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Mechanical damage of hair can serve as an indicator of health
status and its assessment relies on the measurement of
morphological features via microscopic analysis, yet few
studies have categorized the extent of damage sustained, and
instead have depended on qualitative profiling based on the
presence or absence of specific features. We describe the
development and application of a novel quantitative measure
for scoring hair surface damage in scanning electron
microscopic (SEM) images without predefined features, and
automation of image analysis for characterization of
morphological hair damage after exposure to an explosive
blast. Application of an automated normalization procedure
for SEM images revealed features indicative of contact with
materials in an explosive device and characteristic of heat
damage, though many were similar to features from physical
and chemical weathering. Assessment of hair damage with
tailing factor, a measure of asymmetry in pixel brightness
histograms and proxy for surface roughness, yielded 81%
classification accuracy to an existing damage classification
system, indicating good agreement between the two metrics.
Further ability of the tailing factor to score features of hair
damage reflecting explosion conditions demonstrates the
broad applicability of the metric to assess damage to hairs
containing a diverse set of morphological features.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191438&domain=pdf&date_stamp=2020-01-15
mailto:chu28@llnl.gov
https://dx.doi.org/10.6084/m9.figshare.c.4788729
https://dx.doi.org/10.6084/m9.figshare.c.4788729
http://orcid.org/
http://orcid.org/0000-0002-1114-6182
http://orcid.org/0000-0002-3491-9379
http://orcid.org/0000-0002-7408-6690
http://orcid.org/0000-0002-2832-4168
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191438
2
1. Introduction

Microscopic analysis of hair finds utility in diverse disciplines, such as in medical and forensic sciences,
though confidence in the interpretations of this type of analysis varies widely. In the context of forensic
science, microscopic hair analysis, a qualitative approach, has shown limited discriminative power [1,2],
ranging from use as a predictor of short-tandem repeat typing success from DNA in hair [3,4] to
comparative microscopy to aid forensic identification. Clinically, microscopic analysis can be used as a
tool to assess hair damage, as an indicator of health status [5–7], but analyses are performed in a
qualitative manner through identification of morphological features of hair damage. Exposure to
various physical and chemical stresses including detergents, dyes, brushing, and UV light alters hair
structure [8–11], and is of considerable interest for diagnosis of dermatological conditions; however,
few studies have quantified the extent of hair damage based on morphological features [12–14].
Notably, Kim et al. developed a classification system with five damage grades for characterizing hair
surface damage from weathering [12], which was then expanded upon to a 12-point scale by Lee and
colleagues [14], though the grading systems were dependent on visual scoring of scanning electron
microscopic (SEM) images based on subjective evaluations of severity in the irregularity of hair
cuticular structure. Microscopic analysis remains a predominantly qualitative technique via visual
assessments; little emphasis has been placed on developing more objective metrics and even less so
on quantitation of hair damage severity.

Digital image analysis has been underutilized for classification of hair fibres from various microscopic
methods, despite offering potential for more objective detection and comparison of image features. Of
these studies, the majority concentrated on morphological features detected by light microscopy and
analysed using commercial software [15–19], even though other microscopic techniques such as
atomic force microscopy (AFM) and SEM permit more extensive hair structure analysis for
comparison at higher spatial resolution [20,21]. In particular, Gurden et al. assessed hair structural
damage from bleaching, and differentiated root and distal ends affected by chemical treatment with
cuticular structure measurements such as surface roughness from AFM images [20], though the extent
of damage was not graded or quantified. There is a need for development of an objective scoring
system to characterize the extent of hair damage using automated analysis of higher resolution
microscopic images.

However, hair-to-hair variation and image acquisition differences obfuscate characterization and
scoring of hair surface damage from microscopic images, which rely on feature detection and pairwise
comparisons. Structural differences between two hair segments (e.g. width, curvature), even along the
length of a hair, and automatic setting of brightness and contrast parameters for optimal SEM image
acquisition make feature detection and hair segment comparison in image analysis challenging.
Briefly, SEM imaging to interrogate specimen surface topography is achieved as an electron beam
scans over the specimen via interactions between primary electrons and accessible atoms from the
specimen, leading to the emission of secondary electrons [22]. The number of secondary electrons that
reach the detector manifests as pixel greyscale brightness in an image [23]. Pixel brightness contrast
within an image provides topographical information about the specimen surface, which is most
accessible to the primary electrons, and is affected by, among other factors, the ease with which
secondary electrons escape the surface of the specimen once formed [22]. However, detection of
morphological features on the surface for image comparison may be complicated when brightness
contrast varies within and between images. For example, SEM images of segments from two different
hairs (Hair Samples 4 and 2), shown in figure 1a and 1b, respectively, can display vastly different
brightness levels, even within the same image along the width of the hair segment, owing to hair
fibre positions and stage tilt angles. Furthermore, the tubular structure of hair creates different contact
angles for the electron beam, which affects formation and detection of secondary electrons. Coupled
with the orientation of the electron beam and the detector with respect to the hair fibre, detection of
an abundance of secondary electrons formed from contact with hair segment edges manifests as
abnormally bright bands along the edges of the hair segment that obscure image features entirely,
even after carbon coating. To facilitate feature identification and enable direct comparison of different
images, such artefacts must be removed or addressed.

While many normalization methods have been implemented to remove image artefacts such as
brightness variation, procedures used to process digital images focus on contrast enhancement. These
include variations of histogram equalization, gamma intensity correction (GIC), and wavelet-based
methods for applications such as feature detection in retinal and magnetic resonance images for
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Figure 1. SEM images of (a) and (b) hair segments as original raw images, (c) and (d ) rotated segments with selected region of
interest (yellow rectangle) and image brightness histogram of region, and (e) and ( f ) regions of interest after normalization and
corresponding image brightness histograms, from Hair Samples 4 and 2, respectively. Original images (c) and (d ) show different
brightness levels due to hair-to-hair variation and image acquisition differences. The described normalization procedure minimized
brightness differences within and between images, as displayed in (e) and ( f ).

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191438
3

disease diagnosis [24,25] and in digital images for facial recognition [26,27]. However, these methods
necessitate user inputs and parameter optimization, such as the gamma value in GIC, and are used to
enhance features for detection in an image. Variations in both parameters are not conducive to
comparative image analysis with a scoring system. Instead, desirable normalization procedures require
minimal user-defined inputs, are computationally inexpensive, and preserve pixel brightness
information in an image while reducing hair-to-hair and image acquisition variation.

We aimed to facilitate identification of microscopic features characteristic of hair damage and image
comparison by developing and applying a simple and automated normalization procedure and evaluate
metrics for representing hair damage. Development and automation of image analysis for assessment of
hair surface damage from this preliminary study directly enables correlations of the effects of an
explosive blast on morphological hair damage with alterations in chemical composition of hair, which
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will be further explored in a future publication. Using open source image visualization program ImageJ

[28,29], morphological features unique to hairs subjected to explosive blast conditions were identified
after normalization. Morphological features of damage exhibited higher pixel brightness owing to
their elevation or depression from the hair cuticle surface, which can be detected as peak lag tailing in
pixel brightness histograms. Metrics to quantitate pixel brightness from these features, including
roughness and tailing factor, were evaluated for broadly applicable scoring of hair surface damage.

2. Methods
2.1. Hair sample collection
Scalp hair specimens were collected as part of a larger study to identify peptide biomarkers for protein-
based human identification. Hair fibres from two individuals were used in this study; see Section End
Statements for more details on approval for hair sample collection. After assembly of an experimental
explosive device using commercial materials as part of a training exercise hosted by the Bureau of
Alcohol, Tobacco, Firearms, and Explosives National Center for Explosives Training and Research at the
Redstone Arsenal in Huntsville, AL, hairs (less than 5 cm) were taped onto the internal and external
regions of the device. The device was then detonated in a spherical total containment vessel with a
diameter of 48 in (1.2 m) using 2 inches (5 cm) of dynamite. Remnants of the device and hair fibres were
collected from the total containment vessel after the explosion and stored in the dark at room temperature.

2.2. Hair sample preparation for scanning electron microscopy image acquisition
Recovered hair fibres were isolated and segmented; one inch (approx. 2.5 cm) each was allotted for
protein analysis that will be described in a future publication, and the remainder (approx. 1 cm) was
used for scanning electron microscopic (SEM) analysis. Three exploded and two control hairs were
randomly selected for analysis and image acquisition. Each segmented hair was fixed onto a stub
prior to carbon coating; under vacuum, a carbon layer of approximately 10 nm was deposited onto
each specimen after heating for approximately 5 s. Secondary electron images were acquired along the
length of each hair fibre using an Inspect F (FEI Company, Hillsboro, OR) scanning electron
microscope, at an acceleration voltage of 5 kV, a dwell time of 3 µs, and a working distance of 7 mm
over a range of magnifications. Brightness and contrast were automatically adjusted for each image. In
total, 58 digital SEM images (8-bit) were acquired from five hair segments, and all were then
processed using ImageJ 1.52k software in replicates of n = 5.

2.3. Automated image normalization procedure
Prior to normalization, a region of interest (ROI) was computationally defined in each image to ensure
that regions exhibiting abnormally high brightness on the edges of hair segments were excluded from the
area processed by image analysis. The original raw image was first rotated using a user-defined line
input along the length of the hair segment so that the length of the hair segment was oriented along
the horizontal axis of the ROI. Empirical evaluations of a few hair segment images showed that up to
10 µm of hair surface along the vertical axis from either edge were prone to abnormally high
brightness, approximately 20% of the width of hair segment. To uniformly define the ROI bounds
between images yet exclude abnormally bright regions, 75% of the hair segment width and length
equidistant from the image centre were included in the ROI. The bounds, length, and width of the
hair segment were then defined (in pixels) using a user-defined diagonal line, with coordinates (x1, y1)
and (x2, y2), that spanned two corners of the segment. From the diagonal line, the upper left-hand
corner coordinates (xlh, ylh), length, and width of the ROI were defined according to equations (2.1)–(2.3):

(xlh, ylh) ¼ 7xmin þ xmax

8
,
7ymin þ ymax

8

� �
, ð2:1Þ

l ¼ 3
4
(xmax � xmin), ð2:2Þ

and w ¼ 3
4
(ymax � ymin), ð2:3Þ

where xmin, xmax, ymin, and ymax represent the minima and maxima of x and y, respectively, extracted
from the diagonal line described by coordinates (x1, y1) and (x2, y2). Centring the ROI to encompass
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9/16th (or 56%) of the hair segment area (l × w) allows most of the segment to be included for image

analysis while excluding edge regions where features are entirely obscured due to abnormal pixel
brightness for reasons discussed above (figure 1c,d ).

After ROI definition, brightness within an image was equalized by normalizing to the average
brightness per row of pixels followed by centring the average at a value of 109 and rescaling. The
value of 109 was selected empirically by considering two hair segment images and calculating the
average image brightness within the ROIs from the two images and then averaging the obtained
results. The resultant centring value of 109 is equivalent to 43% of the maximum brightness (from a
scale ranging between 0 and 255) and represents a dark grey pixel. This pixel brightness value
corresponds to undamaged regions of hair segments, which make up the majority of the pixels in the
image. To preserve pixel brightness ratios with respect to the average brightness per row of pixels but
ensure that average image brightness centres around 109 and pixel brightness maximizes at 255,
normalization was performed for each pixel within the ROI according to equations (2.4) and (2.5):

Ii,j,norm ¼ Ii,j
1
l

Xl

n¼1
In,j

� 109 ð2:4Þ

and

Ii,j,norm,scale ¼
146 � (Ii,j,norm � 109)
I j,norm,max � 109

þ 109, Ii,j,norm . 109

Ii,j,norm, Ii,j,norm � 109,

8<
: ð2:5Þ

where Ii,j, Ii,j,norm, and Ii,j,norm,scale represent the raw, normalized, and rescaled brightness of a pixel at image
position i,j, respectively, In,j is the brightness of a pixel at image position n,j from 1 to ROI length l,
I j,norm,max is defined as the maximum normalized brightness at the jth row, and 146 represents the
difference between maximum pixel brightness 255 and brightness value 109. Equation (2.5) is based on
min–max normalization, a common score normalization approach [30]. After normalization, ROIs
exhibited less variance within an image and similar average brightness values (figure 1e,f ).
2.4. Hair surface damage metric calculations
As morphological features of damage manifest as brighter pixels in contrast to undamaged regions,
pixel brightness can be exploited for quantifying hair surface damage. The following metrics were
investigated for scoring of hair surface damage in SEM images after normalization as different
representations of pixel brightness: average image brightness, average image roughness, and tailing
factor. Macros were written in ImageJ to carry out calculations for each metric on an image; see
Section End Statements for code availability. Average image brightness Inorm of an ROI was
calculated using the equation:

Inorm ¼ 1
l � w

Xw
j¼1

Xl

i¼1

Ii,j, ð2:6Þ

where Ii,j is the brightness of a pixel at image position i,j, and l and w represent the length and width
of the ROI (in pixels), respectively.

Image roughnesswas evaluated for potential to quantify hair surface damage as an alternativemetric of
pixel brightness focusing on brightness fluctuationwithin an image to represent damage features. Based on
the metric description by Gurden et al. [20], who previously reported use of roughness to profile hair
cuticular surface, and adaptation of the distance formula for application to SEM images, average image
roughness �r was determined for n sections along length l of the ROI using equations (2.7)–(2.9):

s ¼ l
n

� �
, 1 � s � l, ð2:7Þ

nactual ¼
n,

l
s

� �
¼ 0

dne, l
s

� �
. 0

8>><
>>:

, ð2:8Þ
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and

�r ¼ 1
w

Xw
j¼1

1
l

Xnactual�1

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Isiþ1, j � Is � (i�1)þ1,j)

2 þ (s)2
q0

B@
1
CAþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Il,j � Is � (nactual�1)þ1, j)

2 þ (l� s(nactual � 1))2
q0

B@
1
CA

2
64

3
75,

ð2:9Þ

where s is the section width, nactual is the total number of sections after accounting for dividends when
sectioning l by s pixels, w represents the width of the ROI, and Isiþ1, j, Is � (i�1)þ1,j, and Is � (nactual�1)þ1, j are
the pixel brightness values at image positions siþ 1, j, s � ði� 1Þ þ 1, j, and s � ðnactual � 1Þ þ 1, j,
respectively, designated by the ith section.

A third metric, tailing factor, was examined for representing hair surface damage, since brighter
morphological features of damage manifest as peak lag tailing in pixel brightness histograms. Tailing
factor of an image brightness histogram, adapted from the USP measurement of chromatographic
peak tailing [31], was determined in two steps: the peak apex was first redefined, bounded by the full
width at half-maximum, to remove histogram skew created by the presence of multiple peaks, and
then tailing factor was calculated at a fraction of the peak height maximum. Conventionally, the
metric is calculated at 5% of the peak height maximum [31], though fraction f was optimized between
1 and 10% of the peak height maximum for this application. Peak apex brightness Ih and tailing factor
t fH were determined using equations (2.10)–(2.12):

IH ¼
PIlag,0:5H

i¼Ilead,0:5H
iciPIlag,0:5H

i¼Ilead,0:5H
ci
, ð2:10Þ

Ih ¼ IH , jIH � IH j � 3
IH , jIH � IH j . 3

,
�

ð2:11Þ

and t fH ¼ Ilag,fH � Ilead,fH
2ðIh � Ilead,fHÞ , ð2:12Þ

where Ilead,0:5H and Ilag,0:5H represent the peak lead and lag brightness, respectively, at 50% of the
brightness profile peak height maximum H, ci is the frequency of pixel brightness i, IH is the
brightness value at H, and Ilead,fH and Ilag,fH represent the peak lead and lag brightness at fraction f of
the peak height maximum.

2.5. Statistical analysis
All statistical analyses were performed in R (x64 version 3.4.4). Statistical significance was established at
α = 0.05. Pearson product-moment correlations of hair surface damage metrics followed by one-sample
t-testing of the correlation coefficients were performed using the cor.test function in the stats v3.5.3
package to determine statistical significance of the correlations. Training and test sets for a k-Nearest
Neighbor Classification (kNN) model were established by randomization, each comprising 50% of the
dataset and containing the same number of images from exploded and undamaged hairs. The model
was developed using the knn function in the class v7.3-15 package, with k = 3 nearest neighbours
determined by Euclidean distance. All plots were drawn in OriginPro 2018 (OriginLab Corp.,
Northampton, MA).
3. Results and discussion
3.1. Identification of microscopic features for characterization of hair surface damage
Single hairs recovered after exposure to explosive blast conditions sustained damage comparable to that
from physical and chemical weathering, as similar morphological features were identified in this study.
Visual inspection of microscopic images of damaged hairs after normalization enabled identification of
holes, cracks, lifting and tearing of the cuticle, and partial exposure of the cortex (figure 2a,b). Images
were scored based on qualitative presence or absence of features, as described in the scanning electron
microscopic (SEM) damage grade system proposed by Kim et al., where overlapped cuticles represent
the lowest degree of hair surface damage (Scu 1, or Grade 1 damage assessed in SEM images of hair
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Figure 2. Representative rotated SEM images with overlays of normalized regions of interest and corresponding brightness histograms
from Hair Samples 1–5, respectively. Features are labelled and denoted by yellow arrows. In addition to debris and particulates on the
hair surface, features characteristic of damage from an explosion induced by an explosive device include (a) holes exposing layers of
cuticle, (b) severe lifting of the cuticle edges and large cracks leading to partial exposure of cortex, and (c) localized non-specific cuticle
lifting with residue from adhesive tape. Undamaged control hairs (d ) and (e) predominantly display overlapped cuticles from daily
weathering, illustrating substantially less severe hair surface damage compared to exploded hairs.
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cuticle), apart from intact virgin hair, while the most severe hair damage (Scu 4) is characterized by the
complete absence of cuticle and full exposure of cortex [12]. In particular, severe lifting of the cuticle
edges in figure 2b most likely arose from scorching of the hair surface during the explosion, with the
more intense scorching creating concavities in the edges of the cuticles along the centre of the hair
fibre, as cuticle lifting is observed even when hair is exposed to 61°C temperatures from hair-drying
[8]. Heat from the explosion also likely stressed the hair fibres, resulting in axial cracks on the surface
along the hair length as the first indication of thermal damage, likely from cortical swelling in the
fibre [8,32]. These features were also observed in hair exposed to physical and chemical weathering,
such as frequent washing with detergent and exposures to bleach and UV light [12,13]. The extent of
damage in recovered hairs varied along each hair. Regions in which damage consisted only of
overlapped cuticles, attributed predominantly to daily weathering, were observed in exploded hairs,
although the majority of SEM images containing this damage feature belonged to control hairs
(figure 2d,e).

In addition to the above features, exploded hairs contained features not typically observed from
physical and chemical weathering alone; embedded debris and particulates and cuticle lifting with
adhered amorphous residue further characterized exploded hairs. Even without washing hair
specimens after sample collection, control hair samples 4 and 5 were debris-free (figure 2d,e),
indicating that the presence of embedded particulates is characteristic of physical contact with the
explosive or remnants of the device. Furthermore, amorphous residue adhered to lifted cuticles
(figure 2c) likely resulted during the hair fibre isolation process. Hairs previously attached to the
experimental device via adhesive tape were isolated with forceps; detachment of hair fibres led to
cuticle lifting, with residual adhesive bonded to the cuticle.

Normalization ensured that undamaged regions of hair fibres remain uniform in pixel brightness
(intensity scale ranging 0–255) as a dark grey while physical features of hair surface damage appear
as clusters of brighter pixels, ranging from light grey to white. For example, cuticle lifting is
characterized by a cluster of brighter pixels, bounded by white pixels along the cuticle edges as
distinct from the cuticle layer underneath, which is the result of elevation differences from the hair
surface (figure 2b). In contrast, a depressed feature such as a hole manifests as alternating rings of
light and dark pixels, as the light pixels delineate the edges of each exposed cuticle layer that is
represented by darker pixels, down into the cortex (figure 2a). Similarly, many microscopic features of
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hair surface damage identified herein are characterized by pixel brightness differences that can be further

exploited in image analysis.
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3.2. Evaluation of image parameters and metrics for scoring hair surface damage and
image comparison

Automated image analysis for scoring hair surface damage and image comparison requires a reliable
metric that not only represents the microscopic features identified above but can also be calculated
from the image. As discussed above, many features characteristic of damage manifest as brighter
pixels in images, compared to the uniform dark grey of smoother undamaged regions. Thus, we
investigated the potential of using pixel brightness to score hair surface damage.

Although the simplest representation of brightness is its average, the metric was excluded from
consideration due to its role in the normalization procedure and its correlation with magnification.
The normalization procedure re-centred the average row brightness at a value of 109, which
corresponds to 43% of the maximum brightness. This method not only readjusted brightness within
images, but also effectively equalized brightness of undamaged regions between images for direct
comparison. Therefore, average image brightness cannot be used to capture brightness differences
between images from microscopic features of damage. Additionally, a significant positive correlation
(r = 0.595; p = 8.26 × 10−7; figure 3a) between average image brightness and magnification indicates that
images acquired at vastly different magnifications (between 1000× and 7000×) cannot be directly
compared. Images exhibit greater average pixel brightness at higher magnifications, most likely from
automatic brightness and contrast settings that were not modified when changing from low to high
magnifications in the same region of the hair fibre, which result in higher overall brightness and
low contrast for a smaller image area. Because of this correlation, only images acquired between
1000× and 4000× magnification were retained (r = 0.059; p = 0.750) for scoring and comparison.

We chose to explore metrics for assessing image roughness as an indication of hair surface damage.
Physical surface roughness formed by elevations and depressions from the cuticle surface creates
variations in adjacent pixel brightness that deviate from the average owing to differences in
secondary electron trajectories from surface to detector. Roughness was previously used in
conjunction with other metrics to profile morphological damage in the cuticular structure of human
hair from images acquired via atomic force microscopy (AFM) in contact mode; using these metrics
and multivariate statistics, Gurden et al. reported 86% accuracy to classifying hair segments as
bleached versus untreated and from root or distal end [20]. Roughness was calculated from surface
profiles over the length of the profile since AFM measures surface height, with a completely flat
profile having a roughness defined as 1. But because height information is not directly obtained
from SEM images, hair surface roughness determination was modified using the summation of pixel
brightness differences between image sections over the length of the region of interest (equations
(2.7)–(2.9)).

However, image roughness failed to characterize the extent of hair surface damage in SEM images, as
the metric does not sufficiently correlate surface roughness with variation in pixel brightness. Average
image roughness, optimized with summation of brightness differences in 100 sections, yielded
a correlation of only 0.259 with SEM damage grade [12] ( p = 0.153; figure 3b), after evaluation over a
range of 10, 20, 50, 100, and pixel-by-pixel sections. For example, two images exhibited similar average
image roughness, as calculated using equations (2.7)–(2.9), despite showing substantially different
extents of surface damage, assessed using the SEM damage grade system; the mostly undamaged hair
was even associated with a greater average roughness than one displaying holes in the cuticle and
partial exposure of the cortex, likely from overrepresentation of overlapped cuticles in the former
(electronic supplementary material, figure S1b) and underrepresentation of holes and partial cortex
exposure in the latter image (electronic supplementary material, figure S1a). It is obvious that average
image roughness does not adequately represent morphological features of damage, and thus, is not an
appropriate metric for scoring hair surface damage.

Instead, analysis of pixel brightness histograms in a manner similar to chromatographic peak tailing
more effectively captured roughness associated with hair surface damage. Average pixel brightness
histograms showed pronounced peak lag tailing for SEM images of exploded hairs compared to
controls (figure 3c), linked to the pixel brightness of damage features, and thus, to roughness. As
damage features accumulate in an image, surface roughness increases along with a higher proportion
of brighter pixels, thereby positively skewing the image brightness profile and creating a tailing effect.
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Figure 3. Image metrics and parameters for characterization of hair surface damage in SEM images. (a) Correlation between average
image brightness and magnification after normalization. A moderate correlation (Pearson product-moment correlation (PPMC)
coefficient r = 0.595, p = 8.26 × 10−7, d.f. = 56) between image brightness and magnification indicates that images acquired
with vastly different magnifications cannot be compared without an alternative normalization scheme. Thus, only images with
magnification less than or equal to 4000× were considered for damage scoring. (b) Correlation of average image roughness, as
calculated using equations (2.7)–(2.9), with SEM damage grade (PPMC coefficient r = 0.259, p = 0.153, d.f. = 30). Roughness was
calculated for 100 sections along the horizontal axis. As evidenced by the wide range of roughness measurements for images
designated as sustaining Scu 1 damage, average image roughness does not sufficiently represent hair surface damage. (c) Average
image brightness histograms for exploded and control SEM hair images with inset. Inset shows pronounced peak tailing in
histograms of exploded hairs compared to control hair image brightness histograms, which can be further exploited to describe
hair damage. (d ) Correlation of tailing factor with SEM damage grade (PPMC coefficient r = 0.823, p = 7.31 × 10−9, d.f. = 30).
Tailing factor, a measure of peak tailing, was calculated at 2% of the peak height maximum. Compared to image roughness,
tailing factor better captures the extent of hair surface damage in SEM images.
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Tailing factor, conventionally used to characterize peak shape in chromatographic separations [31], was
investigated as a metric to represent tailing in a pixel brightness histogram and characterize roughness
from hair surface damage. As the ratio of the full peak width to twice the peak lead width, typically
calculated at 5% of the peak height maximum in chromatography [31], a tailing factor of 1 indicates a
symmetrical peak and thus, the absence of tailing, while values greater than 1 indicate peak lag
tailing. For quantification of hair surface roughness, the tailing factor for pixel brightness histograms
yielded maximum statistically significant correlation with SEM damage grade when determined at 2%
of the height maximum (r = 0.823; p = 7.31 × 10−9; figure 3d ); the metric was optimized between 1 and
10% of the peak height maximum. In contrast to average image roughness, comparison of SEM
images in electronic supplementary material, figure S1a and S1b demonstrated good agreement
between SEM damage grade and tailing factor; small holes, lifting of the cuticle edges and peeling of
a cuticle layer partially exposing the cortex were features in the exploded hair that contributed to a
tailing factor of 2.473, compared to a tailing factor of 1.451 in electronic supplementary material,
figure S1b for a control hair.

Tailing factor further represents more generalized features of hair surface damage and requires no
predefined characteristics for scoring of damage. Given the strong correlation, a kNN model was
developed and tested for prediction of SEM damage grade using tailing factor; with three nearest
neighbours, 81% classification accuracy was achieved (table 1), reiterating the success of capturing the



Table 1. Predicted microscopy damage grade and probability of prediction for SEM hair images in test set from kNN model with
k = 3 based on tailing factor calculated at 2% of peak height maximum.

hair
sample

sample damage
classification

SEM damage
grade

tailing
factor

predicted damage
grade probability

4 control Scu 1 1.182 Scu 1 1

3 exploded Scu 1 1.197 Scu 1 1

4 control Scu 1 1.209 Scu 1 1

5 control Scu 2 1.269 Scu 1a 1

3 exploded Scu 1 1.306 Scu 1 1

3 exploded Scu 1 1.403 Scu 1 1

5 control Scu 1 1.434 Scu 1 1

4 control Scu 1 1.451 Scu 1 1

2 exploded Scu 1 1.521 Scu 1 0.667

1 exploded Scu 1 1.570 Scu 1 0.667

2 exploded Scu 1 1.687 Scu 2a 0.667

3 exploded Scu 2 1.825 Scu 2 0.667

1 exploded Scu 2 1.883 Scu 2 0.667

1 exploded Scu 2 1.901 Scu 2 0.667

1 exploded Scu 2 2.365 Scu 3a 0.667

1 exploded Scu 3 2.473 Scu 3 0.667
aIncorrectly predicted damage grade.
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same features defined by the SEM damage grade system. However, three misclassified images highlight
the limitations of a classification system based on specific microscopic features. For example, a higher
damage grade was predicted for electronic supplementary material, figure S2a, an exploded hair,
initially classified as having Scu 2 damage from lift-up of the cuticle and presence of holes. But the
presence of embedded particulates and residue remaining after removal from adhesive were ignored
as they were not specified features in the damage grade criteria, though these features contribute
prominently to surface roughness and damage in the image. On the other hand, tailing factor enabled
prediction of a relatively undamaged control hair to Scu 1, though classified as sustaining Scu 2
damage due to the presence of a hole and a few cuticle lift-ups (electronic supplementary material,
figure S2b). Classification systems based on presence or absence of defined features do not provide
quantitative scoring for images based on extent of damage. Tailing factor overcomes limitations of
hair damage classification systems, as it is intrinsically linked to the magnitude of surface damage
and it enables successful scoring of images without prior identification of specific features.

Applied to each hair specimen, average tailing factor and its range across images describe hair
damage severity more completely. For example, compared to Hair Sample 1, tailing factors for images
of different regions along Hair Sample 3 are smaller (table 1), thus indicating less severe cuticular
damage even though both are exploded hairs. Indeed, some tailing factors for Hair Sample 3 images
in the test set are similar to those for Hair Sample 4, an undamaged control hair. However, when
accounting for all of the tailing factors from SEM images of different regions along Hair Sample 3,
including those from the training set, a larger average tailing factor is attained (1.545 ± 0.363 (s.d.)),
with a wider tailing factor range (minimum= 1.197, maximum= 2.145), as compared to Hair Sample 4
(1.337 ± 0.153; minimum= 1.182, maximum= 1.535). Clearly, more damage has been sustained by Hair
Sample 3, given the larger average tailing factor. The wider tailing factor range in the exploded hair
further indicates the presence of both damaged and undamaged regions, signifying non-uniform
severity of cuticular damage along the hair, whereas Hair Sample 4 is primarily undamaged.
Collectively, the magnitude and range of tailing factors for each hair quantify the severity of cuticular
damage in a more comprehensive manner. Not limited to hair analysis, this novel quantitative metric
may be applied widely for assessments of surface damage in other materials relevant to the life and
material sciences.
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4. Conclusion

We offer a quantitative and objective approach to assess hair surface damage from scanning electron
microscopic images. As a proxy for surface roughness, tailing factor quantifies the severity of hair
cuticular damage by exploiting pixel brightness in elevated and depressed morphological features of
damage. Successful characterization of morphological features unique to exploded hairs further
demonstrates the ability for tailing factor to accommodate a diverse set of features as a broad metric to
probe surface topography, which enables an investigation into the correlations of morphological damage
and chemical composition changes in exploded hairs, and may find utility in disciplines such as
medical, forensic, and material sciences to provide quantitative microscopic analyses of mechanical
damage in hair and other materials.
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