mathrm{W}$
Lat. B $10^{\circ} 19^{\prime} \mathrm{S} \quad 10^{\circ} 19^{\prime}$
$4^{\circ} 09^{\prime} \quad 24^{\circ} 47^{\prime}$
Long. $\mathrm{B} \frac{7^{\circ} 18^{\prime} \mathrm{E}}{7^{\circ} 24^{\prime}}$

Diff. Lat. $249^{\prime} \quad 12^{\circ} 23^{\prime}$ Mid. Lat.
Diff. Long. 444^{\prime}
Departure 434.3 miles
Course N 60° E. Distance 500 miles.

PROBLEM NO. 11

Diff. Lat. $482^{\prime} \quad 10^{\circ} 15^{\prime}$ Mid. Lat.
Diff. Long. 124^{\prime}
Departure 122.1 miles
Course N 14° W. Distance 497 miles.
PROBLEM NO. 12
Lat. A $60^{\circ} 10^{\prime} \mathrm{N} \quad 60^{\circ} 10^{\prime}$
Long. A $4^{\circ} 16^{\prime} \mathrm{W}$
Lat. B $58^{\circ} 11^{\prime} \mathrm{N} 58^{\circ} 11^{\prime}$
$1^{\circ} 59^{\prime} \quad 118^{\circ} 21^{\prime}$
Long. B $6^{\circ} 18^{\prime} \mathrm{W}$
$2^{\circ} 2^{\prime}$
Diff. Lat. $119^{\prime} \quad 59^{\circ} 10^{\prime}$ Mid. Lat.
Diff. Long. 122^{\prime}
Departure 62.8 miles
Course $\mathrm{S} 28^{\circ} \mathrm{W}$. Distance 135 miles.

CHAPTER VII

Latitude by meridian altitude of sun

The latitude by the sun is found most easily by a noon sight, when the sun is on the meridian, or the highest point reached by the sun on that day.

When the sun crosses the meridian it is either directly overhead or due north or south. It is then exactly $0 \mathrm{~h} 00^{\prime}$ $00^{\prime \prime}$ local apparent time.

A chronometer always shows Greenwich time, and if we could read the chronometer when the sun was exactly at its highest point and was about to descend, we could use that time to look up the declination in the Nautical Almanac.

As at this time the sun's motion is nearly horizontal, i.e., its rise is very slow, it is very difficult to tell when it has ceased to ascend and is starting to descend.

If the longitude is known, the Greenwich apparent time may be found; for longitude expressed in hours, minutes and seconds is the difference between local and Greenwich time.

If in west longitude the apparent time at Greenwich will be past noon: therefore, add the longitude in time to 0 hours, and the answer will be the G. A. T. on the same day as the ship.

If in east longitude the apparent time at Greenwich will be before noon; therefore, subtract the longitude in time from 24 hours and the answer will be the G. A. T. of the day before.

In the Nautical Almanac, the equation of time is given with + or - signs to show whether it is to be added to or subtracted from the G. M. T. to get the G. A. T.

Since the G. A. T. is known and the G. M. T. is desired, the equation of time is applied the opposite way to that shown by the signs in the Nautical Almanac.

It is necessary to know the G. M. T. when the sight was taken for the declination at that instant must be known and the declination is given in the Nautical Almanac for G. M. T. and not for G. A. T. or L. A. T.

The declination of the sun is the distance north or south of the equator. The sign + in the almanac means north, the sign - south. The declination is given for each day and on the even hour of that day.

To find the declination for any given time, look up in the almanac the declination for the even hour preceding. This is corrected by adding or subtracting the change in the intervening minutes. The hourly difference (H. D.) is found printed in the almanac at the end of each day. This is multiplied by the fractional part of an hour to get the correction. If the declination is decreasing this is subtracted, if increasing it is added.

The altitude is measured by the sextant.
When the sun is on the meridian, it is either due north, directly overhead, or due south of the observer.

The index error (I. E.) is the error of the sextant used for the observation. When it is " off the scale" it is added; when " on scale " it is subtracted.

The semi-diameter (S. D.) is half the diameter of the sun, or the distance from the bottom or top of the sun to the center. In lower limb (L. L.) sights, or sights taken on the lower edge, the S. D. is added. In upper limb (U. L.) sights it is subtracted. It is given in the Nautical Almanac. The nearest date is used and the nearest .1 of a minute.

The dip correction is the correction for the height of the eye of the observer above sea level. It is always subtracted and is found in Table 14 (Bowditch).

Refraction is the change of direction of a ray of light in passing through the atmosphere.

Parallax is the error caused by taking altitude from the surface of the earth while the calculations are made on the assumption that the observer is at the center of the earth.

The corrections for refraction and parallax (R. \& P.) are combined in Table 20B and are always subtracted.

After making these corrections to the observed meridian altitude, the answer is the true altitude.

The point in the sky directly over the observer's head is the zenith. It is 90° from the horizon in all directions.

Subtracting the altitude from 90° gives the zenith distance (Z. D.) or distance from the sun to the zenith. It always has the opposite name to the sun's bearing.

Under zenith distance put down the declination.
If both are the same name add: the sum is the latitude, named the same.

If different names, subtract the lesser from the greater; the difference is the latitude, named the same as the greater.

PROBLEM NO. 1

Jan. 30, 1919. Obs. Mer. Alt. Sun's L. L. $44^{\circ} 18^{\prime}$ S. Dip 36 ft. Long. $91^{\circ} \mathrm{W}$.

Longitude in time 6h 04^{\prime}.
Obs. Alt
S. D.

Dip
R. \& P.

True Alt.

True Alt.
Z. D.

Dec.
Lat.

$44^{\circ} 18^{\prime} 00^{\prime \prime}$
$+\quad 16^{\prime} 18^{\prime \prime}$
-$44^{\circ} 34^{\prime} 18^{\prime \prime}$ $5^{\prime} 53^{\prime \prime}$ $44^{\circ} 28^{\prime} 25^{\prime \prime}$ - $53^{\prime \prime}$ $44^{\circ} 27^{\prime} 32^{\prime \prime}$

Dec. for 30d 6.3h $\quad 17^{\circ} 47^{\prime} .7{ }^{\text {g }}$
H. D. $=.7^{\prime}$ decrease
D. for $.3 \mathrm{~h}=.3 \times .7^{\prime}=.2^{\prime}$
L. A. T., 30d

Long.
G. A. T.

Eq. Time
G. M. T., 30d
$6 \mathrm{~h} 17^{\prime} 22^{\prime \prime}$ or
Oh $00^{\prime} 00^{\prime \prime}$
$+6 \mathrm{~h} 04^{\prime} 00^{\prime \prime}$
$\begin{array}{r}6 \mathrm{~h} 04^{\prime} 00^{\prime \prime} \\ +\quad 13^{\prime} 22^{\prime \prime} \\ \hline\end{array}$ 6.3 h
$45^{\circ} 32^{\prime} 28^{\prime \prime} \mathrm{N}$ $17^{\circ} 47^{\prime} 42^{\prime \prime} \mathrm{S}$
$27^{\circ} 44^{\prime} 46^{\prime \prime} \mathrm{N}$

PROBLEM NO. 2

Feb. 1, 1919. Obs. Mer. Alt. Sun's L. L. $78^{\circ} 05^{\prime} 05^{\prime \prime}$ S. Dip 12 ft. Long. $78^{\circ} 14^{\prime}$ E.

Longitude in time $5 \mathrm{~h} 12^{\prime} 56^{\prime \prime}$
Obs. Alt.
S. D.

Dip
R. \& P.

True Alt.

$78^{\circ} \quad 05^{\prime} 05^{\prime \prime}$
$+\quad 16^{\prime} 18^{\prime \prime}$
$78^{\circ} 21^{\prime} 23^{\prime \prime}$
$-\quad 33^{\prime \prime}$
$78^{\circ} 17^{\prime \prime} 59^{\prime \prime}$
$-\frac{10^{\prime \prime}}{78^{\circ} 17^{\prime} 49^{\prime \prime}}$

$$
90^{\circ} 00^{\prime} 00^{\prime \prime \prime}
$$

True Alt.
Z. D.

Dec.
Lat.
L. A. T., Feb., Id

Long.
G. A. T., Jan. 31 18h 47' 04'
Eq. Time $+\quad 13^{\prime} 36^{\prime \prime}$
G. M. T., Jan. $31 \quad 19 \mathrm{~h} 00^{\prime} 40^{\prime \prime}$

PROBLEM NO. 3

Mar. 20, 1919. Obs. Mer. Alt. Sun's L. L. $89^{\circ} 37^{\prime}$ N. Index Error $+4^{\prime} 27^{\prime \prime}$. Dip 18 ft . Long. $111^{\circ} \mathrm{E}$.

Longitude in time $7 \mathrm{~h} 24^{\prime}$.
Obs. Alt.

I. E.

L. A. T., 20d
Long.

PROBLEM NO. 4
Mar. 10, 1919. Obs. Mer. Alt. Sun's L. L. $59^{\circ} 59^{\prime} 50^{\prime \prime}$ S. Index Error $+50^{\prime \prime}$. Dip 15 ft . Long. $102^{\circ} 41^{\prime} \mathrm{W}$.

Longitude in time 6h $50^{\prime} 44^{\prime \prime}$.	
Obs. Alt.	$59^{\circ} 59^{\prime} 50^{\prime \prime}$
I. E.	+ 50'
S. D.	$60^{\circ} 00^{\prime} 40^{\prime \prime}$
	$+16^{\prime} 06^{\prime \prime}$
Dip	$60^{\circ} 16^{\prime} 46^{\prime \prime}$
	$3^{\prime} 48^{\prime \prime}$
R. \& P.	$60^{\circ} 12^{\prime} 58^{\prime \prime}$
	$30^{\prime \prime}$
	$60^{\circ} 12^{\prime} 28^{\prime \prime}$

Z. D.	$29^{\circ} 47^{\prime} 32^{\prime \prime} \mathrm{N}$	Dec. for 10d 6 h Dec.	$4^{\circ} 17^{\prime} 24^{\prime \prime} \mathrm{S}$		
Corr. for 1 h					$4^{\circ} 18^{\prime} .4 \mathrm{~S}$
:---:					
$1^{\prime} .0$					

PROBLEM NO. 5

Jan. 31, 1919. Obs. Mer. Alt. Sun's L. L. $46^{\circ} 56^{\prime}$ S. Dip 36 ft. Long. $94^{\circ} \mathrm{W}$.

Longitude in time $6 \mathrm{~h} 16^{\prime}$.
Obs. Alt.
S. D.

Dip
R. \& P.

True Alt.
Z. D.

Dec.
Lat.
42°

$46^{\circ} 56^{\prime} 00^{\prime \prime}$
$+\quad 16^{\prime} 18^{\prime \prime}$
$47^{\circ} 12^{\prime} 18^{\prime \prime}$
-$5^{\prime} 53^{\prime \prime}$ $47^{\circ} 06^{\prime} 25^{\prime \prime}$ $-\quad 48^{\prime \prime}$ $47^{\circ} 05^{\prime} 37^{\prime \prime}$

Dec. for 31d 6h $\quad 17^{\circ} 31^{\prime} .4 \mathrm{~S}$ $25^{\circ} 23^{\prime} 17^{\prime \prime} \mathrm{N}$
L. A. T., 31d

Oh $00^{\prime} 00^{\prime \prime}$ Long.
G. A. T. Eq. Time
G. M. T. 21d
$+\frac{6 \mathrm{~h} 16^{\prime} 00^{\prime \prime}}{6 \mathrm{~h} 16^{\prime} 00^{\prime \prime}}$
$+\frac{13^{\prime} 31^{\prime \prime}}{6 \mathrm{~h} 29^{\prime} 31^{\prime \prime} \text { or }}$
6.5 h

PROBLEM NO. 6

Mar. 21, 1919. Obs. Mer. Alt. Sun's L. L. $57^{\circ} 21^{\prime}$ S. Dip 38 ft. Long. $77^{\circ} 26^{\prime} \mathrm{W}$.

Longitude in time 5h $09^{\prime} 44^{\prime \prime}$
$\begin{array}{lr}\text { Obs. Alt. } & +\begin{array}{r}57^{\circ} 21^{\prime} 00^{\prime \prime} \\ \text { S. D. } \\ 6^{\prime} 06^{\prime \prime}\end{array} \\ \text { Dip } & -\frac{57^{\circ} 37^{\prime} 06^{\prime \prime}}{6^{\prime} 02^{\prime \prime}} \\ \text { R.\& P. } & -\frac{57^{\circ} 31^{\prime} 04^{\prime \prime}}{0^{\prime} 32^{\prime \prime}} \\ \text { True Alt. } & 57^{\circ} 30^{\prime} 32^{\prime \prime}\end{array}$
Z. D.

Dec.
Lat.
$32^{\circ} 29^{\prime} 28^{\prime \prime} \mathrm{N}$
L. A. T., 21d

Long.
G. A. T.

Eq. Time
G. M. T.

21d

Dec. for 21d 4h

> Oh $00^{\prime} 00^{\prime \prime}$
> $\begin{gathered}+\frac{5 h 09^{\prime} 44^{\prime \prime}}{5 h 09^{\prime} 44^{\prime \prime}} \\ +\frac{7^{\prime} 28^{\prime \prime}}{5 h 17^{\prime} 12^{\prime \prime}} \text { or } \\ 5.3 \mathrm{~h}\end{gathered}$

Dec. for $21 \mathrm{~d} 5.3 \mathrm{~h} . \quad \frac{01^{\prime} .3}{0^{\circ} 01^{\prime} .0 \mathrm{~N}}$

PROBLEM NO. 7

Sept. 3, 1919. Obs. Mer. Alt. Sun's L. L. $49^{\circ} 02^{\prime} 15^{\prime \prime}$ S. Dip 28 ft. Long. $118^{\circ} 15^{\prime}$ E.

Longitude in time $7 \mathrm{~h} 53^{\prime}$
Obs. Alt.

Dip.
R. \& P.

True Alt.

$49^{\circ} 02^{\prime} 15^{\prime \prime} \mathrm{S}$
$+\quad 15^{\prime} 54^{\prime \prime}$
S
$49^{\circ} 18^{\prime} 09^{\prime \prime}$
$-\quad 5^{\prime} 11^{\prime \prime}$
$49^{\circ} 12^{\prime} 58^{\prime \prime}$
$-\quad 45^{\prime \prime}$
$49^{\circ} 12^{\prime} 13^{\prime \prime}$

$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Z. D.

Dec.
Lat.
L. A. T., 3d

Long.
G. A. T., 2d

$-7 \mathrm{~h} 53^{\prime} 00^{\prime \prime}$
$16 \mathrm{~h} 07^{\prime} 00^{\prime \prime}$
$-\quad 0^{\prime} 18^{\prime \prime}$

G. M. T., 2d
$16 \mathrm{~h} 06^{\prime} 42^{\prime \prime}$ or 16.1h

PROBLEM NO. 8

Aug. 8, 1919. Obs. Mer. Alt. Sun's L. L. $38^{\circ} 16^{\prime}$ N. Dip 27 ft. Long. $3^{\circ} 15^{\prime} \mathrm{W}$.

Longitude in time $0 \mathrm{~h} 13^{\prime}$		G. A. T., 8d Eq. Time	Oh 13' $00^{\prime \prime}$	
Obs. Alt. S. D.	$38^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$		$+$	$5^{\prime} 37 \prime$
	$+15^{\prime} 48^{\prime \prime}$	G. M. T., 8d	$\begin{aligned} & \text { Oh } 18^{\prime} 37^{\prime \prime} \\ & 0.3 \mathrm{~h} \end{aligned}$	
	$38^{\circ} 31^{\prime} 48^{\prime \prime}$			
Dip	- $5^{\prime} 06^{\prime \prime}$			
	$38^{\circ} 26^{\prime} 42^{\prime \prime}$			
R. \& P.	- 1'07"			
True Alt.	$38^{\circ} 25^{\prime} 35^{\prime \prime}$			
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$			
Z. D.	$51^{\circ} 34^{\prime} 25^{\prime \prime} \mathrm{S}$	Dec., 8d 0h.		$16^{\circ} 22.6 \mathrm{~N}$
Dec.	$16^{\circ} 22^{\prime} 24^{\prime \prime} \mathrm{N}$	Corr., for .3h	-	$0^{\prime} .2$
Lat.	$35^{\circ} 12^{\prime} 01^{\prime \prime} \mathrm{S}$	Dec. 8d		$16^{\circ} 22^{\prime} .4 \mathrm{~N}$

PROBLEM NO. 9
July 4, 1919. Obs. Mer. Alt. Sun's L. L. $70^{\circ} 15^{\prime}$ S. Dip 24 ft. Long. $97^{\circ} 12^{\prime} \mathrm{W}$.

Longitude in time 6h $28^{\prime} 48^{\prime \prime}$.		L. A. T., 4d Long.	$\begin{array}{r} 0 \mathrm{~h} 00^{\prime} 00^{\prime \prime} \\ +6 \mathrm{~h} 28^{\prime} 48^{\prime \prime} \end{array}$
Obs. Alt.	$70^{\circ} 15^{\prime} 00^{\prime \prime}$		
S. D.	$+\quad 15^{\prime} 48^{\prime \prime}$	G. A. T.	$6 \mathrm{~h} 28^{\prime} 48^{\prime \prime}$
	$70^{\circ} 30^{\prime} 48^{\prime \prime}$	Eq. Time	+ $4^{\prime} 04^{\prime \prime}$
Dip	$4^{\prime} 48^{\prime \prime}$	G. M. T., 4d	$6 \mathrm{~h} 32^{\prime} 52^{\prime \prime}$
	$70^{\circ} 26^{\prime} 00^{\prime \prime}$		
R. \& P.	$18^{\prime \prime}$		
	$70^{\circ} 25^{\prime} 42^{\prime \prime}$		
Z. D.	$19^{\circ} 34^{\prime} 18^{\prime \prime} \mathrm{N}$	Dec. for 4d 6h	$22^{\circ} 56^{\prime} .0 \mathrm{~N}$
Dec.	$22^{\circ} 55^{\prime} 54^{\prime \prime} \mathrm{N}$	Corr. for .5h	- $0^{\prime} .1$
Lat.	$42^{\circ} 30^{\prime} 12^{\prime \prime} \mathrm{N}$	Dec. for 4d 6.5h	$22^{\circ} 55^{\prime} .9 \mathrm{~N}$

PROBLEM NO. 10

Apr. 18, 1919. Obs. Mer. Alt. Sun's L. L. $41^{\circ} 02^{\prime}$ S. Dip 22 ft. Long. $97^{\circ} 15^{\prime} \mathrm{E}$.

PROBLEM NO. 11

Mar. 11, 1919. Obs. Mer. Alt. Sun's L. L. $81^{\circ} 16^{\prime}$ N. Index Error $-3^{\prime} 20^{\prime \prime}$. Dip 28 ft . Long. $19^{\circ} 16^{\prime} \mathrm{E}$.

Longitude in time $1 \mathrm{~h} 17^{\prime} 04^{\prime \prime}$

Obs. Alt.	$-\frac{81^{\circ} 16^{\prime} 00^{\prime}}{3^{\prime} 20^{\prime \prime}}$
I. E.	$-\frac{81^{\circ} 12^{\prime} 40^{\prime \prime}}{86^{\circ} 28^{\prime} 46^{\prime \prime}}$
S. D.	$-\frac{5^{\prime} 11^{\prime \prime}}{81^{\circ} 23^{\prime} 35^{\prime \prime}}$
Dip	$-\frac{07^{\prime \prime}}{81^{\circ} 23^{\prime} 28^{\prime \prime}}$
R. \& P.	
True Alt.	

Z. D.

Dec.
Lat.
L. A. T., 11d

Long.
G. A. T., 10d

Eq. Time
G. M. T. 10d

Oh $00^{\prime} 00^{\prime \prime}$ 1h $17^{\prime} 04^{\prime \prime}$

22h $42^{\prime} 56^{\prime \prime}$
$+\quad 10^{\prime} 23^{\prime \prime}$
22 h $53^{\prime} 19^{\prime \prime}$ or 22.9 h

PROBLEM NO. 12
Oct. 23, 1919. Obs. Mer. Alt. Sun's L. L. $37^{\circ} 21^{\prime}$ S. Index Error $+9^{\prime} 10^{\prime \prime}$. Dip 16 ft . Long. $86^{\circ} 15^{\prime} \mathrm{W}$.

Longitude in time $5 \mathrm{~h} 45^{\prime}$

Obs. Alt.	
I. E.	$37^{\circ} 21^{\prime} 00^{\prime \prime}$ $9^{\prime} 10^{\prime \prime}$
S. D.	$+\frac{37^{\circ} 30^{\prime} 10^{\prime \prime}}{} 16^{\prime} 06^{\prime \prime}$
Dip	$-\frac{37^{\circ} 46^{\prime} 16^{\prime \prime}}{3^{\prime} 55^{\prime \prime}}$
R. \& P.	$-\frac{37^{\circ} 42^{\prime} 21^{\prime \prime}}{1^{\prime} 08^{\prime \prime}}$
True Alt.	$37^{\circ} 41^{\prime} 13^{\prime \prime}$

Z. D.	$52^{\circ} 18^{\prime} 47^{\prime \prime} \mathrm{N}$	
Dec.	$11^{\circ} 12^{\prime} 54^{\prime \prime} \mathrm{S}$	$\begin{array}{l}\text { Dec. for 23d } 4 \mathrm{~h} \\ \text { Corr. for } 1.5 \mathrm{~h}\end{array}$
Lat.	$41^{\circ} 05^{\prime} 53^{\prime \prime} \mathrm{N}$	Dec. for 23 l 5.5 h
$11^{\prime} .6 \mathrm{~S}$		
$12^{\prime} .9 \mathrm{~S}$		

PROBLEM NO. 13

Oct. 11, 1919. Obs. Mer. Alt. Sun's L. L. $26^{\circ} 53^{\prime} 10^{\prime \prime}$ S. Index Error $-2^{\prime} 40^{\prime \prime}$. Dip 17 ft . Long. $18^{\circ} 02^{\prime} \mathrm{W}$.

Longitude in time $1 \mathrm{~h} 12^{\prime} 08^{\prime \prime}$
Obs. Alt.
I. E.
S. D.

Dip
R. \& P.

True Alt.
Z. D.

Dec.
Lat.

$$
90^{\circ} 00^{\prime} 00^{\prime \prime}
$$

G. A. T., 11d

Eq. Time
G. M. T., 11d

1h $12^{\prime} 08^{\prime \prime}$

- $\quad 13^{\prime} 00^{\prime \prime}$ Oh $59^{\prime} 08^{\prime \prime}$ or

PROBLEM NO. 14
Apr. 3, 1919. Obs. Mer. Alt. Sun's L. L. $60^{\circ} 22^{\prime}$ S. Dip 21 ft . Long. $20^{\circ} 59^{\prime}$ E.

Longitude in time $1 \mathrm{~h} 23^{\prime} 56^{\prime \prime}$		$\begin{aligned} & \text { L. A. T., 3d } \\ & \text { Long. } \end{aligned}$	$\begin{array}{r} 00 \mathrm{~h} 00^{\prime} 00^{\prime \prime \prime} \\ -\quad 1 \mathrm{~h} 23^{\prime} 56^{\prime \prime} \\ \hline \end{array}$
Obs. Alt.	$60^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{S}$		
S. D.	+ 16 ${ }^{\prime \prime} 00^{\prime \prime}$	$\text { G. A. T., } 2 \mathrm{~d}$	$\begin{array}{r} 22 \mathrm{~h} 36^{\prime} 04^{\prime \prime} \\ +\quad 3^{\prime} 36^{\prime \prime} \end{array}$
Dip	$\begin{array}{r} 60^{\prime} 38^{\prime \prime} 00^{\prime \prime \prime} \\ 4^{\prime} 29^{\prime \prime} \end{array}$	G. M. T., 2 d	$+\quad \frac{32 \mathrm{~h} 39^{\prime} 40^{\prime \prime}}{}$
	$\overline{60^{\circ} 33^{\prime} 31^{\prime \prime}}$	2 d	22.7
R. \& P	$0^{\prime} 28^{\prime \prime}$		
True Alt.	$60^{\circ} 33^{\prime} 03^{\prime \prime} \mathrm{S}$		
$\begin{aligned} & \text { Z. D. } \\ & \text { Dec. } \end{aligned}$	$\begin{aligned} 29^{\circ} & 26^{\prime} \\ 4^{\circ} & 59^{\prime} \\ 30^{\prime \prime \prime} & \mathrm{N} \end{aligned}$	Dec. for 2 d 22 h Corr. .7h	$\begin{array}{r} 4^{\circ} 58 . \mathbf{夕}^{\prime} 8 \mathrm{~N} \\ +\quad .7 \end{array}$
Lat.	$34^{\circ} 26^{\prime} 27^{\prime \prime} \mathrm{N}$	Dec. $\quad 2 \mathrm{~d} 22$.	$4^{\circ} 59^{\prime} .5 \mathrm{~N}$

PROBLM NO. 15

Aug. 30, 1919. Obs. Mer. Alt. Sun's L. L. $57^{\circ} 18^{\prime} 30^{\prime \prime}$ N. Index Error $+45^{\prime \prime}$. Dip 18 ft . Long. $129^{\circ} 15^{\prime} \mathrm{W}$.

Longitude in time 8h $37{ }^{\prime}$		$\begin{aligned} & \text { G. A. T., } 30 \mathrm{~d} \\ & \text { Eq. Time } \end{aligned}$		8h $37^{\prime} 00^{\prime \prime}$
Obs. Alt. I. E.	$57^{\circ} 18^{\prime} 30^{\prime \prime} \mathrm{N}$		$+$	
	$+\quad 45^{\prime \prime}$	G. M. T., 30d		$8{ }^{8} 37^{\prime} 44^{\prime \prime}$
	$57^{\circ} 19^{\prime} 15^{\prime \prime}$	30d		8.6 h
S. D.	$+15^{\prime} 54^{\prime \prime}$			
	$57^{\circ} 35^{\prime} 09^{\prime \prime}$			
Dip	$4^{\prime} 09^{\prime \prime}$			
	$57^{\circ} 31^{\prime} 00^{\prime \prime}$			
R. \& P.	$32^{\prime \prime}$			
True Alt.	$57^{\circ} 30^{\prime} 28^{\prime \prime} \mathrm{N}$			
Z. D.	$32^{\circ} 29^{\prime} 32^{\prime \prime} \mathrm{S}$	Dec. for 30d 8 h		$9^{\circ} 10^{\prime} .4 \mathrm{~N}$
Dec.	$9^{\circ} 09^{\prime} 54^{\prime \prime} \mathrm{N}$	Corr. . 6 h	-	$0^{\prime} .5$
Lat.	$23^{\circ} 19^{\prime} 38^{\prime \prime} \mathrm{S}$	Dec. 30d 8		$9^{\circ} 09^{\prime} .9 \mathrm{~N}$

PROBLEM NO. 16
Dec. 3, 1919. Obs. Mer. Alt. Sun's L. L. $64^{\circ} 45^{\prime} 15^{\prime \prime}$ N. Index Error $-1^{\prime} 10^{\prime \prime}$. Dip 20 ft . Long. $63^{\circ} 18^{\prime} \mathrm{E}$.

Longitude in time $4 \mathrm{~h} 13^{\prime} 12^{\prime \prime}$.		L. A. T., 3d	00h $00^{\prime} 00^{\prime \prime}$
Obs. Alt. I. E.	$64^{\circ} 45^{\prime} 15^{\prime \prime} \mathrm{N}$	Long.	- 4h $13^{\prime} 12^{\prime \prime}$
	$1^{\prime} 10^{\prime \prime}$	G. A. T., 2d	19h $46^{\prime} 48^{\prime \prime}$
	$64^{\circ} 44^{\prime} 05^{\prime \prime}$	Eq. Time	$10^{\prime} 30^{\prime \prime}$
S. D.	$+\quad 16^{\prime} 18^{\prime \prime}$	G. M. T., 2d	19h $36^{\prime} 18^{\prime \prime}$
	$65^{\circ} 00^{\prime} 23^{\prime \prime}$	2 d	
Dip	$4^{\prime} 23^{\prime \prime}$		
	$64^{\circ} 56^{\prime} 00^{\prime \prime}$		
R. \& P.	$23^{\prime \prime}$		
True Alt.	$64^{\circ} 55^{\prime} 37^{\prime \prime} \mathrm{N}$		
Z. D.	$25^{\circ} 04^{\prime} 23^{\prime \prime} \mathrm{S}$	Dec. for 2 d 18 h	$21^{\circ} 57^{\prime} .7 \mathrm{~S}$
Dec.	$21^{\circ} 58^{\prime} 18^{\prime \prime} \mathrm{S}$	Corr. 1.6h	$+\quad 0^{\prime} .6$
Lat.	$47^{\circ} 02^{\prime} 41^{\prime \prime} \mathrm{S}$	Dec.	$21^{\circ} 58^{\prime} .3 \mathrm{~S}$

PROBLEM NO. 17
Mar. 20, 1919. Obs. Mer. Alt. Sun's L. L. $89^{\circ} 42^{\prime} 40^{\prime \prime}$ N. Index Error $+2^{\prime} 20^{\prime \prime}$. Dip 20 ft . Long. $101^{\circ} 30^{\prime} \mathrm{W}$.

Long. in time 6h 46^{\prime}		L. A. T., 20d Long.	$\begin{array}{r} 0 \mathrm{~h} 00^{\prime} 00^{\prime \prime} \\ +6 \mathrm{~h} 46^{\prime} 00^{\prime \prime} \\ \hline \end{array}$
I. C.	$+\quad 2^{\prime} 20^{\prime \prime}$	G. A. T.	6h $46^{\prime} 00^{\prime \prime}$
S. D.	$89^{\circ} 45^{\prime} 00^{\prime \prime}$	G. M. T. 20 d	$+\quad 7^{\prime} 45^{\prime \prime}$
	$16^{\prime} 06^{\prime \prime}$		$\begin{aligned} & 6 \mathrm{~h} 53^{\prime} 45^{\prime \prime} \text { or } \\ & 6.9 \mathrm{~h} \end{aligned}$
	$90^{\circ} 01^{\prime} 06^{\prime \prime}$		
Dip	$4^{\prime} 23^{\prime \prime}$		
True Alt.	$89^{\circ} 56^{\prime} 43^{\prime \prime}$		
Z. D.	$3^{\prime} 17^{\prime \prime} \mathrm{S}$	Dec. for 20 d 6 h	$0^{\circ} 22^{\prime} .0 \mathrm{~S}$
Dec.	$21^{\prime} 06^{\prime \prime} \mathrm{S}$	Corr. for . 9 h	$0^{\prime} .9$
Lat.	$0^{\circ} 24^{\prime} 23^{\prime \prime} \mathrm{S}$	Dec. for 20d 6.9h	$0^{\circ} 21^{\prime} .1 \mathrm{~S}$

LATITUDE CONSTANT

In practice, probable position at noon is figured in advance (dead reckoning). The officer can then know at what time by the chronometer noon will occur.

Very commonly, sights are worked up in detail before noon and an expression obtained which only requires the introduction of the observed altitude to obtain the latitude at once.

Using D. R. longitude the G. M. time is known and the declination found. I. E.; S. D.; and dip are likewise known in advance. From D. R. latitude, working backwards an approximate altitude is found and R. \& P. for this altitude used to find an expression, composed of declination and corrections to altitude, which applied to observed altitude give latitude instantly. Performing this work in advance enables the officer to have his position immediately after noon. Knowing approximate altitude before taking the sight is also of great value on a cloudy day.

Declination is found in the usual way.
If declination and D. R. latitude are same name the difference is Z. D., if different name the sum is Z. D.

Subtract Z. D. from 90° to get an approximate altitude. The R. \& P. for this altitude is used as correct.

If declination and latitude are opposite names or if same names with declination greater apply correction to declination and subtract from 90° to get the constant.

If same names but latitude greater than declination apply correction with epposite sign to declination, i.e., add if -, subtract if + . The declination with correction is then added to 90° to get the constant.

The observed altitude is in all cases subtracted from the constant.

PROBLEM NO. 18
July 5, 1919. Probable noon position: Lat. $41^{\circ} 07^{\prime}$ N. Long. 143° 17^{\prime} E. Index Error $+1^{\prime} 30^{\prime \prime}$. Dip 36 ft .

Longitude in time $9 \mathrm{~h} 33^{\prime} 08^{\prime \prime}$.
Prob. Lat. Dec.

Approx. Z. D. Approx. Alt.
$41^{\circ} 07^{\prime} 00^{\prime \prime} \mathrm{N}$ $22^{\circ} 54^{\prime} 12^{\prime \prime} \mathrm{N}$ $\overline{18^{\circ} 12^{\prime} 48^{\prime \prime}} \mathrm{N}$ $71^{\circ} 47^{\prime} 12^{\prime \prime} \mathrm{S}$
L. A. T., 5d

Long.
G. A. T., 4d Eq. Time
G. M. T.

4d

Oh $00^{\prime} 00^{\prime \prime}$
9 h $33^{\prime} 08^{\prime \prime}$
14h $26^{\prime} 52^{\prime \prime}$
$+\quad 4^{\prime} 08^{\prime \prime}$
$14 \mathrm{~h} 31^{\prime} 00^{\prime \prime}$ or 14.5 h

(Dec. and latitude same name, latitude greater).

Dec.
Subtract Corr.

$22^{\circ} 54^{\prime} 12^{\prime \prime} \mathrm{N}$
$11^{\prime} 99^{\prime \prime}$
$22^{\circ} 43^{\prime} 03^{\prime \prime}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$112^{\circ} 43^{\prime} 03^{\prime \prime} \mathrm{N}$

Officer will prepart to take his sight when chronometer reads 2:31 A. M.

The Mer. Alt. of Sun's L. L. is now measured and found to be $71^{\circ} 41^{\prime}$ $10^{\prime \prime}$, bearing S . It is subtracted from the expression worked out and gives latitude at once.

Const.	$112^{\circ} 43^{\prime} 03^{\prime \prime}$
Obs. Alt.	$71^{\circ} 41^{\prime} 10^{\prime \prime}$
Lat.	$41^{\circ} 01^{\prime} 53^{\prime \prime} \mathrm{N}$

PROBLEM NO. 19

Jan. 30, 1919. Probable noon position: Lat. $43^{\circ} 17^{\prime}$ N. Long. 61° 1^{\prime} W. Index Error-1' $20^{\prime \prime}$. Dip 36 ft .

(Declination and latitude opposite names).

Dec. Corr.	$+\frac{17^{\circ} 49^{\prime} 06^{\prime \prime} \mathrm{S}}{7^{\prime} 23^{\prime \prime}}$

Officer takes sight at 4:18 P. M. by chronometer and finds sun at its highest point has an altitude of $29^{\circ} 00^{\prime}$, bearing S.

PROBLEM NO. 20

Aug. 8, 1919. Probable noon position: Lat. $31^{\circ} 16^{\prime} 10^{\prime \prime}$ S. Long. $22^{\circ} 10^{\prime}$ E. Index Error $+30^{\prime \prime}$. Dip 36 ft .

Longitude in time $1 \mathrm{~h} 28^{\prime} 40^{\prime \prime}$.
Prob. Lat.
Dec.
Approx. Z. D.
$31^{\circ} 16^{\prime} 10^{\prime \prime} \mathrm{S}$ $16^{\circ} 22^{\prime} 54^{\prime \prime} \mathrm{N}$
$\overline{47^{\circ} 39^{\prime} 04^{\prime \prime}} \mathrm{S}$
L. A. T., 8d Oh $00^{\prime} 00^{\prime \prime}$ Long.
G. A. T., 7d
$23 \mathrm{~h} 31^{\prime} 20^{\prime \prime}$
$+\quad 5^{\prime} 37^{\prime \prime}$ Eq. Time
G. M. T.

Approx. Alt.
$42^{\circ} 20^{\prime} 56^{\prime \prime} \mathrm{N}$
R. \& P.
-
$57^{\prime \prime}$
Dip
S. D.
I. E.
\qquad
$+$
$15^{\prime} 48^{\prime \prime}$
$8^{\prime} 58^{\prime \prime}$
$+\quad 30^{\prime \prime}$
Total Alt. Corr. $+\quad 9^{\prime} 28^{\prime \prime}$
(Declination and latitude opposite names).

Dec.
Corr.

Const.

Sun will cross meridian when chronometer reads $11 \mathrm{~h} 36^{\prime} 57^{\prime \prime}$ A. M. Altitude observed $42^{\circ} 50^{\prime}$, bearing N.

Const.	$73^{\circ} 27^{\prime} 38^{\prime \prime} \mathrm{S}$
Alt.	$42^{\circ} 50^{\prime} 00^{\prime \prime} \mathrm{N}$
	$30^{\circ} 37^{\prime} 38^{\prime \prime} \mathrm{S}$

PROBLEM NO. 21

Dec. 15, 1919. Probable noon position: Lat. $10^{\circ} 12^{\prime}$ S. Long. 60° 00^{\prime} W. Dip 36 ft .

Longitude in time 4 h
Prob. Lat.
Dec.
Approx. Z. D.
Approx. Alt.

R. \& P.	-	$12^{\prime \prime}$
Dip	-	$5^{\prime} 53^{\prime \prime}$
	-	$6^{\prime} 05^{\prime \prime}$
S. D.	+	$16^{\prime} 18^{\prime \prime}$

Total Alt. Corr. $+10^{\prime} 13^{\prime \prime}$

L. A. T., 15d	Oh $00^{\prime} 00^{\prime \prime}$
Long.	4h $00^{\prime} 00^{\prime \prime}$
G. A. T.	$4 \mathrm{~h} 00^{\prime} 00^{\prime \prime}$
Eq. Time	$5^{\prime} 05^{\prime \prime}$
G. M. T. 15d	$\begin{aligned} & \text { 3h } 54^{\prime} 55^{\prime \prime} \\ & 3.9 \mathrm{~h} \end{aligned}$
Dec. for $15 d 4 h$	$23^{\circ} 14.6 \mathrm{~S}$
Corr. for .1h	$0^{\prime} .0$
Dec. for 15d 3.9h	$23^{\circ} 14^{\prime} .6 \mathrm{~S}$

(Declination and latitude same Dec. names, declination greater).

Corr.

	$23^{\circ} 24^{\prime} 49^{\prime \prime}$ $90^{\circ} 00^{\prime} 00^{\prime \prime}$
	$66^{\circ} 35^{\prime} 11^{\prime \prime} \mathrm{N}$

Officer takes sight at 3:55 P. M. by chronometer. Observed altitude $76^{\circ} 10^{\prime}$, bearing S.

Const.
Obs. Alt.
Lat.
$66^{\circ} 35^{\prime} 11^{\prime \prime} \mathrm{N}$
$76^{\circ} 10^{\prime} 00^{\prime \prime} \mathrm{S}$
$9^{\circ} 34^{\prime} 49^{\prime \prime} \mathrm{S}$

CHAPTER VIII

Latitude by meridian altitude of star

This example is worked the same as the previous one.
The declination of a star having a very small annual cnange, it is only necessary to take out the minutes for the month, and the number of degrees on the side opposite the star used.

Declination is found on page 95, Nautical Almanac.
There is no Semi-diameter or Parallax for a star, so the meridian altitude is corrected as follows:

Index Error as per sign if any.
Dip (Table 14) subtract.
Refraction (Table 20A) subtract.
Answer will be true altitude.
Subtract true altitude from 90°. Answer will be Zenith Distance, to be named opposite name to star's bearing.

Under Zenith Distance put down declination and apply as follows:

Same names, add.
Different names, subtract less from greater.
Answer will be latitude.
Name the latitude as follows:
If added, will be named the same as the two of them.
If subtracted, will be named the same as greater of two.

FINDING TIME OF STARS' MERIDIAN PASSAGE

From page 96 (Nautical Almanac) take out G. M. T. of transit of the star for the first day of the month. Then subtract from this time the correction given on page 97 (N. A.) for the day of the month to reduce the time to the date of the observation. This will be local mean time of transit, very closely. A further correction of 10^{3} for every 15° longitude added if E longitude. subtracted if W longitude, may be applied.

PROBLEM NO. 1
Jan. 10, 1919. Find time of Meridian Passage of Star " Spica."

Time of Transit Jan. $1 \quad 18 \mathrm{~h} 38^{\prime}$
Correction for 10d - 35^{\prime}
Time of Transit Jan. 10 18h 03^{\prime}
PROBLEM NO. 2
Feb. 16, 1919. Find time of Meridian Passage of Star " Arcturus."

Time of Transit Feb. $1 \quad 17 \mathrm{~h} 27^{\prime}$
Correction for 16d
Time of Transit Feb. 16 16h 28^{\prime}

- 59^{\prime}

PROBLEM NO. 3
June 3, 1919. Find time of Meridian Passage of Star " Canopus."

Time of Transit June $1 \quad 1 \mathrm{~h} 46^{\prime}$
Correction for 3d
Time of Transit June 3 1h 38^{\prime}
PROBLEM NO. 4
May 12, 1919. Find time of Meridian Passage of Star "Sirius."

Time of Transit May 1 4h 07'
Correction for 12d - 43^{\prime}
Time of Transit May 12 3h 24^{\prime}

LATITUDE BY STAR
 PROBLEM NO. 1

Nov. 12, 1919. Obs. Mer. Alt. *Rigel $26^{\circ} 47^{\prime} 10^{\prime \prime}$ S. Index Error $-1^{\prime} 20^{\prime \prime}$. Dip 18 ft .

Dec. $8^{\circ} 17^{\prime} .5 \mathrm{~S}$

Alt. I. E.	$26^{\circ} 47^{\prime} 10^{\prime \prime}$			True Alt.	$\begin{array}{ll} 90^{\circ} & 00^{\prime} \\ 26^{\circ} & 39^{\prime \prime} \\ 46^{\prime \prime} \end{array}$		
	-		$20^{\prime \prime}$				
Dip	26	45^{\prime}	$50^{\prime \prime}$	Z. D.		20^{\prime}	$14^{\prime \prime}$ N
	-		09'	Dec.			$30^{\prime \prime} \mathrm{S}$
Ref.	26	41^{\prime}	41"	Lat.	55°	02'	$44^{\prime \prime} \mathrm{N}$
	$1^{\prime} 55^{\prime \prime}$						

PROBLEM NO. 2
Feb. 12, 1919. Obs. Mer. Alt. *Procyon $77^{\circ} 18^{\prime} 10^{\prime \prime}$ S. Index Error $+20^{\prime \prime}$. Dip 16 ft .

Dec. $5^{\circ} 25^{\prime} .8 \mathrm{~N}$

Alt.	$77^{\circ} 18^{\prime} 10^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
I. E.	+ $20^{\prime \prime}$	True Alt.	$77^{\circ} 14^{\prime} 22^{\prime \prime}$
	$77^{\circ} 18^{\prime} 30^{\prime \prime}$	Z. D.	$12^{\circ} 45^{\prime} 38^{\prime \prime} \mathrm{N}$
Corr. (46)	$4^{\prime} 08^{\prime \prime}$	Dec.	$5^{\circ} 25^{\prime} 48^{\prime \prime} \mathrm{N}$
True Alt.	$77^{\circ} 14^{\prime} 22^{\prime \prime}$	Lat.	$18^{\circ} 11^{\prime} 26^{\prime \prime} \mathrm{N}$

PROBLEM NO. 3
Mar. 19, 1919. Obs. Mer. Alt. *Arcturus $36^{\circ} 10^{\prime} 20^{\prime \prime} \mathrm{N}$. Index Error $+2^{\prime} 40^{\prime \prime}$. Dip 20 ft .

Dec. $19^{\circ} 35^{\prime} .9 \mathrm{~N}$

Alt. I. E.	$36^{\circ} 10^{\prime} 20^{\prime \prime}$		True Alt.	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	
	$+$	$2^{\prime} 30^{\prime \prime}$			07' $17^{\prime \prime}$
	36	$13^{\prime} 00^{\prime \prime}$	Z. D.	$53^{\circ} 5$	$52^{\prime} 43^{\prime \prime} \mathrm{S}$
Corr. (46)	-	$5^{\prime} 43^{\prime \prime}$	Dec.	19°	$35^{\prime} 54^{\prime \prime} \mathrm{N}$
True Alt.	36	07' $17^{\prime \prime}$	Lat.	$34^{\circ} 1$	$16^{\prime} 49^{\prime \prime} \mathrm{S}$

PROBLEM NO. 4
July 9,1919 . Obs. Mer. Alt. *Spica $49^{\circ} 16^{\prime} 25^{\prime \prime}$ S. Dip. 18 ft .
Dec. $10^{\circ} 44^{\prime} .6 \mathrm{~S}$

Obs. Alt.	$49^{\circ} 16^{\prime} 25^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Corr. (46)	$4^{\prime} 59^{\prime \prime}$	True Alt.	$49^{\circ} 11^{\prime} 26^{\prime \prime} \mathrm{S}$
	$49^{\circ} 11^{\prime} 26^{\prime \prime}$	Z. D.	$40^{\circ} 48^{\prime} 34^{\prime \prime} \mathrm{N}$
		Dec.	$10^{\circ} 44^{\prime} 36^{\prime \prime} \mathrm{S}$
		Lat.	$30^{\circ} 03^{\prime} 58^{\prime \prime} \mathrm{N}$

PROBLEM NO. 5
Mar. 11, 1919. Obs. Mer. Alt. *Betelgeux $80^{\circ} 10^{\prime} 20^{\prime \prime} \mathrm{N}$. Dip 30 ft .
Dec. $7^{\circ} 23^{\prime} .5 \mathrm{~N}$

Obs. Alt	$80^{\circ} 10^{\prime} 20^{\prime \prime}$		$00^{\circ} 00^{\prime} 00^{\prime \prime}$	
Corr. (46)	-	$5^{\prime} 32^{\prime \prime}$	True Alt.	

PROBLEM NO. 6
Feb. 16, 1919. Obs. Mer. Alt. *Aldebaran $38^{\circ} 15^{\prime}$ S. Dip 28 ft. Dec. $16^{\circ} 20^{\prime} .8 \mathrm{~N}$

Obs. Alt.	$38^{\circ} 15^{\prime} 00^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Corr. (46)	$6^{\prime} 25^{\prime \prime}$	True Alt.	$38^{\circ} 08^{\prime} 35^{\prime \prime} \mathrm{S}$
True Alt.	$38^{\circ} 08^{\prime} 35^{\prime \prime}$	Z. D.	$51^{\circ} 51^{\prime} 25^{\prime \prime} \mathrm{N}$
		Dec.	$16^{\circ} 20^{\prime} 48^{\prime \prime} \mathrm{N}$
		Lat.	$68^{\circ} 12^{\prime} 13^{\prime \prime} \mathrm{N}$

PROBLEM NO. 7

Nov. 21, 1919. Obs. Mer. Alt. *Sirius $41^{\circ} 16^{\prime} 00^{\prime \prime}$ S. Dip 40 ft.
Dec. $16^{\circ} 36^{\prime} .4 \mathrm{~S}$

Obs. Alt. Corr. (46)	-	$41^{\circ} 16^{\prime} 00^{\prime \prime}$ $7^{\prime} 20^{\prime \prime}$	True Alt.

PROBLEM NO. 8

Apr. 6, 1919. Obs. Mer. Alt. *Fomalhaut $18^{\circ} 17^{\prime} 00^{\prime \prime}$ S. Dip 28 ft. Dec. $30^{\circ} 03^{\prime} .0 \mathrm{~S}$

Obs. Alt.	$18^{\circ} 17^{\prime} 00^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Corr. (46)	$8^{\prime} 06^{\prime \prime}$	True Alt.	$18^{\circ} 08^{\prime} 54^{\prime \prime} \mathrm{S}$
True Alt.	$18^{\circ} 08^{\prime} 54^{\prime \prime}$	Z. D.	$71^{\circ} 51^{\prime} 06^{\prime \prime} \mathrm{N}$
		Dec.	$30^{\circ} 03^{\prime} 00^{\prime \prime} \mathrm{S}$
		Lat.	$41^{\circ} 48^{\prime} 06^{\prime \prime} \mathrm{N}$

PROBLEM NO. 9
May 12, 1919. Obs. Mer. Alt. *Antares $80^{\circ} 16^{\prime} 00^{\prime \prime}$ N. Dip 20 ft. Dec. $26^{\circ} 15^{\prime} .3 \mathrm{~S}$

Obs. Alt.	$80^{\circ} 16^{\prime} 00^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Corr. (46)	$4^{\prime} 33^{\prime \prime}$	True Alt.	$80^{\circ} 11^{\prime} 27^{\prime \prime} \mathrm{N}$
True Alt.	$80^{\circ} 11^{\prime} 27^{\prime \prime}$	Z. D.	$9^{\circ} 48^{\prime} 33^{\prime \prime} \mathrm{S}$
		Dec.	$26^{\circ} 15^{\prime} 18^{\prime \prime} \mathrm{S}$
		Lat.	$36^{\prime} 03^{\prime} 51^{\prime \prime} \mathrm{S}$

PROBLEM NO. 10

July 16, 1919. Obs. Mer. Alt. *Fomalhaut $73^{\circ} 36^{\prime} 00^{\prime \prime}$ S. Index Error $+1^{\prime} 40^{\prime \prime}$. Dip 24 ft .

Dec. $30^{\circ} 02^{\prime} .6 \mathrm{~S}$

Obs. Alt.	$73^{\circ} 36^{\prime} 00^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
I. E.	$+\quad 1^{\prime} 40^{\prime \prime}$	True Alt.	$73^{\circ} 32^{\prime} 35^{\prime \prime} \mathrm{S}$
	$73^{\circ} 37^{\prime} 40^{\prime \prime}$	Z. D.	$16^{\circ} 27^{\prime} 25^{\prime \prime} \mathrm{N}$
Corr. (46)	$5^{\prime} 05^{\prime \prime}$	Dec.	$30^{\circ} 02^{\prime} 36^{\prime \prime} \mathrm{S}$
	$73^{\circ} 32^{\prime} 35^{\prime \prime}$	Lat.	$13^{\circ} 35^{\prime} 11^{\prime \prime} \mathrm{S}$

PROBLEM NO. 11
Apr. 6, 1919. Obs. Mer. Alt. *Regulus $50^{\circ} 14^{\prime} 20^{\prime \prime}$ S. Index Error $+1^{\prime} 15^{\prime \prime}$. Dip 18 ft .

Dec. $12^{\circ} 21^{\prime} .5 \mathrm{~N}$

Obs. Alt.	$50^{\circ} 14^{\prime} 20^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
I. E.	$+\quad 1^{\prime} 15^{\prime \prime}$	True Alt.	$50^{\circ} 10^{\prime} 37^{\prime \prime} \mathrm{S}$
	$50^{\circ} 15^{\prime} 35^{\prime \prime}$	Z. D.	$39^{\circ} 49^{\prime} 23^{\prime \prime} \mathrm{N}$
Corr. (46)	$4^{\prime} 58^{\prime \prime}$	Dec.	$12^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{N}$
True Alt.	$50^{\circ} 10^{\prime} 37^{\prime \prime}$	Lat.	$52^{\circ} 10^{\prime} 53^{\prime \prime} \mathrm{N}$

PROBLEM NO. 12

Dec. 26, 1919. Obs. Mer. Alt. *Sirius $36^{\circ} 28^{\prime} 30^{\prime \prime}$ S. Index Error -45". Dip 16 ft.

Dec. $16^{\circ} 36^{\prime} .5 \mathrm{~S}$

Obs. Alt I. E.

Corr. (46)

$36^{\circ} 28^{\prime} 30^{\prime \prime}$	
-	
$35^{\prime \prime}$	True Alt.
$-\quad$ $7^{\prime} 45^{\prime \prime}$	Z. D.
$34^{\circ} 24^{\prime \prime} 31^{\prime \prime}$	Dec.
Lat.	

$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$36^{\circ} 22^{\prime} 31^{\prime \prime} \mathrm{S}$
$53^{\circ} 37^{\prime} 29^{\prime \prime}$
N
$16^{\circ} 36^{\prime} 30^{\prime \prime} \mathrm{S}$
$37^{\circ} 00^{\prime} 59^{\prime \prime} \mathrm{N}$

CHAPTER IX

LONGITUDE BY SUN

The longitude of a place is the number of hours, minutes and seconds east or west of the meridian of Greenwich, which is Long. 0°, expressed in degrees, minutes and seconds.

A chronometer is an ordinary clock of the finest make, with a 12 -hour face, and keeps the time of Greenwich.

The astronomical day is explained under Definitions, and begins at noon and ends at noon.

In all instances in this example if chronometer time is A. M. add 12 to the hours and date one day back.
P. M. chronometer time keeps same date as example.

Put down chronometer time and correct fast or slow as given. Answer will be Greenwich Mean Time expressed G. M. T.

Take out Sun's declination for Greenwich mean time.
The polar distance is the angular distance of a heavenly body from the pole nearest the observer. To find polar distance follow rule:

If latitude and declination are different names, add 90° to declination.

If latitude and declination are same names, subtract declination from 90°.

A chronometer always keeps the time of a day of exactly 24 hours, which is called a Mean day, but the sun's time which is known as Apparent Time, changes a little every day. The difference between mean time and apparent time is called the equation of time.

Take from the almanac equation of time for Greenwich date and time, and apply it to G. M. T. as by sign given in almanac.

Answer will be Greenwich Apparent Time expressed G. A. T.

Correct observed altitude of sun as follows:
Index error as per sign, if any.
Semi-Diameter from almanac. Add for Lower Limb. Subtract for Upper.

Dip (Table 14) subtract.
Refraction and parallax (Table 20B) subtract. Answer will be true altitude.
Add together true altitude, latitude and polar distance, and divide sum by 2 . Answer will be half sum.

Subtract true altitude from half sum. Answer will be remainder.

From Table 44 (Bowditch) take out the following logarithms to the nearest second of arc:

Secant of latitude. Rejecting 10 from index number.
Cosecant of polar distance. Rejecting 10 from index number. (See note.)

Cosine of half sum.
Sine of remainder.
Add these four logarithms together, and subtract 10 from index number.

Note.-If polar distance exceeds 90° take Secant of declination instead.

Logarithm Haversine (Table 45) that agrees with sum of logarithms will be the Local Apparent Time, expressed L. A. T.

If sight was taken in A. M. read hours and minutes from bottom, and seconds in right-hand column, and date one day back.

If sight was taken in P. M. read hours and minutes from top, and seconds in left-hand column, and date same as example.

Under L. A. T. put down G. A. T. If both are same date subtract less from greater, if different dates add 24 hours to greatest date, and then subtract less from greater. Answer. will be longitude in time.

Multiply hours of longitude in time by 60, and add the minutes. Divide the minutes by 4 , and the result will be degrees of longitude. If any minutes are left multiply by 60 and add the seconds, divide by 4 , and the result will be minutes of longitude. If any seconds are left multiply by 60 and divide by 4 , and the result will be seconds of longitude.

If the Greenwich time is best, the longitude is west.
If the Greenwich time is least, the longitude is east.

FINDING GREENWICH DATE AND TIME

The Greenwich time and date is absolutely necessary to be found correctly in this example.

In some of the problems given in this book the reading of the chronometer is given A. M. or P. M., others longitude by dead reckoning is given; in others the Greenwich date and time is given.

Below will be found the different methods that an example may be given, and the explanation of how the Greenwich date may be found.

If the chronometer reads A. M. and no longitude by D. R. is given, add 12 hours to the time, and date one day back.

For example: Jan. 25th P. M. at ship. Chronometer read $10 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ A. M.

Greenwich date and time will be Jan. 24th $22 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$.
If chronometer reads P. M. and no longitude by D. R. is given, the Greenwich date and time will be the same as the example.

For example: Jan. 25 th A. M. at ship. Chronometer read $1 \mathrm{~h} 16^{\prime} 28^{\prime \prime} \mathrm{P}$. M.

Greenwich date and time will be Jan. 25th $1 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$.
If the Greenwich date is given, the chronometer is put down in the following manner:

Jan. 25th A. M. at ship. Chronometer read Jan. 24th $11 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$.

Greenwich date and time will be Jan. 24th $11 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$.
If the approximate ship's time and longitude by $\mathrm{D} . \mathrm{R}$. are given in an example, and the chronometer reading without stating whether it is A. M. or P. M. the student must be able to determine whether the chronometer is A. M. or P. M. in order to convert it into astronomical time.

For example, if problem was given in following manner:
Jan. 26 th about 7 A. M. at ship. Longitude by D. R. $90^{\circ} \mathrm{W}$. Chronometer read $1 \mathrm{~h} 10^{\prime \prime}$.

Now as the difference between ship's time and Greenwich time is the longitude in time, we have for the above example a longitude in time of 6 hours.

In west longitude the Greenwich time is the largest. So if it is about 7 A . M. at ship, it must be $1 \mathrm{~h} 10^{\prime}$ P. M. at Greenwhich. Or, Greenwich date Jan. 26th 1h 10^{\prime}.

Now presuming this example was in longitude by D. R. $90^{\circ} \mathrm{E}$.

In east longitude the ship's time is the largest. So if it is about 7 A. M. at ship, it must be $1 \mathrm{~h} 10^{\prime}$ A. M. at Greenwich. Or, Greenwich date Jan. 25th 13h 10^{\prime}.

This will explain practically all the methods of finding Greenwich date, and if the student will read his problem carefully he should have no trouble.

It must always be remembered that the astronomical day begins at noon of the civil day, and ends at noon, and a 24 -hour face clock must be imagined.

PROBLEM NO. 1

Jan. 31, 1919, A. M. Obs. Alt. Sun's L. L. $13^{\circ} 54^{\prime} 00^{\prime \prime} . \quad$ Dip 36 ft. Chronometer read $2 \mathrm{~h} 46^{\prime} 17^{\prime \prime}$ P. M., fast $34^{\prime} 34^{\prime \prime}$. Lat. $25^{\circ} 44^{\prime} \mathrm{N}$.

Chron. Fast	$\begin{array}{r} 2 \mathrm{~h} 46^{\prime} 17^{\prime \prime} \\ -\quad 34^{\prime} 34^{\prime \prime} \end{array}$	Dec., 31d, 2h Corr. .2h	17°	$34^{\prime} .2 \mathrm{~S}$ $0^{\prime} .1$
G. M. T., 31d	$2 \mathrm{~h} 11^{\prime} 43^{\prime \prime}$	Dec. 31d 2.2h	17°	$34^{\prime} .1 \mathrm{~S}$
Eq. Time	$13^{\prime} 30^{\prime \prime}$			
			${ }_{90}{ }^{\circ}$	$00^{\prime} 00^{\prime \prime}$ 34^{\prime} $00^{\prime \prime}$
G. A. T., 31d	1h $58^{\prime} 13^{\prime \prime}$	Dec.	17°	$34^{\prime} 06^{\prime \prime}$
Altitude	$13^{\circ} 54^{\prime} 00^{\prime \prime}$	P. D.	107°	$34^{\prime} 06^{\prime \prime}$
S. D.	$+16^{\prime} 15^{\prime \prime}$			
	$14^{\circ} 10^{\prime} 15^{\prime \prime}$			
Dip	$5^{\prime} 53^{\prime \prime}$			
	$14^{\circ} 04^{\prime} 22^{\prime \prime}$			
R. \& P.	- $3^{\prime} 40^{\prime \prime}$			
True Alt. (h)	$14^{\circ} 00^{\prime} 42^{\prime \prime}$			
Lat.	$25^{\circ} 44^{\prime} 00^{\prime \prime}$	Sec.		. 04536
P. D.	$107^{\circ} 34^{\prime} 06^{\prime \prime}$	Csc		. 02074
	$2)$			
Half Sum (s)	$73^{\circ} 39^{\prime} 24^{\prime \prime}$	Cos		9.44931
h	$14^{\circ} 00^{\prime} 42^{\prime \prime}$			
s-h	$59^{\circ} 38^{\prime} 42^{\prime \prime}$	Sin		9.93596
		Log. Hav.		9.45137

L. A. T., 30d
G. A. T., 31d

Long.

$$
\frac{\begin{array}{c}
\text { 19h } 43^{\prime} 01^{\prime \prime} \\
\text { 1h } 58^{\prime} 13^{\prime \prime}
\end{array}}{6 \mathrm{~h} 15^{\prime} 12^{\prime \prime} \text { or }}
$$

PROBLEM NO. 2

Jan. 30, 1919, P. M. Obs. Alt. Sun's L. L. $18^{\circ} 32^{\prime}$. Dip 36 ft. Chron. read $10 \mathrm{~h} 42^{\prime} 46^{\prime \prime}$ P. M., fast $34^{\prime} 28^{\prime \prime}$. Lat. $27^{\circ} 12^{\prime} \mathrm{N}$.

Chron.	10h $42^{\prime} 46^{\prime \prime}$	Dec. 30d 10h	$17^{\circ} 45^{\prime} .2 \mathrm{~S}$
Fast	$34^{\prime} 28^{\prime \prime}$	Corr. . 1 h	$0^{\prime} .1$
G. M. T., 30d	10h $08^{\prime} 18^{\prime \prime}$	Dec. 30d 10.1h	$17^{\circ} 45^{\prime} .1 \mathrm{~S}$
Eq. Time	$13^{\prime} 23^{\prime \prime}$		$90^{\circ} 00^{\prime} 00^{\prime \prime}$
G. A. T.	9h $54^{\prime} 55^{\prime \prime}$	P. D.	$107^{\circ} 45^{\prime} .1$

L A. T, 30d		$3 \mathrm{~h} 48^{\prime} 39^{\prime \prime}$
G. A. T., 30d		$9 \mathrm{~h} 54^{\prime} 55^{\prime \prime}$
Long.		$6 \mathrm{~h} 06^{\prime} 16^{\prime \prime}$ or

PROBLEM NO. 3

Mar. 11, 1919, A. M. Obs. Alt. Sun's L. L. $28^{\circ} 13^{\prime} 00^{\prime \prime}$. Dip 38 ft. Chronometer read $3 \mathrm{~h} 12^{\prime} 15^{\prime \prime}$ A. M. Lat. $31^{\circ} 46^{\prime} \mathrm{S}$.

G. M. T., 10d	15h $12^{\prime} 15^{\prime \prime}$	Dec. 10d 14h	$4^{\circ} 10^{\prime} .6 \mathrm{~S}$
Eq. Time	$10^{\prime} 28^{\prime \prime}$	Corr. for 1.2 h	$1^{\prime} .2 \mathrm{~S}$
G. A. T., 10d	15h 01' $47^{\prime \prime}$	Dec. 10d 15.2h	$\begin{aligned} & 4^{\circ} 09^{\prime} .4 \mathrm{~S} \\ & 90^{\circ} 00^{\prime} \end{aligned}$
		P. D.	$85^{\circ} 50^{\prime} .6$

Alt.	$28^{\circ} 13^{\prime} 00^{\prime \prime}$		
S. D.	$+16^{\prime} 06^{\prime \prime}$		
	$28^{\circ} 29^{\prime} 06^{\prime \prime}$		
Dip	$6^{\prime} 02^{\prime \prime}$		
	$28^{\circ} 23^{\prime} 04^{\prime \prime}$		
R. \& P.	$1^{\prime} 40^{\prime \prime}$		
True Alt.	$28^{\circ} 21^{\prime} 24^{\prime \prime}$		
Lat.	$31^{\circ} 46^{\prime} 00^{\prime \prime}$	Sec	. 07048
P. D.	$85^{\circ} 50^{\prime} 36^{\prime \prime}$	Csc	. 00114
	$2 \longdiv { 1 4 5 ^ { \circ } 5 8 ^ { \prime } 0 0 ^ { \prime \prime } }$		
S	$72^{\circ} 59^{\prime} 00^{\prime \prime}$	Cos	9.46635
s-h	$44^{\circ} 37^{\prime} 36^{\prime \prime}$	Sin	9.84664
		Log. Hav.	9.38461

L. A. T., 10d
G. A. T., 10d

Long.

20h $04^{\prime} 01^{\prime \prime}$
15h 01' $47^{\prime \prime}$
5 h $02^{\prime} 14^{\prime \prime}$ or

PROBLEM NO. 4

Jan. 31, 1919, P. M. Obs. Alt. Sun's L. L. $18^{\circ} 32^{\prime}$. Dip 36 ft. Chronometer read $10 \mathrm{~h} 42^{\prime} 46^{\prime \prime}$ A. M., fast $34^{\prime} 28^{\prime \prime}$. Lat. $27^{\circ} 12^{\prime} \mathrm{N}$.

Chron.	22h $42^{\prime} 46^{\prime \prime}$	Dec. 30d 22h	$17^{\circ} 37^{\prime} .0 \mathrm{~S}$
Fast	$34^{\prime} 28^{\prime \prime}$	Corr. for .1h	$0^{\prime} .1$
G. M. T., 30d	22h $08^{\prime} 18^{\prime \prime}$	Dec. 30d 22.1h	$17^{\circ} 36^{\prime} .9$
Eq. Time	$13^{\prime} 28^{\prime \prime}$		$90^{\circ} 00^{\prime} .0$
G. A. T., 30d	21h $54^{\prime} 50^{\prime \prime}$	P. D.	$107^{\circ} 36{ }^{\prime} .9$

Alt.	$18^{\circ} 32^{\prime} 00^{\prime \prime}$		
S. D.	$+16^{\prime} 18^{\prime \prime}$		
	$18^{\circ} 48^{\prime} 18^{\prime \prime}$		
Dip	$5^{\prime} 53^{\prime \prime}$		
	$18^{\circ} 42^{\prime} 25^{\prime \prime}$		
R. \& P.	$2^{\prime} 43^{\prime \prime}$		
h	$18^{\circ} 39^{\prime} 42^{\prime \prime}$		
Lat.	$27^{\circ} 12^{\prime} 00^{\prime \prime}$	Sec	05089
P. D.	$107^{\circ} 36^{\prime} 54^{\prime \prime}$	Csc	. 02086
	$2 \longdiv { 1 5 } 3 ^ { \circ } 2 8 ^ { \prime } 3 6 ^ { \prime \prime }$		
s	$76^{\circ} 44^{\prime} 18^{\prime \prime}$	Cos	9.36059
$s-h$	$58^{\circ} 04^{\prime} 36^{\prime \prime}$	Sin	9.92879
		Log. Hav.	9.36113

L. A. T., 31d

G A. T, 30d
Long.

3h $49^{\prime} 06^{\prime \prime}$
21h $54^{\prime} 50^{\prime \prime}$
$5 \mathrm{~h} 54^{\prime} 16^{\prime \prime}$ or
$88^{\circ} 34^{\prime} \mathrm{E}$

PROBLEM NO. 5

Mar. 10, 1919, A. M. Obs. Alt. Sun's L. L. $21^{\circ} 00^{\prime} 00^{\prime \prime}$. Dip 38 ft Chronometer read $1 \mathrm{~h} 07^{\prime} 56^{\prime \prime}$ P. M. Lat. $31^{\circ} 19^{\prime} \mathrm{N}$.

Alt.	$21^{\circ} 00^{\prime} 00^{\prime \prime}$		
S. D.	$+16^{\prime} 06^{\prime \prime}$		
	$21^{\circ} 16^{\prime} 06^{\prime \prime}$		
Dip	$6^{\prime} 02^{\prime \prime}$		
	$21^{\circ} 10^{\prime} 04^{\prime \prime}$		
R. \& P.	$2^{\prime} 21^{\prime \prime}$		
h	$21^{\circ} 07^{\prime} 43^{\prime \prime}$		
Lat.	$31^{\circ} 19^{\prime} 00^{\prime \prime}$	Sec	. 06839
P. D.	$94^{\circ} 23^{\prime} 18^{\prime \prime}$	Cse	. 00127
	$2 \longdiv { 1 4 6 ^ { \circ } 5 0 ^ { \prime } 0 1 ^ { \prime \prime } }$		
S	$73^{\circ} 25^{\prime} 00^{\prime \prime}$	Cos	9.45547
$s-h$	$52^{\circ} 17^{\prime} 17^{\prime \prime}$	Sin	9.89823
		Log. Hav.	9.42336

L. A. T., 9d
G. A. T., 10d

Long. \quad| 19h $52^{\prime} 06^{\prime \prime}$ |
| ---: |
| $0 \mathrm{~h} 57^{\prime} 19^{\prime \prime}$ |

PROBLEM NO. 6

July 5, 1919, A. M. Obs. Alt. Sun's L. L. $18^{\circ} 15^{\prime}$. Dip 38 ft. Chronometer read $10 \mathrm{~h} 15^{\prime} 25^{\prime \prime}$ A. M., slow $12^{\prime} 10^{\prime \prime}$. Lat. $37^{\circ} 15^{\prime} \mathrm{N}$.

L. A. T., 4d	18h $24^{\prime} 59^{\prime \prime}$
G. A. T., 4 d	22h $23^{\prime} 24^{\prime \prime}$
Long.	3h $58^{\prime} 25^{\prime \prime}$

PROBLEM NO. 7

July 5, 1919, A. M. Obs. Alt. Sun's L. L. $14^{\circ} 28^{\prime} 30^{\prime \prime}$. Dip 21 ft . Chronometer read $4 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ A. M., slow $14^{\prime} 28^{\prime \prime}$. Lat. $26^{\circ} 33^{\prime}$ N.

Chron	16h $16^{\prime} 28^{\prime \prime}$	Dec. 4 d 16 h	$22^{\circ} 53^{\prime} .9 \mathrm{~N}$
Slow	+ 14'28"	Corr. .5h	$0^{\prime} .1$
G. M. T.	16h $30^{\prime} 56^{\prime \prime}$	Dec. 4 d 16.5 h	$22^{\circ} 53^{\prime} .8$
Eq. Time	$4^{\prime} 09^{\prime \prime}$		$90^{\circ} 00^{\prime}$
G. A. T. 4 d	16h $26^{\prime} 47^{\prime \prime}$	P. D.	$67^{\circ} 06^{\prime} .2$
Alt.	$14^{\circ} 28^{\prime} 30^{\prime \prime}$		
S. D.	+ $15^{\prime} 45^{\prime \prime}$		
	$14^{\circ} 44^{\prime} 15^{\prime \prime}$		
Dip	- $4^{\prime} 29^{\prime \prime}$		
	$14^{\circ} 39^{\prime} 46^{\prime \prime}$		
R. \& P.	- $3^{\prime} 30^{\prime \prime}$		
h	$14^{\circ} 36^{\prime} 16^{\prime \prime}$		
Lat.	$26^{\circ} 33^{\prime} 00^{\prime \prime}$	Sec	. 04840
P. D.	$67^{\circ} 06^{\prime} 12^{\prime \prime}$	Csc	. 03564
	2) $\overline{108^{\circ} 15^{\prime} 28^{\prime \prime}}$		
s	$54^{\circ} 07^{\prime} 44^{\prime \prime}$	Cos	9.76787
s-h	$39^{\circ} 31^{\prime} 28^{\prime \prime}$	Sin	9.80373
		Log. Hav.	9.65564

L. A. T., 4d
G. A. T., 4 d

Long.

$$
28^{\circ} 45^{\prime} 15^{\prime \prime} \mathrm{E}
$$

$18 \mathrm{~h} 21^{\prime} 48^{\prime \prime}$
16h $26^{\prime} 47^{\prime \prime}$
1h $55^{\prime} 01^{\prime \prime} \mathrm{E}$ or

PROBLEM NO. 8

Jan. 31, 1919, P. M. Obs. Alt. Sun's L. L. $23^{\circ} 16^{\prime}$. Dip 36 ft. Chronometer read $10 \mathrm{~h} 38^{\prime} 38^{\prime \prime} \mathrm{P} . \mathrm{M}$., fast $34^{\prime} 37^{\prime \prime}$. Lat. $24^{\circ} 55^{\prime} \mathrm{N}$.

Chron.	10h $38^{\prime} 38^{\prime \prime}$	Dec. 31d 10h	$17^{\circ} 28^{\prime} .7 \mathrm{~S}$
Fast.	- $34^{\prime} 37^{\prime \prime}$	Corr. .1h	$0^{\prime} .1$
G. M. T. 31d	10h $04^{\prime} 01^{\prime \prime}$	Dec. 31d 10.1h	$17^{\circ} 28^{\prime} .6 \mathrm{~S}$
Eq. Time	$13^{\prime} 33^{\prime \prime}$		$90^{\circ} 00^{\prime} .0$
G. A. T.	$9 \mathrm{~h} 50^{\prime} 28^{\prime \prime}$	P. D.	$107^{\circ} 28^{\prime} .6$
Alt.	$23^{\circ} 16^{\prime} 00^{\prime \prime}$		
S. D.	$+\quad 16^{\prime 1} 16^{\prime \prime}$		
	$23^{\circ} 32^{\prime} 16^{\prime \prime}$		
Dip	- $5^{\prime} 53^{\prime \prime}$		
	$23^{\circ} 26^{\prime} 23^{\prime \prime}$		
R. \& P.	- $2^{\prime} 05^{\prime \prime}$		
h	$23^{\circ} 24^{\prime} 18^{\prime \prime}$		
Lat.	$24^{\circ} 55^{\prime} 00^{\prime \prime}$	Sec	. 04243
P. D.	$107^{\circ} 28^{\prime} 36^{\prime \prime}$	Csc	. 02052
	2) $155^{\circ} 47^{\prime} 54^{\prime \prime}$		
s	$77^{\circ} 53^{\prime} 57^{\prime \prime}$	Cos	9.32146
$s-h$	$54^{\circ} 29^{\prime} 39^{\prime \prime}$ 。	Sin	9.91066
		Log. Hav.	9.29507

L. A. T., 31d G. A. T. 31d	3h $30^{\prime} 57^{\prime \prime}$ Long.
$9 \mathrm{~h} 50^{\prime} 28^{\prime \prime}$$\quad 94^{\circ} 52^{\prime} 45^{\prime \prime} \mathrm{W}$	$6 \mathrm{~h} 19^{\prime} 31^{\prime \prime} \mathrm{W}$ or

PROBLEM NO. 9

Dec. 15,1919 , A. M. Obs. Alt. Sun's L. L. $28^{\circ} 16^{\prime} 15^{\prime \prime} . \operatorname{Dip} 40 \mathrm{ft}$. Chronometer read $4 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ P. M., slow $14^{\prime} 28^{\prime \prime}$. Lat. $26^{\circ} 33^{\prime}$ S.

Chron.	$4 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$	Dec. 15d 4h	$23^{\circ} 14^{\prime} .6 \mathrm{~S}$
Slow	$+14^{\prime} 28^{\prime \prime}$	Corr. for . 5 h	$+\quad 0^{\prime} .1$
G. M. T. 15d	4h $30^{\prime} 56^{\prime \prime}$	Dec. 15d 4.5h	$23^{\circ} 14^{\prime} .7 \mathrm{~S}$
Eq. Time	+ $5^{\prime} 04^{\prime \prime}$		$90^{\circ} 00^{\prime}$
G. A. T.	$4 \mathrm{~h} 36^{\prime} 00^{\prime \prime}$	P. D.	$66^{\circ} 45^{\prime} .3$

Alt.	$28^{\circ} 16^{\prime} 15^{\prime \prime}$		
S. D.	$+\quad 16^{\prime} 18^{\prime \prime}$		
	$28^{\circ} 32^{\prime} 33^{\prime \prime}$		
Dip	$6^{\prime} 12^{\prime \prime}$		
	$28^{\circ} 26^{\prime} 21^{\prime \prime}$		
R. \& P.	$1^{\prime} 39^{\prime \prime}$		
h	$28^{\circ} 24^{\prime} 42^{\prime \prime}$		
Lat.	$26^{\circ} 33^{\prime} 00^{\prime \prime}$	Sec	. 04840
P. D.	$66^{\circ} 45^{\prime} 18^{\prime \prime}$	Csc	. 03676
	$2 \longdiv { 1 2 1 ^ { \circ } 4 3 ^ { \prime } 0 0 ^ { \prime \prime } }$		
s	$60^{\circ} 51^{\prime} 30^{\prime \prime}$	Cos	9.68750
$s-h$	$32^{\circ} 26^{\prime} 48^{\prime \prime}$	Sin	9.72958
		Log. Hav.	9.50224

L. A. T., 14d
G. A. T., 15d

19h $25^{\prime} 27^{\prime \prime}$

$$
4 \mathrm{~h} 36^{\prime} 00^{\prime \prime}
$$

Long.

$$
137^{\circ} 38^{\prime} 15^{\prime \prime} \mathrm{W}
$$

PROBLEM NO. 10
Oct. 24, 1919, A. M. Obs. Alt. Sun's L. L. $18^{\circ} 26^{\prime} 15^{\prime \prime} . \operatorname{Dip} 40 \mathrm{ft}$. Chronometer read $2 \mathrm{~h} 08^{\prime} 03^{\prime \prime}$ A. M., fast $58^{\prime} 13^{\prime \prime}$. Lat. $3^{\circ} 21^{\prime} \mathrm{S}$.

Chron.	14h $08^{\prime} 03^{\prime \prime}$	Dec. 23d 12h	$11^{\circ} 18^{\prime} .6 \mathrm{~S}$
Fast	$58^{\prime} 13^{\prime \prime}$	Corr. for 1.2 h	$+\quad 1.1$
G. M. T. 23d	13h 09' $50^{\prime \prime}$	Dec. 23d 13.2h	$11^{\circ} 19^{\prime} .7 \mathrm{~S}$
Eq. Time	+ 15'33'		$90^{\circ} 00^{\prime}$
G. A. T. 23d	13h $25^{\prime} 23^{\prime \prime}$	P. D.	$78^{\circ} 40^{\prime} .3$

Alt.	$18^{\circ} 26^{\prime} 15^{\prime \prime}$		
S. D.	$+\quad 16^{\prime} 06^{\prime \prime}$		
	$18^{\circ} 42^{\prime} 21^{\prime \prime}$		
Dip	$6^{\prime} 12^{\prime \prime}$		
	$18^{\circ} 36^{\prime} 09^{\prime \prime}$		
R. \& P.	- $2^{\prime} 43^{\prime \prime}$		
h	$18^{\circ} 33^{\prime} 26^{\prime \prime}$		
Lat.	$3^{\circ} 21^{\prime} 00^{\prime \prime}$	Sec	. 00074
P. D.	$78^{\circ} 40^{\prime} 18^{\prime \prime}$	Csc	. 00855
	2) $\overline{100^{\circ} 34^{\prime} 44^{\prime \prime}}$		
S	$50^{\circ} 17^{\prime} 22^{\prime \prime}$	Cos	9.80544
$s-h$	$31^{\circ} 43^{\prime} 56^{\prime \prime}$	Sin	9.72094
		Log. Hav.	9.53567

L. A. T., 23d
G. A. T., 23d

Long.

$$
86^{\circ} 55^{\prime} 15^{\prime \prime} \mathrm{E}
$$

19h $13^{\prime} 04^{\prime \prime}$ $13 \mathrm{~h} 25^{\prime} 23^{\prime \prime}$ 5h $47^{\prime} 41^{\prime \prime} \mathrm{E}$ or

CHAPTER X

NOON POSITION SIGHTS

The following problems are worked the same as the foregoing longitude sights as far as obtaining the longitude at sight.

In working a sight for longitude the correct latitude of the place at time of sight must be used.

In this problem the latitude at noon is given, and the latitude at sight must be found by taking from Table 2 (Bowditch) the difference of latitude and departure for the course and distance sailed between sight and noon.

If the sight is taken in A. M. the name of the latitude difference north or south must be reversed to work the latitude back to sight.

If taken in P. M. the name of the latitude difference stays the same.

By applying the difference of latitude to latitude at noon, will be found the latitude at sight, which is the latitude to be used in working the problem.

The middle latitude is then found by adding together latitude at noon and latitude at sight, and dividing sum by 2 .

Enter Table 2 with middle latitude as a course and look for departure in latitude column. In the distance column opposite will be difference of longitude in miles.

If sight is taken in P. M. the name of the difference of longitude east or west must be reversed to work the problem back to noon.

If sight is A. M. the name of the difference of longitude stays the same.

The chronometer is corrected for the original error slow or fast, and the number of days and tenths of a day from date of original error to Greenwich date are figured out, and multiplied by daily rate; this will give the accumulated rate.

This accumulated rate is then applied to chronometer, and the result will be G. M. T.

The example is then worked as in previous problem, and the longitude at sight is obtained.

By applying the difference of longitude to the longitude at sight, will give the longitude at noon.

This will give ship's noon position.

PROBLEM NO. 1

Feb. 10, 1919, A. M. Obs. Alt. Sun's L. L. $9^{\circ} 09^{\prime} 50^{\prime \prime}$. Index Error $-3^{\prime} 20^{\prime \prime}$. Dip 18 ft . Chronometer read Feb 9, 9h $59^{\prime} 25^{\prime \prime}$ which was fast on Jan. $10,34^{\prime} 12^{\prime \prime}$ and losing $10^{\prime \prime} .8$, daily. Lat. at noon $50^{\circ} 16^{\prime}$ $24^{\prime \prime} \mathrm{N}$. Ship's run from sight to noon $\mathrm{S} 56^{\circ} \mathrm{W}$ (true) 38 miles.

Chron.

Acc. Rate	-$9 \mathrm{~h} 25^{\prime} 13^{\prime \prime}$ $5^{\prime} 28^{\prime \prime}$ G. M. T. 9d Eq. Time
Gh $30^{\prime} 41^{\prime \prime}$ G. A. T. 9d	$14^{\prime} 22^{\prime \prime}$ h $16^{\prime} 19^{\prime \prime}$

30.4 days
$10^{\prime \prime} .8$
$328^{\prime \prime}$ Acc. rate or $5^{\prime} 28^{\prime \prime}$

Dec. 9d 8h	$14^{\circ} 48^{\prime} .5$
Corr. 1.5h	$-\frac{1^{\prime} .2}{14^{\circ} 47^{\prime} .3 \mathrm{~S}}$
Dec. 9d 9.5h	$\frac{90^{\circ} 00^{\prime}}{}$
P. D.	$104^{\circ} 47^{\prime} .3$
Lat. Noon	$50^{\circ} 16^{\prime} 24^{\prime \prime} \mathrm{N}$
Diff. Lat.	$\frac{21^{\prime} 12^{\prime \prime}}{}$
Lat. at Sight	$50^{\circ} 37^{\prime} 36^{\prime \prime} \mathrm{N}$

At. Mid. Lat 50°; Dep. 31.5 miles; Diii. ' $o n g 49^{\prime}$ W

Alt. I. E.	$9^{\circ} 09^{\prime} 50^{\prime \prime}$	-	
	$3^{\prime} 20^{\prime \prime}$		
	$9^{\circ} 06^{\prime} 30^{\prime \prime}$		
S. D.	$+\quad 16^{\prime} 12^{\prime \prime}$		
	$9^{\circ} 22^{\prime} 42^{\prime \prime}$		
Dip	$4^{\prime} 09^{\prime \prime}$		
	$9^{\circ} 18^{\prime} 33^{\prime \prime}$		
R. \& P.	$5^{\prime} 33$ "		
True Alt. Lat. P. D.	$9^{\circ} 13^{\prime} 00^{\prime \prime}$		
	$50^{\circ} 37^{\prime} 36^{\prime \prime}$	Sec	$\begin{array}{r} .19765 \\ .01465 \end{array}$
	$104^{\circ} 47^{\prime} 18^{\prime \prime}$	Csc	
	2) $164^{\circ} 37^{\prime} 54^{\prime \prime}$		
$\begin{aligned} & s \\ & s-h \end{aligned}$	$82^{\circ} 18^{\prime} 57^{\prime \prime}$	Cos	9.12617
	$73^{\circ} 05^{\prime} 57^{\prime \prime}$	$\%$ Sin	9.98083
		Log. Hav.	9.31928
	L. A. T. 9d	20h $22^{\prime} 36^{\prime \prime}$	
	G. A. T. 9d	$9 \mathrm{~h} 16^{\prime} 19^{\prime \prime}$	
	Long. Sight	$11 \mathrm{~h} 06^{\prime} 17^{\prime \prime}$ or	
		$166^{\circ} 34^{\prime} 15^{\prime \prime} \mathrm{E}$	
	Diff. Long.	$49^{\prime} 00^{\prime \prime} \mathrm{W}$	
	Long. Noon	$165^{\circ} 45^{\prime} 15^{\prime \prime} \mathrm{E}$	

PROBLEM NO. 2

Jan. 31, 1919, A. M. Obs. Alt. Sun's L.L. $15^{\circ} 08^{\prime}$. Dip 38 ft. Chronometer read $2 \mathrm{~h} 45^{\prime} 49^{\prime \prime} \mathrm{P}$. M. which was fast on Jan. 11th, $31^{\prime} 34^{\prime \prime}$ and gaining $9^{\prime \prime}$ daily. Lat. at noon $25^{\circ} 31^{\prime} 17^{\prime \prime}$ N. Ship's run from sight to noon $\mathrm{S} 26^{\circ} \mathrm{W}$ (true) 57 miles.

Chron.		2h $45^{\prime} 49^{\prime \prime}$
Fast	-	$31^{\prime} 34^{\prime \prime}$
		2h 14' $15^{\prime \prime}$
Acc. Rate	-	$3^{\prime} 01^{\prime \prime}$
G. M. T. 31d		2h 11' $14^{\prime \prime}$
Eq. Time	-	$13^{\prime} 30^{\prime \prime}$
G. A. T. 31d		1h 57' $44^{\prime \prime}$

$\frac{\begin{array}{c}20.1 \\ 9^{\prime \prime}\end{array}}{180^{\prime \prime} .9}$ Acc. Rate

Lat. Noon	
Diff. Lat.	$25^{\circ} 31^{\prime} 17^{\prime \prime} \mathrm{N}$
Lat. Sight	$51^{\prime} 12^{\prime \prime} \mathrm{N}$
	$26^{\circ} 22^{\prime} 29^{\prime \prime} \mathrm{N}$

At Mid. Lat. 26°; Dep. 25.0 miles, Diff. Long. $28^{\prime} \mathrm{W}$.

Dec. 31d 2h Corr. 2h	$-\quad 17^{\circ} 34^{\prime} .2 \mathrm{~S}$
Dec. 31d 2.2 h	$-11^{\prime} \mathrm{S}$
	$90^{\circ} 34^{\prime} .1 \mathrm{~S}$ 0^{\prime}
P. D.	$107^{\circ} 34^{\prime} .1$

Obs. Alt.	$15^{\circ} 08^{\prime} 00^{\prime \prime}$		
S. D.	$+16^{\prime} 15^{\prime \prime}$		
	$15^{\circ} 24^{\prime} 15^{\prime \prime}$		
Dip	$5^{\prime} 53^{\prime \prime}$		
	$15^{\circ} 18^{\prime} 22^{\prime \prime}$		
R. \& P.	$3^{\prime} 22^{\prime \prime}$		
h	$15^{\circ} 15^{\prime} 00^{\prime \prime}$		
Lat.	$26^{\circ} 22^{\prime} 29^{\prime \prime}$	Sec	. 04774
P. D.	$107^{\circ} 34^{\prime} 06^{\prime \prime}$	Csc	. 02074
	2) $149^{\circ} 11^{\prime} 35^{\prime \prime}$		
s	$74^{\circ} 35^{\prime} 48^{\prime \prime}$	Cos	9.42425
$s-h$	$59^{\circ} 20^{\prime} 48^{\prime \prime}$	Sin	9.93463
		Log. Hav.	9.42736

L. A. T. 30d
G. A. T. 31d

Long. at Sight
Diff. Long.
Long. at Noon

19h $50^{\prime} 50^{\prime \prime}$
1h $57^{\prime} 44^{\prime \prime}$

$$
\begin{aligned}
\begin{aligned}
6 \mathrm{~h} & 06^{\prime} \\
94^{\prime \prime} & \mathrm{W} \text { or } \\
91^{\circ} & 43^{\prime} \\
30^{\prime \prime} & \mathrm{W} \\
& 28^{\prime} \\
00^{\prime \prime} & \mathrm{W}
\end{aligned} \\
\hline 92^{\circ} 11^{\prime} 30^{\prime \prime} \mathrm{W}
\end{aligned}
$$

PROBLEM NO. 3

Jan. 2, 1919, A. M. Obs. Alt. Sun's L. L. $49^{\circ} 10^{\prime}$. Index Error $-2^{\prime} 40^{\prime \prime}$. Dip 14 ft . Chronometer read 7h 08' $50^{\prime \prime}$ A. M., which was slow on Dec. $7,19^{\prime} 10^{\prime \prime} .6$ and losing $9^{\prime \prime} .8$ daily. Lat. at noon $37^{\circ} 21^{\prime}$ $36^{\prime \prime} \mathrm{S}$. Ship's run from sight to noon $\mathrm{S} 45^{\circ} \mathrm{W}$ (true) 32 miles.

Chron.
Slow

Dec. 1d 18h	$23^{\circ} 00^{\prime} .6 \mathrm{~S}$
Corr. 1.5h	$0^{\prime} .3$
Dec. 1d 19.5h	$23^{\circ} 00^{\prime} .3$
	$90^{\circ} 00^{\prime} .0$
P. D.	$66^{\circ} 59^{\prime} .7$
Lat. at Noon	$37^{\circ} 21^{\prime} 36^{\prime \prime} \mathrm{S}$
Diff. Lat.	$22^{\prime} 36^{\prime \prime} \mathrm{N}$
Lat. at Sight	$36^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{S}$

P. D.

Lat. at Noon Diff. Lat.
25.8 days
$9^{\prime \prime} .8$
$253^{\prime \prime}$ Acc. Rate

Obs. Alt. I. E.	$49^{\circ} 10^{\prime} 00^{\prime \prime}$	
	-	$2^{\prime} 40^{\prime \prime}$
	49	07' $20^{\prime \prime}$
S. D.	+	$16^{\prime} 18^{\prime \prime}$
	49	$23^{\prime} 38^{\prime \prime}$
Dip	-	$3^{\prime} 40^{\prime \prime}$
	49	$19^{\prime} 58^{\prime \prime}$
R. \& P.	-	$45^{\prime \prime}$
h	49	$19^{\prime} 13^{\prime \prime}$
Lat.	36	59' $00^{\prime \prime}$
P. D.	66	$59^{\prime} 42^{\prime \prime}$
	2) 15	$17^{\prime} 55^{\prime \prime}$
s		$38^{\prime} 58^{\prime \prime}$
$s-h$	27	$19^{\prime} 45^{\prime \prime}$

Sec	.09756
Csc	.03599
Cos	9.36344
Sin	9.66191
Log. Hav.	9.15890

L. A. T. 1d
G. A. T. 1d

Long. at Sight
Diff. Long.
Long. at Noon

21h $01^{\prime} 28^{\prime \prime}$
19h $28^{\prime} 31^{\prime \prime}$

PROBLEM NO. 4

Oct. 17, 1919, P. M. Obs. Alt. Sun's L. L. $16^{\circ} 19^{\prime} 15^{\prime \prime}$. Dip 28 ft. Chronometer read $11 \mathrm{~h} 55^{\prime} 03^{\prime \prime}$ P. M., which was fast on Sept. 23, $8^{\prime} 23^{\prime \prime}$ and gaining $8 .^{\prime \prime} 2$ daily. Latitude at noon $22^{\circ} 35^{\prime} 48^{\prime \prime}$ S. Ship's run from noon to sight N $18^{\circ} \mathrm{W}$ (true) 42 miles.

Chron. Fast	$\begin{array}{r} 11 \mathrm{~h} 55^{\prime} 03^{\prime \prime} \\ -\quad 8^{\prime} 23^{\prime \prime} \end{array}$	$\begin{aligned} & 24.5 \text { days } \\ & 8^{\prime \prime} .2 \end{aligned}$	
Acc. Rate	11h $46^{\prime} 40^{\prime \prime}$	201' Acc. Rate	
	- $3^{\prime} 21^{\prime \prime}$	Dec. 17d 10h Corr. 1.7 h	
			$9^{\circ} 07^{\prime} .3 \mathrm{~S}$
G. M. T. 17d Eq. Time	11h $43^{\prime} 19^{\prime \prime}$		$+\quad 1{ }^{\prime} .5$
	$+14^{\prime} 31^{\prime \prime}$	Dec. 17d 11. ${ }^{\prime} 7 \mathrm{~h}$	
G. A. T. 17d	11h $57^{\prime} 50^{\prime \prime}$		$\begin{aligned} & 9^{\circ} 08^{\prime} .8 \\ & 90^{\circ} 00^{\prime} \end{aligned}$
		P. D.	$80^{\circ} 51^{\prime} .2$
		Lat. Noon Diff. Lat.	$\begin{array}{r} 22^{\circ} 35^{\prime} 48^{\prime \prime} \mathrm{S} \\ 39^{\prime} 54^{\prime \prime} \stackrel{N}{N} \end{array}$
		Lat. Sight	$\overline{21^{\circ} 55^{\prime} 54^{\prime \prime}} \mathrm{S}$
		At Mid. Lat. 22 Diff. Long. 14' E	; Dep.13.0miles;

Alt.	$16^{\circ} 19^{\prime} 15^{\prime \prime}$
S. D.	$+16^{\prime} 06^{\prime \prime}$
	$16^{\circ} 35^{\prime} 21^{\prime \prime}$
Dip.	$5^{\prime} 11^{\prime \prime}$
	$16^{\circ} 30^{\prime} 10^{\prime \prime}$
R. \& P.	$3^{\prime} 06^{\prime \prime}$
h	$16^{\circ} 27^{\prime} 04^{\prime \prime}$
Lat.	$21^{\circ} 55^{\prime} 54^{\prime \prime}$
P. D.	$80^{\circ} 51^{\prime} 12^{\prime \prime}$
	$2 \longdiv { 1 1 9 ^ { \circ } 1 4 ^ { \prime } 1 0 ^ { \prime \prime } }$
s	$59^{\circ} 37^{\prime} 05^{\prime \prime}$
s-h	$43^{\circ} 10^{\prime} 01^{\prime \prime}$

Sec	.03262
Csc	.00556
Cos	9.70394
Sin	9.83513
Log. Hav.	9.57725

L. A. T. 17 d
G. A. T. 19d

Long. at Sight
Diff. Long.
Long. at Noon

$\begin{aligned} & \text { 5h } 03^{\prime} \\ & 11 \mathrm{~h} 24^{\prime \prime} \\ & 50^{\prime \prime}\end{aligned}$	
	$54^{\prime} 26^{\prime \prime}$
$103{ }^{\circ}$	$36^{\prime} 30^{\prime \prime}$
	14^{\prime}
103°	$22^{\prime} 30^{\prime \prime}$

PROBLEM NO. 5
Dec. 1, 1919, A. M. Obs. Alt. Sun's L. L. $15^{\circ} 18^{\prime} 12^{\prime \prime} . \operatorname{Dip} 26 \mathrm{ft}$. Chronometer read Nov. 30th, 9h $02^{\prime} 05^{\prime \prime}$, which was slow on Nov. 10th $3^{\prime} 55^{\prime \prime}$, and gains $7^{\prime \prime} .8$ daily. Latitude at noon $18^{\circ} 16^{\prime}$ N. Ship's run from sight to noon $\mathrm{N} 28^{\circ} \mathrm{E}$ (true) 58 miles.

$$
\begin{aligned}
& \frac{20.4 \text { days }}{7^{\prime \prime} .8} \\
& 159^{\prime \prime} \text { Acc. Rate }
\end{aligned}
$$

Lat. at Noon $\quad 18^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$
Diff. Lat.
$51^{\prime} 12^{\prime \prime} \mathrm{S}$
Lat. at Sight
$17^{\circ} 24^{\prime} 48^{\prime \prime} \mathrm{N}$
At Mid. Lat. 18°; Dep. 27.2 miles; Diff. Long. $28^{\prime} .5 \mathrm{E}$.

Dec. 30d 8h

$$
\begin{array}{r}
\begin{array}{r}
21^{\circ} 34^{\prime} .9 \mathrm{~S} \\
+ \\
\hline 20^{\circ} .5 \\
\hline 90^{\circ} 35^{\prime} .4 \mathrm{~S} \\
\hline 111^{\circ} 35^{\prime} .4
\end{array}
\end{array}
$$

Corr. 1.2h
Dec. 30d 9.2h
P. D.

Obs. Alt.	$15^{\circ} 18^{\prime} 12^{\prime \prime}$
S. D.	$+\quad 16^{\prime} 15^{\prime \prime}$
	$15^{\circ} 34^{\prime} 27^{\prime \prime}$
Dip	$5^{\prime} 00^{\prime \prime}$
	$15^{\circ} 29^{\prime} 27^{\prime \prime}$
R. \& P.	$3^{\prime} 19^{\prime \prime}$
True h	$15^{\circ} 26^{\prime} 08^{\prime \prime}$
Lat.	$17^{\circ} 24^{\prime} 48^{\prime \prime}$
P. D.	$111^{\circ} 35^{\prime} 24^{\prime \prime}$
	$2 \longdiv { 1 4 4 ^ { \circ } 2 6 ^ { \prime } 2 0 ^ { \prime \prime } }$
5	$72^{\circ} 13^{\prime} 10^{\prime \prime}$
s-h	$56^{\circ} 47^{\prime} 02^{\prime \prime}$

Sec	.02037
Csc	.03159
Cos	9.48483
Sin	9.9252
Log. Hav.	9.45931

L. A. T. 30d
G. A. T. 30d

Long. at Sight
Diff. Long.
Long. at Noor:

19h $40^{\prime} 23^{\prime \prime}$
9h $14^{\prime} 45^{\prime \prime}$

$$
\begin{array}{r}
10 \mathrm{~h} 25^{\prime} 38^{\prime \prime} \text { or } \\
156^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{E} \\
28^{\prime} 30^{\prime \prime} \mathrm{E} \\
\hline 156^{\circ} 53^{\prime} 00^{\prime \prime} \mathrm{E}
\end{array}
$$

PROBLEM NO. 6

May 3, 1919, A. M. Obs. Alt. Sun's L. L. $28^{\circ} 49^{\prime}$. Dip 30 ft . Chronometer read $8 \mathrm{~h} 03^{\prime} 02^{\prime \prime}$ A. M., which was slow on Apr. 7, $3^{\prime} 28^{\prime \prime}$, and gaining $2^{\prime \prime} .8$ daily. Latitude at noon $28^{\circ} 16^{\prime} 28^{\prime \prime} \mathrm{N}$. Ship's run from sight to noon $\mathrm{S} 69^{\circ} \mathrm{W}$ (true) 73 miles.

Chron.
Slow

Acc. Rate	$-\begin{array}{r}20 \mathrm{~h} 06^{\prime} 30^{\prime \prime} \\ 1^{\prime} 12^{\prime \prime}\end{array}$
$\begin{array}{l}\text { G. M. T. 2d } \\ \text { Eq. Time }\end{array}$	$\begin{array}{l}20 \mathrm{~h} 05^{\prime} 18^{\prime \prime} \\ \text { G. A. T. 2d }\end{array}$

$20 \mathrm{~h} 03^{\prime} 02^{\prime \prime}$
+$03^{\prime} 28^{\prime \prime}$
$20 \mathrm{~h} 06^{\prime} 30^{\prime \prime}$
$-\quad 1^{\prime} 12^{\prime \prime}$
$20 \mathrm{~h} 05^{\prime} 18^{\prime \prime}$ $03^{\prime} 06^{\prime \prime}$ $20 \mathrm{~h} 08^{\prime} 24^{\prime \prime}$

Lat. at Noon Diff. Lat.

Lat. at Sight

Dec. 2d 20h Corr. 1h	$15^{\circ} 23^{\prime} .5 \mathrm{~N}$ $0^{\prime} .1$
Dec. 2d 20.1h	$15^{\circ} 23^{\prime} .6 \mathrm{~N}$ $90^{\circ} 00^{\prime} .0$
$\frac{74^{\circ} 36^{\prime} .4}{}$	

$28^{\circ} 16^{\prime} 28^{\prime \prime} \mathrm{N}$ $26^{\prime} 12^{\prime \prime} \mathrm{N}$
25.8 days
$2^{\prime \prime} .8$
$72^{\prime \prime}$ Acc. Rate
$28^{\circ} 42^{\prime} 40^{\prime \prime} \mathrm{N}$

At Mid. Lat. 29°; Dep. 68.2 miles; Diff. Long. $77^{\prime} \mathrm{W}$.

Sec	.05698
Csc	.01589
Cos	9.60690
Sin	9.78123
Log. Hav.	9.46100

19h $39^{\prime} 49^{\prime \prime}$
L. A. T. 2d
G. A. T. 2d

Long. at Sight
Diff. Long.
Long. at Noon

$$
\begin{aligned}
& \text { Obs. A } \\
& \text { S. D. }
\end{aligned}
$$

$$
\begin{array}{r}
28^{\circ} 49^{\prime} 00^{\prime \prime} \\
+\quad 15^{\prime} 54^{\prime \prime} \\
\hline 29^{\circ} 04^{\prime} 54^{\prime \prime} \\
-\quad 5^{\prime} 22^{\prime \prime} \\
\hline 28^{\circ} 59^{\prime} 32^{\prime \prime} \\
-\quad 11^{\prime} 37^{\prime \prime} \\
\hline 28^{\circ} 57^{\prime} 55^{\prime \prime} \\
28^{\circ} 42^{\prime} 40^{\prime \prime} \\
74^{\circ} 36^{\prime} 24^{\prime \prime} \\
\hline 2) 132^{\circ} 16^{\prime} 59^{\prime \prime} \\
\hline 66^{\circ} 08^{\prime} 30^{\prime \prime} \\
37^{\circ} 10^{\prime} 35^{\prime \prime}
\end{array}
$$

Dip
R. \& P.

True Alt. Lat.
P. D.
s
$s-h$
9.60690
9.78123
9.46100

20h $08^{\prime} 24^{\prime \prime}$

$28^{\prime} 35^{\prime \prime}$
$7^{\circ} 08^{\prime} 45^{\prime \prime}$
$1^{\circ} 17^{\prime} 00^{\prime \prime}$
$8^{\circ} 25^{\prime} 45^{\prime \prime}$

PROBLEM NO. 7

Apr. 23, 1919, A. M. Obs. Alt. Sun's L. L. $23^{\circ}{ }^{15}$ '. Dip 26 ft . Chronometer read 0h $03^{\prime} 12^{\prime \prime}$ A. M., which was slow on Mar. 16th, 4^{\prime} $28^{\prime \prime}$, and gaining $11^{\prime \prime} .7$ daily. Latitude at noon $27^{\circ} 23^{\prime}$ S. Ship's run from sight to noon $\mathrm{N} 28^{\circ} \mathrm{E}$ (true) 62 miles.

Chron.	12h $03^{\prime} 12^{\prime \prime}$
Slow	+ $04^{\prime} 28^{\prime \prime}$
	12h $07^{\prime} 40^{\prime \prime}$
Acc. Rate	$07^{\prime} 19^{\prime \prime}$
G. M. T. 22d	12h $00^{\prime} 21^{\prime \prime}$
Eq. Time	+ $01^{\prime} 28^{\prime \prime}$
G. A. T. 22d	12h $01^{\prime} 49^{\prime \prime}$

37.5 days
$\frac{11^{\prime \prime} .7}{439^{\prime \prime}}$ Acc. Rate

Dec. 22d 12h
$12^{\circ} 06^{\prime} \mathrm{N}$
P. D.
$102^{\circ} 06^{\prime}$

Lat. at Noon	$27^{\circ} 23^{\prime} 00^{\prime \prime}$
Diff. Lat.	$54^{\prime} 42^{\prime \prime}$
Lat. at Sight	$28^{\circ} 17^{\prime} 42^{\prime \prime} \mathrm{S}$

At Mid. Lat. 28°; Dep. 29.1 miles; Diff. Long. 33^{\prime} E.

Obs. Alt. S. D.	$23^{\circ} 15^{\prime} 00^{\prime \prime}$	
	$+$	$15^{\prime} 54^{\prime \prime}$
	23	30' $54^{\prime \prime}$
Dip	-	$5^{\prime} 00^{\prime \prime}$
	23	25' $54^{\prime \prime}$
R. \& P.	-	$2^{\prime} 05^{\prime \prime}$
True Alt. (h)		23' 49"'
		$17^{\prime} 42^{\prime \prime}$
P. D.	102	06' $00^{\prime \prime}$
	2)153	47' $31^{\prime \prime}$
8		53' $46^{\prime \prime}$
$s-h$	53	29' $57 \prime \prime$

Sec	.05526
Csc	.00976
Cos	9.35550
Sin	9.90518
Log. Hav.	9.32570

L. A. T. 22d
G. A. T. 22d

Long. at Sight
Diff. Long.
Long. at Noon

20h $20^{\prime} 51^{\prime \prime}$
12h $01^{\prime} 49^{\prime \prime}$

PROBLEM NO. 8

Nov. 28, 1919, A. M. Obs. Alt. Sun's L. L. $50^{\circ} 25^{\prime}$. Dip 30 ft. Chronometer read $9 \mathrm{~h} 33^{\prime} 10^{\prime \prime}$ A. M., which was fast on Oct. 22d, $3^{\prime} 28^{\prime \prime}$ and losing $4 .^{\prime \prime} 7$ daily. Latitude at noon $0^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$. Ship's run from sight to noon N 79° E (true) 31 miles.

Chron. 27d		
Fast	-$21 \mathrm{~h} 33^{\prime} 10^{\prime \prime}$ $03^{\prime} 28^{\prime \prime}$	36.8 days $4^{\prime \prime} .7$
$21 \mathrm{~h} 29^{\prime} 42^{\prime \prime}$	$-173^{\prime \prime}$ Acc. Rate	

G. M.T.
G. A. T. 27d
$+\quad 02^{\prime} 53^{\prime \prime}$
$+\begin{array}{r}21 \mathrm{~h} 32^{\prime} 35^{\prime \prime} \\ \hline 26^{\prime \prime} \\ \hline 21 \mathrm{~h} 44^{\prime} 51^{\prime \prime}\end{array}$

Dec. 27d 20h	21	$08^{\prime} .8 \mathrm{~S}$
Corr. 1.5h	+	$0^{\prime} .7$
Dec. 27d 21.5h		$\begin{aligned} & 09 . ' 5 \mathrm{~S} \\ & 00^{\prime} \end{aligned}$

P. D. $\quad 111^{\circ} 09^{\prime} .5$

Lat. at Noon Diff. Lat. Lat. at Sight	$00^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$
$5^{\prime} 54^{\prime \prime} \mathrm{S}$	

Dep. 30.4 miles; Diff.Long. $30^{\prime} .4$.

Obs. Alt.	$50^{\circ} 25^{\prime} 00^{\prime \prime}$		
S. D.	$+\quad 16^{\prime} 12^{\prime \prime}$		
	$50^{\circ} 41^{\prime} 12^{\prime \prime}$		
Dip	$5^{\prime} 22^{\prime \prime}$		
	$50^{\circ} 35^{\prime} 50^{\prime \prime}$		
R. \& P.	$42^{\prime \prime}$		
h	$50^{\circ} 35^{\prime} 08^{\prime \prime}$		
Lat.	$0^{\circ} 04^{\prime} 36^{\prime \prime}$	Sec	. 00000
P. D.	$111^{\circ} 09^{\prime} 30^{\prime \prime}$	Csc	. 03031
	2) $161^{\circ} 49^{\prime} 14^{\prime \prime}$		
s	$80^{\circ} 54^{\prime} 37^{\prime \prime}$	Cos	9.19862
s-h	$30^{\circ} 19^{\prime} 29^{\prime \prime}$	Sin	9.70300
		Log. Hav.	8.93193

L. A. T. 27d
G. A. T. 27d

Long. at Sight
Diff. Long.
Long. at Noon

$$
\begin{aligned}
& 21 \mathrm{~h} 43^{\prime} 59^{\prime \prime} \\
& 21 \mathrm{~h} 44^{\prime} 51^{\prime \prime} \\
& \hline
\end{aligned}
$$

PROBLEM NO. 9
Mar. 21, 1919, P. M. Obs. Alt. Sun's L. L. $34^{\circ} 17^{\prime} 30^{\prime \prime}$. Dip 36 ft. Chronometer read $9 \mathrm{~h} 45^{\prime} 17^{\prime \prime}$ A. M., which was fast on Feb. 27th, $1 \mathrm{~h} 06^{\prime}$, and losing $9 . .^{\prime \prime} 5$ daily. Latitude at noon $23^{\circ} 15^{\prime} \mathrm{S}$. Ship's run from noon to sight $\mathrm{N} 24^{\circ} \mathrm{W}$ (true) 56 miles.

Chron. Fast	$\begin{array}{r} 21 \mathrm{~h} 45^{\prime} 17^{\prime \prime} \\ -1 \mathrm{~h} 06^{\prime} 00^{\prime \prime} \end{array}$
	20h $39^{\prime} 17^{\prime \prime}$
Acc. Rate	+ $3^{\prime} 27^{\prime \prime}$
G. M. T. 20d	20h $42^{\prime} 44^{\prime \prime}$
Eq. Time	$7{ }^{\prime} 34^{\prime \prime}$
G. A. T. 20d	20h $35^{\prime} 10^{\prime \prime}$.

Obs. Alt. S D.	$34^{\circ} 17^{\prime} 30^{\prime \prime}$	
	$+$	$16^{\prime} 06^{\prime \prime}$
Dip	$34^{\circ} 33^{\prime} 36^{\prime \prime}$	
	-	$5^{\prime} 53^{\prime \prime}$
R. \& P.	$34^{\circ} 27^{\prime} 43^{\prime \prime}$	
	-	$1^{\prime} 17^{\prime \prime}$
h		$26^{\prime} 26^{\prime \prime}$
Lat.	$\begin{array}{lll} 22^{\circ} & 23^{\prime} & 48^{\prime \prime} \\ 89^{\circ} & 52^{\prime} & 30^{\prime \prime} \end{array}$	
P. D.		
	2) 14	$42^{\prime} 44^{\prime \prime}$
S		$21^{\prime} 22^{\prime \prime}$
$s-b$		$54^{\prime} 56^{\prime \prime}$

Sec	.03406
Csc	0.0000
Cos	9.45700
Sin	9.79808
Log. Hav.	9.28914

L. A. T. 21d
G. A. T. 20d

Long. at Sight
Diff. Long.
Long. at Noon

Dep. 22.8 miles; Diff. Long. 25^{\prime} E.
$\frac{21.8 \text { days }}{9 . .^{\prime \prime} 5}$
$207^{\prime \prime}$
$-\begin{array}{r}0^{\circ} 08^{\prime} .2 \mathrm{~S} \\ -\frac{.7}{} \\ \hline 90^{\circ} 07^{\prime} .5 \mathrm{~S} \\ \hline 80^{\circ} 50^{\prime} 52^{\prime} .5\end{array}$ E.

PROBLEM NO. 10
Sept. 30, 1919, A. M. Obs. Alt. Sun's L. L. $38^{\circ} 16^{\prime} 45^{\prime \prime}$. Dip 24 ft. Chronometer read 11h $17^{\prime} 25^{\prime \prime}$ P. M., which was fast on Aug. 28th, 2h 15^{\prime}, and gaining $4^{\prime \prime} .7$ daily. Latitude at noon $41^{\circ} 16^{\prime} \mathrm{N}$. Ship's run from sight to noon $\mathrm{S} 84^{\circ} \mathrm{W}$ (true) 63 miles.

Chron. Fast	$\begin{array}{r} 11 \mathrm{~h} 17^{\prime} \\ -25^{\prime \prime} \\ \hline 5^{\prime} \end{array}$
	$9 \mathrm{~h} 02^{\prime} 25^{\prime \prime}$
Acc. Rate	$2^{\prime} 37^{\prime \prime}$
G. M. T. 30d	8h 59' $48^{\prime \prime}$
Eq. Time	$+\quad 9^{\prime} 49^{\prime \prime}$
G. A. T. 30d	9h 09' $37 \prime \prime$

$$
\frac{4^{\prime \prime .7}}{153.4 \text { days }}
$$

Lat. at Noon
Diff. Lat.
Lat. at Sight

$41^{\circ} 16^{\prime} 00^{\prime \prime}$ $06^{\prime} 36^{\prime \prime}$ N
$41^{\circ} 22^{\prime} 36^{\prime \prime}$

Dep. 62.7 miles; Diff. Long. 83^{\prime} W.

Dec. 30d 8h Corr. 1 h	$\begin{gathered} 2^{\circ} 37^{\prime} .3 \mathrm{~S} \\ 1.0 \end{gathered}$
Dec. 30d 9h	$2^{\circ} 38^{\prime} .3$
	$90^{\circ} 00^{\prime} .0$
P. D.	$92^{\circ} 38^{\prime} .3$

P. D.
$92^{\circ} 38^{\prime} .3$

Obs. Alt.	$38^{\circ} 16^{\prime} 46^{\prime \prime}$
S. D.	$+16^{\prime} 00^{\prime \prime}$
	$38^{\circ} 32^{\prime} 46^{\prime \prime}$
Dip	$4^{\prime} 48^{\prime \prime}$
	$38^{\circ} 27^{\prime} 57^{\prime \prime}$
R. \& P.	$1^{\prime} 07 \prime$
h	$38^{\circ} 26^{\prime} 50^{\prime \prime}$
Lat.	$41^{\circ} 22^{\prime} 36^{\prime \prime}$
P. D.	$92^{\circ} 38^{\prime} 18^{\prime \prime}$
	$2) \underline{172^{\circ} 27^{\prime} 44^{\prime \prime}}$
S	$86^{\circ} 13^{\prime} 52^{\prime \prime}$
$s-h$	$47^{\circ} 47^{\prime} 02^{\prime}$

Sec	.12472
Csc	.00046
Cos	8.81780
Sin	9.86959
Log. Hav.	8.81257

L. A. T. 29 dt
G. A. T. 30d

Long. at Sight
Diff. Long.
Long. at Noon

CHAPTER XI

DEVIATION BY AZIMUTH OF SUN

This problem is to find error and deviation of the compass.

Azimuth is the true bearing of a heavenly body and is reckoned from the north point in north latitude and from the south point in south latitude from 0° to 180°.

For example, if in north latitude and the sun bore N $80^{\circ} \mathrm{E}$ the azimuth would read $\mathrm{N} 80^{\circ} \mathrm{E}$, if it bore $\mathrm{S} 80^{\circ} \mathrm{E}$, the azimuth would be $\mathrm{N} 100^{\circ} \mathrm{E}$.

The azimuth is obtained by a shadow pin at the center of the compass or sight vanes which cast shadow lines across the compass. Due to difficulty of reading caused by rolling, pitching, etc., several readings should be taken and the average used. In practice azimuths are read to the nearest degree.

Since azimuth is changing rapidly close to noon, azimuth of the sun should be taken in the morning or the evening when azimuth is changing slowly.

TIME AZIMUTH

If azimuth is taken at least two hours before, or after noon, it is sufficient to know apparent time of the ship to nearest minute. If chronometer is read to nearest one-half minute, and equation of time and longitude in time found with some degree of accuracy it will be sufficiently close to obtain from the H. O. 71 tables, the true bearing to the nearest degree.

Place compass bearing and true bearing under each other, and the difference will be the compass error.

Name the error as follows:
If the true bearing is to right of compass bearing, error is east.

If the true bearing is to left of compass bearing, error is west.

Note.-Always imagine that you are standing in the center of the compass and looking toward the bearings.

Under the error put down the variation as given in example and apply as follows:

Variation and error same name, subtract lesser from greater.

Variation and error different name, add the two.
The result will be deviation of compass on course steered at time of taking the bearing.

Name the deviation as follows:
The deviation will always be named the same as the error, unless you subtract the error from the variation; it will then be named the opposite name to error.

PROBLEM NO. 1
July 5, 1919. Chronometer read $11 \mathrm{~h} 16^{\prime} 30^{\prime \prime}$ A. M. Lat. 18° S. Long. $62^{\circ} 10^{\prime} \mathrm{W}$. Sun bore by compass $\mathrm{N} 70^{\circ} \mathrm{E}$. Variation $6^{\circ} \mathrm{E}$.

G. M. T. 4d	23h 16'.0	In July declination is N or oppo-
Eq. Time	$4^{\prime} .0$	site name to latitude.
G. A. T.	23h $12^{\prime} .0$	
Long.	4h 08'.7	
L. A. T. 4 d	19h $03{ }^{\prime} .3$	
True Bearing	S $117^{\circ} \mathrm{E}$	
Compass Bearing	S $110^{\circ} \mathrm{E}$	
Error	$7^{\circ} \mathrm{W}$	
Variation	$6^{\circ} \mathrm{E}$	
Deviation	$13^{\circ} \mathrm{W}$	

PROBLEM NO. 2
Oct. 24, 1919. Chronometer read 3 h $23^{\prime} .5$ A. M. Lat 40° N. Long. $91^{\circ} 02^{\prime} \mathrm{E}$. Sun bore by compass $\mathrm{N} 135^{\circ} \mathrm{E}$. Variation $41^{\circ} \mathrm{E}$.

G. M. T. 23d	$15 \mathrm{~h} 23^{\prime} .5$	In October declination is S , or
Eq. Time	+ 15'.5	opposite name to latitude.
G. A. T. 23d	15h $39^{\prime} .0$	
Long.	6h $04^{\prime} .0$	
L. A. T.	$\begin{aligned} & 21 \mathrm{~h} 43^{\prime} \text { or } \\ & 9: 43 \mathrm{~A} . \mathrm{M} . \end{aligned}$	
True Bearing	N $140^{\circ} \mathrm{E}$	
Compass Bearing	N $135^{\circ} \mathrm{E}$	
Error	$5^{\circ} \mathrm{E}$	
Variation	$41^{\circ} \mathrm{E}$	
Deviation	$36^{\circ} \mathrm{W}$	

PROBLEM NO. 3
Jan. 30, 1919. Chronometer read 1h $50^{\prime} \mathrm{P} . \mathrm{M}$. Lat. $28^{\circ} \mathrm{N}$ 。 Long. $91^{\circ} 15^{\prime} \mathrm{W}$. Sun bore by compass N $126^{\circ} \mathrm{E}$. Variation $7^{\circ} \mathrm{E}$.

G. M. T. 30d Eq. Time	$\begin{aligned} & \text { 1h } \quad \begin{array}{l} 50^{\prime} \\ 13^{\prime} \end{array}, \end{aligned}$
G. A. T., 30d	1h 37'
Long.	6h 05'
L. A. T. 29d	19h $32{ }^{\prime}$ or
30d	7:32 A. M
True Bearing	N $117^{\circ} \mathrm{E}$
Compass Bearing	N $126^{\circ} \mathrm{E}$
Error	$9^{\circ} \mathrm{W}$
Variation	$7^{\circ} \mathrm{E}$
Deviation	$16^{\circ} \mathrm{W}$

In January declination is \mathbf{S}, or opposite name to latitude.

PROBLEM NO. 4
Apr. 19, 1919. Chronometer read $1 \mathrm{~h} 02^{\prime}$ A. M. Lat. 36° N. Long. $110^{\circ} 25^{\prime} \mathrm{E}$. Sun bore by compass $\mathrm{N} 103^{\circ} \mathrm{E}$. Variation $6^{\circ} \mathrm{E}$.

G. M. T. 18d	$13 \mathrm{~h} 02^{\prime}$
Eq. Time	+ $0^{\prime} .5$
G. A. T.	13h $02^{\prime} .5$
Long.	7h $21^{\prime} .5$
L. A. T. 18d	$\begin{gathered} 20 \mathrm{~h} 24^{\prime} \text { or } \\ 8: 24 \mathrm{~A} . \mathrm{M} . \end{gathered}$
True Bearing	N $103{ }^{\circ} \mathrm{E}$
Compass Bearing	N $103{ }^{\circ} \mathrm{E}$
Error	0°
Variation	$6^{\circ} \mathrm{E}$
Deviation	$6^{\circ} \mathrm{W}$

In April declination is N , or same name as latitude.

CHAPTER XII

DEVIATION BY AMPLITUDE

An amplitude is the bearing of a heavenly body at rising or setting.

It is reckoned from the East and West points of the compass toward North and South from 0° to 90°.

East and West are reckoned as 0° and North and South as 90°.

To convert a compass bearing into an amplitude proceed as follows:

If the sun bore at rising $\mathrm{N} 82^{\circ} \mathrm{E}$, the compass amplitude would be $\mathrm{E} 8^{\circ} \mathrm{N}$.

If the sun bore at setting $\mathrm{S} 79^{\circ} \mathrm{W}$, the compass amplitude would be W $11^{\circ} \mathrm{S}$.

Put down chronometer time and correct fast or slow as given.

Answer will be Greenwich Mean Time.
Take out Sun's declination for Greenwich date and time for degree and nearest minute.

From Table 44 (Bowditch) take out the following logs:
Secant of latitude. Rejecting 10 from index number.
Sine of declination.
Add these two logs together.
Look for Sine (Table 44) that agrees with sum of logs, and the degrees and minutes from top and side of page will be true amplitude.

Name the true amplitude as follows:
If sun is rising, name it East. If declination is North, name N, if South, name S.

If sun is setting name it West. If declination is North, name N, if South, name S.

Now convert compass bearing into an amplitude, and apply it to true amplitude as follows:

If both are of same name, subtract less from greater.
If different names, add the two.
Result will be error of compass.
Name the error of compass as follows:
If true bearing is to right of compass bearing, the error is East.

If true bearing is to left of compass bearing, the error is West.

Always imagine yourself standing in the center of the compass, and looking towards the bearings.

Under the error put down the variation given in example, and apply as follows:

Variation and error same name, subtract less from greater.

Variation and error different name, add the two.
Answer will be deviation.
Name the deviation as follows:
The deviation will always be named the same as the error, unless you subtract the error from the variation, it will then be named the opposite name to error.

Table 39 (Bowditch) may also be used. Most local inspectors, however, insist that the amplitude be worked out.

PROBLEM NO. 1

Jan. 30, 1919. Sun bore at rising N 83° E. Chronometer read $2 \mathrm{~h} 12^{\prime}$ P.M. Lat. $46^{\circ} 15^{\prime} \mathrm{S}$. Variation 8° E.
G.M.T 30d $2 \mathrm{~h} 12^{\prime}$

Sec. of Lat. Sin of Dec.

Sin
True Amp. Compass Amp.

Error
Variation
Deviation

Dec. 30d $2 \mathrm{~h} \quad 17^{\circ} 51^{\prime} \mathrm{S}$
. 16020
9.48647
9.64667

E $26^{\circ} \mathrm{S}$
E $7^{\circ} \mathrm{N}$
$33^{\circ} \mathrm{E}$
$8^{\circ} \mathrm{E}$
$25^{\circ} \mathrm{E}$

Check by Table 39 for Lat. $46^{\circ} \mathrm{S}$; dec. $18^{\circ} \mathrm{S}$; amp. E $26^{\circ} \mathrm{S}$.

PROBLEM NO. 2

Oct. 22, 1919. Sun bore at rising $S 71^{\circ}$ E. Chronometer read $1 \mathrm{~h} 50^{\prime} \mathrm{P}$. M. Lat. $43^{\circ} 02^{\prime} \mathrm{N}$ Variation $25^{\circ} \mathrm{W}$.
G. M. T 22d 1h 50

Sec. of Lat. Sin of Dec.	13611 Sin
9.28705	

True Amp.	E $15^{\circ} \mathrm{S}$
Compass Amp.	E $19^{\circ} \mathrm{S}$
	$4^{\circ} \mathrm{W}$
Error	$25^{\circ} \mathrm{W}$
Variation	$21^{\circ} \mathrm{E}$

Check by Table 39 for Lat. $43^{\circ} \mathrm{N}$; dec. $11^{\circ} \mathrm{S}$; amp. E $15^{\circ} \mathrm{S}$.

PROBLEM NO. 3
Apr. 19, 1919. Sun bore at setting S $82^{\circ} \mathrm{W}$. Chronometer read 9 h 15^{\prime} A. M. Lat. $40^{\circ} 12^{\prime}$ N. Variation 6° E.
G. M. T. 18d $21 \mathrm{~h} 15^{\prime}$

Sec. of Lat.
Sin of Dec.
Sin
True Amp.
Compass Amp.
Error
Variation
Deviation
Dec. $10^{\circ} 52^{\prime} \mathrm{N}$

11702
9.27537
9.39239

W $14^{\circ} \mathrm{N}$
W $8^{\circ} \mathrm{S}$
$22^{\circ} \mathrm{E}$
$6^{\circ} \mathrm{E}$
$16^{\circ} \mathrm{E}$

Check by Table 39 for Lat. $40^{\circ} \mathrm{N}$; dec. $11^{\circ} \mathrm{N}$; amp. 14°

PROBLEM NO. 4
Mar. 11, 1919. Sun bore at rising $\mathrm{S} 88^{\circ} \mathrm{E}$. Chronometer read $8 \mathrm{~h} 15^{\prime} \mathrm{A}$. M. Lat. $0^{\circ} 10^{\prime} \mathrm{N}$. Variation $15^{\circ} \mathrm{E}$.
G. M. T. 10d 20h 15 \quad Dec. $4^{\circ} 05^{\prime}$ S.

Dec. $=$ True Amp. in Lat. 0°

True Amp.	$\mathrm{E} 4^{\circ} \mathrm{S}$
Compass Amp.	$\mathrm{E} 2^{\circ} \mathrm{S}$
	$2^{\circ} \mathrm{E}$ Error Variation
Deviation	$15^{\circ} \mathrm{E}$
	$13^{\circ} \mathrm{W}$

PROBLEM NO. 5
Sept. 23, 1919. Sun bore at setting N $79^{\circ} \mathrm{W}$. Chronometer read $2 \mathrm{~h} 10^{\prime} \mathrm{P} . \mathrm{M}$. Lat. $48^{\circ} \mathrm{N}$. Variation $2^{\circ} \mathrm{W}$.
G. M. T. 23d $2 \mathrm{~h} 10^{\prime}$
Dec. $0^{\circ} 12^{\prime} \mathrm{N}$

True Amp. is E or W or 0° in Dec. 0°.

True Amp.	W 0°
Compass Amp.	W $11^{\circ} \mathrm{N}$
	$11^{\circ} \mathrm{W}$
Error	$2^{\circ} \mathrm{W}$
Variation	$9^{\circ} \mathrm{W}$

PROBLEM NO. 6

Aug. 11, 1919. Sun bore at setting S $81^{\circ} \mathrm{W}$. Chronometer read $10 \mathrm{~h} 28^{\prime}$ A. M., slow 32^{\prime}. Lat. $18^{\circ} 28^{\prime}$ S. Variation 30° E.
Chronometer 22 h 28^{\prime}
Slow $\quad+\quad 32^{\prime}$
G. M. T. 10d $23 \mathrm{~h} 00^{\prime}$

Dec. $15^{\circ} 33^{\prime} \mathrm{N}$
Sec. of Lat. Sin of Dec. 9.42826

Sin
9.45122

True Amp. Compass. Amp.

W $16^{\circ} \mathrm{N}$
W $9^{\circ} \mathrm{S}$
Error $25^{\circ} \mathrm{E}$
Variation
Deviation
$30^{\circ} \mathrm{E}$
$5^{\circ} \mathrm{W}$
Check by Table 39 for Lat. $18^{\circ} \mathrm{S}$; dec. $15^{\circ} .5 \mathrm{~N}$; amp. $\mathrm{W} 16^{\circ} \mathrm{N}$.

PROBLEM NO. 7

Jan. 31, 1919. Sun bore at rising $\mathrm{S} 84^{\circ} \mathrm{E}$. Chronometeter read $4 \mathrm{~h} 16^{\prime}$ P.M. Lat. $36^{\circ} 18^{\prime}$ N. Variation $3^{\circ} \mathrm{W}$.
G. M. T. 31d $4 \mathrm{~h} 16^{\prime}$

Sec. of Lat.
Sin of Dec.
Sin
True Amp.
Compass Amp.
Error
Variation
Deviation

Dec. $17^{\circ} 33^{\prime} \mathrm{S}$.
. 09370
9.47934
9.57304

E $22^{\circ} \mathrm{S}$
E $06^{\circ} \mathrm{S}$

$$
16^{\circ} \mathrm{E}
$$

$3^{\circ} \mathrm{W}$
$19^{\circ} \mathrm{E}$

Check by Table 39 for Lat. $36^{\circ} \mathrm{N}$; dec. $17^{\circ} .5 \mathrm{~S}$; amp. E 22° S.

PROBLEM NO. 8
July 4, 1919. Sun bore at setting S $84^{\circ} \mathrm{W}$. Chronometer read $11 \mathrm{~h} 18^{\prime}$ P. M., slow 40^{\prime}. Lat. $36^{\circ} 18^{\prime} \mathrm{N}$. Variation $10^{\circ} \mathrm{W}$.

Chronometer	$11 \mathrm{~h} 18^{\prime}$	
Slow	$+\quad 40^{\prime}$	
G. M. T. 4 d	$11 \mathrm{~h} 58^{\prime}$	Dec. $22^{\circ} 54^{\prime} \mathrm{N}$
	Sec. of Lat.	. 09370
	Sin Dec.	9.59039
	Sin	9.68409
		W $29^{\circ} \mathrm{N}$
	Compass Amp.	$\mathrm{W} 6^{\circ} \mathrm{S}$
	Error	$35^{\circ} \mathrm{E}$
	Variation	$10^{\circ} \mathrm{W}$
	Deviation	$45^{\circ} \mathrm{E}$

PROBLEM NO. 9

Dec. 16, 1919. Sun bore at rising $S 60^{\circ}$ E. Chronometer read $2 \mathrm{~h} 46^{\prime}$ A. M., fast 34^{\prime}. Lat. $0^{\circ} 18^{\prime}$ S. Variation $10^{\circ} \mathrm{W}$.

True Amp. Compass Amp.

Error Variation

Deviation

Dec $23^{\circ} 16^{\prime} \mathrm{S}$
E 23° S
E 30° S
$7^{\circ} \mathrm{W}$
$10^{\circ} \mathrm{W}$
$3^{\circ} \mathrm{E}$

PROBLEM NO. 10

Mar. 21, 1919. Sun bore at setting $\mathrm{N} 78^{\circ} \mathrm{W}$. Chronometer read $10 \mathrm{~h} 36^{\prime}$ P. M., fast 30^{\prime}. Lat. $0^{\circ} 14^{\prime}$ N. Variation $3^{\circ} \mathrm{E}$.

Chronometer 10h 36^{\prime}
Fast - 30^{\prime}
G. M. T. 21d 10 h 6

True Amp. Compass Amp.

Error
Variation
Deviation

Dec. $0^{\circ} 06^{\prime} \mathrm{N}$
$0^{\circ} 00^{\prime}$
W $12^{\circ} \mathrm{N}$
12°.W
$3^{\circ} \mathrm{E}$
$15^{\circ} \mathrm{W}$

PROBLEM NO. 11
Jan. 31, 1919. Sun bore at rising N 89° E. Chronometer read $1 \mathrm{~h} 50^{\prime} \mathrm{A} . \mathrm{M}$. Lat. $41^{\circ} 21^{\prime} \mathrm{N}$. Variation $35^{\circ} \mathrm{E}$.
G. M. T. 30d $13 \mathrm{~h} 50^{\prime}$

Sec. of Lat.
Sin of Dec.
Sin
True Amp. Compass Amp.

Error
Variation
Deviation

Dec. $17^{\circ} 42^{\prime} \mathrm{S}$
. 12454
9.48292
9.60746

E $24^{\circ} \mathrm{S}$
E $1^{\circ} \mathrm{N}$
$25^{\circ} \mathrm{E}$
$35^{\circ} \mathrm{E}$
$10^{\circ} \mathrm{W}$

PROBLEM NO. 12

Oct. 23, 1919. Sun bore at setting $\mathrm{S} 88^{\circ} \mathrm{W}$. Chronometer read $2 \mathrm{~h} 10^{\prime} \mathrm{P}$. M. Lat. $18^{\circ} 24^{\prime} \mathrm{N}$. Variation $3^{\circ} \mathrm{E}$.
G. M. T. 23d 2h 10^{\prime}

Sec. of Lat.	.02279
Sin of Dec.	9.28705
	9.30984

True Amp.	W $12^{\circ} \mathrm{S}$
Compass Amp.	$\mathrm{W} \quad 2^{\circ} \mathrm{S}$
	$10^{\circ} \mathrm{W}$
Error	$3^{\circ} \mathrm{E}$
Variation	$13^{\circ} \mathrm{W}$

CHAPTER XIII

LATITUDE BY POLARIS

The latitude by Polaris (or North Star) can be obtained at any time the star is visible, as long as the sea horizon is clear enough to obtain a proper altitude.

If the North Star were exactly at the pole, its altitude would be the latitude. It is, however, not quite at the pole; so that it apparently describes a small circle in the sky about the pole as an axis. This makes necessary a small correction to the true altitude; these corrections are given in the Nautical Almanac, Table 1, for every ten minutes Local Siderial Time.

To find Local Siderial Time, add to the L. M. T. the Right Ascension of the Mean Sun at Greenwich Mean Noon, add correction to R. A. M. S. for time past Greenwich Mean Noon from bottom of pages 2-3, N. A.

PROBLEM NO. 1
Jan. 31, 1919, A. M. Obs. Alt. *Polaris $24^{\circ} 55^{\prime}$. Dip. 36 tt. Chronometer read $0 \mathrm{~h} 22^{\prime} 00^{\prime \prime} \mathrm{P}$. M. Long. $93^{\circ} 30^{\prime} \mathrm{W}$.

G. M. T. 31d	Oh $22^{\prime} 00^{\prime \prime}$	Obs. Alt.	$24^{\circ} 55^{\prime} 00^{\prime \prime}$
Long.	$6 \mathrm{~h} 14^{\prime} 00^{\prime \prime}$	Dip	$5^{\prime} 53^{\prime \prime}$
L. M. T. 30d	$18 \mathrm{~h} 08^{\prime} 00^{\prime \prime}$		$24^{\circ} 49^{\prime} 07^{\prime \prime}$
R. A. M. S. for 31d	20h $38^{\prime} 38^{\prime \prime}$	Ref.	$2^{\prime} 05^{\prime \prime}$
Corr. for 22^{\prime}	04"		$24^{\circ} 47^{\prime} 02^{\prime \prime}$
L. S. T. 30d	38h 46' $42^{\prime \prime}$	$\begin{aligned} & \text { True Alt. } \\ & \text { Corr. (I. N. A.) } \end{aligned}$	+ $1^{\circ} 03^{\prime} 48^{\prime \prime}$
	14h $46^{\prime} 42^{\prime \prime}$		

PROBLEM NO. 2

Jan. 30, 1919, A. M. Obs. Alt. *Polaris $27^{\circ} 27^{\prime}$. Dip 36 ft. Chronometer read $0 \mathrm{~h} 17^{\prime} 00^{\prime \prime} \mathrm{P}$. M. Long. $90^{\circ} \mathrm{W}$.

PROBLEM NO. 3

July 15, 1919, P. M. Obs. Alt. *Polaris $26^{\circ} 17^{\prime}$. Dip 20 ft . Chronometer read $1 \mathrm{~h} 15^{\prime} 21^{\prime \prime} \mathrm{P}$. M. Long. $82^{\circ} 17^{\prime} \mathrm{E}$.
G. M. T. 15d

Long.
L. M. T.
R. A. M. S.

Corr. for 1 h 15^{\prime}
L. S. T.

PROBLEM NO. 4

Nov. 10, 1919, A. M. Obs. Alt. *Polaris $36^{\circ} 21^{\prime}$. Dip 17 ft. Chronometer read $11 \mathrm{~h} 15^{\prime} 20^{\prime \prime}$ A. M. Long. $98^{\circ} 22^{\prime} \mathrm{W}$.

G. M. T. 9d	23h $15^{\prime} 20^{\prime \prime}$	Obs. Alt.	$36^{\circ} 21^{\prime} 00^{\prime \prime}$	
Long.	$6 \mathrm{~h} 33^{\prime} 28^{\prime \prime}$	Corr. (46)	-	$5^{\prime} 21^{\prime \prime}$
L. M. T.	16h $41^{\prime} 52^{\prime \prime}$	True Alt.	36	$15^{\prime} 39^{\prime \prime}$
R. A. M. S. 9d	15h $10^{\prime} 26^{\prime \prime}$	Corr. (I. N. A.)	+	$7^{\prime} 42^{\prime \prime}$
Corr. for $23 \mathrm{~h} 5^{\prime}$	$3^{\prime} 49^{\prime \prime}$	Lat.	3	$23^{\prime} 21^{\prime \prime} \mathrm{N}$
L.S.T.	$31 \mathrm{~h} 56^{\prime} 07^{\prime \prime}$ or $7 \mathrm{~h} 56^{\prime}$			

PROBLEM NO. 5

Aug. 6, 1919, A. M. Obs. Alt. *Polaris $28^{\circ} 16^{\prime}$. Dip 23 ft. Chronometer read $2 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ A. M., slow $1^{\prime} 25^{\prime \prime}$. Long. $38^{\circ} 21^{\prime} \mathrm{E}$.

Chron. 5d	14h $16^{\prime} 28^{\prime \prime}$	Obs. Alt.	$28^{\circ} 16^{\prime} 00^{\prime \prime}$
Slow	$1^{\prime} 25^{\prime \prime}$	Dip	$4^{\prime} 42^{\prime \prime}$
G. M. T.	14h $17^{\prime} 53^{\prime \prime}$		$28^{\circ} 11^{\prime} 18^{\prime \prime}$
Long.	2h $33^{\prime} 24^{\prime \prime}$	Ref.	$1^{\prime} 49^{\prime \prime}$
L. M. T.	16h $51^{\prime} 17^{\prime \prime}$	True Alt.	$28^{\circ} 09^{\prime} 29^{\prime \prime}$
R. A. M. S. 5d	8h 51' $57^{\prime \prime}$	Corr. (I. N. A.)	$1^{\circ} 07^{\prime} 12^{\prime \prime}$
Corr. 14h 16'	$2^{\prime} 21^{\prime \prime}$	Lat.	02' 17'
L. S. T.	$\begin{aligned} & \text { 25h } 45^{\prime} 35^{\prime \prime} \text { or } \\ & \text { 1h } 46^{\prime} \end{aligned}$		$2{ }^{17}$

PROBLEM NO. 6

June 8, 1919, A. M. Obs. Alt. *Polaris $23^{\circ} 12^{\prime} \mathbf{1 5}^{\prime \prime}$. Dip 38 ft . Chronometer read 11h $55^{\prime} 25^{\prime \prime}$ A. M. Long. $110^{\circ} 15^{\prime}$ W.

G. M. T. 7d Long.	23h 55' $25^{\prime \prime}$	Obs. Alt. Dip	$23^{\circ} 12^{\prime} 15^{\prime \prime}$	
	7h $21^{\prime} 00^{\prime \prime}$		-	$6^{\prime} 02^{\prime \prime}$
L. M. T. 7d	16h $34^{\prime} 25^{\prime \prime}$		23	06' $13^{\prime \prime}$
R. A. M. S.	4h 59' $20^{\prime \prime}$	Ref.	-	$2^{\prime} 16^{\prime \prime}$
Corr. for $23 \mathrm{~h} 55^{\prime}$	$3^{\prime} 56^{\prime \prime}$			
L. S. T.	21h 37' $41^{\prime \prime}$	True Alt. Corr. (I. N. A.)	23	$\begin{aligned} & 03^{\prime} 57_{\prime \prime \prime}^{\prime \prime} \\ & 34^{\prime} \\ & 48^{\prime} \end{aligned}$
		Lat.		29'09"

PROBLEM NO. 7

May 20, 1919, P. M. Obs. Alt. *Polaris $42^{\circ} 16^{\prime} 30^{\prime \prime} . ~ D i p ~ 39 ~ f t . ~$ Chronometer read $6 \mathrm{~h} 16^{\prime} 23^{\prime \prime}$, fast $3^{\prime} 18^{\prime \prime}$. Long. $3^{\circ} 15^{\prime}$ E.

Chron.	$6 \mathrm{~h} 16^{\prime} 23^{\prime \prime}$	Obs. Alt.	$42^{\circ} 16^{\prime} 30^{\prime \prime}$	
Fast	$3^{\prime} 18^{\prime \prime}$	Dip	-	$6^{\prime} 07^{\prime \prime}$
G. M. T. 20d	$6 \mathrm{~h} \mathrm{13'} 05^{\prime \prime}$			$10^{\prime} 23^{\prime \prime}$
Long.	+ $13^{\prime} 00^{\prime \prime}$	Ref.	-	$1^{\prime} 04^{\prime \prime}$
L. M. T.	6h $26^{\prime} 05^{\prime \prime}$	True Alt.		09' 19"
R. A. M. S. 20d	3h $48^{\prime} 22^{\prime \prime}$	Corr. (I. N. A.)	+	$44^{\prime} 24^{\prime \prime}$
Corr. 6h 13'	$1^{\prime} 01^{\prime \prime}$			
L. S. T,	10h $15^{\prime} 28^{\prime \prime}$			

PROBLEM NO. 8

Oct. 6, 1919, A. M. Obs. Alt. *Polaris $50^{\circ} 24^{\prime} 45^{\prime \prime}$. Dip 40 ft. Chronometer read $9 \mathrm{~h} 22^{\prime} 03^{\prime \prime}$ A. M., slow $4^{\prime} 23^{\prime \prime}$. Long. $18^{\circ} 16^{\prime} \mathrm{W}$.

Chron.	$9 \mathrm{~h} 22^{\prime} 03^{\prime \prime}$	Obs. Alt.	$50^{\circ} 24^{\prime} 45^{\prime \prime}$	
Slow	+ 4'23'	Dip	-	$6^{\prime} 12^{\prime \prime}$
G. M. T. 5d	21h $26^{\prime} 26^{\prime \prime}$		50°	$18^{\prime} 33^{\prime \prime}$
Long.	1h $13^{\prime} 04^{\prime \prime}$	Ref.	-	$48^{\prime \prime}$
L. M. T.	20h $13^{\prime} 22^{\prime \prime}$	True Alt.	50°	$17^{\prime} 45^{\prime \prime}$
R. A. M. S. 5d	12h $52^{\prime} 25^{\prime \prime}$	Corr. (I. N. A.)	$+$	$28^{\prime} 12^{\prime \prime}$
Corr.	$3^{\prime} 31^{\prime \prime}$			
L. S. T.	$\begin{aligned} & 33 \mathrm{~h} 09^{\prime} 18^{\prime \prime} \text { or } \\ & 9 \mathrm{~h} 09^{\prime} \end{aligned}$	Lat.		$45^{\prime} 57^{\prime}$

PROBLEM NO. 9

Feb. 12, 1919, A. M. Obs. Alt. *Polaris $48^{\circ} 16^{\prime}$. Dip 21 ft . Chronometer read $2 \mathrm{~h} 06^{\prime} 28^{\prime \prime}$ P. M. Long. $152^{\circ} \mathrm{W}$.

PROBLEM NO. 10
June 6, 1919, P. M Obs. Alt. *Polaris $29^{\circ} 41^{\prime}$ Dip 20 ft. Chronometer read 8h $16^{\prime} 21^{\prime \prime}$ A. M. Long. $161^{\circ} 15^{\prime}$ E.

G. M. T. 5d	20h 16' $21^{\prime \prime}$	Obs. Alt.	$29^{\circ} 41^{\prime} 00^{\prime \prime}$
Long.	10h $45^{\prime} 00^{\prime \prime}$	Dip	$4^{\prime} 23^{\prime \prime}$
L. M. T. 6d	$7 \mathrm{~h} 01^{\prime} 21^{\prime \prime}$		$29^{\circ} 36^{\prime} 37^{\prime \prime}$
R A. M. S. 5d	4h $51^{\prime} 27^{\prime \prime}$	Ref.	$1^{\prime} 42^{\prime \prime}$
Corr. 20h 16'	$3^{\prime} 20^{\prime \prime}$		
L. S. T	11h 56'08'	True Alt. ${ }_{\text {a }}$	$29^{\circ} 34^{\prime} 55^{\prime \prime}$
L. S.	$11 \mathrm{~L} 6^{\prime} 0{ }^{\prime \prime}$	Corr. (I. N. A.)	$+1{ }^{\circ} 013$
		Lat.	$30^{\circ} 36^{\prime} 31^{\prime \prime}$

PROBLEM NO. 11

Oct. 25, 1919, A. M. Obs. Alt. *Polaris $47^{\circ}{ }^{15}{ }^{\prime}$. Dip 26 ft. Chronometer read $1 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ P. M. Long. $100^{\circ} \mathrm{W}$.

PROBLEM NO. 12
July 4, 1919, A. M. Obs. Alt. *Polaris $28^{\circ} 32^{\prime} 00^{\prime \prime}$. Dip 27 ft. Chronometer read $10 \mathrm{~h} 58^{\prime} 03^{\prime \prime} \mathrm{A}$. M. Long. $94^{\circ} 50^{\prime} \mathrm{W}$.

G. M. T. 3d	22h $58^{\prime} 03^{\prime \prime}$	Alt.	$28^{\circ} 32^{\prime} 00^{\prime \prime}$	
Long.	6h $19^{\prime} 20^{\prime \prime}$	Dip	$5^{\prime} 06^{\prime \prime}$	
L. M. T.	16h $38^{\prime} 43^{\prime \prime}$	Ref.	$28^{\circ} 26^{\prime} 54^{\prime \prime}$	
R. A. M. S. 3d	6h 41' $51^{\prime \prime}$		-	$1^{\prime} 47^{\prime \prime}$
Corr. 22h $58{ }^{\prime}$	$3^{\prime} 46^{\prime \prime}$		$28^{\circ} 25^{\prime} 07^{\prime \prime}$	
L. S. T.	23h $24^{\prime} 20^{\prime \prime}$	Corr. Alt. Corr. (I. N. A.)		
			-	$56^{\prime} 54^{\prime \prime}$
		Lat.		$28^{\prime} 13^{\prime \prime}$

PROBLEM NO. 13

Feb. 12, 1919, P. M. Obs. Alt. *Polaris $26^{\circ} 12^{\prime} 00^{\prime \prime}$. Dip 14 ft. Chronometer read $7 \mathrm{~h} 23^{\prime} 15^{\prime \prime}$ A. M. Long. $175^{\circ} \mathrm{E}$.

G. M. T. 11d	19h $23^{\prime} 15^{\prime \prime}$	Obs. Alt.	$26^{\circ} 12^{\prime} 00^{\prime \prime}$	
Long.	$11 \mathrm{~h} 40^{\prime} 00^{\prime \prime}$	Dip	-	$3^{\prime} 40^{\prime \prime}$
L. M. T. 11d	$31 \mathrm{~h} 03^{\prime} 15^{\prime \prime}$ or	Ref.	$26^{\circ} 08^{\prime} 20^{\prime \prime}$	
12d	$7 \mathrm{~h} 03^{\prime} 15^{\prime \prime}$		-	$1^{\prime} 58^{\prime \prime}$
R. A. M. S. 11d	21h $22^{\prime} 00^{\prime \prime}$			
Corr. 19h 23^{\prime}	$3^{\prime} 11^{\prime \prime}$	True Alt. Corr. (I. N. A.)	$\begin{array}{r} 26^{\circ} 06^{\prime} 22^{\prime \prime} \\ -\quad 48^{\prime} 06^{\prime \prime} \end{array}$	
L. S. T.	4 h ¢88	Lat.	$25^{\circ} 18^{\prime} 16^{\prime \prime}$	

PROBLEM NO. 14

Apr. 10, 1919, A. M. Obs. Alt. *Polaris $13^{\circ} 16^{\prime}$. Dip 18 ft. Chronometer read $0 \mathrm{~h} 02^{\prime} 23^{\prime \prime} \mathrm{A}$. M., fast $5^{\prime} 12^{\prime \prime}$. Long. $81^{\circ} 15^{\prime} \mathrm{E}$.

CHAPTER XIV

LONGITUDE BY SUN, ALTITUDE AZIMUTH, MERIDIAN ALTITUDE OF SUN AND MERCATOR SAILING COMBINED

This problem is worked the same as previous methods for obtaining latitude by sun, longitude by sun, and course and distance by Mercator's Sailing.

The difference in the chronometer sights are that two rates for the chronometer are given, and it is necessary to find the daily rate.

To find daily rate of chronometer proceed as follows:
If first and second rate are both fast or both slow, subtract less from greater.

If first and second rate are one fast and one slow, add the two.

Turn this result to seconds, by multiplying minutes by 60 and add to the result the seconds.

Divide number of seconds by number of days between the rates, and the result will be Daily Rate.

Put down chronometer time and apply to it the last rate given in example.

Find the number of days between last rate and date of example to the nearest tenth of a day, and multiply number of days and tenths by Daily Rate already obtained.

Result will be Accumulated Rate, which apply to chronometer, and the result will be G. M. T.

The latitude at noon is found if sun's meridian altitude is given, and latitude at sight found as in previous noon position sights.

Now proceed to find the longitude at sight and noon.
The altitude azimuth is worked in conjunction with a regular longitude by sun sight, and the sun's true bearing is obtained without the use of azimuth tables.

To find sun's true bearing by altitude azimuth proceed as follows:

Add together true altitude, latitude and polar distance, using the same altitude, latitude and polar distance that longitude sight was worked with.

Divide sum by 2, answer will be Half Sum.
Under Half Sum put down polar distance, and subtract less from greater, result will be Remainder.

From Table 44 (Bowditch) take out the following logs:
Secant of Altitude. Rejecting 10 from index number.
Secant of latitude. Rejecting 10 from index number.
Cosine of Half Sum.
Cosine of Remainder.
Add these four logarithms together.
Log. Haversine (Table 45) gives azimuth. Result will be sun's true bearing from depressed pole.

If in north latitude name the true bearing S. If sight is A. M. East, P. M. West.

If in south latitude name the true bearing N . If sight is A. M. East, P. M. West.

Under true bearing put down compass bearing and obtain error and deviation of compass same as in azimuths from the tables.

The position of the ship at noon is then put down as Lat. A and Long. A, and the course and distance found by Mercator's Sailing to position given in example.

PROBLEM NO. 1

Jan. 31, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $35^{\circ} 28^{\prime} 18^{\prime \prime}$. Dip 15 ft . I. E. $+50^{\prime \prime}$. Chronometer read $2 \mathrm{~h} 30^{\prime} 44^{\prime \prime}$, which was slow on Nov. 25, $10^{\prime} 20^{\prime \prime}$, and on Dec. 11 was slow $13^{\prime} 49^{\prime \prime}$. Observed Meridian Altitude of Sun's L. L. at noon was $59^{\circ} 59^{\prime}$ S. D. R. long. $87^{\circ} \mathrm{W}$. Ship ran from sight to noon S $73^{\circ} \mathrm{W}$. (true) 48 miles. Sun bore by compass $\mathrm{N} 108^{\circ} 15^{\prime} \mathrm{E}$. Variation $16^{\circ} \mathrm{W}$.

Required position at sight and noon; error and deviation by altitude azimuth; also course and distance by Mercator's sailing from noon to $7^{\circ} 15^{\prime}$ S., $125^{\circ} 35^{\prime}$ W.

Log. of Diff. Long. $2307=3.36305$
Log. of Mer. Parts $1171=3.06856$

Tan
Secant of Course $63^{\circ} 05^{\prime}$
Log. Diff. Lat. 1172
Log.
$.29449=$ course $S 63^{\circ} 05^{\prime} W$
.34420
3.06893
$3.41313=$ distance 2589 miles.

At Sight Lat. $12^{\circ} 30^{\prime} 46^{\prime \prime}$ N. Long. $86^{\circ} 21^{\prime} 45^{\prime \prime}$ W.
At Noon Lat. $12^{\circ} 16^{\prime} 46^{\prime \prime} \mathrm{N}$. Long. $87^{\circ} 08^{\prime} 15^{\prime \prime} \mathrm{W}$.
Compass Error $14^{\circ} 25^{\prime}$ E. Compass Deviation $30^{\circ} 25^{\prime}$ E.
True Course $\mathrm{S} 63^{\circ} 05^{\prime} \mathrm{W}$, distance 2589 miles.
It is interesting to check our azimuth, since the L. A. T. is known.
H. O. 71 may be used with apparent time of $8: 57 \mathrm{~A}$. M., Lat. $12^{\circ} .5$; and Dec. $17^{\circ} .5$. This gives to nearest degree N 122° E.

PROBLEM NO. 2

Mar. 11, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $23^{\circ} 23^{\prime}$. Dip 38 ft. Chronometer read 3h $16^{\prime} 28^{\prime \prime}$ A. M. which was fast on Jan. 1, $14^{\prime} 28^{\prime \prime}$, and on Jan. 28 was slow $2^{\prime} 12^{\prime \prime}$. Latitude at noon was $28^{\circ} 17^{\prime}$ S. Ship ran from sight to noon $\mathrm{N} 56^{\circ} \mathrm{W}$ (true) 49 miles. Required latitude and longitude at sight and noon.

Sun bore by compass $\mathrm{S} 108^{\circ} 16^{\prime} \mathrm{E}$. Variation $14^{\circ} \mathrm{W}$. Required error and deviation of compass by altitude azimuth.

Required true course and distance made by Mercator's sailing from noon to Lat. $16^{\circ} 12^{\prime}$ S., Long. $15^{\circ} 10^{\prime}$ E.

Chronometer	15h 16' $28^{\prime \prime}$	Chron., fast Jan. 1Slow, Jan. 28	$14^{\prime} 28^{\prime \prime}$
	$+\quad 2^{\prime} 12^{\prime \prime}$		$2^{\prime} 12^{\prime \prime}$
Acc. Rate	$+25^{\prime} 39^{\prime \prime}$		$16^{\prime} 40^{\prime \prime}$
G. M. T. 10d	15h 44' 19' ${ }^{\prime \prime}$	Lost	
Eq. Time	$10^{\prime} 28^{\prime \prime}$	$\frac{1000^{\prime \prime}}{27 \mathrm{~d}}=37^{\prime \prime}$ Daily Rate	
G. A. T. 10d	15h 33 ' 51'	$\begin{array}{r} 27 \mathrm{~d} \\ 41.6 \text { Days I } \end{array}$	
Dec. 10d 14h	$4^{\circ} 10^{\prime} .6$	1539" Acc.	$\mathrm{e}=25^{\prime} 39^{\prime \prime}$
Corr. 1.7h	- $1^{\prime} .7$		
Dec.	$\begin{aligned} & 4^{\circ} 08^{\prime}, 9 \mathrm{~S} \mathrm{or} \\ & 4^{\circ} 08^{\prime} 54^{\prime \prime} \end{aligned}$		
P. D.	$85^{\circ} 51^{\prime} 06^{\prime \prime}$		

Lat. at Noon	$28^{\circ} 17^{\prime} \quad \mathrm{S}$				
Diff. Lat.	+ $27^{\prime} .4 \mathrm{~S}$	Course, S 56° E; Dist., 49 miles; Diff. Lat., 27.4 miles; Dep., 40.6 miles; Diff. Long., 46^{\prime}.			
Lat. at Sight	$28^{\circ} 44^{\prime} .4 \mathrm{~S}$				
Obs. Alt.	$23^{\circ} 23^{\prime} 00^{\prime \prime}$				
S. D.	$+16^{\prime} 06^{\prime \prime}$				
Dip	$23^{\circ} 39^{\prime} 06^{\prime \prime}$				
$23^{\circ} 33^{\prime} 04^{\prime \prime}$					
R. \& P.	- $2^{\prime} 05^{\prime \prime}$				
True Alt.	$23^{\circ} 30^{\prime} 59^{\prime \prime}$		Sec		. 03766
	$28^{\circ} 44^{\prime} 24^{\prime \prime}$	Sec	. 05710	Sec	
P. D.	$85^{\circ} 51^{\prime} 06^{\prime \prime}$	Csc	. 00114		
	$2)$				
Half Sum s-Alt. $\mathrm{s}-\mathrm{P}$. D.	$\begin{array}{lll} 69^{\circ} & 03^{\prime} & 14^{\prime \prime} \\ 45^{\circ} & 32^{\prime} & 15^{\prime \prime} \\ 16^{\circ} & 47^{\prime} & 52^{\prime \prime} \end{array}$	Cos	9.55326	Cos	9.55326
		Sin	9.85352		
				Cos	9.98107
		Log.	9.46502	Log.	9.62909

L. A. T. 10d	19h $38^{\prime} 27^{\prime \prime}$	True Bearing N	$81^{\circ} 27$	E or
G. A. T. 10d	15h $33^{\prime} 51^{\prime \prime}$	S	$98^{\circ} 33^{\prime}$	E
		Obs. Bearing S	$108^{\circ} 16^{\prime}$	E
Long. at Sight	4h 04' $36^{\prime \prime}$ or			
	$61^{\circ} 09^{\prime} 00^{\prime \prime} \mathrm{E}$	Error	$9^{\circ} 43^{\prime}$	E
Diff. Long.	46^{\prime} W	Variation	14°	W
Long. Noon	$60^{\circ} 23^{\prime} 00^{\prime \prime} \mathrm{E}$	Deviation	$23^{\circ} 43^{\prime}$	E

Lat. A	$28^{\circ} 17^{\prime} \mathrm{S}$	Mer. Parts.	1759.4	Long. A	$60^{\circ} 23^{\prime} \mathrm{E}$
Lat. B	$16^{\circ} 12^{\prime} \mathrm{S}$	Mer. Parts	978.7	Long. B	$15^{\circ} 10^{\prime} \mathrm{E}$
Diff. Lat.	725		780.7	Diff. Long	$2713{ }^{\prime}$

Log. of Diff. Long. $\quad 2713^{\prime}=3.43345$
Log. of Mer. Parts. $\quad 780.7=2.89248$
Log. Tan
$0.54057=$ course $\mathrm{N} 73^{\circ} 56^{\prime} \mathrm{W}$ 。
Log. Sec Course $\quad 73^{\circ} 56^{\prime}=0.55790$
Log. of Diff. Lat. $\quad 725^{\prime}=2.86034$
Log.

$$
3.41824=\text { distance } 2620 \text { miles. }
$$

At Sight Lat. $28^{\circ} 44^{\prime} 24^{\prime \prime}$ S, Long. $61^{\circ} 09^{\prime} 00^{\prime \prime}$ E. At Noon Lat. $28^{\circ} 17^{\prime} 00^{\prime \prime}$ S, Long. $60^{\circ} 23^{\prime} 00^{\prime \prime}$ E. Compass Error $9^{\circ} 43^{\prime}$ E. Compass Dev. $23^{\circ} 43^{\prime}$ E. True Course N $73^{\circ} 56^{\prime}$ W, distance 2620 miles.

Entering H. O. 71 with L. A. T. $7: 38$ A. M., Lat. 29°, Dec. 4° the azimuth is found to be $\mathrm{S} 98^{\circ} .5 \mathrm{E}$.

PROBLEM NO. 3

Aug. 7, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $18^{\circ} 18^{\prime} . \quad$ Dip 32 ft. Chronometer read $5 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ P. M., which was fast on July $9,4^{\prime} 12^{\prime \prime}$, and on Aug. 4th was slow $3^{\prime} 12^{\prime \prime}$. Latitude at noon $4^{\circ} 16^{\prime}$ N. Ship's run from sight to noon $\mathrm{S} 18^{\circ} \mathrm{W}$. (true) 48 miles.

Sun bore by compass $\mathrm{N} 92^{\circ} \mathrm{E}$. Variation $28^{\circ} \mathrm{W}$.
Required latitude and longitude at sight and noon; error and deviation of compass by altitude azimuth; and true course and distance from noon to Lat. $5^{\circ} 28^{\prime}$ S., Long. $150^{\circ} \mathrm{E}$.

Chron.
Slow
Acc. Rate
G. M. T. 7d

Eq. Time
G. A. T. 7d

Dec. 7d 4h
Corr. 1.3h
Dec.
P. D.

Lat. at Noon
Diff. Lat.
Lat. at Sight

Chron., fast Jul. $9 \quad 4^{\prime} 12^{\prime \prime}$ Aug. 4, slow
$3^{\prime} 12^{\prime \prime}$ Lost $\quad 7^{\prime} 24^{\prime \prime}$ or $444^{\prime \prime}$
$\begin{aligned} & \frac{444^{\prime \prime}}{26 \mathrm{~d}}=17^{\prime \prime} .1 \text { Rate Times } 3.2 \text { days } \\ &=55^{\prime \prime} \text { Lost }\end{aligned}$ $=55^{\prime \prime}$ Lost

Log. of Diff. Long. $\quad 3527^{\prime}=3.54741$
Log. of Mer. Parts $580.8^{\prime}=2.76403$
Tan $0.78338=$ course $\mathrm{S} 80^{\circ} 39^{\prime} \mathrm{W}$.
Log. Sec. Course $80^{\circ} 39^{\prime}=0.78924$
Log. Diff. Lat. $584^{\prime} \quad=2.76641$
Log.
$3.55565=$ distance 3595 miles.
At Sight Lat. $5^{\circ} 01^{\prime} 42^{\prime \prime} \mathrm{N}$, Long. $150^{\circ} 58^{\prime} 15^{\prime \prime} \mathrm{W}$. At noon Lat. $4^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$, Long. $151^{\circ} 13^{\prime} 15^{\prime \prime} \mathrm{W}$. Compass Error $18^{\circ} \mathrm{W}$. Compass Dev. $10^{\circ} \mathrm{E}$. True Course S $80^{\circ} 39^{\prime}$ W, distance 3595 miles.

CORRECTING LONGITUDE

NOTE.-In practice it is common to work a morning time sight on D. R. latitude. When a noon sight is obtained, the latitude found at noon gives a more correct latitude for the A. M. sight. This correction to the latitude will affect the longitude. Either the entire calculation may be gone through again or the longitude previously found may be corrected by any of the following methods:
(a) Using Table 38 (Bowditch), knowing altitude, latitude, and polar distance, the table gives the error due to 1^{\prime} or mile error in latitude.
(b) Using Table 47 (Bowditch), the sun's true bearing having been found for compass correction, and the approximate latitude known, the table gives the longitude factor or error in Iongitude produced by 1^{\prime} or mile error in latitude.
(c) Using Table 2 (Bowditch) using as a course 90° from the bearing find the departure corresponding to the error in the latitude column. The departure in miles is found with the middle latitude as course and the difference in longitude in minutes is found.

PROBLEM NO. 4

Oct. 24,1919 A. M. D. R. Lat. $22^{\circ} 40^{\prime}$ N. Obs. Alt. Sun's L. L. $24^{\circ} 16^{\prime}$. Dip 26 ft . Chronometer read 6h $23^{\prime} 12^{\prime \prime}$ A. M., fast on Sept. 25 th, $8^{\prime} 12^{\prime \prime}$, and on Oct. 20th, fast $6^{\prime} 20^{\prime \prime}$.

Sun bore by compass N $116^{\circ} \mathrm{E}$. Variation $19^{\circ} \mathrm{E}$.
Ship's run from sight to noon $\mathrm{N} 43^{\circ} \mathrm{W}$ (true) 52 miles.
Obs. Mer. Alt. was $55^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{S}$.
Required true course and distance by Mercator Sailing from noon to Lat. $0^{\circ} 23^{\prime} \mathrm{S}$, Long. $0^{\circ} 23^{\prime} \mathrm{W}$.

Chron. Fast	$\begin{array}{r} 18 \mathrm{~h} 23^{\prime} 12^{\prime \prime} \\ -\quad 6^{\prime} 20^{\prime \prime} \end{array}$	Chron., fast Sep. 25 Fast, Oct. 20	$\begin{aligned} & 8^{\prime} 12^{\prime \prime} \\ & 6^{\prime} \quad 20^{\prime \prime} \end{aligned}$
	$18 \mathrm{~h} 16^{\prime} 52^{\prime \prime}$	Chron. Lost	$1^{\prime} 52^{\prime \prime}$ or
Acc. Rate	+ 17"		$112^{\prime \prime}$
G. M. T. 23d	18h $17^{\prime} 09^{\prime \prime}$	$\frac{112^{\prime \prime}}{25 \mathrm{~d}}=4^{\prime \prime} .5$ Rate	
Eq. Time	+ 15'35'	3.7 Days	
G. A. T. 23d	18h $32^{\prime} 44^{\prime \prime}$	17' ${ }^{\prime \prime}$ Losing	

Dec. 23d 18h
Corr. .3h
Dec. 23d 18.3h
P. D.

$11^{\circ} 23^{\prime} .9 \mathrm{~S}$
$+\quad 0^{\prime} .3$
$11^{\circ} 24^{\prime} .2 \mathrm{~S}$
$101^{\circ} 24^{\prime} 12^{\prime \prime}$

Obs. Alt.
S. D.

$24^{\circ} 16^{\prime} 00^{\prime \prime}$
$16^{\prime} 06^{\prime \prime}$

Dip $\quad-\frac{24^{\circ} 32^{\prime} 06^{\prime \prime}}{5^{\prime} 00^{\prime \prime}}$
R. \& P.

True Alt. $24^{\circ} 25^{\prime} 07^{\prime \prime}$

Lat.	$22^{\circ} 40^{\prime}$	$00^{\prime \prime}$	Sec	.03491	Sec
P. D.	$101^{\circ} 24^{\prime} 12^{\prime \prime}$	Csc	.00866		.04070
		15°			

	$74^{\circ} 14^{\prime} 39^{\prime \prime}$	Cos	9.43382	Cos	9.43382
s	$49^{\circ} 49^{\prime} 32^{\prime \prime}$	Sin	9.88314		
s -h	$27^{\circ} 09^{\prime} 33^{\prime \prime}$			Cos	9.94926
s-P. D.	$27^{\prime \prime}$				

Log. Hav. 9.36053 Log. Hav. 9.45869
L. A. T. 23 d
G. A. T. 23d

Long.
$20 \mathrm{~h} 11^{\prime} 05^{\prime \prime}$ $18 \mathrm{~h} 32^{\prime} 44^{\prime \prime} \quad$ Irue Bearin

Obs. Bearing
Error
Variation
Deviation
1h $38^{\prime} 21^{\prime \prime}$ or $24^{\circ} 35^{\prime} 15^{\prime \prime} \mathrm{E}$

S $64^{\circ} 51^{\prime} 00^{\prime \prime}$ or N $115^{\circ} 09^{\prime} \quad \mathrm{E}$ N $116^{\circ} \quad \mathrm{E}$

1°	W
19°	E
20°	W

Course N $43^{\circ} \mathrm{W}$. Dist. 52 miles. Diff. Lat. 38.0 miles. Dep. 35.5 miles. Diff. Long. (Approx. Mid. Lat. $23^{\circ} \mathrm{N}$) 38.5^{\prime}.

Long. at Sight Diff. Long.

Long. at Noon

$$
\begin{aligned}
& 24^{\circ} 35^{\prime} 15^{\prime \prime} \mathrm{E} \\
& 38^{\prime} 30^{\prime \prime} \mathrm{W} \\
& 23^{\circ} 56^{\prime} 45^{\prime \prime} \text { or 1h } 35^{\prime} 47^{\prime \prime}
\end{aligned}
$$

G. A. T. (noon) 23d 22h $24^{\prime} 13^{\prime \prime}$ Eq. Time - $15^{\prime} 36^{\prime \prime}$
G. M. T. (noon) 23d 22h $08^{\prime} 37^{\prime \prime}$.

Dec. 23d 22h Corr. .1h

Dec.

$55^{\circ} 30^{\prime} 00^{\prime \prime} \mathrm{S}$ +$16^{\prime} 06^{\prime \prime}$ $55^{\circ} 46^{\prime} 06^{\prime \prime}$ $5^{\prime} 00^{\prime \prime}$
$55^{\circ} 41^{\prime} 06^{\prime \prime}$
$-\quad 0^{\prime} 35^{\prime \prime}$
$55^{\circ} 40^{\prime} 31^{\prime \prime} \mathrm{S}$
$34^{\circ} 19^{\prime} 29^{\prime \prime} \mathrm{N}$
$11^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{S}$
$22^{\circ} 51^{\prime} 59^{\prime \prime} \mathrm{N}$
$38^{\prime} \quad \mathrm{S}$

Lat. at Sight	$22^{\circ} 13^{\prime} 59^{\prime \prime} \mathrm{N}$
Lat. Used	$22^{\circ} 40^{\prime} 00^{\prime \prime} \mathrm{N}$
Error	$26^{\prime} 01^{\prime \prime}$

Working time sight with new latitude.

h	$24^{\circ} 25^{\prime} 07^{\prime \prime}$
Lat.	$22^{\circ} 13^{\prime} 59^{\prime \prime}$
P. D.	$101^{\circ} 24^{\prime} 24^{\prime \prime}$
	$2 \longdiv { 1 4 8 ^ { \circ } 0 3 ^ { \prime } 3 0 ^ { \prime \prime } }$
s	$74^{\circ} 01^{\prime} 45^{\prime \prime}$
s-h	$49^{\circ} 36^{\prime} 38^{\prime \prime}$

Sec.	.03355
Csc	.00866
Cos	9.43954
Sin	9.88176
Log. Hav.	9.36351

TABLE 38

Twenty-six miles error latitude, alt. 24°, Lat. 22°, P. D. 101°.
Error in longitude for 1 mile latitude, . 5
for 26 miles, $\quad 13$
Rule.- In east longitude, body east of meridian, decreased latitude, longitude is decreased.

TABLE 47

Bearing $\mathrm{S} 65^{\circ} \mathrm{E}$ (see calculations).
Latitude 22°.
Longitude factor $\mathrm{F}=.51$.
$.51 \times 26$ miles $=13^{\prime}$.

TABLE 2

Bearing S $65^{\circ} \mathrm{E}$. Find course 90° from it, or $\mathrm{N} 25^{\circ} \mathrm{E}$. Opposite Lat. 26°, find departure 12 miles. At Middle Lat. 22°, 12 miles $=13^{\prime}$.

Noon position $22^{\circ} 51^{\prime} 59^{\prime \prime} \mathrm{N}$
Long. Sight Diff. Long

Long. Noon
$23^{\circ} 43^{\prime} 45^{\prime \prime}$ E

Lat. A $\quad 22^{\circ} 52^{\prime} \mathrm{N} \quad$ Mer. Parts $\quad 1400.9$ Long. A $23^{\circ} 44^{\prime} \mathrm{F}$ | Lat. B | $0^{\circ} 23^{\prime} \mathrm{S}$ | Mer. Parts | 22.8 Long. B $\quad 0^{\circ} 23^{\prime} \mathrm{W}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Diff. Lat. $23^{\circ} 15^{\prime}$ or 1395^{\prime}
$24^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{E}$ $38^{\prime} 30^{\prime \prime} \mathrm{W}$

1424 Diff. Long. $24^{\circ} 07^{\prime}$ or $1447{ }^{\prime}$

Log. of Diff. Long. $1447{ }^{\prime}=3.16047$
Log. of Mer. Parts $1424^{\prime}=3.15351$
Log. Tan.
$00696=$ course $S 45^{\circ} 28^{\prime}$ W
Log. Sec. $45^{\circ} 28^{\prime}$
$=0.15408$
Log. Diff. Lat.
Log.
$1395^{\prime}=3.14457$
$3.29865=$ distance 1989 miles.

Position at noon: Lat. $22^{\circ} 52^{\prime}$ N., Long. $23^{\circ} 44^{\prime} \mathrm{E}$.
Position at sight: (corr.) $22^{\circ} 14^{\prime} \mathrm{N}, 24^{\circ} 22^{\prime} \mathrm{E}$.
Compass error $1^{\circ} \mathrm{W}$, deviation $20^{\circ} \mathrm{W}$.
True course $\mathbb{S} 45^{\circ} \mathrm{W}$, distance 1989 miles.

PROBLEM NO. 5

Feb. 2, 1919, A. M. D. R. Lat. $36^{\circ} 59^{\prime}$ S. Obs. Alt. Sun's L. L. $49^{\circ} 10^{\prime}$. Dip 14 ft . Chron. read 7h $08^{\prime} 50^{\prime \prime}$ A. M., slow on Dec. 30th, $18^{\prime} 02^{\prime \prime}$, and on Jan. 6th, slow $19^{\prime} 10^{\prime \prime} .6$.

Ship's run from sight to noon $\mathrm{S} 45^{\circ} \mathrm{W}$ (true) 32 miles.
Sun bore by compass $\mathrm{S} 73^{\circ} \mathrm{E}$. Variation $5^{\circ} \mathrm{W}$.
Obs. Mer. Alt. $70^{\circ} 25^{\prime}$, bearing N.
Required position and sight and at noon, also compass error and deviation.

Required course and distance by Mercator Sailing from noon to Lat. $1^{\circ} 10^{\prime} \mathrm{N}$, Long. $5^{\circ} 16^{\prime} \mathrm{W}$.

Chron.	19h $08^{\prime} 50^{\prime \prime}$
Slow	$+\quad 19^{\prime} 10^{\prime \prime}$
Acc. Rate	+ $4^{\prime} 22^{\prime \prime}$
G. M. T. 1d	19h $32^{\prime} 22^{\prime \prime}$
Eq. Time	$13^{\prime} 45^{\prime \prime}$
G. A. T. 1d	19h $18^{\prime} 37^{\prime \prime}$

Obs. Alt.	$49^{\circ} 10^{\prime} 00^{\prime \prime}$				
S D.	$+16^{\prime 1} 18^{\prime \prime}$				
	$49^{\circ} 26^{\prime} 18^{\prime \prime}$				
Dip	$3^{\prime} 40^{\prime \prime}$				
	$49^{\circ} 22^{\prime} 38^{\prime \prime}$				
R. \& P.	$44^{\prime \prime}$				
True Alt.	$49^{\circ} 21^{\prime} 54^{\prime \prime}$			Sec	18626
Lat.	$36^{\circ} 59^{\prime} 00^{\prime \prime}$	Sec	. 09756	Sec	. 09756
P. D.	$72^{\circ} 54^{\prime} 54^{\prime \prime}$	Csc	. 01960		
	2) $159^{\circ} 15^{\prime} 48^{\prime \prime}$				
S	$79^{\circ} 37^{\prime} 54^{\prime \prime}$	Cos	9.25521	Cos	9.25521
s-h	$30^{\circ} 16^{\prime} 00^{\prime \prime}$	Sin	9.70245		
$\mathrm{s}-\mathrm{P} . \mathrm{D}$.	$6^{\circ} 43^{\prime} 00^{\prime \prime}$			Cos	9.99701
		Log. Hav.	9.07482	Log. Hav.	9.53604

L. A. T. 1d	21h $18^{\prime} 42^{\prime \prime}$	True Bearing	N $72{ }^{\circ} \mathrm{E}$
G. A. T. 1d	19h $18^{\prime} 37^{\prime \prime}$	Obs. Bearing	S $73^{\circ} \mathrm{E}$
Long. at Sight	2h $00^{\prime} 05^{\prime \prime}$ or	Error	$35^{\circ} \mathrm{W}$
	$30^{\circ} 01^{\prime} 15^{\prime \prime} \mathrm{E}$	Variation	$5^{\circ} \mathrm{W}$
		Deviation	$30^{\circ} \mathrm{W}$

Course $\mathrm{S} 45^{\circ} \mathrm{W}$. Dist. 32 miles. Diff. Lat. 22.6 miles $=22.6 \mathrm{~S}$. Dep. 22.6 miles (37° Mid. Lat.) $=28^{\prime} \mathrm{W}$. Long. at noon $29^{\circ} 33^{\prime} 15^{\prime \prime} \mathrm{E}$, or 1h $58^{\prime} 13^{\prime \prime}$.

G. A. T. 1d
Eq. Time

G. M. T. 1d \quad\begin{tabular}{rlc}
$22 \mathrm{~h} 01^{\prime} 47^{\prime \prime}$

$13^{\prime} 46^{\prime \prime}$

\quad

Dec. 1d 22h

Corr. .3h

\quad

$17^{\circ} 03^{\prime} .3 \mathrm{~S}$

$0^{\prime} .2$
\end{tabular}

Obs. Alt. S. D.	$+\frac{70^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{N}}{16^{\prime} 18^{\prime \prime}}$
Dip	$-\frac{70^{\circ} 41^{\prime} 18^{\prime \prime}}{3^{\prime} 40^{\prime \prime}}$
R. \& P.	$-\frac{70^{\circ} 37^{\prime} 38^{\prime \prime}}{17^{\prime \prime}}$
Corr. Alt.	$-70^{\circ} 37^{\prime} 21^{\prime \prime}$

Z. D.

Dec.
Noon Lat.
Diff. Lat.
Lat. at Sight
Lat. Used
Error

TABLE 47

Lat. 37°. Bearing N $72^{\circ} \mathrm{E} ; \mathrm{F}=.40$. Long. Corr. $=.40 \times 55.8=22^{\prime} .3$.

TABLE 2

Course 18°. Lat. 55.8. Dep. 18.2 (Mid. Lat. 37°) Diff. Long. $=22^{\prime} .7$.
Check on azimuth (H. O. 71) Lat. 37°. Dec. 17°. L. A. T. 9 h 18^{\prime}. Az. 108°.

Long. at Sight (computed)
Corr. (see above)
Long. at Sight (sorrected)
Diff. Long.
Long. at Noon (corrected)

30°	01^{\prime}
	$15^{\prime \prime}$
	22^{\prime}
	$18^{\prime \prime}$
	E
29°	39^{\prime}
	28^{\prime}
	E
29°	11^{\prime}

Lat. A $\quad 36^{\circ} 26^{\prime} \mathrm{S} \quad$ Mer. Parts Lat. B $\quad 1^{\circ} 10^{\prime} \mathrm{N} \quad$ Mer. Parts

Diff. Lat. $37^{\circ} 36^{\prime}$ or 2256^{\prime}

2336	Long. A		
69			
Long. B		$\frac{$	$29^{\circ} 11^{\prime}$
---:			
$5^{\circ} 16^{\prime}$			
E			
W	}{}	Diff. Long	
:---			
$34^{\circ} 27^{\prime}$ or			
2067^{\prime}			

Log. of Diff. Long. $2067^{\prime}=3.31534$
Log. of Mer. Parts $2405^{\prime}=3.38112$
Log. Tan.
$9.93422=$ course $\mathrm{N} 40^{\circ} 41^{\prime} \mathrm{W}$
Log. Sec. Course $\quad=0.12015$
Log. of Diff. Lat. $2256^{\prime}=3.35334$
Log.
$3.47349=$ distance 2975 miles.
Position at noon: Lat. $36^{\circ} 26^{\prime} \mathrm{S}$, Long. $29^{\circ} 11^{\prime} \mathrm{E}$.
Position at sight: Lat. $36^{\circ} 03^{\prime}$ S, Long. $29^{\circ} 39^{\prime}$ E.
Compass error $35^{\circ} \mathrm{W}$. Dev. $30^{\circ} \mathrm{W}$.
True course N $41^{\circ} \mathrm{W}$. Dist. 2975 miles.

PROBLEM NO. 6

Nov. 15, 1919, A. M. D. R. Lat. $4^{\circ} 15^{\prime}$ N. Obs. Alt. Sun's L. L. $50^{\circ} 25^{\prime}$. Dip 30 ft . Chron. read $9 \mathrm{~h} 33^{\prime} 10^{\prime \prime}$ A. M., which was fast on Oct. 22d $3^{\prime} 28^{\prime \prime}$ and losing $4^{\prime \prime} .7$ daily. Sun's compass bearing $\mathrm{N} 82^{\circ} 30^{\prime} \mathrm{E}$. Var. $25^{\circ} \mathrm{E}$. Ship sailed from sight to noon $\mathrm{N} 79^{\circ} \mathrm{E}$ (true) 31 miles. Obs. Mer. Alt. Sun's L. L. $68^{\circ} 13^{\prime}$ S.

Required course and distance from noon to $24^{\circ} 18^{\prime} \mathrm{N}, 56^{\circ} 28^{\prime} \mathrm{W}$.

Chron.	21h $33^{\prime} 10^{\prime \prime}$ $3^{\prime} 28^{\prime \prime}$	

Obs. Alt.	$50^{\circ} 25^{\prime} 00^{\prime \prime}$				
S. D.	$+16^{\prime} 12^{\prime \prime}$				
	$50^{\circ} 41^{\prime} 12^{\prime \prime}$				
Dip	$5^{\prime} 22^{\prime \prime}$				
	$50^{\circ} 35^{\prime} 50^{\prime \prime}$				
R. \& P.	$41^{\prime \prime}$				
Corr. Alt.	$50^{\circ} 35^{\prime} 09^{\prime \prime}$			Sec	. 19728
Lat.	$4^{\circ} 15^{\prime} 00^{\prime \prime}$	Sec	. 00120	Sec	. 00120
P. D.	$108^{\circ} 16^{\prime} 00^{\prime \prime}$	Csc	. 02246		
	$2 \longdiv { 1 6 3 ^ { \circ } 0 6 ^ { \prime } 0 9 ^ { \prime \prime } }$				
S	$81^{\circ} 33^{\prime} 04^{\prime \prime}$	Cos	9.16710	Cos	9.16710
$\mathrm{s}-\mathrm{h}$	$30^{\circ} 57^{\prime} 55^{\prime \prime}$	Sin	9.71141		
$s-P$. D.	$26^{\circ} 42^{\prime} 56^{\prime \prime}$			Cos	9.95097
			8.90217		9.31655

L. A. T. 14d	21h 48' $42^{\prime \prime}$	True Bearing	S $54^{\circ} 10^{\prime} \mathrm{E}$ or
G. A. T. 14d	21h $47^{\prime} 03^{\prime \prime}$		$\mathrm{N} 125^{\circ} 50^{\prime} \mathrm{E}$
Long. at Sight		Obs. Bearing	N $82^{\circ} 30^{\prime} \mathrm{E}$
	$0^{\circ} 24^{\prime} 45^{\prime \prime} \mathrm{E}$	Error	$43^{\circ} 20^{\prime} \mathrm{E}$
		Variation	$25^{\circ} 00^{\prime} \mathrm{E}$
		Deviation	$18^{\circ} \quad \mathrm{E}$

Course N $79^{\circ} \mathrm{E}, 31$ miles. Diff. Lat. $5^{\prime} 9$ miles $=5^{\prime} .9$. Departure 30.4 miles. (Mid. Lat. 4°) $=$ Diff. Long. $30^{\prime} .5$ E. Long. at noon $0^{\circ} 55^{\prime}$ $15^{\prime \prime} \mathrm{E}$ or $0 \mathrm{~h} 3^{\prime} 41^{\prime \prime}$.

G. A. T. 14d Eq. Time	$\begin{array}{r} 23 h 56^{\prime} 19^{\prime \prime} \\ -\quad 15^{\prime} 28^{\prime \prime} \end{array}$	Dec. 14d 22h Corr. 1.7 h	$\begin{gathered} 18^{\circ} 16_{1}^{\prime} .3 \mathrm{~S} \\ 1^{\prime} .2 \end{gathered}$
G. M. T. 14d	23h $40^{\prime} 51^{\prime \prime}$	Dec. 14d $23^{\prime} .7 \mathrm{~h}$	$18^{\circ} 17^{\prime} .5 \mathrm{~S}$
Obs. Alt		$68^{\circ} 13^{\prime} 0$	
S. D.		$+\quad 16^{\prime} 12$	
Dip		$68^{\circ} 29^{\prime} 1$	
		$5^{\prime} 2$	
		$68^{\circ} 23^{\prime} 5$	
		2	
Corr. Alt. Z. D.		$68^{\circ} 23^{\prime} 2$	
		$21^{\circ} 36^{\prime} 3$	
Dec.		$18^{\circ} 17^{\prime} 3$	
Lat. at Noon		$3^{\circ} 19^{\prime} 0$	N
Diff. Lat.		$5^{\prime} 5$	S
Lat. at Sight		$3^{\circ} 13^{\prime} 0$	N
Lat. Used		$4^{\circ} 15^{\prime} 0$	N
Error		$61^{\prime} .9$	

TABLE 47
Lat. 3°. Bearing 55°. $\mathrm{F}=.70$. Long. Corr. $=.70 \times 61^{\prime} .9=43^{\prime} .3 \mathrm{~W}$.
Long.
Corr.
Corr. Long. at Sight Diff. Long.

Corr. Long. at Noon
$0^{\circ} 24^{\prime} 45^{\prime \prime}$ E
$43^{\prime} 18^{\prime \prime} \mathrm{W}$
$0^{\circ} 18^{\prime} 33^{\prime \prime} \mathrm{W}$ $30^{\prime} 30^{\prime \prime} \mathrm{E}$
$0^{\circ} 11^{\prime} 57^{\prime \prime} \mathrm{E}$
Lat. A $\quad 3^{\circ} 19^{\prime} \mathrm{N}$ Mer. Par
Lat. B $24^{\circ} 18^{\prime} \mathrm{N}$ Mer. Par

Log. of Diff. Long. $3400^{\prime}=3.53148$
Log. of Mer. Part $12^{\prime}{ }^{\prime} 6^{\prime}=3.11261$
Log. Tan. $\quad 41887=$ course $69^{\circ} 08^{\prime}$.
Log. Sec. $69^{\circ} 08^{\prime}=.44831$
Log. of Diff. Lat. $1259^{\prime}=. .10003$
Log.
$.54834=$ distance 3535 miles.
At sight Lat. $3^{\circ} 13^{\prime} \mathrm{N}$, Long. $0^{\circ} 18^{\prime} 33^{\prime \prime}$ 代
At noon Lat. $3^{\circ} 19^{\prime} \mathrm{N}$, Long. $0^{\circ} 11^{\prime} 57^{\prime \prime} \mathrm{E}$
Error $43^{\circ} \mathrm{E}$. Dev. 18° E.
Course N $69^{\circ} 08^{\prime}$ W. Dist. 3535 miles.

CHAPTER XV

Latitude by meridian altitude of planet

This problem is worked the same as latitude by fixed star, with the exception that parallax must be applied to altitude, and the declination is to be corrected for Greenwich date and time.

After finding Greenwich Mean Time, take out declination of planet from almanac for Greenwich date, and the difference in small figures between it and next date.

Note.-Notice whether declination is decreasing or increasing.

Enter Table IV (Almanac) with the difference at top of page to the nearest number, and the G. M. T. on righthand side to the nearest hour and minute, and read the number obtained from the column.

Apply this number to Planet's Declination for Greenwich date as follows:

If declination is increasing, add the correction.
If declination is decreasing, subtract the correction.
Result will be true declination.
Note.-If G. M. T. is over 12 hours, first find the number from Table IV that 12 hours will give, and then the balance of hours and minutes left, and add the two.

For example: Jan. 24th G. M. T. 14h 14'. Required true declination of Planet " Venus."

Planet's Dec. Jan. 24th	$=16^{\circ} 49^{\prime} .0 \mathrm{~S}$ decreasing
Corr. Table IV	$=-13^{\prime} .6$ Diff. 230
True Dec.	$=\overline{16^{\circ} 35^{\prime} .4 \mathrm{~S}}$ or $16^{\circ} 35^{\prime} 24^{\prime \prime} \mathrm{S}$

Looking in 230 column in Table IV, we find for 12 hours

$$
115
$$

For $2 \mathrm{~h} 14^{\prime}$ the balance, we find

As the declination is decreasing correction is to be subtracted.

The Obs. Mer. Alt is corrected as follows:
Index error as per sign, if any.
Dip (Table 14) subtract.
Parallax (Table 17) add.
Refraction (Table 20A) subtract.
Result will be true altitude.
Subtract true altitude from 90°, find zenith distance, and apply declination as in previous examples for latitude observations.

Result will be latitude.

latitude by planet

PROBLEM NO. 1

Oct. 5, 1919. Obs. Mer. Alt. Planet Saturn $36^{\circ} 15^{\prime} 20^{\prime \prime} \mathrm{S}$. Dip 18 ft . Chron. read $3 \mathrm{~h} 08^{\prime} 04^{\prime \prime}$ P. M. Required latitude.

PROBLEM NO. 2
Dec. 25, 1919. Obs. Mer. Alt. Planet Jupiter $41^{\circ} 12^{\prime} 00^{\prime}$ N. Dip 28 ft . Chron. read $6 \mathrm{~h} 38^{\prime}$ A. M. Required latitude.
G. M. T. 24d $18 \mathrm{~h} 38^{\prime}$
*Dec. 24d $\quad 16^{\circ} 18^{\prime} .5 \mathrm{~N}$ increasing Corr. 18h 38' $1^{\prime} .1 \mathrm{~N}$

Dec. 24d 18h $38{ }^{\prime}$	$16^{\circ} 19^{\prime} .6$	H. P. $0^{\prime} .03$ or $2^{\prime \prime}$:
Obs. Alt.	$41^{\circ} 12^{\prime} 00^{\prime \prime}$	
Dip	$5^{\prime} 11^{\prime \prime}$	
	$41^{\circ} 06^{\prime} 49^{\prime \prime}$	
Par. (Table 17)	+ 02"	
	$41^{\circ} 06^{\prime} 51^{\prime \prime}$	
Ref.	$1^{\prime} 07^{\prime \prime}$	
True Alt.	$\begin{aligned} & 41^{\circ} 05^{\prime} 44^{\prime \prime} \\ & 90^{\circ} 00^{\prime} 00^{\prime \prime} \end{aligned}$	
Z. D.	$48^{\circ} 54^{\prime} 16^{\prime \prime} \mathrm{S}$	
Dec.	$16^{\circ} 19^{\prime} 36^{\prime \prime} \mathrm{N}$	
Lat.	$32^{\circ} 34^{\prime} 40^{\prime \prime} \mathrm{S}$	

PROBLEM NO. 3
Jan. 2, 1919. Obs. Mer. Alt. Planet Venus $69^{\circ} 07^{\prime} 00^{\prime \prime}$ N. Dip 14 ft. Chron. read 1h 12^{\prime} P. M.

G. M. T. 2d	$1 \mathrm{~h} 12^{\prime}$	
Dec. 2d	$22^{\circ} 56^{\prime} .9 \mathrm{~S}$ decreasing	
Corr. 1h 12'	$0^{\prime} .4$	H. P. $0^{\prime} .09$ or $5^{\prime \prime}$
Dec. 2d 1h 12'	$22^{\circ} 56^{\prime} .5 \mathrm{~S}$	
Obs. Alt	$69^{\circ} 07^{\prime} 00^{\prime \prime} \mathrm{N}$	
Dip	$3^{\prime} 40^{\prime \prime}$	
	$69^{\circ} 03^{\prime} 20^{\prime \prime}$	
Par. (Table 17)	+ 05"	
	$69^{\circ} 03^{\prime} 25^{\prime \prime}$	
Ref.	$22^{\prime \prime}$	
True Alt.	$69^{\circ} 03^{\prime} 03^{\prime \prime}$	
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	
Z. D.	$20^{\circ} 56^{\prime} 57^{\prime \prime} \mathrm{S}$	
Dec.	$22^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{S}$	
Lat.	$43^{\circ} 53^{\prime} 27^{\prime \prime}$ S	

PROBLEM NO. 4

Apr. 14, 1919. Obs. Mer. Alt. Planet Jupiter $68^{\circ} 58^{\prime}$ S. Dip ${ }^{-1} 14 \mathrm{ft}^{\text {f }}$ Chron. read $1 \mathrm{~h} 40^{\prime}$ P. M.

G. M. T. 14d	1h 40^{\prime}	
Dec. 14d	$22^{\circ} 23^{\prime} .1 \mathrm{~N}$ de	
Corr. 1h 40'	$0^{\prime} .0$	
Dec. 14d 1h 40'	$22^{\circ} 23^{\prime} .1 \mathrm{~N}$	H. P. $0^{\prime} .03$ or $\mathbf{2}^{\prime \prime}$
Obs. Alt.	$68^{\circ} 58^{\prime} 00^{\prime \prime}$	
Dip	$3^{\prime} 40^{\prime \prime}$	
	$68^{\circ} 54^{\prime} 20^{\prime \prime}$	
Par.	+ $2^{\prime \prime}$	
	$68^{\circ} 54^{\prime} 22^{\prime \prime}$	
Ref.	$22^{\prime \prime}$	
True Ali.	$68^{\circ} 54^{\prime} 00^{\prime \prime}$	
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	
Z. D.	$21^{\circ} 06^{\prime} 00^{\prime \prime} \mathrm{N}$	
Dec.	$23^{\circ} 23^{\prime} 06^{\prime \prime} \mathrm{N}$	
Lat.	$44^{\circ} 29^{\prime} 06^{\prime \prime} \mathrm{N}$	

CHAPTER XVI

Latitude by ex-meridian altitude of sun

This problem is to find the latitude of the place, when the sun is not visible at noon.

It is possible at certain seasons of the year to ohtain the latitude 28 minutes before or after noon.

When sun's declination is opposite name to latitude of observer the interval is greater, when the latitude and declination are the same name the interval is less.

If further away from noon than 28 minutes, the latitude may yet be calculated, but by a different method called $\phi^{\prime} \phi^{\prime \prime}$ method. This method will be explained in another chapter.

Find the Local Apparent Time (L. A. T.) as follows:
Correct chronometer and obtain G. M. T.
Take from the Nautical Almanac the equation of time for this G. M. T. and apply it, giving the G. A. T.

Under G. A. T. put down longitude in time. If east longitude add; if west longitude, subtract; giving L. A. T.

To find the time away from noon:
If L. A. T. is less than 24 hours, subtract it from 24 hours and the result will be the minutes and seconds before noon. If L. A. T. is over 0 hours it will be the minutes and seconds after noon.

Take out sun's declination from almanac for Greenwich date and time.

Square the number of minutes from noon. Using the nearest minute will be close enough for practical purposes.

Note.-To square a number, multiply it by itself. For example: The square of 12^{\prime} is $12 \times 12=144$.

Enter Table 26 (Bowditch) with latitude and declination to nearest degree, and read the number obtained from this table in its proper column. Declination will be found from top of page, latitude from side.

Note.-Notice whether latitude and declination are same or contrary names.

Multiply the square of minutes from noon by this number, and the result will be seconds of altitude correction.

Reduce the seconds to minutes and seconds, and always add it to sun's observed altitude.

Note.-Table 27 (Bowditch) is another method of finding the altitude correction. It is based on the same principle as the foregoing rule-that is, the square of the number of minutes from noon multiplied by correction from Table 26, is given in this table.

After adding to observed altitude the correction, correct altitude for index error, semi-diameter, dip, refraction and parallax, and obtain true altitude.

Find the zenith distance, and apply declination to same, as was done in meridian altitude sights.

Result will be latitude at sight.
To find the latitude at noon, it will be necessary to allow the difference of latitude made by the ship from the sight to noon on the course and distance steered in the interval.

This problem is very useful to the navigator, for if the sun is overcast at noon the latitude by observation would be lost for that day, if this example was not used.

PROBLEM NO. 1
Mar. 10, 1919. Ex. Mer. Alt. Sun's L. L. $42^{\circ} 16^{\prime} 28^{\prime \prime}$ S. Dip 18 ft. Chron. read $6 \mathrm{~h} 45^{\prime} 15^{\prime \prime}$ P. M. Long. $94^{\circ} 16^{\prime}$ W. Lat. by D. R. 43° N.

G. M. T. 10d	6 h 45 ' $15^{\prime \prime}$	Dec. 10d 6h 4°
Eq. Time	$10^{\prime} 34^{\prime \prime}$	Corr. for .7h
G. A. T.	6h $34^{\prime} 41^{\prime \prime}$	Dec. $10 \mathrm{~d} 6.7 \mathrm{~h} \quad 4^{\circ}$
Long.	6h 17' $04^{\prime \prime}$	
L. A. T.	Oh 17' $37{ }^{\prime \prime}$	18
Time past noon 18^{\prime}		
		324
Obs. Alt. Alt. Corr.	$42^{\circ} 16^{\prime} 28^{\prime \prime}$	$2^{\prime \prime} .0$ from Table 26
	$+\quad 10^{\prime} 48^{\prime \prime}$	
	$42^{\circ} 27^{\prime} 16^{\prime \prime}$	=10 $48^{\prime \prime}$
S. D.	$+16^{\prime} 06^{\prime \prime}$	
	$42^{\circ} 43^{\prime} 22^{\prime \prime}$	
Dip	$4^{\prime} 09^{\prime \prime}$	
	$42^{\circ} 39^{\prime} 13^{\prime \prime}$	
R. \& P.	$56^{\prime \prime}$	
True Alt.	$42^{\circ} 38^{\prime} 17^{\prime \prime}$ S	
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	
Z. D.	$47^{\circ} 21^{\prime} 43^{\prime \prime} \mathrm{N}$	
Dec.	$4^{\circ} 17^{\prime} 42^{\prime \prime} \mathrm{S}$	
Lat.	$43^{\circ} 04^{\prime} 01^{\prime \prime} \mathrm{N}$	

PROBLEM NO. 2

Apr. 19, 1919. Ex. Mer. Alt. Sun's L. L. $41^{\circ} 28^{\prime} 13^{\prime \prime}$ N. Dip 20 ft. Chron. read 4 h $45^{\prime} 08^{\prime \prime}$ A. M. Long. $105^{\circ} 15^{\prime}$ E. Lat. by D. R. 38° S.

200 SIMPLE RULES AND PROBLEMS IN NAVIGATION

PROBLEM NO. 3

Mar. 11, 1919. Ex. Mer. Alt. Sun's L. L. $45^{\circ} 38^{\prime} 25^{\prime \prime}$ N. Dip 22 ft . Chron. read Mar. 10, $11 \mathrm{~h} 59^{\prime} 54^{\prime \prime}$, slow $35^{\prime} 58^{\prime \prime}$. Long. $168^{\circ} 20^{\prime}$ E. D. R. Lat. 48° S.

PROBLEM NO. 4

July 4, 1919. Ex. Mer. Alt. Sun's L. L. $44^{\circ} 02^{\prime}$ N. Dip 18 ft. Chron. read $10 \mathrm{~h} 17^{\prime} 10^{\prime \prime}$ A. M., slow 3h $52^{\prime} 17^{\prime \prime}$. Long. $35^{\circ} 15^{\prime}$ W. D. R. Lat. $23^{\circ} \mathrm{S}$.

PROBLEM NO. 5

Oct. 24, 1919. Ex. Mer. Alt. Sun's L. L. $37^{\circ} 02^{\prime} 15^{\prime \prime}$ S. Dip 18 ft. Chron. read 7h $07^{\prime} 41^{\prime \prime}$ A. M., slow $16^{\prime} 19^{\prime \prime}$. Long. 70° E. D. R. Lat. $41^{\circ} 13^{\prime} \mathrm{N}$.

PROBLEM NO. 6

Sept. 24, 1919. Ex. Mer. Alt. Sun's L. L. $50^{\circ} 19^{\prime}$ S. Dip 16 ft. Chron. read $0 \mathrm{~h} 34^{\prime} 10^{\prime \prime}$ P. M. fast $19^{\prime} 20^{\prime \prime}$. Long. 6° W. D. R. Lat. $38^{\circ} 50^{\prime} \mathrm{N}$.

204 SIMPLE RULES AND PROBLEMS IN NAVIGATION

PROBLEM NO. 7

Dec. 25, 1919. Ex. Mer. Alt. Sun's L. L. $64^{\circ} 45^{\prime}$ N. Dip 15 ft. Chron. read $3 \mathrm{~h} 17^{\prime} 10^{\prime \prime}$ A. M., slow $13^{\prime} 05^{\prime \prime}$. Long. 130° E. D. R. Lat. $48^{\circ} 23^{\prime} \mathrm{S}$.

| Chron.
 Slow | $+\frac{15 \mathrm{~h} 17^{\prime} 10^{\prime \prime}}{13^{\prime} 05^{\prime \prime}}$ |
| :--- | :---: | :--- |\quad| Dec. 24d 14h |
| :--- |
| Corr. 1.5 h |$\quad-$| $23^{\circ} 25^{\prime} .7 \mathrm{~S}$ |
| :--- |
| $0^{\prime} .1$ |

PROBLEM NO. 8

May 29, 1919. Ex. Mer. Alt. Sun's L. L. $64^{\circ} 25^{\prime}$ S. Dip 10 ft. Chron. read 11h $17^{\prime} 56^{\prime \prime}$ A. M., slow 3h 53^{\prime}. Long. $49^{\circ} 30^{\prime}$ W. D. R Lat. $47^{\circ} \mathrm{N}$.

Chron.	$\begin{array}{r} 23 \mathrm{~h} 17^{\prime} 56^{\prime \prime} \\ 3 \mathrm{~h} 53^{\prime} 00^{\prime \prime} \end{array}$	Dec. 29d 2h Corr. 1.2h		$\underset{0^{\prime} .5}{1^{\circ} 30^{\prime} .6} \mathrm{~N}$
G. M. T. 29d	3h 10' $56^{\prime \prime}$	Dec. 29d 3.2h	21	$1^{\circ} 31^{\prime} .1 \mathrm{~N}$
Eq. Time	+ $2^{\prime} 54^{\prime \prime}$			
G. A. T. 29d	$3 \mathrm{~h} 13^{\prime} 50^{\prime \prime}$	4		
Long.	$3 \mathrm{~h} 18^{\prime} 00^{\prime \prime}$			
		16		
L. A. T. 28d	$23 \mathrm{~h} 55^{\prime} 50^{\prime \prime}$	$2^{\prime \prime} .9$ from T		
Time befor	- $4^{\prime} 10^{\prime \prime}$.			
		$46^{\prime \prime}$ alt. corr.		
Obs. Alt.	$64^{\circ} 25^{\prime} 00^{\prime} \mathrm{S}$			
Corr.	+ 46"			
	$64^{\circ} 25^{\prime} 46^{\prime \prime}$			
S. D.	$+15^{\prime} 48^{\prime \prime}$			
	$64^{\circ} 41^{\prime} 34^{\prime \prime}$			
Dip	$3^{\prime} 06^{\prime \prime}$			
	$64^{\circ} 38^{\prime} 28^{\prime \prime}$			
R. \& P.	$23^{\prime \prime}$			
True Alt.	$\begin{aligned} & 64^{\circ} 38^{\prime} 05^{\prime \prime} \mathrm{S} \\ & 90^{\circ} 00^{\prime} 00^{\prime \prime} \end{aligned}$			
Z. D.	$25^{\circ} 21^{\prime} 55^{\prime \prime} \mathrm{N}$			
Dec.	$21^{\circ} 31^{\prime} 06^{\prime \prime} \mathrm{N}$			
Lat.	$46^{\circ} 53^{\prime} 01^{\prime \prime} \mathrm{N}$			

PROBLEM NO. 9

Jan. 24, 1919. Ex. Mer. Alt. Sun's L. L. $22^{\circ} 46^{\prime}$ S. Index error $-1^{\prime} 25^{\prime \prime}$. Dip 26 ft . Chron. read $10 \mathrm{~h} 5^{\prime} 2^{\prime \prime}$ P. M., which was slow 7'. $15^{\prime \prime}$. Long. $155^{\circ} \mathrm{W}$. D. R. Lat. 48° N.

Chron.	$10 \mathrm{~h} 05^{\prime} 02^{\prime \prime}$	Dec. 24d 10h	$19^{\circ} 17^{\prime} .4 \mathrm{~S}$
Slow	+ $7^{\prime} 15^{\prime \prime}$	Corr. . 2 h	- 0 ' 1
G. M. T. 24d	10h 12' $17^{\prime \prime}$	Dec. 24d 10.2h	$19^{\circ} 17^{\prime} .3 \mathrm{~S}$
Eq. Time	$12^{\prime} 09^{\prime \prime}$		
G. A. T. 24d	$10 \mathrm{~h} 00^{\prime} 08^{\prime \prime}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	
Long.	$-10 \mathrm{~h} 20^{\prime} 00^{\prime \prime}$		
		400	
L. A. T. 23d	23h $40^{\prime} 08^{\prime \prime}$	$1^{\prime \prime} .4$ fro	able 26
Time before	on $19^{\prime} 52^{\prime \prime}$.		
Obs. Alt.	$22^{\circ} 46^{\prime} 00^{\prime \prime} \mathrm{S}$	$560^{\prime \prime}=9$	' alt. corr.
Corr.	$+\quad 9^{\prime} 20^{\prime \prime}$		
	$22^{\circ} 55^{\prime} 20^{\prime \prime}$		
I. E.	- 1 $1^{\prime} 25^{\prime \prime}$		
	$22^{\circ} 53^{\prime} 55^{\prime \prime}$		
S. D.	$+\quad 16^{\prime} 18^{\prime \prime}$		
	$23^{\circ} 10^{\prime} 07^{\prime \prime}$		
Dip	$5^{\prime} 00^{\prime \prime}$		
	$23^{\circ} 05^{\prime} 07^{\prime \prime}$		
R. \& P.	$2^{\prime} 07^{\prime \prime}$		
True Alt.	$23^{\circ} 03^{\prime} 00^{\prime \prime} \mathrm{S}$		
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$		
Z. D.	$66^{\circ} 57^{\prime} 00^{\prime \prime} \mathrm{N}$		
Dec.	$19^{\circ} 17^{\prime} 18^{\prime \prime} \mathrm{S}$		
Lat.	$47^{\circ} 39^{\prime} 42^{\prime \prime} \mathrm{N}$		

PROBLEM NO. 10

July 12, 1919. Ex. Mer. Alt. Sun's L. L. $78^{\circ} 16^{\prime} 30^{\prime \prime}$ S. Dip 26 ft. Chron. read 5h $0^{\prime} 28^{\prime \prime}$ P. M. Long. $75^{\circ} 18^{\prime}$ W. D. R. Lat. 34° N.

PROBLEM NO. 11

Sept. 18, 1919. Ex. Mer. Alt. Sun's L. L. $78^{\circ} 16^{\prime} 30^{\prime \prime}$ S. Dip 26 ft. Chron. read $7 \mathrm{~h} 03^{\prime} 00^{\prime \prime}$ A. M. Long. $75^{\circ} 30^{\prime}$ E. D. R. Lat. $13^{\circ} \mathrm{N}$.

PROBLEM NO. 12

Feb. 7, 1919. Ex. Mer. Alt. Sun's L. L. $42^{\circ} 00^{\prime} 30^{\prime \prime}$ S. Dip 18 ft. Chron. read 6 h $45^{\prime} 15^{\prime \prime}$ P. M. Long. 94° W. D. R. Lat. 33° N.

G. M. T. 7d	$6 \mathrm{~h} 45^{\prime} 15^{\prime \prime}$	Dec. 7d 6h	$15^{\circ} 27^{\prime} .9 \mathrm{~S}$
Eq. Time	$14^{\prime} 16^{\prime \prime}$	Corr. .8h	$0^{\prime} .6$
G. A. T. 7d	$6 \mathrm{~h} 30^{\prime} 59^{\prime \prime}$	Dec. 7d 6.8h	$15^{\circ} 27^{\prime} .3 \mathrm{~S}$
Long.	- 6h 16' $00^{\prime \prime}$		
L. A. T. 7d	0h 14' $59^{\prime \prime}$	15 15	
Time after	n $14^{\prime} 59^{\prime \prime}$		
		225	
Obs. Alt.	$42^{\circ} 00^{\prime} 30^{\prime \prime} \mathrm{S}$	$2^{\prime \prime} .1$ fro	
Corr.	+ $7^{\prime} 52^{\prime \prime}$		
	$42^{\circ} 08^{\prime} 22^{\prime \prime}$	$472^{\prime \prime} 7^{\prime}$	corr.
S. D.	$+\quad 16^{\prime} 12^{\prime \prime}$		
	$42^{\circ} 24^{\prime} 34^{\prime \prime}$		
Dip	$4^{\prime} 09^{\prime \prime}$		
	$42^{\circ} 20^{\prime} 25^{\prime \prime}$		
R. \& P.	57"		
True Alt.	$\begin{aligned} & 42^{\circ} 19^{\prime} 28^{\prime \prime} \\ & 90^{\circ}{ }^{\circ} \mathrm{O}^{\prime} \mathrm{S} 0^{\prime \prime} \end{aligned}$		
Z. D.	$47^{\circ} 40^{\prime} 32^{\prime \prime} \mathrm{N}$		
Dec.	$15^{\circ} 27^{\prime} 18^{\prime \prime} \mathrm{S}$		
Lat.	$32^{\circ} 13^{\prime} 14^{\prime \prime} \mathrm{N}$		

PROBLEM NO. 18

June 23, 1919. Ex. Mer. Alt. Sun's L. L. $41^{\circ} 20^{\prime} 30^{\prime \prime}$ N. Dip 20 ft. Chron. read $4 \mathrm{~h} 40^{\prime} 18^{\prime \prime}$ A. M. Long. $104^{\circ} 50^{\prime}$ E. D. R. Lat. 25° S.

G. M. T. 22d	$16 \mathrm{~h} 40^{\prime} 18^{\prime \prime}$	Dec. 22d 16h	$23^{\circ} 26^{\prime} .8 \mathrm{~N}$	
Eq. Time	- $1^{\prime} 42^{\prime \prime}$	Corr. .7h	$0^{\prime} .0$	
$\begin{aligned} & \text { G. A. T. 22d } \\ & \text { Long. } \end{aligned}$	16h $38^{\prime} 36^{\prime \prime}$	Dec.	$23^{\circ} 26^{\prime} .8 \mathrm{~N}$	
	$6 \mathrm{~h} 59^{\prime} 20^{\prime \prime}$			
L. A. T. 23d	23h 37' $56{ }^{\prime \prime}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$		
Time before noon $22^{\prime} 04^{\prime \prime}$.				
		484		
Obs. Alt.Corr.	$41^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{N}$	$2^{\prime \prime} .2$ from Table 26		
	$+\quad 17^{\prime} 45^{\prime \prime}$	$1065^{\prime \prime}=17^{\prime} 45^{\prime \prime}$ alt. corr.		
S. D.	$41^{\circ} 38^{\prime} 15^{\prime \prime}$			
	+ $15^{\prime} 48^{\prime \prime}$			
Dip	$41^{\circ} 54^{\prime} 03^{\prime \prime}$			
	- $4^{\prime} 23^{\prime \prime}$			
	$41^{\circ} 49^{\prime} 40^{\prime \prime}$			
R. \& P.	- 58'			
True Alt.	41 ${ }^{\circ} 48^{\prime} 42^{\prime \prime}$			
	$90^{\circ} 00^{\prime} 00^{\prime \prime}$			
Z. D.	$48^{\circ} 11^{\prime} 18^{\prime \prime} \mathrm{S}$			
Dec.	$23^{\circ} 26^{\prime} 48^{\prime \prime} \mathrm{N}$			
Lat.	$24^{\circ} 44^{\prime} 40^{\prime \prime} \mathrm{S}$			

PROBLEM NO. 14

Mar. 14, 1919. Ex. Mer. Alt. Sun's L. L. $45^{\circ} 30^{\prime} 50^{\prime \prime} \mathrm{N}$. Index error $-1^{\prime} 50^{\prime \prime}$. Dip 21 ft . Chron. read $0 \mathrm{~h} 50^{\prime} 45^{\prime \prime} \mathrm{A}$. M., slow $25^{\prime} 50^{\prime \prime}$. Long. $167^{\circ} 50^{\prime}$ E. D. R. Lat. 47° S.

Chron.	12h $50^{\prime} 45^{\prime \prime}$	Dee. 13d 12h	$3^{\circ} 01^{\prime} .9$ S
Slow	+ $25^{\prime} 50^{\prime \prime}$	Corr. 1.3h	$1^{\prime} .3$
G. M. T. 13d	13h $16^{\prime} 35^{\prime \prime}$	Dec. 13d 13.3h	$3^{\circ} 00^{\prime} .6$ S
Eq. Time	$9^{\prime} 42^{\prime \prime}$		
G. A. T. 13d	13h 06' $53^{\prime \prime}$	18	
Long.	11h $11^{\prime} 20^{\prime \prime}$		
		324	
$\begin{aligned} & \text { L. A. T. 14d } 0 \text { h } 18^{\prime} 13^{\prime \prime} \\ & \text { Time after noon } 18^{\prime} 13^{\prime \prime} \end{aligned}$		$1^{\prime \prime} .9$ from Table 26	
		$615^{\prime \prime}=10^{\prime} 15^{\prime \prime}$ alt. corr.	

CHAPTER XVII

LONGITUDE BY FIXED STAR AND PLANET

This problem is to determine the longitude of a place by a fixed star and planet, and is accurate as long as the horizon is clear enough to obtain the proper altitude.

A star in the East and another in the West taken as close as possible to each other, and projected on the chart by Sumner lines, will make an excellent " fix " for the ship.

For fixed stars:
Correct chronometer same as was done in longitude by sun observations, and obtain Greenwich Mean Time.

From Page 2 (Almanac) take out Sun's Right Ascension for Greenwich date, and place it under G. M. T.

From table below on Page 2 take out correction to be added to Sun's Right Ascension, using G. M. T.

Add together G. M. T., Sun's Right Ascension and Correction. Result will be Greenwich Siderial Time, expressed G. S. T.

Take out star's declination from Page 95 (Almanac) for month of example, and star's right ascension from opposite page for month.

Find polar distance as follows:
Latitude and declination same name, subtract declination from 90°.

Latitude and declination different name, add 90° to declination.

Correct star's observed altitude as follows:
Index error as per sign, if any.
Dip (Table 14) subtract.
Refraction (Table 20A) subtract.
Result will be true altitude.
Add together true altitude, latitude and polar distance, and divide sum by 2 . Result will be half sum.

Subtract true altitude from half sum. Result will be remainder.

From Table 44 (Bowditch) take out the following logarithms:

Secant of latitude. Rejecting 10 from index number.
Cosecant of polar distance. Rejecting 10 from index number.

Cosine of half sum.
Sine of remainder.
Note.-If polar distance exceeds 90°. Take secant of declination instead.

Add these four logarithms together, and subtract 10 from index number.

Log. Haversine (Table 45) that agrees with sum of logarithms will be star's hour angle. Always to be read from top of page or in P. M.

Under star's right ascension put down star's hour angle and apply as follows:

If star bore West when observation was taken, add the two.
If star bore East when observation was taken, subtract star's hour angle from star's right ascension. Result will be siderial time ship, expressed S. T. S.

Note.-If star bore East, and hour angle is greater than right ascension, add 24 hours to right ascension before making subtraction.

Under siderial time at ship, put down Greenwich Siderial time, and subtract less from greater. Result will be longitude in time.

Turn longitude in time into degrees, minutes and seconds as in previous methods. Result will be longitude.

If Greenwich time is best the longitude is West.
If Greenwich time is least the longitude is East.

214 SIMPLE RULES AND PROBLEMS IN NAVIGATION

PROBLEM NO. 1

Jan. 31, 1919, A. M. Obs. Alt. *Spica $45^{\circ} 50^{\prime}$, bearing W. Dip 36 ft . Chron. read $1 \mathrm{~h} 14^{\prime} 35^{\prime \prime} \mathrm{P}$. M., which was fast Jan. 11, $^{\prime \prime} 31^{\prime \prime}$ and gaining $9^{\prime \prime}$ daily. Lat. $25^{\circ} 53^{\prime}$ N. D. R. Long. $94^{\circ} \mathrm{W}$.

*R. A.	13h $20^{\prime} 57^{\prime \prime}$
*H. A.	1h 42' $19^{\prime \prime}$
L. S. T.	$15 \mathrm{~h} 03^{\prime} 16^{\prime \prime}$
G. S. T.	21h $18^{\prime} 46^{\prime \prime}$
Long.	$6 \mathrm{~h} 15^{\prime} 30^{\prime \prime}=93^{\circ} 52^{\prime} 30^{\prime \prime} \mathrm{W}$

PROBLEM NO. 2

Jan. 30, 1919, A. M. Obs. Alt. *Vega $43^{\circ} 57^{\prime}$, bearing E. Dip 36 ft. Chron. read 0h $56^{\prime} 00^{\prime \prime}$ P. M., fast $34^{\prime} 25^{\prime \prime}$. Lat. $28^{\circ} 27^{\prime}$ N. Long. by D. R. $90^{\circ} 30^{\prime} \mathrm{W}$.

Chron.	$\begin{array}{r} \text { Oh } 56^{\prime} 00^{\prime \prime} \\ -\quad 34^{\prime} 25^{\prime \prime} \end{array}$	Dec.	$\begin{array}{lll} 38^{\circ} & 42^{\prime} 18^{\prime \prime} \mathrm{N} \\ 90^{\circ} 00^{\prime} & 00^{\prime \prime} \end{array}$
G. M. T. 30d	Oh $21^{\prime} 35^{\prime \prime}$	P. D.	$51^{\circ} 17^{\prime} 42^{\prime \prime}$
R. A. M. S.	20h $34^{\prime} 41^{\prime \prime}$		
Corr.	03"		
G. S. T. 30d	20h 56' $19^{\prime \prime}$		

Obs. Alt.	$43^{\circ} 57^{\prime} 00^{\prime \prime}$		
Dip	- 5 $53^{\prime \prime}$		
	$43^{\circ} 51^{\prime} 07^{\prime \prime}$		
Ref.	$1^{\prime} 01^{\prime \prime}$		
h	$43^{\circ} 50^{\prime} 06^{\prime \prime}$		
Lat.	$28^{\circ} 27^{\prime} 00^{\prime \prime}$	Sec	. 05590
P. D.	$51^{\circ} 17^{\prime} 42^{\prime \prime}$	Csc	. 10784
	2) $123^{\circ} 34^{\prime} 48^{\prime \prime}$		
s	$61^{\circ} 47^{\prime} 24^{\prime \prime}$	Cos	9.67459
s-h	$17^{\circ} 57^{\prime} 18^{\prime \prime}$	Sin	9.48893
		Log. Hav.	9.32726

*R. A.	$18 \mathrm{~h} 34^{\prime} 11^{\prime \prime}$ *H. A. $3 \mathrm{~h} 39^{\prime} 34^{\prime \prime} \mathrm{E}$ or-
$\frac{14 \mathrm{~h} 54^{\prime} 37^{\prime \prime}}{\text { L. S. T. }}$	$\frac{20 \mathrm{~h} 56^{\prime} 19^{\prime \prime}}{}$
G. S. T.	$6 \mathrm{~h} 01^{\prime} 42^{\prime \prime}$ or $90^{\circ} 25^{\prime} 30^{\prime \prime} \mathrm{W}$.

PROBLEM NO. 3

June 12, 1919, P. M. Obs. Alt. *Regulus $26^{\circ} 18^{\prime} 32^{\prime \prime}$, bearing West. Dip 17 ft . Chron. read 2h $02^{\prime} 12^{\prime \prime}$ P. M., fast $14^{\prime} 8^{\prime \prime}$. Lat. $37^{\circ} 18^{\prime}$ N. Long. by D. R. $110^{\circ} \mathrm{E}$.

Chron. Fast.	$\begin{aligned} & \text { 2h } 02^{\prime} 12^{\prime \prime} \quad D \epsilon \\ & 14^{\prime} 08^{\prime \prime} \end{aligned}$	Dec.	$\begin{aligned} & 12^{\circ}{ }_{91^{\prime}} 21^{\prime} .6 \mathrm{~N} \\ & 00^{\prime} .0 \end{aligned}$
G. M. T.	1h $48^{\prime} 04^{\prime \prime} \quad$ P.	P.	$77^{\circ} 38^{\prime} .4$
R. A. M. S.	5h $19^{\prime} 03^{\prime \prime}$		
Corr.	$18^{\prime \prime}$		
G. S. T.	7h 07' $25^{\prime \prime}$		
Obs. Alt.	$26^{\circ} 18^{\prime} 32^{\prime \prime}$		
Dip	- $4^{\prime} 02^{\prime \prime}$		
	$26^{\circ} 14^{\prime} 30^{\prime \prime}$		
Ref.	- $1^{\prime} 58^{\prime \prime}$		
h	$26^{\circ} 12^{\prime} 32^{\prime \prime}$		
Lat.	$37^{\circ} 18^{\prime} 00^{\prime \prime}$	" Sec	. 09937
P. D.	$77^{\circ} 38^{\prime} 24^{\prime \prime}$	" Csc	. 01019
	$2 \longdiv { 1 4 1 ^ { \circ } 0 8 ^ { \prime } 5 6 ^ { \prime \prime } }$		
s	$70^{\circ} 34^{\prime} 28^{\prime \prime}$	" Cos	9.52190
$s-h$	$44^{\circ} 21^{\prime} 56^{\prime \prime}$	$6^{\prime \prime}$ Sin	9.84462
		Log. Hav.	9.47608

*R. A.	$10 \mathrm{~h} 04^{\prime} 05^{\prime \prime}$ *H. A.
$25^{\prime} 20^{\prime \prime}$	

PROBLEM NO. 4

Mar. 11, 1919, A. M. Obs. Alt. *Antares $28^{\circ} 16^{\prime} 15^{\prime \prime}$, bearing W. Dip 21 ft . Chron. read 8h $16^{\prime} 23^{\prime \prime}$ P. M., slow $32^{\prime} 18^{\prime \prime} . \quad$ Lat. $22^{\circ} 18^{\prime} \mathrm{S}$. Long. by D. R. $166^{\circ} 10^{\prime} \mathrm{W}$.

Chron.	$8 \mathrm{~h} 16^{\prime} 23^{\prime \prime}$ $32^{\prime} 18^{\prime \prime}$	Dec.	$26^{\circ} 15^{\prime} .2 \mathrm{~S}$ Slow
Gh $48^{\prime} 41^{\prime \prime}$ G. M. T.	P. D.	$60^{\prime} .0$	

*R. A.	16h $24^{\prime} 28^{\prime \prime}$
*H. A.	4h $33^{\prime} 59^{\prime \prime}$
L. S. T.	20h $58^{\prime} 27^{\prime \prime}$
G. S. T.	$32 \mathrm{~h} 02^{\prime} 31^{\prime \prime}$

Long.
11h $04^{\prime} 04^{\prime \prime}$ or $166^{\circ} 01^{\prime} 00^{\prime \prime} \mathrm{W}$

218 SIMPLE RULES AND PROBLEMS IN NAVIGATION

PROBLEM NO. 5

Dec. 16, 1919, P. M. Obs. Alt. *Capella $31^{\circ} 17^{\prime} 12^{\prime \prime}$, bearing E. Dip 19 ft . Chron. read 10h $12^{\prime} 16^{\prime \prime}$ P. M., slow $8^{\prime} 03^{\prime \prime}$. Lat. $6^{\circ} 48^{\prime} \mathrm{N}$. Long. by D. R. $33^{\circ} 15^{\prime} \mathrm{W}$.

Chron. Slow	$\begin{array}{r} 10 \mathrm{~h} 12^{\prime} 16^{\prime \prime} \\ 8^{\prime} 03^{\prime \prime} \end{array}$	Dec.	$\begin{aligned} & 45^{\circ} 5 \\ & 90^{\circ} \end{aligned}$	
G. M. T.	$10 \mathrm{~h} 20^{\prime} 19^{\prime \prime} \quad$ P	P. D.	$44^{\circ} 05^{\prime}$	
R. A. M. S.	17 h 36 ' $19^{\prime \prime}$			
Corr.	$1^{\prime} 42^{\prime \prime}$			
G. S. T.	27h $58^{\prime} 20^{\prime \prime}$			
Obs. Alt.	$31^{\circ} 17^{\prime} 12^{\prime \prime}$			
Dip	- $4^{\prime} 16^{\prime \prime}$			
$31^{\circ} 12^{\prime} 56^{\prime \prime}$				
Ref. - 1'36'				
h				
Lat.	$44^{\circ} 05^{\prime} 00^{\prime \prime}$	" Sec		. 00307
P. D.		" Csc		. 15758
2)820 $04^{\prime} 20^{\prime \prime}$				
s	$\begin{array}{rr} 41^{\circ} & 02^{\prime} \\ 9^{\circ} & 10^{\prime \prime} \\ 50^{\prime} & 50^{\prime \prime} \end{array}$	" Cos		9.87754
$s-h$		" Sin		9.23305
		Log. Hav.		9.27124

*R. A.	$5 \mathrm{~h} 10^{\prime} 50^{\prime \prime}$
*H. A.	$3 \mathrm{~h} 24^{\prime} 50^{\prime \prime}$
L. S. T.	1h $46^{\prime} 00^{\prime \prime}$
G. S. T.	3h $58^{\prime} 20^{\prime \prime}$

Long. $\quad 2 \mathrm{~h} 12^{\prime} 20^{\prime \prime}$ or $33^{\circ} 05^{\prime} 00^{\prime \prime} \mathrm{W}$

PROBLEM NO. 6

Apr. 16, 1919, P. M. Obs. Alt. *Aldebaran $23^{\circ} 13^{\prime} 20^{\prime \prime}$, bearing W. Dip 26 ft . Chron. read $7 \mathrm{~h} 01^{\prime} 35^{\prime \prime} \mathrm{P}$. M., fast $2^{\prime} 27^{\prime \prime}$. Index error $-2^{\prime} 00^{\prime}$. Lat. $11^{\circ} 47^{\prime}$ S. Long. by D. R. $0^{\circ} 05^{\prime} \mathrm{E}$.

Chron. Fast	$\begin{aligned} 7 \mathrm{~h} 01^{\prime} & 35^{\prime \prime} \\ 2^{\prime} & 27^{\prime \prime} \end{aligned}$	Dec.	$\begin{aligned} & 16^{\circ} 20^{\prime} .8 \\ & 90^{\circ} 00^{\prime} .0 \end{aligned}$
G. M. T.	$6 \mathrm{~h} 59^{\prime} 08^{\prime \prime} \quad \mathrm{P}$	P. D.	$106^{\circ} 20^{\prime} .8$
R. A. M. S.	1h $34^{\prime} 19^{\prime \prime}$		
Corr.	$1^{\prime} 09^{\prime \prime}$		
G. S. T.	8h $34^{\prime} 36^{\prime \prime}$		
Obs. Alt.	$23^{\circ} 13^{\prime} 20^{\prime \prime}$		
I. E.	- $\quad 2^{\prime} 00^{\prime \prime}$		
	$23^{\circ} 11^{\prime} 20^{\prime \prime}$		
Dip	5'00'1		
	$23^{\circ} 06^{\prime} 20^{\prime \prime}$		
Ref.	- $2^{\prime} 15^{\prime \prime}$		
h	$23^{\circ} 04^{\prime} 05^{\prime \prime}$		
Lat.	$11^{\circ} 47^{\prime} 00^{\prime \prime}$	' Sec	. 00925
P. D.	$106^{\circ} 20^{\prime} 48^{\prime \prime}$	' Cse	. 01792
	$2 \longdiv { 1 4 1 ^ { \circ } 1 1 ^ { \prime } 5 3 ^ { \prime \prime } }$		
8	$70^{\circ} 35^{\prime} 56^{\prime \prime}$	" Cos	9.52138
s-h	$47^{\circ} 31^{\prime} 51^{\prime \prime}$	' Sin	9.86785
		Log. Hav.	9.41640

*R. A.	4h 31' $17^{\prime \prime}$
*H. A.	4h 05' $42^{\prime \prime}$
L. S. T.	8h $36^{\prime} 59^{\prime \prime}$
G. S. T.	8h $34^{\prime} 36^{\prime \prime}$
Long.	$2^{\prime} 23^{\prime \prime}$

PROBLEM NO. 7

Dec. 1, 1919, P. M. Obs. Alt. *Capella $31^{\circ} 17^{\prime} 12^{\prime \prime}$, bearing E. Dip 19 ft . Chron. read $9 \mathrm{~h} 18^{\prime} 16^{\prime \prime}$ P. M., slow $8^{\prime} 03^{\prime \prime}$. Lat. $6^{\circ} 48^{\prime \prime}$ N. Long. by D. R. $5^{\circ} \mathrm{W}$.

Chron.	$\begin{array}{r} 9 \mathrm{~h} 18^{\prime} 16^{\prime \prime} \\ +\quad 8^{\prime} 03^{\prime \prime} \end{array}$	Dec.	$\begin{aligned} & 45^{\circ} 55^{\prime} \\ & 90^{\circ} 00^{\prime} \end{aligned}$
G. M. T.	$9 \mathrm{~h} 26^{\prime} 19^{\prime \prime}$	P. D.	$44^{\circ} 05^{\prime}$
R. A. M.S.	16h $37^{\prime} 10^{\prime \prime}$		
Corr	$1^{\prime} 33^{\prime \prime}$		
G. S. T.	26h $05^{\prime} 02^{\prime \prime}$		

Obs. Alt.	$31^{\circ} 17^{\prime} 12^{\prime \prime}$		
Dip	- $4^{\prime} 16^{\prime \prime}$		
	$31^{\circ} 12^{\prime} 56^{\prime \prime}$		
Ref.	$1^{\prime} 36^{\prime \prime}$		
h	$31^{\circ} 11^{\prime} 20^{\prime \prime}$		
Lat.	$6^{\circ} 48^{\prime} 00^{\prime \prime}$	Sec	. 00307
P. D.	$44^{\circ} 05^{\prime} 00^{\prime \prime}$	Csc	. 15758
	2)82 ${ }^{\circ} 04^{\prime} 20^{\prime \prime}$		
s	$41^{\circ} 02^{\prime} 10^{\prime \prime}$	Cos	9.87754
$s-h$	$9^{\circ} 50^{\prime} 50^{\prime \prime}$	Sin	9.23307
		Log. Hav.	9.27126

*R. A.	5h $10^{\prime} 49^{\prime \prime}$
*H. A.	3h $24^{\prime} 50^{\prime \prime}$
L. S. T.	1h $45^{\prime} 59^{\prime \prime}$
G. S. T.	2h $05^{\prime} 02^{\prime \prime}$
Long.	$19^{\prime} 03^{\prime \prime}$

PROBLEM NO. 8

Feb. 15, 1919, A. M. Obs. Alt. *Spica $48^{\circ} 10^{\prime}$, bearing W. Dip 26 ft . Chron. read 1h $14^{\prime} 35^{\prime \prime}$, P. M., which was fast on Jan. 11, $31^{\prime} 34^{\prime \prime}$, and gaining $9^{\prime \prime}$ daily. Lat. $25^{\circ} 53^{\prime} \mathrm{N}$. Long. by D. R. $112^{\circ} 45^{\prime} \mathrm{W}$.

Chron. Fast	$\begin{aligned} & \text { 1h } 14^{\prime} 35^{\prime \prime} \\ & 31^{\prime} 34^{\prime \prime} \end{aligned}$	Interval Rate	35 days $9^{\prime \prime}$ daily	
Acc. Rate	Oh 43' $01^{\prime \prime}$		$315^{\prime \prime}=5^{\prime} 15^{\prime \prime}$	
	$5^{\prime} 15^{\prime \prime}$			
		Dec.	$10^{\circ} 44^{\prime} .5 \mathrm{~S}$	
G. M. T.	Oh $37^{\prime} 46^{\prime \prime}$		$90^{\circ} 00^{\prime} .0$	
R. A. M. S. $21^{\text {a }} 37^{\prime} 46^{\prime \prime}$		P. D.		
Corr.	$06^{\prime \prime}$		$100^{\circ} 44^{\prime} .5$	
G. S. T.	22h $15^{\prime} 38^{\prime \prime}$			
Obs. Alt.	$48^{\circ} 10^{\prime} 00^{\prime \prime}$			
Dip	- $5^{\prime} 00^{\prime \prime}$			
	$48^{\circ} 05^{\prime} 00^{\prime \prime}$			
Ref.	- $0^{\prime} 47^{\prime \prime}$			
h	$48^{\circ} 04^{\prime} 13^{\prime \prime}$			
Lat.	$25^{\circ} 53^{\prime} 00^{\prime \prime}$	Sec		. 04591
P. D.	$100^{\circ} 44^{\prime} 30^{\prime \prime}$	Csc		. 00768
	2) $174^{\circ} 41^{\prime} 43^{\prime \prime}$			
s	$87^{\circ} 20^{\prime} 52^{\prime \prime}$	Cos		8.66:35
$s-h$	$39^{\circ} 16^{\prime} 39^{\prime \prime}$	Sin		9.80146
		Log. H		8.52040

*R. A. $\quad 13 \mathrm{~h} 20^{\prime} 58^{\prime \prime}$
*H. A.
1h $23^{\prime} 55^{\prime \prime}$
L. S. T. $14 \mathrm{~h} 44^{\prime} 53^{\prime \prime}$
G. S. T. 22 h $15^{\prime} 38^{\prime \prime}$

Long. $\quad 7 \mathrm{~h} 30^{\prime} 45^{\prime \prime}$ or $112^{\circ} 41^{\prime} 15^{\prime \prime} \mathrm{W}$

PROBLEM NO. 9

Mar. 20, 1918, P. M. Obs. Alt. *Betelgeux $32^{\circ} 17^{\prime} 30^{\prime \prime}$, bearing E. Dip 26 ft . Chron. read $13 \mathrm{~h} 16^{\prime} 23^{\prime \prime}$, fast $3^{\prime} 46^{\prime \prime}$. Lat. $32^{\circ} 17^{\prime} \mathrm{N}$. Long. by D. R. $164^{\circ} 30^{\prime} \mathrm{W}$.

Chron	$\begin{array}{r} 13 \mathrm{~h} 16^{\prime} \\ -\quad 23^{\prime \prime \prime} \\ 3^{\prime} \end{array} 6^{\prime \prime}$	Dec.	$\begin{aligned} & 7^{\circ} 23^{\prime} .4 \mathrm{~N} \\ & 90^{\circ} 00^{\prime} .0 \end{aligned}$
G. M. T.	13h 12' $37^{\prime \prime}$	P. D.	$82^{\circ} 36^{\prime} .6$
R. A. M. S.	23h $47^{\prime} 52^{\prime \prime}$		
Corr.	$2^{\prime} 10^{\prime \prime}$		
G. S. T.	37h 02' $39^{\prime \prime}$		
Obs. Alt.	$32^{\circ} 17^{\prime} 30^{\prime \prime}$		
Dip	$5^{\prime} 00^{\prime \prime}$		
	$32^{\circ} 12^{\prime} 30^{\prime \prime}$		
Ref.	- $1^{\prime} 28^{\prime \prime}$		
h	$32^{\circ} 11^{\prime} 02^{\prime \prime}$		
Lat.	$32^{\circ} 17^{\prime} 00{ }^{\prime \prime}$	Sec	. 07293
P. D.'	$82^{\circ} 36^{\prime} 36^{\prime \prime}$	Cse	. 00362
	2) $\overline{147^{\circ} 04^{\prime} 38^{\prime \prime}}$		
s	$73^{\circ} 32^{\prime} 19^{\prime \prime}$	Cos	9.45235
$s-h^{\prime}$	$41^{\circ} 21^{\prime} 17^{\prime \prime}$	Sin	9.82002
		Log. Hav.	9.34892

*R. A.	$5 \mathrm{~h} 50^{\prime} 49^{\prime \prime}$
*H. A.	3h $45^{\prime} 36^{\prime \prime}$
L. S. T.	2h $05^{\prime} 13^{\prime \prime}$
G. S. T.	$13 \mathrm{~h} \mathrm{02'} 39^{\prime \prime}$
Long,	10h $57^{\prime} 26^{\prime \prime}$

PROBLEM NO. 10

Feb. 16, 1919, P. M. Obs. Alt. *Rigel $24^{\circ} 18^{\prime}$, bearing W. Index error $+2^{\prime} 12^{\prime \prime}$. Dip 24 ft . Chron. read $11 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ P. M., which was fast on Jan. 10, $14^{\prime} 12^{\prime \prime}$ and gaining $2^{\prime \prime} .8$ daily. Lat. $16^{\circ} 46^{\prime} \mathrm{N}$. Long. by D. R. $7^{\circ} 45^{\prime} \mathrm{E}$.

Chron.	11h 16' $28^{\prime \prime}$	Interval	37.5 days
Fast	$14^{\prime} 12^{\prime \prime}$		$2^{\prime \prime} .8$ rate
	11h $02^{\prime} 16^{\prime \prime}$		$105^{\prime \prime}=1^{\prime} 45^{\prime \prime}$
Acc. Rate	$1^{\prime} 45^{\prime \prime}$		
G. M. T.	11h $00^{\prime} 31^{\prime \prime}$	Dec.	$\begin{gathered} 8^{\circ} 17^{\prime} .8 \mathrm{~S} \\ 90^{\circ} 00^{\prime} .0 \end{gathered}$
R. A. M. S.	21h $41^{\prime} 43^{\prime \prime}$		
Corr.	$1^{\prime} 48^{\prime \prime}$	P. D.	$98^{\circ} 17^{\prime} .8$

G. S. T.

Obs. Alt.
I. E.

Dip

Ref.
h
Lat.
P. D.
s
$s-h$

$24^{\circ} 18^{\prime} 00^{\prime \prime}$
+$2^{\prime} 12^{\prime \prime}$ $24^{\circ} 20^{\prime} 12^{\prime \prime}$ $4^{\prime} 48^{\prime \prime}$
$24^{\circ} 15^{\prime} 24^{\prime \prime}$

-	$2^{\prime} 09^{\prime \prime}$	
$24^{\circ} 13^{\prime} 15^{\prime \prime}$		
$16^{\circ} 46^{\prime} 00^{\prime \prime}$	Sec	.01887
$98^{\circ} 17^{\prime} 48^{\prime \prime}$	Csc	.00457
$\frac{139^{\circ} 17^{\prime} 03^{\prime \prime}}{}$		
$69^{\circ} 38^{\prime} 31^{\prime \prime}$	Cos	9.54144
$45^{\circ} 25^{\prime} 17^{\prime \prime}$	Sin	9.85262
	Log. Hav.	9.41750

*R. A.	5h 10' $41^{\prime \prime}$
${ }^{*} \mathrm{H} . \mathrm{A}$.	4h 06' $03^{\prime \prime}$
${ }^{*}$ L. S. T.	$9 \mathrm{~h} 16^{\prime} 44^{\prime \prime}$
G. S. T.	8h $44^{\prime} 02$

Long.
$32^{\prime} 42^{\prime \prime}$ or $8^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{E}$

LONGITUDE BY PLANET

This problem is worked in the same manner as longitude by fixed star, with the exception that the planet's declination and right ascension must be corrected for the Greenwich date and time.

After finding G. M. T. take out planet's declination and right ascension for Greenwich date, and correct it from Table IV (Almanac) same as was done in latitude by planet.

Correct the altitude for index error, dip, parallax and refraction.

After making these corrections the balance of the problem will be worked in the same manner as longitude by fixed star.

PROBLEM NO. 1

Jan. 31, 1919, A. M. Obs. Alt. Planet Mars $18^{\circ} 55^{\prime}$, bearing E. Dip 36 ft . Chron. read 1h $11^{\prime} 13^{\prime \prime}$ P. M., fast $34^{\prime} 34^{\prime \prime}$. Lat. $25^{\circ} 53^{\prime} \mathrm{N}$. Required longitude?

Chron. Fast	$\begin{array}{r} 1 \mathrm{~h} 11^{\prime} 13^{\prime \prime \prime} \\ -\quad 34^{\prime} 34^{\prime \prime} \\ \hline \end{array}$	*Dec. Corr. Table IV-N. A. For 36^{\prime}	$\begin{gathered} 11^{\circ} 16^{\prime} \mathrm{S} \\ 0^{\prime} \end{gathered}$
G. M. T. 31d	Oh $36^{\prime} 39^{\prime \prime}$		
R. A. M. S.	20h $38^{\prime} 38^{\prime \prime}$	Decl.	$11^{\circ} 16^{\prime}$
Corr.	$6^{\prime \prime}$		$90^{\circ} 00^{\prime}$
G. S. T.	21h $15^{\prime} 23^{\prime \prime} \quad$ P	P. D	$101^{\circ} 16^{\prime}$
Obs. Alt.	$18^{\circ} 55^{\prime} 00{ }^{\prime \prime}$		
Dip	$5^{\prime} 53^{\prime \prime}$		
	$18^{\circ} 49^{\prime} 07^{\prime \prime}$		
Parallax	+ 04"		
	$18^{\circ} 49^{\prime} 11^{\prime \prime}$		
Ref.	- $2^{\prime} 49^{\prime \prime}$		
h	$18^{\circ} 46^{\prime} 22^{\prime \prime}$		
Lat.	$25^{\circ} 53^{\prime} 00$	Sec	. 04591
P. D.	$101^{\circ} 16^{\prime} 00^{\prime \prime}$	' Csc	. 00845
	$2 \longdiv { 1 4 5 ^ { \circ } 5 5 ^ { \prime } 2 2 ^ { \prime \prime } }$		
8	$72^{\circ} 57^{\prime} 41^{\prime \prime}$, Cos	9.46689
$s-h$	$54^{\circ} 11^{\prime} 19^{\prime \prime}$	' Sin	9.90899
		Log. Hav.	9.43024

*R. A.
Corr. (Table IV)
Corr. R. A.
H. A.
L. S. T.
G. S. T.

22h $21^{\prime} 54^{\prime \prime}$
$\frac{0^{\prime \prime}}{}$
$\begin{array}{rll}22 \mathrm{~h} 21^{\prime} 54^{\prime \prime} & \\ 4 \mathrm{~h} 10^{\prime} & 0 \bar{亏}^{\prime \prime} & \text { E or }-~\end{array}$
18h $11^{\prime} 49^{\prime \prime}$
21h $15^{\prime} 23^{\prime \prime}$
Long.

$$
3 \mathrm{~h} 03^{\prime} 34^{\prime \prime} \text { or } 45^{\circ} 53^{\prime} 30^{\prime \prime} \mathrm{W}
$$

PROBLEM NO. 2

July 6, 1919, A. M. Obs. Alt. Planet Saturn $30^{\circ} 16^{\prime} 28^{\prime \prime}$, bearing E. Dip 16 ft . Chron. read 4 h $16^{\prime} 28^{\prime \prime}$, P. M., fast $3^{\prime} 28^{\prime \prime}$. Lat. $27^{\circ} 18^{\prime} \mathrm{N}$.

Chron.	4h $16^{\prime} 28^{\prime \prime}$	*Dec. 6d	$14^{\circ} 16^{\prime} .6 \mathrm{~N}$
Fast	$3^{\prime} 28^{\prime \prime}$	Corr. 4.2h (Table IV) $0^{\prime} .4$
G. M. T.	$4 \mathrm{~h} 13^{\prime} 00^{\prime \prime}$	Dec. 6d 4.2h	$14^{\circ} 16^{\prime} .2 \mathrm{~N}$
R. A. M. S.	$6 \mathrm{~h} 53^{\prime} 40^{\prime \prime}$		$90^{\circ} 00^{\prime} .0$
Corr.	41"		
G. S. T.	11h $07^{\prime} 21^{\prime \prime}$		

Obs. Alt.	$30^{\circ} 16^{\prime} 28^{\prime \prime}$		
Dip	- $3^{\prime} 55^{\prime \prime}$		
	$30^{\circ} 12^{\prime} 33^{\prime \prime}$		
Par.	$0^{\prime \prime}$		
	$30^{\circ} 12^{\prime} 33^{\prime \prime}$		
Ref.	$1^{\prime} 40^{\prime \prime}$		
h	$30^{\circ} 10^{\prime} 53^{\prime \prime}$		
Lat.	$27^{\circ} 18^{\prime} 00^{\prime \prime}$	Sec	0.05129
P. D.	$75^{\circ} 43^{\prime} 48^{\prime \prime}$	Csc	0.01361
	2) $133^{\circ} 12^{\prime} 41^{\prime \prime}$		
s	$66^{\circ} 36^{\prime} 20^{\prime \prime}$	Cos	9.59885
s-h	$36^{\circ} 25^{\prime} 27^{\prime \prime}$	Sin	9.77361
		Log. Hav.	9.43736

*R. A. $9 \mathrm{~h} 53^{\prime} 36^{\prime \prime}$
Corr. (Table IV-N. A.) + \qquad
Corr. R. A.
H. A.
L. S. T.
G. S. T.

Long,

9h $53^{\prime} 40^{\prime \prime}$
4h $12^{\prime} 23^{\prime \prime}$ E or-
5h 41' $17^{\prime \prime}$
11h 07' $21^{\prime \prime}$
5h $26^{\prime} 04^{\prime \prime}$ or $81^{\circ} 31^{\prime} 00^{\prime \prime} \mathrm{W}$

CHAPTER XVIII

LATITUDE BY MERIDIAN ALTITUDE OF MOON

This problem is useful to find the latitude when the moon is on the meridian in daylight, but at night cannot be depended upon on account of the sea horizon not being clear enough for proper altitude.

The time of the Moon's Meridian Passage for Greenwich is given on Pages 76-77 (Nautical Almanac) and the difference between transit in small figures. By entering Table IV (Almanac) with difference of transit at top of page, and longitude in time at right-hand side, will give the correction to be applied to Greenwich transit, to find the time of Moon's Meridian Passage at ship.

In west longitude it is to be applied forward.
In east longitude it is to be applied backward.
Correct the chronometer and find the Greenwich date and time.

The Moon's declination changes very fast, and the Nautical Almanac gives the declination for every 2 hours of the day, and the difference in small figures between the even hours.

Take out declination for Greenwich date and closest hour, and the difference in small figures.

Enter Table IV (Almanac) with difference at top of page, and number of minutes past the hour in the left-hand column, and read the correction for declination in its proper column.

Apply this correction to declination as follows:
Declination decreasing, subtract.
Declination increasing, add.
Result will be true declination.
Take out the Moon's S. D. (Semi-Diameter) and H. P. (Horizontal Parallax) from almanac opposite the hour used.

Put down the observed meridian altitude and apply the S. D. Add for Lower, and subtract for Upper Limb.

Subtract the Dip (Table 14).

Enter Table 24 (Bowditch) with H. P. at top of page, and apparent altitude at side, and read correction in proper column.

This correction will be the Parallax and Refraction, always to be added to Altitude.

This will give the true altitude.
Subtract true altitude from 90°, find zenith distance, and apply declination as in previous examples for latitude.

Result will be latitude.

LATITUDE BY MOON

PROBLEM NO. 1

Feb. 12, 1919. Obs. Mer. Alt. Moon's L. L. $28^{\circ} 14^{\prime} 00^{\prime \prime}$ S. Dip 28 ft . Chronometer read $4 \mathrm{~h} 16^{\prime} 28^{\prime \prime} \mathrm{P}$. M.
G. M. T. 12d 4 h $16^{\prime} 28^{\prime \prime}$

Dec. 12d 4h
Corr for $16^{\prime} .5$
Dec. 12d 4h $16^{\prime} .5$
S. D. $15^{\prime} .6 \quad$ Horizontal parallax $\quad 57^{\prime} .3$

Obs. Alt.
S. D.

Dip

Par. and Ref. (Table 24)
True Alt.
Z. D.

Dec.
Lat.

$28^{\circ} 14^{\prime} 00^{\prime \prime}$
$+\quad 15^{\prime} 36^{\prime \prime}$
$28^{\circ} 29^{\prime} 36^{\prime \prime}$
$-\quad 5^{\prime} 11^{\prime \prime}$
$28^{\circ} 24^{\prime} 25^{\prime \prime}$
$+\quad 49^{\prime} 00^{\prime \prime}$
$29^{\circ} 13^{\prime} 25^{\prime \prime}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$60^{\circ} 46^{\prime} 35^{\prime \prime}$

$17^{\circ} 39^{\prime} .3 \mathrm{~N}$
$17^{\circ} 41^{\prime} .5 \mathrm{~N}$ decreasing $2^{\prime} .2$
-

PROBLEM NO. 2

Mar. 18, 1919. Obs. Mer. Alt. Moon's L. L. $68^{\circ} 21^{\prime} 00^{\prime \prime}$ N. Dip. 26 ft. Chronometer read 6 h $18^{\prime} 28^{\prime \prime}$ A. M.
G. M. T. 17d $18 \mathrm{~h} 18^{\prime} 28^{\prime \prime}$

Dec. 17d 18h
Corr. for $18^{\prime} .5$
Dec. for $17 \mathrm{~d} 18 \mathrm{~h} 18^{\prime} .5$
S. D. $14^{\prime} .8$

Obs. Alt.
S. D.

Dip

Par. and Ref.
True Alt.
Z. D.

Dec.
Lat.

$$
\frac{9^{\circ} \underset{3^{\prime}}{19^{\prime} .7 \mathrm{~S}} \mathrm{~S} \text { increasing }}{9^{\circ} 22^{\prime} .8 \mathrm{~S}}
$$

H. P. $54^{\prime} .4$

$68^{\circ} 21^{\prime} 00^{\prime \prime}$
$+\quad 14^{\prime} 48^{\prime \prime}$
$68^{\circ} 35^{\prime} 48^{\prime \prime}$
$-\quad 5^{\prime} 00^{\prime \prime}$
$68^{\circ} 30^{\prime} 48^{\prime \prime}$
$+\quad 19^{\prime} 34^{\prime \prime}$

$68^{\circ} 50^{\prime} 22^{\prime \prime} \mathrm{N}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$21^{\circ} 09^{\prime} 38^{\prime \prime} \mathrm{S}$ $9^{\circ} 22^{\prime} 48^{\prime \prime} \mathrm{S}$
$30^{\circ} 32^{\prime} 26^{\prime \prime} \mathrm{S}$

PROBLEM NO. 3

July 4, 1919. Obs. Mer. Alt. Moon's L. L. $24^{\circ} 18^{\prime} 30^{\prime \prime}$ S. Dip 26 ft . Chronometer read $3 \mathrm{~h} 12^{\prime} 18^{\prime \prime}$ P. M., slow $4^{\prime} 18^{\prime \prime}$.

Chron.
Slow
G. M. T. 4 d

Dec. 4d 2h
Corr. 1h 16^{\prime}
Dec. $4 \mathrm{~d} 3 \mathrm{~h} 16^{\prime}$
S. D. $15^{\prime} .0$

Obs. Alt.
S. D.

Dip

Par. and Ref.
True Alt.
Z. D.

Dec.
Lat.

$$
\begin{array}{r}
3 \mathrm{~h} 12^{\prime} 18^{\prime \prime} \\
+\quad 4^{\prime} 18^{\prime \prime}
\end{array}
$$

3h $16^{\prime} 36^{\prime \prime}$
$6^{\circ} 09^{\prime} .7$ S increasing $13^{\prime} .6$
$6^{\circ} 23^{\prime} .3 \mathrm{~S}$
H. P. $\quad 55^{\prime}$

$24^{\circ} 18^{\prime} 30^{\prime \prime}$
$+\quad 15^{\prime} 00^{\prime \prime}$
$24^{\circ} 33^{\prime} 30^{\prime \prime}$
$-\quad 5^{\prime} 00^{\prime \prime}$
$24^{\circ} 28^{\prime} 30^{\prime \prime}$
$+\quad 47^{\prime} 58^{\prime \prime}$
$25^{\circ} 16^{\prime} 28^{\prime \prime}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$64^{\circ} 43^{\prime} 32^{\prime \prime}$
$6^{\circ} 23^{\prime} 18^{\prime \prime} \mathrm{S}$
$58^{\circ} 20^{\prime} 14^{\prime \prime} \mathrm{N}$

PROBLEM NO. 4

May 21, 1919. Obs. Mer. Alt. Moon's L. L. $82^{\circ} 10^{\prime} 13^{\prime \prime}$ S. Dip 26 ft . Chronometer read $10 \mathrm{~h} 18^{\prime} 26^{\prime \prime}$ A. M., slow 4^{\prime} $18^{\prime \prime}$.

Chron.
Slow
G. M. T. 20d

Dec. 20d 22h
Corr. 23^{\prime}
Dec. 20d 22h 23^{\prime}
S. D. $15^{\prime} .4$

Obs. Alt.
S. D.

Dip

Par and Ref.
True Alt.
Z. D.

Dec.
Lat.
$22 \mathrm{~h} 18^{\prime} 26^{\prime \prime}$
$+\quad 4^{\prime} 18^{\prime \prime}$
$22 \mathrm{~h} 22^{\prime} 44^{\prime \prime}$
$12^{\circ} 47^{\prime} .2 \mathrm{~S}$ decreasing $3^{\prime} .7$
$12^{\circ} 43^{\prime} .5 \mathrm{~S}$
H. P. $\quad 56^{\prime} .5$

$82^{\circ} 10^{\prime} 13^{\prime \prime} \mathrm{S}$
+$15^{\prime} 24^{\prime \prime}$
$82^{\circ} 25^{\prime} 37^{\prime \prime}$
$5^{\prime} 00^{\prime \prime}$
$82^{\circ} 20^{\prime} 37^{\prime \prime}$
$+\quad 7^{\prime} 24^{\prime \prime}$
$82^{\circ} 28^{\prime} 01^{\prime \prime \prime} \mathrm{S}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$7^{\circ} 31^{\prime} 59^{\prime \prime}$
N
$12^{\circ} 43^{\prime} 30^{\prime \prime}$
$5^{\circ} 11^{\prime} 31^{\prime \prime} \mathrm{S}$

PROBLEM NO. 5
Apr. 18, 1919. Obs. Mer. Alt. Moon's L. L. $46^{\circ} 58^{\prime}$ $12^{\prime \prime} \mathrm{N}$. Dip 28 ft . Chronometer read 6h $18^{\prime} 16^{\prime \prime}$ P. M., slow $48^{\prime} 12^{\prime \prime}$.
Chron.
Slow
G. M. T. 18d

Dec. 18d 6h Corr. 1h 06'

Dec. $18 \mathrm{~d} 7 \mathrm{~h} 06^{\prime}$
S. D. $14^{\prime} .8$

Obs. Alt.
S. D.

Dip

Par. and Ref.
True Alt.
Z. D.

Dec.
Lat.

$6 \mathrm{~h} 18^{\prime} 16^{\prime \prime}$
$+\quad 48^{\prime} 12^{\prime \prime}$
$7 \mathrm{~h} 06^{\prime} 28^{\prime \prime}$

$21^{\circ} 01^{\prime} .2 \mathrm{~S}$ increasing $2^{\prime} .8$
$21^{\circ} 04^{\prime} .0 \mathrm{~S}$
H. P. $54^{\prime} .2$

PROBLEM NO. 6

Dec. 6, 1919. Obs. Mer. Alt. Moon's L. L. $82^{\circ} 28^{\prime}$ $36^{\prime \prime}$ S. Dip 18 ft . Chronometer read $2 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ A. M., fast $34^{\prime} 18^{\prime \prime}$.

Chron.
Fast
G. M. T. 5d

Dec 5d 12h
Corr. 1h 42^{\prime}
Dec. 5d 13h 42^{\prime}
S. D. $16^{\prime} .7$

Obs. Alt.
S. D.

Dip

Par. and Ref.
True Alt.
Z. D.

Dec.
Lat.

14h $16^{\prime} 28^{\prime \prime}$

- $\quad 34^{\prime} 18^{\prime \prime}$
$13 \mathrm{~h} 42^{\prime} 10^{\prime \prime}$
$18^{\circ} 38^{\prime} .1 \mathrm{~N}$ increasing $10^{\prime} .5$
$18^{\circ} 48^{\prime} .6 \mathrm{~N}$
H. P. $61^{\prime} .2$

$82^{\circ} 28^{\prime} 36^{\prime \prime}$
$+\quad 16^{\prime} 42^{\prime \prime}$
$82^{\circ} 45^{\prime} 18^{\prime \prime}$
$-\quad 4^{\prime} 09^{\prime \prime}$
$82^{\circ} 41^{\prime} 09^{\prime \prime}$
$7^{\prime} 41^{\prime \prime}$

$82^{\circ} 48^{\prime} 50^{\prime \prime} \mathrm{S}$
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
$7^{\circ} 11^{\prime} 10^{\prime \prime} \mathrm{N}$
$18^{\circ} 48^{\prime} 36^{\prime \prime} \mathrm{N}$
$25^{\circ} 59^{\prime} 46^{\prime \prime} \mathrm{N}$

TIME OF MOON'S MERIDIAN PASSAGE

$$
\text { PROBLEM NO. } 1
$$

Jan. 28, 1919. Find Meridian Passage of Moon in Long. $84^{\circ} 24^{\prime} \mathrm{W}$.
Long. in time 5h $37^{\prime} 36^{\prime \prime}$
Moon's Transit (N. A.)
Corr. Table IV
Mer. Passage

28d $\quad 22 \mathrm{~h} 00^{\prime}$ Diff. 52
W or $+12^{\prime}$
$22 \mathrm{~h} 12^{\prime}$ or
$10 \mathrm{~h} 12^{\prime}$ A. M.

PROBLEM NO. 2

Feb. 7, 1919. Find Meridian Passage of Moon in Long. $128^{\circ} 14^{\prime}$ E.
Long. in Time $8 \mathrm{~h} 32^{\prime} 56^{\prime \prime}$

Moon's Transit
Corr. Table IV
Mer. Passage

7d $\quad 5 \mathrm{~h} 50^{\prime}$ Diff. 57
E or - 21^{\prime}
5h 29^{\prime} P. M.

PROBLEM NO. 3

Mar. 10, 1919. Find Meridian Passage of Moon in Long. $178^{\circ} 23^{\prime} \mathrm{W}$.
Long. in Time 11h 53' $32^{\prime \prime}$
Moon's Transit
Corr. Table IV
Mer. Passage

$\stackrel{10 \mathrm{~d}}{\mathrm{~W} \text { or }+$| $7 \mathrm{~h} \mathrm{34}^{\prime}$ |
| :--- |
| 27^{\prime} | Diff. 53$}$| $8 \mathrm{~h} 01^{\prime}$ |
| :--- |
| P. M. |

PROBLEM NO. 4
Apr. 8, 1919. Find Meridian Passage of Moon in Long. $8^{\circ} 16^{\prime}$ E.
Long. in Time $33^{\prime} 04^{\prime \prime}$
Moon's Transit
Corr. Table IV
Mer. Passage

PROBLEM NO. 5

June 16, 1919. Find Meridian Passage of Moon in Long. $110^{\circ} 18^{\prime} \mathrm{W}$.

Long. in Time 7h $21^{\prime} 12^{\prime \prime}$
Moon's Transit
Corr. Table IV
Mer. Passage

16d 14h 44^{\prime} Diff. 48
W or $+14^{\prime}$
$14 \mathrm{~h} 58^{\prime}$ or
2h 58^{\prime} A. M.

PROBLEM NO. 6
July 11, 1919. Find Meridian Passage of Moon in Long. 156° E.

Long. in Time 10h 24^{\prime}
Moon's Transit
Corr. Table IV
Mer. Passage
11d $11 \mathrm{~h} 00^{\prime}$ Diff. 51
E or - 22^{\prime}
10h 38^{\prime} P. M.

CHAPTER XIX

LONGITUDE BY SUNRISE AND SUNSET OBSERVATIONS

This problem is to find the longitude when the Sun's upper or lower limb just touches the horizon at sunrise or sunset.

It is only necessary to use a pair of marine glasses for this observation, and the chronometer must be read at instant of contact with horizon.

As it is very doubtful that a proper contact with sun and horizon has been noted, this observation is not to be relied upon, but the navigator should understand it, as it is often the case that he does not get any sights during the day and the sun sets in the clear. He can then get a fairly good idea of his longitude from this problem.

Correct chronometer and find G. M. T.
Take out declination and equation of time for Greenwich date and time.

Find G. A. T. and polar distance as before.
Add together latitude and polar distance.
Subtract 21^{\prime} from this sum if lower limb was observed.
Subtract 53^{\prime} from this sum if upper limb was observed.
Divide result by 2. Answer will be half sum.
Add 21^{\prime} to half sum if lower limb was observed.
Add 53^{\prime} to half sum if upper limb was observed.
Result will be remainder.
From Table 44 (Bowditch) take out following logs.:
Secant of latitude. Rejecting 10 from index number.
Cosecant of polar distance. Rejecting 10 from index number.

Cosine of half sum.
Sine of remainder.
Add these four logs. together, and subtract 10 from index number.

Log. haversine that agrees with sum of logs., will be L. A. T.

If the sun was rising look from bottom of page, and date one day back.

If sun was setting look from top of page, and date same as example.

Apply L. A. T. to G. A. T. as in previous methods for longitude, and obtain the longitude of the place.

These problems in this book will be given with the longitude by $\mathrm{D} . \mathrm{R}$. and the chronometer time as it reads from the chronometer. The student must ascertain for himself whether the chronometer time is A. M. or P. M.

Since at low altitude refraction is very indeterminate, this method gives only an approximate longitude.

Taking corrected altitude as -21^{\prime} and -53^{\prime} respectively, really assumes that there is no dip. If the observation were taken very much above sea level it would be better to make further correction for this by adding the correction found in Table 14.

PROBLEM NO. 1

Jan. 11, 1919, Sun's L. L. at sunset observed. Chron. read 11h 03' $12^{\prime \prime}$ which was slow on Dec. 6th, $15^{\prime} 28^{\prime \prime}$ and gaining $4^{\prime \prime} .7$ daily. D. R. Lat. $18^{\circ} 14^{\prime}$ N. D. R. Long. 96° E.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Chron. \\
Slow
\end{tabular}} \& 23h \(03^{\prime} 12^{\prime \prime}\) \& \multirow[t]{3}{*}{Interval Rate} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& 36 \text { days } \\
\& 4^{\prime \prime} .7
\end{aligned}
\]}} \\
\hline \& + 15'28" \& \& \& \\
\hline \& 23h \(18^{\prime \prime} 40^{\prime \prime}\) \& \& \(169^{\prime \prime}=2^{\prime} 49^{\prime \prime}\) \& acc. rate \\
\hline \multirow[t]{2}{*}{Acc. Rate} \& - \(2^{\prime} 49^{\prime \prime}\) \& \& \& \\
\hline \& \& \multicolumn{2}{|l|}{Dec. 10d 22h \(21^{\circ}\)} \& \(56^{\prime} .2 \mathrm{~S}\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
G. M. T. 10d \\
Eq. Time
\end{tabular}} \& 23h \(15^{\prime} 51^{\prime \prime}\) \& \multirow[t]{2}{*}{Corr.} \& - \& \(0^{\prime} .5\) \\
\hline \& - 7' \(45^{\prime \prime}\) \& \& \& \\
\hline \multirow[t]{2}{*}{G. A. T. 10d} \& 23h 08' \(06^{\prime \prime}\) \& Dec. \& \& \[
\begin{aligned}
\& 55^{\prime} .7 \mathrm{~S} \\
\& 00^{\prime} .0
\end{aligned}
\] \\
\hline \& \& P. D. \& \(111^{\circ}\) \& \(55^{\prime} .7\) \\
\hline \multirow[t]{4}{*}{Lat. P.D.} \& \(18^{\circ} 14^{\prime}\) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathrm{Sec} \\
\& \mathrm{Csc}
\end{aligned}
\]}} \& . 02237 \\
\hline \& \(111^{\circ} 55^{\prime} 42^{\prime \prime}\) \& \& \& . 03261 \\
\hline \& \[
\begin{aligned}
\& 130^{\circ} 09^{\prime} 42^{\prime \prime} \\
\& -\quad 21^{\prime}
\end{aligned}
\] \& \& \& \\
\hline \& 2) \(129^{\circ} 48^{\prime} 42^{\prime \prime}\) \& \& \& \\
\hline 8 \& \[
\begin{array}{r}
64^{\circ} 54^{\prime} 21^{\prime \prime} \\
+\quad 21^{\prime}
\end{array}
\] \& ' Cos \& \& 9.62748 \\
\hline \multirow[t]{4}{*}{Rem.

L
L} \& $65^{\circ} 15^{\prime} 21^{\prime \prime}$ \& ' Sin \& \& 9.95812

\hline \& T. 11d \& \& | Hav. |
| :--- |
| $5 h 31^{\prime} 06^{\prime \prime}$ | \& 9.64058

\hline \& T. 10d \& \& 23h $08^{\prime} 06^{\prime \prime}$ \&

\hline \& \& \& $$
\begin{aligned}
& 6 \mathrm{~h} 23^{\prime} 00^{\prime \prime} \\
& 95^{\circ} 45^{\prime} \mathrm{E}
\end{aligned}
$$ \& or

\hline
\end{tabular}

PROBLEM NO. 2

Feb. 23, 1919, Sun's upper limb at sunset observed. Chron. read $11 \mathrm{~h} 18^{\prime} 26^{\prime \prime}$ which was slow on Jan. 10th, $58^{\prime} 12^{\prime \prime}$ and loses $7^{\prime \prime} .2$ daily. D. R. Lat. $29^{\circ} 28^{\prime} \mathrm{N}$. Long. $96^{\circ} 50^{\prime} \mathrm{W}$.

Chron. Slow	$\begin{array}{r} 11 \mathrm{~h} 18^{\prime} 26^{\prime \prime} \\ +\quad 58^{\prime} 12^{\prime \prime} \end{array}$	Interval Rate	$\begin{gathered} 44.5 \text { days } \\ 7^{\prime \prime} .2 \end{gathered}$
Acc. Rate	12h $16^{\prime} 38^{\prime \prime}$	$320^{\prime \prime}=5^{\prime} 20^{\prime \prime}$ acc. rate	
	+ $5^{\prime} 20^{\prime \prime}$		
		Dec. 23d 12h	$9^{\circ} 55^{\prime} .6 \mathrm{~S}$
G. M. T. 23d	12h $21^{\prime} 58^{\prime \prime}$	Corr. .4h	$0^{\prime} .4$
Eq. Time	$13^{\prime} 33^{\prime \prime}$		
G. A. T. 23d	12 h 089 ' $25^{\prime \prime}$	Dec.	$\begin{array}{r} 9^{\circ} 55^{\prime} .2 \\ 90^{\circ} 00^{\prime} .0 \end{array}$
		P. D.	$99^{\circ} 55^{\prime} .2$

Lat.	$\frac{29^{\circ} 28^{\prime}}{99^{\circ} 55^{\prime} 12^{\prime \prime}}$	Sec	.06016
P.D.	$\frac{\text { Csc }}{129^{\circ} 23^{\prime} 12^{\prime \prime}}$.00654
	$\frac{-253^{\prime}}{128^{\circ} 30^{\prime} 12^{\prime \prime}}$		
s	$+\frac{64^{\circ} 15^{\prime} 06^{\prime \prime}}{53^{\prime}}$	Cos	9.63791
Rem.	$65^{\circ} 08^{\prime} 06^{\prime \prime}$	Sin	
		Log. Hav.	9.95775
			9.66236

L. A. T. 23d
G. A. T. 23d

Long.

5h 41' $27^{\prime \prime}$
$12 \mathrm{~h} 08^{\prime} 25^{\prime \prime}$
$6 \mathrm{~h} 26^{\prime} 58^{\prime \prime}$ or
$96^{\circ} 44^{\prime} 30^{\prime \prime} \mathrm{W}$

CHAPTER XX

PHI PRIME SIGHT FOR LATITUDE

This is only good when sun or star is within three hours of the meridian, and declination is greater than 3°.

The D. R. longitude when sight is taken as well as the chronometer time are necessary. From the chronometer time (G. M. T.) by applying the equation of time and longitude the local apparent time is found. The hour angle or time before or after local apparent noon is then known and changed into degrees.

The declination is found from the Nautical Almanac for the G. M. T. of sight.

The altitude is corrected in the usual manner.
By adding the log. sec. of the hour angle to the log. tan. of the declination; the log. tan. of an angle named $\phi^{\prime \prime}$ is found.

Adding the log. csc. of the declination, the log. sin. of the corrected altitude and the sin. of the angle $\phi^{\prime \prime}$, the cos. of an angle called ϕ^{\prime} is found.
$\phi^{\prime \prime}$ is same name N or S as declination.
ϕ^{\prime} is same name as Z. D. or opposite from bearing.
If both same name latitude is the sum of the two angles and of same name.

If of different names latitude is the difference and takes name of larger.

PROBLEM NO. 1
Jan. 31, 1919. D. R. position $9^{\circ} 10^{\prime} \mathrm{S}, 46^{\circ} 15^{\prime}$ W. Chron. time $5 \mathrm{~h} 16^{\prime}$ $13^{\prime \prime}$. Obs. Alt. Sun's L. L. $60^{\circ} 10^{\prime} 20^{\prime \prime}$, bearing $S \times W$. Dip 36^{\prime}.

G. M. T. 31d	$5 \mathrm{~h} 16^{\prime} 13^{\prime \prime}$	Obs. Alt.	$60^{\circ} 10^{\prime} 20^{\prime \prime}$
Eq. Time	$13^{\prime} 31^{\prime \prime}$	Corr.	$+\quad 9^{\prime} 54^{\prime \prime}$
G. A. T.	5h 02' $42^{\prime \prime}$	Corr. Alt.	$60^{\circ} 20^{\prime} 14^{\prime \prime}$
Long.	3h 05' $00^{\prime \prime}$		
		Dec. 31d 4h	$17^{\circ} 32^{\prime} .8 \mathrm{~S}$
L. A. T. 31d	1h $57^{\prime} 42^{\prime \prime}$	Corr. 1.3h	$0^{\prime} .9$
		Dec. 31d 5.3h	$17^{\circ} 31^{\prime} .9 \mathrm{~S}$

H. A.	$29^{\circ} 25^{\prime} 30^{\prime \prime}$	Sec	. 05999		
Dec.	$17^{\circ} 31^{\prime} 54^{\prime \prime}$	Tan	9.49956	Csc	. 52110
h	$60^{\circ} 20^{\prime} 14^{\prime \prime}$			Sin	9.93900
$\phi^{\prime \prime}$	$19^{\circ} 56^{\prime} 09^{\prime \prime} \mathrm{S}$	Tan	9.55955	Sin	9.53271
ϕ^{\prime}	$10^{\circ} 24^{\prime} 00^{\prime \prime} \mathrm{N}$			Cos	9.99281
Lat.	$9^{\circ} 32^{\prime} 09^{\prime \prime} \mathrm{S}$				

PROBLEM NO. 2

July 5, 1919, A. M., at ship. D. R. position $27^{\circ} 00^{\prime}$ S, $64^{\circ} 50^{\prime}$ E. Chron• Time July $4,18 \mathrm{~h} 32^{\prime} 14^{\prime \prime}$. Obs. Alt. $37^{\circ} 10^{\prime}$, bearing $N \times$ E. Dip 36 ft .

G. M. T. 4d	18h $32^{\prime} 14^{\prime \prime}$	Obs. Alt	$37^{\circ} 10^{\prime} 00^{\prime \prime}$
Eq. Time	$4^{\prime} 09^{\prime \prime}$	Corr.	$+8^{\prime} 43^{\prime \prime}$
G. A. T. 4 d	18h $28^{\prime} 05^{\prime \prime}$	True Alt.	$37^{\circ} 18^{\prime} 43^{\prime \prime}$
Long.	4h 19' $20^{\prime \prime}$		
		Dec. for 4 d 18 h	$22^{\circ} 53^{\prime} .5$
L. A. T. 4 d	22h 47' $25^{\prime \prime}$	Corr. .5h	$0^{\prime} .1$
H. A.	$=1 \mathrm{~h} \quad 12^{\prime} 35^{\prime \prime} \text { or }$	Dec. for 4d 18.5h	$22^{\circ} 53{ }^{\prime} .4 \mathrm{~N}$

H.A.	$18^{\circ} 08^{\prime} 45^{\prime \prime}$	Sec	.02215		
Dec.	$22^{\circ} 53^{\prime} 24^{\prime \prime}$	Tan	9.62553	Csc	.41009
h	$37^{\circ} 18^{\prime} 43^{\prime \prime}$		Sin	9.78256	
$\phi^{\prime \prime}$	$23^{\circ} 57^{\prime} 20^{\prime \prime}$ N Tan	9.64768	Sin	9.60856	
ϕ^{\prime}	$50^{\circ} 44^{\prime} 56^{\prime \prime}$ S		Cos	9.80121	

Lat.
$26^{\circ} 47^{\prime} 36^{\prime \prime} \mathrm{S}$

PROBLEM NO. 3

Aug. 8, 1919, A. M. at ship. D. R. position $49^{\circ} 40^{\prime}$ N, $178^{\circ} 12^{\prime} \mathrm{E}$. Chron. time $10 \mathrm{~h} 04^{\prime} 03^{\prime \prime}$. Obs. Alt. $47^{\circ} 16^{\prime} 20^{\prime \prime}$, bearing S \times E. Dip 36 ft . G. M. T. 7d Eq. Time
G. A. T. Long.
L. A. T. 7d
H. A.
H. A.

Dec.
h

$\phi^{\prime \prime}$	$\frac{19^{\circ} 20^{\prime} 18^{\prime \prime} \mathrm{N}}{}$ Tan	9.54524	Sin	9.52002
ϕ^{\prime}	$\frac{31^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{N}}{}$		Cos	9.93307
Lat.	$\frac{50^{\circ} 20^{\prime} 18^{\prime \prime} \mathrm{N}}{}$			

CHAPTER XXI

SUMNER'S METHOD

This method of finding the ship's position by Sumner lines is most generally used when a ship has been running several days without observations, and the dead reckoning position is doubtful.

There are various methods used in plotting Sumner lines, but the most accurate of these, and one that can be easily proved to be correct, is the method of using two assumed latitudes.

Proceed as follows:
Take an observation of sun or star, and find the longitude of two places by working this observation with the 2 assumed latitudes (a separate calculation with each latitude).

After obtaining the two positions, place them on the chart and connect them together with a line. This will give the first line of bearing, and the ship must be somewhere on this line if observation was correct. This line will be at right angles to sun's true bearing, and can be proved by entering azimuth table and obtaining true bearing at time of observation.

After the sun has changed its bearing about 20° take another observation, and find the longitude of two places, using the same assumed latitudes that were used to work first observation.

Place the two positions found on chart and connect them together with a line. This will give second line of bearing, which can be proved by azimuth table as before.

From first line of bearing allow the course and distance the ship has run in the interval between the two observations and draw a line parallel to the first line through the position found after course and distance has been allowed. This will be known as the first line of bearing projected.

Where the projection of the first line crosses the second line of bearing, will be ship's position at time of second observation.

This problem is accurate if no mistake has been made in allowing the proper course and distance between observations, and the observed altitude of each is correct.

The assumed latitudes are generally reckoned 30 miles on each side of latitude by dead reckoning.

PROBLEM NO. 1 (See Illustration)

Dec. 16, 1919, A. M. at ship. When not sure of ship's position and Obs. Alt. of Sun's L. L. read $8^{\circ} 16^{\prime} 40^{\prime \prime}$. Dip 31 ft . Chron. read 11 h $18^{\prime} 12^{\prime \prime}$ A. M., which was fast on Nov. 6th, $8^{\prime} 48^{\prime \prime}$ and losing $8^{\prime \prime} .2$ daily. Same day later in A. M. the Obs. Alt. Sun's L. L. was $18^{\circ} 16^{\prime} 40^{\prime \prime}$. Chron. read 0h $43^{\prime} 15^{\prime \prime}$ P. M.

Ship was assumed to be between lats. of 40° and $41^{\circ} \mathrm{N}$. Ship run between observations $\mathrm{N} 56^{\circ} \mathrm{W}$ (true) 46 miles.

First Observation

Chron. Fast	$\begin{array}{r} 23 \mathrm{~h} 18^{\prime} 12^{\prime \prime} \\ -\quad 8^{\prime} 48^{\prime \prime} \end{array}$	Interval Rate	40 days 8."2
	23h 09' $24^{\prime \prime}$		$328^{\prime \prime}=5^{\prime} 28^{\prime \prime}$ acc. rate
Acc. Rate	$+\quad 5^{\prime} 28^{\prime \prime}$		$23^{\circ} 17^{\prime} .1 \mathrm{~S}$
G. M. T. 15d	23h 14' $52^{\prime \prime}$	Dec.	$90^{\circ} 00^{\prime} .0$
Eq. Time	+ $4^{\prime} 42^{\prime \prime}$	P. D	$113^{\circ} 17^{\prime} .1$
G. A. T. 15d	$23 \mathrm{~h} 19^{\prime} 34^{\prime \prime}$		

Obs. Alt.
S. D.

Dip
R. \& P.

True Alt. (h)
Lat.
P. D.
$\stackrel{s}{s} \mathrm{~s}-\mathrm{h}$
$8^{\circ} 16^{\prime} 40^{\prime \prime}$

+| $16^{\prime} 18^{\prime \prime}$ |
| ---: |
| $8^{\circ} 32^{\prime} 58^{\prime \prime}$ |
| $5^{\prime} 27^{\prime \prime}$ |
| $8^{\circ} 27^{\prime} 31^{\prime \prime}$ |
| $6^{\prime} 05^{\prime \prime}$ |
| $8^{\circ} 21^{\prime} 26^{\prime \prime}$ |

40° Sec 11575
$113^{\circ} 17^{\prime} 06^{\prime \prime}$ Csc . 03690
$2 \longdiv { 1 6 1 ^ { \circ } 3 8 ^ { \prime } 3 2 ^ { \prime \prime } }$

Cos	9.20282
Sin	$\mathbf{9 . 9 7 9 3 3}$
Log. Hav.	9.33480

L. A. T. 15d 20h $18^{\prime} 21^{\prime \prime}$
G. A. T. 15d 23h $19^{\prime} 34^{\prime \prime}$

Long.

$$
3 \mathrm{~h} 01^{\prime} 13^{\prime \prime} \text { or } 45^{\circ} 18^{\prime} 15^{\prime \prime} \mathrm{W}
$$

True Alt (h)	$8^{\circ} 21^{\prime} 26^{\prime \prime}$		
Lat.	41°	Sec	.12222
P. D.	$2) \frac{113^{\circ} 17^{\prime} 06^{\prime \prime}}{162^{\circ} 38^{\prime} 32^{\prime \prime}}$	Csc	.03690
	$\frac{81^{\circ} 19^{\prime} 16^{\prime \prime}}{}$	Cos	
s	$72^{\circ} 57^{\prime} 50^{\prime \prime}$	Sin	9.17867
s-h		Log. Hav.	$\underline{9.98051}$

L. A. T. 15d 20h $22^{\prime} 52^{\prime \prime}$
G. A. T. 15d 23h $19^{\prime} 34^{\prime \prime}$

Long. $\quad 2 \mathrm{~h} 56^{\prime} 42^{\prime \prime}$ or $44^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$
Position for First Line
Lat. $40^{\circ} \mathrm{N}$. Long. $45^{\circ} 18^{\prime} 15^{\prime \prime} \mathrm{W}$.
Lat. $41^{\circ} \mathrm{N}$. Long. $44^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{W}$.
Second Observation

Chron. Fast	$\begin{array}{r} 0 \mathrm{~h} 43^{\prime} 15^{\prime \prime} \\ -\quad 8^{\prime} 48^{\prime \prime} \end{array}$	Dec.	$\begin{aligned} & 23^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{aligned} & 17^{\prime} .4 \mathrm{~S} \\ & 00^{\prime} .0 \end{aligned}$
Acc. Rate	$\begin{array}{r} \text { Oh } 34^{\prime} 27^{\prime \prime} \\ +\quad 5^{\prime} 28^{\prime \prime} \end{array}$	P. D.	113°	$17^{\prime} .4$
G. M. T. 16d Eq. Time	$\begin{array}{r} 0 \mathrm{~h} 39^{\prime} 55^{\prime \prime} \\ +\quad 4^{\prime} 40^{\prime \prime} \end{array}$			
G. A. T. 16d	Oh 44' $35^{\prime \prime}$			
Obs. Alt. S. D.	$+\begin{array}{r} 18^{\circ} 16^{\prime} 40^{\prime \prime} \\ +\quad 16^{\prime} 18^{\prime \prime} \end{array}$			
Dip	$\begin{array}{r} 18^{\circ} 32^{\prime} 58^{\prime \prime} \\ -\quad 5^{\prime} 27^{\prime \prime} \end{array}$			
R. \& P.	$\begin{array}{r} 18^{\circ} 27^{\prime} 31^{\prime \prime} \\ -\quad 2^{\prime} 44^{\prime \prime} \end{array}$			
True Alt.	$18^{\circ} 24^{\prime} 47^{\prime \prime}$			
Lat.	40°	Sec		. 11575
P. D.	$113^{\circ} 17^{\prime} 24^{\prime \prime}$	Csc		. 03691
	$2 \longdiv { 1 7 1 ^ { \circ } 4 2 ^ { \prime } 1 1 ^ { \prime \prime } }$			
8	$85^{\circ} 51^{\prime} 06^{\prime \prime}$	Cos		8.85938
s-h	$67^{\circ} 26^{\prime} 19^{\prime \prime}$	Sin		9.96543
		Log. Hav.		8.97747

$\begin{aligned} & \text { L. A. T. 15d } \\ & \text { G. A. T. } 16 \mathrm{~d}\end{aligned}$
$\begin{aligned} & 21 \mathrm{~h} 36^{\prime} 26^{\prime \prime} \\ & 0 \mathrm{~h} 44^{\prime} 35^{\prime \prime}\end{aligned}$
Long.

SIMPLE RULES AND PROBLEMS IN NAVIGATION

Lat. $40^{\circ} \mathrm{N}$. Long. $47^{\circ} 02^{\prime} 15^{\prime \prime} \mathrm{W}$.
Lat. $41^{\circ} \mathrm{N}$. Long. $45^{\circ} 03^{\prime} 45^{\prime \prime} \mathrm{W}$.

CHAPTER XXII

MARCQ ST. HILAIRE METHOD OR COSINE-HAVERSINE FORMULA

This is a new method of plotting position lines on the chart and reduces the amount of figures used in Sumner's method considerably.

The position of the ship by dead reckoning must always be used to work from, and in the case where a course and distance is given in the interval between observations, the latitude and longitude by D. R. must be found for second observation before working problem.

Proceed as follows:
Correct chronometer and find G. M. T.
In case of the sun observed, proceed as follows:
Apply equation of time to G. M. T. and find G. A. T.
Apply longitude in time to G. A. T. as follows:
Longitude east, add.
Longitude west, subtract longitude in time from G. M. T.
Result will be local apparent time.
If L. A. T. is over 12 hours, subtract it from 24 hours and result will be Sun's hour angle.

In case of Moon, Star or Planet proceed as follows:
Apply longitude in time to G. M. T. as before, and obtain local mean time.

Add to L. M. T. the Sun's right ascension from Page 2 (Almanac) and correction from table below on same page for G. M. T.

Result will be local siderial time.
From L. S. T. subtract right ascension of body observed.
Result will be hour angle of body.
In all cases proceed as follows:
Take out declination of body observed.
Correct observed altitude of body observed, and find true altitude.
From Table 45 (Bowditch) take out log. hav. of body's hour angle.

From Table 44 (Bowditch) take out log. cos. of latitude by D. R.

From Table 44 (Bowditch) take out Log. Cosine of Declination.

Add these three logarithms together, and subtract 20 from index Number.

Opposite the Log. Haversine corresponding to sum of logarithms read the natural haversine.

If latitude and declination are same name, subtract less from greater.

If latitude and declination are different name, add the two.

Take out the Nat. Haversine of this result, and add to it the Nat. Haversine obtained already.

Nat. Haversine corresponding to the sum of the two, will be the zenith distance read from top of page (Table 45) in degrees, minutes and seconds.

Subtract zenith distance from 90°. Result will be computed altitude.

Under computed altitude, put down true altitude, and subtract less from greater. Answer will be altitude difference or intercept.

If the true altitude is greater than computed altitude, measure from the dead reckoning position on the line of azimuth toward the body a distance equal to the altitude difference or intercept, and draw the position line through this point at right angles to true bearing.

If true altitude is less than computed altitude measure away from body.

In using the signs, + means toward the body, -means away from body.

Pick out true bearing of body from azimuth table or line of position table, which will explain itself.

If the ship has made any change of position between observations, the true course and distance must be allowed from first to second sight, and a line drawn parallel to the first line on this course and distance crossing the second line, will be the ship's position at time of second observation.

A little practice with this method will convince the student that it is very convenient and simple.

The position lines will be on the same principle as Sumner lines, the only difference between the two being the saving in time and figures for making the calculations.

PROBLEM NO. 1

Dec. 16, 1919, A. M. at ship. Ship's position by D. R. Lat. $40^{\circ} 27^{\prime}$ N. Long. $44^{\circ} 40^{\prime}$ W. Obs. Alt. Sun's L. L. $8^{\circ} 18^{\prime} 25^{\prime \prime}$. Chron. read $11 \mathrm{~h} 18^{\prime}$ $28^{\prime \prime}$ A. M. Ship then ran until chron. read 0h $43^{\prime} 28^{\prime \prime}$ P. M. on a course $\mathrm{N} 56^{\circ} \mathrm{W}$ (true) 46 miles. Obs. Alt. Sun's L. L. $18^{\circ} 18^{\prime} 25^{\prime \prime}$. Chron. was fast on Greenwich time $3^{\prime} 20^{\prime \prime}$. Dip 31 ft . First observation, D. R. position $40^{\circ} 27^{\prime}$ N., $44^{\circ} 40^{\prime} \mathrm{W}$.
Dec. 16, 1919, A. M.

Chron. 15d	23h $18^{\prime} 28^{\prime \prime}$	Dec.	$23^{\circ} 17^{\prime} 12^{\prime \prime} \mathrm{S}$
Fast	- $3^{\prime} 20^{\prime \prime}$		
G. M. T.	23h 15' $08^{\prime \prime}$	Obs. Alt. Corr. (46)	$\begin{array}{r} 8^{\circ} 18^{\prime} 25^{\prime \prime} \\ +\quad 4^{\prime} 20^{\prime \prime} \end{array}$
Eq. Time	+ $4^{\prime} 42^{\prime \prime}$		
		True Alt.	$8^{\circ} 22^{\prime} 45^{\prime \prime}$
G. A. T.	23h 19' $50^{\prime \prime}$		
Long.	$2 \mathrm{~h} 58^{\prime} 40^{\prime \prime}$	Lat.	$40^{\circ} 27^{\prime} 00^{\prime \prime}$
L. A. T.	20h $21^{\prime} 10^{\prime \prime}$	Dec.	$23^{\circ} 17^{\prime} 12^{\prime \prime}$
		Sum	$63^{\circ} 44^{\prime} 12^{\prime \prime}$

Log. Hav. 20h 21' $10^{\prime \prime}=9.32455$
Log. Cos. $40^{\circ} 27^{\prime}=9.88137$
Log. Cos. $23^{\circ} 17^{\prime} 12^{\prime \prime}=9.96310$
Log. Hav.
9.16902
$9.16902=$ Nat. Hav. Nat. Hav. $63^{\circ} 44^{\prime} 12^{\prime \prime}$

Nat. Hav.
14758
. 27875

$$
.42633=81^{\circ} 31^{\prime} 30^{\prime \prime} \mathrm{Z} . \mathrm{D} .
$$

Bearing of Sun N $130^{\circ} 30^{\prime}$ E (from H. O. 71)
Z. D.
$90^{\circ} 00^{\prime} 00^{\prime \prime}$ $81^{\circ} 31^{\prime} 30^{\prime \prime}$
$8^{\circ} 28^{\prime} 30^{\prime \prime}$
$8^{\circ} 22^{\prime} 45^{\prime \prime}$
Com. Alt.
True Alt.

$$
-\quad 5^{\prime} 45^{\prime \prime}
$$

Alt. Diff.
$40^{\circ} 27^{\prime} 00^{\prime \prime} \mathrm{N}$
First Obs. D. R. Lat.
Course N 56° W, Dist. 46 , Diff. Lat.
Second Obs. D. R. Lat.
First Obs. D. R. Long.
Dep. 38.1, Mid. Lat. 41°, Diff. Long.
Second Obs. D. R. Long.

Chron. Fast	$\begin{aligned} & 0 h 43^{\prime} \\ & 3^{\prime} 20^{\prime \prime} \\ & \hline \text { " } \end{aligned}$	Dec. 16d 0h Corr. 0.7h
G. M. T. 16d	Oh $40^{\prime} 08^{\prime \prime}$	Dec. 16d 0.7h
Eq. Time	$+4^{\prime} 40^{\prime \prime}$	
G. A. T. 16d	Oh $44^{\prime} 48^{\prime \prime}$	
Long.	3h 02' $02^{\prime \prime}$	
L. A. T.	$21 \mathrm{~h} 42^{\prime} 46^{\prime \prime}$.	

$44^{\circ} 40^{\prime} \quad 00^{\prime \prime} \mathrm{W}$
$50^{\prime} 30^{\prime \prime} \mathrm{W}$
$45^{\circ} 30^{\prime} \quad 30^{\prime \prime} \mathrm{W}$
$+\quad 23^{\circ} 17^{\prime} .3 \mathrm{~S}$
$+\quad 0^{\prime} .1 \mathrm{~S}$
$23^{\circ} 17^{\prime} .4 \mathrm{~S}$

Bearing of Sun N $146^{\circ} 54^{\prime} \mathrm{E}$ or $\mathrm{S} 33^{\circ} \mathrm{E}$ (from H. O. 71).

PROBLEM NO. 2

SIMULTANEOUS OBSERVATION OF TWO FIXED STARS

Apr. 16, 1919, P. M. Position by D. R. Lat. $37^{\circ} 14^{\prime}$ N. Long. $76^{\circ} 04^{\prime}$ W.

Chron. read 7h $05^{\prime} 45^{\prime \prime}$ P. M. Sirius in the West. Alt. $29^{\circ} 29^{\prime}$.
Chron. read $7 \mathrm{~h} 07^{\prime} 45^{\prime \prime}$ P. M. Capella in the West. Alt. $50^{\circ} 14^{\prime}$. Chron. was slow $5 \mathrm{~h} 00^{\prime} 01^{\prime \prime}$. Dip 41 ft .

Sirius in the West			
Chron. Slow	$\begin{array}{r} 7 \mathrm{~h} \mathrm{05} \\ +5 \mathrm{~h} 00^{\prime \prime} 01^{\prime \prime} \end{array}$	Dec.	$16^{\circ} 36^{\prime} .6 \mathrm{~S}$
G. M. T. 16d	12h 05' $46^{\prime \prime}$	Lat.	$37^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{N}$
R. A. M. S.	1h $34^{\prime} 19^{\prime \prime}$	Dec.	$16^{\circ} 36^{\prime} 36^{\prime \prime} \mathrm{S}$
Corr.	$1^{\prime} 59^{\prime \prime}$		$53^{\circ} 50^{\prime} 36^{\prime \prime}$
G. S. T. 16d	13h 42' $04^{\prime \prime}$		
Long.	5h $04^{\prime} 16^{\prime \prime}$	Obs. Alt.	$29^{\circ} 29^{\prime} 00^{\prime \prime}$
L. S. T. 16d	8h $37^{\prime} 48^{\prime \prime}$	Corr. (46)	$8^{\prime} 00^{\prime \prime}$
*'s R. A.	6h $41^{\prime} 36^{\prime \prime}$	True Alt.	$29^{\circ} 21^{\prime} 00^{\prime \prime}$.
*'s H. A.	1h $56^{\prime} 12^{\prime \prime}$		

Capella in the West

First Chron. Time Second Chron. Time	$\begin{aligned} & 7 \mathrm{~h} 05^{\prime} 45^{\prime \prime} \\ & 7 \mathrm{~h} 07^{\prime} 45^{\prime \prime} \end{aligned}$	Dec.	$45^{\circ} 55^{\prime} .1 \mathrm{~N}$
Interval	2^{\prime}	Lat.	$37^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{N}$
First L. S. T.	8h $37^{\prime} 48^{\prime \prime}$	Dec.	$45^{\circ} 55^{\prime} 06^{\prime \prime} \mathrm{N}$
Second L. S. T.	8h $39^{\prime} 48^{\prime \prime}$		$8^{\circ} 41^{\prime} 06^{\prime \prime}$
*'s R. A.	$5 \mathrm{~h} 10^{\prime} 44^{\prime \prime}$		
*'s H. A.	3h $29^{\prime} 04^{\prime \prime}$	Obs. Alt. Corr. (46)	$\begin{array}{r} 50^{\circ} 14^{\prime} 00^{\prime \prime} \\ 7^{\prime} 06^{\prime \prime} \end{array}$
Log. Hav. 3h $29^{\prime} 04^{\prime \prime}$	$=9.28782$	True Alt.	$50^{\circ} 06^{\prime} 54^{\prime \prime}$
Log. Cos. $37^{\circ} 14^{\prime}$	$=9.90101$		
Log. Cos. $45^{\circ} 55^{\prime} 06^{\prime \prime}$	$=9.84241$		
Log. Hav.	9.03124		

Log. Hav. 9.03124 = Nat. Hav. . 10745
Nat. Hav. $8^{\circ} 41^{\prime} 06^{\prime \prime}$
Nat. Hav.
.00573
$.11318=39^{\circ} 19^{\prime} 00^{\prime \prime}$ Z. D.

	$90^{\circ} 00^{\prime} 00^{\prime \prime}$	
Z. D.	$39^{\circ} 19^{\prime} 00^{\prime \prime}$	
Comp. Alt.	$50^{\circ} 41^{\prime} 00^{\prime \prime}$	
True Alt.	$\frac{50^{\circ} 06^{\prime} 54^{\prime \prime}}{34^{\prime} 06^{\prime \prime}}$	
Alt. Diff.	$-\quad$ Nz $59^{\circ} \mathrm{W}$	

PROBLEM NO. 3

POSITION BY OBSERVATION OF THREE FIXED STARS

Ship stationary between observations.
May 18,1919, P. M. Position by D. R. Lat. $40^{\circ} 40^{\prime}$ N. Long. $69^{\circ} \mathrm{W}$. Chron. read $7 \mathrm{~h} 34^{\prime} 37^{\prime \prime} \mathrm{P}$. M. Star Polaris. Alt. $39^{\circ} 42^{\prime} 30^{\prime \prime}$.
Chron. read 7h $36^{\prime} 58^{\prime \prime}$ P. M. Star Vega in the East. Alt. $16^{\circ} 23^{\prime} 30^{\prime \prime}$. Chron. read 7h $38^{\prime} 55^{\prime \prime}$, P. M. Star Capella in the West. Alt. 22° $48^{\prime} 24^{\prime \prime}$.

Chron. slow 4h 59' $27^{\prime \prime}$. Dip 41 ft .
Polaris

Chron.	7h 34' $37^{\prime \prime}$	Obs. Alt.		$42^{\prime} 30^{\prime \prime}$
Slow	+ 4h $59^{\prime} 27^{\prime \prime}$	Corr. (46)		$7^{\prime} 26^{\prime \prime}$
G. M. T. 18d	12h $34^{\prime} 04^{\prime \prime}$	True Alt.	39°	$35^{\prime} 04^{\prime \prime}$
Long.	4h $36{ }^{\prime}$	Corr. (I)	+	$59^{\prime} 42^{\prime \prime}$
L. M. T. 18d	7h 58' $04^{\prime \prime}$	Lat.	40°	$34^{\prime} 46^{\prime \prime} \mathrm{N}$
R. A. M. S.	3h $40^{\prime} 29^{\prime \prime}$			
Corr.	$2^{\prime} 04^{\prime \prime}$			
L. S. T.	11h $40^{\prime} 37^{\prime \prime}$	Azimu		

Vega in the East

First Chron. Second Chron.	$\begin{aligned} & \text { 7h } 34^{\prime} 37^{\prime \prime} \\ & 7 \mathrm{~h} 36^{\prime} 58^{\prime \prime} \end{aligned}$	Dec.	$38^{\circ} 42^{\prime} .4$
		Obs. Alt	$16^{\circ} 23^{\prime} 30^{\prime \prime}$
Interval	${ }^{2^{\prime}}{ }^{\prime} 21^{\prime \prime}$	Corr. (46)	$9^{\prime} 30^{\prime \prime}$
First L. S. T.	11h $40^{\prime} 37^{\prime \prime}$	True Alt.	$16^{\circ} 14^{\prime} 00^{\prime \prime}$
Second L. S. T.	11h $42^{\prime} 58^{\prime \prime}$		
*'s R. A.	18h $34^{\prime} 14^{\prime \prime}$	Dec.	$38^{\circ} 42^{\prime} 24^{\prime \prime}$
*'s H. A.	$6 \mathrm{~h} 51^{\prime} 16^{\prime \prime}$	Lat.	$40^{\circ} 40^{\prime}$
			$1^{\circ} 57^{\prime} 36^{\prime \prime}$

Log. Hav. 6h $51^{\prime} 16^{\prime \prime}=9.78598$
Log. Cos. $40^{\circ} 40^{\prime}=9.87996$
Iog. Cos. $38^{\circ} 42^{\prime} 24^{\prime \prime}=9.89229$
I og. Hav. $\quad 9.55823$
Log. Hav. $9.55823=$ Nat. Hav. . 36159
Nat. Hav. $1^{\circ} 57^{\prime} 36^{\prime \prime}$
. 00029
Nat. Hav.

$$
.36188=73^{\circ} 57^{\prime} 45^{\prime \prime} \text { Z. D. }
$$

PROBLEM NO. 4

POSITION BY OBSERVATION OF FOUR FIXED STARS

Ship stationary during interval of observations.
May 19, 1919, P. M. Ship's position by D. R. Lat. $37^{\circ} 50^{\prime}$ N. Long. $74^{\circ} 00^{\prime}$ W.

Chron. read 7h $46^{\prime} 47^{\prime \prime}$. Capella in the West. Alt. $22^{\circ} 08^{\prime}$.
Chron. read 7h $47^{\prime} 59^{\prime \prime}$. Vega in the East. Alt. $14^{\circ} 03^{\prime}$.
Chron. read 7h $50^{\prime} 40^{\prime \prime}$. Spica in the East. Alt. $36^{\circ} 19^{\prime}$.
Chron. read 7h 52' $16^{\prime \prime}$. Procyon in the West. Alt. $25^{\circ} 11^{\prime \prime}$
Chron. slow 4h 59' $24^{\prime \prime}$. Dip 41 ft .

Capella in the West

Chron. Slow	7 h $466^{\prime} 47^{\prime \prime}$ $+4 \mathrm{~h} 59^{\prime \prime} 24^{\prime \prime}$	Dec.	$\begin{aligned} & 45^{\circ} 55^{\prime} \\ & 37^{\circ} 50^{\prime} \end{aligned}$
G. M. T. 19d	12h $46^{\prime} 11^{\prime \prime}$		$8^{\circ} 05^{\prime}$
Long.	4h $56^{\prime} 00^{\prime \prime}$		
L. M. T.	$7 \mathrm{~h} 50^{\prime} 11^{\prime \prime}$	Obs. Alt. Corr. (46)	$\begin{array}{r} 22^{\circ} 08^{\prime} 00^{\prime \prime} \\ -\quad 8^{\prime} 40^{\prime \prime} \end{array}$
R. A. M. S.	3h 44' $26^{\prime \prime}$		
Corr.	$2^{\prime} 06^{\prime \prime}$	True Alt.	$21^{\circ} 59^{\prime} 20^{\prime \prime}$
L. S. T.	11h $36^{\prime} 43^{\prime \prime}$		
*'s R. A.	5h $10^{\prime} 43^{\prime \prime}$		
*'s H. A.	$6 \mathrm{~h} 26^{\prime} 00^{\prime \prime}$		
Log. Hav. 6h $26{ }^{\prime}$	$=9.74554$		
Log. Cos. $37^{\circ} 50^{\prime}$	$=9.89752$		
Log. Cos. $45^{\circ} 55^{\prime}$	$=9.84242$		
Log. Hav.	9.48548		

Log. Hav. $9.48548=$ Nat. Hav. . 30584
Nat. Hav. $8^{\circ} 05^{\prime}$
.00497
Nat. Hav.
$.31081=67^{\circ} 46^{\prime}$ Z. D.
Z. D.
Comp. Alt.
True Alt.
$90^{\circ} 00^{\prime} 00^{\prime \prime}$ $67^{\circ} 46^{\prime} 00^{\prime \prime}$

Alt. Diff.

First Chron.
Second Chron.
$22^{\circ} 14^{\prime} 00^{\prime \prime}$
$21^{\circ} 59^{\prime} 20^{\prime \prime}$

Interval
フh $46^{\prime} 47^{\prime \prime}$
7h 47' 59" Lat.
$1^{\prime} 12^{\prime \prime}$
Azimuth N $48^{\circ} \mathrm{W}$
Vega in the East

First L. S. T.

Fint L. T.	11. ${ }^{\prime \prime}$	Obs. Alt.	$14^{\circ} 03^{\prime}$
Second L. S. T.	11h $37^{\prime} 55^{\prime \prime}$	Corr.	10^{\prime}
*'s R. A.	18h $34^{\prime} 14^{\prime \prime}$		
*'s H. A.	$6 \mathrm{~h} 56^{\prime} 19^{\prime \prime}$	True Alt.	$13^{\circ} 53^{\prime}$

Log. Hav. 6h $56^{\prime} 19^{\prime \prime}=9.79353$
Log. Cos. $37^{\circ} 50^{\prime}=9.89752$
Log. Cos. $38^{\circ} 42^{\prime} 24^{\prime \prime}=9.89233$
Log. Hav.
9.58338

Log. Hav. 9.58338 = Nat. Hav. . 38317
Nat. Hav. $0^{\circ} 52^{\prime} 24^{\prime \prime}$

$$
\frac{.00006}{.38323}=76^{\circ} 29^{\prime} 45^{\prime \prime} \text { Z. D. }
$$

Nat. Hav.

Log. Hav. $9.31645=$ Nat. Hav. . 20723
Nat. Hav. $32^{\circ} 24^{\prime} 12^{\prime \prime}$
.07784
Nat. Hav. $\quad 28507=64^{\circ} 32^{\prime} 15^{\prime \prime}$ Z. D.
Z. D.
$90^{\circ} 00^{\prime} 00^{\prime \prime}$

Comp. Alt. $64^{\circ} 32^{\prime} 15^{\prime \prime}$

True Alt.
$25^{\circ} 27^{\prime} 45^{\prime \prime}$

Alt. Diff. $25^{\circ} 02^{\prime} 40^{\prime \prime}$

Position of vessel; Lat. $37^{\circ} 55^{\prime} 15^{\prime \prime} \mathrm{N}$ Long. $73^{\circ} 28^{\prime} 45^{\prime \prime} \mathrm{W}$.

PROBLEM NO. 5

 TWO OBSERVED ALTITUDES OF SUN'S L. L.Oct. 18, 1919, A. M. at ship. Position by D. R. Lat. $36^{\circ} 35^{\prime}$ N. Long. $70^{\circ} 35^{\prime} \mathrm{W}$.

Chron. read 11h $59^{\prime} 18^{\prime \prime}$. Alt. $11^{\circ} 51^{\prime} 30^{\prime \prime}$.
Chron. read $1 \mathrm{~h} 59^{\prime} 18^{\prime \prime}$. Alt. $32^{\circ} 18^{\prime} 45^{\prime \prime}$.
Course between sights $\mathrm{S} 28^{\circ} \mathrm{E}$ (true) 31 miles.
Chron. slow $3^{\prime} 00^{\prime \prime}$. Dip. 30 ft .

Chron.	$\begin{array}{r} 23 \mathrm{~h} 59^{\prime} 18^{\prime \prime} \\ +\quad 3^{\prime} 00^{\prime \prime} \end{array}$	Dec. Lat.	$\begin{array}{rrr} 9^{\circ} 20^{\prime} & 06^{\prime \prime} \\ 36^{\circ} & 35^{\prime} & 00^{\prime \prime} \\ \mathrm{S} \end{array}$
G. M. T. 18d	Oh 02' $18^{\prime \prime}$		$45^{\circ} 55^{\prime} 06^{\prime \prime}$
Eq. Time	+ 14'37'		
		Obs. Alt.	$11^{\circ} 51^{\prime} 30^{\prime \prime}$
G. A. T. 18d	Oh 16' $55^{\prime \prime}$	Corr. (46)	$+\quad 6^{\prime 1} 16^{\prime \prime}$
Long.	4h $42^{\prime} 20^{\prime \prime}$	True Alt	$\overline{11^{\circ} 57^{\prime} 46^{\prime \prime}}$
L. A. T. 17 d	19h $34^{\prime} 35^{\prime \prime}$		

Log. Hav. 19h $34^{\prime} 35^{\prime \prime}=9.47634$
Log. Cos. $36^{\circ} 35^{\prime} 00^{\prime \prime}=9.90471$
Log. Cos. $9^{\circ} 20^{\prime} 06^{\prime \prime}=9.99421$
Log. Hav. $\quad 9.37526$
Log. Hav. $9.37526=$ Nat. Hav. . 23727
Nat. Hav. $45^{\circ} 55^{\prime} 06^{\prime \prime}$
.15216
Nat. Hav.
$.38943=77^{\circ} 13^{\prime} 30^{\prime \prime}$ Z. D.
Z. D
$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Z. D
$\begin{array}{lr}\text { Comp. Alt. } & 12^{\circ} 46^{\prime} 30^{\prime \prime} \\ \text { True Alt. } & 11^{\circ} 57^{\prime} 46^{\prime \prime} \\ \text { Alt. Diff. } & -\quad 48^{\prime} 44^{\prime \prime}\end{array}, l$

Azimuth S 67° E

Log. Hav. $21 \mathrm{~h} 35^{\prime}$	$48^{\prime \prime}$	$=8.98113$	
Log. Cos.	$36^{\circ} 07^{\prime}$	$36^{\prime \prime}$	$=9.90726$
Log. Cos.	$9^{\circ} 21^{\prime}$	$54^{\prime \prime}$	$=9.99417$
Log. Hav.		$\underline{8.88256}$	

Log. Hav. $8.88256=$ Nat. Hav. .07630
Nat. Hav. $45^{\circ} 29^{\prime} 30^{\prime \prime} .14948$
Nat. Hav.
$.22578=56^{\circ} 44^{\prime} 30^{\prime \prime}$ Z. D.

	$90^{\circ} 00^{\prime} 00^{\prime \prime}$
Z. D.	$56^{\circ} 44^{\prime} 30^{\prime \prime}$
	$33^{\circ} 15^{\prime} 30^{\prime \prime}$
Comp. Alt.	$32^{\circ} 27^{\prime} 59^{\prime \prime}$
True Alt.	

Alt. Diff. - $47^{\prime} 31^{\prime \prime} \quad$ Azimuth $\mathbb{S} 43^{\circ} 30^{\prime}$ E
Position of Vessel: Lat. $36^{\circ} 33^{\prime} 30^{\prime \prime} \mathrm{N}$.
Long. $71^{\circ} 08^{\prime} 30^{\prime \prime} \mathrm{W}$.

PROBLEM NO. 6

POSITION BY SIMULTANEOUS OBSERVATION OF TWO FIXED STARS

Dec. 6, 1919. Position by D. R. Lat. $49^{\circ} 30^{\prime}$ N. Long. $14^{\circ} 00^{\prime} \mathrm{W}$. Chron. read 7h $31^{\prime} 21^{\prime \prime}$. Regulus in the West. Alt. $48^{\circ} 41^{\prime} 00^{\prime \prime}$. Chron. read 7h $32^{\prime} 43^{\prime \prime}$. Arcturus in the East. Alt. $46^{\circ} 32^{\prime} 30^{\prime \prime}$. Chron. correct. Dip. 26 ft .

Z. D.
$90^{\circ} 00^{\prime} 00^{\prime \prime}$ $43^{\circ} 30^{\prime} 45^{\prime \prime}$

Comp. Alt.
$46^{\circ} 29^{\prime} 15^{\prime \prime}$
True Alt.
$46^{\circ} 26^{\prime} 40^{\prime \prime}$
Alt. Diff. $2^{\prime} 35^{\prime \prime}$

Azimuth $\mathrm{S} 61^{\circ} \mathrm{E}$
Position of Vessel: Lat. $49^{\circ} 39^{\prime} \mathrm{N}$.
Long. $13^{\circ} 57^{\prime} \mathrm{W}$.

CHAPTER XXIII

TIME OF HIGH AND LOW WATER

This problem is to find the time of high and low water at any given port.

The astronomical date must be thoroughly understood in this example, and with careful watching of dates and a little practice it is very simple.

From Appendix IV (Bowditch) take out approximate longitude of place given, and lunar interval for high and low water.

From Pages 76-77 (Almanac) take out Moon's transit for date preceding the example, and the difference between it and the transit for date of example.

From Table 11 (Bowditch) with difference of transit at top of page and approximate longitude on side, take out correction given and apply it to Moon's transit for date preceding example, by rule given in Table 11.

Result will be Moon's upper transit.
Add to Moon's upper transit the lunar interval for high water. Result will be time of high water in astronomical time.

To convert this into civil time:
If time is between 0 h and 12 h . The date will be the same as transit was taken for in P. M. To find time of tide in P. M. of date of example add to this the change of transit between the dates.

If time is between 12 h and 24 h . The date will be the same as example in A. M., after subtracting 12 hours from it.

If time is over 24 hours, subtract 24 hours from it, and the date will be the same as example in P. M.

To find time of low water:
Add to Moon's upper transit the lunar interval for low water. The same rule as before will hold good for finding time of low water.

As the difference between the morning and evening tides is half the Moon's change of transit for that date. Proceed as follows:

If time for high or low water was found for A. M., add one-half the difference of transit to it, and the result will be P. M. time of high or low water.

If time found was P. M., subtract one-half the difference of transit from it, and the result will be A. M. time of high or low water.

PROBLEM NO. 1

Jan. 18, 1919. Find time of high and low water A. M. and P. M. at Montauk Point, N. Y.

Approximate Long. $72^{\circ} \mathrm{W}$. Lunar Interval H. W. 8h 20^{\prime}. Lunar Interval L. W. $2 \mathrm{~h} 03^{\prime}$.

Difference of Transit 46'

Moon's Transit 17th	$13 \mathrm{~h} 30^{\prime}$
Corr. Table 11	$+\quad 09^{\prime}$
Moon's Upper Transit	13h 39^{\prime}
Lunar Int. H. W.	$8 \mathrm{~h} 20^{\prime}$
High Water, Jan. 17 Jan. 18th	$\begin{aligned} & 21 \mathrm{~h} 59^{\prime} \text { or } \\ & 9 \mathrm{~h} 59^{\prime} \text { A. M. } \end{aligned}$
One-half Diff. of Trans.	+ 23^{\prime}
High Water, Jan. 18th	$10 \mathrm{~h} 22^{\prime} \mathrm{P}$. M.
Moon's Upper Transit	13h 39^{\prime}
Lunar Int. L. W.	$2 \mathrm{~h} 03^{\prime}$
Low Water, Jan. 17th	$15 \mathrm{~h} 42^{\prime}$ or
Jan. 18th	$3 \mathrm{~h} 42^{\prime}$ A. M.
One-half Diff. of Transit	$+23^{\prime}$
Low Water, Jan. 18th	4h 05^{\prime} P. M.

PROBLEM NO. 2

July 19, 1919. Find time of high and low water A. M. and P. M. at New York Navy Yard, N. Y.

Approximate Long. $74^{\circ} \mathrm{W}$. Lunar Interval H. W. 8 h 44'. Lunar Interval L. W. 2h 49'.

Difference of Transit 51'

PROBLEM NO. 3

Sept. 13, 1919. Find time of high and low water A. M. and P. M. at Aden, Arabia.

Approximate Long. 45° E. Lunar Interval H. W. 7h 49^{\prime}. Lunar Interval L. W. 1h 41'.

Moon's Trans. 12th	14h 19'
Corr. Table 11	07^{\prime}
Upper Trans.	$14 \mathrm{~h} 12^{\prime}$
Lunar Int. H. W.	7h 49^{\prime}
High Water, Sept. 12th	$22 \mathrm{~h} 01^{\prime}$ or
Sept. 13th	10h 01' A. M.
One-half Diff. of Trans.	+ 28^{\prime}
High Water, Sept. 13th	10h $29{ }^{\prime}$ P. M.
Upper Trans.	14h 12^{\prime}
Lunar Int. L. W.	1h 41'
Low Water Sept 12th	15h 53^{\prime} or
Sept. 13th	$3 \mathrm{~h} 53^{\prime}$ A. M.
One-half Diff. of Trans.	+ 28^{\prime}
Low Water Sept. 13th	4h 21^{\prime} P. M.

PROBLEM NO. 4

Feb. 17, 1919. Find time of high and low water A. M. and P. M. at Valparaiso, Chile.

Approximate Long. 72° W. Lunar Interval H. W. 9h 37^{\prime}. Lunar Interval L. W. 3h 26^{\prime}

Difference of Transit 43'.

Moon's Trans. 16th	13h 37'
Corr. Table 11	$+\quad 09^{\prime}$
Upper Trans.	$13 \mathrm{~h} 46^{\prime}$
Lunar Int. H. W.	$9 \mathrm{~h} 37{ }^{\prime}$
High Water, Feb. 16th	23h 23^{\prime} or
Feb. 17th	$11 \mathrm{~h} 23^{\prime}$ A. M.
One-half Diff. of Trans.	22^{\prime}
High Water, Feb. 17th	11h $45^{\prime} \mathrm{P}$. M.
Upper Trans.	13h 46^{\prime}
Lunar Int. L. W.	3h $26{ }^{\prime}$
Low Water 16th	$17 \mathrm{~h} 12^{\prime}$ or
Feb. 17th	$5 \mathrm{~h} 12^{\prime} \mathrm{A} . \mathrm{M}$.
One-half Diff. of Trans.	22^{\prime}
Low Water Feb. 17th	5h 34^{\prime} P. M.

PROBLEM NO. 5

Aug. 26, 1919. Find time of high and low water A. M. and P. M. at Enderbury Island, Phoenix Islands, Islands of the Pacific.

Approximate Long. 171° W. Lunar Int. H. W. 5 h 00^{\prime}. Lunar Int. L. W. 11h 15^{\prime}.

Moon's Trans. 26th	0h 34'
Corr. Table 11	+ 22^{\prime}
Upper Trans.	Oh $56{ }^{\prime}$
Lunar Int. H. W.	$5 \mathrm{~h} 00^{\prime}$
High Water, Aug. 26th	5h $56^{\prime} \mathrm{P} . \mathrm{M}$.
One-half Change of Trans.	23^{\prime}
High Water, Aug. 26th	5h 33^{\prime} A. M.
Upper Trans.	Oh 56'
Lunar Int. L. W.	$11 \mathrm{~h} 15^{\prime}$
Low Water, Aug. 27	12h 11^{\prime} A. M.
One-half Change of Trans.	- 23^{\prime}
Low Water Aug. 26th	$11 \mathrm{~h} 48^{\prime}$ A. M.

PROBLEM NO. 6

July 8, 1919. Find time of high and low water A. M. and P. M. at New Bedford, Mass.

Approximate Long. $71^{\circ} \mathrm{W}$. Lunar Interval H.W. 7h 57^{\prime}. Lunar Interval L. W. 1h 18^{\prime}.

	Change of Transit 47'.
Moon's Trans. 7th	$7 \mathrm{~h} 45^{\prime}$
Corr. Table 11	$+\quad 09^{\prime}$
Upper Trans.	7h 54'
Lunar Int. H. W.	7h 57'
High Water, July 7th	15h 51^{\prime} or
July 8th	3h 51' A. M.
One-half Change of Trans.	24^{\prime}
High Water, July 8th	4h $15^{\prime} \mathrm{P}$. M.
Upper Trans.	7h 54'
Lunar Int. L. W.	1h 18'
Low Water, July 7th	9h $12^{\prime} \mathrm{P}$. M.
Change of Trans.	+ 47^{\prime}
Low Water, July 8th	9h 59^{\prime} P. M.
One-half Change Trans.	24^{\prime}
Low Water July 8th	9h 35^{\prime} A. M.

PROBLEM NO. 7

Dec. 19, 1919. Find time of high water and low water A. M. and P. M. at Vardo, Norway.

Approximate Long. 31° E. Lunar Interval H. W. 5h 40'. Lunar Interval L. W. 11h 57^{\prime}.

Change of Transit 48^{\prime}
Moon's Trans. 18th
21h 36^{\prime}
Corr. Table 11

- 04^{\prime}

Upper Trans.
Lunar Int. H. W.
21h 32^{\prime}
5h 40^{\prime}
$27 \mathrm{~h} 12^{\prime}$
$3 \mathrm{~h} 12^{\prime} \mathrm{P}$. M.
High Water, Dec. 19th 24^{\prime}

High Water, Dec. 19th
2h 49^{\prime} A. M.
Upper Trans.
Lunar Int. L. W.
21h 32^{\prime}
11h 57^{\prime}
Low Water, Dec. 19th
9h 29^{\prime} P. M.
One-half Change of Trans. 24^{\prime}

Low Water Dec. 19th
9h 05' A. M.

PROBLEM NO. 8

Feb. 4, 1919. Find time of high and low water A. M. and P. M. at Calais, Maine.

Approximate Long. $67^{\circ} \mathrm{W}$. Lunar Interval H.W. $11 \mathrm{~h} 36^{\prime}$. Lunar Interval L. W. 5 h 40^{\prime}.

Change of Transit 51^{\prime}

Moon's Trans. Feb. 3d	2h 18^{\prime}
Corr. Table 11	+ 09'
Upper Trans.	2h 27^{\prime}
Lunar Int. H. W.	11h $36{ }^{\prime}$
High Water Feb. 3d	$14 \mathrm{~h} 03^{\prime}$ or
Feb. 4th	$2 \mathrm{~h} 03^{\prime}$ A. M.
One-half Change of Trans.	$+\quad 26^{\prime}$
High Water Feb. 4th	2h $29^{\prime} \mathrm{P} . \mathrm{M}$.
Upper Trans.	2h 27^{\prime}
Lunar Int. L. W.	$5 \mathrm{~h} 40^{\prime}$
Low Water Feb. 3d	8h 07^{\prime} P. M.
Change of Trans.	51^{\prime}
Low Water Feb. 4	8h $58^{\prime} \mathrm{P} . \mathrm{M}$.
One-half Change of Trans.	26^{\prime}
Low Water Feb, 4	8h 32^{\prime} A. M.

PROBLEM NO. 9

May 4, 1919. Find time of high and low water A. M. and P. M. at Christiania, Norway.

Approximate Long. $11^{\circ} \mathrm{E}$. Lunar Interval H. W. $5 \mathrm{~h} 22^{\prime}$. Lunar Interval L. W. 10h 37^{\prime}.

Change of Transit 54'

Moon's Transit, May 4th Corr. Table 11	$\begin{aligned} & 4 \mathrm{~h} 15^{\prime} \\ & 02^{\prime} \end{aligned}$
Upper Transit	4h 13^{\prime}
Lunar Int. H. W.	$5^{\circ} 22^{\prime}$
High Water, May 4th One-half Change of Trans.	$\begin{aligned} & 9 \mathrm{~h} \\ & \\ & 27^{\prime} \\ & 37^{\prime} \end{aligned} \text { P. M. }$
High Water, May 4th	$9 \mathrm{~h} 08^{\prime} \mathrm{A} . \mathrm{M}$.
Upper Trans.	4h 13^{\prime}
Lunar Int. L. W.	$10 \mathrm{~h} 37^{\prime}$
Low Water, May 4th May 5 th	$\begin{array}{r} 14 \mathrm{~h} 50^{\prime} \text { or } \\ 2 \mathrm{~h} 50^{\prime} \mathrm{A} . \mathrm{M} . \end{array}$
Change of Transit	54^{\prime}
Low Water, May 4th One-half Change of Trans.	$\begin{array}{r} 1 \mathrm{~h} 56^{\prime} \mathrm{A} . \mathrm{M} . \\ +\quad 27^{\prime} \end{array}$
Low Water, May 4th	2h 23^{\prime} P. M.

PROBLEM NO. 10

Jan. 10, 1919. Find time of high and low water A. M. and P. M. at Pernambuco, Picao Lighthouse, Brazil.

Approximate Long. $35^{\circ} \mathrm{W}$. Lunar Interval H. W. 4h 33^{\prime}. Lunar Interval L. W. 10h 50^{\prime}.

	Change of Transit 56 ${ }^{\text {a }}$
Moon's Trans., Jan. 10th	$6 \mathrm{~h} 58^{\prime}$
Corr. Table 11	$+\quad 05^{\prime}$
Upper Transit	7h 03'
Lunar Int. H. W.	4h 33^{\prime}
High Water, Jan. 10th	11h 36^{\prime} P. M.
One-half Change of Trans.	- 28^{\prime}
High Water, Jan. 10	$11 \mathrm{~h} 08^{\prime}$ A. M.
Upper Trans.	$7 \mathrm{~h} 03^{\prime}$
Lunar Int. L. W.	$10 \mathrm{~h} 50{ }^{\prime}$
Low Water, Jan. 10	$17 \mathrm{~h} 53^{\prime}$ or
Jan 11th	5h 53' A. M.
Change of Trans.	56^{\prime}
Low Water, Jan. 10th	4h $57^{\prime} \mathrm{A}$. M.
One-half Change of Trans.	+ 28^{\prime}
Low Water, Jan. 10th	$5 \mathrm{~h} 25^{\prime}$ P. M.

PROBLEM NO. 11

Mar. 5, 1919. Find time of high and low water A. M. and P. M. at Hilo, Kanaha Point Light, Hawaiian Islands.

Approx. Long. 155° W. L. I. H. W. 3h 09^{\prime}. L. I. L. W. 9 h 06^{\prime}.

Moon's Transit, Mar. 5th Corr. Table 11	C'ange of Transi
	2h $47{ }^{\prime}$
	$+24^{\prime}$
Upper Transit	$3 \mathrm{~h} 11^{\prime}$
Lunar Int. L.W.	3h 09'
High Water, Mar. 5th One-half Change of Trans.	$6 \mathrm{~h} 20^{\prime}$ P. M.
	- 28^{\prime}
High Water, Mar. 5th	$5 \mathrm{~h} 52^{\prime}$ A. M.
Upper Trans.	3h 11 ${ }^{\prime}$
Lunar Int. L. W.	$9 \mathrm{~h} 06^{\prime}$
Low Water, Mar. 6th One-half Change of Tarnsit	12h 17^{\prime} A. M.
	- 28^{\prime}
Low Water, Mar. 5th	11h $49{ }^{\prime}$ A. M

PROBLEM NO. 12

Oct. 26, 1919. Find time of high and low water A. M. and P. M. at Osaka, Fort Temposan Light, Japan.

Approx. Long. 135° E. Lunar Interval H. W. 7h 30^{\prime}. Lunar Interval L. W. 1h 25^{\prime}

Change of Transit 48^{\prime}

Moon's Transit, Oct. 26th	1h. 43^{\prime}
Corr. Table 11	18^{\prime}
Upper Transit	1h 25^{\prime}
Lunar Int. H. W.	7h 30^{\prime}
High Water, Oct. 26th	8h 55^{\prime} P. M.
One-half Change of Trans.	24^{\prime}
High Water, Oct. 26th	8h $31{ }^{\prime}$ A. M.
Upper Transit	1h 25^{\prime}
Lunar Int. L. W.	1h 25^{\prime}
Low Water, Oct. 26th	2h 50^{\prime} P. M.
One-half Change of Trans. -	24^{\prime}
Low Water, Oct. 26th	2h 26^{\prime} A. M.

CHAPTER XXIV
 EXAMPLES FOR PRACTICE

DAY'S WORK

1. A ship takes her departure from a point in Lat. 32° $48^{\prime} \mathrm{N}$, Long. $116^{\circ} 18^{\prime} \mathrm{W}$, bearing by compass $\mathrm{N} 48^{\circ} \mathrm{E}$ distance 16 miles. Ship's head N $20^{\circ} \mathrm{W}$, and steers the following courses:

| Courses | | Distance | Wind | Leeway | Deviation | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Variation

Current set East (Corr. Mge.) 14 miles for day.
Required latitude and longitude arrived at? True course and distance made?

Answer. Latitude in $30^{\circ} 40^{\prime} 12^{\prime \prime} \mathrm{N}$. Long. in 118° $04^{\prime} \mathrm{W}$. True course $\mathrm{S} 35^{\circ} \mathrm{W}$. Distance 156 miles.
2. A ship takes her departure from a point in Lat. 28° $32^{\prime} \mathrm{S}$, Long $28^{\circ} 10^{\prime} \mathrm{E}$, bearing by compass West distance 14 miles. Ship's head N $10^{\circ} \mathrm{E}$, and sails the following courses:

\quad Courses	Distance	Wind	Leeway	Deviation	Variation
N $10^{\circ} \mathrm{E}$	41	N W	6°	$3^{\circ} \mathrm{E}$	$15^{\circ} \mathrm{W}$
East	42	North	7°	$4^{\circ} \mathrm{E}$	$15^{\circ} \mathrm{W}$
S $70^{\circ} \mathrm{E}$	43	N E	6°	$1^{\circ} \mathrm{E}$	$15^{\circ} \mathrm{W}$
$\mathrm{S} 30^{\circ} \mathrm{E}$	44	East	7°	$2^{\circ} \mathrm{W}$	$15^{\circ} \mathrm{W}$
South	45	East	6°	$4^{\circ} \mathrm{W}$	$15^{\circ} \mathrm{W}$
$\mathrm{S} 10^{\circ} \mathrm{W}$	46	S E	2°	$1^{\circ} \mathrm{W}$	$15^{\circ} \mathrm{W}$
			270		

Current set West (Corr. Mge.) 30 miles for day.
Required latitude and longitude arrived at? True course and distance made?

Answer.-Latitude in $30^{\circ} 05^{\prime} 24^{\prime \prime}$ S. Longitude in 30° $19^{\prime} 30^{\prime \prime} \mathrm{E}$. True course S $51^{\circ} \mathrm{E}$. Distance 146 miles.
3. A ship takes her departure from a point in Lat. 49° $58^{\prime} \mathrm{N}$, Long. $10^{\circ} 12^{\prime} \mathrm{W}$, bearing by compass $\mathrm{N} 40^{\circ} \mathrm{E}$, distance 15 miles. Ship's head $\mathrm{N} 45^{\circ} \mathrm{W}$, and sails the following courses:

| Courses | | Distance | Wind | Leeway | Deviation |
| :--- | :---: | :---: | :---: | :---: | :---: | Variation

Current set S $10^{\circ} \mathrm{E}$ (Corr. Mg..) 13 miles for day.
Required latitude and longitude arrived at? True course and distance made?

Answer.-Latitude in $47^{\circ} 23^{\prime} 42^{\prime \prime} \mathrm{N}$. Longitude in $11^{\circ} 11^{\prime} \mathrm{W}$. True course $\mathrm{S} 14^{\circ} \mathrm{W}$. Distance 159 miles.
4. A ship takes her departure from a point in Lat. 48° $10^{\prime} \mathrm{N}$, Long. $128^{\circ} 46^{\prime} \mathrm{W}$, bearing by compass West, distance 10 miles. Ship's head N $28^{\circ} \mathrm{E}$, and sails the following courses:

Courses	Distance	Wind	Leeway	Deviation	Variation
N $28^{\circ} \mathrm{E}$	38	N W	3°	$4^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$
N $28^{\circ} \mathrm{W}$	40	West	2°	$3^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
West	42	N W	4°	$5^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
S $48^{\circ} \mathrm{W}$	44	N W	5°	$3^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
S $10^{\circ} \mathrm{W}$	46	West	3°	$1^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{E}$
S $10^{\circ} \mathrm{E}$	48	S W	3°	$2^{\circ} \mathrm{E}$	$20^{\circ} \mathrm{E}$

Current set East (Corr. Mg..) 13 miles for day.
Required latitude and longitude arrived at? True course and distance made?

Answer.-Latitude in $47^{\circ} 20^{\prime} 06^{\prime \prime} \mathrm{N}$. Longitude in $130^{\circ} 17^{\prime} \mathrm{W}$. True course $\mathrm{S} 51^{\circ} \mathrm{W}$. Distance 79 miles.

U. S. NAVY METHOD

5. A ship is heading 340° (p. s. c.) Dev. $4^{\circ} \mathrm{W}$ and takes her departure at noon with Point Reyes Lighthouse, California, abeam distance 10 miles. Patent log reads 18.

At 3 P. M. Changed course to 230°. Patent $\log 57$. Deviation $2^{\circ} \mathrm{W}$.

At 7 P. M. Changed course to 180°. Patent $\log 9$. Deviation 2° E.

At 10 P. M. Changed course to 270°. Patent $\log 45$. Deviation $3^{\circ} \mathrm{W}$.

At 12 P. M. Changed course to 310°. Patent $\log 71$. Deviation $6^{\circ} \mathrm{W}$.

At 4 A. M. Changed course to 360°. Patent $\log 23$. Deviation $9^{\circ} \mathrm{W}$.

At 8 A. M. Changed course to 330°. Patent $\log 72$. Deviation $8^{\circ} \mathrm{W}$.

At noon patent log read 24.
Current set 40° (Corr. Mgc.) at rate $\frac{1}{2}^{\prime}$ per hour.
Variation on all courses $22^{\circ} \mathrm{E}$.
Required noon position by dead reckoning, and true course and distance?

Answer.-Latitude in $40^{\circ} 22^{\prime} 33^{\prime \prime}$ N. Longitude in $125^{\circ} 37^{\prime} 24^{\prime \prime}$ W. True course 320°. Distance 186 miles.
6. A ship is heading 65° (p. s. c.) Dev. $6^{\circ} \mathrm{E}$ and takes her departure at 7 A. M. with Five Fathom Bank Lightship, New Jersey, abeam. Distance 8 miles. Patent log read 0 .

At noon changed course to 120°. Patent $\log 75$. Deviation $4^{\circ} \mathrm{E}$.

At 4 P. M. Changed course to 180°. Patent $\log 35$. Deviation 2° E.

At 8 P. M. Changed course to 110°. Patent $\log 94$. Deviation 5° E.

At 12 P. M. Changed course to 40°. Patent $\log 54$. Deviation $8^{\circ} \mathrm{E}$.

At 4 A. M. Changed course to 0°. Patent $\log 9$. Deviation $4^{\circ} \mathrm{E}$.

At 8 A. M. Changed course to 340°. Patent $\log 67$. Deviation $2^{\circ} \mathrm{W}$.

At noon patent \log read 22, variation on all courses $9^{\circ} \mathrm{W}$. Current set 310° (Corr. Mgc.) ${ }^{\frac{3^{\prime}}{}{ }^{\prime}}$ per hour for run.
Required noon position by dead reckoning, and true course and distance made?

Answer.-Latitude in $40^{\circ} 13^{\prime} 50^{\prime \prime} \mathrm{N}$. Longitude in $70^{\circ} 50^{\prime} 36^{\prime \prime} \mathrm{W}$. True course 63°. Distance 192 miles.

MERCATOR'S SAILING

1. Required true course and distance from Lat. $56^{\circ} 46^{\prime}$ N, Long. $150^{\circ} 00^{\prime} \mathrm{W}$, to Lat. $73^{\circ} 10^{\prime} \mathrm{N}$, Long. $168^{\circ} 10^{\prime} \mathrm{E}$ by Mercator's sailing?

Answer.-True course N $46^{\circ} 11^{\prime}$ W. Distance 1421 miles.
2. Required true course and distance from Lat. $28^{\circ} 14^{\prime}$ S, Long. $28^{\circ} 30^{\prime} \mathrm{E}$, to Lat. $40^{\circ} 10^{\prime} \mathrm{N}$, Long. $10^{\circ} 16^{\prime} \mathrm{W}$, by Mercator's sailing?

Answer.-True course N $27^{\circ} 59^{\prime}$ W. Distance 4647 miles.
3. Required true course and distance from Lat. $14^{\circ} 16^{\prime}$ S, Long. $28^{\circ} 00^{\prime} \mathrm{W}$, to Lat. $14^{\circ} 16^{\prime} \mathrm{N}$, Long. $28^{\circ} 00^{\prime} \mathrm{E}$, by Mercator's sailing?

Answer.-True course N $62^{\circ} 55^{\prime}$ E. Distance 3760 miles.
4. Required true course and distance from Lat. $46^{\circ} 18^{\prime}$ N, Long. $165^{\circ} 20^{\prime} \mathrm{E}$, to Lat. $23^{\circ} 28^{\prime} \mathrm{N}$, Long. $168^{\circ} 40^{\prime} \mathrm{W}$ by Mercator's sailing?

Answer.--True course S $42^{\circ} 48^{\prime}$ E. Distance 1867 miles.
5. Required true course and distance from Lat. $13^{\circ} 48^{\prime}$ S , Long. $113^{\circ} 28^{\prime} \mathrm{E}$, to Lat. $39^{\circ} 20^{\prime} \mathrm{N}$, Long. $74^{\circ} 30^{\prime} \mathrm{E}$, by Mercator's sailing.

Answer.-True course N $34^{\circ} 37^{\prime}$ W. Distance 3874 miles.
6. Required true course and distance from Lat. $46^{\circ} 28^{\prime}$ S , Long. $18^{\circ} 46^{\prime} \mathrm{E}$, to Lat. $25^{\circ} 30^{\prime} \mathrm{S}$, Long. $22^{\circ} 23^{\prime} \mathrm{W}$ by Mercator's sailing?

Answer.-True course N $57^{\circ} 37^{\prime}$ W. Distance 2349 miles.

middle latitude sailing

1. Required true course and distance from Lat. $28^{\circ} 10^{\prime} \mathrm{N}$, Long. $76^{\circ} 15^{\prime} \mathrm{W}$ to Lat. $34^{\circ} 12^{\prime} \mathrm{N}$, Long. $77^{\circ} 40^{\prime} \mathrm{W}$ by middle latitude sailing?

Answer.-True course N $11^{\circ} \mathrm{W}$. Distance 369 miles.
2. Required true course and distance from Lat. $18^{\circ} 46^{\prime}$ S long., $178^{\circ} 00^{\prime} \mathrm{W}$ to Lat. $16^{\circ} 30^{\prime} \mathrm{S}$, Long. $175^{\circ} 10^{\prime} \mathrm{E}$ by middle latitude sailing?

Answer.-True course N $71^{\circ} \mathrm{W}$. Distance 412 miles.
3. Required true course and distance from Lat. $48^{\circ} 16^{\prime} \mathrm{N}$, Long. $2^{\circ} 06^{\prime} \mathrm{W}$, to Lat. $53^{\circ} 12^{\prime} \mathrm{N}$, Long. $0^{\circ} 42^{\prime} \mathrm{E}$, by middle latitude sailing?

Answer.-True course N 20° E. Distance 315 miles.
4. Required true course and distance from Lat. $38^{\circ} 10^{\prime} \mathrm{N}$, Long. $28^{\circ} 10^{\prime} \mathrm{W}$ to Lat. $42^{\circ} 36^{\prime} \mathrm{N}$, Long. $31^{\circ} 9^{\prime} \mathrm{W}$ by middle latitude sailing?

Answer.-True course N $27^{\circ} \mathrm{W}$. Distance 299 miles.
5. Required true course and distance from Lat. $46^{\circ} 18^{\prime} \mathrm{S}$, Long. $153^{\circ} 28^{\prime} \mathrm{E}$ to Lat. $49^{\circ} 30^{\prime} \mathrm{S}$, Long. $159^{\circ} 10^{\prime} \mathrm{E}$ by middle latitude sailing?

Answer.-True course $\mathrm{S} 50^{\circ} \mathrm{E}$. Distance 298 miles.
6. Required true course and distance from Lat. $38^{\circ} 14^{\prime} \mathrm{N}$, Long. $25^{\circ} 30^{\prime} \mathrm{W}$ to Lat. $47^{\circ} 18^{\prime} \mathrm{N}$, Long. $30^{\circ} 40^{\prime} \mathrm{W}$ by middle latitude sailing?

Answer.-True course N $23^{\circ} \mathrm{W}$. Distance 591 miles.

Latitude by meridian altitude of sun

1. Jan. 1, 1919. Obs. Mer. Alt. Sun's L. L. was 49° $48^{\prime} 10^{\prime \prime}$ S. Dip $26 \mathrm{ft} .$, Long. $94^{\circ} 18^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Latitude $16^{\circ} 58^{\prime} 23^{\prime \prime} \mathrm{N}$.
2. Feb. 9, 1919. Obs. Mer. Alt. Sun's L. L. was 81° $10^{\prime} \mathrm{N}$. Dip 40 ft . Index error $+2^{\prime}$. Long. $57^{\circ} 43^{\prime} \mathrm{E}$. Required latitude?
Answer.-Latitude $23^{\circ} 35^{\prime} 53^{\prime \prime}$ S.
3. March 21, 1919. Obs. Mer. Alt. Sun's L. L. was 59° $36^{\prime} \mathrm{S}$. Index error $+2^{\prime} 40^{\prime \prime}$. Dip 28 ft . Long. by D. R. $41^{\circ} 28^{\prime}$ E.

Required latitude?
Answer.-Lat. $30^{\circ} 04^{\prime} 08^{\prime \prime} \mathrm{N}$.
4. Apr. 9, 1919. Obs. Mer. Alt. Sun's L. L. was 48° 10^{\prime} N. Dip 26 ft . Long. by D. R. $168^{\circ} 15^{\prime} \mathrm{E}$?

Required latitude?
Answer.-Lat. $34^{\circ} 33^{\prime} 10^{\prime \prime}$ S.
5. May 6, 1919. Obs. Mer. Alt. Sun's L. L. was 82° 10^{\prime} S. Dip. 36 ft . Long. by D. R. $16^{\circ} 21^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Lat. $23^{\circ} 59^{\prime} 42^{\prime \prime} \mathrm{N}$.
6. June 22, 1919. Obs. Mer. Alt. Sun's L. L. was 51° 28^{\prime} N. Dip 26 ft . Long. by D. R. $167^{\circ} 42^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Lat. $14^{\circ} 55^{\prime} 00^{\prime \prime} \mathrm{S}$.

Latitude by meridian altitude of star

1. Feb. 9, 1919. Obs. Mer. Alt. *Spica $41^{\circ} 10^{\prime}$ S. Dip 39 ft .

Required latitude?
Answer.-Lat. $38^{\circ} 12^{\prime} 44^{\prime \prime} \mathrm{N}$.
2. Mar. 11, 1919. Obs. Mer. Alt. * Arcturus $28^{\circ} 19^{\prime}$ N . Index error $-1^{\prime} 50^{\prime \prime}$. Dip 26 ft .

Required latitude?
Answer.-Lat. $42^{\circ} 13^{\prime} 44^{\prime \prime} \mathrm{S}$.
3. Apr. 3, 1919. Obs. Mer. Alt. * Aldebaran was 32° 46^{\prime} S. Dip 40 ft .

Required latitude?
Answer.-Lat. $73^{\circ} 42^{\prime} 31^{\prime \prime} \mathrm{N}$.
4. May 4, 1919. Obs. Mer. Alt. * Antares $81^{\circ} 10^{\prime} \mathrm{N}$. Index error $+3^{\prime}$. Dip 30 ft .

Required latitude?
Answer.-Lat. $35^{\circ} 07^{\prime} 49^{\prime \prime}$ S.
5. June 5, 1919. Obs. Mer. Alt. *Regulus $32^{\circ} 15^{\prime}$ N. Dip 26 ft .

Required latitude?
Answer.-Lat. $45^{\circ} 29^{\prime} 56^{\prime \prime} \mathrm{S}$.
6. July 8, 1919. Obs. Mer. Alt. * Fomalhaut $43^{\circ} 16^{\prime}$ S. Dip 18 ft .

Required latitude?
Answer.-Lat. $16^{\circ} 46^{\prime} 29^{\prime \prime} \mathrm{N}$.

TIME OF STAR'S MERIDIAN PASSAGE

1. Jan. 16, 1919. Find meridian passage *Spica?

Answer.-Jan. 16d 17h 39^{\prime}.
2. Feb. 12, 1919. Find meridian passage *Rigel?

Answer.-Feb. 12d 7h 44^{\prime}.
3. March 20, 1919. Find meridian passage * Antares?

Answer.-Mar. 20d 16h 34^{\prime}.
4. May 19, 1919. Find meridian passage * Sirius?

Answer.-May 19d 2h 56'.
5. June 7, 1919. Find meridian passage $*$ Canopus?

Answer.—June 7d 1h 22^{\prime}.
6. Dec. 6, 1919. Find meridian passage * Capella?

Answer.-Dec. 6d 12h 12'.

LONGITUDE BY SUN

1. Jan. 31, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $16^{\circ} 18^{\prime}$. Dip 26 ft . Chron. read $2 \mathrm{~h} 15^{\prime}$ P. M., which was fast $13^{\prime} 28^{\prime \prime}$. Lat. by D. R. $36^{\circ} 10^{\prime} \mathrm{N}$.

Required longitude?
Answer.-Long. $80^{\circ} 12^{\prime} 15^{\prime \prime} \mathrm{W}$.
2. Feb. 9, 1919, P. M. at ship. Obs. Alt. Sun's L. L. $18^{\circ} 30^{\prime}$. Dip 31 ft . Chron. read $10 \mathrm{~h} 15^{\prime} 28^{\prime \prime} \mathrm{A}$. M. which was fast $56^{\prime} 08^{\prime \prime}$. Lat. by D. R. $28^{\circ} 15^{\prime}$ S.

Required longitude?
Answer.-Longitude $120^{\circ} 20^{\prime} 30^{\prime \prime} \mathrm{E}$.
3. Mar. 21, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $31^{\circ} 28^{\prime}$. Dip 26 ft . Chron. read $4 \mathrm{~h} 10^{\prime}$ P. M. which was slow $28^{\prime} 10^{\prime \prime}$. Lat. by D. R. $18^{\circ} 16^{\prime} \mathrm{N}$.

Required longitude?
Answer.-Long. $124^{\circ} 10^{\prime} \mathrm{W}$.
4. Apr. 3, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $14^{\circ} 12^{\prime}$. Dip 32 ft . Chron. read $9 \mathrm{~h} 15^{\prime} \mathrm{A}$. M. which was slow $46^{\prime} 10^{\prime \prime}$. Lat. by D. R. $41^{\circ} 08^{\prime} \mathrm{S}$.

Required longitude?
Answer.-Long. $35^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{W}$.
5. May 6, 1919, P. M. at ship. Obs. Alt. Sun's L. L. $14^{\circ} 50^{\prime}$. Dip 29 ft . Chron. read $1 \mathrm{~h} 10^{\prime} \mathrm{P}$. M. which was slow $43^{\prime} 12^{\prime \prime}$. Lat. by D. R. $18^{\circ} 28^{\prime}$ S.

Required longitude?
Answer.-Long. $38^{\circ} 25^{\prime} 45^{\prime \prime}$ E.
6. June 3, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $22^{\circ} 16^{\prime}$. Dip 28 ft. Chron. read $1 \mathrm{~h} 48^{\prime} 12^{\prime \prime}$ P. M. which was slow $1 \mathrm{~h} 18^{\prime} 08^{\prime \prime}$. Lat. by D. R. $27^{\circ} 30^{\prime} \mathrm{N}$.

Required longitude?
Answer.-Long. $122^{\circ} 34^{\prime} \mathrm{W}$.

NOON POSITION SIGHTS

1. July 10, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $20^{\circ} 15^{\prime}$. Dip 20 ft . Chron. read $9 \mathrm{~h} 15^{\prime} 28^{\prime \prime}$ A. M. which was slow on June 8th $40^{\prime} 10^{\prime \prime}$ and losing $1^{\prime \prime} .9$ daily. Lat. at noon was $28^{\circ} 16^{\prime} \mathrm{N}$. Ship ran from sight to noon $\mathrm{S} 28^{\circ} \mathrm{W}$ (true) 46 miles.

Required ship's position at sight and noon?
Answer.-Lat. at sight $28^{\circ} 56^{\prime} 36^{\prime \prime} \mathrm{N}$. Long. at sight $46^{\circ} 11^{\prime} 15^{\prime \prime} \mathrm{W}$. Lat. at noon $28^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$. Long. at noon $46^{\circ} 36^{\prime}$ W.
2. Aug. 10, 1919, P. M. at ship. Obs. Alt. Sun's L. L. $19^{\circ} 1^{\prime}$. Dip 26 ft . Chron. read 9h $16^{\prime} 18^{\prime \prime}$ A. M. which was slow on July 8th, $30^{\prime} 12^{\prime \prime}$ and losing $4^{\prime \prime} .7$ daily. Lat. at noon was $14^{\circ} 18^{\prime} \mathrm{S}$. Ship ran from noon to sight $\mathrm{N} 51^{\circ} \mathrm{W}$ (true) 38 miles.

Required ship's position at sight and noon?
Answer.-Sight: Lat. $13^{\circ} 54^{\prime} 06^{\prime \prime}$ S, Long. $98^{\circ} 52^{\prime} 45^{\prime \prime} \mathrm{E}$. Noon Lat. $14^{\circ} 18^{\prime} 00^{\prime \prime}$ S, Long. $99^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{E}$.
3. Sept. 23, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $24^{\circ} 10^{\prime}$. Dip 38 ft . Chron. read $2 \mathrm{~h} 16^{\prime} 28^{\prime \prime}$ P. M. which was fast on Aug. 16th $3^{\prime} 10^{\prime \prime}$ and losing $3^{\prime \prime} .5$ daily. Lat. at noon was $41^{\circ} 10^{\prime} \mathrm{N}$. Ship ran from sight to noon $\mathrm{S} 32^{\circ} \mathrm{E}$ (true) 53 miles.

Required ship's position at sight and noon?
Answer.-Sight: Lat. $41^{\circ} 54^{\prime} 54^{\prime \prime} \mathrm{N}$, Long. $92^{\circ} 21^{\prime} 30^{\prime \prime} \mathrm{W}$ Noon: Lat. $41^{\circ} 10^{\prime} 00^{\prime \prime} \mathrm{N}$, Long. $91^{\circ} 43^{\prime} 30^{\prime \prime} \mathrm{W}$
4. Oct. 7, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $28^{\circ} 10^{\prime}$. Dip 33 ft . Chron. read 6h $15^{\prime} 20^{\prime \prime}$ A. M. which was slow on Sept. 22d $4^{\prime} 10^{\prime \prime}$ and gaining $9^{\prime \prime} .5$ daily. Lat. at noon was $36^{\circ} 42^{\prime} \mathrm{S}$. Ship ran from sight to noon $\mathrm{S} 48^{\circ}$ E (true) 39 miles.

Required ship's position at sight and noon?
Answer.-Sight: Lat. $36^{\circ} 15^{\prime} 54^{\prime \prime}$ S, Long. $24^{\circ} 25^{\prime} 45^{\prime \prime}$ E. Noon: Lat. $36^{\circ} 42^{\prime} 00^{\prime \prime}$ S, Long. $25^{\circ} 01^{\prime} 45^{\prime \prime}$ E.
5. Nov. 14, 1919, P. M. at ship. Obs. Alt. Sun's L. L. $23^{\circ} 10^{\prime}$. Dip 26 ft . Chron. read $9 \mathrm{~h} 58^{\prime} 10^{\prime \prime}$ which was slow on Oct. 8th $5^{\prime} 40^{\prime \prime}$ and losing $6^{\prime \prime} .4$ daily. Long. by D. R. $110^{\circ} \mathrm{W}$. Lat. at noon was $31^{\circ} 15^{\prime} \mathrm{N}$. Ship ran from noon to sight $\mathrm{N} 22^{\circ} \mathrm{E}$ (true) 43 miles. Required ship's position at sight and noon?

Answer.-Sight: Lat. $31^{\circ} 54^{\prime} 54^{\prime \prime}$ N, Long. $109^{\circ} 51^{\prime} 15^{\prime \prime} \mathrm{W}$ Noon: Lat. $31^{\circ} 15^{\prime} 00^{\prime} \mathrm{N}$, Long. $110^{\circ} 10^{\prime} 15^{\prime \prime} \mathrm{W}$
6. Dec. 3, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $20^{\circ} 10^{\prime}$. Dip 25 ft . Chron. read Dec. $2 \mathrm{~d} 18 \mathrm{~h} 15^{\prime} 28^{\prime \prime}$ which was slow on Nov. 7th $40^{\prime} 10^{\prime \prime}$ and losing $3^{\prime \prime} .8$ daily. Lat. at noon was $31^{\circ} 48^{\prime} \mathrm{N}$. Ship ran from sight to noon $\mathrm{S} 40^{\circ}$ E (true) 46 miles.

Required ship's position at sight and noon?
Answer.-Sight: Lat. $32^{\circ} 23^{\prime} 12^{\prime \prime} \mathrm{N}$, Long. $27^{\circ} 25^{\prime} \mathrm{E}$. Noon: Lat. $31^{\circ} 48^{\prime} 00^{\prime \prime} \mathrm{N}$, Long. $28^{\circ} 00^{\prime}$ E.

DEVIATION BY AZIMUTH

1. Jan. 11, 1919, A. M. at ship. Chron. read 11h 10^{\prime} A. M. Lat. $16^{\circ} 18^{\prime}$ N, Long. $56^{\circ} 28^{\prime}$ W. Sun bore by compass N $123^{\circ} \mathrm{E}$. Variation $8^{\circ} \mathrm{W}$.

Required error and deviation of compass?
Answer.-Error of compass $6^{\circ} \mathrm{W}$. Deviation $2^{\circ} \mathrm{E}$.
2. Mar. 21, 1919, A. M. at ship. Chron. read 4 h 10^{\prime} P. M. Lat. $28^{\circ} \mathrm{S}$, Long. $140^{\circ} 10^{\prime} \mathrm{W}$. Sun bore by compass S $110^{\circ} \mathrm{E}$. Variation $8^{\circ} \mathrm{E}$.

Required error and deviation of compass?
Answer.-Error of compass $15^{\circ} \mathrm{E}$. Deviation $7^{\circ} \mathrm{E}$.
3. May 3, 1919, P. M. at ship. Chron. read 8h 15^{\prime} A. M. Lat $46^{\circ} \mathrm{N}$, Long. $110^{\circ} 12^{\prime} \mathrm{E}$. Sun bore by compass $\mathrm{N} 110^{\circ} \mathrm{W}$. Variation $6^{\circ} \mathrm{W}$.

Required error and deviation of compass?
Answer.-Error of compass 5° E. Deviation $11^{\circ} \mathrm{E}$.
4. July 4, 1919, P. M. at ship. Chron. read $10 \mathrm{~h} 20^{\prime}$ P. M. Lat. $24^{\circ} \mathrm{S}$, Long. $93^{\circ} 10^{\prime} \mathrm{W}$. Sun bore by compass S $118^{\circ} 30^{\prime} \mathrm{W}$. Variation $8^{\circ} \mathrm{E}$.

Required error and deviation of compass?
Answer.-Error of compass $5^{\circ} 25^{\prime}$ E. Deviation 2° $35^{\prime} \mathrm{W}$.
5. Sept. 3, 1919, A. M. at ship. Chron. read $4 \mathrm{~h} 08^{\prime}$ A. M. Lat. $40^{\circ} \mathrm{N}$, Long. $55^{\circ} 50^{\prime} \mathrm{E}$. Sun bore by compass $\mathrm{N} 110^{\circ} \mathrm{E}$. Variation $8^{\circ} \mathrm{W}$.

Answer.-Error of compass $8^{\circ} \mathrm{W}$. Deviation 0°.
6. Nov. 8, 1919, A. M. at ship. Chron. read 1h $12^{\prime} 16^{\prime \prime}$ P. M. Lat. $28^{\circ} \mathrm{N}$, Long. $100^{\circ} \mathrm{W}$. Sun bore by compass N 112° E. Variation $4^{\circ} \mathrm{E}$.

Required error and deviation of compass:
Answer.-Error of compass $2^{\circ} \mathrm{W}$. Deviation $6^{\circ} \mathrm{W}$.

DEVIATION BY AMPLITUDE

1. Feb. 7, 1919. Sun bore at setting $S 0^{\circ} \mathrm{W}$. Chron. read 6 h 16^{\prime} P. M. Lat. $28^{\circ} 10^{\prime} \mathrm{N}$. Variation $9^{\circ} \mathrm{W}$.

Required error and deviation of compass?
Answer.-Error of compass $7^{\circ} 36^{\prime} \mathrm{W}$. Deviation 1° 24^{\prime} E.
2. Mar. 21, 1919. Sun bore at rising $\mathrm{N} 81^{\circ} \mathrm{E}$. Chron. read $10 \mathrm{~h} 10^{\prime}$ A. M. Lat. $18^{\circ} 48^{\prime} \mathrm{S}$. Variation $4^{\circ} \mathrm{E}$.

Required error and deviation of compass?
Answer.-Error of compass $9^{\circ} \mathrm{E}$. Deviation $5^{\circ} \mathrm{E}$.
3. July 4, 1919. Sun bore at setting $\mathrm{N} 81^{\circ} \mathrm{W}$. Chron. read $8 \mathrm{~h} 10^{\prime} \mathrm{P}$. M. Lat. $0^{\circ} 10^{\prime} \mathrm{S}$. Variation $10^{\circ} \mathrm{E}$.

Required error and deviation of compass?
Answer.-Error of compass $13^{\circ} 56^{\prime}$ E. Deviation 3° $56^{\prime} \mathrm{E}$.
4. Oct. 7, 1919. Sun bore at rising $\mathrm{N} 89^{\circ}$ E. Chron. read $8 \mathrm{~h} 10^{\prime} \mathrm{A} . \mathrm{M}$. Lat. $46^{\circ} 06^{\prime} \mathrm{N}$. Variation $10^{\circ} \mathrm{E}$.

Required error and deviation of compass?
Answer.-Error of compass $8^{\circ} 25^{\prime}$ E. Deviation 1° $35^{\prime} \mathrm{W}$.
5. November 30, 1919. Sun bore at setting $\mathrm{S} 69^{\circ} \mathrm{W}$. Chron. read $10 \mathrm{~h} 16^{\prime}$ P. M. Lat. $32^{\circ} 10^{\prime}$ S. Variation 2° E.

Required error and deviation of compass?
Answer.-Error of compass $4^{\circ} 47^{\prime}$ W. Deviation 6° $47^{\prime} \mathrm{W}$.
6. Dec. 3, 1919. Sun bore at rising $\mathrm{S} 60^{\circ} \mathrm{E}$. Chron. read $5 \mathrm{~h} 06^{\prime} \mathrm{P} . \mathrm{M}$. Lat. $38^{\circ} 16^{\prime} \mathrm{N}$. Variation $7^{\circ} \mathrm{W}$.

Required error and deviation of compass?
Answer.-Error of compass $1^{\circ} 27^{\prime}$ W. Deviation 5° 33^{\prime} E.

LATITUDE BY POLARIS

1. Sept. 18, 1919, P. M. at ship. Obs. Alt. *Polaris $16^{\circ} 15^{\prime}$. Dip 27 ft . Chron. read $11 \mathrm{~h} 57^{\prime} 18^{\prime \prime}$ P. M., slow $8^{\prime} 12^{\prime \prime}$ Long, $113^{\circ} 26^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Latitude $16^{\circ} 57^{\prime} 17^{\prime \prime} \mathrm{N}$.
2. Mar. 12, 1919, A. M. at ship. Obs. Alt. *Polaris $23^{\circ} 16^{\prime}$. Dip 16 ft . Chron. read $1 \mathrm{~h} 12^{\prime} 13^{\prime \prime}$ A. M. Long. $25^{\circ} 20^{\prime}$ E.

Required latitude?
Answer.-Latitude $24^{\circ} 16^{\prime} 19^{\prime \prime} \mathrm{N}$.
3. Feb. 8, 1919, A. M. at ship. Obs. Alt. *Polaris $28^{\circ} 14^{\prime}$. Dip 26 ft . Chron. read $1 \mathrm{~h} 16^{\prime}$ P. M. Long. $98^{\circ} 16^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Latitude $29^{\circ} 02^{\prime} 23^{\prime \prime} \mathrm{N}$.
4. July 6, 1919, P. M. at ship. Obs. Alt. * Polaris 14° 20^{\prime}. Dip 30 ft . Chron. read $1 \mathrm{~h} 48^{\prime} \mathrm{P} . \mathrm{M}$. Long. $74^{\circ} 10^{\prime} \mathrm{E}$. Required latitude?
Answer.-Latitude $15^{\circ} 18^{\prime} 10^{\prime \prime} \mathrm{N}$.
5. June 6, 1919, A. M. at ship. Obs. Alt. *Polaris $38^{\circ} 20^{\prime}$. Dip 26 ft . Chron. read $11 \mathrm{~h} 16^{\prime} 20^{\prime \prime}$ A. M. Long. $85^{\circ} 50^{\prime} \mathrm{W}$.

Required latitude?
Answer.-Latitude $37^{\circ} 27^{\prime} 17^{\prime \prime} \mathrm{N}$.
6. Dec. 7, 1919, P. M. at ship. Obs. Alt. *Polaris 42° 06^{\prime}. Dip 40 ft . Chron. read 8h 16^{\prime} A. M. Long. 160° 45^{\prime} E.

Required latitude?
Answer.-Latitude $40^{\circ} 56^{\prime} 56^{\prime \prime} \mathrm{N}$.

ALTITUDE AZIMUTH. LONGITUDE BY SUN AND MERCATOR'S SAILING COMBINED

1. June 20, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $48^{\circ} 57^{\prime} 46^{\prime \prime}$. Dip 10 ft . Chron. read 5h $08^{\prime} 40^{\prime \prime}$ A. M. which was slow on Feb. 17th $27^{\prime} 18^{\prime \prime}$ and on April 8th was slow $32^{\prime} 48^{\prime \prime}$. Lat. at noon was $33^{\circ} 32^{\prime} 18^{\prime \prime} \mathrm{N}$. Ship ran from sight to noon N $23^{\circ} \mathrm{E}$ (true) 35 miles. Sun bore by compass $\mathrm{S} 81^{\circ} 31^{\prime} \mathrm{E}$. Variation $1^{\circ} \mathrm{E}$.

Required position of vessel at sight and noon?
Required error and deviation of compass by altitude azimuth, and true course and distance by Mercator's sailing from noon to Lat. $48^{\circ} 10^{\prime} \mathrm{N}$, Long. $40^{\circ} \mathrm{E}$?

Answer.-Sight: Lat. $33^{\circ} 00^{\prime} 06^{\prime \prime} \mathrm{N}$. Long. $47^{\circ} 27^{\prime} 30^{\prime \prime} \mathrm{E}$. Noon: Lat. $33^{\circ} 32^{\prime} 18^{\prime \prime} \mathrm{N}$, Long. $47^{\circ} 44^{\prime} 00^{\prime \prime}$ E. Error of compass $6^{\circ} 59^{\prime} \mathrm{W}$. Deviation $7^{\circ} 59^{\prime} \mathrm{W}$. True course N $21^{\circ} 44^{\prime} \mathrm{W}$. Distance 945.2 miles.
2. Jan. 31, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $17^{\circ} 40^{\prime}$. Index error $+3^{\prime} 00^{\prime \prime}$. Dip 16 ft . Chron. read Jan. 31st $4 \mathrm{~h} 40^{\prime} 15^{\prime \prime}$ which was slow on Oct. 31st $31^{\prime} 20^{\prime \prime}$ and on Dec. 10th was slow $32^{\prime} 40^{\prime \prime}$. Lat. at noon was $35^{\circ} 59^{\prime} \mathrm{N}$. Ship ran from sight to noon S $67^{\circ} \mathrm{W}$ (true) 26 miles. Sun bore by compass East. Variation $22^{\circ} 15^{\prime}$ E.

Required position of vessel at sight and noon; error and deviation of compass by altitude azimuth, and true course
and distance from noon to Lat. $25^{\circ} 50^{\prime} \mathrm{N}$, Long. $100^{\circ} \mathrm{W}$. by Mercator's sailing?

Answer.-Sight: Lat. $36^{\circ} 09^{\prime} 12^{\prime \prime} \mathrm{N}$, Long. $126^{\circ} 16^{\prime}$ $15^{\prime \prime}$ W. Noon: Lat. $35^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{N}$, Long. $126^{\circ} 45^{\prime} 45^{\prime \prime} \mathrm{W}$. Error of compass $38^{\circ} 52^{\prime}$ E. Deviation $16^{\circ} 37^{\prime}$ E. True course $\mathrm{S} 66^{\circ} 13^{\prime}$ E. Distance 1510 miles.
3. Aug. 10, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $16^{\circ} 05^{\prime} 30^{\prime \prime}$. Dip 11 ft . Chron. read $5 \mathrm{~h} 17^{\prime} 26^{\prime \prime} \mathrm{A} . \mathrm{M}$. which was slow on March 17th $4^{\prime} 25^{\prime \prime}$ and on June 9th was fast $6^{\prime} 53^{\prime \prime}$. Lat. at noon was $47^{\circ} 25^{\prime}$ N. Ship ran from sight to noon $\mathrm{S} 50^{\circ} \mathrm{W}$ (true) 40 miles. Sun bore by compass East. Variation $4^{\circ} 30^{\prime}$ E.

Required position of vessel at sight and noon?
Required error and deviation of compass by altitude azimuth, and true course and distance by Mercator's sailing from noon to Lat. $25^{\circ} 10^{\prime} \mathrm{N}$, Long. $10^{\circ} 06^{\prime} \mathrm{E}$?

Answer.-Sight: Lat. $47^{\circ} 50^{\prime} 42^{\prime \prime}$ N, Long. $22^{\circ} 37^{\prime} 45^{\prime \prime}$ E. Noon: Lat. $47^{\circ} 25^{\prime} 00^{\prime \prime}$ N, Long. $21^{\circ} 51^{\prime} 45^{\prime \prime}$ E. Error of compass $5^{\circ} 54^{\prime} \mathrm{W}$. Deviation $10^{\circ} 24^{\prime} \mathrm{W}$. True course S $22^{\circ} 54^{\prime} \mathrm{W}$. Distance 1449 miles.
4. Mar. 21, 1919, A. M. at ship. Obs. Alt. Sun's L. L. $29^{\circ} 41^{\prime}$. Dip 12 ft . Chron. read $4 \mathrm{~h} 19^{\prime} 27^{\prime \prime}$ P. M. which was fast on Jan. 18th $43^{\prime} 43^{\prime \prime}$ and losing $10^{\prime \prime} .7$ daily. Lat. at noon was $38^{\circ} 20^{\prime} \mathrm{S}$. Ship ran from sight to noon North (true) 20 miles. Sun bore by compass $\mathrm{S} 79^{\circ} \mathrm{E}$. Variation $35^{\circ} \mathrm{W}$.

Required position of vessel at sight and noon; error and deviation of compass by altitude azimuth and true course and distance by Mercator's sailing from noon to Lat. 10° $08^{\prime} \mathrm{S}$, Long. $178^{\circ} \mathrm{E}$.

Answer.-Sight: Lat. $38^{\circ} 40^{\prime} \mathrm{S}$, Long. $105^{\circ} 12^{\prime} 30^{\prime \prime} \mathrm{W}$. Noon: Lat. $38^{\circ} 20^{\prime}$ S, Long. $105^{\circ} 12^{\prime} 30^{\prime \prime} \mathrm{W}$. Error of compass $38^{\circ} 20^{\prime} \mathrm{W}$. Deviation $3^{\circ} 20^{\prime} \mathrm{W}$. True course N $67^{\circ} 53^{\prime}$ W. Distance 4494 miles.
5. Sept. 24, 1919, P. M. at ship. Obs. Alt. Sun's L. L. $21^{\circ} 10^{\prime}$. Dip 12 ft . Chron. read 1h $10^{\prime} 10^{\prime \prime}$ P. M. which was fast on June 1st $28^{\prime} 2^{\prime \prime}$ and on August 1st was fast 29^{\prime} $37^{\prime \prime}$. Lat. at noon was $16^{\circ} 00^{\prime} \mathrm{S}$. Ship ran from noon to sight $\mathrm{N} 36^{\circ} \mathrm{W}$ (true) 42 miles. Sun bore by compass $\mathrm{S} 80^{\circ} \mathrm{W}$. Variation $18^{\circ} 30^{\prime} \mathrm{E}$.

Required ship's position at sight and noon; error and deviation of compass by altitude azimuth and true course and distance by Mercator's sailing from noon to Lat. 8° $14^{\prime} \mathrm{N}$. Long. $3^{\circ} 10^{\prime} \mathrm{W}$.

Answer.-Sight: Lat. $15^{\circ} 26^{\prime}$ S. Long. $56^{\circ} 10^{\prime} 15^{\prime \prime} \mathrm{E}$. Noon: Lat. $16^{\circ} 00^{\prime}$ S, Long. $56^{\circ} 36^{\prime} 00^{\prime \prime}$ E. Error of compass 16° E. Deviation $2^{\circ} 30^{\prime} \mathrm{W}$. True course N $67^{\circ} 52^{\prime}$ W. Distance 3859 miles.
6. Nov. 8, 1919, A. M. at ship. Obs. ${ }^{-}$Alt. Sun's L. L. $42^{\circ} 00^{\prime}$. Dip 13 ft . Chron. read $2 \mathrm{~h} 40^{\prime} 22^{\prime \prime}$ P. M. which was fast on Sept. 24th $1 \mathrm{~h} 12^{\prime} 56^{\prime \prime}$ and losing $3^{\prime \prime} .6$ daily. Lat. at noon was $50^{\circ} 02^{\prime} \mathrm{S}$. Ship run from sight to noon N $28^{\circ} \mathrm{E}$ (true) 38 miles. Sun bore by compass $\mathrm{N} 70^{\circ} 30^{\prime}$ E. Variation $14^{\circ} 18^{\prime} \mathrm{W}$.

Required position of ship at sight and noon; error and deviation of compass by altitude azimuth and true course and distance by Mercator's sailing from noon to Lat. 25° $00^{\prime} \mathrm{S}$, Long. $30^{\circ} \mathrm{W}$.

Answer.-Sight: Lat. $50^{\circ} 35^{\prime} 36^{\prime \prime} \mathrm{S}$, Long. $68^{\circ} 24^{\prime} 30^{\prime \prime} \mathrm{W}$. Noon: Lat. $50^{\circ} 02^{\prime} 00^{\prime \prime}$ S, Long. $67^{\circ} 56^{\prime} 45^{\prime \prime}$ W. Error of compass $10^{\circ} 46^{\prime} \mathrm{W}$. Deviation $3^{\circ} 32^{\prime} \mathrm{E}$. True course N $49^{\circ} 52^{\prime}$ E. Distance 2330 miles.

LATITUDE BY PLANET

1. June 12, 1919. Obs. Mer. Alt. Planet Mars $47^{\circ} 18^{\prime} \mathrm{N}$. Dip 26 ft . Chron. read $4 \mathrm{~h} 22^{\prime}$ P. M.

Required latitude?
Answer.-Lat. $20^{\circ} 12^{\prime} 20^{\prime \prime} \mathrm{S}$.
2. July 6, 1919. Obs. Mer. Alt. Planet Saturn $38^{\circ} 28^{\prime}$ N. Dip 30 ft . Chron. read $5 \mathrm{~h} 38^{\prime}$ P. M.

Required latitude?
Answer.-Lat. $37^{\circ} 22^{\prime} 29^{\prime \prime}$ S.
3. Feb. 8, 1919. Obs. Mer. Alt. Planet Venus $48^{\circ} 41^{\prime}$ S. Dip 28 ft . Chron. read $3 \mathrm{~h} 40^{\prime}$ P. M.

Required latitude?
Answer.-Lat. $31^{\circ} 07^{\prime} 55^{\prime \prime} \mathrm{N}$.
4. April 15, 1919. Obs. Mer. Alt. Planet Jupiter 58° 10^{\prime} S. Dip 26 ft . Chron. read $1 \mathrm{~h} 14^{\prime} \mathrm{A}$. M.

Required latitude?
Answer.-Lat. $55^{\circ} 18^{\prime} 27^{\prime \prime} \mathrm{N}$.

LATITUDE BY EX-MERIDIAN ALTITUDE OF SUN

1. Jan. 30, 1919. Ex-Mer. Alt. Sun's L. L. $47^{\circ} 48^{\prime}$ S. Dip 26 ft . Chron. read $7 \mathrm{~h} 40^{\prime} 18^{\prime \prime}$. Long. $108^{\circ} 30^{\prime} \mathrm{W}$, Lat. D. R. $24^{\circ} \mathrm{N}$.

Required latitude at sight?
Answer.-Lat. $24^{\circ} 07^{\prime} 46^{\prime \prime} \mathrm{N}$.
2. Mar. 21, 1919. Ex-Mer. Alt. Sun's L. L. $72^{\circ} 10^{\prime} \mathrm{N}$. Dip 30 ft . Chron. read $7 \mathrm{~h} 50^{\prime} 30^{\prime \prime} \mathrm{A} . \mathrm{M}$. Long. $61^{\circ} 15^{\prime} \mathrm{E}$, Lat. by D. R. $18^{\circ} \mathrm{S}$.

Required latitude at sight?
Answer.-Lat. $17^{\circ} 33^{\prime} 33^{\prime \prime}$ S.
3. July 12, 1919. Ex-Mer. Alt. Sun's L. L. $58^{\circ} 16^{\prime}$ S. Dip 30 ft . Chron. read $5 \mathrm{~h} 50^{\prime} 12^{\prime \prime} \mathrm{P} . \mathrm{M}$. Long. $90^{\circ} \mathrm{W}$, Lat. by D. R. $53^{\circ} 40^{\prime} \mathrm{N}$.

Required latitude at sight?
Answer.-Lat. $53^{\circ} 30^{\prime} 13^{\prime \prime} \mathrm{N}$.
4. Apr. 18, 1919. Ex-Mer. Alt. Sun's L. L. $54^{\circ} 28^{\prime}$ N. Dip 26 ft . Chron. read $3 \mathrm{~h} 48^{\prime} 32^{\prime \prime}$. Long. $124^{\circ} \mathrm{E}$, Lat. by D. R. $25^{\circ} \mathrm{S}$.

Required latitude at sight?
Answer.-Lat. $24^{\circ} 54^{\prime} 28^{\prime \prime}$ S.
5. Dec. 25, 1919. Ex-Mer. Alt. Sun's L. L. $64^{\circ} 20^{\prime}$ N. Dip 26 ft . Chron. read $2 \mathrm{~h} 10^{\prime}$ P. M. Long. $31^{\circ} \mathrm{W}$, Lat. by D. R. $49^{\circ} \mathrm{S}$.

Required latitude at sight?
Answer.-Lat. $48^{\circ} 52^{\prime} 40^{\prime \prime} \mathrm{S}$.
6. Oct. 16, 1919. Ex-Mer. Alt. Sun's L. L. $79^{\circ} 20^{\prime}$ S. Dip 28 ft . Chron. read $2 \mathrm{~h} 01^{\prime}$ A. M. Long. $149^{\circ} 10^{\prime} \mathrm{E}$, Lat. D. R. 2° N.

Required latitude at sight?
Answer.-Lat. $1^{\circ} 35^{\prime} 39^{\prime \prime} \mathrm{N}$.

LONGITUDE BY FIXED STAR AND PLANET

1. Apr. 9, 1919, P. M. at ship. Obs. Alt. *Sirius 28° 41^{\prime}, bearing West. Dip 26 ft . Chron. read 5h 09' $40^{\prime \prime}$ P. M. which was fast $28^{\prime} 10^{\prime \prime}$. Lat. $23^{\circ} 40^{\prime} \mathrm{N}$, Long. by D. R. 60° E.

Required longitude?
Answer.-Long. $60^{\circ} 39^{\prime} \mathrm{E}$.
2. Feb. 9, 1919, A. M. at ship. Obs. Alt. *Arcturus $36^{\circ} 20^{\prime}$, bearing East. Dip 28 ft . Chron. read 10h 28^{\prime} $10^{\prime \prime}$ A. M. Lat. $42^{\circ} 10^{\prime} \mathrm{N}$, Long. by D. R. $141^{\circ} \mathrm{W}$.

Required longitude?
Answer.-Long. $140^{\circ} 55^{\prime} 15^{\prime \prime} \mathrm{W}$.
3. Feb. 13, 1919, A. M. at ship. Obs. Alt. *Procyon $30^{\circ} 00^{\prime}$, bearing West. Dip 36 ft . Chron. read Feb. 12th $16 \mathrm{~h} 40^{\prime} 28^{\prime \prime}$ which was slow of G. M. T. $3^{\prime} 26^{\prime \prime}$. Lat. 28° $50^{\prime} \mathrm{N}$, Long. by D. R. $41^{\circ} \mathrm{W}$.

Required longitude?
Answer.-Long. $40^{\circ} 37^{\prime} 15^{\prime \prime} \mathrm{W}$.
4. May 19, 1919, P. M. at ship. Obs. Alt. *Spica 32° 46^{\prime}, bearing East. Dip 36 ft . Chron. read $1 \mathrm{~h} 28^{\prime}$ P. M. Lat. $38^{\circ} 20^{\prime}$ S, Long. by D. R. 65° E.

Required longitude?
Answer.-Long. $65^{\circ} 26^{\prime} 15^{\prime \prime}$ E.
5. Jan. 29, 1919, A. M. at ship. Obs. Alt. Planet Venus $26^{\circ} 10^{\prime}$, bearing East. Dip 26 ft . Chron. read 1 h 13^{\prime} P. M. Lat. $28^{\circ} 28^{\prime}$ N, Long. by D. R. $47^{\circ} \mathrm{W}$.

Required longitude?
Answer.-Long. $47^{\circ} 23^{\prime} 15^{\prime \prime} \mathrm{W}$.
6. Oct. 6, 1919, A. M. at ship. Obs. Alt. Planet Saturn $20^{\circ} 14^{\prime}$ bearing East. Dip 30 ft . Chron. read $0 \mathrm{~h} 36^{\prime}$ A. M. Lat. $38^{\circ} 12^{\prime}$ N, Long. by D. R. 64° E.

Required longitude?
Answer.-Long. $63^{\circ} 49^{\prime}$ E.

LATITUDE BY MOON

1. Apr. 21, 1919. Obs. Mer. Alt. Moon's L. L. $38^{\circ} 16^{\prime}$, bearing North. Dip 26 ft . Chron. read $1 \mathrm{~h} 42^{\prime}$ A. M.

Required latitude?
Answer.-Lat. $71^{\circ} 50^{\prime} 19^{\prime \prime} \mathrm{S}$.
2. Aug. 16, 1919. Obs. Mer. Alt. Moon's L. L. $46^{\circ} 26^{\prime}$, bearing South. Dip 30 ft . Chron. read $1 \mathrm{~h} 36^{\prime}$ P. M.

Required latitude?
Answer.-Lat. $55^{\circ} 05^{\prime} 39^{\prime \prime} \mathrm{N}$.
3. Sept. 15, 1919. Obs. Mer. Alt. Moon's L. L. $78^{\circ} \mathbf{2 8}^{\prime}$, bearing North. Dip 26 ft . Chron. read 6h 28^{\prime} A. M.

Required latitude?
Answer.-Lat. $8^{\circ} 44^{\prime} 32^{\prime \prime} \mathrm{N}$.
4. June 13, 1919. Obs. Mer. Alt. Moon's L. L. $53^{\circ} 14^{\prime}$
S. Dip 32 ft . Chron. read $4 \mathrm{~h} 09^{\prime}$ P. M.

Required latitude?
Answer.-Lat. $14^{\circ} 30^{\prime} \mathrm{N}$.
5. Nov. 25, 1919. Obs. Mer. Alt. Moon's L. L. $70^{\circ} 14^{\prime}$, bearing North. Dip 26 ft . Chron. read 7h 08^{\prime} P. M.

Required latitude?
Answer.-Lat. $39^{\circ} 03^{\prime} 28^{\prime \prime}$ S.
6. Dec. 5, 1919. Obs. Mer. Alt. Moon's L. L. $68^{\circ} 14^{\prime}$ bearing South. Dip 26 ft . Chron. read Dec. 5th $12 \mathrm{~h} 43^{\prime}$.

Required latitude?
Answer.-Lat. $39^{\circ} 54^{\prime} 44^{\prime \prime} \mathrm{N}$.

LONGITUDE BY SUNRISE AND SUNSET OBSERVATIONS

1. Dec. 2, 1919. Sun's L. L. at Sunrise. Chron. read $7 \mathrm{~h} 10^{\prime}$ which was slow $45^{\prime} 10^{\prime \prime}$. Lat. $28^{\circ} 14^{\prime} \mathrm{N}$, Long. by D. R. $19^{\circ} 40^{\prime} \mathrm{W}$.

Required longitude?
Answer.-Long. $19^{\circ} 31^{\prime} 45^{\prime \prime} \mathrm{W}$.
2. Mar. 21, 1919. Sun's U. L. at Sunset. Chron. read $5 \mathrm{~h} 10^{\prime}$ which was slow $30^{\prime} 00^{\prime \prime}$. Lat. $14^{\circ} 16^{\prime} \mathrm{S}$, Long. by D. R. 8° E.

Required longitude?
Answer.-Long. $7^{\circ} 46^{\prime} \mathrm{E}$.
3. May 6, 1919. Sun's L. L. at Sunrise. Chron. read Oh 16^{\prime} which was slow $58^{\prime} 00^{\prime \prime}$, Lat. $34^{\circ} 06^{\prime}$ S, Long. by D. R. $98^{\circ} 10^{\prime} \mathrm{W}$.

Required longitude?
Answer.-Long. $98^{\circ} 21^{\prime} 45^{\prime \prime} \mathrm{W}$.
4. Jan. 2, 1919. Sun's U. L. at Sunrise. Chron. read 1h $15^{\prime} 20^{\prime \prime}$, which was slow $41^{\prime} 28^{\prime \prime}$. Lat. $36^{\circ} 12^{\prime} \mathrm{N}$, Long. by D. R. $78^{\circ} 45^{\prime} \mathrm{E}$.

Required longitude?
Answer.-Long. $78^{\circ} 34^{\prime} 15^{\prime \prime} \mathrm{E}$.
5. October 11, 1919. Sun's U. L. at Sunset. Chron. read $1 \mathrm{~h} 50^{\prime}$ which was slow $8^{\prime} 10^{\prime \prime}$. Lat. $43^{\circ} 16^{\prime} \mathrm{S}$, Long. by D. R. 65° E.

Required longitude?
Answer.-Long. $64^{\circ} 50^{\prime}$ E.
6. July 10, 1919. Sun's L. L. at Sunset. Chron. read $10 \mathrm{~h} 05^{\prime}$ (correct) Lat. $13^{\circ} 14^{\prime} \mathrm{N}$, Long. by D. R. $126^{\circ} \mathrm{E}$.

Required longitude?
Answer.-Long. $125^{\circ} 57^{\prime} 15^{\prime \prime}$ E.

TIME OF HIGH AND LOW WATER

1. Jan. 28, 1919. Find time of high and low water in A. M. and P. M. at Antwerp, Belgium?

Answer.-High water $12 \mathrm{~h} 54^{\prime}$ A. M., $1 \mathrm{~h} 21^{\prime}$ P. M. Low water $7 \mathrm{~h} 06^{\prime}$ A. M., 7h 33^{\prime} P. M.
2. July 4, 1919. Find time of high and low water A. M. and P. M. at Guaymas, Mexico?

Answer.-High water $4 \mathrm{~h} 32^{\prime}$ A. M., $4 \mathrm{~h} 54^{\prime}$ P. M. Low water $10 \mathrm{~h} 50^{\prime}$ A. M., $11 \mathrm{~h} 12^{\prime}$ P. M.
3. Mar. 10, 1919. Find time of high and low water A. M. and P. M. at Copenhagen, Denmark?

Answer.-High water 4h 09^{\prime} A. M., 4h 37^{\prime} P. M. Low water $10 \mathrm{~h} 25^{\prime} \mathrm{A} . \mathrm{M} ., 10 \mathrm{~h} 53^{\prime}$ P. M.
4. Sept 12, 1919. Find time of high and low water A. M. and P. M. at Castillos, Uruguay?

Answer.-High water 9h 53^{\prime} A. M., $10 \mathrm{~h} 20^{\prime}$ P. M. Low water $3 \mathrm{~h} 41^{\prime}$ A. M., $4 \mathrm{~h} 08^{\prime}$ P. M.
5. June 16, 1919. Find time of high and low water A. M. and P. M. at Alligator Reef, Florida?

Answer.-High water $10 \mathrm{~h} 28^{\prime}$ A. M., 10h 52^{\prime} P. M. Low water $4 \mathrm{~h} 06^{\prime}$ A. M., $4 \mathrm{~h} 30^{\prime} \mathrm{P} . \mathrm{M}$.
6. May 3, 1919. Find time of high and low water A. M. and P. M. at Cape Wilberforce, Australia?

Answer.-High water 10h 23^{\prime} A. M., 10h 54^{\prime} P. M. Low water $4 \mathrm{~h} 11^{\prime} \mathrm{A} . \mathrm{M}$., $4 \mathrm{~h} 42^{\prime}$ P. M.

EXPLANATION OF ILLUSTRATIONS SHOWING METHOD OF PLOTTING ONE OBSERVATION OF SUN OR STAR ON A MERCATOR CHART

This method is the most practical and simple that can be used on board of a ship, and is strongly recommended to the student of navigation.

The idea of the method is to find the longitude when an error in latitude has been made at the time of observation.

When the sun is on the prime vertical an error in latitude will have no effect on the longitude as the sun's bearing will then be true East or West, and the line of bearing at right angles to this or 90° away, will be North and South. At all other times an error in latitude used in an example for longitude, will make a difference in the longitude found.

To lay off on chart proceed as follows:
Take observation of sun or star, using the latitude by D. R. to work the observation with.

After obtaining this position, place it on the chart.
Enter azimuth table and take out true bearing of body observed, using local apparent time for sun, hour angle for star.

Draw a line through the position already placed on chart at right angles to true bearing or 90° from it.

This will give the line of bearing, and the ship will be on this line somewhere if no error in latitude has been made.

Now when we obtain the latitude at noon, knowing the course and distance the ship has sailed between sight and noon, we find the correct latitude we were in at time of observation by working the latitude back to sight, using the difference of latitude obtained from Table 2 for the course and distance.

We then take a pair of dividers and obtain the length of the correct latitude at time of observation on the side of the chart.

Where the dividers meet the line of bearing, keeping one point of dividers on parallel of latitude used, will be the ship's correct position at time of sight.

Allowing the difference of longitude found from course and distance between sight and noon, to the longitude found on line of bearing, will give the ship's noon position.

This method avoids the working of the sight over again, after the correct latitude has been found.

The following examples will illustrate the change in longitude for an error in latitude.

By taking a pair of dividers on the line in Lat. $50^{\circ} 40^{\prime} \mathrm{N}$, the longitude will be found to be $166^{\circ} 37^{\prime} \mathrm{E}$.

In Lat. $50^{\circ} 20^{\prime} \mathrm{N}$, the longitude will be $166^{\circ} 13^{\prime} 30^{\prime \prime} \mathrm{E}$.
This will illustrate the amount an error in latitude will affect the longitude on this bearing, and also the method of obtaining the longitude at time of observation with correct latitude.

1111111111
0200
at $\geqslant 0$
suheres

EXPLANATION OF ILLUSTRATION SHOWING METHOD OF PLOTTING POSITION LINES ON MERCATOR CHART BY MARCQ ST. HILAIRE METHOD

The dead reckoning position for first observation is placed on chart.

A line representing the body's true bearing is drawn through this dead reckoning position.

The altitude difference is measured from this position towards or away from the body.

In this illustration the altitude difference is $-5^{\prime} 45^{\prime \prime}$. Or $5 \frac{3}{4}$ miles on line of bearing away from the body. As the sun was in the East in A. M., this would be allowed to the westward.

The first line of bearing is drawn at right angles or 90°, to this bearing.

The course and distance is allowed between observations same as in Sumners Method, and a line drawn parallel to first line on this course and distance.

The second dead reckoning position is then placed on chart, and a line representing the true bearing drawn through it.

In this case the altitude difference is $+4^{\prime} 40^{\prime \prime}$, which means toward the body on the line of bearing.

The second line is then drawn at right angles to true bearing through this position, and where the second line crosses the projection of first line will be ship's position at second observation.

EXPLANATION OF ILLUSTRATION SHOWING METHOD OF PLOTTING SUMNER LINES ON MERCATOR CHART

The first line of bearing is the line drawn between the two positions found by first altitude, and is at right angles to sun's true bearing.

Example: Sun's true bearing N $130^{\circ} 30^{\prime} \mathrm{E}-90^{\circ}$ equals N $40^{\circ} 30^{\prime} \mathrm{E}$, which is the angle of the first line.

Course $\mathrm{N} 56^{\circ} \mathrm{W}$ (true) distance 46 miles is the line drawn allowing for the course and distance run between first and second observations.

The first line of bearing projected is the line drawn parallel to first line of bearing allowing for the course and distance.

Second line of bearing is the line drawn between the two positions found by second altitude, and is at right angles to sun's true bearing.

Example: Sun's true bearing N $146^{\circ} \mathrm{E}-90^{\circ}$ equals N $56^{\circ} \mathrm{E}$ which is the angle of second line.

Where the second line crosses the projection of first line will be ships position at second observation.

EXTRACTS FROM THE AMERICAN NAUTTCAL ALMANAC FOR THE YEAR 1919

RIGHT ASCENSION OF THE MEAN SUN AT GREENWICH MEAN NOON

JANUARY, 1919

Day	Right Ascension
28	20h $26^{\prime} 48^{\prime \prime} .1$
29	$20 \mathrm{hh} 30^{\prime}, 44^{\prime \prime} \cdot 7$
30	$20 \mathrm{~h} 34^{\prime} 41^{\prime \prime} .2$
31	$20 \mathrm{~h} 38^{\prime} 37^{\prime \prime} .8$

FEBRUARY, 1919
$\frac{1}{7}$
$7 \quad 21 \mathrm{~h} 06^{\prime} 13^{\prime \prime} .7$
$8 \quad 21 \mathrm{~h} 10^{\prime} 10^{\prime \prime} .2$
21h $14^{\prime} 6^{\prime \prime} .8$ 21h $18^{\prime} 3^{\prime \prime} .3$ 21h $21^{\prime} 59^{\prime \prime} .9$ 21h $25^{\prime} 56^{\prime \prime} .4$ $21 \mathrm{~h} 29^{\prime} 53^{\prime \prime} .0$ 21h $45^{\prime} 39^{\prime \prime} .2$ 21h $49^{\prime} 35^{\prime \prime} .8$ $21 \mathrm{~h} 53^{\prime} 32^{\prime \prime} .3$ 21h $57^{\prime} 28^{\prime \prime} .9$

MARCH, 1919
$23 \mathrm{~h} 8^{\prime} 26^{\prime \prime} .8$ $23 \mathrm{~h} 12^{\prime} 23^{\prime \prime} .4$ $23 \mathrm{~h} 16^{\prime} 19^{\prime \prime} .9$

APRIL, 1919
Oh $58^{\prime} 50^{\prime \prime} .3$
1h $2^{\prime} 46^{\prime \prime} .8$
1h $6^{\prime} 43^{\prime \prime} .4$
1h $10^{\prime} 40^{\prime \prime} .0$
MAY, 1919
3h $40^{\prime} 29^{\prime \prime} .0$
3h $44^{\prime} 25^{\prime \prime} .6$
3h $48^{\prime} 22^{\prime \prime} .1$ 3h $52^{\prime} 18^{\prime \prime} .7$

JUNE, 1919
4h $47^{\prime} 30^{\prime \prime} .5$ 4h $51^{\prime} 27^{\prime \prime} .0$ 4h $55^{\prime} 23^{\prime \prime} .6$ 4h $59^{\prime} 20^{\prime \prime} .2$ 5h $3^{\prime} 16^{\prime \prime} .7$

JULY, 1919
Right Ascension $6 \mathrm{~h} 37^{\prime} 54^{\prime \prime} .1$ $6 \mathrm{~h} 41^{\prime} 50^{\prime \prime} .6$ 6h $45^{\prime} 47^{\prime \prime} .2$ $6 \mathrm{~h} 49^{\prime} 43^{\prime \prime} .8$ $6 \mathrm{~h} 53^{\prime} 40^{\prime \prime} .3$ 6h $57^{\prime} 36^{\prime \prime} .9$ 7h $25^{\prime} 12^{\prime \prime} .8$ 7h $29^{\prime} 9^{\prime \prime} .3$ $7 \mathrm{~h} 33^{\prime} 5^{\prime \prime} .9$

AUGUST, 1919
$4 \quad 8 \mathrm{~h} 48^{\prime} 0^{\prime \prime} .4$ 8h $51^{\prime} 57^{\prime \prime} .0$ $8 \mathrm{~h} 55^{\prime} 53^{\prime \prime} .6$

SEPTEMBER, 1919
$17 \quad 11 \mathrm{~h} 41^{\prime} 28^{\prime \prime} .8$
19 11h 49' $21^{\prime \prime} .9$
OCTOBER, 1919
12h $48^{\prime} 30^{\prime \prime} .2$
$12 \mathrm{~h} 52^{\prime} 26^{\prime \prime} .7$ $12 \mathrm{~h} 56^{\prime} 23^{\prime \prime} .3$ $14 \mathrm{~h} 7^{\prime} 21^{\prime \prime} .2$ 14h $11^{\prime} 17^{\prime \prime} .8$ 14h $15^{\prime} 14^{\prime \prime} .4$

NOVEMBER, 1919
$8 \quad 15 \mathrm{~h} 6^{\prime \prime} 29^{\prime \prime} .6$
$9 \quad 15 \mathrm{~h} 10^{\prime} 26^{\prime \prime} .1$ $15 \mathrm{~h} 14^{\prime} 22^{\prime \prime} .7$

DECEMBER, 1919

5 | 5 | 16 h | 52^{\prime} |
| :--- | :--- | :--- |
| 6 | $166^{\prime \prime} .6$ | |
| 7 | 176^{\prime} | $53^{\prime \prime} .1$ |

THE SUN

JANUARY, 1919

WEDNESDAY, 1

G. M. T.		un's	Equation
Hrs.	Decli	nation	of Time
4	-23°	$3^{\prime} .4$	-3' $23^{\prime \prime} .9$
6	23°	$3^{\prime} .0$	$3^{\prime} 26^{\prime \prime} .3$
8	23°	$2^{\prime} .6$	$3^{\prime} 28^{\prime \prime} .6$
10	23°	$2^{\prime} .2$	$3^{\prime} 31^{\prime \prime} .0$
12	23°	$1^{\prime} .8$	$3^{\prime} 33^{\prime \prime} .4$
14	23°	$1^{\prime} .4$	$3^{\prime} 35^{\prime \prime} .8$
16	23°	1 1. 0	$3^{\prime} 38^{\prime \prime} .2$
18	23°	$0^{\prime} .6$	$3^{\prime} 40^{\prime \prime} .5$
20	23°	$0^{\prime} .1$	$3^{\prime} 42^{\prime \prime} .9$
22	22°	$59^{\prime} .7$	$3^{\prime} 45^{\prime \prime} .3$
H. D.		$0^{\prime} .2$	$1^{\prime \prime} .2$

THURSDAY, 2

0	$-22^{\circ} 59^{\prime} .3$	$-3^{\prime} 47^{\prime \prime} .6$	
2	22°	$58^{\prime} .9$	3^{\prime}
	$50^{\prime \prime} .0$		
H. D.		$0^{\prime} .2$	
$1^{\prime \prime} .2$			

$\begin{array}{crr} & \text { FRIDAY, } 10 \\ 22 & -21^{\circ} 56^{\prime} .2 & -7^{\prime} \\ \text { H. D } & 43^{\prime \prime} .5 \\ 0^{\prime} .4 & 1^{\prime \prime} .0\end{array}$
SATURDAY, 11
$-21^{\circ} 55^{\prime} .5-7^{\prime} 45^{\prime \prime} .5$
$\begin{array}{rrr}21^{\circ} 54^{\prime} .7 & 7^{\prime} 47^{\prime \prime} .5 \\ 0^{\prime} .4 & 1^{\prime \prime} .0\end{array}$
FRIDAY, 24
$8 \quad-19^{\circ} 18^{\prime} .6-12^{\prime} \quad 7^{\prime \prime} .5$
$10 \quad 19^{\circ} 17^{\prime} .4 \quad 12^{\prime} \quad 8^{\prime \prime} .8$

12	19°	$16^{\prime} .2$	12^{\prime}
H. D.		$0^{\prime} .6$	$0^{\prime \prime} .0$
.6			

G. M. T.	Sun's	Equatio
Hrs.	Declination	of Tim
0	$-17^{\circ} 52^{\prime} .0$	$-13^{\prime} 18^{\prime \prime}$
2	$17^{\circ} 50^{\prime} .6$	$13^{\prime} 19^{\prime \prime}$
4	$17^{\circ} 49^{\prime} .3$	$13^{\prime} 20^{\prime \prime}$
6	$17^{\circ} 47^{\prime} .9$	$13^{\prime} 21^{\prime \prime}$
8	$17^{\circ} 46^{\prime} .5$	$13^{\prime} 22^{\prime \prime}$
10	$17^{\circ} 45^{\prime} .2$	$13^{\prime} 23^{\prime \prime}$
12	$17^{\circ} 43^{\prime} .8$	$13^{\prime} 24^{\prime \prime}$
14	$17^{\circ} 42^{\prime} .4$	$13^{\prime} 24^{\prime \prime}$
16	$17^{\circ} 41^{\prime} .1$	$13^{\prime} 25^{\prime \prime}$
18	$17^{\circ} 39^{\prime} .7$	$13^{\prime} 26^{\prime \prime}$
20	$17^{\circ} 38^{\prime} .3$	$13^{\prime} 27^{\prime \prime}$
22	$17^{\circ} 37^{\prime} .0$	$13^{\prime} 28^{\prime \prime}$.
H. D.	$0^{\prime} .7$	$0^{\prime \prime}$

Note: The equation of time is to be applied to the G. M. T. in accordance with the sign as given.

FEBRUARY, 1919

APRIL, 1919

	$\begin{aligned} & \text { TUESDAY, } 1 \\ & \text { Sun's Equation } \end{aligned}$	G. M. T. ${ }_{\text {FRIDAY, }} 18$	
G. M. T. Hrs.	Sun's Equation	G. M. T. $\underset{\text { Hrs. }}{\text { Sun's }}$	Equation of Time
0	$+4^{\circ} 14^{\prime} .4-44^{\prime} 11^{\prime \prime} .3$	$12+10^{\circ} 43^{\prime} .6$	+0' $35^{\prime \prime} .9$
2	$4^{\circ} 16^{\prime} .44^{\prime} 9^{\prime \prime} .8$	$14 \quad 10^{\circ} 45^{\prime} .3$	$0^{\prime} 37^{\prime \prime} .0$
4	$4^{\circ} 18^{\prime} .3$ $8^{\prime \prime} .3$	$16 \quad 10^{\circ} 47^{\prime} .1$	$0^{\prime} 38^{\prime \prime} .2$
H. D.	$1^{\prime} .0 \quad 0^{\prime \prime} .8$	$18 \quad 10^{\circ} 48^{\prime} .8$	$0^{\prime} 39^{\prime \prime} .3$
		$20 \quad 10^{\circ} 50^{\prime} .6$	$0^{\prime} 40^{\prime \prime} .5$
	WEDNESDAY, 2	$22 \quad 10^{\circ} 52^{\prime}, 3$	$0^{\prime} 41^{\prime \prime \prime}{ }^{\prime \prime} .6$
20		H. D. $0^{\prime} .9$	$0^{\prime \prime} .6$
22	$4^{\circ} 58^{\prime} .8 \quad 3 \quad 3^{\prime} 36^{\prime \prime} .9$		
H. D.	$1^{\prime} .0 \quad 0^{\prime \prime} .7$		
	THURSDAY, 3		${ }^{22}+1^{\prime} 26^{\prime \prime} .8$
0	$+5^{\circ} 0^{\prime} .7{ }^{\text {r }}$ - $3^{\prime} 35^{\prime \prime} .4$	12 12 ${ }^{\circ} 6^{\prime} .0$	$1^{\prime} 27^{\prime \prime} .8$
2	$5^{\circ} 2^{\prime} .6 \quad 3^{\prime} 33^{\prime \prime \prime} .9$	$14 \quad 12^{\circ} 7^{\prime} .7$	$1^{\prime} 28^{\prime \prime} .8$
4	$5^{\circ} \quad 4^{\prime} .6 \quad 33^{\prime} 32^{\prime \prime} .4$	$16 \quad 12^{\circ} 9^{\prime} .4$	$1^{\prime} 29^{\prime \prime} .8$
H. D.	$1^{\prime} .0 \quad 0^{\prime \prime} .7$	H. D. $0^{\prime} .8$	$0^{\prime \prime} .5$
	TUESDAY, 8	SEMI-DIAMET	TER
10	$+7^{\circ} 4^{\prime} .1-2^{\prime} \quad 0^{\prime \prime} .9$	April 11	$6^{\prime} .03$
12	$7^{\circ} 5^{\prime} .9 \quad 11^{\prime} 59^{\prime \prime} .5$	$11 \quad 15$	5'. 99
14	$7^{\circ} \quad 7^{\prime} .8 \quad 11^{\prime} 58^{\prime \prime} .1$	$21 \quad 1$	5'. 94
H. D.	$0^{\prime} .9 \quad 0^{\prime \prime} .7$	May 1 1	', 90
	THURSDAY, 17		
14	$+10^{\circ} 24^{\prime} .3+0^{\prime} 23^{\prime \prime} .1$		
16	$10^{\circ} 26^{\prime} .00^{\prime} 24^{\prime \prime} .2$		
18	$10^{\circ} 27^{\prime} .8 \quad 0^{\prime} 25^{\prime \prime} .4$		
20	$10^{\circ} 29^{\prime} .6$ 0' $26^{\prime \prime} .6$		
H. D.	$0^{\prime} .9 \quad 0^{\prime \prime} .6$		

MAY, 1919

THURSDAY, 1
Sun's Equation Declination of Time $+14^{\circ} 50^{\prime} .3+2^{\prime} 52^{\prime \prime} .7$ $14 \begin{array}{lll}50^{\prime} .8 & 2^{\prime} & 53^{\prime \prime} .4 \\ 0^{\prime \prime} .3\end{array}$

$$
\text { FRIDAY, } 2
$$

$$
\begin{array}{rrr}
+15^{\circ} & 22^{\prime} .0 & +3^{\prime} \\
15^{\circ} & 5^{\prime \prime} \cdot 6 \\
13^{\prime} .5 & 3^{\prime} & 6^{\prime \prime} \cdot 1 \\
15^{\prime} .0 & 3^{\prime} & 6^{\prime \prime} \cdot 7 \\
& 0^{\prime} .7 & \\
0^{\prime \prime} .3
\end{array}
$$

SATURDAY, 3
$\begin{array}{rrrr}0 & +15^{\circ} & 26^{\prime} .5 & +3^{\prime} \\ 2 & 15^{\circ} & 7^{\prime \prime} .3 \\ 4 & 18^{\prime} .0 & 3^{\prime} & 7^{\prime \prime} .8 \\ 4 & 29^{\prime} .5 & 3^{\prime} & 8^{\prime \prime} .4 \\ \text { H. D. } & 0^{\prime} .7 & & 0^{\prime \prime} .3\end{array}$

TUESDAY, 6	
Sun's	Equation
Declination	of Time
$+16^{\circ} 18^{\prime} .9$	$+3^{\prime} 25^{\prime \prime} .1$
$16^{\circ} 20^{\prime} .3$	$3^{\prime} 25^{\prime \prime} .5$
$16^{\circ} 21^{\prime} .7$	$3^{\prime} 25^{\prime \prime} .9$
$16^{\circ} 23^{\prime} .1$	$3^{\prime} 26^{\prime \prime} .4$
	$0^{\prime} .7$
	$0^{\prime \prime} .2$

$$
\begin{array}{rrr}
\text { THURSDAY, } 29 & \\
+21^{\circ} 29^{\prime} .8 & +2^{\prime} & 55^{\prime \prime} .5 \\
21^{\circ} & 30^{\prime} .6 & 2^{\prime} \\
54^{\prime \prime} .9 \\
21^{\circ} 31^{\prime} .4 & 2^{\prime} & 54^{\prime \prime} .2 \\
0^{\prime} .4 & & 0^{\prime \prime} .3
\end{array}
$$

SEMI-DIAMETER

May	1	$15^{\prime} .90$
11	$15^{\prime} .86$	
21	$15^{\prime} .83$	
31	$15^{\prime} .80$	

JUNE, 1919

IULY, 1919

G. M. T.	$\begin{gathered} \text { FRIDAY, } 4 \\ \text { Sun's } \end{gathered}$		WEDNESDAY, 9			
	Declination	Equation of Time	G. M. T.	Sun's Declination		uation Time
0	$+22^{\circ} 57^{\prime} .3$	-4' $1^{\prime \prime} .0$	18	$+22^{\circ} 22^{\prime} .5$	-4'	$58^{\prime \prime} .6$
2	$22^{\circ} 56^{\prime} .9$	$4^{\prime} 1^{\prime \prime} .9$	20	$22^{\circ} 21^{\prime} .9$		$59^{\prime \prime} .3$
4	$22^{\circ} 56^{\prime} .4$	$4^{\prime} 2^{\prime \prime} .9$	22	$22^{\circ} 21^{\prime} .3$		$0^{\prime \prime} .1$
6	$22^{\circ} 56^{\prime} .0$	$4^{\prime} 3^{\prime \prime} .8$	H. D.	$0^{\prime} .3$		$0{ }^{\prime \prime} .4$
8	$22^{\circ} 55^{\prime} .6$	$4^{\prime} 4^{\prime \prime} .7$	THURSDAY, 10			
10	$22^{\circ} 55^{\prime} .2$	$4^{\prime} 5^{\prime \prime} .6$				
12	$22^{\circ} 54^{\prime} .8$	$4^{\prime} 6^{\prime \prime} .5$	0	$+22^{\circ} 20^{\prime} .7$	-5^{\prime}	$0^{\prime \prime} .8$
14	$22^{\circ} 54^{\prime} .3$	$4^{\prime} 7^{\prime \prime} .4$	2	$22^{\circ} 20^{\prime} .1$	5^{\prime}	$1^{\prime \prime} .5$
16	$22^{\circ} 53^{\prime}, 9$	$4^{\prime} 8^{\prime \prime} .3$	H. D.	$0^{\prime} .3$		$0^{\prime \prime} .4$
18	$22^{\circ} 53^{\prime} .5$	$4^{\prime} 9^{\prime \prime} .2$				
20	$22^{\circ} 53^{\prime} .0$	$4^{\prime} 10^{\prime \prime} .1$	SATURDAY, 12			
22	$22^{\circ} 52^{\prime} .6$	$4^{\prime} 11^{\prime \prime} .0$	0	$+22^{\circ} 5^{\prime} .4$	-5^{\prime}	$17^{\prime \prime} .5$
H. D	$0^{\prime} .2$	$0^{\prime \prime} .5$	2	$22^{\circ} 4^{\prime} .8$	$5{ }^{\prime}$	$18^{\prime \prime} .2$
			4	$22^{\circ} 4^{\prime} .1$		$18^{\prime \prime} .8$
	SATURDAY,		6	$22^{\circ} 3^{\prime} .4$		$19^{\prime \prime} .5$
0	$+22^{\circ} 52^{\prime} .2$	-4' $11^{\prime \prime} .9$	8	$22^{\circ} \quad 2^{\prime} .7$		$20^{\prime \prime} .1$
2	$22^{\circ} 51^{\prime} .7$	$4^{\prime} 12^{\prime \prime} .8$	H. D.	$0^{\prime} .3$		$0^{\prime \prime} .4$
20	$22^{\circ} 47^{\prime} .6$	$4^{\prime} 20^{\prime \prime} .7$				
22	$22^{\circ} 47^{\prime} \cdot 1$	$4^{\prime} 21^{\prime \prime} .6$	SEMI-DIAMETER			
H. D.	$0^{\prime} .2$	$0^{\prime \prime} .4$			$5^{\prime} .76$	
				$11 \quad 15$	$5^{\prime} .76$	
	$\begin{aligned} & \text { SUNDAY, } 6 \\ & +22^{\circ} 46^{\prime} .7 \end{aligned}$			$21 \quad 15$	$5^{\prime}, 77$	
${ }_{2}^{0}$	$\begin{array}{r} +22^{\circ}-46^{\prime}, 7 \\ 22^{\circ} 46^{\prime} .2 \end{array}$	-4^{\prime} 4^{\prime} $23^{\prime \prime \prime}$		3115	$5^{\prime} .79$	
II. D.	$0^{\prime} .2$	$4{ }^{1 \times \prime} 4$				

AUGUST, 1919

THURSDAY, 7	
G. Mrs.	Declination of Time
0	$+16^{\circ} 39^{\prime} .3-5^{\prime} 43^{\prime \prime} .8$
2	$16^{\circ} 37^{\prime} .9 \quad 5^{\prime} 43^{\prime \prime} .3$
4	$16^{\circ} 36^{\prime} .6 \quad 5^{\prime} 42^{\prime \prime} .7$
6	$16^{\circ} 35^{\prime} .2 \quad 5^{\prime} 42^{\prime \prime} .1$
8	$16^{\circ} 33^{\prime} .8$ 5' $41^{\prime \prime} .6$
10	$16^{\circ} 32^{\prime} .45^{\prime} 41^{\prime \prime} .0$
12	$16^{\circ} 31^{\prime} .0 \quad 5^{\prime} 40^{\prime \prime} .4$
20	$16^{\circ} 25^{\prime} .45^{\prime} 38^{\prime \prime} .0$
22	$16^{\circ} 24^{\prime} .0 \quad 5^{\prime} 37^{\prime \prime} .4$
H. D.	$0^{\prime} .7 \quad 0^{\prime \prime} .3$
	SUNDAY, 10
0	$+15^{\circ} 48^{\prime} .5-5^{\prime} 21^{\prime \prime} .0$
2	$15^{\circ} 47^{\prime} .0 \quad 5^{\prime} 20^{\prime \prime} .3$
20	$15^{\circ} 33^{\prime} .9 \quad 5^{\prime} 13^{\prime \prime} .8$
22	$15^{\circ} 32^{\prime} .5 \quad 5^{\prime} 13^{\prime \prime} .0$
H. D.	$0^{\prime} .7$ 0" 7
	MONDAY, 11
0	$+15^{\circ} 31^{\prime} .0-5^{\prime} 12^{\prime \prime} .3$
2	$15^{\circ} 29^{\prime} .5 \quad 5^{\prime} 11^{\prime \prime} .5$
H. D.	$0^{\prime} .7 \quad 0^{\prime \prime} .4$

G. M. T.

FRIDAY, 8

M. T.	Sun's	Equation
Hrs.	Declination	of Time
0	$+16^{\circ} 22^{\prime} .6$	$-5^{\prime} 36^{\prime \prime} .8$
2	$16^{\circ} 21^{\prime} .2$	$5^{\prime} 36^{\prime \prime} .2$
4	$16^{\circ} 19^{\prime} .8$	$5^{\prime} 35^{\prime \prime} .6$
6	$16^{\circ} 18^{\prime} .4$	$5^{\prime} 355^{\prime \prime} .0$
8	$16^{\circ} 17^{\prime} .0$	$5^{\prime} 34^{\prime \prime} .4$
10	$16^{\circ} 15^{\prime} .6$	$5^{\prime} 33{ }^{\prime \prime} .7$
H. D.	$0^{\prime} .7$	$0^{\prime \prime} .3$

	SAT	
14	$+15^{\circ} 55^{\prime} .7$	$5^{\prime} 24^{\prime \prime}$
16	$15^{\circ} 544^{\prime} .2$	$5^{\prime} 23^{\prime \prime}$
18	$15^{\circ} 52^{\prime} .8$	$5{ }^{\prime} 23$
20	$15^{\circ} 51^{\prime} .3$	$5{ }^{\prime}$
22	$15^{\circ} 49^{\prime} .9$	$5{ }^{\prime} 21$
H. D	$0^{\prime} .7$	

SATURDAY 30
$\begin{array}{crrr}6 & +9^{\circ} & 12^{\prime} .2 & -0^{\prime} 45^{\prime \prime} .5 \\ 8 & 9^{\circ} & 10^{\prime} .4 & 0^{\prime} 44^{\prime \prime} \cdot 0 \\ 10 & 9^{\circ} & 8^{\prime} .7 & 0^{\prime} \\ 42^{\prime \prime} .5 \\ \text { H. D. } & & 0^{\prime} .9 & 0^{\prime \prime} .8\end{array}$
SEMI-DIAMETER

August	1
11	$15^{\prime}, 79$
21	$15^{\prime}, 81$
31	$15^{\prime} .84$

SEPTEMBER, 1919

TUESDAY, 2

TUESDAY, 23
 $\begin{array}{ccc}0^{\circ} & 10^{\prime} .3 & 7^{\prime} \\ 0^{\circ} & 8^{\prime} .42^{\prime \prime} .8 \\ 7^{\prime} & 24^{\prime \prime} .5\end{array}$
$\begin{array}{lll}\mathrm{H} . \mathrm{D} & \mathbf{1}^{\prime} .0 & 0^{\prime \prime} .9\end{array}$

WEDNESDAY, 24
G. M. T. Sun's Equation

Hrs. Declination of Time

TUESDAY, 30

$2^{\circ} 35$	$+9^{\prime} 46^{\prime \prime}$
$2^{\circ} 37^{\prime} .3$	$9^{\prime} 48^{\prime \prime}$
$2^{\circ} 39^{\prime} .3$	$9^{\prime} 50^{\prime \prime}$
$2^{\circ} 41^{\prime} .2$	$9^{\prime} 51$
$2^{\circ} 49^{\prime} .0$	$9^{\prime} 58$
$2^{\circ} 50^{\prime} .9$	$9^{\prime} 59$

SEMI-DIAMETER
Sept.
1

11	$15^{\prime} .92$
	$15^{\prime} .96$

Oct. $116^{\prime} .01$

OCTOBER, 1919

NOVEMBER, 1919

G	Sun's	
Hrs.	Declination	of Time
0	$16^{\circ} 21^{\prime} .1$	$16^{\prime} 13^{\prime \prime} .4$
2	$16^{\circ} 22^{\prime} .6$	$16^{\prime} 13^{\prime \prime} .1$
4	$16^{\circ} 24^{\prime} .1$	$16^{\prime} 12^{\prime \prime} .8$
H. D	$0^{\prime} .7$	$0^{\prime \prime} .2$

THURSDAY, 27

18	$-21^{\circ} 7^{\prime} .9$	$+12^{\prime}$	$18^{\prime \prime} .5$
20	21°	$8^{\prime} .8$	$12^{\prime}, 16^{\prime \prime} .8$
22	21°	$9^{\prime}, 7$	12^{\prime}
$15^{\prime \prime} .2$			
H. D.		$0^{\prime} .5$	
		$0^{\prime \prime} .8$	

$\begin{array}{crrr}0 & -21^{\circ} & 10^{\prime} .6 & +12^{\prime} \\ 2 & 13^{\prime \prime} .5 \\ 2 & 21^{\circ} & 11^{\prime}, 5 & 12^{\prime} \\ 11^{\prime \prime} .8 \\ \text { H. D. } & & 0^{\prime} .4 & 0^{\prime \prime} .8\end{array}$
G. M. T.

FRIDAY, 14

| G. M. T. | $\begin{array}{c}\text { Sun's }\end{array}$ |
| :---: | :---: | ---: |
| Hrs. | | \(\left.\begin{array}{c}Equation

Declination

of Time\end{array}\right\}\)

SUNDAY, 30

SEMI-DIAMETER	
Nov. 1	$16^{\prime}{ }^{\prime} 15$
	11
21	$16^{\prime} .19$
Dec.	1

DECEMBER, 1919				
G. M. T.Hrs.Mder	MONDAY, 1	G. M. T.	MONDAY, 1	5 Equation
	Sun's Equation		Sun's	
	Declination of Time	Hrs.	Declination	of Time
18 -	$-21^{\circ} 48^{\prime} .5+10^{\prime} 53^{\prime \prime} .9$	0	$-23^{\circ} 14^{\prime} .0$	$+5^{\prime} 9^{\prime \prime} .9$
20	$21^{\circ} 49^{\prime} .310^{\prime} 52^{\prime \prime} .1$	2	$33^{\circ} 14^{\prime} .3$	$5^{\prime \prime} \quad 7^{\prime \prime} .5$
22	$21^{\circ} 50^{\prime} .110^{\prime} 50^{\prime \prime} .2$	4	$23^{\circ} 14^{\prime} .6$	$5^{\prime} 5^{\prime \prime} .1$
H. D	$0^{\prime} .4$ 0' 4	6	$23^{\circ} 14^{\prime} .9$	$5^{\prime} 2^{\prime \prime} .7$
		8	$23^{\circ} 15^{\prime} .2$	$5^{\prime} \quad 0^{\prime \prime} .3$
	TUESDAY, 2	10	$23^{\circ} 15^{\prime} .4$	$4^{\prime} 57^{\prime \prime} .9$
0 -	$-21^{\circ} 50^{\prime} .9+10^{\prime} 48^{\prime \prime} .3$	12	$23^{\circ} 15^{\prime} .7$	$4^{\prime} 55^{\prime \prime} .5$
2	$21^{\circ} 51^{\prime} .610^{\prime} 46^{\prime \prime} .4$	14	$23^{\circ} 16^{\prime} .0$	$4^{\prime} 53^{\prime \prime} .1$
16	$21^{\circ} 56^{\prime} .9 \quad 10^{\prime} 33^{\prime \prime} .1$	16	$23^{\circ} 16^{\prime} .2$	$4^{\prime} 50^{\prime \prime} .7$
18	$21^{\circ} 57^{\prime} .7 \quad 10^{\prime} 31^{\prime \prime} .2$	18	$23^{\circ} 16^{\prime} .5$	$4^{\prime} 48^{\prime \prime} .3$
20	$21^{\circ} 58^{\prime} .4 \quad 10^{\prime} 29^{\prime \prime} .3$	20	$23^{\circ} 16^{\prime} .8$	$4^{\prime} 45^{\prime \prime} .9$
22	$21^{\circ} 59^{\prime} .2$ 10' $27^{\prime \prime} .3$	22	$23^{\circ} 17^{\prime} .0$	$4^{\prime} 43^{\prime \prime} .4$
H. D.	$0^{\prime} .4$ 1' 0	H. D.	0 '. 1	$1^{\prime \prime} .2$
	EDNESDAY, 3		TUESDAY,	
0 -	$-21^{\circ} 59^{\prime} .9+10^{\prime} 25^{\prime \prime} .4$	0	$-23^{\circ} 17^{\prime} .3$	+ $4^{\prime} 41^{\prime \prime} .0$
2	$22^{\circ} 0^{\prime} .6$ 10' $23^{\prime \prime} .5$	2	$23^{\circ} 17^{\prime} .5$	$4^{\prime} 38^{\prime \prime} .6$
4	$22^{\circ} \quad 1^{\prime} .4 \quad 10^{\prime} 21^{\prime \prime} .5$	4	$23^{\circ} 17^{\prime} .8$	$4^{\prime} 36^{\prime \prime} .2$
6	$22^{\circ} \quad 2^{\prime} .110^{\prime} 19^{\prime \prime} .6$	H. D.	$0^{\prime} .1$	$1^{\prime \prime} .2$
H. D.	$0^{\prime} .4 \quad 1^{\prime \prime} .0$			
			EDNESDAY,	
SEM	MI-DIAMETER	12	$-23^{\circ} 25^{\prime} .8$	+0' $28^{\prime \prime} .0$
Dec.	c. $116^{\prime} .25$	14	$23^{\circ} 25^{\prime} .7$	$0^{\prime} 25^{\prime \prime} .5$
	11 16'. 28	16	$23^{\circ} 25^{\prime} .6$	$0^{\prime} 23^{\prime \prime} .0$
	21 16'. 29	H. D.	$0^{\prime} .0$	$1^{\prime \prime} .3$
	31 16'.30			
			THURSDAY,	
		0	$-23^{\circ} 25^{\prime} .3$	$+0^{\prime} 13^{\prime \prime} .0$
		2	$23^{\circ} 25^{\prime} .2$	$0^{\prime} 10^{\prime \prime} .5$
		4	$23^{\circ} 25^{\prime} .1$	$0^{\prime} 8^{\prime \prime} .0$
		H. D	$0^{\prime} .1$	$1^{\prime \prime} .2$

APPARENT PLACES OF STARS，1919－FOR THE UPPER TRANSIT OF GREENWICH

$\begin{aligned} & \text { Special Name } \\ & \text { of Star. } \end{aligned}$	Riget Abcension．											
			$\stackrel{7}{0}$	F	免	－	－		$\stackrel{7}{4}$	$\xrightarrow{\text { ¢ }}$		－
	． m		s	s	s	s	s		s	s	s	
Spica	13.20		57.3	58	58.5	58.6	6		58	57		59.3
Rigel	5.1040 .940 .840 .3 39．8 39.3 39．3 39．740．442．843．443．6											
Procyon	7.35 6.1 6.4 6.2 5.7 5.2 4.9 4.9 5.3 7.6 8.4 9.1 14.11 58.3 59.3 60.1 60.7 61.0 61.0 60.8 60.3 59.6 60.0 60.8											
Arcturus												
Betelgeux	5.50	49.6	49.6	49.2	48.7	748.3	48.2	48.5	49.1	51.6	52.3	52.7
Aldebar	4.3118 .618 .418 .017 .517 .217 .317 .918 .721 .221 .821 .9											
Sirius	6.4136 .937 .036 .636 .135 .535 .335 .335 .838 .239 .039 .4											
Fomalhau												
Antares．												
Regulus												
Vega												
Capell												
Special Nameof Star．	Declination．											
		$\stackrel{\square}{\text { ¹ }}$	家			｜r	「	穹	$\stackrel{7}{4}$	$\begin{aligned} & \vec{\prime} \\ & \text { Z } \\ & \text { B } \end{aligned}$	？	－0¢
Spica	－10 $404.444 .544 .644 .6\|44.644 .644 .644 .644 .5\| 44.644 .7$											
Rigel												
Procyon												
Arcturus．	＋19 36．035．935．9 35．936．036．1 36．1 36．236．035．935．7											
Betelgeux												
Aldeba												
Sirius												
Fomalhau												
Antares．	-26+12 115.1 21.6 15.2 21.5											
Regul												
Vega			42.3	42.3	42.2	242.3	342.4	42.6	642.7	42.8	42.7	42.6
Cape												

MERIDIAN TRANSIT OF STARS, 1919

GREENWICH MEAN TIME OF TRANSIT AT GREENWICH

n. 1	*Spica	18h $38{ }^{\prime}$
Feb. 1	*Spica	16h 36^{\prime}
1	*Arctur	17h $27{ }^{\prime}$
1	*Rigel	8h $27{ }^{\prime}$
ar. 1	*Arcturu	15h 37'
1	*Antares	17h 49^{\prime}
May 1	*Sirius	$4 \mathrm{~h} 7^{\prime}$
June 1	*Sirius	$2 \mathrm{~h} 6^{\prime}$
	*Canopus	1h 46'
July 1	*Canopus	23h 44^{\prime}
Dec. 1	*Capella	12h 32^{\prime}

CORRECTIONS TO BE APPLIED TO THE MEAN TIME OF TRANSIT ON THE FIRST DAY OF THE MONTH, TO FIND THE MEAN TIME OF TRANSIT ON ANY OTHER DAY OF THE MONTH.

Day of	
Month	Correction
1	Oh 0^{\prime}
2	-0h 4^{\prime}
3	$0 \mathrm{~h} 8^{\prime}$
4	Oh 12^{\prime}
5	0h 16^{\prime}
6	-0h 20^{\prime}
7	Oh 24^{\prime}
8	0h 28^{\prime}
9	0h 31'
10	Oh 35'
11	-0h 39^{\prime}
12	0h 43'
13	0h $47{ }^{\prime}$
14	$0 \mathrm{~h} 51^{\prime}$
15	Oh 55'
16	-0h 59^{\prime}

Day of	
Month	Correction
17	- $1 \mathrm{~h} 3^{\prime}$
18	1h 7^{\prime}
19	1h 11^{\prime}
20	1h 15^{\prime}
21	1h 19^{\prime}
22	1h 23^{\prime}
23	1h 30^{\prime}
24	1h 34^{\prime}
25	1h 38^{\prime}
26	1h 42^{\prime}
27	1h 46^{\prime}
28	1h 50^{\prime}
29	1h 58^{\prime}
30	

Note: If the quantity taken from this Table is greater than the mean time of transit on the first of the month, increase that time by $23 \mathrm{~h} 56^{\prime}$ and then apply the correction taken from this Table.

MOON 1919

DECLINATION

RIGHT ASCENSION AND DECLINATION OF PLANETS

VENUS, 1919

Greenwich Mean Time

MARS, 1919

Jan. Date	Apparent Right Ascension $22 \mathrm{~h} 18^{\prime} 55^{\prime \prime}$	Diff.	Apparent Declination $-11^{\circ} 33^{\prime} .5$	Diff.	Transit Meridian of Greenwich $1 \mathrm{~h} 44^{\prime}$
31	22h $21^{\prime} 54^{\prime \prime}$	179	$11^{\circ} 16$	175	
		179	11	176	$1 \mathrm{~h} 4{ }^{\circ}$
Feb. 1	22h $24^{\prime} 53^{\prime \prime}$		$10^{\circ} 58^{\prime} .4$		1h $42{ }^{\prime}$
June 11	$4 \mathrm{~h} 38^{\prime} 56^{\prime \prime}$		$+22^{\circ} 28^{\prime} .1$		23h 23^{\prime}
12	4h $41^{\prime} 54^{\prime \prime}$	178	$22^{\circ} 34^{\prime}$	63	
		179		60	
13	4h $44^{\prime} 53^{\prime \prime}$		$22^{\circ} 40^{\prime} .4$		23h 21^{\prime}

JUPITER, 1919

Greenwich Mean Time

Apparent Right \quad Diff. \begin{tabular}{c}
Apparent

Declination

Ascension

Apr. 13

$6 \mathrm{~h} 36^{\prime} 49^{\prime \prime}$

\quad

Diff.

Transit

Meridian of

Greenwich
\end{tabular}

Hor. Parallax Apr. 1, $0^{\prime} .03$; Dec. $1,0^{\prime} .03$; Dec. $32,0^{\prime} .03$

SATURN, 1919

Date	5	Apparent Right Ascension $9 \mathrm{~h} 53^{\prime} 12^{\prime \prime}$	Diff.	Apparent Declination $+14^{\circ} 18^{\prime} .8$	Diff.	
						Transit
						Greenwich
						$3 \mathrm{~h} 3^{\prime}$
	6	9h $53^{\prime} 36^{\prime \prime}$	24	$14^{\circ} 16^{\prime} 6$	2	3h 0^{\prime}
			25		21	
	7	9h 54' $1^{\prime \prime}$		$14^{\circ} 14^{\prime} .5$		2h $56{ }^{\prime}$
Oct.	4	10h $35^{\prime} 20^{\prime \prime}$		$+10^{\circ} 29^{\prime} .3$		21h 44^{\prime}
	5	10h $35^{\prime} 46^{\prime \prime}$	26	$10^{\circ} 26^{\prime} .9$	24	21h 40^{\prime}
			25		23	
	6	10h $36^{\prime} 11^{\prime \prime}$		$10^{\circ} 24^{\prime} .6$		21h 37'

Hor. Parallax July 1, $0^{\prime} .01$; Oct. 1, $0^{\prime} .01$

TABLE 1, P. 107, NAUTICAL ALMANAC
CORRECTION TO BE APPLIED TO TRUE ALTITUDE OF POLARIS

Local S.'	$1^{\text {h }}$	$4^{\text {b }}$	$7{ }^{\text {h }}$	$8^{\text {b }}$	$9^{\text {h }}$
0 m 10 m 20 m .30 m 40 m 50 m 60 m	$\left\|\begin{array}{rrr} -1^{\circ} & 6^{\prime} .7 \\ 1^{\circ} & 7^{\prime} .0 & 3 \\ 1^{\circ} & 7^{\prime} .2 & 2 \\ -1^{\circ} & 7^{\prime} .3 & 1 \\ 1^{\circ} & 7^{\prime} .3 & 2 \\ 1^{\circ} & 7^{\prime} .1 & 2 \\ -1^{\circ} & 6^{\prime} .8 & 3 \end{array}\right\|$	$3 \begin{gathered} -0^{\circ} 53^{\prime} .5 \\ 0^{\circ} 51^{\prime} .6 \\ 19 \\ 0^{\circ} 49^{\prime} .7 \\ 0^{\circ} . \\ -0^{\circ} 47^{\prime} .7 \\ 20 \\ 0^{\circ} 45^{\prime} .5 \\ 0^{\circ} 43^{\prime} .3 \\ -0^{\circ} 41^{\prime} .0 \end{gathered}$	$\left(\begin{array}{ccc} -0^{\circ} & 8^{\prime} .7 \\ 0^{\circ} & 5^{\prime} .8 & 29 \\ -0^{\circ} & 2^{\prime} .8 & 30 \\ +0^{\circ} & 0^{\prime} .1 & 29 \\ 0^{\circ} & 3^{\prime} .1 & 30 \\ 0^{\circ} & 6^{\prime} .0 & 29 \\ +0^{\circ} & 8^{\prime} .9 \end{array}\right.$		
Local S.T.	$10^{\text {h }}$	$11^{\text {b }}$	$13^{\text {b }}$	$14^{\text {h }}$	$15^{\text {b }}$
$\begin{aligned} & 0 \mathrm{~m} \\ & 10 \mathrm{~m} \\ & 20 \mathrm{~m} \\ & 30 \mathrm{~m} \\ & 40 \mathrm{~m} \\ & 50 \mathrm{~m} \\ & 60 \mathrm{~m} \end{aligned}$		$\left\{\begin{array}{ccc} +0^{\circ} & 53^{\prime} .3 & \\ 0^{\circ} & 55^{\prime} .1 & 18 \\ 0^{\circ} & 56^{\prime} .7 & 16 \\ +0^{\circ} & 58^{\prime} .2 & 15 \\ 0^{\circ} & 59^{\prime} .6 & 14 \\ 1^{\circ} & 0^{\prime} .9 & 13 \\ +1^{\circ} & 2^{\prime} .1 & 12 \end{array}\right.$	$\left(\begin{array}{r} +1^{\circ} \\ 6^{\prime} .7 \\ 1^{\circ} \end{array} 7^{\prime} .0 \quad 3\right.$	$\begin{array}{rll} +1^{\circ} & 6^{\prime} .8 & 4 \\ 1^{\circ} & 6^{\prime} .4 & 4 \\ 1^{\circ} & 5^{\prime} .9 & 5 \\ +1^{\circ} & 5^{\prime} .2 & 7 \\ 1^{\circ} & 4^{\prime} .4 & 8 \\ 1^{\circ} & 3^{\prime} .5 & 9 \\ +1^{\circ} & 2^{\prime} .5 & 10 \end{array}$	$\begin{gathered} +1^{\circ} \\ 2^{\prime} .5 \\ 1^{\circ} \\ 1^{\prime} .4 \\ 11 \\ 1^{\circ} \end{gathered} 0^{\prime} .1313$
Local S.T.	$16^{\text {b }}$	$18^{\text {h }}$	$21^{\text {b }}$	$22^{\text {h }}$	$23^{\text {h }}$
0 m 10 m 20 m 30 m 40 m 50 m 60 m	$\begin{array}{r} +0^{\circ} 54^{\prime} .0 \\ 0^{\circ} 52^{\prime} .2 \\ 18 \\ 0^{\circ} 50^{\prime} .3 \\ +0^{\circ} 48^{\prime} .3 \\ +20 \\ 0^{\circ} 46^{\prime} .2 \\ 0^{\circ} 44^{\prime} .1 \\ 21 \\ +0^{\circ} 41^{\prime} .8 \end{array}$	$\left\{\begin{array}{c} +0^{\circ} 26^{\prime} .8 \\ 0^{\circ} 24^{\prime} .127 \\ 0^{\circ} 21^{\prime} .4 \\ 27 \\ +0^{\circ} 18^{\prime} .6 \\ 0^{\circ} \\ 0^{\circ} 15^{\prime} .7 \\ 0^{\circ} 12^{\prime} .9 \\ +0^{\circ} 10^{\prime} .0 \end{array}\right.$	$\begin{gathered} -0^{\circ} 24^{\prime} .7 \\ 0^{\circ} 27^{\prime} .4 \\ 0^{\circ} 30^{\prime} .1 \\ 27 \\ -0^{\circ} 32^{\prime} .7 \\ 0^{\circ} 35^{\prime} .3 \\ 0^{\circ} 37^{\prime} .8 \\ -0^{\circ} 40^{\prime} .24 \end{gathered}$	$\begin{gathered} -0^{\circ} 40^{\prime} .2 \\ 0^{\circ} 42^{\prime} .5 \\ 0^{\circ} 44^{\prime} .8 \\ 23 \\ -0^{\circ} 46^{\prime} .9 \\ 0^{\circ} 49^{\prime} .0 \\ 21 \\ 0^{\circ} 51^{\prime} .0 \\ -0^{\circ} 52^{\prime} .8 \end{gathered}$	

ADDENDA

TO FIND THE DISTANCE OF ANY FIXED POINT BY A FOUR-POINT BEARING

When a lighthouse or any fixed object bears four points (or 45°) on the bow, the distance run from the time of taking the 4 -point bearing until the fixed object is abeam (or bears 90°) on the bow, will be the distance off the fixed object when abeam, if the vessel has steered the same course in the interval.

Rule: Take a bearing when the fixed object is 4 points (or 45°) on the bow. Either read patent log or note time by clock.

When fixed object is abeam (or 90°) on the bow, either read patent \log or note time by clock.

If the patent \log is used, and it is known that the \log is accurate, the difference between the first and last reading of \log will be distance off fixed object when abeam.

Example:

$$
\begin{array}{ll}
\text { Reading of log object bearing } 4 \text { points, } & 28.6 \\
\text { Reading of log object abeam, } & \underline{37.3} \\
\text { Distance off object when abeam, } & \frac{8.7}{} \text { miles }
\end{array}
$$

Note.-It must always be understood that a patent log, no matter how accurate, does not keep a correct run of a ship, as it does not allow for current, consequently, this method cannot absolutely be relied upon.

When the time by clock is used, and the ship's speed over the ground is known, this example is absolutely accurate if the bearings have been taken properly.

Having time of clock at first and second bearing, subtract less from greater and find number of minutes ship has run between bearings.

Divide the number of minutes by 60 , the result will be decimal parts of hour.

Multiply speed of ship over ground by decimal parts of
hour, answer will be distance off of fixed object when abeam.

Example:
PROBLEM NO. 1
A ship is making 14.8 knots per hour. At $5 \mathrm{~h} 48^{\prime} \mathrm{A}$. M. a lighthouse bore 4 points on the bow and at $6 \mathrm{~h} 23^{\prime} \mathrm{A}$. M. was abeam. Required distance off lighthouse when abeam?

Time abeam	$6 \mathrm{~h} 23^{\prime}$ Time 4-points
$5 \mathrm{~h} 48^{\prime}$ Time between brgs.	35^{\prime}

$60) 35.00(.58 \mathrm{~h} \quad$ Time rụn between bearings .58 h
$300 \quad$ Ship's speed over ground 14.8 knots
500
464
480
232
58
20

> 8.584 miles off lighthouse when abeam.

PROBLEM NO. 2

A ship is steering $S 45^{\circ}$ E. At $6 \mathrm{~h} 40^{\prime} \mathrm{P}$. M. a light vessel bore South and at $7 \mathrm{~h} 29^{\prime} \mathrm{P}$. M. bore $\mathrm{S} 45^{\circ} \mathrm{W}$. Ship's speed over ground 14.6 knots until $7 \mathrm{~h} 00^{\prime} \mathrm{P}$. M. then reduced to 12.3 knots. Required distance off light vessel when abeam?
Time 4-points $\quad 6 \mathrm{~h} 40^{\prime} \mathrm{P} . \mathrm{M}$. Time reducing speed $7 \mathrm{~h} 00^{\prime}$ Time of reducing speed $7 \mathrm{~h} 00^{\prime} \mathrm{P} . \mathrm{M}$. Time light vessel abeam $7 \mathrm{~h} 29^{\prime}$

Difference
20^{\prime} at 14.6 knots
Difference 29^{\prime} at 12.3 knots

$\begin{aligned} & 60) 20.00(.33 \mathrm{~h} \\ & 180 \end{aligned}$	33 h difference for first speed 14.6 knots first speed
200	198
180	132
	33
20	4.818 miles distance run on first speed
$\underset{240}{60)} \underset{ }{29.00(.48 \mathrm{~h}}$	48 h difference for second speed 12.3 knots second speed
500	144
480	96
2	48
20	5.904 miles distance run on second speed
	4.818 miles distance run on first speed
	10.722 miles distance off light vessel when abeam.

PROBLEM NO. 3

A ship is steering $\mathrm{N} 23^{\circ} \mathrm{E}$. Set of current $\mathrm{S} 54^{\circ} \mathrm{W}$. $21 / 4$ knots per hour. Speed of ship through water 14.3 knots per hour. At $9 \mathrm{~h} 21^{\prime}$ P. M. a lighthouse bore $\mathrm{N} 68^{\circ} \mathrm{E}$. and at $10 \mathrm{~h} 18^{\prime} \mathrm{P}$. M. bore $\mathrm{S} 67^{\circ} \mathrm{E}$. Required distance off lighthouse when abeam?

Time 4-points	$9 \mathrm{~h} 21^{\prime}$	14.3 knots per hour speed of ship through water
Time abeam	10h 18'	2.25 knots per hour set of current against or-
Difference	57^{\prime}	12.05 knots per hour speed of ship over ground.
60)57.00(.95h		.95h difference
540		12.05 knots speed of ship over ground
300		475
300		1900
		95
		11.4475 distance off lighthouse when abeam.

PROBLEM NO. 4
A ship is steering $\mathrm{S} 35^{\circ} \mathrm{W}$. Set of current $\mathrm{S} 45^{\circ} \mathrm{W}$. 2.5 knots per hour. Speed of ship through water 12.8 knots per hour. At $1 \mathrm{~h} 14^{\prime} \mathrm{A}$. M., a lighthouse bore $\mathrm{S} 80^{\circ} \mathrm{W}$ and at $2 \mathrm{~h} 12^{\prime} \mathrm{A}$. M. bore $\mathrm{N} 55^{\circ} \mathrm{W}$. Required distance off lighthouse when abeam?

Time 4-points 1h 14^{\prime} Time abeam $2 \mathrm{~h} 12^{\prime}$

Difference $\quad 58^{\prime}$ 60)58.00). 97 h

540
400
420
12.8 knots per hour speed of ship through water 2.5 knots per hour set of current fair or plus
15.3 knots per hour speed of ship over ground. .97 h difference
15.3 knots per hour speed of ship over ground

1071
1377
14.841 miles distance off lighthouse when abeam

DETERMINING SPEED OF SHIP BY PITCH OF WHEEL AND NUMBER OF REVOLUTIONS PER MINUTE

This problem is good for determining the speed of the ship by the engine when the pitch of the wheel is known and the number of revolutions the propeller is making per minute.

It must be remembered that it cannot be absolutely relied upon to determine the distance a ship has actually run or the actual speed of a ship as it does not allow for current or head seas or for any other cause that may retard or increase the speed of the vessel.

The difference between the run of a ship by observation and the run of a ship by the wheel is called the slip of wheel. It is positive if the engine over-runs the ship and negative if the ship over-runs the engine.

Rule: To determine speed of ship by number of revolutions per minute.

Multiply number of revolutions per minute by 60 , result will be number of revolutions per hour.

Multiply this result by the pitch of the wheel.
Divide this result by 6080 (the number of feet in a nautical mile or knot).

The answer will be the speed of the ship per hour by wheel.

Example:

PROBLEM NO. 1

Pitch of wheel 23 ft. ; number of revolutions per minute 71. Revolutions 71

60
4260 revolutions per hour
Pitch
23 ft .
12780
8520
6080)97980.0(16.1 knots per hour speed of ship by engine 68080

PROBLEM NO. 2

Ship is steering N $56^{\circ} \mathrm{W}$. Current set S E $11 / 4$ knots per hour. Pitch of wheel 22.4 ft . Revolutions per minute 68.3 . Required speed of ship per hour by wheel?

Revolutions 68.3
60

Pitch	$\begin{aligned} & 4098 \mathrm{r} \\ & 22.4 \end{aligned}$	revolutions per hour
	16392	
	8196	
	8196	
	6080)91795.2	(15.1 knots per hour speed through water
	6080	1.25 set of current against or-
	30995	13.85 knots per hour speed over ground
	30400	

5952
6080

PROBLEM NO. 3

Ship is steering S 15° E. Current set S E 1.4 knots per hour. Pitch of wheel 21.6 ft . Revolutions per minute 66.8. Required speed of ship over ground by wheel?

Revolutions 66.8
60

Pitch
4008 revolutions per hour 21.6

24048
4008
8016
6080) 86572.8 (14.2 knots per hour speed through water
$6080 \quad 1.4$ knots per hour set of current with (or plus)
$25772 \quad 15.6$ knots per hour speed over ground

14528
12160
2368

PROBLEM NO. 4

Ship is steering S 45° E. Current set N N W 2.2 knots per hour. Pitch of wheel 21.3 ft . Revolutions per minute 59.6. Required speed of ship through water and over ground?

Answer.-Speed through water 12.5 knots per hour. Speed over ground 10.3 knots per hour.

PROBLEM NO. 5

Ship is steering N 16° E. Current set N E 1.9 knots per hour. Pitch of wheel 22.1 ft . Revolutions per minute 55.3 . Required speed of ship through water and over ground by wheel?

Answer.-Speed of ship through water 12.7 knots per hour. Speed of ship over ground 14.6 knots per hour.

TO DETERMINE THE PERCENTAGE OF SLIP OF WHEEL

Rule: With the ship's run by observation and the ship's run by wheel, find the difference between them.

Multiply this difference by 100.
Divide the result by the largest run.
Answer will be slip of wheel.
If the ship's run is larger than the run by wheel, the slip will be negative.

If the run by wheel is larger than the ship's run, the slip will be positive.

Example:

PROBLEM NO. 1

A ship runs by observation 300 miles in 24 hours. By wheel, 340 miles. Required the slip of the wheel?

Ships run by observation 300 miles
Ships run by wheel 340 miles
Difference
40 miles positive.
100
$340) \longdiv { 4 0 0 0 } . 0$ (11.8\% positive slip. 340

PROBLEM NO. 2

A ship runs by observation 296 miles in 24 hours. Run by wheel 290 miles. Required slip of wheel?

Ship's run by observation | 296 miles |
| :--- |
| Ship's run by wheel |
| $\frac{290 \text { miles }}{6 \text { miles negative. }}$ |
| Difference |
| |
| 100 |

296) $600.0(2 \%$ negative slip.

592
80

PROBLEM NO. 3

A ship runs by observation 310 miles in 24 hours. Run by wheel 336 miles. Required slip of wheel?

Ship's run by observation	310 miles Ship's run by wheel Difference
$\frac{336 \text { miles }}{26 \text { miles positive. }}$	
	100

336) 2600.0 (7.7\% positive slip. 2352

2480
2352
128

PROBLEM NO. 4
A ship runs by observation 402 miles in 24 hours. Run by wheel 329 miles. Required slip of wheel?

Answer.- 18.1% negative slip.

PROBLEM NO. 5

A ship runs by observation 415 miles in 24 hours. Run by wheel 463 miles. Required slip of wheel?

Answer. -10.4% positive slip.

PROBLEM NO. 6

A ship runs by observation 391 miles in 24 hours. Run by wheel 389 miles. Required slip of wheel?

Answer. -0.5% negative slip.

ABSTRACT FROM GENERAL RULES AND REGULATIONS OF THE U. S. STEAMBOAT-INSPECTION SERVICE

The Board of Supervising Inspectors, Steamboat-Inspection Service, at a regular annual meeting held in Washington, D. C., from January 21 to March 25, 1920, entirely revised Rule V of the General Rules and regulations for all classes of the Rules, namely: Ocean and Coastwise, Great Lakes, Bays, Sounds, and Lakes other than the Great Lakes, and Rivers, which revised Rule V in full for the various classes as follows:

OCEAN AND COASTWISE

Rule V.-Licensed Officers
 Original License

1. Before an original license is issued to any person to act as a master, mate, pilot, or engineer, he shall personally appear before some local board or supervising inspector for examination. Any person who has attained the age of 19 years and has had the necessary experience shall be eligible for examination; Provided, that no person shall receive a license as master, first mate, second mate, chief engineer, first assistant engineer, or second assistant engineer, before reaching the age of 21 years.

Inspectors shall, before granting an original license to any person to act as an officer of a vessel, require the applicant to make written application upon the blank form furnished by the Department of Commerce, to be filed in the inspector's office. When practicable, applicants for masters', mates', pilots', or engineers' license shall present to the inspectors, to be filed with their applications, discharges or letters from the master or other officer under whom they have served, certifying to the name of the vessel and in what capacity the applicant has served under him; also period of such service. Inspectors shall also, when practicable, require applicant for pilot's license to have the written indorsement of the master and engineer of the vessel upon which he has served, and of one licensed pilot, as to his qualifications. In the case of applicants for original engineer's license, they shall also, when practicable, have the endorsement of the master and engineer of the vessel on which they have served, together with one other licensed engineer.

The first license issued to any person by a United States Inspector shall be considered an original license, where the United States record show no previous issue to such applicant.

No original license shall be issued to any naturalized citizen on less experience in any grade than would have been required of a citizen of the United States by birth. (Sec. 4405, R. S.)

Visual Examinations Required for Original and Renewed Licenses

2. No original license as master, mate, or pilot of any vessel shall be issued except upon the official certificate of a surgeon of the Public Health Service respecting the vision of the person applying for such original license. The word "original" as contemplated in this section shall mean the first license of any character issued to a master, mate, or pilot, and shall not be held to mean, for instance, that a license issued to a master who was previously licensed as a mate or pilot shall be considered an original master's license.

No license as master, mate, or pilot of any class of vessel shall be renewed except upon the official certificate of a surgeon of the Public Health Service that the color sense of the applicant for renewal is normal.

Where an applicant for renewal of license is situated so that it would put him to great inconvenience or expense to appear before a surgeon of the Public Health Service for examination, the certificate of a reputable physician or oculist as to the color sense of the applicant shall be accepted in lieu of the certificate of the surgeon of the Public Health Service.

In case an applicant for original license or renewal of license is pronounced color-blind, he may, in the discretion of the inspectors, be limited to act as master, mate, or pilot on a vessel navigating in daylight only.

Nothing herein contained shall debar an applicant who has lost the sight of one eye from securing the renewal of his license, providing that his color sense is normal. (Secs. 4439, 4440, 4442, R. S.)

Examinations

3. No original master's, mate's, pilot's, or engineer's license shall be issued hereafter or grade increased except upon written examination by a Board of Local Inspectors or a Supervising Inspector, which written examination shall be placed on file in the office of the inspectors issuing said license: Provided, However, That upon navigable waters of the United States newly opened to steamboat navigation, and where the only pilots obtainable are illiterate Indians or other natives, the fact that such persons can neither read nor write shall not be considered a bar to such Indians or other natives receiving license as pilot of steam vessels, provided they are otherwise qualified therefor.

Before granting or renewing a license inspectors shall satisfy themselves that the applicants can properly hear the bell and whistle signals.

When any person makes application for license it shall be the duty of the Local Inspectors to give the applicant the required examination as soon as practicable. (Secs. $4405,4439,4440,4441,4442$, R. S.)

Reexaminations and Refusals of Licenses

4. Any applicant for license who has been duly examined and refused may come before the same local board for reexamination at any time thereafter, but he shall not be examined by any other local board until one year has expired from the date of the refusal.

If the inspectors shall decline to grant the applicant the license
asked for, they shall furnish him a statement, in writing, setting forth the cause of their refusal to grant the same. (Secs. 4405, 4455, R. S.)

Preparation of Licenses

5. All licenses hereafter issued to masters, mates, pilots, and engineers shall be filled out on the face with pen and black ink instead of typewritten. Inspectors are directed, when licenses are completed, to draw a broad pen and black-ink mark through all unused spaces in the body thereof, so as to prevent, as far as possible, illegal interpolation after issue.

Every person receiving license or certificate of lost license shall sign same upon back thereof immediately upon its receipt. (Sec. 4405, R. S.)

Certificate of Lost License

6. In case of loss of license of any class from any cause, the Inspectors, upon receiving satisfactory evidence of such loss, shall issue a certificate to the owner thereof, which shall have the authority of the lost license for the unexpired term, unless in the mean time the holder thereof shall have the grade of his license raised, after due examination, in which case a license in due form for such grade may be issued. (Sec. 4405, R. S.)

Parting with License

7. Any license granted to a master, mate, pilot, engineer, or operator shall be immediately revoked, if, for any purpose, the holder thereof voluntarily parts with its possession or places it beyond his personal control by pledging or depositing it with another. (Sec. 4405, R. S.)

Renewal of License

8. Whenever an officer shall apply for a renewal of his license for the same grade, the presentation of the old license, with satisfactory certificate of visual examination, where required, and with oath of office, shall be considered sufficient evidence of his title to renewal, which old license and oath of office shall be retained by the Inspectors upon their official files as the evidence upon which the license was renewed; Provided, That it is presented within 12 months after the date of its expiration, unless such title has been forfeited or facts shall have come to the knowledge of the Inspectors which would render a renewal improper; nor shall any license be renewed more than 30 days in advance of the date of the expiration thereof, unless there are extraordinary circumstances that shall justify a renewal beforehand, in which case the reasons therefor must appear in detail upon the records of the inspectors renewing the license.

Whenever an officer shall apply for renewal of his license for same after 12 months after the date of its expiration, he shall be required to pass an examination for the same grade of license. The renewed license in either case shall receive the next higher number for number of issue of present grade and for number of issues of all grades.

Whenever a licensed officer makes application for a renewal of his license, he shall appear in person before some_board of local inspectors
or supervising inspector, except that upon renewal of such license for the same grade, when the distance from any local board or supervising inspector is such as to put the person holding the same to great inconvenience and expense to appear in person, he may, upon taking oath of office before any person authorized to administer oaths, and forwarding the same, together with the license to be renewed and certificate of visual examination where required, to the local board or supervising inspector of the district in which he resides or is employed, have the same renewed by the said inspectors, if no valid reason to the contrary be known to them; and they shall attach such oath to the stub end of the license, which is to be retained on file in their office; Provided, However, That any officer holding a license, and who is engaged in a service which necessitates his continuous absence from the United States, may make application in writing for renewal and transmit the same to the board of local inspectors, with his certificate of citizenship, if naturalized, and a statement of the applicant, verified before a consul or other officer of the United States authorized to administer an oath, setting forth the reasons for not appearing in person; and upon receiving the same the board of local inspectors that originally issued such license shall renew the same and shall notify the applicant of such renewal, and no license as master, mate, or pilot of any class of vessel shall be renewed without furnishing a satisfactory certificate of color-blindness. (Secs. 4405, 4438, R. S.)

Extension of Route and Raise of Grade of Licenses

9. Licensed officers serving under five years' license, entitled by license and service to raise of grade, after passing examination, shall have issued to them new licenses for the grade for which they are qualified, the local inspectors to file in their offices the old license when surrendered, with the report of the circumstances of the case, but the grade of no license shall be raised, except as hereinafter provided, unless the applicant can show one year's actual experience in the capacity for which he has been licensed.

Inspectors shall, before granting an extension of route or raise of grade of license, require the applicant to make his written application upon the blank form of application for extension of route or raise of grade of license furnished by the Department. When practicable, applicants for extension of route or raise of grade of license shall present to the inspectors, to be filed with the application, discharges or letters from the master or other officer under whom they have served, or other satisfactory documentary evidence, certifying to the name of the vessel and in what capacity the applicant has served; also period of such service.

If any board of local inspectors is satisfied by the documentary evidence submitted that a pilot is entitled by experience and knowledge to unlimited tonnage it may remove any tonnage restrictions which may have been placed upon his license by any other board of local inspectors.

Except as hereinafter provided, practical service in the deck department of an ocean or coastwise vessel propelled by machinery shall be accepted when offered in documentary evidence by any person applying for an original license or raise of grade as equal to the same amount of service in any ocean or coastwise steam passenger vessel.

Service on the United States Lighthouse Tenders propelled by
machinery shall be considered as equivalent experience for raise of grade as that obtained on vessels subject to inspection by this Service.

Service on United States Light vessels propelled by machinery shall be considered as one-half experience for raise of grade as that obtained on vessels subject to inspection by this Service. (Sec. 4405, R. S.)

Examination for Renewal of Master's or Pilot's License

10. It shall be the duty of all inspectors, before renewing an existing license, to a master or pilot of steam vessels, for any waters, who has not been employed as master or pilot on such waters during the three years preceding the application for renewal, to satisfy themselves, by an examination in writing, or orally, to be taken down in writing by the inspectors, that such officers are thoroughly familiar with the pilot rules upon the waters for which they are licensed. (Secs. 4439, 4442, R. S.)

Laws, General Rules and Regulations, and Pilot Rules to be Furnished Licensed Officers

11. Every master, mate, pilot, and engineer of vessels shall, when receiving an original license, a renewed license, or a raise of license, be furnished by the inspectors with a copy of the Laws Governing the Steamboat-Inspection Service, and a copy of the General Rules and Regulations Prescribed by the Board of Supervising Inspectors, and every master and pilot of vessels and operator of motor vessels shall, when receiving an original license, a renewed license, or a raise of grade of license, be furnished by the inspectors with a pamphlet copy of the rules and regulations governing pilots and other statutes upon which such rules are founded, applicable to the waters on which their licenses are intended to be used, as stated in the body thereof. (Sec. 4405, R. S.)

Suspension and Revocation of Licenses

12. When the license of any master, mate, pilot, or engineer is revoked such license expires with such revocation, and any license subsequently granted to such person shall be considered in the light of an original license except as to number of issue. And upon the revocation or suspension of the license of any such officer said license shall be surrendered to the local inspectors or supervising inspector ordering such suspension or revocation.

When the license of any master, mate, engineer, or pilot is suspended the inspectors making such suspension shall determine the term of its duration, except that such suspension shall not extend beyond the time for which the license was issued.

The suspension or revocation of a joint license shall debar the person holding the same from the exercise of any of the privileges therein granted, so long as such suspension or revocation shall remain in force. (Sec. 4450, R. S.)

Misconduct of Licensed Officers

13. Whenever a supervising, local, or assistant inspector of steam vessels, or any of them, shall find on board any vessel subject to the
provisions of Title LII of the Revised Statutes any licensed officer under the influence of liquor or other stimulants to such an extent as to unfit him for duty, or when any licensed officer shall use abusive or insulting language to any inspector or assaults any such inspector while on official duty, the local inspectors or the supervising inspector shall immediately suspend or revoke the license of the officer so offending without further trial or investigation.

The fact of a licensed officer being under the influence of liquor in the presence of the inspector or inspectors to such an extent as to unfit him for duty while on board a vessel shall be sufficient cause for such suspension or revocation. (Secs. 4405, 4450, R. S.)

Licenses to Officers of Vessels Owned by the United States

14. Any person who has served at least one year as master, commander, pilot, or engineer of any steam vessel owned and operated by the United States in any service in which a license as master, mate, pilot, or engineer was not required at the time of such service shall be entitled to license as master, mate, pilot, or engineer, if the inspectors upon written examination, as required for applicants for original license, may find him qualified: Provided, That the experience of any such applicant within three years of making application has been such as to qualify him to serve in the capacity for which he makes application to be licensed. (Secs. 4439, 4440, 4441, 4442, R. S.)

Reports of Accidents to Vessels

15. The licensed officer in command of any vessel subject to the inspection of the Steamboat-Inspection Service shall report in writing and in person to the board of local inspectors nearest the port of first arrival any accident to said vessel involving loss of life, or damage to property to an approximate amount exceeding $\$ 100$, and shall also report in the same manner any casualty or loss of life from whatever cause of any person on board such vessel. If the accident happens upon the high seas or without the jurisdiction of inland waters, the board to whom the report is first made shall make the investigation, but if the accident occurred within the jurisdiction of inland waters, the report shall be transmitted to the board within whose jurisdiction the accident occurred, which board shall make the investigation except in cases where, in the judgment of the Supervising Inspector General, better results may be obtained by another board conducting the investigation, in which case the Supervising Inspector General is authorized to direct such investigation by another board: Provided, That when from distance it may be inconvenient to report in person it may be done in writing only, and the report sworn to before any person authorized to administer oaths.

Whenever a vessel subject to the inspection of the SteamboatInspection Service collides with light ship, buoy, or other aid to navigation under the jurisdiction of the Bureau of Lighthouses, or is connected with any such collision, it shall be the duty of the licensed officer in command of such vessel to report the accident to the nearest board of local inspectors. When any collision of this character is reported to a board of local inspectors, those officers shall immediately
transmit such information to the Lighthouse Inspector of the District in which the collision occurs. (Secs. 4405, 4448, R. S.)

Only Certain Persons Allowed in Pilot House and on Navigator's Bridge

16. Masters and pilots of steamers carrying passengers shall exclude from the Pilot houses and Navigator's Bridge of such steamers, while underway, all persons not connected with the navigation of such steamers, except officers of the Steamboat-Inspection Service, Coast Guard, and engineer officers of the United States Army in charge of the improvement of that particular waterway, when upon business: Provided, That licensed officers of steamboats, persons regularly engaged in learning the profession of pilot, officers of the United States Navy, United States Coast and Geodetic Survey, and Lighthouse Service, assistant engineers of the Engineer Department of the United States Army connected with the improvement of that particular waterway, and the engineer officers connected with the construction and operation of the Panama Canal may be allowed in the Pilot house or upon the Navigator's Bridge upon the responsibility of the officer in charge.

The master of every such passenger and ferry steamer shall keep three printed copies of this section of Rule V posted in conspicuous places on such steamer, one of which shall be kept in the Pilot house.

Such printed copies shall be furnished by the Department of Commerce to Local Inspectors for distribution. (Sec. 4405, R. S.)

Station Bills, Drills, and Reports of Masters

17. It shall be the duty of the officer in charge of every steamer carrying passengers and all other vessels of over 500 gross tons, propelled by machinery and subject to inspection, to cause to be prepared a station bill for his own department, and one also for the engineer's department, in which shall be assigned a post or station of duty for every person employed on board such vessel in case of fire or other disaster, which station bills shall be placed in the most conspicuous places on board for the observation of the crew. And it shall be the duty of such master, or of the mate or officer next in command, once at least in each week to call all hands to quarters and exercise them in discipline, and in the unlashing and swinging out of the life boats, weather permitting, and in the use of the fire pumps, and all other apparatus for the safety of life on board of such vessel, with especial regard for the drill of the crew in the method of adjusting life preservers and educating passengers and others in this procedure and to see that all the equipments required by law are in complete working order for immediate use; and the fact of the exercise of the crew, as herein contemplated, shall be entered upon the vessel's log book, stating the day of the month and hour when so exercised; and it shall be the duty of the inspectors to require the officers and crew of all such vessels to perform the aforesaid drills and discipline in the presence of the said inspectors at intervals sufficiently frequent to assure the said inspectors by actual observation that the foregoing requirements of this section are complied with; the master of every passsenger steamer shall also report monthly to the local inspectors the day and date of such exercise and drill, the condition of the vessel and her equipment, and also the number of passengers
carried, and any neglect or omission on the part of the officer in command of such vessel to strictly enforce this rule shall be deemed cause for the suspension or revocation of the license of such officer.

The General fire-alarm signal shall be a continuous rapid ringing of the ship's bell for a period of not less than 20 seconds, and this signal shall not be used for any other purpose whatsoever. The master of any vessel may establish such other emergency signals in addition to the ringing of the ship's bell, as will provide that all the officers and all the crew of the steamer will have positive and certain notice of the existing emergency.

Three copies of this section shall be furnished every steamer carrying passengers, and one copy to all other vessels to which this section applies to be framed under glass and posted in conspicuous places about the vessel. (Sec. 4405, R. S.)

Vessels Requiring Licensed Masters

18. There shall be a duly licensed master on board every steam vessel of more than 150 gross tons whenever such steamer is under way, and also upon every ocean and coastwise sea-going merchant vessel of the United States propelled by machinery, and upon every ocean-going vessel carrying passengers, subject to the Inspection Laws of the United States. (Secs. 4439, 4463, R. S.)

Substituting Service in Next Lower Grade for Raise of Grade

19. Except as hereinafter provided, an applicant who has served in a lower grade than that for which he is licensed may substitute service in the grade next below that for which he is licensed, which service shall count one-half in computing experience for raise of grade. For example, if an applicant holds chief mate's license and has served nine months as chief mate and six months as second mate, the six months service as second mate shall count as three months as chief mate in computing experience. (Sec. 4405, R. S.)

Master of Ocean Steam Vessels

20. An applicant for license as master of ocean steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the Local Inspectors that he has had the following experience:
First. One year's service as chief mate of ocean steam vessels, or,
Second. One year's service as chief mate of coastwise steam vessels of 1000 gross tons or over, or,
Third. Two years' service as second mate of ocean steam vessels, one year of such service while holding a license as chief mate of ocean steam vessels, or,
Fourth. Five years' service as third mate of ocean steam vessels, two years of such service while holding a license as chief mate of ocean steam vessels, or,
Fifth. Five years' service on ocean or coastwise sail vessels of 200 gross tons or over, two years of said service as master of such sail vessels while holding a license as master of sail vessels, for license as master of freight or towing vessels, or,

Sixth. Six months' service as master of coastwise steam vessels of 100 gross tons or over, or,
Seventh. Thirty-six months' service as master of steam vessels of 4000 gross tons, or over, upon the waters of the Great Lakes, together with 12 months' service as chief or second mate of ocean or coastwise steam vessels. (Sec. 4439, R. S.)

Examination for Master of Ocean Steam Vessels

21. An applicant for license as master of ocean steam vessels shall pass a satisfactory examination as to his knowledge of the following subjects:
22. Latitude by meridian altitude of the sun.
23. Latitude by exmeridian altitude of the sun.
24. Latitude by meridian altitude of a star.
25. Latitude by pole star.
26. Longitude by chronometer. (A. M. or P. M.)
27. Position by Sumner's method.
28. Ship's position by dead reckoning.
29. Mercator sailing.
30. Deviation of the compass by an amplitude.
31. Deviation of the compass by an azimuth.
32. Time of high water at a given point.
33. Chart navigation.
34. Storm signals.
35. International code of signals.
36. International rules for preventing collisions at sea.
37. Use of gun and rocket apparatus for saving life from ship wreck, as practised by the United States Coast Guard.
38. Such further examination of a non-mathematical character as the local inspectors may require. (Sec. 4439, R. S.)

Master of Coastwise Steam Vessels

22. An applicant for license as master of coastwise steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. One year's service as chief mate of ocean or coastwise steam vessels, or,
Second. Two years' service as second mate of ocean or coastwise steam vessels, one year of such service while holding a license as chief mate of ocean or coastwise vessels, or,
Third. Five years' service as third mate of ocean or coastwise steam vessels, two years of such service while holding a license as chief mate of ocean or coastwise steam vessels, or,
Fourth. Two years' service as master of lake, bay, or sound steam vessels of 500 gross tons or over, and, in addition thereto, one year's service as officer in charge of a watch on ocean or coastwise steam vessels while holding a license as master of lake, bay, or sound steam vessels, or,
Fifth. Five years' service on ocean or coastwise sail vessels of 200 gross tons or over, two years of which service shall have been as master
of such sail vessels for license as master of coastwise freight or towing vessels, or,
Sixth. One year's service as a licensed master of ocean or coastwise sail vessels of 700 gross tons or over, for a license as master of coastwise freight or towing vessels, or,
Seventh. Two years' service as master or first-class pilot of lake, bay, or sound towing steamers of 150 gross tons or over, for a license as master of coastwise towing steam vessels of 750 gross tons or under, or,
Eighth. Two years' service as master of steam vessels of 2500 gross tons or over, on the Great Lakes, and other lakes, bays, and sounds, or,
Ninth. Two years' service as a licensed master of steam vessels of 250 gross tons or over, engaged in the ocean or coastwise fisheries, for license as master of coastwise freight or towing vessels. (Sec. 4439, R. S.)

Examination for Master of Coastwise Steam Vessels

23. An applicant for license as master of coastwise steam vessels on routes exceeding 300 miles shall pass a satisfactory examination as to his knowledge of the following subjects:
24. Longitude by chronometer.
25. Latitude by meridian altitude of the sun.
26. Latitude by pole star.
27. Ship's position by dead reckoning.
28. Azimuth of sun by tables.
29. Determination of distance from a fixed object.
30. Chart navigation.
31. International rules for preventing collisions at sea.
32. Storm signals.
33. Use of gun and rocket apparatus for saving life from shipwreck as practised by the United States Coast Guard.
34. Such further examination of a non-mathematical character as the local inspectors may require.
An applicant for license as master of coastwise steam vessels on routes not exceeding 300 miles shall pass a satisfactory examination as to his knowledge of the following subjects:
35. Chart navigation.
36. Aids to navigation on route.
37. Determination of distance from a fixed object.
38. International rules for preventing collisions at sea.
39. Storm signals.
40. Such further examination of a non-mathematical character as the local inspectors may require. (Sec. 4439, R. S.)

Masters of Sail Vessels

24. An applicant for license as master of sail vessels of over 700 gross tons shall be eligible for examination after he has furnished satisfactory documentary evidence to the Local Inspectors that he has had the following experience:
First. Five years' service in the deck department of sail vessels of 200
gross tons or over; one year of such service shall have been as master of sail vessels of 500 gross tons or over; or,
Second. Two years' service as master of sail vessels of two nundred gross tons or over; or,
Third. Two years' service as mate of sail vessels of 500 gross tons or over; or,
Fourth. Two years' service as master of auxiliary sail vessels of 100 gross tons or over. (Sec. 4439, R. S.)

Examination for Licenses as Master of Sail Vessels

25. An applicant for license as master of sail vessels shall pass a satisfactory examination as to this knowledge of the following subjects:
26. Latitude by meridian altitude of the sun.
27. Latitude by pole star.
28. Longitude by chronometer (A. M. or P. M.).
29. Ship's position by dead reckoning.
30. Mercator sailing.
31. Deviation of the compass by an amplitude.
32. Deviation of the compass by an azimuth.
33. Chart navigation.
34. International code of signals.
35. Storm signals.
36. International rules for preventing collisions at sea.
37. Use of gun and rocket apparatus for saving life from shipwreck, as practised by the United States Coast Guard.
38. Such further examination of a non-mathematical character as the local inspectors may require. (Sec. 4439, R. S.)

Chief Mate of Ocean Steam Vessels

26. Any applicant for license as chief mate of ocean steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. One year's service as second mate of ocean steam vessels; or,
Second. One year's service as second mate of coastwise steam vessels of 1000 gross tons or over; or,
Third. Two years' service as officer in charge of a watch on ocean or coastwise steam vessels, while holding a license as second mate of ocean or coastwise steam vessels; or,
Fourth. Two years' service as master of lake, bay, or sound steam vessels of 1000 gross tons or over, together with six months ${ }^{2}$ service as officer in charge of a watch on ocean or coastwise steam vessels of 1000 gross tons or over; or,
Fifth. Five years' service in the deck department of ocean or coastwise sail vessels of 200 gross tons or over; two years of such service shall have been as chief mate of such ocean or coastwise sail vessels, for license as chief mate of ocean freight or towing steam vessels; or,
Sixth. One year's service as a licensed master of steam vessels of 250 gross tons or over, engaged in the ocean or coastwise fisheries, for license as chief mate of ocean freight or towing steam vessels; or,

Seventh. Five years' experience in the deck department of any ocean or coastwise sail vessel of 100 gross tons or over; two years of such service shall have been as master of such vessels for license as chief mate of ocean freight or towing steam vessels. (Sec. 4440, R. S.)

Second Mate of Ocean Steam Vessels

27. Any applicant for license as second mate of ocean steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. One year's service as third mate of ocean or coastwise steam vessels; or,
Second. Four years' service in the deck department of ocean or coastwise steam vessels; one year of such service shall have been as quartermaster and one year as quartermaster or boatswain of such steam vessels; or,
Third. A graduate who has served two years in the seamanship class of a State Nautical Schoolship and completed two ocean or coastwise cruises before graduation, together with six months' service in the deck department of ocean or coastwise steam or sail vessels of 200 gross tons or over; Provided, That where the graduate has completed the two cruises, but not the two years' service required, additional service equal to the difference of time shall be served on vessels of the class required for the probationary period of six months; or,
Fourth. Three years' service in the deck department of ocean or coastwise sail vessels of 200 gross tons or over; one year of such service shall have been as second mate of such vessel; or,
Fifth. Nine months' service as quartermaster and nine months' service as quartermaster or boatswain on ocean or coastwise steam vessels, a total of 18 months' service, while holding a license as third mate of ocean or coastwise steam vessels; or,
Sixth. Two years' service in the deck department of any ocean or coastwise sail vessel of 100 gross tons or over, together with one year's service in the deck department of ocean or coastwise steam vessels, for license as second mate of ocean or coastwise steam vessels of 750 gross tons or under; or,
Seventh. One year's service as master or first-class pilot, of lake, bay, or sound steam vessels of 500 gross tons or over, together with six months' service in the deck department of ocean or coastwise steam vessels of 1000 gross tons or over, while holding a license as a master or first-class pilot. (Sec. 4440, R. S.)

Examination for License as Chief Mate and Second Mate of Ocean Steam Vessels

[^0]3. Longitude by chronometer (A. M. or P. M.).
4. Speed of ship by propeller revolutions. (Note: For chief mate only.)
5. Deviation of the compass by an azimuth.
6. Ship's position by dead reckoning.
7. Mercator's sailing.
8. Determination of distance from a fixed object.
9. Chart navigation.
10. Storm signals.
11. International code of signals.
12. International rules for preventing collisions at sea.
13. Stowage of cargo.
14. Use of gun and rocket apparatus for saving life from shipwreck, as practised by the United States Coast Guard.
15. Such further examination of a non-mathematical character as the local inspectors mav require. (Sec. 4440, R. S.)

Third Mate of Ocean Steam Vessels

29. Any applicant for license as third mate of ocean steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. Two years' service in the deck department of ocean or coastwise steam vessels; or,
Second. A graduate of the seamanship class of a State Nautical Schoolship who shall have made two ocean or coastwise cruises during his period of training; or,
Third. Three years' service in the deck department of ocean or coastwise sail vessels of 100 gross tons or over. Service on such sail vessels engaged in the ocean or coastwise fisheries shall be accepted as meeting the requirements of this paragraph; or,
Fourth. One year's service as master or pilot of lake, bay, or sound steam vessels of 150 gross tons or over, together with six months' service in the deck department of ocean or coastwise steam vessels; or,
Fifth. Three years' service in the deck department of ocean or coastwise steam or sail vessels of less than 100 gross tons, together with one year's service in the deck department of ocean or coastwise steam vessels; or,
Sixth. Three years' service in the deck department of lake, bay, or sound steam vessels, together with one year's service in the deck department of ocean or coastwise steam vessels; or,
Seventh. Twenty-four months' service as a licensed first-class pilot of steam vessels of 4000 gross tons or over on the Great Lakes and other lakes, bays, or sounds; or,
Eighth. Three years' service in the deck department of steam vessels of 100 gross tons or over, engaged in the ocean or coastwise fisheries.
Ninth. Any person who has attained the age of 19 years and who has graduated from a regular established high school or college, may, upon recommendation of the master or masters under whom he has served, be examined for third mate of ocean or coastwise steamers after having served not less than 15 months in the
deck department of ocean or coastwise steamers of 2000 gross tons or over.
Tenth. Any person who has completed the intensive training course subscribed by the United States Navy, and who has been commissioned as ensign in the United States Naval Reserve Force, may, upon the recommendation of the master or masters or the Naval officers or officers under whom he has served, be examined for third mate of ocean or coastwise steamers, after having actually served not less than four months at sea, after being commissioned as officer of the watch or as extra watch officer in company with the officer in charge of the bridge. (Sec. 4440, R. S.)

Examination for License as Third Mate of Ocean Steam Vessels

30. An applicant for license as third mate of ocean steam vessels shall be required to pass a satisfactory examination as to his knowledge of the following subjects:
31. Latitude by meridian altitude of the sun.
32. Deviation of the compass by an azimuth of the sun.
33. Longitude by chronometer (A. M. or P. M.).
34. Ship's position by dead reckoning.
35. Mercator's sailing.
36. Determination of distance from a fixed object.
37. Chart navigation.
38. International rules for preventing collisions at sea.
39. Stowage of cargo.
40. Storm signals.
41. Such further examination of a non-mathematical character as the local inspectors may require. (See 4440, R. S.)

Chief Mate of Coastwise Steam Vessels

31. An applicant for license as chief mate of coastwise steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. One year's service as second mate of ocean or coastwise steam vessels; or,
Second. Two years' service as officer in charge of a watch on ocean or coastwise steam vessels, one year of such service while holding a license as second mate of ocean or coastwise steam vessels; or,
Third. One year's service as master or first-class pilot of lake, bay, or sound steam vessels of 150 gross tons or over, together with one year's service as quartermaster or wheelsman on ocean or coastwise steam vessels while holding a license as such master or firstclass pilot; or,
Fourth. Two years' service as master or first-class pilot of lake, bay, or sound towing vessels for license as chief mate of coastwise towing vessels of 750 gross tons or under; or,
Fifth. Three years' service in the deck department of ocean or coastwise steam vessels for license as chief mate of coastwise steam vessels of 750 gross tons or under; or,
Sixth. One year's service as a licensed master or two years' service as a
licensed mate on ocean or coastwise steam vessels of 250 gross tons or over, engaged in the ocean or coastwise fisheries for license as chief mate of freight or towing steamers; or,
Seventh. Five years' service in the deck department of any ocean or coastwise sail vessel of 100 gross tons or over, two years of such service shall have been as master of such vessel, for license as chief mate of freight or towing steam vessels; or,
Eighth. Two years' service in the deck department of ocean or coastwise sail vessels together with one year's service in the deck department of ocean or coastwise steam vessels, for license as chief mate of coastwise steam vessels of 750 gross tons or under (Sec. 4440, R. S.)

Second Mate of Coastwise Steam Vessels

32. An applicant for license as second mate of coastwise steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. One year's service as third mate of ocean or coastwise steam vessels; or,
Second. One year and six months' service in the deck department of ocean or coastwise steam vessels, nine months of which service shall have been as quartermaster or boatswain, a total of 18 months' service, while holding a license as third mate of such vessels or,
Third. Four years' service in the deck department of ocean or coastwise steam vessels, one year of such service to have been as quartermaster or boatswain of such steam vessels; or,
Fourth. Two years' service in the deck department of any ocean or coastwise sail vessel of 100 gross tons or over, together with one years' service in the deck department of ocean or coastwise steam vessels, for a license as second mate of coastwise steam vessels of 750 gross tons or under; or,
Fifth. A graduate who has served two years in the seamanship class of a State Nautical Schoolship and completed two ocean or coastwise cruises before graduation, together with six months' service in the deck department of ocean or coastwise steam or sail vessels: Provided, That where the graduate has completed the two cruises, but not the two years' service required, additional service equal to the difference in time shall be served on ocean or coastwise steam or sail vessels; or,
Sixth. One year's service as a licensed master or first-class pilot of lake, bay, or sound steam vessels of 150 gross tons or over, together with six months' service in the deck department of ocean or coastwise steam vessels; or,
Seventh. One year's service as a licensea mate on ocean or coastwise vessels of 150 gross tons or over, engaged in the fisheries (Sec. 4440, R. S.).

Examination for License as Chief Mate and Second Mate of Coastwise Steam Vessels

33. An applicant for license as chief mate or second mate of coastwise steam vessels on routes exceeding 600 miles shall be required to pass a satisfactory examination as to his knowledge of the following subjects:
34. Latitude by meridian altitude of the sun.
35. Ship's position by dead reckoning.
36. Determination of distance from a fixed object.
37. International rules for preventing collisions at sea.
38. Chart navigation.
39. Stowage of cargo.
40. Storm signals.
41. Such further examination of a non-mathematical character as the local inspectors may require.

An applicant for license as chief mate or second mate of coastwise steam vessels on routes of 600 miles or less shall be required to pass a satisfactory examination as to his knowledge of the following subjects:

1. Chart navigation.
2. Aids to navigation on route.
3. Determination of distance from a fixed object.
4. Marking of a lead line.
5. International rules for preventing collisions at sea.
6. Storm signals.
7. Such further examination of a non-mathematical character as the local inspectors may require. (Sec. 4440, R. S.)

Third Mate of Coastwise Steam Vessels

34. An applicant for license as third mate of coastwise steam vessels shall be eligible for examination after he has furnished satisfactory documentary evidence to the local inspectors that he has had the following experience:
First. Two years' service in the deck department of ocean or coastwise steam vessels.
Second. A graduate of the seamanship class of a State Nautical Schoolship who shall have made two ocean or coastwise cruises during his period of training; or,
Third. Three years' service in the deck department of ocean or coastwise sail vessels of 100 gross tons or over. Service on such sail vessels engaged in the ocean or coastwise fisheries shall be acceoted as meeting the requirements of this paragraph; or,
Fourth. One year's service as master or pilot of lake, bay, or souna, or river steam vessels of 150 gross tons or over, together with six months' service in the deck department of ocean or coastwise steam vessels; or,
Fifth. Twenty-four months' service as a licensed first-class pilot of steam vessels of 2500 gross tons or over. on the Great Lakes, and other lakes, bays, or sounds; or,
Sixth. Three years' service in the deck department of ocean or coastwise steam or sail vessels of less than 100 gross tons, together
with one year's service in the deck department of ocean or coastwise steam vessels; or,
Seventh. Three years' service in the deck department of lake, bay, or sound steam vessels, together with one year's service in the deck department of ocean or coastwise steam vessels; or,
Eighth. Three years' service in the deck department of steam vessels of 100 gross tons or over, engaged in the ocean or coastwise fisheries.
Ninth. Any person who has attained the age of 19 years and who has graduated from a regular established high school or college may upon the recommendation of the master or masters under whom he has served, be examined for third mate of ocean or coastwise steamers after having served not less than 15 months in the deck department of ocean or coastwise steamers of 200 gross tons or over.
Tenth. Any person who has completed the intensive training course prescribed by the United States Navy, and who has been commissioned ensign in the United States Naval Reserve Force may, upon the recommendation of the master or masters or the naval officer or officers under whom he has served, be examined for third mate of ocean or coastwise steamers after having actually served not less than four months at sea, after being commissioned, as officer of the watch or as extra watch officer in company with the officer in charge of the bridge. (Sec. 4440, R. S.)

Examination for License as Third Mate of Coastwise Steam Vessels

35. An applicant for license as third mãte of coastwise steam vessels shall pass a satisfactory examination as to his knowledge of the following subjects:
36. Chart navigation.
37. Determination of distance from a fixed object.
38. International rules for preventing collisions at sea.
39. Marking lead line.
40. Storm signals.
41. Such further examination of a non-mathematical character as the local inspectors may require. (Sec. 4440, R. S.)

Indorsement of Master's or Mate's License as Pilot

36. Whenever a master or mate desires to act in the double capacity of master and pilot, or mate and pilot, and furnishes the necessary evidence of his qualifications, the local inspectors shall indorse such pilot routes on the certificate of license. (Sec. 4443, R. S.)

License of Owner as Master of Steam Yacht

37. Whenever the owner of a steam or sailing yacht of over 100 gross tons, who has reached the age of 21 years, and who has had three years' experience in sailing such vessels, applies for a license authorizing him to act as master of steam yachts for coastwise and ocean navigation, the local inspectors shall examine the applicant as to his knowledge of the rules of the road, fog signals, signal lights (inland and international;) the use of the lead and line; the use of the patent and chip logs, the
compass, variation and deviation of the compass, the use of the drag, the use of oil during storms, bell signals between pilot house and engineroom, handling of steam vessels, laws of storms, course and distance by chart, keeping the log book, middle latitude sailing, Mercator's sailing method of obtaining latitude and longitude by dead reckoning, latitude by altitude of either the sun, moon, or stars; longitude by chronometer (time sights). Practical problems shall be given in the subjects of latitude and longitude, examination shall be in writing, which shall be kept on file in the office of the local inspectors. If said examination is satisfactory to the local inspectors, they shall issue to the applicant a master's license, authorizing him to discharge the duties of master of steam yachts, either for coastwise or ocean navigation. (Secs. 4439, 4442, R. S.)

Master, Mate, and Pilot of Steam Pilot, Fishing, Porto Rican, and Hawaitan Vessels

38. Any applicant for original license to act as master of steam pilot boats, or of steamers navigating the waters of the whaling grounds in the Alaskan seas, or of steamers engaged exclusively in the business of whale fishing, or of steamers engaged in the Atlantic, Pacific, or Gulf Coast fisheries, or of steam or sail vessels navigating between ports of the Hawaiian Islands, or between ports of the island of Porto Rico, shall have had at least three years' experience in the deck department of such vessels, and except as hereinafter provided, for an original license as mate the applicant shall have had two years' experience in the deck department of such vessels, which fact shall be verified by documentary evidence; and such applicant shall only be subjected to such examination as shall satisfy the inspectors that the applicant is capable of navigating such vessels. It is Provided, That any person who has had at least five years' experience on sail vessels licensed in the fisheries of the United States, two years of which have been as master or mate of such sailing vessels, may be examined for license as master or mate of steam fishing vessels to be employed exclusively in the Atlantic, Pacific, and Gulf Coast fisheries. The license issued under this section shall state in the body thereof (for Coastwise only) Pacific or Atlantic Coast, as the case may be, and between what ports on either of said coast.

It is Further Provided, That any applicant for original license who has had three years' experience in the deck department on steam pilot boats, or who has had two years' experience in the deck department on steam pilot boats and one year's experience on sail pilot boats shall be eligible for examination for license as mate of steam pilot boats.

It is Further Provided, That said master's or mate's license may be endorsed as pilot on such inland waters on the above-named coasts as the local inspectors at the various ports may find the holder qualified to act on as pilot, after examination by the local inspectors, such examination to be in writing and preserved in the files of the inspectors' office. (Secs. 4439, 4440, 4442, R. S.)

ANSWERS T0 PROBLEMS for THE YEAR 1921

Supplement to SIMPLE RULES AND PROBLEMS IN NAVIGATION

By
CHARLES H. CUGLE

NEW YORK
E. P. DUTTON AND COMPANY

681 Fifth Avenue

Copyright 1921, by
E. P. DUTTON \& COMPANY

All Rights Reserved

ANSWERS TO PROBLEMS FOR THE YEAR 1921

Latitude by meridian altitude of sun

Prob. No. 1. Ans. Lat. $27^{\circ} 53^{\prime} 19^{\prime \prime}$ North
" " 2 . " " $5^{\circ} 31^{\prime} 29^{\prime \prime}$ South
" " 3 . " " $0^{\circ} 29^{\prime} 30^{\prime \prime}$ South
" " 4. " " $25^{\circ} 42^{\prime} 14^{\prime \prime}$ North
" " 5. " " $25^{\circ} 31^{\prime} 53^{\prime \prime}$ North
" " 6. " " $32^{\circ} 42^{\prime} 31^{\prime \prime}$ North
" " 7. " " $48^{\circ} 34^{\prime} 41^{\prime \prime}$ North
" " 8. " " $35^{\circ} 20^{\prime} 31^{\prime \prime}$ South
" " 9. " " $42^{\circ} 27^{\prime} 30^{\prime \prime}$ North
" " 10 . " " $59^{\circ} 25^{\prime} 47^{\prime \prime}$ North
" " 11. " " $12^{\circ} 26^{\prime} 14^{\prime \prime}$ South
" " 12 . " " $40^{\circ} 55^{\prime} 05^{\prime \prime}$ North
" " $13 . \quad$ " " $56^{\circ} 03^{\prime} 03^{\prime \prime}$ North
" " 14. " " $34^{\circ} 38^{\prime} 15^{\prime \prime}$ North
" " 15 . " " $23^{\circ} 30^{\prime} 32^{\prime \prime}$ South
" " 16 . " " $47^{\circ} 07^{\prime} 11^{\prime \prime}$ South
" " 17 . " " $0^{\circ} 12^{\prime} 05^{\prime \prime}$ South

LATITUDE CONSTANT

Prob. No. 18. Ans. Lat. $40^{\circ} 59^{\prime} 11^{\prime \prime}$ North
" " 19. " " $43^{\circ} 12^{\prime} 01^{\prime \prime}$ North
" " 20 . " " $30^{\circ} 46^{\prime} 14^{\prime \prime}$ South
" " 21 . " " $9^{\circ} 36^{\prime} 25^{\prime \prime}$ South
3

TIME OF STAR'S MERIDIAN PASSAGE

Prob. No. 1. Mer. Pas. Jan. 10th 18 h 01 m
" " 2 . " " Feb. 16th 16h 26 m
" " 3. " "، June 3rd 1h 36m
" " 4 . " " May 12th 3h 23m

LATITUDE BY MERIDIAN ALTITUDE OF STAR

Рrob.	No.	1.	Ans. La	Rigel	$55^{\circ} 02^{\prime} 44^{\prime \prime}$ North
،	"	2.	'	*Procyon	$18^{\circ} 11^{\prime} 08^{\prime \prime}$ North
،	"	3.	" "	*Arcturus	$34^{\circ} 17^{\prime} 25^{\prime \prime}$ South
"	"	4.	" "	*Spica	$30^{\circ} 03^{\prime} 22^{\prime \prime}$ North
"	"	5.	"	*Betelgeux	$2^{\circ} 31^{\prime} 48^{\prime \prime}$ South
"	"	6.	"، ،	*Aldebaran	$68^{\circ} 12^{\prime} 25^{\prime \prime}$ North
،	"	7.	"، "	*Sirius	$32^{\circ} 14^{\prime} 44^{\prime \prime}$ North
،	"	8.	"	*Fomalhaut	41 ${ }^{\circ} 43^{\prime} 42^{\prime \prime}$ North
"	"	9.	"، ${ }^{\text {a }}$	*Antares	$36^{\circ} 03^{\prime} 57^{\prime \prime}$ South
"	'،	10.	، ،	*Fomalhaut	$13^{\circ} 34^{\prime} 41^{\prime \prime}$ South
"	"	11.	" "	*Regulus	$52^{\circ} 10^{\prime} 23^{\prime \prime}$ North
،	'	12.	" ،	*Sirius	$37^{\circ} 00^{\prime} 47^{\prime \prime}$ North

LONGITUDE BY SUN

Рrob. No. 1. Ans. Long. $93^{\circ} 52^{\prime} 45^{\prime \prime}$ West
" " 2 . " " $91^{\circ} 25^{\prime} 45^{\prime \prime}$ West
" " 3. " " $75^{\circ} 39^{\prime} 45^{\prime \prime}$ East
" " 4 . " " $88^{\circ} 42^{\prime} 00^{\prime \prime}$ East
" " 5 . " " $76^{\circ} 29^{\prime} 00^{\prime \prime}$ West
"، 6. "، " $59^{\circ} 33^{\prime} 15^{\prime \prime}$ West
" " 7. " " $28^{\circ} 47^{\prime} 30^{\prime \prime}$ East
" " 8. "، " $94^{\circ} 44^{\prime} 30^{\prime \prime}$ West
" "، 9. "، " $137^{\circ} 35^{\prime} 15^{\prime}$ West
" " 10 . " " $86^{\circ} 54^{\prime} 15^{\prime \prime}$ East

NOON POSITION SIGHTS

Prob. No. 1. Ans. Lat. at sight $50^{\circ} 37^{\prime} 36^{\prime \prime} \mathrm{N}$ Long. $166^{\circ} 42^{\prime} 45^{\prime \prime} \mathrm{E}$

sight $26^{\circ} 22^{\prime} 29^{\prime \prime} \mathrm{N}$		$91^{\circ} 48^{\prime} 45^{\prime \prime} \mathrm{W}$
noon $25^{\circ} 31^{\prime} 17^{\prime \prime} \mathrm{N}$	"	$92^{\circ} 16^{\prime} 45^{\prime \prime} \mathrm{W}$
sight $36^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{S}$		$23^{\circ} 19^{\prime} 45^{\prime \prime} \mathrm{E}$
noon $37^{\circ} 21^{\prime} 36^{\prime \prime} \mathrm{S}$	"	$22^{\circ} 51^{\prime} 45^{\prime \prime} \mathrm{E}$
sight $21^{\circ} 55^{\prime} 34^{\prime \prime} \mathrm{S}$		$103^{\circ} 33^{\prime} 30^{\prime \prime} \mathrm{W}$
noon $22^{\circ} 35^{\prime} 48^{\prime \prime} \mathrm{S}$	'	$103^{\circ} 19^{\prime} 30^{\prime \prime} \mathrm{W}$
sight $17^{\circ} 24^{\prime} 48^{\prime \prime} \mathrm{N}$		156°
noon $18^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$		$157^{\circ} 01^{\prime} 00^{\prime \prime} \mathrm{E}$
sight $28^{\circ} 42^{\prime} 40^{\prime \prime} \mathrm{N}$		
noon $28^{\circ} 16^{\prime} 28^{\prime \prime} \mathrm{N}$	،	$8^{\circ} 31^{\prime} 00^{\prime \prime}$ W
sight $28^{\circ} 17^{\prime} 42^{\prime \prime} \mathrm{S}$	'	$124^{\circ} 52^{\prime} 45^{\prime \prime} \mathrm{E}$
noon $27^{\circ} 23^{\prime} 00^{\prime \prime} \mathrm{S}$	"	$125^{\circ} 25^{\prime} 45^{\prime \prime} \mathrm{E}$
sight $0^{\circ} 04^{\prime} 56^{\prime \prime} \mathrm{N}$	،	$0^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{W}$
noon $0^{\circ} 10^{\prime} 30^{\prime \prime} \mathrm{N}$	6	$0^{\circ} 22^{\prime} 54^{\prime \prime} \mathrm{E}$
sight $22^{\circ} 23^{\prime} 48^{\prime \prime} \mathrm{S}$	/	$103^{\circ} 25^{\prime} 15^{\prime \prime} \mathrm{E}$
noon $23^{\circ} 15^{\prime} 00^{\prime \prime} \mathrm{S}$	'6	$103^{\circ} 50^{\prime} 15^{\prime \prime} \mathrm{E}$
sight $41^{\circ} 22^{\prime} 36^{\prime \prime} \mathrm{N}$	"	$166^{\circ} 36^{\prime} 15^{\prime \prime} \mathrm{W}$
noon $41^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$	"	$167^{\circ} 59^{\prime} 15^{\prime \prime} \mathrm{W}$

DEVIATION OF AZIMUTH OF SUN

Prob. No. 1. Error of Compass $6^{\circ} 52^{\prime} \mathrm{W}$ Deviation $12^{\circ} 52^{\prime} \mathrm{W}$
" " 2. " " " $5^{\circ} 40^{\prime} \mathrm{E}$ " $35^{\circ} 20^{\prime} \mathrm{W}$
" " 3. " " " $9^{\circ} 00^{\prime} \mathrm{W} \quad$ " $16^{\circ} 00^{\prime} \mathrm{W}$
" " $4 . \quad$ " " " $0^{\circ} 00^{\prime} \quad$ " $6^{\circ} 00^{\prime} \mathrm{W}$

DEVIATION BY AMPLITUDE

Рrob.	No.	1.	Ans.	Error		Compa	$33^{\circ} 05^{\prime}$ E	Dev	$25^{\circ} \mathrm{C} 5^{\prime}$ East
،	"	2.	"	"	"		$3^{\circ} 23^{\prime}$ W	'	$21^{\circ} 37^{\prime}$ East
،	"	3.	"	"	"	"	$22^{\circ} 31^{\prime} \mathrm{E}$	'،	$16^{\circ} 31^{\prime}$ East
"	"	4.	"	"	"	"	$1^{\circ} 53^{\prime} \mathrm{E}$	"	$13^{\circ} 07^{\prime}$ West
"	'	5.	"	"	"	"	$11^{\circ} 00^{\prime} \mathrm{W}$	"	$9^{\circ} 00^{\prime}$ West
"	"	6.	"		"	/	$25^{\circ} 14^{\prime} \mathrm{E}$	"	$4^{\circ} 46^{\prime}$ West
"	"	7.	"	/	"	"	$15^{\circ} 47^{\prime} \mathrm{E}$	"	$18^{\circ} 47^{\prime}$ East
"	'6	8.	"	/	"	"	$34^{\circ} 50^{\prime} \mathrm{E}$	،	$44^{\circ} 50^{\prime}$ East
،	"	9.	"				$6^{\circ} 43^{\prime}$ W	"	$3^{\circ} 17^{\prime}$ East
"	،	10.	"	"	"	"	$11^{\circ} 42^{\prime} \mathrm{W}$	،	$14^{\circ} 42^{\prime}$ Wes
'	"	11.	"	"	,	/	$24^{\circ} 42^{\prime} \mathrm{E}$	'	$10^{\circ} 18^{\prime}$ West
!	"	12.	"		"		$9^{\circ} 58^{\prime} \mathrm{W}$	'	$12^{\circ} 58^{\prime}$ West

LATITUDE BY POLARIS

Prob. No. 1. Ans. Latitude $25^{\circ} 50^{\prime} 20^{\prime \prime} \mathrm{N}$
" " \quad. " \quad, $28^{\circ} 22^{\prime} 03^{\prime \prime} \mathrm{N}$
" $6 \quad 3 . \quad$. ${ }^{6} \quad 27^{\circ} 16^{\prime} 21^{\prime \prime} \mathrm{N}$
" "4. " $\quad 6 \quad 36^{\circ} 23^{\prime} 33^{\prime \prime} \mathrm{N}$
" " 6 . " $6 \quad 27^{\circ} 02^{\prime} 53^{\prime \prime} \mathrm{N}$
" ${ }^{6} 6 . \quad$ 6 $6.22^{\circ} 29^{\prime} 15^{\prime \prime} \mathrm{N}$
" $6 \quad$ 7. " $6 \quad 42^{\circ} 53^{\prime} 37^{\prime \prime} \mathrm{N}$
" ${ }^{6} 8 . \quad$. $6 \quad 50^{\circ} 46^{\prime} 03^{\prime \prime} \mathrm{N}$
" $6 \quad 9.6 \quad$. $6 \quad 49^{\circ} 17^{\prime} 27^{\prime \prime} \mathrm{N}$
" " 10 . " \quad " $30^{\circ} 36^{\prime} 13^{\prime \prime} \mathrm{N}$
" " 6 11. 6 " $47^{\circ} 31^{\prime} 42^{\prime \prime} \mathrm{N}$
" " 12 . " ${ }^{6} \quad$ " $27^{\circ} 28^{\prime} 25^{\prime \prime} \mathrm{N}$

9	

$\because \quad 6 \quad 14 . \quad 6 \quad \therefore \quad 13^{\circ} 25^{\prime} 41^{\prime \prime}$ N

ALIITUDE AZIMUTH, LONGITUDE BY SUN AND MERCATOR'S SAILING COMBINED
Prob. No. 1. Ans. Lat. at sight $12^{\circ} 39^{\prime} 22^{\prime \prime} \mathrm{N}$. Long. $86^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{W}$ Lat. at noon $12^{\circ} 25^{\prime} 22^{\prime \prime} \mathrm{N}$. Long. $87^{\circ} 06^{\prime} 30^{\prime \prime} \mathrm{W}$ Error of compass $14^{\circ} 21^{\prime} \mathrm{E}$. Dev. $30^{\circ} 21^{\prime} \mathrm{E}$ True course $\mathrm{S} 62^{\circ} 57^{\prime}$ W. Distance 2595 miles.
" " 2. Ans. Lat. at sight $28^{\circ} 44^{\prime} 24^{\prime \prime} \mathrm{S}$. Long. $61^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{E}$
Lat. at noon $28^{\circ} 17^{\prime} 00^{\prime \prime} \mathrm{S}$. Long. $60^{\circ} 28^{\prime} 00^{\prime \prime} \mathrm{E}$ Error of compass $9^{\circ} 28^{\prime}$ E. Dev. $23^{\circ} 28^{\prime} \mathrm{E}$ True course N $73^{\circ} 58^{\prime}$ W. Distance 2625 miles.
" " 3. Ans. Lat. at sight $5^{\circ} 01^{\prime} 42^{\prime \prime}$ N. Long. $150^{\circ} 59^{\prime} 15^{\prime \prime} \mathrm{W}$ Lat. at noon $4^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{N}$. Long. $151^{\circ} 14^{\prime} 15^{\prime \prime} \mathrm{W}$ Error of compass $17^{\circ} 41^{\prime}$ W. Dev. $10^{\circ} 19^{\prime} \mathrm{E}$ True course $\mathrm{S} 80^{\circ} 39^{\prime} \mathrm{W}$. Distance 3595 miles.
" " 4. Ans. Lat. at sight $22^{\circ} 03^{\prime} 17^{\prime \prime} \mathrm{N}$. Long. $24^{\circ} 22^{\prime} 15^{\prime \prime} \mathrm{E}$ Lat. at noon $22^{\circ} 41^{\prime} 17^{\prime \prime}$ N. Long. $23^{\circ} 43^{\prime} 45^{\prime \prime} \mathrm{E}$ Error of compass $1^{\circ} 03^{\prime}$ W. Dev. $20^{\circ} 03^{\prime} \mathrm{W}$ True course $\mathrm{S} 45^{\circ} 42^{\prime} \mathrm{W}$. Distance 1982 miles.
". " 5. Ans. Lat. at sight $35^{\circ} 54^{\prime} 15^{\prime \prime}$ S. Long. $29^{\circ} 43^{\prime} 00^{\prime \prime} \mathrm{E}$ Lat. at noon $36^{\circ} 16^{\prime} 51^{\prime \prime} \mathrm{S}$. Long. $29^{\circ} 15^{\prime} 00^{\prime \prime} \mathrm{E}$ Error of compass $33^{\circ} 55^{\prime}$ W. Dev: $28^{\circ} 55^{\prime \prime} \mathrm{W}$ True course N $40^{\circ} 52^{\prime}$ W. Distance 2971 miles.
" "6. Ans. Lat. at sight $3^{\circ} 05^{\prime} 13^{\prime \prime} \mathrm{N}$. Long. $0^{\circ} 17^{\prime} 30^{\prime \prime} \mathrm{W}$ Lat. at noon $3^{\circ} 11^{\prime} 07^{\prime \prime}$ N. Long. $0^{\circ} 13^{\prime} 00^{\prime \prime} \mathrm{E}$ Error of compass $41^{\circ} 48^{\prime}$ E. Dev. $16^{\circ} 48^{\prime}$ E True course N $69^{\circ} 01^{\prime}$ W. Distance 3538 miles.

8 SIMPLE RULES AND PROBLEMS IN NAVIGATION

Latitude by meridian altitude of planet

Prob. No. 1. Ans. Latitude by Planet "Saturn" $55^{\circ} 49^{\prime} 13^{\prime \prime} \mathrm{N}$
"، ${ }^{\prime}$. " " " " "Jupiter" $54^{\circ} 13^{\prime} 34^{\prime \prime} \mathrm{S}$

LATITUDE BY EX-MERIDIAN ALTITUDE OF SUN

Prob	No. 1.		Lat. 43
"	2.		" $37^{\circ} 17^{\prime} 06^{\prime \prime} \mathrm{S}$
"	3.	،	$47^{\circ} 56^{\prime} 45^{\prime \prime} \mathrm{S}$
،	4.	،	$22^{\circ} 43^{\prime} 13^{\prime \prime} \mathrm{S}$
"	5.	"	$40^{\circ} 59^{\prime} 03^{\prime \prime}$
/	6.	"	$39^{\circ} 08^{\prime} 15^{\prime \prime}$
،	7.	،	$48^{\circ} 23^{\prime} 03^{\prime \prime} \mathrm{S}$
"	8.	"	$46^{\circ} 57^{\prime} 49^{\prime \prime}$
/	9.	،	$47^{\circ} 47^{\prime} 12$
"	10.	،	$33^{\circ} 28^{\prime} 37^{\prime}$
"	11.	،	$13^{\circ} 15^{\prime} 53^{\prime \prime}$
'	12.	،	$32^{\circ} 22^{\prime} 56^{\prime \prime}$
6	13.		"، $24^{\circ} 44^{\prime} 48^{\prime \prime} \mathrm{S}$
	14.	،	$46^{\circ} 57^{\prime} 22^{\prime \prime}$

LONGITUDE BY FIXED STAR

Рrob.	No.	1.		ng.	pica	$94^{\circ} 22^{\prime} 00^{\prime \prime} \mathrm{W}$
"	"	2.	،	'	*Vega	$90^{\circ} 54^{\prime} 30^{\prime \prime} \mathrm{W}$
،	،	3.	،	/f	*Regulus	$110^{\circ} 00^{\prime} 45^{\prime \prime} \mathrm{E}$
"	"	4.	،	"	*Antares	$166^{\circ} 29^{\prime} 45^{\prime \prime} \mathrm{W}$
،	"	5.	"	"	*Capella	$33^{\circ} 33^{\prime} 00^{\prime \prime} \mathrm{W}$
"	'،	6.	"	،	*Aldebaran	$0^{\circ} 07^{\prime} 00^{\prime \prime} \mathrm{E}$
،	،	7.	"	،	*Capella	$5^{\circ} 14^{\prime} 00^{\prime \prime} \mathrm{W}$
،	/	8.	"	"	*Spica	$113^{\circ} 11^{\prime} 30^{\prime \prime} \mathrm{W}$
،	'،	9.	"	'	*Betelgeux	$164^{\circ} 50^{\prime} 30^{\prime \prime} \mathrm{W}$
"	"	10.	،	"	*Rigel	$7^{\circ} 41^{\prime} 45^{\prime \prime} \mathrm{E}$

LONGITUDE BY PLANET

Рrob. No. 1. Ans. Long. by Planet "Mars" $34^{\circ} 38^{\prime} 00^{\prime \prime} \mathrm{W}$ " " 2. " " " "Saturn" $54^{\circ} 56^{\prime} 30^{\prime \prime}$ W

Latitude by meridian altitude of moon

Prob. No. 1. Ans. Lat. $68^{\circ} 08^{\prime} 26^{\prime \prime} \mathrm{N}$
" " 2. " " $3^{\circ} 10^{\prime} 08^{\prime \prime} \mathrm{S}$
" " 3 . " " $83^{\circ} 30^{\prime} 15^{\prime \prime} \mathrm{N}$
" ${ }^{6} 4 . \quad$. \quad. $9^{\circ} 05^{\prime} 59^{\prime \prime} \mathrm{S}$
" " 5 . " ${ }^{6} 38^{\circ} 52^{\prime} 17^{\prime \prime} \mathrm{S}$
$\because \quad 3 \quad 6 . \quad$ " ${ }^{6} \quad 1^{\circ} 32^{\prime} 39^{\prime \prime} \mathrm{S}$

TIME OF MOON'S MERIDIAN PASSAGE

Рrob. No. 1. Ans. Mer. Pas. Jan. 28d 4h 1m A. M.
" " 2 . " " " Feb. 7d 0h 14m P. M.
" " 3. " " " Mar. 10d 1h 2m P. M.
" "4. " " " Apr. 8d 0h 6m P. M.
" " 5. " " " June 16d 9h 27 m P. M.
" " 6. " " " July 11d 5h 9m P. M.

LONGITUDE AT SUNRISE AND SUNSET OBSERVATIONS
Рrob. No. 1. Ans. Long. $95^{\circ} 50^{\prime} 15^{\prime \prime} \mathrm{E}$
" " 2. " " $96^{\circ} 38^{\prime} 45^{\prime \prime} \mathrm{W}$

PHI PRIME SIGHT FOR LATITUDE

Prob. No. 1. Ans. Lat. $9^{\circ} 22^{\prime} 48^{\prime \prime} \mathrm{S}$
"، " 2. " " $26^{\circ} 49^{\prime} 58^{\prime \prime} \mathrm{S}$
" " 3 . " " $50^{\circ} 13^{\prime} 24^{\prime \prime} \mathrm{N}$

SUMNER'S METHOD

Prob. No. 1. 1st Line of Bearing: Lat. $40^{\circ} \mathrm{N}$ Long. $45^{\circ} 12^{\prime} 15^{\prime \prime} \mathrm{W}$
" $41^{\circ} \mathrm{N}$ " $44^{\circ} 04^{\prime} 30^{\prime \prime} \mathrm{W}$
2d Line of Bearing: " $40^{\circ} \mathrm{N}$ " $46^{\circ} 55^{\prime} 30^{\prime \prime} \mathrm{W}$
" $41^{\circ} \mathrm{N}$ " $44^{\circ} 56^{\prime} 45^{\prime \prime} \mathrm{W}$

MARCQ ST. HILAIRE METHOD

$\begin{aligned} & \text { Prob. No. } 1 . \\ & \text { ،، } \end{aligned}$		1st Line of Bearing: Sun			Alt. Diff.		$-2^{\prime} 15^{\prime \prime}$
			Line	of Bearing			+7' $48^{\prime \prime}$
"	" 2.	1st Line, *Sirius, W.			"	"	$-2^{\prime} 30^{\prime \prime}$
		2d		*Capella, W.	،	"	$-14^{\prime} 13^{\prime \prime}$
"	' 3.	1st	"	*Polaris	Lat. $40^{\circ} 34^{\prime} 28^{\prime \prime} \mathrm{N}$		
		2d	"	*Vega, E.	Alt. Diff.		$-5^{\prime} 45^{\prime \prime}$
		3d	،	*Capella, W.			- $0^{\prime} 07^{\prime \prime}$
"	" 4.	1st	"	*Capella, W.	"	"	$+1^{\prime} 50^{\prime \prime}$
		2d	"	*Vega, E.	"	"	+ $4^{\prime} 15^{\prime \prime}$
		3d	"	*Spica, E.	"	"	$-2^{\prime} 05^{\prime \prime}$
		4th	"	*Procyon, W.	،	"	$-2^{\prime} 20^{\prime \prime}$
"	' 5.	1st	"	Sun	"	"	-42' $14^{\prime \prime}$
		2d	"	Sun	"	"	$-38^{\prime} 46^{\prime \prime}$
*	" 6.			*Regulus, W.	"	"	$+1^{\prime} 39^{\prime \prime}$
		2 d	"	*Arcturus, E.	"	"	$-17^{\prime} 20^{\prime \prime}$

TIME OF HIGH AND LOW WATER

EXAMPLES FOR PRACTICE

LATITUDE BY MERIDIAN ALTITUDE OF SUN

LATITUDE BY MERIDIAN ALTITUDE OF STAR

Рrob.	No. 1.	Lat. by	*Spica	$38^{\circ} 12^{\prime} 14^{\prime \prime} \mathrm{N}$
"	2.	"	*Arcturus	$42^{\circ} 14^{\prime} 20^{\prime \prime} \mathrm{S}$
،	3.	"	*Aldebaran	$73^{\circ} 42^{\prime} 43^{\prime \prime} \mathrm{N}$
"	4.	"	*Antares	$35^{\circ} 07^{\prime} 55^{\prime \prime} \mathrm{S}$
"	5.	"	*Regulus	$45^{\circ} 30^{\prime} 32^{\prime \prime} \mathrm{S}$
"	6.	"	*Formalhaut	$16^{\circ} 47^{\prime} 05^{\prime \prime} \mathrm{N}$

TIME OF STAR'S MERIDIAN PASSAGE

Рrob	No. 1.	Mer. Pas.	*Spica	Jan. 16d	5h 41m A. M.
"	" 2.	"	*Rigel	Feb. 12d	7h 42m P. M.
"	" 3.	"، ${ }^{\prime}$	*Antares	Mar. 20d	4h 36m A. M.
"	4.	" ${ }^{6}$	*Sirius	May 19d	2h 55m P. M.
"	5.	"، "	*Canopus	June 7d	1 h 20 m P. M.
\because	6.	" "	*Capella	Dec.	$12 \mathrm{~h} 14 \mathrm{~m} \mathrm{A}. \mathrm{M}$.

LONGITUDE BY SUN

Prob. No. 1. Long. $80^{\circ} 21^{\prime} 00^{\prime \prime} \mathrm{W}$
" " 2. " $120^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{E}$
" " 3. " $124^{\circ} 16^{\prime} 30^{\prime \prime} \mathrm{W}$
" " 4 . " $35^{\circ} 18^{\prime} 00^{\prime \prime} \mathrm{W}$
". ${ }^{6}$. \quad. $38^{\circ} 20^{\prime} 45^{\prime \prime} \mathrm{E}$
: " 6. " $122^{\circ} 34^{\prime} 30^{\prime \prime} \mathrm{W}$

NOON POSITION SIGHTS

DEVIATION BY AZIMUTH OF SUN

Рrob.	No. 1.	Error of	Compass	$6^{\circ} 10^{\prime} \mathrm{W}$	Dev. $1^{\circ} 50^{\prime} \mathrm{E}$
"	2.	"	"	$15^{\circ} 00^{\prime} \mathrm{E}$	$7^{\circ} 00^{\prime} \mathrm{E}$
"	3.	"	"	$5^{\circ} 11^{\prime} \mathrm{E}$	" $11^{\circ} 11^{\prime} \mathrm{E}$
"	4.	"	"	$5^{\circ} 25^{\prime} \mathrm{E}$	$2^{\circ} 35^{\prime} \mathrm{W}$
"	5.	"	"	$7^{\circ} 36^{\prime}$ W	$0^{\circ} 24^{\prime} \mathrm{E}$
"	" 6.	"	"	$1^{\circ} 24^{\prime} \mathrm{W}$	$5^{\circ} 24^{\prime} \mathrm{W}$

DEVIATION BY AMPLITUDE OF SUN

Prob.	No. 1.	Error of Compass	$7^{\circ} 25^{\prime} \mathrm{W}$	Dev. $1^{\circ} 35^{\prime} \mathrm{E}$
"	" 2.	" ،	$9^{\circ} 00^{\prime} \mathrm{E}$	" $5^{\circ} 00^{\prime} \mathrm{E}$
"	3.	" ${ }^{\prime}$	$13^{\circ} 30^{\prime} \mathrm{E}$	$3^{\circ} 30^{\prime} \mathrm{E}$
"	" 4.	" "	$8^{\circ} 42^{\prime} \mathrm{E}$	" $1^{\circ} 18^{\prime} \mathrm{W}$
'6	" 5.	" ${ }^{\prime}$	$4^{\circ} 53^{\prime} \mathrm{W}$	$6^{\circ} 53^{\prime} \mathrm{W}$
"	" 6.	، "	$1^{\circ} 22^{\prime} \mathrm{W}$	$5^{\circ} 38^{\prime} \mathrm{E}$

LATITUDE BY POLARIS

Prob.	No. 1.	Lat. $16^{\circ} 56^{\prime} 30^{\prime \prime} \mathrm{N}$		
"	"	2.	$"$	$24^{\circ} 15^{\prime} 50^{\prime \prime} \mathrm{N}$
$"$	$"$	3.	$"$	$29^{\circ} 01^{\prime} 47^{\prime \prime} \mathrm{N}$
$"$	$"$	4.	$"$	$15^{\circ} 17^{\prime}$
$40^{\prime \prime}$	N			
$"$	$"$	5.	$"$	$37^{\circ} 27^{\prime} 28^{\prime \prime} \mathrm{N}$
$"$	$"$	6.	$"$	$40^{\circ} 57^{\prime} 19^{\prime \prime} \mathrm{N}$

ALTITUDE AZIMUTH, LONGITUDE BY SUN AND MERCATOR'S SAILING COMBINED

Prob. No. 1. At Sight: Lat. $33^{\circ} 00^{\prime} 06^{\prime \prime}$ N. Long. $47^{\circ} 29^{\prime} 15^{\prime \prime} \mathrm{E}$ At Noon: " $33^{\circ} 32^{\prime} 18^{\prime \prime} \mathrm{N}$. " $47^{\circ} 45^{\prime} 45^{\prime \prime} \mathrm{E}$ Error of Compass $6^{\circ} 59^{\prime}$ W. Dev. $7^{\circ} 59^{\prime} \mathrm{W}$ True Course N $21^{\circ} 49^{\prime}$ W. Distance 945.7 miles.
" " 2. At Sight: Lat. $36^{\circ} 09^{\prime} 12^{\prime \prime} \mathrm{N}$. Long. $126^{\circ} 25^{\prime} 15^{\prime \prime} \mathrm{W}$ At Noon: " $35^{\circ} 59^{\prime} 00^{\prime \prime} \mathrm{N}$. " $126^{\circ} 54^{\prime} 45^{\prime \prime} \mathrm{W}$ Error of Compass $38^{\circ} 39^{\prime}$ E. Deviation $16^{\circ} 24^{\prime}$ E
". " 3. At Sight: Lat. $47^{\circ} 50^{\prime} 42^{\prime \prime} \mathrm{N}$. Long. $22^{\circ} 46^{\prime} 00^{\prime \prime} \mathrm{E}$ At Noon: " $47^{\circ} 25^{\prime} 00^{\prime \prime} \mathrm{N}$. " $22^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E}$ Error of Compass $5^{\circ} 41^{\prime}$ W. Dev. $10^{\circ} 11^{\prime} \mathrm{W}$ True course $\mathrm{S} 23^{\circ} 8^{\prime} \mathrm{W}$. Distance 1452 miles.
"، 4. At Sight: Lat. $38^{\circ} 40^{\prime} 00^{\prime \prime}$ S. Long. $105^{\circ} 1^{\prime} 45^{\prime \prime} \mathrm{W}$ At Noon: " $38^{\circ} 20^{\prime} 00^{\prime \prime} \mathrm{S}$. " $105^{\circ} 1^{\prime} 45^{\prime \prime} \mathrm{W}$ Error of Compass $38^{\circ} 41^{\prime}$ W. Dev. $3^{\circ} 41^{\prime}$ W True Course N $67^{\circ} 56^{\prime}$ W. Distance 4504 miles.
" " 5. At Sight: Lat. $15^{\circ} 26^{\prime} 00^{\prime \prime}$ S. Long. $56^{\circ} 12^{\prime} 00^{\prime \prime} \mathrm{E}$ At Noon: is $16^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{S}$. " $56^{\circ} 37^{\prime} 45^{\prime \prime} \mathrm{E}$ Error of Compass $15^{\circ} 47^{\prime}$ E. Dev. $2^{\circ} 43^{\prime} \mathrm{W}$ True course N $67^{\circ} 52^{\prime} \mathrm{W}$. Distance 3859 miles.
" " 6. At Sight: Lat. $50^{\circ} 35^{\prime} 36^{\prime \prime}$ S. Long. $68^{\circ} 37^{\prime} 15^{\prime \prime} \mathrm{W}$ At Noon: " $50^{\circ} 02^{\prime} 00^{\prime \prime} \mathrm{S}$. " $68^{\circ} 09^{\prime} 30^{\prime \prime} \mathrm{W}$ Error of Compass $10^{\circ} 26^{\prime} \mathrm{W}$. Dev. $3^{\circ} 52^{\prime} \mathrm{E}$ True Course N $50^{\circ} 02^{\prime}$ E. Distance 2338 miles.

LATITUDE BY MERIDIAN ALTITUDE OF PLANET

Prob. No. 1. Lat. by Planet "Mars" $18^{\circ} 41^{\prime} 33^{\prime \prime} \mathrm{S}$
" " 2 . " " "Saturn" $45^{\circ} 38^{\prime} 28^{\prime \prime} \mathrm{S}$
" " $3 . \quad$. $"$ "Venus" $44^{\circ} 48^{\prime} 20^{\prime \prime} \mathrm{N}$
" " $4 . \quad$ " ${ }^{\prime}$ "Jupiter" $41^{\circ} 11^{\prime} 59^{\prime \prime} \mathrm{N}$

LATITUDE BY EX-MERIDIAN ALTITUDE OF SUN

Рrob.	No. 1.	Lat.	$24^{\circ} 16^{\prime} 18^{\prime \prime} \mathrm{N}$
"	" 2.	"	$17^{\circ} 21^{\prime} 15^{\prime \prime} \mathrm{S}$
"	" 3.	"	$53^{\circ} 25^{\prime} 27^{\prime \prime} \mathrm{N}$
"	4.	"	$24^{\circ} 43^{\prime} 36^{\prime \prime} \mathrm{S}$
"	" 5.	"	$48^{\circ} 51^{\prime} 52^{\prime \prime} \mathrm{S}$
"	" 6.	،	$1^{\circ} 26^{\prime} 39^{\prime \prime} \mathrm{N}$

LONGITUDE BY FIXED STAR AND PLANET

Prob.	No. 1.	Long.	*Sirius	60°	$9^{\prime} 45^{\prime \prime} \mathrm{E}$
"	" 2.	"	*Arcturus	141°	$24^{\prime} 00^{\prime \prime} \mathrm{W}$
"	3.	"	*Procyon	41°	$6^{\prime} 45^{\prime \prime} \mathrm{W}$
"	4.	"	*Spica		$56^{\prime} 45^{\prime \prime} \mathrm{E}$
"	5.	Planet	"Venus"		$35^{\prime} 00^{\prime \prime} \mathrm{W}$
،	6.	"	"Saturn"		$44^{\prime} 00^{\prime \prime} \mathrm{E}$

LATITUDE BY MERIDIAN ALTITUDE OF MOON

Рrob.	No. 1.	Lat. 5	$57^{\circ} 37^{\prime} 44^{\prime \prime} \mathrm{S}$
"	2.	" 2	$27^{\circ} 37^{\prime} 10^{\prime \prime} \mathrm{N}$
"	3.	1	$19^{\circ} 11^{\prime} 24^{\prime \prime} \mathrm{S}$
"	4.	" 3	$33^{\circ} 16^{\prime} 51^{\prime \prime} \mathrm{N}$
"	5.	2	$25^{\circ} 39^{\prime} 18^{\prime \prime} \mathrm{S}$
،	6.		$12^{\circ} 21^{\prime} 50^{\prime \prime} \mathrm{N}$

LONGITUDE BY SUNRISE AND SUNSET

Рrob.	No. 1.	Long. $19^{\circ} 25^{\prime} 45^{\prime \prime} \mathrm{W}$
"	" 2.	" $7^{\circ} 40^{\prime} 45^{\prime \prime} \mathrm{E}$
"	3.	" $98^{\circ} 16^{\prime} 00^{\prime \prime} \mathrm{W}$
"	4.	$78^{\circ} 35^{\prime} 30^{\prime \prime} \mathrm{E}$
"		$65^{\circ} 00^{\prime} 00^{\prime \prime} \mathrm{E}$
"	" 6.	" $125^{\circ} 56^{\prime} 15^{\prime \prime} \mathrm{E}$

TIME OF HIGH AND LOW WATER

Prob. No. 1. High Water Jan. 28d 8 h 02 m A. M. 8 h 27 m P. M. Low " Jan. 28d 1h 49 m A. M. 2h 14 m P. M.

[^0]: 28. An applicant for license as chief mate or second mate of ocean steam vessels shall be required to pass a satisfactory examination as to his knowledge of the following subjects:
 29. Latitude by meridian altitude of the sun.
 30. Latitude by meridian altitude of a star.
