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ABSTRACT 

It is the purpose of this thesis to further advance research conducted in the 

development of an autonomous ground control for a Micro-Morphing Air-Land Vehicle 

(MMALV).  The intent of this system is to provide a small, low cost reconnaissance asset 

in the form of an unmanned aerial vehicle that is capable of flying, landing, and crawling 

to its target location.  The biologically inspired MMALV has already been successfully 

integrated with the Kestrel Autopilot proving it capable of semi and full autonomous 

flight.  This thesis will focus on the advanced development of the ground locomotion 

system by integrating a Gumstix microprocessor with the Kestrel Autopilot system.    

Research in this thesis has: 1) drawn upon biological inspiration to enhance 

MMALV’s robustness, 2) extended development of the ground locomotion system to 

allow MMALV to navigate on the ground both semi and fully autonomously, and 3) 

extended the capabilities of the MMALV by introducing on-board processing.   

Operational capability has been established through extensive hardware tests in realistic 

hostile environments. 
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EXECUTIVE SUMMARY 

This thesis is to continue previous work on the Micro Morphing Air-Land Vehicle 

Unmanned Air Vehicle (MMALV UAV).  The MMALV is a result of a US Air Force 

grant to develop an UAV to “have a wingspan under 12 inches, weigh less than 1 lb, and 

be capable of flying more than a mile to a target.  Upon landing, it will morph into a 

terrestrial vehicle to crawl to a target area.  Furthermore, MMALV will be able to regain 

flight after landing from a high position such as a high building, thus delivering 

maximum intelligence and surveillance to the warfighter” [1,3].  The focus of this thesis 

is to further the advancement of the ground locomotion mode of the MMALV by 

incorporating a Gumstix microprocessor.      

Previous work on this project used a 12 inch wingspan and a 16 inch wingspan 

airframe.  The 12 inch wingspan model was found unsuitable for the required payload.  

Both versions were also found to be unstable and not extremely robust.   A new version 

of the 16 inch model is currently under development by the MMALV team.  The new 

model is designed to be more controllable and robust than the previous models.  Previous 

work also required the use of a small, lower power data transfer device.  This requirement 

resulted from the need to reduce weight and also to have the ability to provide an aerial 

relay platform to network with the MMALV while it is in the ground locomotion mode.   

The research on the previous MMALV designs included flight stability tuning 

with the Kestrel Autopilot System and minimum ground locomotion testing and 

development.  The ground locomotion testing included different drive system 

considerations and a software interface with the Kestrel autopilot.  The software interface 

controlled the Wheel/Legs (WHEGs™) through the autopilot by utilizing extra servo 

channels.  A Logitech controller was used to send PWM signals to servos or ESCs for the 

WHEGs™ control.  Procerus Technologies’ Kestrel Autopilot is still currently utilized in 

the MMALV for autonomous flight and stability.  This autopilot will be used in the 

development of the ground locomotion system, which is the purpose of this thesis.   
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Once the MMALV is in ground locomotion mode it will need to be controlled to 

reach a target location.  A target could be a suspicious vehicle spotted by the MMALV 

while flying a reconnaissance mission overhead.  Once a suitable landing spot is 

designated, the MMALV would land then crawl to the suspect vehicle and investigate.  It 

is essentially a mobile sensor package armed with cameras, microphones and other 

sensors.  The MMALV team is working to develop a robust WHEGs drive system that 

will survive the impact of landing and successfully maneuver the MMALV around the 

target area.  Furthermore, the adding of an onboard microprocessor will be used to 

receive data from the autopilot and ground station to control the MMALV to a desired 

target location. 

The ultimate goal of this thesis is to develop and improve the control of the 

ground locomotion system.  The integration of a Gumstix microprocessor and the Kestrel 

Autopilot System into the new 16 inch wingspan model will bring the MMALV team 

closer to that goal.  The addition of a microprocessor will also further expand the 

capabilities of the MMALV by introducing onboard processing.  The microprocessor 

could also be used to control other sensor nodes and collect data. 

 The objective of this thesis is to develop an improved autonomous ground 

locomotion system that will be incorporated into the new 16 inch wingspan MMALV.  

The ground locomotion system will consist of three major components: drive system, 

controller, and Kestrel Autopilot System (KAP).  The introduction of an on-board 

Gumstix microprocessor will function as the controller, which will be used to interface 

the autopilot and drive system.   The desired end state is to control the ground locomotion 

system manually, or autonomously by giving it a GPS coordinate from the ground 

station.  The microprocessor will process the data from the autopilot and ground station 

to control the drive system’s WHEGs™.     

In order to develop the ground locomotion system, six phases needed to take 

place: (1) derive a ground locomotion control algorithm, (2) develop the Gumstix for 

ground locomotion control processing, (3) interface the Gumstix to the drive system, (4) 
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interface the Gumstix to the autopilot for data input, (5) create a TCP/IP application that 

sends data packets from the ground station to the autopilot, and (6) integrate phase one 

through five to achieve end state.   

The ground control algorithm generates the commands to drive the two 

WHEGs™ on the MMALV.  The error is calculated from the difference between the 

command heading and the desired heading.  The commanded direction is sent from a 

ground station and can be entered manually or calculated from the current position and 

target position.  The current position and heading are measurements from the autopilot’s 

sensors.  The error determines the turn rate of the MMALV.  The error limits is -180 to 

180 degrees.  Zero error the MMALV will move forward.  As the error departs from zero, 

the left or right WHEG™ will decrease its rotation rate, resulting in a higher turn rate to 

move the MMALV to the desired heading. 

The Gumstix will process this algorithm by integration of the KAP with 

WHEGs™ drive system. A lot of initial development work of the Gumstix was done 

prior to this integration.  The Gumstix was first tested with two drive system 

configurations: two continuous servos configuration with servo controller, and two DC 

motors configuration with motor controller.  Once these configurations were functioning 

properly with Gumstix, the Gumstix was integrated with the KAP.  The Gumstix and 

KAP integration consisted of the modification of Gumstix and Kestrel Autopilot 

integration code created by Procerus Technologies.  It was modified to fulfill the 

requirements of the ground control algorithm.  This included receiving packets from the 

autopilot and ground station.  These packets contained data consisting of the current 

heading, desired heading, current position, target position, and desired speed.  Once the 

Gumstix was independently integrated with the drive system and KAP, they could now 

be united. 

The consolidated ground locomotion system was completed by inserting the drive 

system control algorithm into the modified Gumstix and Kestrel Autopilot code.  Once 

the combined code was function properly with the proper WHEG™ movements, the 

ground locomotion system was tested statically with success.  



 xvi 

There is much more work to be done with the Gumstix and the ground locomotion 

system.  Flight testing with this system still needs to be accomplished.  Also, the ground 

locomotion system needs to be operationally tested with additional sensors and 

reconnaissance equipment, such as cameras.  The Gumstix also has an abundant amount 

of expansion configurations that could be use to increase the mission and functionality of 

the MMALV.   
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I. INTRODUCTION 

A. PURPOSE 

The purpose of this thesis is to continue previous work on the Micro Morphing 

Air-Land Vehicle Unmanned Air Vehicle (MMALV UAV).  The MMALV is a result of 

a US Air Force grant to develop an UAV small in size and capable of flying more than a 

mile.  Upon landing, it will morph into a ground locomotion mode and crawl to a target 

area, thus delivering intelligence and surveillance to the warfighter [1].  The development 

team working towards this goal is made up of the Naval Postgraduate School and 

BioRobots LLC. The focus of this thesis is to further the advancement of the ground 

locomotion function of the MMALV by incorporating a Gumstix microprocessor. 

Previous work on this project used a 12 inch wingspan and a 16 inch wingspan 

UAV.  The 12 inch wingspan model was found unsuitable for the required payload.  Both 

versions were also found to be unstable and not very robust.   A new version of the 16 

inch model is currently under development by the MMALV team.  The new model is 

designed to be more controllable and robust than the previous models.  Previous work 

also required the use of a small, lower power data transfer device.  This requirement 

resulted from the need to reduce weight and also to have the ability to provide an aerial 

relay platform to network with the MMALV while it is in the ground locomotion mode.   

Once the MMALV is in ground locomotion mode it will need to be controlled to 

reach a target location.  A target could be a suspicious vehicle spotted by the MMALV 

while flying a reconnaissance mission overhead.  Once a suitable landing spot is 

designated, the MMALV would land then crawl to the suspect vehicle and investigate.  It 

is essentially a mobile sensor package armed with cameras, microphones and other sensor 

nodes.  The MMALV team is working to develop a robust Wheel/Legs (WHEGs™) drive 

system that will survive the impact of landing and successfully maneuver the MMALV 

around the target area.  Furthermore, the adding of an onboard microprocessor will be 

used to receive data from the autopilot and a ground station to control the MMALV to a 

desired target location. 
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The ultimate goal of this thesis is to develop and improve the control of the 

ground locomotion system.  The integration of a Gumstix microprocessor and the Kestrel 

Autopilot System into the new 16 inch wingspan model will bring the MMALV team 

closer to that goal.  The addition of a microprocessor will also further expand the 

capabilities of the MMALV by introducing onboard processing.  The microprocessor 

could also be used to control other sensor nodes and collect data. 

B. PREVIOUS WORK 

 As mentioned above, previous work included research on a 12 inch and 16 inch 

wingspan model, shown in Figure 1.  These early airframes were designed by University 

of Florida.  Their designs had proved to be unstable and difficult to fly for military 

applications.  The airframes also proved to be structurally unsound.  As a result, 

BioRobots LLC developed an improved 16 inch wingspan MMALV.  The hardened 

airframe is designed to survive hard landings and also be more aerodynamically stable.  

This design also took into account the need for more room to accommodate the ground 

locomotion system.   

 

 

Figure 1.   12 inch and 16 inch MMALV [From 3]. 

The research on the previous MMALV designs included flight stability tuning 

with the Kestrel Autopilot System and minimum ground locomotion testing and 



 3 

development.  The ground locomotion testing included different drive system 

considerations and software interface with the Kestrel Autopilot.  The software interface 

controlled the WHEGs through the autopilot by utilizing extra servo channels.  A 

Logitech controller was used to send PWM signals to servos or electronic speed 

controller (ESC) for the WHEGs™ control [2].  Procerus Technologies’ Kestrel 

Autopilot is still currently utilized in the MMALV for autonomous flight and stability.  

This autopilot will be used in the development of the ground locomotion system, which is 

the purpose of this thesis.  A description of the Kestrel Autopilot system and WHEGs™ 

is discussed below.  

Captain Robert Bledsoe, USMC had done previous research on replacing the 

current large, high power modem on the autopilot, with a smaller low powered modem 

which gives the MMALV data encryption and mobile ad hoc networking capabilities 

(XBee) [3].  This capability will be essential when the MMALV is on the ground and not 

in line-of-sight range of a ground station.  A data relay or routing capability will be 

necessary to control the MMALV on the ground as well as to collect sensor data. 

C.  KESTREL AUTOPILOT SYSTEM  

 The Kestrel Autopilot System is created by Procerus Technologies.   The 

autopilot is the heart of the MMALV, which is shown in Figure 2.   
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Figure 2.   Kestrel Autopilot [From 2]. 

It provides the MMALV with autonomous take-off, landing, and flight, as well as GPS 

navigation.  The system also includes Virtual Cockpit software and a ground 

communication station.   The sensors onboard the autopilot includes the following:   3-

axis angular rate sensor, 3-axis accelerometer, 2-axis magnetometer, absolute pressure 

sensor and differential pressure sensor.  There is also an attached GPS receiver.  In 

addition there are four serial ports that double as I/O ports.  The GPS port is dedicated to 

the GPS receiver.  The modem port is optional if modem is not already plugged into the 

header or if using an off-the-shelf modem.  Two other ports are available for the user to 

employ, Port A (programming port) and Port E.  All serial ports operate at TTL levels 

(0V to 3.3V) and can be configured for standard serial, SPI, or I2C communication.  

Serial port pin descriptions are shown in Figure 3.   
Pin Serial A Serial E GPS Modem 

1 GND GND GND GND 

2 PWR (3.3V or 5V) PWR (3.3V or 5V) PWR (3.3V or 5V) PWR (3.3V or 5V) 

3 TxA TxE TxD TxF 

4 RxA RxE RxD RxF 

5 Reset/Smode Clock E Clock D Clock F 

Figure 3.   Kestrel Autopilot Pin Layout. 
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 The serial ports can be configured using the payload window in the Virtual 

Cockpit software, shown in Figure 4.  The payload window can be used to configure 

individual pins on the autopilot for a variety of functions.  The functions include the 

following: bi-directional I/O pins, analog-to-digital converter pins, serial port pass 

through, camera pin switching, hardware-in-the-loop setup, and modem port mirroring.  

The integration of the autopilot and the Gumstix microprocessor will use serial port A as 

a modem mirror.  The modem mirror allows all data transmission passed from the ground 

communication station to the autopilot’s modem to be mirrored out this port.  

 

 

Figure 4.   Virtual Cockpit Payload Window [From 6]. 

The components of the ground communication station consist of the Virtual 

Cockpit software and Commbox.  Virtual Cockpit is a Windows based ground control, 

mission planning flight software for the Kestrel Autopilot.  It allows the user to 

dynamically update mission profiles, such as airspeed, altitude and GPS waypoints.  It 

also enables the user to apply different autonomous and semi-autonomous flight modes.  

The Virtual Cockpit is used to flight tune the MMALV by allowing user inputs with a 



 6 

Logitech game pad and by enabling and disabling the autopilot control loops.  Flight 

tuning on the new MMALV is concurrently being conducted by Captain Bryant Pater, 

USMC [4]. 

The Commbox transmits all data to and from the Virtual Cockpit and autopilot.  It 

has a processor and a wireless digital modem.  This modem is identical to the one 

connected to the autopilot.  The modem currently being used is a 900 MHz FHSS 

Aerocomm modem.  Although any wireless modem could be used with some firmware 

updates.  The Commbox connects to a laptop with the Virtual Cockpit, by a RS232 serial 

cable.  The layout is shown in Figure 5.   

 

Figure 5.   KAP Ground Control Station [From 5]. 

D. WHEGS™ 

 WHEGs™ are a design that was developed by the Biorobotics Laboratory at Case 

Western University.  It combines the efficiency of Wheels and the terrain traversable 

ability of legs.  The WHEGs are what enables the MMALV to crawl while in ground 

locomotion mode.  They have a higher ground clearance than a wheel with the same 

radius, as shown in Figure 6.  The focus of this thesis is to develop the ground control 

system to drive these WHEGs™ with the integration of a Gumstix microprocessor.  The 

MMALV will have a left and right WHEG™ on the front of the aircraft.  It will be 

controlled by differential steering.  WHEGs™ obstacle clearance abilities and 

compliance was previously researched in a thesis by Capt Josh Kiihne, USMC [2].  The 

WHEGs™ are incorporated in the ground locomotion drive system. 
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Figure 6.   WHEGs™ [From 2]. 

 

E. THESIS OBJECTIVE 

The objective of this thesis is to develop an improved autonomous ground 

locomotion system that will be incorporated into the new 16 inch wingspan MMALV.  

The ground locomotion system will consist of three major components: drive system, 

controller, and Kestrel Autopilot System.  The introduction of an onboard Gumstix 

microprocessor will function as the controller, which will be used to interface the 

autopilot and drive system.   The desired end state is to control the ground locomotion 

system manually, or autonomously by giving it a GPS coordinate from the ground 

station.  The microprocessor will process the data from the autopilot and ground station 

to control the drive system’s WHEGs™.     

In order to develop the ground locomotion system six phases needed to take 

place: (1) derive a ground locomotion control algorithm, (2) develop the Gumstix for 

ground locomotion control processing, (3) interface the Gumstix to the drive system, (4) 

interface the Gumstix to the autopilot for data input, (5) create a TCP/IP application that 

sends data packets from the ground station to the autopilot, and (6) integrate phase one 

through five to achieve end state.   

F. THESIS ORGANIZATION 

The thesis is organized as follows: Chapter II will discuss the approach and theory 

of the ground locomotion system.  Chapter III will discuss the microprocessor selection 

and development in order to control the ground locomotion of the MMALV.   Chapter IV 

describes different drive system considerations and testing.  Chapter V will discuss the 
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integration of the Gumstix microprocessor with the autopilot and ground station.  Chapter 

VI will describe the complete integration of all ground locomotion subsystems.  Chapter 

VII will summarize the work completed and include the shortfalls and recommendation 

for improvements.  
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II. APPROACH AND THEORY OF GROUND LOCOMOTION 
SYSTEM 

A. CHAPTER OVERVIEW 

 This chapter will discuss the approach and theory of the design of the ground 

locomotion system.  The first part of the chapter will discuss the approach to achieve the 

desired end state. The last part of the chapter will describe the theory of the ground 

locomotion system control algorithm. 

B. APPROACH TO ACHIEVE END STATE 

 The desired end state of the ground locomotion system is to drive the WHEGs in 

order to move the MMALV to a desired ground target location.  To accomplish this we 

need information to tell us where the MMALV is and where it needs to go.  This 

information needs to be processed into commands to move the MMALV to its desired 

location.  The ground locomotion system consists of three subsystems: the drive system, 

the Gumstix, and the Kestrel Autopilot System (KAP).   The drive system will provide 

mechanical motion to move the MMALV on the ground.  The Gumstix processes the 

control algorithm that produces the commands that are sent to the drive system.  The 

KAP provides the information that tells us where the MMALV is and where it needs to 

move.  A diagram of the ground locomotion design is shown below in Figure 7.   

 

 

Figure 7.   Ground Locomotion System Design. 
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 In order to achieve a desired end state we needed to test the different components 

separately.  Software and hardware development and testing were first done on a Linux 

host computer, and once the components were functioning correctly, the package was 

then built and installed on the Gumstix.  Once all the components and software were 

functioning properly they were integrated to achieve the desired end state. 

C. CONTROL ALGORITHM 

 The MMALV drive system will be driven by two WHEGs, powered by either two 

servos or motors.   To maneuver the MMALV on the ground, differential steering is 

needed to turn left or right.  It is desired to do this manually and autonomously.  The 

easiest way to achieve this is to have the MMALV follow a specific compass direction.  

The direction could be entered manually or calculated from the autopilots GPS location 

and the target location (for autonomous mode) is sent from the ground station.  Its speed 

can be varied at values of -10 reverse to +10 forward.  This data will be sent from the 

ground station.  Once the desired heading is established, the error is calculated by 

subtracting the current heading, received from the autopilots magnetometer, and the 

desired heading.  This error is used to compute the turn rate, the higher the error the faster 

the turn rate.  The maximum error is ± 180°; negative error requires a left turn rate and a 

positive error requires a right turn rate.  If the error is zero both WHEGs rotate at the 

same rate.  If the error is non-zero one WHEG will rotate at max desired rate and the 

other rotate at a lower rate depending on the size of the error.   The control algorithm is 

shown below in Equation 1.  For the purpose of this discussion the WHEGs maximum 

rotation range could be 100 RPM. 

 

rotation rate rotation range

Speed errorWHEGs Max 1
10 180

 = × ±  
                (1) 
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While in autonomous mode, distance to target is also computed from its current location 

and target location.  Once the MMALV has reached its target location (i.e., distance to 

target is zero) it will stop and await further commands.  An illustration of this control 

algorithm is shown below in Figure 8.  This algorithm will be tested and utilized on the 

Gumstix. 

 
Figure 8.   Illustration of the Ground Control Algorithm.  

D. SUMMARY 

 A lot of hardware and software development was needed to complete the ground 

locomotion system.  The next several chapters will discuss the steps that went into its 

development.  Chapter III discusses the initial development of the Gumstix to enable us 

to build the program that computes the control algorithm and processes the data from the 

KAP in order to structure the commands to drive the WHEGs.  Chapter IV will discuss 

initial control algorithm testing of the drive system configurations.  Chapter V will 

discuss the integration of the KAP with the Gumstix in order to capture the useful 

autopilot data and ground station data.  Chapter VI will integrate all the subsystems of the 

ground locomotion system. 
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III. MICROPROCESSOR SELECTION AND DEVELOPMENT 

A. CHAPTER OVERVIEW 

 This chapter will discuss the research that went into the design of adding a 

separate microprocessor to control the ground locomotion.  The chapter begins by 

discussing two different microprocessor considerations.  Next, we compare three 

different microcontrollers/microprocessors for use onboard the MMALV, and the basis 

for selecting the Gumstix microprocessor.   An overview of the Gumstix and the setting 

up the build environment is then discussed.    Finally, initial programming and testing of 

the Gumstix will also be discussed. 

B. BACKGROUND 

 As stated in Chapter I, previous work had been conducted with the ground 

locomotion mode using a Logitech controller to maneuver the MMALV on the ground.  

The joystick movements sent signals of varying pulse widths through the Virtual cockpit 

and out the Commbox, which were received by the autopilot’s modem and sent out a 

serial port to actuate the servo movements.  This method of control required 

reprogramming of the autopilots firmware, which needed to be executed by Procerus 

Technologies.  In order to alleviate this problem it is necessary to keep the autopilot 

modular and incorporate a new method in controlling the ground locomotion.  This 

problem is solved by providing the MMALV with processing abilities by incorporating a 

microprocessor. 

C. MICROPROCESSOR CONSIDERATIONS 

 The desired end state is to control the MMALV either manually or autonomously 

while in the ground locomotion mode.  A microprocessor enables the MMALV to 

process control algorithms, and receive or send data from the autopilot’s serial port.  This 

will enable the MMALV team to continuously and freely update its own software without 

the dependency of Procerus Technologies.  The microprocessor also increases he 

MMALV capabilities and functionality.   
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As stated in Chapter II, the objective is to input a desired target latitude and 

longitude in order navigate to the target autonomously.  There are two methods of 

processing and delivering commands to the drive system of the MMALV.  One method is 

to process the data at the ground station, another it to process the data on board the 

MMALV itself.  Both methods where researched and discussed below.  

1. Ground Station  

 Processing the data on the ground can be done using any type of programming 

language on the computer that is operating the Virtual Cockpit software.  The user would 

enter the desired target location and an algorithm would compute the heading error 

between the MMALV and desired heading.  The algorithm would then compute the 

direction the MMALV would need to travel and send the corresponding signals to the 

drive system.  The heading would be constantly evaluated until the MMALV has reached 

its desired location.  The drive system signals are transmitted out of the computer’s serial 

port to the Commbox.  The Commbox will then transmit the signals to the autopilot and 

out one of its serial ports to the drive system.   

2. On Board the MMALV 

 Processing the data onboard the MMALV is done by incorporating a small 

microprocessor or microcontroller.  The microprocessor will work in a similar fashion as 

a ground station.  The microprocessor is interfaced between the autopilot and the drive 

system.  It receives the ground target location via the ground communication station, as 

stated above.  Once the MMALV is on the ground it will start the algorithm previously 

stated and drive the MMALV to desired target location.   

3. Comparison of Ground vs. On Board Processing   

 Both of the above drive system methods are viable options.  After further 

researching and investigation it was determined that the use of an onboard 

microprocessor would be the best approach.  The first reason is that an onboard 

microprocessor would have less transmission error than processing from a ground station.  

When using a ground station for processing, every command would need to be 
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transmitted from the ground to the MMALV’s wireless modem.  There is more of a 

chance that the data will be lost or have errors through the wireless channel.  The 

processed data that is being transmitted must also compete with the data being sent from 

the Virtual Cockpit.  The second reason is that the sampling rate will be much higher 

with an onboard processor.  There will not be the delays associated with the wireless 

medium such as propagation and transmission delays.  Finally, onboard processing brings 

autonomy to the MMALV, once it receives the target destination there will be no need for 

further transmission over the wireless channel.   

 Using an onboard microprocessor would ensure the integrity of the data that is 

needed for ground locomotion.  Data from the sensors on the autopilot are received 

directly from the autopilot, processed by the microprocessor and transmitted for ground 

locomotion.  The ground station would only transmit small amounts of data at limited 

times.  Some potential data transmitted from the ground station could be desired heading 

or GPS target location. Chapter 5 will cover in detail the integration and testing of the 

KAP and microprocessor. 

D. MICROPROCESSOR SELECTION 

 Three different microprocessors or microcontrollers were considered for the 

ground locomotion of the MMALV.  They were the PIC, BASIC Stamp, and Gumstix 

microprocessors.  The determination for the selection of the microprocessor or 

microcontroller was based on the following: cost, size, straightforwardness, programming 

language, expansion and compatibility.  After extensive evaluation of the three 

processors, the Gumstix proved to be the best match for the requirements of the 

MMALV.   

 The Gumstix proved to be the best for the MMALV due to its processing power, 

size, cost and compatibility.  The Gumstix is a very powerful low-cost motherboard and 

is the size of, as the name states, a stick of gum (80mm X 20mm).  The Gumstix supports 

C and C++ and many other programming languages.  Many legacy software applications 

written in C and C++ were available for the integration of the Gumstix in the MMALV.   

Gumstix motherboards have several low-cost expansion boards available, which are 
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suitable for the needs for the drive system design.  Procerus Technology had already done 

some initial testing with the Gumstix and the autopilot.  This code was available for us to 

employ and modify.  All these factors above steered the decision to utilize the Gumstix.   

E. GUMSTIX MICROPROCESSOR 

 The Gumstix motherboard is the brains for the ground locomotion.  The Gumstix 

motherboard selected for the MMALV is the verdex XL6P, shown in Figure 9.  It has a 

600MHz processor and 128 MB RAM.  The motherboard has three different connections 

for expansion boards: a 60-pin Hirose connector, a 120-pin MOLEX connector and a 24-

pin flex ribbon.  The two expansion boards used with the motherboard are the breakout-

vx and the console-vx which both have a 60-pin connection and are shown in Figure 10.   

 

 

Figure 9.   Gumstix Motherbord [From 7]. 

 

The console-vx provides three RS-232 UART serial ports through miniDIN8 connectors 

and a USB mini-B connection.  The board also has the capability for three TTL UART 

ports through 0.1 inch holes, with some minor modification.  The breakout-vx provides 

the three TTL UART ports through 0.1 inch holes and a USB mini-B connection.  The 

console-vx is used for development and programming because of its miniDIN8 

connectors.  The breakout-vx is used in the MMALV in final development because of its 

compact size and reduced weight. 
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Figure 10.   Gumstix Expansion Boards [From 7]. 

 
The integration between the autopilot and drive system will use the STUART and the 

BTUART serial ports on the Gumstix expansion board, Figure 11.  The FFUART serial 

port is used for programming and interface with a host computer.  The STUART 

interfaces to the autopilot and the BTUART interfaces to the drive system. 

 

 

Figure 11.   TTL UART Ports Console-vx. 

F. GUMSTIX SOFTWARE DEVELOPMENT 

 Gumstix uses the Open Embedded (OE) build system.  The OE system recently 

replaced the build-root system for software development on the Gumstix.  OE requires a 

Linux distribution in order to begin software development, but plans are in place to allow 

it to work under Windows operating systems.  OE uses the Bitbake task executor in 

combination with the OE metadata.  Basically OE is a build system that can generate 

(cross-compile) software packages for embedded targets (Gumstix). 
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 Before the programming can even begin on the Gumstix there are several steps 

that must be completed.  The Gumstix is shipped as a bare-bones motherboard with no 

documentation.  All documentation for the Gumstix is contained online at their 

developer’s website (www.gumstix.net) [8, 9]. The Gumstix also requires an expansion 

board used for input and output computation.  The console-vx expansion board will be 

used initially for transferring information to-and-from the Gumstix and the Linux host.   

The steps for getting started will be explained in the sections below.  These steps include 

the following: setting up the build environment, setting up serial connection, and 

replacing the file system image.  All of the steps are documented on the Gumstix 

developer’s website.   

1. Setting Up the Build Environment 

 Prior to setting up the build environment a Linux distribution was required. To 

begin with, a computer was loaded with an open source copy of the Fedora 8 Linux 

operating system.  The computer was then installed with all the necessary applications 

needed to run OE.  After that, the Gumstix OE source code was downloaded.  Before 

installing the source code on the Gumstix, a global system cache needed to be set up.  

The Gumstix OE build process downloads the source code tarballs for the Linux kernel 

and other software packages.  A tarball is a compressed file format.  Setting up the global 

cache makes sure that these tarballs only needed to be downloaded once.  Once this was 

completed, basic root file system was built using bitbake.  The bitbake function will be 

explained later in this chapter.  The basic root file system for the Gumstix took 12 hours 

to download.   Once the basic root file system was downloaded and compiled, the file 

system image and the kernel image for the Gumstix were placed in the following 

directory: ~/gumstix/gumstix-oe/tmp/deploy/glibc/images/gumstix-custom-verdex. Now 

they are ready to be installed on the Gumstix.  Before installing packages or programs on 

the Gumstix, it is necessary to set up a serial connection, as explained in the next section.  

 

http://www.gumstix.net/
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2. Setting Up a Serial Connection 

 The Gumstix is connected to the host computer using a null modem cable.  This 

connection is from the host computer’s serial port to the FFUART miniDIN8 connector 

on the Gumstix console-vx expansion board, which is the middle miniDIN8 connector.  

Next a communication terminal program was required, such as Kermit or Minicom, to 

enable serial connection.  Kermit was recommended on the Gumstix development 

website.  Once Kermit was installed, the serial connection parameters on the host 

computer needed to be configured for communicating with the Gumstix.  Before 

connecting to the serial port it may be necessary to login as root or super user.  The first 

command, kermit –l /dev/ttyS0, sets up the host computer’s serial port.  The serial 

parameters are saved in the following directory: gumstix/gumstix-oe/extras/kermit-setup.  

Typing the Kermit command ‘take’ and the file location above will set up the connection 

parameters.  Connection to the serial port is done using the kermit command ‘connect.’  

Then connecting the power to the Gumstix will start the normal boot sequence.  The 

connection setup is summarized in Figure 12.  Once the Gumstix boot sequence is 

complete one can login for the first time using: username root and password gumstix.  

Once the serial connection is established, the Gumstix’s flash memory system can be 

reprogrammed.    

 

 

[cpmurphy@localhost ~]$ su
Password: 
[root@localhost cpmurphy]# ~/kermit/wermit
bash: /root/kermit/wermit: No such file or directory [root@localhost cpmurphy]# ./kermit/wermit C-Kermit 8.0.211, 10 Apr 2004, for Linux  Copyright 
(C) 1985, 2004,
Trustees of Columbia University in the City of New York.

Type ? or HELP for help.
(/home/cpmurphy/) C-Kermit>kermit -l /dev/ttyS0
(/home/cpmurphy/) C-Kermit>cd gumstix/gumstix-oe/extras/
(/home/cpmurphy/gumstix/gumstix-oe/extras/) C-Kermit>take kermit-setup
(/home/cpmurphy/gumstix/gumstix-oe/extras/) C-Kermit>connect Connecting to /dev/ttyS0, speed 115200  Escape character: Ctrl-\ (ASCII 28, FS): 
enabled Type the escape character followed by C to get back, or followed by ? to see other options.
----------------------------------------------------

U-Boot 1.2.0 (Dec 21 2007 - 13:37:16) - PXA270@600 MHz - 1578M

*** Welcome to Gumstix ***

DRAM:  128 MB
Flash: 32 MB
Using default environment

Hit any key to stop autoboot:  0 
Instruction Cache is ON
OpenEmbedded Linux gumstix-custom-verdex ttyS0

Angstrom 2007.9-test-20080218 gumstix-custom-verdex ttyS0

gumstix-custom-verdex login:  

Figure 12.   Gumstix Initialization. 
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3. Replacing the File System Image  

Now that the new root file system is built and a serial connection is established, 

we can replace the file system image on the Gumstix.  This is done by transferring the 

new root file system to Gumstix’s RAM, protecting 2 boot sectors, erasing the rest of 

flash, and then finally programming the flash.  First the root file system is sent to the 

Gumstix at memory location a2000000.  After protecting sectors 0 and 1 in the flash, 

which contain the universal boot loader, the rest of the flash is erased.  Next the root file 

system is copied from a2000000 to the flash address 400000.  Once this is complete the 

kernel image is sent to the gumstix from the host, and then loaded and installed at flash 

address 100000.  Now the Gumstix is configured and ready for development.  

4. Programming 

 Programming on the Gumstix is done using a tool called BitBake, which is like 

‘make’ function on Linux systems.  BitBake is a tool for executing tasks and managing 

metadata.  BitBake uses a recipe format that tells the build system the following: 

description of the package or program, version, source code location, how to configure 

and build source code and where to install the package.  There are several ways to write 

these recipes, we will only talk about two methods: direct compilation of local sources 

and using a make file with local sources. 

a. Direct Compilation of Local Sources 

To initially test the Gumstix the simple C program hello world was used.  

The program is simply a “printf” statement that prints to the screen hello, world.  This 

program was tested first by using direct compilation of local sources.  It means exactly 

what its name states; the source files are located in the same file directory as the BitBake 

recipe on the host machine.  The recipes are typically given the following name structure: 

packagename_versionnumber.bb.  The hello world recipe will then be named, 

helloworld_1.0.0.bb.  The recipe was provided by Gumstix on their development page 

and is shown below in Figure 13.  Figure 13 also explains the recipes functions.  
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DESCRIPTION = "hello world sample 

program" 

 

PR = "r0" 

 

DEPENDS = "" 

 

SRC_URI = " \ 

  file://hello.c \ 

" 

 

S = "${WORKDIR}" 

 

do_compile () { 

    ${CC} ${CFLAGS} ${LDFLAGS} -o hello 

hello.c 

} 

 

do_install () { 

    install -d ${D}${bindir}/ 

    install -m 0755 ${S}/hello ${D}${bindir}/ 

} 

 
FILES_${PN} = "${bindir}/hello" 

- Describes what the package is. 

 

-Revision number. 

 

-Dependencies 

 

-Source file location 

 

 

-Where the source code should be copied and built by the system.  S 

is a BitBake variable that refers to the “unpacked source code 

directory. 

-Details on how to compile the package.  Hello world uses a c cross 

compiler with standard compiler and linker settings, hello is the 

output file. 

-Tell the package management system how to install the program.  

It creates a directory and installs the hello command in that 

directory.  D is a BitBake variable that specifies the destination 

directory.  The bindir variable is a BitBake way to specify usr/bin 

 

 

- The final line tells the build system that we would like to create a 

package called "helloworld" that installs a single file: the binary 

"hello" that we generated above. The PN variable is yet another 

special BitBake variable that contains the package name.  

Figure 13.   Bitbake Recipe Format for Hello World. 

 
Each package that is created is placed in the gumstix/gumstix-

oe/user.collection/packages directory.  The package directory is typically named the same 

as the recipe itself.  The package recipe is placed in the packages directory and the source 

files are placed in a subdirectory called files.  Once the recipe is complete, you simply 

type ‘bitbake helloworld’ from any directory location to compile and build the package.  

BitBake knows where to look for the recipes.  After the build is complete the package 

will be placed in the following location with its appropriate name: 

gumstix/gumstix-oe/tmp/deploy/glibc/ipk/armv5te/helloworld_1.0.0-r0_armv5te.ipk 
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There are two steps to install the program or package on the Gumstix.  The 

first step is to send the above file to the Gumstix.  While logged into the Gumstix type 

‘rz’, that will set up the Gumstix to receive the file.  Go back to the host machine and 

’send’ the file using kermit.  The second step installs the program/package on the 

gumstix.  Connect to the Gumstix and type ‘ipkg install helloword_1.0.0-r0_arm5te.ipk’.  

Now the package is installed on the Gumstix and executed with the command hello.  

b. Using a Makefile with Local Sources 

BitBake can also use a makefile to build a package.  If there is a legacy 

program that was previously built using a makefile this is a good approach to use.  We 

will use the previous example to explain this.  The recipe format does not change too 

much.  Add the makefile to the SRC_URI list and remove the entire do_compile function.  

In the case of the helloworld example you will add ‘file://Makefile’ and remove the 

following: 

do_compile(){ 

      ${CC} ${CFLAGS} ${LDFLAGS} –o hello hello.c 

} 

This function is executed in the makefile itself.  The steps to build and test 

are the same as above. 

G. SUMMARY 

 This chapter discussed the research that went into the decision of using the 

Gumstix as the ground locomotion system’s microprocessor.  This chapter also explained 

how to develop and setup the Gumstix in order to begin testing and integrating the 

ground locomotion system.  Once these steps were complete, drive system testing could 

begin using the Gumstix. 



 23 

IV. GROUND LOCOMOTION DRIVE SYSTEM 

A. CHAPTER OVERVIEW 

The purpose of this chapter is to describe different drive system configurations 

that could be used on the MMALV.  This chapter will also discuss the initial testing of 

these configurations with the Gumstix. 

B. BACKGROUND AND THEORY 

As stated in Chapter II, the ground locomotion system consists of three major 

components: drive system, Gumstix, and Kestrel Autopilot System.  Extensive drive 

system considerations were discussed in depth in a previous thesis by Captain Josh 

Kiihne, USMC [2].  As stated in Chapter I, the design of the drive system WHEGs is 

currently under development with BioRobots LLC.  There will be some discussion 

dealing with its design and development in this chapter.   

The theory of controlling the drive system, whether it is a servo motor or a small 

DC motor, is essentially the same.  Both operate by pulse width modulation.  A servo 

motor expects a pulse at a period of 20 ms.   In that period a pulse is transmitted, whose 

pulse width usually ranges from .9 to 2.1 ms with some nominal voltage.   Sending a 

series of these pulses will rotate the servos to the desired location.  If the servo is 

continuous, the servo will be at neutral position or stopped at a pulse width of 1.5 ms.   

Varying the pulse width less than or higher than 1.5 ms will cause the servo to rotate 

clockwise or counterclockwise at varying speeds.   

A small D.C. motor operates with the same type theory as the servo motors.  The 

motors will rotate when it receives a pulse width at a nominal voltage, varying from .9 to 

2.1 ms.  The motor is turned off at .9 ms and full speed at 2.1 ms.  A motor controller will 

convert the pulses into a rate at which the transistors inside will switch on to drive the 

motors.  The larger the pulse width the longer the switch is left on and the faster the 

motors will turn.  
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There are multiple ways of sending this data to the drive motors.  One method is 

to send the pulse width directly to the servos or motors.  Another is to use some type of 

controller, either a motor controller or servo controller.    

C. DRIVE SYSTEM CONFIGURATIONS 

There are two different drive system configurations that were considered for the 

MMALV: servo and motor driven.  Both have their good and bad points.  Previous work 

had discussed in detail these good and bad points [2].  The servo is the simplest method 

for the drive system.  It can receive the signal directly from a three pin plug or a servo 

controller.  The motor driven system requires an electronic speed controller or a motor 

controller to operate.  The ESC receives the PWM signal and translates to a regulated 

voltage to drive the motors.  The next two sections will discuss two different 

configurations of the drive system.   

1. Dual Continuous Servo Configuration 

Most servos operate with 90 to 180 degrees of motion.  Servos will need to rotate 

continuously in order to drive the WHEGs™.   To get the servos to operate continuously 

they need to be hacked into and modified, but certain manufacturers do produce 

continuous servos.  To control the servo rotation, code can be written to send the required 

PWM or an easier method is to use a servo controller.  A serial servo controller can 

generate the PWM required for the servo movement and it can do this for up to 16 servos 

almost simultaneously.  The advantage to using a serial servo controller is that it is 

relatively easy to command multiple servos quickly.  One major disadvantage is that it 

will add more weight to the MMALV and also add one more piece of hardware to 

troubleshoot.  This device is a bit easier to configure than writing code that generates the 

required PWM signals.   
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2. Dual Motor Configuration 

Brushless DC motors are another way to provide power to the drive system.  In 

order to control these motors an electronic speed controller or a motor controller is 

necessary.  For the MMALV drive system, it requires two small DC motors which will 

require two ESCs on one dual motor controller.  In addition to the motors and controllers 

a gear box system would be required to provide the necessary torque for the WHEGs™.  

All of these components add weight and complexity to the MMALV.  This type of drive 

system is viable to the MMALV because it adds robustness with higher torque and speed 

than a servo driven system. 

D. DRIVE SYSTEM COMPONENTS 

Each component used in the design consideration of the ground locomotion drive 

system will be discussed in the following sections.  The Gumstix computes the control 

algorithm and outputs the required commands to a servo controller for servo movement 

or motor controller for DC motor movements.  The servo controller and motor controller 

produce the required pulse width modulation to rotate the WHEGs™ at a rate that 

maneuvers the MMALV in the required direction.  The drive system was tested and 

integrated with the Gumstix using two configurations: two continuous servos and two 

small DC motors.  The servos were tested with a Pololu Micro Serial Controller and the 

motors were tested with the Pololu Low Voltage Serial Motor Controller.  Both 

configurations were first tested on a Linux machine and then the Gumstix.   The 

components of the two configurations are discussed below. 

1. Micro Serial Servo Controller 

A micro serial servo controller was used to control two Parallax continuous 

servos.  The Pololu Micro Serial Servo Controller shown in Figure 14 computes the 

processor-intensive task of simultaneously generating multiple servo control PWM 

signals.  The controller at the top left of Figure 14 is a Pololu Micro Serial Servo 

Controller with a DB9 serial connection for easy connection with a host computer.  The 

controller generates the pulses from .25 ms to 2.75 ms.  Internally, the servo controller 
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maintains a servo position that is two times the pulse width, measured in microseconds.  

A pulse width of 1.0 ms is represented by 2000 microseconds internally.  The internal 

position ranges are from 500 to 5500.   

 

Figure 14.   Dual Continuous Servo Test Configuration. 

 

Serial commands are sent to the servo controller 5 or 6 bytes at a time, depending 

on the command.  This controller can receive both TTL and RS-232 serial inputs.  The 

controller’s pin layout is shown in Figure 15.   

 

Figure 15.   Pololu Micro Servo Controller Pin Layout [From 10] 
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Various commands deal with setting the internal ranges mentioned above.  For the 

purposes of this thesis we will be using continuous servos.  The command used for 

controlling the continuous servos is set position (absolute).  The command structure for 

the byte sequence is shown below in Figure 16 [10]. 

 
Start byte = 0x80 Device ID = 0x01 Command = 0x04 Servo num Pos =500 to  5500 

Figure 16.   Pololu Micro Servo Controller Command Structure. 

2. Dual Serial Motor Controllers 

Serial motor controllers are similar to the servo controllers.  They are used to 

control small, low current DC motors (1-5 Amps).  The Pololu Low-Voltage and Micro 

Dual Serial Motor Controllers were both used in the development of the drive system.  

The initial testing of the dual motor configuration was done using the Pololu Low-

Voltage Motor Controller and the Tamiya double gearbox kit both shown in Figure 17.   

   

 

Figure 17.   Dual DC Motor Test Configuration. 

 

Both controllers use a similar command structure as the Pololu servo controller, but only 

use 4 bytes.  The command structure is shown below in Figure 18.   

 

http://www.pololu.com/catalog/product/120
http://www.pololu.com/catalog/product/120
http://www.pololu.com/catalog/product/114
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Start byte = 0x80 Device ID = 0x00 Motor # and direction Motor speed= 0 to 127 

Figure 18.   Pololu Dual Motor Controller Command Structure. 

 

The Low-Voltage controller can receive both TTL and RS-232 serial inputs.  This 

controller was used in initial development. The Micro controller only uses TTL serial 

inputs.  This controller will be used in the final design due to small size and weight.  

These controllers receive the serial commands from the Gumstix by the same method as 

the servo controller.  Both motor controllers pin layouts are shown below in Figure 19.   

 

 

Figure 19.   Pololu Dual Serial Motor Controller Pin Layout [From Refs. 11, 12]. 

 

3. Drive System Final Configuration 

The basic operation of servos and the motors are essentially the same.  Transition 

from the test equipment to the final design will be relatively easy to do.  The drive system 

that will be used in MMALV will be a dual motor design. The design uses two 

Solarbotics 150:1 mini metal gear motors (Figure 20) controlled by the Pololu Micro 
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Motor Controller.  The motors will be connected to the WHEGs through a clutch system 

to prevent motor and gear damage when landing.  The clutch system schematic is shown 

in Figure 21.   

 

 

Figure 20.   Solorbotics 150:1 Mini Metal Gear Motors [From 13]. 

 
 

 
Figure 21.   Clutch Schematic Exploded and Fully Assembled [From 14]. 
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E. DRIVE SYSTEM DEVELOPMENT, TESTING AND INTEGRATION 

In order to achieve a desired end state we needed to test the different 

configurations separately.  Software and hardware development and testing were first 

done on a Linux host machine and once the components were functioning correctly the 

package was then built by BitBake and installed on Gumstix.  Once all the components 

and software were functioning properly they were integrated with the Gumstix.   

The motor and servo controllers were tested on a Linux machine using C 

programming.  Programming examples can be found on the Pololu website.  The program 

used in development of the drive system was written by a NPS research associate, 

Michael Clement.  The program opens the serial port, sets up the serial parameters, and 

writes the command data structure explained above.  The code is incorporated in the final 

ground locomotion program in appendix A.  Once the servos or motors were functioning 

properly they were tested on the Gumstix.  In order to test the program on the Gumstix 

the program needed to be built with bitbake using the helloworld example in Chapter III.   

The serial connections for servo and motor controllers can utilize both RS-232 

and TTL voltage levels.  The RS-232 serial line connects the controllers to the Linux 

Host machine using pins 3 (transmit) and 5 (ground) of the DB9 serial port connector.  

The TTL serial line connects the controllers to the Gumstix using the BTUART serial 

port’s 0.1 inch through-hole pins, pin 1 (ground), pin 2 (transmit) and pin 3 (Vcc, logic 

supply).  The Gumstix connections are shown in Figure 22 for the console-vx and the 

breakout-vx.   Initial function testing of servo and motor configurations are discussed in 

the following sections. 
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Figure 22.   Console-vx and Breakout-vx TTL Serial Connections. 

1. Servo Configuration 

As stated above, the servo configuration was tested with the Pololu Micro Serial 

Servo Controller and two Parallax continuous servos.  Even though this configuration is 

not going to be currently used on the MMALV, it still may be a viable option in the 

future.  The testing consisted of finding the neutral point of the servos and their max 

speeds. Byte 5 of the command structure, in Figure 16 above, is the range for the servo 

position ranging from 500 to 5500.  The neutral point was found at 3000.  Once the 

neutral or stop position was found, commands were sent to the controller above and 

below 3000 to find the max rotation rate.  Maximum clockwise rotation was found at 

3500 and maximum counterclockwise rotation was found at 2500, no where near the 

limits of the of the command range.  

Once these values were found, the modified control algorithm from Chapter II 

was tested.  The rotation rate can vary between 0 and ±500 from the neutral position for 

the clockwise and counterclockwise directions.  The corrected algorithm is shown in 

Equation (2). 
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rotation rate

Speed errorWHEGs 3025 500 1
10 180

  = ± × ±    
              (2) 

 
The algorithm was tested by inputting headings (desired and current) and speeds.  Once 

these tests were successful on the Linux host and Gumstix, the motor controllers were 

tested.  

2. Motor Configuration 

 The initial testing for the motor configuration was done on the Pololu Micro Dual 

Motor Controller and the Tamiya double gearbox kit.  This motor controller was used for 

initial testing because it used both the RS-232 and TTL serial lines.  The motor 

controllers operate by sending it a 3 or 4 byte command.  The three byte command 

structure sets up the motor configuration, the third byte is shown below in Figure 23.  The 

motor controllers for the drive system were set up for 2 motors with the right motor 

number  ‘0’ and the left  ‘1’.  The range for the motors speed is simply 0 for off, to 127 

for fully on.   This is set by byte four of the command structure in Figure 18, where bit 7 

is always 0.  To reverse the motor you must set bit 0 of the byte 3 (1=forward, 

0=reverse). 

 

 

Figure 23.   Byte 3 Motor Command Structure [From 11]. 

 
As in the servo controller, the motor was tested with a modified algorithm from 

Chapter II.  The algorithm is shown below in Equation 3. 
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rotation rate

Speed errorWHEGs 127 1
10 180

 = × ±  
   (3) 

 
This algorithm was also tested by inputting headings and speeds.  The negative or reverse 

speeds were accomplished by a condition statement in the code.  If the speed is negative, 

change command byte 3, bit 0 to a zero, Figure 23.  Once the code was running correctly 

is was built and installed on the Gumstix.  Both Pololu motor controllers will function 

from the same code as long as they are both configured the same. 

 

 

Figure 24.   Byte 3 Motor Configuration Command Structure [From 11] 

F. SUMMARY 

This chapter discussed two different drive system configurations and their testing.  

Although servos are slow and require high peak currents, the servo configuration is a 

viable option because of its simplicity when compare to a motor gear box configuration.  

However, the dual motor configuration provides the MMALV with greater speeds and 

torque.  The small Solarbotics motors provide the MMALV with a small, powerful and 

light weight (8grams) option.  These motors weight less than most servos.  They also 

have their own gear box and are relatively inexpensive.   These motors and the Pololu 

Dual Micro Motor Controller had shown to be the best configuration for the MMALV’s 

ground locomotion drive system.  The integration of the final drive system configuration 

into the ground locomotion system will be explained in Chapter VI. 



 34 

THIS PAGE INTENTIONALLY LEFT BLANK 



 35 

V. GUMSTIX AND KESTREL AUTOPILOT SYSTEM 
INTEGRATION 

A. CHAPTER OVERVIEW 

 This chapter discusses the integration of the Gumstix and the KAP.  The first part 

of this chapter explains the integration of the Gumstix and autopilot using development 

open source code provided by Procerus Technologies.  The next part of this chapter 

illustrates the development of the TCP/IP application that enables the sending and 

receiving of ground locomotion data packets from the ground station.  The last section of 

this chapter will discuss the testing of the Gumstix and KAP application software. 

B. AUTOPILOT AND GUMSTIX INTEGRATION 

The control algorithm from Chapter II requires sensor readings from the autopilot.  

The Gumstix’s STUART serial port is used to obtain the MMALV’s current heading and 

position from the autopilot’s serial port, set as a modem mirror. The connection is shown 

below in Figure 25.   

 

 
Figure 25.   Gumstix and Autopilot Connection [After 6]. 
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The magnetic heading is obtained from the magnetometer onboard the autopilot.  

The position is obtained from the autopilot’s GPS receiver.  Receiving this data is done 

by modifying Gumstix development example code created by Procerus Technologies [6].  

The code is written in C++ and can be installed on any Linux system as well as the 

Gumstix.  This code enables the user to communicate with the Kestrel autopilot.  The 

code sets up the serial communication protocol, and enables the user to send and receive 

packets from the autopilot.  The code’s details and testing are discussed in the sections 

below.  To understand how to modify the code for use on the MMALV the autopilot’s 

packet format is described below.   

1. Kestrel Autopilot Packets 

The Kestrel Autopilot System uses packets to send and receive messages from the 

Kestrel autopilot and ground control station.  The Kestrel communication protocol has 

many different packet types, which are called Kestrel packets.  The ground locomotion 

system only needs to utilize a few of them.  The Kestrel packet format is shown below in 

Figure 26.  Three types of packets are used for the ground locomotion system, which are 

GPS navigation (packet 248), standard telemetry (packet 249), and modem mirror bridge 

(packet 245).  The navigation and telemetry packets are sent by the autopilot out of its 

modem mirror port on receipt of a navigation or standard telemetry request packet 

(packet 27 or 26). 

 
Figure 26.   Kestrel Autopilot System Packet Format [From 15]. 
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These packets contain a lot of information, but only the required data bytes will 

be pulled from these packets.  The current heading is pulled from byte 14 of the standard 

telemetry packet, and the latitude and longitude are pulled from bytes 14 and 20, 

respectfully, of the navigation packet.  The modem mirror bridge is used to forward data 

to and from the modem mirror port.  These packets will be used to send data from the 

ground station to the Gumstix or from the Gumstix to the ground station.   These packets 

will be discussed in more detail below in the ground station TCP/IP application section. 

2. Gumstix Code Development 

The Procerus example code doesn’t initially do much for the ground locomotion 

system.  However this code will become the backbone of the system after development.  

The main() function in the code performs three separate functions or threads.  The main() 

function will also be the location for the ground control algorithm.  The first thread sets 

up the protocol that receives the packets from the serial port.  The second function opens 

the serial port.  The serial port on the Gumstix that is being used is the logic level 

STUART port (/dev/ttyS2).  The third function of the code creates a thread that requests 

the standard telemetry packet and GPS telemetry packet at a rate of 10 Hz.  The code has 

an object file that implements the sending and receiving of packets from the serial port, 

which is the CommSerialLinux class.  The following section will describe the 

CommSerialLinux class, sending of packets, and receiving of packets.   

a. CommSerialLinux Class 

The CommSerialLinux class enables the sending, receiving and formatting 

of the Kestrel autopilot packets.  The object it creates is g_CommSerial.  The 

CommSerialLinux class produces a thread that is always monitoring the serial port 

for the packets.  If a packet is received on the port a registered callback function 

(ReceivePacket()) is used to process the packet.  This class also has a function to 

send packets to the autopilot, which is called SendRaw(). 
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b. Sending Packets 

To send packets to the autopilot another class was created within the code, 

which is CWriteRawPacket.  This class builds the packets up into its proper format 

shown in Figure 26.  The example code initially comes with a request telemetry function 

call that sends the request standard telemetry packet (26).  The request is written as 

follows:  CWriteRawPacket ReqStdTelmPkt (26, 0xFFFF).  The 

ReqStdTelmPkt is a casting variable that will be used to send the packet.   The number 26 

refers to the packet identification number and the 0xFFFF is the broadcast address.  The 

request for standard telemetry packet (26) is an empty data packet.  If the packet 

contained data, the functions in Figure 27 would be used for various data sizes. 

 

 

 
Figure 27.   Data Writing Functions [After 15].  

The last step in building the packet is to assign a packet sequence number, which is 

returned when sending the packet.  The command is written as follows:  

ReqStdTelemPkt.SetPacketIDNum (counter ++).  Now the packet is built 

and ready to be written to the serial port.  The function for writing comes from the 

CommSerialLinux class, which is SendRaw().  This function will compute the 

checksum of the packet, apply the escape character encoding, and send it to the serial 

port.  The command to write the packet built above is the following:  

g_CommSerial.SendRaw(&ReqGPSTelemPkt). 
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These commands will request the standard telemetry packet from the 

autopilot; as a result the autopilot will send the packets to the modem mirror port.  These 

packets will then be received by the Gumstix serial port.  The standard telemetry packet 

will have the magnetometer data needed for our control algorithm, which will be the 

current heading of the MMALV.  To obtain the MMALVs current location, the GPS 

telemetry packet must also be requested.  This is done in a similar fashion as the request 

for standard telemetry packets, described above.  The request GPS telemetry code is 

shown below in Figure 28.   

 
//Request the GPS telemetry 
CWriteRawPacket ReqGPSTelemPkt(GPS_TELEMETRY_REQUEST_PACKET, 0xFFFF); 
ReqGPSTelemPkt.SetPacketIDNum(counter++); 
g_CommSerial.SendRaw(&ReqGPSTelemPkt); 
usleep(1000000); //Sleep for .1 seconds 

Figure 28.   Request for Autopilot GPS Telemetry Code. 

c. Receiving Packets 

Now that the required data packets are requested from the autopilot, we 

need to receive them.  As stated above, a register call back function specifies which 

function will handle the incoming packets.  When a packet is received it is dynamically 

allocated to memory by the CommSerialLinux class, and then is passed to the calling 

function.  Once the packet is passed on it is erased from memory.  The function that calls 

for the packets is called ReceivePacket().  In this function the generic packet is 

recast as the object type it really is.  The code has three common packet type classes that 

make it easy to gain access to the packet’s data elements: AckPacket, GPSTelemPacket, 

and StdTelemPacket.  These classes parse their appropriate packet type and save the 

corresponding data bytes as user functions.   

When the ReceivePacket() function is called it returns the packet’s 

location in memory (*NewPkt) and its type.  To pull the magnetometer heading from 

the standard telemetry packet a switch statement is used in the example code.  The 

standard telemetry type is 248 or STD_TELEMETRY_PACKET.  When a packet arrives 
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at the serial port and the type is identified at STD_TELEMETRY_PACKET, the NewPkt 

will be recast as StdTelemPacket.  To retrieve the heading data from the packet the code 

uses functions that are defined in the StdTelemPacket class, such as GetHeading().  

The receive packet function is shown below in Figure 29.   

 
void ReceivePacket(CCommPacket *NewPkt, PacketType Type) 
{ 
 //Casting variables 
 CStdTelemPacket *StdTelemPacket; 
 CGPSTelemPacket *GPSTelemPacket; 
 //Simple error checking 
 if(NewPkt == NULL) return;  
 switch(Type) 
 { 
 case STD_TELEMETRY_PACKET: 
  StdTelemPacket =reinterpret_cast<CStdTelemPacket*>(NewPkt); 
 Heading_Autopilot = StdTelemPacket->GetHeading()*57.3; 
 break; 
 case GPS_TELEMETRY_PACKET: 
  GPSTelemPacket =reinterpret_cast<CGPSTelemPacket*>(NewPkt); 
  //lat2 = GPSTelemPacket->GetGPSLatitude(); 
  //lon2 = GPSTelemPacket->GetGPSLongitude(); 
  lat2 = 36.595202; 
  lon2 = -121.875072; 
 break; 
 case 245: 
  Heading = NewPkt-> ReadUnsignedShort(7); 
  speed   = NewPkt-> ReadShort(9); 
  lat1    = NewPkt-> ReadFloat(11); 
  lon1    = NewPkt-> ReadFloat(15); 
  Mode    = NewPkt-> ReadUnsignedChar(19); 
 break; 
 } 
} 

Figure 29.   Receive Packet Function. 

At the bottom of Figure 29, there is a ‘case 245’ statement.  This is the 

modem mirror bridge packet that is sent from the ground station.  This packet is parsed 

directly in the function because it doesn’t have a class of its own, such as standard 

telemetry packet.   Furthermore, the read functions shown in Figure 29 allow the user to 

access each data element.   This packet type will be explained more in detail in the 

following sections.  

The receive packet function will produce the global variables for the 

ground locomotion system, which are autopilot heading, autopilot latitude and longitude, 

desired heading, target latitude and longitude, speed, and mode.  The desired heading, 

target location, speed and mode are all sent from the ground station via a TCP/IP 

application which will be described in the section below.  
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C. GROUND STATION TCP/IP APPLICATION 

To control the MMALV in the ground locomotion mode there needs to be a way 

to send user defined data packets.  The requirement is to have the MMALV follow a 

desired heading or navigate to a target location.  It is also desired to be able to vary the 

speed of the MMALV on the ground.  To accomplish this there needs to be a method to 

send data remotely.  This is done by utilizing the TCP/IP socket server that is built into 

the Virtual Cockpit.  This server accepts connections from outside applications.  The 

application used to build and send packets is LabVIEW.  The following sections will 

describe the packet generation and the development LabVIEW application. 

1. Ground Station Packet Creation 

The Kestrel modem mirror packet 245, shown in Figure 30, is the packet that will 

deliver the data required for the ground control algorithm.  To send this packet to the 

autopilot it is necessary to use a development interface packet.   

 

 
Figure 30.   Modem Mirror Bridge Packet 245 [From 15] 

The Virtual Cockpit development interface has several different types of interface 

packets.  The interface packet type that is used to forward packet 245 is the pass-through 

packet (10). This packet is sent to the Virtual Cockpit’s TCP/IP port 5005.  Virtual 

Cockpit will translate the packet to a Kestrel packet (245) and structure the data to its 

proper format shown in Figure 26.  The generic interface packet and pass-through packet 

are shown below in Figures 31 and 32. 
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Figure 31.   Generic Interface Packet Format [From 15] 

 

 
Figure 32.   Pass-Though Packet Format [From 15] 

 
To build the pass-through packet, the first thing that needs to be done is to build 

the modem mirror bridge packet (245) with the required data for the ground locomotion 

system.  The data for the modem mirror packet will start at byte 11 in the pass-through 

packet.  Once Virtual Cockpit processes it into packet 245 it will be placed at byte 6.  The 

complete pass-though packet is shown in Figure 33.   

   
Byte 
Index Type Name Description Units 

0 32 bit INT 10 Type of Development Packet (pass-through) N/A 
4 32 bit INT 16 Data bytes starting at byte 8 N/A 
8 16 bit INT 1032 Destination address N/A 

10  UCHAR 245 Type of Kestrel Packet N/A 
11 UCHAR 13 Number of data bytes in packet 245 (byte 6 of Kestrel packet) N/A 
12 16 bit INT Heading Target heading degrees 
14 16 bit INT speed WHEGs speed N/A 
16 FLOAT lat1 Target Latitude degrees 
20 FLOAT lon1 Target Longitude degrees 
24 UCHAR mode Mode 0 or 1 

Figure 33.   Ground Locomotion System Pass-through packet. 
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2. LabVIEW Application 

There are many applications that could be used to send data packets to the Virtual 

Cockpit.  Procerus created an open source Visual C++ application that issues some of the 

common interface commands, such as a pass-through packet creator.  This application 

worked for testing the interface and for confirming that the packets were received by the 

Gumstix.  The difficulty of this application was that in order to send data from pass-

through packet creator, it needed to be written in hexadecimal.  The code could be 

modified to suit the needs of the ground locomotion system.  This would require a good 

working knowledge of Visual C++.  This is what led to the decision to develop an 

interface application in LabVIEW.  LabVIEW uses graphical programming that is easy to 

use. 

The initial step in building this LabVIEW application was to understand the 

packet format shown in Figure 33.  This is the building block of the application.  Starting 

from byte zero, the bytes were built from top to bottom in the block diagram.  Numeric 

controls were used for the variables and numeric constant blocks were used for the 

constants.  A Boolean toggle switch was implemented to switch between manual and 

autonomous mode.  Autonomous mode is defined as true (mode 1) and manual mode is 

false (mode 0).  Next, these blocks where converted to a string of binary values using the 

little-endian byte format.  Then the element strings are concatenated into one string of 

bits.  Now the packet is built and ready to be sent to Virtual Cockpit’s TCP/IP port 

(5005).  

LabVIEW has several functions for TCP communications.  Three of these 

functions are used to write the packet data.  They are the TCP open connection, TCP 

write, and TCP close connection functions.  All three of these functions are linked with 

error-to-warning connections that pass error information to the screen.  The front panel 

and block diagram are shown below in Figure 34.  The testing of this application will be 

discussed below.  
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Figure 34.   LabVIEW TCP/IP Application Front Panel and Block Diagram. 

 

D. GUMSTIX AND AUTOPILOT SOFTWARE AND APPLICATION 
TESTING 

This section discusses the testing and integration of the Gumstix example code 

and the LabVIEW application.  The code was modified to request and receive the GPS 

telemetry packet and also receive the modem mirror bridge packet (245).  The code was 

first tested on a Linux machine.  Once the code was receiving the packets from both the 

autopilot and LabVIEW application it was built and transferred to the Gumstix.  

The code was built on the Linux machine using make file.  In order the build the 

code on the Gumstix with bitbake, it needed to use the recipe format for using a make file 

with local sources.   This was explained in Chapter III.  To accomplish this, all the source 

files of the code needed to be saved in the package’s file directory.  The bitbake recipe 
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will also have all the files listed in it’s source file line including the make file.  When the 

code was functioning properly on the Gumstix, it could now be integrated with the drive 

system code. 

E. SUMMARY 

This chapter described the integration and testing of the Gumstix and KAP for the 

purpose of the ground locomotion system.  The KAP provides the ground locomotion 

system with sensor measurements from the autopilot and control data from the ground 

station.  Now the information is available to be processed into control movements of the 

WHEGs™.  This is done by integrating the modified Gumstix code and the drive system 

code from Chapter IV.  Chapter VI will describe this integration and the complete final 

ground locomotion configuration.  
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VI. MMALV GROUND LOCOMOTION SYSTEM INTEGRATION 
AND TESTING 

A. CHAPTER OVERVIEW 

This chapter will discuss the integration of the drive system, Gumstix and Kestrel 

Autopilot System in order to assemble the complete ground locomotion system.  The 

chapter will also discuss the final configuration and testing of the ground locomotion 

system.  

B. GROUND LOCOMOTION SYSTEM INTEGRATION  

By this point, the drive system and the KAP are functioning properly with the 

Gumstix, but not mutually.  To accomplish this, the drive system algorithm code is 

inserted into the main() function in the modified Gumstix example code.  The main() 

function contains an infinite loop that will continuously calculate the drive system control 

algorithm.  As mentioned in the previous chapter the combined code will have global 

variables, which are shown in Figure 35.  The combined code is shown in the Appendix. 

 

Description Variable Name Source 

Target latitude and longitude lat1, lon1 Ground Station 

MMALV latitude and longitude lat2, lon2 Autopilot 

Autopilot heading Heading_Autopilot Autopilot 

Desired heading Heading Ground Station 

Speed speed Ground Station 

Autonomous or manual mode Mode Ground Station 

Figure 35.   Global Variables. 
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With the drive system control algorithm code inserted, the ground locomotion system 

will now function in manual mode, which is following a desired heading.  If mode is 

equal to zero the heading error is determined from the difference of the autopilots 

heading and the desired heading sent from the ground station.   

To operate the system in autonomous mode, the bearing and distance must be 

calculated from the MMALV current location and target location.  The bearing and 

distance calculation are shown in Equations 4 and 5 [16].  These equations will only be 

calculated if mode equals one or TRUE.   

 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )bearing atan2 sin 1 2 cos 1 ,cos 2 sin 1 sin 2 cos 1 cos 1 2lon lon lat lat lat lat lat lon lon= − − −        (4) 

( ) ( ) ( ) ( ) ( )( )distance acos sin 2 sin 1 cos 2 cos 1 cos 1 2 earthlat lat lat lat lon lon Radius= + − ×              (5) 

 
The error will be calculated from the difference of the autopilots heading and the result of 

Equation 4.  Once this composite ground locomotion system code was complete and 

functioning properly, it was tested with the actual ground locomotion system components 

that will be used in the MMALV. 

C. GROUND LOCOMOTION SYSTEM FINAL CONFIGURATION 

The composite code described in the previous section was initially tested on the 

development components.  This section will describe the testing and configuration of the 

actual components that will be used in the MMALV ground locomotion system.  The 

components that are used are the following: Gumstix with breakout-vx, Pololu dual micro 

serial motor controller, and SolarBotics motors with clutch system.  Merging these 

components didn’t require any code modifications, only some initial configuring.  The 

motor controller needed to be configured to insure it had a two motor setup, with the right 

motor numbered as ‘0’ and the left number as ‘1’.    This configuration is explained in 

Chapter IV.   

The Gumstix needed to be configured with the breakout-vx expansion board.  The 

initial testing involving the servo and motor configurations was done using the console-

vx expansion board for the Gumstix.  This expansion board was used because of its mini 
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DIN8 connections which allowed easy interface with the host computer.  It also allowed 

the monitoring of the development process and observation of the data transfer between 

the ground locomotion system components.  The breakout-vx is used in the final design 

configuration due to its smaller size and battery connections.  These connections are 

shown below in Figure 36.   

 

 
Figure 36.   Breakout-vx Connections. 

The ground locomotion system also needed to function without the serial 

connection of the host computer.  To accomplish this, a code execution script was added 

to the Gumstix’s boot initialization process at the default run level 5.  This enables the 

ground locomotion system to start once battery power is applied to the Gumstix and after 

95 % of its boot sequence.  The directory listing of the run level 5 scripts and the ground 

locomotion execution script are shown in Figure 37.  The highlighted line is the ground 

locomotion execution script (S95grdctl).  Once this was accomplished the ground 
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locomotion system can operate on battery power and can be controlled through the 

LabVIEW application described in Chapter VI.  The testing of this final configuration is 

described in the next section.   

 
root@gumstix-custom-verdex:/etc/rc5.d$ ls -l 
lrwxrwxrwx    1 root     root  18 Jan  1 00:00 S10dropbear -> ../init.d/dropbear 
lrwxrwxrwx    1 root     root  13 Jan  1 00:00 S20boa -> ../init.d/boa 
lrwxrwxrwx    1 root     root  16 Jan  1  1970 S20dbus-1 -> ../init.d/dbus-1 
lrwxrwxrwx    1 root     root  14 Jan  1 00:00 S20ntpd -> ../init.d/ntpd 
lrwxrwxrwx    1 root     root  16 Jan  1 00:00 S20syslog -> ../init.d/syslog 
lrwxrwxrwx    1 root     root  21 Jan  1  1970 S23bluetooth -> /etc/init.d/bluetooth 
lrwxrwxrwx    1 root     root  20 Jan  1 00:00 S25alsa-state -> ../init.d/alsa-state 
lrwxrwxrwx    1 root     root  17 Jan  1  1970 S30ntpdate -> ../init.d/ntpdate 
lrwxrwxrwx    1 root     root  17 Jan  1 00:00 S50bonjour -> ../init.d/bonjour 
lrwxrwxrwx    1 root     root  14 Jan  1 00:00 S65cron -> ../init.d/cron 
lrwxrwxrwx    1 root     root  13 Jan  1 00:00 S90i2c -> ../init.d/i2c 
lrwxrwxrwx    1 root     root  18 Jan  1 00:05 S95grdctl -> /etc/init.d/grdctl 
lrwxrwxrwx    1 root     root  19 Jan  1 00:00 S99rmnologin -> ../init.d/rmnologin 
root@gumstix-custom-verdex:/etc/rc5.d$ cat S95grdctl  
#!/bin/sh 
 
echo -n "Starting Ground Control... " 
/usr/bin/GrnCntl > /dev/null 2>$1 & 
echo "done." 

Figure 37.   Gumstix Ground Control Initialization Script. 

 

D. GROUND LOCOMOTION SYSTEM TESTING 

The testing of the complete ground system was done with the final configuration 

describe above.  The layout of the final design configuration is shown below in Figure 

38.   
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Figure 38.   Final Ground Locomotion System Configuration. 

The battery operates all components of the MMALV, including the ground locomotion 

system.  The battery is an 11.1V lithium polymer and operates at 1320 mAh.  A 5V 

switching voltage regulator is used to power the Gumstix, motor controller, and 

WHEG™ motors.   

The ground locomotion system can be controlled once the Gumstix runs the code 

execution script and power is applied to all components.  The initial state of the system is 

all of the global variables are zeroed.  The MMALV will remain stationary until data 

packets are received from the ground station.  As mentioned previously, the ground 

locomotion system will respond to either a desired heading or target location input from 

the LabView application at the ground station. Stationary testing was done by 

observation of the proper motor rotation rates.  (These two modes were tested with 

success and described below.)  

Manual mode controls the MMALV to follow a specific compass heading or 

bearing.  This is done by dialing in the desired heading and speed on the LabVIEW 

application.  The system responds by turning towards the desired heading.  One motor 
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would rotate at the set desired speed the other motor would rotate at the rate proportional 

to the heading error.  Therefore, for a left turn the left motor will slow to a rotation rate 

proportional to the error.  When the error is zero both motors rotate at the same rate.   

Autonomous mode navigates the MMALV to a desired target latitude and 

longitude.  This was done by sending the target location and desired speed from the 

LabVIEW application.  The ground control algorithm uses the data to compute the 

desired heading to the target location.  The MMALV will continuously navigate to the 

target location and constantly update the desired bearing to target.  It tracks this heading 

in the same manner as it did in manual mode.  This mode was tested stationary by 

observing the correct bearing and distance calculations to a specific target location, and 

also observing the correct motor rotation rates.  Additionally, once the MMALV is within 

a one meter range of the target location, the speed is set to zero.   

All of this testing was done with the configuration in Figure 38.  The testing was 

only done stationary due to the deficiency of new 16 inch wingspan MMALV.  The 

desire was to test the system using this airframe with the integrated clutch system and 

WHEGs™, but due to manufacturing delays it was not accomplished.  These test results 

do validate that this system will function as designed when integrated with the new 

MMALV airframe.  The conceptual ground locomotion system integrated into the 16 

inch MMALV airframe is shown in Figure 39.   

 



 53 

 

Figure 39.   Conceptual MMALV Ground Locomotion Configuration [After 3]. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSION 

This thesis has significantly advanced the ground locomotion mode of the 

MMALV as well as expanded its capabilities.  The ground locomotion system design 

provides the MMALV a method of easily navigating the battlefield to provide the 

warfighter with a highly mobile sensor and reconnaissance platform.  The Gumstix can 

also provide the MMALV with processing power to collect sensor data and then send the 

data through the autopilot to the ground station.    

The ground locomotion system design presented in this thesis can be easily 

modified and refined to suit the needs of the MMALV.  This is done without any 

modification of the Kestrel autopilot firmware.  Now the ground work laid to bring the 

MMALV from less of a concept and more a reality. 

B. RECOMMENDATIONS 

Future thesis work can expand and refine the ground locomotion design in this 

thesis.  Dynamic testing still needs to be completed with the new MMALV airframe.  We 

still don’t know how well the MMALV will track the desired heading. Also, the accuracy 

of the ground GPS navigation has not been completed.  The ground locomotion system 

needs to be flight tested.  Data relay will also be needed for the system to work.  The data 

being sent from the ground station and MMALV will need to be routed from an aerial 

platform due to loss of LOS.  Initial research has already been conducted [3]. 

Additional work can be conducted by expanding the capabilities of the Gumstix.  

There are many different expansion boards that could be used with the motherboard to do 

this.  The Gumstix could be used to control multiple cameras. It could also be used to 

collect sensor data.  Additionally, the Gumstix could be outfitted with an additional 

transmitter to function as a wireless sensor node and become part of an ad hoc wireless 

network.  The Gumstix’s potential is relatively infinite. 
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APPENDIX: GROUND LOCOMOTION SYSTEM C CODE 

#include <stdio.h> 
#include "CommSerialLinux.h" 
#include <math.h> 
#include <unistd.h> 
#include <termios.h> 
#include <fcntl.h> 
#include <errno.h> 
 
CCommSerialLinux g_CommSerial; 
typedef void (*CallBackFuncPtr)(CCommPacket *, PacketType); 
pthread_t RequestTelemetryThread; 
int Heading,speed,Mode; 
float lat1, lon1, lat2, lon2, Heading_Autopilot; //Global Variables 
 
// This is a function that gets called every time a packet from the 
autopilot is received 
void ReceivePacket(CCommPacket *NewPkt, PacketType Type) 
{ 
 //Casting variables 
 CStdTelemPacket *StdTelemPacket; 
 CGPSTelemPacket *GPSTelemPacket; 
 //Simple error checking 
 if(NewPkt == NULL) return; 
 //printf("Type =%d",Type);  
 switch(Type) 
 { 
 case STD_TELEMETRY_PACKET: 
  StdTelemPacket = 
reinterpret_cast<CStdTelemPacket*>(NewPkt); 
  Heading_Autopilot = StdTelemPacket->GetHeading()*57.3; 
 break; 
 case GPS_TELEMETRY_PACKET: 
  GPSTelemPacket = 
reinterpret_cast<CGPSTelemPacket*>(NewPkt); 
  lat2 = GPSTelemPacket->GetGPSLatitude(); 
  lon2 = GPSTelemPacket->GetGPSLongitude(); 
 break; 
 case 245: 
  Heading =  NewPkt-> ReadUnsignedShort(7); 
  speed =  NewPkt-> ReadShort(9); 
  lat1 = NewPkt-> ReadFloat(11); 
  lon1 =  NewPkt-> ReadFloat(15); 
  Mode =   NewPkt->ReadUnsignedChar(19); 
 } 
} 
void *RequestTelemetry(void* parm) 
{ 
 int counter = 0; 
 //Create our standard telem request packet 
 while(1) 
 { 
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  //Request the standard telemetry 10 times a second 
  CWriteRawPacket 
ReqStdTelemPkt(STD_TELEMETRY_REQUEST_PACKET, 0xFFFF); 
  ReqStdTelemPkt.SetPacketIDNum(counter++); 
  g_CommSerial.SendRaw(&ReqStdTelemPkt); 
  usleep(1000000); //Sleep for .1 seconds 
 
  //Request the GPS telemetry 
  CWriteRawPacket 
ReqGPSTelemPkt(GPS_TELEMETRY_REQUEST_PACKET, 0xFFFF); 
  ReqGPSTelemPkt.SetPacketIDNum(counter++); 
  g_CommSerial.SendRaw(&ReqGPSTelemPkt); 
  usleep(1000000); //Sleep for .1 seconds 
 } 
 return NULL; 
} 
int main() 
{ 
 //Register a callback for the packets 
 g_CommSerial.RegisterCallBack(ReceivePacket, ALL_PACKET); 
 
 //Open the serial port on the gumstix 
 if(!g_CommSerial.Open("/dev/ttyS2")) return -1; 
 
 if (0 != pthread_create(&RequestTelemetryThread, NULL, 
RequestTelemetry, NULL)) 
 { 
  printf("Could not create request telemetry thread.  
Exiting\n"); 
  return -1; 
 } 
 while(1) 
 {    

int fd, nbytes;    
  struct termios options; 
  char buf[1024]; 
  char cmd[6]; 
  //Open the commport and parameters 
  fd =open("/dev/ttyS1", O_RDWR | O_NOCTTY | O_NDELAY); 
       
  if (fd == -1) { 
   perror("Could not open port! - "); 
   return 1; 
  } else { 
   fcntl(fd, F_SETFL, FNDELAY); 
  } 
       
  tcgetattr(fd, &options); 
  cfsetispeed(&options, B9600); 
  cfsetospeed(&options, B9600); 
  options.c_cflag |= (CLOCAL | CREAD); 
  options.c_cflag &= ~PARENB;//No parity 
  options.c_cflag &= ~CSTOPB;//No Stop Bit 
  options.c_cflag &= ~CSIZE; 
  options.c_cflag |= CS8;//8 bits at a time 
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  options.c_cflag &= ~CRTSCTS; 
  options.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG); 
  options.c_iflag &= ~(IXON | IXOFF | IXANY); 
  options.c_oflag &= ~OPOST; 
  tcsetattr(fd, TCSANOW, &options); 
 
   float R = 6378.7;//radius of earth 
   float tc1,tc2,error,lat_t,lon_t,lat_a,lon_a; 
   int direction1=0,direction2=2; 
  
   if(Mode == TRUE){//bearing to target calculation 
    lat_t = lat1*M_PI/180; 
    lon_t = lon1*M_PI/180; 
    lat_a = lat2*M_PI/180; 
    lon_a= lon2*M_PI/180; 
    tc1=atan2(sin(lon_t-
lon_a)*cos(lat_t),cos(lat_a)*sin(lat_t)-
sin(lat_a)*cos(lat_t)*cos(lon_t-lon_a)); 
    tc2 = tc1*180/M_PI; 
    float theta = fmodf(tc2+360, 360); 
    float D = 
R*acos(sin(lat_a)*sin(lat_t)+cos(lat_a)*cos(lat_t)*cos(lon_t - lon_a)); 
    error = Heading_Autopilot-theta; 
    if(D*1000 <= 1){ 
     speed = 0; 
    } 
   } 
   else if(Mode ==FALSE){   
    error = Heading_Autopilot-Heading; 
   } 
    float r_rate=1.27;  //full speed*10 
    float l_rate=1.27; 
 
    if (error<-180){ 
     error = error+360; 
    } 
    if (error>180){ 
     error = error-360; 
    } 
    printf("Error = %f.\n",error); 
 
    if (error<0){ 
     r_rate = 1.27 + error/180; 
     } 
    if (error>0){ 
     l_rate = 1.27 - error/180; 
    } 
    printf("%f, %f\n",r_rate,l_rate); 
    float right = r_rate*abs(speed)*10; 
    float left = l_rate*abs(speed)*10; 
    int rgt = right; 
    int lft = left; 
 
  
    if (speed<0){  //reverse for motors 
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     direction1 = 1; 
     direction2 = 3; 
    } 
 
// 4 byte motor commands 
 
  bzero(cmd, 4); 
  cmd[0] = 128;  /* Unit ID */ 
  cmd[1] = 0;  /* Unit ID */ 
  cmd[2] = direction1; /* Right Motor 0 = fwd, 1 = rvs */ 
  cmd[3] = rgt; /* Speed 0 - 127 */ 
   
 write(fd, cmd, 4); 
 
  bzero(cmd, 4); 
  cmd[0] = 128;  /* Unit ID */ 
  cmd[1] = 0;  /* Unit ID */ 
  cmd[2] = direction2; /* Left Motor 2 = fwd, 3 = rvs */ 
  cmd[3] = lft; /* Speed 0 - 127 */ 
   
  write(fd, cmd, 4); 
   
   close(fd); 
  
 } 
 
 return 0; 

} 
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