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In this contribution, olefin block copolymers were produced via

chain shuttling polymerization (CSP), using a new combination

of catalysts and a chain shuttling agent (CSA) diethylzinc

(ZnEt2). The binary catalyst system included nonbridged half-

titanocene catalyst, Cp*TiCl2(O-2,6-iPr2C6H3) (Cat A) and

bis(phenoxy-imine) zirconium, fh2-1-[C(H)¼NC6H11]-2-O-3-tBu-

C6H3g2ZrCl2 (Cat B), as well as co-catalyst methylaluminoxane

(MAO). In contrast to dual-catalyst system in the absence of

CSA, the blocky structure was obtained in the presence of CSA

and rationalized from rheological studies. The binary catalyst

system could cause the CSP reaction to occur in the presence of

CSA ZnEt2, which yielded broad distribution ethylene/1-octene

copolymers (Mw/Mn: 35.86) containing block polymer chains

with high Mw. The presented dual-catalytic system was applied

for the first time in CSP and has a potential to be extended to

produce a library of olefin block copolymers that can be used

as advanced additives for thermoplastics.
1. Introduction
Chain shuttling polymerization (CSP) process involves the

shuttling of growing polymer chains via a chain shuttling agent

(CSA) between two catalyst active sites, which efficiently

prepare block polymers. CSP is based on reversible chain

transfer reactions, including catalyzed chain growth [1,2] and

coordinative chain transfer polymerization [3–5]. According to

the literatures reported by Valente et al. [6] and Zinck [7], CSP

catalysts can be selected from FI catalyst, pyridylamide catalyst,

a-diimine catalyst, rare earth catalyst and metallocene catalyst.
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Scheme 1. Structures of the nonbridged half-titanocene complex (Cat A) and bis( phenoxy-imine) zirconium complex (Cat B).
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The above-mentioned selection of catalysts could be explored in catalytic production of ethylene-

based block copolymers. For example, ethylene/1-octene block copolymers were prepared via CSP

using bis(phenoxy-imine) Zr and pyridylamide-Hf catalyst system [8,9], whereas polymerization using

a binary zirconocene-based catalyst mixture or a metallocene-Hf catalyst afforded ethylene/1-hexene

block copolymers [10,11]. Interestingly, catalyst systems that incorporate late transition metals, such as

a-diimine structures, exhibit unique ‘chain walking’ phenomenon [12–15]. The a-diimine-based

catalytic systems were applied to prepare topologies of block polyethylene with linear/branched

[16,17], or branched/hyperbranched [18].

A catalytic system can define the microstructure of the resulting polymers, enabling access to the

macromolecular structures with new properties. For example, CSP of propylene using either the

pyridylamide-Hf catalyst or the binary zirconocene-based catalyst system realized copolymer

structures with a broad range of molecular weights [19,20]. Meanwhile, CSP of racemic propylene

oxide using bimetallic chromium catalyst resulted in hydroxy-telechelic isotactic polypropylene oxide

[21]. Interestingly, blocky polymer structures of styrene/isoprene, or isoprene alone were realized via

CSP using rare earth metal-based catalyst system [22–24].

The core of the CSP method is to find a catalytic system where catalysts and chain shuttling agents are

well matched. However, to date, there is no specific theory to reach this goal, and a large number of

experiments are still required to find an efficient catalyst system for CSP.

Therefore, in this work, we first explored a binary catalytic system, composed of nonbridged half-

titanocene (Cat A) and bis(phenoxy-imine) zirconium (Cat B) catalysts in a CSP reaction of ethylene

block copolymers. The binary catalyst system was used to perform ethylene homopolymerization and

ethylene/1-octene copolymerization in the presence of co-catalyst methylaluminoxane (MAO) and

CSA diethylzinc (ZnEt2). The polymers produced by the dual-catalytic system (Cat A/Cat B/MAO/

ZnEt2) have remarkable characteristics, including broad molecular weight distribution and containing

high molecular weight block polymer chains. The block copolymers are capable of improving

compatibility of the blends, and thus polymer mixtures containing block polymer chains have

superior physical and mechanical properties to general blends [25]. Herein this work provides an

exciting avenue to access and develop new advanced material technology.
2. Experimental procedure
2.1. Materials
Methylaluminoxane (MAO, 10 wt% Al in toluene) was purchased from Albemarle Corporation and used

directly without further purification. Diethyl zinc (ZnEt2, 1.5 M in toluene) was obtained from Acros

Organics and used as received. Toluene was purchased from Hangzhou Chemical Reagents Company

of China and purified by MBRAUN SPS-800X solvent purification system before use. 1-Octene and

1-Hexane were supplied by J&K Chemical Ltd and dried over 4 Å molecular sieves. Polymerization-

grade ethylene was obtained from the Sinopec Yanshan Petrochemical Company. All other chemicals

were commercially available and used as received.

2.2. Complex synthesis and characterization
Complex A (Cat A, scheme 1) was synthesized by the reaction of Cp*TiCl3 with one equivalent of

the lithium 2,6-diisopropylphenolate according to the literature [26]. However, complex B (Cat B,
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scheme 1) was synthesized by the reaction of ZrCl4(THF)2 with two equivalents of lithium salt of

N-(3-tert-butylsalicylidene) cyclohexylamine according to the literature [27].

2.2.1. Cp*TiCl2(O-2,6-iPr2C6H3) (Cat A)
1H NMR (300 MHz, CDCl3, d, ppm): 1.38 (d, 12H, J ¼ 9.2 Hz, (CH3)2CH-), 2.00 (s, 15H, C5(CH3)5),

3.51 (m, 2H, (CH3)2CH-), 7.11–7.16 (m, 3H, C6H3).

2.2.2. fh2-1-[C(H)¼NC6H11]-2-O-3-tBu-C6H3g2ZrCl2 (Cat B)
1H NMR (300 MHz, CDCl3, d, ppm): 1.60 (s, 18H, t-Bu), 1.15–2.10 (m, 20H, CH2), 3.83–4.07 (m,2H, CH),

6.90–7.58 (m, 6H, Ar-H), 8.23 (s, 2H, CH¼N).

2.3. Polymerization procedure
The ethylene polymerization was carried out in a jacketed 1 l high-pressure polymerization reactor

(Julabo ACE). The reactor was dried for at least 1 h at 1208C under vacuum. Then the reactor was

repeatedly evacuated and purged with nitrogen gas three times, followed by a final purge with ethene

at 608C. Then 500 ml of dried toluene was introduced into the reactor, and the stirring speed was

controlled at 300 r.p.m. At the same time, the toluene solutions of catalysts, co-catalyst MAO and CSA

ZnEt2 (if needed) were injected into the reactor. Ethylene was fed continuously to maintain the

required 1.0 MPa pressure during the reaction. After 30 min, the polymerization was terminated,

the resulting mixtures were immediately poured into acidified alcohol (5 vol% of hydrochloric acid).

The polymers were washed with an excess of alcohol, and dried in vacuum at 508C for 4 h until

constant weight was attained.

2.4. Polymer characterization
Gel permeation chromatography (GPC) was performed with a Polymer Laboratories PL-220 GPC

instrument using 1,2,4-trichlorobenzene as an eluent and operated at a flow rate of 1.0 ml min21 and

temperature of 1508C.

Differential scanning calorimetry was performed on a Perkin-Elmer 8500 thermal analyser under a

nitrogen atmosphere. The polymers of 10 mg were heated to 1608C at the rate of 108C min21 and

remained at 1608C for 1 min. Then, the samples were cooled to 08C at the rate of 108C min21 and

held at 08C for 3 min. Finally, the polymers were reheated to 1608C at the rate of 108C min21. Peak

melting temperatures of the polymers were determined from the second heating curves.
1H NMR spectra were recorded on a Bruker TopSpin 300 MHz spectrometer using chloroform-d as a

solvent at 258C. 13C NMR spectra of the polymers were recorded with a Bruker TopSpin 300 MHz

spectrometer using o-dichlorobenzene-d4 (o-C6D4Cl2) as a solvent at 1008C.

The linear viscoelastic properties of all samples were measured using the MCR 302 rotational

rheometers with 25 mm parallel disc geometry and a gap of 1 mm. The dynamic frequency sweep

tests were conducted between 0.1 and 500 rad s21 with a strain amplitude of 1.25% at 2008C.
3. Results and discussion
3.1. Dual-catalyst system (Cat A þ Cat B)/MAO catalytic ethylene homopolymerization
The effect of CSA on the molecular weight and molecular weight distribution of the polymers was

analysed to investigate CSP reaction of the dual-catalytic system (Cat A/Cat B/MAO/ZnEt2). The

properties of the resulting polymers are summarized in table 1.

The results of ethylene polymerization using either Cat A or Cat B, and the CSA ZnEt2 are listed in

table 1 (Runs 1–4). The ethylene homopolymerization using Cat A (Run 1) yielded polyethylene with

high molecular weight and polydispersity, which was consistent with the previous report [26].

In the case of the individual catalyst in the presence of ZnEt2, there was a significant decrease in

molecular weight and a little decrease in molecular weight distribution compared to the dual-catalyst

system (Cat A þCat B)/MAO (Run 2, Run 4 versus Run 5 in figure 1). Therefore, it indicated that the

chain transfer reaction that occurred between the CSA ZnEt2 and single catalyst was faster compared

to the propagation and reversible [28].
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Figure 2. 13C NMR (o-C6D4Cl2, 300 MHz, 1008C) of ethylene/1-octene copolymers.
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Figure 1. The effect of ZnEt2 on the molecular weight and molecular weight distribution of ethylene polymers.

Table 1. The effect of ZnEt2 on ethylene homopolymerization and properties of resulting polyethene.

Runa
Cat A/Cat B
(mmol/mmol)

Zn/(Cat A þ Cat B)
(molar ratio) Ab

Mw � 1024

(g mol21) Mw/Mn

Tm

(8C)
DHf

(J g21)

1 4/0 0 6.54 45.18 5.88 132.6 159.4

2 4/0 300 4.21 3.45 5.58 132.0 225.5

3 0/4 0 3.47 1.20 2.91 131.9 252.4

4 0/4 300 5.26 0.44 2.50 131.1 240.9

5 2/2 0 4.76 17.21 15.66 134.1 217.1

6 2/2 300 6.32 10.28 40.16 130.6 241.2

7 2/2 450 7.23 18.43 72.60 132.4 233.0
aConditions: Cat A þ Cat B ¼ 4 mmol, Al(MAO)/(Cat A þ Cat B) molar ratio ¼ 1500, 500 ml toluene, 10 atm ethylene, Tp ¼

608C, tp ¼ 30 min.
bActivity: 106 g mol21 h21.
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When using the binary catalyst system (Cat A þCat B)/MAO, the amount of ZnEt2 had a significant

effect on molecular weight and molecular weight distribution of the obtained polymers (Runs 5–7 in

table 1 and figure 1). Compared with polymers produced by a single catalyst, the polydispersity of
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polymers produced by the dual-catalytic system (Cat A/Cat B/MAO/ZnEt2) was broadened with

increasing the amount of ZnEt2. The fractions with lower Mw showed bimodal distributions, while the

fragments with higher Mw had unimodal distributions (Runs 6–7 in figure 1). There was no

significant chain transfer reaction between either catalyst in the absence of ZnEt2. However, the chain

transfer efficiency between ZnEt2 and Cat A or Cat B was different. This difference would lead to

more complicated chain transfer reactions, which would result in poor control of polymers’ architecture.

On the one hand, the b-elimination process occurred to generate inherently low molecular weight

polymers terminated with vinyl group in the catalysis performed with Cat B. Catalyst A had good

copolymerization activity for a-olefins (including the generated macromonomers). Therefore, it

would be possible that macromonomers with vinyl group as comonomer were inserted into growing

polymer A. However, this process would be difficult due to the large steric hindrance of the

comonomer. On the other hand, the growing polymer chains could be easily displaced with an ethyl

group from ZnEt2 rather than terminated by the b-elimination process. However, the content of higher

molecular weight components rose with increasing the ZnEt2 amount (Runs 6–7 in figure 1). Hence, it

was impossible that the fractions with higher molecular weight were the polymers with macromolecular

long-chain branches.

It would be reasonable to conclude that the fractions with lower Mw were the mixtures that were,

respectively, produced by the Cat A/MAO/ZnEt2 and Cat B/MAO/ZnEt2 system. While the fractions

with higher Mw originated from CSP [16] carried out with the dual-catalytic system (Cat A/Cat

B/MAO/ZnEt2). The amount of ZnEt2 had a negligible impact on the thermal behaviour of the

polymers obtained by dual-catalytic system (see electronic supplementary material, figure S1).

In summary, using the dual-catalyst system (Cat A þCat B)/MAO in the presence of ZnEt2 could

cause the occurrence of ethylene CSP, which produced polymers that had a broad molecular weight

distribution and contained high molecular weight chains.

3.2. Dual-catalyst system (Cat A þ Cat B)/MAO catalytic ethylene/1-octene copolymerization
The ethylene/1-octene copolymerization with the dual-catalytic system (Cat A/Cat B/MAO/ZnEt2) was

investigated by introducing 1-octene in order to prepare block copolymers containing branching

structure.

3.2.1. The effect of ZnEt2 on properties and microstructure of ethylene/1-octene copolymers

CSP was carried out with the dual-catalytic system (Cat A/Cat B/MAO/ZnEt2) and the architecture

(linear/branched) of resulting copolymers was investigated. The results, summarized in table 2, show

that the amount of ZnEt2 affected molecular weight, polydispersity, melting point, melting enthalpy

and rheological properties of the copolymers.

It is possible to judge whether we get block copolymers by comparing their melting point, degree of

branching [29] and rheological properties [30,31].

The ternary sequence structure distribution of the ethylene/1-octene copolymers are listed in table 3.

The E represents an ethylene unit, while O represents an octene unit. The EEO appeared only in these

spectra (Runs 9 and 14 in figure 2), indicating that this sequence was only present in copolymers with

high contents of 1-octene. The EEO ternary sequence content produced by the dual-catalytic system

(Cat A/Cat B/MAO/ZnEt2) was decreased to 0.042 (Run 14) compared with EEO content got from

Cat A (0.102, Run 9). Herein it indicated that the dual-catalyst system (Cat Aþ Cat B)/MAO yielded

new polymer chains in the presence of ZnEt2. The detailed NMR analysis of samples is shown in the

electronic supplementary material, figures S2, S3 and S4.

Based on figure 3, the molecular weight of polymers obtained from Runs 12 and 14 was near (in

the absence and presence of CSA, respectively). Due to the copolymerization ability of Cat A, the vinyl

group-terminated macromonomers produced by Cat B was possible to be inserted into growing

polymer A chains, which generated the polymers with macromolecular long-chain branches. Hence,

it would be reasonable to conclude that the fractions with high Mw were either polymers

with macromolecular long-chain branches or block copolymers originated from CSP. The viscosity

of polymers obtained in Run 14 was higher than Run 12 in the low angular frequency range. In the

meantime, the shear thinning behaviour of polymers obtained in Run 14 was more pronounced

than Run 12 with increasing angular frequency. Hence, it indicated that it was impossible for a

large number of polymers with macromolecular long-chain branches to exist in the polymers

obtained in Run 14. However, the viscosity of polymers obtained in Run 14 was lower than Run 12



Table 3. The triad sequence distributions of ethylene/1-octene copolymers obtained by 13C NMR analysis.

Run EEE EEO OEO EOE EOO OOO

9 0.847 0.102 0 0.051 0 0

11 0.993 0 0 0.007 0 0

14 0.937 0.042 0 0.021 0 0
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Figure 3. The complex viscosity curve of polymers (Runs 12 and 14) at 2008C.

Table 2. The effect of ZnEt2 on ethylene/1-octene copolymerization and properties of resulting copolymers.

Runa
Cat A/Cat B
(mmol/mmol)

Zn/(Cat
A þ Cat B)
(molar ratio) Ab

Mw � 1024

(g mol21) Mw/Mn Tm (8C)
DHf

(J g21)
Content of
1-octenec

8 4/0 0 5.71 6.32 2.60 85.12 55.10 —

9 4/0 300 5.19 2.89 2.42 94.80 84.91 5.08

10 0/4 0 4.58 1.25 2.14 131.2 244.5 —

11 0/4 300 7.71 1.17 5.32 130.6 240.0 0.26

12 2/2 0 7.45 8.74 7.71 127.7 104.0 —

13 2/2 150 4.95 12.45 35.13 126.7 157.9 —

14 2/2 300 6.89 11.93 35.86 125.8 159.1 2.12

15 2/2 450 6.53 1.12 7.26 127.0 220.7 —
aConditions: 20 ml 1-octene, Cat A þ Cat B ¼ 4 mmol, Al(MAO)/(Cat A þ Cat B) molar ratio ¼ 1500, 500 ml toluene, 10 atm
ethylene, Tp ¼ 608C, tp ¼ 30 min.
bActivity: 106 g mol21 h21.

cIn mol% determined by 13C NMR spectra.
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in the high angular frequency range. It indicated that the number of hexyl-branches of polymers

obtained from Run 14 was lower than Run 12. Thus, I further believed that the polymers obtained

from Run 14 existed as block copolymers [32] rather than macromolecular long-chain branched

polymers.
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Figure 4. The dynamic modulus curve of polymers (Runs 12 and 14) at 2008C.
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Next, we investigated dynamic modulus as a parameter of block copolymers. Based on the block

copolymers increasing interfacial elasticity of the blends, the dynamic modulus of mixtures increased

in the low angular frequency range, whereas the dynamic modulus was near in the high angular

frequency range [32]. The storage modulus of polymers obtained in the presence of CSA (Run 14) was

higher than in its absence (Run 12). As the angular frequency increased, the storage modulus of

polymers obtained in Run 14 increased more slowly than Run 12. It indicated that the block

copolymer microstructure existed in polymers obtained with a dual-catalyst system in the presence of

ZnEt2 (Run 14 in figure 4).

The effectiveness of copolymerization reaction produces copolymers with significantly decreased

molecular weight compared with homopolymers [33]. The addition of 1-octene had a significantly

different influence on properties of the polymers obtained by either Cat A or Cat B, respectively (see

electronic supplementary material, figures S5 and S6). After adding 20 ml 1-octene (Run 8), the

molecular weight of copolymers obtained with Cat A was significantly decreased (Mw: 451 800 g mol21

! 63 200 g mol21), and the molecular weight distribution became narrowed (Mw/Mn: 5.88! 2.60)

compared to ethylene homopolymers (Run 1). When catalyst A was used, the melting point and

melting enthalpy of copolymers were significantly reduced compared to ethylene homopolymers.

(Run 1 versus Run 8; Tm: 132.68C! 85.128C; DHf: 159.4 J g21! 55.10 J g21), which indicated that the

catalyst A had a high copolymerization activity [34,35]. However, in the case of Cat B, adding 20 ml

1-octene had little effect on molecular weight, polydispersity, melting point and melting enthalpy of

the polymers (Run 3 versus Run 10), indicating that the catalyst B was poor effective for

copolymerization [36].

According to Runs 8–11 in table 2, adding ZnEt2 reduced molecular weight and polydispersity of the

polymers obtained with Cat A, in contrast to increased molecular weight distribution in the case of Cat B

(Mw/Mn: 2.14! 5.32). The addition of ZnEt2 also had a different influence on the thermal behaviour of

the polymers obtained by either Cat A or Cat B respectively (see electronic supplementary material,

figure S7). Based on GPC data (figure 5), the polymers obtained with Cat B (Run 11) were bimodal

and incorporated low molecular weight peak. It would be reasonable to conclude that the low

molecular weight peak was polymers produced by Cat B/MAO/ZnEt2 system.

The chain transfer reaction reduced the molecular weight of the polymers obtained with a single

catalyst system. Therefore, in general, the addition of CSA ZnEt2 causes molecular weight and

polydispersity of polymers to decrease. When ethylene/1-octene copolymerization was carried out in

the presence of the dual-catalyst system (Cat A þCat B)/MAO, the effect of amount of ZnEt2 on

molecular weight and polydispersity of the polymers was significantly different from previous reports

[8]. As the amount of ZnEt2 increased, the molecular weight distribution of polymers gradually

widened (Runs 12–14 in table 2). At the same time, the content of components with higher molecular

weight increased (Runs 13–14 in figure 6). We thought it would be reasonable to conclude that the

fractions with lower Mw were the mixtures produced by individual catalytic systems (Cat A/MAO/

ZnEt2) and (Cat B/MAO/ZnEt2). While the fractions with higher Mw were produced by dual-catalytic

system (Cat A/Cat B/MAO/ZnEt2) via CSP (Runs 13–14 in figure 6) [16]. Further increasing the

amount of CSA ZnEt2 (Run 15), lowered the molecular weight of the polymers. This result

is consistent with previous reports [37,38], where an increased amount of ZnEt2 in the presence of
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Figure 5. The effect of ZnEt2 on the molecular weight and polydispersity of copolymers obtained with individual catalysts.
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dual-catalyst system, led to the increased number of produced polymer chains. It would lead to

significant decrease in molecular weight of the polymers.

Using the binary catalyst system (Cat A þCat B)/MAO in ethylene homopolymerization produced

polymers with large molecular weight and broad molecular weight distribution (Mw: 184 300 g mol21,

Mw/Mn: 72.60) (Run 7) at the Zn/(Cat A þCat B) molar ratio of 450. However, ethylene/1-octene

copolymerization under the same catalytic conditions led to lower molecular weight and relatively

narrower molecular weight distribution of resulting polymers (Mw: 11 200 g mol21, Mw/Mn: 7.26)

(Run 15). These findings were reinforced by previous reports [10,33], where copolymerization not only

significantly reduced the molecular weight of the polymers produced by a single catalyst [33], but

also decreased the molecular weight of the block copolymers produced by dual-catalytic system [10].

For random copolymers, the melting point is inversely proportional to the comonomer content. As

the amount of ZnEt2 increased, the melting point of polymers produced by the binary catalyst system

dropped. However, it was still higher than 1258C (Runs 12–14 in table 2 and figure 7). Hence, the

crystallization ability of the block copolymers contained in polymers was between the copolymer A

and the copolymer B. While their melting enthalpy increased with increasing the amount of CSA.

Thus, we concluded that the content and crystallization degree of the block copolymers was high in

products of a binary catalyst polymerization. When the Zn/(Cat A þCat B) molar ratio was increased

to 450 (Run 15), a new melting peak appeared in the polymer melting curve at 1158C. This peak

indicated that increasing amount of CSA led to the enhancement of soft segment content in the block

copolymers.
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Table 4. The effect of catalyst molar ratio Cat A/Cat B on ethylene/1-octene copolymerization and properties of resulting
copolymers.

Runa
Cat A/Cat B
(mmol/mmol)

Zn/(Cat A þ Cat B)
(molar ratio) Ab

Mw � 1024

(g mol21) Mw/Mn Tm (8C)
DHf

(J g21)

16 1/3 300 6.97 0.81 3.16 128.6 247.0

14 2/2 300 6.89 11.93 35.86 125.8 159.1

17 3/1 300 2.39 1.30 6.58 124.4 179.2
aConditions: 20 ml 1-octene, Cat A þ Cat B ¼ 4 mmol, Al(MAO)/(Cat A þ Cat B) molar ratio ¼ 1500, 500 ml toluene, 10 atm
ethylene, Tp ¼ 608C, tp ¼ 30 min.
bActivity: 106 g mol21 h21.
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In summary, the dual-catalyst system (Cat A þCat B)/MAO was used in ethylene/1-octene

copolymerization in the presence of CSA ZnEt2, which produced the polymers with weight-average

molecular weight up to 119 300 g mol21 and molecular weight distribution up to 35.86. At the same

time, the high molecular weight block polymer chains were contained in the ethylene/1-octene

copolymers.
3.2.2. The effect of Cat A/Cat B molar ratio on the copolymer properties and structure

The effect of Cat A/Cat B molar ratio on the properties of the polymers prepared by the dual-catalytic

system (Cat A/Cat B/MAO/ZnEt2) was investigated by comparing molecular weight, polydispersity,

melting point and melting enthalpy of the resulting polymers. The findings are summarized in table 4.

As the molar ratio of the Cat A/Cat B in the binary catalyst system increased, the molecular weight of

polymer mixtures rose and then decreased. The molecular weight of block copolymers followed the same

trend (table 4 and figure 8). When the molar ratio of Cat A/Cat B was 2/2 (Run 14), the molecular weight

of block copolymers was high. This outcome was rationalized by the improvement of the soft segment

content of block copolymers [11]. The catalyst molar ratio reached 3/1 (Run 17), where more significant

chain transfer reaction between catalyst A and ZnEt2 perhaps occurred. Therefore, reducing the average

block length in the resulting polymers [38], which led to a reduction of molecular weight of the block

copolymers produced with the dual-catalytic system.

When the molar ratio of the Cat A/Cat B in the dual-catalytic system increased, the melting point and

melting enthalpy of polymers decreased (table 4 and figure 9). When the catalyst molar ratio reached Cat

A/Cat B ¼ 3/1 (Run 17), the polymer melting curve emerged with a new melting peak at 1088C. This

occurrence indicated that the soft segment content in the block copolymers is high at the high molar

ratio of Cat A/Cat B.
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Figure 8. The Effect of catalyst molar ratio Cat A/Cat B in the binary catalytic system on the molecular weight and molecular weight
distribution of copolymers.
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In summary, the molecular weight, melting point and melting enthalpy of the polymers prepared by

the binary catalytic system could be adjusted by changing the catalyst molar ratio. The molecular weight

and thermal properties of block copolymers contained in the polymer mixtures also could be adjusted by

varying the catalyst molar ratio.
4. Conclusion
The dual-catalyst system composed of nonbridged half-titanocene catalyst (Cat A) and bis(phenoxy-

imine) zirconium catalyst (Cat B) was used in ethylene/1-octene copolymerization in the presence of

co-catalyst MAO and CSA ZnEt2. The obtained polymers had a weight-average molecular weight up

to 119 300 g mol21 and molecular weight distribution up to 35.86, containing block polymer chains

with high Mw.

The use of the dual-catalytic system (Cat A/Cat B/MAO/ZnEt2) will be further expanded to CSP of

ethylene and other a-olefins, to prepare a series of broad distribution polymers containing blocky

structure. These polymers are planned to be used as additives to thermoplastics, improving the

physical and mechanical properties of the blends. Herein this work provides a new platform for the

development of advanced functional materials.
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