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PREFACE.

IT may perhaps be fairly stated that no better guide can be found to the

analytical developments of Pure Mathematics during the last seventy years

than a study of the problems presented by the subject whereof this volume

treats. This book is published in the hope that it may be found worthy to

form the basis for such study. It is also hoped that the book may be

serviceable to those who use it for a first introduction to the subject.

And an endeavour has been made to point out what ^are conceived to be the

most artistic ways of formally developing the theory regarded as complete.

The matter is arranged primarily with a view to obtaining perfectly

general, and not merely illustrative, theorems, in an order in which they can

be immediately utilised for the subsequent theory; particular results, however

interesting, or important in special applications, which are not an integral

portion of the continuous argument of the book, are introduced only so far

as they appeared necessary to explain the general results, mainly in the

examples, or are postponed, or are excluded altogether. The sequence and

scope of ideas to which this has led will be clear from an examination of the

table of Contents. fc-

The methods of Riemann, as far as they are explained in books on the

general theory of functions, are provisionally regarded as fundamental
;
but

precise references .are given for all results assumed, and great pains have

been taken, in the theory of algebraic functions and their integrals, and in

the analytic theory of theta functions, to provide for alternative developments
of the theory. If it is desired to dispense with Riemann s existence theorems,

the theory of algebraic functions may be founded either on the arithmetical

ideas introduced by Kronecker and by Dedekind and Weber
;

or on the

quasi-geometrical ideas associated with the theory of adjoint polynomials ;

while in any case it does not appear to be convenient to avoid reference to

either class of ideas. It is believed that, save for some points in the

periodicity of Abelian integrals, all that is necessary to the former ele

mentary development will be found in Chapters IV. and VII., in connection

with which the reader may consult the recent -paper of Hensel, Acta

Mathematica, xvm. (1894), and also the papers of Kronecker and of

B. b
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Dedekind and Weber, Grelle s Journal, xci., xcn. (1882). And it is hoped
that what is necessary for the development of the theory from the elemen

tary geometrical point of view will be understood from Chapter VI., in

connection with which the reader may consult the Abel sche Functionen of

Clebsch and Gordan (Leipzig, 1866) and the paper of Noether, Mathematische

Annalen, vii. (1873). In the theory of Riemann s theta functions, the

formulae which are given relatively to the and
g&amp;gt;-

functions, and the

general formulae given near the end of Chapter XIV., will provide sufficient

indications of how the theta functions can be algebraically denned
;
the

reader may consult Noether, Mathematische Annalen, xxxvn. (1890), and

Klein and Burkhardt, ibid. xxxn. xxxvi. In Chapters XV., XVII., and

XIX., and in Chapters XVIII. and XX., are given the beginnings of that

analytical theory of theta. functions from which, -in conjunction with the

general theory of functions of several independent variables, so much is to

be hoped ;
the latter theory is however excluded from this volume.

To the reader who does not desire to follow the development of this

volume consecutively through, the following course may perhaps be sug

gested; Chapters I., II., III. (in part), IV., VI. (to 98), VIII., IX., X.,

XL (in part), XVIII. (in part), XII.
,
XV. (in. part); it is also possible to

begin with the analytical theory of theta functions, reading in order Chapters

XV., XVI., XVII., XIX., XX.

The footnotes throughout the volume are intended to contain the

mention of all authorities used in its preparation ; occasionally the hazardous

plan of adding to the lists of references during the passage of the sheets

through the press, has been adopted ;
for references omitted, and for refer

ences improperly placed, only mistake can be pleaded. Complete lists of

papers are given in the valuable report of Brill and Noether,
&quot; Die Entwicklung

der Theorie der algebraischen Functionen in alterer und neuerer Zeit,&quot;

Jahresbericht der Deutschen Mathematiker-Vereinigung, Dritter Band, 1892 3

(Berlin. Reimer, 1894); this report unfortunately appeared only after the

first seventeen chapters of this volume, with the exception of Chapter XL,
and parts of VIL, were in manuscript ;

its plan is somewhat different from

that of this volume, and it will be of advantage to the reader to consult

it. Other books which have appeared during the progress of this volume, too

late to effect large modifications, have not been consulted. The examples

throughout the volume are intended to serve several different purposes ;
to

provide practice in the ideas involved in the general theory ;
to suggest the

steps of alternative developments without interrupting the line of reasoning

in the text; and to place important consequences which are not utilised, if

at all, till much subsequently, in their proper connection.

For my first interest in the subject of this volume, I desire to acknowledge

my obligations to the generous help given to me during Gottingen vacations,
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on two occasions, by Professor Felix Klein. In the preparation of the book

I have been largely indebted to his printed publications ;
the reader is

recommended to consult also his lithographed lectures, especially the one

dealing with Riemann surfaces. In the final revision of the sheets in

their passage through the press, I have received help from several friends.

Mr A. E. H. Love, Fellow and Lecturer of St John s College, has read

the proofs of the volume
;

in the removal of obscurities of expression

and in the correction of press, his untiring assistance has been of great
value to me. Mr J. Harkness, Professor of Mathematics at Bryn Mawr

College, Pennsylvania, has read the proofs from Chapter XV. onwards; many
faults, undetected by Mr Love or myself, have yielded to his perusal ;

and

I have been greatly helped by his sympathy in the subject-matter of the

volume. To both these friends I am under obligations not easy to discharge.

My gratitude is also due to Professor Forsyth for the generous interest he

has taken in the book from its commencement. While, it should be added,

the task carried through by the Staff of the University Press deserves more

than the usual word of acknowledgment.

This book has a somewhat ambitious aim
;
and it has been written under

the constant pressure of other work. It cannot but be that .many defects

will be found in it. But the author hopes it will be sufficient to shew that

the subject offers for exploration a country of which the vastness is equalled

by the fascination.

ST JOHN S COLLEGE, CAMBRIDGE.

April 26, 1897.





CONTENTS.

CHAPTER I.

THE SUBJECT OF INVESTIGATION.

PAGES

1 Fundamental algebraic irrationality 1

2, 3 The places and infinitesimal on a Riemann surface . . . 1, 2

4, 5 The theory unaltered by rational transformation . . 3 6

6 The invariance of the deficiency in rational transformation
;

if a

rational function exists of order 1, the surface is of zero

deficiency........... 7, 8

7, 8 The greatest number of irremoveable parameters is 3p - 3 . . 9, 10

9, 10 The geometrical statement of the theory 11, 12

11 Generality of Riemann s methods 12, 13

CHAPTER II.

THE FUNDAMENTAL FUNCTIONS ON A RlEMANN SURFACE.

12 Riemann s existence theorem provisionally regarded as fundamental 14

13 Notation for normal elementary integral of second kind . . 15

14 Notation for normal elementary integral of third kind ... 15

15 Choice of normal integrals of the first kind 16

16 Meaning of the word period. General remarks . . . ^. 16, 17

17 Examples of the integrals, and of the places of the surface . 18 20

18 Periods of the normal elementary integrals of the second kind . 21

19 The integral of the second kind arises by differentiation from the

integral of the third kind 22, 23

20 Expression of a rational function by integrals of the second kind . 24

21 Special rational functions, which are invariant in rational trans

formation . 25, 26

22 Riemann normal integrals depend on mode of dissection of the

surface 26

CHAPTER III.

THE INFINITIES OF RATIONAL FUNCTIONS.

23 The interdependence of the poles of a rational function . . 27

24, 25 Condition that specified places be the poles of a rational function . 28 30
26 General form of Weierstrass s gap theorem 31, 32

27 Provisional statement of the Riemann-Roch theorem ... 33, 34



K CONTENTS.

PAGES

28, 29 Cases when the poles coalesce
;
the p critical integers . . 34, 35

30 Simple anticipatory geometrical illustration ...... 36, 37

31 33 The (p-l)p(p + l) places which are the poles of rational functions

of order less than p+ l 38 40

34 36 There are at least 2jo+ 2 such places which are distinct . . 41 44

37 Statement of the Riemann-Roch theorem, with examples . . 44 46

CHAPTER IV.

SPECIFICATION OF A GENERAL FORM OF RIEMANN S INTEGRALS.

38 Explanations in regard to Integral Rational Functions . . 47, 48

39 Definition of dimension
; fundamental set of functions for the

expression of rational functions 48 52

40 Illustrative example for a surface of four sheets . . . . 53, 54

41 The sum of the dimensions of the fundamental set of functions

is p+n-l 54, 55

42 Fundamental set for the expression of integral functions . . 55, 56
43 Principal properties of the fundamental set of integral functions . 57 60
44 Definition of derived set of special functions

, 0j, ..., 4&amp;gt;n _ l
. 61 64

45 Algebraical form of elementary integral of the third kind, whose
infinities are ordinary places ;

and of integrals of the first

kind . . . . 65 68
46 Algebraical form of elementary, integral of the third kind in general 68 70
47 Algebraical form of integral of the second kind, independently

deduced 7173
48 The discriminant of the fundamental set of integral functions . 74

49 Deduction of the expression of a certain fundamental rational

function in the general case 75 77

50 The algebraical results of this chapter are sufficient to replace
Riemann s existence theorem *

. 78, 79

CHAPTER V.

CERTAIN FORMS OF THE FUNDAMENTAL EQUATION OF THE RIEMANN SURFACE.

51 Contents of the chapter 80

52 When
p&amp;gt;l,

existence of rational function of the second order

involves a (1, 1) correspondence 81

5355 Existence of rational function of the second order involves the

hyperelliptic equation 81 84

56, 57 Fundamental integral functions and integrals of the first kind . 85 86

58 Examples 87

59 Number of irremoveable parameters in the hyperelliptic equation ;

transformation to the canonical form 88 89

6063 Weierstrass s canonical equation for any deficiency . . . 9092



CONTENTS. XI

6466
67, 68

6971
7279

Actual formation of the equation . . .

Illustrations of the theory of integral functions for Weierstrass s

canonical equation
The method can be considerably generalised . . . . .

Hensel s determination of the fundamental integral functions

PAGES

9398

99101
102104
105112

CHAPTER VI.

GEOMETRICAL INVESTIGATIONS.

80 Comparison of the theory of rational functions with the theory

of intersections of curves . . . . ... . 113

81 83 Introductory indications of elementary form of theory . . . 113116
84 The method to be followed in this chapter 117

85 Treatment of infinity. Homogeneous variables might be used . 118,- 119

86 Grade of an integral polynomial ;
number of terms ; generalised

zeros . 120, 121

87 Adjoint polynomials ;
definition of the index of a singular place . 122

88 Pliicker s equations ;
connection with theory of discriminant . 123, 124

89, 90 Expression of rational functions by adjoint polynomials . . . 125, 126

91 Expression of integral of the first kind . . . . . 127

92 Number of terms in an adjoint polynomial ;
determination of

elementary integral of the third kind . . ... . 128 132

93 Linear systems of adjoint polynomials ; reciprocal theorem . . 133, 134

94, 95 Definitions of set, lot, sequent, equivalent sets, coresidual sets . 135

96, 97 Theorem of coresidual sets ; algebraic basis of the theorem . . 136

98 A rational function of order less than p + 1 is expressible by &amp;lt;-

polynomials , 137

99, 100 Criticism of the theory; Cayley s theorem . . .

&quot;

,
, . 138141

101 104 Rational transformation by means of (^-polynomials . . . 142146
105 108 Application of special sets 147 151

109 The hyperelliptic surface
;
transformation to canonical form . 152

1.10 114 Whole rational theory can be represented by means of the invari

ant ratios of (^-polynomials ;
number of relations connecting

these 153159
115 119 Elementary considerations in regard to curves in space . . 160 167

CHAPTER VII.

COORDINATION OF SIMPLE ELEMENTS. TRANSCENDENTAL UNIFORM

FUNCTIONS.

Scope of the chapter 168

Notation for integrals of the first kind . . . . . 169

The function ^ (x, a; z, cl5 ..., cp) expressed by Riemann integrals 170, 171

Derivation of a certain prime function 172

Applications of this function to rational functions and integrals 173



Xll CONTENTS.

PAGES

126128 The function ^(x,a-, z, c) ; its utility for the expression of

rational functions 174 176
129 The derived prime function E(x,z); used to express rational

functions 177

130, 131 Algebraic expression of the functions ^ (x, a
; z, c

lt ...,cp),

ty{x, a; z,c) 177, 178
132 Examples of these functions; they determine algebraic expres

sions for the elementary integrals 179 182

133, 134 Derivation of a canonical integral of the third kind; for which

interchange of argument and parameter holds; its algebraic

expression ;
its relation with Riemann s elementary normal

integral 182185
135 Algebraic theorem equivalent to interchange of argument and

parameter 185
136 Elementary canonical integral of the second kind . . . 186, 187
137 Applications. Canonical integral of the third kind deduced from

the function ^(.v,a; z,c^ ...,cp). Modification for the func

tion ty(x, a; z, c) 188192
138 Associated integrals of first and second kind. Further canonical

integrals. The algebraic theory of the hyperelliptic integrals
in one formula. . . 193, 194

139, 140 Deduction of Weierstrass s and Riemann s relations for periods
of integrals of the first and second kind .... 195 197

141 Either form is equivalent to the other 198
142 Alternative proofs of Weierstrass s and Riemann s period relations 199, 200
143 Expression of uniform transcendental function by the function

ty(x, a; z, c) . . . . 201

144, 145 Mittag-Lefner s theorem . . . ... . . 202 204
146 Expression of uniform transcendental function in prime factors 205

147 General form of interchange of argument and parameter, after

Abel 206

CHAPTER VIII.

ABEL S THEOREM. ABEL S DIFFERENTIAL EQUATIONS.

148150 Approximative description of Abel s theorem 207210
151 Enunciation of the theorem 210
152 The general theorem reduced to two simpler theorems . . 211, 212

153, 154 Proof and analytical statement of the theorem .... 212 214
155 Remark; statement in terms of polynomials . . . . 215
156 The disappearance of the logarithm on the right side of the

equation . . 216
157 Applications of the theorem. Abel s own proof .... 217 222

158, 159 The number of algebraically independent equations given by the

theorem. Inverse of Abel s theorem 222 224

160, 161 Integration of Abel s differential equations
&quot;

225 231
162 Abel s theorem proved quite similarly for curves in space . . 231 234



CONTENTS. Xlll

CHAPTER IX.

JACOBI S INVERSION PROBLEM.

PAGES

163 Statement of the problem 235

164 Uniqueness of any solution 236

165 The necessity of using congruences and not equations . . 237

166, 167 Avoidance of functions with infinitesimal periods . . . 238, 239

168, 169 Proof of the existence of a solution 239241
170 172 Formation of functions with which to express the solution;

connection with theta functions . 242245

CHAPTER X.

RIEMANN S THETA FUNCTIONS. GENERAL THEORY.

173 Sketch of the history of the introduction of theta functions . 246

174 Convergence. Notation. Introduction of matrices . . . 247, 248

175, 176 Periodicity of the theta functions. Odd and even functions . 249 251

177 Number of zeros is p . 252

178 Position of the zeros in the simple case . . . i orf3 253, 254

179 The places TOI} ..., mp 255

180 Position of the zeros in general 256, 257

181 Identical vanishing of the theta functions ..... 258, 259

182, 183 Fundamental properties. Geometrical interpretation of the places
m

1 ,...,mp . . . . 259267
184 186 Geometrical developments; special inversion problem; contact

curves ., tj 268 273

187 Solution of Jacobi s inversion problem by quotients of theta

functions 274, 275
188 Theory of the identical vanishing of the theta function. Ex

pression of (^-polynomials by theta functions . . . 276 282

189191 General form of theta function. Fundamental formulae. Periodicity 283 286

192 Introduction of the f functions. Generalisation of an elliptic formula 287
193 Difference of two f functions expressed by algebraic integrals and

rational functions ....... 288

194 196 Development. Expression of single f function by algebraic integrals 289 292

197, 198 Introduction of the $ functions. Expression by rational functions 292-295

CHAPTER XI.

THE HYPERELLIPTIC CASE OF RlEMANN S THETA FUNCTIONS.

199 Hyperelliptic case illustrates the general theory .... 296
200 The places i

1&amp;gt;t .., mp . The rule for half periods . . . 297, 298

201, 202 Fundamental set of characteristics defined by branch places . 299301



XIV CONTENTS.

PAGES

203 Notation. General theorems to be illustrated .... 302

204, 205 Tables in illustration of the general theory 303309
206 213 Algebraic expression of quotients of hyperelliptic theta functions.

Solution of hyperelliptic inversion problem . . . . 309 317

214, 215 Single function expressed by algebraical integrals and rational

functions 318 323

216 Rational expression of
$&amp;gt;

function. Relation to quotients of theta

functions. Solution of inversion problem by g&amp;gt;

function . . 323 327

217 Rational expression of
$&amp;gt;

function 327 330

218 220 Algebraic deduction of addition equation for theta functions

when p= 2; generalisation of the equation tr (u+v) a- (u-v)
= cr

2w. o-V(^v-jptt) 330337
221 Examples for the case p= 2. Qopel s biquadratic relation . . 337 342

CHAPTER XII.

A PARTICULAR FORM OF FUNDAMENTAL SURFACE.

222 Chapter introduced as a change of independent variable, and as

introducing a particular prime function .... 343

223225 Definition of a group of substitutions
; fundamental properties . 343348

226, 227 Convergence of a series
;
functions associated with the group . 349 352

228 232 The fundamental functions. Comparison with foregoing theory
of this volume 353 359

233 235 Definition and periodicity of the Schottky prime function . . 359 364

236, 237 Its connection with the theta functions 364 366

238 A further function connected therewith 367 372

239 The hyperelliptic case . . . . .. . . . . 372, 373

CHAPTER XIII.

RADICAL FUNCTIONS.

240 Introductory . . 374

241, 242 Expression of any radical function by Riemann s integrals, and

by theta functions 375, 376

243 Radical functions are a generalisation of rational functions . 377

244, 245 Characteristics of radical functions . . . . . . 378 381

246 249 Bitangents of a plane quartic curve 381 390

250, 251 Solution of the inversion problem by radical functions . . 390 392

CHAPTER XIV.

FACTORIAL FUNCTIONS.

252 Statement of results obtained. Notations 393, 394

253 Necessary dissection of the Riemann surface .... 395

254 Definition of a factorial function (including radical function).

Primary and associated systems of factorial functions . . 396, 397



CONTENTS. XV

PAGES

255 Factorial integrals of the primary and associated systems . . 397, 398

256 Factorial integrals which are everywhere finite, save at the fixed

infinities. Introduction of the numbers or, &amp;lt;r+ 1 . . . 399

257 When &amp;lt;r+ l&amp;gt;0,
there are o-+ l everywhere finite factorial functions

of the associated system ........ 400

258 Alternative investigation of everywhere finite factorial functions

of the associated system. Theory divisible according to the

values of o-+ l and o- + l 401, 402

259 Expression of these functions by everywhere finite integrals . 403

260 General consideration of the periods of the factorial integrals . 404

261, 262 Riemanri-Roch theorem for factorial functions. When or + 1=0,
least number of arbitrary poles for fimction of the primary

system is or + l 405, 406

263 Construction of factorial function of the primary system with

or + l arbitrary poles . . . . . . . . 406, 407

264, 265 Construction of a factorial integral having only poles. Least

number of such poles, for an integral of the primary system,
is o-+ 2 407, 410

266 This factorial integral can be simplified, in analogy with Riemann s

elementary integral of the second kind 411

267 Expression of the factorial function with or + l poles in terms of

the factorial integral with o-+ 2 poles. The factorial function

in analogy with the function
i\r (x, a; z, clt ..., cp). . . 411 413

268 The theory tested by examination of a very particular case . 413 419
269 The radical functions as a particular case of factorial functions 419, 420
270 Factorial functions whose factors are any constants, having no

essential singularities ........ 421

271, 272 Investigation of a general formula connecting factorial functions

and theta functions 422 426
273 Introduction of the Schottky-Klein prime form, in a certain shape 427 430
274 Expression of a theta function in terms of radical functions, as

a particular case of 272 . . . . -. .

&quot;

. 430

275, 276 The formula of 272 for the case of rational functions . . 431433
277 The formula of 272 applied to define algebraically the hyper-

elliptic theta function, and its theta characteristic . . 433 437
278 Expression of any factorial function by simple theta functions

;

examples 437, 433
279 Connection of theory of factorial functions with theory of auto-

morphic forms . 439 442

CHAPTER XV.

RELATIONS CONNECTING PRODUCTS OF THETA FUNCTIONS INTRODUCTORY.

280

281
443Plan of this and the two following chapters ....

A single-valued integral analytical function of p variables, which
is periodic in each variable alone, can be represented by a
series of exponentials .... 443 445



XVI CONTENTS.

PAGES

282, 283 Proof that the 22p theta functions with half-integer character

istics are linearly independent ...... 446 447

284, 285 Definition of general theta function of order r
;

its linear expres
sion by r1 theta functions. Any p-f2 theta functions of

same order, periods, and characteristic connected by a homo

geneous polynomial relation ....... 447 455

286 Addition theorem for hyperelliptic theta functions, or for the

general case when
p&amp;lt;4
........ 456 461

286, 288 Number of linearly independent theta functions of order r which

are all of the same parity ....... 461 464

289 Examples. The Gopel biquadratic relation 465 470

CHAPTER XVI.

A DIRECT METHOD OF OBTAINING THE EQUATIONS CONNECTING THETA
PRODUCTS.

290 Contents of this chapter 471
291 An addition theorem obtained by multiplying two theta functions . 471 474
292 An addition theorem obtained by multiplying four theta functions 474 477
293 The general formula obtained by multiplying any number of

theta functions . . . . . . 477 485

CHAPTER XVII.

THETA RELATIONS ASSOCIATED WITH CERTAIN GROUPS OF CHARACTERISTICS.

294 Abbreviations. Definition of syzygetic and azygetic. References

to literature (see also p. 296) 486, 487

295 A preliminary lemma . 488

296 Determination of a Gopel group of characteristics . . . 489, 490

297 Determination of a Gopel system of characteristics . . . 490, 491

298, 299 Determination and number of Gopel systems of the same parity 492 494

300 303 Determination of a fundamental set of Gopel systems . . 494 501

304, 305 Statement of results obtained, with the simpler applications . 502 504

306 308 Number of linearly independent theta functions of the second

order of a particular kind. Explicit mention of an import
ant identity 505 510

309 311 The most important formulae of the chapter. A general addi

tion theorem. The
g&amp;gt;

function expressed by quotients of

theta functions 510 516

312 317 Other applications of the principles of the chapter. The expres
sion of a function 3 (nv) as an integral polynomial of order

2 in 2&quot; functions $(v) 517527



CONTENTS. XV11

CHAPTER XVIII.

TRANSFORMATION OF PERIODS, ESPECIALLY LINEAR TRANSFORMATION.

PAGES

318 Bearings of the theory of transformation 528, 529

319 323 The general theory of the modification of the period loops on a

Riemann surface 529 534

324 Analytical theory of transformation of periods and characteristic

of a theta function 534 538

325 Convergence of the transformed function . . . . . 538

326 Specialisation of the formulae, for linear transformation . . 539, 540

327 Transformation of theta characteristics
;
of even characteristics

;

of syzygetic characteristics . . . . . . .541, 542

328 Period characteristics and theta characteristics . . . . 543

329 Determination of a linear transformation to transform any even

characteristic into the zero characteristic .... 544, 545

330, 331 Linear transformation of two azygetic systems of theta charac

teristics into one another . . . . . . . . 546 550

332 Composition of two transformations of different orders
; supple

mentary transformations 551, 552

333, 334 Formation of p+ 2 elementary linear transformations by the

composition of which every linear transformation can be

formed
; determination of the constant factors for each of

these ,.:;./.,. Lrj . 553557
335 The constant factor for any linear transformation . . . 558, 559
336 Any linear transformation may be associated with a change of

the period loops of a Riemann surface 560, 561

337, 338 Linear transformation of the places mlt ..., mp .* . . . 562

339 Linear transformation of the characteristics of a radical function 563, 564
340 Determination of the places Wj, ..., mp upon a Riemann surface

whose mode of dissection is assigned . ... ... .. 565 567
341 Linear transformation of quotients of hyperelliptic theta functions 568
342 A convenient form of the period loops in a special hyperelliptic

case. Weierstrass s number notation for half-integer charac

teristics . . . ..:;.:,;;
.;.

. ..:. . . . 569, 570

CHAPTER XIX.

ON SYSTEMS OF PERIODS AND ON GENERAL JACOBIAN FUNCTIONS.

343

344350
571

571579

Scope of this chapter .........
Columns of periods. Exclusion of infinitesimal periods. Expres

sion of all period columns by a finite number of columns,
with integer coefficients

351 356 Definition of general Jacobian function, and comparison with

theta function 579 588
357362 Expression of Jacobian function by means of theta functions.

Any p + 2 Jacobian functions of same periods and parameter
connected by a homogeneous polynomial relation . . 588 598



XV111 CONTENTS.

CHAPTER XX.

TRANSFORMATION OF THETA FUNCTIONS.

PAGES

363 Sketch of the results obtained. References to the literature . 599, 600

364, 365 Elementary theory of transformation of second order . . . 600 606

366, 367 Investigation of a general formula preliminary to transformation

of odd order 607610
368, 369 The general theorem for transformation of odd order . . . 611 616

370 The general treatment of transformation of the second order . 617619
371 The two steps in the determination of the constant coefficients 619

372 The first step in the determination of the constant coefficients 619 622

373 Remarks and examples in regard to the second step . . . 622 624

374 Transformation of periods when the coefficients are not integral 624 628

375 Reference to the algebraical applications of the theory . . 628

CHAPTER XXI.

COMPLEX MULTIPLICATION OF THETA FUNCTIONS. CORRESPONDENCE

OF POINTS ON A RlEMANN SURFACE.

376 Scope of the chapter . . . 629

377, 378 Necessary conditions for a complex multiplication, or special

transformation, of theta functions ...... 629 632

379 382 Proof, in one case, that these conditions are sufficient . . 632 636

383 Example of the elliptic case 636639
384 Meaning of an (r, s) correspondence on a Riemann surface . 639, 640

385 Equations necessary for the existence of such a correspondence 640 642

386 Algebraic determination of a correspondence existing on a per

fectly general Riemann surface . ... . .
.

. 642 645

387 The coincidences. Examples of the inflections and bitangents of

a plane curve 645 648

388 Conditions for a (1, s) correspondence on a special Riemann surface 648, 649

389 When
p&amp;gt;l

a (1, 1) correspondence is necessarily periodic . . 649, 650

390 And involves a special form of fundamental equation . . 651

391393 When
p&amp;gt;l

there cannot be an infinite number of (1, 1) corre

spondences 652 654

394 Example of the case p= l 654656

CHAPTER XXII.

DEGENERATE ABELIAN INTEGRALS.

395 Example of the property to be considered . . . . 657

396 Weierstrass s theorem. The property involves a transformation

leading to a theta function which breaks into factors . . 657, 658



CONTENTS. XIX

397 Weierstrass s and Picard s theorem. The property involves a

linear transformation leading to
T^ 2

=
l/r.

398 Existence of one degenerate integral involves another (p = 2)

399, 400 Connection with theory of special transformation, when p Z .

401 403 Determination of necessary form of fundamental equation.
Eeferences

PAGES

658, 659

659

660, 661

661663

404

APPENDIX I.

ON ALGEBRAIC CURVES IN SPACE.

Formal proof that an algebraic curve in space is an interpreta
tion of the relations connecting three rational functions on
a Riemann surface (cf. 162) 664, 665

APPENDIX II.

ON MATRICES.

405 410 Introductory explanations . . . ; ., . , ... 666 669
411 415 Decomposition of an Abelian matrix into simpler ones . . 669 674

416 A particular result ... 674

417, 418 Lemmas
, . . 675

419, 420 Proof of results assumed in 396, 397 ....
.
. 675, 676

INDEX OF AUTHORS QUOTED .

TABLE OF SOME FUNCTIONAL SYMBOLS

SUBJECT INDEX

677, 678

679

680684



ADDENDA. CORRIGENDA.

PAGE LINE

6, 2, for bb^da, read (tb*~
l
da.

8, 22, for deficiency 1, read deficiency 0.

11, 12, for 2n-2+p, read 2n-2 + 2p.

16, 16, 4, for called, read applied to.

dx . dx
18, 25, for ,

read .

x y
37, 31, for in, read is.

38, 3, for surfaces, read surface.

43, 20, for w, read w.

56, 22, for (x-af~\ read (x -a)P-
A+1

.

61, 24, add or g { (x, y).

66, 22, for r -l, read Tj -l.

70, 14, for rr+l ,
read rr +l.

73, 28, for x ^ ^ 2
sl5 2 ,

read x~ 2r ~ 2
s
lt j.

81. The argument of 52 supposes p&amp;gt;l.

104, 72. See also Hensel, Crelle, cxv. (1895).

114, 3 from the bottom, add here.

137. To the references, add, Macaulay, Proc. Lon. Math. Soc., xxvi. p. 495.

157. See also Kraus, Math. Annal. xvi. (1879).
166. See also Zeuthen, Ann. d. Mat. 2a Ser., t. in. (1869).

189, 21, for xii, read xi.

196, 23, for \h, read \h.

24, for \h, read \h.

197, 24, for A, read B.

198, 5, for ^(w )&quot;

1
^, read y(u )~

l u.

18, for fourth minus sign, read sign of equality.

206, 4, supply dz, after third integral sign: the summation is from k= 2, fc =0.

5, supply dz, after first integral sign.

8, for $(X)l&amp;lt;t&amp;gt;(X),
read (*)/0(X).

247, 11. Positive means &amp;gt;0. The discriminant must not vanish.

6 from bottom. Cf. p. 531, notef.

282, 11, for ft, read O.

284, 18, the equation is httP= iriP + bP .

316, 3 from the bottom, for u, read U Q .

320, heading, destroy full stop.

327, 23, for Pi(xp),
read /J.J(XP ).

340. Further references are given in the report of Brill and Noether (see

Preface), p. 473.

342. For various notations for characteristics see the references in the report of

Brill and Noether, p. 519.

379, 16, for T
(I I,

r
itp ,

read
v^-&quot;,

vp
x a

.

420, 18, read ...characteristic, other than the zero characteristic, as the sum of two
different odd half-integer characteristics in

441, 15, for one, read in turn every combination.

533, 13. The relation had been given by Frobenius.

557, 15, for .w2
,
read w-?.

575, 20, for from, read for.

587, 8 and 11
;

the quantity is AeA.

In this volume no account is given of the differential equations satisfied by the theta

functions, or of their expansion in integral powers of the arguments. The following refer

ences may be useful : Wiltheiss, Crelle, xcix., Math. Annal. xxix., xxxi., xxxin., Gotting.

Nachr., 1889, p. 381; Pascal, Gotting. Xachr., 1889, pp. 416, 547, Ann. di Mat., Ser. 2% t.

xvii.; Burkhardt (and Klein), Math. Annal. xxxn. The case p 2 is considered in Krause,

Transf. Hyperellip. Functionen.-

The following books of recent appearance, not referred to in the text, may be named here.

(1) The completion of Picard, Traite d Analyse, (2) Jordan, Cours d Analyse, t. n. (1894),

(3) Appell and Goursat, Theorie des Fonctions algebriques et de leurs integrates (1895), (4)

Stahl, Theorie der AbeVschen Functionen (1896).



CHAPTER I.

ADDITIONAL CORRECTIONS FOR BAKER S ABELIAN FUNCTIONS.

PAGE LINE

138, 14, from the bottom, for greater, read less.

219, 12, 13, from the bottom, for r, read R.

315, 6, from the bottom, for f, read f.

316, 5, from the bottom, for u, read u .

317, 4, from the bottom, for a, vanishes, &j , read, respectively, b
l , is infinite, a.

333, 3, for the first + , read -
.

333, 3, 7, 8, from the bottom, for A, read V.

334, 6, 7, from the bottom, for pt , pj, read p$, pf
2
.

335, 12, from the bottom, for A, read \ .

340, 6, from the bottom, for Gopel, read Kummer. Supply also the reference,

Weber, Crelle LXXXIV. (1878), p. 341.

359, 1, after periods, add and let ^ (u) = @ (u) + @(u + u
).

5, for
$&amp;gt;,

read ^ ; for iir, read Ziir.

9, for P+ iQ, read (P+ iQ) [(&amp;gt; (u) + $ (v)], where u, v are the arguments occurring
in the denominator

; and similarly for P-iQ ; and add to the function

the term 4P f (u)
-

, f (w )l, where f(w) is Weierstrass s function.

367, 5, from the bottom, for m, read p.

444, 16, for x, read u.

445, 14, for n, read p.

457, 14, from the bottom, supply the reference, 181.

615, 5, for xviii., read xvn.

665, 6, from the bottom, add, which may be taken to be linear polynomials in

x only.

sheet. Or the sheets may wind into one another : in which case we shall

regard this winding point (or branch point) as constituting one place : this

place belongs then indifferently to either sheet
;
the sheets here merge into

one another. In the first case, if a be the value of x for which the sheets

just touch, supposed for convenience of statement to be finite, and x a value

* For references see Chap. II. 12, note.

t Such a point is called by Riemann &quot;ein sich aufhebender Verzweigungspunkt
&quot;

: Gesam-
melte Werke (1876), p. 105.
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CHAPTER I.

THE SUBJECT OF INVESTIGATION.

1. THIS book is concerned with a particular development of the theory

of the algebraic irrationality arising when a quantity y is defined in terms

of a quantity x by means of an equation of the form

a y
n + atf

1 1 +...+ an^y + an = 0,

wherein a
,
al} ...,an are rational integral polynomials in x. The equation is

supposed to be irreducible
;
that is, the left-hand side cannot be written as

the product of other expressions of the same rational form.

2. Of the various means by which this dependence may be represented,

that invented by Riemann, the so-called Riemann surface, is throughout

regarded as fundamental. Of this it is not necessary to give an account

here*. But the sense in which we speak of a place of a Riemann surface

must be explained. To a value of the independent variable x there will in

general correspond n distinct values of the dependent variable y represented

by as many places, lying in distinct sheets of the surface. For some values

of x two of these n values of y may happen to be equal : in that case the

corresponding sheets of the surface may behave in one of two ways. Either

they may just touch at one point without having any further connexion in

the immediate neighbourhood of the point t : in which case we shall regard
the point where the sheets touch as constituting two places, one in each

sheet. Or the sheets may wind into one another : in which case we shall

regard this winding point (or branch point) as constituting one place : this

place belongs then indifferently to either sheet
;
the sheets here merge into

one another. In the first case, if a be the value of x for which the sheets

just touch, supposed for convenience of statement to be finite, and x a value

* For references see Chap. II. 12, note.

t Such a point is called by Riemann &quot;ein sich aufhebender Verzweigungspunkt
&quot;

: Gesam-

melte Werke (1876), p. 105.
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2 THE PLACES OF A RIEMANN SURFACE. [2

very near to a, and if b be the value of y at each of the two places, also

supposed finite, and ylt yz be values of y very near to b, represented by

points in the two sheets very near to the point of contact of the two

sheets, each of
3/1 6, yz b can be expressed as a power-series in x a

with integral exponents. In the second case with a similar notation each

of
2/1 6, y2 6 can be expressed as a power-series in (x a)* with integral

exponents. In the first case a small closed curve can be drawn on either

of the two sheets considered, to enclose the point at which the sheets touch :

and the value of the integral = . Id log (x
-

a) taken round this closed curve

will be 1
; hence, adopting a definition given by Riemann*, we shall say that

x a is an infinitesimal of the first order at each of the places. In the

second case the attempt to enclose the place by a curve leads to a curve

lying partly in one sheet and partly in the other; in fact, in order that

the curve may be closed it must pass twice round the branch place. In this

case the integral ^
. Id log [(x a)*] taken round the closed curve will be 1 :

and we speak of (x a}*- as an infinitesimal of the first order at the place.

In either case, if t denote the infinitesimal, x and y are uniform functions

of t in the immediate neighbourhood of the place ; conversely, to each point

on the surface in the immediate neighbourhood of the place there corre

sponds uniformly a certain value of if. The quantity t effects therefore a

conformal representation of this neighbourhood upon a small simple area in

the plane of t, surrounding t 0.

3. This description of a simple case will make the general case clear.

In general for any finite value of x, x = a, there may be several, say k, branch

pointsJ; the number of sheets that wind at these branch points may be

denoted by w1 +l,w.2 +l, . .., wk + 1 respectively, where

(w1 + 1) + (w, + l) + ...+(wk +l) = n,

so that the case of no branch point is characterised by a zero value of the

corresponding w. For instance in the first case above, notwithstanding that

two of the n values of y are the same, each of w1} w.2 , ...,Wk is zero and k is

equal to n : and in the second case above, the values are k = n 1, wr
= 1, w.2 = 0,

w3
=

0, . . .
,
wk = 0. In the general case each of these k branch points is called a

place, and at these respective places the quantities (x
-

a)
w

&amp;gt;

+l
, ..., (x a)

wt+l

* Gesammelte Werke (1876), p. 96.

+ The limitation to the immediate neighbourhood involves that t is not necessarily a rational

function of x, y.

It may be remarked that a rational function of x and y can be found whose behaviour in

the neighbourhood of the place is the same as that of t. See for example Hamburger,

Zeitschrift f. Math, und Phys. Bd. 16, 1871 ; Stolz, Math. Ann. 8, 1874
;
Harkness and Morley,

Theory of Functions, p. 141.

t Cf. Forsyth, Theory of Functions, p. 171. Prym, Crelle, Bd. 70.



4] TRANSFORMATION OF THE EQUATION. 3

are infinitesimals of the first order. For the infinite value of x we shall

similarly have n or a less number of places and as many infinitesimals, say
-_

+1
, ..., (-r

+1
,
where (Wl + l)+ ... +(w,. + I) = n. And as in the par-

xj \x/

ticular cases discussed above, the infinitesimal t thus defined for every place

of the surface has the two characteristics that for the immediate neighbour
hood of the place x and y are uniquely expressible thereby (in series of

integral powers), and conversely t is a uniform function of position on the

surface in this neighbourhood. Both these are expressed by saying that

t effects a reversible conformal representation of this neighbourhood upon a

simple area enclosing t = 0. It is obvious of course that quantities other

than t have the same property.

A place of the Riemann surface will generally be denoted by a single

letter. And in fact a place (x, y} will generally be called the place x.

When we have occasion to speak of the (n or less) places where the inde

pendent variable x has the same value, a different notation will be used.

4. We have said that the subject of enquiry in this book is a certain

algebraic irrationality. We may expect therefore that the theory is practi

cally unaltered by a rational transformation of the variables x, y which is of

a reversible character. Without entering here into the theory of such trans

formations, which comes more properly later, in connexion with the theory
of correspondence, it is necessary to give sufficient explanations to make it

clear that the functions to be considered belong to a whole class of Riemann
surfaces and are not the exclusive outcome of that one which we adopt initially.

Let be any one of those uniform functions of position on the funda

mental (undissected) Riemann surface whose infinities are all of finite order.

Such functions can be expressed rationally by x and y*. For that reason we
shall speak of them shortly as the rational functions of the surface. The
order of infinity of such a function at any place of the surface where the

function becomes infinite is the same as that of a certain integral power of

the inverse - of the infinitesimal at that place. The sum of these orders of
6

infinity for all the infinities of the function is called the order of the function.

The number of places at which the function f assumes any other value a is

the same as this order : it being understood that a place at which a is

zero in a finite ratio to the rth order of t is counted as r places at which is

equal to off. Let v be the order of . Let T?
be another rational function of

*
Forsyth, Theory of Functions, p. 370.

t For the integral /dlog(-a), taken round an infinity of log(-a), is equal to the

order of zero of - a at the place, or to the negative of the order of infinity of , as the case may
be. And the sum of the integrals for all such places is equal to the value round the boundary of

the surface which is zero. Cf. Forsyth, Theonj of Functions, p. 372.

12



4 CONDITION OF REVERSIBILITY. [4

order p. Take a plane whose real points represent all the possible values of

|f
in the ordinary way. To any value of

|f, say |f
= a, will correspond v

positions Xlt ..., Xv on the original Riemann surface, those namely where

is equal to a : it is quite possible that they lie at less than v places of the

surface. The values of 77 at X1} ..., Xv may or may not be different. Let

H denote any definite rational symmetrical function of these v values of 77.

Then to each position of a in the
|f plane will correspond a perfectly unique

value of H, namely, H is a one-valued function of . Moreover, since 77
and

|f
are rational functions on the original surface, the character of H for values

of
|f
in the immediate neighbourhood of a value a, for which H is infinite, is

clearly the same as that of a finite power of
ff a. Hence H is a rational

function of
|f. Hence, if Hr denote the sum of the products of the values of

i] at Xlt ..., Xv ,
r together, 77

satisfies an equation

r
)
&quot;-r

)&quot;^H1 + r
)
^H2 -...+(-YH v

=
&amp;gt;

whose coefficients are rational functions of
|f.

It is conceivable that the left side of this equation can be written as the

product of several factors each rational in
|f
and 77.

If possible let this be

done. Construct over the
|f plane the Riemann surfaces corresponding to

these irreducible factors, 77 being the dependent variable and the various

surfaces lying above one another in some order. It is a known fact, already

used in defining the order of a rational function on a Riemann surface, that

the values of
77 represented by any one of these superimposed surfaces in

clude all possible values each value in fact occurring the same number of

times on each surface. To any place of the original surface, where |f, 77
have

definite values, and to the neighbourhood of this place, will correspond there

fore a definite place (|f, 77) (and its neighbourhood) on each of these super

imposed surfaces. Let 77!, ...,tj r be the values of 77 belonging, on one of

these surfaces, to a value of : and T?/, ..., r}s the values belonging to the

same value of
|f
on another of these surfaces. Since for each of these surfaces

there are only a finite number of values of at which the values of 77 are

not all different, we may suppose that all these r values on the one

surface are different from one another, and likewise the s values on the other

surface. Since each of the pairs of values (|f, 77^, . . . , (|f, r)r) must arise on

both these surfaces, it follows that the values 77!, ...,tjr are included among
77/, ..., 77/. Similarly the values T7/, ..., i?/ are included among 77^ ...,77,..

Hence these two sets are the same and r = s. Since this is true for an

infinite number of values of
|f,

it follows that these two surfaces are merely

repetitions of one another. The same is true for every such two surfaces.

Hence r is a divisor of v and the equation

when reducible, is the v/rih power of a rational equation of order r in 77. It

will be sufficient to confine our attention to one of the factors and the (, 77)



5] CORRESPONDENCE OF TWO SURFACES. 5

surface represented thereby. Let now Xlt . . .
,
Xv be the places on the original

surface where has a certain value. Then the values of 77 at Xlt . .
,
Xv will

consist of v/r repetitions of r values, these r values being different from one

another except for a finite number of values of Thus to any place (f, 77) on

one of the v/r derived surfaces will correspond v/r places on the original

surface, those namely where the pair (, 77) take the supposed values. Denote

these by Plf Pa ,
Let Y be any rational symmetrical function of the v/r

pairs of values (a}1} y^), (#2 , 2/2) &amp;gt;

which the fundamental variables a, y of the

original surface assume at P1; P2) Then to any pair of values (, 77) will

correspond only one value of Y namely, Y is a one-valued function on the

(, 77) surface. It has clearly also only finite orders of infinity. Hence Y is

a rational function of
, 77. In particular #u #2 ,

... are the roots of an

equation whose coefficients are rational in
, 77 as also are yi} yz , ____

There exists therefore a correspondence between the (, 77) and (x, y)

surfaces of the kind which we call a
(1,

-
j correspondence: to every place

of the (x, y) surface corresponds one place of the (, 77) surface; to every

place of this surface correspond
-
places of the (x, y) surface.

The case which most commonly arises is that in which the rational

irreducible equation satisfied by 77 is of the vih degree in 77: then only one

place of the original surface is associated with any place of the new surface.

In that case, as will appear, the new surface is as general as the original

surface. Many advantages may be expected to accrue from the utilization of

that fact. We may compare the case of the reduction of the general equation
of a conic to an equation referred to the principal axes of the conic.

5. The following method* is theoretically effective for the expression of x, y in terms

of & r,.

Let the rational expression of
, rj

in terms of x, y be given by

&amp;lt; (x, y)
-& (x, y )

=
0, ^ (x, y}

-
rfX (x, y}= 0,

and let the rational result of eliminating #, y between these equations and the initial

equation connecting x, y be denoted by F(, rj)
=

0, each of $, ..., ^, ^denoting integral

polynomials. Let two terms of the expression (f&amp;gt;(z, y) ty(&, y) = be axr
y*t-bx

r
y* .

This expression and therefore all others involved will be unaltered if
,
6 be replaced by

such quantities a+ h, b + k, that hxr
y*=zkx

r
y* . In a formal sense this changes F(, rj)

into

where X ^ 1, and F is such that all differential coefficients of it in regard to a and b of order

less than X are identically zero.

Hence the term within the square brackets in this expression must be zero. If it is

possible, choose now r= rf+ \ and s= s
,
so that k=

* Salmon s Higher Algebra (1885), p. 97, 103.



ALGEBRAICAL FORMULATION. [5

Then we obtain the equation

This is an equation of the form above referred to, by which x is determinate from and

T].
And y is similarly determinate.

It will be noticed that the rational expression of x
t y by , rj,

when it is possible

from the equations

will not be possible, in general, from the first two equations : it is only the places x, y
satisfying the equation f(x, y) = Q which are rationally obtainable from the places , 17

satisfying the equation F(, r))
= 0. There do exist transformations, rationally reversible,

subject to no such restriction. They are those known as Cremona-transformations*.

They can be compounded by reapplication of the transformation x : y : I =
rj

: { :
/.

We may give an example of both of these transformations

For the surface

the function =y2
/(^

2+ . + l) is of order 2, being infinite at the places where x2+z+l = 0,

in each case like (x-a)~, and the function r}=x/y is of order 4, being infinite at the

places x*+x+I=0, in each case like (^-a)&quot;t, a being the value of x at the place.

From the given equation we immediately find, as the relation connecting and
17,

and infer, since the equation formed as in the general statement above should be of

order 2 in
rj,

that this general equation will be

Thence in accordance with that general statement we infer that to each place (, &amp;gt;;)

on
the new surface should correspond two places of the original surface : and in fact these are

obviously given by the equations

r}^=^/

If however we take

=y2
/(#

2

where is an imaginary cube root of unity, so that
17

is a function of order 3, these

equations are reversible independently of the original equation, giving in fact

x=
(

_ wy)/(
-
^}, y= (m - 2

and we obtain the surface

having a (1, 1) correspondence with the original one.

It ought however to be remarked that it is generally possible to obtain reversible

transformations which are not Cremona-transformations.

6. When a surface (x, y) is (1,1) related to a (, 77) surface, the defi

ciencies of the surfaces, as denned by Riemann by means of the connectivity,
must clearly be the same.

* See Salmon, Higher Plane Curves (1879), 362, p. 322.



6] RELATION OF DEF1CIENCES. 7

It is instructive to verify this from another point of view*. Consider at

how many places on the original surface the function -~ is zero. It is infinite
CLOG

at the places where % is infinite: suppose for simplicity that these are

separated places on the original surface or in other words are infinities of

the first order, and are not at the branch points of the original surface. At

d 1
a pole of

,
,- is infinite twice. It is infinite like at a branch place (a)

CLOG v

where x a = t
w+l

: namely it is infinite ^w = 2n + 2p
- 2 timest at the branch

places of the original surface. It is zero 2n times at the infinite places of the

original surface. There remain therefore 2v + 2n + 2p 2 2n = 2v + 2p 2

places where ~ is zero. If a branch place of the original surface be a pole

1 -7fc 1

of
,
and be there infinite like -, -~ is infinite like -

, namely 2+w
t ax t

2
. t
w

times : the total number of infinities of -^ will therefore be the same as
dx

7-

before. Now at a finite place of the original surface where -r = 0, there are
ax

two consecutive places for which has the same value. Since - = 1 they can

only arise from consecutive places of the new surface for which has the

same value. The only consecutive places of a surface for which this is the

case are the branch places. Hencef there are 2v+2p 2 branch places of

the new surface. This shews that the new surface is of deficiency p.

When v/r is not equal to 1, the case is different. The consecutive places

of the old surface, for which has the same value, may either be those arising

from consecutive places of the new surface or may be what we may call

accidental coincidences among the v/r places which correspond to one place
of the new surface. Conversely, to a branch place of the new surface,

characterised by the same value for for consecutive placesj, will correspond

vjr places on the old surface where has the same value for consecutive

places. In fact to two very near places of the new surface will correspond

v/r pairs each of very near places on the old surface. If then C denote the

number of places on the old surface at which two of the v/r places corre

sponding to a place on the new surface happen to coincide, and w the number

of branch points of the new surface, we have the equation

-
r

*
Compare the interesting geometrical account, Salmon, Higher Plane Curves (1879), p. 326,

364, and the references there given.

t Forsyth, Tlieory of Functions, p. 348.

: Namely, near such a branch place f= a,
- a is zero of higher order than the first.



8 PARAMETERS NOT REMOVED [6

and if p be the deficiency of the new surface (of r sheets), this leads to the

equation
f

(2r + 2p
f

from which

Corollary*. If p =p ,
then C = (2p

-
2) (l - -\ . Thus -

&amp;gt; 1, so that

(7 = 0, and the correspondence is reversible.

We have, herein, excluded the case when some of the poles of are of

higher than the first order. In that case the new surface has branch places
at infinity. The number of finite branch places is correspondingly less. The
reader can verify that the general result is unaffected.

Ex. In the example previously given ( 5) shew that the function takes any given
value at two points of the original surface (other than the branch places where it is

infinite), 17 having the same value for these two points, and that there are six places at

which these two places coincide. (These are the place (#= 0, y= 0) and the five places
where x= 2.)

There is one remark of considerable importance which follows from the

theory here given. We have shewn that the number of places of the (x, y)

surface which correspond to one place of the (, 97) surface is -
,
where v is the

order of and r is not greater than v, being the number of sheets of the (f, 77)

surface
; hence, if there were a function of order 1 the correspondence would

be reversible and therefore the original surface would be of deficiency 1.

7. This notion of the transformation of a Riemann surface suggests an

inference of a fundamental character.

The original equation contains only a finite number of terms : the original
surface depends therefore upon a finite number of constants, namely, the

coefficients in the equation. But conversely it is not necessary, in order that

the equation be reversibly transformable into another given one, that the

equation of the new surface contain as many constants as that of the original

surface. For we may hope to be able to choose a transformation whose

coefficients so depend on the coefficients of the original equation as to reduce

this number. If we speak of all surfaces of which any two are connected by
a rational reversible transformation as belonging to the same class f, it becomes

a question whether there is any limit to the reduction obtainable, by rational

reversible transformation, in the number of constants in the equation of a

surface of the class.

* See Weber, Crelle, 76, 345.

t So that surfaces of the same class will be of the same deficiency.
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It will appear in the course of the book* that there is a limit, and that

the various classes of surfaces of given deficiency are of essentially different

character according to the least number of constants upon which they depend.
Further it will appear, that the most general class of deficiency p is

characterised by 3p 3 constants when p &amp;gt; 1 the number for p = 1 being

one, and for p = none.

For the explanatory purposes of the present Chapter we shall content

ourselves with the proof of the following statement When a surface is

reversibly transformed as explained in this Chapter, we cannot, even though
we choose the new independent variable to contain a very large number of

disposeable constants, prescribe the position of all the branch points of the

new surface
;
there will be 3p 3 of them whose position is settled by the

position of the others. Since the correspondence is reversible we may regard
the new surface as fundamental, equally with the original surface. We
infer therefore that the original surface depends on 3p 3 parameters
or on less, for the

3/&amp;gt;

3 undetermined branch points of the new surface may
have mutually dependent positions.

In order to prove this statement we recall the fact that a function

of order Q contains^ Qp + l linearly entering constants when its poles
are prescribed: it may contain more for values of

Q&amp;lt;2p 1, but we
shall not thereby obtain as many constants as if we suppose Q &amp;gt; 2p 2

and large enough. Also the Q infinities are at our disposal. We can then

presumably dispose of 2Q-p + 1 of the branch points of the new surface.

But these are, in number, 2Q + 2p 2 when the correspondence is reversible.

Hence we can dispose of all but 2Q + 2p
- 2 - (2Q -p + 1)

= 3p - 3 of the

branch points of the new surface J.

Ex. 1. The surface associated with the equation

y*=x(l -x] (l-tfx) (1 -XV) (1
-
MV) (l-v*x) (1 -p%)

is of deficiency 3. It depends on 5=2p- 1 parameters, /c
2
,
X2

, /u
2
,
v2

, p
2
.

Ex. 2. The surface associated with the equation

y*+y*(x, l\+y(x, !),+ (#, 1)4 =0,

wherein the coefficients are integral polynomials of the orders specified by the suffixes, is

of deficiency 3. Shew that it can be transformed to a form containing only 5= 2^-1
parametric constants.

* See the Chapters on the geometrical theory and on the inversion of Abelian Integrals. The
reason for the exception in case ^= or 1 will appear most clearly in the Chapter on the self-

correspondence of a Riemann surface. But it is a familiar fact that the elliptic functions which
can be constructed for a surface of deficiency 1 depend upon one parameter, commonly called

the modulus : and the trigonometrical functions involve no such parameter.
t Forsyth, p. 459. The theorems here quoted are considered in detail in Chapter III. of the

present book.

Cf. Kiemann, Ges. Werke (1876), p. 113. Klein, Ueber Riemann s Theorie (Leipzig,

Teubner, 1882), p. 65.

c;

UN IVI.

Of ~ &amp;gt;-.
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8. But there is a case in which this argument fails. If it be possible to

transform the original surface into itself by a rational reversible transforma

tion involving r parameters, any r places on the surface are effectively

equivalent with, as being transformable into, any other r places. Then the

Q poles of the function do not effectively supply Q but only Q r dispose-
able constants with which to fix the new surface. So that there are

3/&amp;gt;

3 + r

branch points of the new surface which remain beyond our control. In this

case we may say that all the surfaces of the class contain 3p
- 3 disposeable

parameters beside r parameters which remain indeterminate and serve to

represent the possibility of the self-transformation of the surface. It will be

shewn in the chapter on self-transformation that the possibility only arises

for p = or p = 1, and that the values of r are, in these cases, respectively
3 and 1. We remark as to the case p = that when the fundamental

surface has only one sheet it can clearly be transformed into itself by

a transformation involving three constants x 5 , : and in regard to p = 1,
c% -f d

the case of elliptic functions, that effectively a point represented by the

elliptic argument u is equivalent to any other point represented by an

argument u + 7. For instance a function of two poles is

and clearly Fa&amp;gt;ft

has the same value at u as has F
a+y&amp;gt; p+y at u -f 7 : so that the

poles (a, ft) are not, so far as absolute determinations are concerned, effective

for the determination of more than one point.

9. The fundamental equation

a y
n + aiy

n-l + ...+an = 0,

so far considered as associated with a Riemann surface, may also be regarded
as the equation of a plane curve : and it is possible to base our theory on the

geometrical notions thus suggested. Without doing this we shall in the

following pages make frequent use of them for purposes of illustration. It is

therefore proper to remind the reader of some fundamental properties*.

The branch points of the surface correspond to those points of the curve

where a line x = constant meets the curve in two or more consecutive points :

as for instance when it touches the curve, or passes through a cusp. On the

other hand a double point of the curve corresponds to a point on the surface

where two sheets just touch without further connexion. Thus the branch

place of the surface which corresponds to a cusp is really a different singu

larity to that which corresponds to a place where the curve is touched by a

*
Cf. Forsyth, Theory of Functions, p. 355 etc. Harkness and Morley, Theory of Functions,

p. 273 etc.
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line x = constant, being obtained by the coincidence of an ordinary branch

place with such a place of the Riemann surface as corresponds to a double

point of the curve.

Properties of either the Riemann surface or a plane curve are, in the

simpler cases, immediately transformed. For instance, by Pliicker s formulae

for a curve, since the number of tangents from any point is

f-(n-l)n-2-3/c,
where n is the aggregate order in a; and y, it follows that the number of

branch places of the corresponding surface is

w = t + K = (n
-

1) n
- 2 (8 + K)

= 2n-2 + 2{iO-l)O-2)-S-4
Thus since w = 2n 2

-j^p,
the deficiency of the surface is

0-1)0- 2)- S-K,

namely the number which is ordinarily called the deficiency of the curve.

To the theory of the birational transformation of the surface corresponds
a theory of the birational transformation of plane curves. For example, the

branch places of the new surface obtained from the surface f(x, y)
= by

means of equations of the form &amp;lt; (x, y} ty (x, y) = 0, $ (x, y) 77% (x, ?/)
=

will arise for those values of for which the curve
&amp;lt;/&amp;gt;

(x, y) jfy (x, y)
touches f(x, y}

= 0. The condition this should be so, called the tact inva

riant, is known to involve the coefficients of
&amp;lt;f&amp;gt;

(as, y) %\Jr (x, y~)
=

0, and
therefore in particular to involve

,
to a degree* n (n 3) 28 3/c + 2nn,

where n is the order of
&amp;lt; (x, y) i/r (x, y}

= 0. Branch places of the new
surface also arise corresponding to the cusps of the original curve. The total

number is therefore n (n 3) 25 2* + Znri = *2p 2 + 2nn . Now nri is

the number of intersections of the curves f(x, y)
= Q and &amp;lt; (x, y) jfy (x, y) = 0,

namely it is the number of values of t] arising for any value of
,
and is

thus the number of sheets of the new surface, which we have previously
denoted by v : so that the result is as before.

In these remarks we have assumed that the dependent variable occurs

to the order which is the highest aggregate order in x and y together and
we have spoken of this as the order of the curve. And in regarding two
curves as intersecting in a number of points equal to the product of their

orders we have allowed count of branches of the curve which are entirely
at infinity. Some care is necessary in this regard. In speaking of the

Riemann surface represented by a given equation it is intended, unless the

contrary be stated, that such infinite branches are unrepresented. As an

example the curve y-
=

(x, 1)6 may be cited.

Ex, Prove that if from any point of a curve, ordinary or multiple, or from a point not
on the curve, t be the number of tangents which can be drawn other than those touching

*
See Salmon, Higher Plane Curves (1879), p. 81.
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at the point, and K be the number of cusps of the curve and if v be the number of

points other than the point itself in which the curve is intersected by an arbitrary line

through the point -then t+ K 2i/ is independent of the position of the point. If the

equation of the variable lines through the point be written u gv= 0, interpret the result

by regarding the curve as giving rise to a Riemann surface whose independent variable

fa |*.

10. The geometrical considerations here referred to may however be

stated with advantage in a very general manner.

In space of any (k) dimensions let there be a curve (a one-dimension

ality). Let points on this curve be given by the ratios of the k + 1 homo

geneous variables xly ...
,
xk+1 . Let u, v be any two rational integral homo

geneous functions of these variables of the same order. The locus u gv
=

will intersect the curve in a certain number, say v, points we assume the

curve to be such that this is the same for all values of ,
and is finite. Let all

the possible values of be represented by the real points of an infinite plane

in the ordinary way. Let w, t be any two other integral functions of the

w
coordinates of the same order. The values of t]

= at the points where
t

u %v = cuts the curve for any specified value of will be v in number.

As before it follows thence that 77 satisfies an algebraic equation of order v

whose coefficients are one-valued functions of . Since 77 can only be infinite

to a finite order it follows that these coefficients are rational functions of f .

Thence we can construct a Riemann surface, associated with this algebraic

equation connecting f and 77, such that every point of the curve gives rise to

a place of the surface. In all cases in which the converse is true we may

regard the curve as a representation of the surface, or conversely.

Thus such curves in space are divisible into sets according to their

deficiency. And in connexion with such curves we can construct all the

functions with which we deal upon a Riemann surface.

Of these principles sufficient account will be given below (Chapter VI.) :

familiar examples are the space cubic, of deficiency zero, and the most general

space quartic of deficiency 1 which is representable by elliptic functions.

11. In this chapter we have spoken primarily of the algebraic equation

and of the curve or the Riemann surface as determined thereby. But this

is by no means the necessary order. If the Riemann surface be given, the

algebraic equation can be determined from it and in many forms, according

to the function selected as dependent variable (y). It is necessary to keep
this in view in order fully to appreciate the generality of Riemann s methods.

For instance, we may start with a surface in space whose shape is that of an

* The reader who desires to study the geometrical theory referred to may consult :

Cayley, Quart. Journal, vn.
; H. J. S. Smith, Proc. Lond. Math. Soc. vi. ; Noether, Math. Annul.

9 ; Brill, Math. Annal. 16 ; Brill u. Noether, Math. Annul. 7.
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anchor ring*, and construct upon this surface a set of elliptic functions. Or
we may start with the surface on a plane which is exterior to two circles

drawn upon the plane, and construct for this surface a set of elliptic functions.

Much light is thrown upon the functions occurring in the theory by thus

considering them in terms of what are in fact different independent variables.

And further gain arises by going a step further. The infinite plane upon
which uniform functions of a single variable are represented may be regarded
as an infinite sphere ;

and such surfaces as that of which the anchor ring
above is an example may be regarded as generalizations of that simple case.

Now we can treat of branches of a multiform function without the use of a

Riemann surface, by supposing the branch points of the function marked on

a single infinite plane and suitably connected by barriers, or cuts, across which

the independent variable is supposed not to pass. In the same way, for any
general Riemann surface, we may consider branches of functions which are

not uniform upon that surface, the branches being separated by drawing
barriers upon the surface. The properties obtained will obviously generalize
the properties of the functions which are uniform upon the surface.

*
Forsyth, p. 318

; Kiemann, Ges. Werke (1876), pp. 89, 415.
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CHAPTER II.

THE FUNDAMENTAL FUNCTIONS ON A RTEMANN SURFACE.

12. IN the present chapter the theory of the fundamental functions is

based upon certain a priori existence theorems*, originally given by
Riemann. At least two other methods might be followed : in Chapters IV.

and VI. sufficient indications are given to enable the reader to establish

the theory independently upon purely algebraical considerations : from

Chapter VI. it will be seen that still another basis is found in a preliminary

theory of plane curves. In both these cases the ideas primarily involved are

of a very elementary character. Nevertheless it appears that Riemann s

descriptive theory is of more than equal power with any other
;
and that

it offers a generality of conception to which no other theory can lay claim.

It is therefore regarded as fundamental throughout the book.

It is assumed that the Theory of Functions of Forsyth will be accessible

to readers of the present book
;
the aim in the present chapter has been to

exclude all matter already contained there. References are given also to

the treatise of Harkness and Morley*.

13. Let t be the infinitesimalf at any place of a Riemann surface : if it is

a finite place, namely, a place at which the independent variable x is finite,

the values of x for all points in the immediate neighbourhood of the place

are expressible in the form x = a + t
w+1

: if an infinite place, x = t~ (w+1 &amp;gt;.

There exists a function which save for certain additive moduli is one-valued

on the whole surface and everywhere finite and continuous, save at the

place in question, in the neighbourhood of which it can be expressed in the

form

* See for instance : Forsyth, Theory of Functions of a Complex Variable, 1893 ;
Harkness and

Morley, Treatise on the Theory of Functions, 1893 ; Schwarz, Gesam. math. Abhandlungen, 1890.

The best of the early systematic expositions of many of the ideas involved is found in

C. Neumann, Vorlesungen ilber Riemann s Theorie, 1884, which the reader is recommended to

study. See also Picard, Traite d&quot;Analyse, Tom. n. pp. 273, 42 and 77.

t For the notation see Chapter I. 2, 3.
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Herein, as throughout, P (t) denotes a series of positive integral powers of t

vanishing when t = 0, G, A, ...
,
A r^, are constants whose values can be

arbitrarily assigned beforehand, and r is a positive integer whose value can be

assigned beforehand.

We shall speak of all such functions as integrals of the second kind :

but the name will be generally restricted to that *
particular function whose

behaviour near the place is that of

This function is not entirely unique. We suppose the surface dissected

by 2p cutsf, which we shall call period loops; they subserve the purpose of

rendering the function one-valued over the whole of the dissected surface.

We impose the further condition that the periods of the function for transit

across the p loops of the first kind j shall be zero
;
then the function is unique

save for an additive constant. It can therefore be made to vanish at an

arbitrary place. The special function so obtained whose infinity is that

of - - is then denoted by Ta
x&amp;gt;

c

,
c denoting the place where the function

vanishes and as the current place. When the infinity is an ordinary place,

at which either sc = a or # = oo
,
the function is infinite either like ----

x a

or - x. The periods of T/
*

for transit of the period loops of the second

kind will be denoted by fl1} ..., flp .

14. Let Oi^/i), (#ay2) be any two places of the surface: and let the

infinitesimals be respectively denoted by tlt L, so that in the neighbourhood
of these places we have the equations x x

l
=

1
W]+1

,
ac x2

= t.? *+1
. Let a

cut be made between the places (a?,^), (#2&amp;lt;y2). There exists a function, here

denoted by n* 1 c

, which (a) is one-valued over the whole dissected surface,
3-1, &amp;lt;&amp;lt;2

(/3) has p periods arising for transit of the period loops of the second kind
and has no periods at the period loop of the first kind, (7) is everywhere
continuous and finite save near (a^) and

(x.,ij.^),
where it is infinite re

spectively like logj and -logt,, and, (8), vanishes when the current place
denoted by x is the place denoted by c. This function is unique. If the
cut between (a?^), (aray2) be not made, the function is only definite apart
from an additive integral multiple of 2iri, whose value depends on the

* This particular function is also called an elementary integral of the second kind.

t Those ordinarily called the a, b curves; see Forsyth, p. 354. Harkness and Morley,
p. 242, etc.

Those called the a cuts. ^,-

The fact that the function has no periods at the period loops of the first kind is gene
rally denoted by calling the function a normal integral of the second kind.
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path by which the variable is supposed to pass from c. It will be called* the

integral of the third kind whose infinity is like that of Iog(tift2).

15. Beside these functions there exist also certain integrals of the first

kind in number p. They are everywhere continuous and finite and one-

valued on the dissected surface. For transit of the period loops of the

first kind, one of them, say Vi, has no periods except for transit of the i
ih

loop,

ai. This period is here taken to be 1. The periods of Vi for transit of the

period loops of the second kind are here denoted by r
tV ..., T;P . We may

therefore form the scheme of periods
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A more general integral of the third kind having the same property is

wherein the arbitrary coefficients satisfy the equations Ay = Aji. The pro

perty is usually referred to as the theorem of the interchange of argument
(a

1

) and parameter (a^).

The property allows the consideration of

Il
*1 , 2

as a function of x^ for fixed positions of x, c, x. In this regard a remark
should be made :

For an ordinary position of x, the function

is a finite continuous function of ar/ when #/ is in the neighbourhood of x.

But if xl be a branch place where w+l sheets wind, and #/, x be two

positions in its neighbourhood, the functions of x

IT, -log (a?/-*), Ux c --
1 log(a;,-x)*1 , *2 * X2 W+l

are respectively finite as x approaches #/ and aclt so that

is not a finite and continuous function of x/ for positions of a-/ up to and

including the branch place a?lt

In this case, let the neighbourhood of the branch place be conformally

represented upon a simple plane closed area and let
, /, be the represent

atives thereon of the places xlt a:/, x. Then the correct statement is that

is a continuous function of ar/ or |/ up to and including the branch place a^.

This is in fact the form in which the function n*1 *2

arises in the proof
X, C

of its existence upon which our account is based*.

In a similar way the function

-p*.
c

regarded as a function of #/, is such that

is a finite continuous function of in the immediate neighbourhood of x.

* The reader may consult Neumann, p. 220.

B- 2
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17. It may be desirable to give some simple examples of these integrals.

(a) For the surface represented by

y*=x(x-al)...(x-aap + l ),

wherein a
lt ..., a

2p + i
are a^ finite and different from zero and each other, consider the

integral

i (dxfy+ri y+m\
^
J y \*-k *-&/

(&amp;gt; &quot;?)) (i&amp;gt; ?i) being places of the surface other than the branch places, which are

(0, 0),(alt 0), ..., (a2p + 1 , 0).

It is clearly infinite at these places respectively like log (x
-

),
-
log (x

-
t ).

It is not infinite at (, -r,), (&,
-

7l); for (y+ ?)/(#
-

), (y+ ih)/(*
- &) are finite at

these places respectively.

At a place #=00
,
where . =r1

, y= ft-f~ l
(l+P^t}}, t being 1, and P

1 (t) a series of

positive integral powers of t vanishing for t= 0, we have

and the integral has the form

A being a constant. It is therefore finite.

At a place y= 0, for instance where

B being a constant, the integral has the form

C

C being a constant, and is finite.

Thus it is an elementary integral of the third kind with infinities at (, /), ( 1}

It may be similarly shewn that the integral

, [dx fy y+ r)i\

*j^U~^rJ
is infinite at (|1} j^) like log(.r- j) and is not elsewhere infinite except at (0, 0).

Near (0, 0), we have x=P,y= Dt [1 +P5 (t
2
)] and this integral is infinite like

Cdt

It is therefore an elementary integral of the third kind with one infinity at the

branch place (0, 0) and the other at (glt rjj).

Consider next the integral

(dx d

where rf
=

-^. It can easily be seen that it is not infinite save at (, 17). Writing for the
ag

neighbourhood of this place, which is supposed not to be a branch place,
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the integral becomes

(_dx
](x-

which is equal to

Thus the integral is there infinite like --
^,

and is thus an elementary integral of
x ~

the second kind.

The elementary integral of the second kind for a branch place, say (0, 0), is a multiple of

/*.2
]xy

In fact near #= 0, writing x=tz
, y= Dt[l +P(t2

)],
this integral becomes

which is equal to

as desired.

The integral is clearly not infinite elsewhere.

Example 1. Verify that the integral last considered is the limit of

y~

y L#-f
as the place (, rf) approaches indefinitely near to (0, 0).

Example 2. Shew that the general integral of the first kind for the surface is

[dx I A A A _n
y

1 P-I

(/9) We have in the first chapter 2, 3 spoken of a circumstance that can arise, that

two sheets of the surface just touch at a point and have no further connexion, and we
have said that we regard the points of the sheets as distinct places. Accordingly we may
have an integral of the third kind which has its infinities at these two places, or an integral
of the third kind having one of its infinities at one of these places. For example, on the

surface

/(# y)= (y- h#) (y
-
m??) + (#, y)3+ (x, y\=

where (x, y)3 , (.?:, y\ are integral homogeneous polynomials of the degrees indicated by the

suffixes, with quite general coefficients, and m
l ,
m

z
are finite constants, there are at #=0

two such places, at both of which y= 0.

In this case

dx

f (yY

where f(y) =
g-

,
is a constant multiple of an integral of the third kind with infinities at

these two places (0, 0) ; and

-m
l
x+Ax2+Bxy+ Cy

z dx

22
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is a constant multiple of an integral of the third kind, provided A , B, C be so chosen that

y iri]X-\-Ax2+Bxy+ Cy
2 vanishes at one of the two places other than (0, 0) at which

Lx+My is zero. Its infinities are at (i) the uncompensated zero of Lx+My which is not

at (0, 0), (ii) the place (0, 0) at which the expression of y in terms of x is of the form

y= m^x+ Px2+ Qx3 + ...

In fact, at a branch place of the surface where x= a+ t
2

, f (y) is zero of the first order,

[ dx
and dx=2tdt; thus I-^TT-^ is finite at the branch places. At each of the places (0, 0),

f(y] is zero of the first order, Lx+ My is zero of the first order and y - m^x -f-Ax2+Exy -f Oy
2

is zero at these places to the first and second order respectively. These statements are

easy to verify ; they lead immediately to the proof that the integrals have the character

enunciated.

The condition given for the choice of A
, B, C will not determine them uniquely the

integral will be determined save for an additive term of the form

dx

f (yY

where P, Q are undetermined constants. The reader may prove that this is a general

integral of the first kind. The constants P, Q may be determined so that the integral of

the third kind has no periods at the period loops of the first kind, whose number in this

case is two. The reasons that suggest the general form written down will appear in the

explanation of the geometrical theory.

(y) The reader may verify that for the respective cases

^/4
_ ( /\t fy\ ( M J\\ //v Ci

the general integrals of the first kind are

fdx , *w ^
I _ (3C 0) (3C C) *

Jy6

dx .

z (
x ~ c^

I
a(x- c)

2
[Ay

2+ By (x
-

c) +C (x
-

c)
2
],

f
where A, B, C are arbitrary constants.

See an interesting dissertation &quot;de Transformatione aequationis y
n=

R(x}..&quot; Eugen.

Netto (Berlin, Gust. Schade, 1870).

(S) Ex. Prove that if F denote any function everywhere one valued on the Riemann

surface and expressible in the neighbourhood of every place in the form

the sum of the coefficients of the logarithmic terms log t of the integral / Fdx, for all

places where such a term occurs, is zero.
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It is supposed that the number of places where negative powers of t occur in the

expansion of F is finite, but it is not necessary that the number of negative powers be

finite. The theorem may he obtained by contour integration of I Fdx, and clearly

generalizes a property of the integral of the third kind.

18. The value of the integral* jr*

c
dv* taken round the p closed curves

formed by the two sides of the pairs of period loops (alt b^\ ..., (av ,
bp\ in such

a direction that the interior of the surface is always on the left hand, is equal
to the value taken round the sole infinity, namely the place a, in a counter

clockwise direction. Round the pair ar ,
br the value obtained is

flr I dv*
C

,

taken once positively in the direction of the arrow head round what in the

figure is the outer side of br . This value is Q r (- a) ir), where a&amp;gt;ir denotes the

period of vt for transit of ar , namely, from what in the figure is the inside of

the oval ar to the outside.

The relations indicated by the figure for the signs adopted for wir ,
rir and

the periods of T* will be preserved throughout the book.

Since a&amp;gt;ir is zero except when r = i, the sum of these p contour integrals

18
&amp;lt;&amp;gt;&amp;gt;i,i^i- Taken in a counter-clockwise direction, round the pole of F***

a

where

the integral gives

-
\
+ A + Bt + CP + ...1 \Dv*

c

+ t&v
a
.

c

+ -...left,

where D denotes . Hence, as w
it t
= 1,

*
Cf. Forsyth, pp. 448, 451. Harkness and Morley, p. 439.
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This is true whether a be a branch place or a place at infinity (for which,

if not a branch place, x = t
-1

) or an ordinary finite place. In the latter case

. d ( x,x,c\
v. .

* /
j-dx\

Similarly the reader may prove that the periods of
11^

are

Orv
,
...... 0,

In this case it is necessary to enclose x and xz in a curve winding Wi + 1

times at x1} w2 + 1 times at #2 ,
in order that this curve may be closed.

19. From these results we can shew that the integral of the second kind

is derivable by differentiation from the integral of the third kind. Apart

from the simplicity thus obtained, the fact is interesting because, as will

appear, the analytical expression of an integral of the third kind is of the

same general form whether its infinities be branch places or not
;
this is not

the case for integrals of the second kind.

We can in fact prove the equation

namely, if, to take the most general case, x be a winding place and #/ a place

in its neighbourhood such that #/ = xl + t
,
the equation,

For, let the neighbourhood of the branch place xl be conformally represented

upon a simple closed area without branch place, by means of the infinitesimal

of x, as explained in the previous chapter. Let /, & be the representatives

of the places #/, #1} and f the representative of a place x which is very near

to #!, but is so situate that we may regard #/ as ultimately infinitely closer

to #1 than x is.

Then x-x^ =
(f
-

)
w+1

,

where C does not vanish for #/ = x,

and E!/*
= 1 (x ~ ^i ) + 3* = lg (f

- + 9 &amp;gt;

where &amp;lt; is finite for the specified positions of the places and remains finite

when gi is taken infinitely near to j ( 16).

X C
Also II = n log ( a,) + d&amp;gt;

= log ( tj) 4- 9,
Xi. X* nil _i_lC&amp;gt; x O^3 ;&amp;gt;/ I
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where
&amp;lt;f&amp;gt;

is also finite. Therefore

X, , a^ * x,

rn*
,

c - n*
c

~i i
im. -^r? fc~^

~~ = ~~
e fc

and thus

lim

where
\/r

is finite.

Now as / moves up to
,
for a fixed position of

,
we have

i

fc _ fc (T _ yt!+l /
?i &amp;lt;Ti y^i *i/

~
*! &amp;gt;

and r
x e = r!

1 = :L + y,
%\ 1 ^ j

where ^ is finite.

Hence D
tx

H*
r - r*

c

is finite when x is near to a;^

Moreover it does not depend on #2 . For from the equation

U*
c

=I%
X2

,
*J\ j 2/2 * &quot;

we may regard H^
c

^ as a function of xl ,
which is determinate save for an

additive constant by the specification of a; and c only. This additive constant,

which is determined by the condition that the function vanishes when x^ =xz ,

is the only part of the function which depends on a?2 . It disappears in the

differentiation.

Finally, by the determination of the periods previously given, it follows

that

has no periods at the 2p period loops. Hence it is a constant, and therefore

zero since it vanishes when x = c.

Corollary i.

Hence D,^ =
I&amp;gt;

tf
D

t^^D^Dtx^ = D,^ , \ :

of which neither depends on the constant position c.

Corollary ii.

The functions
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are respectively infinite like111
tx

2
tx

3
tx

4

We shall generally write D
Xi ,
D2

Xi ,
... instead of D

tv , D\ v ..... When XT

is an ordinary place DXi
will therefore mean -=

,
etc.

Corollary iii.

By means of the example (8) of 17 it can now be shewn that the infinite

parts of the integral

\Fdx,J

in which F is any uniform function of position on the undissected surface

having only infinities of finite order, are those of a sum of terms consisting of

proper constant multiples of integrals of the third kind and differential

coefficients of these in regard to the parametric place.

20. One particular case of Cor. iii. of the last Article should be stated.

A function which is everywhere one-valued on the undissected surface must

be somewhere infinite. As in the case of uniform functions on a single

infinite plane (which is the particular case of a Riemann surface for which

the deficiency is zero), such functions can be divided into rational and

transcendental, according as all their infinities are of finite order and of finite

number or not. Transcendental functions which are uniform on the surface

will be more particularly considered later. A rational uniform function can

be expressed rationally in terms of x and y*. But since the function can be

expressed in the neighbourhood of any of its poles in the form

A A An _L 1
_j_

2
_i_ i

&quot;.

T + ^ + &quot; &amp;gt;+

~r

we can, by subtracting from the function a series of terms of the form

obtain a function nowhere infinite on the surface and having no periods at the

first p period loops. Such a function is a constant f. Hence F can also be

expressed by means of normal integrals of the second kind only. Since F
has no periods at the period loops of the second kind there are for all rational

functions certain necessary relations among the coefficients A lt ...,Am .

These are considered in the next Chapter.

*
Forsyth, p. 369. Harkness and Morley, p. 262.

t Forsyth, p. 439.
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21. Of all rational functions there are p whose importance justifies a

special mention here
; namely, the functions

dvi dv2 dvp
dx dx dx

In the first place, these cannot be all zero for any ordinary finite place a of

the surface. For they are, save for a factor 2? ,
the periods of the normal

integral F*
1
c

. If the periods of this integral were zero, it would be a rational

uniform function of the first order; in that case the surface would be repre-

sentable conformally upon another surface of one sheet*, = F/-
6

being the

new independent variable
;

and the transformation would be reversible

(Chap. I. 6). Hence the original surface would be of deficiency zero
;

in which case the only integral of the first kind is a constant. The functions

are all infinite at a branch place a. But it can be shewn as here that the

quantities to which they are there proportional, namely J)a vly ..., Davp ,
cannot

be all zero. The functions are all zero at infinity, but similarly it can be

shewn that the quantities, Dv1} ...
,
Dv

p&amp;gt;

cannot be all zero there.

Thus p linearly independent linear aggregates of these quantities cannot all vanish at

the same place. We remark, in connexion with this property, that surfaces exist of all

deficiencies such that p - 1 linearly independent linear aggregates of these quantities
vanish in an infinite number of sets of two places. Such surfaces are however special, and

their equation can be putf into the form

y =w &quot; /2P + 2

We have seen that the statement of the property requires modification

at the branch places, and at infinity ;
this particularity is however due to the

behaviour of the independent variable x. We shall therefore state the pro

perty by saying: there is no place at which all the differentials dvlt ..., dvp
vanish. A similar phraseology will be adopted in similar cases. For instance,

we shall say that each of dvl} dv^, ...
, dvp has| 2p 2 zeros, some of which

may occur at infinity.

In the next place, since any general integral of the first kind

must necessarily be finite all over any other surface upon which the original
surface is conformally and reversibly represented and therefore must be an

integral of the first kind thereon, it follows that the rational function

dx p dx

*
I owe this argument to Prof. Klein. + See below, Chap. V.

J See Forsyth, p. 461. Harkness ami Morley, p. 450.
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is necessarily transformed with the surface into

dV

where Vi = Vt is an integral of the first kind, not necessarily normal, on the

new surface, f being the new independent variable, and M = ~
.

(LOG

Thus, the ratios of the integrands of the first kind are transformed

into ratios of integrands of the first kind
; they may be said to be invariant

for birational transformation.

This point may be made clearer by an example. The general integral

of the first kind for the surface

y-
=

(as, 1)8

can be shewn to be
dx ,

y

A, B, C being arbitrary constants.

If then 0! : 0o : 3 denote the ratios of any three linearly independent

integrands of the first kind for this surface, we have

for proper values of the constants alt bi, ...
, c3 ,

and hence

Such a relation will therefore hold for all the surfaces into which the given

one can be birationally transformed.

22. It must be remarked that the determination of the normal integrals

here described depends upon the way in which the fundamental period loops

are drawn. An integral of the first kind which is normal for one set of

period loops will be a linear function of the integrals of the first kind which

are normal for another set
;
and an integral of the second or third kind, which

is normal for one set of period loops, will for another set differ from a normal

integral by an additive linear function of integrals of the first kind.
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CHAPTER III.

THE INFINITIES OF RATIONAL UNIFORM FUNCTIONS.

23. IN this chapter and in general we shall use the term rational function

to denote a uniform function of position on the surface of which all the

infinities are of finite order, their number being finite. We deal first of all

Avith the case in which these infinities are all of the first order.

If k places of the surface, say a^, a2 *, be arbitrarily assigned we can

always specify a function with p periods having these places as poles, of the

first order, and otherwise continuous and uniform
; namely, the function is of

the form

where the coefficients /* , /^ ... /A^ are constants, the zeros of the functions F

being left undetermined. Conversely, as remarked in the previous chapter

( 20), a rational function having a,, ..., a^ as its poles must be of this form.

In order that the expression may represent a rational function the periods

must all be zero. Writing the periods of F in the form fij (a), ...,lp (a),

this requires the equations

(cr.a) + . . . + A**n,- (at)
= 0,

for all the p values, i = 1, 2, . . .
, p, of i. In what follows we shall for the sake

of brevity say that a place c depends upon r places c1} c2 , ..., cr when for all

values of i, the equations

fli (C) =f&i (C,) + . . . +/A (C,.)

hold for finite values of the coefficients fi,-- ,fr ,
these coefficients being

independent of i. Hence we may also say :

In order that a rational function should exist having k assigned places as

its poles, each simple, one at least of these places must depend upon the others.

24. Taking the k places c^, a2 , ..., a* in the order of their suffixes, it may
of course happen that several of them depend upon the others, say a,+i, ...,,-
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upon ttx , ..., a s ,
the latter set an . .., as being independent: then we have

equations of the form

,+lf

fti (a*)
= nt

,
! fti (aO + . . . + n

k&amp;gt;
, O f (a,),

the coefficients in any of the rows here being the same for all the p values of

i. In particular, if s be as great as p and a
lt

...
,
as be independent, equations

of this form will hold for all positions of as+1 , ..., ak . For then we have

enough disposeable coefficients to satisfy the necessary p equations.

When it does so happen, that a8+1 ,...,ak depend upon 0,1... at ,
there

exist rational functions, of the form

i

wherein cr4+1 ... o-^, Xs+1 ... X^ are constants, which are all infinite once in

ttj ... as and are, beside, infinite respectively at as+1) ..., a^ ;
and the most

general function uniform on the dissected surface, which is infinite to the

first order at a1 ,
. . .

, a^ , being, as remarked, of the form

/*&amp;lt;&amp;gt;

+ PI r 4-

can be written in the form

4

+ /%|r- ^* -hn*. i It, + ...... +nktS F^-
\_^k

namely, in the form

v + z/i r*
i
+ ...... + v, F^ + vg+1Rt+1 + ...... +vkRk .

If this function is to have no periods, the equations

vin i (a l) + ...... + v.n (a.)
= 0, (i=l, 2, ...,p),

must hold. Since a1} ...,as are independent, such equations can only hold

when Vi = =
. . .
= vg . Thus the most general rational function having k

poles of the first order, at a1} ..., a*, is of the form

i/o + vs+lJRg+1 + ...... + vkRk ,

and involves k s+ I linearly entering constants, s being the number of

places among alf ...
,
ak which are independent. These constants will generally

be called arbitrary : they are so only under the convention that a function
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which has all its poles among a1} ...,ak be reckoned a particular case of a

function having each of these as poles ;
for it is clear that, for instance, Rk is

only infinite at a1( ..., at , ak . The proposition with a slightly altered enuncia

tion, given below in 27 and more particularly dealt with in 37, is called

the Riemann-Roch Theorem, having been first enunciated by Riemann*,
and afterwards particularized by Rochf.

25. Take now other places ak+l ,
ak+2 , ... upon the surface in a definite

order, and consider the possibility of forming a rational function, which beside

simple infinities at alt ..., ak has other simple poles at, say, ak+1 ,
ak+z , ...,ah.

By the first Article of the present chapter it follows that the least value

of h for which this will be possible will be that for which ah depends
on ch ... ak ak+l ... a/,-i, that is, depends on a^ . . . as ak+l . . . &_!. This will

certainly arise at latest when the number of these places a^ ... as ak+l . . . ah-i

is as great as p, namely h l=k + p s, and if none of the places ak+l . . . /,_!

depend upon the preceding places a
x
... as ,

it will not arise before: in that

case there will be no rational function having for poles the places

ak+j

for any value ofj from 1 to p s.

But in order to state the general case, suppose there is a value of j less

than or equal to p s, such that each of the places

ak+j+i ...... ah

depends upon the places

the smallest value of j for which this occurs being taken, so that no one of

ak+1 . . . ak+j depends on the places which precede it in the series

Then there exists no rational function with its poles at a, ... ak ak+l ... ak+j,
but there exist functions

i a

,s
1 as

~ nk+j+i,k+i 1 ak + l

~ ...... ~ nk+}+i,k+j 1 ak + i J &amp;gt;

whose poles are respectively at

for all values of i from 1 to h k j.

*
Riemann, Ges. Werke, 1876, p. 101

( 5) and p. 118
( 14) and p. 120

( 16).

t Crelle, 64. Cf. also Forsyth, pp. 459, 464. The geometrical significance of the theorem
has been much extended by Brill and Noether. (Math. Ann. vii.)
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Then the most general rational function with poles at

is in fact

and involves k s + i + 1 arbitrary constants, namely the same number as

that of the places of the set

which depend upon the places that precede them.

For such a function must have the form

-1- P-k+j lak

namely,

s

&quot;i&quot; ^ Ps+r ^ -tts+r T ^s+r, I *
,
T ...... T ^s+r,s *

a, C
r=l L^-+r ^-s+r

1 T&
AfcffH + nk+}+t,i !, + ......

H
r&quot;

31
. ri

x n*
t, s

1
a, + Vk+j+t, k+i i ak + 1

+ ...... + Kk+j+t, k+j A ak + ,

which is of the form

V + Vi t\^
+ ...... + V8

+ vk+l r^ + 1
+ ......

and the p periods of this, each of the form

ViH (ttj) + ...... + i/ft (a,.) + i&amp;gt;t+1 ft

cannot be zero unless each of vl ... vs vk+i k+j be zero, for it is part of

the hypothesis that none of ak+1 . . . ak+j depend upon preceding places.

26. Proceeding in this way we shall clearly be able to state the following

result

Let there be taken upon the surface, in a definite order, an unlimited

number of places al} a2 , Suppose that each of al ...a,Q_
is inde

pendent of those preceding it, but each of a^,^ ... a
Qi depends on

a, ... a Suppose that each of an , , a~ ^ . . an is independent of
Ifcfl Vi + l Vi + 4 Va~9i

those that precede it in the series a, ... an an ,....an but each of
VI -9i 9fT* V2~9a

aQ,-^i % dePends uP n
i a

Ql
-
qi
a
Ql+ i

a
Qt . qt

This requires that
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Suppose that each of a
Q +l . . . a

Q _ is independent of those that precede it

in the series a, ... a~ a~
,
. . . . an ,

. . . . an ,
but each of an ..... an

Qi-9i Ci+l Qi-&amp;lt;lt Qs+l Qi-Qs 3-93+1 Qa

depends upon the places of this series. This requires that

Qi-qi + [Q2 -q^-Qi] + [Q3 -q3 -Q2]&amp;gt;p-

Let this enumeration be continued. We shall eventually come to places

a
Q +i

a
Q +2

&quot; ao - eac^ ^dependent of the places preceding, for which

the total number of independent places included, that is, of places which

do not depend upon those of our series which precede them, is p so that

the equation

will hold. Then every additional place of our series, those, namely, chosen

in order from a
Q _ +l ,aQ _ +2 ,

... will depend on the preceding places of the

whole series.

This being the case, it follows, using Rf as a notation for a rational

function having its poles among a l ... a/, that rational functions

do not exist.

The number of these non-existent functions is p.

For all other values off, a rational function Rj exists.

To exhibit the general form of these existing rational functions in the

present notation, let m be one of the numbers 1, 2, ..., h; i be one of the

numbers 1, 2, ... qtn ,
and let the dependence of a

Q _ . upon the preceding

places arise by p equations of the form

then, denoting P* by F,., there is a rational function

which has its poles at

a a
ft-7, %+! a

Q.&amp;gt;-&amp;lt;,.&amp;gt;&amp;gt;

a
Qn

and the general rational function having its poles at

~ a
&amp;lt;jm

-
9m

&amp;gt;
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is of the form

and involves ql + qz + . . . 4-
&amp;lt;?
m_i + i + 1 arbitrary coefficients.

The result may be summarised by putting down the line of symbols

(&-?, + !),..,&, & + !,... ,&-, + !, ...,(&-?*), (&-?*+!),...

with a bar drawn above the indices corresponding to the places which depend

upon those preceding them in the series. The bar beginning over Qh qh + I

is then continuous to any length. The total number of indices over which

no bar is drawn is p. There exists a rational function Rf, in the notation

above, for every index which is beneath a bar.

The proposition here obtained is of a very fundamental character. Sup

pose that for our initial algebraic equation or our initial surface, we were able

only to shew, algebraically or otherwise, that for an arbitrary place a there

exists a function K x
a ,

discontinuous at a only and there infinite to the first

order, this function being one valued save for additive multiples of & periods,

and these periods finite and uniquely dependent upon a, then, taking arbitrary

places a1} a2 ,
... upon the surface, in a definite order, and considering func

tions of the form

that is, functions having simple poles at al} ..., a#, we could prove, just as

above, that there are k values of N for which such functions cannot be one

valued
;
and obtain the number of arbitrary coefficients in uniform functions

of given poles. Namely, the proposition would furnish a definition of the

characteristic number k which is the deficiency, here denoted byp based

upon the properties of the uniform rational functions.

We shall sometimes refer to the proposition as Weierstrasss gap

theorem*.

27. When a place a is, in the sense here described, dependent upon places

bi} 62 ,
...

,
br ,

it is clear that of the equations

* &quot;

Liickensatz.&quot; The proposition has been used by Weierstrass, I believe primarily under

the form considered below, in which the places a
x , a2 , ... are consecutive at one place of the

surface, as the definition of p. Weierstrass s theory of algebraic functions, preliminary to a theory

of Abelian functions, is not considered in the present volume. His lectures are in course of

publication. The theorem here referred to is published by Schottky : Conforme Abbildung

mehrfach zusammenhangender ebener Flachen, Crelle Bd. 83. A proof, with full reference to

Schottky, is given by Noether, Crelle Bd. 97, p. 224.
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A.n, (br) + . . . + Apfip (br)
= o

A.fl^a) +... + Ap flp(a)
=

the last is a consequence of those preceding and conversely that when the

last equation is a consequence of the preceding equations the place a depends

upon the places b1} b2 , ..., br .

Hence the conditions that the linear aggregate

(as)
=A& (as) + . . . + Apnp (as)

should vanish at the places

^&quot; a
Q l

a
Qi+l--

a
Q3

a
Q,+l

&quot; a
Qm -&amp;lt;)a+ i

wherein
i$&amp;gt; qm ,

are equivalent to only

or

linearly independent equations.

If then r + 1 be the number of linearly independent linear aggregates of

the form 1
(as), which vanish in the Qm - qm -f i specified places, we have

T + 1 =p -
(Qm - ql

- ... - qm ).

Denoting Qm qm + i by Q, and the number of constants in the general
rational function with poles at the Q specified places, of which constants one
is merely additive, by q + 1,

q + 1 = q, + q2 + ... + qm^ + i + 1.

We therefore have

Q-q=p-(r + i).

Recalling the values of fl^ar)... Clp (x) and the fact (Chapter II. 21)
that every linear aggregate of them vanishes in just 2p

- 2 places, we see
that when Q is greater than 2p

-
2, T + 1 is necessarily zero.

In the case under consideration in the preceding article the number
T + 1 for the function E

Q , namely the number of linearly independent
linear aggregates ft (as) which vanish in the places

is given, by taking m = h-l and i = qh_, in the formula of the present
article, by the equation

r + 1 = p -

= Qh

B.
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Hence one such linear aggregate vanishes in the places

and therefore

&-?*-! &amp;gt;2p-2

or, the index associated with the last place aQ _ of our series, corresponding to
^h k

which a rational function RQ _ does not exist, is not greater than 2p 1. A
^A ^A

case in which this limit is reached, which also furnishes an example of the

theory, is given below 37, Ex. 2.

28. A limiting case of the problem just discussed is that in which the

series of points a1} a.2 , ... are all consecutive at one place of the surface.

A rational function which becomes infinite only at a place, a, of the

surface, and there like

GI GZ Cf

t P t
r

where any of the constants Glt C2 ,
... Cr_lt but not Cr , maybe zero, t being the

infinitesimal, is said to be there infinite to the rth order. If A.t
- =

G[/(i 1)!,

such a function can be expressed in a form

x + XjF* + x2 z&amp;gt;ar* + ... + vo^rs

where, in order that the function be one valued on the undissected surface,

the p equations

X, fl f (a) + \2Dan f (a) + . . . + X^&quot;
1

; (a)
=

must be satisfied : and conversely these equations give sufficient conditions

for the coefficients X1; Xg, ...
, X,..

In other words, since Xr cannot be zero because the function is infinite to

the ? th order, the p differential coefficients D^~
l Cl i (a), each of the r 1th

order, must be expressible linearly in terms of those of lower order,

with coefficients which are independent of i. We imagine the p quantities

Du~
1

fli(a), for i = l, 2, ...,p, written in a column, which we call the rth

column
;
and for the moment we say that the necessary and sufficient con

dition for the existence of a rational function, infinite of the rth order at a,

and not elsewhere infinite, is that the rth column be a linear function

of the preceding columns.

Then as before, considering the columns in succession, they will divide

themselves into two categories, those which are linear functions of the pre

ceding ones and those which are not so expressible. And, since the number

of elements in a column is p, the number of these latter independent columns
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will be just p. Let them be in succession the ^th, &2th, ...,kpt\\. Then

there exists no rational function infinite only at a, and there to these

orders klt k2 , ..., kp , though there are integrals of the second kind infinite

to these orders. But if Q be a number different from klt ..., kp ,
there does

exist such a rational function of the Qth order, its most general expression

being of the form

xQD (?-ir* + XQ-xA?-
2^ + ... + xx r* + x,

namely, the integral of the second kind whose infinity is of order Q is

expressible linearly by integrals of the second kind of lower order of infinity,

with the addition of a rational function.

If q + 1 be the number of linearly independent coefficients in this function,

one being additive, we have an equation

Q-q=P-(r + i),

where p (r + 1) is the number of the linearly independent equations of the

form

\iflf (a) + X2Z)nt-(a) + ... + \QD^fli (a)
= 0, (i

=
1, 2, ..., p),

from which the others may be linearly derived. As before, r + I is the

number of linearly independent linear aggregates of the form

which satisfy the Q conditions

A.D^, (a) + ... + ApDrnp (a)
=

forr = 0, 1,2, ...,Q-1.

29. In regard to the numbers ^ . . . kp we remark firstly that, unless p = 0,

&! = 1 for if there existed a rational function with only one infinity of the

first order, the positive integral powers of this function would furnish rational

functions of all other orders with their infinity at this one place, and there

would be no gaps (compare the argument Chapter II. 21); and further

that in general they are the numbers 1, 2, 3 ... p, that is to say, there is only
a finite number of places on the surface for which a rational function can be
formed infinite there to an order less than p + 1 and not otherwise infinite.

We shall prove this immediately by finding an upper and a lower limit to

the number of such places ( 31).

30. Some detailed algebraic consequences of this theory will be given in

Chapter V. It may be* here remarked, what will be proved in Chapter VI.
in considering the geometrical theory, that the zeros of the linear aggregate

It is possible that the reader may find it more convenient to postpone the complete
discussion of 30 until after reading Chapter vi.

32
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can be interpreted in general as the intersections of a certain curve, of the

form

&amp;lt;/&amp;gt;

=A^ (x) + ...+ A p (f&amp;gt;p O) = 0,

wherein
^...^&amp;gt;p are integral polynomials in x and y, with the curve repre

sented by the fundamental equation of our Riemann surface. In such

interpretation, the condition for the existence of a rational function of order Q
with poles only at the place a, is that the fundamental curve be of such

character at this place that every curve
&amp;lt;,

obtained by giving different values

to A 1 ... Ap ,
which there cuts it in Q 1 consecutive points, necessarily cuts

it in Q consecutive points. As an instance of such property, which seems

likely also to make the general theory clearer, we may consider a Riemann

surface associated with an equation of the form

f(x, y)
= K + (x, y\ + (x, y\ + (x, y)3 + (x, y\ = 0,

wherein (x, y)r is a homogeneous integral polynomial of the rth degree, with

quite general coefficients, and K is a constant. Interpreted as a curve, this

equation represents a general curve of the fourth degree ;
it will appear

subsequently that the general integral of the first kind is

dx
(A+Bx+Cy),

where f (y)
=

df/dy, and A
, B, are arbitrary constants

;
and thence, if we

recall the fact that flj (as), ...,lp (x) are differential coefficients of integrals

of the first kind, that the zeros of the aggregate

may be interpreted as the intersections of the quartic with a variable straight

line.

Take now a point of inflexion of the quartic as the place a. Not every

straight line there intersecting the curve in one point will intersect it in any

other consecutive point ;
but every straight line there intersecting the curve

in two consecutive points will necessarily intersect it there in three consecu

tive points. Hence it is possible to form a rational function of the third

order whose only infinities are at the place of inflexion
;
in fact, if

be the equation of the inflexional tangent, and

be the equation of any line through the fourth point of intersection of the

inflexional tangent with the curve, the ratio of the expressions on the left

hand side of these equations, namely

Ax + By + 1
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is a general rational function of the desired kind, as is immediately obvious

on consideration of the places where it can possibly be infinite. Thus for the

inflexional place the orders of two non-existent rational functions are 1, 2.

It can be proved that in general there is no function of the fourth order the

gaps at the orders 1, 2, 4 are those indicated by Weierstrass theorem.

In verification of a result previously enunciated we notice that since

Ax + By+ 1 = may be taken to be any definite line through the fourth

intersection of the inflexional tangent with the curve, the function contains

# + 1 = 2 arbitrary constants. From the form of the integrals of the first

kind which we have quoted, it follows that p = 3
;
thus the formula

wherein Q = 3, requires r + 1 = 1
;
now by 28 r + 1 should be the number

of straight lines which can be drawn to have contact of the second order with

the curve at the point : this is the case.

If the quartic possess also a point of osculation, a straight line passing

through two consecutive points of the curve there will necessarily pass

through three consecutive points and also necessarily through four. Hence,

for such a place, we can form a rational function of the third order and one

of the fourth. In fact, if
A&amp;lt;p + B y + 1=0 be the tangent at the point of

osculation and A^x + BJJ + 1 = be any other line through this point, while

\c + fj,y+v
= is any other line whatever, these functions are respectively,

in their most general forms,

A^x + B$ + 1 Xx + fjuy +j/+ **Ax + B y + 1 A^i+B y + l

wherein X, p, v are arbitrary constants.

It can be shewn that in general we cannot form a rational function of the

fifth order whose only infinity is at the place of osculation. Thus the gaps
indicated by Weierstrass s theorem occur at the orders 1, 2, 5. (Cf. the

concluding remark of 34.)

In case, however, the place a be an ordinary point of the quartic, the

lowest order of function, whose only infinity is there, is p + 1 = 4 : it will

subsequently become clear that a general form of such a function in S /S,

where S = is any conic drawn to intersect the quartic in four con

secutive points at a, and S = is the most general conic drawn through
the other four intersections of S with the quartic. S will in fact be of the

form \S + p,T, where T is any definite conic satisfying the conditions for S ,

and X, /j,
are arbitrary constants; the equation Q q=p (r + 1) is clearly

satisfied by Q = 4, q
=

1, p = 3, T + 1 = 0.

The present article is intended only by way of illustration
;
the examples

given appear to find their proper place here. The reader will possibly
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find it desirable to read them in connexion with the geometrical account

given in Chapter VI.

31. Consider now what places of the surfaces are such that we can form

a rational function infinite, only there, to an order as low as p.

For such a place, as follows from 28, the determinant

A =

&amp;gt; (r\ DP&quot;
1 O (v\ T}P ! O ff\4 i v*v&amp;gt;

^ i
2vv&amp;gt; &amp;gt;-

L/ ***v~y

must vanish. Assume for the present that none of the minors of A vanish

at that place. It is clear by 28 that A only vanishes at such places as we
are considering.

Let v be any integral of the first kind. We can write

/ \ dvi .
, dv dvi

(x) = -j- in the form -=-
,

at at av

and similarly put

and so write

where D is the determinant whose rth row is formed with the quantities

dvr dvr

Now -T* is a rational function; and it is infinite only at the zeros of dv,

whose aggregate number is 2p 2; and -y-
*

is a rational function of the

(4&amp;gt;p 4)th order, its poles being also at the zeros of dv; and a similar state

ment can be made in regard to the other rows of D.

Hence D is a rational function whose infinities are of aggregate number

(2p
-

2) (1 + 2 + ... +p) =
(p
-
l)p (p + 1),

and this is therefore the number of zeros of D.
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Now A can vanish either by the vanishing of the factor D or by the

(dv\%p

(.P+I)

I The zeros of the last factor are, however,
dtj

the poles of D. Hence the aggregate number of zeros of A is (p 1) p (p + 1).

We shall see immediately that these zeros do not necessarily occur at as

many as (p I)p (p + 1) distinct places of the surface.

In order that a rational function should exist of order less than p, its

infinity being entirely at one place, say of order p r, it would be necessary

that the r determinants formed from the matrix obtained by omitting the

last r rows of A should all vanish at that place. We can, as in the case of

A, shew that each of these minors will vanish only at a finite number of

places. It is therefore to be expected that in general these minors will not

have common zeros
;

that is, that the surface will need to be one whose

3/; 3 moduli are connected in some special way.

Moreover it is not in general true that a rational function of order p + 1

exists for a place for which a function of order p exists, these functions not

being elsewhere infinite. For then we could simultaneously satisfy the two

sets of p equations

(a) + \DCli (a) + ...... + Xp^DP-
2^ (a) + \pDf~

1Ot
-

(a)
= 0,

(a) + ^Dtli (a) + ...... + ffv-lDP-afl i (a) + /v,., jDPflf (a)
= 0,

namely, A and -7- would both be zero at such a place. The condition that
at

this be so would require that a certain function of the moduli of the

surface what we may call an absolute invariant should be zero.

Therefore when of the p gaps required by Weierstrass s theorem, p 1

occur for the orders 1, 2, ..., p 1, the other will in general occur for the

order p+l. The reader will see that there is no such reason why, when a

function of order p exists, a function of order p + 2 or higher order should

not exist.

32. The reader who has followed the example of 30 will recall that the

number of inflexions of a non-singular plane quartic* is 24 which is equal to

the value of (p
-

1) p (p + 1) when p = 3. The condition that the quartic

possess a point of osculation is that a certain invariant should vanish^.

When the curve has a double point, there are only two integrals of the

first kind
J,
and p is equal to two. Thus in accordance with the theory above,

there should be (p 1) p (p + 1) = 6 places for which we can form functions

*
Salmon, Higher Plane Curves (1879), p. 213.

t The equation can be written so as to involve only 5 =
3/&amp;gt;

- 3 - 1 parametric constants

(Chap. V. p. 98, Exs. 1, 2).

+ Their forms are given Chapter II. 17 /3.
lleasons are given in Chapter VI. The reader

may compare Forsyth, p. 395.
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of the second order infinite only at one of these places. In fact six tangents
can be drawn to the curve from the double point : if A^c + B9y = be the

equation of one of these and \ (Ax + By) + fi(A x + B y) = be the equation
of any line through the double point, the ratio

fc
Ax + ByX
A^ + B y

+ f
*

represents a function of second order infinite only at the point of contact of

For the point of contact of one of these tangents the^) gaps occur for the

orders 1 and 3.

The quartic with a double point can be biratioually related to a surface expressed by
an equation of the form

being the function above. The reader should compare the theory in Chapter I. and the

section on the hyperelliptic case, Chapter V. below.

33. Ex. For the surface represented by the equation

where the brackets indicate general integral polynomials of the order of the suffixes, p is

equal to 4, and the general integral of the first kind is

r

where f(y )
= + . Prove that at the (p

- 1
) p (p+ 1

)
= 60 places for which rational functions

of the 4th order exist, infinite only at these places, the following equations are satisfied

2/7&amp;lt;/-3(/ /y)
2
=o,

2f 3
s3/ ff2

83/, 3i
&amp;gt;*
+ 6

a^ap
fvfx

~
ap

J*
J

Where y = etc- ^= etc&amp;gt;

Explain how to express these functions of the fourth order.

Enumerate all the zeros of the second differential expression here given.

Ex. 2. In general, the corresponding places are obtained by forming the differential

equation of the pth order of all adjoint &amp;lt;f&amp;gt;

curves. In a certain sense A is a differential

invariant, for all reversible rational transformations. (See Chapter VI.)

* Here the number of integrands of the integrals of the first kind, which are of the form

(Lx + My)lf (y) (cf. Chapter III. 28), which vanish in two consecutive points at the point of

contact of Avx + H y = 0, is clearly 1, or T + 1 = 1 : hence the formula Q -
q -p -

(r + 1) is verified

by Q= 2, q = l, p= 2, so that the form of function of the second order given in the text is the

most general possible.
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34. We pass now to consider whether the (p 1) p (p + 1) zeros of A
will in general fall at separate places*.

Consider the determinant

V = fl (x} fl (x)

wherein flj^ ((?)=* J5fOf (), and k1} ..., kp are the orders of non-existent

rational functions for a place ,
in ascending order of magnitude, (A^

=
1) ;

and let its value be denoted by

so that ur
= I (i&amp;gt;r (x) dtx is an integral of the first kind.

Then wr (x) vanishes at % to the (kr l)th order.

For
&amp;lt;w,. (x) is the determinant

v.-r-i

now the (kr l)th differential coefficient of this determinant (in regard to

the infinitesimal at x) has at a value which is in fact the minor of the

element (1, 1) of V, save for sign. That this minor does not vanish is part

of the definition of the numbers k1} k2 , ..., kp . But all differential coeffi

cients of Vr of lower than the (kr l)th order do vanish at : some, because

for a; = they are determinants having the first row identical with one of

the following rows, this being the case for the differential coefficients of

orders ^ 1, &2 1, ...
; others, because when /* is not one of the numbers

fcj, k2 , ..., kp , D^ifli^) is a linear function of those of Dk ~1 Cl i (^),

Lb~* {li(g), ... for which p is greater than klf k.2 , ... , the coefficients of the

linear functions being independent of i. This proves the proposition.

It is clear that the &rth differential coefficient of V r may also vanish at .

In particular Wi(x) does not vanish at : a result in accordance with a

remark previously made (Chapter II. 21), that there is no place at which

the differentials of all the integrals of the first kind can vanish.

* The results in 34, 35, 36 are given by Hunvitz, Math. Annul. 41, p. 409. They will

be useful subsequently.
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An important corollary is that the highest order for which no rational

function exists, infinite only at the place , is less than 2p. For wp (x) vanishes

only 2p 2 times, namely, kp 1
&amp;lt; 2p 2.

35. We can now prove that if k2 &amp;gt; 2, the sum of the orders k\, &2 &amp;gt; ,
kp

is less than p
2
. For if there be a rational function of order in, infinite only

at
, and r be one of the non-existent orders* ^ ... kp ,

r m is also one of

these non-existent orders otherwise the product of the existent rational

function of order i m with the function of order m would be an existent

function of order r. The powers of the function of order m are existent

functions, hence none of k l . . . kp are divisible by in.

Let Ti be the greatest of the non-existent orders k^ ... kp which is con

gruent to
i(&amp;lt; m) for the modulus m : then, by the remark just made,

TI, Ti in, Ti 2m, ...
,
m + i, i

are all non-existent orders and all congruent to i for the modulus m. Since

i i occurs among ki...kp ,
all these also occur. Take i in turn equal to

1, 2, ... 771-1.

Then, the number of non-existent orders being p,

p =

so that T! + r2 + . . . + rm_^ = mp \ m (m 1)

= \ m(2p m+ 1).

Now the sum of the non-existent orders is

m-l
2 [ri + (n - m) + (n

- 2m) + ... + i] ,

which is equal to

+ lm (m - 1)
-

T
L

(in
-

1) (2m - 1),

and, since Sr^ = ^ m (%p m + 1), this is equal to

~ Sr, [r,
-
(2p

-
1)] + I [4p

- (m - Vf\ + ^ (m - 1) (m + 1),

or ^-r2-l-r-m-lm-2.

*
i.e. orders of rational functions, infinite only at , which do not exist: and similarly in

what follows.
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Since, by the corollary of the preceding article, 2p 1 is not less than riy

this is less than p- unless m is 1 or 2. Now m cannot be equal to 1
;
and if

it is 2 then also k2 &amp;gt; 2. Hence the statement made at the beginning of the

present Article is justified.

When there is a rational function of order 2, it is easy to prove that

there are places for which L\ ... kp are the numbers 1, 3, 5, ...
, 2p 1, whose

sum*
is^&amp;gt;

2
. An example is furnished by 32 above.

Ex. For the surface

for which p = 3, there is, at #=ao
, only one place, and the non-existent orders are 1, 2, 5 :

whose sum is p* l.

36. We have in 34 defined p integrals of the first kind

I wl (x)dtx , ...
, I wp (x)dtx

by means of a place . Since the differential coefficients of these vanish at

to essentially different orders, these integrals cannot be connected by a homo

geneous linear equation with constant coefficients. Hence a linear function

of them with parametric constant coefficients is a general integral of the first

kind. Therefore each of ^(x) ... O^ (x) is expressible linearly in terms of

o&amp;gt;! (x) ... wp (x) in a form

&i 0) = Cn$r( + . . . + Cip&p (x},

where the coefficients are independent of x. Thus the determinant A ( 31),

which vanishes at places for which functions of order less than p + 1 exist, is

equal to

&amp;gt;i(x) , ......
,

&amp;lt;op (x)

xwl (x) , ......
,
DX G&amp;gt;P (X)

where C is the determinant of the coefficients
c,-j.

It follows from the result

of 34 that the determinant here multiplied by C vanishes at to the order

Thus, the determinant A vanishes at any one of its zeros to an order equal
to the sum of the non-existent ordersfor the place diminished by %p(p + l).

For example, it vanishes at a place where the non-existent orders are

1, 2, ...
, p- 1, p + 1 to an order $p(p-~L)+p + l-^p(p + l) or to the

first order. We have already remarked that such places are those which

most usually occur.

*
Cf. Burkhardt, Math. Annal. 32, p. 388, and the section iu Chapter V., below, on the hyper-

elliptic case.



44 RIEMANN-ROCH THEOREM. [36

Hence, since fa -f . . . + kp ^ p2
,
A vanishes at one of its zeros to an order

Further, if r be the number of distinct places where A vanishes, and

mly m2 ,
. .., mr be the orders of multiplicity of zero at these places, it follows,

from

and raa + ... + mr &amp;lt; r %p(p 1),

that r &amp;gt; 2p + 2, or

there are at least 2p + 2 distinct places for which functions of less order

than p + 1, infinite only thereat, exist] this lower limit to the number of

distinct places is only reached when there are places for which functions of

the second order exist.

Ex. For the surface given by

p is equal to 3
;
there are 12= 2^ + 6 distinct places where A vanishes.

37. We have called attention to the number of arbitrary constants con

tained in the most general rational function having simple poles in distinct

places ( 27) and to the number in the most general function infinite at a

single place to prescribed order ( 28) : in this enumeration some of the con

stants may be multipliers of functions not actually becoming infinite in the

most general way allowed them, that is, either of functions which are not

really infinite at all the distinct places or of functions whose order of infinity

is not so high as the prescribed order.

It will be convenient to state here the general result, the deduction of

which follows immediately from the expression of the function in terms of

integrals of the second kind :

Let tt1; a.,, ... be any finite number of places on the surface, the infinitesi

mals at these places being denoted by tl} t.2 , .... The most general rational

function whose expansion at the place di involves the terms

JL JL _L
& W t*&amp;lt;

&quot;

whose number is finite,
= Q say, and no other negative powers, involves

q + 1 linearly entering arbitrary constants, of which one is additive, q being

given by the formula

Q-q=P-(r + i),

where Q is the sum of the numbers Q{ ,
and r + 1 is the number of linearly

independent linear aggregates of the form

fl(a;)
= AA (a;) + ... + Ap Q,p (x\
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which satisfy the sets of Qi relations, whose total number is Q, given by

A,DV-1 f^ (at) + A,D^ 2 (ai) + . . . + ApD*--
1 np (tti)

= 0,

Ail&amp;gt;-
1 nt (a;) + 4 a J&amp;gt;

-i n2 (a&amp;lt;)
+ . . . + ^I&amp;gt;

-1 Op (a,-)
= 0,

As before, this general function will as a rule be an aggregate of functions

of which not every one is as fully infinite as is allowed, and it is

clear from the present chapter that in the absence of further information in

regard to the places a1} a.2 ,
... it may quite well happen that not one of these

functions is as fully infinite as desired, the conditions analogous to those stated

in 23, 28 not being satisfied. See Example 2 below.

The equation Q q=p (r + l) will be referred to as the Riemann-Roch

Theorem.

Ex. 1. For a rational function having only simple poles or, more gene

rally, such that the numbers X;, /^t-, vi, ... for any pole are the numbers

1, 2, 3, ... Qit

if Q &amp;gt; 2p 2, r + 1 is zero, since fl (x) has only an aggregate number

2p 2 of zeros : the function involves Q p + 1 constants,

if Q = 2p 2, r + 1 cannot be greater than 1
;

for the ratio of two of the

aggregates l(x) then vanishing at the poles, being expressible in a form

dV
_ ,

where V, W are integrals of the first kind, would be a rational function
a w

without poles, namely a constant
;
then the linear aggregates fl (#) would be

identical : thus the function involves Q p + I or Q p + 2, constants,

namely p 1 or p constants,

if Q= 2p 3, T+ 1 cannot be greater than 1, since the ratio of two of

the aggregates H (x) then vanishing at the poles would be a rational function

of the first order and therefore p be equal to unity in which case 2p 3 is

negative : thus the function involves p 2 or p 1 constants,

if Q = 2p 4, and T + 1 be greater than unity, the ratio of two of the

vanishing aggregates fl (#) would be a rational function of the second order :

we have already several times referred to this possibility as indicative that

the surface is of a special character called hyperelliptic and depends in

fact only on 2p 1 independent moduli. In general such a function would
involve p 3 constants.

Ex. 2. Let V be an integral of the first kind and a be an arbitrary
definite place which is not among the 2p 2 zeros of dV. We can form a

rational function infinite to the first order at the 2p 2 zeros of dV and to

the second order at a; the general form of such a function would contain

2j9 2 + 2 p + I =p + 1 arbitrary constants. But there exists no rational

function infinite to the first order at the zeros ofdV and to the first order at
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the place a. Such a function would indeed by the Riemann-Roch theorem

here stated, contain 2p 2 + 1 p -{ l=p arbitrary constants : but the coeffi

cients of these constants are in fact infinite only at the zeros of d V. For when
the places a1} ... , 0^-2 are all zeros of an aggregate of the form

AA(a;) + ...+Apnp (ac),

the conditions that the periods of an expression

be all zero, namely the equations

Xjnt (aO + . . . + \
2p
_2 fli (oap-a) + fjLfli (a)

=
0, (i

=
1, 2, . . .

, p),

lead to

p, [AfMa) + ... + Ap flp (d)]
= 0,

and therefore to
/JL

0.

Thus the function in question will be a linear aggregate of p functions

whose poles are among the places a1} ... , a^-s- As a matter of fact, if W be

a general integral of the first kind, expressible therefore in the form

2F2 + ...+\PVP ,

dW
wherein V2 , ..., Vp are integrals of the first kind, v^ involves the righta v

number of constants and is the function sought.

In this case the place a does not, in the sense of 23, depend upon the

places a1} ...
, 0^-2 j

^ne symbol suggested in 26 for the places a1} ...
, a^-a,

a, ... is

1,2,3, ...,^-1,^+1, ...,2p-2, 2^-1, 2^,2^ + 1,....

It may be shewn quite similarly that there is no rational function having

simple poles in a1} a2 ,
...

,
a
2p
_2 and infinite besides at a like the single

term
, t being the infinitesimal at the place a.

v

Ex. 3. The most general rational function R which has the value c at

each of Q given distinct places, R c being zero of the first order at each of

these places, is obviously derivable by the remark that l/(R c) is infinite at

these places.



38]

CHAPTER IV.

SPECIFICATION OF A GENERAL FORM OF RIEMANN S INTEGRALS.

38. IN the present chapter the problem of expressing the Riemann

integrals is reduced to the determination of certain fundamental rational

functions, called integral functions. The existence of these functions, and

their principal properties, is obtained from the descriptive point of view

natural to the Riemann theory.

It appears that these integral functions are intimately related to certain

functions, the differential-coefficients of the integrals of the first kind, of

which the ratios have been shewn (Chapter II. 21) to be invariant for

birational transformations of the surface. It will appear, further, in the

next chapter, that when these integral functions are given, or,, more pre

cisely, when the equations which express their products, of pairs of them, in

terms of themselves, are given, we can deduce a form of equation to re

present the Riemann surface
;

thus these functions may be regarded as

anterior to any special form of fundamental equation.

Conversely, when the surface is given by a particular form of fundamental

equation, the calculation of the algebraic forms of the integral functions may
be a problem of some length. A method by which it can be carried out is

given in Chapter V. ( 72
ff.). Compare 50 of the present chapter.

It is convenient to explain beforehand the nature of the difficulty from which the

theory contained in 38 44 of this chapter has arisen. Let the equation associated

with a given Riemann surface be written

wherein A, A
1 ,..., A n are integral polynomials in x. An integral function is one whose

poles all lie at the places .r=o&amp;gt; of the surface; in this chapter the integral functions

considered are all rational functions. If y be an integral function, the rational

symmetric functions of the n values of y corresponding to any value of .r, whose

values, given by the equation, are -AJA, Ay/A, -A^A, etc., will not become infinite
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for any finite value of x, and will, therefore, be integral polynomials in x. Thus when

y is an integral function, the polynomial A divides all the other polynomials A
lt

A 2 , ...... ,
A n. Conversely, when A divides these other polynomials, the form of the

equation shews that y cannot become infinite for any finite value of x, and is therefore

an integral function.

When y is not an integral function, we can always find an integral polynomial in

x, say /3, vanishing to such an order at each of the finite poles of y, that /3y is an

integral function. Then also, of course, |3
2/2

, /3
3
y

3
,

. . . are integral functions: though it

often happens that there is a polynomial /32
of less order than /3

2
,
such that /32y

2
*s

an integral function, and similarly an integral polynomial #3 of less order than /3
3
,

such that ft3y* is an integral function
;
and similarly for higher powers of y.

In particular, if in the equation given we put Ay= rj,
the equation becomes

r,

n+ A l
T
)

n - l+A 2Ar,
n - 2+ ... +AnAn - l= 0,

and
T)

is an integral function.

Suppose that y is an integral function. Then any rational integral polynomial in

x and y is, clearly, also an integral function. But it does not follow, conversely,

though it is sometimes true, that every integral rational function can be written as an

integral polynomial in x and y. For instance on the surface associated with the

equation

f+Bfx+ Cyx*+ Dtf-E(f- A-
2
)
=

,

the three values of y at the places .r= may be expressed by series of positive integral

powers of x of the respective forms

, y -

Thus, the rational function (/ Ey^x is not infinite when #=0. Since y is an

integral function, the function cannot be infinite for any other finite value of x.

Hence (y
2 -

Ey}jx is an integral function. And it is not possible, with the help of the

equation of the surface, to write the function as an integral polynomial in x and y.

For such a polynomial could, by the equation of the surface, be reduced to the form

of an integral polynomial in x and y of the second order in y ; and, in order that such

a polynomial should be equal to (y^-Ey^lx, the original equation would need to be

reducible.

Ex. Find the rational relation connecting x with the function
77
=

(#
2

Ey}jx ; and

thus shew that
17

is an integral function.

39. We concern ourselves first of all with a method of expressing all

rational functions whose poles are only at the places where x has the same

finite value. For this value, say a, of x there may be several branch places :

the most general case is when there are k places specified by such equations as

x - a = ri+1
, ,

x- a = tk
wk+\

The orders of infinity, in these places, of the functions considered, will be

specified by integral negative powers of tlf . .., tk respectively. Let F be

such a function. Let o- + 1 be the least positive integer such that (x aY+lF
is finite at every place x = a. We call &amp;lt;r + 1 the dimension of F. Let

f(xt y)
= be the equation of the surface. In order that there may be any

branch places at x = a, it is necessary that df/dy should be zero for this value
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of x. Since this is only true for a finite number of values of x, we shall suppose
that the value of x considered is one for which there are no branch places.

We prove that there are rational functions h1} ..., hn^ infinite only at

the n places x = a, such that every rational function whose infinities occur

only at these n places can be expressed in the form

( &amp;gt;

l
] +( &amp;gt; l) h+. ..+(-? , l] hn . ..(A),

\ao -a J\ \x-a A, \x - a Jx^
in such a way that no term occurs in this expression which is of higher
dimension than the function to be expressed : namely, if a + 1 be the dimen
sion of the function to be expressed and o-; + 1 the dimension of hi, the

function can be expressed in such a way that no one of the integers

X, AX + al + 1, . . .
, A,^ + a-n^ + 1

is greater than cr + 1. We may refer to this characteristic as the condition

of dimensions. It is clear conversely that every expression of the form (A)
will be a rational function infinite only for x = a.

Let the sheets of the surface at x = a be considered in some definite

order. A rational function which is infinite only at these n places may be

denoted by a symbol (R1} R 2&amp;gt;

...
,
Rn), where R1} R2 ,

...
,
Rn are the orders of

infinity in the various sheets. We may call Rlf R2 ,
...

,
Rn the indices of the

function. Since the surface is unbranched at x a, it is possible to find a

certain polynomial in - -
, involving only positive integral powers of this

SO ^~ CL

1 \ 72

quantity, the highest power being [- -) ,
such that the function

\x a i

l), = (,$,, ...,,SU,0)say ......... (i),
&quot;

a.

is not infinite in the nth sheet at a; = a.

Consider then all rational functions, infinite only at x = a, of which the

nth index is zero. It is in general possible to construct a rational function

having prescribed values for the (n
-

1) other indices, provided their sum be

p + 1. When this is not possible a function can be constructed* whose indices

have a less sum than p + 1, none of them being greater than the prescribed
values. Starting with a set of indices (p + 1, 0, ...

, 0), consider how far the
first index can be reduced by increasing the 2nd, 3rd, ...

, (n
-

l)th indices.

In constructing the successive functions with smaller first index, it will be

necessary, in the most general case, to increase some of the 2nd, 3rd, ...,

(n l)th indices, and there will be a certain arbitrariness as to the way in

which this shall be done. But if we consider only those functions of which
the sum of the indices is less than p + 2, there will be only a finite number

* The proof is given in the preceding Chapter, ( 24, 28).

B. 4
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possible for which the first index has a given value. There will therefore

only be a finite number of functions of the kind considered*, for which the

further condition is satisfied that the first index is the least possible such that

it is not less than any of the others. Let this least value be r1} and suppose

there are ^ functions satisfying this condition. Call them the reduced

functions of the first class and in general let any function whose nth index

is zero be said to be of the first class when its first index is greater or not

less than its other indices. In the same way reckon as functions of the

second class all those (with nth index zero) whose second index is greater

than the first index and greater than or equal to the following indices. Let

the functions whose second index has the least value consistently with this

condition be called the reduced functions of the second class
;

let their

number be k2 and their second index be r2 . In general, reckon to the ith

class (i &amp;lt; n) all those functions, with nth index zero, whose tth index is

greater than the preceding indices and not less than the succeeding indices.

Let there be ki reduced functions of this class, with iih index equal to i\.

Clearly none of the integers t\, ...
,
rn_j are zero.

Let now (^ ... s;_! r{ Si+1 ... sn_i 0),

where r{ &amp;gt;slt ...
, i\ &amp;gt; st-_,, n &amp;gt; si+l ,

...
, n &amp;gt; sn-i,

be any definite one of the ki reduced functions of the iih class. Make a

similar selection from the reduced functions of every class. And let

($! . . . $_! R{ Si+l . . . Sn-i 0)

be any function of the iih class other than a reduced function, so that

Ri &amp;gt; Si, ...
, Ri&amp;gt; Si-i, Ri &amp;gt; Si+1 ,

. . . , Ri &amp;gt; Sn-i-

Then by choice of a proper constant coefficient X we can write

(& . . .
&amp;lt;_! Ri Si+i . . . Sn_! 0)

- X (x
-

a)~
(Ri

~
Ti)

(sl
. . . ;_! n si+l . . . sn_! 0)

in the form

(^...T^R/T^-.-Tn^Ri-ri) (ii),

where R{ &amp;lt; Ri , 2\ may be as great as the greater of S1} Ri (n
-

s^, but is

certainly less than Ri] and similarly T2 , ...
, T^ are certainly less than Rt ,

while T{+1 may be as great as the greater of $f+1 , Ri (rt si+l ),
and is there

fore not greater than R^, and similarly Ti+2 ,
...

,
Tn^ are certainly not greater

than Ri.

* Functions which have the same indices are here regarded as identical. Of course the

general function with given indices may involve a certain number of arbitrary constants. By the

function of given indices is here meant any one such, chosen at pleasure, which really becomes

infinite in the specified way.
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Further, if
,

1 be a suitable polynomial of order Ri r\ in

1

\.x a

(x a)~
l

,
we can write

\iv a / tii-Vi

/&amp;lt;y
a/

-p&amp;gt;&amp;gt;
a & r\\ (\\\\

(/o i ... io ii L i ij i+i ... ij n_i \}) V111^

where
R&quot;i may be as great as the greater of R { ,

R{ rit but is certainly less

than Ri; S\ may be as great as the greater of 1\, Ri r{ ,
but is certainly less

than Ri; and similarly $ 2 , ..., $ ;_! are certainly less than R^; while S i+l

may be as great as the greater of 7\-+1 , Riri, and is certainly not greater

than RI\ and similarly S i+2 ,
...

,
S n-\ are certainly not greater than Rt .

Hence there are two possibilities.

(1) Either (S\ . . . f_i R&quot;i S i+1 . . . n_i 0) is still of the ith class,

namely, R&quot;i &amp;gt; Slf ...
, R&quot;i &amp;gt; S i^ , R&quot;i

&amp;gt; S i+1 ,
. . . ,

R&quot;t
&amp;gt; _, ,

and in this case the greatest value occurring among its indices
(R&quot;i)

is less

than the greatest value occurring in the indices of (Si... Si-i Ri Si+1 . . . $n_j 0).

(2) Or it is a function of another class, for which the greatest value

occurring among its indices may be smaller than or as great as Rt (though
not greater) ;

but when this greatest value is Ri, it is not reached by any of

the first i indices.

If then, using a term already employed, the greatest value occurring

among the indices of any function (Ri, ..., Rn) be called the dimension of

the function, we can group the possibilities differently and say, either

(S\ . . . S i^i R&quot;i S i+ i . . . S n-i 0) is of lower dimension than

(Si ... Si-i Ri Si+1 . . . Sn-i 0),

or it is of the same dimension and then belongs to a more advanced class,

that is, to an (i + &)th class where k &amp;gt; 0.

In the same way if (^ ... ^ r{ ti+ i . . . tn-i 0) be any reduced function of

the tth class other than (^ ... st-_i rf si+1 . . . sn^ 0), we can, by choice of a

suitable constant coefficient
p,, write

(t-L ... tiiTi t-+ ... t 0) /x (s ... s-_ r-s- s 0)

where r i &amp;lt;ri , t\... ;_i may be respectively as great as the greater of the

pairs (ti, s^ ... (^_j, Si_i) but are each certainly less than rit while similarly
no one of t i+1 ,

...
,
t n-i is greater than rt .

The function (t\ ... t ^i r { tft+1 ... n_i 0) cannot be of the ith class, since

no function of the tth class has its tth index less than rt : and though the

greatest value reached among its indices may be as great as rt (and not

greater), the number of indices reaching this value will be at least one less

42
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than for (s1 . . . s;_j rt si+1 . . . sn^ 0). Namely (t\ . . . JV-i r i t i+l . . . t n^ 0) is

certainly of more advanced class than (si . . . ;_! Vi Si+1 . . . sn^ 0), and not of

higher dimension than this.

Denote now by hlt ...
,
hn^ the selected reduced functions of the 1st,

2nd, ..., (n l)th classes. Then, having regard to the equations given by

(ii), (iii), (iv), we can make the statement,

Any function (Sl ... $;_j Rt Si+l ... $n_j 0) can be expressed as a sum of (I)

an integral polynomial in (x a)~
l

, (2) one ofhly ...
,
An_j multiplied by such

a polynomial, (3) a function F which is either of lower dimension than the

function to be expressed or is of more advanced class.

In particular when the function to be expressed is of the (n l)th class

the new function F will necessarily be of lower dimension than the function

to be expressed.

Hence by continuing the process as far as may be needful, every function

f=(S1 ... Si-! Ri Si+1 . . . Sn -i 0)

can be expressed in the form

( , l] + ( , l) h*. .. +(, l] hn^+F,, (v)Ve-a A U-a AI \ac-a An_,

where F^ is of lower dimension thany!

Applying this statement and recalling that there are lower limits to the

dimensions of existent functions of the various classes, namely, those of the

&! + . . . + kn-! reduced functions, and noticing that the reduction formula (v)

can be applied to these reduced functions, we can, therefore, put every func

tion f=(S1 ... Si-! Ri Si+l . . . Sn-i 0) into a form

f , l) + ( , l)
hl+ ... + ( , l)

hn-!.
\at-a J\ \x-a /\

l \x-a /x^

Now it is to be noticed that in the equations (ii), (iii), (iv), upon which

this result is based, no terms are introduced which are of higher dimension

than the function which it is desired to express : and that the same remark

is applicable to equation (i).

Hence every function (R1} ...
,
Rn) can be written in the form (A) in such a

way that the condition of dimensions is satisfied.

40. In order to give an immediate example of the theory we may take

the case of a surface of four sheets, and assume that the places x = a are such

that no rational function exists, infinite only there, whose aggregate order of

infinity is less than p + 1. In that case the specification of the reduced

functions is an easy arithmetical problem. The reduced functions of the first

class are (m1} w2 ,
m3 , 0), where mx is to be as small as possible without being

smaller than m2 or w3 : by the hypothesis we may take

Wj + m3 + m3
= p + I.
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Those of the second class require m2 as small as possible subject to

ml + w2 + ra3
= p + 1, m2 &amp;gt;m l ,

ra2 &amp;gt;

w3 :

those of the third class require w3 greater than m 1
and w2 but otherwise as

small as possible subject to n^ + m2 + ws
= p + 1. We therefore immediately

obtain the reduced functions given in the 2nd, 3rd and 4th columns of the

following table. The dimension of any function of the tth class being denoted

by &amp;lt;Ti
+ 1, the values of &amp;lt;rt

- are given in the fifth column, and the sum
ar1 + a~2 + 0-3 in the sixth. The reason for the insertion of this value will

appear in the next Article.

P
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and thus obtain on the whole

(M,M+1,M- 1, 0)
=

fJi s + \h3 + A h, + B ,

for suitable values of the constants A
,
B .

(b) When p = 3P we obtain

(P + 1, P + 1, P -
1, 0)

- \k, + A(P,P + 1,P,0) + B
= \h

1 + A \fiht + Ch3 + D}+B.

Ex. 1. Shew for a surface of three sheets that we have the table

[40

p
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where the dimensions of the several terms, namely the numbers

X, Xj + (T
} + 1

,
. . .

,
Xn_! + 0&quot;n-l + 1

,

are not greater than the dimension, r, of the function.

Conversely*, the most general expression of this form in which X^X^ ...,

Xn_! attain the upper limits prescribed by these conditions, is a function of the

desired kind.

But such general expression contains

(X + 1) + (Xj + 1) + ... + (Xn-, + 1),

that is (r + 1) + (r
- O + . . . + (r

-
cr,^),

or nr (a1 +...+ o^) + 1

arbitrary constants.

Since this must be equal to nr p+ 1 the result enunciated is proved.

The result is of considerable interest when the forms of the functions h
l
...hn - l

are

determined algebraically, we obtain the deficiency of the surface by finding the sum of the

dimensions of //
x

. . ,hn _ l
. It is clear that a proof of the value of this sum can be obtained by

considerations already adopted to prove Weierstrass s gap theorem. That theorem and

the present result are in fact, here, both deduced from the same fact, namely, that the

number of periods of a normal integral of the second kind is p.

42. Consider now the places x = oo : let the character of the surface be

specified by k equations

_fWi + l fWk+l
l i &quot;k

k
&amp;gt;

X X

there being k branch places. A rational function g which is infinite only

at these places will be called an integral function. If its orders of infinity

at these places be respectively rlt r.2 ,..., rk and G [n-/(Wi+l)J be the least

positive integer greater than or equal to ^/(w; + 1), and p + 1 denote the

greatest of the k integers thus obtained, then it is clear that p + 1 is the

least positive integer such that or*^ 1

g is finite at every place x = oo . We
shall call p + 1 the dimension of g.

Of such integral functions there are n 1 which we consider particularly,

namely, using the notation of the previous paragraph, the functions

(x
-

a)^
+l hlt ,(x- a)n-i

+1 hn^ ,

which by the definitions of a-1} ,
o-n_! are all finite at the places x = a,

and are therefore infinite only for x = oo . Denote (x a) ^&quot;

1
&quot; 1

hi by &amp;lt;/;.

If hi

do not vanish at every place x = oo
,

it is clear that the dimension of
&amp;lt;ft

is

*
It is clear that this statement could not be made if any of the indices of the function to be

expressed were less than the dimension of the function. For instance in the final equation of

40 (a), unless /t, X, A be specially chosen, the right hand represents a function with its third

index equal to
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o-j + 1. If however hi do so vanish, the dimension of gi may conceivably be

less than o-^ + l; denote it by pi 4 1, so that pi &amp;lt;
a-^ Then x~ (?i

+v gi} and

therefore also (x a)~
(p

i
+l] gi)

= (x aYi~i
&amp;gt;

ihi, is finite at all places #=oo :

hence (# a) Y~p
i /^ is a function which only becomes infinite at the places

x = a. But, in the phraseology of 39, it is clearly a function of the same
class as hi, it does not become infinite in the nth sheet at x = a, and is of

less dimension than hi if a^ &amp;gt; p^ That such a function should exist is

contrary to the definition of hi. Hence, in fact, o\-
=

p^.
The reader will

see that the same result is proved independently in the course of the present

paragraph.

Let now F denote any integral function of dimension p 4 1. Then
#-(P+I) F [s finite at all places x = oo : and therefore so also is (x a)~

(p+1} F.

This latter function is one of those which are infinite only at places x = a
;

if

F do not vanish at all places x=a, the dimension cr + 1 of (x a)~ (p+1) F
will be p + 1 : in general we shall have a-

&amp;lt; p.

By 39 we can write

x-a / Al \x-a
where cr -f 1

&amp;gt;

Xi + o-^ + 1,

and therefore, a fortiori,

p + 1
&amp;gt; \ +

&amp;lt;Ti
+ 1

&amp;gt; \i + pi + 1.

Hence we can also write

F= (1, a; - a)x O -
a)

-* + (!,- a)Al (*
-

a)&quot;-

A^ & 4 ......

4 (1, a? - a)An-x (
-

a)&quot;-

A -r%-i ^^j,
or say

^=(1,^4(1,^,0! 4 ......+ (l,U-i0n-i, ............ (B)

where /Ai4pi 4 1 =/) -cr. + p^4 1 =p + 1 -(^ -
p f) &amp;lt;p

+ 1,

namely, there is no term on the right whose dimension is greater than that

of F (and each of
/-i, p,lt ......

, fin_1 is a positive integer).

Hence the equation (B) is entirely analogous to the equation (A)
obtained previously for the expression of functions which are infinite only
at places x = a. The set (1, glf ......

, gn-i) will be called a fundamental set

for the expression of rational integral functions*.

It can be proved precisely as in the previous Article that p1 4 p 2 4 ......

4 pn-\ = P- For this purpose it is only necessary to consider a function

* The idea, derived from arithmetic, of making the integral functions the basis of the theory
of all algebraic functions has been utilised by Dedekind and Weber, Theor. d. alg. Funct. e.

Verdnd. Crelle, t. 92. Kronecker, U. die Discrim. alg. Fctnen. Crelle, t. 91. Kronecker, Grundziige

e. arith. Theor. d. algebr. Grossen, Crelle, t. 92 (1882).
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which is infinite at the places #=oc respectively to orders r (Wj + 1), ...,

r (wk + 1). And the equations Sp = Scr = p, taken with &amp;lt;7f &amp;gt; pit suffice to shew

that a-i
= pt . It can also be shewn that from the set g l . . . gn^ we can

conversely deduce a fundamental set 1, (x 6)~
(p

i
+1)

&amp;lt;ft, ...,(x b)~
lpn-rl}

gn-i

for the expression of functions infinite only at places x=b; these have the

same dimensions as 1, (ft, ..., gn-i*-

43. Having thus established the existence of fundamental systems for

integral rational functions, it is proper to refer to some characteristic pro

perties of all such systems.

(a) If Gl
... Gn-: be any set of rational integral functions such that

every rational integral function can be expressed in the form

(x, l\ + (x, l\ x + ......+ 0, 1)AB _ 1
Gn-, ............... (C),

there can exist no relations of the form

(X) iv + (*, IV, 0i + ......+ (x, iV^ _! = o.

For if k such relations hold, independent of one another, k of the functions

(TJ ... 6rn_i can be expressed linearly, with coefficients which are rational

in x, in terms of the other n 1 k. Hence also {3$, (32y
2
,. . .

, (3n-i-k y
n~l~k

,

@n-ky
n~k

&amp;gt;

which are integral functions when &,...,$_* are proper poly

nomials in x, can be expressed linearly in terms of the n 1 k linearly

independent functions occurring among Gi...Gn-i, with coefficients which

are rational in x. By elimination of these n 1 k functions we therefore

obtain an equation
A + A,y + ......+ A n_k y

n-k = 0,

whose coefficients A, A l} ......
,
A n-k are rational in x. Such an equation is

inconsistent with the hypothesis that the fundamental equation of the surface

is irreducible.

(6) Consider two places of the Riemann surface at which the inde

pendent variable, x, has the same value : suppose, first of all, that there

are no branch places for this value of x. Let X, \lt ...... ,
\n-i be constants.

Then the linear function

A. + Xj GI + ...... + \i-i Gn-i

cannot have the same value at these two places for all values of \,

For this would require that each of G1} ......
,
Gn-\ has the same value

at these two places. Denote these values by a1} ......
,
an_i respectively.

We can choose coefficients filt ...... , /zn_! such that the function

* The dimension of an integral function is employed by Hensel, Crelle, t. 105, 109, 111
; Acta

Math. t. 18. The account here given is mainly suggested by Hensel s papers. For surfaces

of three sheets see also Baur, Math. Aniuil. t. 43 and Math. Annal. i. 46.
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which clearly vanishes at each of the two places in question, vanishes also

at the other n 2 places arising for the same value of x. Denoting the

value of x by c, it follows, since there are no branch places for a; = c, that

the function

[l*i(Gi
~ ai) + ...... + Pn-i(Gn-i

-
a_i)]/0

-
c)

is not infinite at any of the places x = c. It is therefore an integral

rational function.

Now this is impossible. For then the function could be expressed in

the form

(x, 1) A + (x, 1)^ G, + ...... + (a?, !) GW_a ,

and it is contrary to what is proved under (a) that two expressions of

these forms should be equal to one another.

Hence the hypothesis that the function

A + A! GI + ...... + Xn_j 6rn_]

can have the same value in each of two places at which x has the same

value, is disproved.

If there be a branch place at x = c, at which two sheets wind, and no

other branch place for this value of x, it can be proved in a similar way,
that a linear function of the form

cannot vanish to the second order at the branch place, for all values of
A!, ......

,
A7l_i namely, not all of G1} ......

,
Gn-L can vanish to the second

order at the branch place. For then we could similarly find an integral
function expressible in the form

...... + pn-i -i)/0
-

c).

More generally, whatever be the order of the branch place considered,
at x = c, and whatever other branch places may be present for x = c, it is

always true that, if all of G ly ......
, Gn-i vanish at the same place A of

the Riemann surface, they cannot all vanish at another place for which x
has the same value; and if A be a branch place, they cannot all vanish

at A t() the second order.

Ex. 1. Denoting the function

by K, and its values in the n sheets for the same value of x by K(l
\ /if

&amp;lt;-),...,
K(n\ we

have shewn that, for a particular value of x, we can always choose X, X 1)t .., Xn _ 1(
so

that the equation K(l
)=KW is not verified. Prove, similarly, that we can always

choose X, A!,..., Xn _ x so that an equation of the form

)= 0,

where m
1 ,..., mlc _ 1 ,

mk are given constants whose sum is zero, is not verified.
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Ex. 2. Let x= ylt ...,yic be k distinct given values of x: then it is possible to

choose coefficients X, A!,..., p, Mi)&quot;-)
finite in number, such that the values of the

function

at the places x=y1 ,
shall be all different, and also the values of the function, at the

places x=yz ,
shall be all different, and, also, the values of the function, for each of

the places #=y3 ,..., yt, shall be all different.

(c) If 1, HI, H2 , ,
Hn-i be another fundamental set of integral

functions, with the same property as 1, Glt , Gn-\, we shall have

linear equations of the form

1 = 1

where
a;, j

is an integral polynomial in x.

Now in fact the determinant

For if I

j \

is a constant (i= 1, 2, ..., n 1
;

denote the value of Hi, for a general valuej = 1, 2, ..., n 1).

of x, in the rth sheet of the surface, we clearly have the identity

1, 1, ,1 10 ,0
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Hence V 2
. V t

2 = 1 : thus each ofV and V
l is an absolute constant.

Hence also the discriminants A (1, Glt ,
Gn_^) of all sets in terms of

which integral functions are thus integrally expressible, are identical, save

for a constant factor.

Let A denote their common value and 771,..., rjn denote any n integral
functions whatever

;
then if A fa, i)2 , ..., rjn) denote the determinant which is

the square of the determinant whose (s, r)th element is T/J
1

,
we can prove, as

here, that there exists an equation of the form

A (%,%,..., *) = JfsAt

wherein M is an integral polynomial in x. The function A (77!, rj2 ,..., r)n) is

called the discriminant of the set 77!, tj2 ,..., rjn . Since this is divisible by A,

it follows, if, for shortness, we speak of 1, H l ,..., #_,, equally with 77^

i}2&amp;gt;-&quot;&amp;gt; *7n&amp;gt;
as a set of n integral functions, that A is the highest divisor common

to the discriminants of all sets of n integral functions.

(d) The sets (1, GI, ,
Gn-i), (1, H1} ,

Hn^) are not supposed

subject to the condition that, in the expression of an integral function in

terms of them, no term shall occur of higher dimension than the function to

be expressed. If (1, gl} , gn-i) be a fundamental system for which this

condition is satisfied, the equation which expresses Gi in terms of 1, (ft,

g.2 , , gn -i will not contain any of these latter which are of higher
dimension than that of G* Let the sets G1 , , Gn-! , g1 , , gn^ be each

arranged in the ascending order of their dimensions. Then the equations
which express Gly G2 , , Gk in terms of g l , , gn_l must contain at least

k of the latter functions
;

for if they contained any less number it would be

possible, by eliminating those of the latter functions which occur, to obtain

an equation connecting G1} , Gk of the form

(as, !)* + (*, l)Al 0,+ + (x, l\ 0* = 0;

this is contrary to what is proved under (a).

Hence the dimension of g^ is not greater than the dimension of Gk
hence the sum of the dimensions of Glf G 2&amp;gt; , Gn-i is not less than the

sum of the dimensions of g1} g2 , , gn-i- Hence, the least value which is

possible for the sum of the dimensions of a fundamental set (1, G1} , Gn-J
is that which is the sum of the dimensions for the set (1, &amp;lt;ft, , gn-i), namely,
the least value is p + n 1.

We have given in the last Chapter a definition of p founded on

Weierstrass s gap theorem : in the property that the sum of the dimensions

of (ft,..., gn--i is p + n 1 we have, as already remarked, another definition,

founded on the properties of integral rational functions.

Ex. 1. Prove that if (1, glt ..., gn ^
v\ (1, h

lt ..., h n _ l )
be two fundamental sets both

having the property that, in the expression of integral functions in terms of them, no terms
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occur of higher dimension than the function to be expressed, the dimensions of the

individual functions of one set are the same as those of the individual functions of the

other set, taken in proper order.

Ex. 2. Prove, for the surface

y_
that the function

r
t

satisfies the equation

rf
-

Crj
2+ a2br)

-
2
2a

i
=

&amp;gt;

and that

A (1, y, rj)
= bW+ lSa^bc - 27&amp;lt;Va2

2 - 4a
1
c3 - 4a

26
3
,

A(l, y, /) = a
1

2
A(l, y, ij) A(l, 77, ^

2
)
=

2
2
A(1, y, r,) A (y, y\ r,)

= a*&amp;lt;* A(l, y, ij).

In general 1, y, rj
are a fundamental set for integral functions, in this case.

44. Let now (1, glt g.,,
...... , gn-\) be any set of integral functions in

terms of which any integral function can be expressed in the form

(x, 1)M + (x, 1 V, &amp;lt;7i
+ ......+ O, 1^ &amp;lt;7n_i ,

and let the sum of the dimensions of g1} ...... , #H_X be p + n 1.

There will exist integral polynomials in x, (3lt /32 , ...... ,/37l_i, such that

ftiy
1 is an integral function: expressing this by glt ...... , gn-i in the form

above and solving for g^ ......
, gn-i we obtain* expressions of which the

most general form is

_ /*i, n-i
9i

where /*;,_!, ......
&amp;gt; Pi,i, f*&amp;gt;i, Di are integral polynomials in x. Denote this

expression by gi (y, x}.

Let the equation of the surface, arranged so as to be an integral

polynomial in x and y, be written

f(y,x) = Qyn + Qiy
n-1 + ......+ Qn-i y + Qn = o,

and let ^ (y, x) denote the polynomial

Qo y*+ &3T1 + ......+ Q,--i y + Qt-,

so that ^ (y, #) is Q .

Let
^&amp;gt;

, 0i , ...... , ^ n_! be quantities determined by equating powers of y
in the identity

*
Since JT,, ..., &amp;lt;;n_j are linearly independent.
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in other words, if the equations expressing 1, y, y
2
, , y

n-1 in terms of

1-1,

iin~l n 4- n 4- -I-/7 n
y

~
&quot;n l T W n i, i &amp;lt;/i

r T &amp;lt;*n i, n l J/n u

where the coefficient G^J is an integral polynomial in x divided by /:?;, then

r O /x^1 1 V7 * s 1 s\,^ 2 \,7 &amp;gt; / r i **&quot;n 1 /^Q

So that if we write

n being the matrix of the transformation, we have

where %/ = %; (y , #), and H represents a transformation whose rows are the

columns of H, its columns being the rows of D.

But if (Q) denote the substitution

Qn-2, Qn-3 , , Qo,

ft, ft, 0,

Q , 0,

we have

Hence, changing y to y in fa and writing therefore fa for fa ,
we may write

Either this, or the original definition, which is equivalent to

y -y

=
%o y&quot;-

1 + y
71-2

%i (y , ) + + y %n-2 (y ,
&amp;lt;*)
+ x-i (y, *) (F),

may be used as the definition of the forms fa, fa, ,
&amp;lt; n_j.

The latter form will now be further changed for the purposes of an

immediate application : let ylf , yn denote the values of y corresponding
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to any general value of x for which the values of y are distinct. Denote

fc (Vr, *), ffi (yr, *), by fc&amp;lt;&quot;, &amp;lt;7*

(r)
&amp;gt;

etc.

Then putting in (F) in turn y = tf
= y1

and y = yll y = y, we obtain

= 2 3
&amp;gt;

Hence if, with arbitrary constant coefficients c
fl ,

c1} , Cn_i, we write

Co&amp;lt;o

(1
&amp;gt; + C^ 1 &quot; + + C,^^ =

&amp;lt;/&amp;gt;

(1)
,

we have

c Cj cn_!
^&amp;gt;

(1) = 0,

1 n I
1

) rt I
1

/1
.&amp;lt;7i yn-i J

or
/ (*

1

1 ^1
(1)

^n-i

1 ^

r

1 9^
Cji i

ffn-i
(n)

.(G);

and we shall find this form very convenient: it clearly takes an inde

terminate form for some values of x.

If we put all of d, ......
, Cn-i, = except cr ,

and put cr = 1, and multiply

both sides of this equation by the determinant which occurs on the left hand,

the right hand becomes

where, if s
ijj
= gi

^
#/&amp;gt;

+ g
in the determinant

+ ......
+^&quot;

1

g} ,
S

itj
means the minor of s

itj

$1 *1, 1 ^1, 2 1, n i

Sn i Sni, i *n i, 2 *n i, n i

Since this is true for every sheet, we therefore have

&amp;lt;f&amp;gt;

r _ Sr + Srt ij(/i+
+ S

r&amp;gt;

n-i ffn-i
&quot;

^aA !_
3A 1 ^A_
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and therefore, also

The equation (H) has the remarkable property that it determines the

functions ,,
(

. from the functions gt with a knowledge of these latter only.
J \&amp;lt;y x

But we can also express g1} ...... , gn-i so that they are determined from

y , y ,
......

, -FTJ\ ,
with a knowledge of these only.

For let these latter be denoted by 70, 71, ......
, yn-i and, in analogy with

the definition of sr
,
i, let a-

ft f
=

&quot;2

&amp;lt;y
r

{s} 7t
(s)

.

s=l

Then from equation (H)

n I T 1
S 7r

(S)

#&amp;lt;&amp;gt;

= X &amp;gt;SU + Sr
,

i i, i + ......+ Sr
,
n-i Si, n-i

=i ^ L

= or 1 according as z
=}=

r or t = r.

Therefore, also, by equation (H),

+i ......

s=i

1

so that equation (H) may be written

Jr = &amp;lt;Tr,
o + V, 1 9\ + ......+ V, n-i ^n-i-

If then Sr
,
i denote the minor of ov, &amp;lt;

in the determinant of the quantities

&amp;lt;rrti
which determinant we may call V (y ,

&amp;lt;y
1}...... ,7*1-1) we have, in

analogy with (H),

gr =^ (Sr 7o + Sril 7!+ ...... + Srin_!7_i) ............... (K)*.

Of course V =
-^

and 2
r&amp;gt;

i
= -r- s.

r&amp;gt;

t-, and equation (K) is the same as (H ).

Ex. 1. Verify that if the integral functions ffi, ..., gn -i have the forms

wherein Z)15 ...,!&amp;gt;_!
are integral polynomials in x, then &amp;lt;

, ..., n _! are given by

* The equations (H) and (K) are given by Hensel. In his papers they arise immediately from

the method whereby the forms of
&amp;gt; t , y2 , ...... are found.
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Ex. 2. Prove from the expressions here obtained that

65

and infer that 2 (dv/d.v)i
=

0,
8=1

v being any integral of the first kind.

45. We are now in a position to express the Riemann integrals.

Let P be a general integral of the third kind, infinite only at the

places xlt scz. Writing, in the neighbourhood of x
l ,

x x
l
= tl

Wt+l
, dP/dx

will ( 14, 16) be infinite like

namely, like

dP
ythus (x #1) ^ is finite at the place x

1
and is there equal to

Similarly (x xz)
-,-- is finite at #2 and there equal to

w2 + 1

Assume now, first of all, for the sake of simplicity, that at neither x = x

nor x x% are there any branch places ;
let the finite branch places be at

At any one of these where, say, x = a + t
w+1

, dPjdx is infinite like

1 d

(w + l)f

dP .

-V +...],

and therefore (x a) -=- is zero to the first order at the place.7 dx

Hence, if a = (x a
a ) (x a,). . .

be the integral polynomial which vanishes at all the finite branch places of

the surface, and g be any integral function whatever, the function

K.a.g.(-^)(,-^
is a rational function which is finite for all finite values of x and vanishes at

every finite branch place.

Therefore the sum of the values of K in the n sheets, for any value of x,

being a symmetrical function of the values of K belonging to that value of x,

is a rational function of x only, which is finite for finite values of x and is

therefore an integral polynomial in x. Since it vanishes for all the values of
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x which make the polynomial a zero, it is divisible by a, and may be written

in the form aJ.

Let the polynomial J be written in the form

Xx (x
- a;2)

- X2 (x
-

X-L) + (x
- x^ (x

- x2) H,

wherein 7^ and X2 are constants and H is an integral polynomial in x. This

is uniquely possible. Let H be of degree ^ - 1 in x
;
denote it by (x, \Y~\

Then, on the whole,

(g
= - - --- + (.. I)- .

Multiply this equation by a; a^ and consider the case when x = xl} there

being by hypothesis no branch place at as = xt . Thus we obtain the value of

Xj ; namely, it is the value of g at the place x^ This we denote by g(xly y^.

Similarly X,, is g (ara , y2). Further, at an infinite place where as = t- (w+l)
,

dP = t
w+^ dP

dx w + 1 dt

so that x^dPjdx is finite at all places x = oc . Hence if p + 1 be the dimen

sion of the integral function g, and we write

a-P-i (^ _ tfj)
^p-1

(a;
- x.2)

we can infer, since p cannot be negative, that
yu,

is at most equal to p.

Hence, taking g in turn equal to 1, glt ..., gn-i, the dimensions of these

functions being denoted by 0, r, + 1, ...
,
rn-, + 1, we have the equations

/

V

dP\ dP\

. . + = -
1

(dx),
yi

\dx) n x-x, x-

(-}
\dx/i

where r\, ...
,
r 7l_ ]

are positive integers not greater than Tlf ... ,
TW_I respectively.

Let these equations be solved for (-5-) : then in accordance with equa-
\dxj-i

tions (G) on page 63 we have, after removal of the suffix,
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f (y) =
(x,

IV -1
&amp;lt;f&amp;gt;, + (x. 1)

T *~J
&amp;lt;k + . . . + (x, IVVi&quot;

1
&amp;lt;f rt_i

dx

+
vU ^^

*^\

where
&amp;lt;/&amp;gt;i

stands for
&amp;lt;; (a;, y).

This, by the method of deduction, is the most general form which dP/dx
can have

;
the coefficients in the polynomials (x, I)

1
&quot;

*&quot;
1 are in number, at most,

T! + T2 + ... +TH_!,

or p ;
and no other element of the expression is undetermined. Now the

most general form of dP/dx is known to be

1 dx p dx \dx J

wherein f ~^- 1 is any special form of -y- having the necessary character, and

\i , ..., \p are arbitrary constants. Hence, by comparison of these forms, we
can infer the two results

(i) The most general form of integral of the first kind is

f dx
,_j

J f(y}
X J 0n-i(^, y)J,

wherein r i &amp;lt; T; and the coefficients in (x, I)
7 &quot; 1 are arbitrary :

(ii) A special and actual form of integral of the third kind logarithmically
infinite at the two finite, ordinary, places (xly y^, (x, 7/2), namely like

log [(x x
1)/(x x2)], and elsewhere finite, is

f i 77 I I nr o&quot;J I \y J I tv
t*/j

0o (iC &amp;gt; y} + 0i (x, y} gl (x2 , y2) + . . . + n_a (x, y) gn-\ (&-2&amp;gt; 2/2)!

r _ yA ^2 J
or

f
x dx /&quot;* , d

r^&amp;gt; (x, y) + 0! (x, y) g l (, tj) + ... + n_i (x, y) gn-\ (j, r
i}~\

In the actual way in which we have arranged the algebraic proof of this

result we have only considered values of the current variable x for which the

n sheets of the surface are distinct : the reader may verify that the result

is valid for all values of x, and can be deduced by means of the definitions

of the forms
&amp;lt;/&amp;gt;,

..., &amp;lt; n_j, which have been given, other than the equation
(G).

Ex. Apply the method to obtain the form of the general integral of the first kind only.

52
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We shall find it convenient sometimes to use a single symbol for the

expression

&amp;lt;f&amp;gt; (as, y) + (/&amp;gt;!
(x,

and may denote it by (#, ).
Then the result proved is that an elementary

integral of the third kind is given by

em

Px =
\
dx \(x, #1) (x, a?.,)&quot;].x lt x.2 J c

LV

This integral can be rendered normal, that is, chosen so that its periods at

the p period loops of the first kind are zero, by the addition of a suitable

linear aggregate of the p integrals of the first kind.

Now it can be shewn, as in Chapter II. 19, that if Ex c
denote an elemen

tary integral of the second kind, the function of (x, y) given by the differ

ence

,. ..... ( ,dj
: ^n;-*? . M**pt --.!

wherein D% denotes a differentiation, is not infinite at (, ?).
It follows from

the form of P*
x , here, that this function does not depend upon (x2 , y).

Hence it is nowhere infinite, as a function of (x, y}. Therefore, if not inde

pendent of (x, y), it is an aggregate of integrals of the first kind. Thus we
infer that one form of an elementary integral of the second kind, which is

once algebraically infinite at an ordinary place (, ;), like (as ^)~
1

,
is

given by

dx_ d^ ftp (x, y) + 0! (as, y) gl ( ??)+... +
&amp;lt;f&amp;gt;

n-i (

The direct deduction of the integral of the second kind when the infinity

is at a branch place, which is given below, 47, will furnish another proof of

this result.

46. We proceed to obtain the form of an integral of the third kind when
one or both of its infinities (xly yj, (&amp;lt;KZ , y) are at finite branch places ;

and

when there may be other branch places for x = x
l
or x = x2 .

As before, let a be the integral polynomial vanishing at all the finite

branch places. The function

ga (x ajj) (x #2) dP[dx

will vanish at all the places x = x
l : and though it may vanish at some of

these to more than the first order, it will vanish at (x1} y^) only to as high
order as (x x^}. Hence the sum of the values of this function in the several

sheets for the same value of x is of the form aJ, where J is a polynomial in x

which does not vanish, in general, for x = x or x =
x.^.
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Hence as before ( 45) we can write

/ dP\ I dP\ Xx X.,

Iff T- 1+ + U7 j
~ 1= - +(x,iy

t-1
.

\ ax /i \ tW / n x xl x x

Multiply this equation by x x
l
and consider the limiting form of the

resulting equation as (x, y) approaches to (x1 , y^) : let w + 1 be the number of

sheets which wind at this place. Recalling that the limiting value of

(x x^dPjdx is l/(w+l), we see that w+I terms of the left hand, corre

sponding to the w+ 1 sheets at the discontinuity of the integral, will take a

form

where e is a (?y + l)th root of unity. The limit of this when t = is

9(x i&amp;gt; y\)l(w + 1); the corresponding terms of the left will therefore have

9(xi&amp;gt;y\)
as limit. The other terms of the left hand will vanish.

Hence Xj = g(xlt y^), X2
= ^(^2 , y2 ). The determination of the upper limit

for p and the rest of the deduction proceed exactly as before. Thus,

The expression already given for an integral of the third kind holds ivhether

(%i&amp;gt; yi), (#2, y-) be branch places or ordinary places.

If we denote the form of integral of the third kind thus determined by

P^
*

&amp;gt;

the zero c being assigned arbitrarily, it follows, as in 45, above, that

an elementary integral of the second kind, which is infinite at a branch

place #!, is given by

Now if we write t for t
Xl
and #/ =xl + t

w+1
,
the coefficient of dxff (y) in the

integrand of the form here given for Px

f

c
is

Xi , Xi

&amp;lt;t&amp;gt;

+ 01 (ffi + tg, +...)+... +
(/&amp;gt;
n-i (gn-i + tg n-i + )

x - a? -

wherein
^&amp;gt;

, ...,
&amp;lt;/&amp;gt;_,

are functions of a-, y, and ^, .... r/,^, #/, f//, ... are

written for 5r ] (^1) y,), ...
, gn_, (Xl , y,), Dg^x,, y } ), Dg,(xl} y,), ...

, respectively,
D denoting a differentiation in regard to t. Hence the ultimate form is
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That is, introducing , tj, instead of xly ylt an elementary integral of the

second kind, infinite at a finite branch place (f, rj), is given by

da; 0! (as, y) g( (, rf) + . . . + &amp;lt; n_! (x, y) # _, (, 77)

/ (y) f-f
where

&amp;lt;/i (, 77), ... are the differential coefficients in regard to the infini

tesimal at the place. It has been shewn in (6) 43 that these differential

coefficients cannot be all zero.

Sufficient indications for forming the integrals when the infinities are at

infinite places of the surface are given in the examples below (1, 2, 3, ...); in

fact, by a linear transformation of the independent variable of the surface we

are able to treat places at infinity as finite places.

Ex. 1. Shew that an integral of the third kind with infinities at (xly y^, (x.2t #2) can

also be written in the form

(a?, y) ffr (xl , ?/i) X2

- *
(x, y) + 2X2

T -

&amp;lt;ft
r (x,_

./ (y) #-#1 ^-^2

wherein X
1
= (^-a)/(*1 -a), \ 2

= (x-a)/(x.2 -a}, T,. + I
is the dimension of gr ,

and a is any

arbitrary finite quantity.

It can in fact be immediately verified that the difference between this form and that

previously given is an integral of the first kind. Or the result may be obtained by con

sidering the surface with an independent variable = (x a)~
l and using the forms of 39

of this chapter for the fundamental set for functions infinite only at places x a. The

corresponding forms of the functions
&amp;lt;j&amp;gt;

are then obtainable by equations (H) 44.

Ex. 2. Obtain, as in the previous and present Articles, corresponding forms for inte

grals of the second kind.

Ex. 3. Obtain the forms for integrals of the third and second kinds which have an

infinity at a place x= QO .

It is only necessary to find the limits of the results in Examples 1 and 2 as (x1 , y-^)

approaches the prescribed place at infinity. It is clearly convenient to take a= 0.

Ex. 4. For a surface of the form

y*
=x(x-a1 ) ......(#-02P + i),

wherein a1} ..., a2p + 1
are finite and different from zero and from each other, we may* take

the fundamental set (1, g^) to be (1, y\ and so obtain (0 ,
&amp;lt;/&amp;gt; 1)=:

(fy, 1). Assuming this,

obtain the forms of all the integrals, for infinite and for finite positions of the infinities.

Ex. 5. In the case of Example 4 for which
/&amp;gt;

=
!, the integral of Example 1, when a

is taken 0, is

fdx r^ y+aft^- yt _ ^ y+ *?Xj~*yi\

] y \-x x xv x x x2 J&quot;

Putting xl
= QO and yl tnx^+ nx

t + A + Bxv

~
1 + . .

.,
this takes the form

_^
fdx

^
J y

, [
-4|

J

|

z

y _ x

dx F
Imz+

V L x-Xz x

Chap. V. 56.
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Prove that this integral is infinite at one place x= cc like logf-J and is otherwise

infinite only at (.vz , y.2 ), namely like log (x .&amp;gt;;

2), if (.i2 , yz ) be not a branch place.

Ex. 6. Prove in Example 5 that the limit of

2
/

~
\~

~ ~
I

~

j y L * * **i * j

as (,i\, yj) approaches that place (ao ,
oo

)
where y= mx*+ njc+A + B/jc+ ..., is

y

and that the expansion of this integral in the neighbourhood of this place is

A 1

and that it is otherwise finite. It is therefore an integral of the second kind with this

place as its infinity. The process by which the integral is obtained is an example of the

method followed in the present and the last Articles, for obtaining an elementary integral

of the second kind from an elementary integral of the third kind.

47. We give now a direct deduction of the integral of the second kind

whose infinity is at a finite place (, 77) : we suppose that (w + 1) sheets of

the surface wind at this place, and find the integral which is there infinite

like an expression of the form

&amp;lt;&quot;!
,

-4.J . .
A w Aw+1

T&quot;T
4 h

&amp;gt;

+^
t being the infinitesimal at the place.

Firstly, let F be an integral which is infinite like the single term (x ^)~
l

&amp;gt;

so that in the neighbourhood of the infinity its expansion has a form

F=

Forming as before the sum of the values of the functions g . (x )
2

dFJdx in

the n sheets of the surface, g being any integral function, we obtain an

expression

Putting x = % we infer, since all terms on the left except those belonging to

the place (, 77) vanish, that

Differentiating, and then putting a; = f, we obtain, from the terms on the left

belonging to the infinity,

the summation extending to (w + 1) terms.
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Now
r rl ~l 1 (J

-
; T^-^T:. -r. \V+ * (B+2Ct + ...) }

dos

vanishes when t is zero : hence

Hence we can prove as before that, save for additive terms which are

integrals of the first kind, the integral which is infinite like (as )~
J

is

given by

ix Dw+l
[&amp;lt;

+
&amp;lt;/&amp;gt;!#! (f,

This result is true whether (^, ?;) be a branch place or an ordinary place.

Consider now the integral, say E, which is infinite at (f, 77) like t~m,
m

being a positive integer less than w + 1. At this place, therefore, (x ) dEjdx
171

is infinite like --- y . . If, as before, we consider the sum of the n values

of the expression a . g . (x ) dE/dx, wherein
&amp;lt;/

is any integral function and

a is the integral polynomial before used, which vanishes at all the finite

branch points of the surface, we shall obtain

To find X, let x approach to . Then all the terms on the left, except
those for the w+1 sheets which wind at the infinity of E, vanish : for such a

non-vanishing term we have an expansion of the form

where D denotes, as usual, a differentiation in regard to the infinitesimal of

the surface at (|, 77), and g is written for g (, 77).
The sum of these w+1

expansions is

Now in fact every summation ^tr
, being a sum of terms of the form

wherein e is a primitive (w + l)th root of unity, will be zero unless r be a

multiple of w+1. Thus the terms involving negative powers of t in the
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sum will vanish : those involving positive powers of t will vanish ultimately
when t

;
and in fact A is zero, otherwise E would contain the logarithmic

term A log (x ) when (x, y) is near to (, 77).
Hence on the whole

A. m 1

Then, proceeding as before, we obtain an expression of the integral in the

form,

1 f
x dx 1~ ^ i J

Thus, denoting the expression
n-\

&amp;lt; 0, y) + 2
&amp;lt;f&amp;gt;

r (x, y) gr (, 77)
i

by &amp;lt;t&amp;gt;,

an integral which is infinite like an expression

A
&quot; i/i-i-i

is given by

t

, ,h

x dx &amp;lt;t&amp;gt;

*^^ I &amp;gt;P.

Of course the differentiations at the place (, 77) must be understood in

the sense in which they arise in the work. If
&amp;lt; (, 77) be any function of

, 77,
D&amp;lt;f&amp;gt; (, 77) means that we substitute in

&amp;lt;f&amp;gt;
(x, y), for x, % + t

w+1
,
and for y,

an expression of the form
77 + P(t\ that we then differentiate this function of

t in regard to t, and afterwards regard t as evanescent.

Ex. 1. Obtain this result by repeated differentiation of the integral pf
e

.

Ex. 2. Obtain by the formula the integral which is infinite like A/t + JB/t
2 in the

neighbourhood of (0, 0), the surface being f= x(x, 1)3 . Verify that the integral obtained

actually has the property required.

48. The determinant A (1, glt ...
, gn_^, of which the general element is

can be written in the form

,
x~ r

i~ 1 sl

, x~ T
i

X~ T
n-i -1

., or Tn-r

In this form the determinant factor is finite at every place x = oo : hence
also ar &amp;lt;*-*+&amp;gt; A (1, ffl ,

...
, #_,) is finite (including zero) at infinity. Thus

8 h

OF i

TJNIVERSII
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A (1, glt ...
, gn-i}, which is an integral polynomial in x, is of not higher order

than 2?i 2 + 2p in x.

But when the sheets of the surface for x = oc are separate, it is not of less

order
;

it is in fact easy to shew that if for any value of x, x = a, there be

several branch places, at which respectively w1 + 1, w2 + 1, ... sheets wind, then

A (1, g1} ..., gn_j) contains the factor (x a)
wi+w*+-.

For, writing, in the neighbourhood of these places respectively,

x-a = t
1

w +l
,

a? a = 2
W +1

, ...,

the determinant ( 43)
(1) ^

. or, .
, gzii ,

of which A(l, glt ..., gn-i) is the square, can, for values of x very near to

x = a, be written in a form in which one row divides by tlt another row by
ti

2
. ..., another row by t^ 1

,
in which also another row divides by t2 ,

another

row by t.?,..., and another row by t.2
w

&amp;gt;,

and so on.

Thus this determinant has the factor ^wi( i+ 1 ) t
w* (w*+ l )

. . .
,
and hence

the square of this determinant has the factor (x a)
Wl

(x a)
w&amp;lt;i

Therefore, when there are no branch places at infinity, A (1, glt ...,gn-i)

has at least an order 2w, = 2n+.2p 2
( 6).

In that case then A (1, gly ..., gn-\) is exactly of order 2n + 2p 2: and,

when all the branch places occur for different values of x, its zeros are the

branch places of the surface, each entering to its appropriate order.

When the surface is branched at infinity, choose a value x = a where

all the sheets are separate: and let gi
= (x a)

T
i
+I

A;. Then by putting
= (# a)&quot;

1 we can similarly prove that A(l, Aa , ...,/fn_[) is an integral

polynomial in of precisely the order 2n + 2p2. But it is immediately
obvious that

Hence if the lowest power of in A (1, h1} ...
,
An_i) be

f&quot;,
A (1, g1} ...

, gn~i)
is an integral polynomial of order 2n + 2p 2 s. In this case the zeros of

A (1, gly ...
, gn-i), which arise for finite values of x, are the branch places,

each occurring to its appropriate order, provided all the branch places occur

for different values of x: and A (1, hi, ...
,
hn-i) vanishes for x=&amp;lt;x&amp;gt; to an

order expressing the number of branch places there.

Ex. 1. For the surface y*=3?(x- !)(#-) there are two branch places at x=0, and

a branch place at each of the places #=1, x=a, where all the sheets wind. Thus

-2 =w=2. 1 + 3+ 3= 8.

Chap. II. 21.
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For thi.s surface fundamental integral functions are given by ffl =y, 9&amp;lt;i=y^l
x

, ff3=y
3
/x-

With these values, prove that A (1, fflt g^ #3)= -256.12
(.&amp;gt;;- I)

3
(x-aj\ there being a factor

.i-
2
corresponding to the superimposed branch places at .r= 0, while the other factors are of

the same orders as the branch places corresponding to them.

Ex. 2. The surface y^
= x^(x 1) is similar to that in the last example, but there is a

branch place at infinity at which the four sheets wind, so that, in the notation of thi.s

Article, s= 3. As in the last example 2n+ 2p 2= 8, and 1, y, y^lx^flx are a fundamental

system of integral functions. Prove that, now, &(1, &amp;lt;Ji, g2 , y3) is equal to -25tu&amp;gt;2

(x--l)
:{

,

its order in x being 2/i+ 2p 2 s= 8 3= 5.

49. In accordance with the previous Chapter* the most general rational

function having poles at p + 1 independent places, is of the form AF+B,
where F is a special function of this kind and A, B are arbitrary constants.

The function will therefore become quite definite if we prescribe the

coefficient of the infinite term at one of the p + 1 poles the so-called residue

there and also prescribe a zero of the function.

Limiting ourselves to the case where the p + 1 poles are finite ordinary

places of the surface, we proceed, now, to shew that the unique function thus

determined can be completely expressed in terms of the functions introduced

in this chapter. It will then be seen that we are in a position to express

any rational function whatever.

If the general integral of the third kind here obtained with unassigned
zero be denoted by P^ a , the current variables being now (z, s), instead of

(x, y), the infinities of the function being at x and a, the function

= &amp;lt;/&amp;gt;&amp;gt;
(z, s) + fa (z, s}gl (x,y} + ......+

&amp;lt;/&amp;gt;_, (z, s) gn^ (x, y)
dz z - x

&amp;lt;fto (z, s) + fa (z, s) g, + ......+ ftn~i (z, s) _!

(z, s) (z, IX
- 1

^- + fa l_ 1 (z, s) (z, l)\-r
l

,

wherein glt ..., gnr_ l are written for the values of the functions g l (z,s), ...,

f/n-i (z, s) at the place denoted by a, contains p disposeable coefficients,

namely, those in the polynomials (z, \}^~
l

, , (z, l)
T
n-i~

l
.

Let now cl} , cp denote p finite, ordinary places of the surface, the
values of z at these places being actually clf ..., cpt which are so situated that
the determinant

wherein fa
(r} is the value of fa (z, s) at the place cr , does not vanish. That it

is always possible to choose such p places is clear : for if vlt ,
vp denote a

*
Chap. III. 37.
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set of independent integrals of the first kind, the vanishing of A expresses
the condition that a rational function of the form

involving only p 1 disposeable ratios \
l :\2 : ...... : \p , vanishes at each of

the places C1} ......
,
cp.

Choose the p coefficients in the functionf (s)dP/dz, so that this function

vanishes at clt ......
,
cp : and denote the function dP/dz, with these coeffi

cients, by ty (a, a; z,^, ......
,
cp),

so that A/ (s) \Jr (a, a ; z, cx ...... cp) is equal
to the determinant

[z, x\
-

[z, a], $! (z, s\
&amp;lt;/&amp;gt;!

(z, s), ..., z*-1 ^ (z, s), ..., zT
n-rl

fa^ (z, s)

where [^, *] denotes the expression

&amp;lt;o (z, s) + &amp;lt;fti (z, s) g1 (a:,y) + ...+ $n-i (z, s) g! (a, y)

Z X

Suppose now that (z, s) is a finite place, not a branch place, such that

none of the minors of the elements of the first row of this determinant

vanish. Consider
-v|r (x, a

; z, Cj , ...... , cp) as a function of (x, y). It is

clearly a rational function
;
and is in fact rationally expressed in terms of all

the quantities involved. It is infinite at each of the places z, cu c2 , ......
,
cp

and in fact as x approaches z, the limit of (z x) ty (x, a
; z, cl} ......

, c^,)
is

the same as that of

0o (z, s} + ^&amp;lt;j)
r (z, s) gr (ay/)

/ (*)

namely, unity ( 44, F) : so that at x = z, ty is infinite like (x z}~
1
. And

at GI, . .., Cp it is similarly seen to be infinite to the first order.

To obtain its behaviour when x is at infinity, we notice that, by the

definition of the dimension of gi (x, y), the expression

(x, y) . .[I z zr
i~

l
1

- -+ -r~xr
i Jz x \_x

x

which is of the form
Zr

i
T.+Z ~\

V+...x2

is finite for infinite values of x. If then we add to the first column of the

determinant which expresses the value of A/ (s) -\Jr (x, a
; z, clf ..., cp ), the

following multiples of the succeeding p columns

g^y) ffi (a, 6) frfoy) 9-2 (a, b) ,_ ,_, ,~~ ---
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the determinant will contain only quantities which remain finite for infinite

values of x.

On the whole then, as the reader can now immediately see, we can

summarise the result as follows.

ty (x, a
; z,clt ......

,
cp)

is a rational function of x, having only p + 1 poles,

each of the first order, namely z, c
l , ...... , cp . It is infinite at z like (x z)~

l

and it vanishes at x = a.

It is immediately seen that if a function of x of the form

..
which is so chosen that it is zero at all of c

t , ..., cp except Cj and is unity at

Ci, be denoted by wi (x), then -Jr (x, a; z, cl ... c) is infinite at C L like
*** ^

.

x - Ci

Let now R (x, y) be a rational function of (x, y) with poles at the finite

ordinary places z1} z2 , ..., ZQ : let its manner of infinity at z.-t be the same as

that of \i{x Zi)~\ Then the function

R (x, y)-\ l ^(x,a: zlt clt ...,cp)-...-\Q ^(x, a; zv ,
clt ..., cp)

is a rational function of (x, y) which is only infinite at clf ..., cp . Since

however these latter places are independent*, no such function exists nor
does there exist a rational function infinite only in places falling among
c1} ..., cp . Hence the function just formed is a constant; thus

R(x, y)
= \

l ^(x, a; zl} c,, ..., cp) +...+ \Q ^(x, a; ZQ , c,, ...,cp) + \.

Conversely an expression such as that on the right hand here will represent
a rational function having zlt ..., ZQ for poles, for all values of the coefficients

\i, ..., \Q , \, which satisfy the conditions necessary that this expression be
finite at each of cl} ..., cp ;

these conditions are expressed by the p equations

*i *&amp;gt;i (z,) + \,a&amp;gt;i (z2) +. ..+ Xy a)i (ZQ)
=

0,

where i = 1, 2, ..., p.

When these conditions are independent the function contains therefore

Q-p+l
arbitrary constants in accordance with the result previously enunciated

(Chapter III. 37). The excess arising when these conditions are not inde

pendent is immediately seen to be also expressible in the same way as before.

We thus obtain the Riemann-Roch Theorem for the case under con
sideration.

The function -^ (x, a
; z, c,, ..., cp) will sometimes be called Weierstrass s

function. The modification in the expression of it which is necessary when
*

In the sense employed Chapter III. 23,
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some of its poles are branch points, will appear in a subsequent utilization

of the function (Chapter VII.*). The modification necessary when some of

these poles are at infinity is to be obtained, conformably with 39 of the

present chapter by means of the transformation x = (% m)~
l

, whereby the

place a; = oo becomes a finite place = m.

50. The theory contained in this Chapter can be developed in a different

order, on an algebraical basis.

Let the equation of the surface be put into such a form as

wherein alt ..., an are integral polynomials in x: so that y is an integral

function of x.

By algebraical methods only it can be shewn that a set of integral

functions glt ..., gn_^ exists having the property that every integral function

can be expressed by them in a form

(x, l)A + (#, 1)A[ #i+...+ (#, I)A-I gn-i,

in such a way that no term occurs in the expression which is of higher
dimension than the function to be expressed; and that the sum of the

dimensions of gl} ..., gn-i is not less than nl but is less than that of any
other set (1, hlt ..., hn-i), in terms of which all integral functions can be

expressed in such a form as

If the sum of the dimensions of gl} ..., gn_^ be then written in the form

p + n 1, p is called the deficiency of the fundamental algebraic equation.

The expressions of the functions gl} g2 , ..., gn-l being once obtained,

and the forms &amp;lt;

,
^&amp;gt;

15 ...,&amp;lt;_! thence deduced as in this Chapter, the integrals
of the first kind can be shewn, as in this Chapter or otherwise^, to have the

form

d
17 i w -i \ , _

/ (y)

wherein r\ &amp;lt; rlt etc., T; + 1 being the dimension of g{ . Thus the number
of terms which enter is at most TJ + + rn_i or p. But it can in fact be

shewn algebraically that every one of these terms is an integral of the first

kind, namely, that an integral of the form

is everywhere finite^ provided ^r ^Tt
- 1.

* The reader may, with advantage, consult the early parts (e.g. 122, 130) of that chapter at

the present stage.

t Hensel, Crelle, 109.

+ For this we may use the definition (G) or the definition (H) ( 44). The reader may
refer to Hensel, Crelle, 105, p. 336.
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Then the forms of the integrals of the second and third kind will follow

as in this Chapter: and an algebraic theory of the expression of rational

functions of given poles can be built up on the lines indicated in the

previous article ( 49) of this Chapter. In this respect Chapter VII. may be

regarded as a continuation of the present Chapter.

A method for realising the expressions of glt ...,
&amp;lt;7n_j for a given form of

fundamental equation is explained in Chapter V. ( 73).

For Kronecker s determination of a fundamental set of integral functions,

for which however the sum of the dimensions is not necessarily so small as

p + n 1, the reader may refer to the account given in Harkness and

Morley, Theory of Functions, p. 262. It is one of the points of interest of the

system here adopted that the method of obtaining them furnishes an algebraic

determination of the deficiency of the surface.



CHAPTER V.

ON CERTAIN FORMS OF THE FUNDAMENTAL EQUATION OF THE RlEMANN
SURFACE.

51. WE have already noticed that the Riemarm surface can be expressed
in many different ways, according to the rational functions used as variables.

In the present chapter we deal with three cases : the first, the hyperelliptic

case ( 51 59), is a special case, and is characterised by the existence of a

rational function of the second order
;
the second, which we shall often

describe as that of Weierstrass s canonical surface ( 60 68), is a general

case obtained by choosing, as independent variables, two rational functions

whose poles are at one place of the surface : the third case referred to

( 69 71) is also a general case, which may be regarded as a generalization

of the second case. It will be seen that both the second and third cases

involve ideas which are in close connexion with those of the previous chapter.

The chapter concludes with an account of a method for obtaining the funda

mental integral functions for any fundamental algebraic equation whatever

($| 7379).

It may be stated for the guidance of the reader that the results obtained for the

second and third cases (
60 71) are not a necessary preliminary to the theory of the

remainder of the book
;
but they will be found to furnish useful examples of the actual

application of the theory.

52. We have seen that when p is greater than zero, no rational function

of the first order exists. We consider now the consequences of the hypothesis

of the existence of a rational function of the second order. Let denote

such a function
;

let c be any constant and a, ft denote the two places where

=c, so that (f c)
1 is a rational function of the second order with poles

at a, /3. The places a, /3 cannot coincide for all values of c, because the

rational function d^/dx has only a finite number of zeros. We may therefore

regard a, /3 as distinct places, in general. The most general rational function

which has simple poles at a, J3 cannot contain more than two linearly entering

arbitrary constants. For if such a function be \ + \ifi + X.2/2 + &amp;gt; ^-&amp;gt; ^-i&amp;gt;

being arbitrary constants, each of the functions f1} f.2 ,
... must be of the

second order at most and therefore actually of the second order : by choosing

the constants so that the sum of the residues at a is zero, we can therefore
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obtain a function infinite only at ft, which is impossible*. Thus the most

general rational function having simple poles at a, ft is of the form
-^

(
-

c)&quot;

1 + B. Therefore, from the Riemann-Roch Theorem (Chapter III.,

37), Q-q=p-(r + I), putting Q = 2, q = 1, we obtain
&amp;gt;-(T + !) = !;

namely, the number of linearly independent linear aggregates

ft (x) = Xxfl, ()+...+ Xp ftp (),

which vanish in the two places a, /? is p - 1. Since a may be taken arbitrarily
and c determined from it, and p I is the number of these linear aggregates
which vanish in an arbitrary place, we have therefore the result When there

exists a function of the second order, every place a of the surface determines

another place ft: and the determination may be expressed by the statement
that every linearly independent linear aggregate ft (x) which vanishes in

one of these places vanishes necessarily in the other.

53. Conversely when there are two places a, ft in which p 1 linearly

independent ft (x) aggregates vanish, there exists a rational function having
these two places for simple poles. To see this we may employ the formula
of 37, putting Q = 2, r + l=p-l, and obtaining q=l. Or we may
repeat the argument upon which that result is founded, thus Not every
one of ftj (x), . . .

, ftp (x) can vanish at a
;
let ft, (a) be other than zero. Since

p - 1 linearly independent ft (x) aggregates vanish in a, and, by hypothesis,

p - 1 linearly independent ft (x) aggregates vanish in both a and ft, it

follows that every ft (x) aggregate which vanishes in a vanishes also in ft.

Hence each of the p 1 aggregates

ft 2 (a) ft, (x)
-

ft, (a) ft 2 (x), ......
,
flp (a) fl

x (x)
- ft

x (a) ftp (a),

vanishes in ft, namely, we have the p 1 equations

fti ()ft 1 (^)-ft 1 (a)fti (/3)
= 0, (i

= 2, 3,...,p).

Therefore the function

has each of its periods zero. Thus it is a rational function whose poles are at

a and ft : and ft, (/3) cannot be zero since otherwise the function would be of

the first order.

Hence when there are two places at which p 1 linearly independent
ft(#) aggregates vanish, there is an infinite number of pairs of places having
the same character. For any pair of places the relation is reciprocal, namely,
if the place a determine the place ft, a. is the place which is similarly
determined by ft : in other words, the surface has a reciprocal (1, 1) corre

spondence with itself. It can be shewn by such reasoning as is employed in

*
By the equation Q -

q =p -(T + 1), if q were 2, r + 1 would be p, or all linear aggregates Q(x)
would vanish in the same places, which is impossible (Chap. II. 21).

B. C
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Chap. I. (p. 5), that if (x l} y^), (x2 , y2) be the values of the fundamental

variables of the surface at such a pair of places, each of #j , ^ is a rational

function of xz and ?/2 ,
and that conversely x2 , y2 are the same rational

functions of xl and y^

54. We proceed to obtain other consequences of the existence of a rational

function, g, of the second order. If the poles of do not fall at finite distinct

ordinary places of the surface, choose a function of the form ( c)&quot;

1

,
in

accordance with the explanation given, for which the poles are so situated.

Denote this function by 2. Then* the function dz/dx has 2.2+ 2p 2= 2p+ 2

zeros at each of which z is finite. Denote their positions by xly x2 , ..., ^+2-
If these are not all finite places we may, if we wish, suppose that, instead of

x, such a linear function of x is taken that each of xl} ...
,
x2p+2 becomes

a finite place. They are distinct places. For if the value of z at X{ be Cf,

z d is there zero to the second order : that another place x-
}
should fall at

Xi would mean that z c; is there zero to higher than the second order,

which is impossible because z is only of the second order. By the expla
nations previously given it follows that a linear aggregate H (#), which

vanishes at any one of these places x1} ...
,
xw+2 , vanishes to the second order

there. Hence there is no linear aggregate II (x) vanishing at p or any

greater number of these places, for H (x) has only 2p 2 zeros. The general
rational function which has infinities of the first order at the places xl ,... t

xp+r
will thereforef contain a number of q + 1 of constants given by p + r q

=
p,

namely, will contain r + 1 constants. Such a function will therefore not

exist when r = 0. In order to prove that a function actually infinite in the

prescribed way does exist for all values of r greater than zero, it is sufficient,

in accordance with 23 27 (Chap. III.), to shew that there exists no

rational function having xly x2 , ...
,
#f for poles of the first order for any

value of i less than p + 1. Without stopping to prove this fact, which will

appear a posteriori, we shall suppose r chosen so that a function of the

prescribed character actually exists. For this it is certainly sufficient that r

be as great as p j. Denote the function by h, so that h has the form

\,\lt ...,\r being arbitrary constants.

Let h, h denote the values of h at the two places (x, y), (x
r

, y \ where

z has the same value. Then to each value of z corresponds one and only one

value of h + h
,
or h + h may be regarded as an uniform function of z : the

infinities of h + h are clearly of finite order, so that h + ti is a rational

function of z. Consider now the function (z
-

Cj) (z
- C2) . . . (z

- cp+r) (h + h
).

*
Chap. I. 6.

t Chap. III. 37.

Chap. III. 27. For the need of the considerations here introduced compare 37 of

Chap. III.
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Since h and h are only infinite at places of the original surface at which

z is equal to one or other of c1( ..., cp+r ,
this function is only infinite for

infinite values of z. As it is a rational function of z, it must therefore be a

polynomial in z of order not greater than p + r. Hence we may write

h + k =
(Z, \}p+rl(z

-
Cj) ... (Z

-
Cp+r).

But here the left hand is only infinite to the first order, at most, at any
one of d, ..., Cp+r and the denominator of the right hand is zero to the

second order at such a place. Hence the numerator of the right hand must
be zero at each of these places, and must therefore be divisible by the

denominator. Thus h + h is an absolute constant, = 20 say. From the

equations

h =

we infer then that S; + S f is also a constant, = 2(7; say : for h was chosen to

be the most general function of its assigned character and the coefficients

X, .... \r are arbitrary. Thence we obtain

G = \ + \C1 + ... +\Cr .

We can therefore put

so that s will be a function of the same general character as h, such however
that s + s = : in its expression the constants \i ,

. . .
,
\r are arbitrary, while

the constants Clf ..., Cr depend on the choice made for the functions
S ?^l

&amp;gt; ^r-

55. Consider now the two places a, a? at which z is infinite. Choose the

ratios \ : X2 : ... : \r so that s is zero to the (r l)th order at a. This can

always be done, and will define s precisely save for a constant multiplier,
unless it is the case that when s is made to vanish to the (r l)th order

at a, it vanishes, of itself, to a higher order. In order to provide for this

possibility, let us assume that s vanishes to the (r I + &)th order at a.

Since s = s, s will also vanish to the (r l+ &)th order at . There will

then be other p + r - 2 (r
- 1 + k), or p - r + 2 - k, zeros of s. From the

manner of formation this number is certainly not negative. Consider now
the function

f=(z-cj)...(z-cp+r)s?.

At the places where z is infinite/ is infinite of order p + r 2 (r 1 + k),
or p - r + 2 - 2k times. At the places, xlt ..., xp+r where s is infinite, it is

finite; each of the factors z - clt ..., z - cp+r is zero to the second order at
the place where it vanishes. Since s2 = - ss

, f is a symmetrical function of
the values which s takes at the places where z has any prescribed value.

Hence, by such reasoning as is previously employed, it follows that the func-

62



84 CANONICAL EQUATION. [oo

tion f is a rational integral polynomial in z of order p r + 2 2k. Denote

this polynomial by H. By consideration of the zeros of/ it follows that the

2 (p r + 2 2k) zeros of the polynomial H are the zeros of s2 which do not

fall at a or a . But since the sum of the values of s at the two places where

z has any prescribed value is zero, it follows that s is zero at each of the

places Xp+r+i, , #2p+2- For each of these is formed by a coalescence of two

places where z has the same value, and at each of them s is not infinite.

Hence the polynomial H must be divisible by (z cp+r+1) ... (z 0^+2).

Thus, as H is a polynomial of order p r + 2 2k in z, p r + 2 2k must

be at least equal to 2p + 2 (p + ?) or to p r + 2. Hence k is zero, and

the value of H is determinate save for a constant multiplier. Supposing
this multiplier absorbed in s we may therefore write

(z-c1)...(z- cp+r) s* = (2- cp+r+1 ) ...(z- Cop+2) (A) ;

and s is determined uniquely by the conditions, (1) of being once infinite at

xly ..., xpJfr , (2) of being (? 1) times zero at each of the places a, a where z

is infinite. Denote s, now, by sp+r ,
and denote the function h from which we

started, which was defined by the condition of being once infinite at each of

a?!, ..., Xp+r , by hp+r ,
and consider the function (z cp+r)sp+r . This function

is once infinite at each of x1} ..., xp+r_l} it is zero to the first order at xp+r ,

and it is r 1 1, = r - 2 times zero at each of the places a, a where z is

infinite. Hence the function

(z
- cp+r) sp+r (A + AjZ + ...+ A r_2 2

r~2

) + B,

wherein B, A, A ly ..., A r_2 are arbitrary constants, has the property of being
once infinite at each of xl} ..., xp+r_lt and not elsewhere. It is then exactly
such a function as would be denoted, in the notation suggested, by hp+r-1}

and it contains the appropriate number of arbitrary constants and we can

from it obtain a function sp+r_lt having the property of being once infinite at

each of x1} ..., xpJrr_^ and vanishing (r 2) times at each of the places a, a

where z is infinite.

Ex. 1. Determine sp + r _ 1
in accordance with this suggestion.

Ex. 2. Prove that hp + r is of the form sp + r (A + A^+ . . . + A r _^ ~
!

) + B.

Ex.*. Prove that Ap + , + 4 is of the form
s^r(A+A,z+ +A r + t _ l2^^^+R

(*-Vtr+i)*(*-Vfcr+t)

Ex. 4. Shew that the square root /(*- c
j&amp;gt;+r + 1)...(s-c2p + 2 )^ ^ interpreted as anV

(
z ~ c

i)-&quot;(
z ~ cp + r)

one-valued function on the original surface.

56. The functions, z, sp+r are defined as rational functions of the x, y
of the original surface. Conversely x, y are rational functions of z, sp+r .

For* we have found a rational irreducible equation (A) connecting z and

* See Chap. I. 4.
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sp+r wherein the highest power of sp+r is the same as the order of z. Hence

this equation (A ) gives rise to a new surface, of two sheets, with branch places

at z = c
1&amp;gt; ..., Czp+2, whereon the original surface is rationally and reversibly

represented.

It is therefore of interest to obtain the forms of the fundamental integral

functions and the forms of the various Riemann integrals for this new surface.

It is clear that the function

(Z
-

C,) . . . (Z
-

Cp+r) Sp+r 0, l)*_i ,

where k is a positive integer, and (z, \)k-\ denotes any polynomial of order

kl, is infinite only at the places a, a where z is infinite, and in fact

to order p + r (r l) + k l, = p + k: and that, therefore, by suitable choice

of the coefficients in another polynomial (z, l)p+fc, we can find a rational

function

(z
- d) ... (z

- cp+r) Sp+r (z, !)*_! + (z, l)p+k ,

which is not infinite at a
,
and is infinite at a to any order, p + k, greater

than p. Now, of rational functions which are infinite only at a, there are p
orders for which the function does not exist*. Hence these must be the

orders 1, 2, ...
, p.

Hence, of functions infinite only in one sheet at z = oo
,
on the surface

(Z
-

d) ... (Z
- Cp+r) Szp+r

= (z
- Cp+r+i) ...(z- C^+a),

that of lowest order is a function of the form

which becomes infinite to the (p + l)th order. Hence by Chapter IV. 39,

every rational function which becomes infinite only at the places z = oo
,
can

be expressed in the form

(z, 1)X -K*, 1V*7,

and if the dimension of the function, namely, the number which is the order

of its higher infinity at these places, be p + 1, X and fi are such that

p + 1
&amp;gt; X, p + l&amp;gt; ft +p + 1.

Therefore also, if er = (z cx) . . . (z cp+r) sp+r = t) (z, 1 )p+1 ,
in which case

equation (A) may be replaced by the equation

&amp;lt;f*=(z- d) (z
-

c,) ...(z- c2p+2),

we have the result that all such functions can be also expressed in the form

(z, l)v + (.s, I), &amp;lt;r,

with

Chap. III. 28.
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By means of this result, hitherto assumed, the forms for the various

integrals given Chapter II., 17, Chapter IV., 46, are immediately
obtainable by the methods of Chapter IV.

57. Or we can obtain the forms of the integrals of the first kind thus

Let v be such an integral. Consider the rational function

, . , .dv
8p+r(z-c1)...(z-cp+r)fa.

It can only be infinite (1) where z is infinite (2) where dz = 0, that is at

the branch places of the (sp+r , z) surface. It is immediately seen that the

latter possibility does not arise. Where z is infinite the function is infinite

to the order p + 1 2, or p 1. Hence it is an integral polynomial in z of

order p l. Namely, the general integral of the first kind* is

/ (z, \)p-l dz

58. Ex. 1. A rational function hp _ k ,
infinite only at the places where z= c

l , ..., cp _ t ,

contains p-k-p+ r+ l +l =r+2- arbitrary constants, where T+ ! is the number of

coefficients in a general polynomial (z, l)p -i which remain arbitrary after the prescription

that (z, !)_! shall vanish at c1} ..., cp _ t . Prove this: and infer that Ap ,
Ap _ 1 ,...do not

exist.

Ex. 2. It can be shewn as in 57 that at any ordinary place of the surface

rational functions exist, infinite only there, of orders p+ l, p + 2, ...: the gaps indicated by
Weierstrass s theorem (Chapter III. 28) come therefore at the orders 1, 2, ...,p. At a

branch place, say at z= c, the gaps occur for the orders 1, 3, 5, ..., (2p- 1). For, all other

possible orders, which a rational function, infinite only there, can have, are expressible in

one of the forms 2(p-k), 2p+ 2r+l, 2p + 2r, where k is a positive integer less than p, or

zero, and r is a positive integer: and we can immediately put down rational functions

infinite to these orders at the branch place z=c and nowhere else infinite. Prove in fact

that the following functions have the respective characters

fe *)?-* fa l)r o-+ (g-c)fo l)p + r (z, l)p + r

wherein (z, !),,_*, (z, l)r , (z, l)p + r are polynomials of the orders indicated by their suffixes

with arbitrary coefficients.

Shew further that the most general Q(:c) aggregate which vanishes 2p-2k times at the

branch place contains k arbitrary coefficients: and infer that the expressions given

represent the most general functions of the prescribed character (see Chapter III. 37).

Ex. 3. Prove for the surface

Ax*+Rvy+ Cy*+ Pa?+ Qtfy+Rxy*

that the function

Cf. the forms quoted from Weierstrass. Forsyth, Theory of Functions, p. 456,
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wherein X and /* are arbitrary constants, is of the second order. And that there are six

values of z for which the pairs of places at which z takes the same value, coincide, these

places of coincidence being zeros of the function

2 (A x*+ Bxy+ Cf) + Px3+ Q^y+ Rxy*+ Sy3
.

Prove further that a rational function which is infinite at these six places is given by

_ 2
(
Ax*+ Bxy+ Cy*) +P x3+ QWy+R xy*+Sy3

~

for arbitrary values of the constants P
, Q ,

R
,
S .

This function is, therefore, such a function as has been here called hp + r : and since there

are six places at which dz is zero, p is equal to 2 and r equal to 4.

Prove that the sum of the values of h at the two places other than (0, 0) at which z has

the same value is constant and equal to 2.

We may then proceed as in the text and obtain the transformed surface in the simple

hyperelliptic form. But a simpler process in practice is to form the equation connecting
z and h. Writing k=h\ and Z=xjy, prove that

P {(PZ
3+ QZ*+RZ+ ,S0

2 - 4
(
AZ* + BZ+ C) (a^+ a^Z

3+a^+ a3Z+ a
4)}

= {(P -
P) Z3+ ((?

-
Q) Z*+ (R - R) Z+ (S

1 -
)}*.

Hence, if the coefficient of k2 on the left be written (Z, 1)6 ,
and we write

Y= [(P
- P) Z3+ (Q -Q)Z*+ (R - R) Z+ (S -

=
[2 (Ax*+ Bxy + Cy*} +Px3+ Qa?y + Rxy*

we have

Y*= (Z, l)e ,

which is the equation of the transformed surface. And, as remarked in the text, the

transformation is reversible
; verify in fact that #, y are given by

x=2Z(AZ2+BZ+ C)/[r- (PZ3+ QZ*+ RZ+ )],

y= 2 (AZ*+BZ+ &amp;lt;7)/[
Y- (PZ3+ QZ*+ RZ+ S)].

Hence any theorem referred to one form of equation can be immediately transformed so

as to refer to the other form.

59. The equation

o-
2 = (z

-
d) (z

- c2) . . . (z
- c2p+2)

by which, as we have shewn, any hyperelliptic surface can be represented,
contains 2^-1-2 constants, namely clt C2 ,

. . .
, c^+2 . If we write z (ox + b)/(x + c)

we introduce three new disposable constants
; by suitable choice of these

the equation of the surface can be reduced to a form in which there are only

2p 1 parametric constants. For instance if we put

(Z
-

C,) (C8
- C2

)/(&amp;gt;

- C2) (Ca
-

d) = XJ(x
-

1)

and then, further,

s=A&amp;lt;r(z- c3)-P-\

where the constant A is given by

A =
(c,

-
c,)* (c,

-
c,YI(c,

- c2 )*&quot;H (c,
- c4) (GS

- c5)i . . . (c3
- (Vw)1

,
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the equation becomes

s2 = x (x
-

1) (oc
-

a,) (x
- as) . . . (x

-
o^+j).

wherein

ar
=

(cz
- c3) (cr

-
c^Kc,

- c2) (c3
- cr\

and the right-hand side of the equation is now a polynomial of order 2p + 1

only. Of its branch places three are now at x=0, x=l, #=oo, and the

values of x for the others are the parametric constants upon which the

equation depends. It is quite clear that the transformation used gives s, x
as rational function of or, z. Thus

The hyperelliptic su?face depends on 2p 1 moduli only. Among the

positions of the 3p 3 branch places upon which a general surface depends

(Chapter I. 7), there are, in this case, 3p -3-(2p -l)=p -2 relations.

Thus a surface for which p = 2 is hyperelliptic in all cases. There are in

fact (pl)p(p + l) = Q places* for which we can construct a rational

function of order 2 infinite only at the place.

A surface for which p = I is also hyperelliptic but it is more than this

(Chapter I. 8), being susceptible of a reversible transformation into itself in

which an arbitrary parameter enters.

Ex. 1. On the surface of six sheets associated with the equation

y
6=x

(x a) (x
-

6)
4

there are four branch places, one at (0, 0) where six sheets wind, and at (a, 0) where six

sheets wind, two at (b, 0) at each of which three sheets wind. These count f in all as

w= 6

Hence, by the formula

putting n= 6, we obtain p= 2.

Thus there exists a rational function of the second order, and the surface can be

reversibly transformed into the form
?

2= (, l)(i
. In fact the function

is infinite to the first order at each of the branch places (b, 0), (a, 0) and is not elsewhere

infinite.

To obtain the values of at the branch places of the new surface, we may express either

x or y in terms of . Since there are two places at which takes any value, each of x and

y will be determined from by a quadratic equation which may reduce to a simple

equation in particular cases. When has a value such that the corresponding two places

coincide, each of these quadratic equations will have a repeated root.

Now we have

(x-bf
-

Chap. III. 31. f Forsyth, Theory of Functions, p. 349,
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Hence

y2(G_ 1 )_ y 5(a _ 2&) _&(-&) 4= 0.

The condition then is

P(-26)2+ 46(-6) 4 (|-l) = 0, or |* [a
2

(
- 1

) + (
-

26)
2
]
= 0.

The factor

is equal to

[a
2
{(x -Vf-x (x

-
a)} + (a

-
26)

2 x (x
-
a)]/# (#

-
a),

which is immediately seen to be the same as

[x (a
-
26)+ ab]/x (x

-
a)

or

{[x (a
-

26)+ ab] [x
-

6]
2
/y

3
}
2
.

Thus this factor gives rise to the six places at which x= -
ab/(a

-
26). And if we put

T,
= [x (a

-
26) + ab] [a?

-

we obtain

which is then the equation associated with the transformed surface.

Then, from the equation

^ - s= \x (a
-
26)+ ab]/[x

-
6],

we obtain

which give the reverse transformation.

Ex. 2. Prove for the surface

y3=x (x-a) (#
-

6)
2 (x-cf

that jo
= 2 and that the function

=(x-b}(x-c)ly

is of the second order. Prove further that

[a
3 _ 6 _ cp+ 4fa (3_ !)

=
{[a

_ b _ c
)
y&+ Mcx - abc]/x (x

-
a)}

2

Hence shew that the surface can be transformed to

and that

#= [a
2
|
3+ ai;+ 26c - ab - ac]/[a|

3+ r)
+ 6+ c - 2a],

y= 2 2
[be+ a2 - a6 - ac] [a

2
^
3+ a^ + 26c - ab - ac] /[|3+ rj+ b+ c - 2a]

2
.

Ex. 3. In the following five cases shew that j
=

2, that is a function of the second

order, that in each case
/

2 is either a quintic or a sextic polynomial in
,
and obtain each

of x and y as rational functions of and
17 ;

(a) y
w=x(x-aY(x-bf, = (x-a) (x

-
6)//, r

)
= Ja.(x-aji (x-bY

08) f= x(x-a)*(x-b)\ = (*-a)(.*-6)//, r,
= Ja . (x

-
a)* (x

-
b)*!y*&amp;gt;

(y) ?/&amp;gt;

= x(x-a}(x-b}\ = C*-6)/y, ,,
=

[&amp;gt;(a-26) + a6][.r-&]
2
/y

:J

(8) y = .r
2
(.r
-
a)

3
(#
-

6)
3
(.r
-

c)
4

,
=

A-(.r
-
a) (x

-
6) (#

-
c)/y

2
, T,
= c.v (x

-
a)

2
(a?
-

6)
2
(x
-

c)/y
3

(c) y
4
=a?(^-a)

2
(^-6)

2
(.r- c)

3
,

= (x-d)(x-b)(x-cy*/ft r,
= c(x-a)(x-b)(x-c)/xy.
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Ex. 4. Shew that the surface

y
n
=(x- ai}

n
\..(x-a r}

nr

can always be transformed to such form that n
ly ..., nr are positive integers whose sum is

divisible by n : and in that form determine the deficiency of the surface. Shew also that,

in that form, the only cases in which the deficiency is 2 are those given in Exs. 1, 2, 3.

Prove that the cases in which p= l are*

y
6=x(x af(x b}

3
t y*=x(x-a)(xb\

y*=*x(x-a)(x- 6)
2
, y

z=x(x-a}(x- 6) (x
-

c).

The results here given have been derived, with alterations, from the dissertation,

E. Netto, De Transformatione Aequationis y
n = R(x} (Berlin, 1870, G. Schade).

The equation

y
n= (x- ai }

n
i...(x-ar}

nr

is considered by Abel, (Eitvres Completes (Christiania, 1881), vol. i., pp. 188, etc.

It is to be noticed that in virtue of Chapter IV. we are now in a position, immediately
to put down the fundamental integrals for the surfaces considered in Examples 1, 2, 3.

60. Passing from the hyperelliptic case we resume now the considera

tion of the circumstances considered in Chapter III. 28, 31 36.

Consider any place, c, of a Riemann surface : and consider rational

functions which are infinite only at this place : all such functions will be

denoted by symbols of the form gN ,
the suffix N denoting the order of infinity

of the function at the place.

Let ga be the function of the lowest existing order. The suffixes of all

other existing functions gN can be written in the form N = pa + i, where

i &amp;lt; a. Since there are only p orders for which functions of the prescribed

character do not exist, all the values i = 0, 1
, ...,(!) will arise. Let /^a + i

be the suffix of the function of lowest order whose order is congruent to i for

modulus a. We obtain thus a functions

ffa&amp;gt;&amp;gt;

Then, if gma+i be any other function that occurs, m cannot be less than
/*,-,

and a constant A, can be chosen so that g-ma+i ty SW+fi which is clearly

a rational function infinite only at c, is not infinite to the order ^a + i.

Thus we have an equation of the form

wherein pa +j is less than ma + i. Proceeding then similarly with g^+j, we

clearly reach an equation of the form

wherein the coefficients A, B, ..., K, whose number is a, are rational integral

polynomials in ga .

*
Cf. Forsyth, p. 486. Briot and Bouquet, ThSorie des Fonct. Ellipt. (Paris, 1875), p. 390,
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In particular, if gr be any rational function whatever of the gN functions,

we have equations

g,
= A l + Btf^a^ + + K$*a _!+-i

_ a+a_1 (ii).

61. If these equations, regarded as equations for obtaining #Mia+1 ,...,

g^ _ a+a-i in terms of ga and gr ,
be linearly independent, we can obtain, by

solving, such results as

g.a+i = Qi,i (ffr
- AJ + Qifl (9r

2 -
A,) + . . . + Q

f&amp;gt;

_, (g&quot;

1 - A^),

wherein Q{il} ..., Qi,a-i are rational functions of ga ,
which are not necessarily

of integral form.

If however the equations be not linearly independent, there exist equations

of the form

or say

wherein Plf P2 , ..., Pa_l5 P are integral rational polynomials in ga . Denote

the orders of these in ga by X 1} X^, ..., Xrt -i&amp;gt;
^ respectively; here P denotes

the expression

P^ + P2A 2 +...+ Pa-^a-! .

Then Pk g
k

is of order aX^ + rk at the place c of the surface. In order

that such an equation as (iii) may exist, the terms of highest infinity at

the place c must destroy one another: hence there must be such an

equation as

a\jc +rJc = a\K + rk
,

and therefore

rfa = (Xjf Xjfc)/(& k
).

Now k and k are both less than a : this equation requires therefore that

r and a have a common divisor.

62. Take now r prime to a
;
then it follows that the equations (ii) must

be linearly independent. And in that case each of g^a+i, &amp;gt; g* _ a+&amp;lt;i-i
can

be expressed rationally in terms of ga and gr ,
the expression being integral

in gr but not necessarily so in ga .

Also by equation (i) it follows that every function infinite only at c is

rationally expressible by ga and gr : and in particular that there is an

equation of the form

Lfr + Ll9
a- 1

+ ... + L^g, + La = (iv),
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wherein L, L1} ..., La are integral rational polynomials in ga ,
of which

however, since gr is only infinite when ga is infinite, L is an absolute

constant. It follows from the reasoning given that the equation (iv) is

irreducible, and therefore belongs to a new Riemann surface, wherein ga and

gr are independent and dependent variables. Further, any rational function

whatever on the original surface can be modified into a rational function

which is infinite only at the place c, by multiplication by an integral

polynomial in ga of the form (ga
-

Etf* (ga
-

Etf* ....... Hence any rational

function on the surface is expressible rationally by ga and gr . Hence the

surface represented by (iv) is a surface upon which the original surface can

be rationally and reversibly represented.

Since g~
l is zero to order a at the place where ga is infinite, it is clear that

the new surface is onefor which there is a branch place at infinity at which all

the sheets wind.

To every value of gr there belong r places of the old surface, at which gr

takes this value, and therefore also, in general*, r values of ga . Hence the

highest power of ga in equation (iv) is the rth, and this term does actually
enter. While, because ga only becomes infinite when gf is infinite, the

coefficient of the term g
r
a is a constant (and not an integral polynomial in gr).

The equation (iv) is the generalization of that which is used in introducing what are

called Weierstrass s elliptic functions, namely of the equation

This equation is satisfied by writing g.i ~^(u\ g^= ^(u}: it is a known fact that the

poles of jp() are at one place (where w= 0). This is not true of the Jacobian function

snu.

63. It follows from equation (i) that the functions

form a fundamental set for the expression of rational functions infinite only
at the place c of the surface, that is, a fundamental set for the expression
of the integral rational functions of the surface (iv). And, defining the

dimension D of such an integral function F as the lowest positive integer

such that g~ F is finite at infinity on the surface (iv), in accordance with

Chap. IV., 39, it is clear that in the expression of an integral function by
this fundamental system there arise no terms of higher dimension than the

function to be expressed : this fundamental set is therefore entirely such

an one as that used in Chapter IV. If k be the order of infinity of an

integral function F, at the single infinite place of the surface (iv), it is obvious

k
that the dimension of F is the least integer equal to or greater than -

.

* That is, for an infinite number of values of gr .
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64. We shall generally call the equation (iv) Weierstrass s canonical form;
a certain interest attaches to the tabulation of the possible forms which the

equation can have for different values of the deficiency p. It will be sufficient

here to obtain these forms for some of the lowest values ofp ;
it will be seen

that the method is an interesting application of Weierstrass s gap theorem.

Take the case
p=4&amp;gt;,

and consider rational functions which are only infinite

at a single place c of a surface which is of deficiency 4. Such functions do

not exist of all orders there are four orders for which such functions do not

exist
;
these four orders may be 1, 2, 3, 4, and this is the commonest case*,

or they may fall otherwise. We desire to specify all the possibilities : their

number is limited by the considerations

(i) If functions of orders kl} kz ,
... exist, say Fl , F*, ...

,
then there exists

a function of order n^ + n 2 k.2 + ...
, where n1} n2 ,

... are any positive integers.

In fact F^F^... is such a function.

(ii) The number of non-existent functions must be 4.

(iii) The highest order of non-existent function cannot bef greater than

2p
- 1 or 7.

It follows that a function of order 1 does not exist, and if a function of

order 2 exists then a function of order 3 does not exist ; for every positive

integer can be written as a sum of integral multiples of 2 and 3.

Consider then first the case when a function of order 2 exists. Write

down all positive integers up to 2p or 8. Draw| a bar at the top of the

numbers 2, 4, 6, 8 to indicate that all functions of these orders exist

12345678 (a).

If then the functions of orders 5 or 7 existed there would need to be

a gap beyond 8, which is contrary to the consideration (iii) above. Hence
the non-existent orders are 1, 3, 5, 7. We have thus a verification of the

results obtained earlier in this chapter ( 58, Ex. 2).

Consider next the possibility that a function of order 3 exists, there being
no function of order 2. If then a function of order 4 exists, the symbol
will be

12345678,
a function of order 6 being formed by the square of the function of order 3,

that of order 7 by the product of the functions of orders 3 and 4, and the

function of order 8 by the square of the function of order 4. Thus there

would need to be a gap beyond 8. Hence when a function of order 3 exists

*
Chap. III. 31.

t Chap. III. 34. Also Chap. III. 27.
+

Cf. Chap. III. 2G.
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there cannot be one of order 4. If however functions of orders 3 and 5

exist the symbol would be

12345678 (),

the function of order 8 being formed by the product of the functions of orders

3 and 5. So far then as our conditions are concerned this symbol represents
a possibility. Another is represented by the symbol

12345678
(7).

In this case however the existent integral function of order 8 is not expressible
as an integral polynomial in the existent functions of orders 3 and 7.

When a function of order 3 exists there are no other possibilities ;
other

wise more than 4 gaps would arise.

Consider next the possibility that the lowest order of existent function
is 4. Then possibilities are expressed by

1 2 3 4~5 &quot;6 7 8
(S),

1 2 3 477 6 7~8
(e),

12345 6T~8 (),

as is to be seen just as before.

Finally, there is the ordinary case when no function of order less than
5 exists, given by

1234 5~6 7 8
(77).

For these various cases let a denote the lowest order of existent function

and r the lowest next existent order prime to a. Then the results can be
summarised in the table

p=4 a
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That the seventh and eighth columns of this table should agree is in

accordance with Chapter IV., 41. The significance of the last column is

explained in 68 of this Chapter.

Similar tables can easily be constructed in the same way for the cases

p=l, 2, 3.

Ex. 1. Prove that for p= 3 the results are given by

p = 3
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wherein (g3 , 1)2 denotes an integral polynomial in y3 of order 2 at most, the

upper limit for the suffix being determined by the condition that no terms

shall occur on the right of higher dimension than those on the left. Similarly

for the other polynomials occurring here on the right.

Instead of g7 , g8 we may clearly use any functions g7
-

(g3 , 1),, gs
-

(g3y 1)2 .

Choosing these polynomials to be those occurring on the right in the value of

ffrffs)
we may write our equations

9* = 2#8 + &07 + Q4 , #8
2 =

7S08 + a$7 + 5 , 9$* = & (A),

where the Greek letters denote polynomials in g3 of the orders given by
their suffixes.

Multiplying the first and last equations by gs and g7 respectively, and

subtracting, we obtain

g7& = gs (0^8+ &#7 + o4)

and thence, since* 1, g7 , g8 cannot be connected by an integral equation of

such form,

0272 + 4
= 0, fifeo,

-
/33
= 0, ar2 &amp;lt;*5 + /3o/35

= 0,

from which, as 0.3 is not identically zero, for then g7 would satisfy a quadratic

equation with rational functions of g3 as coefficients we infer

5 + & 3
= (B).

Similarly from the last two equations (A) we have

7 + oB)

and thence

/8B
-

05,03
= 0, 0^ + 05 = 0, 72^3 + oa 4

= 0,

so that, since 3 cannot be zero as follows from the second of equations (A)

we have

VM + a4
= (C).

The equations (B) and (C) have been formed by the condition that the

equations (A) should lead to the same values for gfa and gfg1t however these

latter products be formed from equations (A). We desire to shew that, con

versely, these equations (B) and (C) are sufficient to ensure that any integral

polynomial in g7 and gs should have an unique value however it be formed

from the equations (A). Now any product of powers of g1 and g8 is of one of

the three forms g7 , gf , g7g*K. In the first two cases it can be formed from

equations (A) in one way only. In the third case let us suppose it proved

that K has an unique value however it be derived from the equations (A);

*
Chap. IV. 43.
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then to prove that g7g8 K has an unique value we require only to prove that

g7 . ge K = gs . g7 K. Let K be written in the form ggL + g7M+ N. Then the

condition is that g7 (LgJ + Mg7g8 + Ngs) shall be equal to g8 (Lg7g% + Mgf + Ng7).

This requires only #7 #8
2 = # #7#8 and g7 . g7ga

= ga . g? : and it is by these

conditions that we have derived equations (B) and (C). Hence also g^^K
has an unique value.

Thus every rational integral polynomial in g7 and gs will, when the con

ditions (B), (C) are satisfied, have an unique value however it be formed from

equations (A).

The equations (B) and (C) are equivalent to a4=-a2 72, As = a2s,

a5
= a3/32 ,

and lead to

Thence

or g7
3 - P2gf + cr

2y2g7
- a2

2
3
= 0,

which is the form of equation (iv) which belongs to the possibility under

consideration.

The expression of the fundamental set of integral functions 1, gr , g%
in terms of g3 and

- is therefore

66. Take as another example the possibility e, 64 above, where

a = 4, r = 5, the orders of non-existent functions being 1, 2, 3, 6. For a

fundamental system of integral functions we may take 1, gs , g*, g7 .

We have then such an equation as

9*9-1
=

g? (04, l)i + c#5
2 +

&amp;lt;7
5 (&amp;lt;74, l)i + (&, l)s

where c is a constant : let this be written in the form

gsg?
=

i#7 + g* + frgs + s,

the constant c being supposed absorbed in gf.

Write h s for g^ ^ and h7 for g7 Ji 5 A ~ %ai-

Then

Replacing now /* 5 ,
h 7 by the notation gs , g1 and a3 + fliA + &amp;lt;*i

2

by 3 we may
write

9*97 = s , i/7
2 = ^3 + aa^s + a, (7S

2 + frg, , g,
3 =

B.
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Hence the condition g5 . gf = g5g7 . g7 requires

from which

and thence

0^3= ^a^a, or if 0^ is not zero, y3 =(3-iy.2 .

Substituting this value for ys and the value g7
= a3 lg5

= ^yz/ga in the

expression for g&
s we obtain

or

9*
~

Jiffs*
~

P*9* + Piytfs
-

*i72
2 = 0,

which is then a form of the equation (iv) corresponding to the possibility (e).

In this case the fundamental integral functions may be taken to be

It is true in general, as in these examples, that the terms of highest order

of infinity in the equation (iv) are the terms ga , gr . For there must be two

terms (at least) of the highest order of infinity which occurs
;
and since r is

prime to a, two such terms as ga g*, 9a9r cannot be of the same order of

infinity.

Ex. 1. Prove that for p= 3 the form of the equation of the surface in the case where

and shew that this is reducible to the form

y
z +yx (x+ a) + x*+ c^-r

3+ a.^+ a^c+ a4
=

0,

x being of the form Ag3+ B, y of the form Cg^+ Dg3+ E, A, B, C, D, E being constants.

Thus the surface depends on 3p
- 4 or 5 constants, at most.

Ex. 2. The reader who is acquainted with the theory of plane curves may prove that

the homogeneous equation of a quartic curve which has a point of osculation, can be put

into the form

By putting #= ;/, #= /&amp;gt;
tnis takes the form of the final equation of Example 1. Com

pare Chapter III. 32.

Ex. 3. Prove that for
jt)
=

3, the form of the equation of the surface in the case where

Ex. 4. Denoting the left hand of equation (iv) by f(gr , ga ], df/dgr by f (ffr) and the

operator
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by Z&amp;gt;, prove that if gm be any rational function which is infinite only where gu and gr are

infinite, there exists an equation

X&amp;lt;&amp;gt;J-igm+Xl D*-*gm+ +Xa _ l9m= 0,

where X
, , J^-i are polynomials in ga .

67. We have already in Chapter IV. referred to the fact that an integral

function is not necessarily expressible integrally in terms of the coordinates

x, y by which the equation of the surface is expressed, even though y be an

integral function. The consideration of the Weierstrass canonical surface

suggests interesting examples of integral functions which are not expressible

integrally.

In order that an integral function g whose order is p should be expressible

as an integral polynomial in the coordinates ga , gr of the surface, in the form

it is necessary that there should be a term on the right hand whose order of

infinity is the same as that of the function
;
we must therefore have an

equation of the form

fj,
= ma + nr

wherein m, n are positive integers. Since a polynomial in ga and gr can be

reduced by the equation of the surface until the highest power of gr which

enters is less than a, we may suppose n less than a.

This equation is impossible for any value of
//,

of the form nr ka. And
since herein k may be taken equal to any positive integer less than nr/a, the

number of integers of this form, with any value of n, is E(nr/a), or the

greatest integer contained in the fraction nr/a. Hence on the whole there

are

2 E(nr/a)
n=l

orders of integral functions which are not expressible integrally by ga and gr .

Corresponding to any order which is not expressible in the form nr ka,

which is therefore of the form nr + ma, we can assign an integrally expressible

integral function *
namely g

n
rg : hence the p orders corresponding to which,

according to Weierstrass s gap theorem, no integral functions whatever exist,

must be among the excepted orders whose number we have proved to be

&quot;Z E (nr/a) orf (a
-

1) (r
-

1).
n = l

Though it does not follow that every integral function whose order is of the form nr + ma
can be expressed wholly in integral form.

t If a right-angled triangle be constructed whose sides containing the right angle are

respectively a and ?, and the interior of the triangle be ruled by lines parallel to the sides

72
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Hence the number of orders of actually existing integral functions which are

not expressible integrally is

In the table which we have given for p = 4 ( G4) the existing integral

functions which are not expressible integrally are, for the case (7), of orders 8

and 11
;

for the case (8} of orders 6 and 11
;
for the case (e) of orders 7 and

11
;

for the case (f) of orders 6, 9, 10, 13, 17
;
for case (77) of orders 7, 8, 9, 13,

14, 19. The reader can easily assign the numbers for the cases in which

^ = 3.

Ex. 1. Prove that for the surface

9*+9*(9*- c)+9f,9s(9v l\+9*(9*&amp;gt; Va= &amp;gt;

the function

ffj=ff&(ff&- c
)/ff3

is an integral function which is not expressible as an integral polynomial in g3 and &amp;lt;75
.

Ex. 2. Prove that for the surface

where a2
= o (gs

- kj (g3
-

2),

82
=

(ff3-ki)fi + l&amp;gt;i,

/! being of the first order in g3 ,
and c, b

lt k, k^ being constants, the two following functions

are integral functions not integrally expressible

#8 =g^ (9i + As)/a2 1 ffu
=
9i (ffr + bi)l(ffa

~
*i)-

68. The number ^ (a l)(r-l)p is susceptible of another interpre

tation which is in close connexion with the last. Let the set of fundamental

integral functions for the Weierstrass canonical surface be denoted by

1, Glt G2 ,..., 6ra_!. From the equations whereby 1, gr , gr ,..., g
a
r are

expressed in terms of them we are able (Chapter IV., 43) to deduce an

equation

wherein A(l, gr , ..., gv&quot;

1

) is formed as a determinant whose (i, j)th element

is the sum of the values of g*r
+J ~ 2

at the a places of the surface where ga has

the same value, and is therefore an integral polynomial in ga , A(l, GI, . . .
,
Ga-^)

is formed as a determinant whose (i, j)th element is the sum of the values of

Gi^Gj-! for the same value of ga ,
which also is an integral polynomial in

containing the right angle, and at unit distances from these sides and each other, so describing

squares interior to the triangle, the number of angular points interior to the triangle is easily

seen to be S E (nr/a). On the other hand if the right-angled triangle be regarded as the half of

n=l

a rectangle whose diagonal is the hypotenuse of the right-angled triangle, and the ruled lines be

continued into the other half, it is easily seen that the total number of angular points of the

squares interior to the whole rectangle is (a- 1) (r- 1).
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ga ,
and V is a determinant whose elements are those integral polynomials in

ga which arise in the expressions of 1, gr , ..., g&quot;~

l
in terms of 1, GI, ...

, (ra_i.

The determinant A (1, gr , ...
,g&quot;~

l

) is the square of the product of all the

differences of the values of gr which correspond to any value of ga . It

therefore vanishes, for finite values of ga ,
when and only when two of these are

equal. If the form of the equation of the surface be denoted by f(gr , ga) = 0,

this happens when, and only when, df/dgr =0. Now df/dgr is an integral

polynomial in ga and gr ,
of order a 1 in the latter. Regarded as a rational

function on the surface it is only infinite when ga and gr are infinite. It

follows from the fact ( 66), that g
a
r

is a term of the highest order of infinity

which enters in the polynomial f(gr , ga\ that df/dgr is infinite, at ga = oc
,

to an order r(a 1). This is therefore the number of finite places on the

surface at which df/dgr vanishes. Hence we infer that the polynomial

A(l,$.,$
-1

j is of degree r(a-l) in ga .

Since there is a branch place at infinity counting for (a I) branch

places, the polynomial A(l, Glt ...,Ga-i) is of order 2a + 2p
- 2- (a

-
1)

= a-l + 2pin0fl (48, 61).

Thus V is of order

i[r(a-l)-(a-
that is, of order

This interpretation of the degree of v is of interest when taken in connexion with the

theorem Every integral function can be written in the form

(ffa, gr)l(ffa, 1),

the numerator being an integral polynomial in ga and gr ,
and the denominator being an

integral polynomial in ga . All the polynomials (ga , 1) thus occurring are divisors of the

polynomial y. See 48 and 88 Exx. ii, iii*.

When the factors of v are all simple we may therefore expect to be able to associate
each of them, as denominator, with an integral function which is not integrally expressible.
In this connexion some indications are given in a paper, Camb. Phil. Trans, xv. pp. 430, 436.
For Weierstrass s canonical surface see also a dissertation, De aequatione algebraica...in

quandam formam canonicam transformata. G. Valentin. Berlin, 1879. (A. Haack.)
Also Schottky, Crelle, 83. Conforme Abbildung. . .ebener Flachen.

69. The method which has been exemplified in 65, 66 for the formation
of the general form of the equation of a surface when the fundamental set
of integral functions is given, is not limited to Weierstrass s canonical surface.

Take for instance any surface of three sheets, and let 1, g1} g^ be any set

*
Cf. Harkness and Morley, Theory of Functions, p. 268, 186.
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of fundamental integral functions with the properties assigned in Chapter IV.

42. Then there exist equations of the form

i#2
= 7 + ft $1 + a 9*

wherein the Greek letters denote polynomials in the independent variable

of the surface, x, whose degrees are limited by the condition that no terms

occur on the right of higher dimensions than those on the left.

Thus the dimension of ft is not greater than that of g2 and the dimension

of a is not greater than that of g^ Hence we may use #1 a, g2 (3 instead

of g1 and g2 respectively, and so take the first equation in the form glg3
= y &amp;gt;

the form of the other equations being unaltered. As before, there are con

ditions that these equations should lead to unique values for every integral

polynomial in gl and &amp;lt;/2 , namely

#2 (71 + &9i + *i9*)
=

9iV&amp;gt; 9i (72 + 2&amp;lt;7i
+ &SO =

#27-

These lead to the equations

7=a1 a2 , 71
=-

and thence to

(v)

Since every rational function can be represented rationally by x and

gl and g2
=

&\&&amp;gt;tlgi ,
it follows that every rational function can be represented

rationally by x and glt Hence the surface represented by the first of these

two final equations is one upon which the original surface is rationally and

reversibly represented. So also is the surface represented by the second of

these equations.

The fundamental integral functions are derived immediately from the

equation, being

Ex. 1. Prove that the integrals of the first kind for the surface

f(ffi&amp;gt;
x)=ffi

3
-Piffi

2
+aiP2ffi -0^02=

are given by

where rj + 1, r2+ l are the dimensions of g and gz and/ (g^ =

Ex. 2. Prove that for the case quoted in Ex. i, 40, Chapter IV, the form of the

equation is, (i) when p is odd= 2n- 1, say,

Sfn
3 -angn

2+ an _ 1
an + l ffn -ai

n - l
an + 2

=
0,
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where an _
l ,

an ,
an+1 , n,l + 2 are polynomials in x of the orders indicated by their suffixes,

(ii) when j9 is even = 2?i 2, say,

ffn
3 -

nffn
*+ Pn *ngn~ /3

2
7n= 0,

where on , /3tt , yn ,
8n are polynomials in x of the nth order.

Ex. 3. Writing ffi
= n

ly, the first of the equations (v) becomes

Q2
=0. (A)

If the dimensions of gl
and gz

be r
l + l, T2 -|-l, find the degrees of the polynomials

GI} /31} a2 , /32 . And prove that if the positive quadrant of a plane of rectangular co

ordinates (x, y) be divided into squares whose sides are each 1 unit in length, and a convex

polygon be constructed whose angular points are determined from this equation (A), by
the rule that a term xr

y&quot;

in the equation determines the point (r, s) of the plane, then the

number of angular points of the squares which lie within this polygon is p.

70. In obtaining the equation

9? ~ &#!
2 + !&#!

-
!

2
2
- (E)

we have spoken as if the original surface were of three sheets. It is im

portant to notice that this is not necessary.

Suppose our given surface to be any surface for which a rational function

of the third order, ,
exists. Take c so that the poles of the function ( c)~

l

,

which is also a function of the third order, are distinct ordinary places of the

surface. So determined denote the function by x. Let alf cr 2 , s denote these

poles. Then just as in 39 of Chapter IV. it can be shewn that there exist

two rational functions g^ and g2 , only infinite in ax and a.2 ,
such that every

rational function which is infinite only in Oj, a2 ,
a3 can be expressed in the

form

wherein y, a, /3 are integral polynomials in x whose degrees have certain

upper limits determined by the condition of dimensions.

And as before we can obtain the equation (E). Further, if F be any
rational function whatever and A lf A 2 ,

... be the values of x at the places
other than ax ,

a2 ,
a3 at which F becomes infinite, it is clearly possible to find

a polynomialK of the form (x
-A^ (x

- A^)
n*

. . . such that .KTonly becomes

infinite at al} a2 ,
a3 . Hence every rational function of the original surface

can be expressed rationally by x and glt

Thus as x, g^ are rational functions on the original surface, (E) represents
a new surface upon which our canonical surface is rationally and reversibly

represented. And it is as much the proper normal form for surfaces upon
which a rational function of the third order exists as is the equation
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o-
2 =

(z, l)2p+2, previously derived, for the hyperelliptic surfaces upon which a

function of the second order exists.

Ex. Obtain the hyperelliptic equation in this way.

71. In the same way we can obtain a canonical form for surfaces upon
which a function of the fourth order exists. We can shew that there exist

three functions glt gz , g3 satisfying such equations as

+ k,

wherein the nine coefficients are integral polynomials in a rational function x,

which is of the fourth order; and that the surface is rationally and reversibly

representable upon a surface given by the equation

+ aj)sk2 + a-jbjcz + aj)3ki = 0.

Ex. These coefficients a
lt ..., fc3 satisfy certain relations; prove that the conditions

that
Sra .ff3*=ffzffa.g3 , gl

. g3
2
=ffiff3 9v ffiffs- ffa=ffaffa-ffi are that the following nine

polynomials should be divisible by a polynomial A, whose value is a
]

2b3 a3a 1
6

1
-ot2^i

2
&amp;gt;

Herein ?i
1
= a3 c1? ^

1
= a

2
63 ^

x
.

In fact if

the results of the division of these nine polynomials by A are respectively

o&amp;gt;

&
5&amp;gt;

C
5&amp;gt;

a
4&amp;gt;

6
4&amp;gt;

C
4&amp;gt;

f/
(i&amp;gt; ^0 C

6&amp;gt;

while

72. When the order of the independent function, denoted in 6971 by x, is known,

and the dimensions of the fundamental integral functions in regard thereto, the general

forms of the polynomial coefficients in the equations, whereby the products of pairs of

these integral functions are expressed as linear functions of themselves, can be written

down. And thence, if the necessary algebra (such as that indicated in the example of

71), which serves to limit the forms of these polynomial coefficients, can be carried out, a

canonical form of the equation of the surface can be deduced.

But the converse process may arise : when we are given a form of the fundamental

equation associated with the surface, we may require to replace the given equation by one

in which the dependent variable is one of the set of fundamental integral functions. More

generally we may replace it by an equation in which the dependent variable is an integral

function of the form
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This replacement possesses a high degree of interest ( 88. Ex. iii). In either case

it is necessary to be able to calculate the fundamental integral functions.

73. We give now sufficient explanation to enable the reader to calculate the expression
of the fundamental integral functions for any given form of the fundamental equation
associated with the Riemann surface. This equation may* be taken in the form

#*+y&quot;~
la

i + ~-+ytt -i + a =
&amp;gt; (A)

15 ..., an being integral polynomials in x ;
thus y is an integral function of x ( 38).

The n values of any rational function, 17,
which arise for the same value of x, will be

denoted by i^
1

),
...

, ij(&quot;)
and called conjugate values

;
their sum will be denoted by 2^. If

any of the possible rational expressions of
17
be $ (x, y)/^ (#, y\ $ and ty being integral

polynomials in x and y, and if in the expression of
&amp;gt;j( ),

we multiply numerator and denominator by the product of the n l values conjugate to

^(.r,^
1

)),
the denominator will become an integral symmetric function of y(

l
\ ...,y(

n
\ and

can therefore be expressed by means of the equation (A), as an integral polynomial in x
;

and the numerator will take a form which can be expressed as an integral polynomial in

x and yW. Hence the value of any rational function, on the surface associated with the

equation (A), can be expressed in the form

_1=

A, ..., A n _ ly D denoting integral polynomials in x, with no common divisor.

Thus, to determine the expression of the fundamental integral functions, we may
enquire what modification this general form undergoes when

TJ
is an integral function.

74. In the first place the denominator D must be such that Dz is a factor of the

integral polynomial f A (1, ?/, ...,y
n ~ 1

) ; so that D is capable only of a limited number of

forms. For let x a be a factor of Z), repeated r times, and write

A i
= (x-aYBi^Ci , (

t= 0,l,... ,(n-l))

wherein d is a polynomial of order less than r
;
since J, ..., A n _ l

have no common divisor

which divides D, not all of C, Clt ...
,
Cn _ l

can be divisible by x-a. Then the function

is an integral function, when 17
is an integral function, as appears from its first form of

expression. Denote it by f.

Suppose Ci not divisible by x-a. From the equation f

Mi^-.^-U^+S..^- ^^!,^,...,^^,
recalling the form of the determinant which is the square root of the left hand side, we
infer

(^V A(1 &amp;lt;y &amp;gt;&amp;lt;M yi
~

1 ^)y&amp;lt;+1
-&quot; /l

~
1)=Vi2A(1 5ri &amp;gt;&amp;gt;i 5r - i) -

Hence, save for sign,

*/?!-(*-aX/Ct,
so that (x aY divides v-

Thus the first step in the determination of the integral functions is to put A
(!,_&amp;gt;/,

....y&quot;-
1

) into the form MI
*

...u**, wherein M
I( ... ,

ur are polynomials having only simple

*
Chap. IV. 38. f Chap. IV. 43.



106 ACTUAL ALGEBRAICAL DETERMINATION OF [74

factors. This can always be done by the rational process of finding the highest divisor

common to A(l,y, ...,y
n ~ 1

)
and its differential coefficients in regard to x. It will include

most cases of practical application if we further suppose all the linear factors of

A(l &amp;gt;ty, ...,y
n ~ 1

)
to be known*.

75. Suppose then that x a is a factor which occurs to at least the second order in

A(l,y, ...,
&amp;lt;y
n &quot;

1
).

Denote x-a by u. By the solution of a system of linear equations,
we can (below, 78) find all the existing linearly independent expressions of the form

(a+ a
1 y+...+an _ l y

n - 1
)lu,

wherein a, a
t ,

. . .
, a,t _ 1

are constants, which represent integral functions. If the highest

power of y actually entering be the same in two of these integral functions, say in f and f ,

we can use instead of f a function of the form f /if, where /i is a certain constant. By
continued application of this method of reduction we obtain, suppose, k integral functions,

of the form

r
=

(a +a\y+...+a ry
r
)/U, (C)

wherein, since these functions are linearly independent, k is less than n, and the vahies of

r that occur are all different. These values of r that occur are among the sequence

1, 2, ..., (n 1) ;
let s denote in turn all the n 1 k other integers in this sequence. Put

,
for y*. Consider now the set of integral functions

* lit &amp;gt;*-!

As before we can determine by the solution of a system of linear equations all the

linearly independent functions of the form

wherein /3,#i, ..., /3n _ x
are constants, which are integral functions

; and, as before, we can

choose them so that the f s of highest suffix which occur shall not be the same in any two
of these integral functions. Then in place of 1, f1} ..., fn _ 1

we obtain a set 1, 15 ...,_!,
wherein gr is fr unless there be an integral function of the form

O + /3 lCl+ ...+/3 rtr)/, (D)

wherein the f of highest suffix occurring is r ,
in which case r denotes this function.

Then we enquire whether there are any integral functions of the form

y, ...,yn -i being constants. If there are, the process is to be continued t- If there are

none, let v denote any other linear factor occurring in A (1, y,..., y
n ~ 1

} to at least the

second order. Then, as for the set 1, y, ..., y&quot;&quot;

1
,
we investigate what linearly independent

integral functions exist of the form

and continue the process for v as for u : and afterwards for all other repeated factors of

Aa,^...,^- 1
)-

76. When these processes are completed, we shall obtain a set of integral functions

!&amp;gt; ?]&amp;gt; ) /n-l)

such that there exists no integral function of the form

* In the work below, if u be a polynomial of order r, it is necessary to suppose a, a
5 , ..., a* to

be polynomials of order ? 1.

+ The number of steps is finite, by 74.
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wherein a, ..., an _ t
are constants, for any value of c. It is obvious now from the successive

definitions (C), (D), ... of the sets (1, ft, ..., fn -i) (1, 1, ...,n-i), ..., (1, ijlt ..., ;_,), that

every power of y can be represented in the form

wherein v, v
v , ..., vn _ l

are integral polynomials in x. Hence every integral function can

be written in the form

r,
=

(
A +El r,, + . . . +En _ l r,n _ J/F,

wherein E, ..., !n -u F are integral polynomials in x without common divisor. If now
x c be a factor of F and we write

Ei= (x-c) (fi+ ai, i=0, 1, 2, ..., (n- 1),

at being a constant, the function

is an integral function, as appears from the form of the left-hand side. By the property
of the set 1, Vn &amp;gt; Jn-i there is no integral function having the form of the right-hand

side, unless each of a, alt ..., an _ T
be zero.

Hence each of E, ...,En _ l
are divisible by x c. By successive steps of this kind it

can be shewn that every integral function can be written in the form

1
Tln - l , (E)

wherein H, fl
l , ..., Hn -i are integral polynomials in x.

77. But in order that the set 1, rj l , ..., r}n _ l
should be such a fundamental set as

I&amp;gt;ffi&amp;gt; &amp;gt;.9

r

n-i&amp;gt;
used in Chap. IV., there must be no terms occurring on the right-hand side

here, which are of higher dimension than
rj.

We prove now that this requires a further

reduction in the forms of 1,^ ..., rjn _ l ,
which is of a kind precisely analogous to the

reductions already described.

Let a+ 1 be the dimension of
17, pf the order, and therefore also the dimension of the

polynomial ZT( ( 76) and a-i+ l the dimension of ^; we suppose o^ ^&amp;gt;

o-2 ;j&amp;gt;

...
:j&amp;gt;

o-n _ 1 ;

then

Putting #=!/, h=r
tlx

&amp;lt;T

,
h

i
=

rnlx
T

,
Hi

x~ Pi
=(\^)pit

an integral polynomial in
,

this equation is

If now in equation (E) a term arises of higher dimension than
rj,

one of the integers

p (o-+ l), ..., pi+ &amp;lt;Ti O-,...

is greater than zero. In that case let r+l be the greatest of these integers. Then we can

write

^=(...+ (i,Mi+. ..)/,

wherein the symbols (1, )mi denote integral polynomials in . Putting

(liflm^A i+ Oi, (1
=

0, 1, 2, ..., w-1),

wherein a; is a constant, we have

Herein the left hand is a function which is not infinite when x is infinite. Hence,
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when the set 1, r) l , ...,rjn ^ l
are such that the condition of dimensions* is not satisfied,

there exist functions of the form

i.e. of the form

wherein a, ..., an _! are constants which are not infinite when is zero or x is infinite.

In virtue of their definition the functions h
lt ...,/;_! are not infinite when x is infinite,

and are therefore infinite only when x is zero or infinite. We may therefore regard them

as integral functions of . And since there exists no integral function of the form rjifx, the

dimensions of k lt ...,hn _ l
as functions of are

o-j + 1, ..., o-n _ 1+ l.

As before determine a set of linearly independent functions of the form

a, ..., an _j being constants, which are not infinite when =
0, choosing them so that the h

of highest suffix which occurs is not the same in any two of the functions. Let the

function wherein the h of highest suffix is hr be denoted by &,., so that kr is of the form

kr
=

Then ^=^+

is a function which is not infinite when #=0, as appears from the form of the right-hand

side
;

it is therefore an integral function of x, and since kr is not infinite when x is infinite

it is an integral function of x whose dimension is only o&amp;gt;.
Denote it by Qr . Then

r)r can

be expressed in the form

r OY~f~l i OV O&quot;i
, (Tf OV- 1 /-v -\ /Tl\

T)r
= --

[fl* +Wl*
l + ...+fi.r-^r-l

~ Gr], (*)
P-r

and in the right hand no term occurs of higher dimension than that of
i;r ,

while Gr is of

less dimension than
r)r . If then there be m functions such as kr ,

m of the functions

i7u ..., ijn-i can be expressed in the form (F) in terms of the remaining n l m functions

of
ijj, ...,;_! and m functions Gr ;

the sum of the dimensions of these m functions Gr is

less by m than that of the dimensions of the functions
rj r which they replace. Denoting

the functions among i^, ..., tjn _ l
which are not thus replaced by functions G, also by the

symbol G, for the sake of uniformity, every integral function is expressible in the form

(x, l)A
+ (.r, l)^Gl+ ... + (x, l^ffn-i,

and the sum of the dimensions of G
l , ..., Gn^ l

is less by m than the sum of the dimensions

f ?i, j Jn-i-

If now in this expression of integral functions by G
ly ..., Gn _ 1 any terms can arise

which are of higher dimension than the functions to be expressed, we can similarly replace

the set G!, ..., Gn_l by another set whose dimensions have a still less sum.

Since no integral function can have a less dimension than 1, the sum of the dimensions

of the functions whereby integral functions are expressed, cannot be diminished below n 1.

We shall therefore arrive at length at a set glt ...,^B_1
of integral functions, in terms of

which all integral functions can be expressed so that the condition of dimensions is

satisfied.

It is this system which it was our aim to deduce.

*
Chap. IV. 39.



78] FUNDAMENTAL INTEGRAL FUNCTIONS. 109

Ex. For the surface associated with the equation y
z=

(x, l)2 /&amp;gt;
+ 2 a^ integral functions

can in fact be represented in the form (x, l}^+ (x, l)
Aj Vn

where
rj l =y-&amp;gt;f

-xm. If
m&amp;gt;p+ l

the dimension of ^ is m. In order to ascertain whether the condition of dimensions is

satisfied we enquire whether there exist any functions of the form x [a+ a (y+ .v
m
)/x

m
],

wherein a, a
t
are constants, which are finite for &amp;gt;r

= oo, namely whether [a+ a
1 (3/

m + !)]/

can be an integral function of .

Shew that this can only be the case when a + 0^
= 0. Putting kr

= [-a-lt-al (y^
m+ l)]l^

it is clear that kr .r
m ~

l = a
ly. Thus all integral functions can be represented in the form

(x, !).+(#, 1). y. Shew that the condition of dimensions is now satisfied.

78. There is one part of the process given here which has not been explained. Let

?;!, ..., r/n-! be integral functions, and let u denote a linear function of the form x c. It

is required to find all possible functions of the form

wherein a, ..., an _ l
are constants, which are not infinite when w= 0. We suppose

ij!, ..., ?_! to be such that the product of every two of them is expressible in the form

v+ v
l rjl + ...+ vn _ l r)n _ l , v, ..., yn _! being integral polynomials in x

;
this condition is

always satisfied in the actual case under consideration.

The integral function //= a+ a
1
7?

1 -|-...+an _i7-i will satisfy an equation of the form

(H - HW] ...(#- fl) =Hn+A\Hn l + ...+Kn _ ,H+Kn= 0,

wherein
A&quot;i

is an integral polynomial in a, ..., an _! of the ith order
;
K

i is also an integral

polynomial in x. In order that H/u be an integral function it is sufficient that K
t be

divisible by u\ and when H/u is an integral function these n conditions will always be

satisfied. And it is easy to see that if Si denote the sum of the {th powers of the n values

of H which arise for any value of x, these conditions may be replaced by the conditions

that Si be divisible by u^ It is clear that it may not be an easy matter to obtain the

values of a, ..., an _!, which satisfy the conditions thus expressed.

But in fact these conditions can be reduced to a set of linear congruences, and event

ually to a set of linear equations for a, ..., an _i. We shall not give here the proof of this

reduction*, but give the resulting equations. For in many practical cases we can obtain

the results, geometrically or otherwise, in a much shorter way.

Let

/

denote in order of magnitude all the positive rational numerical fractions not greater than

unity, whose denominators are not greater than n
;
each being in its lowest terms. Let

Tj!, ..., 77,.
denote any linearly independent integral functions. Let 2 denote the sum of the

n values of a function which arise for any value of x. Determine all the possible sets of

values of the constants a, a
1} ..., ar such that the congruence

2(a+ a
1 771+ ... + ar 77r)(c+ c

1 77 1 + ... + cr 77r)
=

(mod. u)

is satisfied for all values of the quantities c, c
lt ..., cr . Substituting in the left hand the

value of x for which u= and equating separately to zero the coefficients of c, clt ..., cr ,
we

obtain r-\-l linear equations for the constants a, j, ..., a r . By these equations we can

* Which is given by Hensel, Acta Math. 18, pp. 284 292. His use of homogeneous variables

is explained below Chap. VI. 85. But it is unessential to the theory of the reduction referred to.
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express a certain number* of a, alf ..., ar in terms of the others
; denoting these others by

ft, ..., ft the function a+a^+ .-.-fa,.^ takes the form ftd + .-.+ftf*, wherein lt ..., ,

are definite linear functions of 1, i^, ..., r)r with constant coefficients, and the equations in

question are then satisfied for all constant values of ft, ..., ft. We associate f the functions

CD ) f with the first term - of the series of fractions specified above. We proceed thence
7i

to deduce a set of integral functions associated with the next term of the series, .

?i ~
1

But in order to be able to describe the successive processes in as few words as possible, let

us assume we have obtained a set of integral functions j, ..., m which in the sense

employed are associated with\ the fraction e of the series, and wish to deduce a set of

functions associated with the next following fraction of the series, . Put down the con

gruence

2 (yi& + . ..+*&) (ii + . +e,B&)i-isO (mod. w^i).

Herein ylt ..., ym denote constants, {denotes in turn all positive integers not greater

than n which are exact multiples of the denominator of the fraction e, so that if is an

integer, \it denotes the least integer which is not less than ie
, and, for any proper value

of ij the congruence is to be satisfied for all values of the quantities e
x , ..., em . It will be

found in practice that the left-hand side divides by u ]if :

~ 1 for all values of y15 ...,ym ,

%,..., em . If we carry out the division, then, in the result, substitute the value of x

which makes u=0, and equate separately to zero the coefficients of the
(

.

) products of
\i l/

e
1 , ..., em which enter on the left, we shall have this number of linear equations for

7u &amp;gt; ym- Solving these, and thereby expressing as many as possible of yx , ..., ym in

terms of the remaining, which we may denote by y/, ..., y m &amp;gt;, yii+ ... + ym m will take a

form yii + ...+y m gm ,
wherein y/, ..., y m are arbitrary constants, and /, ..., gm&amp;gt; are

definite linear functions of ls ..., m . We say that /, ..., %m &amp;gt; are associated with the

fraction e .

This process is to be continued beginning with the case when e-- and ending with the
Yi

case when e = l. The functions associated with the last term, 1, of the series of frac

tions, say G!, ..., Gk ,
are all the functions of the form a+ a

l r) l + ... + an ^ l rjn _ l ,
wherein

a, als ..., an ^ l
are constants, which are such that GJu, ..., Gk/u are finite when u=0.

For the case =
3, of a surface of three sheets, the series is J, |, |, 1. The successive

congruences may therefore be denoted by

(S2)
=

(mod. it), (S3)= (mod. w2
), (&amp;gt;S2)

=
(mod. w 2

), (S3)
= (mod.

3
),

wherein (S^ denotes such an expression as 2 (yili + ...+y,|m) (^i^i+ - +^n^mY 1
-

In fact 3 is the only integer not greater than 3 such that 3. ^ is integral and |3 .
|

= 2.

And 2 is the only integer not greater than 3 such that 2 . is integral and
1

2 .
|

= 2
;

finally 3 is the only integer such that 3 . is integral, and
1

3 . 1
1

= 3.

For a surface of four sheets the fractions are

i, J, i, , I, i.

* At most, and in general, equal to r.

\_

t In a certain sense the functions f1? ..., ,
are all divisible by u.

+ Divisible by xf
,
in a sense.
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We therefore have
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1
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Hence 1, y, ,
are a fundamental system such as 1, gv , #2 , 9z m Chap. IV. ;

and
(C X

the deficiency of the surface is 1 + 1 + 2 -
(4
- 1

)
= 1 .

Ex. ii. In partial illustration of Hensel s method of reduction consider the case of the

equation

f - 3^/
2+ 3y.v (x

- 1
) + x* (x

- 1
)
2
(O.^

3+ 7.v
2+ 5.r+ 3)

=
0,

for which the sums of the powers of y are given by

s = 3.r s = 3#2+ fix s = -

The determinant A (1, y, j/
2
)
is divisible by .r3 and by (x I)

2
,
as appears on calculation.

By forming the equation satisfied by y
l
\x it appears that y^jx is an integral function.

Denote it by r).
We consider now what functions exist of the form

(a+ atf+ a2 rf)l(x -1),

wherein a, a1? a2
are constants, which are integral functions.

The congruence (S2) = 2 (a+a^ + a^) (c+ c
lty+ e2 ^)

=
(mod. .r-1) leads, considering

the coefficients of c, cn c2 separately, to the congruences

s
1 + a2 -0( ,.r- 1), a^

and therefore to the equations

which give a= 0, a
x
= 3a2 ,

and shew that the only function of the kind required is, save

for a constant multiplier,

(,-%)/(*- 1).

The other three congruences reduce then to conditions for this function
;
for example,

the congruence ( 3)
= 0( ,

^2
)
becomes

_x(x 1) x 1

But in fact, if we write g= (y^-Zxy}jx (x-\\ A = dx3+ 7.
2+ 5.v+ 3, we immediately

find from the original equation that

g3+ gi
_
fy (A.x -$) +A zx(x-l) + 9Ax= 0,

so that g is an integral function.

Apply the method to shew that y*jx is the only integral function of the form

Prove that the dimensions of the functions

are respectively 0, 3, 3.

Putting a?= 1/|, y/.r
3=

A, examine whether there exists any integral function of of

the form

[a+ aiA+ 3a2 (A
2-3%)/ (!

and deduce the fundamental integral functions.

The deficiency of the surface- is 3 + 3 -(3-1) = 4.
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CHAPTER VI.

GEOMETRICAL INVESTIGATIONS.

80. IT has already been pointed out ( 9) that the algebraical equation,
associated with a Riemann surface, may be regarded as the equation of a

plane curve
;
for the sake of distinctness we may call this curve the funda

mental curve. The most general form of a rational function on the Riemann
surface is a quotient of two expressions which are integral polynomials in

the variables (x, y) in terms of which the equation associated with the surface

is expressed. Either of these polynomials, equated to zero, may be regarded
as representing a curve intersecting the fundamental curve. Thus we may
expect that a comparison of the theory of rational functions on the Riemann
surface with the theory of the intersection of a fundamental curve with other

variable curves, will give greater clearness to both theories.

In the present chapter we shall make full use of the results obtainable

from Riemann s theory and seek to deduce the geometrical results as con

sequences of that theory.

81. The converse order of development, though of more elementary

character, requires much detailed preliminary investigation, if it is to be

quite complete, especially in regard to the theory of the multiple points
of curves. But the following account of this order of development may be

given here with advantage ( 81 83). Let the term of highest aggregate

degree in the equation of the fundamental curve f(y, #)
= be of degree n;

and, in the usual way, regard the equation as having its most general form

when it consists of all terms whose aggregate degree, in x and y, is not

greater than n; this general form contains therefore (7i+l)(w + 2) terms.

Suppose, further, that the curve has no multiple points other than ordinary
double points and cusps, 8 being the number of double points and K of cusps.

Consider now another curve, ty (x, y)
=

0, of order m, whose coefficients are

at our disposal. By proper choice of these coefficients in
-v/r

we can determine

xp-
to pass through any given points of y, whose number is not greater than

the number of disposeable coefficients in
-v|r.

Let k be the number of the

prescribed points, and interpret the infinite intersections of /and &amp;gt;/r,

in the

usual way, so that their total number of intersections is raw. Then there

B. 8
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remain mn k intersections of / and
i/r

which are determined by the others

already prescribed. We proceed to prove that if m &amp;gt; n 3, and if we utilise

all the coefficients of
-fy

to prescribe as many of the intersections of -^ andy
as possible, and introduce further the condition that

i/r
shall pass once through

each cusp and double point off, then the number of remaining intersections

which are determined by the others will be p = ^ (n 1) (n 2) B K*, for

all values of m. For, if m ^ n, the intersections of ty withf are the same as

those of a curve

^ + Um_nf= 0,

wherein Um_n is any integral polynomial in the coordinates a; and y, in which

no term of higher aggregate dimension than m n occurs. By suitable

choice of the ^ (m n + 1) (m n + 2) coefficients which occur in the general

form of Um-n we can reduce ^(mn + l)(m n 4- 2) coefficients in \jr+ Um-nf
to

zero-f&quot;.
It will therefore contain, in its new form,

M + I = 1 + \m (m + 3)
- (m - n + 1) (m - n + 2)

arbitrary coefficients. M is therefore the number of the intersections of ^r

with f which we can dispose of at will, by choosing the coefficients in
&amp;gt;/r

suitably. Of these intersections, by hypothesis, 2 (8 + K) are to be taken

at the double points and cusps of the curve /. This can be effected by the

disposal of + K of the arbitrary coefficients. There remain then

1 + \m (m + 3)
- \(m - n + 1) (m - n + 2)

- 8 - tc

disposeable coefficients and mn 2 (8 + K) intersections. Of these, therefore,

mn - 2 (8 + K)
-

[|m (in + 3)
- \(m - n + 1) (m - n + 2)

- B - K]

is the number of intersections determined by the others which are at our

disposal ;
and this number is

(n-l)(n-2)-(S + *).

In case m &amp;lt; n, of the mn 2 (8 + K) intersections of ty with f, which are

not at the double points or cusps ofy, we can, by means of the ^w(m+3) 8 K

coefficients of ^r which remain arbitrary when ty is prescribed to vanish at

each double point and cusp, dispose of all except

mn - 2 (S + K)
-

[|ra (m + 3)
-

(8 + K)] ;

when m = n 1 or n 2 it is easily seen that this is the same as before.

82. Let us assume now that the polynomials which occur, as the nume

rator and denominator, in the expression of a rational function, have the

* Reasons are given, Forsyth, Theoi-y of Functions, p. 356, 182, for the conclusion that this

number is the deficiency of the Riemann surface having / (y, x)
= Q as an associated equation.

We shall assume this result.

t As, for instance, the coefficients of y
m

, ij
m~\ y

m^x, ..., y
n

, y
n
x, ..., y

nxm n
,
in which case

the highest power of y, in ^+ */,_/, that remains, is y
n~ l

.
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property here assigned to ty, of vanishing once at each double point and

cusp of/ Without attempting to justify this assumption completely, we

remark that if it is not verified at any particular double point, the rational

function will clearly take the same value at the double point by whichever of

the two branches of the curve / the double point be approached. As a

matter of fact this is not generally the case. Suppose then we wish to obtain

a general form of rational function which has Q given finite points of

/, A !,..., A Q ,
as poles of the first order. Draw through these poles,

A lt ..., A Q , any curve ty whatever, of degree greater than n 3, which passes

once through each double point and cusp off. Then ty will intersect/ in

mn - 2 (8 + *)
- Q

other points Blt B2 ,
.... Through these other points Blt _B2 &amp;gt; off, and

through the double points, draw another curve, S-, of the same degree as ty.

The curve ^ will in general not be entirely determined by the prescription

of the mn 2 (8 + K) Q points B1} -B2 ,
____ Let the number of its coefficients

which still remain arbitrary be denoted by q + 1. Then it would be possible

by the prescription of, in all,

mn - 2 (S + K)
- Q + q

points of ^, to determine ^ completely. But by what has just been proved,

S- is determined completely when all but p of its intersections are prescribed.

Wherefore
mn - 2 (8 + K)

- Q + q
= mn - 2 (S + )

-
p.

Hence Q q = p, and ^ has the form

where X, \lt . . .
, X^ are arbitrary constants and

-v/r,
S-1} . . .

,
^9

are q + 1 linearly

independent curves, all passing through the mn 2 (8 + K) Q points

BI, B.2 , ..., as well as through the double points and cusps; and the general

rational function with the Q prescribed poles will have the form

X + Xj .Rj + . . . + ^qRq ,

where Ri = ^/i|r ;
and this function contains q + 1 arbitrary coefficients.

83. In this investigation, which is given only for purposes of illustration, we have

assumed that the prescription of a point of a curve determines one of its coefficients in

terms of the remaining coefficients, and that the prescription of this one point does not of

itself necessitate that the curve pass through other points ;
and we have obtained not

the exact form of the Riemann-Roch Theorem (Chap. III. 37), but the first approxima
tion to that theorem which is expressed by Q q=p; this result is true for all cases only
when Q&amp;gt;n(n-3)-2(8+ ic).

We may illustrate the need of the hypothesis that the curves
x//-

and ^ pass through the

double points and cusps, by considering the more particular case when the fundamental

curve

/=(# y)2+ (a y\+ fa y)4
=

&amp;gt;

82
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wherein (x, y\ is an integral homogeneous polynomial in x and y of the second degree, etc.,

is a quartic with a double point at the origin #=0, y= 0. Since here =4 and 8+ K= l,

we have

j-$(-l)(n-2)&-*-i.3.2-l-,
and therefore (in accordance with Chap. III. 23, 24, etc.) there exists a rational function

having any three prescribed points as poles of the first order. Let us attempt to express

this function in the form ^/\/^, wherein ^, ^ are curves, of degree m, (m&amp;gt;l),
which do not

vanish at the double point. Beside the three prescribed poles A^ A
2 ,
A 3 of the function,

^ will intersect/ in 4m 3 points Bv ,
JB2 ,

.... The intersections with / of the general

curve ^ of degree TO, are the same as those of a curve

provided TO &amp;lt;: 4, and are therefore determined by ^TO(m+ 3) (m 4 + 1) (m 4+ 2), or

4m 3 of them. And it is easily seen that the same result follows when m=3 or 2.

Hence no curve ^ can be drawn through the points Slt B2 ,
... other than the curve

\//-,

which already passes through them
;
and the rational function cannot be determined in

the way desired. It will be found moreover that this is still true when the hypothesis,

here made, that ^ and ^- shall be of the same degree, is allowed to lapse. As in the

general case, this hypothesis is made in order that the function obtained may be finite for

infinite values of x and y.

A curve which passes through each double point and cusp of the fundamental curve/
is said to be adjoint. When / has singularities of more complicated kind there is a corre

sponding condition, of greater complexity. For example in the case of the curve

which, in the present point of view, we regard as a quartic, there is a singularity at the

infinite end of the axis of y. If, in the usual way, we introduce the variable z to make the

equation homogeneous, and then* put 3/
=

l, whereby the equation becomes

we see that the branches are, approximately, given by z &r2
, namely there is a point of

self contact, the common tangent being 2= 0. If we assume that it is legitimate to regard

this self contact as the limit of two coincident double points, we shall infer that the condi

tion of adjointness for a curve ^ is that it shall touch the two branches of / at the point.

For example this condition is satisfied by the parabola

which, by the same transformation as that above, reduces to

z= ax2+ bxz+ cz2
,

and it is obvious that the four intersections with / of this parabola, other than those at

the singular point, are determined by all but p of them, p being in this case equal to 1.

We shall see in this chapter that we can obtain these results in a somewhat different

way: the equation y
2=

(l x2
) (1

2#2
)

is a good example of those in which it is not

convenient to regard the equation as a particular case of a curve of degree equal to the

highest degree which occurs. Though this method, of regarding any given curve as a

particular case of one whose degree is the degree of the highest term which occurs in the

given equation of the curve, is always allowable, it is often cumbersome.

Ex. 1. Prove that the theorem, that the intersections with / of a variable curve ^ are

determined by all but p of them, may be extended to the case where / has multiple points

* This process is equivalent to projecting the axis y = to infinity.
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of order k, with separated tangents, by assuming that the condition of adjointness is that

i//-
should have a multiple point of order k 1 at every such multiple point of /, whose

tangents are distinct from each other and from those of/. (In this case any such multiple
point of/ furnishes a contribution \k (k 1) to the number 5-f K of/.)

Ex. 2. The curve y*=(x, 1)6 may be regarded as a sextic. Shew that the singular
point at infinity may be regarded as the limit of eight double points, and that a general
adjoint curve is

Ex. 3. Shew that for the curve tf= (x, l)2p + 2
a general adjoint curve is

For further information on this subject consult Salmon, Higher Plane Curves (Dublin,
1879). pp. 4248, and the references given in this volume, 9 note, 93, 97, 112 note,

84. In the remaining analytical developments of this chapter we

suppose* the equation associated with the Riemann surface to be given in

the form

f(y, *) = y + 3r- (*, l)Al + ...+y(a;, 1)^ + 0, l)An =0,

so that y is an integral function of x. Let a- + 1 be the dimension of y ;

then cr + 1 is the least positive integer such that y/or
+l is finite when x is

infinite; thus if we put #=l/f and y=i)!%*+*, a -f 1 is the least positive

integer, such that 77 is an integral function of . This substitution gives

f(y, x)=Z-n{ +
vF(r), a where

so that cr + 1 is the least positive integer which is not less than any of the

quantities

X1} X2/2, ..., Xn_j/(n - 1), \n/n.

Ex. 1. For the case

the dimension of y as an integral function of x is 3. Writing y= r)/
3
,
where =!/, the

equation becomes

and
Tj

is an integral function of of dimension 2. In fact yi= v/!
2
=y/# satisfies the

equation

yf+yi*(x, i)3 +yi(*, i)4 +(- 1)5=

and is finite when = oo
,
or #= 0.

Ex. 2. Shew that in the case in which the equation associated with the Riemann
surface contains y to a degree equal to the highest aggregate degree which occurs, o-= 0.

*
Chap. IV. 38.
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Whenever we are considering the places of the surface for which x = oo
,

we shall consider the surface in association with the equation F(r), )
=

;

and shall speak of the infinite places as given by f=0. The original equation
is practically unaffected by writing x c for x, c being a constant. We may
therefore suppose the equation so written that at x = 0, the n sheets of

the surface are distinct
;
and may speak of the places x = as the places

85. By the simultaneous use of the equations f(y, #) = 0, F(r), ) =0,
we shall be better able to formulate our results in accordance with the view,

hitherto always adopted, whereby the places x = oo are regarded as exactly

like any finite places. But it should be noticed that both these equations

may be regarded as particular cases of another in which homogeneous variables,

of a particular kind*, /are used. For put x = ajfz, y = u/z
&amp;lt;r+1

;
we obtain

)
= g-nr+D U(u; to, z\ where

U (u\ , z)
= un + M -IS&amp;lt;H-I-*I (w, z)Kl + ...+ uz l-v &amp;lt;&amp;lt;H-I)-AH_,

(Wj ^^_ i

and it is clear that U(u; &&amp;gt;, z) is changed into f(y, so) by writing u = y,

&&amp;gt;

= #, z=l, and is changed into F(rj, ) by writing u =
t), co = 1, z = g.

We may speak of w, z as forms, of degree 1, and suppose that they do not

become infinite, the values x = oo being replaced by the values z = Q. When
&amp;lt;,

z are replaced by ta&amp;gt;, tz, t being any quantity whatever, u is replaced by
t
a+1

u, y and x remaining unaltered. We may therefore speak of u as aform
of degree a + 1.

Similarly U (u ; o&amp;gt;, z) is a form of degree n (o- + l), being multiplied by
tt(&amp;lt;r+D when u, to, z are replaced by t*+1 u, tta, tz respectively. That there

is some advantage in using such homogeneous forms to express the results of

our theory will sufficiently appear; but it seems proper that the results

should first be obtained independently, in order that the implications of the

notation may be made clear. We shall adopt this course.

Some examples of the change which our expressions will undergo when
the results are expressed by homogeneous forms, may be fitly given here :

Instead off(y, x) we shall have U(u; w, z) which is equal to zn(&amp;lt;T+l]

f(y, sc)\

instead of/ (y) we shall have U (u)
= z (n

~
1}

(*+*&amp;gt;/ (y} ;
instead of the integral

function *f ^, of dimension T{ + 1, an integral form ^ of degree r;+l, equal

to zT
i
+1

gi, will arise
;
since 2 (rf + 1)

= n +p 1, it is easy to see that the

determinant J A (1, glt ...,
&amp;lt;7
n-i) is equal to ^2n+^~2 A (1, #1,..., g^). In

accordance with 48, Chap. IV. the former determinant will have a factor

* This homogeneous equation is used by Hensel. See the references given in Chap. IV.

( 42). It may be regarded as a generalization of the familiar case when &amp;lt;r

= Q.

t Chap. IV. 42.

J Chap. IV. 43.
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(&) cz)
r
corresponding to a finite branch place of order r where x = c, and a

factor z8

corresponding to a branch place of order s at x = oo . Further, if,

by the formula (H) of page 63, we calculate the form fa (u, co, z) from

glt ..., gn-i, as fa(x, y) is there calculated from glt ..., gn-\, it is easy to see

that we obtain a form, fa(u, w, z), which is equal to z in
~1)(a+1)~ (Ti+l} fa(x, y).

Hence also, if ult &amp;lt;olt zl denote special values of u, co, z, the integral

[zdw o)dz fjr
1

fa (u^o), z) + S/A^ fa (u, &amp;lt;*, z)gr (u 1&amp;gt; o^, z,)

U1

(u) oaZi a&amp;gt;iZ

wherein
/j,
=

(bo) az}l(bw i az
} ),

a and b being arbitrary constants, is equal to

dx . z^ &amp;lt;-+ &amp;gt; ^ fa (x, y) + 2/^ (z1/z)
T
r+^fa(g;)

f

{ -j/\ & ? (if nr
IV J 4t&\ \W *Aj\
\t/ / * \

and is thus equal to

dx Ar1

fa (x,

where X = /jLzJz
= (bx a)/(bx1

-
a).

If in this we put 6 = 0, we obtain the form which we have already shewn

to be part of the expression of an integral of the third kind (Chap. IV. p. 67).

But if we put 6=1, the integral is exactly what we have already deduced

(Chap. IV. p. 70, Ex. 1) by the ordinary process of putting x !/(- a)

and regarding % as the independent variable.

We may, if we please, further specialise the quantities co, z, of which

hitherto only the ratio has been used, supposing* them defined by

o)=x((x c), z=I/(xc), where c is a constant. Then &&amp;gt; cz\.

Ex. 1. The integral of the first kind obtained in Chap. IV. 45, p. 67, can similarly

be written

Ex. 2. In the case y
2
=(x, l)2p + 2&amp;gt;

wherein y is of dimension p+ 1, the equation

U (u; u&amp;gt;, z)
= is

v?=
(a&amp;gt;, 2)2P +2

obtained by putting y= u/z
p * 1

, x=a&amp;gt;/z.

86. We shall be largely concerned here with rational polynomials which

are integral in x and y. The values of such a polynomial here considered

are only those which it has for values of y and x satisfying the fundamental

equation. We shall therefore suppose every integral polynomial in x and y

reduced, by means of the fundamental equation, to a form in which the

highest power of y which enters is y
n~l

, say to a form

* In this view u and z are functions. If we regard c as throughout undetermined, we may
regard these functions as having no definite infinities.
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If herein we write y = 77/f
+1

,
#= l/, cr + 1 being, as before, the dimen

sion of y as an integral function of x, we shall obtain
-v^- (y, x)

= ~ ^ (77, ),

where &quot;^ (77, ) is an integral polynomial in
77
and of which a representative

term is

^n+i
G-

(n-i-i} (*+D-H (\ t^ i=Qt 1? ......
j (n

_
1}

and G is the positive integer equal to the greatest of the quantities

Thus (r is the highest dimension occurring for the terms of
-fy (y, x),

and (77, ) is not identically divisible by . The dimension of the integral

function -^ (y, #) may be G
;
but if M* (77, ) vanish in every sheet at = 0,

the dimension of ty(y, x) will be less than G. For this reason we shall

speak of G as the grade of ty (y, x). It is clear that if all the values of TJ

for = be distinct, that is, if Ff

(77) do not vanish for any place
=

0, the

polynomial M/&quot;

(77, ),
of order ?i 1 in 77, cannot vanish for all the n places

f= 0. In that case the grade and the dimension of ty (y, x} are necessarily

the same. Further, by the vanishing of one of the coefficients, a polynomial

of grade G may reduce to one of lower grade. In this sense a polynomial of

low grade may be regarded as a particular case of one of higher grade.

In what follows we shall consider all polynomials whose grade is lower

than (n 1) a- + n 3 or (n 1) (cr + 1) 2, as particular cases of polynomials

of grade (n 1) cr + n 3 : the general expression of the grade will therefore*

be (n l)cr + n 3 + r, or (n
-

1) (&amp;lt;r
+ 1) + r 2, where r is zero or a positive

integer. The most general form of a polynomial of grade (n l)(cr+l) + r 2

is easily seen to be

i/r (y, x) = y^ (x, l\_2 + y
n~-

(x, l\_, + ...+ y
n-^

(x, 1)^ + ...+(, l)r-i

wherein the first line is to be entirely absent if r = 0, the first term of the

first line is to be absent if r = 1, and the first term of the second line is to be

absent if cr = 0.

Hence when r &amp;gt; 0, the general polynomial of grade (n 1) cr -f n 3 + r

contains

nr - 1 + (n
-

1) (n
- 2 + na)

terms, this being still true if cr =
;
but when r = 0, the general polynomial

of grade (n 1) a + n 3 contains

terms. This is not the number obtained by putting r = in the number

obtained for r &amp;gt; 0.

* The number is written in the former way to point out the numbers for the common case

when (r= 0.
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Further, putting

, x) = g-ct-w-c^-v-ripfa f),

and denoting the aggregate number of zeros of &quot;SP

(77, ) at = by /z, it

is clear that the aggregate number of infinities of
i/r (y, x) at x = oo is

[(n 1) a- + n 3 + r]n p. Since ty (y, x) is only infinite for x = oo
,
this

is also the total number of zeros of ty (y, x). We shall find it extremely
convenient to introduce a certain artificiality of expression, and to speak
of the sum of the number of zeros of ty(y, a) and the number of zeros of

^ C7?. |) at = as the number of generalized zeros of
-\/r (y, x). This number

is then n (n
-

1) (a + 1) -f n (r
-

2).

If by a change in the values of the coefficients in ty (y, x), &quot;V
(77, )

should take the form If^i (77, ) where ^1(77, &)qJ c(,f7 integral polynomial
in

77 and so that ^ (y, x) is w-&amp;gt;
. { l^/,/v ^ (77, ), the sum of

,, -i f n / &amp;gt;~iial for the surface \y&amp;gt; %,
^

the number of finite zeros of x. fc-&quot;p. of zeros of YI (77, f )--
.9\ ..9_ 2 I Vi^fZ- ? \ &amp;gt;/

is i(w- l)(o-+l) + n(r-3). i^ut, a.^
, c, ; is equal to ^(77, f),

the number of zeros of M/&quot; (77, ^) at ^ = is ?i more than the number of zeros

of^ (77, f) at = 0. Hence the sum of the number of finite zeros of ty (y, x)

and the number of zeros of M/&quot; (77, ^) at =
0, is still equal to

n (n
-

1) (o- + 1) + ?i (r
-

2).

^r. i. The number n (n- 1) (&amp;lt;r
+ l) + ?t (r-2) is clearly the number of zeros of the

integral form

Ex. ii. The generalized number of zeros of/ (?/), for which r= 2, is 71 (?i 1) (o- + 1).

Ex. iii. The general polynomial of grade d, &amp;lt; (n 1) &amp;lt;r + ?i 3, contains

terms

^(x-) being the greatest integer in *\ Its generalized number of zeros is nd.

87. We introduce now a certain speciality in the integral polynomials
under consideration, that known as adjointness.

An integral polynomial x/r (y, x) is said to be adjoint at a finite place

(x = a, y = b) when the integral

fyu/.a-
1

J f(y}

is finite at this place. If t be the infinitesimal at the place (Chap. I. 2, 3)
the condition is equivalent to postulating that the expression

f (y)
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shall be finite at the place; or again equivalent to postulating that the

expression

(x-a)^ (y, x)

f(y)
shall be zero at the place, to the first order at least.

As a limitation for the polynomial i/r (y, x\ the condition is therefore

ineffective at all places where / (y) is not zero. And if at a finite place
where / (y) vanishes, i + w denote the order of zero of / (y\ w + I being
the number of sheets that wind at this place*, the condition is that ty (y, x}
vanish to at least order i at the place. We shall call ^i the index of the

place ;
the condition of adjointness is therefore ineffective at all places

of zero index.

If
i/r (y } x} be of grade (n 1) a- + n 3 + r, and

t (V, *) = {-(^ -(K-V-rV
(rj, fr

the condition of adjointness of
i/r (y, x) for infinite places, is that, at all

places | = where F (ij)
= 0, the function

should be zero, to the first order at least. It is easily seen that this is

the same as the condition that the integral

fl
J of

dx

should be finite at the place considered.

When the condition of adjointness is satisfied at all finite and infinite

places where f (y)
= or F (77)

=
0, the polynomial i/r (y, x) is said to be

adjoint. If II (x a) denote the integral polynomial which contains a

simple factor corresponding to every finite value of x for whichf (y) vanishes,

and if N denote the number of these factors, it is immediately seen that the

polynomial ty (y, x) is adjoint provided the function

is zero, to the first order at least, at all the places where / (y}
= or

F (r,) =0.

Ex. i. For the surface associated with the equation

/ (y, #) = to y\+ to y)3+ to y\ =-

there are two places at x=Q, at each of which y= 0. At each of these places/ (y) vanishes

to the first order, and w=0. Hence the condition of adjointness is that ^(y, x) vanishes

It is easy to see that i is not a negative integer. Cf. Forsyth, Tlieory of Functions, p. 169.
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to the first order at each of these places. The general adjoint polynomial will therefore

not contain any term independent of x and y.

Ex. ii. For the surface

y*
_f [( 1 + #5) &+ !]+ tfyA=

there are two places at #=0, at each of which y is zero of the second order : they are not

branch places. At each of these/ (y) vanishes to the second order.

The dimension of y is 1, and the general polynomial of grade (n
-

1) &amp;lt;r + n - 3 + 1 or 2, is*

Af+By+ C+ x [Dy+ Ex+ F].

In order that this may vanish to the second order at the places in question, it is sufficient

that (7=0 and F=0. Then the polynomial takes the form

By+Ay2+ Dxy+ Ex\

and if we put x/rj for x and !// for y this becomes, save for a factor
17

~ 2
,

which is therefore an adjoint polynomial for the surface

Compare 83.

Ex. iii. Prove that the general adjoint polynomial for the surface

y
2= (#- a)

3
,

is y(x, l) r _ 2+ (^-a) (x, l)r _ 1
= 0.

(The index of the place at x= a is 1.)

88. Since the number of generalized zeros of f (y} is n(n l)(o- + 1),

( 86, Ex. ii), we have, in the notation here adopted,

2(i+w) =
n(n-I)(&amp;lt;r + l),

or if / denote 2t and W denote 2w, the summation extending to all finite

and infinite places of the surface

/+ W =
n(n-l)(&amp;lt;r+l).

Hence, as^
W = 2rc + 2j

-
2,

we can infer

p = Kn-l)(n-2 + &quot;&amp;lt;r)-J/,

shewing that / is an even integer.

Further if X denote the number of zeros of an adjoint polynomial

fy (y, x), of grade (n 1) &amp;lt;r + n 3 + r, exclusive of those occurring at places

where / (y)
= or F (rj)

=
0, and calculated on the hypothesis that the

adjoint polynomial vanishes, at a place wheref (y) or F (77) vanishes, to an

order equal to twice the index of the place J,
we have the equation

X + / = n (n
-

1) (a- + 1) + n (r
-

2).

* 86 preceding.

t Forsyth, Tiieory of Function*, p. 349.

So that a place of index ^i where ^ (y, .r), or ^
(77, ), vanishes to order i + \, will furnish a

contribution X to the number X.
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Thus, as

/ = n (n
-

1) (a- + 1)
- 2 (n

-
1)
-

2p,

we have

X = nr + 2p
- 2

;

and this is true when r = 0.

These important results may be regarded as a generalization of some of

Pliicker s equations* for the case cr= 0.

Ex. i. The number of terms in the general polynomial of grade (n-l) o-+n-3 + r was

proved to be \(n - 1) (n
- 2+

w&amp;lt;r)
+ nr - 1 or |(w

-
1) (n

- 2 + wo-), according as r &amp;gt; or r= 0.

This number may therefore be expressed as p+ \I-\- nr-l or p+ \I in these two cases.

Ex. ii. It is easy to see, in the notation explained in 85, that the homogeneous form
A (1, u, w2

,
... ,

un
~

l
) is of degree n (n

-
1) (0-+ 1) in

&&amp;gt; and z, and the form A (1, g^ ...
, ffn ,j)

of degree W. The quotient A(l, u, ..., u
n-l

)/&(l, glt ...
, gn_^ is

( 43) an integral form
in

o&amp;gt;, z, which, by an equation proved here, is of degree 7. It is the square of an integral

homogeneous form v whose degree in
u&amp;gt;,

z together is |/.

Ex. iii. It can be proved (compare 43 b, Exx. 1, 2, and 48
;
also Harkness and

Morley, Theory of Functions, pp. 269, 270, 272, or Kronecker s original paper, Crelle, t. 91)
that if for y we take the function

wherein X, X
t ,

...
,
Xn _ 1

are integral polynomials in x, of sufficient (but finite) order, the

polynomial v occurring in the equation,

A(l, y, ...
, y- 1

)
= V 2A (1, fflt ...

, &amp;lt;?_!),

cannot, for general values of the coefficients in X, X
: , ... ,

Xn _ : ,
have any repeated factor, or

have any factor which is also a factor of A(l, g^ ..., ffn _ 1 ). And the inference can be

madef that for this dependent variable y, there is no place at which the index is greater
than ^, and no value of x for which two places occur at whichf (y\ or F

(T}), is zero.

89. We proceed, now, to shew the utility of the notion of adjoint

polynomials for the solution of the problem of finding the expression of

a rational function of given poles.

Let R be any rational function, and suppose, first, that none of the finite

poles of R are at places wheref (y)
= 0. Let ^r be any integral polynomial,

chosen so as to be zero at every finite pole of R, to an order at least as high
as the order of the pole of R, and to be adjoint at every finite place where

/ (y) vanishes. Denote the integral polynomial II (x a), which contains a

linear factor corresponding to every finite value of x for which/ (y) vanishes,

by fj,.
Then the rational function

*
Salmon, Higher Plane Curves (Dublin, 1879), p. 65.

t See also Noether, Math. Annal. t. xxiii. p. 311 (Rationale Ausfiihrung, u. s. w.), and Halphen,
Comptes Rendus, t. 80 (1875), where a proof is given that every algebraic plane curve may be

regarded as the projection of a space curve having only one multiple point at which all the

taugents are distinct. But see Valentiner, Acta Math., ii. p. 137.



89] EXPRESSION OF RATIONAL FUNCTION OF GIVEN POLES. 125

is finite at all finite places where R is infinite, and is finite, being zero,

at every finite place at which / (y)
= Q. If

2/1,
...

, yn denote the n values

of y which belong to any value of x, and c be an arbitrary constant, the

function

(c-y,)(c-y,)...(c-yn)^^ ^
i = \ c ~ yi

is a symmetrical function of ylt ..., yn and, therefore, expressible as a rational

function in x only; moreover the function is finite for all finite values of

x and, therefore, expressible as an integral polynomial in x. Since this

polynomial vanishes for every finite value of x which reduces the product

p to zero, it must divide by JJL. Finally, the function is an integral polynomial
in c, of degree n l. Hence we have an equation of the form

wherein A
,
A lt ..., -4 n-i are integral polynomials in x.

Therefore, putting c = ?/;, recalling the form of the function A (y, x), and

replacing y{ by y, we have the result

which we may write in the form

R =

^ being an integral polynomial in x and y.

Since

(x a) ^ _ p (x a) ty

~7
rW ~7W

^s, like ty, is adjoint at every finite place where
y&quot; (y) vanishes.

Suppose, next, that the function R has finite poles at places wheref (y)

vanishes. Then the polynomial ty is to be chosen so that R (x a) ty/f (y)

is zero at such a place, a being the value of x at the place. This may be

stated by saying that -^ is adjoint at such a place and, besides, satisfies

the condition of being zero at the place to as high order as R is infinite.

Corollary. Suppose R to be an integral function
;
and for a finite place,

x = a, y=b, where / (y) vanishes, suppose t + 1 to be the least positive

integer such that (x
-

a)
t+l

/f (y) has limit zero at the place. Then the

polynomial -^ of the preceding investigation may be replaced by the product
II (x

-
a) ,

extended to all the finite values of x for which / (y) is zero.

Hence, any integral function is expressible in the form
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where S- is an integral polynomial in x and y, which is adjoint at every finite

place wheref (y) vanishes.

If the order of a zero off (y) be represented as before by i + w, it is

clear that the corresponding value of t + 1 is the least positive integer for

which (t + I)(w + l)&amp;gt;i + w, or, for which
t&amp;gt;(i l)/(w+l). Hence the

denominator IT (x a)* only contains factors corresponding to places at which

the index | i is greater than zero
;

if the index be zero at all the finite places
at whichf (y) vanishes, every integral function is expressible integrally.

It does not follow that when the index is zero at all finite places, the functions

I, y, ...
, y

n~\ form a fundamental system of integral functions for which the condition of

dimensions is satisfied. For the sum of the dimensions of 1, yt ... , y
n ~ l is greater than

p+nl by the sum of the indices at all the places #= oo .

It is clear that if R be any rational function whatever, it is possible

to find an integral polynomial in x only, say X, such that \R is an integral

function. To this integral function we may apply the present Corollary.

The reader who recalls Chapter IV. will compare the results there obtained.

90. Let the polynomial ty be of grade (nl)&amp;lt;r+n 3+r, and the

polynomial ^ of grade (n 1) a + n 3 + s, so that

^ _ fc- (n-i) o (n-3)-r \p- ^ _ fc- (n-i) o (n-3) -s (S)

and JB = f-0/,
,

&quot;^ being integral polynomials in 77 and .

If R have poles for = 0, it will generally be convenient to choose the

polynomial ^ so that R^f is finite at all places
=

;
if F (77) vanish for

any places
= 0, it is also convenient, as a rule, to choose -^ so that %ty/F (r))

vanishes at every place f = where F (77) vanishes, namely, so that
i/r

is adjoint at infinity. When both R is infinite and F (77) vanishes at a

place where f = 0, we may suppose ty so chosen that gRW/F (77) is zero at

the place. Let ty be chosen to satisfy these conditions. Then, since

RW, =
R-^r . ^

(n
~

l)&amp;lt;7+n
~3+r

,
is finite at every place, except f=oo, and

(1 a) W/F (77),
=

|
:r
~1

(x a) ^rjf (y), vanishes at every place x = a, y = b,

where # is finite, at which f (y) vanishes, except = oo
,
it follows, as here,

that R can be written in a form

R=,/V &amp;gt;

wherein x is an integral polynomial in 77 and .

Hence j
= %

r~s
,
and therefore r s is not negative : namely, the

polynomial ^ which occurs in the expression of a rational function in the

form R =
^/&quot;fr,

is not of higher grade than the denominator
i/r, provided

-\Jr
be chosen to be adjoint at infinity, and, at the same time, to compensate

the poles of R which occur for x = oo . Since a polynomial of low grade
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is a particular case of one of higher grade we may regard ^ and
-fy

as of the

same grade.

Hence we can formulate a rule for the expression of a rational function of

assigned poles as follows Choose any integral polynomial i/r
which is adjoint

at all finite places and is adjoint at infinity, which, moreover, vanishes at

every finite place and at every infinite place* where R is infinite, to as high
order as that of the infinity of R. If a pole of R fall at a place where

f (y), or F (77), vanishes, these two conditions may be replaced by a single one

in accordance with the indications of the text. Then, choose an integral

polynomial S-, of the same grade as
i/r,

also adjoint at all finite and infinite

places, which, moreover, vanishes at every zero of the polynomial -fy
other than

the poles of R, to as high order as the zero of ty at that place. Then the

function can be expressed in the form

91. We may apply the rule just given to determine the form of the

integrals of the first kind.

If v be any integral of the first kind, dvjdx is a rational function having
no poles, for finite values of x, except at the branch places of the surface. If

a be the value of x at one of these branch places, the product (x a) dvjdx
vanishes at the place. Hence we may apply to dvjdx the same reasoning
as was applied to the function A (y, x) in 89, and obtain the result, that

dv/dx can be expressed in the form

dv y
n~*A Q + y

n~2A 1 + ... + yA^ + An_,

dx f(y)

wherein A
, ..., An^ are integral polynomials in x. Denote the numerator

by &amp;lt;f&amp;gt;,

and let its grade be denoted by (n
-

1) cr + n 3 + r
;
then

But, as a function of
, dv/dg has exactly the same character as has dv/dx

as a function of x. Thus by a repetition of the argument F (77) dv[d% is

expressible as an integral function of rj and . Thus r is either zero or

negative.

(IV

Wherefore,/ (y} -5- is an integral polynomial in x and y, of grade

(n I)&amp;lt;r
+ n 3 or less. It is clearly adjoint at all finite places, and,

reckoned as a particular case of a polynomial of grade (n 1) &amp;lt;r + n 3, it is

clearly also adjoint at infinity.

Conversely, it is immediately seen, that if $ be any integral polynomial of

* That is, if the polynomial be
i//,

of grade (- 1) &amp;lt;r + n-3 + r and ^ = ^|-(-i)
1-(n-S)-r

)
&amp;gt;j&amp;gt;

vanishes at = to the order stated. A similar abbreviated phraseology is constantly employed.
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grade (n 1) r + n 3, which is adjoint at all finite and infinite places, the

integral

// xy&amp;gt;

I *i , * tt-U/j

is an integral of the first kind.

Corollary. We have seen that the general adjoint polynomial of grade

(n l)o- + w 3 contains p + ^I terms, and we know that there are just

p linearly independent integrals of the first kind. We can therefore make

the inference

The condition of adjointness, for a polynomial of grade (n 1) &amp;lt;r + n 3,

is equivalent to ^1 linearly independent conditions for the coefficients of the

polynomial, and reduces the number of terms in the polynomial to p.

92. We have shewn that a general polynomial of grade (n l)o-+n 3 + r

is of the form

^n-3+r
= y-i (x, l)r_2 + y-s (x, l)r_a + ...+y(x, !),_! + (x, l)r_x

We shall assume in the rest of this chapter that the condition of adjoint-

ness for a general polynomial of grade (n l)cr + n 3 +r is equivalent

to as many independent linear conditions as for a general polynomial of

grade (n 1) a + n 3. Thence, the general adjoint polynomial of grade

(n l)cr + n-3 + r contains nr 1 + p terms.

Further we shewed that the adjoint polynomial of grade (n 1) a- + n 3

has %p 2 zeros exclusive of those falling at places where f (y)
= 0, or

F (r,)
= 0.

Hence, the 2p 2 zeros of the differential dv (Chap. II. 21) are the

zeros of the polynomial f (y) dv/dx, exclusive of those where f (y)
= 0, or

*&quot;(,)
=

&amp;lt;&amp;gt;.

It is in fact an obvious corollary from the condition of adjointness that

dV/dt= Wf(y)]tj
dx

only vanishes when vanishes. For, at a place where / (y)=0, (/&amp;gt;

vanishes i times,
-j-

vanishes w times, and/ (y) vanishes i+w times.

Ex. i. For the surface associated with the equation

where (x, 1)1? ... are integral polynomials in x of the degrees indicated by their suffixes,

&amp;lt;r

= 0; and the general polynomial of grade (nl)&amp;lt;r+ n 3 or 1, is of the form
( 86)

Ay+Bt+C.
The indices of the places where / (y)

= are easily seen to be everywhere zero there

are no places, beside branch places, at which f (y) vanishes. Hence p is equal to the

number of terms in this polynomial, or p = 3. And this polynomial vanishes in
2/&amp;gt;-2

= 4

places. These results may be modified when the coefficients in the equation have special

values.
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Ex. ii. For the more particular case when the equation is

(*, 1)2=0

there are two places at x=Q at which y=0. For general values of the coefficients in the

equation these are not branch places and f (y) vanishes to the first order at each
; the

index at each place is therefore \i where i=l, and the condition for adjointness of the

general polynomial of grade 1, is that it shall vanish once at each of these places. These

conditions are equivalent to one condition only, that (7=0. Hence, as there are no other

places where the index is greater than zero, the general integral of the first kind is

and p= 2; the polynomial Ay+Rv vanishes in 2p- 2 or 2 places other than the places

#=0, y=Q at which / (y)=0.

Ex. iii. In general when the equation of the surface represents a plane curve with a

double point, the condition of adjointness at the places which correspond to this double

point, is the one condition that the adjoint polynomial vanish at the double point*.

Ex. iv. Prove that for each of the surfaces

l)2+ (^ 1)4=0,

there is only one place at infinity and the index there, in both cases, is 1.

Shew that the index at the infinite place of Weierstrass s canonical surface f is in all

cases

-r-l),

where means the least integer greater than r/a, and that the deficiency is given by

where / denotes the sum of the indices at all finite places of the surface.

Of. Camb. Phil. Trans, xv. iv. p. 430. The practical method of obtaining adjoint poly
nomials of grade (n 1) &amp;lt;r+n 3 which is explained in that paper (pp. 414 416) is often of

great use.

Ex. v. In the notation of Chap. IV. the polynomial

(X, I)*
&quot; 1

$!+...+(#, Ifn-l-
1

&amp;lt;K-i

is an adjoint polynomial of grade (n
-

1) v+ n 3.

Ex. vi. We can prove in exactly the same way as in the text that an integral of the

third kind infinite only at the ordinary finite places (xlt yj, (#/, y^\ at the former like

C\og(x-xl )
and at the latter like - C log (x

-
#/), C being a constant, can be written in

the form

where ^ is an adjoint integral polynomial in x and y, of grade (n-l)&amp;lt;r + nl, which

* The sum of the indices at the k places of the surface corresponding to an ordinary fc-ple

point of the curve is p (k
-

1) ; the index at each of the places is in fact %(k
-

1). Cf. 83, Ex. i.

t Chap. V. 64.

B. 9

UNIVERSITY
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vanishes at the (n 1) places x=xl
where ?/ is not equal to yl

and at the (ji-1) places

x=x where y is not equal to yx
. Putting \^ in the form

+ (x- x^ (x
- x^ (RQy

- 1 + Rtf
- 2+ . . . +Rn _ J,

where C
, ..., Cn _ 1 , C^ , ..., C n _ l

are constants, it follows, since (x-x^}y
n ~ l is of grade

(n l)&amp;lt;r+n,
arid (^ y

n ~ 1+ Jff
1y

n ~ 2+ ... + ^n _ 1 ) (x-x^) (x-x^ is of grade (n-l)&amp;lt;r+n+l
at least, that / is zero and C Q . Further, if the equation associated with the surface

be written

and Xi (
x

)
denote

it follows, from the condition for ^ which ensures that the integral P is not infinite at

all the n places x=xly that the factors of the polynomial

are the same as those of/(y, x}j(y y^ or of

Hence, save for a constant multiplier, P has the form

/dx̂[fo^-teJtf-ttf-v te IXr-i+y&quot;-
3
^, l)*r+... + (#, l)(B _ l)&amp;lt;r + n -3],

where (x, #x )
denotes

[y
n - 1 +yn- 2XlK) + -+Xn-l(^l)]/(^-^l),

so that (x, #!)
=

(#!, A ), and (x, #/) denotes a similar expression.

A general polynomial ^ of grade (n-l)tr+n-l contains 2n-l more terms than a

general polynomial of grade (n- 1) a-+ n 3. In accordance with the assumption made in

92 the general adjoint polynomial ^ of grade ( 1) &amp;lt;r+n 1 will contain 2n l+p
terms. The condition that

&amp;gt;//

vanishes in the 2-2 places x=xly x=x^ other than those

where y=yl , y=y\ respectively, will reduce the number of terms to p+ 1. This is exactly

the proper number of terms for a general integral of the third kind (cf. 45, p. 67). The

assumption of 92 is therefore verified in this instance.

The practical determination of an integral of the third kind here sketched is often very

useful. In the hyperelliptic case it gives the integral immediately.

Ex. vii. Prove that if the matrix of substitution Q occurring on p. 62, in *he equation

(1, y, y\ ... , y-i) =a (!,&..., #-,),
1

be denoted by Qx ,
and the general element of the product-matrix ^Q^ be denoted by

cr,g, and if, for distinctness of expression, we denote the elements

x-i (*) x*-* (*), - xi (#) !&amp;gt; !&amp;gt; yi, yi*&amp;gt;
- . ^i&quot;

1
!

respectively by
UD UZ) &amp;gt;

M
n-l&amp;gt; ^n&amp;gt; *i&amp;gt; *&quot;2&amp;gt; 3 n

then the function

&amp;lt;/&amp;gt; (a?) + 0! (ar)^ (i)-f- ...
+4i-i( (*)F-1 (*i)i

which occurs in the expression of an integral of the third kind given in 45, is equal to

cnul
k
l+ ...+ciiui

k
i+ ... + crturk,+ctrugkr +....

This takes the form &amp;lt;u
l
&
1+ ...+un lkn obtained in Ex. vi. when crs=0 and crt =l, namely

when Q is a constant. This condition will be satisfied when the index is zero at all finite

and infinite places.
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Ex. viii. Prove for the surface associated with the equation

y*+y*fa \\+y(x, l), + fa 1)4
= 0,

that the condition of adjointness for any polynomial is that it vanish to the second order

at the place = 0.

Thence shew that the polynomial

(x
-
#/) |&amp;gt;

2+yXl fa) + Xz fa)]
-
(x
- xj [y* +y\i fa) + X2 )]

+ (Ay+ Bx*+ Cx+D)(x-xl)(x- #/)

is adjoint provided B=Q ;
and thence that the integral of the third kind is

+yXl fa)+ Xz fa) y* +yxifa )+x^fa) . . , / , 7)1

Ex. ix. There is a very important generalization* of the method of Ex. vi. for forming
an integral of the third kind. Let /z be any positive integer. Let a general non-adjoint

polynomial of grade /z
be chosen so as to vanish in the two infinities of the integral, which

we suppose, first of all, to be ordinary finite places. Denote this polynomial by L. It

will vanish f in ?i/z-2 other places Blt
J52 , .... Take an adjoint polynomial \^, of grade

(n l)o-+n 3-{-/z, chosen so as to vanish in the places Blt
B

2 ,
.... The polynomial will

presumably contain
( 92) n^ 1 +p (tip 2) or p+ l homogeneously entering arbitrary

coefficients, and will vanish
( 88) in np+ Sp 2 (np 2) or 2p places other than the

places Blt
Z?

2 , ... and places wheref (y), or F (9), vanishes. Then the integral

is a constant multiple of an elementary integral of the third kind.

The proof is to be carried out exactly on the lines of the proof of the form of an

integral of the first kind in 91, with reference to the investigation in 89.

Further as we know ( 16) that dPfdx is of the form

C (dP\dx\+ X
x (dv^dx) -f . . . + Xp (dvp/dx),

where C, Xu ... ,
Xp are arbitrary constants, (dPjdx\ is a special form of dPjdx with the

proper behaviour at the infinities, and vlt ... ,
vp are integrals of the first kind, it follows

that the polynomial \^, which is an adjoint polynomial of grade (n l)&amp;lt;r-fn
3+ /x, pre

scribed to vanish at all but two of the zeros of a non-adjoint polynomial L of grade /z,
is of

the form

where \^ is a particular form of
&amp;gt;// satisfying the conditions, and is any adjoint poly

nomial of grade (n 1) &amp;lt;r+n 3
;
for this is the only form of -^ which will reduce dPjdx to

the form specified.

Ex. x. Shew that if in Ex. ix. one or both of the infinities of the integral be places
where f (y)

=
0, the condition for L is that it vanish to the first order in each place.

Ex. xi. For the case of the surface associated with the equation

*
Given, for &amp;lt;r

= 0, /*= !, in Clebsch and Gordan, Abel. Functionen (Leipzig, 1866), p. 22, and

Noether, &quot;Abel. Differentialausdriicke,&quot; Math. Annal. t. 37, p. 432.

t Counting zeros which occur for x = oo
, or supposing all the zeros to be at finite places.

Zeros which occur at x = oo are to be obtained by considering ^L, which is an integral polynomial
in f and 17 ( 86).

92
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for which the dimension of y is 1, let us form the integral of the third kind with its

infinities at the two places #= 0, yQ by the rules of Exs. ix. and x. ; taking /x
=

l, the

general polynomial of grade 1 which vanishes at the two places in question is \x+ py.

The general polynomial of grade n - 3 + /i,
or 2, is of the form ax*+by

2+ 2to/+ 2gx + 2/y+ c.

In order that this may be adjoint, c must vanish
;
in order that it may vanish at the two

points, other than (0, 0) at which \x+ ny vanishes, it must reduce to the form

Hence the integral of the third kind is I(Ax+ By+ C) dx/f (y). (Of. 6 |8, p. 1 9.)

Ex. xii. Obtain the other result of 6 /3, p. 19 in a similar way.

Ex. xiii. It will be instructive to compare the method of expressing rational functions

which is explained here, with a method founded on the use of the integral functions

obtained in Chap. IV. We consider, as example, the case of a rational function which has

simple poles at k
l places where x=al ,

k.
2 places where x=a.2 , ..., Jcr places at x= ar ,

and for

simplicity we suppose all these values of x to be finite, and assume that the sheets of the

surface are all distinct for each of these values of x. If R be the rational function, the

function (x-a^)...(x -&amp;lt;/,.)
R is an integral function of dimension r, and is expressible in

the form

this form contains (r+l) + (--T1 ) + ... + (?
i -Tn _ 1 ) ornr-p+ l coefficients ;

these co

efficients are not arbitrary, for the function (x-al)...(x ar) R must vanish at each of the

n i\ places xa-^ where R is not infinite, and must vanish at each of the places x=a2

where R is not infinite, and so on. The number of linear conditions thus imposed is

m-(kl+Li+ ...+kr )
or rn-Q, if Q be the total number of poles of the function R.

Hence the number of coefficients left arbitrary is nr p + l-(nr- Q) or Q-p+ l
;
this is

in accordance with results already obtained.

Ex. xiv. If the differential coefficients of r+ 1 linearly independent integrals of the

first kind vanish in the Q poles, in Ex. xiii., the conditions for the coefficients are equi

valent to only nr Q- (T+ 1) independent conditions.

93. Let A l ,
...

,
A Q be Q arbitrary places of the Riemann surface. We

shall suppose these places so situated that a rational function exists of which

they are the poles, each being of the first order*. This is a condition which

is always satisfiedf when Q &amp;gt;p.
The general rational function in question is

of the form

X + \iZ1 + . . . + \qZq ,

wherein \, \ ,
. . . ,

\
q

are arbitrary constants and Zl ,
. . .

,
Z
q

are definite

rational functions whose poles, together, are the places A l , ..., A Q .

The number q is connected with Q by an equation

Q-q = p-T-i,
where T + 1 is| the number of linearly independent linear aggregates of the

form

* We speak as if the poles were distinct. This is unimportant.

+ Cf. Chap. III. % Chap. III. 27, 37.
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which vanish in A l} ..., A Q . This aggregate is the differential coefficient, in

regard to the infinitesimal at the place x, of the general integral of the

first kind. We have seen* that this differential coefficient only vanishes

at a zero of the integral polynomial of grade (n 1) &amp;lt;r + n 3, which occurs

in the expression of the integral of the first kind. Hence T + 1 is the

number of linearly independent adjoint polynomials of grade (n 1) &amp;lt;r + n 3

which vanish in the places A 1} ...
,
A Q ;

in other words, r + 1 is the number of

coefficients in the general adjoint polynomial of grade (n l)cr + n-3
which are left arbitrary after the prescription that the polynomial shall

vanish in A l ,
...

, AQ.

Now we have proved that if any adjoint polynomial ty, of grade

(n l)&amp;lt;r
+ n 3 + r be taken to vanish at the places A 1} . .., A Q ^, its other

zeros being Bl ,
. . .

,
BR ,

where J R = nr + 2p
- 2 - Q, and ^ be a proper general

adjoint polynomial of grade (n l)cr + n 3 + r vanishing at 51( ..., BR ,

any rational function having A lt ..., A Q as poles, is of the form ^r/^f. Hence

the rational functions Z1} ..., Zq
are of the forms ^a/^, ..., \/^, and the

general form of an adjoint polynomial of grade (n I) &amp;lt;r + n 3 + r vanishing

at BH ..., BB must be

wherein X, X1} ..., X
5
are arbitrary constants, and ty, ^i,..., % are special

adjoint polynomials of grade (n 1) &amp;lt;r + w 3 + r which vanish in B1} ...
,
BR ,

some of them possibly vanishing also in some of A lt ..., A Q .

Since the general adjoint polynomial ^ of grade (n 1) o- + n 3 +r
contains nrl+p arbitrary coefficients, and these, in this case, by the

prescription of the zeros Blt ..., BR for S-, reduce to q + 1, we may say that

the places Blt ..., BK ,
as determinators of adjoint polynomials of grade

(n l)a+n 3+r, have the strength nr l+p q l,or JR (p 1) +Q q 1,

or R (r + 1). And, calling these places B1} ..., BR the residual of the

places A l} ..., A Q ,
because they are the remaining zeros of the adjoint

polynomial ^ of grade (n 1) cr + n 3 + r which vanishes in A lt ..., A Q ,

we have the result :

When Q places A l ..... A Q have ilie strength p (r + 1) or Q q as

determinators of adjoint polynomials of grade (n 1) &amp;lt;r + n 3, their residual

of R = nr + 2p 2 - Q places, which are the other zeros of any adjoint

polynomial of grade (n l)o- + ?t 3 + r prescribed to vanish in the places

A lt ...
t
A Q , have the strength R (r+l) as determinators of adjoint poly

nomials of grade (n 1) &amp;lt;r + n 3 + r.

Particular cases are, (i), when no adjoint polynomial of grade (n-l)o-+ n 3 vanishes

in A
lt ..., Aa ;

then the places B
1 ,...,Bll have a strength equal to their number;

(ii), when one adjoint polynomial of grade (n l)o-+ n 3 vanishes in A lt ..., A u ;
then

*
92. f A condition requiring in general Q&amp;lt;nr- l+p. t 88.
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there are R 1 of the places Blt ..., BR such that every adjoint polynomial of grade

(n ])a-+ n 3+ r, vanishing at these places, vanishes at the remaining place. For an

example of this case we may cite the theorem : If a cubic curve be drawn through three

collinear points A^ A 2 ,
A 3 of a plane quartic curve, the remaining nine intersections

BU ..., Bg are such that every cubic through a proper set of eight of them necessarily

passes through the ninth. In general any set of eight of them may be chosen.

When r + 1 is greater than zero we may take the polynomial ty itself to

be of grade (n 1) a + n 3. Since then a general polynomial ^ of grade

(n 1) o- + w - 3 contains p arbitrary coefficients, we can similarly prove

that

When r + 1 adjoint polynomials of grade (n 1) &amp;lt;r + ?i 3 vanish in Q
places A 1} ..,, AQ, so that the Q places have the strength Q q as deter-

minators of adjoint polynomials of grade (n 1) cr + n 3, their residual

B1} ...
,
BR , ofR = 2p 2 Q places, have the strength p q 1, or R r, as

determinators of adjoint polynomials of grade (n 1) cr + n 3. In this case

the numbers are connected by the equations

and the characters of the sets A ly ..., A
Q&amp;gt;

Blt ..., BR are perfectly reciprocal*.

Ex. When the strength of a set A
lt ... ,

A Q ,
wherein

Q&amp;lt;p,
as determinators of adjoint

polynomials of grade (n l)&amp;lt;r
+ -3, is equal to their number, so that the number of

linearly independent adjoint polynomials of grade (n l)o-+ n 3 which vanish in the

places of the set is given by r+ 1 =p Q, it follows that g= 0. Thus if Blt ...
,
BR be the

residual zeros of an adjoint polynomial, &amp;lt;,
of grade (n-l)ar+ n 3, which vanishes in

A lt ..., A01 so that R+ Q=2p 2, only one adjoint polynomial of grade ( l)&amp;lt;r+7&
3

vanishes in B1} ...
,
JBR , namely &amp;lt;.

94. It is known that the number of places *}*
of the Riemann surface

at which a rational function takes an arbitrary value c, is the same as the

number of places at which the function is infinite. The sets of places at

which c has its different values, may be called equivalent sets of places for

the function under consideration. For such sets we can prove the result :

if a set of places A^, ..., A Q be equivalent to a set A lt ..., A Q , in the sense

that a rational function g takes the value c at each place of the former set

and at no other places, and takes the value c at each of A lf ..., A Q and

at no other places of the Riemann surface, then the general rational function

with simple poles at A^, ...,A Q contains as many linearly entering arbitrary

constants as the general rational function whose poles are at A lt ..., AQ.

* For the theory of such reciprocal sets from the point of view of the algebraical theory of

curves, see the classical paper, Brill u. Noether, &quot;Ueber die algebraischen Functionen u.s.w.&quot;,

Math. Annal. vii. p. 283 (1873).

t In this Article, when a rational function g is said to have the value c at a place, it is

intended that g - c is zero of the first order at the place. A place where g - c is zero of the k-th

order is regarded as arising by the coalescence of k places where g is equal to c.
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For let the general rational function with poles at A 1} ..., A Q be denoted

by G, and be given by
= v + vlGl + ...... +vq

G
q ,

where v
, ..., v

q
are arbitrary constants, and Glt ...

,
Gq

are particular functions

whose poles are among A l} ..., A Q of which one, say Glt may be taken

to be the function (g c )/(g c). Then if G denote any function what

ever having poles AI, ..., A Q ,
and not elsewhere infinite, the function

G (g c )/(g c) is one whose poles are at A l} . . .
,
A Q ;

thus G (g c )/(g c)

can be expressed in the form

for proper values of v
, ..., v

q
. Therefore G can be expressed in the form

n&amp;gt; q c q c ~ q c

Since this is true of every function whose poles are at A^ , ..., A Q ,
and that

the functions G%(g c)j(g c) are functions whose poles are at AI ,
. .., A Q ,

the result is obvious.

95. If the symbol GO be used to denote the number of values of an

arbitrary (real or complex) constant, the general adjoint polynomial ^, of

grade (n 1) cr -+ n 3 + r, of the form

which vanishes in the places B1} . .., BR , gives rise to oo q sets of places,

constituted by the zeros of S- other than Blt ...,BR ,
each set consisting of,

say, Q places. Let A l} ..., A Q be one of these sets.

We shall say that these sets are a lot of sets
;
that each set is a residual

of Blt ..., BR ,
and that they are co-residual with one another; in particular

they are all co-residual with the set A lt ..., A Q . Further we shall say that

the multiplicity of the sets, or of the lot, is q, and that each set has the

sequence Q q ;
in fact an individual set is determined by q independent

linear conditions, namely, of the Q places of a set, q can be prescribed and

the remaining Q q are sequent.

It is clear then that any set, AI, ..., A Q, which is co-residual with

A lt ..., AQ, is equivalent with A lf ...,A Q ,
in the sense of the last article;

for these two sets are respectively the zeros and poles of the same rational

function
;
in fact if

i/r
be the polynomial vanishing in Bit ..., BR&amp;gt;

A lf ..., A Q ,

and ^ the polynomial vanishing in Blt ..., BR , AI, ..., A Q ,
the rational

function ^/i/r has J./, ..., A Q for zeros and A lf ..., A Q for poles. Hence

by the preceding article it follows that the number q + 1 of linear, arbitrary,
coefficients in a general rational function prescribed to have its poles at

AI, ..., A Q) is the same as the number in the general function prescribed to



136 THEOREM OF CORESIDUAL SETS. [95

have its poles at the co-residual set J./, ..., A Q . In other words, co-residual

sets of places have the same multiplicity, this being determined by the

number of constants in the general rational function having one of these

sets as poles ; they have therefore also the same strength Q q, or p (T + 1),

as determinators of adjoint polynomials of grade (n I)&amp;lt;r
+ n 3.

96. In the determination of the sets co-residual to a given one, A lt ...,

A Q ,
we have made use of a particular residual, B1} ..., Blt . It can however

be shewn that this is unnecessary and that, if two sets be co-residual for any
one common residual, they are co-residual for any residual of one of them. In

other words, let an adjoint polynomial ^r, of grade (n l)a+n 3 + r, be

taken to vanish in a set A 1} ..., A Q ,
its other zeros (besides those where

y (^)
=

(

or F (77)
=

0), being Bl} ...,BR ,
and an adjoint polynomial ^, of

grade (n 1) &amp;lt;r + n 3 + r, be taken to vanish in Blt ..., BR ,
its other zeros

being the set A^, ..., A Q ,
co-residual with A 1} ..., A Q ;

then if an adjoint

polynomial, i/r ,
of grade (n l)o- + n 3 + r

,
which vanishes in A 1} ..., A Q ,

have BI, ..., B R &amp;gt; for its residual zeros, R being equal to nr + 2p 2 Q, it

is possible to find an adjoint polynomial ^
,
of grade (n l)cr + n 3 + r,

whose zeros are the places B^, ..., B R,, A^, ..., A Q .

For we have shewn that any rational function having A lf ..., A Q as its

poles can be written as the quotient of two adjoint polynomials, of which the

denominator is arbitrary save that it must vanish in the poles of the function,

and be of sufficiently high grade to allow this. In particular therefore the

function ^f/^r, whose zeros are AI, ..., A Q ,
can be written as the quotient of

two polynomials of which
ijr

is the denominator, namely in the form *$* Itf .

The polynomial ^ will therefore vanish in the places J3/&amp;gt; ..., B K , A^, ...,A Q ,

as stated.

Hence, not only are equivalent sets necessarily co-residual, but co-residual

sets are necessarily equivalent, independently of their residual*.

97. The equivalence of the representations ^/\^, ^ ty\ nere obtained, of the same

function, has place algebraically in virtue of an identity of the form

where/=0 is the equation associated with the Riemann surface and K is an integral poly

nomial in x and y. Reverting to the phraseology of the theory of plane curves, it can in

fact be shewn that if three curves /= 0, ^= 0, H= be so related that, at every common

point of/ and
&amp;lt;//-,

which is a multiple point of order k for / and of order I for ^ ,
whereat

/and ^ intersect in H+ /3 points, the curve ^Thave a multiple point of order k+ l-l+ft,
so that in particular If passes through every simple intersection of/ and ^r, then there

exist curves ^ =
0, K=0, such that, identically,

Now in the case under consideration in the text, if the only multiple points of / be

multiple points at which all the tangents are distinct, the adjointness of ^ ensures that ^
* For the theory of co-residual sets for a plane cubic curve see Salmon, Higher Plane Curves

(Dublin, 1879), p. 137. That theory is ascribed to Sylvester; cf. Math. AnnaL, t. vii., p. 272 note.
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has a multiple point of order is I at every multiple point of/ of order k. The adjointness

of the polynomials ^, ^ ensures that the compound curve^ has a multiple point of

order 2 (k- 1) or Ic + k - 1 - 1 at every multiple point of / of order L Further, the curve

^^ passes through the simple intersections of / and \^, which consist of the sets

AI,...,A Q , Si, ...,BR ;
for ^ passes through B

l,...,BR ,
and ^ is drawn through

AI, ... ,
A Q . Hence the conditions are fully satisfied in this case by taking 11=^^ ;

thus

there is an equation of the form

from which it follows that the curve ^ is adjoint at the multiple points of / and passes

through the remaining intersections of / and ^^ , namely through A\, ...,A B and

B\ ,
...

,
B tt

. . This is the result of the text.

In case of greater complication in the multiple points of/ there is need for more care

in the application of the theorem here quoted from the algebraic theory of plane curves.

But this theorem is of great importance. For further information in regard to it the

reader may consult Cayley, Collected Works, Vol. i. p. 26
; Noether, Math. Annal. vi.

p. 351
; Noether, Math. Annal. xxiii. p. 311 ; Noether, Math. Annal. xl. p. 140

;
Brill and

Noether, Math. Annal. vii. p. 269. Also papers by Noether, Voss, Bertini, Brill, Baker in

the Math. Annal. xvii, xxvii, xxxiv, xxxix, xlii respectively. See also Grassmann, Die

Ausdehnungslehre von 1844 (Leipzig, 1878), p. 225. Chasles, Compt. Rendus, xli. (1853).

de Jonquieres, Mem. par divers savants, xvi. (1858).

98. From the theorem, that a lot of co-residual sets, of Q places, may be

regarded as the residual of any residual of one set, SQ ,
of the lot, it follows,

that every lot wherein the sequence of a set is less than p, may be determined

as the residual zeros of a lot of adjoint polynomials of grade (n 1) &amp;lt;r + n 3,

which have R = 2p 2 Q common zeros. For the sequence Q q is equal
to p (T + 1), and when r+l&amp;gt;0 an adjoint polynomial (involving r-f-1

arbitrary coefficients) can be determined which is zero in any one set, SQ, of

the lot, and in R other places.

Hence also, when Q places are such that the most general rational

function, of which they are the poles, contains more than Q p + 1 arbitrary

constants, this general rational function can be expressed as the quotient of

two adjoint polynomials of grade (n l)&amp;lt;r
+ n 3; the same is true when

the Q places are known to be zeros of an adjoint polynomial of grade

(?i- l)o- + /i-3.

It follows from what was shewn in Chap. III. 23, 27, that ifp places be
the poles of a rational function, an adjoint polynomial of grade (n l)o-+ w 3

vanishes in these places ;
and an adjoint polynomial of that grade can always

be chosen to vanish in p 1, or a less number, of arbitrary places. Hence,

every rational function of order less than p 4- 1, is expressible as the quotient

of two adjoint polynomials of grade (n 1) &amp;lt;r + n 3.

Ex. i. A rational function of order 2p 2 which contains p, or more, arbitrary constants

(one being additive) is expressible as the quotient of two adjoint polynomials of grade

Ex. ii. For a general quartic curve, co-residual sets of 4 places with multiplicity 1 are
determined by variable conies having 4 given zeros ; but co-residual sets of 4 places with
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multiplicity 2 are determined as the zeros of variable polynomials of degree 1, i.e. by

straight lines.

Ex. iii. The equation of a plane quintic curve with two double points, can be written

in the form ^S -^ S0, where ^, ^- are cubics passing through the double points and

seven other common points, and S, S are conies passing through the double points and

two other common points.

Ex. iv. When r+ l adjoint polynomials of grade (n l)a-+ n 3 vanish in a set, fl ,
of

Q places, there must be p T 1 independent places A lt ...
,
A p _ r , 1 ,

in Ss ,
such that

every adjoint polynomial of grade (n \)&amp;lt;r
+ n 3 which vanishes in them vanishes of

itself in the remaining q places AP _ T ,
...

,
AQ . Let SR be a residual of SB ,

R being equal

to 2p 2-Q. Then, regarding SR and AP _ T , ..., A e , together, as forming a residual of

A lf ..., Ap _ r _ 1 ,
it follows

( 93) that there is only one adjoint polynomial of grade

(n I)&amp;lt;r+n
3 which vanishes in SK and in A P _ T ,

...
,
AQ . Hence there exists no rational

function having poles only at the places A ly ..., AP _ T _V For such a function could be

expressed as the quotient of two adjoint polynomials of grade (n l)&amp;lt;r
+ n 3 having

SR and Ap _ r ,
...

,
A a as common zeros. Compare 26, Chap. III.

It can also be shewn, in agreement with the theory given in Chapter III., that if

.Z?,, ...
, JBr +i be any r + l independent places, T being less than T, there exists no rational

function having poles in
fi
and B

lt ...
,
BT-+I. In fact r-f 1 - (T + 1) linearly independent

adjoint polynomials of grade (n l)&amp;lt;r
+ n 3 vanish in Ss and Bly ..., Br +\. Let SR,,

where R = 2p 2 - (Q+ r + 1), be the residual zeros of one of these polynomials. Then the

strength of SRI ,
as determinators of adjoint polynomials of grade (n l}a-+ n 3 is

( 93)

R (T r ) + l =R T, where R= 2p 2 Q, namely the strength of SR, is the same as the

strength of SR , and B
v,...,Br +i together; hence every adjoint polynomial of grade

(n l)o-+n 3 which vanishes in SR,, vanishes also in Blt ...
,
Br +i. Now every rational

function having 2 and B
lt ...

,
Br +i as poles, could be expressed as the quotient of two

adjoint polynomials of grade (n- l)&amp;lt;r+n
3 having SR , as common zeros; since each of

these polynomials will also have Blt ...
,
-5r +i as zeros, the result is clear.

99. The remaining Articles of this Chapter are devoted to developments
more intimately connected with the algebraical theory of curves.

We have seen that an individual set of a lot of co-residual sets of Q
places is determined by the prescription of a certain number, q,

of the places ;

this number q being less than* Q and not )iprSAt6r than Q p.

But it does not follow that any q places of a set are effective for this

purpose ;
it may happen that q places, chosen at random, are ineffective to

give q independent conditions.

We give an example of this which leads ( 100) to a result of some interest.

Suppose that a set of Q places, 8Q ,
is given, in which no adjoint polyno

mial of grade (n l)a- + n 3 vanishes
;
then r + 1 is zero, and co-residual

sets are determined by Q p places. Suppose that among the Q places there

are p + s 1 places, forming a set which we shall denote by &amp;lt;rp+s-i ,
which

are common zeros of T -f 1 adjoint polynomials of grade (n l)cr + n 3;

denote the other Q p s + 1 or q s +-I places by &amp;lt;r

9
_g+1 .

* The formula is Q -q=p- (r + 1); if q were Q and therefore r + l=p, all adjoint poly

nomials of grade (n- 1) &amp;lt;r + n-3 would vanish in the same Q places, contrary to what is proved

in 21, Chap. II.
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Take an adjoint polynomial of grade (?i 1) &amp;lt;r + n 3 + r which vanishes

in the places of the set SQ, and let SR denote its remaining zeros, so that

R + Q = nr + 2p 2. If we now regard the sets SB ,
&amp;lt;r

q-t+i together as the

residual of the set &amp;lt;Tp+t-i, it follows
( 93) that SK , o-

q
-g+l together have only

the strength R + q s + 1 (T + 1), or nr +p 2 (T + s), as determinators

of polynomials of grade (n l)cr + 7i-3 + r; and if we choose 5 1 places
A lt ..., A g_! from o-p+g-i, the polynomial of grade (n 1) & + n 3 + r with

zeros in SR ,
which vanishes in the q places constituted by a-

q
_s+1 and

A!, ..., Ag..! together, will not be entirely determined, but will contain*

T + 2 arbitrary coefficients, at least-}- : thus r + 1 further zeros must be

prescribed to make the polynomial determinate.

A particular case of this result is as follows : Consider a lot of co-

residual sets of Q, = q + p, places, in which no adjoint polynomial of grade

(n l)&amp;lt;r + n 3 vanishes. If p of the places of a set be zeros of r +l
adjoint polynomials of grade (n l)&amp;lt;r

+ w 3, then the other q places are not

sufficient to individualise the set
;
r + 1 additional places are necessary.

For instance a particular set from the double infinity of sets of 5 places, on a plane

quartic curve, determined by variable cubic curves having seven fixed zeros, is generally
determined by prescribing 2 places of the set. But if there be one of the sets for which
3 of the five places are collinear, then the other two places do not determine this set

;

we require also to specify one of the three collinear places. It is easy to verify this result

in an elementary way.

100. Consider now two sets 8R ,
S

Qi , which are residual zeros of an

adjoint polynomial, i/^, of grade (n 1) a + n 3 + rl} so that

Let Xr_Tl + l be the number of terms in the general non-adjoint polynomial
of grade r 1\ and Nr^fi

be the total number of zeros of such a non-adjoint

polynomial of grade r r^ Take Xr_ri independent places on the Riemann

surface, forming a set which we shall denote by Tr_ri ,
and determine a non-

adjoint polynomial, ^, of grade r rly to vanish in Tr_ri
. It will vanish in

Nr_ri
Xr_ri

other places, Ur-ri
. Suppose that no adjoint polynomials of

grade (n l)a + n 3 vanish in all the places of S
Qt
and Tr_n . The product

of the polynomials fa and % is an adjoint polynomial of grade (n l)a + n

3 + r. A general adjoint polynomial of grade (n ~L) &amp;lt;r + n 3 + r which

vanishes in SR will vanish in all the places forming S
Ql ,

Tr_ri , Ur_ri together,

provided we choose the polynomial to have a sufficient number of these

places as zeros. Divide the set S
Ql

into two parts, one, T, consisting of

Qi ~P + C^r-r,
-

-XV-r,) places, the other U consisting of p - (Nr_ ri
- Xr_ ri )

* For nr+p-2 is the number of independent zeros necessary to determine an adjoint poly
nomial of grade (n

-
l)&amp;lt;r

+ n - 3 + r.

t More if the 8 -I places Av ..., At_l be not independent of the others already chosen.
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places. The sets T and Tr_fi together consist of Qi p + Nr_ ri ,
or Q p,

places, where

Q = Qi + Nr-r
t

.

= nr + 2p2 R,

for Nr_Ti
= n (r r^, ( 86, Ex. iii.); if then the sets U and Ur-r

^ together
are not zeros of any adjoint polynomial of grade (n l)&amp;lt;r

+ n 3, the general

adjoint polynomial, of grade (n 1) cr + n 3 + r, which vanishes in SR ,
will

be entirely determined by the condition of vanishing also in the places of

T and Tr^fl ,
and will of itself vanish in the remaining places U and Z7r_ri

.

If, however, r +l adjoint polynomials of grade (n 1) a + n 3 (r rx)

vanish in the places U, the products of these with the non-adjoint polynomial

^ give -r +l adjoint polynomials of grade (n 1) a + n 3 vanishing in U
and Z7r_ri

. In that case, assuming that no adjoint polynomials of grade

(n l)a- + n 3 vanish in the p places U, Ur-rj ,
other than those contain

ing % as a factor, the adjoint polynomial of grade (n l)&amp;lt;r + n 3 + r which

vanishes in SK , T and Tr_ri ,
will require T + 1 further zeros for its complete

determination ( 99).

Since now the set Tr-Tl entirely determines the set Ur-ri &amp;gt;

we may drop

the consideration of it, and obtain the result

The adjoint polynomial, of grade (n l)cr + n 3 + r, which vanishes in

all but p (Nr-ri
Xr-ri)

of the zeros of an adjoint polynomial of grade

(n 1) cr + n 3 + rlt will have a multiplicity T + 1 + Xr_ri ,
where r + l is

the number of adjoint polynomials of grade (n 1) &amp;lt;r 4-n 3 (r i\) which

vanish in these other p Nr-ri + Xr_ri
zeros. When r + l is zero the adjoint

polynomial of grade (n 1) cr + n 3 + r vanishes of itself in the remaining

p Nr-ri+Xr_ri
zeros of the adjoint polynomial of grade (n l)cr + n 3+rj.

When r + l is not zero it is necessary, for this, to prescribe T + 1 further

places of these p Nr-r, +Xr_ri
zeros (provided r + 1

&amp;lt; p Nr- fl
+ Xr_Ti ).

We have noticed ( 8G, Ex. iii.) that

Nr_ri
= n(r- n),

where E (x) denotes the greatest integer in x.

For &amp;lt;r
= 0, therefore, the number p - Nr_Tl + Xr_ Tl

is immediately seen to

be equal to

where 7 = n - (r
-

r^, and / is the sum of the indices, of the surface, for

finite and infinite places ( 88).

Thus the result, for o- = 0, an adjoint polynomial of degree n 3 + r

which vanishes in all but (7
-

1) (7
-

2)
- \I of the zeros of an adjoint

polynomial of degree n 3 + r^ (r &amp;gt; rl5 7 = n - (r
-

r,) &amp;lt;fc 3) will have a
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multiplicity r + 1 -f (n 7) (n 7 + 3), where T + \ is the number of adjoint

polynomials of degree 7-8 which vanish in the (7 1) (7 2)- |7 wn-

assigned zeros ; if r + 1 is zero this polynomial of degree n 3 + r will of

itself vanish in these unassigned zeros : if r + 1 &amp;gt; it is necessary, for this, to

prescribe r + 1 or, if r + 1 &amp;gt; \ (y 1) (7 2) 7, to prescribe all the un

assigned zeros.

For example let n= 5
;
take as the fundamental curve a plane quintic with 2 double

points (p= 4) ;
let the remaining point of intersection with the quintic, of the straight line

drawn through these double points, be denoted by A.

(i) Take r=2, r
t
= l. Then y=5-l = 4, y-3= l; thus, an adjoint quartic curve

vanishing in all but (y l)(y 2) 2, or 1, of the zeros of an adjoint cubic, that is,

vanishing in 10 of these zeros, beside vanishing at the double points, will have a multi

plicity T + 1 + 4, or T + 1 + 2, where r + 1 is zero if the non-assigned zero be not the point
A : and this quartic will then, of itself, pass through the unassigned zero. In this case, in

fact, the prescription of the 10+ 2 zeros of the quartic on the cubic, is a prescription of

more than 4.3-jOj, where pl
is the deficiency of the cubic. Hence the quartic will

contain the cubic wholly, as part of itself. (In general, the condition to provide against
this can be seen to be r &amp;gt; 3.)

(ii) Take the same fundamental quintic, with r= 4, ^= 3. Then an adjoint sextic

curve, //, passing through all but 3 . 2 2, or 1, of the zeros of an adjoint quintic, ^, that

is through 20 of them, will have multiplicity r + l-j-2, where r +l is zero unless the other

zero of the quintic, ^, be the point A.

If however the unassigned zero of the quintic, ^-, be the point A, the 20 points are not

sufficient ; the sextic, ^, has multiplicity 3 and the 20 points plus A are necessary to

make ^ go through the remaining 7 points.

It should be noticed that an adjoint curve of degree 7 8 can always be

made to pass through ^ (7 1)(7 2) ^1 1 places. The peculiarity in

the case considered is that such curves pass through one more place.

The theorem here proved was first given by Cayley in 1843 (Collected Works, Vol. i.

p. 25) without special reference to adjoint curves. A further restriction was added by
Bacharach (Math. Annal. t. 26, p. 275 (1886)).

101. In the following articles of this chapter we shall speak of an

adjoint polynomial of grade (n 1) &amp;lt;r + n 3 as a ^-polynomial. In chapter
III. ( 23) we have seen that the set of places constituted by the poles

of a rational function, is such that one of them depends upon the others
;

thus ( 27) there is one place of the set such that every ^-polynomial vanish

ing in the other places, vanishes also in this. Conversely when a set of

places is such that every (^-polynomial vanishing in all but one of the places,

vanishes of necessity also in the remaining place, this remaining place

depends upon the others*. When a set S is such that every ^-polynomial

* Or on some of them. For instance, if in a two-sheeted hyperelliptic surface, associated with

the equation y*=(x, l)2P+2&amp;gt;
we *a^e three places (arlt yj, (x.2 , t/2), (o^, -y2), every &amp;lt;f&amp;gt;-polynomial,

(ar-a;,) (x-o;2) (x, l)p_3 , of order p- 1 in x, which vanishes in (a:,, ?/j), (a;2 , j/2), vanishes also in

(x2 , -i/a). But this last place does not, strictly, depend on (xlt j/j) and (ar2 , y2); it depends on

(x2 , j/2) only.
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vanishing in S, vanishes also in places A , B, . . .
,
it will be convenient, here, to

say that these places are determined by S.

Take now any p 3 places of the surface, which we suppose chosen

in order in such a way that no one of them is determined by those preceding.

Then the general ^-polynomial vanishing in them will be of the form

\&amp;lt;f&amp;gt;

-f fjfe + v^r, wherein A,, /JL,
v are arbitrary constants and

&amp;lt;j&amp;gt;,
^, ty are

^-polynomials vanishing in the p 3 places. We desire now to find a

place (ajj) such that all (^-polynomials vanishing in the p 3 given places

and in xlt shall vanish in another place ac. For this it is sufficient that

the ratios
&amp;lt;f&amp;gt;
(X) : S- (#j) :

t/r (o^) be equal to the ratios &amp;lt; (#2) : ^ (#2) : ^ (#2)-

From the two equations thus expressed, with help of the fundamental

equation of the surface, we can eliminate x2 ,
and obtain an equation for xlt so

that the problem is in general a determinate one and has a finite number of

solutions : as a matter of fact ( 102, p. 144, 107) the number of positions

for xl is zp(p 3)*, and each determines the corresponding position of #2 .

Hence there exist on the Riemann surface oo p~3 sets of p 1 places such

that a single infinity of ^-polynomials vanish in them
;
such a set can be

determined from p 3 quite arbitrarily chosen places, and, from them, in

\P (P
~

3) ways. Putting Q = p 1, T + 1 = 2, we obtain, by the Riemann-

Roch Theorem q = 1 . Hence to each set once obtained there corresponds
a single infinity of co-residual sets.

102. The reasoning employed in the last article, to prove that there

are a finite number of positions possible for #1} and the reasoning subsequently
to be given to determine the number of these positions, is of a kind that

may be fallacious for special forms of the fundamental equation associated

with the Riemann surface. An extreme case is when the surface is hyper-

elliptic, in which case all the ^-polynomials vanishing in any given place

have another common zero (Chap. V. 52). In what follows we consider only

surfaces which are of perfectly general character for the deficiency assigned.

In particular we assume, what is in accordance with the reasoning of the

last article, that not every set of p 2 places is such that the two (or more)

linearly independent ^-polynomials vanishing in them, have another common

zero*f*.

* This result is given in Clebsch and Gordan, Theorie der Abel. Funct. (Leipzig, 1866) p. 213.

t Noether (Math. Annal. xvii.) gives a proof that this is true for every surface which is not

hyperelliptic. Take a set of p - 2 independent places, denoted, say, by S, and, if every p- 2 places

determine another place, let A be the place determined by the set S. Take a further quite

arbitrary place, B. When the surface is not hyperelliptic, B will not determine another place.

Each of the \ (p
-

1) (p
-

2) sets, of p - 3 places, which can be selected from the p - 1 places formed

by S and A, constitutes, with B, a set of p-2 places, and, in accordance with the hypothesis

allowed, each of these sets determines another place. It is assumed that the p-2 places S, and

the place B, can be so chosen that the J (p
-
1) (p

-
2) other places, thus determined, are different

from each other and from the p places constituted by S, A and B together. Since the places S are

independent, the ^-polynomial vanishing in S and B is unique; and, by what we have proved,
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Then it will be possible to choose p 3 independent places, S, as in the

last article, such that there is a finite number of solutions of the problem of

finding a place (#j) such that the ^-polynomials vanishing in S and (#j), have

another common zero
;

let p 3 places, forming a set denoted by S, be

so chosen. Let A be a place not coinciding with any of the positions possible

for a?,, and not determined by S. Let
&amp;lt;f&amp;gt;,

^ be two linearly independent

(^-polynomials vanishing in S and A. Then the general ^-polynomial vanish

ing in S and A is of the form
\(f&amp;gt; -I- fjfo, \ and /t being arbitrary constants,

and the general ^-polynomial vanishing in the places S only can be written

in a form
\(j&amp;gt;

+ /j$r + vfy, wherein v is an arbitrary constant and ty is a

(^-polynomial so chosen as not to vanish at the place A.

Consider now the rational functions* z=(f)/ty, s.=^f/ty, each of the

(p + l)th order. They both vanish at the place A.

These functions will be connected by a rational algebraic equation,

(s, z) = 0, obtained by eliminating (x, y} between the fundamental equation
and the equations zty

=
&amp;lt;f&amp;gt;, sty

= ^
;
associated with the equation (s, z) =

will be a new Riemann surface
;

to every place (#, y) of the old surface

will belong a definite place z =
&amp;lt;f&amp;gt;/ty,

s = *&/ty, of the new surface
;
to every

place of the new surface will belong one or more places of the original surface,

the number being the same for every place of the new surface f; since there

is only one place of the old surface at which both z and s are zero, namely
the place which was denoted by A, it follows that there is only one place of

the old surface corresponding to any place of the new surface. Hence each

of x, y can be expressed as rational functions of s, z, the expression being
obtained from the equations zty

=
&amp;lt;f&amp;gt;, sty

= ^, (s, 2)
=

j.

Since a linear function, Az+ jiS+ y, equal to (X$ +^ + 1^)/^, vanishes* at the variable

zeros of the polynomial X0 + /i^ + i/^, namely in p+ l places, it follows that the equation
(s, 0)

= may be interpreted as the equation of a plane curve of order p+ l
; the number

it vanishes in p + $ (p
-

1) (p - 2) places. This number, however, is greater than 2p - 2 when p &amp;gt; 3.

Hence the hypothesis, that every p-2 places determine another is invalid. In case p = B the
surface is clearly hyperelliptic when every p - 2 places determine another. In case p = 2 or 1 the
surface is always hyperelliptic. It may be remarked that when we are once assured of the
existence of a rational function of p poles, we can infer the existence of a set of p - 2 places
which do not determine another (cf. 103). We have already shewn (Chap. III. 31) that in

general a rational function of order p does exist. The reader may prove that for a hyperelliptic
surface whose deficiency is an odd number there does not exist any rational function of order p.

*
It must be borne in mind that, in dealing with a rational function expressed as a ratio of

two adjoint polynomials, we speak of its poles as all given by the zeros of the denominator; some
of these may be at x= x&amp;gt; (cf. 86), and in that case their existence is to be shewn by considering
( 84), instead of the polynomial, \f/,

of grade /*, the polynomial in
&amp;gt;]

and
, given by /*

\f/.
Or we

may use homogeneous variables
( 85). For instance, forp-S, we may, in the text, have ( 92,

Ex. i.) &amp;lt;f&amp;gt;=x, $=y, \l/
= l. Then 0::^=l:ij: =::; and

\f/
has a zero at z= oo.

t Chap. I. 4.

J Or by the direct process of 5, Chap. I.
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of its double points will, therefore*, be \p (p-V)-p, or \p (p
-

3), though it is not shewn

here that they occur as simple double points. These double points are the transforma

tions of the pairs of places, (x^, (#2), on the old surface, which were such that every

^-polynomial, vanishing in the p 3 fixed places S, and in xlt
also vanished in A2 .

Since a double point of a curve requires one condition among its coefficients, and the

number of coefficients that can be introduced or destroyed, in the equation of a curve, by

general linear transformation of the coordinates is 8, it follows that a curve of order m has

constants which are not removeable by linear transformation. In the case under con

sideration here, there are p 3 places, ,
of each of which an infinite number of positions

is possible, independently of the others, and the most general linear transformation of

* and z is equivalent only to adopting three new linear functions of
&amp;lt;/&amp;gt;, ^, \^,

instead of

$&amp;gt; ^, \^, in order to express the general ^-polynomial through the places S. Hence

there are, in the new surface (s, z) effectively

that is, 3/&amp;gt;

3 intrinsic constants : this is in agreement with a result previously obtained

(Chap. I. 7).

103. The p 3 places S may be defined in a particular way, thus :

In general there are (Chap. III. 31) (p l)p(p + 1) places of the original

surface, for each of which a rational function can be found, infinite only

at such place and infinite to the pih order. Every rational function, whose

order is less than p+ 1, can be expressed as the quotient of two (^-polynomials

( 98). The (^-polynomial, (f&amp;gt;, occurring in the denominator of the function,

willf vanish p times at the place where the function has a pole of order pi,

and will vanish in p 2 other places forming a set T. The general

^-polynomial through these p 2 places T will not have another fixed

zero, or it would be impossible to form a rational function of order p with
(f&amp;gt;

as denominator. Let now A denote any place of the set T, the remaining

p 3 places being denoted by S. Then we may continue the process exactly

as in the last Article.

The p variable zeros of the ^-polynomials, of the form \&amp;lt; + /j$t, which

vanish in the p 2 places T will, for the transformed curve, become the

variable intersections of it with the straight lines, \z + fis
= 0, which pass

through the place s = 0, z = 0. We enquire now how many of these straight

lines will touch the new curve. This number may be found either by the

ordinary methods of analytical geometry ||
or as the number of places where

*
By the formula p = %(n

-
1) (no-+ n - 2)

- Si, for it is clear that s is an integral function of z

of dimension 1, so that o-= 0. And we have remarked that i is 1 at each of the places cor

responding to a double point of the curve, so that 5 + /c=4Si ;
cf. Forsyth, Theory of Functions,

182.

t See the note ( *) of 102.

J This is the fact expressed by the vanishing of the determinant A in 31, Chap. III.

Which we assume to be of the form X0 + (j&, involving q + 1 = 2 arbitrary coefficients. If q

were greater than unity, it would be possible to construct a function of lower than the yth

order. This possibility is considered below
(

105 ff.).

||
See for example Salmon s Higher Plane Curves.
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the differential of the function
^/(f&amp;gt;,

of order p, vanishes to the second order,

namely* 2p + 2p2. Among these tangents, however, there is one which

touches the transformed curve in p points, counting as p 1 tangents.

There are, therefore, 3p 1 other tangents. Of the 3^ distinct tangent
lines thus obtained, there are 3p 3 distinct cross ratios, formed from the

3p 3 distinct sets of four of them, and these cross ratios are independent of

any linear transformation of the coordinates s and z.

There are thus 3p 3 quantities obtainable for the transformed curve.

We prove, now-f, that they entirely determine this curve, and may, therefore,

since the transformation is reversible, be regarded as the absolute constants

of the original curve. For take any arbitrary point ;
draw through it

3 arbitrary straight lines and draw 3p 3 other straight lines which form

with the 3 straight lines first drawn pencils of given cross ratios. Then the

coefficients of a curve of order p + I, which passes through 0, has %p(p 3)

double points, and touches 3p straight lines through 0, one of them in p
consecutive points, are subject to 1 + %p(p -

3) + 3p l+p 1 or ^p^+^p 1

linear conditions. The number of these coefficients is ^(p+I)(p + 4&amp;lt;)

or

zP* + P + 2- Hence there are three coefficients left arbitrary ;
besides these

there are five other constants in the equation of the curve, namely, those

which settle the position of and the three arbitrary straight lines through
0. The eight constants thus involved in the curve can be disposed of by
a linear transformation.

The reader will recognise here a verification of the argument sketched in

7, Chap. I.
;
the present argument is in fact only a particular case of that,

obtained by specialising the dependent variable of the new surface, and the

order of the independent variable g. The restriction that the p poles of g
shall be in one place can be removed, with a certain loss of definiteness and
conviction.

The argument employed clearly fails for the hyperelliptic case, since

then the p 2 fixed zeros of the polynomials &amp;lt; and S- determine other places,
and the function

^/&amp;lt;

is not of the pih order.

Forp=3 we have the result : If an inflexional tangent of a plane quartic curve meet
the curve again in 0, eight other tangents to the curve can be drawn from 0. The cross

ratios of the six independent sets of four tangents, which can be formed from these nine

tangents, determine the curve completely save for constants which can l&amp;gt;e altered by
projection.

More generally, from any point of the quartic, ten tangents to the curve can be
drawn. The seven cross ratios of these tangents leave, by elimination of the coordinates
of 0, six quantities from which the curve is determinate, save for quantities altered by
projection.

*
Chap. I. 6.

t Cayley, Collected Works, vol. vi. p. 6. Brill n. Noether, Math. Annal. t. vn. p. 303.

10
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104. It is a very slight step from the process of the last Article to take

the independent variable to be g = ^/$, where ^,
&amp;lt;f&amp;gt;

are (^-polynomials, having

p 2 common zeros forming a set such that a single infinity of ^-polynomials
vanish in the places of the set. And it may be convenient to take another

dependent variable.

In the process of Article 102, the fixed zeros of the polynomials used

are p 3 in number, and a double infinity of ^-polynomials vanish in the

places of the set.

These two processes are capable of extension. If we can find a set SQ ,

of Q places, in which just (T + 1 =) 3 ^-polynomials vanish, and if the places

SQ be such that these three ^-polynomials have no other common zero, while

the problem of finding a further place xl , such that the two ^-polynomials

vanishing in SQ and x^ have another common zero x2 ,
is capable of only a

finite number of solutions, then we can extend the process of Article 102
;

we can then, in fact, transform the surface into one of 2p 2 Q sheets.

The dependent variable in the new equation will be of dimension unity,

and the equation such as represents a curve of order 2p 2 Q. If, there

fore, we can find sets SQ in which Q &amp;gt; p 3, the new surface will have a

less number of sheets, and therefore, in general, a simpler form of equation,

than the surface obtained in 102.

Similarly, if we can find a set, SQ ,
which are the common zeros of

(r + 1 =) 2 ^-polynomials, say ^ and
&amp;lt;,

we can use the function g = ^/(/&amp;gt;,
with

a suitable other function, as independent and dependent variables respectively,

to obtain a new form of equation for which there are 2p 2 Q sheets : and

if we can get Q&amp;gt;p
2 the new surface will be simpler than that obtained

in | 103.

105. We are thus led to enquire what are the conditions that r + l

linearly independent ^-polynomials should vanish in any Q places aly ..., a Q .

If the general (^-polynomial be written in the form \1
(j&amp;gt;

1 (x)+...+\p (f)p (a;),

where X1} ..., \p are arbitrary constants, the conditions are that the Q

equations
,(ai)=0, (* =1 .

2
&amp;gt; Q)

should be equivalent to only p r 1 equations, for the determination of

the ratios \ : . . . : \p ;
we suppose Q &amp;gt;p r 1, and further that the notation

is so chosen that the independent equations are the first p T 1 of them.

Then there exist Q (p T 1) sets, each of p equations, of the form

&amp;lt;f&amp;gt;j (ap_r_1+a) = m^j (aj) + . . . + mp_T_l fe (fl^-j), (j
=

1, 2, . . .
, p)

for each value of a- from 1 to Q (p r 1), the values of ml , ..., 7&amp;gt;ip_T_1

being, for any value of
&amp;lt;r,

the same for every value of j.
The set, of p, of
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these equations, for which a- has any definite value, lead to T + 1 equations,
of the form

=
0,

4&amp;gt;P~r-l+k

arising for k = 1, 2, . . .
,
T + 1.

Putting q
= Q (p T 1), we have therefore q (r + 1) such equations*

connecting the Q places a1; ..., Q.

It is obvious from the method of formation that these q(r + 1) equations
are in general independent ;

in what follows we consider only the cases in

which they are independent and determinate. Then, taking Q ^(T+I)
quite arbitrary places, it is possible to determine q (T + 1) other places, such

that there are r + 1 linearly independent ^-polynomials vanishing in the

total Q places.

The determination of the q(r+ l) places, from the arbitrary Q q(r+ l) places, may be

conceived of as the problem of finding p r-1 [Q &amp;lt;?(T
+ I)], or qr, places, T, to add to

the Q q(r+ \] arbitrary places, S, such that all ^-polynomials vanishing in the resulting

p Tl places S, T, may have Q-(p-r 1), or q, other common zeros. The^ T 1

places S, T are independent determinators of ^-polynomials.

For instance, when Q=p- 1, r+ l = 2, it follows that q= l and Q q (T+l)=p 3, and

hence, from the theory here given, it follows that we can determine p 1 places in which
two 0-polynomials vanish, and, of these, p 3 places are arbitrary. The problem of

determining the other two places may be conceived of as the problem of determining

p-r-l-[Q q (r+ 1)], or one, other place, to add to the p 3 places, such that all $-

polynomials vanishing in the resulting p - 2 places, which are independent determinators

of 0-polynomials, may have
&amp;lt;?

= ! other common zero. We have already seen reason for

believing that, when the p 3 places are given, the other two places can be determined in

&amp;gt; 3) ways.

To every set of Q places thus determined, there corresponds a co-residual

lot of sets of Q places, the multiplicity of the lot being q ;
and every

corresidual set will have the same character as the original set. The number,

q, of places of a co-residual set which are arbitrary, cannot, obviously, be

greater than the number, Q-q(r+l), of the original set, which are

arbitrary. Hence, the self-consistence of the theory clearly requires that

Q-q(T + I)&amp;gt;q.
From this, by means of the relation Q- q = p T 1, we

can deduce the two important results

P &amp;gt; (q + 1) (r + 1), Q&amp;gt;q+p -2-j

These equations are necessary in order that a lt ..., a^ should be the poles of a rational

function.

102
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Putting Q q (r + 1)
= q + a, we obtain

1[
_.

From each such set SQ we can deduce, as its residuals, sets, SB ,
of

R, = 2p2 Q, places, in which q + l ^-polynomials vanish, and it is

immediately seen that

106. -If now we determine, in accordance with this theory, a set SQ in

which r + l=3 ^-polynomials vanish, it being assumed that these three

(^-polynomials have no other common zero, and determine
&amp;lt;,

S- to be two

(^-polynomials vanishing in SQ and in one other place 0, ty being another

(^-polynomial vanishing in SQ but not in 0, then the equations z =
tfr/ty,

s =
S-/I/T, determine, as before, a reversible transformation of the surface, to

a new surface of which the number of sheets is R = 2p 2 Q, and in which

s is of dimension 1 in regard to z.

Since R
&amp;gt;
r + pr/(r + 1), the value of R is

&amp;gt;

2 + \p. Thus writing p = STT,

or STT + 1, or 3?r + 2, according as it is a multiple of 3 or not, R is p TT + 2

in all cases.

From R=p-7r + 2 follows Q=p-4 + 7r; thus q= Q - p + 3 = TT - 1,

and Q q(T + l)=p + 7r 4&amp;lt;-37r+3=p 27r l. This is the number
of places of the set SQ which may be taken arbitrarily. If this number

be equal to q = ir \
)

it follows that, by taking two different sets of

Q q(r + l), =p 2-7T 1, places, we get only two co-residual sets, and

for the purposes of forming the functions
(fr/ty, *&/$*, one is as good as the

other. If however Q q (r + 1) &amp;gt; q, we do not get co-residual sets by taking
different arbitrary sets of Q q (r + 1) places : and there is a disposeableness

which is expressed by the number of the arbitrary places, Q q (r + 1
),

which is in excess of the number, g, which determines the sets co-residual to

any given one.

Now Q q(r+l) q=p 27T 1 TT + 1 = p
- 3?r. And, in a surface

of m sheets and deficiency p, the number of constants independent of linear

transformations is 3m +p 9 ( 102). Hence the number of unassignable

quantities in the equation of the surface is

3 (p
- TT + 2) +p - 9 - (p

-
3-Tr) or 3p

- 3
;

and this is in accordance with a result previously obtained ( 7, Chap. I.).

Ex. i. The values of TT for p= 4, 5 are 1, 1 respectively, and p Tr+ 2, in those cases,

= 5, 6 respectively.

Hence a quintic curve with two double points (jo
=

4), can be transformed into a

quintic ;
this will also have two double points, in general, since the deficiency must be

unaltered. We determine a set consisting of Q, =1, quite arbitrary place. Let the
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general conic through this place, and the two double points, be X0 + [*& + vty
= 0. Then the

formulae of transformation are 2=
&amp;lt;/^,

s= ^/\^. As in the text, we may suppose 0, ^
to have another common point, in which ^ does not vanish.

Ex. ii. A quintic with one double point (p= 5) can be transformed into a sextic With,

in general, jr(6 1) (6 2) 5 = 5 double points. For this we take p 2n 1 = 2 arbitrary

points ;
if A$ +/^ + j/^ be the general conic through the two points and the double point,

the equations of transformation are z =
({)/\^, S=^/A//-.

Ex. iii. Shew that the orders p IT+ 2 of the curves obtainable by this method to

represent curves of deficiencies

^ = 6, 7, 8, 9

are respectively R= 6, 7, 8, 8.

107. But, as remarked ( 104), we can also make use of sets of R places

for which T + 1 = 2, to obtain transformations of our original surface.

We can obtain such a set by taking R T (q + 1), or R q 1, arbitrary

places, and determining the remaining q -\- 1 such that q + 1 ^-polynomials
vanish in the whole set of R places.

It is proved by Brill* that the number of sets of q+l thus obtainable

from R q 1 arbitrary places, is

where p = ^q or ^(q + l), according as q is even or odd, and
[ J

denotes

For instance with R=p, q= 0, the series reduces to one term, whose value is p-1,
which is clearly right ; while, when R=p 1, &amp;lt;?

=
!, the series reduces to

p-2
or $p(p-S), as in 101, 102, p. 144.

When p is even and R = \p + 1, q
= ^p 1, this series can be summed,

and is equal to

2

When p is odd and R =
| (p + 1) + 1, q = \ (p 1) 1, the series can be

summed, and is equal to

4^ |p-2/|j(l&amp;gt;-3) Hi + 3).

Now let
\(f&amp;gt;

+ /jfo be the general ^-polynomial vanishing in a set which is

residual to one of these sets of R places, \ and p, being arbitrary constants
;

we may transform the surface with z =
^J&amp;lt;f&amp;gt;

as the new independent variable.

The new surface obtained will have R sheets. The new dependent variable

may be chosen at will, provided only the transformation be reversible.

* Math. Annal. xxxvi, pp. 354, 358, 369. See also Brill and Noether, Math. Annal. vn. p. 296.
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The function /^-t-X, =/iS/&amp;lt; + X, depends on 2 +R-q-l arbitrary quantities, namely
the constants X, /*

and the position of the R-q-l arbitrarily taken places. There are

2/&amp;lt;!+ 2j0-2 places where dz is zero to the second order, namely, 2/i!+ 2/?-2 places where

the curve a^+
b&amp;lt;p

= touches the fundamental curve
;
there remain then

2R+ 2p-2-(R-q + l),
=R - 1 -p +q+ 1 + 3jo-3, = 3p-3

of the 2/Z+ 2J0-2 values which z has when dz vanishes to the second order, which are

quite arbitrary. Compare 7, Chap. I.

The least possible value of R is given by the formula R
&amp;gt;

T + pr/(r + 1).

If then p be written equal to STT, or 2?r + 1, according as p is even or odd, we

may take* R = p TT + 1, that is \p + 1 or \ (p + 1) + 1, according as p
is even or odd.

Hence, when p is even, we can determine a single infinity of co-residual

sets of ^p + 1 places, these sets being the zeros of ^-polynomials, X&amp;lt; + fjfe,

which have ^p 3 common zeros. To determine one of these sets of \p + 1

places, we may take one place, A, arbitrarily. The other \p places can

then be determined in 2
\p If ^p 1 \%p + I ways. Let two of these ways

be adopted, corresponding to one arbitrary place A ;
the resulting sets of

\p + 1 places will not be co-residual
;
for the sets co-residual with a given

set have a multiplicity 1, and therefore no two of these sets can have a

place common without coinciding altogether. Let the sets co-residual to

these two sets be given by A&amp;lt;/&amp;gt;

+ yu&
=

0,
V&amp;lt;/&amp;gt;

+ //$ =
0,(f&amp;gt;

and
&amp;lt;/&amp;gt; being chosen

so as to vanish in A : we assume that
&amp;lt;/&amp;gt;,

&amp;lt; have no other common zero.

Then the equations z =
&amp;lt;f&amp;gt;fo,

s = $ /*& will determine a reversible trans

formation, as is immediately seen in a way analogous to those already

adopted. In the new equation z and s enter to a degree \p-\-\, and, since

there exists* no rational function of lower order than \p-\-\, no further

reduction of the degree to which z and s enter, is possible.

The new equation may be interpreted as the equation of a curve of order p + 2 : it

will have the form

(z, iy
nsm+ (z, l)

msm -
l + ... + (z, l)

m
=0,

wherein m=

By putting z= \/z1 , s=\/sl ,
it is reduced to the equation of a curve of order p. The

form possesses the interest that it was employed by Elemann.

Ex. Obtain the 2 sets of \p+ 1 places corresponding to a given arbitrary point for a

quintic curve with two double points, and transform the equation.

108. If we have a set of R places^, for which r + 1 = 4, the co-residual

places being given by the variable zeros of ^-polynomials of the form

+
v&amp;lt;f&amp;gt;

3 + i/r,
we can, by writing

*
Thus, for perfectly general surfaces of deficiency p, no rational function exists of order less

than 1 + ip. Cf. Forsyth, Theory of Functions, p. 460. Biemann, Gesam. Werke (1876), p. 101.

t Wherein R - r
&amp;lt;p,

or R
&amp;lt;p

+ 3.
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and eliminating x, y from these three equations and the fundamental equation

associated with the Riemann surface, obtain two rational algebraic equations

connecting X, Y, Z\ these equations determine a curve in space, of order R
,

for this is the number of variable zeros of the function \X + fj,Y+ vZ + 1.

To a point X = X
l ,
Y= F1; Z = Z^ of the curve in space, will correspond the

places of the surface, other than the fixed zeros of
&amp;lt;/&amp;gt;

1;
&amp;lt;/&amp;gt;

2 ,
&amp;lt;&amp;gt;3 , ty, at which

and it is generally possible to choose
&amp;lt;/&amp;gt;], $ 2 ,

&amp;lt;f&amp;gt;

3 , -ty-
so that these equations

have only one solution.

The lowest order possible for the space curve is given by

If then p = 4-7T, or 4?r + 1, or 4?r + 2, or 4?r + 3, R may be taken equal

to p - TT + 3.

For instance with * p= 4, R= Q, taking a plane curve with double points at the places

#=oo, y= Q and x=0, y=o , given by

x*f (x, y\ +xy (x, y\+ (ar, y)3+ (x, y\ + (x, y\ +A = 0,

we mayf take X0 1 + /i0 2 + //03+^ = X^y+^+ j/
i
?/4-l ;

the places residual to the variable

set of R places are, in number, 2p 2-6, =0. Then the equations of transformation are

X=xt/, Y=x, Z=y,

and these give points (X, I
7

*, Z) lying on the surfaces,

X= YZ,

of which the first is a quadric and the second a cubic.

A set of R places with multiplicity r = 3 may of course also be used

to obtain a transformation to another Riemann surface. With the same

notation we may put z =
&amp;lt;j&amp;gt;i/^r,

s =
(j&amp;gt;J^.

It is clear that the resulting

equation, regarded as that of a plane curve, is the orthogonal projection, on

to the plane Z= 0, of the space curve just obtained.

A set of R places with multiplicity r &amp;gt; 3 may be used similarly to obtain

a curve of order R in space of r dimensions. Some considerations in this

connexion will be found in the concluding articles of this chapter.

109. It has already been explained that the methods of transformation

given in 101 108 of this chapter are not intended to apply to surfaces

which are not of general character for their deficiency, and that, in particular,

hyperelliptic surfaces are excluded from consideration. We may give here a

practical method of obtaining the canonical form of a hyperelliptic surface,

* Since p must be 5: (T + 1) (q + 1), this is the first case to which the theory applies.

t It is easy to shew that this is the general adjoint polynomial of degree w-3. We may also

shew that the integrals, \xydxjf (y), etc., are finite, or use the method given Camb. Phil. Trans.

xv. iv. p. 413, there being no finite multiple points.
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whose existence has already been demonstrated (Chap. V. 54). Suppose
first that

p&amp;gt;l.
In the hyperelliptic case every &amp;lt;/&amp;gt;-polynomial vanishing

in any place A will vanish, of itself, in another place A . Any one of these

^-polynomials will have 2p 4 other zeros, forming a set which we shall

denote by S. Putting Q = 2 and r + 1 = p 1 in the formula Q q=p r \,

we find q
=

1, so that the general ^-polynomial vanishing in the places S
will be of the form A,^ X,^, wherein X1( X2 are arbitrary constants; in

fact these
2/&amp;gt;

4 places S consist of p 2 independent places and the other

p 2 places determined by them, one by each. Thus a function of the

second order is given by z fa/fa. A general adjoint polynomial of grade

(n 1 ) cr + n - 2 will contain n+pl terms and vanish, in all, in n + 2p 2

places ;
thus the general adjoint polynomial, of this grade, which is prescribed

to vanish in a set T of n 4- p 3 arbitrary places, will be of the form

f*ifa+ P&*i pi, /^ being arbitrary constants, and will vanish in p+ 1 other

places. We may suppose ^ so chosen that it vanishes in one of the two

zeros of fa which are not among the set S, and we shall assume that ty2

does not vanish in this place, and that fa does not vanish in the other

of these two zeros of fa. Then the functions z = fa/fa, s = ^i/^o, are

connected by a rational equation, (s, z) 0, with which a new Riemann
surface may be associated

;
to any place of the old surface there corresponds

only one place z= fa/fa, s =
i/r 1/ijr2 ,

of the new surface; to the place z = 0,

s = of the new surface corresponds only one place of the original surface,

and the same is therefore true of every place of the new surface. Thus
the equation (s, z)

= is of degree 2 in s and degree p + 1 in z. The highest

aggregate degree in s and z together, in the equation (s, z)
=

0, is the same
as the number of zeros of functions of the form \z + JAS + v, for arbitrary
values of \, p, v, and therefore if the poles s be different from the poles
of z, namely, if the zeros of

\Jr2
other than T, be different from the zeros

of fa2 other than S, the aggregate degree of (s, z) in s and z together will

be p + 3
;
thus the equation will be included in the form

s
2a + s/3 + 7 = 0,

where a, /3, 7 are integral polynomials in z of degree p 4-1.

If we put a- = so. + /3, this takes the form

0-2 = ia2 _ a%

which is of the canonical form in question.

Ex. A plane quartic curve with a double point (p= 2) may be regarded as generated
by the common variable zero A of (i) straight lines through the double point, vanishing
also in variable points A and A

, (ii) conies through the double point and three fixed

points, vanishing also in variable points A, ,
C.

When p is 1 or 0, the method given here does not apply, since then

adjoint ^-polynomials (which in general vanish in 2p 2 variable places)
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have no variable zeros. In case p = 1 or p = 0, if /A^ +/i2\/r2 -f ^3-^3 ,
with

Mi. fa, fa arbitrary, be the general adjoint polynomial of grade (n 1) a + n 2

which vanishes in n+p 4 fixed places, fa, ty3 being chosen to have one

other common zero beside these n+p 4 fixed places, we may use the

transformation z = ^/ijr.,, s = fa/fa, z being a function of order p + I, and s

being a function of order p + 2. Then, since the function \z + /JLS + v vanishes

in p + 2 places, we obtain an equation of the form *

s2 (z, l)p + s (z, 1
),,+1 + (z, l)p+2

= 0,

of which the further reduction is immediate.

Ex. For a plane quartic curve with two double points (^9
=

1) let n l \js l
+ p.$z+ ^3^3 be

the general conic through the double points and a further point A, \^x
and

\/r3 being chosen

also to vanish at any point B. Then we may use the transformation = Vr
i/V 3i S= ^r

2/Vr3-

110. In the transformations which have been given we have made

frequent use of the polynomials which we have called (^-polynomials, namely
adjoint polynomials of grade (n l)cr + n 3. For this there is the special

reason, already referred to-f, that, in any reversible transformation of the

surface, their ratios are changed into ratios of ^-polynomials belonging to

the transformed surface
;
thus any property, or function, which can be

expressed by these ^-polynomials on.ly, is invariant for all birational trans

formations. We give now some important examples of such properties.

Let the general ^-polynomial be always supposed expressed in the form

\fa + ... +
\p&amp;lt;f&amp;gt;p , \i, ..., Xp being arbitrary constants. Instead of fa, ...,

&amp;lt;f&amp;gt;p
we may use any p linearly independent linear functions of fa, ...,

tj&amp;gt;p&amp;gt;

agreed upon beforehand. A convenient method is to take p independent

places GU ..., cp and define fa as the ^-polynomial vanishing in all of c1? ...,cp

except d ;
but we shall not adhere to that convention in this place. Let any

general integral homogeneous polynomial in fa, ..., fa, of degree fi, be
denoted by &amp;lt;E&amp;gt;w or &amp;lt;& &*&amp;gt;. This polynomial contains p(p + l)...(p+p- l)/p !

terms.

In a polynomial &amp;lt;l&amp;gt;&amp;lt;

2
&amp;gt; there are $p(p + l) products of two of fa, ...,fa.

But these &p(p+l) products of pairs are not linearly independent. For

example in a hyperelliptic case, we can choose a function of the second order,

z, such that the ratios ofp independent (^-polynomials are given by

fa : fa : ... : fa = 1 : z : z2
: ...

then there will be p 2 identities of the form

=
fa/fa

= ... = fa/fa-! ,

* Further developments are given by Clebsch, Crelle, t. 64, pp. 43, 210. For this subject and
for many other matters dealt with in this Chapter, the reader may also consult Clebsch-

Lindemann-Benoist, Legons sur la Geometric (Paris 1883), t. in.

t Chap. II. 21.
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whereby the number of linearly independent products of pairs of fa, ..., fa
is reduced to \ p (p + 1) (p 2), at most. But we can in fact shew,

whether the surface be hyperelliptic or not, that there are not more than

3 (p 1) linearly independent products of pairs of fa, ..., fa. For consider

the 4 (p 2) places in which any general quadratic polynomial, &amp;lt;3&amp;gt;

(2)
,
vanishes.

If fa fa be any product of two of the polynomials fa, ..., fa, the quotient

fafa/&
(- }

represents a rational function having no poles except such as occur

among the zeros* of &amp;lt;I&amp;gt;

(21

;
there are therefore at least as many linearly

independent rational functions, with poles among the zeros of &amp;lt;I&amp;gt;

(2)

,
as there

are linearly independent products of pairs of fa, ..., fa,.
But the general

rational function having its poles among the 4 (p 1) zeros of &amp;lt;I&amp;gt;

(2)

,
contains

only 4&amp;gt;(p 1) p + 1, =3(p 1), arbitrary constants. Hence there are not

more than this number of linearly independent pairs of fa, ...,
&amp;lt;f&amp;gt;p . In

precisely the same way it follows that there are not more than (2/j, l)(j 1)

linearly independent products of p, of the polynomials fa, ..., fa.

111. But it can be further shewn that in general^ there are just

(2/4 1) (p 1) linearly independent products of
//,

of the polynomials

fa, ..., fa ,
so that there are

identical relations connecting the products of p, of the polynomials fa, ..., fa.

Consider the case p,
= 2. Take p - 2 places such that the general

(^-polynomial vanishing in them is of the form \fa + /j.fa,
A, and p being

arbitrary, and fa, fa having no zero common beside these p - 2 places. Let

4&amp;gt;(D
&amp;gt;

&amp;lt;|&amp;gt;

(i) denote two general linear functions of fa, ..., fa. The polynomial

is quadratic in fa, ..., fa. It contains 2p terms. But clearly these terms

are not linearly independent, for the term $ 2 fa occurs both in
fa&amp;lt;&

w and

in
&amp;lt;/&amp;gt;

2 &amp;lt;&amp;gt;

(1)
. Suppose, then, that there are terms, faWw , occurring in

fa$&amp;gt;

(l}
,

which are equal to terms, ^&amp;gt;i^

(1)
, occurring in

fa$&amp;gt;

m
. The necessary equation

for this, V = fa~ ~
fa

shews that ^ (1) vanishes in the p zeros of fa which are not zeros of fa.

But since these p zeros form a set which is a residual of a set (of p 2 places)

*
Here, as in all similar cases, the zeros of the polynomial are its generalised zeros when it

is regarded as of its specified grade.

t Precisely, the theorem is true when the surface is sufficiently general to allow the existence

of p-2 places such that the general 0-polynomial, vanishing in them, is of the form X^ + pfa,

\ and M being arbitrary constants, and fa, &amp;lt;f&amp;gt;.2 having no common zero other than the p - 2

places. We have already given a proof that this is always the case when the surface is not

hyperelliptic ( 102).
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in which two (^-polynomials vanish, it follows* that only one ^-polynomial

vanishes in these p places; and such an one is fa. Hence &quot;^
(1) must be

a multiple of fa, and therefore XP (1) a multiple of fa. Thus the polynomial

contains 2p 1 linearly independent products of pairs of fa, ..., fa,.

Let now fa be a ^-polynomial not vanishing in the common zeros of

&amp;lt;/&amp;gt;,, fa, and let fa, ..., fa be chosen so that fa, fa, fa, ..., fa are linearly

independent. Consider the polynomial

4&amp;gt;
=

fa&amp;lt;&n
+ fa& ) + fa \\3 fa + . . . + \pfal

wherein \3 , ..., \p are arbitrary constants. Herein fa(\^fa + ...+\p fa)
cannot contain any terms fa (X/$3 + . . . + ^p fa) which are equal to terms

already occurring in the part fa&amp;lt;b

tl} +
fa&amp;lt;&

ft)

,
or else \3

&amp;lt;f&amp;gt;
3 + ... + \p fa would

vanish in the p 2 common zeros of fa and fa ;
and this is contrary to the

hypothesis that \fa + ufa is the most general ^-polynomial vanishing in

these p 2 places. Hence the polynomial &amp;lt;E&amp;gt; contains 2p 1 + p 2, or

Sp 3, independent products of twos of the polynomials fa, ...,fa. As
we have proved that a greater number does not exist, 3p 3 is the number
of such products of pairs.

Consider next the case
yu,
= 3. Since co-residual sets of 2p 1 places

have f a multiplicity p 1, it follows that the general polynomial, \f (2)
,
of

the second degree in fa, ..., fa, which vanishes in 2p 3 fixed places, and
therefore in 2p I variable places, contains p arbitrary coefficients. If then

the 2p 3 fixed zeros of ^ (2) be zeros of a definite polynomial, fa, it follows

that &amp;lt;-&amp;gt; is of the form fa^f^,^ being of the first degree in fa, fa, ..., fa.

Hence, as in the case
/u-
=

2, it can be proved that if fa, fa be ^-polynomials
with one common zero, the reduction in the number, 2(3p 3), of terms

in a polynomial
&amp;lt;/&amp;gt;!&amp;lt;!&amp;gt;

(2
&amp;gt; + fa& {2)

,
which arises in consequence of the occurrence

of terms, faW, in
fa&amp;lt;&

(2)
,
which are equal to terms, - faW, occurring

in
fa&amp;lt;&

{2)
. is at most equal to p. Hence the polynomial fa&amp;lt;&

+
fa&amp;lt;&

{2)

contains at least 5p 6 linearly independent products of threes of fa, ..., fa.
Hence taking fa, and a quadratic polynomial 3&amp;gt;&quot;&amp;lt;

2
,
such as do not vanish

in the common zero of fa, fa, it follows that a cubic polynomial with at least

op 5 linearly independent products, is given by

We have thus proved that in the cases /*
=

2, /A
= 3, the polynomial

contains (2/u,- l)(p 1) linearly independent products. Assume now
that 4&amp;gt;^-) contains (2/*- 3) (p- 1) independent terms, and that &amp;lt;&amp;lt;&quot;-

2

* From the formula (Chap. VI. 93)

Q-R = 2(q-r),

putting Q=jp-2, R=p, r=l, we obtain q = 0.

t From Q-q=p-(r + l), putting r+l=0 (because 2p- l&amp;gt;2p-2) Q = 2p-l, q=p-l.
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contains (2/x 5)(p 1) independent terms. A general polynomial

vanishing in the zeros of a definite ^-polynomial, &amp;lt; 2 ,
will have 2(/i 2)(j9 1)

variable zeros; and the multiplicity of co-residual sets of 2 (/A 2)(p 1)

places, when /x &amp;gt; 3, is (2/j, 5)(p 1) 1, which by hypothesis is the same

as the multiplicity of the sets of zeros of a polynomial &amp;lt;$&amp;gt;,?

(&amp;gt;i

~
z)

,
in which

-2) nas i s most general form possible. Hence the general polynomial

vanishing in the zeros of &amp;lt; 2 ,
is of the form

&amp;lt;f&amp;gt;^^~

2)
. If then, in a

polynomial, (j)^^&quot;^ + &amp;lt;f&amp;gt;

2 &amp;lt;&

(*~v
,
of the yu-th degree in

&amp;lt;/&amp;gt;
l5 ...,

&amp;lt;f)p ,
wherein

&amp;lt;j)
1} $z have no common zeros, there be terms, fy.W

(ft
~

1)
, occurring in &amp;lt; 2 &amp;lt;l&amp;gt;

/( 1~1)
,

which are equal to terms, -
&amp;lt; 1Mr( t~ 1)

, occurring in
^&amp;gt;

1
&amp;lt;I&amp;gt;

( t~1)
,
then ty^-v must

be of the form ^F^-2
*, and ^V- 1 of the form c^ ^-2

,
and the resulting

reduction in the number, 2 (2/i
-
3)(p

-
1), of terms in

^tl?&quot;*-

1 * + ^2
&amp;lt;

l&amp;gt;

/
&quot;

t-1)
,

is at most equal to the number, (2//, 5) (p I), of terms in a polynomial
^c*-2

*. Thus, there are at least

2 (2,1
-

3) G&amp;gt;-1)- (2,1-5X0-1), = (^-l)(p-l\

linearly independent terms in the polynomial ^^^&quot;^ + $.,&&amp;gt;

^~l )

;
as we have

proved that no greater number exists, it follows that (2/i l)(p 1) is the

number of linearly independent products of
yu,

of the polynomials &amp;lt;f&amp;gt;

1} ...,
(f&amp;gt;p .

112. Another most important theorem follows from the results just

obtained : Every rational function whose poles are among the zeros of a

polynomial ^w can be expressed in a form (pM/tyM. For the most general

function having poles in these 2/u, (p 1) places contains 2/x(p 1) p+ 1

arbitrary constants*, and we have shewn that a polynomial &amp;lt;&
w contains just

this number of terms; thus the quotient ^**&amp;gt;/

w
,
which clearly has its

poles in the assigned places, is of sufficiently general character to represent

any such function.

For further information on the matter here discussed the reader may consult Noether,

Math. Annal. t. xvn. p. 263,
&quot; Ueber die invariante Darstellung algebraischer Func-

tionen.&quot; And+ ibid. t. xxvi. p. 143, &quot;Ueber die Normalcurven fiirjo
=

5, 6, 7.&quot;

In order to explain the need for the theorem just obtained, we may consider the simple

case where the fundamental equation is that of a general plane quartic curve, f(x, y, z)
=

0,

homogeneous coordinates being used. If we take the four polynomials,

^i= ^2
&amp;gt; ^2=#2

&amp;gt; ^s=^&amp;gt; ^h=^&amp;gt;

which are not ^-polynomials, from which we obtain

x : y : z=^ : ^3 : ^4 ,

* When ^&amp;gt;1.
The theorem has already been proved for ^i

= l
( 98, Chap. VI.).

t In the present chapter all the polynomials considered in connexion with the fundamental

equation have been adjoint; there is also a geometrical theory for polynomials of any grade in

extension of the theory here given, in which the associated polynomials are not adjoint. For its

connexion with the theory here, the reader may compare Klein, &quot;Abel. Functionen,&quot; Math.

Annal. t. 36, p. 60, Clebsch-Lindemann-Benoist, Lemons sur la Geometric, Paris 1883, t. m., also

Lindemann, Untersuchungen iiber den Riemtmn-Roch schen Satz (Teubner 1879), pp. 10, 30 etc.,

Noether, Math. Annal. t. 15, p. 507, &quot;Ueber die Schnittpunktssysteme einer algebraischen

Curve mit nicht adjungirten Curven.&quot;
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then the general rational function with poles at the sixteen zeros of a polynomial, &amp;lt;

2
&amp;gt;,

of
the second order in fa, fa, fa, fa, contains 14 homogeneously entering arbitrary con
stants. Now there are only ten terms in the general polynomial *&amp;lt;

2
),
of the second order

in fa, ...
, ^4 ;

and these are equivalent to only nine linearly independent terms, because
of the relation fafa= fa*. Hence the rational function in question cannot be expressed in

the form

113. The investigations in regard to the ^-polynomials fa, ..., fa, which
have been referred to in 110 112, find their proper place in the con
sideration of the theory of algebraic curves in space of higher than two
dimensions.

Let fa, ..., fa be linearly independent adjoint polynomials of grade
(n
-

1) a + n - 3, defined, suppose, by the invariant condition that if

clt ...,cp be p independent places on the Riemann surface, fa vanishes in

all of d, ..., cp except a. Let xlt ..., xp be quantities whose ratios are
defined by the equations

a?i :x2 : ... : xp = fa : fa : ... : fa.

We may suppose
* that there is no place of the original surface at which

all of a:,, ..., xp are zero, and, since only the ratios of these quantities are

defined, we may suppose that none of them become infinite.

Hence we may interpret #,, ..., xp as the homogeneous coordinates
of a point in space of p - 1 dimensions

;
we may call this the point as.

Corresponding then to the one-dimensionality constituted by the original
Riemann surface, we shall have a curve, in space of p - I dimensions. Its

order, measured by the number of zeros of a general linear function

A^ + ... + \yxp ,
will be

2/&amp;gt;

- 2. To any place x of this curve there cannot

correspond two places c, c of the original surface, unless

fa(c) : fa(c) : ... : fa (c)
=

fa (c ) : fa(c ) : ... :
&amp;lt;^(c ).

Now, from these equations we can infer that the (^-polynomials corre

sponding to the normal integrals of the first kind, have the same mutual
ratios at c as at c

;
such a

possibility, however, necessitates the existence of
a rational function of the second order, expressible in the form

MY /*r*/,

where X, p are constants whose ratio is definite, and T*
, rj are normal

elementary integrals of the second kind with unassigned zeros. Hence the

correspondence between the original Riemann surface and the space curve,
6^-2, is reversible except in the hyperelliptic case.

In the hyperelliptic case the equations of transformation are reducible to
a form

x
l

: #2 : . . . : xp = 1 : z : z* : . . . : zP~\

*
Chap. II. 21.
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To any point x of the space curve corresponds, therefore, not only the place (s, z) of the

Riemann surface, but equally the place (
-

s, z). The space curve may be regarded as a

doubled curve of order p l. (Of. Klein, Varies, ub. d. Theorie der ellip. Modulfunctionen,

Leipzig, 1890, t. I. p. 569.)

For the general case in which p = 3, the curve, C
2p_2 ,

is the ordinary

plane quartic curve. For the general case, p = 4, the curve (7^-2 is a sextic

curve in space of three dimensions, lying* on \p(p 4- 1) (3p 3), = 1,

surface of the second order and %p(p + l)(p + 2) (op 5),
= 5, linearly

independent surfaces of the third order.

Ex. If, for the case jo
=

4, we suppose the original surface to be associated with the

equation f

f(x,y} =tff (Lx+ My)+xy (ax*+ Ihxy+ by
2
) + Px3+ Qafiy+ Rxy*

+Sy3 + Ax2+ ZHxy+Bf+ Cx+ Dy+ 1 = 0,

and put Zxy, X=x, Y=y, as the non-homogeneous coordinates of the points of the

curve C&quot;2p_ 2 ,
the single quadric surface containing the curve is clearly given by

U
2
=Z-XY=0,

and one cubic surface, containing the curve, is given by
2
) + PX3+ QX 2Y+RXY*

Four other cubic surfaces, T
7
1
=

0, F&quot;

2
=

0, F
3
=

0, T
r
4
=

0, can be obtained from t/&quot;3
= by

replacing XYby Z, respectively in, (i) the coefficient of h, (ii) the coefficient of Q, (iii) the

coefficient of /?, (iv) the coefficient of H ;
these are linearly independent of I73

=
0, and of

one another. Other cubic surfaces can be obtained from U3=0 by replacing XY by Z in

two of its terms simultaneously ;
for instance, if we replace XY by Z in the coefficients of

h and JT, we obtain a surface of which the equation is V
l
- U3+Vt=0. Similarly all

others than #3=0, V
1
= 0, ... ,

F4 =0, are linearly deducible from these.

114. As an example of more general investigations, consider now the

correspondence between the space curve C.
2p_2 ,

for p = 4, and the original

Riemann surface. Let us seek to form a rational function having p + 1 = 5

given poles on the sextic curve. A surface of order
//,

can be drawn through

5 arbitrary points of the curve when
//,

is great enough ;
we may denote

its equation by ^W=0, in accordance with 110. It was proved that

the rational function can be written in the form c^w/vpw, &amp;lt;J&amp;gt;M being another

polynomial, of order p in the space coordinates, which vanishes in the 6/^ 5

zeros of &quot;^^ other than the 5 given points. Since a general surface of

order /A contains (ft + 3, 3)| terms, the most general form possible for &amp;lt;l&amp;gt;

( x

&amp;gt;,

when subject to the conditions enunciated, will contain

(At + 3, 3)-(6/x-5)

arbitrary, homogeneously entering, coefficients
;

the polynomials which

multiply these coefficients, represent, equated to zero, all the linearly inde-

* 111 preceding.

f Cf. 108.

$ Where (/x, v) is used for the number n(/j,-l)...(/j.-v
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pendent surfaces of order /A which vanish in the 6/u. 5 points spoken of;

they will therefore include the

-, or *-,-,t-

surfaces of the /ith order which* contain the sextic curve. Denote the

number of these surfaces by r and their equations by U^ = 0, . . . , Ur
= Q.

Then the general form of the equation of a surface, &amp;lt;I&amp;gt;

W = 0, vanishing in the

6/j. 5 given points will be

wherein \1? ..., Xr , X, /j,
are arbitrary constants, and U is a surface of order

/*,

other than M^
,
which vanishes in the 6/u. 5 points, and does not wholly

contain the curve. The intersections of the surface ^^ =0 with the sextic

are the same as those of the surface \^M + ^U= ;
and the general form of

the rational function having the ^ + 1 = 5 given points as poles is

involving the right number (q + l=Q-p + l = 5-4; + l) of arbitrary
constants.

Ex. i. There are sixteen of the surfaces X*&amp;lt;M)+ ^C/
T=0 which touch the sextic (in points

other than the 6/1
- 5 fixed points).

For there are 2.5 + 2.4-2, =16, places at which the differential, dz, of the rational

function z= 7/M, is zero to the second order.

Ex. ii. In the example of the previous Article, prove that

86r
2 Sf/3 3*7

3
8C72

r(*)~W 3z~W ~5z )
- Asa^

and that the integrals of the first kind, expressed in terms of X, F, Z, are given by

jfc
J+ X 2r+ \

3Z+ X
4 )

rfA /A,

for arbitrary values of the constants X 1} X2 ,
X3 ,

X
4 f.

115. We abstain from entering on the theory of curves in space in this

place. But some general considerations on the same elementary lines as

those referred to in 81 83, as applicable to plane curves, may fitly
conclude the present chapter^ The general theorem considered is, that
of the intersections of a curve, in space of k dimensions, which is defined
as the complete locus satisfying k 1 algebraic equations, with a surface

*
111.

t The canonical curve discussed by Klein, Math. Annal. t. 36, p. 24, is an immediate
generalisation of the curve Cap _ a here explained. But it includes other cases also.

t See the note in Salmon, Higher Plane Curves (Dublin 1879), p. 22, &quot;on an apparent
contradiction in the Theory of Curves&quot; and the references there given, which include a reference
to a paper by Euler of date 1748. For further consideration of curves in space see Appendix I. to
the present volume.
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of sufficiently high order, r, there are a certain number, P, which are deter

mined by prescribing the others, P being independent of r.

We take first the case of the curve in three dimensions, defined as the

complete intersection of two surfaces of orders m and n, say Um = 0, Un = 0.

The curve is here supposed to be of the most general kind possible, having

only such singularities as those considered in Salmon, Solid Geometry

(Dublin, 1882, p. 291). For instance the surfaces Um =Q, Un are not

supposed to touch
;
for at such a place the curve would have a double point.

We prove that if r&amp;gt;m+n 4, all but ^mn (m + n 4) + 1 of the inter

sections of the curve Um = 0, Un = with a surface of order r, Ur = 0, are

determined by prescribing the others, whose number is

rmn \mn (m + n 4) 1.

For when, firstly, r&amp;gt;m + nl, the intersections of Ur
= with the

curve are the same as those of a surface

Uf U in r rin Un rn U in,U n r mn = V,

wherein Vr^m ,
Vr_n ,

Vr_m_n are general polynomials whose highest aggregate
order in the coordinates is that given by their suffixes. Hence, in analogy
with the argument given in 81, it may at first sight appear that, of the

(r + 3, 3) coefficients in Ur ,
we can reduce a certain number, K, given by

K= (r- m + 3, 3) + (r
- n + 3, 3) + (r

- m -n + 3, 3),

to zero, by using the arbitrary coefficients in Vr-m ,
Vr-n ,

Vr_m_n . This

however is not the case. For if Wr in-n ,
Tr_m_n denote general polynomials,

of the orders of their suffixes, we can write the modified equation of the

surface of order r in the form

TT TT (V - JT W \TT&amp;lt;V - 77 T }
l/r ^m\ rm u n rmn) u n \ rn V m-1- rmn)

Um w \ rmn &quot; r m n -*-rmn) = &quot;

Now, whatever be the values assigned to the coefficients in PFr_m_n ,
Tr_m_n ,

the coefficients in Fr_w_n Wr-m-n Tr_m_n are just as arbitrary as those

of Fr_m_n . And we may use the coefficients in Wr-m-n&amp;gt;
Tr_m_n to reduce

(r m n + 3, 3) of the coefficients in each of the polynomials

V - JT W V - IT T
i m ij n rmny rn - m-L rmn)

to zero.

Hence the K equations by which we should reduce the number of

effective coefficients in Ur to (r + 3, 3) K, are really unaltered when

2 (T m n + 3, 3) of the disposeable quantities entering therein, are put

equal to zero. Thus we may conclude, that so far as the intersections of Ur

with the curve are concerned, its coefficients are effectively

(r + 3, 3)
-

(r
- m + 3, 3)

-
(r
- n + 3, 3) + (r

- m - n + 3, 3)

in number. Provided the linear equations reducing the others to zero are
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independent, what we prove is that the number of effective coefficients

is certainly not more than this.

This number can immediately be seen to be equal to

rmn \nin (m + n -
4).

Hence, we cannot arbitrarily prescribe more than rmn \nm (m + n- 4) 1

of the intersections of Ur
= with the curve.

This result is obtained on the condition that r&amp;gt;m + n 1. If r = m + n 1,

m + n 2 or m + n 3, the number of effective coefficients in Ur cannot

be more than in the polynomial

*J,t Um rm Un V r_n ,

namely, than

(r + 3, 3)-(r-m+3, 3)-(r-w+3, 3).

By the previous result this number is equal to

rmn \mn (m + n 4) (r m n + 3, 3),

and (r
- m - n + 3, 3),

=
(r
- m - n + 1) (r

- m - n + 2) (r
- m - n - 3)/3 !

,

vanishes when r = m + nl, m + n -2, or m + w-3. Hence the result

obtained holds provided r &amp;gt; m + n 4.

If we denote the number fynn (m + n 4) + 1 by P, the result is, that

when r&amp;gt;m + n
4&amp;lt;,

we cannot prescribe more than mnr P of the inter

sections of the curve Um = 0, Un = with a surface of order r
;
the prescription

of this number of independent points determines the remaining intersections.

Corollary. Hence it follows, when (?+ 3, 3)
- 1 &amp;gt; rmn- P + 1, that

a surface of order r described through rmn P + 1 quite general points
of the curve, will entirely contain the curve. Hence, in general, the curve
lies upon (?- + 3, 3)-rmn+P 1 linearly independent surfaces of order

r, r being greater than m + n 4.

Ex. i. For the curve of intersection of two quadric surfaces, P= 1 ; every surface of
order r drawn through 4r quite arbitrary points of the curve entirely contains the curve

;

the 4r intersections of a surface of order r, which does not contain the curve, are deter
mined by 4r-l of them. When r= 2, the number (r+ 3, 3)-rmn + P-I is equal to 2.

This is the number of linearly independent quadric surfaces containing the curve.

Ex. ii. For the curve of intersection of a quadric surface with a cubic surface, P= 4
;

of the Qr intersections of the curve with a surface whose order r is
&amp;gt;1,

6r-4 determine
the others. The number (r+ 3, 3)-rwm+P-l is equal to 1 when r= 2, and equal to 5

when r=3; thus, as previously found, the curve lies on one quadric surface and on five

linearly independent cubic surfaces
;
the number, for any value of r, is in agreement with

the result of 111.

116. In regard to the intersections, with the curve, of a surface of

order m + n- 4, such a surface has effectively not more coefficients than are

contained in the polynomial

^m+n-4 Um n 4
~ U n m 4&amp;gt;

B.
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for arbitrary values of the coefficients in Fn_4 and Fm_4 . Here we firstly

suppose m &amp;gt; 3, n &amp;gt; 3.

Now we can prove, as before, that

(m + n-l, 3)-O-l, 3)-(m-l, 3) = %mn(m + n-4) + 1, =P.

Hence, also when m &amp;gt; 3 and n = 3, 2 or 1,

(TO + n _ i, 3)
_

(m -
I, 3),

- \mn (m + n - 4) + 1 + (n
-

1) (n
-

2) (n
-

3)/6,

is equal to P, and the number of effective coefficients in a polynomial

Um+n-4- UnVm-i, wherein the coefficients in Fm_4 are arbitrary, is as before

equal to P. Similarly for other cases.

Hence P is the number of coefficients in a polynomial Um+n-t, which are

effective so far as the intersections of the curve with the surface I7m+n_4 =

are concerned
;

in other words, P - 1 of the intersections determine the

others. The total number of intersections is mn (m + n - 4),
= 2P - 2.

The analogy of these polynomials of order m + n - 4 with the (^-poly

nomials in the case of a plane curve is obvious.

117. If now, the homogeneous coordinates of the points of the curve in

space being denoted by Xlt X2 ,
X3 ,

X4 ,
the symbol [i, j] denote the Jacobian

9 ( Um, Un)/d (Xi} Xj), and (X1 + dX,, X2 + dX2 ,
X3 + dX3 ,

X4 + dX,) denote

a point of the curve consecutive to (Xl} X2 ,
X3} X,), it follows from the

equations

9Um -. v o Um , Y ,

^ Um jY A^+ Xs +-~ dx*~

U*
4- r 8i^A *

and the similar equations holding for Un ,
that the ratios

X2dX3
- XsdX2 : X.dX.-X.dX, : X,dXz

- X2dX, : X,dX.
- X.dX, : X2dX. - X&amp;lt;dX, : XzdX, -X.- dX3 ,

are the same as the ratios

[1,4]: [2, 4]: [3, 4] : [2, 3] : [3, !]:[!, 2];

each of these rows is in fact constituted by the coordinates of the tangent

line of the curve. If then u,, ua ,
u3 ,

ut ,
v1} v.2 ,

v3 , v, denote any quantities

whatever, and, in each of these rows, we multiply the elements respectively by

U2V3 U3V2 ,
U3Vi U^Va, U^ U 2V1} U^t W4Vj, M2^4 W4^2, ^3^4 &quot;5^3,

and add the results, we shall obtain for the first row

2 (u*v3
- u3v2) (X2dX3

-X3dXz) = udv - vdu,

where

u = u1Xl + u2 X.&amp;gt; + u3X3 + u4X4 ,
du = u^X^ + u2dX2 + u3dX3 + u4dXt , etc.,
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and, for the second row we shall obtain the determinant

t*j ,
U2 ,

U3 ,
*W4

o v &amp;gt; 3 tr . ^\r &amp;gt; ~^~v
O-A-i vA~ 2 OJL 3 OJL

O
&quot;!/

i o -yr &amp;gt;
-\ -tr t ^V

CA. i OA. 2 A 3 A.
,

which we may denote by (uvUmUn).

From the proportionality of the elements of the two rows considered,

it follows, therefore, that the ratio (udv vdu)/(uvUmUn) is independent of

the values of the quantities. w1} ...
,
v4 . This ratio is of degree

in the homogeneous coordinates; namely, if Xl} X2 ,
X3 ,

X4 be replaced by
pXlt pX2 , pX3 , pXt ,

the ratio will be multiplied by p-
&amp;lt;+-

*). Hence, if

Um+n-4 be any polynomial of degree m + n 4, the product

Um+n-i (udv vdu)/(uVUmUn}
is a functional differential, independent of the arbitrary factor of the homo

geneous coordinates.

The integral,

udv vdu

ju f TT TT \ j

(UVUm Un)

can only be infinite at the places where the curve is intersected by the

surface (uvUmUn) = : if u = 0, v = be regarded as the equations of planes,
this equation expresses that the straight line u = 0, v = 0, is intersected

by the tangent line of the curve at the point (Xlt X2) X s , Z4).
The

differential

udv - vdu, = 2 (uava
- u3v2} (X2dX 3

- X3dX2),

is zero, to the second order, when the line u=0 = v is intersected by the

tangent line, whose coordinates are X2dX3
- X3dX 2&amp;gt;

etc. Hence the ratio

(udv vdu)/(uvUm Un) is never infinite, and the integral above is finite for all

points of the curve.

Hence*, since Um+n_^ contains P terms, we can obtain P everywhere-finite

algebraical integrals.

The same result is obtained if u lt ..., v4 be polynomials in the coordinates,

MI, ..., ut being of the same degree, and v1} ...
,
v4 of the same degree.

As stated, we are considering a curve without singular points. If the curve had a double

point, the polynomial (uvUmUn)
would vanish at that point, for all values of w

1( ..., v4 . We could
then prescribe Um+n _4= Q to pass through the double point, thus obtaining a reduction of one in

the number of finite integrals. Etc.

112
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Ex. i. For a plane curve of order n, without multiple points, prove similarly that we

can obtain p finite algebraical integrals in the form

!&amp;gt; _ 3 (udv vdu)l(uvf ),

where /(#!, #2 ,
#
3 )
= is the homogeneous equation of the curve, U=u1

x
1+u2x2+ tiye3 , etc.,

and (uvf) denotes a determinant of three rows.

Ex. ii. Shew that a surface of order m+ n 4 +
fj.
which vanishes in all but two of the

intersections of the curve in space with a surface of order p, ^,.
=

0, is of the form

where X, X 1} ... ,
\P are arbitrary ;

and that an integral of the third kind is of the form

udv vdu

/i p (uvl7mUn)

118. Retaining still the convention that u = 0, v = are the equations of

planes, let u = 0, v = be the equations of other planes whose line of inter

section does not coincide with the line u = = v.

From the equations

zu-v = 0, su -v = 0, Um =Q, Un = 0,

wherein z, s have any values, we can eliminate the coordinates of the points

of the curve in space, and obtain a rational equation, (s, z) 0, with which

we may associate a Riemann surface*. To any point of the curve corre

sponds a single point, z = v/u, s = v /u, of the Riemann surface
;
to any point

of the Riemann surface will in general correspond conversely only one point

of the curve in space. Hence the Riemann surface will have mn sheets,

the places, at which z has any value, being those which correspond to the

places, on the curve in space, at which the plane zu v = intersects this

curve. Thus the Riemann surface will have 2mn + 2p 2 branch places,

p being the deficiency of the surface. These are the places where dz is zero

of the second order. Thus they correspond to the places, on the curve in

space, where udv vdu is zero to the second order. We have seen that these

are given as the intersections of this curve with the surface (iivUmUn}
= 0,

of order m + n 2
;
their number is therefore mn (m + n 2) = Zmn + 2P 2.

Hence the number P, obtained for the curve in space, is equal to the

deficiency p of the Riemanu surface with which it is reversibly related.

The same result can be proved when u, v are polynomials of any, the same,

order, and u
,
v are polynomials of any, the same, order.

And from the reversibility of this transformation it follows that the

everywhere-finite integrals for the Riemann surface are the same as those

here obtained for the curve in space.

* We may of course interpret the equation as that of a plane curve
;
a particular case is that

in which this curve is a central projection of the space curve.
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Ex. Prove that if elt e2 ,
e3 be such that e

l +ez+ e
3 =0,

(b- c)(c-a)(a-b) = (b-c)(a-d)/(e2 -e3)
= (c-a)(b-d)/(e3

-e
1 )
= (a-b)(c-d)!(e1

-e
2 ),

the points of the curve aX 2+bY2+cZ2+dT*= 0, X 2 + Y2+Z2+T2 = can be expressed
in terms of two quantities, x, y, satisfying the equation y

2= 4 (x
-
ej (&

- e2) (x e3), in the

form T : X : Y : Z

=y V^c [(a?
-
etf

-
(e1

- e
z) (et

-
&,)] : *J^a [(x

- e
2)

2 -
(e2

- es ) (e2
-
ej\

:\/a-b[(x- e
3)

2 -
(e3

-
ej (e3

- e2)].

Find x, y in terms of X, Y, Z, T in the form

(e2
- e3) A

r

/ b -c+ e2 (e3
- e

l

See Mathews, London Math. Soc. t. xix. p. 507.

119. As already remarked we have considered here only the case of a non-singular
curve in space which is completely denned as the intersection of two algebraical surfaces.

For this case the reader may consult Jacobi, Crelle, t. 15 (1836), p. 298
; Pliicker, Crelle.

t. 16, p. 47 ; Clebsch, Crelle, t. 63, p. 229
; Clebsch, Crelle, t. 64, p. 43

; Salmon, Solid

Geometry (Dublin, 1882), p. 308
; White, Math. Annal. t. 36, p. 597 ; Cayley, Collected

Works, passim. For the more general case, in connexion however with an extension of the

theory of this volume to the case of two independent variables, the following, inter alia,

may be consulted : Noether, Math. Annal. t. 8 (1873), p. 510
; Clebsch, Comptes Rendus de

I Acad. des Sciences, t. 67, July December, 1868, p. 1238
; Noether, Math. Annal. t. 2,

p. 293, and t. 29, p. 339 (1887) ; Valentiner, Acta Math. t. ii. p. 136 (1883) ; Halphen,
Journal de VEcole Polyt. t. lii. (1882), p. 1

; Noether, Abh. der Akad. zu Berlin (1882) ;

Cayley, Collected Works, Vol. v. p. 613, etc. ; and Picard, Liouv. Journ. de Math.

1885, 1886 and 1889.

Ex. i. Prove that

(r+t, k)-2(r+ k-

where (r, M ) denotes r(r- !)...(/- /u+ 1)/M !, m1( ...
,
mk_^ k are any positive integei-s, r is a

positive integer greater than m
x + i

2 +... +mk _ 1
- k - 1, 2 denotes a summation extending

to all the values i=l, 2, ..., (k- 1), 2 denotes a summation extending to every pair of two
2

unequal numbers chosen from the series m^ m
2 , ..., mk _ l ,

and so on. Hence infer that
of the intersections of a general curve in space of k dimensions, which is determined as the

complete locus common to k-l algebraic surfaces of orders mlt m2 , ..., mk _ l ,
with a

surface of order r, all but

are determined by the others. The result is known to hold for = 2. We have here been

considering the case = 3.

Ex. ii. With the notation and hypotheses employed in Salmon s Solid Geometry (1882),
Chap. XII. (p. 291) (see also a note by Cayley, Quarterly Journal, t. vn., or Collected Works,
Vol. v. p. 517), where m is the degree of a curve in space, n is its class, namely the number
of its osculating planes which pass through an arbitrary point, r is its rank, namely the
number of its tangents which intersect an arbitrary line, a is the number of osculating
planes containing four consecutive points of the curve, /3 the number of points through
which four consecutive planes pass, x the number of points of intersections of non-consecu-
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tive tangents which lie in an arbitrary plane, y the number of planes containing two non-

consecutive tangents which pass through an arbitrary point, h the number of chords of the

curve which can be drawn through an arbitrary point, g the number of lines of intersection

of two non-consecutive osculating planes which lie in an arbitrary plane, ^ the number of

tangent lines of the curve which contain three consecutive points, prove, by using Pliicker s

equations (Salmon, Higher Plane Curves, 1879, p. 65) for the plane curve traced on any

plane by the intersections, with this plane, of the tangent lines of the curve in space, that

the equations hold,

(1) n=r(r-l)-2x-3m-3^, (3) r=n(n- 1) -2#-3a,

(2) a = 3r(r-2)-6^-8(m+^), (4) m+^= 3n(n-2)-Gg-8a,
pl -l=%r(r-2&amp;gt;)-x-m ^=%n(n S)g a ..................... (A),

p1 being the deficiency of this plane curve.

Prove further, by projecting the curve in space from an arbitrary point, and using
Pliicker s equations for the plane curve in which the cone of projection is cut by an

arbitrary plane, the equations

(5) r= m(m-I)-2h-3p, (7) m= r (r- l)-2#-

(6) S.+?i= 3m(m-2)-6A-8/3, (8) /3
=

/&amp;gt;2
-l =im(i-3)-A-0=ir(r-3)-y-n-$. ....................(B),

p2 being the deficiency of this plane curve.

From the equations (1) and (7) we can infer n -m= 3n 3m 2 (x-y\ and therefore

Hence Pi=pz .

Ex. iii. For the non-singular curve which is the complete intersection of two algebraic

surfaces of orders p, v, prove (cf. Salmon, Solid Geometry, pp. 308, 309) that in the notation

of Ex. ii. here,

Hence, by the equations (B) of Ex. ii. prove that, now,

p^Pz^pvfa+ v-ty + l.

This is the number we have denoted by P.

Ex. iv. Denoting the number pl=p2 j
in Ex. ii., by p, prove from equations (5) and (B)

that
= 3 (r+j8-2m).

Hence shew that if, through a curve C of order m, lying on a surface S of order
/n,
we

draw a surface of order v, cutting the surface S again in a curve C&quot; of order m
,
and if

p, p denote the values ofp for these curves C, C respectively, then

(see Salmon, pp. 311, 312). Shew that each of these numbers is equal to the number, i,

of points in which the curves C, C intersect, and interpret geometrically the relation

i+r+ 0=m(fji + v-2 ).

Ex. v. If in Ex. iv. a surface &amp;lt; of order p+ v - 4 be drawn through (/*+ v 4) m p + 1,

or il+p ,
of the points of the curve

C&quot;, prove that, so far as its intersections with the

curve C are concerned, the surface
(f)

contains effectively p terms. Prove further that

contains the curve C entirely.
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Ex. vi. Prove that a surface of order p+ v 4 passing through i 1 of the intersections

of the curves 0, C ,
in Ex. iv., will pass through the other intersection.

Ex. vii. An example of the case in Ex. iv. is that in which
/i
=

2, i/= 2, m= 3, m = l.

Then C&quot; is a straight line and p =
: hence p is given by 2 = 2p

- 2. Hence, for the

cubic curve of intersection of two quadrics having a common generator, p= Q. And in fact

coordinate planes can be chosen so that the homogeneous coordinates of the points of the

cubic can be expressed in the form

X : Y : Z : T=\ : 6 : 0* : &amp;lt;9

3
,

6 being a variable parameter. For instance (using Cartesian coordinates) the polar planes

of a fixed point (X YZ
1

) in regard to quadrics confocal with X2
/a+ Yz

jb + Z*/c= l are the

osculating planes of such a cubic curve, the coordinates of whose points are expressible in

the form

XX = (a + \}*l(a-b)(a-c\ YY =
(b+ \)

3
l(b-c)(b-a), ZZ =

(c+ \)
3
/(c-a)(c-b),

\ being a variable parameter.

Ex. viii. For the quintic curve of intersection of a quadric and a cubic surface having

a common generator we obtain, from Ex. iv., putting m =l, p =
0, m =

5, that p= 2
;

the

results of Exx. iv., v., vi. can be immediately verified for this curve
; further, if the surfaces

be taken to be yU-zV=0, yS-zT=0, where U, V are of the first degree in x, y, z and

S, T of the second degree, and we put y= zg, x=zrj, we obtain

where the Greek letters au a2,
. . . denote polynomials in of the degrees of their suffixes.

Hence, if a- be defined by the equation,

X
I(
T= 2? (X^ft+X 1

a
1y1+Vi2

) + Vfo + X
i (al72+ 27i) + 2Vi2 ,

we obtain o-
2= (, 1)6 ; ,

a- are rational functions of x, y, z and x, y, z are rational functions

of
,

o-.

Ex. ix. Prove that if the sextic intersection of a cubic surface and a quadric surface,

break up into a quartic curve and a curve of the second order, the numbers p, p for these

curves are p = l, p = Q or p=0, p = - 1 according as the curve of the second order is a

plane curve or is two non-intersecting straight lines.

Ex. x. In analogy with Ex. iv., shew that the deficiencies of two non-singular plane

curves of orders m, m are connected by the equation

m (m+m -
3)
-

(2jo
-

2)
=mm =m (m+m -

3)
-
(2p

-
2),

and further in analogy with Ex. v. that if a plane curve, of order m+m -3, be drawn

through (m+.m
1 -

3) m -p +l independent points of the curve of order m , only p - I of its

intersections with the curve of order m can be prescribed.

Further indications of the connexion of the theory of curves in space with the subject

of this chapter will be found in Appendix I.
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CHAPTER VII.

COORDINATION OF SIMPLE ELEMENTS. TRANSCENDENTAL UNIFORM

FUNCTIONS.

120. WE have shewn in Chapter II. ( 18, 19, 20), that all the funda

mental functions are obtainable from the normal elementary integral of the

third kind. The actual expression of this integral for any given form of

fundamental equation, is of course impracticable without precise conventions

as to the form of the period loops, and for numerical results it may be more

convenient to use an integral which is denned algebraically. Of such

integrals we have given two forms, one expressed by the fundamental

integral functions (Chap. IV. 45, 46), the other expressed in the terms of

the theory of plane curves (Chap. VI. 92, Ex. ix.). In the present Chapter

we shew how from the integral P^ &quot;,
obtained in Chap. IV.*, to determine

algebraically an integral Qf
a

for which the equation Q
x a = Q

z c

has place ;

incidentally the character of P*
&quot;

,
as a function of z, becomes plain ;

and

therefore also the character of the integral of the second kind, %
a

,
which

was found in Chap. IV. ( 45, 47).

This determination arises in close connexion with the investigation of

the algebraic expression of the rational function of x which was obtained in

49 and denoted by -fy (x, a ; z, clt ... cp ). It was there shewn that every
rational function of x can be expressed in terms of this function. It is shewn

in this Chapter that any uniform function whatever, which has a finite

number of distinct infinities, which may be essential singularities, can be

expressed by such a function.

Further, it is here shewn how to obtain an uniform function of x having

only one zero, at which it vanishes to the first order, and one infinity ;
and

that any uniform function can be expressed in factors by means of this

function.

* For the integral of the third kind obtained in Chap. VI. the reader may compare Clebsch

and Gordan, Theorie der Abel. Functionen (Leipzig, 1866), p. 117, and, for other important results,

Noether, Math. Annul, xxxvn. (1890), pp. 442, 448; also Cayley, Amer. Journal, v. (1882), p. 173.
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121. Let Wi
a

, ...,Up
a
denote any p linearly independent integrals of

the first kind, vanishing at the arbitrary place a. Let t denote the infinit

esimal at x, and let Du*, ......
,
Du* denote the differential coefficients of the

integrals in regard to t, all of which are everywhere finite. Let d , ..., cp

denote any p fixed places of the Riemann surface, so chosen that no linear

aggregate of the form

where X
x , ..., \ are constants, vanishes in all the places c,, ..., cp ,

but such

that one linear aggregate of this form vanishes in every set of p 1 of these

places*; and let Wi(x) denote the linear aggregate, of this form, which

vanishes in all of c1} ..., cp except d, and is equal to 1 at the place c;.

Then Wi(x) is expressible as the quotient of two determinants; the

denominator has Dus

r

for its (r, s)th element, the numerator differs from the

denominator only in the t-th row, which consists of the quantities Du[ ,
. . .

,

DM*
;
thus w1 (x), ..., (Op(x) are determinable algebraically when *, ...

,
u
x

p are

given. Conversely the differential coefficients of the normal integrals of the

first kind ( 18, 23) are clearly expressible by w l (x), ..., wp (x), in the form

H; O) = wj (x} li (d) + ...... + cop (x) fli (Cp).

We have already used ef* as a notation for the normal integral

i rx f
x

H- . I nt (ai) dtx . In this chapter we shall use the notation V*
a = I ca{ (x) dtx .

67TI J a J a

If the period of the integral u^ at the j-ih period loop of the first kindf

be denoted by C
itj,

we can express vf
a
as the quotient of two determinants,

the denominator having Cjti
for its (i,j)tfi element, and the numerator being

different from the denominator only in the tth row which consists of the

elements u*
a

, ..., u
x a

.

122. Consider now the function of # expressed j by

p
rx,

a -s? /_\ -p-r, a- Z a)r (z)L ,

r=\

z being any place whatever. The function is clearly infinite to the first

order at the place z, like t~
l

,
tz being the infinitesimal at z

;
it is also

infinite at each of the places cl} ..., cp , and, at Cj, like &i(*) ,
tc . being the

infinitesimal at C;. The function has no periods at the period loops of the

* Thus there exists no rational function infinite only to the first order at each of clt ..., cp .

Cf. 23, 26.

t C
(i&amp;gt;

is the quantity by which the value of u*
a
on the left side of this period loop exceeds

the value on the right side. See the figure, 18, Chap. II.

t Klein, Math. Annul, xxxvi. p. 9 (1890), Neumann, loc. cit. p. 14, p. 259.
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first kind. At the tth period loop of the second kind the function has the

period

fM*)- 1 r^ooao,.),
r=\

which, as remarked ( 121), is also zero. Hence the function is a rational

function of x. It vanishes at the place a. We shall denote the function by

fy (x, a; z, c1} ..., Cp). It is easy to see that it entirely agrees, in character,

with the function given in 49.

For the places c1; ..., cp have been chosen so that no aggregate of the

form

Xjflj (#) + + XpOj, (x)

vanishes in all of them. Hence (Chap. III. 37) the general rational function

having poles of the first order at the places z, c1} ...
, cp is of the form Ag -f B,

where g is such a function, and A, B are constants. These constants can be

uniquely determined so that the residue at the pole, z, is 1, and so that

the function vanishes at the place a.

Ex. For the
case^&amp;gt;

=
l, if we use Weierstrass s elliptic functions, the places x, a, z, c,

being represented by the arguments u, a, v, y1}
and put x= $u, y=

%&amp;gt;
(u) etc., we may

take, supposing v not to be a half period,

and obtain

or

Vr(#, a; z, Cj)
=

and any doubly periodic function can be expressed linearly by functions of this form,

in which the same value occurs for yx
and different values for v. (Of. 49, Chap. IV.)

123. Since mdz), = ^r V
s c

,
is a linear function of ^(z), ..., Qp (z), it

atz
*

follows that &&amp;gt;;(/j7 is a rational function of z\ and r*
a

,

=
-^- H^ *,

I at *s

= ( ux,*\&amp;lt;
is such that* Tx a 1- is a rational function of z\ hence

\dz *&amp;gt;

c
J dt,

&quot;

I dt

*
Throughout this chapter such an expression as f(z) is used to denote the limit, when a

variable place approaches the place z, of the expression /() ^-,
t being the infinitesimal for
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Idz
i/r (x, a; z, d, ...,Cp)j-jr

is a rational function of z. It is easy also to see,

dc-
from the determinant expression of W{ (z), that

&&amp;gt;j (z)
-~ is a rational function
cut

of cn ..., cp .

Hence
i/r (x, a; z, d, ..., cp)/ -j- is a rational function of the variables of

all the places x, a, z, d ,
. . .

, cp .

Further, as depending upon z, i/r (x, a
; z, c1} ..., cp ) is infinite only when

F* a
is infinite

;
and F*

a
,
=

-j- U
z a

,
is infinite only when z is at x or at a.

atz x
&amp;gt;

a

At the place x, T
x a

is infinite like -7- log tx , namely like the inverse of the
atx

infinitesimal at the place x.

Hence ty (x, a
; z, cl ,

. . .
,
cp), regarded as depending upon z, is infinite only

when z is in the neighbourhood of the place x, or in the neighbourhood of the

place a. At the place x, ^r(x, a; z, c1; ..., cp ) is infinite like the positive
inverse of the infinitesimal, at the place a it is infinite like the negative inverse

of the infinitesimal. The rational function of z denoted by

i / \ Idz
yfca; z, d, ..., Cp)l fa

will therefore be infinite at the place x like T and at the place awl + 1 z x

like
, where w^ + 1, w.2 + 1 denote the number of sheets thatw2 + L z a

wind at the places x, a respectively; and will be infinite at every branch
A

place, like ,

^-w ,
t being the infinitesimal at the place, w + l the number

\U) -7- 1
j t

of sheets that wind there, and A the value of ty(x, a; z, cl} ..., cp) when z is

at the branch place.

The actual expression of the function
i/r (x, a

; z,cly ..., cp) is given below

(S 130).

124. From the function ty(x, a
; z, cl} ..., cp) we obtain a function,

t N J** (jf a; *
&quot;
- c

&quot;&amp;gt;

dt* n*f

.
a - I vr

- c
r*

a

E(x,z) = e ,=e* r=i

wherein c is an arbitrary place, which has the following properties, as a
function of x.

the neighbourhood of the place z. When z is not a branch place
- = 1

;
when w + l sheets wind

ttt

at
Z&amp;gt;

dt
=

^
W + 1

^&quot; ^
cf ^ 2 3; CliaP- I -)- AmPle practice in the notation is furnished by the

examples of this chapter.



172 UNIFORM FUNCTION WITH ONE ZERO. [124

(i) It is an uniform function of x. For the exponent has no periods at

the period loops of the first kind, and at the iih period loop of the second

kind it has the period

27T^
C - I V^n^Cr)

r=l

which, as follows from the equation

n,; (Z)
=

! (Z) fl f (Cl ) + ...... + )p (z)fli (Cp),

is equal to zero. Further the integral multiples of 27rt, which may accrue

to Hx a when x describes a contour enclosing one of the places z, c, do not
Z, C

alter the value of the function.

(ii) The function vanishes only at the place z, and to the first order.

(iii) The function has a pole of the first order at the place c.

(iv) The function is infinite at the place d, like e
vi

t
c

i ,
tc . being the

infinitesimal at the place. We may therefore speak of c1} ..., cp as essential

singularities of the function.

125. In order to call attention to the importance of such a function

as this, we give an application. Let R (x} denote a rational function, having

simple poles at a.l , ..., ctm ,
and simple zeros at /?1; ..., /3W . We suppose these

places different from the fixed places c, a, c1} ..., cp . Then the product

is an uniform function of as, which becomes infinite only at the places c1} ... cp ;

at Ci it is infinite like a constant multiple of

Now, in fact, \ogF(x) is also an uniform function of x: for it is only

infinite at the places clf ..., cp , and, at the place d, like
(
X V? r

\ F^
a

.

\r=l

r rp f (x \

Hence the integral U log F(as\ = -TTT^/ dx, taken round any closed area
J J F(x)

on the Riemann surface which does not enclose any of the places Ci, . .., cp ,
is

m a f (It

certainly zero, and taken round the place d is equal to 2 V^
r

I ~_
,
taken

r=l J t
Ci

round d, and is, therefore, also zero.

But an uniform function of x which is infinite only to the first order at

each of cls ..., cp does not exist. For the places c1} ..., cp were chosen

so that the conditions that the periods of a function, of the form
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wherein \lt ... ,\p are constants, should be zero, namely the conditions

\A.(d)+ ...... + V^- ( CP)
=

&amp;gt; r=l, 2, ...... ,p,

are impossible unless each of Xn . .., \p be zero.

m
Hence we can infer that S Va

.

r&amp;gt; r = 0, for i = I, 2, . . .
, p, and that F (x) is

r=l

a constant; this constant is clearly equal to F (a), for E (a, z) 1 for all

values of 2.

Hence, any rational function can be expressed as a product of uniform

functions of x, in the form

where a
1 , ...,ocm are the poles and /31; ..., ftm the zeros of the function. We

have given the proof in the case in which the poles and zeros are of the first

order. But this is clearly not important.

Further, the zeros and poles of a rational function are such that

2 V&quot;

C
= 2 V?

r
, i=l, 2, ...,p,

r=l r=l

c being an arbitrary place. This is a case of Abel s Theorem, which is to be considered in

the next Chapter. We remark that in the definition of the function JS(x, z) by means of

Eiemann integrals, the ordinary conventions as to the paths joining the lower and upper
limits of the integrals are to be regarded ;

these paths must not intersect the period loops.

r, r, , , :*;, a , (X Z a C\ . -p. . (x Z) ( C]
Ex. i. For the case =

0, n =log ( and E (x. z)=
J-

z,c \x-ca-zj (x-c)(a-z)

Ex. ii. For the case p l, supposing the place c represented by the argument y, we
have

fz (v= t(*t: * c
i ...,&amp;lt;V)&--

J c J y

and therefore

a- (u y) a- (a v)

Ex. iii. Prove, if a
,

cf denote any places whatever, that

E(x,c }E(a ,z)~

Ex. iv. The rational function of #, ^(x, f ; z, c
lt ...

,
cp), will, beside f, have p zeros,

^y Yi&amp;gt; 7p&amp;gt;

such that the set f, yu ...
, yp is equivalent with or coresidual with the set

z, c,, ...
,
cp ( 94, 96, Chap. VI.). Hence, in the product

^ (
x

&amp;gt;
f &amp;gt;

z
i
c

\-&amp;gt; &amp;gt;

CP) &quot;A (-
r

&amp;gt;

z
\

C&amp;gt; 7i&amp;gt; &amp;gt; VP)&amp;gt;
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the zeros of either factor are the poles of the other, and the product is therefore a constant.

To find the value of this constant, let x approach to the place z. Then the product

becomes equal to
- tx

- 1
. tx [Dx^ (x,z; 7l , ...

, yv}]x=z .

It is clear from the expression of
&amp;gt;//(#,

a
; z, c

lt ... ,
cp)

which has been given, that

Dx^f(x, a
; z, c

t , ..., cp)
does not depend upon the place a. Thus, by the symmetry, we

have the result

z; f, yi , ..., yp) = - D,+ (z,
a

; yn ..., yp)

where a is a perfectly arbitrary place, and the sets z, c
lt ..., cln f, yu ..., yp are subject to

the condition of being coresidual.

Hence also if W(x ; z, c
1 , ..., cp) denote the expression

Dx [+ (x, a; z, c
1? ... ,

cp)
-
1^

1 a

] ,

we have

W(z; f, yj, ..., yp)= W( ; , c^ ..., cp),

provided only the set 2, clt ..., cp be coresidual with the set f, yn ..., yp .

Ex. v. Prove, with the notation of Ex. iv., that

^(x, a; z, clt ..., cp)^(a, a; f, yl5 ..., yp)
= ^(^, f; 2,^, ...,cp)^(^, a; y1? ...,yp).

126. These investigations can be usefully modified*; we can obtain

a rational function ty (x, a
;

z, c), having the same general character as

fy (x, a; z, Cj, ..., Cp) but simpler in that its poles occur only at two distinct

places z, c, of the Riemanu surface, and we can obtain an uniform function

E (x, z) having only one zero, of the first order, at the place z, which is

infinite at only one place, c, of the surface.

The limit, when the place x approaches the place c, of the rth differential

coefficient of li(x) in regard to the infinitesimal at the place c, will be

denoted by ftfCc), or simply by n&amp;lt;

r)
. We have shewn (Chap. III. 28)

that there are certain numbers k
L&amp;gt; ..., kp ,

such that no rational function

exists, infinite only at the place c, to the orders k1} ..., kp . The periods of a

function of the form

T\k - 1 -pia;, a ^ T^fc,
- 1 r\x, a * Tjfc/j-1 -pa;,

aV
c

l
c ~^L

c
L

c
~ ...... -^P^e L

c

wherein Xlt ...,\p are constants, and 2)
k

c

~ l Tx

c

a
denotes f the limit, when z

approaches c, of the &th differential coefficient of the function IF &quot;

in regard

to the infinitesimal at c, /u, being an arbitrary place, are all of the form

These periods cannot all vanish when k is any one of the numbers

klt ...,kp ;
thus the determinant formed with the p

2

quantities OJ does

*
Giinther, Crelle, cix. p. 199 (1892).

t For purposes of calculation, when c is a branch place, it is necessary to have care as to the

definition.
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not vanish
;
but \ ,

. . .
,
\p can be chosen to make all these periods vanish

when k is not one of the numbers klt . . .
, kp.

127. Consider now the function

i / \ T&&amp;gt;
a o / ,v\ r / ~\

yr(x,a; z,c)= L
, ili(z) , , *yvf]

,(*r-D

wherein r = 1, 2, . . .
,

&amp;gt;.

Since the period of Tx a
,
at the ith period loop of the second kind, is

li(z), the periods of the elements of the first column of the first deter

minant are the elements of the various other columns of that determinant.

Thus the function is a rational function of x.

We shall denote the minors of the elements of the first column of the

first determinant, divided by the second determinant, by 1, twj (2), ..., a)p (z),

although that notation has already (| 121) been used in a different sense.

Before, o.\ (z) was such that
o&amp;gt;; (cr)

= unless r = i in which case Wi (d) = 1
;

now, as is easy to see, [-D*
7

&quot;&quot; 1

Wi (z)~]g=e is or 1 according as r is not equal or

ft

is equal to i. The integrals coi(z)dtz are linearly independent integrals of

the first kind (cf. Chap. III. 36).

Then the function can be written

t=i

~ l
the function is infinite at z like t~

l

,
tz being the infinitesimal at the

place z, and is infinite at c like *

tc being the infinitesimal at the place c. It is not elsewhere infinite. The
function vanishes when as approaches the place a. As before ( 123)

fdz
fy(x,a; z, c)/-jr is a rational function of all the quantities involved; and

/ CLt

^ (x, a
; z, c), as depending upon z, is infinite only at the places x, a, in each

case to the first order.

* This is clear when c is not a branch place, since then, when x is near to c, r*
&quot;

is infinite

like --
; and the (fc-l)th differential coefficient of this in regard to c is - \k-l(x-c)~*.

When c is a branch place, exactly similar reasoning applies if we first make a conformal repre
sentation of the neighbourhood of the place, as explained in Chap. II. 16, 19.
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128. If now R(x) be a rational function with poles of the first order at

the places zlt ..., zm ,
it is possible to choose the constants \, ..., \p so that

the difference

R (as)
-

Xi^/r (x, a
;
zly c)-\^(x, a; z2,c)- ...... -Xm&amp;gt;/r(#, a; zm , c)

is not infinite at any of the places zlt ..., zm ;
this difference is therefore

infinite only at the place c, and is infinite at c like

-(A, l&j-l*;*
1 + ...... + Ap fep -l t;

kp
),

where

At = X1&&amp;gt;; (^) + ...... + \mCOi
(&amp;gt;
m), (i

= 1, 2, . . .
, p).

But, a rational function whose only infinity is that given by this ex

pression, can be taken to have a form

wherein A is a constant; and we have already remarked ( 126) that the

periods of this function cannot all be zero unless each of A lt ..., Ap be zero.

Hence this is the case, and we have the equation

R(x) = A + \-^(x, a; zlt c) + ...... + \mty(x, a; zm , c),

whereby any rational function with poles of the first order is expressed by

means of the function ty(x, a; z, c).
It is immediately seen that the

equations A l
= Q=... = Ap enable us to reduce the constants X^ . .., Xm to

the number given by the Riemann-Roch Theorem (Chap. III. 37).

When some of the poles of the function R (x) are multiple, the necessary

modification consists in the introduction of the functions

Dzty (x, a
; z, c\ D\ty (as, a; z, c), .......

Ex. If !(#), &amp;gt;*(#)
denote what are called &amp;lt;a

t (o;), ..., u p (x) in 121, and the

notation of 127 be preserved, prove that

P k
i~

l_
mr (z)= 2 u&amp;gt;i(z)Dc

u&amp;gt;r (c),

t=l

and that

129. From the function ^ (x, a
; z, c) we derive a function of ar, given by

fV(ar,a;,c) H x - a - 2 F2 c D*
r &quot;

r^&quot;E (x, z)
= e ,

= e
*

-=i

rg

where, in the notation of 8 127, V* e = a)r (z}dtz ,
which has the following

- c

properties :

(i) It is an uniform function of x
;
there exists in fact an equation

z,c &amp;gt; T7*
iv, = 2 r_

r=l
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(ii) The function vanishes to the first order when the place x approaches

the place z
;
and is equal to unity at the place a.

(iii)
The function is infinite only at the place c, and there like

_! I V z

;\kr -It;*-
tc e

r=l

As before we can shew that any rational function R(x), with poles at aly ..., a,n ,
and

zeros at fa, ..., /3m ,
can be written in the form

this being still true when some of the places au ...,&amp;lt;%,
or some of the places fa, ..., /3OT

are coincident.

130. We pass now to the algebraical expression of the functions which

have been described here*. We have already (Chap. IV. 49) given the

expression of the function
\|r (x, a; z, c1} ..., cp) in the case when all the

places a, z, cl5 ..., cp are ordinary finite places. In what follows we shall

still suppose these places to be finite places; the necessary modifications

when this is not so can be immediately obtained by a transformation of

the form x = ( k)~
l

,
or by the use of homogeneous variables (cf. 46,

Chap. IV., 85, Chap. VI).

If, s being the value of y when x = z, we denote the expression

byf (z, x), and use the integrands &&amp;gt;i(#), ..., Q&amp;gt;p(x)
defined in 121, the

rational expression of ty(x, a; z, C1} ..., cp),
which was given in 49, can be

put into the form

g
^ (x, a

; z, d, . . .
, Cp)

=
(z, x)

-
(z, a)

- z wr (z) [(ci} x)
-

(a, a)].
r=\

In case z be a branch place, the expression (z, x) is identically infinite in

virtue of the factor f (s) in the denominator, and this expression can no

longer be valid. But, then, the limit, as approaches z, of the expression

*
It is known (Klein, Math. Annal. xxxvi. p. 9 (1890); Giinther, Crelle,cix. p. 199 (1892)) that

the actual expressions of functions having the character of the functions i//(x, a; z, clt ..., cp ),

E (x, z), Qr i
have been given by Weierstrass, in lectures. Unfortunately these expressions have

not yet (August, 1895) been published, so far as the writer is aware. Indications of some value

are given by Hettner, Gotting. Nachr. 1880, p. 386; Bolza, Gotting. Nachr. 1894, p. 268;

Weierstrass, Gesamm. Werke, Bd. ii. p. 235 (1895), and in the Jahresbericht der Deuts. Math.-

Vereinigung, Bd. iii. (Nov. 1894), pp. 403436. But it does not appear how far the last of these

is to be regarded as authoritative ; and it has not been used here. The reader is recommended
to consult the later volumes of Weierstrass s works.

t This notation has already been used
( 45). It will be adhered to.

B. 12
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jit

(, x)
-~

,
wherein t is the infinitesimal at the place z, is finite*

;
if we denote

(MI

dz
this limit by (z, x) -j- , and introduce a similar notation for the places

uit

Cj, . .., cp ,
we obtain the expression

i/r 0, a
; z, d, . . .

, Cp)
=

[(z, x)
-

(z, a)] ^
- 2 a)r (z} . [(a, x)

-
(a, a)]

~
,

which, as in 49, has the necessary behaviour, for all finite positions of

z, d, GI ,
. . .

, Cp.

From this expression we immediately obtain ( 45)

131. In a precisely similar way it can be seen (see 127) that

^ (x, a
; z, c)

=
[(z, x)

-
(z, a)] ^

- 2 &amp;lt;*&amp;gt;r (z) D*J~
l

j[(c,
as)
-

(c, a)] ^4 ,

wherein Dk

J~
l

|[(c,
x)
-

(c, a)]
^|

= limit^ [(^J^ {[(
*)
~

(S )]
}]

5

for this expression can be written as the quotient of two determinants, in

the manner of 49, and the integrands f^ (z), . . .
,

lp (z) are linear functions

of the p integrands

&amp;lt;j (z) dz
z&amp;lt;f&amp;gt;-i (z) dz z* 1

*1
&amp;lt;f&amp;gt;! (z) dz

&amp;lt;/&amp;gt;

2 (z) dz

/ ()# T7
!? dt

&quot;&quot; f () dt f(s) di

these latter quantities can therefore be introduced in the determinants in

place of Hj (z), . . .
,

lp (z), the same change being made, at the same time,

for the quantities ^(c), ..., Op (c), throughout. Then it can be shewn

precisely as in 49 that the expression is not infinite when x is at infinity.

In regard to finite places, it is clear that the expression

Tfr-1
it(r &amp;lt;r\-(r a\\ I - 7)** P yU9 \ [\c, x) \c, a)] ,

f,

- u
c

jr
Xt a ,

regarded as a function of x, has the same character, when x is near to c, as

the function Dfcr
~ 1 ra; a

.
c c

Hence, also, it follows that E(x, z) has the form

*
/ M, when r) is very nearly s, vanishes to order i + w, and dfldt to order w (see Chap. VI.

87). Or the result may be seen from the formula

(Chap. IV. 45).
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EXAMPLES.

132. Ex. i. For the case (p= 1) where the surface is associated with the equation

f=
(x, 1)4,

if the values of the variables x, y at the place a be respectively a, b, and the values at the

place q be c
t ,
d

v respectively, then

d, dz . . s+y
(a) when (cls d\) is not a branch place CD

I (S)
=- ^ , ft, ^) = 2s (2_

and
r s+y s+ b__~\dz _djdzr_d1+y__ d

t+ b

(
r a

*&amp;gt;

c
i)
=
\Zs(z-x}

~
2s (z-a)] dt s ~dt [.2^ (c,

-
x) 2^ (ct

-
a)J

_ J.
dz rs+y _ s+ b _ d^+y d

~
z-a

(/3)
when (ct , d\) is a branch place, in the neighbourhood of which

M-- C a?^= limit of ^^ .2*= ^

and

fy (so, a ;

_? b_~\ (k_^ (
!
lz(__y__ b

}

2* (z
-

a)J dt 2s dt \A (q
-
x} A (^

-
a)j

_ _!
dz (s+y _ s+ b _ y b

|~
2s dt [z

- x z-a
c-^

x c^ a)

If (s, 2) be not a branch place,
^
jf
= ^ ;

if (5, 2) be a branch place, in the neighbour-

1 dz .. ., ,, 1 ,,. 1

hood of which x=z+t\ y= Bt+ ... , ^ ^ ,
= limit of^ 2, =-g.

Ex. ii. For the case
(/&amp;gt;

= 2) where the surface is associated with the equation y
2
=/(#),

where f(x} is an integral function of x of the sixth order, we shall form the function

^(x, a; z, cn 02) for the case where c
lt

c
2
are branch places, so that /(c1)=/(c.2)

= 0, and

shall form the function \ff(x,a; z, c) for the case when c is a branch place, so that/(c)=0.

When c1; c2 are branch places, in the neighbourhood of which, respectively, 0;=^+^,

y=A l
t
l+ ..., andtf=c2+ 2

2
, y= Afa+ ..., so that A

l
2=f (c1 ~), A&amp;lt;?=f (c2), we have

and

r s+y s+ b &quot;1 dz _ l_
dz /_g^c2 (J/_

b \

^ a; * C|&amp;gt;

^&quot;ia(-*) 2s(2-)J^ sUfftK-^V^-* q-/

When c is a branch place, in the neighbourhood of which .r=&amp;lt;

so that A*=f (c), the numbers klt k2 are 1, 3 respectively (Chap. V. 58, Ex. ii.). In the

definition of the forms ^(z), o&amp;gt;2 (2) ( 127) we may, by linear transformation of the 2nd,

3rd, ..., (/) + l)th columns of the numerator determinant, and the same linear transforma

tion of the columns of the denominator determinant, replace Q
l (z), ..., Qp (z) by the

differential coefficients of any linearly independent integrals of the first kind. In the case

now under consideration we may replace them by the differential coefficients of the

integrals I
, 1-5- . Hence the denominator determinant becomes

122
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limit, =e

HYPERELLIPTIC CASE. [132

dt

x dx = limits = c

2w dt

\dt

c5\

4J!

Hence = limit,. =
\_dz
2s dt

z dz .

&quot;A*

and
1 dz z dz

2s dt 2* dt

I dx xdx

1 dzc z

2s eft ^T

Hence
1 dz

Further

but

Hence the function ^ (a?,
a

; s, c) is given by the expression

s+b

_2(f -*) 2s (2

b
~]
dz -

-
a)J dt A 2s dt \c-x

z c 1 dz(A-B(x-c) A-B(a-c} \

2s ^\ (^--c)
2 y

(a-c)
2

/

JKr. iii. Apart from the algebraical determination of the function
^(x,

a; z, cls ..., cp)

which is here explained, it will in many cases be very easy* to determine the function by

the methods of Chapter VI. It is therefore of interest to remark that, when the function

VT (a?,
a ; z, c

lf ... ,
ep)

is once obtained the forms of independent integrals of the first and

second kinds can be immediately obtained as the coefficients in the first few terms of the

expansion of the function in the neighbourhood of its poles, in terms of the infinitesimals

at these poles.

* An adjoint polynomial * of grade (n-l)&amp;lt;r + n-2 which vanishes in the p + 1 places

z, clt .... cp will vanish in n+p-3 other places. The general adjoint polynomial of grade

(n-1) ff +n-2 which vanishes in these n+p-3 places will be of the form \* + /*e, where X and

/t are constants. The function f(x, a
; z, clt .... c,) is obtained from X + /t0/*, by determining

X and yu properly. Cf. Noether (toe. cit.)
Math. Annal. xxxvii,
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In fact, if
tj,
be the infinitesimal in the neighbourhood of the place ci} arid Mr , ;

denote

Ci , x)D
&amp;lt;\_

(C &quot; i)

the expansion of
&amp;gt;/&amp;lt;(#,

a; z, c
1? ..., cp), as a function of x, in the neighbourhood of the

place Ci, has, as the coefficient of ti~
l
,
the expression o&amp;gt;i (z), which is one of a set of linearly

independent integrands of the first kind, while the coefficient of ^ is

Now the elementary integral of the second kind obtained in Chap. IV.
( 45, 47)

with its pole at a place c, when z is the current place, is E^
a= I dzDc (z, c), whether c be

J a

a branch place or not, and when z is near a branch place this must be taken in the form

Hence the coefficient of ^ in the expansion of ^(x, a; z, cl} ..., c^,),
when x is near to cit

is equal to

Dt El
a - S ,(*)*

* r=\

This is the differential coefficient of an integral of the second kind, with its pole at c
f ,

the current place being z. We shall see that the integral of the second kind with its pole
at any place 2 can be expressed by means of the functions Ee , ..., Ee (135, Equation x.).

Ex. iv. Similar results hold for the expansion of the function ^ (x, a
; z, c), as a func

tion of x, when x is in the neighbourhood of the place c. If tc be the infinitesimal at this

place, the terms involving negative powers are

of which the coefficients of the various powers of tc are differential coefficients of linearly

independent integrals of the first kind
;
the terms involving positive powers are

where Piy k is the limit, when the place .v approaches the place c of the expression

Among the coefficients of these positive powers of te , only those are important for

which t is one of the numbers ^ ,
. . .,{;. This follows from the fact that De

k ~ l r*
a
,
when

k is not one of the numbers *
lf ..., kp ,

is expressible by those of

of which the indices ^- 1, k
z
-

1, ..., are less than k- 1, together with a rational function
of x (Chap. III. 28).
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Ex. v. In the expansion of the function ^ (x, a
; , c) whose expression is given in

Example ii., the terms involving negative powers are

,- A _.
2s di Tc 2s clt t

3

and the terms involving positive powers are

where the quantities A, B, ..., E are those occurring in the expansion of y in the neigh

bourhood of the place c
;
this expansion is of the form y= At+ Bt3+ Ct +Df+ Et*+ . . . .

Ex. vi. If in Ex. v. the integrals of the coefficients of t, t
3 and t

5 be denoted by

FI, F3

Z

, FZ, find the equation of the form

Fi=\Fi+p.F3

*

+ integrals of the first kind + rational function of (s, 2)

which is known to exist (Chap. III. 28, 26 ; Chap. V. 57, Ex. ii.), X and p. being

constants.

Prove, in fact, if the surface be associated with the equation

7/2
=

(x - cf+pl (
X - C

)
5+ pz (X

-
C)

4+p3 (X
-

C)
3+Pt (X

- Cf +pb (X
-

c)

that

^+ 2^?2 +Pi (z
-
c)J

= -
^~Y

+ constant.

133. We pass now to a comparison of the two forms we have obtained

for each of the rational functions -^ (as, a; z, GI, ..., cp), ty(x, a; z, c), one

of which was expressed by the Riemann integrals, the other in explicit

algebraical form.

The cases of the two functions are so far similar that it will be sufficient

to give the work only for one case
ijr (x, a

; z, clf ..., cp),
and the results for

the other case.

From the two equations ( 122, 130)

\Jr (x, a
; z, GI, . . . , Cp)

= F*
a

2, o)i (z) Tc . ,

i=\

^(X,a: z, Cl ,...,cp)
= [(z,x)-(z,a)]--i &amp;lt;(*)[(*, as)- (d, a)] ,

Ujli {,=1

we infer, denoting the function

byff*
a

,
that

1=1
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The function H* a
is not infinite at the place z, but is algebraically

infinite at infinity; it has the same periods as F*
a

. The equation (ii) shews

that H x a
I -y- is a rational function of z, while the equation
/
at

x a dz P

at j-=i
c
i

* a
gives the form of F*

a
/
-^-

as a rational function of z.

I at

Integrating the equation (iii) in regard to z, we obtain

p
nx,

a, -r)Z, c . *? TT-2, c ux
&amp;gt;

a / \

z,c
= Px,a+ ^ V

i
H

c, (IV),
i=l

where c is an arbitrary place, and P^ a is the integral of the third kind, as a

function of z, which was determined in Chap. IV. ( 45, 46).

Since the integral of the second kind E^
a

,
obtained in Chap. IV.

( 45, 46), is equal to
DzP*^&quot;,

we deduce from the last equation, inter

changing x and z, and also a and c, and then differentiating in regard to z,

T?
x a

_i_ f1 jr
x

&amp;gt;

a n rj
s c

r&amp;gt;Ti
s

&amp;gt;

c m-fx
&amp;gt;

a ri 21 / \& z +2, K f X&amp;gt;z/f
Ci

= JJgU^a, =DzIlZiC ,
=T a (v),

and thence, using equation (iii) to express r
x a

,

E*z
&amp;gt;

a =
[(z, x}

-
(z, a}} | + [, (z)H*

a

-Vf
a DZH^

c

] (vi),

which* gives the form of % /
- as a rational function of ^.

/ ott

The difference of two elementary integrals of the second kind must needs be a function
which is everywhere finite, and therefore an aggregate of integrals of the first kind. The

equation (v) expresses the difference of E* a
and

1^
a

in this way. But it should be

noticed that the coefficients of the integrals of the first kind in this equation, which
depend upon z, become infinite for infinite values of z. They are the quantities

D ff
z c

.
Z

Cj

From the equation (iv) we have

r,x,a_x,a P
^x.a.jZ.c

^.c-^c-.f^i
H

c .
&amp;gt;

wherein the coefficients of V?* on the right may be characterised as integrals of the

second kind. From this equation also, if the periods of V?* at thejth period loops of the

* An equation of this form is given by Clebsch and Gordan. Abel. Functnen. (Leipzig, 18G6)
p. 120.
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first and second kind be denoted by C^j and C i,j respectively, we obtain, as the corre

sponding periods of P^
*

from these equations the periods of E* a
are immediately obtainable. These equations

may be used to express the integrals H*] in terms of the periods of f^
&quot;

at the period

loops of the first kind.

134. But all these equations are in the nature of transition equations;

they connect functions which are algebraically derivable with functions whose

definition depends upon the form of the period loops. We proceed further

to eliminate these latter functions as far as is possible, replacing them by

certain constants, which, in the nature of the case, are not determinable

algebraically.

The function of x expressed by H* a
is not infinite at the place z.

Hence we may define p
2 finite constants A^ r by the equation

A D fTCr&amp;gt;

c
A-iir UCr

O.
c ,

where c is an arbitrary place. And if, as in 132, Ex. in., we use the

algebraically determinable quantities given by

,. _. F, , dot] ,, (r. [, ^dc{ 1M
i&amp;gt;r

= DCr \(ci,cr)

we have

Mi
,

and

Then, from equation (v), putting therein cr for z,

, a r-,x,a r , ^ , .-.dcr -nXya r/ x / ,
-,

CtCr ^,
. -TT-X, a / \

r
=rcr -[(Cr,x)-(cr,a}]-~=E Cr

-
[(cr,#)-(cr,a)] -^

+
2^
A

it r V\ (vn)

and thence, since Ex
cr

a = I dx DCr (x, cr)
J a

D*Hl
a = Der \(x,

cr)

d
4\ - Dx \(cr ,

atj )_ 1=1

If in this equation we replace as by z and i by r and then substitute

in equation (v), we obtain
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and thus, if we define an, algebraically determinable, integral by the equation

ST.X, a r,x, a JJ i r&amp;lt;r,Gz =EZ +SF
t=l

\ 2 (M r&amp;lt;

i Mir) &)r (z) \ (viii),
r=l )

we have

r
x

z

a = G
x
z

a
+ 2 7j

a
2 (^ r)i + p/r f

- p/t
-

r) &v (z),
i=l r=l

or

n*. a
\ /\ / \&amp;gt;

.)^^). (vm )&amp;gt;

i=l r=l

from which, by integration in regard to z, we obtain an equation

^.x,a f
z
~x, a 7 . rrX, a

,

r
^&quot;^.

p
/ A A N T7-x, a Trz, e ,. x

&, C
= ^2 ^=nZ)C -^ ss (A r&amp;lt;i

+ A
i&amp;gt;r)Vi v; (ix),

* f=i...p

either of these expressions being, by equation (viii), also equal to

WE, a- vj-x^l^ZtC r , v , , n dcPz, c + F, j(5;
-

[(a, z)-(Ci , c)]

P P x a, -

i=l r=l

The equation (ix) shews that the integral Q
x a

is such that

2t C
%&amp;gt;
&

while every term of (ix) is capable of algebraic determination.

135. From the equation (ix), when none of the places x, z, d, ..., cp are

branch places, we obtain

dxdz dz^ &quot;^i

^ -^

i=l r=l

and hence, from the characteristic property ^ ^- Q*
* =

^-^-Q^l. we infer

r~P) ^ ~i r^ ci ~i^

c)[^ c&amp;lt;)-^i

^r^t^^^^Jl
f=l r=l

wherein every quantity which occurs is defined algebraically. The form
when some of the places are branch places is obtainable by slight modi-
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fications. This is then the general algebraic relation underlying the funda
mental property of the interchange of argument and parameter, which was

originally denoted, in this volume, by the equation fiff
* = II*

c

ft
.

The relation is of course independent of the places clt ..., cp . For an expression in

which these places do not enter, see 138, Equation 17.

The equation (xi) can be obtained in an algebraic manner
( 137, Ex. vi.). The method

followed here gives the relations connecting the Riemann normal integrals and the particular

integrals obtained in Chap. IV., with the canonical integrals G^
a

, Q* &quot;.

It should be noticed, in equation (xi), that in the last summation each term occurs

twice. By a slight change of notation the factor can be omitted.

The interchange of argument and parameter was considered by Abel
;
some of his

formulae, with references, are given in the examples in 147.

136. From the equation (viii) we have

r* = 0. + i |(^ii +^i8)vf.C8 % i = l

From this equation, and the equation (viii) ,
we infer that

8=1 S=l

=
ty(x, a; z, c1} ..., cp) (xii),

which result may be regarded as giving an expression of the function

ty (x, a
; z, d, ...

, Cp) in terms of the integrals G ; but, written in the form

Gx a = 2 a&amp;gt;s (z) Y
x a

+ [(z, x)
-

(z, a)]
- 2

a&amp;gt;i (z) [(ci} x)
-

(a, a)] -rr ,

S= l t*C i= l (Mi

the equation (xii) has another importance; if we call Q*
&quot;

an elementary

canonical integral of the third kind, and
fl^ .,

=D
zQ* &quot;,

an elementary

canonical integral of the second kind, we may express the result in words

thus The elementary canonical integral of the second kind with its pole at

any place z is expressible in theform

Z, ODS (z) G
x&amp;gt;
a
+ (rational function of x, z, C1} . . .

, cp) -r ,

s=i c
I
&t

wherein the elementary canonical integrals occurring, have their poles at p
arbitrary independent places c1} . . . , cp .

Further, by equation (xii) the function E (x, z), of 124, can be written

in the form

nx a - 2 V c Gx &quot;

E(x,z) = e^
c

-i
c

(xiii).
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If we put

K*
a=Gx

z

a
-[(Z,x}-(Z,a)}

d

^ /;&quot;
(xiv),

the equation following equation (xii) gives

p
rrX, a i? / \ rrX, a / \K = 2 &amp;lt;Oi(z)K (xv),

i=i
c
i

and therefore, also

Q* =P* +i VX aK e

(xvi),
Z, C 2, C ^_i i C

t

and

which is another form of equation (xi).

It is easy to see that

137. Ex. i. Prove that the most general elementary integral of the third kind, with

its infinities at the places z and c, and vanishing at the place ,
which is unaltered when

x, z are interchanged and also a and c, is of the form

.c.,z=l r=l

wherein a,, r are constants satisfying the equations 0$, r=ar , f.

.Er. ii. If the integral of Ex. i. be denoted by^ &quot;,
and Z), $&quot; be denoted by Gx

;
a

,

prove that

iii. If, in particular, (
a
be given by

t,..
i=l r=l

prove that

This is the integral, in regard to z, of the coefficient of ^ in the expansion of

\lr(x, a; z, c1} ..., cp),
as a function of x, in the neighbourhood of the place c

t ( 132,
Ex.

iii.).

The integral ^
&quot;

is algebraically simpler than the integral
&amp;lt;^ c

a

,
of this example, in

that its calculation does not require the determination of the limits denoted by M^ ;.

Ex. iv. For the case p= 1, when the fundamental equation is of the form
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if the variables at the place c
t
be denoted by x= cly y= dly the place not being a branch

place, prove that

and calculate f
a

,
from the equation xi, in the form

#i C

* ^ * 1 &quot; dx dz

where, if y*=f(x)= a
()
xi+4al

x3+ 6a2x
2 + &amp;lt;ia3x+ a

i ,
the symbol f(xy z) denotes the sym

metrical expression

a;
2

(
22+ 2a

12+a2) + 2#
( 1

^2 + 2a2z-fa3) + ( 2 z
2+ 2a

3
2+ a4).

Prove also that in this case M
lt 1

= f (c1)/4/(c1 ).

Calculate the integral Q
x

&quot;
a when the place c

:
is a branch place, and prove that in that

case Mltlt =limitt=0 (^
-

+-), wherein x=c
l+ t

2
, y= At+ Bt3+ ..., vanishes.

\-i Ci 30 t /

Ex. v. For the case (p= 2) in which the fundamental equation is

2

where f(x) is a sextic polynomial, taking c
ly

c2 to be the branch places (cly 0), (c2 , 0), in

the neighbourhood of which, respectively, x= c
1 + t

1
y
y y=A 1

tl+B1
t
1
3+ ...

,
and o;=

y A z
t2+ B2 t

2
3
+..., prove that

and infer that

. . 1 dz 1

Supposing ^ and z have general positions, deduce from equation (ix) that

where ^
x
2
,
^ 2

2 have been replaced by/ (c^,/ (ca) respectively.

Prove that this form leads to

Q
*,* = f fsy+f^^dxdz

{*

f

x

^dz M +
z c Jcja 2(j7-z)

a
y J c J a 2y2s

L

where, if /(a?) be a ^+ 6a
1
^+ 15a2^

4+ 20a3^
3+ 15a4 A-

2+ 6a5^-|-a6 , /(^, 2) denotes the

expression

and Z, JS/, ^V are certain constants depending upon ct and c2 .

.Er. vi. Let R (x] be any rational function. By expressing the fact that the value of

the integral $R(x)dx taken round the complete boundary of the Riemann surface, is equal
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to the sum of its value taken round all the places of the surface at which the integral is

infinite, we shall (cf. also p. 232) obtain the theorem

where the summation extends to all places at which the expansion of R (x) -7- ,
in terms of

Cbt

[dx~\R(x}~r- _ l
means the coefficient of

t~ l in the expansion. If all the poles of R (x) occur for finite values of x, this summation

will contain terms arising from the fact that
-j-

contains negative powers of t when x is

infinite, as well as terms arising at the finite poles of R (x). If however R (x} be of the

form U(x) ^r V(x\ wherein U(x), V(x) are rational functions of x, whose poles are at

finite places of the surface, there will be no terms arising from the infinite places of the

surface.

Now let denote the current variable, and x, z denote fixed finite places : prove, by
applying the theorem to the case* when

&()=+(& ; z,cit ...,cp)^
that

D* f (xt z)-Dz+ (z, x}= 2 {, (x) |&amp;gt; (x,
&amp;lt;

= 1 C
{ c

t

where ^(x, z) is written for shortness for ^(x, a; z, en ..., cp),
and ty(x, z)]* denotes the

*
coefficient of tc .

in the expansion of ^ (x, z}, regarded as a function of x, in the neighbour
hood of the place c$.

Shew, when all the involved places are ordinary places, that this equation is the same
as equation (xii) obtained in the text.

Prove also that

Hence, as the forms a&amp;gt;f (.r) are also obtainable by expansion of the function ty (z, x), eveiy
term on the right hand is immediately calculable when the form of the function ^ (x, z)
is known ; then by integrating the right hand in regard to x and z we obtain an integral
of the third kind for which the property of the interchange of argument and parameter
holds. (Cf. Ex. iii. p. 180.)

Ex. vii. By comparison of the two forms given for the function ^(x, a; z, c) ( 126,

131), we can obtain results analogous to those obtained in 133136 for the function

+ (x,a; z,cl} ...,cp).

Putting, as before, H*
a -

I^
1 -

[(z, x)
-

(z, a)] -^
, and, when z is a branch place, under

standing by Z)*
1 H* a

the expression D*
z (n*

&quot; -
Pj

c

fl), and, further, putting

Gunther, Crelle, cix. p. 206.
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wherein m is an arbitrary place and tc the infinitesimal at the place c, so that

^^-^B,,^^^^^:^^^
prove, in order, the following equations, which are numbered as the corresponding equa
tions in 133136

;

&amp;lt;

fl=
JiW^&quot;

1

^&quot; (ii),

(vi),

wherein, when c is a branch place, the first term of the right hand is to be interpreted as

rff i px&amp;lt;

a _ pc
&amp;gt;

m
\ .

c \
c, m x, a)

also the equations

,m
-

i ~c HC
i i

+ I I
t=l r=l

and thence, that the algebraically determinable integral

&amp;lt;r^&quot;+j,
T ^r [A(M *)-/&amp;gt;, (

fe ,)*

p p x a

t=lr=l
&quot;

*

is equal to

I?*-| 1 V^ \r (z}(Br , i+Bi , r}

i=lr=l

and, finally, that the integral

_a;, a x, a P P ,.x,a ,,s,m

which, clearly, is such that &?**&m j can be algebraically defined by the equation

x, a J-.X, a

( i *r r i **rii (lx)
-

i r

Further shew that the function ^ (x, a
; z, c) can be written in the form

&amp;gt;// (.r, a ; z, c)
= G* - 2 g (z) D* ff^

&quot;

(xii).
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The algebraical formula expressing the property of interchange of argument and parameter
is to be obtained from the equation

r&amp;gt; n f\x &amp;lt;

a r // \ ^\ 2 / \ rfi 1 ( r // \ d&amp;gt;Z\
- /. . dcDX D,^ m =D. z) + , (x) Zy A c)

-A ( , *)

+ \ 22 [a&amp;gt;i (a?) ,. (z)
-

&amp;lt;ar (a?) o^ (z)] JT, , r (x).

Lastly, if Lk (z) denote the coefficient of t
k
/\k (k positive) in the expansion of the function

^ (x, a ; z, c) as a function of x in the neighbourhood of the place c, so that (Ex. iv. 132)

where P
t , k denotes a certain constant such that P*,^ is Ni)r , prove, by equating to zero

the sum of the coefficients of the first negative powers of the infinitesimals in the expan
sions of the function of

, &amp;gt;// (, a
; z, c) D% ^ (, a

; x, c), at all places where negative

powers occur, that

p
Dx ^ (x, a ; z,c)-D^(z,a; a?, c)

= 2
[&amp;lt; (a?) Lk . (z)

-^ (z) Lk . (x)] (A),

wherein, on the right, only functions Lk (z) occur for which k is one of the p numbers
^n ^2&amp;gt;

kp) and that

thus an elementary integral of the third kind, permitting interchange of argument and
parameter, is obtained immediately from the function ty(x, a; z, c) by integrating the
right hand of equation (B) in regard to x and z.

Prove also, that if

we have the formulae

p

]lfi-
l

K^
a

(XV )

^r. viii. To calculate the integral Q*̂ for the case (p= 2) where the fundamental
equation is

2/
2=/H,

wherein/^) is a sextic polynomial divisible by x-c, which is expansible in the form

f(x} = A*(x-c} + Q(x-c?+ R(x-cf+ ...,

we may use the equation (xi) of Ex. vii. When x, z are near the place c, putting

prove that

D
\* ^

^~t)

~ DX ^ x
^
Jt

=
A* (**

~ ^2
) + cubes and hiSher powers of

,
and 2 ,
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and thence (see Ex. ii. 132) that

v r i \ i \ i \ , \-&amp;lt; R(x z)dxdzKn [! (*) 0&amp;gt;2 (Z)
-

o&amp;gt;2 (X) &amp;lt;*! (Z)]
= V

^
&amp;gt;

-^ jt

.

Also, when z is not a branch place, if Cj be a place near to c, and the expansion of the

function
^- (z, c^-^fa, 2)

-^ in powers of the infinitesimal at c, contain the terms

M+ . + JVP+ ...
,
so that

prove that

substituting these results in the formula (xi) of Ex. vii., prove that

_
z)

z 240

where /(#, 0) has the same signification as in Example v. The part within the brackets

{ } is of the form ys^2ai , r &amp;lt;ai (x)a&amp;gt;r (z), where ai, r= ar ,i.

Obtain the same result by the formula (B) of Ex. vii., using the form of ^ (#, a ; z, c)

found in Ex. ii. 132.

138. The formulae in 133 136 enable us to express the form of a

canonical integral of the third kind, in the most general case
;
and to

calculate the integral for any fundamental algebraic equation, when the

integral functions are known. But they have the disadvantage of presenting
the result in a form in which there enter p arbitrary places c1} ...

,
cp . We

proceed now to shew how to formulate the theory in a more general way ;

though the results obtained are not so explicit as those previously given,

they are in some cases more suitable for purposes of calculation.

Let u*
a

,
...

,
ux a

denote any p linearly independent integrals of the first

kind
;
denote Dxuf by /^ (#). Let the matrix whose (i, j)th element is

Hj (Ci) be denoted by p, c1} ..., cp being the places used ( 121) to define

the quantities w l (x), ..., wp (x). Let
i/ij denote the minor of the (i,j)ih

element in the determinant of the matrix
/A, divided Jby the determinant

of /*; so that the matrix inverse * to p is that whose (i, j)ih element is
Vj t

{.

Then we clearly have

o&amp;gt;i 0) = Vi, i /*i O) + ...... + v
i&amp;gt;PnP (x) (i=l, 2, ..., p).

* Since
*

&quot;, ...,

* &quot;

are linearly independent, and the places c lt ...,cp are independent

(see 23, 121), the matrix /j.-
1 can always be formed.
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Let a denote any symmetrical matrix of p
2

quantities, a,-j, in which

a
ii j
=

Uj i
i. Then we define p quantities by the p equations

and call them fundamental integrals of the second kind associated with the

integrals u*
a

,
...

,
u^&quot;.

For instance when m (x)
=

&&amp;gt;; (x\ Vjj
= Q unless

i=j, in which case
*&amp;gt;,-,;=!.

Thus by taking a
it ;

= (A it } + Ajti), the

integrals K* a
, ..., Kx a

(p. 187. xiv.) are a fundamental system associated

with the set V* a
, ..., V* a

.

It will be convenient in what follows to employ the notation of matrices

to express the determinant relations of which we avail ourselves *. We shall

therefore write the definition given above in the form

L* *=vH* a
-2au*-&quot;,

wherein Lx a
stands for the row of p quantities Lx a

,
...

,
Lx a

,
Hr a

stands

for the row of p quantities Hx a
,

...
,
Hx a

,
and v denotes the matrix obtained

by changing the rows of v into its columns, and is in fact equal to the

matrix denoted by /z&quot;

1

,
so that we may also write

Lx a =^Hx a

where (137)
TT-t, a jrX.(t.tf*/t t .. TT%&amp;gt;

fflH
ci

= K
c-

+ 2 S (A
r&amp;gt;

i + A i} r) Vr .

t

r=l

Explicit forms of the integrals K*
a
have been given ( 134, 136).

Then, from the equations defining the integrals L
x
.

a
,
we have

2 m (z) L?
a = 2 Hx

c .

a
2

i&amp;gt;j,
,: & (z)

- 2 2 2 a
r&amp;gt;

, M
* &quot;

ps (z\
i=s\ * i

*
i -n i _ i

, x TJ, n ,= Z
&&amp;gt;j (3rJ T;

- 2 2 2 ar
,
g ur p* (z\

j=l r=l ,i=l

UX a O &amp;lt;

4&amp;gt;

a; a
/ \=

&quot; 22 2 a
r) , wr ^, (2) ;

r=l s=l

and this is an important result. For, putting for z in turn any p independent

places, the p functions Lx a
are determined by this equation. Thus the

functions L^
a

, ...
t
Lx a

do not depend upon the places c 1 ,
c2 ,

. . .
, cp .

See for instance Cayley, Collected Works, vol. ii. p. 475, and the Appendix II. to the present
volume, where other references are given.

B- 13
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Also, from this equation we infer

~
|~

. dz~\ j^ [, v&amp;lt;fe| n IT Z
&amp;gt;

C n TT x
&amp;gt;

a

x (* X
^~dt\~

*
I

^
8j

* &quot;

~

= I [^ (x) D,i?
&quot; -

^- (5) 0,1?
a

] (17),
1=1

c being any arbitrary place. Now it is immediately seen that if -Ri(#), ...
,

Rp (x) be any rational functions of x such that

then Ri (x) can only be a form of DXL?
a

,
obtained from DXL*

a

by altering

the values of the constant elements of the symmetrical matrix a. Hence

the equation (17) furnishes a method of calculating the integrals Lf&quot;, when

ever it is possible to put the left-hand side into the form of the right-hand

side.

The equation (17) shews that the expression

r&amp;gt; // \ da&amp;gt;\ , v / \ n r*-
c

Dz ((x,z) -T. + 2 fit (x) DzLi ,

\ at/ i=i

is unaltered by the interchange of x and z. This expression is also

equal to

D, ((*, z) tg) + DZHX
C- 2 I iar^iir (*)^ (z}

\ at/ r =\ s=i

and, -therefore, to

Hence, the formula ( 134, ix.)

z
&amp;gt;

c
,.x, a

r&amp;gt;x,
a , x,a r z,c -f-fX,

a o . nl

Rg,c,=Pz,c + ^ ut Li =HZ|C
-2 Z i a

r&amp;gt;g

w
i=l r=l s=l

_ a; , Ji / \ TT z. a TT-Z &amp;gt;

c r vr&amp;gt; ^ je, a z, c

= Qz c + k 2 2 (4r, , + -4,, r) 7r F, - 2 2 S a
r&amp;gt;

sUr Us

r=l s=l r=l s=l

gives us a form of canonical integral of the third kind not depending upon

the places cl} ...
,
cpt and immediately calculable when the forms of the

functions Li are found.

The formula

If
&quot; =

[(*, as)
-

(z, a)] + 2 fit (z) L*
a
+ 2 a,, . if

*

p. (z)
Clt ^ = i r=\ s=l

serves to express any integral of the second kind in terms of the integrals

LI ..... Lv
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Ex. i. For the surface y
2
=/(#) where /(#) is a rational polynomial of order 2p + 2,

the function

^L_ d
( 9 N .

*
f

f(& 2/tf)

wherein s2 =f(z), ;

2
=/(), is a rational function of (without 17).

Prove by applying the

theorem, 2 fj2(f) ^1 =0, (Ex. vi, 137) that

where i; k represent in turn every pair of unequal numbers from 0, 1, 2, ..., 2p, whose

sum is not greater than 2p, V being greater than k, and the coefficients X are given by the

fact that

Hence, a set of integrals of the second kind associated with the integrals of the first kind

/Q3C
i OOQf\K t

T7 / &quot;17&quot; /
a, !/ J a 3 J a y

is given by
x a fx dx fc = 2p+l-

Lf
a = 2 Xt + l + f (*+l-i)*f

J a *&amp;lt;/ k= i

and a canonical integral of the third kind is given by

This is equal to

p+i

aJcZsfy (X-ZY

which is clearly symmetric in x and z.

O o

The value of 5- (z, x} ^- (x, z) used in this example is given by Abel, (Euvres Completes

(Christiania, 1881), Vol. i. p. 49.

Ex. ii. Shew in Ex. i., for =1, that the integral associated with I is

J* y
f
x X x -4- 2X x~

dx
; and express these in the notation of Weierstrass s elliptic functions

J a *y
when the fundamental equation is y

2 =4.r3
gtfc-gy

139. Suppose now that the integrals u*
n

, ...,u*
&quot;

are connected with

the normal integrals Vi
a

,
...

,
v*

a

by means of the equations

which, since H
4

-

(x)
= ZirHh*

n
,
are equivalent to

x,a
Ur

=

Then the periods of the integral
* a

,
at the first p period loops, form the

rth row of a matrix, 2\, and the periods of the integral ?^
&quot;

at the second

132
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p period loops form the rib. row of a matrix 2Xr
;
we shall write &&amp;gt;

= X and

W = XT, so that (t}jj=\ij. The two suffixes of the quantities ta^j will

prevent confusion between them and the differential coefficients
o&amp;gt;i (x).

Let the periods of L^ at thejth period loops of the first and second kind

be denoted by 2^ j
and Zrj ^ j respectively. The matrix whose tth row

consists of the quantities 77^ i ,
...

, 77^ p will be denoted by 77 ; similarly the

matrix of the quantities 77 .^ will be denoted by 77 . The matrix of the

periods of the integrals H^
a

,
... , H^

a
at the first period loops is zero; the

(i, j)th element of the matrix at the second period loops is the jth period of

HC.
a

, namely ft,- (Cj). We shall denote this matrix by A.

By the definitions of the integrals Lj
a
we therefore have

and all these equations are contained in the equations

77
=

2a&amp;lt;u,

77
= 2am - %v& = 2aw -

^/t-
1 A.

Now from the equations connecting f*,r (a) and fi, (as), we obtain

TTt
/i,. (Cj)

=
X,., ! f^! (C) + ...... + \r, p Op (Ci),

wherein
/j,r (d) is the (i, r)ih element of the matrix /A, and the right hand is

the (i, r)th element of the matrix AX
;
hence we may put

Trt
/i.
= AX.

If then we denote the matrix ^/*
-1A by h, we have

2AXA = 27ri/j.h
= TnA = Avri,

and infer that 2XA= 7rt, and thence that 2/iX = iri. Thus 2hu&amp;gt;=Tri, 2ha) =7rir.

A i , i , *, a x, a x, a x, a ,11 i

Also tne integrals u-i , ...
,
up ,

...
, vi ,

...
,
vp are connected by the

equation AM*- a = 2h\vx &amp;gt;

a = Triif-
a

.

140. The four equations

2hw = iri, 2ha&amp;gt;
=

TTIT, 77
=

2a&&amp;gt;, 77
= 2aay h (A)

will prove to be of fundamental importance in the theory of the theta

functions. They express the periods 77, 77 independently of the places

d, ...
,
cp ,

used in defining L*
a

.

If beside the symmetrical matrix T, and the arbitrary symmetrical matrix

a, we suppose the matrix h, which is in general unsymmetrical, to be
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arbitrarily given, the integrals Ui ,
...

,
up being then determined by the

equation hu*&amp;lt;

a = 7rvix&amp;gt;
a

, the first equation, 2Ao&amp;gt;
=

TTI, gives rise to p
2

equations

whereby the p* quantities w
it j

are to be found, and similarly the other

equations give rise each to p
2

equations determining respectively the quantities
o&amp;gt; i,j, rii,j, rfij- But, thereby, the 4p

2

quantities thus involved are deter

mined in terms of less than
4&amp;gt;p

2

given quantities. For the symmetrical
matrices a, T involve each only ^p(p + I) quantities, and the number of

given quantities is thus only p (p + 1) +p2
. There are therefore, presumably,

4p
2

[p
z +p (p + 1)],

=
2p* p,

relations connecting the 4p
2

quantities (0,-j,
co ij, 77^-, ?/,; ( j\ we can in fact

express these relations in various forms.

One of these forms is

corj
=

770), W
TJ
=

rj o)
, rjta wv)

=
^TTI = rn ij TJ CO, (B)

of which, for instance, the first equation is equivalent to the %p(p 1)

equations

(wr, i IJr, j tjr, i &&amp;gt;

r, j)
= 0,

r=l

in which i = 1, 2, . ..
, p, j = 1, 2, ...

, p, and i is not equal to j. The second

equation is similarly equivalent to ^p (p 1) equations, and the third to p-

equations. The total number of relations thus obtained is therefore the

right number p- +p (p 1), In this form the equations are known as

Weierstrass s equations.

Another form in which the 2p- p relations can be expressed is

wo) =&)
&&amp;gt;, 7777

=
r} rj, 0/77 0)77

=
^7ri

=
ijm t] (a (C)

These equations are distinguished from the equations (A) as Riemanu s

equations.

141. The equations (B) and (C) are entirely equivalent; either set can be deduced
from the equations (A) or from the other set. A natural way of obtaining the set (B) is

to use the equation (17). A natural way of obtaining the set (C) is to make use of the
Riemaun method of contour integration.

The equations (A) give, recalling that a = a, a&amp;gt;
=

a&amp;gt;7-,

f= r,

o)ij
= 2wa&) ,=/3, say, a symmetrical matrix,

&amp;lt;oj

= 2u&amp;gt;r/o/ w/i =

Hence
^ ft) = ^wr==^r=^T

and because w = rw,

&amp;lt;5V= TVTJ
= r/3r

and thus, as r^r= T^T, \ve have
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which are the equations (B). And it should be noticed that these results are all derived

from the three a&amp;gt;
=

r, urj =/3, &&amp;gt;;/=/3r ^TTJ, assuming only that ft and T are symmetrical.

From the equations (B), putting ;=, uTj =y, so that $ and y are symmetrical
matrices, we obtain*

?;
= (5)~

1
jS, ^ =y(&amp;lt;o )~

1
,
and thence ^

(w)&quot;

1^ y(u)~
1 u= $ni,

Henue, if &amp;lt;O~

I
U&amp;gt;

=
K, HO that O&amp;gt;K

=
O&amp;gt;

,
O&amp;gt;
=

KO&amp;gt;, ()
~

1

*, and &amp;gt;c~

1 =
(a&amp;gt; )~

1
t&amp;lt;),

we have

K/3 yK~
1 =

^7rl, or K/3K y= ^7ric,

and therefore, as the matrices K/SK and y are symmetrical, so also is the matrix &amp;lt;c ;
and thus

a&amp;gt;

~ l w = a&amp;gt;

(o&amp;gt;)

~
*, and therefore ow = &amp;lt;w

&amp;lt;o,

which is one of the equations (C).

Further

Wlf
=

tyw ^TTt
=

IJWK ^Trt
=

/3K JfTTZ,

and therefore q w = icji
- TTI= K/3

-
%iri\

leading to w^ w = * -
^Trtft

and the right hand is a symmetrical matrix, and therefore equal to w^ /jtu ; thus also

W
|&quot;9

f&amp;gt;

which is the second of the equations (C).

r inally (o&amp;gt; rj w^ ) w = a) jja) &amp;lt;a((o r] ^TTI) eo tbjj

=
^-TT la),

and thus

to ^ -&amp;lt;^
=

^7ri,
=

, therefore, r)H rj oi,

which is the third of equations (C).

We have deduced both the equations (B) and (C) from the equations (A). A similar

method can be used to deduce the equations (B) from the equations (C).

Other methods of obtaining the equations (B) and (C) are explained in the Examples
which follow

( 142, Exx. ii v).

142. Ex. i. Shew that
the^&amp;gt; integrals given by the equation

.x, a . fjx,a. .. Tix,aA
i

=t
l&amp;gt;i

H
c,

+--- + tPJi-a cp &amp;gt;

where t
itj

is the minor of Q,-^) in the determinant of the matrix A ( 139), divided by the

determinant of A, namely by the equation

A*. = A-!#*
&quot;,

are a set of fundamental integrals of the second kind associated with the set of integrals

of the first kind 2nivi
a

,
...

, ^irivf
a

,
and are such that

= 1

.

^UWB.** )* 1
(ai (x)D,Kl -&amp;lt;*&amp;gt;(,) DtK*

*

/ i=l \
J *

i=\

* The determinant of the matrix w, = X, cannot vanish, because u
&quot;, ..,?/

&quot;

are linearly
i /*

independent. The determinant of the matrix T does not vanish, since otherwise we could deter

mine an integral of the first kind with no periods at the period loops of the second kind

(cf. Forsyth, Theory of Functions, 231, p. 440).



142] CONNECTING THE PERIODS. 199

Prove that the function A*
a
has only one period, namely at the ith period loop of the

second kind, and that this period is equal to 1. For the sets

_ . x, a _ . x, a .x,a .x,a2mv
:

, ..., 2mv
p , A, , ..., A

;)
,

we have in fact
&amp;lt;a=iri,

&amp;lt;a

=
Trir, f?

=
0, rj =^.

Shew that these values satisfy the equations (B) and (C).

Ex. ii. From Ex. i. we deduce

a /
- a

.
* c z,cx,a. &

, x, a r z, c x,c T x, a.

fcrt 1
(&amp;lt; Aj -V. A )= I (! L

t
-U

t
L

i ).
i=\ i=\

Hence, supposing x and z separately to pass, on the dissected Riemann surface, respec

tively from one side to the other* of the rth period loop of the first kind, and from one

side to the other of the sth period loop of the first kind, we obtain, for the increment of

the right-hand side

p
-4 2

(&&amp;gt;i, r i7t,-7i,r&amp;lt;t&amp;gt;)&amp;gt;

i=i

which is the (r, s)th element of the matrix 4 (GM; i;a&amp;gt;).
For the functions on the left-

hand side the matrix wrj rjm vanishes (Ex. i.). Hence the same is true for those on the

right hand.

Supposing x to pass from one side to the other of the rth period loops of the first kind,

and z from one side to the other of the sth period loop of the second kind, we similarly

prove that 5; ij&amp;lt;o

has the same value for the functions on the two sides of the equation,
and therefore, as we see by considering the functions on the left hand, has the value fari.

While, if both x and z pass from one side to the other of period loops of the second kind

we are able to infer u
r)
=

^ &amp;lt;a .

We thus obtain Weierstrass s equations (B).

Ex. iii. If Uf &quot;,..., U*
a
be any integrals, the periods of Uf

a
at thejth period loops

of the first and second kind be respectively &-, f f)&amp;gt; ,
and the matrices of these elements

be respectively denoted by , f ;
and W* a

, ..., W%
a
be other integrals for which the

corresponding matrices are and f, prove that the integral lU^d W*
a

,
taken positively

round all the period-loop-pairs has the value

which is the (i,j)th element of the matrix & -
f f

Ex. iv. If #( (#) denote the rational function of x given by

p (fa

Ri (x)= 2 vr , [(cr , a?)
-

(cr , a)] -^ ,

r=l

the function
Zj**+jg|(*) is infinite only at c

1? ...,cp ,
and has the same periods

Zr*
, Denote this function by Y a&amp;gt;

a
.

To that side for which the periods count positively (see the diagram, 18).
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Prove that if the expansion of the integral Y* &quot;

in the neighbourhood of the place ct

be written in the form

then

&amp;lt;/i, i
=

&quot;i,i(^

where Ai, s ,
M

it t are as denned in 134, and are such that A itt+Mit t=A tti+Mtt t
.

Hence shew that the sum of the values of the integral
J
r*

&quot;

dYf* taken round all

the places c
x , . . . ,

cv is zero.

Ex. v. Infer from Exs. iii. and iv., by taking

/ \ 71^,0, ,.x. a iJT x, a ,-\ ,

(a) U. =u. =W.
,
that cow = w,

fo\ frx,a-yx,a firx,a x, a ,-, , _. .
,

(P) U. = Y.
,

W. =u.
, that riS -T) 5 = $iri,

/ \ Trx,a -irx, a Tirana fUr.4- v~ /-
(y) =Y. W. that 777 =J? 7 .

These are Riemann s equations.

Ex. vi. If instead of the places c
l} ..., cp and the matrix p.,

we use a matrix depending

only on one place c, the tth row being formed with the elements D^~ ^ (c), ...
,
ZT ^,(c),

we can similarly obtain a set Lf &quot;,..., ^
a
associated with the set

* &quot;

,
...

,
u*

a
.

Shew that the periods of Lx a
,

...
,
Zf

a
thus determined are independent of the posi

tion of the place c.

Ex. vii. If the differential coefficients ^ O), ... , /*,,O), be those derived from a set of

p independent places b
ly b.^, ... ,

bp , just as ^ (x), ...
,

&amp;lt;ov (x) are derived from c^, ...
,
cp ,

so

that /*i(6i)
=

l, /ui(6,.)
=

0, prove that
i/,., i

=
co,. (6f)

and that

143. We conclude this chapter with some applications* of the functions

^r(x, a; z, c), E(x, z) to the expression of functions which are single-valued

on the (undissected) Riemann surface. Such functions include, but are

more general than, rational functions, in that they may possess essential

singularities.

Consider first a single-valued function which is infinite only at one place ;

denote the place by m, and the function by F (x).

dz
Since

-\|r (x, a
; z, c) -^ is a rational function of z, the integral

/ CLt

\F(z}\^r (x, a z, c) I

-j-
dz, or \F(z)-ty (x, a

; z, c) dtz ,

taken round the edges of the period-pair-loops, has zero for its value. But

this integral is also equal to the sum of its values taken round the place m,

*
Appell, Acta Math. i. pp. 109, 132 (1882), Giinther, Crelle cix. p. 199 ( 1892).
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where F(z} is infinite, and the places x and a at which
-ty (x, a; z, c) is

infinite.

fJz
Now, when z is in the neighbourhood of the place m, since ilr (#, a ; z, c) I -=-

/ at

is a rational function of z, we can put

00 jf

^(x,a; z,c)- 2 J? Dr

ty(x,a\ m, c),
r-O lr

where tm is the infinitesimal at the place m.

Thus the integral I F(z)ty(x, a
; z, c)dtz , taken round the place m, gives

oo A r
Zjri 2 -i-f Dr

m -f O, a
; m, c\

? = |_

1 f
where J. r is the value of the integral . \t

r

m F(z}dtz taken round the

place m.

When 2 is in the neighbourhood of the place x, i/r (x, a; z,c) is infinite

like tx , tx being the infinitesimal at the place as, and therefore, taken round
the place x, the integral

J
F(x)^f (x, a; z

t c)dtz

gives

Similarly round the place a, the integral gives 27riF(a).

Hence the function F(x) can be expressed in the form

F(x) = ^(a) -
J^ T^

Dr

m ^ (x, a
; m, c),

the places a and c being arbitrary (but not in the neighbourhood of the

place m).

For example, when p= 0, ^ (x a; z, c)= - ( ---L \

\& z a-zj
an(J

wherein

1 /&quot;

^ r
=
2nri /

(
2 m)

r f(z
} dz, the integral being taken round the place m.

A similar result can be obtained for the case of a single valued function with only a
finite number of essential singularities. When one of these singularities is only a pole,

say of order M , the integral / F(z) dz, taken round this pole, will vanish when r5M ,
and

the corresponding series of functions D r

^ (.&amp;gt;-,

a m, c) will terminate.
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144. We can also obtain a generalization of Mittag Leffler s Theorem.

If c1; c2 ,
... be a series of distinct places, of infinite number, which converge*

to one place c, and f (x), f2 (a), ... be a corresponding series of rational

functions, of vnuca/V(0) is infinite only at the place Cj, then we can find a

single valued function F (x), with one essential singularity (at the place c),

which is otherwise infinite only at the places cit C
2&amp;gt; ..., and in such a way

that the difference F(x) J\ (x) is finite in the neighbourhood of the place Cf.

Since fi(x) is a rational function, infinite only at the place C{, and

fy(x,a; x, c) does not become infinite when z comes to c, we can put

ft () =/* (a)
~ 2 -f Dl+ (x, a a, c), (A)

r=0 ;_L

wherein a is an arbitrary place not in the neighbourhood of any of the

places Cj, c2 , ..., c, and \ is a finite positive integer, and A r a constant.

Also, when z is sufficiently near to c, and x is not near to c, we can put
,

t
k

TJT (as, a ; z, c)
= 2 [D^ ^r (ar, a

; s, c)]z=c ,

fc=0
\K

wherein tc is the infinitesimal at the place c. Thus also, when z is near to c,

17 ^ (x, a z, c) m | o
t
k

c
Rk (as), (B),

wherein Rk (x} is a rational function, which is only infinite at the place c.

There are p values of k which do not enter on the right hand
;
for it can

easily be seen that if &!,..., kp denote the orders of non-existent rational

functions infinite only at the place c, each of the functions

[D* -&amp;gt;O, a; z, cXU, , [JOf-
1

^ (*, a
; z, c],=c

vanishes identically. Let the neighbourhood of the place c, within which z

must lie in order that the expansions (B) may be valid, be denoted by M.

Of the places Cj ,
c2 ,

. . .
,
an infinite number will be within the region M ;

let these be the places cs+l ,
cs+ .2 , ...: then s will be finite and, when i &amp;gt; s,

we have
oo

&
. ty (* , a; Ci,c)= S

&amp;lt;&amp;lt; ^ * (as),
k=0

wherein ti is the value of tc ,
in the equation (B), when z is at c;. Hence also,

from the equation (A), wherein there are only a finite number of terms on

the right hand, we can put

fi (x}-fi (a)= I $,*(*), (C),
k= Q

wherein S^k is a rational function, i &amp;gt; s, and a; is not near to the place c.

* so that c is what we may call ike focus of the series c1} c3 , ... (Haufungsstelle).
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It is the equation (C) which is the purpose of the utilisation of the

function ty (x, a
; z, c) in the investigation. The functions S^k (#) will be

infinite only at the place c. The series (C) are valid so long as x is outside

a certain neighbourhood of c. We may call this the region M .

Let now eg+ i, eg+2 ,
... be any infinite series of real positive quantities, such

that the series

C8+l H~ e +2 + S+3 +

is convergent ;
let ^ be the smallest positive integer such that, for i &amp;gt; s, the

terms
00

k
2 ti $,:, jfc (x),

fc=c*i+l

taken from the end of the convergent series (C), are, in modulus, less than e
t-,

for all the positions of x outside M
; then, defining a function gt (x), when

i &amp;gt; s, by the equation
^ k

9i O) =/i OB) ~fi (a)
~ 2 tt Si, k (a;),

fc=0

we have, tor i &amp;gt; s,

Thus the series

2
[/((*)-/&amp;lt;(&amp;gt;] + 2

t=l i=s+l

is absolutely and uniformly convergent for all positions of x not in the

neighbourhood of the places c, clt c2 , ..., and represents a continuous single
valued function of x. When a; is near to cit the function represented by the

series is infinite like/f (#).

The function is not unique ;
if

i/r (x) denote any single-valued function

which is infinite only at the place c, the addition of ty (x) to the function

obtained will result in a function also having the general character required
in the enunciation of the theorem. As here determined the function

vanishes at the arbitrary place a
;
but that is an immaterial condition.

For instance when p= 0, and the place m is at infinity, the places mlt m2 ,
ia , ...,

being 0, 1, w
, l+a, ...

, p+ qa&amp;gt;,
...

,
wherein o&amp;gt; is a complex quantity and pt q are any

rational integers, let the functions f^x), /,(#), ... be x~\ (x-l}~\ (x- m)-\ ...
,

He, B c=

when z is great enough and
| x\ &amp;lt;

\

z
|, |

a
\

&amp;lt;
\

z
|.

Also

1 _ ix-a
a-nti \mS

when im is great enough, and
|

x
\

&amp;lt;
\

m
&amp;lt;

| , |

a
\

&amp;lt;
\ m^ \

.
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Now the series

2 ^ =22
mf

is convergent. Hence when x and a are not too great

where et
is a term of a convergent series of positive quantities. This equation holds for

all values of i except i= l, in which case m
i
= 0.

Hence we may write

x-mi a-mi mf
and obtain the function

i r
i

i

x ~ a
i

= - ao \_x-p-qo a-p-qe&amp;gt; (p + qu^J** p= oo q

which has the property required. This function is in fact equal, in the notation of

&quot;VVeierstrass s elliptic functions, to f(.t- 1, a&amp;gt;) f(a 1, ).

145. We can always specify a rational function of x which, beside being
infinite at the place c, is infinite at a place d like an expression of the form

T- + -2-

1 + +
tc

i %c
i

namely, such a function is

and this may be used in the investigation instead of the function fi (x} fi (a).

Hence, in the enunciation of the theorem of 144, it is not necessary
that the expressions of the rational functions fi (x) be known, or even that

there should exist rational functions infinite only at the places Cj in the

assigned way. All that is necessary is that the character of the infinity

of the function F, at the pole C;, should be assigned.

Conversely, any single-valued function F whose singularities consist of

one essential singularity and an infinite number of distinct poles which

converge to the place of the essential singularity, can be represented by
a series of rational functions of x, which beside the essential singularity have

each only one pole.

146. Let the places c1} c2 , ..., c be as in 144. We can construct a

single-valued function, having the places c1; c2 , ..., as zeros, of assigned

positive integral orders Xj, X2 , ..., which is infinite only at the place c, where

it has an essential singularity.
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For the function E (x, z} -

is zero at the place z and infinite only at the place c. When z is near to c

we can put
- t

r

Dz log E (x,z) = 2 f [DJ ^ (*, a
; *, c)]z=c ,

r=0

and therefore, when c 4

- is near to c, and # is not near to the place c, we

can put

\t\ogE (a, a) = 2 tJJBi,*(*),
fr=o

wherein R^jg^ae) is a rational function of x which is infinite only at the

place c, and ti has the same significance as in 144.

Let the least value of i for which this equation is valid be denoted by

s+ I, and, taking e,+1 ,
es+2 ,

... any positive quantities such that the series

is convergent, let /*t
- be the least number such that, for i &amp;gt; s,

00
Jf-

2* vi JTVV
Jf \^) ^ ^1*

Then the series

* 00 / V-f

2 Xi log E (x, d)+2
(
\i log E (x, mi) 2 ti R^ k (x.

i=l i=s-fl \ fr=

consists of single-valued finite functions provided x is not near to any of

GI, c2 , ..., c, and, by the condition as to the numbers //*, is absolutely and

uniformly convergent.

Hence the product

00

n \E (x col** n

represents a single-valued function, which is infinite only at c where it has

an essential singularity, which is moreover zero only at the places c1} C2 , ...

respectively to the orders \lt \2 ,

With the results obtained in 144 146, the reader will compare the

well-known results for single-valued functions of one variable (Weierstrass,

Abhandlungen aus der Functionenlehre, Berlin, 1886, pp. 1 66, or Mathem.

Werke, Bd. ii. pp. 77, 189).

147. The following results possess the interest that they are given by Abel
; they

are related to the problems of this chapter. (Abel, (Euvres Completes, Christiania, 1881,
vol. i. p. 46 and vol. ii. p. 46.)
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Ex. i. If $ (x) be a rational polynomial in x, =n

and / (.r) be a rational function of x, =

then

-/()
&amp;lt;6 (a?) ,

The theorem can be obtained most directly by noticing that if (#, 2)
=

&amp;lt;p (z) (x z)

then

is a rational function of X Denoting it by R(X} and applying the theorem

we obtain Abel s result.

Ex. ii. With the same notation, but supposing f(x} to be an integral polynomial,

prove that

wherein A
kt1c t

is a certain constant, and \^ (x) is the product of all the simple factors of

This result may be obtained from the rational function

as in the last example.

Ex. iii. Obtain the theorem of Ex. ii. when f(x)=Q, and (x)
= ty (.&amp;gt;)]

&quot; In the

result put i=
,
and obtain the result of the example in 138.

These results are extended by Abel to the case of linear differential equa
tions. Further development is given by Jacobi, Crelle xxxii. p. 194, and by
Fuchs, Crelle Ixxvi. p. 177.
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CHAPTER VIII.

ABEL S THEOREM; ABEL S DIFFERENTIAL EQUATIONS.

148. THE present chapter is mainly concerned with that theorem with

which the subject of the present volume may be said to have begun. It will

be seen that with the ideas which have been analysed in the earlier part of

the book, the statement and proof of that theorem is a matter of great

simplicity.

The problem of the integration of a rational algebraical function (of a

single variable) leads to the introduction of a transcendental function, the

logarithm ;
and the integral of any such rational function can be expressed

as a sum of rational functions and logarithms of rational functions. More

generally, an integral of the form

\dxR(x,y, y,, ..., yk),

wherein x, y, yl} yz ,
... are capable of rational expression in terms of a single

parameter, and R denotes any rational algebraic function, can be expressed

as a sum of rational functions of this parameter, and logarithms of rational

functions of the same. This includes the case of an integral of the form

\dxR (x, Vatf2 + bx + c).

But an integral of the form

\dx R (x, Vow?4 + bxs + cx2 + dx + e)

cannot, in general, be expressed by means of rational or logarithmic functions
;

such integrals lead in fact to the introduction of other transcendental func

tions than the logarithm, namely to elliptic functions
;
and it appears that

the nearest approach to the simplicity of the case, in which the subject

of integration is a rational function, is to be sought in the relations which

exist for the sums of like elliptic integrals. For instance, we have the

equation

I&quot;*

1

j dx
j

x *

dx_ [
x* (/. . _ .,

h */(l-tf\(1tMf\ o A/H -.7?VI -kW Jo \/Cl -arUl - k*a*)
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provided

On further consideration, however, it is clear that this is not a complete
statement ;

and it is proper, beside the quantity x, to introduce a quantity y,

such that

and to regard y, for any value of x, as equally capable either of the positive

or negative sign ;
in fact by varying x continuously from any value, through

one of the values x=\, x=j, and back to its original value, we can
K

suppose that y varies continuously from one sign to the other. Then the

theorem in question can be written thus
;

/&amp;lt;*-
0&amp;gt;&amp;gt;

dtKi
[&amp;lt;*&quot;

^ dx2
[&amp;lt;**

y^dxs_

l(o, i) 2A J(o, i) 2/2 J (o, i) 2/3

where the limits specify the value of y as well as the value of x. The

theorem holds when, in the first two integrals the variables (x, y) are taken

through any continuous succession of simultaneous values, from the lower to

the upper limits, the variables in the last integral being, at every stage of

the integration, defined by the equations

ys (1
- l&xfxff = S/iJ/2 (1 + AfteiW)

- XjX% (I
-

&asfaif 1 - 2
.

The quantity y is called an algebraical function of x\ and the notion thus

introduced is a fundamental one in the theorems to be considered
;

its

complete establishment has been associated, in this volume, with a Riemann

surface.

In the case where y
2 = (1 #2

) (1 &2#2

) we have the general theorem

that, if R (x, y} be any rational function of x, y, the sum of any number, m,
of similar integrals

f(*i, I/,) r^m 2/m&amp;gt;

M (a, y) dx + ...... + 1

J-..*0 ** R(x,y)dx

can be expressed by rational functions of (x1} y^, ..., (xm , ym), and logarithms

of such rational functions, with the addition of an integral

X*m+i. y+i&amp;gt;

R (x, y} dx.

/(+!&amp;gt; ZWl)

Herein the lower limits (c^, b^, ..., (am ,
bm) represent arbitrary pairs of

corresponding values of x and y, and the succession of values for the pairs

(a?i, 2/j), ..., (xm , ym) is quite arbitrary; but in the last integral a m+1 , yM+ i are

each rational functions of (scl} y^, ..., (xm , ym),
which must be properly deter-
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mined, and it is understood that the relations are preserved at all stages of

the integration, so that for example am+l ,
bm+1 are respectively taken to be

the same rational functions of (a1} 6j), ..., (am ,
bm). The question of what

alteration is necessary in the enunciation when this convention is not

observed, is the question of the change in the value of an integral

+l&amp;gt;
?/m

+l&amp;gt;

R (x, y) dx
+l&amp;gt;

&m
+l&amp;gt;

when the path of integration is altered. This question is fully treated in the

consideration of the Riemann surface, with the help of what have been called

period loops.

149. Abel s theorem may be regarded as a generalization of the theorem

just stated, and may be enunciated as follows : Let y be the algebraical
function of x defined by an equation of the form

f(y, x) = y
n +A }y

n -&amp;gt; + ...... + A n = 0,

wherein A ly . .., An are rational polynomials in cc, and the left-hand side of

the equation is supposed incapable of resolution into the product of factors of

the same rational form
;

let R (x, y) be any rational function of x and y ;

then the sum of any number, m, of similar integrals

r(*i,3/i&amp;gt; n
I R(x,y)dx + ...... + I R (x, y) dx,

with arbitrary lower limits, is expressible by rational functions of (xlt ;?/,), ...,

(xm, 2/m)&amp;gt;
and logarithms of such rational functions, with the addition of the

sum of a certain number, k, of integrals,

I R (x, y) dx I R (x, y) dx,

wherein zl} . .., zk are values of x, determinable from xlt yl} ..., xm , ym as the

roots of an algebraical equation whose coefficients are rational functions of

x
\&amp;gt;

y\&amp;gt;
, m , ym ,

and sl} ..., Sfc are the corresponding values of y, of which

any one, say S{, is determinable as a rational function of zt, and aelt ylt ...,

xm, ym - The relations thus determining (zl} s^, ..., (zk ,
sk) from (x1} y^, ...,

(xm, ym} may be supposed to hold at all stages of the integration ;
in

particular they determine the lower limits of the last k integrals from the

arbitrary lower limits of the first m integrals. The number k does not

depend upon m, nor upon the form of the rational function R (x, y} ;
and in

general it does not depend upon the values of (#,, y^, ..., (&amp;gt;,, ?/,), but only

upon the fundamental equation which determines y in terms of x.

150. In this enunciation there is no indication of the way in which the

equations determining zly sl} ..., zk ,
sk from xlt ylt ..., xm , ym are to be found.

Let 6 (y, x) be an integral polynomial in x and y, wherein some or all of the

coefficients are regarded as variable. By continuous variation of these

B. 14
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coefficients the set of corresponding values of x and y which satisfy both

the equations f(y, x) = 0, 6 (y, x) = 0, will also vary continuously. Then, if

m be the number of variable coefficients of 6 (y, x}, and m + k the total

number of variable pairs (x, y} which satisfy both the equations f(y, x}
= 0,

Q(y, x)
= 0, the necessary relations between (x^, y^), ..., (xm , ym ), (zl} s^), ...,

(zjf, Sk) are expressed by the fact that these pairs are the common solutions of

the equations /(y, x) = 0, 6 (y, x) = 0. The polynomial 6 (y, x} may have any

form in which there enter m variable coefficients
; by substitution, in 6 (y, x},

of the m pairs of values (xlt y^, ..., (xm , ym),
we can determine these variable

coefficients as rational functions of xlt y1} ..., xm , ym \ by elimination of y

between the equations 6 (y, x}
=

0, f(y, x) = 0, we obtain an algebraic equa

tion for x, breaking into two factors, P (x) P (x)
= 0, one factor, P (x), not

depending on xlt ylf ..., xm , ym ,
and vanishing for the values of x at the

fixed solutions of f(y,x) = Q, 0(y,x) = 0, which do not depend on x,,y lt

..-, xm , ym ,
the other factor, P (x), having the form

(x-xj ...(x-xm)(x
k + R^-1 + ... + Rk),

where Rly ..., RK are rational functions of x1} ylt ..., xm , ym . Finally, from

the equations /(&amp;gt;;,
zi)
= Q

&amp;gt; 0(si, z^ = Q we can determine s-i rationally in

terms of zit xlt yly ...,#,, ym . As a matter of fact the rational functions of

#1,
2/i&amp;gt;

&amp;gt;

xm, ym ,
which appear on the right-hand side of the equation which

expresses Abel s theorem, are rational functions of the variable coefficients in

151. When 0(y,x) is quite general save for the condition of having

certain fixed zeros satisfying f(y, x) = 0, the forms of (zly sj, ..., (zky sk) as

functions of (xlt y^, ...,(xm&amp;gt; ym) are independent of the form of 6 (y, x}. This

appears from the following enunciation of the theorem, which introduces

ideas that have been elaborated since Abel s time, and which we regard as the

final form Let (a1; 6j), ...,(aQ , bQ) be any places of the Riemann surface

whatever, such that sets coresidual therewith have a multiplicity q, and a

sequence Q q=p rl, where r + I is the number of polynomials

vanishing in the places (a^ 6j), ..., (aQ ,
bQ); let (a?,, y^, ..., (xq , yq}

be q

arbitrary places determining a set coresidual with (alt 6j), ..., (aQ ,
6C),

and

(z1} Si), ..., (ZP-T-I, SP-T-I) be the sequent places of this set*
; then, R (x, y)

being any rational function of (x, y), the sum

n*uj/i) /(* v,) _

R(x,y)dx+ ...... + R(x,y)dx
J (a,, V 1 (a?, 6)

is expressible by rational functions of (xlt y^, ..., (xq , yq},
and logarithms of

such rational functions, with the addition of a sum

/&amp;lt;?!,
i&amp;gt; riv-i.^-T-i)

R(x,y}dx ...... R (x, y) dx
(+i, b+i) J (as , b^

* See Chap. VI. 95.
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herein it is understood that the paths of integration are such that at every

stage the variables form a set coresidual with (alt 6j), ..., (aQ , bQ).

The places (aly b^, ...,(cig,
bQ) may therefore be regarded as the poles, and

(a?i, ^j), ..., (xq , yq ), (X, Sj), ..., (^p_T_j, .Sp_T_!) as the zeros, of the same rational

function Z (x) ;
if d

l (y, x) denote the form of the polynomial (y, x) when it

vanishes in (a1} bj, ..., (aQ , bq), and 0%(y, x} denote its form when its zeros

are (xlt y^, ..., (zlt s^, . .., the function Z (x) may be expressed in the form

#2 (y, x}jdi(y, x}. If the polynomials 0i(y, x}, 0%(y, x) are not adjoint, the

function will be of the kind, hitherto regarded as special, which takes the

same value at all the places of the Riemann surface which correspond to a

multiple point of the plane curve represented by the equation f (y, x) = ;

this fact does not affect the application of Abel s theorem to the case.

152. To prove the theorem thus enunciated, with the greatest possible

definiteness, we shew first that it may be reduced to two simple cases.

In the neighbourhood of any place of the Riemann surface, at which t is

the infinitesimal, we can express R (x, y)-r. in a series of positive and

negative powers of t, in which the number of negative powers is finite. Let
the expression at some place, , where negative powers actually enter, be

denoted by

then, if P denote any elementary integral of the third kind, with infinities

at f, 7, and E* c
denote the differential coefficient of P^

c
in regard to the

infinitesimal at
,
the places 7, c being arbitrary, the difference

wherein D^ denotes differentiation in regard to the infinitesimal at
,
is finite

at the place The number of places, ,
at which negative powers of t enter

dec
in the expansion of R (x, y) -=-

,
is finite

; dealing with each in turn we obtain

an expression of the form

wherein 7, c are taken the same for every place ;
this is finite at all places

of the Riemann surface, except possibly the place 7. If ty be the infinitesi

mal at this place the function is there infinite like (2AJ log ty.
But in fact

S4, is zero (Chap. II. 17, Ex. (S): Chap. VII. 137, Ex. vi.). Hence the

14-2
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function under consideration is nowhere infinite, and is therefore necessarily*

a linear aggregate of integrals of the first kind, plus a constant. Hence

if ua&amp;gt;
a

, ..., u
a &quot;

be a set of linearly independent integrals of the first kind, a

denoting the place (a, 6), and (7j ,
. . .

,
Cp be proper constants, we have

The consideration of the sum

r*i r*u
i R(x,y}dx + ...... + 1 R(x,y)dx,
J tt a

wherein a^, ..., aQ denote the places (al} 6j), ..., (a^, bQ), and xlf ..., XQ denote

the places (xly yj, ..., (xq , yg), (z1} s^, ..., (zp^_lt sp-^-^), is thus reduced to

the consideration of the two sums

,, ...
Ex. i. By the proposition here repeated from 20, Chap. II., it follows that any

rational function can be written in the form

+ (^, I/- 1 1
B _ 1 (x, y)]/f (y)

where (cf. 45, Chap. IV.)
n-l

(x, |)
=

[&amp;lt;^o (^ y) H- 2 0,. (a?, y) gr (, r,)]/(x
- )f (y),

i

; being the value of y at the place .

.&quot;#. ii. Prove also that any rational function with simple poles at |1} 2 ,
... can be

written in the form

Xj, A 2 &amp;gt;&quot;

bein constants, and denoting an arbitrary place (cf. 130, Chap. VII.).

153. We shall prove, now, in regard to these two sums, under the

conventions that the upper limits are coresidual with the lower limits, and

that the Q paths of integration are such that at every stage the variables are

at places also coresidual with the lower limits, a convention under which the

paths of integration may quite well cross the period loops on the Riemann

surface, that the first sum is zero for all values of i, and the second equal to

log Z()/Z(ry), Z(oc) being the-}- rational function which has alt ..., aQ as

poles and x1} ..., x^ as zeros. The sense in which the logarithm is to be

understood will appear from the proof of the theorem. If we suppose the

lower limits arbitrarily assigned, the general function Z (x), of which these

*
Forsyth, Theory of Functions, 234.

t If two rational functions have the same poles and the same zeros their ratio is necessarily

a constant.



154] PROOF OF THE THEOREM. 213

places a1( ...
,
aq are the poles, will contain q 4- 1 arbitrary linear coefficients,

entering homogeneously, and the assignation of q of the zeros, say x
1 , ...,xq ,

will determine the others, as explained. The equations giving the determi

nation will be such functions of a,, ..., aQ as are identically satisfied by these

places, Oj, ..., (tq.
Hence the general form of Abel s theorem is

where Z (f)
= D$Z () ;

the term 2-4j log Z (7)
=

log Z (7) 2-4 1 can be omitted

because 2^ = (Chap. II. p. 20 (8)). Herein Z () is a rational function of

n n Q nn T* o*
lt/i j

. . . . \AJQ CvlJ.VA lA/i j
*

j t^rt

154. In carrying out the proof we make at first a simplification Let

Z(x), or Z, be the rational function having a1} ..., aQ as simple poles and

#!, ..., #c as simple zeros, these places being supposed to be all different;

trace on the Riernann surface an arbitrary path joining a t to x^ chosen so as

to avoid all places where dZ is zero to higher than the first order, and let /j,

be the value of Z at any place of this path ;
then there will be Q 1 other

places at which Z has the same value
JJL ;

the paths traced by these Q 1

places as /* varies from oc to are the paths we assign for the Q 1 integrals

following the first. The simultaneous positions thus defined for the variables

in the Q integrals are, for q &amp;gt; 1, not so general* as those allowed by the con

vention that the simultaneous positions are coresidual with Oj, ..., UQ ;
but it

will be seen that the more general case is immediately deducible from the

particular one.

Consider now, for any value of
JJL,

the rational function

1 dl

Z-fji dx

I, = IR(x, y)dx, being any Abelian integral whatever. In accordance with

a theorem previously used (Chap. II. p. 20 (8) ; Chap. VII. 137, Ex. vi.) the

sum of the coefficients of t~l in the expansions of (Z - n)~
l
dlldt, in terms of

the infinitesimal t, at all places where negative powers of t occur, is equal to

zero. Of such places there are first the Q, places where Z is equal to
//..

We
shall suppose that dl/dt is finite at all these places ; then the sum of the

coefficients of t~ l at these places is

(^ ;f
dA M

*
Sets coresidual with two given coresidual sets have a multiplicity q; but sets equivalent

with two given coresidual sets have a variability expressible by one parameter only (cf. Chap. VI.

94-96).
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provided Z //,
be not zero to the second order at any of the places, that is,

provided dZ be not zero to higher than the first order. In accordance with

the convention made as to the paths of the variables in the integrals, we

suppose this condition to be satisfied.

Hence this sum is equal to the sum of the coefficients of t~l in the

expansions of the function - (Z - /Lt)&quot;

1

dl/dt at all places, only, where dl/dt is

infinite; this result we may write in the form

H

we may regard this equation as a convenient way of stating Abel s theorem
for many purposes; and may suppose the case, in which an infinity of dl/dt
coincides with a place at which Z = p, to be included in this equation, the

left hand being restricted to all places at which Z = p and dl/dt is not

infinite.

In this equation, in case I, = u*
a

,
be any integral of the first kind, the

right hand vanishes; then, integrating in regard to
//,

from oo to 0, we
obtain

In case / be an integral of the third kind, = Pf
c

say, and Z be not equal to

fi either at or 7, the right hand is equal to

1 1
to\ I

hence, integrating,

Z&amp;gt;1, i ,
&amp;gt;p

XQ a
li - rj.. - lr&amp;gt;. /mp

t.

- d*- + g

while, if the places at which the rational function Z (x) has the values
/JL,

v be

respectively denoted by

&! }
......

) Q)

and

&l&amp;gt;
...... ) a Q

we have

pz, , a/ p*tt
,a u _

[&quot;

7 / _L__ _1^ 5^ L*P\ ZM-^ZM-

For any Abelian integral we similarly have

/-
a

&amp;gt;

+ ...... + 1** ?

which is a complete statement of Abel s theorem.
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155. In the equation (B), and in the equation which follows it, the

significance of the logarithm is determined by the path of
/j,

in the integral

expression which defines the logarithm ;
we may also define the logarithm by

considering the two sides of the equation as functions of f.

There is no need to extend the equation (B) to the case where one of the

paths of integration on the left passes through either or 7, since in that

case a corresponding infinite term enters on both sides of the equation.

But it is clear that the condition that no two of the upper limits xl ,
...

, #g
should be coincident is immaterial, and may be removed. And if two (or

more) of the places at which Z takes any value, /j,,
should coincide, the

equations (A) and (B) can be formed each as the sum of two equations in

Avhich the course of integration is respectively from Z GO to Z=
/JL

and from

Z=
fj,

to Z = 0, and the final outcome can only be that the order in which the

upper limits x
l , ..., XQ are associated with the lower limits a^ ,

. . . , aQ may
undergo a change. But in the general case we may equally put, for example,
in equations (A), (B),

/*i fz2 r*2 f*i C^ . /, rx2 rx
l

dl + dl,= dl+ dl+ dr+ dl,= dl+ dl,
J a

l
J a2

J a, J jr2 * x
\

J at J a, a2

with proper conventions as to the paths ;
hence the condition that dZ shall

not be zero to higher than the first order at any stage of the integration may
be discarded also, with a certain loss of definiteness. The most general form

of equation (A), when each of the Q paths of integration are arbitrary, is of

course

iiP + Ml

t

itl + ...... +Mp a&amp;gt;

i&amp;gt;p
, (C)

where w^, ..., w
i&amp;gt;p

are the periods of uf
a
and Mlf ..., Mp are rational

integers, independent of i. We shall subsequently see that this equation is

sufficient to prove that the places xl} ..., XQ are coresidual with the set

a,, ..., aQ .

If, in equation (B), we substitute for Z(x) any one of its rational

expressions, say* 6z (x)ldl (x), we shall obtain

where, now, 2 (x), O^x) are any two polynomials, integral in x and y, of

which, beside common zeros, 2 (x) has xlt ..., xq for zeros, and 6^(x) has
OL , y for zeros. If in this equation we suppose any of the coefficients in

Q* (x) to vary infinitesimally in any way, such that the common zeros of 2 (x}

9 (x) is, for shortness, put for what would more properly be denoted by 9 (y, x).
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and $!(&) remain fixed, #2 (#) changing thereby into 2 (x) + 802 (x), the places

AI, ..., xq changing thereby to xl + dxl} ..., XQ + dx
Q&amp;gt;

we shall obtain

= S log ^- ,

2 (7)

Avhich is slightly more general than any equation before given, in that the

places Xi + dxi, ..., xQ +dxQ , though coresidual with xlt ..., XQ ,
are not

necessarily such that&quot; the function a (#)/0, (a;) has the same value at all of

them. This general equation is obtained by Abel in the course of his proof
of his theorem.

For any Abelian integral we have, similarly, the equation

which, also, may be regarded as a complete statement of Abel s theorem.

156. In equation (B) the logarithm of the right hand will disappear if

= z
(&quot;t\ namely if the infinities of the integral be places at which the

function Z (x) has the same value.

One case of this may be noticed
;
if ^ (?/, x) be an integral polynomial of

grade (/*
-

1) a + n - 3 (cf. Chap. VI. 86, 91), which is adjoint at all places

except those two, say A, A , which correspond to an ordinary double point of

the curve represented by the equation f(y, x) = 0, the integral

// / \ &quot;**
&amp;gt;

/ (y)

will be an integral of the third kind having A, A as its infinities. Hence, if

in forming the function Z(x), =
2 (x)/01 (x), the places A, A have been

disregarded, so that the polynomials l (x}, 2 (x) do not vanish in these

places, the function Z (x) will take the same value at A as at A
,
and

we shall obtain

yx a
i + ...... _j_ y*^ _

Hence we obtain the result : if, in the formation of the integrals of the

first kind for a given fundamental curve, we overlook the existence of a
certain number, say B, of double points, we shall obtain p + 8 integrals, where

p is the true deficiency of the curve; and these integrals will be linear

aggregates of the actual integrals of the first kind and of 8 integrals of the

third kind. If in the formation of the rational functions also we overlook

the existence of these double points, Abel s theorem will have the same form
of equation for the p + 8 integrals as if they were integrals of the first kind

(cf. 83, 90, and Abel, (Euvres Camp., Christiania, 1881, Vol. I. p. 167).

For example, let a1? ..., aQ be arbitrary places in which r + 1 ^-poly
nomials vanish (Chap. VI. 101, 93). Take q(=Q-p + r+l) arbitrary
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places d, ..., c
q ,
and so determine the set d, . ..

, CQ coresidual with alt ..., y .

A rational function, f(#), which has the places al} ..., aQ for poles and the

places d, ..., CQ for zeros is quite determinate save for a constant multiplier.
Let j,\, . . .

,
XQ be any set of places at which f (x) has the same value, A say,

so that #!, ...
,
XQ are the zeros of (#) .4

; then, as a1} ...
,
ac are the poles

of (#) A . we have

p*.
, &amp;lt;*,

p,u , ,, , (Ci)-VJ
^,,2

-f
^r,,,, 10g

(Cs) _^&amp;gt;

and as f(d) = (c.,)
= 0, the right hand is zero.

Hence, calling the places where a definite rational function has the same
value a set of level points for the function, we can make the statement the
level points of a definite function satisfy the equations

c1} c., being any two of the zeros of the function.

In particular, when q
=

l, the sets of level points are the most general
sets coresidual with the poles or zeros of the function. Hence, if xly ...,xp+1
be any set of places coresidual with a fixed set c,, ca , ...,cp+li in which no

^-polynomials vanish, we have the equations

157. Ex. i. We give an example of the application of Abel s theorem.

For the surface associated with the equation

the integral
f.rP4-/?-/rP-l_l-

_j_ c
dx

y
is of the second kind, becoming infinite only at the (single) place #= oo. Consider the
rational function

which, for general values of A,..., L ,
is of the (2jo+ l)th order, its zeros, for instance,

being given by

To evaluate the expression

(-
1

\dt Z-

the place .*= l^ing the only one to be considered, we put x= t~ &amp;gt; and obtain
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~-
dl ^P^fip-aT

...... _ 2

dt
~

2 ~*

and therefore

dl 1 1 1
,
A A 1 c

l

wherein the coefficient of t~ l is ^ (A
-^ A

) (1 /i)~
3

.

Hence, if .1^, ..., ^ 2 ,, + l
be the zeros, and !,..., 2P + 1

be the poles of Z, we have

Now the zeros of Z are zeros of the polynomial

denoting the values of y by y l ,
...

, y.iv + v and using F(x) for (x~x^ ...... (^ -^p + i),

where (xlt y^,..., (xp + l ,yp + l )
are any p + l of the places (x^y^..., (xtj&amp;gt;+1 , y2, + 1 ), we

have, from the
jt?+ 1 equations

and hence, if 6^ 6
2 , ... be the values of y when .v=a

1 ,
a
2 , ..., and ^T

(^)
= (^ x ) ...

(^-ap + 1 ),
we have

7^ ^+ ...... +/*H-i
ffl

^i=i 2 Fr 2 F7^)-i=l * ^*V i= l \
M

t

If in the integral / the term .vp be absent, the value obtained for the sura

1*1 l+ ...... + 7*8^-1 &quot;SH-I

will be zero.

The reader will notice that for p= l, we obtain an equation from which the equation

can be deduced, u
lt u%, u3 being arguments whose sum is zero

;
and that the algebraic-

equation whose roots are x1} ..., x2p + 1 gives

/p+ l y. \2
# + ......+^ + i

=J^ 2= i 2

which for = \ becomes
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Ex. ii. If Y) Z be any two rational functions, and u any integral of the first kind,

prove by the theorem

/ 1

\(Y-b}(Z

du dx ~
-J) dx

that the sum of the values of (Yb)~ l
dujdZ, at all places where =c, added to the sum

of the valuer of (Z c)~
l du/dY &i all places where F=6, is zero.

It is assumed that all the zeros of the functions Y- b, Zc are of the hrst order.

Hence prove the equation

2 T = 5 (du Z(x}-n
8

where a1( ..., ag are the places at which Z(x)= v, x1 , ..., XQ the places at which Z(x)=p,
and the suffix on the right hand indicates that the values of the expression in the brackets
are to be taken for the n places of the surface at which x=b.

It is assumed that there are no branch places for x=b.

Ex. iii. If
&amp;lt;/&amp;gt; (x) be any integral polynomial in .r, y*= (x, l)2p + 2 &amp;gt; =/(* ) say. and M (x),

N(x] be any two integral polynomials in x of which some coefficients are variable, and

f(x) . M^(x}-^(x) = K(x-xl } ...... (x-xgl

where K is a constant or an integral polynomial whose coefficients do not depend upon
the variable coefficients in M(x], N (x\ and yi,...,ys be determined by the equations
yiM(Xi)+N(xi)

=
0, then, on the hypothesis that s is not one of the quantities xlt ..., X

Q&amp;gt;

and is not a root of/(#)= 0, prove that

(*

J
-

where C is a constant, and R is the coefficient of - in the development of the function

)
!

N
*

in descending powers of x
;
herein the signs of Jf(x) , */f(zj are arbitrary, but must be

used consistently.

Shew that the statement remains valid when f (x) is of order 2p+ l (in which case the

development from which r is chosen is to be regarded as a development in powers of */x)
prove that r is zero when &amp;lt; (a?) is of order p, or of less order. Obtain the corresponding
theorem when 2 is a root of f(x) = 0.

Ex. iv. The result of Ex. iii. is given by Abel ((Euvres Compl., Vol. i. p. 445), with a
direct proof. We explain now the nature of this proof, in the general case. Let/ (y, x) =
be the fundamental equation, and let 6 (y, x) be a polynomial of which some of the
coefficients are variable

;
if y^ ...

, yn be the n conjugate roots of / (y, x)= corresponding
to any general value of .r, the equation

r (x)
= e (#!, .) 6 (y2 , x} ...... B (yu , .:)

=
0,

gives the values of x at the finite zeros of the polynomial 6 (y, x). Suppose that the
left-hand side breaks into two factors F

(.v) and F (x), of which the former does not
contain any of the variable coefficients of 6 (y, x}. Let be a root of F(x)= 0, and
Vu -, in be the corresponding values of

ij ;
then one or more of the places (, ^j), ...... ,
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(&amp;gt; 7n) are zeros of 6 (y, x) ;
fix attention upon one of these, and denote it by (, rj).

Then

if, by a slight change in the variable coefficients of 6 (y, x\ whereby it becomes changed
into 6 (y, x) + 80 (y, x\ F (x) become F (x)+ 8F O), the symbol 8 referring only to the

coefficients of 6 (y, x\ and become + o?, we have the equations
&quot;

()&amp;lt;*=&amp;lt;&amp;gt;,

8,- (|)= 20 Oh, ) ...... 5 fo.,, ) e (, i + 1 , |) ...... &amp;lt;9 (,n , ^) 80 fa, ),
i= l

where /* (g)
= dF((;)/dg. Denote now by U (x) the rational function of x, given by

U(x) = 2 d (y1? x) ...... 6 (#_!, #) (y i + 1 , a,-) ...... (yn , x) W (y4 , *);
=i

then if /i (a- , y) be any rational function of x and y, we have

where, on account of ^ (r/, ^)
= we can write

and

=
(I), say,

() being a rational function of only. Taking the sum of the equations of this form,
for all the zeros of 6 (y, x}, we have

herein the summation on the right hand can be carried out, and the result written as the

perfect differential of a function of the variable coefficients of 6 (y, .r), in fact in the form

(#, y) * log

as we have shewn.

For example, when

/ (y, x) =y3+ x3 - 3ayx -I, 6 (y, x) =y - mx -
n, we have F (x) 1,

F (x}
=x3+ (mx+ n)

3 Sax (mx+ n) 1
,

and

&&amp;lt;% _ _ 3,8f (|)_ _ _ 3^rW(gai + a&amp;gt;Q _ _ 3g(mg + ?Q(gam+ an) &amp;gt;H|) (

7
s -l /T^^Tl)&quot; / (7)^) *&quot;() ^(f)

Now ^^)_-

, , cnwc xw (x) 3xm8m\ . /l a\
and hence 2 - =

, / + ^- ,
= - 38 ^ 5 ,

7
a^ L*-W l+m3

Jx=cc \l+m3
/

as is easily seen. From this we infer

n a fmn - cA
^
A

J
- ^2

2 I .-^^.= -3
=
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In this example it is easily seen that the integral is only infinite when x is

infinite; putting x^t~\ the equation f (y, #)= gives y= -a&amp;gt;t~
l -au*+ At+ Bt*+ ,

where =
1, or (-lV^3)/2; then log 6 (y, x) dl/dt, =\og (y

- m,r- n) \xyl(y
z
-ax)}

dxjdt, has (a*+n) a&amp;gt;

2
/( + m) for coefficient of t~\ and we easily find

a+n a&amp;gt;

2
a&amp;gt; _

m+ I TO + O)

& m+ o)
2

&quot;

.Ek. v. If Y, Z denote any two rational functions (in x and y\ such that there is no

finite value of x for which both have infinities, and 2 (YZ) denote the sum of the n

conjugate values of YZ for any value of x, and [2 (YZ}\x _ay ,
denote the sum of the

coefficients of (x- a)
1 in the expansions of the rational function of x, 2 (YZ), for all finite

values of x for which Y is infinite, and [S (YZ)^ denote the coefficient of x~ l in the

expansion of 2 (YZ) in descending powers of x, it is easy (cf. 162 below) to prove that

wherein, on the left hand, the dash indicates that the sum is to be taken only for the

finite places at which Z is infinite. Hence if 7 be any Abelian integral,
= \R(x,y) d.v,

we have

S log I (a ,))^-[. (
log (y,

Hence, if we assume that (y, x) has no variable zeros at infinity, we can obtain

Abel s theorem in the form

wherein the summation on the left refers to all the zeros of 6 (y, x).

This is the form in which the result is given by Abel ((Euvres Compl., Christiania, 1881,

Vol. i. p. 159, and notes, Vol. ii. p. 296), the right hand being obtained by actual

evaluation of the summation which we have written, in the last example, in the form

_, ^M_
* (&**(&

The reader is recommended to study Abel s paper*, which, beside the theorem above,

contains two important enquiries ; first, as to the form necessary for the rational function

dl/dx, in order that the right-hand side of the equation of Abel s theorem may reduce to a

constant, next, as to the least number of the integrals in the equation of Abel s theorem,

of which the upper limits may not be taken arbitrarily but must be taken as functions

of the other upper limits. Though the results have been incorporated in the theory here

given ( 156, 151, 95), Abel s investigation must ever have the deepest interest.

K.I: vi. Obtain the result of Ex. i. ( 157) by the method explained in Ex. iv.

* Which was presented to the Academy of Sciences of Paris in Oct. 1826, and published by

the Academy in 1841 (Mi moirc* par dirfrx xavants, t. vii.). During this period many papers were

published in Crelle s Journal on Abel s theorem, by Abel, Minding, Jiirgensen, Broch, Richelot,

Jacob! and Rosenhain. (See Crelle, i xxx. I have not examined all these papers with care.

Jiirgensen uses a method of fractional differentiation.)
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Ex. vii. Prove that the sum of the values of the expression

U.v
J

wherein v is any linear expression in the homogeneous coordinates x, y, z, U is any

integral polynomial of degree m+ n 3, J is the Jacohian of any two curves /=0, =
0,

of degrees n and m, and the line v= 0, and the sum extends to all the common points

of/=0 and =
0, vanishes, multiple points of/=0, = being disregarded.

Hence deduce Abel s theorem for integrals of the first kind.

(See Harnack, Alg. Diff. Math. Annal. t. ix. ; Cayley, Amer. Journ. Vol. v. p. 158
;

Jacobi, theoremata nova algebraica, Crelle, t. xiv. The theorem is due to Jacobi
;

for

geometrical applications, see also Humbert, Liouville s Journal (1885) Ser. iv. t. i. p. 347)*.

Ex. viii. For the surface

y
a

=tf&amp;gt; (*)*(*), =/(*),

wherein (#), ^ (x] are cubic polynomials in #, prove the equation

wherein .vlt #2 , | and ml5 m2 , y are coresidual with the roots of (#)=0, and |, y are the

places conjugate to and y ; conjugate places being those for which the values of x are

the same.

158. When the places xl) ...,xq are determined as coresidual with

the fixed places an ...
, aq, p r l of the places xl} ...,xq are fixed by

the assignation of the others. Hence the p + 1 relations, Avhich are given by
Abel s theorem,

cannot be independent. We prove now first of all that the last may
be regarded as a consequence of the other p equations. In fact, if x\, ...

, Xq
and alt ..., aqbe any two sets of places, sucJi that, for any paths of integration ,

(i
= l,2, ...,p), wherein u*\

a
, ...,u*

a
are any set of linearly independent

integrals of the first kind, &&amp;gt;,-(1 ,
...

,
a&amp;gt; i

&amp;gt;p

are the periods of the integral u{ ,
and

M-i, ..., M p are rational integers independent of i, then there exists a rational

function having the places a^, ..., aq for poles and the places ti\, ..., Xq for

zeros.

For if v
X
i

a
, ..., vl

n
be the normal integrals of the first kind, so that we

have equations of the form,

x, a f-i x, a ,-i x, a
Vi = C j

(
j Wj + ...... + C

i&amp;lt;p

Up ,

* Further algebraical consideration of Abel s theorem may be found in Clebscb-Lindemann-

Benoist, Lecona sur la Geometrie (Paris 1883) Vol. iii. Geometrical applications are given by

Humbert, Liouville s Journal, 1887, 1889, 1890 (Ser. iv. t. iii. v. vi.).
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wherein C^, ..., Ciip are constants, and therefore, also,

C
it j ta^j + ...... + G

i&amp;gt; p co
pi j

= or 1, according as i ^=j, or i =j,
and

@i, I
m

\,j+ ...... + Ci,P (0 p,j
= r

i,}&amp;gt;

we can deduce

v?
ai + ...... +v? aa = Mt + Ml

T
itt + ...... +M pTitp .

Consider now the function

// x
Uxa + ...... + n

x a -2&quot;i(M\v

x c
+ ...... +M v

x
)

Z(x) = e
&quot; x

Q&amp;gt;

a
a PP

c being an arbitrary place.

Herein an integral, Tix\,a,&amp;gt;
suffers an increment 2jri when a; makes a

circuit about the place ^ ;
but this does not alter the value of Z (#). And

in fact Z(x) is a single-valued function of x; for the functions 11%
a
a have

no periods at the first p period loops, while, if x describe a circuit equivalent
to crossing the t-th period loop of the second kind, the function Z(x) is only
multiplied by the factor

or eiwlMi, whose value is unity.

Further the function Z (x) has no essential singularities; for it has poles
at the places alt ... ,

ay ,
and is elsewhere finite.

Since the function has zeros at x
l , . . .

,
XQ and not elsewhere, the state

ment made above is justified.

Ex. i. It is impossible to find two places y, such that each of the p integrals wf-
f is

zero. For then there would exist a rational function, given by

having only one pole, at the place y. (Of. 6, Chap. I.) It is also impossible that the
equations

wherein 3f
lt ..., Mp , M\, ..., M v are rational integers independent of i, should be

simultaneously true.

Ex. ii. If p equations, of the form

exist, y, and y2 are the poles of a rational function of the .second order, and the surface
hyi&amp;gt;erelliptic. (Chap. V. 52.)
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159. In regard now to the equations

11.

which express that the places a?1} ...,XQ are coresidual with the places

alt . . .
, O,Q,

if r + 1 be the number of (^-polynomials which vanish in the places

al} ...,aQ (Chap. VI. 93), or (Chap. III. 27, 37) the number of linearly

independent linear aggregates of the form

wherein C
1 ,...,GP are constants, which vanish in these places, then,

Q p + r + 1 of the places xl ,...,Xq can be assumed arbitrarily, and the

equations are therefore equivalent to only p r 1 equations, determining
the other places of xl ,

. . .
, XQ in terms of those assumed. This can be stated

also in another way : the p differential equations

express that the places oc1 , ...,XQ are coresidual with the places #j + dx^ ,
. . .

,

XQ + dxq ;
if the places xly ...,XQ have quite general positions these equations

are independent ;
if however T + 1 linearly independent linear aggregates, of

the form,

~ du^ ~ dup
Cl

d^c
+ ...... +^^-

wherein Clt ...,CP are constants, vanish in the places xlt ...,Xy, then the p
differential equations are linearly determinable from p r 1 of them.

Ex. i. A rational function having .r
1} ..., .% as poles of the first order, and such that

Xu ..., Xp are the coefficients of the inverses of the infinitesimals in the expansion of

the function in the neighbourhood of these places, can be written in the form

\ r-*
f

&amp;gt; T&amp;gt;

X
&quot;

c
AT 1 ...... \o 1 ;i /r fX, Xy

the conditions that the periods be zero are then the p equations

A
1
Q

i (#i) + ...... +XB Oi(A B)=0, (i=l, 2, ...,p).

But, if we take consecutive places coresidual with x
l , ..., .r

y ,
and t

l ,...,t(l
be the

corresponding values of the infinitesimals at .v
lt ..., ,r

e ,
we also have

thus, if the first q (
= Q

f&amp;gt;

+ r+ 1) of t
lt ..., t

u
be taken proportional to X,, ..., X,, we shall

have the equations

iAi= ...... =*/*

Ex.\\. When the set .r
1 ,...,x(! ,

beside being coresidual with o^, ...,afi ,
has other

specialities of position, Abel s theorem may be incompetent to express them. For instance,

in the case of a Riemann surface whose equation represents a plane quartic curve with

two double points, there is one finite integral ;
if a

l9 ..., 4 represent any 4 rollinear points,

and .r1? ...,.r4 represent any other 4 collinear points, the equation of Abel s theorem is
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but this equation does not express the two relations which are necessary to ensure that
x
lt ...,%i are collinear

; it expresses only that #
l} x2 ,

x3 ,
x are on a conic, S, passing

through the double points, or that x^, .v
2 ,
x
a ,
x are the zeros, and a

x , ..., 4 are the poles
of the rational function S/LL ,

where L=Q is the line containing a
ly ...,at and L =Q is

the line joining the double points.

100. From these results there follows the interesting conclusion that

the p simultaneous differential equations

have algebraical integrals, Q being &amp;gt; p, and ,, ...,up being a set of p linearly

independent integrals of the first kind. The problem of determining these

integrals consists only in the expression of the fact that #,, ..., ary con

stitute a set belonging to a lot of coresidual sets of places.

The most general lot will consist of the sets coresidual with Q arbitrary
fixed places a,, ...,aQ , in which no (^-polynomials vanish. But the lot does
not therefore depend on Q arbitrary constants; for in place of the set

a,, .... nQ we can equally well use a set A lt ..., A Q ,
whereof q, =Q-p t places

have positions arbitrarily assigned beforehand
;
in other words, all possible

lots of sets of Q places with multiplicity q can be regarded as derived from
fundamental sets of Q places in which q places are the same for all. A lot

depends therefore on Q-q,=p } arbitrary constants, and this number of

arbitrary constants should appear in the integrals of the equations (Chap VI
96).

We may denote the Q arbitrary places, with which xlt ...,x(i
are coresidual,

by A
1 ,...,A q,a l ,...,ap ,

so that A
1 ,...,A q

are arbitrarily assigned before

hand, in any way that is convenient, and the positions of ,, ...,ap are the

arbitrary constants of the integration.

Then one way in which we can express the integrals of the equations is

as follows: form the rational function with poles, of the first order, in the

places #1, ..., xQi and determine the ratios of the q + 1 homogeneous arbitrary
coefficients entering therein, so that the function vanishes in A^^^Aq.
Then the function is determined save for an arbitrary multiplier, and
must vanish also in a,, ...,ap . The expression of the fact that it does so

gives p equations, each containing one of ctj, ..., ap as an arbitrary constant.

From these p equations we may suppose p of the places aslt ...,XQ , say
*i,..., P, to be expressed in terms of o^....^ and xp+l , ...,XQ (and
A

l ,...,A q ). The resulting equations may be derived also by forming the

general rational function with its poles in a,,..., a
p&amp;gt;

A, ,..., A q and eliminating
the

arbitrary constants by the condition that this function vanishes in
xii p+i, tfp+2, ...,acQ ,i being in turn taken equal to 1, 2, . . .

, p.

B - 15
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For example, for Q=p + 1, if ty (as, a; z, cl5 ..., cp) denote the definite

rational function which has poles of the first order in the places z,c l ,...,cp ,

the coefficient of the inverse of the infinitesimal at the place z being
taken = 1, which function also vanishes at the place a (Chap. VII. 122),
then a complete set of integrals is given by

; #p+1 , #!,..., #p)
= = ...... = ^(ap,A; xp+lt x1} ..., xp\

and a complete set is also given by

^ (I,XP+I , A, alt ..., ap) = = ...... =
i/r (xp ,

xp+1 ; A, a,,..., ap).

The first of these integrals is in fact the equation

dup dup
dxl dxz

dP dP

dxri

du

dxp+l

dP

=
0,

wherein P = P^ ^,
and may be regarded as derived by elimination of

dx1} ..., dxp+l from the p given differential equations and the differential of

the equation ( 156)

,
and (J., tt: , ...,

&amp;lt;%,)

are coresidual

-

a,, A

which holds when (a?1} ..., ^+1), (c^

sets.

^r. i. For p= l, the fundamental equation being y
i=

(x^ 1)4=X2
.^
4+ ..., shew that the

differential equation
ofei c^

2=
y\ yz

has the integral

where 62= (a, 1)4 . (Here the place A has been taken at infinity.)

Shew also that this integral expresses that the places (#1} T/J), (.r2 , y2 )&amp;gt; (#&amp;gt; &)&amp;gt;

are the

variable zeros of the polynomial y+jo+^-X^2
,
when p and

&amp;lt;?

are varied.

Ex. ii. For jo
=

2, the fundamental equation being 3/
2=

(#, l)c
= X2^i6+ ..., using the

form of the function ty (
x

i
a

&amp;gt;

z
&amp;gt;

c
i&amp;gt; &amp;gt;

CP) given in Ex. ii. 132, Chap. VII., and putting

the place A at infinity, obtain, for the differential equations

the integral

\Ai3C-t \Aj3Cn \AtJ(j o _.

_J+ _2 + _3= 0j

2/1 3/2

3/i

&amp;lt;i z ^_T ,
&quot;

3/2 3/3

3/3

to - a) F to) to - a)
^ (*a) (^3

-
)

^&quot;W ^
(
a

)

wherein /ri

(.r)
= (^-^1)(.r-, r.j) (.r .rs ), b

2
=(a, l)c ,

and the position of the place (a, 6) is
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the arbitrary constant of integration. By taking three positions of (a, 6) we obtain a

system of complete integrals.

Shew that this integral is obtained by eliminating pt q, r from the equations which

express that the places (xlt y^) y Cr2J #2)1 (
x

a&amp;gt; 2/3)1 (
a

&amp;gt; ^) are zeros of the polynomial

y \y? +px2+ qx+r.

Ex. iii. For the case (p= 3) in which the fundamental equation is of the form

(x, y)4 being a homogeneous polynomial of the fourth degree with general coefficients, etc.,

prove that an integral of the equations

is given by

where

(2, 3, 4) ^ + (3, 1, 4) Uz+ (l, 2, 4) ^3 -(l, 2, 3) 4̂
=

0,

(2, 3, 4) = :r2 x
z ,r

4

3^2 3/3 2/4

1 1 1

etc.,

and

/(6, a) being =0, and the position of (a, 6) being the arbitrary constant of integration.

A complete system of integrals is obtained by giving (a, 6) any three arbitrary positions.

To obtain these equations the place A has been put at x=0, y= Q.

Ex. iv. When the fundamental equation is 4
+2/

4=
l, shew, putting the place A at

a?=l, ?/
=

0, that, as in Ex. iii., we have integrals of the form

(2, 3, 4) CT
1 + (3, 1, 4) U2+ (l, 2, 4) U3 -(l, 2, 3) ^ =

0,

wherein

and

_ i

161. The method of forming the integrals of the differential equations
which is explained in the last article may also be stated thus: take any

adjoint polynomial ty which vanishes in the Q places A lt ..., A q ,
aly ..., ap ;

let Oi, ..., CK be the other zeros* of
i/r;

let the general adjoint polynomial
of the same grade as

t/r,
which vanishes in C,, ..., CR ,

be denoted by

X, Xj, ...,\9 being arbitrary constants. By expressing that the places
x

i&amp;gt;

xp+i, #p+2&amp;gt; , %Q are zeros of this polynomial we obtain a relation

whereby #; is determined from xp+l , ..., XQ in terms of the arbitrary positions

Beside those where/ (y) or F
(77)

vanishes (cf. Chap. VI. 86).

152
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a1} ..., ap (and A lt ..., Aq). By taking i = 1, 2, ..., p we obtain a complete

system* of integrals.

Now instead of regarding the set A lt ..., Aq ,
al} ..., ap as the arbitrary

quantities of the integration, we may regard the set C1 ,...,CK as the

arbitrary quantities, or, more accurately, we may regard the p quantities

upon which the lot of sets coresidual with Clt ..., CR depends, as the

arbitrary quantities. To this end, and under the hypothesis that no

^-polynomials vanish in the places Clt ..., CR , imagine a set of places

Bl ,...,BB-p, bl} ...,bp determined coresidual with G^,...,CR&amp;gt;
in which

BI,..., BR-P have any convenient positions assigned beforehand, so that the

lot of sets coresidual with C
1 ,

. . .
,
GR depends upon the positions of 61,..., bp .

Let a general adjoint polynomial with Q + R variable zeros be of the form

wherein
fj,, ..., ^ are arbitrary constants, and k is for shortness written for

Q + R p. Then an integral of the differential equations under con

sideration is obtained by expressing that the places

JJl, ..., &amp;gt;R p, Vif ..., Op, OCi, Xp+}, Xp+i, , %Q

are zeros of the polynomial ;
and a complete system of integrals is

obtained by putting i in turn equal to 1, 2, ..., p.

Similarly a complete set of integrals is obtained by expressing that

the places
SS1} ..., Xp , (Kp+i ,

. . .
, Xq , GI, i&amp;gt;i ,

. . .
,
JJR p

are zeros of the polynomial @, i being taken in turn equal to 1, 2, ..., p.

In this enunciation there is no restriction as to the value of R, save that

it must not be less than p.

Ex. i. For the general surface of the form

/ (y, x}- (#, y\+ (x, y)3+ (x, y)z+ (.r, y\ + constant= 0,

a set of integrals of the equations

tlcAj _

f/TyT
4

?/(y&amp;lt;)

T= .

is given by y\

y

^ 2 ^15 A B I

* And we can of course obtain quite similarly a set of p integrals, each connecting

x
l , . . .

,
xg ,

A lt ..., A v , and one of the arbitrary positions a, , . . . ,
a,&amp;gt;

.
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where
/((!&amp;gt;;, *)=(), f (B, J) = 0, i=l, 2, 3, mid the place (.1, B) may be taken at any

convenient position.

Ex. ii. Taking as before (J=/ + !, and considering the hyperelliptic case, the funda
mental equation being

we require a polynomial having R -\-p+ 1 variable zeros : such an one is

Q=-y + X.u&quot;

It being equal to p, and we have

where /* (a-)
= (#

- .^ ......(*--^ f) + 1 ), (.v)
= (je-bl ) ......(x-bp).

An integral of the differential equations may be obtained by eliminating F, 6-,..., H
from the equations expressing that the places

0|, ..., Op, #f, #p + 1

are zeros of the polynomial e, or from the equations expressing that

vn &amp;gt; -Vp) **;:&amp;gt; + 1&amp;gt;

&quot;

are zeros of this polynomial, and a complete system of integrals, in either case, by taking
i in turn equal to 1, 2, ..., p.

Or a complete system of p integrals may be obtained by eliminating F, G, ..., H from
the 2p + 1 equations obtained by equating the coefficients of the same powers of x on the

two sides of the equation.

We may of course also take e in the form

then R=p + l, and the places Bl , ..., BR _ V are not evanescent
; putting the place Bl

at

infinity we obtain E=\, as above.

Ex. iii. The integration in the previous example may be carried out in various ways.
By introducing again a set of fixed places u ..., ap , A, coresidual with x^ ..., xp ,

xp + l ,

we can draw a particular inference as to the forms of the coefficients F, G, ..., H. For if

U (x) denote X.r&quot;
+ l+Fx*+ ... + G, and U (x) denote what U (x) becomes when x

1 ,...,xp + l

take the positions alt ..., op , A, the coefficients F, G, ..., H being then F0) G , ..., ff
,

and also F (x)= (x-a1 ) ...... (x
- a

}&amp;gt;
} (x

- A ), then, because each of the polynomials
-y+ U (x\ -y+U(} (

x) vanishes in the places 61} ..., bp ,
the polynomial U(x)-U (x}

must divide by (#), namely U (x} = 17 (x) + 1
&amp;lt;f&amp;gt; (#), where t is a variable parameter;

or, if we write (x)= x + t
1

x*&amp;gt;-i + ...... + tp ,
tlt ...,tp being then regarded, instead of

&!,..., 6P ,
as the arbitrary constants of the integration, we have

and the quantities G-^ F, ..., Jf-t,, F are constants in the integration, being unaltered
when the places ^, ..., xp + l

come to a
lt ..., av ,

A. Hence we can formulate the following
result: let the ^+ 1 quantities F9 ,

G
, ..., ff be determined so that the polynomial

-y+U (x) vanishes in the fixed places a
t , ..., ap , A. Then denoting (^-^...(^-ap)

(x-A) by F (x), the fraction

is an integral polynomial; denote it by (p-2F9 X) (jev+ t
l x~i+ ...... +

&amp;lt;),
so that
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&amp;lt;j&amp;gt; ,tl ,...ytp are uniquely determined in terms of the places a,, ..., ap , A, and put

F(x) for x + t
1
xp ~ 1 + ...... + tp . Then xlt ..., xp + l

are the roots of the equation

]}
*==(-2F X) F, (*)-* U (*)

and the set x
1} ... t

xp + l
varies with the value of t, which is the only variable quantity

in this equation. By equating the coefficients of the various powers of x in the

polynomial on the left-hand side of this equation to the coefficients in the polynomial

(n-2F \) F(x\ we can express each of the symmetric functions

MI
= X^T ...... T Xp + i

as rational quadratic functions of a variable parameter t, containing definite rational

functions of the variables at the places a
15 ..., ap ,

A
;
the place A may be given any

fixed position that is convenient
;
the positions of the places a

1? ..., ap are the arbitrary

constants of the integration.

Ex. iv. By eliminating t between the p+ l equations obtained at the end of Ex. iii.

we obtain the complete system of p integrals. In particular any two of the quantities

/*!,
/J
2 ,

... are connected by a quadratic relation, and any three of them are connected by

a linear relation (Jacobi, Crelle, t. 32, p. 220).

Ex. v. From the equation

we infer

where h
l

x
1 + ...+xp + l ;

hence if a be the value of x at a branch place of the surface,

we have from Ex. ii.

and if, herein, a be put in turn at any p of the branch places of the surface, the resulting

values of
&amp;lt;f&amp;gt;

(a) may be regarded as the arbitrary constants of the integration, and the

resulting equations as a complete set of integrals ;
and if X= 0, as we may always suppose

without loss of generality (Chap. V.), we thus obtain the p integrals

Clt ..., Cp being the constants of integration (Richelot, Crelle, xxiii. (1842), p. 369. In this

paper is also shewn how to obtain integrals by extension of Lagrange s method for the

case p= I. See Lagrange, Theory of Functions, Chap. II., and Cayley, Elliptic Functions,

1876, p. 337).

Ex. vi. By comparing coefficients of x2p in the equation of Ex. ii., we obtain

v - (2X0+ F*}= 0*
-

where h
1
=x

1+ ... + x
ll + 1 ;

hence prove that

r-l
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by Ex. ii. the right-hand side is a constant in the integration ; hence this equation is an

integral of the differential equations; in particular if X= 0, fi
=

4, which is not a loss of

generality, we have the integral

where C is a constant
;
this is a generalization of the equation, for p 1,

(cf. Ex. i. 157).

Ex. vii. Shew that if the fundamental equation be

then another integral is

,.,..,Vlp_* -i _
(i+... + _L)_ (L+...+j_y =Coilst .

Lr=i^* wJ Vi XP+J Vft *+i/

(Richelot, loc. cit.)

Ex. viii. If a
, 0^ be the values of x at two branch places of the surface, obtain the

equations

(Of-^) ...... (0, -Op) (oo-J) ......(Oo-Op)

wherein the quantities .4, ...,ap are the values of ^ at fixed places coresidual with

*i,..., *
P+I&amp;gt; Pi ^8 an absolute constant, and ^ is a parameter varying with the places

#!,..., Xp+i- Take i in turn equal to 1, 2, ..., (p+ 1), and, eliminating /x, we obtain a

complete set of integrals. In particular if the left-hand side of this equation be denoted

by GI we have such equations as

(Gi
-

1) PJ pk (PJ
-

pk)+ (Gj
-

1) Pk Pi (PA
-

Pi) + (Gk - 1) pi PJ (pi
-

PJ) =0.

(Weierstrass, Collected Works, Vol. I. p. 267.)

162. The proof of Abel s theorem which has been given in this chapter
can be extended to the case of an algebraical curve in space. Taking the

case of three dimensions, and denoting the coordinates by a, y, z, we shall

assume that for any finite value of x, say x = a, the curve is completely given

by a series of equations of the form

x = a +
,

y = Pl (tl ) , y = P2 (t2) , ......... ,y = P*(fe) , (D)

wherein w
l + I, ..., wk + I are positive integers, ^,...,^ are infinitesimals,

and PI, Q1} ..., Pk) Qk ,
denote power series of integral powers of the variable,

with only a finite number of negative powers, which have a finite radius

of convergence. The values represented by any of these k columns, for all

values of the infinitesimal within the radius of convergence involved, are the

coordinates of all points of the curve which lie within the neighbourhood
of a single place (cf. 3, Chap. I.) ;

the sum
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is the same for all values of x, and equal to n, the order of the curve. A

similar result holds for infinite values of x
;
we have only to write - for x a.

x

We assume further that any rational symmetric function of the n sets

of values for the pair (y, z), which are represented by the equations (D), is a

rational function of x.

Then we can prove that if R (x, y, z) be any rational function of x, y, z,

dx
the sum of the coefficients of t~l in the expression R (x, y, z)

-j.
,
at all the

k places of the curve represented by the equations (D), is equal to the

coefficient of in the rational function of x,
x a

5 (x, ylt zd + R(x,y2 ,
z2) + + R (x, yn ,

zn}.

And further that the sum of the coefficients of t~ l in R (x, y, z) -^
at all

the places arising for x = oo is equal to the coefficient of in the expansion

of the same rational function of x, namely, equal to the coefficient of t
1 in

U (x) -r ,
when x = -.

d/t t

Hence, the theorem

which holds for any rational function, U (x), of a single variable (as may be

immediately proved by expressing the function in partial fractions in the

ordinary way), enables us to infer, in the case of the curve considered, that

also

By this theorem, applied to the case

T ]_ d^ R ^

. dx

\_R (x, y, z) dx

we can prove that the number of poles of R (x, y, z) is equal to the number

of its zeros, and therefore also equal to the number of places where R (x, y, z)

has any assigned value
/*,,

a place being counted as r coincident zeros when

the expression, in R (x, y, z), of the appropriate values for x, y, z, in terms

of the infinitesimal, leads to a series in which the lowest power of t is t
r

;

similarly for the poles.
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Hence, if / be any integral of the form jR (x, y, z) dx, we can apply
this theorem in the form

dt Z-
Z being any rational function of a?, y, z, and so obtain, as before

( 154, 155),

the theorem

and if Z is of the form 2 (x, y, z)/0i (a, y, z}, where B2 , @i are integral poly

nomials, we can put the right-hand side

= log
J

[dt
8 ei (x, 1J ,

wherein x
l ,

. . .
,
xk are the places at which Z = 0, or 2 (x, y, z)

=
0, and

ttj ,
. . .

,
ak are the places where Z&amp;lt;x&amp;gt; or

1 (x, y, z)
=

0, and the places
to be considered on the right hand are the infinities of dl/dt.

The reader may also consult the investigation given by Forsyth, Phil. Trans., 1883,
Part i. p. 337.

Take for example the curve which is the complete intersection of the cylinders

For any finite value of .v, except x=0 or x= 1, we have 4 places given by

y= *Jx (1 &), z= \/x.

For infinite values of.*;, putting x= - we have two places given by

. 1 1

For x=l, putting x=l + f2
,
we have two places given by

&= &+ ...
, y=

z=+(l+W+ t ..), a=

For . = 0, putting .v= f
2
,
we have two places given by

*-*(!-*-...) I yy=- &amp;lt; (l_i^_ )?

=&amp;lt;
, z=t

and, at j, = 0,y=0, 2= 0, d.v : dy : dz= -2t : 1 : 1 or =2 :-l : 1=0 : 1 : 1 or =0 :- 1 : 1

so that there is a double point with x=Q,y=z for tangents.

Consider now if
,
from the intersections of z+ ax+ by~0 to those of s+ a x+ by = 0.
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Put /= / ;
then -=-

,
= --j- ,

when x is near to 0, has, for one value,
J yz at yzdt

. -W ...) . 1+6
whlle lo Lr 108 T+6

+

and the contribution to the sum (
-=- log T I , is 2 log ---

\dt
6 z+ax+ byjt~ l &

1 + 6

If we take the other place at x=Q we shall get, as the contribution to

dt

the quantity 2 log
-

j-
.

Thus, on the whole we get, at #=0,

It is similarly seen that no contribution arises at the places #=1, x= oo.

Thus on the whole

[
&amp;lt;**!

I

f

J ^ 7T J

Now from the equations z
l -\-axJ -\-by1

= 0, z
2+ ax.

2 -\-by2 ^ we find

b=

and thus

==-Jlqg

which is a result that can be directly verified.
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CHAPTER IX.

JACOBI S INVERSION PROBLEM.

163. IT is known what advance was made in the theory of elliptic

functions by the adoption of the idea, of Abel and Jacobi, that the value

of the integral of the first kind should be taken as independent variable, the

variables, x and y, belonging to the upper limit of this integral being regarded

as dependent. The question naturally arises whether it may not be equally

advantageous, if possible, to introduce a similar change of independent
variable in the higher cases. We have seen in the previous chapter that, if

u*l
a

,
. . .

,
u
x a

be any p linearly independent integrals of the first kind, the

p equations

justify us in regarding the places x1} ..., xp as rationally determinable from

the arbitrary places a^, ..., aQ , xp+1 , ..., x^ hence is suggested the problem,
known as Jacobi s inversion problem*, which may be stated thus: if

Ul} ..., Up be arbitrary quantities, regarded as variable, and ai} ..., ap be

arbitrary fixed places, required to determine the nature and the expression of
the dependence of the places xlt ..., xp ,

which satisfy the p equations

upon Hie quantities U1} ..., Up . It is understood that the path of integration

from ar to xr is to be taken the same in each of the p equations, and is not

restricted from crossing the period loops.

164. It is obvious first of all that if for any set of values U1} ..., Uv
there be one set of corresponding places xlt ..., xp of such general positions
that no ^-polynomial ( 101) vanishes in them, there cannot be another set

of places, Xi, ...
, Xp, belonging to the same values of Ult ...

,
Up . For then

we should have

*
Jacobi, Crelle xin. (1835), p. 55.
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and therefore ( 158, Chap. VIII.) there would exist a rational function

having xl} . .., xp as poles and #/, ..., xp as zeros, which is contrary ( 37,

Chap. III.) to the hypothesis that no ^-polynomial vanishes in xli ..., xp .

But a further result follows from the referred to ( 158, Chap. VIII.).

Let 2(0i
t
i, ..., %(0i, p , 2&)/

(
n ..., 2&&amp;gt;/ )p denote the periods of ux a

,
and

m1} . .., mp , m^ , ..., mp denote any rational integers which are the same for

all values of i. On the hypothesis that the inversion problem is capable of

solution for all values of the quantities U1} ..., Up , suppose these quantities

to vary continuously from the values U1} ..., Up to the values Vlt ..., Vp ,

where

Vi = Ui + Zrn^i, l + ...... + ZnipWi, v + 2W/&)/, j + ...... +
2m/o&amp;gt;/ &amp;gt; p ,

(i
= l,2, ...,p),

= Ui+ 2fli, say,

and let zlt ..., zp be the places such that

,,.,, i , , uzp&amp;lt;p = y. .

U&amp;gt;i

il
t

V
I

&amp;gt;

then it follows from 158, that the places zlt . .., zp are, in some order, the

same as the places xl} ...,xp . For this reason it is proper to write the

equations of the inversion problem in the form

where the sign == indicates that the two sides of the congruence differ by a

quantity of the form 2Hj. And further, if the set xlt ...,xp be uniquely

determined by the values Ult ..., Up , any symmetrical function of the values

of x, y at the places of this set, must be a single-valued function of

Ui, ..., Up . Denoting such a function by &amp;lt;j)(Ul , ..., Up),
we have, therefore,

&amp;lt;/&amp;gt;(t

r
1 + 2n1 ,

u2 +m,, ..., up + 2ap) = &amp;lt;t&amp;gt;(U
l , ..., Up).

The functions that arise are therefore such as are unaltered when the

p variables Ui, ..., Up are simultaneously increased by the same integral

multiples of any one of the 2p sets of quantities denoted by

?Wj pi *^t n } ^^p, r

2ft)/, r , 2Q)/, r ,
. . .

, 2ft)/, ,.. (r = 1, 2, . . .
, p).

165. The sign
= will often be employed in what follows, in the sense

explained above. There is one case in which it is absolutely necessary.

In what has preceded the paths of integration have not been restricted from

crossing the period loops. But it is often convenient, for the sake of

definiteness, to use only integrals for which this restriction is enforced. In

such case the problem expressed by the equations
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may be incapable of solution for some values of Ul} ..., Up . This can be

seen as follows : if both the sets of equations

were capable of solution, it would follow, by 158, that the set zlt ..., zp is

the same as the set xlt ...
,
xp . And thence, as the paths are restricted not

to cross the period loops, we should have

i i i i

and thence

i p + 2m/&)/
) , + ...... + 2wp a&amp;gt;i

&amp;gt; p
=

;

but these equations are reducible to

mi + w/r^ j + ...... + m/Tj, p
= 0,

and, therefore, there would exist a function, expressed by

(where v*
a

, ..., v^
a

are Riemann s elementary integrals of the first kind),

everywhere finite and without periods. Such a function must be a constant
;

thus the conclusion would involve that v*
a

, ..., v
x a

are not linearly inde

pendent, which is untrue.

Hence when the paths of integration are restricted not to cross the period

loops, the equations of the inversion problem must be written

in this case the integral sum on the left-hand side is not capable of assuming
all values; and the particular period which must be added to the right-hand
side to make the two sides of the congruence equal is determined by the

solution of the problem.

166. Before passing to the proof that Jacobi s inversion problem does
admit of solution, another point should be referred to. It is not at first

sight apparent why it is necessary to take p arguments, Ult ..., Up , and

p dependent places xl} ..., xp . It may be thought, perhaps, that a single

equation
ux- a = U,

wherein ux &amp;gt;* is any definite integral of the first kind, suffices to determine the

place a; as a function of the argument U. We defer to a subsequent place
the enquiry whether this is true when the path of integration on the left

hand is not allowed to cross the period loops of the Riemann surface
;

it is

obvious enough that in such a case all conceivable values of U would not arise,
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for instance U = oo would not arise, and the function of U obtained would

only be defined for restricted values of the argument. But it is possible

to see that when the path of integration is not limited, the place x cannot be

definitely determinate from U. For, then, putting x =/( U}, we must have

f(U+ 2ft) =f(U), wherein

TOI, ...,mp being arbitrary rational integers, and
2o&amp;gt;i,

. .., 2cop being the

periods of ux &amp;gt;

a
;
and it can be shewn, when p &amp;gt; 1, that in general it is

possible to choose the integers TOJ, ..., mp so that H shall be within assigned
nearness of any prescribed arbitrary value whatever. Thus not only would

the function y(^0 have infinitesimal periods, but any assigned value of this

function would arise for values of the argument lying within assigned near

ness of any value whatever. We shall deal later with the possibility of the

existence of infinitesimal periods; for the present such functions are excluded

from consideration.

The arithmetical theorem referred to* may be described thus; if al} a2

be any real quantities, the values assumed by the expression ^(11+ JV2 a 2)

when Nlt N2 take all possible rational integer values independently of one

another, are in general infinite in number
; exception arises only in the case

when the ratio a^a2 is rational
;
and it is in general possible to find rational

integer values of NI and Nz to make N
l a l +N2a2 approach within assigned

nearness of any prescribed real quantity. Similarly if a1} a2 ,
a3 ,

b1} b2 ,
b3 be

real quantities, of the expressions N1a1 + NzOi + Nsa3) N^+N^ + N^s,
where NI, N2 ,

N3 take all possible rational integer values independently
of one another, there are, in general, values which lie within assigned
nearness respectively to two arbitrarily assigned real quantities a, b. More

generally, if alt ..., ak ,
b1} ...,bk ,

......
,
clt ...,ck be any (k-1) sets each of

k real quantities, and a, b, ...,c be (k 1) arbitrary real quantities, it is

in general possible to find rational integers N1} ..., Nk such that the (k 1)

quantities

N,a, + ...... + Nkak -a, N& + ...... + Nkbk -b, ..., N.C. + ...... +Nkck -c,

are all within assigned nearness of zero.

Hence it follows, taking k = 2j9, that we can choose values of the integers

TOJ ,
. . .

,
mp ,

to make p 1 of the quantities

nr
=

TO!&)r)1 + ...... + mpwrip + m1 cor tl + ...... +mp a&amp;gt;r , p ,

say Ilj, ..., lp-i, approach within assigned nearness of any (p 1) prescribed

values, and at the same time to make the real part of the remaining quantity
lp approach within assigned nearness of any prescribed value

;
but the

imaginary part of lp will thereby be determined. We cannot therefore

*
Jacobi, loc. cit. ; Hermite, CrclJe, LXXXVIII. p. 10.
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expect to obtain an intelligible inversion by taking less than p new variables

Ui, U2 ,
...

;
and it is manifest that we ought to use the same number of

dependent places asl ,
x2 ,

____ On the other hand, the proof which has been

given that there can in general only be one set of places aslf ...,xp corre

sponding to given values of U
l , ..., Up would not remain valid in case the

left-hand sides of the equations of the problem of inversion consisted of a

sum of more than p integrals; for it is generally possible to construct a

rational function with p + 1 assigned poles.

167. It follows from the argument here that when p &amp;gt; 1 an integral of the first kind,

ux &amp;gt;

a
,

is capable, for given positions of the extreme limits, x, a, of the integration, of

assuming values within assigned nearness of any prescribed value whatever. Though not

directly connected with the subject here dealt with it is worth remark that it does not

thence follow that the integral is capable of assuming all possible values. For the values

represented by an expression of the form

for all values of the integers m 1 , ..., mp , m^, ..., mp ,
form an enumerable aggregate

that is, they can be arranged in order and numbered o&amp;gt;

,
. . .

,

-
3, -2, 1

, 0, 1
, 2, 3, . . . ,

oo .

To prove this we may begin by proving that all values of the form m^ + ragtog form

an enumerable aggregate ;
the proof is identical with the proof that all rational fractions

form an enumerable aggregate ;
and may then proceed to shew that all values of the form

Mj^+m^+ TOgCBj form an enumerable aggregate, and so on, step by step. Since then the

aggregate of all conceivable complex values is not an enumerable aggregate, the statement

made is justified.

The reader may consult Harkness and Morley, Theory of Functions, p. 280, Dini,

Theorie der Functionen einer reellen Orosse (German edition by Luroth and Schepp),

pp. 27, 191, Cantor, Ada Math. II. pp. 363 371, Cantor, Crelle, LXXVII. p. 258, Rendiconti

del Circolo Mat. di Palermo, 1888, pp. 197, 135, 150, where also will be found a theorem
of Poincare s to the effect that no multiform analytical function exists whose values are not

enumerable.

168. Consider now* the equations

(A)
&amp;lt;&quot;*

+ ...... + u
?&quot;

a =Ui , (i=l,2,...,p)

wherein, denoting the differential coefficient of uf
a

in regard to the infini

tesimal at # by fa (x), the fixed places c^, ..., Op are supposed to be such that

the determinant of p rows and columns whose (i, j)ih element is
//,_,- (af) does

not vanish
;
wherein also the p paths of integration a1 toa;li ...,ap ioxpt are

to be the same in all the p equations, and are not restricted from crossing the

period loops.

When a?!, ..., xp are respectively in the neighbourhoods of a,, ..., ap and

l/i, ..., Up are small, these equations can be written

The argument of this section is derived from Weierstrass ; see the references given in
connection with 170.
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wherein tf is the infinitesimal in the neighbourhood of the place ar ,
and //./(#)

is derived from ^r (x) by differentiation. From these equations we obtain

*r=iV,iZ7i + ...... + Vr, P Up+U?+ Uf
} + ...... , (r

= l,2, ...,j&amp;gt;),

where, if A denote the determinant whose (i, j)ih element is ^(di), V{j

denotes the minor of this element divided by A, and U^ denotes a homo

geneous integral polynomial in Ult ..., Up of the kih degree. These series

will converge provided U1} ..., Up be of sufficient, not unlimited, smallness.

Hence also, so long as the place xr lies within a certain finite neighbourhood
of the place c

r&amp;gt;

the values of the variables xr , yr associated with this place,

which are expressible by convergent series of integral powers of tr ,
are

expressible by series of integral powers of t/j ,
. . .

,
Up which are convergent

for sufficiently small values of Uly ..., Up.

Suppose that the values of Ult ...
t
Up are such that the places xl} ..., xp

thus obtained are not such that the determinant whose (i, j)ih element is

/AJ (xi) is zero
;
then if

[/&quot;/,
. . .

,
Up be small quantities, it is similarly possible

to obtain p places #/, . . .
,
xp , lying respectively in the neighbourhoods of

X-L, ..., xp ,
such that

fcf -f ...... +
&amp;lt;&quot;

*&quot;=//, (i-l,2,...,p);

by adding these equations to the former we therefore obtain

&amp;lt;

&quot;

4- ...... +U?
* = Ui + Ut , (i

=
I, 2, ..., p).

Since all the series used have a finite range of convergence, we are thus

able, step by step, to obtain places xl ,
. . .

,
xv to satisfy the p equations

for any finite values of the quantities Ul} ..., Up which can be reached from

the values 0, 0, . . .
,

without passing through any set of values for which

the corresponding positions of xlt ..., xp render a certain determinant zero.

169. The method of continuation thus sketched has a certain interest;

but we can arrive at the required conclusion in a different way. Let

Ult ..., Up loe any finite quantities ;
and let m be a positive integer. When

m is large enough, the quantities UJm, . . .
,
Upjm are, in absolute value, as

small as we please. Hence there exist places zlt ..., zp , lying respectively in

the neighbourhoods of the places alt ..., ap ,
such that

M *&quot;
a
+ ...... +uz* ap = - Ui/m (i=I, 2, ...,p).

In order then to obtain places x1} ..., ocp ,
to satisfy the equations
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it is only necessary to obtain places acl , ...,x
p&amp;gt;

such that

and it has been shewn (Chap. VIII. 158), that these equations express only
that the set ofmp + p places formed of zl} ..., zp ,

each m times repeated and
the places xl} ..., xp ,

are coresidual with the set of (m + l)p places formed of

Oj, ..., ap each (ra+ 1) times repeated.

Now, when (m + 1)^&amp;gt; places are not zeros of a ^-polynomial, we may
(Chap. VI.) arbitrarily assign all but p of the places of a set of (m+ l)p
places which are coresidual with them; and the other p places will be

algebraically and rationally determinable from the mp assigned places.

Hence with the general positions assigned to the places al} ..., ap ,
it

follows, if Z denote any rational function, that the values of Z at the places
#!, ..., xp are the roots of an algebraical equation,

whose coefficients El ,...,Ep are rationally determinable from the places
z\, , Zp, and are therefore, by what has been shewn, expressible by series

of integral powers of UJm, ..., Upfm, which converge for sufficiently large
values of m. Thus the problem expressed by the equations

is always capable of solution, for any finite values of Ult ..., Up .

It has already been shewn ( 164), that for general values of Ult ..., Up
the set xl} ...,scp obtained is necessarily unique; the same result follows

from the method of the present article. It is clear in 164, in what way
exception can arise; to see how a corresponding peculiarity may present
itself in the present article the reader may refer to the concluding result

of 99 (Chap. VI). (See also Chap. III. 37, Ex. ii.)

In case the places alt ..., ap in the equations (A) be such that the deter
minant denoted by A vanishes, we may take places blt ...,bp , for which
the corresponding determinant is not zero, and follow the argument of the
text for the equations

in which Ff
= Ut + ua * b&amp;gt; + . . . . + u

a
.

p&amp;gt; bp
.

1 1

We do not enter into the difficulty arising as to the solution of the in

version problem expressed by the equations (A) in the case where Ult ..., Up
have such values that a?lf ..., xp are zeros of a ^-polynomial. This point
is best cleared up by actual examination of the functions which are to
be obtained to express the solution of the problem (cf.* 171, and

*
See also Clebsch and Gordan, Abel. Functnen., pp. 184, 186.

B - 16
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Props, xiii. and xv., Cor. iii., of Chap. X.). But it should be noticed that
the method of 168 shews that a solution exists in all cases in which the
fixed places c^, ..., ap do not make the determinant A vanish

;
the peculiarity

in the special case is that instead of an unique solution sclt ..., xp ,
all the

GOT+I sets coresidual with xl} ..., xp are equally solutions, r+1 being the
number of linearly independent ^-polynomials which vanish in xl} ...,xp .

This follows from 154, 158.

170. We consider now how to form functions with which to express the
solution of the inversion problem.

Let I* *
denote any elementary integral of the third kind, with infinities

at the arbitrary fixed places 7. Then if a1} ..., av ,
xlt ..., asp denote the

places occurring on the left hand in equation (A), it can be shewn that the
function

m_ pxl ,a 1 , pxp,ap
*7t,V

+ -t
l,y

is the logarithm of a single valued function of Ult ..., Up ,
and that the

solution of the inversion problem can be expressed by this function
;
and

further that, if /*&amp;gt;

a denote any Abelian integral, the sum

2*1
1 i i i jXp, Op

can also* be expressed by the function T.

It is clear that in this statement it is immaterial what integral of the

third kind is adopted. For the difference between two elementary integrals
of the third kind with infinities at

, 7 is of the form

x, a
,

.
- x, a

1 p p

where \l} ..., \p ,
\ may depend on f, 7 but are independent of ar; hence

the difference between the two corresponding values of T is of the form

and this is a single-valued function of U1} .... Up .

For definiteness we may therefore suppose that P x a
denotes the integral

of the third kind obtained in Chap. IV. ( 45. Also Chap. VII. 134).

Then, firstly, when ae1} ...,xp are very near to al5 ..., ap ,
and Ult ..., Up

are small, T is given by

ij r&amp;gt; -\ / ^^i
4

U [(,, f)
-

(a,, ,)]
- +

* The introduction of the function T is, I believe, due to Weierstrass. See Crelle, LII.

p. 285 (1856) and Mathem. Werke (Berhn, 1894), i. p. 302. The other functions there used are

considered below in Chaps. XL, XIII.
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where ti denotes the infinitesimal in the neighbourhood of the place ait c

is an arbitrary place, and the notation is as in 130, Chap. VII. It is

intended of course that neither of the places or 7 is in the neighbourhood
of any of the places aly ...,ap . Now we have shewn that the infinitesimals

Zj, ..., tp are expressible as convergent series in Ult ..., Up . Thus T is also

expressible as a convergent series in Ult ..., Up when Ult ..., Up are

sufficiently small.

Nextly, suppose the places xly . . .
,
xp are not near to the places al} ...,ap ;

determine, as in 168, places to satisfy the equations

m being a large positive integer; then we shall also have ( 158, Chap. VIII.)

where Z (x) denotes the rational function which has a pole of the (m + l)th
order at each of the places a1} ..., ap ,

and has a zero of the mth order at each
of the places z1} ..., zp . The function Z (x) has also a simple zero at each
of the places xl} ...,xp ,

but this fact is not part of the definition of the
function.

This equation can be written in the form

wherein T denotes the sum

a?

It follows by the proof just given that T is expressible as a series of

integral powers of the variables UJm, ..., Up/m, which converges for

sufficiently great values of m; and it is easy to see that the expression
^

()/&amp;lt; (7) is also expressible by series of integral powers of UJm, ..., Up/m.
For let the most general rational function having a pole of the (m + l)th
order in each of a1} ...

,
ap be of the form

Z(x)=\1Z1 (a;)+ ...... +\np Zmp (x)+\,
wherein Z^x), ..., Zmp (x) are definite functions, and \, Xlf ..., \mp are

arbitrary constants. Then the expression of the fact that this function
vanishes to the mth order at each of the places zlt ...,zp will consist of

mp equations determining \1} ..., \np rationally and symmetrically in terms
of the places zlt . . .

,
zv . Hence (by 108) \, . . .

, X^ are expressible as series

of integral powers of UJm, ..., Up(m. Hence Z(g)/Z(y) is expressible
by series of integral powers of UJm, ..., Up/m.

162
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Hence, for any finite values of U1} ..., Up the function e
T

is expressible

by series of integral powers of U1} ..., Up . It is also obvious, from the

method of proof adopted, that the series obtained for any set of values of

/!, ..., Up are independent of the range of values for U1} ..., Up by which

the final values are reached from the initial set 0, 0, . . .
, ;

so that the

function e
T

is a single valued function of Ul} ..., Up . The function e
T

reduces to unity for the initial set 0, 0, . . .
,
0.

171. An actual expression of the function e
T

,
in terms of Ul} ..., Up ,

will be obtained in the next chapter ( 187, Prop. xiii.). We shew here that

if that expression be known, the solution of the inversion problem can

also be given in explicit terms. Let n* denote the normal elementary

integral of the third kind (Chap. II., 14). Then if K denote the sum

it follows, as here, that e
K is a single valued function of U1} ..., UP1 whose

expression is known when that of e
T

is known, and conversely. Denote e
K
by

V(UL , ..., Up ; ^,7). Let Z(x) denote any rational function whatever, its

poles being the places y^, ...,&amp;lt;yk ;
and let the places at which Z(x) takes

an arbitrary value X be denoted by x , ..., %k . Then, from the equation

(Chap. VIII., 154),

we obtain *

the left-hand side of this equation has, we have said, a well ascertained

expression, when the values of Ul , ..., Up . the function Z(sc\ and the value

X, are all given ; hence, substituting for X in turn any p independent

values, we can calculate the expression of any symmetrical function of the

quantities
Z(acl ), ..., Z(xp ),

and this will constitute the complete solution of the inversion problem.

It has been shewn in 152, Chap. VIII. that any Abelian integral Ix
&amp;gt;

a

can be written as a sum of elementary integrals of the third kind and of

differential coefficients of such integrals, together with integrals of the first

kind. Hence, when the expression of V(U1} ..., Up \ g, 7) is obtained, that

of the sum
r*n i i i 72*. &amp;lt;h&amp;gt;

can also be obtained.

* Clebsch u. Gordan, Abeh. Functionen, (1866), p. 175.
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172. The consideration of the function

TT\
xi,O \ i i f~\

x
P&amp;gt;

aP

fc7 f,y

which is contained in this chapter is to be regarded as of a preliminary

character. It will appear in the next chapter that it is convenient to

consider this function as expressed in terms of another function, the theta

function. It is possible to build up the theta function in an a priori

manner, which is a generalization of that, depending on the equation

whereby, in the elliptic case, the a-function may be supposed derived from

the function
g&amp;gt;

(it). But this process is laborious, and furnishes only results

which are more easily evident a&amp;gt; posteriori. For this reason we proceed now

immediately to the theta functions
;

formulae connecting these functions

with the algebraical integrals so far considered are given in chapters X. XI.

and XIV.
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CHAPTER X.

RIEMANN S THETA FUNCTIONS. GENERAL THEORY.

173. THE theta functions, which are, certainly, the most important

elements of the theory of this volume, were first introduced by Jacobi in

the case of elliptic functions. * They enabled him to express his functions

sn u, en u, dn u, in the form of fractions having the same denominator, the zeros

of this denominator being the common poles of the functions sn u, en u, dn u.

The ratios of the theta functions, expressed as infinite products, were also

used by Abel f. For the case p = 2, similar functions were found by Gopelj,

who was led to his series by generalizing the form in which Hermite had

written the general exponent of Jacobi s series, and by Rosenhain
,
who

first forms degenerate theta functions of two variables by multiplying to

gether two theta functions of one variable, led thereto by the remark that

two integrals of the first kind which exist for p = 2, become elliptic integrals

respectively of the first and third kind, when two branch places of the surface

for p = 2, coincide. Both Gopel and Rosenhain have in view the inversion

problem enunciated by Jacobi
;

their memoirs contain a large number of

the ideas that have since been applied to more general cases. In the form

in which the theta functions are considered in this chapter they were first

given, for any value of p, by Riemann||. Functions which are quotients

of theta functions had been previously considered by Weierstrass, without

any mention of the theta series, for any hyperelliptic case 11. These functions

occur in the memoir of Rosenhain, for the case p = 2. It will be seen that

* Fundamenta Nova (1829) ; Ges. Werke (Berlin, 1881), Ed. i. See in particular, Dirichlet,

Gediichtnissrede auf Jacobi, loc. cit. Bd. i., p. 14, and Zur Geschichte der Abelschen Trans-

cendenten, loc. cit., Bd. n., p. 516.

t (Euvres (Christiania, 1881), t. i. p. 343 (1827). See also Eisenstein, Crelle, xxxv. (1847),

p. 153, etc. The equation (b) p. 225, of Eisenstein s memoir, is effectively the equation

i Crelle, xxxv. (1847), p. 277.

Mem. sav. etrang. xi. (1851), p. 361. The paper is dated 1846.

|| Crelle, LIV. (1857) ; Ges. Werke, p. 81.

1f Crelle, XLVII. (1854); Crelle, LIT. (1856); Ges. Werke, pp. 133, 297.
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the Riemann theta functions are not the most general form possible. The

subsequent development of the general theory is due largely to Weierstrass.

174. In the case p = l, the convergence of the series obtained by Jacobi

depends upon the use of two periods 2&amp;lt;w,
2&amp;lt;o

,
for the integral of the first

kind, such that the ratio o&amp;gt;

/&&amp;gt;

has its imaginary part positive. Then the

quantity q = e w
is, in absolute value, less than unity.

Now it is proved by Riemann that if we choose normal integrals of the

first kind v
1

^

a
, ..., v^

a
,so that v*

a
has the periods 0...0, 1, 0, ..., r

r&amp;gt;l
, ...,T

r&amp;gt;p
,

the imaginary part of the quadratic form

&amp;lt;

= run^+ ...... + Trtr nr
z + ...... + 2rlj2 w1w2 + ...... + 2r

r&amp;gt;s

nrns + ......

is positive* for all real values of the p variables nly ...,np . Hence for all

rational integer values of nl} ..., np , positive or negative, the quantity ein&amp;lt;i)

has its modulus less than unity. Thus, if we write r
r&amp;gt;

s
= p r&amp;gt;

s + iK
r&amp;gt;

s , pr
,
s

and K
r&amp;gt;s being real, and a1} =61 + iclj ..., ap ,

= bp + icp ,
be any p constant

quantities, the modulus of the general term of the p-fold series

rp= o

wherein each of the indices Wj, ..., np takes every real integer value

independently of the other indices, is e~
L

,
where

L = - (b^ + ...... + bpnp) + TT (Knn? + ...... + 2/c
1&amp;gt;2

r^n, + ...... ),

= -(& 1
n

1 + ...... + bpnp) + -^, say,

where
i/r

is a real quadratic form in w 1} ..., np ,
which is essentially positive

for all the values of Wj, . .., np considered. When one (or more) of nlt ..., np
is large, L will have the same sign as ty, and will be positive ;

and if p, be any

(f\&quot;f
1 + -) ;

P/
/ 7&quot;\ &quot;^

now the series whose general term is f 1 H
)

will be convergent or not
\ ft/

according as the series whose general term is i/r~
x

is convergent or not, for

the ratio 1 + -
: ^ has the finite limit

I///,
for large values of n^, ...,np ;

P
and the series whose general term is

i/r&quot;

*
is convergent provided JJL

be taken

* The proof is given in Forsyth, Theory of Functions, 235. If W* a
, ...

,
?**

a denote a set of

integrals of the first kind such that wx a
has no periods at the b period loops except at br ,

and

has there the period 1, and &amp;lt;rr, i , . . . , oy, p be the periods of
a
at the a period loops, the quadratic

function

&amp;lt;rn i

2 +
has its imaginary part negative.
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&amp;gt; ^p. (Jordan, Cours d Analyse, Paris, 1893, vol. I., 318.) Hence the

series whose general terra is

,!+ ......+ap np+iir&amp;lt;}&amp;gt;

is absolutely convergent.

In what follows we shall write 27riur in place of ar and speak of u1} ...,up
as the arguments; we shall denote by un the quantity uln 1 4- ...... +upnp ,

and by rn2 the quadratic r^n^ + ...... + 2T12w1 7i2 + ....... Then the Riemann
theta function is defined by the equation

where the sign of summation indicates that each of the indices nlt ...,np

is to take all positive and negative integral values (including zero),

independently of the others. By what has been proved it follows that (u)

is a single-valued, integral, analytical function of the arguments v^, ..., up .

The notation is borrowed from the theory of matrices (cf. Appendix ii.) ;
T is regarded

as representing the symmetrical matrix whose (r, s)th element is r
r&amp;gt;

g ,
n as representing

a row, or column, letter, whose elements are n^, ..., np ,
and u, similarly, as representing

such a letter with u^ , . . . ,
up as its elements.

It is convenient, with (u), to consider a slightly generalized function,

given by
(u ; q, q }, or (u, q)

= Ze2iriu (n+9 }+^r (n+q )*+*riq &amp;lt;n+ 3 )
.

herein q denotes the set of p quantities ql} ...,qp ,
and q denotes the set

of p quantities #/, . . .
, qp , and, for instance, u (n + q) denotes the quantity

un + uq , namely
iWi + ...... + upnp + u^ + ...... + upqp ,

and T (n + &amp;lt;? )
2 denotes rn2

-f Zrnq +
rq&quot;

2
, namely

(TllWl
2 + . . . + 2r

1&amp;gt;2
n, w, +...) + 2 % I rr

,
s nrqs + (r11?1

/2 + . . . + 2r
1)2 q. q, +...).

=l r=

The quantities qlt ..., qp , q^, ..., qp constitute, in their aggregate, the

characteristic of the function (u ; q) ; they may have any constant values

whatever
;
in the most common case they are each either or ^.

The quantities r^j are the periods of the Riemann normal integrals of the first kind at

the second set of period loops. It is clear however that any symmetrical matrix, o-, which

is such that for real values of 1} .... kp the quadratic form &amp;lt;rk* has its imaginary part

positive, may be equally used instead of T, to form a convergent series of the same form as

the 6 series. And it is worth while to make this remark in order to point out that the

Riemann theta functions are not of as general a character as possible. For such a

symmetrical matrix o- contains \p Q + l) different quantities, while the periods rr , g are

(Chap. I., 7), functions of only 3p-3 independent quantities. The difference |^(p+ l)

-(3p-3)=0-2)(p-3), vanishes for
/&amp;gt;=2 orp= 3; for p= 4 it is equal to 1, and for

greater values of p is still greater. We shall afterwards be concerned with the more

general theta-functiou here suggested.
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The function 6 (w) is obviously a generalization of the theta functions used in the

theory of elliptic functions. One of these, for instance, is given by

and the four elliptic theta functions are in fact obtained by putting respectively q, q = 0, ;

=ii; =i,o ; =0,0.

175. There are some general properties of the theta functions, imme

diately deducible from the definition given above, which it is desirable to

put down at once for purposes of reference. Unless the contrary is stated it

is always assumed in this chapter that the characteristic consists of half

integers; we may denote it by J&, ..., ^/3P , ^a1} ..., ^ap ,
or shortly, by

^fi, ^a, where fti, ..., j3p ,
a1} ..., ap are integers, in the most common case

either or 1. Further we use the abbreviation n
TO)TO/,

or sometimes only lm ,

to denote the set ofp quantities

wherein mlt ..., mp , m/, ..., mp are 2p constants. When these constants

are integers, the p quantities denoted by Hm are the periods of the p Riemanri

normal integrals of the first kind when the upper limit of the integrals is taken

round a closed curve which is reducible to mt circuits of the period loop 6;

(or mi crossings of the period loop a{) and to m{ circuits of the period

loop at, i being equal to 1, 2, ...,p. (Cf. the diagram Chap. II. p. 21.)

The general element of the set of p quantities denoted by flm ,
will also

sometimes be denoted by mt + Tim ,
T denoting the row of quantities formed

by the iih row of the matrix r. When mlt ...,mp are integers, the quantity
mi + Tim is the period to be associated with the argument Ui .

Then we have the following formulae, (A), (B), (C), (D), (E) :

@ (- u
; ift }a) = e** @ (u ; 0, a), (A).

Thus @(w ; /3, a) is an odd or even function of the variables M,, ..., up
according as /3a, ={3^ + ...... + /3pap&amp;gt;

is an odd or even integer; in the

former case we say that the characteristic |/S, a is an odd characteristic, in

the latter case that it is an even characteristic.

The behaviour of the function (it) when proper simultaneous periods
are added to the arguments, is given by the formulae immediately following,
wherein r is any one of the numbers 1, 2, ...

, p,

(?/!, . . .
,
ur + 1, . . .

,
up ; i& o) =

( 1*1 + T
lf r ,

U2 + T2
,
P ,

. . .
,
Up + T

p&amp;gt;
r ] % 0, Ct)

=

Both these are included in the equation

@ (u + nm ; i/S, i) = e-*ri&quot; (+*&quot; )+(-n p) e (M ; i /8, ^ a), (B) ;



250 FUNDAMENTAL IDENTITIES. [175

herein the quantities m^ ..., mp , m/, ..., mp are integers, u + lm stands for

the p quantities such as ur + mr + m1 r
r&amp;gt;

1 + + mp Tr&amp;gt;p
,
and the notation

in the exponent on the right hand is that of the theory of matrices
;
thus

for instance m rm denotes the expression

2, mr (TV, i m/ + + T
fj p mp \

r=l

and is the same as the expression denoted by rm 2
.

Equation (B) shews that the partial differential coefficients, of the second

order, of the logarithm of @ (u ; /3, ^a), in regard to ult ..., up ,
are functions

of u1} ...,up ,
with 2p sets of simultaneous periods.

Equation (B) is included in another equation ;
if each of /3 ,

a! denotes a

row of p integers, we have

(i* + ifV, ..; 1/3, a)
= e-i- CH-tf+* +*)

(u ; 1/3 + 1/3 , }a + &), (C) ;

to obtain equation (B) we have only to put /3/ = 2mr , a/ = 2m/ in equation

(C). If, in the same equation, we put ft
=

/3, a. = a, we obtain

(w
-

|flp, ; i/3, a)
= e &amp;lt;

M-iTa
) 6 (M ; 0, 0) = e

ia (M-^T &quot;&amp;gt;

(M) ;

from this we infer

( tt + 1^, .), (D) ;

this is an important equation because it reduces a theta function with any

half-integer characteristic to the theta function of zero characteristic.

Finally, when each of m, m denotes a set of p integers, we have the

equation

(u ; i/3 + m, |a +m )
= e (M ; i/3, -|a), (E) ;

thus the addition of integers to the quantities | does not alter the theta

function (?*; -|/3, ^a), and the addition of integers to the quantities ^/3

can at most change the sign of the function. Hence all the theta functions

with half-integer characteristics are reducible to the 2^ theta functions which

arise when every element of the characteristic is either or .

176. We shall verify these equations in order in the most direct way. The method

consists in transforming the exponent of the general term of the series, and arranging the

terms in a new order. This process is legitimate, because, as we have proved, the series is

absolutely convergent.

(A) If in the general term

we change the signs of uly ..., up ,
the exponent becomes

- n - a+ ^a) + ITTT
(
- n - a+ |a) + nift (

- n a



176] NUMBER OF ODD AND OF EVEN FUNCTIONS. 251

Since a consists of integers we may write m for -n-a, that is mr
= -(nr+ ar), for

r= 1, 2, ..., p ; then, since # consists of integers, and therefore e
2n^n=

1, the general term

becomes
7n/3a Z-niu(m+^a)+WT(m+^a)+mft(m+^a),V O 9

save for the factor e
m^a

,
this is of the same form as the general term in the original series,

the summation integers mx , ..., mp replacing n
t , ..., np . Thus the result is obvious.

(B) The exponent

27rt (u+m+rm ) (n+ a) + iirr (n+ \of+ ni(3 (n+ \a\

wherein m+rm stands for a row, or column, of p quantities of which the general one is

r +Tr, i % + ...... +rr, p wip ,

is equal to

2iriu (n+ ^a)+ inr (n -f ^ a)
2+ irifi (n+ ^ a) -f Znimn+ nima

+ iri (ma - ra /3) + 2nimn.

Replacing /
nimn

by 1 and writing n for n+m ,
the equation (Bj is obtained.

(C) By the work in (B), replacing m, m by ^/S
7

, %a respectively, we obtain

and this is immediately seen to be the same as

This proves the formula (C).

It is obvious that equations (D) are only particular cases of equation (C), and the

equation (E) is immediately obvious.

It follows from the equation (A) that the number of odd theta functions contained in

the formula Q(u; jfft )
is 2- 1

(2P- 1), and therefore that the number of even functions
is22P-2P- 1

(2P-l), or 2P-!(2P+1).

For the number of odd functions is the same as the number of sets of integers,

^i) y\-&amp;gt; &amp;gt;

x
j&amp;gt;-&amp;gt;yv -&amp;gt;

each either or 1, for which

#13/1+ ...... + x],y))
= an odd integer.

These sets consist, (i), of the solutions of the equation

#12/1 + ...... + ^p - \yv - 1
= an odd integer,

in number, say, f(p- 1), each combined with each of the three sets

(*P, &&amp;gt;)

=
(&amp;lt;&amp;gt;, 1), (1,0), (0,0),

together with, (ii), the solutions of the equation

^i2/i+ ...... +#p_ 1yp _ 1
= an even integer,

in number ^p ~ 2
-f(p-l), each combined with the set

Thus

^) = 3/(p-l
= 22

&quot;

~ 2+ 2 {2
2 - *+ 2/ (p

-
2)}
= etc.

Hence the number of even half periods is 2&quot;

~ l

(2&quot; + 1
).
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177. Suppose now that 61, ..., ep are definite constants, that m denotes a

fixed place of the Riemann surface, and x denotes a variable place of the surface.

, x,m i x,m x,m
We consider p arguments given by ur vr +er ,

where vv ,
. . .

,
vp are

the Riemann normal integrals of the first kind. Then the function (it) is

a function of x. By equation (B) it satisfies the conditions

(u + k) = (u), (w, + rrk )
= e-27rik

&amp;lt;

M+* T* &amp;gt;

(u),

wherein k denotes a row, or column, of integers k1} ..., kp and k denotes

a row or column *
of integers &/, ..., kp . As a function of x, the function

(v
x&amp;gt;
m + e) cannot, clearly, become infinite, for the arguments vr + er are

always finite
;
but the function does vanish

;
we proceed in fact to prove the

fundamental theorem the function (v
x m + e) has always p zeros of the

first order or zeros whose aggregate multiplicity is p.

For brevity we denote vr + er by ur . When the arguments u^, ..., up
are nearly equal to any finite values Ult ..., Up ,

the function (u) can

be represented by a series of positive integral powers of the differences

MI Ult ...,up Up . Hence the zeros of the function (M),
=

(if-
m + e),

are all of positive integral order. The sum of these orders of zero is there

fore equal to the value of the integral

_ . (d log (M)
=~ .

1
1 &amp;lt;K/ 0)/@ (u)

=
^-.

Idx I (du,jdx) (/(/(w)),

wherein the dash denotes a partial differentiation in regard to the argument

u,, and the integral is to be taken round the complete boundary of the p-ply

connected surface on which the function is single-valued, namely round the p
closed curves formed by the sides of the period-pair-loops. (Cf. the diagram,

p. 21.)

Now the values of
*

, . -^ at two points which are opposite points on
(u) dx

a period-loop ar are equal, and in the contour integration the corresponding

values of dx are equal and opposite. Hence the portions of the integral

arising from the two sides of a period-loop ar destroy one another. The

values of
*}&quot;

. at two points which are opposite points on a period-loop br

differ by 2?, or 0, according as s = r or not.

Hence the part of the integral which arises from the period-loop-pair

(ar ,
br) is equal to I dur , taken once positively round the left-hand side of

the loop br , namely equal to ( 1) = 1.

The whole value of the integral is, therefore, p ;
this is then the sum

of the orders of zero of the function (v
x

&amp;gt;

m + e),

* The notation ur + rr k denotes the p arguments UJ + TJ& , ..., up + rp k .



178] EQUATIONS FOR THE POSITION OF THE ZEROS. 253

178. In regard to the position of the zeros of this function we are able

to make some statement. We consider first the case when there are p dis

tinct zeros, each of the first order. It is convenient to dissect the Riemann

surface in such a way that the function log (v
x&amp;gt;
m + e) may be regarded as

single-valued on the dissected surface. Denoting the p zeros of (if-
m + e)

by zl} ..., zp ,
we may suppose the dissection made by p closed curves such as

the one represented in Figure [2], so that a zero of (if-
m + e) is associated

with every one of the period-loop-pairs. Then the surface is still
^&amp;gt;-ply

connected, and log (u) is single-valued on the surface bounded by the

Fig. 2.

p closed curves such as the one in the figure. For we proved that a com

plete circuit of the closed curve formed by the sides of the (ar ,
br) period-

loop-pair, gives an increment of 2m for the function log (u) ;
when the

surface is dissected as in the figure this increment of 2jri is again destroyed
in the circuit of the loop which encloses the point zr . Any closed circuit

on the surface as now dissected is equivalent to an aggregate of repetitions of

such circuits as that in the figure ;
thus if x be taken round any closed

circuit the value of log (u) at the conclusion of that circuit will be the

same as at the beginning. From the formulae

which we express by the statement that (u) has the factors unity and
e
-^

(
ur+^ r ) for the period loops ar and br respectively, it follows that log@(w)

can, at most, have, for opposite points of ar , br , respectively, differences of
the form ^irigr ,

- 2m (ur + %rr
,
r}
- 2irihr , wherein gr and hr are integers.

The sides of the loops for which these increments occur are marked in the

figure, ur denoting the value of v*
m
+ er at the side opposite to that where
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the increment is marked; thus ur + ^Tr&amp;gt;r

is the mean of the values, ur and

ur +
Tr,r&amp;gt;

which the integral ur takes at the two sides of the loop br .

Since log (u) is now single-valued, the integral
-

. / log (u) . dus ,

TTI J

taken round all the p closed curves constituting the boundary of the surface,

will have the value zero. Consider the value of this integral taken round the

single boundary in the figure. Let A r denote the point where the loops
ar , br ,

and that round zr , meet together. The contribution to the integral

arising from the two sides of ar will be I
ffrdv,

m
, this integral being taken

once positively round the left side of ar , from A r back to A r . This contri

bution is equal to grr
r&amp;gt;

. The contribution to the integral = . I log (u) dus

ATTlJ

which arises from the two sides of the loop br is equal to

-
I dv]

,
m

taken once positively round the left side of the curve br ,
from A r back to A r ;

this is equal to

I / x, m i x 7 a;, m / . 7 \ /-
J

(vr + i r r&amp;gt;

r) dvs + (er + hr)fr&amp;gt;
, ,

wherefr&amp;gt;
s is equal to 1 when r = s, and is otherwise zero. Finally the part

i f
of the integral =- -. I log @ (u) dus ,

which arises by the circuit of the loop

enclosing the point zr , from Ar back to A r ,
in the direction indicated by the

arrow head in the figure, is I dv*
m
where A r denotes now a definite point on

J Ar

the boundary of the loop br . If we are careful to retain this signification we

may denote this integral by v
z

s

r r
. When we add the results thus obtained,

for the p boundary curves, taking r in turn equal to 1, 2, ...,p, we obtain

r=l

wherein, on the right hand, the br attached to the integral sign indicates

a circuit once positively round the left side of br from A r back to A r ;
and if

kg denote the quantity defined by the equation

7 4? I / X
&amp;gt;

m
Ks
= 21 (Vr

r=l J br

which, beside the constants of the surface, depends only on the place m,
we have the result



179] OF THE ZEROS OF RIEMANN S THETA FUNCTION. 255

179. Suppose now that places m1 , ..., mp are chosen to satisfy the

conruences

this is always possible (Chap. IX. 1G8, 169) ;
it is not necessary for our

purpose, to prove that only one set* of places ml , ...,mp , satisfies the con

ditions
;
these places, beside the fixed constants of the surface, depend only

on the place m. Then, by the equations just obtained, we have

/ Zi,1Tli Zp,Wlp, . _ -. .

e,
= -(v, + ...... +vs

p

); (s=l,2,...,p).

Thus if we express the zero in the function
(if&amp;gt;

m + e), it takes the form

/ x, m Zi. Wi Zn. niv 7 / ,

(vs -vs

1 - ...... -vs
p P -hs -Tsg ),

where #/, ..., gp , h{, . . .
,
hp are certain integers, and this, by the fundamental

equation (B), 175, is equal to

z mp
-v/

p

),

save for the factor e-W &amp;lt;*&quot;-*&quot;
- ...... -*.*-4^ This factor does not

vanish or become infinite. Hence we have the result : It is possible, corre

sponding to any place m, to choose p places, ml} ..., mp , whose position depends

only on the position of m, such that the zeros of the function,

(H)
(&amp;lt;yS,

TO
yz, , nti ...... _ v zp , mp\

regarded as a function of x, are the places z1} . .., zp . This is a very funda

mental result f.

It is to be noticed that the arguments expressed by v x
&amp;gt;

m v Zl &amp;gt; mi ... v Zp&amp;gt;
m

do not in fact depend on the place m. For the equations for m1} ..., mp ,

corresponding to any arbitrary position of m, were

mP ,Ap _ j f , x,+VS =/Cs ,
= 2, (Vr
r=lJ br

a being an arbitrary place. If, instead of m, we take another place /*, we
shall, similarly, be required to determine places fjL1} ..., ^p by the equations

^ Ap ^ks ,
= f ! (,r + K,r)^

a
,

r=l J br

*
If two sets satisfy the conditions, these sets will be coresidual (Chap. VIII., 158).

t Cf. Riemann, Ges. Werke (1876), p. 125, ( 22). The places mlf ... ,
mp are used by Clebsch

u. Gordan (Abel. Functional, 1866), p. 195. In Riemann s arrangement the existence of the
solution of the inversion problem is not proved before the theta functions are introduced.
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thus

Puttii up, mp S. i m, n j x, a
v, + ...... +&amp;lt;

=2 vr dvs ,
=

r=lJ br r=l

wherein fgj r
= 1 when r = s, and is otherwise zero, as we see by recalling

the significance of the br attached to the integral sign. Thus (Chap. VIII.,

158), the places p,l , ..., pp ,
m are coresidual with the places mlt ..., mp , /*,

and the arguments
x, m z,, m, zp , TOP

vs fl

congruent to arguments of the form

Zp, ftp-vt .

The fact that the places fi1 , ...,fj,p,m are coresidual with the places

m,i, ..., mp , fji,
which is expressed by the equations

Ui , nil Mp, Win Wl. M, ~

T + ...... +C +fls =0,

will also, in future, be often represented in the form

If the places wil5 ..., mp are not zeros of a ^-polynomial, this relation

determines /AJ ,
. . .

, JJ,P uniquely from the place /A.

Ex. In case j0
=

l, prove that the relation determining m1} ..., mp leads to

Hence the function (v*-
2+ ^ + Jr) vanishes for ^p=z, as is otherwise obvious.

180. The deductions so far made, on the supposition that the p zeros of

the function @ (v
z&amp;gt;

m + e) are distinct, are not essentially modified when this

is not so. Suppose the zeros to consist of a jvtuple zero at zlt a &amp;gt;2-tuple zero

at zz , ..., and a ^-tuple zero at z^, so that pl -f ...... +pk=P- The surface

may be dissected into a simply connected surface as in Figure 3. The

function log (v
x

&amp;gt;

m + e) becomes a single-valued function of # on the

dissected surface
;
and its differences, for the two sides of the various cuts,

are those given in the figure. To obtain these differences we remember

that log @ (fl*
m + e) increases by 2m when x is taken completely round

the four sides of a pair of loops (ar ,
br). The mode of dissection of Fig. 3,

may of course also be used in the previous case when the zeros of (v
x

&amp;gt;

m + e)

are all of the first order.

The integral ^ . I log (v
x&amp;gt;

+ e) dv*
m

,
taken along the single closed

ZiTTI J

boundary constituted by the sides of all the cuts, has the value zero. Its
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value is, however, in the case of Figure 3,

257

+pkv
k Al

4-
ffl f dvT

m -
h, ! dv

x
;
* -

1 (tf
m
+ * + KI) dv

x
;
m -

(P - i)
J a\ J b

}
J 6,

,A t

a.

dv
m
-[ (v*

J 6,

r r r
I j x m

7 T x, Jtt
/

, a;,

l ctos -hp l dvs
-

(vp
J OP J bp J bp

wherein the first row is that obtained by the sides of the cuts, from A
l ,

excluding the zeros zl} ..., zk , and the second row is that obtained from
the cuts !, &j, d, and so on. The suffix ^ to the first integral sign in

the second row indicates that the integral is to be taken once positively round

the left side* of the cut #1, the suffix 6j indicates a similar path for the

cut 6j ,
and so on. If, as before, we put kx for the sum

/ v r / x m
, i \ j x

&amp;gt;

m
Kg, = 2, (Vr +$Trt r)dvs ,

r=lJ br

we obtain, therefore, as the result of the integration, that the quantity

tl + + gpr s&amp;gt; p + eK

*
By the left side of a cut a

x ,
or

fcj , is meant the side upon which the increments of log 6 (M)
are marked in the figure. The general question of the effect of variation in the period cuts is

most conveniently postponed until the transformation of the theta functions has been considered.

B. 17
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is equal to

, Zi, A, zk , AI , , x A?, A ,
, .. A 3 , A., A p , Ap-i

ks -pivs
- ...... -JW + (p-l)v, + (p_2)v8 + ...... + V,

and this is immediately seen to be the same as

We thus obtain, of course, the same equations as before ( 179), save that

z
1

is here repeated pl times, ..., and z% is repeated p^ times. And

we can draw the inference that (v
x

&amp;gt;

m + e) can be written in the form

(/ _
^.-

, _ ...... _ /,. P _
/is
_

Ts^ which, save for a finite non-vanish

ing factor, is the same as @(/&amp;gt;m

-^&quot;

m - ...... _/ w
) ;

the argument

v*
m -

/&quot;

m -
. . . .

- vzp mp does not depend on the place m.
8 S S * A

181. From the results of 179, 180, we can draw an inference which

leads to most important developments in the theory of the theta functions.

For, from what is there obtained it follows that if z
l , ..., zp be any places

whatever, the function (v
x m - v Zi mi - ...... _^ m

) has zlt ..., zp for

zeros. Hence, putting zp for x we infer that the function

vanishes identically for all positions of zl} ..., %_j. Putting

/2i,?i
. Zp-2, Wu-2 m.n.m,

&amp;gt;=VS + ...... +VS -V

for s= 1, 2, ..., p, this is the same as the statement that the function

(S) (v
x

&amp;gt;

in
&amp;gt;&amp;gt;-

1 + f) vanishes identically for all positions of a; and for all values

of/j, ...,fp which can be expressed in the form arising here. When/, ...,/,

are arbitrary quantities it is not in general possible to determine places

zl} ...,Zp_2 to express/, ...,/, in the form in question. Nevertheless the

case which presents itself reminds us that in the investigation of the zeros

of &amp;lt;H) (if
m + e) we have assumed that the function does not vanish identically,

and it is essential to observe that this is so for general values of els ..., ep .

If, for a given position of x, the function (^ m + e) vanished identically for

all values of ely ..., ep ,
the function @ (r) would vanish for all values of the

arguments rlt ..., rp . We assume* from the original definition of the theta

function, by means of a series, that this is not the case.

Further the function @ (v
x

&amp;gt;

m + e) is by definition an analytical function of

each of the quantities e1} ..., ep ;
and if an analytical function do not vanish

* The series is a series of integral powers of the quantities e
2irir

,
____ e

mr
p_
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for all values of its argument, there must exist a continuum of values of

the argument, of finite extent in two dimensions, within which the function

does not vanish*. Hence, for each of the quantities ely ...,ep there is a

continuum of values of two dimensions, within which the function @
(*&amp;gt;

m + e)

does not vanish identically. And, by equation (B), 175, this statement

remains true when the quantities e1} ...,ep are increased by any simultaneous

periods. Restricting ourselves then, first of all, to values of e1} ..., ep lying
within these regions, there exist (Chap. IX. 168) positions of zl} ..., zp to

satisfy the congruences

and, since to each set of positions of zl} ..., zp ,
there corresponds only one set

of values for elf ..., e
p&amp;gt;

the places zlt ..., zp are also, each of them, variable

within a certain two-dimensionality. Hence, within certain two-dimensional

limits, there certainly exist arbitrary values of zlt ..., zp such that the function

(v*
m -vz

&quot;
m

&amp;gt; - ...... _ w
*&amp;gt;*) does not vanish identically. For such

values, and the corresponding values of elt ..., ep , the investigation so

far given holds good. And therefore, for such values, the function

(v
m

&amp;lt; _/.. ._ ...... _ ^P-I, mp-i) vanishes identically. Since this function

is an analytical function of the placesf ^, ..., zp_lt and vanishes identically
for all positions of each of these places within a certain continuum of two

dimensions, it must vanish identically for all positions of these places.

Hence the theorem (F) holds without limitation, notwithstanding the
fact that for certain special forms of the quantities elt ...,ep ,

the function
&amp;lt;H) (^ m + e) vanishes

identically. The important part played by the theorem
(F) will be seen to justify this enquiry.

J82. It is convenient now to deduce in order a series of propositions in

regard to the theta functions ( 182188); and for purposes of reference
it is desirable to number them.

(I.) If 1; ...,%p be p places which are zeros of one or more linearly
independent ^-polynomials, that is, of linearly independent linear aggregates
of the form X

I
H

I()+ ...... + \p lp (x) (Chap. II. 18, Chap. VI. 101), then
the function

vanishes identically for all positions of x.

For then, if r + 1 be the number of linearly independent ^-polynomials
which vanish in the places ,,...,,, we can, taking r + 1 arbitrary places

*
E.g. a single-valued analytical function of an argument 2, =x + iy, cannot vanish for all

rational values of x and y without vanishing identically.
t By an analytical function of a place 2 on a Riemann surface, is meant a function whose

values can be expressed by series of integral powers of the infinitesimal at the place.

172
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zl} ..., zT+l ,
determine p r 1 places zT+2 , ..., zp ,

such that (zlt ..., zp)

= (&, ...,P) (see Chap. VI. 93, etc., and for the notation, 179). Then the

argument
t?&amp;gt;

m _ 7,f&quot;

m
&amp;gt; _ _Jp&amp;gt;

mP
(&amp;lt;i ~( 2 V\Us Vg

V
g &amp;gt; V6

~~ L
&amp;gt; ^&amp;gt;

P/&amp;gt;

can be put in the form

save for integral multiples of the periods ;
thus ( 179, 180) the theta

function vanishes when a; is at any one of the perfectly arbitrary places

zlt ..., ZT+I. Thus, since by hypothesis r+ 1 is at least equal to 1, the theta

function vanishes identically.

It follows from this proposition that if z2 , ..., zp be the remaining zeros

of a (^-polynomial determined to vanish in each of z2 , ...,zp ,
and neither

x nor z-i be among z2
&amp;gt; &amp;gt; Zp, then the zeros of the function

regarded as a function of zlt are the places x, zj , ..., zp .

From this Proposition and the results previously obtained, we can infer

that the function (v*
m

v
Zl m&amp;gt;

...... v
z

&amp;gt;&amp;gt;

m
&quot;)

vanishes only (i) when a;

coincides with one of the places zl} ..., zp ,
or (ii) when zlt ..., zp are zeros of

a ^-polynomial.

(II.) Suppose a rational function exists, of order, Q, not greater than p,

and let T + 1 be the number of (^-polynomials vanishing in the poles of this

function. Take r + 1 arbitrary places

Sl) &amp;gt;

b&amp;lt;?&amp;gt;

^i&amp;gt; ^T+lqy

wherein q= Q p +r+l, and suppose zlt ..., z
(t

to be a set of places core-

sidual with the poles of the rational function, of which, therefore, q are

arbitrary. Then the function

_ _ yZq+l
, T+2-q _ ^ _ _

_ ^
Z

&amp;gt;

m
t&amp;gt;-Q\

vanishes identically.

For if we choose q+l , ..., %Q such that (%lt ..., e)
=

(zlt ..., ZQ ), the

general argument of the theta function under consideration is congruent
to the argument

nip, m x
l ,m1 av-t-i-g. mT+i- q q+i, mr+z-q Q, mp- q

This value of the argument is a particular case of that occurring in

(F), 181, the last q 1 of the upper limits in (F) being put equal to the

lower limits. Hence the proposition follows from (F).
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(III.) If r denote such a set of arguments r,, ..., rp that (r)
= 0, and,

for the positions of z under consideration, the function (v
x

&amp;gt;

z + r) does not

vanish for all positions of as, then there are unique places zlt ..., ^_1(

such that

r
-

y
mp ,

m _ v
z

t , m t _ ^ ^ _ rfp-i,
mp -i

In this statement of the proposition a further abbreviation is introduced
which will be constantly employed. The suffix indicating that the equation
stands as the representative ofp equations is omitted.

Before proceeding to the proof it may be remarked that if m
, m/, ...,mp

be places such that (cf. 179)

(m ,
m 1} ..., mp)

=
(m, w/, ..., mp }

and therefore, also,

then the equation

y
m , 7/1 _ v

m, , i _ ^ ^ _ vm,,
, m,,

r = v m&amp;gt;&quot;
m

is the same as the equation

r = v

This proposition (III.) is in the nature of a converse to equation (F).
Since the function @ (v

x z
-f r) does not vanish identically, its zeros, z1} ..., zp ,

are such that

v
x z+r=vx m -vZt Wl - ...... _/&quot;

&quot;;

now we have

v
z m

+ v
z

&amp;gt;

mp = v
z - &quot;

+ v
z m

&quot;

so that the zeros zlt ..., zp may be taken in any order
; since (r) vanishes,

z is one of the zeros of % (v
x

&amp;gt;

z + r); hence, we may put zp
=

z, and obtain

r = . _ .

_ m,,, m zlt m,

which is the form in question.

If the places zlt ...,zp_l
in this equation are not unique, but, on the

contrary, there exists also an equation of the form

r = v 1&quot;
m

v*
1

then, from the resulting equation
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we can (Chap. VIII. 158) infer that there is an infinite number of sets of

places Zi, ..., z p-!, all coresidual with the set zl} ..., zp_-^ ;
hence we can put

wherein at least one of the places z^, . . .
,
z

f

p^l is entirely arbitrary. Then the

function (v
x

&amp;gt;

z + r) vanishes for an arbitrary position of x, that is, it

vanishes identically ;
this is contrary to the hypothesis made.

It follows also that whenever it is possible to find places ^ ,
. . .

,
zp^l to

satisfy the inversion problem expressed by the p equations

the function (v
m&amp;gt; &quot;

m
u) vanishes

; conversely, when u is such that this

function vanishes we can solve the inversion problem referred to.

(IV.) When r is such that (r) vanishes, and (v
x

&amp;gt;

z + r) does not,

for the values of z considered, vanish identically for all positions of a, the

zeros of (v
x

&amp;gt;

z + r), other than z, are independent of z and depend only on

the argument r.

This is an immediate corollary from Proposition (III.) ;
but it is of

sufficient importance to be stated separately.

(V.) If (r)
= 0, and (v

x
&amp;gt;

z + r) vanish identically for all positions

of x and z, but (v
x

&amp;lt;

z
4- tf ^ + r) do not vanish identically, in regard to x,

for the positions of z, , % considered, then it is possible to find places

z1} ..., Zp-2 such that

m
&quot;

m Zl m

and these places z1) ..., Zp_,, are definite.

Under the hypotheses made, we can put

r =

wherein zlt . . .
,
zp are the zeros of (if-

z + v* * + r) ;
now z is clearly a zero

;

for the function (v* *+ r) is of the same form as
(v*&amp;gt;

z + r), and vanishes

identically; and fis also a zero; for, putting ffor#, the function (v
x z

+vt&amp;gt;t+r)

becomes (v*
&amp;gt;

z + r), which also vanishes identically. Putting, therefore, f, z

for
,Zp_i

and zp respectively, the result enunciated is obtained, the uniqueness
of the places zl} ..., Zp_2 being inferred as in Proposition (III.).

We may state the theorem differently thus : If (v
x

&amp;gt;

z + r) vanish for

all positions of x and z, and @ (v
x

&amp;gt;

z + v*&amp;gt;

* + r) do not in general vanish

identically, the equations

r = v
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can be solved, and in the solution one of z1} . .., Zp__^ may be taken arbitrarily,

and the others are thereby determined. Hence also we can find places

Zi, ..., z p-i, other than z1} ..., zp_l ,
such that

one of the places /, ..., z p_l being arbitrary. Hence by the formula

Q-q = p T 1, putting Q=pl t q=l, we infer r+l=2, so that a

0-polynomial vanishing in zlt ..., zp^ can be made to vanish in the further

arbitrary place z. Thus, when
(*&amp;gt;

z + r) vanishes identically, we can write

/ *
+ r = v

*&amp;gt;
&quot;&amp;lt; _ /..

. _ ...... _ ^ -&amp;gt;. P- _ / *

wherein the places ^, ..., ^_1} z are zeros of a ^-polynomial (cf. Prop. I.).

(VI.) The propositions (III.) and (V.) can be generalized thus : If

(v
x&amp;gt; Zt + ...... + v

x
&quot; Zq + r) be identically zero for all positions of the places

x
l ,zl , ...,xq ,

z
q ,

and the function (v
x z + v

x
&quot;

z + ...... + v
x&amp;lt;i

z + r) do not

vanish identically in regard to x, then places i, ..., ^p_l can be found to

satisfy the equations

r = v

and, of these places, q are arbitrary, the others being thereby determined.

These arbitrary places, ,, ..., %q , say, must be such that the function

(/
s
+ /&quot;

Zl + ...... + v*&quot;

Zq + r) does not vanish identically.

For as before we can put

, z

wherein ^ ,
. . .

, fp are the zeros of the function (v
x&amp;gt;

z + v*
1 Zl + . . . + v*&quot;

Zq + r).

It is clear that z is one zero of this function
;
also putting z1 for x the function

becomes @ (v
x

&quot;
z
+ tf&quot;

2s + ...... + w
x

&quot; Zq + r), which vanishes, by the hypothesis.
Thus the places z, z1} ..., z

q are all zeros of the function

Putting then z,, ..., g
q , z respectively for f,, ..., q , p in the congruence

just written, it becomes

and this is the same as

replacing #1, .... a;
7 by ,,..., f, we have the result stated.
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Hence also, we can tiud places /, . .., p-l} other than 1; ..., p̂_l ,
such

that

q of the places /, ..., p-i being arbitrary. Therefore a (^-polynomial can

be chosen to vanish in ^ ,
. . .

, p̂_1 and in q (= p 1 (Q q), when Q=p 1)

other arbitrary places. Thus the argument

for which the theta function vanishes identically, can be written in the form

&amp;gt;

m

wherein .Zj, ...,zq_l} ^IJt
. .., %P-I&amp;gt;

z are zeros of q+l linearly independent

(^-polynomials.

(VII.) If the function
(/&quot;

Zl + ...... + v
x

&quot;

Zl + r) be identically zero for

all positions of the places x1 ,
zly x2 ,

z2 , ..., xq ,
z
q , and, for general positions of

aslt z,, ..., se
q ,

z
q ,

the function @ (/
z
+ v*

1 z&amp;gt; + ...... +vx
&quot; Zq

+r) be not

identically zero, as a function of x, for proper positions of z, and be not

identically zero, as a function of z, for proper positions of x, then we can find

places i, ..., p-lt of which q places are arbitrary, such that

and can also find places 1} ..., p_i, of which q places are arbitrary, such

that

r = vmp&amp;gt;
m

v*
1
m

. . v*
1&quot; lf m &quot;

\

This is obvious from the last proposition, if we notice that

We can hence infer that

2vmp
m + v

mi ^ + v
mi * l + ...... -f v&quot;

1
&quot;- 1 &~ 1 + vmp

~1 fp~ 1 =
0,

and this is the same (Chap. VIII. 158) as the statement that the set of

2p places constituted by &,..., %p-i, &, ..., ^,_i and the place m, repeated, is

coresidual with the set of 2p places constituted by the places m^, ..., mp ,
each

repeated. This result we write (cf. 179) in the form

(m
2

, ,
...

, ^_1} f,, ..., ^j) =
(m^, mj, ..., m/}.

(VIII.) We can now prove that if
, ..., ^_j be arbitrary places, places

1} ..., p_j can be found such that

(m
2
, f!,..., fp_i, ?!,..., fp-O = (wh

3
,
w2

2
, ..., wip

3
).

Let r denote the set of
j9 arguments given by
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i&amp;gt;
&amp;gt; p-i being quite arbitrary. Then, by theorem (F), ( 181), the function

(r) certainly vanishes. It may happen that also the function (v
x

-
z + r)

vanishes identically for all positions of # and z. It may further happen that

also the function S (*
z + if 1 Zi + r) vanishes identically for all positions of

x, z, #!, z
1

. We assume* however that there is a finite value of q such that

the function (v
x z

+ v
x&amp;gt; Zl + ...... + / &quot; * + r) does not vanish identically for

all positions of x, z, aslt zl} . .., xq ,
z
q

. Then by Proposition VII. it follows

that we can find places lf ..., gp_lt such that

r = v= 1&quot;

comparing this with the equations defining the argument r, we can, as

in Proposition (VII.) infer that the congruence stated at the beginning of

this Proposition also holds.

(IX.) Hence follows a very important corollary. Taking any other

arbitrary places /, ..., ^ p-lt we can find places /, ..., ^^ such that

(m
2
, , ..., f ^, /, ..., ^) =

(m*, m2
2

, ..., m/);

therefore the set
, ..., p̂_lt , ....f^ is coresidual with the set

, ...,^_ 1 ,

/&amp;gt; ^&quot;p-i- Now, of a set of 2p 2 places coresidual with a given set

we can in general take only p 2 arbitrarily ; when, as here, we can take

p 1 arbitrarily, each of the sets must be the zeros of a ^-polynomial

(Chap. VI. 93). Thus the places , ..., ,_,, , ..., ^ are zeros of a

&amp;lt;/&amp;gt;-polynomial.

Therefore, if a1} ..., O2p_2 be the zeros of any ^-polynomial whatever,
that is, the zeros of the differential of any integral of the first kind, the

places m^, ...
, mp are so derivedfrom the place m that we have

(w
2

, a1} . . .
,
a

2i,_2)
=

(m,-, w2
2
,

. . .
, m/), (G) ;

in other words, if c1} . . .
, cp denote any independent places, the places ma , mp

satisfy the equations

2 / Cl + ...... + v&amp;gt;&quot;

e
&quot; = 2 l) c

&quot;

&quot;

1 c&amp;gt;1 Cl *2p-3 Cp &quot; 2
&quot;-

2 c
&quot;

for s = 1, 2, . . .
, p. Denoting the right hand, whose value is perfectly definite,

by A g ,
and supposing ffl , ..., ffpt h,, ..., hp to denote proper integers, these

equations are the same as

C C + ...... +C &amp;gt;Cj&amp;gt; =^. + H*. + flriT.|1 + ...... +ffPT., p), (G ),

where 8=1, 2, ...,p.

*
It will be seen in Proposition XIV. that if

(v*&amp;gt;

z+vx z + ...... +vx*&amp;lt;

z
+ r) vanishes

identically, then all the partial differential coefficients of 9 (M), in regard to i^, ...
,
up , up to and

including those of the (q + l)th order, also vanish for u = r.
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There are however 2-* sets of places -m^, ...,mp , corresponding to any

position of the place m, which satisfy the equation* (G). For in equations

(G ) there are 2 2̂ values possible for the right-hand side in which each

of (ft, . ..
, gp ,

hlt . .., hp is either or 1, and any two sets of values glt ..., gp ,

h1} ..., hp and #/, ..., gp , A/, ..., hp ,
such that g^g{ differ by an even integer,

and hi, A/ differ by an even integer, for i = l, 2, ...,p, lead to the same

positions for the places mlt ..., mp . (Chap. VIII. 158.)

We have seen ( 179) that the places m1} ...,mp depend only on the place

m and on the mode of dissection of the Riemann surface. We are to see,

in what follows, that the 22p solutions of the equation (G) are to be associated,

in an unique way, each with one of the 2-p essentially distinct theta functions

with half integer characteristics.

183. The equation (G) can be interpreted geometrically. Take a rion-

adjoint polynomial, A, of any grade /JL,
which has a zero of the second order

at the place m ;
it will have tip 2 other zeros. Take an adjoint polynomial

&amp;gt;|r,

of grade (n 1) + n 3 + p, which vanishes in these other n/j,
2 zeros

of A. Then (Chap. VI. 92, Ex. ix.) ^ will be of the form X^ + A&amp;lt;,

where
i/r

is a special form of ty, A, is an arbitrary constant, and
&amp;lt;f&amp;gt;

is a

general (^-polynomial. The polynomial i/r
will have Zp zeros other than

those prescribed ;
denote them by klt . . .

, k.^. If
&amp;lt;/&amp;gt;

be any ^-polynomial, with

a1} ..., a2p
-2 as zeros, we can form a rational function, given by (Xi/r +A&amp;lt;/&amp;gt;)/A&amp;lt; ,

whose poles are the places al , ..., a^-z, together with the place m repeated,

its zeros being the places kl} ..., kzp
. Hence (Chap. VI. 96) we have

\ni~, a&amp;gt;i, ..., a.
2p 2)^(K1 , ** &amp;gt;

&quot;

zp 1&amp;gt; kzp),

and therefore, by equation (G),

(nij
1

,
...

,
mp-} = (&j , ki, ..., sp_i ,

k
2p) (G&quot;) ;

hence (Chap. VI. 90) it is possible to take the polynomial -fy
so that

its zeros kly ..., k
2p

consist of p zeros each of the second order, and the

places nil, ..., mp are one of the sets of p places thus obtained.

There are 22p
possible polynomials ty which have the necessary character,

as we have already seen by considering the equation (G ); but, in fact,

a certain number of these are composite polynomials formed by the product

of the polynomial A and a ^-polynomial of which the 2p 2 zeros consist of

p - 1 zeros each repeated. To prove this it is sufficient to prove that there

exist such ^-polynomials having only p 1 zeros, each of the second order
;

for it is clear that if &amp;lt; denote such a polynomial, the product A&amp;lt;I&amp;gt; is of grade

* If for any set of values for gl , . . . , gp , /ij , . . .
,
hp the equations (G )

are capable of an infinity

of (coresidual) sets of solutions, the correct statement will be that there are 22P lots of coresidual

sets, belonging to the place m, which satisfy the equation (G). The corresponding modification

may be made in what follows.
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(ft l)a + n 3 + /u,
and satisfies the conditions imposed on the polynomial -ty.

That there are such (^-polynomials &amp;lt;I&amp;gt; is immediately obvious algebraically.

If we form the equation giving the values of x at the zeros of the general

(^-polynomial,

the p 1 conditions that the left-hand side should be a perfect square, will

determine the necessary ratios Xj : X2 : ... : \p , and, in general, in only a

finite number of ways. (Cf. also Prop. XL below.)

It is immediately seen, from equation (G&quot;),
that if m^ , ..., mp be the

double zeros of one such polynomial -fy-
as described, and w/, . . .

,
mp of

another, both sets being derived from the same place ra, then

v
mt mt + ...... + / &quot; &quot;&quot; = | fl

Pi . , (H)

where Lp t
tt stands for p quantities such as

n
?&amp;gt; A. ! $p being integers.

We may give an example of the geometrical relation thus introduced, which is of great

importance. It will be sufficient to use only the usual geometrical phraseology.

Suppose the fundamental equation is of the form

;/)i+ (x, y)jj+ (x, y)3+ (#, y\= 0,

representing a plane quartic curve (p = 3). Then if a straight line be drawn touching the

curve at a point m, it will intersect it again in 2 points A, B. Through these 2 points

A, J3, oo 3 conies can be drawn
;
of these conies there are a certain number which touch

the fundamental quartic in three points P, Q, R other than A and B. There are 2 2*= 64

sets of three such points I1
, Q, R ;

but of these some consist of the two points of contact

of double tangents of the quartic taken with the point m itself.

In fact there are (Salmon, Higher Plane Curves, Dublin, 1879, p. 213) 28, =2- 1
(2

p -l),
double tangents ; these do not depend at all on the point m

;
there are therefore

36, =2&quot;-
1

(2 4-l), proper sets of three points P, Q, R in which conies passing through
A and B touch the curve. One of these sets of three points is formed by the points

wij, m2 ,
m3 . It has been proved that the numbers 2&quot;

-1
(2&quot;- 1), 2^~

J

(2^+1) are respectively
the numbers of odd and even theta functions of half integer characteristics ( 176).

184. (X.) We have seen in Proposition (VIII.) ( 182) that the places

Wj ,
. . .

,
mp are one set from 2 s* sets of p places all satisfying the same

equivalence (G). We are now to see the interpretation of the other 2 2̂
1

solutions of this equation.

Let w/, ...,mp be any set, other than ml} ...,mp ,
which satisfies the

congruence (G). Then, by equations (G ), we have

2 &quot; &quot;&quot; + ......
+&amp;lt;&quot;

-

&quot;&quot;)^0. (*=1,2, ...,p),
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and therefore, if H^ &amp;gt;0

denote the set ofp quantities of which a general one is

given by
& + aiT*,i 4- ...... +&amp;lt;*PTgjp&amp;gt; (s

=
l, 2, ...,p),

where a1} ..., ap , @i, ..., &p are certain integers, we have

Mil , , mp, ma ! .-.

vs + ...... +v,
p P

=^n^ a ;

hence the function

= e* (v
z&amp;lt; mi

where

the function is therefore equal to

,m,p x, m / -i c\ \P -w
, (s

=
l, 2, ...,_p);

by equation (C), 175
;
thus thefunction (v

x m- v
z m

&amp;gt; - ...... - v
z

&quot;&amp;gt; &quot;&quot;

,

vanishes when x is at either of the places z
1 , ..., zp .

We can similarly prove that

It has been remarked ( 175) that there are effectively 2 2̂ theta functions,

corresponding to the 2^ sets of values of the integers a, /3 in which each

is either or 1. The present proposition enables us to associate each of

the functions with one of the solutions of the equivalence (G). When the

function (v
x&amp;gt;
m

; ^(3, ^a) does not vanish identically in respect to x, its

zeros are the places m/, ..., mp . Therefore, instead of the function (u),

we may regard the function (u; /3, ^a) as fundamental, and shall only be

led to the places m^, ..., mp ,
instead of m1} ...,mp .

(XL) The sets of places m/, . . .
,
mp which are connected with the places

m1} ..., nip by means of the equations

wherein a1} ..., ap , {3lt ..., /3P denote in turn all the 22p sets of values in which

each element is either or 1, may be divided into two categories, according

as the integer /3a,
=

fti^ + ...... + @pap ,
is even or odd. We have remarked,

in Proposition (IX.), that they may be divided into two categories according

as they are the zeros, of the second order, of a proper polynomial X-^ +
A&amp;lt;/&amp;gt;,

or consist of the p 1 zeros, each of the second order, of a ^-polynomial

together with the place m. When the fundamental Riemann surface is

perfectly general these two methods of division of the 2 2̂ sets entirely agree.

When /3a is odd, m^, . . .
,
mp consist of the place m and the p - 1 zeros,

each of the second order, of a ^-polynomial. When /3a is even, m/, . . .
,
mp
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consist of the zeros, each of the second order, of a proper polynomial &amp;gt;/r.

In

the latter case we may speak of the places ?/, . . .
,
mp as a set of tangential

derivatives of the place m.

For by the equations (D), (A), ( 175), we have

e
,iau

(B) Qft^ B + M)/g--u (H) Qft^ a
_ w)

= e-nifia
.

hence, when
/3&amp;lt;z

is odd, eniau (^fl ftt a + u) is an odd function of u, and
must vanish when u is zero; since then (|n^ a ) vanishes, there exist, by
Proposition (VII.), places nl} ..., np_l} such that

or

Hence (Chap. VIII. 158) we have

(m
2
, w,

2
, ..., ny,)

=
(m,

2
, ..., m/),

so that, by equation (G), the places nlt ..., wp_, are the zeros of a ^-polynomial,
each being of the second order.

When pa. is even, the function e
u

(O0, a + u} is an even function, and
it is to be expected that it will not vanish for u = 0. This is generally the

case, but exception may arise when the fundamental Riemann surface is of

special character. We are thus led to make a distinction between the general
case, which, noticing that (%&?,* + u) is equal to e~iria(u+^~^Ta}

(u ; /3, a),

may be described as that in which no even theta function vanishes for zero

values of the argument, and special cases in which one or more even theta
functions do vanish for zero values of the argument.

Suppose then, firstly, that no even theta function vanishes for zero values
of the argument. Then if w/, ..., n p_^ be places which, repeated, are the
zeros of a ^-polynomial, we have

(m
2
, w/

2
,

. . .
,
M/a

p_i) = 0,s
, 2

2
, , ?V) 5

hence the argument

is a half-period,
= -

ft/r, a , say. Thus, by the result (F), @ (^^Vy) is zero
;

therefore, by the hypothesis pet is an odd integer. So that, in this case,

every odd half-period corresponds to a
&amp;lt;/&amp;gt;-polynomial

of which all the zeros

are of the second order, and conversely.

Further, in this case it is immediately obvious that the places TW,, ..., mp
do not consist of the place m and the zeros of a ^-polynomial whose zeros are
of the second order

;
for if m lt ...,mp were the places n,, ..., np_lt m, then, by

the result (F), the function (v
z

&quot;
n
+ + /&quot;-

&quot;&quot;-

) wou ld vanish for all

positions of z
} zp_^ and therefore &amp;lt;&quot;) (0) would vanish.
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185. If, however, nextly, there be even theta functions which vanish

for zero values of the argument, it does not follow as above that every

^-polynomial with double zeros corresponds to an odd half-period ;
there

will still be such ^-polynomials corresponding to the W~l

(2^ 1) odd half-

periods, but there will also be such ^-polynomials corresponding to even

half-periods.

For if fli, ..., ap , fti, ..., ftp be integers such that fta. is even, and

(w -f- 1H^ ) vanishes for u = 0, the first differential coefficients, in regard

to ulf ...,up ,
of the even function e

7&quot;&quot;&quot; S(u + ^ft^ ), being odd functions,

will vanish for u = 0. By an argument which, for convenience, is postponed

to Prop. XIV., it follows that then the function (v*
z + \ fl^ ) vanishes

identically for all positions of x and z. Therefore, by Prop. V., there is at

least a single infinity of places zl , ..., zp_^ satisfying the equations

-
100, ^W

&quot;

W
-/&quot;&quot;&quot;- ...... -a*- .&quot;&quot;-

;

these equations are equivalent to

hence there is a single infinity of ^-polynomials with double zeros corre

sponding to the even half-period ^Ii^ )
, and their p 1 zeros form coresidual

sets with multiplicity at least equal to 1.

By similar reasoning we can prove another result*; the argument is

repeated in the example which follows
; if, for any set of values of the

integers ftlt ..., ftp ,
a1} ..., &amp;lt;xp , it is possible to obtain more than one set of

places nl} ...
,
np^l to satisfy the equations

then it is, of course, possible to obtain an infinite number of such sets. Let

oo i be the number of sets obtainable. Then fta.
=

q + 1 (mod. 2). And this

may be understood to include the general cases when (i) for an even value

of fta, no solution of the congruence is possible (q
=

1), (ii), for an odd value

of fta, only a single solution is possible (q 0).

As an example of the exceptional case here referred to, consider the hyperelliptic

surface
;
and first suppose p= 3, the equation associated with the surface being

then we clearly have () = 28 = 2 :

~ 1
(2P 1) ^-polynomials, each of the form (x

- a
t) (x

-
ay),

\*/
of which the zeros are both of the second order. We have, however, also, a ^-polynomial,

of the form (.r-c)
2
,
in which c is arbitrary, of which the zeros are both of the second

order
;
denote these zeros by c and c

;
then if |Qo o

be a proper half-period

*
Weber, Math. Ann. xin. p. 42.
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but, since, if e be any other place, the function (x-c)j(x-e) is a rational function, it

follows that (c, c)
=

(e, e) y
and therefore that in the value just written for ^G^ a ,

c may

be replaced by e, and therefore, regarded as quite arbitrary. By the result (F), the

function Q(u) vanishes when u is replaced by %Qp a ,
and therefore e (^ -^fl^ J, which

is equal to Q(v
x&amp;gt;
m

v c&amp;gt; mi vc&amp;gt;m1 if 3
),
vanishes when x is at c; since c is arbitrary the

function e (v
x

&amp;gt;

z -
|li^ J vanishes identically in regard to x, for all positions of z. If the

function Q(v
x z + vXl Zl

-Afl^ )
vanished identically, it would, by Prop. VI., be possible,

in the equation

to choose both z
l
and z

2 arbitrarily. As this is not the case, it follows, by Prop. XIV.

below, that the function G(?t+ Qo a),
and its first, but not its second differential

coefficients, vanish for u= 0. Hence \Q^ a is an even half-period. (See the tables for

the hyperelliptic case, given in the next chapter, 204, 205.)

There is therefore, in the hyperelliptic case in which p= 3, one even theta function

which vanishes for zero values of the argument.

In any hyperelliptic case in which p is odd, the equation associated with the surface

being
y1
= (x-av}

...... 0- 2P + 2)

(^-polynomials with double zeros are given by

(i) the (
] polynomials such as (x -04) ...... (x-ap _ l ).

As there is no arbitrary

place involved, the q of the theorem enunciated
( 185) is zero, and the half-period given by

the equation

where nfi ..., n\-i are the zeros of the (^-polynomial under consideration, is consequently
odd.

/2 + 2\
(ii) the (

2

j polynomials such as (x a
t )

...... (x-ap _ 3} (x-c)
2
,
wherein c is

arbitrary. Here
&amp;lt;?

= ! and /3a
=

(mod. 2).

(2v)_|_2\
r j

polynomials such as (x-a^) ...... (x a,, _ 6) (x cf (x e)
2
,
for which

5
=

2, |3a= 1 (mod. 2) ;
and so on. And, finally,

the single polynomial of the form (x-c^ ...... (.r-Cjj_j)
2

,
in which all of c

lt ..., Cp_i
~iT ~2

are arbitrary ;
in this case q=--~- , /3a=*-^- (mod. 2).

2i Jt

On the whole there arise

^-polynomials corresponding to odd half-periods, according as p=l or 3 (mod. 4).

Now in fact, when p= 1 (mod. 4)

4*)+
......
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is equal to

while, when^&amp;gt;
= 3 (mod. 4)

is equal to (^ + 2 - 2* + 2 cos^^ TT}
,
and therefore, also to 2&quot;

~ J

(2&quot;

- 1 ).

Thus all the odd half-periods are accounted for. And there are

even half-periods which reduce the theta function to zero. This number is equal to

namely to 2P~ 1
(2P + l)-(

P+
J.

This is the number of even theta functions which

vanish for zero values of the argument. It is easy to see that the same number is

obtained when p is even. For instance when jo
=

4, there are 10 even theta functions

which vanish for zero values of the argument. They correspond to the 10 ^-polynomials

of the form (x
-

c)
2
(x
- a

t ),
wherein c is arbitrary, and a^ is one of the 10 branch places.

There are therefore (
^ +

) even theta functions which do not vanish for zero values of

\ P J

the argument.

In regard to the places m1 , ..., mp in the hyperelliptic case the following remark may

conveniently be made here. Suppose the place TO taken at the branch place a2p + 2 &amp;gt; using

the geometrical rule given in 183, we may take for the polynomial A, of grade /*,
the

polynomial #-a2p + 2 ,
of grade 1; its remaining ?i/i-2, =0, zeros, give no conditions for

the polynomial ^ of grade (n- l)&amp;lt;r+i-3 + /n,
= (2- 1) p+2-3+ 1, =p. Since o- + 1, the

dimension of y, is p+l, the only possible form for ^ is that of an integral polynomial

in x of order p. This is to be chosen so that its 2jo zeros consist of p repeated zeros.

When p= 3, for example, it must, therefore, be of one of the forms (x
- a^ (x

-
a;} (x

-
a*},

(x-&amp;lt;ti} (x-cf, where c is arbitrary. It will be seen in the next chapter that the former

is the proper form.

186. Another matter* which connects the present theory with a subject afterwards

(Chap. XIII.) dealt with may be referred to here. Let G be a half-period such that

the congruence

\Q.
= v

m
&amp;gt;&quot;

m
-tf&quot;

&quot; - ...... -ir
2

&quot;-
1 - m&quot;-

1

can be satisfied by oc coresidual sets of places z
lt ..., zp - l (as in Proposition VI.). Then

we have

(m
2
, z^, ...,2

2
p _ 1 )

= (m1
8

, ...,mp
2
),

so that (Prop. IX.) z
lt ..., zp _ lt each repeated, are the zeros of a ^-polynomial ;

denote

this polynomial by 0. If zj, ..., zf
r&amp;gt;

_
l
be another set, which, repeated, are the zeros of a

0-polynomial &amp;lt;

,
and are such that

Cf. Weber, Math. Annul, xni. p. 35; Noether, Math. Anna!, xvn. 263.
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then we have

273

= 2vmp m-vz
&quot; m&amp;gt; - v*1 m - ...... -

so that SI,...,ZP-I, Zi, ..., p _, are the zeros of a ^-polynomial ;
denote this polynomial

by iff.

The rational functions
&amp;gt;///&amp;lt;, &amp;lt;/&amp;gt; /^ have the same poles, the places zn ..., zp _ lt and

the same zeros, the places z
t , ...,2v _ r Therefore, absorbing a constant multiplier in ^,

we have

^=W, and
074&amp;gt;

=

and thus the function V0 /&amp;lt; may be regarded as a rational function if a proper sign
be always attached. The function has z

lt ..., zp _ l
for poles and z^, ..., zp _ 1

for zeros.

Conversely any rational function having z
lt ..., zp_ l for poles can be written in this form.

For if
Zj&quot;, ..., z&quot;p -i be the zeros of such a function, we have

vz &amp;gt;&quot;

z
&amp;gt; + ......

and therefore, by the first equation of this
,
also

thus q of the zeros can be taken arbitrarily ; and if $ be any ^-polynomial whose zeros

Cu &amp;gt; fp-i are all of the second order, and such that

we can put

where fa, ..., 0, are particular polynomials such as
&amp;lt;/&amp;gt;

or *, andX, X 1; ..., X, are constants.
In other words, corresponding to the GO sets of solutions of the original equation of this

,
we have an equation of the form

wherein proper signs are to be attached to the ratios of any two of the square roots, and
any two of the q+ l polynomials $, ^ lt ...,$ are such that their product is the square of
a 0-polynomial. There are therefore fa (q + l) linearly independent quadratic relations

connecting the ^-polynomials. (Cf. Chap. VI. 110112.)

For example in the hyperelliptic case in which p= 3, the vanishing of an even theta
function corresponds to the existence of a ^-polynomial *= (#-c)

2
,
such that

where 0^3 , =(*)*, =$*.

Ex. i. Prove, for j
=

3, that if an even theta function vanishes for zero values of the
arguments the surface is necessarily hyperelliptic.

Ex. ii. Prove, for
jo
=

4, that if two even theta functions vanish for zero values of the
arguments the surface is necessarily hyperelliptic ; so that, then, eight other even theta
functions also vanish for zero values of the arguments. The number, 2, of conditions thus

necessary for the fundamental constants of the surface, in order that it be hyperelliptic, is

the same as the difference, 9-7, between the number, 3p-3, of constants in the general
surface of deficiency 4, and the number, 2/&amp;gt;-l,

of constants in the general hyperelliptic
surface of deficiency 4.

B - 18
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187. (XII.) If r denote any arguments such that @ (r)
= 0, and such

that (v
x z + r) does not vanish identically for all positions of x and z,

the Riemann normal integral of the third kind can be expressed in the form

(^&amp;gt;0+r)_|

For consider the function of x given by

+ r) (if
P + r)

&quot;

~

(a) it is single-valued on the Riemann surface dissected by the a and b

period loops ;

(/3) it does not vanish or become infinite, for the zeros of (v
x z + r),

other than z, do not depend upon z (by Proposition IV.);

(7) it is unaffected by a circuit of any one of the period loops. At

a loop at it has clearly (Equation B, 175) the factor unity ;
at a loop

bi it has the factor

e l
. e

which is also unity. Thus the function is single-valued on the undissected

surface
;

(8) thus the function is independent of x
;
and hence equal to the value

it has when the place x is at z
y namely 1.

A particular case is obtained by taking

where z1} ..., zp-i are any places such that (v
x

&amp;gt;

z + r) does not vanish

identically. Then by the result (F) the function (r) vanishes.

Hence we have

Another particular case, of great importance, is obtained by taking

r = ^ftjt, tf, k, k denoting respectively p integers k1} ...,kp , h , ..., kp ,
such

that kk is odd, the assumption being made that the equations
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are not satisfied by more than one set of places ,, ..., p_j (cf. Props. III., V.).

Then the function (if
K

&amp;gt;

z + ^Qk,k) does not vanish identically, and we have

(XIII.) Suppose k equal to or less than p ;
consider the function given

by the product of

g-n^-n^- -n*;^
and

(H) (i&i m 9)&quot;
w

i -^ V^k
mk -t- ^^ / @ ^D2 &quot;*

li&quot;
1

wl Wa* *&quot;* -4- T}

wherein r denotes arguments given by

and each of the sets a1} ..., a^, 7^+1, ,%,&, , 0k, 7*+i&amp;gt; 7p ^s sucn

that the functions involved do not vanish identically in regard to x.

This function is single-valued on the dissected Riemann surface, does not

become infinite or zero, and, for example, at the period loop 6; it has the factor

e
L

,
where

L, = - 2m
(v&amp;gt;

P + ...... + v&amp;gt;;&amp;gt; h) - 2-rn
(v*&amp;gt;

m -
-v
a

&quot; - -

+ 2-Trt (v
a

&amp;gt;

- 1^1

is zero. Thus the function has the constant value, unity, which it has when
x is at z. Therefore

n a;(
3 x,z _,+ + ~

the places 7i+1 , ...,&amp;lt;yp being arbitrarily chosen so that a1} ...,,
are not zeros of a ^-polynomial, and /3lt ..., ^8^, 7^+1, . .., yp are not zeros of a

^-polynomial.

Thus, when k = p, we have the expression of the function considered in

171, Chap. IX. in terms of theta functions. For the case where oti, ..., a*

are the zeros of a ^-polynomial, cf. Prop. XV. Cor. iii

188. (XIV.) We return now to the consideration of the identical vanishing
of the function. We have proved (Prop. VII.), that if (v

x
&quot;

z
&amp;gt;+ ......

+ tf
B

z&amp;lt; + r) be identically zero for all positions of x
l&amp;gt; ,..,xq ,z-i, ...,zq ,

but

(5) (rx,
z + vx, , z

, + ...... + 7 ,a-,, z,, + r} ^e not i(jentically zero for all positions of

182
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x and z, then there exist oo sets of places ,..., p_i, and oo 9 sets of places

, ...,&&amp;gt;_!,
such that

and
_ j- = &amp;lt;)finp,

in _ yfi , m, _ ^ _ ^
_ yfp-i. *j-it

Now, if in the equation (^ &amp;gt; *&amp;gt; + ...... + t^ * + r)
= 0, we make x

q

approach to and coincide with z
q ,
we obtain

t 6/ (tf*
&amp;gt; *&amp;gt; + ...... + v* - 1 z

&amp;lt;- + r) ^ (s9)
=

0,
i=l

wherein / (it) is put for r (u), H; (a;) for 2-Trt Dxvf &quot;,
a being arbitrary ;

(7Mj

and this equation holds for all positions of ac
1 ,

z1} ..., #9
_a ,

^
9_i. Since, how

ever, the quantities fl] (zq), ...
,
fl

g (^q) cannot be connected by any linear

equation whose coefficients are independent of z
q ,
we can thence infer that

the first differential coefficients of (u) vanish identically when u is of the

form^&quot;
z

&amp;gt; + ...... +0*9-1.29-1 + T. It follows then in the same way that the

second differential coefficients of @ (u) vanish identically when u has the

form vXi &amp;gt;

2
&amp;gt;+ ...... + vx i--&amp;gt;

z&amp;lt;
&amp;gt;-

2 + r
;

in particular all the first and second differ

ential coefficients vanish when u = r. Proceeding thus we finally infer that

(w) and all its differential coefficients up to and including those of the
&amp;lt;jth

order vanish when u = r.

We proceed now to shew conversely that when (u) and all its differential

coefficients up to and including those of the
&amp;lt;?th order, vanish for u = r,

then (v
Xl z

&amp;gt; 4- ...... +^9.29 + r) vanishes identically for all positions of

#1, ^i, ^2,^2, ...,xq ,Zq. By what has just been shewn (v**
z + v*&quot;*! + ......

+ -y*,, zq + rj
wiH not vanish identically unless the differential coefficients of

the (q + l)th order also vanish.

We begin with the case q=l. Suppose that (M), / (u), ...
,
Sp (u), all

vanish for u = r
;
we are to prove that (#*

z + r) vanishes identically for all

positions of x and z.

Let e, f be such arguments that @(e)=0, (/)=(), but such that

/ (e) are not all zero and /(/) are not all zero, and therefore (v
x&amp;gt;

(J not vanish identically; consider the function

@ (e + if
6 z

) @ (e
-

tf&amp;gt;

z
)

firstly, it is rational in x and z
; for, considered as a function of x, it has,

at the period loop br , (Equation B, 175) the factor
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whose value is unity ;
and a similar statement holds when the expression is

considered as a function of z, for the expression is immediately seen to be

symmetrical in x and z
; secondly, regarded as a function of x, the expression

has 2 (p 1) zeros, and the same number of poles, and these (Prop. IV.)
are independent of z. Similarly as a function of z it has 2 (p 1) zeros and

poles, independent of a;
;
therefore the expression can be written in the form

F(x}F(z}, where F(x) denotes the definite rational function having the

proper zeros and poles, multiplied by a suitable constant factor, and F (z) is

the same rational function of z.

Putting, then, x to coincide with z, and extracting a square root, we infer

p

where flt (a?)
= 2m Dx v*

a
,
for a arbitrary, is the differential coefficient of an

integral of the first kind
;
thence we have

In this equation suppose that e approaches indefinitely near to r, for which

(r)
=

0, /(r) = 0. Then the right hand becomes infinitesimal, inde

pendently of x and z. Therefore also the left hand becomes infinitesimal

independently of x and z
;
and hence (v

x z + r) vanishes identically, for
all positions of as and z.

We have thus proved the case of our general theorem in which q = l.

The theorem is to be inferred for higher values of q by proving that if the
function (v

x
&amp;gt;&amp;lt; + ...... + t^-&amp;gt;

*-&amp;gt; + r) vanish identically for all positions of

#!, 2j, ...
, #,_!, 2m_i, and also the differential coefficients of (w), of order

m, vanish for it = r, then the function (^i.i + ...... +^, + r) vanishes

identically. For instance if this were proved, it would follow, putting m =
2,

from what we have just proved, that also (v
x

&amp;gt;&amp;lt; ^ + if* ** + r) vanished

identically, and so on.

As before let/ be such that (/) = 0, but all of /
(/) are not zero

;
so

that (*.
z

+/) does not vanish identically in regard to x and z. Let
e be such that (v..^ + ...... + w*-i, w -i +e) vanishes identically for all

positions of #,, * iV.ViUi Zm-i ,
but such that the differential coefficients of

(M) of the first order do not vanish identically for u = vx i&amp;gt;

z
i+... + y*-i, -i

-j. e
-

so that the function @ (t^i.
^ + ...... + &m , ^ + e) does not vanish

identically.
Consider the product of the expressions

e)

_

nn (wx. v +/) (t^x. v -/)
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wherein h, k in the numerator denote in turn every pair of the numbers

1,2, ...
, m, so that the numerator contains 4 . \m (m 1) + 2 = 2 (m

2 m + 1)

theta functions, and X, /-t
in the denominator are each to take all the values

1, 2, ..., m, so that there are 2m2 theta functions in the denominator.

Firstly, this product is a rational function of each of the 2m places

a?!, Zi, ..., xm ,
zm . Consider for instance ccl ;

it is clear that if the product
be rational in xlt it will be entirely rational. As a function of xl} the

product has at the period loop br a factor e~2iriK where

and this expression is identically zero.

Secondly, considering the product as a rational function of x1} the

denominator is zero to the second order when x coincides with any one of

the m places zlt ..., zm ,
and is otherwise zero at 2m (p 1) places depending

on / only ;
of these latter places 2 (m 1) (p 1) are also zeros of the

factors H (** **+/)(****--/); there are then 2(jp-l) poles of the

function which depend on / only. The factors II
(tf&quot;*

** +/) (&quot;*
** -/)

have also the zeros #2 &amp;gt;
&amp;gt;

#&amp;gt;
each of the second order. The factors

(tfii
,i + ...+ tf*. , zm + e)@ (t^i

, zi + . . . + if* , z. _
e) have, by the hypothesis

as to e, the zeros z lt z2} ..., zm ,
each of the second order, as well as 2 (p m)

other zeros depending on e only. On the whole then, regarded as a function

of ac1 ,
the product has

for zeros, 2(p m) zeros depending on e, as well as the zeros #2 , ..., xmy

each of the second order,

for poles, 2 (p 1) poles depending on/;

the function is thus of order 2(p 1); and it is determined, save for a

factor independent of xly by the assignation of its zeros and poles. It is

to be noticed that these do not depend on z1} z2 , ..., zm .

It is easy now to see that the product, regarded as a function of zl}

depends on z2 , ..., zm , e,f in just the same way as, regarded as a function

of x1} it depends on cc2 , ..., xm , e,f.

The expression is therefore of the form F(xlt #2
&amp;gt; &amp;gt; m) F (z\&amp;gt; 2-2, &amp;gt;

zm\
wherein F denotes a rational function of all the variables involved.

The form of F can be determined by supposing xlt ...,xm to approach

indefinitely near to z1} ..., zm respectively; then we obtain

where tm is the infinitesimal for the neighbourhood of the place zm ,

0. ^, ,Zl+ ...... + vX,n-l,
Z
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where tm-i is the infinitesimal for the neighbourhood of the place 2m_i, and

so on, and eventually,

\47rl) fm = i ti=l

Similarly

where /i, A; refers to all pairs of different numbers from among 1, 2, ..., m.

Therefore, dividing by a factor

which is common to numerator and denominator, and taking the square root,

we have

i.i e ^, j,,. ... iw (&amp;lt;o HI (^on,^...(*)
,

t&amp;gt;

i
zm) ~

On the whole therefore we have the equation

! z + + w*m ZBl -
e)

* - IT * .
zt + @

nn@(/ A&amp;gt;

vEr/ /v. r f&amp;gt;\ty(? ? o\K ^! ,
. . .

,
J/m , K) X \^i, .

, 4m &amp;gt;

K )

where

^(^,...,^,6)= 2 ... @
il)r

-

2 ..... ^(ejfl^fo)... flfM (ff,w).

l-m= l H = l

Suppose now that ef is made to approach to r; ;
then the conditions we

have imposed for e are satisfied, and there is added the further condition

that the differential coefficients of order m, O ,-^ ,-2) ...,,&amp;gt;,
also vanish. Hence

it follows that (^ &amp;lt;

z
&amp;gt; + ...... + 1^. z - + ?) vanishes identically.

The whole theorem enunciated is thus demonstrated.
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(XV.) The remarkable investigation of Prop. XIV. is due to Riemann
;

it is worth while to give a separate statement of one of the results obtained.

Using q instead of m 1, we have proved that if the equations

Q = vmp&amp;gt;
m

i 1
m

. . . . I;P

are satisfied by oc 1 sets of places fi, ..., ^_1( so that also the equations

e = v*1 m v^ &amp;gt; rrti ...... ?; p

are satisfied by x sets of places , ..., f^, then their exists a rational

function, which has (i) for poles, the 2(p 1) places tl} ..., tp,l} zlt ..., zp^,
which satisfy the equations

f=

f being supposed such that these equations have one and only one set of

solutions, and has (ii) for zeros, the arbitrary places xlt ...,acq ,
each of the

second order, together with 2(p- 1 -q) places 9+1 , ..., Zp_l} j-q+1 , ..., g^,
satisfying the equations

Q = Vmp m iF 1
m

...... y
2 9 1Hq

l)&amp;lt;i+

l
&amp;gt;

m4+i _ .. ..
_ yfp-i mp-i

e = vm* m V^1 TOI
. . . . VXq &amp;gt; inq ifig+1&amp;gt; niq+l _

. . . .
_ yfp- 1 *?-!

and the function can be given in the form

(#!, xz , ..., ac
q , x,e) + (a;,/),

the notation being that employed at the conclusion of Proposition (XIV.).
The expressions M

,
$ occurring here have the zeros of certain (^-polynomials,

to which they are proportional.

Corollary i. If we take p 1 places , ..., p̂_1) so situated that only
one ^-polynomial vanishes in all of them, and define e by the equations

e =

there will be no other set i, ..., ^,_1( satisfying these equations, or 5=0.
If

fi&amp;gt;
&amp;gt; Zp-i be the remaining zeros of the ^-polynomial which vanishes in

i, ...
, %p-i, we have (Prop. IX.)

(m\ 5i, ..., ^_!, , ..., 1^0 = (wh
8
, .... 7?i/),

and therefore

Similarly if tlf . . .
,

&amp;lt;p_!
be arbitrary places which are the zeros of only one

^-polynomial, we can put

f
&amp;lt;yWiy),

m _ n,t
t , m, _ _ OI^P-II Wp-i

f= vm &quot;
&quot; v z&amp;gt; &amp;gt;

m
&amp;lt; ...... v*&quot;-

1 - &quot;p- 1
.
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Then the rational function having tit . .., p_i, z^, ..., Zp-i for poles, and

(Ti. . KP-I, &&amp;gt; -. &-i for zeroy is given by ^(^ ) -5- &amp;lt;&

(#&amp;gt; /) Thus tne

^-polynomial which vanishes in
%\&amp;gt; &amp;gt; p-i&amp;gt;

i&amp;gt; &amp;gt; p-i is given by

P
2 / (v

m m v^ m
&amp;gt; ...... Vs&quot;-

1 mp~ l

) fa (x),
1=1

where fa (a), ...,&amp;lt;}&amp;gt;p (x) are the ^-polynomials occurring in the differential

coefficients of Riemann s normal integrals of the first kind.

Hence if n^ ..., np_! be places which, repeated, are all the zeros of a

^-polynomial, the form of this polynomial is known. Since, then, we have

(Prop. XI. p. 269)

we can write this polynomial

|fl being an odd half-period.

If another ^-polynomial than this one vanished in nlt ..., np_lt there

would be other places n^, ..., rip_1} such that

and therefore (Prop. VI.) the function B(^*.+ ^(l) would vanish identi

cally; in that case (Prop. XIV. p. 276) the coefficients /(H) would vanish.

We can express the 0-polynomial in terms of any integrals of the

first kind; if Vi &quot;,..., Vp
&quot;

be any linearly independent integrals of

the first kind, expressible in terms of the Riemann normal integrals

v* , ..., Vp
m
by linear equations of the form

* m
-\ -ir

x
&amp;gt;

m
. , -v irx &amp;lt;

m /-to
Vi =X;)1

F1 + ...... +\,pVp , (l
= l, 2, ...,/&amp;gt;),

and the function (u) be regarded as a function of Ul} . . .
,
Up given by

w = X
i&amp;gt;1

t/i4 ...... + \iif Up , (i=l, 2, ...,p),

and, so regarded, be written ^ ( U), the ^-polynomial which has zeros of the

second order at nlt ..., wp_i can be written

mwhere ^ (a;), . . .
, -^ () are the ^-polynomials corresponding to V?

V* m
,
and ^H denotes a set of simultaneous half-periods of the integrals

FI &quot;, ..., Vfl

m
. If ^n stand for p quantities of which a general one is
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and
(,., s ,

w r
,
g be 2p- quantities given by

J- = 2\ j i, 8 + 2X;, 2 ft)
2i g + ...... + 2X/

( p Op, ,, (t, 5 = 1, 2, . . .
, p),

Tt-, g
=

2\i, ]
o) ^ g -I- 2X,-, 2 a/-, g + ...... + 2\i

t p a&amp;gt;

p&amp;gt;
8 ,

where, in the first equation, we are to take 1 or according as i = s or i^s,

then fl will stand for p quantities of which one is

Aa*, i + ...... + kpcot, p + ki(o i
t

i + ...... + kp o) i
t p , (i

=
I, 2, . . .

, p).

For example when the fundamental Riemann surface is that whose

equation may be interpreted as the equation of a plane quartic curve, every

double tangent is associated with an odd half-period and its equation may
be put into the form

*&/ (in) + jfo (fii) 4- *; (in) = o.

Corollary ii. If the equations

e = vm &amp;gt;&quot;

m if 1 Wi v^2 m* _
. . v^p~ l&amp;gt;

m
i&amp;gt;-

1

can be satisfied with an arbitrary position of x^ and suitable positions of

,, ..., %p-i, and therefore, also, the equations

e =

can be satisfied, then a ^-polynomial vanishing at x
1 to the second order, and

otherwise vanishing in ,, ..., p_!, ^2 , , fp-i, is given by

Ex. In the case of a plane quintic curve having two double points, this gives us the

equation of the straight lines joining these double points to an arbitrary point x1 ,
of the

curve.

Corollary iii. We have seen (Chap. VI. 98) that any rational function

of which the multiplicity (q) is greater than the excess of the order of the

function over the deficiency of the surface, say, q
=Qp + r + I, can be

expressed as the quotient of two ^-polynomials. If the function have

i, &amp;gt; & f r zeros, and
, ..., J?Q

for poles, and the common zeros of the

^-polynomials expressing the function be zlt ..., ZR ,
where R=2p-2-Q,

the function is in fact expressed by

where (cf. 93, Chap. VI.)

7?ln * 7ft 1 tJl-t
n\ ir* nt A ^

&amp;lt;1

/. 7)(D . Ill 2,, HJj
*B_ T ,

f=v p v v
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189. Before concluding this chapter it is convenient to introduce a

slightly more general function * than that so far considered
;
we denote by

^ (u ; q, q ), or by S- (u, q), the function

& (u ; q, q )
= 2eaw2+2AM &amp;lt;

w+9 &amp;gt;+
&

(
n+9 ) 2+2 &quot;r9(ri+5

&amp;gt;,

wherein the summation extends to all positive and negative integer values of

the p integers wn ...,np ,a is any symmetrical matrix whatever ofp rows and

columns, h is any matrix whatever of p rows and columns, in general not

symmetrical, b is any symmetrical matrix whatever of p rows and columns,
such that the real part of the quadratic form bm2

is necessarily negative
for all real values of the quantities m1 , ..., mp ,

other than zero, and q, q
denote two sets, each ofp constant quantities, which constitute the character

istic of the function. In the most general case the matrix b depends on

?p(p+ 1) independent constants
;

if however we put iirr for b, r being the

symmetrical matrix hitherto used, depending only on 3p
- 3 constants, and

denote the p quantities hu by U, we shall obtain

*(M; q, q )
= e

au*

(U ; q, q ).

We make consistent use of the notation of matrices (see Appendix ii.).

If u denote a row (or column) letter of p elements, and h denote any matrix
of p rows and columns, then hu is a row letter

;
we shall generally write

huv for hu.v; and we have huv = hvu, where h is the matrix obtained from
h by transposition of rows and columns. Further if k be any matrix ofp rows
and columns, hu . kv = hkvu = khuv. For the present every matrix denoted by
a single letter is a square matrix of p rows and columns.

Now let
o&amp;gt;,

w
, r), T/ be any such matrices, and P, P be row letters of

elements Pl} ..., Pp , P/, ..., Pp . Then, by the sum of the two row letters

a&amp;gt;P + oa P we denote a row letter consisting of p elements, each being the

sum of an element of o&amp;gt;P with the corresponding element of &&amp;gt; P . This
row letter, with every element multiplied by 2, will be denoted by flp ,

so that

in a similar way we define a row letter ofp elements by the equation

HP = 2r)P + 27/P ;

then u + flp will denote a row letter of p elements, like u.

The equation we desire to prove, subject to proper relations connecting
&), a/, 77, 77 ,

is the following,

* (u + ft,,, q)
= effp(+sn,)- Wip/ +2 (Pq -p-q) e -ziPV

(W) p + 9 ) } (L^
which is a generalization of some of the fundamental equations given for

(u).

*
Schottky, Abrias einer Theoric der Abehchen Functionen von drei Variabeln, Leipzig, 1880.

The introduction of the matrix notation is suggested by Cayley, Math. Aniuil. (xvn.), p. 115.
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In order that this equation may hold it is sufficient that the terms on the

two sides of the equation, which contain the same values of the summation

letters %, ..., np ,
should be equal ;

this will be so if

a (u + dp)
2 + 2h(u + flp) (n + q ) + b(n + q f + 2iriq (n + q)

= HP (u + flp)
- TriPP - ZTriP q + an&quot; + 2hu (n + q + P ) + b (n + q + PJ

picking out in this conditional equation respectively the terms involving

squares, first powers, and zero powers of n1} ..., np ,
we require

6 = 6,

h (u + tip) + bq + Triq
= hu+b (q + P ) + Tri(P + q),

and

a (u + Hp)
3 + 2/i (u + Hp) q + bq

2 + 2-rriqq
= HP (u + HP)

- TriPP - liriP q

+ cm2 + 2/m (q + P ) + 6 (q + P )
2 + Ziri (P + q) (q + P ).

190. In working out these conditions it will be convenient at first to

neglect the fact that a and 6 are symmetrical matrices, in order to see how

far it is necessary.

The second of these conditions gives

MIP = TriP + 6P
,

and therefore gives the two conditions hw = ^TTI, hw =
^5, whereby o&amp;gt;,

&&amp;gt;

are determined in terms of the matrices h, b. In particular when h = iri

and 6 = i7TT, as in the case of the function (V), we have 2a&amp;gt;
= l, 2&&amp;gt;

= T,

namely 2o&amp;gt;,
2o&amp;gt; are the matrices of the periods of the Riemann normal

integrals of the first kind, respectively at the first kind, and at the second

kind of period loops.

The third condition gives

ZauSlp + aO2
P + 2/tOp^ = HP (u + ^flp)

- iriPP - ZiriP q + ZhuP + b (2q P + P 2

) + 2 (qP + Pq + PF),
that is

-Hp- IhP 1

) u + (aflp -$HP) flp - TriPP - 6P 2

+ 2 (AnP - triP - 6P ) q
=

;

in order that this may be satisfied for all values of n1} ..., UP) we must have,

referring to the equation already obtained from the second condition,

and
6P ) P ;

from the first of these, by the equation already obtained, we have

kttpP =
(-rriP + bP ) P ;
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subtracting this from the second equation, there results

and in order that this may hold independently of the values assigned to

P, P it is necessary that d = a,b=b ,
when this is so, these two equations

give, in addition to the one already obtained, only the equation

leading to

77
=

2a&&amp;gt;, V}
= 2aw 2h,

which express the matrices 77 and r[ in terms of the matrices a and h. These

equations, with

or

hca = \irit ha* = ^b,

are all the conditions necessary, and they are clearly sufficient. When they
are satisfied we have

-

q + P), (L),
where

XP (w)
= HP (u + | Hp) - -rriPP.

Ex. Weierstrass s function cru is given by

where A is a certain constant.

The equations obtained express the
4&amp;gt;p-

elements of the matrices
&&amp;gt;,

to
, 77, 77

in terms of the p
z + p (p 4- 1 ) quantities occurring in the matrices a,h,b\

there must therefore be 2p
2

p relations connecting the quantities in
o&amp;gt;, ,

v), 77 . The equations are in fact of precisely the same form as those already

obtained in 140, Chap. VII., equation (A), and precisely as in 141 it

follows that the necessary relations connecting G&amp;gt;,
&&amp;gt;

, 77, 77 may be expressed

by either of the equations (B), (C) of 140. Using the notation of matrices

in greater detail we may express these relations in a still further way.

For
- hP) Q

- (ang
- hF) ftp

= hflp . Q - hlQ . P
= (viP + bP) $ -

(iriQ + bQ ) P,
so that

- PQ) ;

this relation includes all the 2p
2

p necessary relations
;
for it gives

(rjP + rj P) (a&amp;gt;Q
+ u Qf)

-
(r,Q + rj Q ) (a&amp;gt;P + to P) = ^-rri (PQ - PQ),
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or (using the matrix relation already quoted in the form hu.kv= 7ikvu =

(wrj
-

tjto) PQ -f &amp;lt;W

-
^o&amp;gt; ) P Q + (W T;

-
rj w) PQ + (m rj

- ijV) P Q

and expressing that this equation holds for all values of P, Q, P , Q ,
we

obtain the Weierstrassian equations ((B) 140).

Similarly the Eiemann equations ((C) 140) are all expressed by

)
-

(2a&amp;gt;P + 2rjQ) (2 P + 2ij Q
/

)= 27rt (PQ - P Q).

Ex. i. If we substitute for the variables u in the ^ function linear functions of any p
new variables v, with non-vanishing determinant of transformation, and LP be formed from

the new form of the ^ function, regarded as a function of v, just as HP was formed from

the original function, prove that LPv=HPu, and that XP (u) remains unaltered.

Ex. ii. Prove that

X P (u + n.v) + X.v (u)
- 2TriMP= X

fi (u+ fl.v) + X.v (u}
-

provided

The equation (L) is simplified when P, P both consist of integers. For

if M, M be rows of integers, it is easy (putting a new summation letter,

m, for n + M ,
in the exponent of the general term of ^ (u ; q + M, q +M ),)

to verify that

$(u; q + M, q + M )
= & M&amp;lt;t ^ (u ; q, q ).

Therefore, if m, m consist of integers, we find

S- (u + Slm ,q)
= eKm^ +***(* -m q] ^ (Wj 3 ) }

and in particular

S(w + ftm) = eAm(M)
Sr(*0&amp;gt;

where ^ (u) is written for ^r (u ; 0, 0). The reader will compare the equations

obtained at the beginning of this chapter, where a = 0, 77
= 0, vf

= 2m,

a, = ,
a =T, flp = P + rP ,

HP=- 2-rriP
,
\P (u)

= -MF (u + %P + %rP)
- TriPP .

One equation, just used, deserves a separate statement
;
we have

*(u; q + M) = e*&quot;

iMi % (u ; q),

where M stands for a row of integers M1} ..., Mp , MJ, ..., Mp .

191. Finally, to conclude these general explanations as to the function

^ (u), we may enquire in what cases ^ (u) can be an odd or even function.

When m, m are rows of integers the general formula gives

^(-11 + flm , q)
= & (-) +2 (?&amp;lt;?

-*
&amp;lt;?) ^ (- u

, q) ;
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hence when ^ (u, q) is odd, or is even, since \,n ( u)
= \-m (u), we have

&amp;lt;\
/ ?/ _ O n} /jA_m (M) + 2m (mo m q) \ /. n\ .

,J \IV *I&quot;Hl) &amp;lt;)

t/ rJ \U, // ,

therefore, by equation (L),

j (u + i.im , q),
= j (u lm , q) . e^~&quot; ,

while also, by the same equation,

Thus the expression

^SOT (u i ft) + X_m (u) \m (u) + kin (mq m q)

must be an integral multiple of 2? . This is immediately seen to require

only that 2 (mq m q mm ) be integral for all integral values of m, m .

Hence the necessary and sufficient condition is that q and q consist of half-

integers. In that case we prove as before that ^ (u, q) is odd or even

according as
4&amp;gt;qq

is an odd or even integer.

192. In what follows in the present chapter we consider only the case in

which b = ITTT, r being the matrix of the periods of Riemann s normal

integrals at the second kind of period loops. And if if
a
,..., wj

a
denote

any p linearly independent integrals of the first kind, such as used in 138,

139, Chap. VII., the matrix h is here taken to be such that

7 , a , x, a=h
i&amp;gt;1

ul + ...... + hitp up , (i-l, 2, ...,

so that h is as in 139, and

(u*&amp;gt;

a
, q)

= eauz 0* q),

where u = ux &amp;gt;

a
.

From the formula

S- (u + flm)
= ea(+jo)-w ^ (w),

wherein m, m denote rows of integers, we infer, using the abbreviation

a

(w) =
^.logS-O)&amp;gt;

that

& (u + flm)
- & (u) = 2

(rjit 1 m, + ...... +rjiilt
mp + i

i

f

iil m 1

t

+ ...... -i-^.^

particular cases of this formula are

f/ (M, + 2a&amp;gt;

lf ,., . . .
,
up + 2a,

pt ,.)
=

(u) + 2^ r ,

& (w, + 20)
,, r , ..., up + 2a)

p! r)
=

Si CM) + 2i/i, r&amp;gt;
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Thus if us be the argument

where MI , ...,?4
a

are any P linearly independent integrals of the first

kind, and the matrix a here used in the definition of & (u) be the same as

that previously used (Chap. VII. 138) in the definition of the integral

L^ ,
so that the matrices ?;, rf will be the same in both cases, then it

follows that the periods of the expression

regarded as a function of x, are zero.

193. And in fact, when the matrix a is thus chosen, there exists the

equation

; (u
x

&amp;gt;

m ux &amp;gt;

m
...... - ux &quot;&amp;gt;

m
t&amp;gt;)

+ & (u
a

&amp;gt;

m ux Wi - ...... - ux &quot;&amp;gt;

m
*)

TX. & . ^* ~ r / \ / \T= L +2 v
r&amp;gt;i [(xr , x)

-
(xr , a)]

r=l
=-

,

wherein v
r&amp;gt;

i denotes the minor of the element /^- (xr) in the determinant

whose (r, i)th element is pi(xr), divided by this determinant itself; thus

vr,i depends on the places xlt ..., xp exactly as the quantity v
r&amp;gt;

{ (Chap. VII.

138) depends on the places c1} ..., cp .

For we have just remarked that the two sides of this equation regarded as

functions of x have the same periods ;
the left-hand side is only infinite

at the places xlt ...,xp ;
if in Lf

a

,
which does not depend on the places

GI, ..., Cp used in forming it (Chap. VII. 138), we replace c1} ..., cp by
x1 , ..., xp ,

it takes the form

-p,a;,
a -^x, a _ . x, a x, a,

and becomes infinite only at the places acl} ...,acp . Hence the difference

of the two sides of the equation is a rational function with only p poles,

#j, ..., xp , having arbitrary positions. Such a function is a constant (Chap.
III. 37, and Chap. VI.) ;

and by putting x = a, we see that this constant is

zero.

194. It will be seen in the next chapter that in the hyperelliptic

case the equation of 193 enables us to obtain a simple expression for

i (u
x

&amp;gt;

m ux m
&amp;gt; ...... u^ m

p) in terms of algebraical integrals and rational

functions only. In the general case we can also obtain such an expression* ;

* See Clebsch und Gordan, Abels. Functnen. p. 171, Thomae, Crelle, LXXI. (1870), p. 214,

Thomae, Crelle, ci. (1887), p. 326, Stahl, Crelle, cxi. (1893), p. 98, and, for a solution on different

lines, see the latter part of chapter XIV. of the present volume.
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though not of very simple character ( 196). In the course of deriving that

expression we give another proof of the equation of 193.

The function of x given by & (%*; |/3, |a) will have p zeros, unless

^ (u
x

&amp;gt;

m + ft0, a ) vanish identically ( 179, 180) ;
we suppose this is not the

case. Denote these zeros by m/, ..., mp
f

. Then (Prop. X. 184) the function

^
(u*&amp;gt;

m - * - ...... - U*P&amp;gt; V
; /3, a) will vanish when as coincides with

#1, a?2 , ..., or xp . Determining mlt ...
,
mp so that

ump ,mp =

and supposing the exact value of the left-hand side to be fl
ftt

+ l
k&amp;gt; h&amp;gt;

where k, h are integral, this function is equal to

%(u*,m_ ux&amp;gt;, mi _ ...... _ uXp , mit _ in^ a
- n

t&amp;gt;h ;
. | a),

and this, by equation (L) is equal to

where u = ux &amp;gt;

m ux &amp;gt; &amp;gt;

m
&amp;gt; ...... uxi mv lk h .

Therefore ( 190) the expression

-W^.^/- ...... _ w^,rV
; /9,

is equal to

we may write this in the form

the expression is therefore equal to

;, m _ ^, m t _
,
m _ ,, m, _

where

is equal to

or

-2a(U-V)(r-s),
that is

B- 19
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which denotes

vv x, M *,, nr .

2, (2S2af,j,- w; ).

T = 1 1 , j

Hence, by Prop. XIII. 187, supposing that the matrix a, here used, is the

same as that used in 138, Chap. VII., and denoting the canonical integral

TT a;, a ~ J} Ji x, a z, c
_ /

&amp;gt; ^ /f -jy -i/

J-J.,y ^
A&amp;lt; W ^W U.J- J tt-j tfr^f j

r=ls=l

which has already occurred (page 194), by R
x

z
&amp;gt;c

,
we have

195. From the formula

p x,p &amp;lt;bu
x m -ux

X, *
&amp;lt;^Sux, m_ WMI, Wi ... ufp&amp;gt;

mP

since
Xr, Mr *r.^ /V.^r*,*

-n-ar, /a
= f

x, /x
+ ^ ui Li

t= l

we obtain

P D^.,^ P ^ +*;*.*&quot;
, *(u*-

m-U) /*(u&amp;gt;- U)

A *&quot; ^-ir-l^
10g^(^--- J7 )/ ^(^ Wl -

Z/o)

where

and therefore

U-U =% u*&quot;*.

r = l

Hence, differentiating,

5 |^f [(*,, )
-

(av, A*)] +Lr - -
Si (**

m - U] 4- C, (^ - -
IT),

r=ldC i

where

but, from

where rfa?1; ..., rf^ denote the infinitesimals at xlt ..., xp ,
we obtain

9a;r _ dxr

dwr^^
thus

P
-

?i (w*-
m - U) + & (M*

m -
t^)

= 4 m
+ 2 J&amp;gt;r

,
{ [(xr , x)

- fa, /*)
r=l

which is the equation of 193.
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196. From the equation

differentiating in regard to a;, we obtain an equation which we write in

the form

F?^=ft (x) [f, (*. -
17)- fr (M*.

- T
)],

r=l r=l

where U=

Thus, if we take for ft ,
. . .

, ft, places determined from a; just as mlt ..., mp
are determined from m, so that

(m, ft, ...,ft)
=

(x, TOJ, ..., mp),

the arguments ux &amp;gt;

m - U will be =
;

as the odd function V (u) vanishes for

zero values of the argument, we therefore have ( 192), writing Hp for the

exact value of ux &amp;gt;

m - U0)

r=l

P

C) V (li
x m

ll
z

&amp;gt;

w
&amp;gt; ... U ZP &amp;gt;

m
r&amp;gt; ftp)

r=l

V / \r i z= Z, ft- (X) %r (W
z ^ + . . . + MZP

**),
r=l

If in this equation we put x at TO we derive

p
1Tf zii i .

|^ Jp^P
m^ V / \ y / Z Wl i Zm\ /TVT\

where ^1; ..., zp are arbitrary.

If however we put x in turn at p independent places clt ..., cp ,
and

denote the places determined from a, as ml} ..., TOP are determined from

m, by c^ !, ..., Citp ,
so that(\ / \/ fjfYl nffl i I /yi&quot;) /^ . /* . if1 J H ) y IIVipI

I
f/(/j (y-^ J j

. , .
; C/^ ?&amp;gt;/

we obtain p equations of the form

Suppose then that x, xl , ..., xp are arbitrary independent places; for

z-i, ..., zp put the places x
ijly ..., xiif determined by the congruence

(x, xit j, . . .
,
x

it p)
=

(d, xl} ...,xp)\

then, if ftQ denote a certain period, uXi 1J Ci) i ... uXi * C&amp;lt;)P is equal to

HQ + ux &amp;gt;

m - uxi
m

i - ...... - ux &amp;gt;

m
&quot;,
and we have

j*&amp;lt;.
i -

c
i, i , ,

JJT
*i, P, c

f , P _ ^ ,
}

L,

t
i

*
fc

~
A4 / X 6 / br

xp ,

192
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therefore

X
&amp;gt;

.-u -...- = V .
rv xr,l= 2, v

r&amp;gt;

i [t Cr

where v
r&amp;gt;

i is the minor of ^i (cr ) in the determinant whose (r, s)th element is

fa (0^, divided by the determinant itself.

In particular, when the differential coefficients ^ (x), . . .
, pp (x) are those

r x

already denoted ( 121, Chap. VII.) by w l (x), ...,wp (x}, and Vf
a = I wi(x)dtx ,

J a

and the paths of integration are properly taken, we have*

*
( V*

m - V l&amp;gt; l

197. A further result should be given. Let #, x1} ..., xp be fixed

places. Take a variable place z, and thereby determine places ziy ...,zp ,

functions of z, such that

(x, zlt ..., Zp) = (z, i, .... a?P).

Then from the formula

z, a i r/ * * *.-, Zg+2 v
s&amp;gt;

i [(zs , z)
-

(zs , a)] -=-
,

=i

=-

wherein vs
,
i is formed with zl} . . .

,
zp ,

we have, by differentiating in regard

to z and denoting ^ (M) by g)^ j (w),

3 = 1

dt

where U=uz m uz
&quot;
m

&amp;gt;

_ u2* m
p, U = ua &amp;lt;

m MZ w
- ifr- mv.

In this equation a is arbitrary. Let it now be put to coincide with z
;

hence

* This form is used by Noether, Math. Annal. xxxvn. (1890), p. 488.
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Therefore

ft, (IT)

f=l

= D; I ^ (A) /if
B
+ I (A;) [(* ^)

-
(^ a)] 1

,

where A means a differentiation taking no account of the fact that zl} ..., zp
are functions of z,

U=i

, ; k, Z,, . . .
,
Zp)l,

in which form the expression is algebraically calculable when the integrals

L*
a
are known (Chap. VII. 138),

= Dz \ rj
a -

ty (z, a
; k, zlt . . .

,
zp)

- 22Sa
r&amp;gt;

, /*., (/.;)
w

where c is an arbitrary place ;
and this (cf. Ex. iv. 125)

p P= - W(z; k, zlf ..., fp)-2 S S
r=l*=l

If now

so that

= Uk
&amp;gt;

m - Uk
&amp;gt;

7n
i - ...... U*l

and

(a?, ^, ..., fp)
=

(^, a?lf ..., a^),

(ar, A-j, ..., kp)= (k, ar1} ..., ajp),

then the formula is

1 3 r=l-l

by Ex. iv. 125.

= W(k- z,k1 ,... i
kp) + 2 I I ar

,

r=ls=l
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By the congruences
Uz ^ = Uz

&amp;gt;

x

the places zl} ...,zp are algebraically determinable from the places x, xl ,
. . ., xp, 2,

and therefore the function W (z; k, zl} ..., zp) can be expressed by x, xlt ...,

xv , k, z only. In fact we have

/ \ r\

The interest of the formula lies in the fact that the left-hand side is a

multiply periodic function of the arguments U1) ..., Up .

A particular way of expressing the right-hand side in terms of x, xlt ..., xp , 2, k is to

put down %p(p + l} linearly independent particular cases of this equation, in which the

right-hand side contains only x, xlt ..., xp , z, k, and then to solve for the \p(p+ l)

quantities j^y. Since ^ (z, a ; k, z
1} ..., zp) vanishes when k= zp ,

we clearly have, as one

particular case,

22J0- (u z&amp;gt;
m uZl mi u ss&amp;gt;

m
]u-(z}iLt(z} =DD Rz a

ij
*

/-. c

and therefore

n
&quot;) fH (x) H fa)=DXDX R x

&amp;gt;

a
, (N)

i)&quot;i.

C

and there
are^&amp;gt; equations of this form, in which x

lt ..., xp occur instead of xr .

If we determine
,%\ ,

...
,
x p _ l by the congruences

so that $1, ..., xf

p , 1
are the other zeros of a ^-polynomial vanishing in x

lt ..., a?
7,_ 1 ,

we can infer p 1 other equations, of the form

i j *i- , a

where r=l, 2, ...,(/- 1). Here the right-hand side does not depend upon the place x.

And we can obtain p such sets of equations.

We have then sufficient * equations. For the hyperelliptic case the final formula is

given below
( 217, Chap. XL).

198. Ex. i. Verify the formula (N) for the casep= 1.

Ex. ii. Prove that

is a rational function of x, xly ..., xp .

Ex. iii. Prove that if

then

Deduce the first formula of 193 from the final formula of 196.

* The function %\j(u), here employed, is remarked, for the hyperelliptic case, by Bolza,

Gottinger Nachrichten, 1894, p. 268.



198] ALGEBRAICAL THEORY OF THE THETA FUNCTIONS. 295

Ex. iv. Prove that if

ei= ri.i + ...... + r
x

c &amp;gt;;
\

where a^ ,
. . .

,
a

t&amp;gt;

are arbitrary places, and

V = V x&amp;gt;
m - V X}&amp;gt; mi - V

x
&amp;gt;&quot;

m
&amp;gt; = V Ci

m - V
x

- 1 l - ... - VXi
&amp;gt;&amp;gt;&quot;

m
&amp;gt;

v f r ,. r ,. r

then

VJ Wff f v -r ^
017

&quot;

V
c
t &amp;gt;

c/
r&amp;gt;-* t, 1&amp;gt; &amp;gt; *% p/&amp;gt;

where W denotes the function used in Ex. iv. 125
;

it follows therefore by that example,

that ;;*
= ^J . Hence the function

o Vr o YI

&amp;lt;^F1 + ...... + QpdVv

is a perfect differential
;

it is in fact, by the final equation of 196, practically equivalent

to the differential of the function log 6 ( V
x

&amp;gt;

m - VXl &amp;lt;

m - ...... - VXf
&quot;&quot;).

Thus the theory
of the Riernann theta functions can be built up from the theory of algebraical integrals.

Of. Noether, Math. Annal. xxxvu. For the step to the expression of the function by the

theta series, see Clebsch arid Gordan, Abelsche Functionen (Leipzig, 1866), pp. 190 195.

Ex. v. Prove that if

(m
2
, Xi, j, ..., x\ p ,

z
lt ...,zp)

=
(a

2
, m*, ..

,
m

j(

2
)

then

Ex. vi. Prove that

- 2 w (2)[^(^
m

-^&quot;
m - ...... -ux m

)-Ci (u
a m -v*l mi - ...... -ux

&quot;

m
^]

i= l

f-,x, a
, , \=F

Z -^(x,a; z,xlt ..., xp).

Ex. vii. If

prove that

log ^ (u
x m - ux m

&amp;gt; - ...... -ux
&quot;
m

&amp;gt;)

=A+A l u*
a
+ ...... +ApUp

a
+ I

where A, A lt ..., A p are independent of x.

Ex. viii. Prove that

- 2 Mr (oO pf, r (*
w-* &quot;

&amp;gt;- ...... - M
*&amp;gt;.&quot;)=

2 tr= ! r = 1

where a, c are arbitrary places and the notation is as in 193.
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CHAPTER XL

THE HYPERELLIPTIC CASE OF RlEMANN s THETA FUNCTIONS.

199. WE have seen (Chap. V.) that the hyperelliptic case* is a special

one, characterised by the existence of a rational function of the second

order. In virtue of this circumstance we are able to associate the theory
with a simple algebraical relation, which we may take to be of the form

7/2
= 4 (as- fll) ... (x - ap) (x

-
c,}...(x- cp+l }.

We have seen moreover (Chap. X. 185) that in the hyperelliptic case, when

p is greater than 2, there are always even theta functions which vanish

for zero values of the argument. We may expect, therefore, that the investi

gation of the relations connecting the Riernann theta functions with the

algebraical functions will be comparatively simple, and furnish interesting

suggestions for the general case. It is also the fact that the grouping of

the characteristics of the theta functions, upon which much of the ultimate

theory of these functions depends, has been built up directly from the

hyperelliptic case.

It must be understood that the present chapter is mainly intended to

illustrate the general theory. For fuller information the reader is referred to

the papers quoted in the chapter, and to the subsequent chapters of the

present volume.

* For the subject-matter of this chapter, beside the memoirs of Bosenhain, Gopel, and

Weierstrass, referred to in 173, Chap. X., which deal with the hyperelliptic case, and general
memoirs on the theta functions, the reader may consult, Prym, Zur Theorie der Functionen

in einer zweiblattrigen Flache (Zurich, 1866) ; Prym, Neue Theorie der ultraellip. Funct.

(zweite Aus., Berlin, 1885); Schottky, Abriss einer Theorie der Abel. Functionen von drei

Variabeln (Leipzig, 1880), pp. 147 162
; Neumann, Varies, iiber Riem. Theorie (Leipzig, 1884) ;

Thomae, Summlung von Formeln welche bei Amvendung der . . Roscnhaiii schen Functionen gebraucht
u-erden (Halle, 1876) ; Brioschi, Ann. d. Mat. i. x. (1880), andt. xiv. (1886) ; Thomae, Crelle, LXXI.

(1870), p. 201 ; Krause, Die Transformation der hyperellip. Funct. erster Ordnung (Leipzig, 1886);

Forsyth,
&quot; Memoir on the theta functions,&quot; Phil. Trans., 1882 ; Forsyth,

&quot; On Abel s theorem,&quot;

Phil. Trans., 1883
; Cayley, &quot;Memoir on the . . theta functions,&quot; Phil. Trans., 1880, and Crelle,

Bd. 83, 84, 85, 87, 88; Bolza, Gottinger Nachrichten 1894, p. 268. The addition equation is

considered in a dissertation by Hancock, Berlin, 1894 (Bernstein). For further references see the

later chapters of this volume which deal with theta functions.
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200. Throughout this chapter we suppose the relative positions of the

branch places and period loops to be as in the annexed figure (4), the branch

place a being at infinity.

Fig. 4.

In the general case, in considering the zeros of the function S (u x&amp;gt;
m

e),

we were led to associate with the place m, other p places m lt ..., mp ,
such

that *b(u
x

&amp;gt;

m
) has ml , .,., mp for its zeros (Chap. X. 179). In this case we

shall always take m at the branch place a, that is at infinity. It can be

shewn that if 6, 6 denote any two of the branch places, the p integrals

Hi , ... , Up are the p simultaneous constituents of a half-period, so that

ur = ni! &&amp;gt;r,
i + + mp a&amp;gt;,.

t p + m^w r
^

l + + WpVr
, p , (r = 1

, 2, . . .
, p),

wherein m ly ..., nip , m/, ..., mp are integers, independent of r
;
this fact we

shall often denote by putting w& 6 = fl. It can further be shewn that if,

6 remaining any branch place, 6 is taken to be each of the other 2p+ l branch

places in turn, the 2p + 1 half-periods, ub
&amp;gt;

v
,
thus obtained, consist of p odd

half-periods, and p + 1 even half-periods. Thus if the branch places, &
,
for

which ub b
is an odd half-period be denoted by 61} ..., bp ,

we have, necessarily,

S- (?i
&. &

i)
= 0, ...

,
S- (u

b
V) = 0, and we may take, for the places m, mlt ..., mp ,

the places b, b1} ..., bp . In particular it can be shewn that, when for 6 the

branch place a is taken, and the branch places are situated as in the figure

(4), each of ua &amp;gt;

ai
, ..., ua &amp;gt;

ap is an odd half-period. We have therefore the

statement, which is here fundamental, the function &amp;lt;&(u

x
&amp;gt;

a ux *&amp;gt;

a
&amp;gt;

. . . uxv a
p)

has the places xl} ..., xp as its zeros. It is assumed that the function
S- (u

x
&amp;lt;

a
) does not vanish identically. This assumption luill be seen to be

justified.

For our present purpose it is sufficient to prove (i) that each of the

integrals ub
&amp;gt;

y
is a half-period, (ii) that each of the integrals ua &amp;gt; a&amp;gt;

,
. . .

,
ua &quot;P is

an odd half-period. In regard to (i) the general statement is as follows: Let

the period loops of the Riemann surface be projected on to the plane upon
which the Riemann surface is constructed, forming such a network as that

represented in the figure (4) ;
denote the projection of the loop (a r) by (A r),

and that of (br) by (Br), and suppose (A r ), (Br) affected with arrow heads, as in



298 THE ZEROS. [200

the figure, whereby to define the left-hand side, and the right-hand side
;

finally let a continuous curve be drawn on the plane of projection, starting
from the projection of the branch place b and ending in the projection of the

branch place b
;
then if this curve cross the loop (A r) mr times from right to

left, so that mr is either + 1 or 1, or 0, and cross the loop (Br) mr times

from right to left, we have

b,b
ur =

wijft),^ j 4- -f mp to
r&amp;gt;p

.

Thus, for instance, in accordance with this statement we should have

r
*

r, u and u
C

r
ai =

a&amp;gt;

ri 1 a)
r&amp;gt;

2 ,
and it will be sufficient to prove

the first of these results
;
the general proof is exactly similar. Now we can

pass from cx to a1; on the Riemann surface, by a curve lying in the upper

Fig. 5.

sheet which goes first to a point P on the left-hand side of the loop (6j),

and thence, following a course coinciding roughly with the right-hand side of

the loop (ttj), goes to the point P , opposite to P on the right-hand side of

(61), and thence, from P , goes to au . Thus we have

=u

On the other hand we can pass from d to ax by a path lying entirely in the

lower sheet, and consisting of two portions, from ca to P, and from P to Oj,

lying just below the paths from cx to P and from P to Oj, which are in

the upper sheet. Thus we have a result which we may write in the form

1( c, , P,
ur

= (u
/ &i, -P\/
(ur ) .

f(x 1) _
But, in fact, as the integral ux&amp;gt;

a
is of the form I

*

?~l

dx, and y has

different signs in the two sheets, we have

P,,

(u
P,CI , , a^P ., a-i, P&quot;

}
and (ur )

= ur
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Therefore, by addition of the equations we have

u. = a)
r, It

which proves the statement made.

In regard now to the proof that ua -

,
. . .

,
ua &amp;gt;

&quot;v are all odd half-periods, we

clearly have, in accordance with the results just obtained,

tf
ai =

&amp;lt;o

ft i
-

(t rt i+l + a&amp;gt;

r&amp;gt;
i+1 )

- ...... - (,._ p + a,
,, ) + (0, ,, j + ...... + m

fi p),

which is equal to

(m r, 1 + to
r, 2 + ...... + 0)

r&amp;gt;
i) + (ft,,, i ft)

rj i+1
- ...... ft),

; p\

and if this be written in the form

Wjft),., j + ...... +mp co,.
t p + mi to

r, i + ...... -1- m pto r, p

we obviously have WjW/ + ...... + mpmp
= 1.

Ex. i. We have stated that if b be any branch place there are p other branch places

&!, 62 , ..., bp ,
such that ub \ ub

&amp;lt;

6
% ..., u

b
&amp;gt;

b* are odd half-periods, and that, if b be any
branch place other than 6, 6, , ...

,
6

P&amp;gt;

w6 6 is an even half- period. Verify this statement in

case p= 2, by calculating all the fifteen, =6 . 5, integrals of the form w6- 6 ,and prove that
when b is in turn taken at a, c, c

1? c2 , 1} a.2 the corresponding pairs bly b2 are respectively

Prove also that

Ex. ii. The reader will find it an advantage at this stage to calculate some of the
results of the second and fifth columns in the tables given below

( 204).

201. Consider now the 2^ + 1 half-periods ub
&amp;gt;

a wherein b is any of

the branch places other than a. From these we can form (
^ +

j
half-

V 2 /

periods, of the form ub
-
a + u b&amp;gt;

&amp;gt;

a
, wherein b, b

f

are any two different branch

places, other than a, and ( ^
j
half-periods of the form ub

&amp;lt;

a + uv a + uv,
,

where b, b
,

b&quot; are any three different branch places other than a, and so

on, and finally we can form t
P ~

J half-periods by adding any p of the

half-periods ub
&amp;gt;

a
. The number

is equal to -1 +*[(* + 1)*+ ]^, or to 2-l, and therefore equal to the
whole number of existent half-periods of which no two differ by a period, with
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the exclusion of the identically zero half-period ;
we may say that this number

is equal to the number of incongruent half-periods, omitting the identically
zero half-period.

And in fact the 2 2̂ 1 half-periods thus obtained are themselves incon

gruent. For otherwise we should have congruences of the form

ft

wherein any integral ub
K&amp;gt;

a that occurs on both sides of the congruence may
be omitted. Since every one of these integrals is a half-period, and therefore

ub
&amp;gt;

a = ub a
,
we may put this congruence in the form

ll
b

&amp;gt;

a + M6
&quot;

a + ...... + M&
&quot;1 a =

0,

and here, since we are only considering the half-periods formed by sums of

p, or less, different periods, m cannot be greater than
2j&amp;gt;&amp;gt;.

Now this con

gruence is equivalent with the statement that there exists a rational function

having a for an w-fold pole and having b^ ..., bm for zeros of the first order

(Chap. VIII. 158). Since a is at infinity, such a function can be expressed
in the form (Chap. V. 56)

(as, l)r + y(as, !),

and the number of its zeros is the greater of the integers 2r, 2p + 1 + s. Thus

the function under consideration would necessarily be expressible in the

form (x, l)r . But such a function, if zero at a branch place, would be

zero to the second order. Thus no such function exists.

On the other hand the rational function y is zero to the first order at each

of the branch places alf ..., ap ,clt ..., cp , c, and is infinite at a to the (2p+ l)th

order
;
hence we have the congruence

ua &quot;
a + ......+ uap&amp;gt;

a + uc
&amp;gt;

- a + ...... + UC
P&amp;gt;

a + uc
&amp;gt;

a = 0.

202. With the half-period of which one element is expressed by

, p ,

we may associate the symbol

(KI

, K% ,
. . .

, kp \

KI ,
A?2 ,

. . .
, Kp I

wherein kg , equal to or 1, is the remainder when m, is divided by 2. The
sum of two or more such symbols is then to be formed by adding the 2p
elements separately, and replacing the sum by the remainder on division
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by 2. Thus for instance, when p= 2, we should write
(

I +
( m ]

= I

_)
.

If we call this symbol the characteristic-symbol, we have therefore proved,
in the previous article, that each of the 22p 1 possible characteristic-symbols
other than that one which has all its elements zero can be obtained as the sum

of not more than p chosen from 2p + 1 fundamental characteristic-symbols,

these 2p + I fundamental characteristic-symbols having as their sum the symbol

of which all the elements are zero. In the method here adopted p of the

fundamental symbols are associated with odd half-periods (namely those given

by ua &amp;gt;

,
. . .

,
ua a

p), and the other p+ 1 with even half-periods. It is manifest

that this theorem for characteristic-symbols, though derived by consideration

of the hyperelliptic case, is true for all cases*. We may denote the funda

mental symbols which correspond to the odd half-periods by the numbers

1, 3, 5, ..., 2p 1, and those which correspond to the even half-periods

by the numbers 0, 2, 4, 6, ..., 2p, reserving the number
2/&amp;gt;

+ 1 to represent
the symbol of which all the elements are zero. Then a symbol which is

formed by adding k of the fundamental symbols may be represented by
placing their representative numbers in sequence.

Thus for instance, for p = 2, Weierstrass has represented the symbols

H\uj H H H
oi/ ui/ vou vooy voo

respectively by the numbers

1 3024 5;

j- i 11 /10\ /00\ /10
and, accordingly, represented the symbol I

J,
which is equal to (

j
+ (

/5\
by the compound number 02. The

(

= 10 combinations of the symbols
\AJ

1, 3, 0, 2, 4 in pairs, represent the 2-^ 6 symbols other than those here

written. Further illustration is afforded by the table below ( 204).

In case p = 3, there will be seven fundamental symbols which may be

represented by the numbers 0, 1, 2, 3, 4, 5, 6. All other symbols are

represented either by a combination of two of these, or by a combination of

three of them.

It may be mentioned that the fact that, for^= 3, all the symbols are thus representable

by seven fundamental symbols is in direct correlation with the fact that a plane quartic
is determined when seven proper double tangents are given.

* The theorem is attributed to Weierstrass (Stahl, Crelle, LXXXVIII. pp. 119, 120). A further

proof, and an extension of the theorem, are given in a subsequent chapter.
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203. If in the half-period ^fl m&amp;gt;
m-,

of which an element is given by

&amp;gt; p ^ i ...... t r
, p,

we write \mg
=M

it + ^ks , ^ms
=MS + ^ks ,

where Ms , M, denote integers,

and each of ks ,
ks is either or 1, we have (cf. the formulae 190, Chap. X.)

where

X = [277 (M +W + 2r/ (M + IF)] [it + to (M+ P) -f to (M +P

and therefore

* (u ; P, k )
= e

-*--* * (u + JHm , ,)

The function represented by either side of this equation will sometimes be

represented by *t(u \^flm,^) ;
or if inw

,
TO =i*6

&quot; -f *^ + ...... +w&
&quot;, the

function will sometimes be represented by ^ (u \

w&
&quot;
a + ...... +ub

*&amp;lt;

a
),

or by

We have proved in the last chapter ( 184, 185) that every odd half-

period can be represented in the form

and, when there are no even theta functions which vanish for zero values of

the argument, that every even half-period can be represented in the form

in the hyperelliptic case every odd half-period can be represented in the

form

and every even half-period ^fT, for which ^(fl ) does not vanish, can be

represented in the form

and ( 182, Chap. X.) the zeros of the function *t(u
x z

|fl) consist of the

place z and the places n1} ..., np ,
while the zeros of the function ^ (u

x
&amp;gt;

a
\ ^O )

are the places blt ..., bp . In case p = 2 there are no even theta functions

vanishing for zero values of the argument ;
in case p = 3 there is one such

function ( 185, Chap. X.), and the corresponding even half-period fl&quot; is

such that we can put
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wherein a?, is an arbitrary place and xz is the place conjugate to xl . Since

then u x&amp;lt;

&quot; 2 = uXi &amp;gt;

a
*, this equation gives

now, as in 8 200. we easily findO J

Ur =
(tor, 3 + to

r, i + &&amp;gt;

and therefore

r, 2

r, a

Thus the even theta function which vanishes for zero values of the

argument is that associated with the characteristic symbol

In the same way for
^&amp;gt;

= 4, the 10 even theta functions which vanish for

zero values of the argument are ( 185, Chap. X.) associated with even half-

periods given by

where b is in turn each of the ten branch places.

204. The following table gives the results for p= 2. The reader is recommended
to verify the second and fifth columns. The set of p equations represented by the

equation (%Q.\=ml
&amp;gt;

r&amp;gt; l+m 2&amp;lt;

or, 2+ m/w ,, i + !&amp;gt; ,., 2
is denoted by putting fcQ

= $ f
1^ \ .

\m l
m

z j

/. Six odd theta functions in the case p = Z.

Function
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77. Ten even theta functions in the case p = 2.

Function
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205. Next we give the corresponding results for p= 3. Each half-period can be formed
as a sum of not more than 3 of the seven integrals ub- a

( 202) ;
the proper integrals

are indicated by the suffix letters employed to represent the function. We may also
associate the branch places with the numbers 0, 1, 2, 3, 4, 5, 6, say, in accordance with the
scheme

!&amp;gt; 3, 5, 0, 2, 4, 6;

then the functions ^ (w), &s (u),36 (u) will be odd, and the functions 3 (u), 92 (u), 3t (u),S6 (u)
will be even

; and every function will have a suffix formed of 1 or 2 or 3 of these numbers.
There is however another way in which the 64 characteristics can be associated with the
combinations of seven numbers, and one which has the advantage that all the seven
numbers and their 21 combinations of two are associated with odd functions, while all

the even functions except that in which the associated half-period is zero are associated
with their 35 combinations of three. It will be seen in a later chapter in how many ways
such a scheme is possible. One way is that in which the numbers

1, 2, 3, 4, 5, 6, 7

are associated respectively with the half-periods given by

, a+ Uc3 ,
a uc,

Uc
i&amp;gt;

By 201 the sum of these integrals is = 0. The numbers thus obtained are given in the second
column. Further every odd half-period can be represented by a sum u^,a- u^ , ,

- w2 ,
2)

and all the even half-periods except one as a sum w^i, OI + M&S, 2+ M^3) 3
; the positions of

n
lt n2

or of b^ b
2 , 6

3 are given in the fourth column.

7. 28 odd theta functions for p = 3.

.()

^ttia.2 (U)

a
t
a3 (u)

1

2

3

12

13

23

74

75

001,

010

110

-

B, 20
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BY ACTUAL CALCULATION

Table I. (continued.}

[205

76

56

64

45

37

27

17

14

24

34

15

25

35

16

26

36

4

uc,a

/100

110

101

001
.

010

010

101

101\

10()
1

ia 4. Ma, ,
a+ w 2 ,

=
f I 1

001

iioj

)

c
,

c
,
a3

c
,

C/7
3&amp;gt;

W
3

a
, ^

a
,

c
2

a
,

c3

a
,

c
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//. 36 even characteristics for p = 3.
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Table II. (continued).
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We can equally well choose seven fundamental odd characteristic-symbols, associated with

the integrals denoted by any one of the following sets :

c Cj ,
c c

2 ,
c c

3 ,
c

2 3 ,
c aza^ c

1
a
2 &amp;gt;

C
i
czc3

e
2
c

, CgCj, c2 c3 ,

The general theorem is it is possible, corresponding to every even characteristic
,
to

determine, in 8 ways, 7 odd characteristics a, /3, y, *, A, /z, v, such that the combinations

a, ft y, *, A, M, *, fj3, ea/c, eX/x

constitute all the 28 odd characteristics, and the combinations

f, a/3y, a*X, /3y*c

constitute all the 36 even characteristics. In the cases above f =0. The proof is given in

a subsequent chapter.

206. Consider now what are the zeros of the functions

^ (w), & (| lA + ...... + M6* a
),

where blt ... ,bk denote any k of the branch places other than a (k $-p), and u

is given by

the functions being regarded as functions of xl .

The zeros of S- (u) are the places zlt ..., zp determined by the congruence

or, by

Provided the places a,x2 , ..., xp be not the zeros of a ^-polynomial, that is,

provided none of the places x
2&amp;gt; ...,xp be at a, and there be no coincidence

expressible in the form # =
#;, the places zlf z2 , ...,zp cannot be coresidual

with anyp other places (Chap. VI. 98, and Chap. III.) and therefore (Chap.
VIII. 158) this congruence can only be satisfied when the places z1} ...,zp
are the places

Cl, X% ,
X3 ,

. . . ,
Xp ,

these are then the zeros of ^ (u), regarded as a function of x^

The two places for which .r has the same value, and y has the same value with opposite
signs, are frequently denoted by x and x.
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The zeros of *b(u\u
b

&amp;gt;

a + ...... + ubk
&amp;gt;

a
) are to be determined by the

congruence

Ux &quot;
a

i + ...... +Ux
i

a
&quot; + Ubl &amp;gt;

a + ...... + Ubk a = Ux &quot;
a Mz

&quot; a&amp;gt; ...... Uz
i

a
i&amp;gt;,

or, by
w*i, &i + W*2, x* + ...... + u*p, *i&amp;gt; + M6, 4. ...... 4. M6fc, a =

0,

which we may write also

(z1} z,, ..., zp ,
a*&quot;

1

)
=

(blt . . .
,
bk ,

x.2) . . .
,
xp) ;

in particular the zeros of S- (u ub
&amp;gt;

a
) are the places b, x.2 , ...,xp.

207. Now, in fact, if the sum of the characteristics qly ..., qn differs from

the sum of the characteristics r1} . .., rn by a characteristic consisting wholly

of integers, n being an integer not less than 2, then the quotient

; rO ...... *(*; rn)

is a periodic function of w.

For, by the formula ( 190, Chap. X.)

^ (w + n,n ; g)
= e

x (w) + 27rz ()ft9
- m

&amp;gt; ^ (it ; q),

where m denotes a row of integers, we have

f(u + flm) _ 2iri [wi(2(?
, _

2r/)
_ m,

(2 _ 2r) -j

755
and if S^ Sr , Sg 2r, each consist of a row of integers the right-hand

side is equal to 1.

Hence, when the arguments, u, are as in 206, the function f(u) is a

rational function of the places xlt ..., xp .

208. It follows therefore that the function

*(*)
is a rational function of the places xl , ...,xp . By what has been proved

in regard to the zeros of the numerator and denominator it has, as a function

of a?!, the zero b, of the second order, and is infinite at a, that is, at infinity,

also to the second order. Thus it is equal to M (b x^, where M does not

depend on xv As the function is symmetrical in xlt x.2 , ...,xp ,
it must

therefore be equal to K (b x^) ... (b xp),
where K is an absolute constant.

Therefore the function

may be interpreted as a single valued function of the places xl} ...,xp ,

on the Riemann surface, dissected by the *2p period loops. The values of

the function on the two sides of any period loop have a quotient which is

constant along that loop, and equal to + 1.
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The function has been considered by Rosenhain*, Weierstrass f, RiemannJ and

Brioschi. We shall denote the quotient 3
(u\u!&amp;gt;- *} I S (u} by qb (u). There are 2p+ l such

functions, according to the position of b. Of these ^ (u), ..., q
aj&amp;gt;

(u) are odd functions,

and q (u), qc (u}, ..., qc (u) are even functions. The functions are clearly generalisations

of the functions \/x= sn u, \A~ #= cn u, \/l fc
tx= dn u, obtained from the consideration

of the integral

dx

209. Consider next the function

b a

* (111 1 -&amp;gt;ib, , a\ ^V ( ii i -i/fyfcj
a \

r \*IF* / j \ M&quot;

,

&quot;&amp;lt; /

wherein 61; ..., 6jfc are any A; branch places other than a. We consider only

the cases k &amp;lt; p + 1. By what has been shewn, the function is rational in xlt

and if zlt ..., zp denote the zeros of ^ (u ub a + +&*.) the zeros of the

numerator, as here written, consist of the places

j_j k\
y IV fjK 1 nn /y
--

I ,
. .

,
^

i/ 1 U , J , &amp;gt;
/&amp;gt;

and the zeros of the denominator consist of the places

Thus the rational function of x
l has for zeros the places zlt ..., zp ,

ak
~l

,

and, for poles, the places blt ..., &&, x.2 , ..., xp . It has already been otherwise

shewn that these two sets of p + k - 1 places are coresidual. Now any
rational function, of the place x, which has these poles, can (Chap. VI. 89)

be written in the form

uy + v (x
- 6Q . . . (x

- bk)

(x &i) . . . (x bk) (x x.^...(x xp)

wherein u, v are suitable integral polynomials in x, so chosen that the

numerator vanishes at the places x2 , ..., xp. The denominator, as here

written, vanishes to the second order at each of blt ..., bk, and also vanishes

at the places x2 ,
x2 , ..., xp ,

xp .

Let X, //,
be the highest powers of x respectively in u and v. Then, in

order that this function may be zero at the place a, that is, at infinity, to the

order & 1, it is necessary that the greater of the two numbers

* Memoires par divers savants, t. xi. (1851), pp. 361 468.

t By Weierstrass the function is multiplied by a certain constant factor and denoted by al(u).
In the general form enunciated, as a quotient of products of theta functions, Werke

(Leipzig, 1876), p. 134
( 27).

Annali di Mat. t. x. (1880), t. xiv. (1886).
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(wherein 2 ( p + k - 1) is the order of infinity, at infinity, of the denominator)
should be equal to (& !). Since one of these numbers is odd and the

other even, they cannot be both equal to (&-!). Further in order that

the ratios of the A, + /* + 2 coefficients in u, v may be capable of being chosen

so that the numerator vanishes in the places x.2 , ..., xp ,
it is necessary that

X + M + 1 should not be less than p 1. And, since a rational function

is entirely determined when its poles and all but p of its zeros are given,
these conditions should entirely determine the function.

In fact we easily find from these conditions that the case 2\+2p+ 1
&amp;gt;2(/i-f&)

can only occur when k is even, and then X = %k 1, /M =p 1 ^k, and
that the case 2X + 2p + 1 &amp;lt; 2yu, + 2k can only occur when k is odd, and then

X = (k 3), p = p ^ (k + 1). In both cases X + /* + 2 =p.

By introducing the condition that the polynomial uy + v(x-b1 ) ... (a
- bk)

should vanish in the places #2 , ..., xp we are able, save for a factor not

depending on #, y, to express this polynomial as the product of (x ^^...(x &*)

by a determinant of p rows and columns of which, for r &amp;gt; 1, the rth row is

formed with the elements

A-l
r yr yr

wherein $(x) denotes (x b^ . . . (x bk),
the first row being of the same

form with the omission of the suffixes.

Therefore, noticing that F is symmetrical in the places asl} ..., a;p ,
we

infer, denoting the product of the differences of ar1} ..., xp by A(#i, ..., xp),

that

lavy, jfr Vr M M-I J
*-1&amp;gt; &quot;&quot;

where (7 is an absolute constant, and the numerator denotes a determinant

in which the first, second, ... rows contain, respectively, xlt x 2&amp;gt; ...; and here

when & is even, \ = ^k 1, p=p 1 1&

and when k is odd, X = ^(& 3), /*
=

jj ^ (k + 1).

210. By means of the algebraic expression which we have already
obtained for the quotients ^ (u ub

&amp;lt;

a
)/^ (u), we are now able to deduce an

algebraic expression for the quotients

(u) ;

since it has already been shewn that by taking k in turn equal to 1, 2, ...,p,

and taking all possible sets b1} ..., bk corresponding to any value of k, the

half-periods represented by ub
i&amp;gt;

a + ...... -\-u
b

*&amp;gt;
a consist of all possible half-

periods except that one which is identically zero, it follows that, in the
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hyperelliptic case, if u denote ux &amp;gt;&amp;lt;

a
&amp;gt; + ...... + uxi a

, and q denote in turn all

possible half-integer characteristics except the identically zero characteristic,
all the 2^-1 ratios ^ (u ; q)^ (u) can be expressed algebraically in terms of
xl} ..., xp , by the formulae which have been given.

The simplest case is when k = 2
;
then we have A, = 0, //,

= p - 2, and

_
: : _-

bj (xr
-

6,) jRT^)
where ^ (a?)

= (x
- x^ (x

- #2) . . . (x - xp}, and C is an absolute constant.

Denoting the quotient ^ (u ub a + ifr, )$ (u) by qbii &2 , we have

=i

- -
-

&i) (a?r
- 62) .R ( r)

where ^I
lj2

is an absolute constant; and there are p(2p + l) such
functions.

When k = 3, we have X = 0, n =p - 2, and, if qbl&amp;gt;bl&amp;gt;bt
denote the quotient

(u \u
b a + ifa a + ub a

)/^ (u), we obtain

^&amp;gt; v 1= ---

where B
Jt 2i 3 is an absolute constant. It is however clear that

&amp;lt;?&! ,
62 &amp;lt;?&i,&3 _ /; 7 x g&, ,62,63

so that the functions with three suffixes are immediately expressible by those
with one and those with two suffixes.

More generally, the 2* - 1 quotients %(u; q)/$ (u), depending only on
the p places xlt ...,xp , must be connected by 2 2P-p-l algebraical rela

tions; and since (Chap. IX.) any argument can be expressed in the form
was

&quot; + ...... +M*P.P, it follows that these may be regarded as relations

connecting Riemann theta functions of arbitrary argument. This statement
is true whether the surface be hyperelliptic or not.

Of such relations one simple and obvious one for the hyperelliptic case under con
sideration may be mentioned at once. We clearly have

and therefore

^^5M3 (u) 3
bl (w) +^-

l^3&1 (u) \(u) +
b

-^* 3
blbtW3bt (u),= 0.

It is proved below ( 213) that A^ : A\ : A\ 2
= (b.,~b3) : (b3 ~bj : (b^bj.

Other relations will be given for the casesjo = 2, p= 3. A set of relations connecting
the y s of single and double suffixes, for any value of p, is given by Weierstrass (Crelle LII

Werke I. p. 336).
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211. Ex. i. Prove that the rational function having the places x
lt ..., xp , a, as poles,

and the branch place b as one zero, is given by

where R () = ( x} ({- x^ (^-^p)&amp;gt; and, in the summation, x
, y are to be replaced

by x, y.

Prove that if u denote the argument

then
52

(M u&amp;lt;&amp;gt;- ) Z2

^.&amp;gt; / v A
(b~x)(b-x1 ) ...... (b-xvy

where A is an absolute constant.

Prove for example, in the elliptic case, with Weierstrass s notation, that

Ex. ii. If Zr denote the function Z when the branch place br is put in place of 6, and
R (br) denote (b r x) (br

-
Xj) ...... (br xp\ and we put

=

prove that

-r A (A , ^j, ..., ^p),

where B is an absolute constant, A (A; xlt ..., xp) denotes the product of all the differences

of the (p + l) quantities x, x^ ..., xp ,
&amp;lt;j) (xr)

= (xr b^) ...... (xr bk), and the determinant is

one ofp+ l rows and columns in which, in the first row, x
, y are to be replaced by x, y.

Prove that, when k is even, X =J(-2). /*=P~\k, and, when k is odd, X = |( 1),

Ex. iii. Hence prove that the function

multiple of

A(.r, j?ls ..., J7P)

This formula is true when k= \.

Ex. iv. A particular case is when = 2. Then the function 5 (M u bl&amp;gt;a+ ub2 a
)/3(u) is

a constant multiple of

wherein /2
(

Ex. v. Verify that the formula of Ex. iii. includes the formulae of the text ( 210) ;

shew that when x is put at infinity the values of X, /x
in the determinant of 209 are

properly obtained.
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Ex. vi. Verify that the expression ^(x^b; a,x1 , ..., xp )
of 130, Chap. VII., takes

the form given for the function Z of Ex. i. when a is the place infinity.

Ex. vii. Iff(x~) denote the polynomial

prove that any rational integral polynomial, F(x, z), which is symmetric in the two

variables x, z and of order p+ l in each of them, and satisfies the conditions

is of the form

F(x,z)=f(x,z) + (x-z)*+(x,z),

where (cf. p. 195), with A = A, A
2 ,) + 3

=
0,

P+I

f (x, z)=-S x^zi

(2A 2i+ X2i + 1 (x+z)},
t=0

and ^ (x, z) is an integral polynomial, symmetric in x, z, of order/)- 1 in each*.

In case jo
=

2, and f(x) = (x-a 1 ) (x a^)(x c) (x-c1)(x c2), prove that a form of

F(x, z) is given by

F (x, z)
= (x- ctj) (x

-
02) (z -c)(z- Cj) (z

- c2) + (z
- a

t ) (z
-

2) (x
-

c) (x -c^(x- c2).

Ex. viii. If for purposes of operation we introduce homogeneous variables and write

prove that a form of F(x, z) is given by

\P / 3

A*

where, after differentiation, jc
lt
x2 ,

z
lt z

2
are to be replaced by x, 1, z, 1 respectively.

This is the same as that which in the ordinary symbolical notation for binary forms is

J 1 J 1- J/ \ n P+ 1 P+l j-/ \ 1
2^+2

denoted by/ (x, z)
= 2ax az , f(x) being ax .

Ex. ix. Using the form of Ex. viii. for F(x, z), prove that if elt e2 , x, xly ..., xp
be any values of x, we have

s f^
i ^s f(x &quot;

x
*&amp;gt; /(ei) /C^) 7(gi&amp;gt; %)

r=0 [0 S3F&quot;

1
&quot;

G&quot; (o?r) 6r&quot; (j?.) [(? (6l)]
2 T

[&amp;gt;&quot; (e2)]
2 *

(6l ) G (ej

where G (^)
= (^-e1 ) (

- e.
2) (g

-
x) (i- xj ...... (^ xp),and the double summation on the

left refers to every one of the \p (p+ l) pairs of quantities chosen from x, xlt ..., xp .

Ex. x. Hence it follows!, when y
z
=f(x\ yr

2
=/(-*V)&amp;gt; etc., and R() = (-$) (^-^1)...

(I
- XP\ that

R(^Rif ^*- Jfe_ - T - /W ^ ^
L (i

-
^r) (*2

-
r) ^ (ir)J (!

- e

is equal to

*
It follows that the hyperelliptic canonical integral of the third kind obtained on page 195

can be changed into the most general canonical integral, -R*1 a
(p. 194), in which the matrix a

has any value, by taking, instead of/(x, z), a suitable polynomial F(x, z) satisfying the conditions

of Ex. vii.

t The result of this Example is given by Bolza, Gotting. Nachrichten, 1894, p. 268.
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where the summation refers to every pair from the p+ l quantities x, x, ..., zp ,
and

/(#, 2) denotes the special value of F(x, 2) obtained in Ex. viii.

Ex. xi. It follows therefore by Ex. iv. that when b
t ,

b.
2
are any branch places of the

surface associated with the equation y*-f(%) = 0, there exists an equation of the form

V (u\u
b a + ub a

)_ 2yryg -f(xr,xg) f (blt b,}

&W~ (l) G (xr}G (xg } ~(V-~^?

where C is an absolute constant, (*() = ( bj (
- b2) (g a;) (g

-
x^) ...... (%-Xp), and

u= ux &amp;gt;

a+ uXl cll + ...... +UXP a
P. The importance of this result will appear below.

212. The formulae of 208, 210 furnish a solution of the inversion

problem expressed by the p equations

*!,&amp;lt;*! Xp,dp / *
-I C \

Ui + ...... +Ui =ut ; ( 1, 2, ...,
j&amp;gt;&amp;gt;

For instance the solution is given by the 2p + 1 equations

from any p of these equations xl} ...,xp can be expressed as single valued

functions of the arbitrary arguments ult ..., up .

And it is easy to determine the value of A 2
. For let blt ..., bp , 6/, ..., bp

denote the finite branch places other than 6. As already remarked ( 201)
we have

\c, GI, . . .
, Cp) = (ft, a/1, . . .

, Up)

and therefore

(b, b1} ...,bp )
=

(ft, bi, ..., bp ).

Now we easily find by the formulae of 190, Chap. X. that if P be a set

of 2p integers, Plt ..., Pp , P/, ..., P/,

^(u) n
.pp ,

hence, if ub a = %^ v ,
and u = w6

-
a + ...... + ub

p&amp;lt;

a
,
we have, by the formula

under consideration, writing b1} ..., bp in place of xl} ..., xp ,
the equation

and, writing &/, ..., bp in place of xlt ..., xp ,
we have

^2 /,/ i n.b, a ,b, a\r* \ u o ^ It
\lt ) . n , ,. n

^(^ + ^ g
)

/i(6
&quot;

6l) - (6

thus, by multiplication

e -pi&amp;gt; = A *

(&
_

&i) . . . (6
._

bp) (b
_ 6;) ..
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and hence

W(u\u
b

&amp;gt;

a
) (b-xl)(b-x^...(b-xp)

where/(#) denotes (x a^) ... (x ap) (x c}(x cl}...(x cp),
and e irit&amp;gt;p = 1

according as ub
&amp;gt;

a
is an odd or even half-period.

The reader should deduce this result from the equation ( 171, Chap. IX.)

U t *, \ V(TT TT -., \
^ ~~^(xi)} ...... (^ ~^(xv)}

.... UP, &,yi) ...... r(V-i V* **&amp;gt;y*&amp;gt;-

by taking Z to be the rational function of the second order, x.

a&amp;gt; + ...... + uxv&amp;gt;

a
P, we deduce (see Ex. i. 211)

yr 1

If in particular we put b in turn at the places a1} ..., ap , write

P (x)
= (x-al ) ... (x

- ap) and Q (x} = (x
-

c) (x
- cx ) . . . (x

- cp), and use the

equation

(x
-

a?x) . . . (x - xp} __ | (at
- x^ . . . (af

-
Xp)

~P(x)
h
f~ (a&amp;gt;-di)P(at)

we can infer that oc1} ..., xp are the roots of the equation*

t=i

where e^ is + 1 and is such that we have

&amp;lt;&_(U

tt. a
) (at

- Xj _ (dj
- Xp}

Another form of this equation for xlt ..., xp is given below ( 216), where
the equation determining yt from x is also given.

213. We can also obtain the constant factor in the algebraic expression of the

(u\u
bl a+ub* a

)3(u)+ 3 (u ?
6

&quot;
a

) 3 (u\u^
a

}.

Let
/&amp;gt;j

, b.i
denote any branch places, and choose zlt ..., zp so that

then zlt ..., zpt a are the zeros of a rational function which vanishes in ^, ..., .rp , 6,.
Such a function can be expressed in the form

*
Cf. Weierstrass, Math. Werke (Berlin, 1894), vol. i. p. 328,
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where (x, l^
7 &quot; 1 is an integral polynomial in x whose coefficients are to be chosen to satisfy

the p equations

-yi+ (#i-6i)fo, IX -^O, (i
=

l, 2, ...,p) ;

thus the function is

where F(.r)= (x x
1 ) ... (x-x^) ; and, if the coefficient of x2P + 1 in the equation associated

with the Riemann surface be taken to be 4, we have

^-&amp;lt;*-^t*(4p[^

and therefore, putting b
t
for x,

y*- i T

Now we have found, denoting ux&amp;gt;! a&amp;gt; + ...... + u*** P by u, and uZl&amp;gt;
a + ...... + w2

&quot;

a
&quot; by v,

the results

where w^2 a= ^Qp p-; hence we have

1 *

y* JLT

which, by the formulae of 190, is the same as

* -
y&amp;lt;_

5 (u\u
b

&amp;gt;&amp;lt;

a
) 5 (

M
|

M6
-
a
)

where e is a certain fourth root of unity.

Thus the method of this not only reproduces the result of 210, but determines the

constant factor.

Ex. Determine the constant factors in the formulae of 208, 210, 211.

214. Beside such formulae as those so far developed, which express

products of theta functions algebraically, there are formulae which express
differential coefficients of theta functions algebraically; as the second

differential coefficients of ^(w) in regard to the arguments u^, ..., up are

periodic functions of these arguments, this was to be expected.

We have ( 193, Chap. X.) obtained* the formula

-, I= T .

J-*i i . ~K i_\~K9 &quot;v \K&amp;gt; A~/J J^
*=i at

Cf, also Thomae, Crelle, LXXI., xciv.
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we denote by hr the sum of the homogeneous products of x
l , ..., xp ,

r together,

without repetitions, and use the abbreviation

further, for the p fundamental integrals MX
M

,
. . .

,
up

M
,
we take the integrals

f* dx x x dx x xP 1 dxdx
f
x x dx

f

x xP 1 dx

y Jp y
*

/p y

then it is immediately verified that

i&k ,
xl} ...,Xp)/dxk~

&quot;*

where jP (a;) denotes (# a,-,)
... (x xp ).

Thus, if p, v denote the values of x and y at the place /z,
we have, writing

a, Oj, ..., 03,
for w, Wj, ..., w^ ( 200),

- & (M*.
- ux &amp;gt;&amp;lt;

a - ...... - W*P. a
^) + ;-(t^.

- *... - ...... -UX
P&amp;lt;

a
p}

T
*&amp;gt;

, i gxp- -fo*; ^i* &amp;gt;

ay) fy + y* y* + H .

*%
therefore, also, the function

is equal to

.. ..
_

t=i JT 0*) p,
- xk

which is independent of the place x.

Now let R (t) denote (t x)(tx1 ) ... (txp), and use the abbreviation

given by the equation

,

- , ...,

then also

,
,

-- ,
.- _ , ,

1^ (xp)
Jp-{~ 1 ^ l

Now

is equal to

(, A-
i 4- A-2)

-
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wherein kr denotes the sum of the homogeneous products of x2 , ..., xp ,

without repetitions, r together, and is therefore equal to

or to

(Xi X) Jp_i_i {Xi ,
X2 &amp;gt; &amp;gt;

x
y&amp;gt;}

Hence

(x,
-

x) F
f

(x,)

_
F (x,) x-Xi F (a?,)

While, also,

Thus

^_t , !,..., y
- -

,
, .

k=l *
\- k/

Therefore the expression

is equal to

In this equation the left-hand side is symmetrical in x, x1} ..., xp ,
and the

right-hand side does not contain x. Hence the left-hand side is a constant

in regard to x, and, therefore, also in regard to x1} ..., xp . That is, the left-

hand side is an absolute constant, depending on the place /*. Denoting this

constant by C we have

a

i,--&amp;gt; Xp-l ,_ _ _
2R (x) 2R (xp)

215. From this equation another important result can be deduced. It

is clear that the function

does not become infinite when x approaches the place a, that is, the place

infinity. If we express the value of this function by the equation just

obtained, it is immediately seen that the limit of
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and that the expression

when expanded in powers oft by the substitutions ac = -,y = ^ (1 + At2 + ...),&quot;

t

where A is a certain constant, contains only odd powers of t. Hence the
limit when t is zero of the terms of the expansion of this expression other
than those containing negative powers of t, is absolute zero, and therefore,
does not depend on the places xl} ...,xp . The terms of the expansion which
contain negative powers of t are cancelled by terms arising from the integral

L^ . Since this integral does not contain xl} ..., x
p we infer that the

difference

r
x * _ yxp-j( , BI, --, a?)

2R (x)

has a limit independent of xl} ..., xp , and, therefore, that

no additive constant being necessary because, as & (u) is an odd function,
both sides of the equation vanish when xlt ..., xp are respectively at the

places Oj, ...,ap . As any argument can be written, save for periods, in the

form ux a
&amp;gt; + . . . +UX

P&amp;gt;

a
v, this equation is theoretically sufficient to enable us to

express (w) for any value of u.

Ex. i. It can easily be shewn ( 200) that

uc a+ uc
&amp;gt;

a
&amp;lt; + ...... -\-u

c* aP= Q.

Thus the final- formula of 214 immediately gives

...... ......

fc=i 2 (xjc- c) F (xk)

Ex. ii. In case p= \ we infer from the formula just obtained, and from the final

formula of 214, respectively, the results

where D is an absolute constant. Thus

X 961

This is practically equivalent with the well-known formula

The identification can be made complete by means of the facts (i) The Weierstrass

argument u is equal to ua
&amp;gt;

x
,
in our notation, so that

y=-$&amp;gt; (u), (ii) u
x&amp;lt;

a = (a + o&amp;gt; -u, so

that ^(u
x-

&quot;0
= ^ ( + -)= -4 &quot; =- r*^?

,
as we easily find when Z* M

is

7 rt
i y

B. 21
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chosen as in 138, Ex. i., (iii) du= , (iv) therefore fx (u
x a

&amp;gt;)

= -
u, (v) the branch

i7

places clt alt c are chosen by Weierstrass (in accordance with the formula ^+62+ 63=0)

so that the limit of
$&amp;gt;u ^, when u= 0, is 0. The effect of this is that the constant

D is zero.

Ex. iii. Forp= 2 we have

-
f, (u

x&amp;gt;
a+uXl a

i + ux *&amp;gt;

a
*)
= Lx + L* ^+Z*&quot;

*

-
2 i--g *t--i c

A- - #2) 2 (#! x} fa #2) 2 (#2
-
x) (xz

-
x^)

l

and

-t
*~*

o *

where with a suitable determination of the matrix a which occurs in the definition of the

integrals L
x M and in the function 3 (u), we may take

( 138, Ex. i. Chap. VII.)

For any values ofp we obtain

-fP 0* i&amp;gt;0l + ...... + uxP&amp;lt;

a
i&amp;gt;)=L

x a
&amp;gt; + ...... +Za!P &amp;gt;aP=-^ 1 I f

x

4 *=ijak y

Ex. iv. We have
( 210) obtained 22

&quot; - 1 formulae of the form

$(u\u
b

&quot;
a+ ...... +ubk &amp;gt;

a
)~~

where Z is an algebraical function, and the arguments ult ..., ut)
are given by

the integrals being taken as in 214, these equations lead to

Hence we have

For instance, when =
1, and Z is a constant multiple of ^(b^x-^ ...... (bl

xp\ we
obtain

so that

a\_/*i, i i -L/^I^P-V &r (r r r}
/&quot;* |

+ ...... +
,-

* aJp/vT Jfi-*-iw *i &quot;*i^
,.=1^^ ^r; [_

xr-b

_TXl ,a l , .TXp.Op | ^ Xp-i^r? ^, #1, ...,^p)~ + ...... + --- &quot;
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By means of the formula

which is easily obtained from the formulae of 190, we can infer that the formula just

obtained is in accordance with the final formula of 214.

(2-f-l\/

even theta functions which do not vanish
;
and the corresponding half-periods are con

gruent to expressions of the form

It may be shewn in fact that these half-periods are obtained by taking for x
v ,

. . .
,
xv the

(
P

] possible sets of p branch places that can be chosen from o 15 ..., ap , c, c
1? ..., cp .

V P )

Hence it follows from the formula of the text (p. 321) that if $Qk be any even half-period

corresponding to a non-vanishing theta function, we have

This formula generalises the well-known elliptic function formula expressed by fw = ^.

To explain the notation a particular case may be given ;
we have

,(,,,., &amp;lt;*

2 , r , ..-, *P,r)=r,i,r, &&amp;lt;1*t*f)= -Z****
and

fi( ,,r, 2,r, ., ft r)=? &amp;lt;,r,or W* &quot;*)

= - L* *.

Thus each of the 2p
2
quantities ^ ,., 7? f, r can be expressed as ^-functions of half-

periods.

Ex. vi. The formula of the text (p. 321) is equivalent to

where

For example when p=

216. It is easy to prove, as remarked in Ex. iii. 215, that if

and the matrix a ( 138, Chap. VII.) be determined so that the integrals

L*
*
have the value found in 138, Ex. i., then

| [*ta?dxi -
.

=lJ a y
a

Therefore, if - %r (u) be denoted by $&amp;gt;

r
,
i (u), we have

212
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and thus, as follows from the definition of the arguments u,

where F (x) denotes (x x^) ... (x xp).

Whence, if a; be any argument whatever,

X
P | xi_,

T? j i / \ i-x
&amp;lt;c t= l^

y Pi i \^)&amp;gt; 4 ^2p+l
~

i=l k=l

but we have
P p ._.

&quot;

Thus

p 2 i-l , .

V/c
= Z Xk K&amp;gt;PI i (u).

Thus, if we suppose Xap+i
=

4, the values of a?1} ..., a?p satisfying the

inversion problem expressed by the equations

M = w*&quot;
a

-f ...... + w^ v

are the roots of the equation

F (x) = XP- XV-* ppf p (M)
- a^

9fi^(u)- ...... -p^ (u) = 0.

In other words, if the sum of the homogeneous products of r dimensions,
without repetitions, of the quantities xl} ...,xp be denoted by hr ,

we have

hr = (-y-
1

$&amp;gt;p&amp;gt;p-r+i(u).

Further, from the equation

-i fa , ^i ..... XP)

fat F (xk)

putting p for i, we infer that

,

- .
dup \_ ditp } x=Xk

because F(xk}
= 0. Thus, if we use the abbreviation

we obtain
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These equations constitute a complete solution of the inversion problem.
In the ^-functions the matrix a is as in 138, Ex. i., and the integrals of the

first kind are as in 214.

We have previously ( 212) shewn that xl} ..., xp are determinable from

p such equations as

^ (u |

M &amp;lt;
&amp;gt;

a
) =v (at

- ap . . . (en- xp) _(ai -xl)...(ai -xp)
V(u) ^-p -^Qla,) K Say &quot;

Thus we have p equations of the form

Ex. i. For p= 1 we have

This is equivalent to the equation which is commonly written in the form

3 9 / / \
*

sn2
(u v e

1
es)

v. ii. For p= 2 we have

We may denote the left-hand sides of these equations respectively by /i^
2

, Mq.
Ex. iii. Prove that, with

AflS^~&amp;lt;%IVi()-ft. t&amp;lt;4ll^ MI= V^/K), we have

]+ 12 [^22 () ~ ^22 00]-

-. iv. Prove that

^. v. If, with P (^) to denote (x-a^ ...... (x
-

p), we put

F = /&quot;* P(a?) 0^ rp P
(a:) d

J ai x-ar 2y ]
at&amp;gt;

x-ar 2

prove that

3 a _ 3
o y/ T ...... ~r

oT?&quot;
* 5o ^

i 9 Vp dup

Ex. vi. With the same notation, shew that if

then
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The arguments V
l , ..., Vp are those used by Weierstrass (Math. Werke, Bd. i. Berlin,

1894, p. 297). The result of Ex. iv. is necessary to compare his results with those here

obtained. The equation yr
=

\js(xr) is given by Weierstrass. The relation of Ex. vi.

is given by Hancock (Eine Form des Additionstheorem u. s. w. Diss. Berlin, 1894,

Bernstein).

With these arguments we have

Ex. vii. Prove from the formula

-(i(u
x

where

that the function

F(x)

is independent of the place x. Here c is an arbitrary place and F (x)
= (x

-
x-^) ...... (x

-
x^).

Ex. viii. If ^ a

c
denote the integral if

* -
222^, ,

u
z
:

c

uf
a

,
obtained in 138, and

F^
a
denote -D^ &quot;, prove that in the hyperelliptic case, with the matrix a determined as

in Ex. i. 138, when the place a is at infinity,

2 ;/* y

Hence, when A2P + 1
=

4, shew that the equation obtained in 215 (p. 321) is deducible

from the equation (Chap. X. 196)

Ex. ix. We can also express the function p (u+v)- ,,(11)
-

p (v), which is clearly a

periodic function of the arguments u, v, in an algebraical form, and in a way which

generalizes the formula of Jacobi s elliptic functions given by

)
= k* sn wsn vsn (u+ v).

For if we take places xlt ..., ,
such that

these 3p places will be the zeros of a rational function which has alt ..., at,
as poles, each

to the third order. This function is expressible in the form (My+ NP)/P2
,
where P

denotes (x a
x) ...... (x ap\ Mis an integral polynomial in x of order p l, and A7

is an

integral polynomial in x of order p. Denoting this function by Zt
we have

dl 1 =
ay&amp;gt;
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[X T^f/T

by 154, Chap. VIII., where 1=1%
*= iX a&amp;gt;

+ ,
I -

. Writing Z in the form
. M y

and taking X2p + 1
= 4, we find the value of the integral K to be - 2A.

But from the equation

N*P-4JPQ= (x-xJ ......(x-xp)(x-zl } ...... (#-*p)(A -fi) ...... (*-W,

where Q= (x c) (x q) ...... (#
- cp), we have, putting ; for x,

= 2 V - Q (&amp;lt;j (Aa*-
1 + ...), (i

=
l, 2, ...,

where pi=\/(ai
-x

l ) ...... (-#,,), ft^(r-*i) ...... K-^), ^i= V(a-fi) ...... (-&&amp;gt;);

solving these equations for A we eventually have*

= 5

Ex. x. Obtain, for jo
=

2, the corresponding expression for ^ (u~) + fj (v)
-

Ex. xi. Denoting-7
-= =. by (7v, the equation

= 2

gives

W= 2 &amp;lt;7i [pS
r)

fc-.Ptfi
r)

]
OT (r=l, 2, ..., p),

where p/ denotes x V(i *
i) ...... (i - ^P)-

It has been shewn that pt is a single valued

function of u and it may be denoted by pi (u). Similarly Wi is a single valued function

of u+ v, being equal to Pi( u v). The equation here obtained enables us therefore to

express pi (u+v] in terms of Pi(u], Pi(v), and the diflferential coefficients of these; for

we have obtained sufficient equations to express |ppi ,. (u\ ^&amp;gt;;)&amp;gt;
r (v) in terms of the functions

Pi (u\ pi (v). A developed result is obtained below in the case p = 2, in a more elementary

way.

217. We have obtained in the last chapter ( 197) the equation

S% j (u
x m - u* &quot;&amp;gt; - ...... - U*P&amp;gt; P) in (x) & (xp)

= DxDXpR
x
xp c .

i j

Hence, adopting that determination of the matrix a, occurring in the

integrals L* *, and the function S- (u) ( 192, Chap. X.), which gives the

particular forms for L*
*
obtained in 138, Ex. i., we have in the hyperellip-

tic case

(M*. + w*. + .. ..+U*P&amp;gt; tyaf-W-
1

4 (a?
-

serf

P+I
where f(x, z) = S xlz l [2^ + \^+1 (x + z}\ This equation is, however, in-

t=

* This equation, with the integrals L x&amp;lt;
a
on the left-hand side, is given by Forsyth, Phil.

Trans. 1883, Part i.
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dependent of the particular matrix a adopted. For suppose, instead of the

particular integral

Tx,n (
xdx^~ i

Li ,
= 2, Xjfc+i+i (k+l-i) &,

J H y k = i

we take

T X &amp;gt; * v n x
&amp;gt; *

IH - 2, C
i&amp;gt;k

uk ,

k=l

where Cijk
= Ckji ;

then ( 138) this is equivalent to replacing the particular
matrix a by a + \ C, where C is an arbitrary symmetrical matrix, and we
have the following resulting changes (p. 315)

R%c (p. 194) becomes changed to Rx

^
* - S2C^ kuf % , so that,

f(x, z) (p. 195) becomes changed to/(#, z)
- 4 (x z)- 22(7;, kO?-

1?*- 1

,

S-(w) ( 189) becomes multiplied by

and thus ^(u) is increased by C
it 1 itl + ...... + C

iipup ,
and instead of

$&amp;gt;ij(u)

we have ^ j (u) C
ti j.

Since now ux &amp;gt;

a + ux *&amp;gt;

a = ux &amp;gt;

a + ux &amp;gt;

a
,
we have \p (p + 1) equations of the

form

where u= ux &amp;gt;

a + ux &quot;
a

&amp;gt; + ...... +uxp a
p, r = Q, I, ..., p, and 6 = 0, 1, ..., p.

Hence, if e1} e2 denote any quantities we obtain by calculation

* -

here the matrix a is arbitrary, the polynomial f(xr,
xs) being correspond

ingly chosen, and

Suppose now that f(x, z) =f(x, z) + 4 (# ^)
2

SS^i, jr , where
i i

f(x, z) is the form obtained in Ex. viii. 211
;
then we obtain

ss EM) -A J !- .*- -

and by Ex. x. 211 this is equal to

_
4 (&1

- e# R (

4 (6l
- e2)

2 ^ (e2) 4 (e,
-
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and therefore

4 (e,
-

e,J R (,) 4 (e,
-

etf R (&amp;lt;?
2) **(*- etf

This is a very general formula*
;
in it the matrix a is arbitrary.

It follows from Ex. xi. 211 that if blt b2 be any branch places, we have

where E is a certain constant (cf. 213, 212). This equation is also inde

pendent of the determination of the matrix a.

By solving %p(p + l) equations of this form, wherein 61} 62 are in turn
taken to be every pair chosen from any p + 1 branch places, we can express

22%&amp;gt;i,j (w) e\ e
J

2 as a linear function of \p (p + 1) squared theta quotients,

el ,
e2 being any quantities whatever.

By putting 62 at a, that is at infinity (first dividing by 6f
~ 1

), and putting
x also at a, this becomes the formula already obtained ( 216)

Ex. i. When jo
=

1, taking the fundamental equation to be

the expression
&amp;gt;-**-**-*,

p+i
/(o;,4 =2^[2X 2i+ X

2i

and

Therefore, by the formula at the middle of page 328, taking the matrix a to have the
particular determination of 138, Ex. i.,

*
\x-xj

this is a well-known result.

Ex. ii. When p= 2, we easily find

It is given by Bolza, Gottinger Nachrichten, 1894, p. 268.
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and thus the expression

i 2 i. 2 i 2 s, 2

is equal to

, a?g) (^- e^ (^ - e2)

4(a?-a?2)
2

_

(#2 a?) (a?2
- a?

x )
4 (a: a^)

2

Herein the matrix a is perfectly general. Adopting the particular determination of

138, Ex. i., we have, since the term in f(x, z) of highest degree in x is A2p + 1
#p + 12p

,
=4ar3s2

,

say, by putting the place x at a, that is at infinity, the result

Pi, 1 () + (1 + 62) Pi, 2 00 + *1*2
&amp;gt;

2&amp;gt; 2 () =
, 2

where u=uXl ai + ux- a2
.

^r. iii. Prove, for jo
= 2, when the matrix a is as in 138, Ex. i., that

).^

where e^ e2 are any quantities, u= uXl ai + ux* tt2
,
and ^19 /a2

are as in 216 (cf. 213).

Ex. iv. From the formula, for&amp;gt;= 2
( 217, 216, 213),

where a
1}

cr
2
are the branch places as before denoted, infer

( 216, Ex. iii.) that

Pll (*0
-

Pll ( + Pl2W P22 ( )
-
Pl2 ( ) P22 () =^T [?12

2~
? l2

2 -
?!

2
?2

2+
Ct-j

W
2

Prove also that, for any value of u, and any position of x,

ff&amp;gt;u (M*. + u)
- pu (w)+

^&amp;gt;12 (M*- + M)
^&amp;gt;22 (M)

-
g&amp;gt;22 (u*&amp;gt;

. v. If 6
1} ..., 6P + 1

be any (p+ 1) branch places, and e1? e2 any quantities whatever,

= (#-&i) ...... (^-&P+ i),
J/ (^)

= (^-e1)(^-e2)(^-61 ) ...... (^-&p + 1 ), prove that

where the matrix a has a perfectly general value, r, s consist of every pair of different

numbers from the numbers 1, 2, ..., (p+ 1), and Er , 8 are constants.

218. We conclude this chapter with some further details in regard to

the case p = 2, which will furnish a useful introduction to the problems of

future chapters of the present volume. We have in case p = 1 such a formula

as that expressed by the equation

&amp;lt;r(u + u ) a-(u u ) . ,. , .

.ooVoo -tw-tw&amp;gt;

we investigate now, in case p = 2, corresponding formulae for the functions

- u )
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by division of the results we obtain a formula expressing the theta quotient

^(M+W ub a)+^(u+u } by theta quotients of the arguments u, u ;
this formula

may be called the addition equation for the theta quotient ^ (u ub
&amp;gt;

) -r- S- (u).

Though we shall in a future chapter obtain the result in another way, it will

be found that a certain interest attaches to the mode of proof employed here.

Determine the places aclt xz , a?/, xz so that

u =

then, in order to find where the function &amp;lt;& (u
x

&quot;
a

i + ux *&amp;gt;

a*

vanishes, regarded as a function of a^, we are to put

i&amp;gt;

a
i + uXi &amp;gt;

a
*)

thus the places z1} z2 are positions of xl for which the determinant

=
~D~/ir\ ~~D~T^\ t **it - -

,
x2 ,

1

wherein P (x) denotes (x a^) (x a2),
vanishes. By considerations analogous

to those of 209 we therefore find, V denoting the determinant derived

from V by changing the sign of y, y2 ,

ii \ VVPfr ^ P(r \ P(r \ P(&amp;lt;r \/A V V JL li//| / -L I a/2 / J- \^1 ) --
\*v-2 /

S-
2

(u) ^2

(u )

&quot;

(a?!
-
x^f (a?/

- a;2 )
2

(x-,
-

a?/) (^ - a?/) (ara
-

a;/) (a?.,
-

&amp;lt;)

where -4 is an absolute constant.

Now, ifrjl=y1/P (tfj), etc., we find by expansion and multiplication,

VV = (vi?2+ hV)2
(#1

~ *
i)

2
(
x ~*? ~

and, if a= (x^
-
x^) (x2

- x
2), /3= (x-[

- x,
2 ) (x%

-
Xj), a - j3= (x-{

- x2 ) (^\
-

.t
2),

this leads to

but, putting y
2=4P (x) Q (x), =&amp;lt;i(x-al)(x- 2) (x

-
c) (x

- c
t) (x

- c
2), we have

16
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and this expression is equal to

+ Q*L(a-x)(a-x)(a-x )(a-x )\,P
ttj

as may be proved in various ways ;
now we have proved ( 208, 212, 213) that

(j - ^) (! 3?2)
= + \/

- P (j) (ttj) gl
2
, (a2 ^j) ( 2

- #
2)
= V P i

and

where gl
= 3 (u \

ua &amp;gt;

a
) -r 5 (tt), y2

= 5 (w |

Ma2 a
) -^ 5 (M), ^, 2

= 5 (M |

wa a+ ?t
tt2 -

) -f. 5 (w) ;
thus

P(ae^P(s^P(x^f(x^as qi*qq, z
q

z=
7&amp;gt;

,, N , &amp;gt;\4 ^ ,
we have

8)
P fa )

P (argQ

.2

where however we have assumed that the sign to be attached to the quotient

is the same for the places x^ x2 as for the places x
lt

x.2 . The product V -P (GJ) (a t

V -P (i) (!&amp;gt; is, of course, here equal to - P (o^) (e^). Now,

P
(ai )

= (^ _ a
2)
= _p

( 2)
.

thus we obtain

^ (M + w ) ^ (w
- ^t

/

)̂

the value of the constant multiplier, S-
2
,
=

[S- (O)]
2
, being determined by

putting u =
0, in which case

&amp;lt;?/, qs } q^ 2 all vanish.

If in this formula we write v= u+ ua &quot;
a+ ua* a

in place of M, we obtain, from the

formulae

which are easy to verify from the formulae of 190, Chap. X. and the table of

characteristics given in this chapter, that

= ^

and therefore
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where 3 (u) denotes 3 (u \

&quot;
a+ ua* a

). But we can use the result of Ex. iv. 217, to give
the right-hand side a still further form, namely

Further if u&quot;
1 a+ ua* a

=$Q m&amp;gt; TO,, where m, m consist of integers each either or 1,

we find, by adding |iim , m, to u and u and utilising the fact
( 190) that

\m (u+ u
)
= 2A j ()+ 2X^TO (u \

that

where v= u+ Q
m&amp;gt; m ,

,
y = u + % fl

m&amp;gt;
m, . It should be noticed that

Pi, i (
v
)
= ~

g^.Q
log ? ( ; i TO, |w ) ;

hence
* j

this formula can be expressed so as to involve only a single function in the
form

J2

/ijyU.2 ff (u -\- 1?) &amp;lt;T (u, v)

where a- (u) denotes ^ (u ^ (,,)) and caij (u)= W cr (u\ In
V \J-J- //

&quot;/

c)u nit
*

i j

Weierstrass s corresponding formula for p = l, the function
&amp;lt;r(7^)

is de
termined so that cr (u)/u = 1 when u = 0. To introduce the corresponding
conditions here would carry us further into detail. (See 212, 213.)

Ex. Prove that if 3 denote any one of the branch places c, c15 c
2 ,

a = (o2
-

3),

^= ( 3
-a

1 ), y=(a1
-a2), P1 =-(a1

-x
l ) (a-^-x^ etc., Pi = (al

-a:
l &quot;) (a^-xj), etc., and

with similar notation for A
,
B

,
then the determinant A can be expressed in the form

where

- A

In this form A can be immediately expressed in terms of theta quotients.

219. Consider, nextly, the function
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This is not a periodic function of u, u . Thus we take in the first place

the function

Put
^ (u) ^ (u\u

a a
) ^ (u ) % (u ua

&amp;gt;&amp;lt;

)

u = ux &amp;gt; &amp;gt;

a
&amp;gt; + ux*&amp;gt;

&quot;,
u = uxi a

i + u**

then, as functions of x1} the zeros of ^ (u), *b(u\u
a

&quot;
a
) respectively are a, x2

and Oj, a;2 , the zeros of ^(u + u \u
ai1 a

) are found in the usual way to be zeros

of a rational function of the fifth order having af, a.2
s as poles, and xz, a?/, #2

as zeros; such a function of #j is A X/P (a^), where P (#1)
= (xl a^ (xl a2) and

i/! (a^
-

cO, x? ,
xl ,

1 !

?2 (^2 ^h )&amp;gt; ^2 &amp;gt; ^2 &amp;gt;

*

% (a?/
- ax), ar/

2
, a;/, 1

wherein ^ = yx/P (a?,), etc.
;
the zeros of *b(u

- w
)&amp;gt;

as a function of xlt are

similarly zeros of a function of the sixth order having a^, a2
3 as poles and

a, tf2 , x, x2 for its other zeros
;
such a function of xl is A/P(a?i), where

A =

hence we find

^2

-
77jV, -

-77 2V, -773 , a?/, 1

*t (u) ^ (u\u
a

&amp;gt; &amp;gt;

a
) ^ (u ) ^ (u |

M a
)

= (7
!
A (a^ 2) (a?2 q2) (a?!

7 - a2 ) (#/ a2)

#2)
2

(a?! a?/) (a;x #/) (a;2 a;/) (x2 x) (a;/ a;2 )
2

wherein C is an absolute constant
;
for it is immediately seen that the two

sides of this equation have the same poles and zeros.

We proceed to put the right-hand side into a particular form; for this purpose we

introduce certain notations; denote the quantities c, cl5 c
2 ,

which refer to the branch

places other than a
x ,

a2 by a3 ,
a4 , 6

in any order; denote (i - x^) (j
- #2) by pi,

(cti
-
x{] (j x

2 ) by p^ ;
denote by TTJ, $ the expression

i f ^1
.

ff2 1 1

L(^i
-

i) (^i
-

&amp;gt;) (*
~

i) (a - %)J * -
^i

and write jo^y for pipjiri, y, with a similar notation n
i, y, ?) i, y ;

also let P (x)
= (.v- a: ) (^

- a
2 )&amp;gt;

1i=yilp (
x

i)&amp;gt;

etc -

Then, by regarding the expression

( V \ (n f \ (ft T \
(a% &%) ^c*2 o-j ) ^ 2 ^2 &amp;lt;
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as a function of
2 ,
and putting it into partial fractions in the ordinary way, we find that

it is equal to

-1-
(*/ -.&amp;lt;)* (x.

-
3)iaz^azf^ + ._!_,K _ Xtf (x

_^ (*i -0(i -j?~ &quot;-- - 3

using then the identities

-
(*a

-
s) (*/

-
#2 )

= fo -
#2) to -

3)
- ~

#a) (**
~

s)&amp;gt;

to - 3)
- #2 )

= to - a?2) to - 03)
- to - a?2) (x{

-
03),

we are able to give the same expression the form

.

1 2

where 1 1;^
=

(Xl
-

3) (^ - a4) (^ - .), etc.
;
thus

= -
( 2

- a4) ( 2
-

5) (^ - ^
2 )

2
(^/

-
*z) (^2

~
^2) (

x
i

~ a
z) (

x
*
~

s) 379
f*2 J?2

&quot;

+
^1 ^l ~

^2)W~
#2) ((^2

~
2) (^2

~
3) (*/

~
4)

-
5 )

+(/- 2 ) (^i
-

3) (#2
- a4) (a:2

-

Now we have, by expansion,

^ =
(
J
?i ?2+ I

?i W) (^1-^2) (^I -^

and in the product AA there will be two kinds of terms

(i)
-

hV (7i
-

172) y (*i
- xj +^2

-
2!),

where y denotes to -a?,) to -a?
2) to -^Jto -^g), there being four terms of this kind

obtainable from this by the interchange of the suffixes 1 and 2, and the interchange of
dashed and undashed letters,

(ii) 77, (^2
-
Xl ) to - xj to - j?

s ) {,, (^ -
,) (^ -

xtf+ r,^ (^ - 04)
- .r2)

2

-^2
to-a,)to -.r

2 )
2
},

there being three other terms similarly derivable from this one.

Consider now the expression

and, of this, consider only the terms

(a.-,
- a

t ) (og
- o

6
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by substitution of the values for p ls etc., and arrangement, we immediately find that these

terms are equal to

this expression, as we see by utilising an identity which was developed at the commence

ment of the investigation, is equal to

w , S JT,-
g 1

-
2

-
2 -1

-
2

~
2) (^8

~
-^2)

where K denotes

&amp;gt;7i th
2
(^/

-
i) (

xi ~ xtf+ 12
2

(&amp;lt;

-
i)

-
#2)

-
&quot;72

2
(*a

-
i) (^i

- ^2 )
2
]

Comparing this form with the terms occurring in the expansion for AAj, we obtain the

result

Now we have
( 216, 213, 212) the formulae p?=ntf, {=(ai

-a
j } 2 ;

we
2t 9^ /*t ^y

shall therefore pui p t
=M

f qi, Pi,j
=

-^i,jqi,j ;
hence by the formula (p. 334) the quotient

&quot;
tt

)^ (u
- u )

is a certain constant multiple of the function

Also we have M2=m, N\tj
= +

/xiW/(a,--o
&amp;gt;
-),

where m= V -/ (i) when i=l or 2,

and /xj=\// (
ai) when i=3, 4, 5. Hence it is easy to prove that the fourth powers

of the quantities (a2
-

4) ( 2
- a

5)M1
M3N13 ,

NnN^N^Mz
are equal.

Hence we have

where ^4. is a certain constant, and e a certain fourth root of unity. The
value of e is determined by a subsequent formula.

220. The equation just obtained ( 219) taken with a previous formula

gives the result

a a
) _ e (guggg/ -f gVsg/fr) -I- qi^q ^q ^ + q nq^ q^q^V 2
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and limiting ourselves to one case, we may now take the places az , 4 ,
as to

be, respectively, c1} c2 , c, and introduce Weierstrass s theta functions;

defining* the ten even functions ^s (u), ^.23 (u), ...,^03 (u) to be respectively

identical with the functions ^(u), ^ac (u), ..., ^cai (u), and the six odd functions

X_&amp;gt; (u), . . ., ^3 (u) to be respectively the negatives of thefunctions ^(MI (u), ..., ^-
CCi (u),

the right-hand side of the equation is equivalent to

- /(X. &amp;lt;\. &amp;lt;X&amp;gt; Ci. i CW CL. CL \ i (X. C^.
&amp;lt;y &amp;lt;\ -UV V *V ^Vfc ^ rJg JQ2 ~01~ 12 i S ~ 0-2 ~01 rJ12/ i - 04 - 24 14 *-&amp;gt;3

~T ~ 04 ~ 24 H *3 .

here ^- denotes ^-(w), V denotes *b(u ), and (7 is an absolute constant.

This equation may be called the addition forrnula for the function ql} and is

one of a set which are the generalisation to the case p = 2 of such formulae

as that arising for p = 1 in the form

,. sn u en u dn u + sn u en u dn u

l-frsn ttBn u

By interchanging the suffixes 1 and 2 we obtain an analogous expression
for

(

b(u + u \u
a

*&amp;gt;
a
)-7- &(u + u ); if in this expression we add the half-period

ua a to u we obtain an expression for the function *&(u + u ua &quot;
a + ua* a

)

-r-*b(ii + u \u
a

i&amp;gt;

); and if this be multiplied by the expression just developed
for the function ^(u +u \u

ai &amp;gt;

a
) -r- S- (u + u) we obtain an expression for

S- (u + u ua i- a + ua *&amp;gt;
a
) -r- ^f (u + u

),
and it can be shewn that the form obtained

can be reduced to have the same denominator as in the expression here

developed at length. The formulae are however particular cases of results

obtained in subsequent chapters, and will not be further developed here.

For that development such results as those contained in the following

examples are necessary; these results are generalisations of such formulae

as sn (u + K} = en w/dn u which occur in the case p = 1.

Ex. Prove, if q t (u)
= 3(u\u

ai &amp;gt;

a
)+ 9 (u\ qitj (u)

= 3(u\u
ai a+ uai&amp;gt;

a
)+ 3(u\ etc., that

(see the table 204, and the formulae Chap. X. 190)

f/i

and obtain the complete set of formulae.

221 . In case p = 2 there are five quotients of the form S- (u\ u
b

&amp;lt;

a
)

-=- ^ (u),

and ten of the form ^(u\u
b

&amp;gt;&amp;lt;

a + ub
*&amp;lt;

a
) + S-(w), wherein b, b lt b.2 denote any

finite branch places. Since the arguments u may be written in the form

ux a
&amp;gt; + ux *&amp;gt;

a
*, the fifteen quotients are connected by thirteen algebraic

relations. In virtue of the algebraic expression of these fifteen quotients,

they may be studied independently of the theta functions. We therefore

give below some examples of the equations connecting them.
*

Konigsberger, Crelle, LXIV. (1865), p. 22. In the letter notation ( 204) the reduced charac
teristic symbols are such

( 203) that each of k,, k
, is positive, or zero, and less than 2. In

Weierstrass s notation the reduced symbols have the elements A; , positive, or zero, and the elements

k, negative, or zero.

B. 22
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Ex. i. There is one relation, known as Gopel s biquadratic relation, which is of

importance in itself, in view of developments that have arisen from it, and is of some

historical interest.

I (4-

be three functions whose suffixes, together, involve all the five finite branch places. Then

these three functions satisfy a biquadratic relation, which, if the functions be regarded as

Cartesian coordinates in a space of three dimensions, represents a quartic surface with

sixteen nodal points.

In fact, ifpa denote \/(
-
#1) ( #2)* an&amp;lt;^ Pb b

denote the function

we have

where 6U 62 ,
elt e

2 ,
es are the finite branch places in any order

;
and if this be denoted by

it is immediately obvious that ^ (^, ^)= 2^
2

, =2/(.r), say, and x- ^(.r, 2)
= ^ ;

tnus

there is
( 211, Ex. vii.) an equation of the form

where /(^1}
^
2 )

^s a certain symmetrical expression of frequent occurrence (cf. 217), the

same whatever branch places 6n 6
2 may be, and A, B, C are such that ^ (#x ,

#
2)

vanishes

when for x
lt
x2 are put any one of the four pairs of values (6lt &2), (e2 ,

e3), (e3 , ej, (elt e
z) ;

therefore the difference between any two expressions such as y?b b ,
formed for different

pairs of finite branch places, is expressible in the form Z#
1
#

2+M (xl +.v^) +N ;
thus there

must be an equation of the form

where X, /*, v, p are independent of the places #u xz .

Similarly

But also it can be verified that

Pa, , a,PCl , c, -Pa, , &amp;lt;A, c,

thus we have

0,&, 0,
+W. c.+ ^c+ P] l&amp;gt;

lf ,
+

/&amp;gt; c2
+

&quot;&amp;gt;c

+ P ]
=b

ai&amp;gt; aA ,
c 2
-^l2

and when the expressions^ a , etc., are replaced by the functions qa a ,
etc. ( 210), this

is the biquadratic relation in question. This proof is practically that given by Gopel

Crelle xxxv. 1847 . 291.(Crelle, xxxv. 1847, p. 291).
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En: ii. Prove that

2 2

alt a2 ~Pa lt c, . 2~

a _ p +Pat*o v| l

2 2

(i - i) (i - c) (cx
- a^ (Cl

-
c) (c

-
a,) (c

-
GI

and hence develop the method of Ex. i. in detail.

*l

Ex. iii. For any value ofp prove

(a) that the squares of any p
ected by a linear relation,

(/3) that the squares of any p of the theta quotients

(a) that the squares of any p of the theta quotients qb ,
= 9 (u\u

b- a
)+ 3(u), are

connected by a linear relation,

are connected by a linear relation. (Weierstrass, Math. Werke, vol. i. p. 332.) These
equations generalise the relations of Ex. ii.

Ex. iv. Another method of obtaining the biquadratic relations is as follows
; if

$ (v) =^e
2niv (n

T
r
=|v, and, in Weierstrass s notation,

so that x : y : z : t= l : qa^ c
^

: qa^ Ci
: qc ,

and if a, b, c, d denote the values of M, y, z, t

when v=0, and the linear function cx+dy-az-bt be denoted by (c, d, -a, -b), etc.,
then it can be proved, by actual multiplication of the series, that

e3
2

( V)= (c, d,-a,- b), 9 14
2

( T) = (d,
-

c,
-

b, a), e ./ ( F)= (b, -a,d,- c)

Q^(V) = (a,b,c,d) ,
e*

( V) = (b,-a,- d,c\ e^(V) = (a,b,-c,-cr).

Relations of this character are actually obtained by Gopel, in this way. It will be

sufficient, for the purpose of introducing the subject of a subsequent chapter, if the
method of obtaining one of these relations be explained here. The general term of the
series e^ ( F) is (cf. the table 204 and 220)

where g = (l, ), 9
= i(l J 0), namely is

_ e
&quot;i Oi (Mi+i)+ 2 w2] +Ji [TU

thus the exponent of the general term in the product e^2
( V) is niL, where L is equal to

7rt
1 + ^)m2]

+ m^ + ni+mi + l

222
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there are therefore four kinds of terms in the product according to the evenness or

oddness of the two integers n^-\-m^ a+m 2
. Consider only one kind, namely when

ni+mi, n&amp;lt;t
+ m-2 are both even, respectively equal to &amp;lt;2.N

l ,
2JV

2 , say; then L is equal to

e t.
n\~m\ if n2 m2 if

if now we put
-1-- - - l =M

lt
* =M2 ,

we have

thus, to any assigned values of the integers Nlt JV2 ,
M

lt
M2 there correspond integers

MU n
2 ,
m

lt
m

2
such that n^m^ n2+m2 are both even

; therefore, as

is a term of the series 3 (v ;
(

) J
,
that is, of B01 (v), and

is a term of the series 5
(o

; |^^ ,
that is, of 36 (;), and e

^&amp;lt;
2^ +1 = -

l, it follows that

the terms of e02
2
( V) which are of the kind under consideration consist of all the terms of

the product
- 55 . 501 (v), or -

ay. It can similarly be seen that the three other sorts of

terms, when Mj + wij is even and n2+m2 odd, when n
l+ml

is odd and 2+m2 odd or even,

are, in their aggregate the terms of the sum bx+dz ct.

We can also, in a similar way, prove the equations

0362363 ( V) 14 ( V) + 000,002 ( V) Q. ( V)- 12 01 0, ( V) 34 ( F),

03
2= 2 (ac

-
bd), 23

2= 2 (ad+ be), 2
2= 2 (a6

-
erf), 01

2= 2 (afe + erf),

03 denoting 03 (0), etc.

Hence the equation of the quartic surface is obtainable in the form

V2 (ac
-
bd) (ad+bc) (c, rf,

-
a,

-
b) (rf, -c,

-
6~a)

+ V(a2- 62 - c2+ rf2) (ab
-

erf) (6,
-

a, rf,
-

c) (a, b, c, rf)

, -a, -d,c)(a,b, -c, -rf).

A relation of this form is rationalised by Cayley in Crelle s Journal, LXXXIII. (1877),

p. 215. The form obtained is shewn by Borchardt, Crelle, LXXXIII. (1877), p. 239, to be the
same as that obtained by Gopel. See also Kummer, Berlin. Monats. 1864, p. 246, and
Berlin. Abhand. 1866, p. 64

; Cayley, Crelle, LXXXIV., xciv.
;
and Humbert, Liouville, 4

me
Ser.,

t. ix. (1893); Schottky, Crelle, cv. pp. 233, 269; Wirtinger, Untersuchungen iiber Theta-

functionen (Leipzig, 1895).

The rationalised form of the equation, from which the presence of the sixteen nodes is

obvious, is obtained in chapter XV. of the present volume.
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Ex. v. Obtain the following relations, connecting the ratios of the values of the even
theta functions for zero values of the arguments when p= 2. They may be obtained from
the relations

( 212)

(&-*,) (6-*2)
= *Je&quot;

iPt
&quot;f&amp;gt; (b) V (U \

ub - *)+& (
M)

by substituting special values for x
l
and x

2 .

54
: 3* : 3* : 3

4
: 3

4
: 4

4
3
4 -A4 Q4 . a4c c, &quot;c2 &quot;a^e, ^a, Ca

^
a2Cl

^
a^ ^ .

9^
= fa

- c
2) (eg

-
c) (c

-
Cl ) . (! - Og) : (G^

- a
2) ( 2

-
c) (c

-
a,) . (c,

- c2)

: (a,
-

og) (ctg
-

Cj) (cx
-

a,) . (c2
-

c) : (ax
- a

2 ) (a2
- c

2 ) (c2
- a

x )
.
( Cl

-
c)

: (eg
-

c) (c
- a

x ) (a,
- c

2) . (c,
-

2) : (c
-

GI ) (cx
-

a,) (^ - c
) . (c2

-
2)

: (c
- c

g) (eg
-

og) (ag
-

c) . (ct
- aj : (c

- c
x ) (GI

-
2 ) ( 2

-
c) . (c2

-
ttl )

(l-*j(e-*d(*-d-(*i-o) (C1 -c2)(c2 -a 1)(a1
-c

1).(a2
- c).

Infer that

5^U :

&amp;lt;A
:

^&amp;lt;

=K- c
i)

2
:

(&quot;i-,)
2

: (!-,) .

We have proved ( 210, 213) that

-a ^c M 5a a M =

and we have in fact, as follows from formulae developed subsequently, the equation

3caA22-^, fa) Sa, Cl (M) +^lC25cai 5a2 (M) 9ai c, (u)
= 3c3c^Cl (u) 5a,a2 (i).

Ex. vi. Obtain formulae to express the ratios of the differential coefficients of the odd
theta functions for zero values of the arguments.

Ex. vii. Prove that

(u)
= f ^

wherein blt 6
2
are any two finite branch places, and e is a certain fourth root of unity.

This result can be obtained . in various ways ; one way is as follows : Writing
M= M*.. . + #*..., u+ ub a

=v, and v= uZl &amp;gt;

b
&amp;gt; + uz* b

*, we find, by the formula 3(
= e^ (u)

3(u; P), that

and, by the formula expressing & (u
x&amp;gt;
m -uXl m

&amp;lt;-

...... - u
x

i&quot;

*&quot;)

-
fa (u

1* m - u
x

* m&amp;gt; -
- UXP&amp;lt;

&quot;P) by integrals and rational functions, the right-hand side is equal to

Sl _s2_ -i

-
&i) (i

- 68) (g - 6,) & -
6g)J

where sly z
l
are the values of y, x respectively at the place z

ly and s
2 ,

z
2 at the place z

2 .

This rational function of
,, 2

2 is however
( 210) a certain constant multiple of

3 (v\u
bt a+ ub a

)/3 (v), and hence the result can immediately be deduced.

One case of the relation, when b
19 62 are the places a,, a2 ,

is expressible by Weierstrass s
notation in the form

a_
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and it is interesting, using results which belong to the later part of this volume, to

compare this with other methods of proof. We have*

-v) = 3S (u) 5M (tt) $i (v) 3 (v) + 32 (u) 513

(tt)+ 3
2 (t;) 5U (*) 502 (tt) 5M (tt),

where 5
4 ,

5 denote 54 (0), 5 (0), and the bar denotes an odd function; if, herein, the

arguments v
lt

v
z be taken very small, we may write 5 (u+ v) = 5 (tt) + (

v
l
= h #2 ~

)
5 (u).

Thus we obtain, eventually, remembering that the odd functions, and the first differential

coefficients of the even functions, vanish for zero values of the arguments,

where y(u) =^3(u\ 5= 5(0), 5 = 5 (0).
d

2

Thus, by the formula of this example, putting u = 0, we infer that

-0

or 3 o4
=

0, and the result of the general formula agrees with the formula of this example.

In the cases
/&amp;gt;&amp;gt;2

we have even theta functions vanishing for zero values of the

argument ;
here we have one of the differential coefficients of an odd function vanishing

for zero values of the argument.

Note. Beside the references given in this chapter there is a paper by Bolza,

American Journal, xvn. 11 (1895), &quot;On the first and second derivatives of hyper-

elliptic (r-functions
&quot;

(see A eta Math. xx. (Feb. 1896), p. 1 : &quot;Zur Lehre von den hyper-

elliptischen Integralen, von Paul Epstein&quot;), which was overlooked till the chapter was

completed. The fundamental formula of Klein, utilised by Bolza, is developed, in

what appeared to be its proper place, in chapter XIV. of the present volume. See also

Wiltheiss, Crelle, xcix. p. 247, Math. Annal. xxxi. p. 417; Brioschi, Rend. d. Ace. dei

Lincei, (Rome), 1886, p. 199; and further, Konigsberger, Crelle, LXV. (1866), p. 342;

Frobenius, Crelle, LXXXIX. (1880), p. 206.

To the note on p. 301 should be added the references ; Prym, Zur Theorie der

Functnen. in einer zweibldtt. FUicJie (Ziirich, 1866), p. 12; Konigsberger, Crelle, LXIV. p. 20.

To the note on p. 296 should be added; Harkness and Morley, Theory of Functions,

chapter vin., on double theta functions. In connection with 205, notations for theta

functions of three variables are given by Cayley and Borchardt, Crelle, LXXXVII. (1878).

*
Krause, Hyperelliptische Functional, p. 44

; Konigsberger, Crelle, LXIV. p. 28.
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CHAPTER XII.

A PARTICULAR FORM OF FUNDAMENTAL SURFACE.

222. JACOBI S inversion theorem, and the resulting theta functions, with

which we have been concerned in the three preceding chapters, may be

regarded as introducing a method for the change of the independent variables

upon which the fundamental algebraic equation, and the functions associated

therewith, depend. The theta functions, once obtained, may be considered

independently of the fundamental algebraic equation, and as introductory to

the general theory of multiply-periodic functions of several variables
;
the

theory is resumed from this point of view in chapter XV., and the reader

who wishes may pass at once to that chapter. But there are several further

matters of which it is proper to give some account here. The present chapter
deals with a particular case of a theory which is historically a development*
of the theory of this volume

;
it is shewn that on a surface which is in many

ways simpler than a Riemann surface, functions can be constructed entirely

analogous to the functions existing on a Riemann surface. The suggestion is

that there exists a conformal representation of a Riemann surface upon such

a surface as that here considered, which would then furnish an effective

change of the independent variables of the Riemann surface. We do not

however at present undertake the justification of that suggestion, nor do

we assume any familiarity with the general theory referred to. The present

particular case has the historical interest that in it a function has arisen,

which we may call the Schottky-Klein prime function, which is of great

importance for any Riemann surface.

223. Let a, /3, 7, 8 be any quantities whatever, whereof three are

definitely assigned, and the fourth thence determined by the relation

aS /3y = l. Let
, be two corresponding complex variables associated

together by the relation f = (a + /3)/(y + 8). This relation can be put into

the form

Referred to by Riemann himself, Ges. Werke (Leipzig, 1876), p. 413.
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wherein p is real, and B, A are the roots of the quadratic equation

=(&quot; + /3)/(7+ S), distinguished from one another by the condition that

fj,
shall be less than unity. In all the linear substitutions which occur in

this chapter it is assumed that B, A are not equal, and that p is not equal to

unity. We introduce now the ordinary representation of complex quantities

by the points of a plane. Let the points A, B be marked as in the figure (6),

Fig. 6.

and a point C be taken between A, B in such a way that 1 &amp;gt; AC /C B &amp;gt; p,

but otherwise arbitrarily ;
then the locus of a point P such that AP/PB

= AC /C B is a circle. Take now a point C also between A and B, such that

CB/AC= pC SfAC ,
and mark the circle which is the locus of a point P

for which P B(AP =CB/AC; since P B/AP is less than unity, this circle

will lie entirely without the other circle. If now any circle through the

points A, B cut the first circle, which we shall call the circle C
,
in the points

P, Q, and cut the second circle, C, in Px and Qj ,
P and Pj being on the same

side of AB, we have angle AP^B = angle APB, and P1B/APl
= pPB/AP ;

therefore, if the point P be
,
and the point Pj be

,
we have

the argument of P vanishing when P is at the end of the diameter of the

C circle remote from
C&quot;,

and varying from to 2?r as P describes the circle

C in a clockwise direction
;

if then we pass along the circle C in a counter

clockwise direction to a point P such that the sum of the necessary positive

rotation of the line BP1 about B into the position BP ,
and the necessary

negative rotation of the line APl about A into the position AP ,
is K, and f

be the point P ,
we have

- /,I~

Thus the transformation under consideration transforms any point on

the circle C into a point on the circle C. If denote any point within C
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the modulus of (- B)/( A) is greater than when is on the circumference

of G
, and the transformed point

&quot;

is without the circle C, though not

necessarily without the circle C . If denote any point without G the

transformed point is within the circle G.

224. Suppose
* now we have given p such transformations as have been

described, depending therefore on 3p given complex quantities, whereof 3 can

be given arbitrary values by a suitable transformation z = (Pz + Q)/(Rz + $)

applied to the whole plane ;
denote the general one by

. wherein o^ -
&/&amp;lt;

=
!&amp;gt; (i

= 1, 2, . . .
, p),

or also by

the quantities corresponding to A, B, /A, a being denoted by A iy Bi, fj,i} cti ;

construct as here a pair of circles corresponding to each substitution, and

assume that the constants are such that, of the 2p circles obtained, each is

exterior to all the others ; let the region exterior to all the circles be denoted

by S, and the region derivable therefrom by the substitution ^ be denoted

by *&
If the whole plane exterior to the circle Ci be subjected to the trans

formation S-;, the circle C{ will be transformed into Cit the circle Ct itself

will be transformed into a circle interior to Ci} which we denote by ^(7;, and
the other 2p 2 circles which lie in a space bounded by Ct and C{ will be

transformed into circles lying in the region bounded by ^iCt and Cit and,

corresponding to the region S, exterior to all the 2p circles, we shall have a

region ^S also bounded by 2p circles. But suppose that before we thus

transform the whole plane by the transformation ^, we had transformed

the whole plane by another transformation ^ and so obtained, within Gj,

a region %$ bounded by 2p circles, of which Gj is one. Then, in the

subsequent transformation, S-f ,
all the 2p l circles lying within Gj will be

transformed, along with Cj, into 2p
- 1 other circles lying in a region, ^fyS,

bounded by the circle ^Cj. They will therefore be transformed into circles

lying within ^(7,- they cannot lie without this circle, namely in S-;$, because

*&iS is the picture of a space, S, whose only boundaries are the 2p funda

mental circles Clt CV, ..., Cp ,
Gp . Proceeding in the manner thus indicated

we shall obtain by induction the result enunciated in the following statement,

wherein S^ is the inverse transformation to ^, and transforms the circle Gt

into Ci : Let all possible multiples ofpowers of^l} S-f , ..., *&p , \ l

beformed,
and the corresponding regions, obtained by applying to S the transformations

* The subject-matter of this section is given by Schottky, Crelle, ci. (1887), p. 227, and

by Burnside, Proc. London Math. Soc. xxni. (1891), p. 49.
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corresponding to all such products of powers, be marked out. In any such

product the transformation first to be applied is that one which stands to the

right. Let m be any one such product, of theform

m= ...... /*,
formed by

...... + rt + rj +rk ,
=h

factors, and let ^ be any transformation other than the inverse of ^, so that

m^fk isformed by the product ofh+l, not h I, factors. Then the region mS

entirely surrounds the region m^S.

Thus, the region $r{$ entirely surrounds the space ^i&jS, and the latter

surrounds $/$, or ^ib/b^S ;
but ^ftS is surrounded by ^f^^S or S. The

reader may gain further clearness on this point by consulting the figure (7),

wherein, for economy of space, rectangles are drawn in place of circles, and

the case of only two fundamental substitutions, S-,
&amp;lt;f&amp;gt;,

is taken.

The consequence of the previous result is The group of substitutions

consisting of the products of positive and negative powers of S-x ,
. . . , % gives

rise to a single covering of the whole plane, every point being as nearly reached

as we desire, by taking a sufficient number of factors, and no point being

reached by two substitutions.

225. There are in fact certain points which are not reached as trans

formations of points of S, by taking the product of any finite number of

substitutions. For instance the substitution ^m is

%
~ ^i %~ &quot;*

and thus when m is increased indefinitely approaches indefinitely near to

BI ,
whatever be the position of

;
but Bt is not reached for any finite value

of m. In general the result of any infinite series of successive substitutions,

K = a/37 . . .
, applied to the region S, is, by what has been proved, a region

lying within 08, in fact lying within a/3S, nay more, lying within a@yS, and

so on namely is a region which may be regarded as a point ; denoting it by

K, the substitution K transforms every point of the region 8 and in fact

every other point of the plane into the same point K ;
and transforms the

point K into itself. There will similarly be a point K arising by the same

infinite series of substitutions taken in the reverse order.

Such points are called the singular points of the group. There is an

infinite number of them
;
but two of them for which the corresponding

products of the symbols ^ agree to a sufficient number of the left-hand

factors are practically indistinguishable ;
none of them lie within regions that

are obtained from S with a finite number of substitutions. The most

important of these singular points are those for which the corresponding
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scries of substitutions is periodic ;
of these the most obvious are those formed

by indefinite repetition of one of the fundamental substitutions
;
we have

already introduced the notation

to represent the results of such substitutions.

226. If S-,
&amp;lt;f&amp;gt;

be any two substitutions given respectively by

8

wherein &amp;lt;z8 /3y
- 1 = AD BC, the compound substitution ^&amp;lt; is given by

D) (7A + BC) Z+(yB + SD)

and if this be represented by
&quot; =

( + P )/(y + 8
), we have, in the ordinary

notation of matrices

( a!
)
=

( P ) ( A B
),

7 C D

and of8 -
fi y = (08

-
7) (AD- BC) = 1. We suppose all possible substitu

tions arising by products of positive and negative powers of the fundamental
substitutions S-15 ..., *&p to be formed, and denote any general substitution by
= (&+ /3)/(y+ 8), wherein, by the hypothesis in regard to the funda

mental substitutions, a& fiy = l. We may suppose all the substitutions

thus arising to be arranged in order, there being first the identical substitution
= (f+ 0)/(0. + 1), then the 2p substitutions whose products contain one

factor, ^ or ^r 1

, then the 2p(2p-l) substitutions whose products are of

one of the forms ^^-, S^-1
, ^r1

^, ^r1

^&quot;

1
,
in which the two substitutions

must not be inverse, containing two factors, then the 2p (2p I)
2 substitutions

whose products contain three factors, and so on. So arranged consider the

series

2 (mod 7)&quot;*,

wherein & is a real positive quantity, and the series extends to every sub
stitution of the group except the identical substitution. Since the inverse
substitution to ? = (*S+/3)/(rt+B) is =(B? - )/(- 7f +a), each set of

2p (2p- I)&quot;-

1 terms corresponding to products of n substitutions will contain
each of its terms twice over.

Let now n denote a substitution formed by the product of n factors,
and @n+1 = @n^t-, where ^ denotes any one of the primary 2p substitutions

^1,^1 , -.., \, % other than the inverse of the substitution whose symbol
stands at the right hand of the symbol @n , so that @n+1 is formed with n + 1
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factors; then by the formula just set down
&amp;lt;yn+1

= yn &amp;lt;Xi
+ Sny{ , where, if

*t-,
or =(OiC+ &)/(7if+8i), be put in the form (

- B
t)/(?

- A {)

= Pi(- Bi)l(t;-Ai), we have

respectively equal to

Bjpj -Ajpi AjBj(pi p^ pi -pi Ajpj

the signification of p^ is not determined when the corresponding pair of

circles is given ;
but we have supposed that the values of Of, &, 7;, Si are

he value of pt . By these formulae

7n+i _ _ &/fo _ AJ + 8nfyn~

given, and thereby the value of pt . By these formulae we have

Herein the modulus of pi may be either fn or /if
1

, according as S; is one

of Si, ..., Sp or one of Si&quot;

1

, &amp;gt; S^
1

;
the modulus of pi is accordingly either

less or greater than unity. If now n = ...
&amp;gt;/r&amp;lt;Sr \ where

S&amp;gt;
is one of the

2p fundamental substitutions S1( ...,^fp
l

,
and therefore @^

1 = Sr ^&amp;gt;~

1/

^~
1

...,

the region n
lS lies entirely within the region S&amp;gt;$ ( 224) or coincides with

it; wherefore the point ^(oo ), or Sn
/Vn&amp;gt;

lies within the circle Cr when

S&amp;gt;
is one of ^1( ..., *&p ,

and lies within the circle Gr when X is one of

Si&quot;

1

,
...

, S^
1

;
thus the points Bi and Sn/yn can only lie within the same

one of the 2p fundamental circles C1} ..., C^,
when r=t and

S&amp;gt;
is one of

Si, ...,Sy, and the points Ai and Snfyn can only lie within the same one of

the 2p fundamental circles Clt ..., Cp when r=i and Sr is one of S-f
1

, ...,*bp
l

.

Now, if the modulus of p { be less than unity, and r = i, ^fr must be one

of Sf , ..., S-p , namely must be Sr
1

,
since otherwise @nSi would consist

g
of n 1 factors, and not n + 1 factors

;
in that case therefore Bi +

Vn

is not of infinitely small modulus
; if, however, the modulus of p^ be

greater than unity, and r = i, S&amp;gt;
must be ^, namely one of Si, ..., Sp, and

in that case the modulus of A { + Sn/Yn is not infinitely small. Thus, according

pi ^1, we may putas

I Bi + Bnfvn \&amp;gt;\, I
Ai + 8n/

where X is a positive real quantity which is certainly not less than the

distance of Bi} A i} respectively, from the nearest point of the circle within

which 8n/yn lies.
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It follows from this that we have

mod (7n+1/7) &amp;gt;
&amp;lt;r,

or mod (y~ljy~
l

) &amp;lt;

-
.

where a- is a positive finite quantity, for which an arbitrary lower limit may
be assigned independent of the substitutions of which is compounded, and

independent of n, provided the moduli
fj,1} ..., fj,p be supposed sufficiently small,

and the p pairs of circles be sufficiently distantfrom one another.

Ex. Prove, in 223, that if C be chosen so that C C is as great as possible

J_ C&quot;&amp;lt;7= 1-V^_1
fa Ati~l+fa fa

and the circles are both of radius c V/*/(l -/*), where d is the length of AB.

We suppose the necessary conditions to be satisfied
;
then if j be the

least of the p quantities mod [(/*rV
Ji

&quot;&amp;lt; - ^.^/(Bi-Ai)], and k be posi

tive, the series 2 mod
7&quot;*

is less than

\ f) , 2jp(2p-l) 2(2-l) 2
1

2^ + -^ l + *
L + ......

,

|_

*
a* o-

2*

_ ) ,

70 ^ + -

|_

*

and therefore certainly convergent if ck
&amp;gt; ~2p

-
1, which, as shewn above, may

be supposed, //1( ..., /j,p being sufficiently small.

227. Hence we can draw the following inference: Let a-1} ..., &amp;lt;rp be

assigned quantities, called multipliers, each of modulus unity, associated

respectively with the p fundamental substitutions ^, ..., \; with any
compound substitution VV2

---, let the compound quantity trf*af*... be
associated: let f(x) denote any uniform function of x with only a finite

number of separated infinities; let f = (a + 0)/(y + 8) denote any sub
stitution of the group, and cr be the multiplier associated with this

substitution : then the series, extending to all the substitutions of the group,

converges absolutely and uniformly
* for all positions of f other than (i) the

singular points of the group, and the points f=-g/7 , namely the points
derivable from = GO by the substitutions of the group, including the point
f =00 itself, (ii) the infinities of /() and the points thence derived by the
substitutions of the group. The series represents therefore a well-defined
continuous function of f for all the values of f other than the excepted ones.
The function will have poles at the poles of /() and the points thence
derived by the substitutions of the group; it may have essential singularities
at the singular points of the group and at the essential singularities of

In regard to f ; for the convergence was obtained independently of the value of
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Denote this function by F(); if S- denote any assigned substitution

of the group, and ^ denote all the substitutions of the group in turn, it is

clear that ^ denotes all the substitutions of the group in turn including the

identical substitution
; recognising this fact, and denoting the multiplier

associated with ^ by &amp;lt;TO ,
we immediately find

or, the function is multiplied by the factor (TQ

~
l (^+ S )

k when the variable

is transformed by the substitution, & ,
of the group. Thence also, if G()

denote a similar function to F(g), formed with the same value of k and
a different function /(), the ratio F()IG(g) remains entirely unaltered

when the variable is transformed by the substitutions of the group. In order

to point out the significance of this result we introduce a representation
whereof the full justification is subsequent to the present investigation.
Let a Riemann surface be taken, on which the 2p period loops are cut

;
let

the circumference of the circle Ct of the plane be associated with one side

of the period loop (6 t-)
of the second kind, and the circumference of the circle

Ci with the other side of this loop ;
let an arbitrary curve which we shall

call the t-th barrier be drawn in the plane from an arbitrary point P
of the circle (7/ to the corresponding point P of the circle Git and let the

two sides of this curve be associated with the two sides of the period loop

(di) of the Riemann surface. Then the function F(%)/G(), which has the

same value at any two near points on opposite sides of the barrier, and
has the same value at any point Q of the circle G{ as at the corresponding
point Q of the circle C{ ,

will correspond to a function uniform on the

undissected Riemann surface. In this representation the whole of the

Riemann surface corresponds to the region S ; any region ^S corresponds to

a repetition of the Riemann surface
;
thus if the only essential singularities

of JP()/6r(f) be at the singular points of the group, none of which are

within 8, F()/G() corresponds to a rational function on the Riemann
surface. It will appear that the correspondence thus indicated extends to

the integrals of rational functions
;
of such integrals not all the values can

be represented on the dissected Riemann surface, while on the undissected

surface they are not uniform
;
for instance, of an integral of the first kind,

ut ,
the values in, Mi+2a&amp;gt;

i&amp;gt;r
, w; + 2&&amp;gt; iir , m + 2a&amp;gt;

f) r + 2a)
it r may be repre

sented, but in that case not the value u{ + 4&amp;lt;w,
:) r ;

in view of this fact the

repetition of the Riemann surface associated with the regions derived from

8 by the substitutions of the group is of especial interest we are able to

represent more of the values of the integral in the % plane than on the

Riemann surface. These remarks will be clearer after what follows.

228. In what follows we consider only a simple case of the function

F(Q, that in which the multipliers alf ..., &amp;lt;rp are all unity, k = 2, and

/() =
!/( a), a being a point which, for the sake of definiteness, we
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suppose to be in the region S, We denote by & =^ () = (a + &)/(7i(T+ ^&amp;lt;)

all the substitutions of the group, in turn, and call f the analogue of by
the substitution in question. The function

has essential singularities at the singular points of the group, and has poles

at the places %=a, = oo and at the analogues of these places. Let the

points oo
,
a be joined by an arbitrary barrier lying in S, and the analogues of

this barrier be drawn in the other regions. Then the integral of this

uniformly convergent series, from an arbitrary point , namely, the series

is competent to represent a function of f which can only deviate from uniformity
when describes a contour enclosing more of the points a and its analogues
than of the points oo and its analogues ;

this is prevented by the barriers.

Thus the function is uniform over the whole f plane; it is infinite at =a

like log(f a), and at =oo like log (-^ I, as we see by considering the

term of the series corresponding to the identical substitution
;

its value on

one side of the barrier 0.00 is 2? greater than on the other side
;

it has

analogous properties in the analogues of the points a, oo
,
and the barrier aoo

;

further, if n = ^n (Z) be any of the fundamental substitutions S-j, ..., &amp;lt;&p ,

where in is obtained from by the substitution S^n ;
since the first and

last of these sums contain the same terms, we have

and the right-hand side is independent of , being equal to II ^f; in order

to prove this in another way, and obtain at the same time a result which

will subsequently be useful, we introduce an abbreviated notation
;
denote

the substitution
S&amp;gt; simply by the letter r; then if j be in turn every sub

stitution of the group whose product symbol has not a positive or negative

power of the substitution n at its right-hand end, all the substitutions of the

group have the symbol jn
h

,
h being in turn equal to all positive and negative

integers (including zero) ;
hence

2 [log (
-

a)
-

log (
-

a)],
= 2 S [log ( M* * ,

-
a) - log (&* -

a)],
i j h

is equal to

B. 23

I D R A FJ y~
OF THF

TT-XTTTT-T-^-n ^,-r --, ,
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where N = n
x

,
M = n&quot;

x&amp;gt;

; but, in fact, v is Bn ,
and is A n ;

thus
H^&quot;^

is

independent of
;
and if we introduce the definition

where S-?l is one of the &amp;gt; fundamental substitutions, and, as before, j denotes

all the substitutions whose product symbols have riot a power of n at the

right-hand end, we have

a, oo a,

If for abbreviation we put

prove that

pf- f _ 2_ p =
7&amp;gt;

c
&amp;gt;

c

O., oo (Tn .
,
=0

c being an arbitrary point.

229. Introduce now the function Ua,b defined by the equation

then, because a cross ratio of four quantities is unaltered by the same linear

transformation applied to all the variables, we have also

_ v . /^-f/a.--
log

where r, denoting S&amp;gt;, =^~1

,
becomes in turn every substitution of the group.

Thus we have

where

-
2
~-

, 6 ,

j denoting as before every substitution whose product symbol has not a

positive or negative power of n at the right-hand end and being arbitrary ;

hence also

where ?*,
=

t&quot;

1

, denotes every substitution of the group.
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There are essentially only p such functions v , according as ^n denotes

^i, ^2 , ..., ^,; for, taking the expression given last but one, and putting

n = st, that is, ^n = &,&, we have

a
*&quot;

* f &quot;^ *&quot;*

- n v *&quot;

-4- n &quot;
*

1
& H

where r)
=

%t, so that

and in particular, when st is the identical substitution, as we see by the

formula itself,

n f, a .= vg + v&amp;gt; J

thus, if r denote SY&/ . . . . . .
,
we obtain

V =

so that all the functions v^
a
are expressible as linear functions of v\ , ..., Vp .

230. It follows from the formula

that the function vn
rt

is never infinite save at the singular points of the

group. But it is not an uniform function of
;
for let describe the circum

ference of the circle Cn in a counter clockwise direction
; then, by the factor

%Bn , v^
a
increases by unity; and no other increase arises; for, when the

region within the circle Cn ,
constituted by *bnS and regions of the* form

^n &amp;lt;/S,
contains a point S-j(5n), the product representing the substitution j has

a positive power of ^-n as its left-hand factor, and in that case the region

contains also the point j(A n). Similarly if describe the circle Cn in a

clockwise direction, v^ increases by unity. But if % describe the circum

ference of any other of the 2p circles, no increase arises in the value of

Vn
a

,
for the existence of a point Sj (Bn) in such a circle involves the existence

also of a point Sj (A n).

It follows therefore that the function can be made uniform in the region

S by drawing the barrier, before described, from an arbitrary point P of Cn to

the corresponding point P of Cn . Then v^,

a
is greater by unity on one side

of this barrier than on the other side. Further if in denote any one of

the substitutions ^1( ..., *$rp ,
we have

* Where denotes a product of substitutions in which ^~ !

is not the left-hand factor.

232
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where is arbitrary; thus as n
f

&quot;

f
= Il

f

&quot;

)f ,
the difference is also indepen

dent of and we have, introducing a symbol for this constant difference,

It follows therefore that if the p barriers, connecting the pairs of circles

Cn ,
Cn ,

and their analogues for all the substitutions, be drawn in the

interiors of the circles, the functions Vi ,
. . .

,
vp

a
are uniform in the region S,

and in all the regions derivable therefrom by the substitutions of the group.

The behaviour of the functions Vi
a

, ..., vp
a

in the region S is therefore

entirely analogous to that of the Riemann normal integrals upon a Riemann

surface, the correspondence of the pair of circumferences Cn ,
Cn and the two

sides of the barrier P P, to the two sides of the period loops (bn), (an),
on the

Riemann surface, being complete. And the regions within the circles

C\, ..., Cp enable us to represent, in an uniform manner, all the values of the

integrals which would arise on the Riemann surface if the period loops (bn)

were not present. Thus the plane has greater powers of representation
than the Riemann surface. Further it follows, by what has preceded, that

the integral IT )6 is entirely analogous to the Riemann normal elementary

integral of the third kind which has been denoted by the same symbol in

considering the Riemann surface. On the Riemann surface the period loops

(an) are not wanted for this function, which appears as a particular case of a

more general canonical integral having symmetrical behaviour in regard to

the first and second kinds of period loops ;
but the loops (bn) are necessary ;

they render the function uniform by preventing the introduction of all the

values of which the function is capable. In the plane, however*, the

function is uniform for all values of
,
and the regions interior to the circles

enable us to represent all the values of which the function is susceptible.
Thus the introduction of Riemann s normal integrals appears a more natural

process in the case of the plane than in the case of the Riemann surface

itself.

231. We may obtain a product expression for T
n&amp;gt;m directly from the

formula

Cm -*/() - % (4

let k denote in turn every substitution whose product symbol neither has a

power of ^rm at its left-hand end nor a power of
S&amp;gt;,

at its right-hand end
;

thus we may write
d&amp;gt;^ %, or, for abbreviation, j = m~hk

;
and for every

substitution k, the substitution j has all the forms derivable by giving to h

all positive and negative integral values including zero, except that, when k

* Barriers being drawn to connect the infinities of the function.
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is the identical substitution, if m = n, h can only have the one value zero
;

then applying S/
1
to every quantity of the cross ratio under the logarithm

sign, we have

JL V l ocr (Zj-im Bn I j-im-^?A
n. in o *- iu

&amp;gt;i \ i* n ~it ~A

2-rri j
6

V ?j-i
- Bn I ,-_!

- A n j

= 2 IQ

and therefore, if m be not equal to n,

r .
V*) - Bj **\Am)

- Aj
while when m =

/?., separating away the term for which k is the identical

substitution,

1

2 log
*

*

where 2 denotes that the identical substitution, ^ =
1, is not included

;

thus

where s denotes every substitution of the group other than the identical

substitution, not beginning or ending with a power of X, and excluding
every substitution of which the inverse has already occurred.

These formulae, like that for wj
a

, are not definite unless the barriers ( 227)
are drawn.

232. Ex. i. If v,,
= un+ iwn ,

un ,
iion being the real and imaginary parts of v%

a
, prove,

as in the case of a Riemann surface, by taking the integral fu dw round the p closed

curves each formed by the circumferences of a pair of circles and the two sides of the
barrier joining them, that the imaginary part of N*TU + ...... + 2A\Nzrl2+ ...... is positive,

Ni , . . .
,
Nv being any real quantities, and u + iw=N

l
v*

a
+ ...... +N / a

. Prove also the
result r,m p=Tn, m by contour integration.

Ex. ii. Prove that the function of f expressed by

has analogous properties to Riemann s normal elementary integral of the second kind.

Ex. iii. Prove that

where a, = (,a
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Ex. iv. With the notation

prove that

[232

* (*, t) - * (Z, f)
= 2*1^ / &quot; = *(*, )

- * (Z, 5),

where is an arbitrary point, and hence prove that if z, clt ..., cp,
be any arbitrary

points, and
1
=^ (), ..., P

= SP (), the function of f expressed by

*(*, &amp;lt;T), *(*, I), *(*, &), .-., *(*, &)

(cp&amp;gt; 0, * (cp , ), * (ep , ), . . .
,

* (cp , |p)

1
,

1
,

1
, .-., 1

is unchanged by the substitutions of the group, and has simple poles at z, c
1? ...

,
cp ,

and
their analogues, and a simple zero at

,
and its analogues. Thus the function is similar to

the function ty(x, a; 2, c
l , ..., cp)

of 122, and every function which is unchanged by the

substitutions of the group can be expressed by means of it.

As a function of z, the function is infinite at z=, z=, beside being infinite at z=oo
,

and its analogues; when (ai
z+pi)/(yiZ+ 8i) is put for z, the function becomes multiplied

by (yi2 + $i)
2

- This last circumstance clearly corresponds with the fact
( 123) that

\lr(x,a; z, c
lt ..., cp) is not a rational function of z, but a rational function multiplied by

Ex. v. Prove that

JEr. vi. In case p= l, we have

where

(a,
-

)/(ar
- J)= (Me

i c

)

r
(a
-

J5)/(a
- J

).

Putting, for abbreviation, q= e
l7rr= v pe

1

*, and

prove, by applying the fundamental transformation once, that

and shew that (f) is a multiple of the Jacobian theta function (/
a
,q; , ).

/-(D
/ ^&quot;^?

jEr. vii. Taking two circles as in figure 6 ( 223), let C BfAC = ir and I7i -r-^,
= ^ ;

take an arbitrary real quantity a&amp;gt;,

and a pure imaginary quantity a&amp;gt;
=~ log p, and let

ITT
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$&amp;gt;(u)
denote Weierstrass s elliptic function of u with

2o&amp;gt;,
2&amp;lt;a as periods. Then prove,

if a, c denote points outside both the circles, a denote the inverse point of a in regard to

either one of the circles, and P, Q be arbitrary real quantities,

(a) that the function

* a-B lc-

is unaltered by the substitution ( B)/(( A) =n(-B)/(A), and has poles of the

first order, outside both the circles, only at the points f=a, f =c.

O) that the function,__P+iQ P-iQ
\

1r3
j

*-
7?~|

r3 T ^ 7?~! T^ 1 / /J~|
r*

\ a K~\
& r- log |jp log

-
(f) -r- log

- - . I I -^ \Q -
-7

[_Z7T (T A_] \_iir a a A_j [_in & f A_\ \_iir a ci A_\

is real on the circumference of each circle, and, outside both the circles, has a pole of the

first order only at the point f=. The arbitraries P, Q can be used to prescribe the

residue at this pole.

Ex. viii. Prove that any two uniform functions of f having no discontinuities except

poles, which are unaltered by the substitutions of the group, are connected by an algebraic

relation (cf. 235) ; and that, if these two be properly chosen, any other uniform function

of having no discontinuities except poles, which is unaltered by the substitutions of the

group, can be expressed rationally in terms of them. The development of the theory on

these lines is identical with the theory of rational functions on a Eiemann surface, but

is simpler on account of the absence of branch places. Thus for instance we have a

theory of fundamental integral functions, an integral function being one which is only
infinite in the poles of an arbitrarily chosen function x. And we can form a function such

as E (x, z} ( 124, Chap. VII.) ;
but the essential part of that function is much more

simply provided by the function, w (f, y), investigated in the following article.

233. The preceding investigations are sufficient to explain the analogy
between the present theory and that of a Riemann surface. We come now
to the result which is the main purpose of this chapter. In the equation

where {, y/Zi, Ci] denotes a cross ratio, let the point z approach indefinitely
near to and the point c approach indefinitely near to 7; then separating

away the term belonging to the identical substitution, and associating with

the term belonging to any other substitution that belonging to the inverse

substitution, we have, after applying a linear transformation to every element

of the cross ratio arising from the inverse substitution

n *. &amp;lt; = ion-
&amp;lt;*

- P &amp;lt;

c ~
?&amp;gt; + v loo

.
(* - (c &amp;lt;

-
7) (* -Jt) (c

-
7.-)

fcr -- ---
where S denotes that, in the summation, of terms arising by a substitution
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and its inverse, only one is to be taken, and the identical substitution is

excluded. Thus we have*

s=f,e=y

where IT has a similar signification to S and {, 7/7^, *}
denotes a cross

i i

ratio. Consider now the expression

r(&7), = (C- 7) IT
{ 7/71. 6} 5

t

it has clearly the following properties it represents a perfectly definite

function of and 7, single-valued on the whole -plane ;
it depends only on

two variables, and vr (, 7) = 57(7, ) ;
as a function of it is infinite, save

for the singular points of the group, only at =00, and not at the analogues
of = oo

;
it vanishes only at = 7 and the analogues of this point, and

limitf=y ts (, 7)/( 7)
= 1. Thus the function may be expected to generalise

the irreducible factor of the form x a, in the case of rational functions, and

the factor &amp;lt;r (u a) in the case of elliptic functions, and to serve as a prime
function for the functions of now under consideration (cf. also Chap. VII.

129 and Chaps. XIII. and XIV.). It should be noticed that the value of

VT (, 7) does not depend upon the choice we make in the product between

any substitution and its inverse
;
this follows by applying the substitution

S r
1
to every element of any factor.

234. We enquire now as to the behaviour of the function CT (, 7) under

the substitutions of the group. It will be proved that

!?, 7) +h g-^ Y
+K..)

,

where ( l^, ( !)* are certain + signs to be explained.

This result can be obtained, save for a sign, from the definition of CT (, 7),

as a limit, from the function II z] \ ;
but since, for our purpose, it is essential

to avoid any such ambiguity, and because we wish to regard the function

CT (, 7) as fundamental, we adopt the longer method of dealing directly with

the product (f 7) 11 {, 7/7$, &}. We imagine the barriers, each connecting
i

a pair of circles, which are necessary to render the functions v\

a
, ..., wp

a

* This function occurs in Schottky, Crelle, ci. (1887), p. 242 (at the top of the page). See

also p. 253, at the top. The function is modified, for a Eiemann surface, by Klein, Math. Annul.

xxxvi. (1890), p. 13. The modified function occurs also, in particular cases, in a paper by

Pick, Math. Annal. xxix., and in Klein, Math. Annal. xxxn. (1888), p. 367. For p= l, the

theta function was of course expressed in factors by Jacobi. The function employed by Bitter,

Math. Annal. XT,IV. (p. 291), has a somewhat different character.
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uniform, to be drawn; then the quantities r
n&amp;gt;m

,
rn,n given in 231, and

defined by vn
m

&amp;gt;

,
vn

n
- are definite; so therefore is also evlvn

y and the quan

tity ewiTn n
,
which is equal to

IT
A n

where s denotes a substitution, other than the identical substitution, not

beginning or ending with a power of *bn ,
and excluding the inverse of a

substitution which has already occurred. This formula raises the question
whether Kn ,

which we take positive, is to be regarded as less than 2?r or not,

since otherwise the sign of e*
l &quot;

is not definite. But in fact, as it arises in

this formula, from vfa
f
, log /*n + iKn is the value of log [ |j

- I
\,
--5M when

\S
~

/ t,-&quot;- nl

f has reached n from f by a path which does not cross the barriers. Thus tcn

is perfectly definite when the barriers are drawn, and the sign of the

quantity

is perfectly definite and independent of the barriers. We denote it by
(- l)^&quot;

1
. The annexed figure illustrates two ways of drawing a barrier

PP. In the first case /cn is less than 2?r. In the second case must pass

once round the point B, and KH is greater than 2?r. When Kn is thus

determined, the expression by means of Kn of the p which occurs in

the formulae connecting a
n&amp;gt; /3n , yn ,

8n and A n ,
Bn , pn ,

for instance in the

formula pn = (I + pn) / (an + Sn ), is also definite; it may be /4=/4e ii&amp;lt;tn or

Pn = -pn e**n- We shall put p*
= (- 1)^ g* ei^n If the whole investigation

had been commenced with a different sign for each of a.n , /?, yn ,
8n ,

hn would
have become hn l, but gn , depending only on the circles and the barrier,

would have the same value.

We have
CT (n, 7) = ?n

- 7 n/ (Tin
~ 7 7&quot;

~
?n ?j- ^
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where i denotes in turn all substitutions which with their inverses give the

whole group, except the identical substitution
;
thus i denotes all substitutions

?i
x for \= 1, 2, 3, ..., oo, as well as all substitutions nhsnk

,
where s has the

significance just explained and h, k take all positive and negative integer
values including zero. Therefore

- 7 7* - M &amp;gt;-

jj n*i*_+ 1_^ 7

A, *, A n&amp;gt;im* 7

n
- 7

jj
nA+l -7

jj
I
A -

jj
7nA ~

(T- 7 A A - 7 A A+I - f A 7x - f

-
(^n)n^ 7 (^.71X^8

^, * (^H)HA* 7 (Bn)nhs
h&amp;gt; s&amp;lt;

k ynhmk ^nhsnk+l n

the transformation of the second part of the product being precisely as in the
first part,

- 7 Tn
- 7 n~ A 7 - -

7 ^ MMftg 7 ^M-ta-i

h, s n nhs 7 (n)nhs ~ h,s,k 7 ~ n-*sn-ft n ~

7?n-_g _7_~(T (Tn
~ ^n (^n)n

~ 7 (.^!^!-
7 7 ~

since & and k have the same range of signification we may replace k by h,
in the last form, and obtain, by a rearrangement of the second product,

., _

7) -5 -
? 7 - ^n A, s

~
7 - n

7 ~ (^n)

*, ^ 7
but, from the formula

^r = y, Z 7_-)
27r. g - ~-

where j can have the forms ?I
A
S, nhs-1

,
or be the identical substitution,

we have

** y

= {-Bn 7 -^l, n C-(JgnU y-(A n)nhg n ^-(^U-! 7-(^ n) )tA8
-

1
1

{A* J
- Bn h,^-(A n)nhs 7 - (Bn )nhg s

,
h ^-(A^nhs-i 7 - (Bn )nk,-i
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therefore

363

7) A n s,h%n (Bn)nha -\ (A n)nh

-&quot;-n TT

S -&quot;n s, &

* n
~

n TT

n -ft A n

?t)s
~ A n

and hence
(Bn)s-Bn -(A n\-A n

CT

now from the formula
(^

- 5B)/(C
- A n)

= Pn (S - Bn)/(?- A n ), and the
values of a

n&amp;gt; n , 7n ,
8n given in 226, we immediately find

or- ^

thus, as pj
= (- 1)^,4 e**&quot;

B
, we have

hence, finally

7-n J

where ( \)*e
mr

n.n e
--
lK
n js independent of how the barriers are drawn, and

(-1)
A
&quot;7. (~ lA^i are independent of the signs attached to yn and Sn .

235. The function w(f, 7), whose properties have thus been deduced

immediately from its expression as an infinite product, supposed to be

convergent, may be regarded as fundamental. Thus, as can be imme

diately verified, the integral IIy is expressible by -07(^,7), in the form

y ,

*(**)*&amp;lt;& tf)

and thence the integrals v^
y

arise, by the definition v^
y =

thence, also, integrals with algebraic infinities, by the definition

,
and

~dx
Li * a

(cf. Ex. ii, 232). Further, if F () denote any uniform function of % whose
value is unaltered by the substitutions of the group, which has no discontinui
ties except poles, it is easy to prove, by contour integration, as in the case of
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a Riemann surface, (i) That F() must be somewhere infinite in the region S,

(ii) That F() takes any assigned value as many times within S as the sum
of its orders of infinity within 8, (iii) That if a1} ..., ak be the poles and

&, ..., fa the zeros of F () within S, and the barriers be supposed drawn,

where m1} ..., mp , m/, ..., mp are definite integers. Thence it is easy to

shew that the ratio

is a constant for all values of . And replacing some of /3lf ..., ctk in this

expression by suitable analogues, the exponential factor may be absorbed.

Ex. In the elliptic case where there is one fundamental substitution ( B)I( A) =

p (f
- B)I(-A\ we have (& - 5)/(Cf

-
-4)
= p

i

(f- ^)/(f- -4), and thence putting ?, v, respec

tively for the integrals /, ^, so that e
27rj

&quot;= (f- ff)/((-A), c
l

=(y- B)l(y- A], we

immediately find

~
Ct __

! ~ 2P
i cos 2n&quot;

(M ~ y
) +P2i

&amp;gt;_. _
- * 2

7
~~
y y~ d (i

~
p*)

2 2i s ^n &quot;&quot;^ s in &quot;&quot;^

and hence

^?-^l sii
OT (C y)

~
2i sin TT sin^ ,2 (1

-
p*)

2

which*, putting e
nlT

=p^, is equal to

where w is an arbitrary quantity, and

236. The further development of the theory of functions in the plane

may be carried out on the lines already followed in the case of the Riemann
surface. We limit ourselves to some indications in regard to matters bearing
on the main object of this chapter.

The excess of the number of zeros over the number of poles, in any

region, of a function of
, /(), which is uniform and without essential

singularities within that region, is of course equal to the integral

See, for instance, Halphen, Fonct. Ellipt. (Paris, 1886), vol. i. p. 400.



230] INTRODUCTION OF THE THETA FUNCTIONS. 365

taken round the boundary of the region. If we consider, for example, the

function ln (), = dvn
y
/d, which is nowhere infinite, in the region S, the

number of its zeros within the region 8 is

- ^n^pi
,( r) a(pj

a

where the dash denotes a differentiation in regard to f, and the sign of

summation means that the integral is taken round the circles C\ , ..., Cp
f

,
in

a counter-clockwise direction. Since fln (fr) = (7r + 8r)
z fln (), the value is

or 2p; thus as Hn (f) vanishes to the second order at f= GO in virtue of the

denominator d we may say that
&amp;lt;foj

y
has 2p

- 2 zeros in the region ,
in

general distinct from = x . The function fl B (f) vanishes in every analogue
of these 2p

- 2 places, but does not vanish in the analogues of = co .

The theory of the theta functions, constructed from the integrals Vn
y

,
and

their periods r
n&amp;gt;m ,

will subsist, and, as in the case of the Riemann surface

there will, corresponding to an arbitrary point m, which we take in the

region S, be points m l} ..., mp in the region S, such that the zeros of the

function
(i

m - ? . . - ...... - ^,,.) are the places ^ ^ ^ ^ Anf}

corresponding to any odd half period, O
S) ,,, there will be places nli ...

i
np_l ,

in the region S, which, repeated, constitute the zero of a differential dtf&amp;gt; *, and

satisfy the equations typified by

The values of the quantities e T
, and the positions of m1} ...,mp may

vary when the barriers which are necessary to define the periods r
n&amp;gt;m

are

changed.

But it is one of the main results of the representation now under
consideration that a particular theta function is derivable immediately from
the function *r (f, 7) ;

and hence, as is shewn in chapter XIV., that

any theta function can be so derived. Let v denote the integral whose
differential vanishes to the second order in each of the places n 1} ....Wp.,.
Consider the expression */dv/d in the region S. It has no infinities and it is

single-valued in the neighbourhood of its zeros, as follows from the fact that
the p zeros of dv/d are all of the second order. Hence if the region S be
made simply connected by drawing the p barriers, and joining the p pairs of
circles byp-l further barriers (Cl), ...

, (Cp_,), of which (cr) joins the circumfer

ence Cr to the circumference Cr+l , ^/dvjd^ will be uniform in the region 8 so

long as does not cross any of the barriers. For the change in the value of

when f is taken round any closed circuit may then be obtained by
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considering the equivalent circuits enclosing the zeros. But in fact the

barriers (d), ..., (c^) are unnecessary; to see this it is sufficient to see that

any circuit in the region 8 which entirely surrounds a pair of circles, such

as GI, Clt encloses an even number of the infinities of dv/d which are at the

singular points of the group. Since these infinities are among the logarithmic

zeros and poles of v{
v

, ..., vp
y

, whereof v is a linear function, the proof

required is included in the proof that any one of the functions vf
Y

, ..., v%
y

is

unaltered when taken round a circuit entirely surrounding a pair of the

circles, such as d , Q. Thus when the barriers which render the functions

V\ , ...,vf uniform are drawn, the function *Jdv/d is entirely definite within

the region S, save for an arbitrary constant multiplier, provided the sign of

the function be given for some one point in the region S. And, this being

done, if 7 be any point, the function y^y / is independent of this sign.

This function, with a certain constant multiplier, which will be afterwards

assigned, may be denoted by -^ ().

237. We proceed now to prove the equation

;
::

where s v
y = sfa

y + ...... + sp vf}
y

,
and A is constant, independent of f and

7. It is clear first of all that the two sides of this equation have the same

poles and zeros in the region S. For (v*
y + fls

,
S ) vanishes to the first

order at the places 7, nlt ..., np_l} and ^() vanishes to the first order at

n1} ..., np_1} oo, while m (, 7) vanishes to the first order at =7, and is

infinite to the first order at = QO *. Thus the quotient of the two sides of the

equation has no infinities within the region S. Further the square of this

quotient is uniform within the region S, independently of the barriers; for

this statement holds of each of the factors

r(C, 7 ), ^(0, 6(^ + ^11.,,), &amp;lt;P

r*^\
And, if f be replaced by n , the square of the quotient of the two sides of the

equation becomes (cf. 175, Chap. X.) multiplied by the factor

7? +

which is equal to unity. Nowf a function of which is unaltered by the

substitutions of the group, and is uniform within the region 8, and has no

* At the analogues of f= oo neither w (f, 7) nor I/ \j/ (f )
becomes infinite.

t If U+iV be the function, the integral \UdV, taken round the 2p fundamental circles is

expressible as a surface integral over S whose elements are positive or zero. In the case

considered the former integral vanishes.
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infinities, must, like a rational function on a Riemann surface, bo a constant.

Since the square root of a constant is also a constant the proof of the equation
is complete.

From it we infer (i) that

* ()/* (0 - (- 1&amp;gt;&quot;&quot;

+A 1 (7H?+ ) (- l)*,

and (ii) that the values of
\fr () on the two sides of a barrier have a quotient

of the form (-!/. The constant factor to be attached to i/r() may be
chosen so that .4 = 1. P or this it is sufficient to take for the integral v the

expression

where i (u) = d (u)/d Ui . Then (cf. 188, p. 281) the right-hand side,
when f is near to 7, is equal to A (- 7) + ..., while the left-hand side has
the value ( 7) -f ____

238. The developments of an equation analogous to that just obtained,
which will be given in Chap. XIV. in connection with the functions there

discussed, render it unnecessary for us to pursue the matter further here.
The following forms an interesting example of theta functions, of another kind.

Suppose that the quantities ^, . . .
, pp are small enough to ensure (cf. 226)

the convergence of the series

wherein p, denotes an arbitrary place within the region S, and i denotes a
summation extending to every substitution of the group. It will appear that
this function is definite in all cases in which the function r (, /*) is definite.
The function is immediately seen to verify the equations

and

where r denotes the substitution inverse to that denoted by i. Thus

X ( M )
= - X fa, f ).

The function has one pole in the region S, namely at p, and no other
infinities, and if the series be uniformly convergent near f = oo

, as we assume,
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the function vanishes to the first order at = oc . The excess of the number

of its zeros over the number of its poles in 8, which is given by

i ftx (,/*) * (,

where the dash denotes a differentiation in regard to f ,
and the integrals are

taken counter-clockwise round the circles C\
r

, ..., Cp , namely by

. 2 I

is equal to p. Thus the function has p zeros in $ other than = oo
;
denote

these by fa, ..., JJ,P . Within any region S-n$ the function has the analogue of

fj,
for a pole, and the analogues of fa, ..., JJ,P for zeros; it does not vanish at

the analogue of = oc . This result may be verified also by investigating

similarly the excess of the number of zeros over the number of poles in any
such region ;

the result is found to be p 1.

Consider the ratio

where v is any linear function of th , ...,.tiu ;
let \, ..., ^2p_2 denote the

zeros of dv. Then /() is uniform within the region 8, and is unaltered by
the substitutions of the group. It has poles fj?, , ..., 2p

-2 ,
and no other

infinities in S, and has zeros fa
2

, ..., fip
2

,
the square of a symbol being written

to denote a zero or pole of the second order. Thus we have, precisely as for

the case of rational functions on a Riemann surface,

or (179, p. 256),

(p
2

, i, &amp;gt; (V-a)= (y&quot;a

2
&amp;gt; , /V)&amp;gt;

and therefore, if mlt ..., mp denote the points in S, derivable from
//, ( 236),

such that (/
M -

/&quot;

&quot; - ...... - /&quot;
mp

) vanishes in f= x, ,
. . .

,
= xp ,

we
have ( 182, p. 265).

(fa
2

, ..., ftp*)
=
(mi

2

, ..., mp
2

).

When the barriers are drawn, let

v&quot;

&quot;

+ ...... \-vy
mp = ^(ki + kl

f

T
2i ! + ...... + kp T

i&amp;gt;p), (i=l, 2, ...,p),

klt ..., kp , ki, ..., kp being integers.

Now consider the product X(, jj,)
& (, p,}. It has no poles, in 8, and its

zeros are fa, ..., fj,p . It is an uniform function of and, subjected to one of

the fundamental substitutions of the group it takes the factor
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Hence the function

wherein &/ M
denotes Ar/t^H- ...... +V4 *

and n denotes the j9 quantities
&i + &/T&quot;;, j + ...... +kpTiip , has, within S, no zeros or poles, and is such that,

for a fundamental substitution,

(cf. 175, Chap. X.); thus, as in the previous article, F(%) is a constant

thus, also, gn + hn kn is an even integer,
= 2Hn , say, and we have

where P denotes the p quantities # + ^ + k^
Ti&amp;gt;

, + ...... + kp r
i&amp;gt;pt

and A is

independent of $ But, if f describe the circumference Cn ,
the left-hand side

is unchanged, and the right-hand side obtains the factor -&quot; * Thus the

integers &/, ...,kp are all even
; put kr = 2Hr ; then, as

where the notation is that of 175, Chap. X., we have

wherein 5 is independent of and therefore, since the interchange of /*

leaves both sides unaltered, B is also independent of
/j,.

The value of 5 may
be expressed by putting =/*; thence we obtain, finally,

This equation may be regarded as equivalent to 2^ equations. For if in
one of the p fundamental substitutions

$&amp;gt;=(,- + &)/(7r+ S,), we consider
the signs of o^, &., 7r ,

gr all reversed, the function X( /A), which involves the
first powers of these quantities, will take a different value. The function

a (f, /*), the p fundamental circles, and the integrals / M and their periods
rn

,
m , and therefore the integers g1} ..., gp ,

will remain unchanged, if the
barriers remain unaltered. But the integer h r will be increased by unity.

If, on the other hand, the coefficients a, /3, 7, B remaining unaltered,
one of the barriers be drawn

differently, the left-hand side of the equation
remains unaltered; on the right-hand one of hlt ..., hp will be increased by
an integer, say, for example, hr increased by unity, and therefore each of

Ti.r, &amp;gt;

fp,r also increased by unity. Putting u for v^^-^g-^h, and
B - 24
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neglecting integral increments of w, the exponent of the general term of the

theta series is increased, save for integral multiples of ZTTI, by

27Ti ( ^) nr + t7rar
2
,

which is an even multiple of iri, so that the general term is unchanged.

Ex. i. Prove that the function X (f, p.) can be written in the form

where the sign of summation refers to all the substitutions of the group, other than

the identical substitution, with the condition that when any substitution occurs its inverse

must not occur, and {f, & \ p, /z,-}
denotes /

*
.

o r^t ot f^l

Ex. ii. In case
/&amp;gt;

=
!, where the fundamental substitution is

(
- B)/(-A)=p(-B)/(-A),

putting e
2 *= (f

- B) / (f
- A

),
e
2 =

(fJ.-B)/( fji-A), prove that

4
(
-

l)
Ai

(f, M) -

and hence

When A= this becomes*

4i&) sin TTM sin irv &amp;lt;r3 [2&amp;lt;o (M
-

y)]

o-
[2o&amp;gt; (n

-
)]

f
)
sin2 TT (u-v}~\

(it-^) + p
2&amp;lt; J

where the sigma functions are formed with 2w, 2ar as periods, o&amp;gt; being an arbitrary

quantity. Thus ( 235, Ex.)

where the symbol 5 is as in Halphen, Fonct. Ellip. (Paris, 1886), Vol. I. pp. 260, 252.

This agrees with the general result
;

in piitting p^=e
ir T we have taken g \

; and, as

stated, h is here taken zero.

When h = 1 we similarly find

... . 4io) sin iru sin irv &amp;lt;r3 [2o&amp;gt;
(u v+ )] -

2i)w (?t
-

ti)

*(&amp;gt; A1)
111

/~T&amp;gt; j\ ?~r T^O zr; ^\i~ e

(Jj A) ircr3 (&amp;lt;t&amp;gt;)

cr \z,a) (u V) J

and hence

also in agreement with the general formula. In these formulae Q(u] denotes the series

2e2irin+tirT = 1 + 2? COS (2JTM) -f- 2J
4 COS (47Ttt)+ 2j

9 COS (67TM) + ,

where q = e
l7TT

.

* Cf. Halphen, Fonct. Ellip. (Paris, 1886), Vol. i. p. 422.
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Ex. iii. Denoting

where the summations include all substitutions of the group except the identical sub

stitution, respectively by u
m&amp;gt;n , v^n, prove that, when f is near to

/*,

Ex. iv. If z, s be two single-valued functions of
,
without essential singularities,

which are unaltered by the substitutions of the group, the algebraic
* relation connecting

z and s may be associated with a Eiemann surface, whereon is an infinitely valued

function
;
and if 2, s be properly chosen, any single-valued function of f without essential

singularities, which is unaltered by the substitutions of the group, is a rational function on
the Riemann surface. But if

where = -~
, etc., we immediately find that the value Z=(af+ #)/(yf+8) gives

{Z, *}
= {, 2};

//cfe\
2

therefore, as {, 2},
= -

{z, }
I

(
^- I

,
is a single-valued function of f without essential

/ V*i/

singularities, and is unaltered by the substitutions of the group, we have

{&amp;lt;T, 4 = 27(2, s),

where / denotes a rational function. Therefore, if Y denote an arbitrary function, and

P -
j^ log ( F2^ J

,
Y and Y are the solutions of the equation

and if I
r
be chosen so that F2

/^ is a rational function on the Riemann surface, the

coefficients in this equation will also be rational functions. Thus for instance we may

take for Y the function
/y ^, in which case P=0, or we may take for Y the function

^ (0&amp;gt;

=
\/ j* j-

considered in 236, which is uniform on the f plane when the barriers

are drawn, in which case P= -
-^ log

~
,
and the equation takes the form ^f+ R.Y=0,

where R is a rational function, or again we may take for Y the uniform function of

C&amp;gt;

*
(f&amp;gt; /*). considered in 238 f.

* Ex. viii. 232.

t Cf. Riemann, Get. Werke (Leipzig, 1876), p. 416, p. 415; Schottky, Crelle, LXXXIII. (1877)
p. 336 ff.

242
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Ex. v. If, as in Ex. iv., we suppose a Riemann surface constructed such that to

every point of the f plane there corresponds a place (z, *) of the Riemann surface, and

in particular to the point f= there corresponds the place (x, y\ and if R, S be functions

of denned by the expansions

prove that

and that R, 8 are rational functions of x and y.

Ex. vi. The last two examples suggest a problem of capital importance given any
Riemann surface, to find a function f, which will effect a conformal representation of the

surface to such a f-region as that here discussed. This problem may be regarded as that

of finding a suitable form for the rational function I (z, a). The reader may consult

Schottky, Crelle, LXXXIII. (1877), p. 336, and Crelle, ci. (1887), p. 268, and Poincare
,

A eta Mathem.atica, iv. (1884), p. 224, and Bulletin de la Soc. Math, de France, t. XI. (18 May,

1883), p. 112. In the elliptic case, taking

where
$&amp;gt;

denotes Weierstrass s function with 1 and T as periods, it is easy to prove that

-jr.
and f */ -jj.

are the solutions of the equation

239. There is one case of the theory which may be referred to in

conclusion. Take p circles Cf

1 , ..., Cp ,
exterior to one another, which are all

cut at right angles by another circle
;
take a further circle G cutting this

orthogonal circle at right angles; invert the circles C1} C.2} ... in regard to

C. We shall obtain p circles
&amp;lt;7/,

C2 , ..., Cp also cutting the orthogonal

circle at right angles. The case referred to is that in which the circles

C1} O/, ..., Cp , Cp are the fundamental circles and the angles Klt ..., KP are

all zero, so that, if ^n denote one of the p fundamental substitutions, the

corresponding points ,
S-n lie on a circle through An and Bn . We may

suppose that the circles (7a ,
. . .

,
Cp are all interior to the circle C. It can be

shewn by elementary geometry that A n ,
Bn are inverse points in regard to

the circle C as well as in regard to the circle Cn ,
and further that if &&amp;gt; denote

the process of inversion in regard to the circle C and wn that of inversion in

regard to Cn ,
the fundamental substitution S-n is a&amp;gt;n w, so that ufen &amp;lt;a

= ST ,
or

&)^7V
=^ 1

&). Hence if the points of intersection of the circles 0, Cn be

called an ,
bn ,

the points of intersection of 0, Cn be called an , bn ,
and the

points of intersection of 0, C be called a, b, it may be shewn without much

difficulty that

_ _

v
r = a,, . b.. , .^ a, b , T-, , -, c\ i \

n
n &quot; = $ + Qn ,

vn =$ + R, (n, r = l,2,...,p ; n+r),
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where P
n&amp;gt;

r , Qn ,
R are integers, and the integrations are along the perimeters

of the several circles. Hence it follows that the uniform functions of

2jj
c

2n^
c

expressed by e *&amp;gt;

r&amp;gt;

e -
* are unaltered by the substitutions of the group.

Denote them, respectively, by xr (f) and x (). Each of them has a single

pole of the second order, and a single zero of the second order, and therefore,
as in the case of rational functions on a hyperelliptic Riemann surface, we
have, absorbing a constant factor in xr (), an equation of the form

x m-^O-^K)
~*(0-*(&rj

But it follows also that the function

is unaltered by the substitutions of the group. Hence we have*, writing
y, x for y (), as (), etc.,

if -xx

Thus the special case under consideration corresponds to a hyperelliptic

Riemann surface; and, for example, the equations t&quot;

6
&quot;= 1 + Qn , etc., cor

respond to part of the results obtained in 200, Chap. XI. It is manifest
that the theory is capable of great development. The reader may consult

Weber, Gottinger Nachrichten, 1886, &quot;Ein Beitrag zu Poincare s Theorie,
u. s. w.

,&quot; also, Burnside, Proc. London Math. Soc. xxm. (1892), p. 283, and
Poincare, Acta Math. m. p. 80 and Acta Math. iv. p. 294 (1884); also

Schottky, Crelle, cvi. (1890), p. 199. For the general theory of automorphic
functions references are given by Forsyth, Theory of Functions (1893),
p. 619. The particular case considered in this chapter is intended only
to illustrate general ideas. From the point of view of the theory of this

volume, Chapter XIV. may be regarded as an introduction to the theory
of automorphic functions (cf. Klein, Math. Annalen, xxi. (1883), p. 141, and
Ritter, Math. Annalen, XLIV. (1894), p. 261).

* The function x here employed is not identical in case^ = l with the z of Ex. vi. 238.
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CHAPTER XIII.

ON RADICAL FUNCTIONS.

240. THE reader is already familiar with the fact that if sn u represent

the ordinary Jacobian elliptic function, the square root of 1 sn2 u may be

treated as a single-valued function of u. Such a property is possessed by

other square roots. Thus for instance we have*

v(l sn u) (1 k sn u)

l - 2om sin~ + f* l - 2q
m~* sin 4- g

2 &quot;1
- 1

Tir - tjr \-rr ***=M Sin -. (K - U) II

where M is a certain constant, and, as usual, q
= e~wR IK

. The single-

valuedness of the function V(l sn u) (] k sn u) can be immediately seen

to follow from the fact that each of the zeros and poles of the function

(1 sn u) (1 ksnu) is of the second order. It is manifest that we can

easily construct other functions having the same property. If now we write

u = ux &amp;gt;

a and consider the square root on the dissected elliptic Riemann

surface, we shall thereby obtain a single-valued function of the place x,

whose values on the two sides of either period loop will have a ratio,

constant along that loop, which is equal to + 1.

Ex. Prove that the function

is a single-valued function of it.

Further we have, in Chapter XI., in dealing with the hyperelliptic case

associated with an equation of the form

y&quot;-

=
(a;
-

Oj) . . . (x
- a

2p) (x
-

c),

*
Cf. Cayley, Elliptic Functions (1876), Chap. XI. The function may be regarded as a

doubly periodic function, with 8K, 2iK as its fundamental periods. It is of the fourth order,

with K, 5K, K+ iK
, 5K+iK as zeros, and iK

,
2K+ IK , iK+iK , 6K+iK as poles.
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been led to the consideration of functions of the form V(c x^) ... (c xp),

which are expressible by theta functions with arguments u, =ux
i&amp;gt;

ai+ ......

+ U*P&amp;lt;
a
P. These functions are not only single-valued functions of the

arguments u, but, when the Riemann surface is dissected in the ordinary

way, also of every one of the places tK1} ...
,
scp . In fact the square root vc x

is a single-valued function of the place x because, c being a branch place,

x c vanishes to the second order at the place, and the point at infinity

being a branch place, x c is there infinite to the second order. The values

of the square root \/c x on the two sides of any period loop will have a

ratio, constant along that loop, which is equal to + 1.

241. More generally it may be proved, for any Riemann surface, that if

Z be a rational function such that each of its zeros and poles is of the mih

order, the mth root, \/Z, is a single-valued function of position on the

dissected surface, with factors at the period loops which are wth roots of

unity. And it is easy to prove this in another way by obtaining an ex

pression for such a function. For let alt ..., ar be the distinct poles of Z, and

fii, ..., @r its distinct zeros, so that the function is of order mr. Let Hz\

*
be

the normal elementary integral of the third kind and Vi

a
, ..., Vf the normal

integrals of the first kind. Then when the paths are restricted not to cross

the period loops we have* equations

kp
f

r
i&amp;gt;p

,

wherein klt ..., kp , &/, . . .
,
kp are certain integers independent of i. Hence

the expression
m [H x&amp;gt;

a
A- 4- n x&amp;gt;

a 1-2 I-
x&amp;gt;

a - -2 -i-
x

&amp;gt;

a

e 0ul Pr &amp;gt;

ar
P P

,

wherein a is an arbitrary fixed place, represents the rational function Z, save

for an arbitrary constant
;
and we have

,x,a
, ,.x, a

+ ...... +H ~
=Ae

where A is a certain constant. This expression defines \/Z on the dissected

surface as a single-valued function of position. More accurately it defines

one branch of \/Z, the other m- 1 branches being obtained by multiplying
A by wth roots of unity. So defined, the function VZ is affected, at the

- K
period loop ,-, with a factor e m

, and, at the period loop /, with the

factor e m .

242. We have, in chapters X., XL, been concerned with other functions,

namely the theta functions which also have the property of being single-

*
Chap. VIII. 155.
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valued on the dissected Riemann surface, but affected with a factor for each

period loop. They are also simpler than rational functions, in that they do

not possess poles. It is therefore of interest to express such functions as

\/Z by means of theta functions
;
and the expression has an importance

arising from the fact that the theory of the theta functions may be established

independently of the theory of the algebraic integrals. To explain this

mode of representation consider the quotient

-/;
U1 . D\- *

; ft)

where the numerator and denominator contain the same number of factors,

^ (a, q) denotes the function (Chap. X. 189) given by

(n+g )
2

q, r, ..., Q, R, ... denote any characteristics, and e,f....,E,F,... denote any

arguments.

Then by the formula ( 190)

(u + flj, ; q)
= &M &amp;lt;&amp;gt;+2*W-J/ &amp;lt;?) ^ (M ; q ) t

where M, M denote integers, we have ty (u, + H ) fty (u) = e \ where L is

\M (u-e) + \
Jl (u-f) + ...... -\M (u -E)-\JI (u-F)- ......

+ 2iriM(q + r + ...... - Q - R -...)- 2iriMf

(q + r+ ...... -Q-R-...},

namely, is

...... -Q -R -
...)

q + r + ...... -Q-R-...).
Thus if

ei+fi+ ...... =Et + Fi+ ......
,

and

ff* +rt + ...... -(Qi +Ri +...) = ~K i , (i
= l,2, ...,p),

IIV

qi+r^+ ...... -(Q/ + JR/+...) = -^/,
772*

where Kiy Kl are integers and m is an integer, it follows, for integral values

of M, M , that

If now we take b = iirr, as in 192, and put ux &amp;lt;

a for u, *$(ue; q)

becomes a single-valued function of x whose zeros are ( 190 (L), 179) the

places #j, . .., xp , given by
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where alt ..., ap are p places determined from the place a, just as in 179

the places m 1 , ..., mp were determined from the place m ; hence, in this case,

i/r (w) is the wth root of a rational function, having for zeros places

each m times repeated, and for poles places

Y Y 7 7.AH ..., -Ap, oif ..., &p, ...,

each m times repeated, these places being subject only to the conditions

expressed by the equations

A&quot;, (A).
II v

In this representation we have obtained a function of which the number

of m times repeated zeros is a multiple of p, and also the number of m times

repeated poles is a multiple of p. It is easy however to remove this restric

tion by supposing a certain number of the places x1} ..., xp ,
zlt ..., zp to

coincide with places of the set X1} ..., Xp ,
Z1} ..., Zp ,

243. A rational function on the Riemann surface is characterised by the

facts that it is a single-valued function of position, such that itself and its

inverse have no infinities but poles, which has, moreover, the same value

at the two sides of any period loop. The functions we have described may
clearly be regarded as generalisations of the rational functions, the one new

property being that the values of the function at the two sides of any period

loop have a ratio, constant along that loop, which is a root of unity. For

these functions there holds a theorem, expressed by the equations (A) above,

which may be regarded as a generalisation of Abel s theorem for integrals

of the first kind
; and, when the poles of such a function are given, the

number of zeros that can be arbitrarily assigned is the same as for a rational

function having the same poles, being in general all but p of them; this

follows from the theory of the solution of Jacobi s inversion problem

(Chap. IX.
;

cf. also 37, 93). It will be seen in the course of the following

chapter that we can also consider functions of a still more general kind,

having constant factors at the period loops which are not roots of unity, and

possessing, beside poles, also essential singularities; such functions may be

called factorial functions. The particular functions so far considered may be

called radical functions
;

it is proper to consider them first, in some detail, on

account of their geometrical interpretation and because they furnish a

convenient method of expressing the solution of several problems connected

with Jacobi s inversion problem.

244. The most important of the radical functions are those which are

square roots of rational functions, and in view of the general theory developed
in the next chapter it will be sufficient to confine ourselves to these functions.

s
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In dealing with these we shall adopt the invariant representation by means

of (^-polynomials, which has already been described*. An integral polynomial
of the rth degree in the p fundamental (^-polynomials, &amp;lt;f&amp;gt;

1} ...,
&amp;lt;j&amp;gt;p ,

will be

denoted by 3&amp;gt;
{n

,
or &quot;SP&quot; *, when its 2r(p 1) zeros are subject to no condition.

When all the zeros are of the second order, and fall therefore, in general, at

r(p 1) distinct places, the polynomial will be denoted by X (r&amp;gt; or Y(r)

;
we

havef already been concerned with such polynomials, Xw
,
of the first degree

in
&amp;lt;/&amp;gt;!,

...,
&amp;lt;j&amp;gt;p .

It is to be shewn now that the square root VJT (r) can properly be associated

with a certain characteristic of 2p half-integers; and for this purpose it is

convenient to utilise the places m1} ..., mp , arising from an arbitrary place m,

which have already | occurred in the theory of the theta functions. These

places are such that if a non-adjoint polynomial, A, of grade p, be taken to

vanish to the second order at m, there is an adjoint polynomial, ty, of grade

(11 l)cr+ n 3 + fi, vanishing in the remaining n/j,
2 zeros of A, whose

other zeros consist of the places ml} ...,mp ,
each repeated. Take now any

(^-polynomial, &amp;lt;f&amp;gt;

0&amp;gt; vanishing to the first order at m, and let its other zeros be

A l} ..., A^p-s&quot;,
and take a polynomial &amp;lt;&

(3)

vanishing to the second order in

each of A 1} ..., A 2p_2 ;
then &amp;lt;E&amp;gt;

(3
&amp;gt;

will|| contain 5(^-1) - 2(2p
-

3),
= p+l,

linearly independent terms, and will have 6 (p 1) 2 (2p 3),
=

2p, further

zeros. Let X (l) be any ^-polynomial of which all the zeros are of the second

order. Consider the most general rational function, of order 2p, whose poles

consist of the place m, this being a pole of the second order, and of the zeros

of Xw
. This function will contain 2pp + 1, =p + 1, linearly independent

terms and can be expressed in either of the forms &amp;lt;!&amp;gt;

(3

/&amp;lt;/&amp;gt;

2 .X (1)
, -v|r/A^

(1)
,
where

Jr
is any polynomial of grade (n 1) cr + n 3 + p which vanishes in the

up 2 zeros of A other than m. Since now 11
-v/r

can be chosen, = i|r,
so that

the zeros of this function are the places m1} ...,mp ,
each repeated, it follows

that &amp;lt;E&amp;gt;

(3) can be equally chosen so that this is the case. So chosen it may be

denoted by X (s&amp;gt;

. Thus the places m^, ...,mp arise as the remaining zeros of a

form X {S}

(with 3(p 1), =p +2p 3, zeros, each of the second order), whose

other 2p 3 separate zeros are zeros of an arbitrary (^-polynomial, &amp;lt;)&amp;gt;

, which

vanishes once at the place m.

If now ?i: , ..., ?z_p_i
be the places which, repeated, are the zeros of Xw

, it

follows, since m, nl} ..., ?ip_i,
each repeated, are the poles, and m1} ...,mp ,

each repeated, are the zeros of a rational function, X {3}

/&amp;lt;f&amp;gt;

2Xw
, that, upon the

dissected surface, we have

*
Chap. VI. 110 ff., and the references there given, and Klein, Math. Annal. xxxvi. p. 38.

t Chap. X. 188, p. 281. I Chap. X. 179.

Chap. X. 183, Chap. VI. 92, Ex. ix.

|| Chap. VI. 111. H Chap. X. 183.
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where ki, ..., kp , &/, ..., kp are certain integers. Hence, as in 241, it

immediately follows that the rational function X i3)

/(f)Q-X
{11

,
save for a constant

factor, is the square of the function

and therefore that the expression ^X (3

&amp;gt;/&amp;lt;f)

*/X (v may be regarded as a single-
valued function on the dissected Riemann surface, whose values on the two
sides of any period loop have a ratio constant along that loop. These constant

ratios are equal to enik&amp;gt;- and e~n!kr for the rth loop of the first and second kind

respectively. When the places ml} ..., mp are regarded as given, these

equations associate with the form VZ (1) a definite characteristic

T V&amp;gt; j
T&quot;j 9*1 t &amp;gt; 2 &quot; P

Also, if F |3
&amp;gt; be any polynomial which, beside vanishing to the second

order in A lt ..., A^p_3 ,
vanishes to the second order in places m/, ..., mp ,

Y(3]jX (3] is a rational function, and we have equations of the form

where \lt ..., \p are integers, A is a constant, and the paths of integration
are limited to the dissected Riemann surface. These equations associate

VF(3) with the characteristic \1} ..., \, X/, .,

And, as in 184, Chap. X., we infer that every odd characteristic is

associated with a polynomial* Xw
,
and every even characteristic with a

polynomial F(3)
, which has A ly ..., A^^ for zeros of the second order; and it

may happen that the polynomial F(3)

corresponding to an even characteristic

has the form
&amp;lt;/&amp;gt;

2 F(1)
,
in which case the places w/, ..., mp consist of the place

m and the zeros of a form F(1)
.

245. Let now X (*v+1) be any polynomial whose zeros consist of

(2i&amp;gt;
+ 1) (p 1) places, zlt ^, ..., each repeated ;

let
&amp;lt;/&amp;gt;

be as before, vanishing
in m, A lt ..., ^4.2p_3)

and X (3} be as before, vanishing to the second order in

A l} ..., Azp-3, Wj, ..., wp . Then if 4&amp;gt;

(I&amp;gt;) be any ^-polynomial whose zeros

are CL , C2) ..., the function

* Or in particular cases with a lot of such polynomials, giving rise to coresidual sets of

places.
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is a rational function of order 2 (2z/ -f 1) (p 1) + 2, whose zeros are m, z
1 ,

z.2 ,
. . .

,

and whose poles consist of the places 7?^, ..., mp ,
and the zeros of &amp;lt;

&quot;)

, each

repeated. Hence as before
&amp;lt;f&amp;gt;

*/X (Zv+
v/&amp;lt;&w

V5^&amp;gt; is a single-valued function on

the dissected surface, and the form \/X (Zv+l) is associated with a characteristic

^ql} ..., ^qp , \q{ , ..., ^qp ,
such that, on the dissected surface,

ZP,

(i
= l, 2, .....p);

and if, instead of 4&amp;gt;
(v)

,
we had used any other polynomial ^ {v

&amp;gt;,

the character

istic could, by Abel s theorem, only be affected by the addition of integers.

Suppose now that Y (^+l} is another polynomial, and take a polynomial

then if the characteristic of the function V7&amp;lt;^
+1&amp;gt;^w\/X^ differ from that

of
(/&amp;gt;

v X^+v
!&amp;lt;&(&quot;)

\/X (z)

only by integers, we have when xl} #2 , denote the

zeros of *Y^+l
\ and d1} d2 , ... denote the zeros of M^), the equation

x
i i
m

\ Xp,m,t Xn+i.d, , , ,P P

MP T
PI

where Mlt ..., M
p&amp;gt;
M^ , ..., Mp denote integers; by adding this to the last

equation we infer* that ^^X^^T^^I^^ V (ti)X is a rational function.

Hence
&quot;f

1

,
since there exists a rational function of the form (f)^X^/X^

3)
, we

infer, when *JX (2v+1
\ ^Y^+1] have characteristics differing only by integers,

there exists a form &amp;lt;J&amp;gt;&amp;lt;

X+ |/+1
&amp;gt; whose zeros are the separate zeros of \lX (2 &quot;+1) and

), and we have

Hence, all possible forms F 2^*1

, with the same value of /i, whose

characteristics, save for integers, are the same, are expressible in the form

&amp;lt;j&amp;gt;

(,*++!)/VZ (2 &quot;+1
&amp;gt;,

where &amp;lt;E&amp;gt;&amp;lt;&amp;gt;*+*+

1
&amp;gt; is a polynomial of the degree indicated,

which vanishes once in the zeros of */X (2v+1}
. All such forms -v/F^+D are

therefore expressible by such equations as

where V F
]

(2 x+1)
, ..., v

F&quot;^^^
are special polynomials, and X,, ..., X2M(p_1) are

constants. The assignation of
2/j, (p 1) 1, = (2/i + 1) (p 1) p, zeros of

will determine the constants X1; ..., X^^-D, and therefore determine

the remaining p zeros. When p = there may be a reduction in the number
of zeros determined by the others.

It follows also that the zeros of any form VF (2 A+1) are the remaining zeros

of a polynomial ^&amp;gt;^+
2) which vanishes in the zeros of a form x/Z 13 having

Chap. VIII. 158. t Chap. VI. 112.
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the same characteristic as \/F (2 1+1)
,
or a characteristic differing from that of

integers. When the characteristic of ^/X is odd, and

,
we may take &amp;lt;J&amp;gt;&amp;lt;&quot;+

2
&amp;gt; to be of the form

It can be similarly shewn that if Xw be a polynomial of even degree, 2/j,,

in the fundamental 0-polynomials, of which all the zeros are of the second

order, and &amp;lt;f&amp;gt;w be any polynomial of degree /*,
the quotient \/Xw/&amp;lt;&w may

be interpreted as a single-valued function on the dissected surface, and the

form vX (w may be associated with a certain characteristic of half-integers.

Further the zeros of ^Xw are the remaining zeros of a form c&amp;lt;&amp;gt;*+
1

) which

vanishes in the zeros of a form VjT&amp;lt;-&amp;gt; of the same* characteristic as VZ&quot;
&amp;lt;*

*&amp;gt;.

Also if */X m
,
\/F (1) be two forms whose (odd) characteristics have a sum

differing from the characteristic of VZ*2

by integers, the ratio

is a rational function
;
and if we determine (p 1) pairs of odd characteristics,

such that the sum of each pair is, save for integers, equal to the character

istic of \/Z&amp;lt;
2

,
and V5V1

, VF^, VZ^, VTy1
&quot;

, ..., represent the corresponding
forms, there exists an equation of the form

As a matter of fact every characteristic, except the zero characteristic, can,

save for integers, be written as the sum of two odd characteristics in

2p_2
(2
p-i_

1) ways.

246. In illustration of these principles we consider briefly the geometrical

theory of a general plane quartic curve for which p = 3. We may suppose
the equation expressed homogeneously by the coordinates x

l ,
x.2 ,

x3 and take

the fundamental 0-polynomials to be
cf&amp;gt;

l
= x1 ,

(f&amp;gt;.
2 =x2 ,

&amp;lt;f&amp;gt;

s
= cc3 . There are

then 2^-1

(2^-l) = 28 double tangents, X^, of fixed position. There are

2^, = 64, systems of cubic curves, X (3)
, each touching in six points. Of these

six points of contact of a cubic, X (3}
,
of prescribed characteristic, three may be

arbitrarily taken
;
and we have in fact

= x, J^) + x, Vz/&amp;gt; + A, VIv5* +

where \lt A,,, A3 ,
A4 are constants, and ^/X^, VJt2

&amp;lt;

3
&amp;gt;, ..., are special forms of

the assigned characteristic. The points of contact of all cubics X (3} of given
odd characteristic are obtainable by drawing variable conies through the

points of contact of the double tangent, D, associated with that odd
characteristic. Let n o be a certain one of these conies and let X denote the

corresponding contact-cubic
;
then the rational function X D/fl

2
has, clearly,

no poles, and must be a constant, and therefore, absorbing the constant, we
infer that the equation of the fundamental quartic can be written

Or a characteristic differing from that of vjP by integers.
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Three of the conies through the points of contact of D are xj) = 0, x2D =
0,

x3D=Q; the corresponding forms of JT (3) are x^D, x.2
2
D, xjD. Hence all

contact cubics of the same characteristic as VZ) are included in the formula

vz
,

or

where P = X,^ + \^cz + X3#3 ,
X1; Xa, X3 being constants

;
the conic through the

points of contact of D which passes through the points of contact of X is

given by H = 2 \/J9X&amp;lt;
3

,
or H = 2PD + H ;

and the fundamental quartic can

equally be written

4,xD - n 2 = 4 (XQ + n p + DP*) - (n + ZPD? = o.

If then we introduce space coordinates X, Y, Z, T given by

X=x
1 ,
Y=x Z=x T=

so that the general form of VJT (3) with the same characteristic as VZ) is given

by
VZ&amp;lt;

3
&amp;gt; = Vi) (X1Z + X 27 + X3^- T),

we have
4Z (Z, F, Z) D (Z, F, )

=W (X, 7, Z),

2TD (X, Y, Z) + A, (X, Y, Z) = 0,

where X (X, Y, Z) is the result of substituting in X
,
for aclt oc2 ,

x3 ,

respectively X, Y, Z, etc.
; by these equations the fundamental quartic is

related to a curve of the sixth order in space of three dimensions, given

by the intersection of the quadric surface

and the quartic cone

4Z (X, Y, Z) D (X, F, Z) = Cl* (X, Y, Z)

the curve lies also on the cubic surface

T*D (X, Y, Z) +mo (X, Y, Z) + X (X, Y, Z) = 0,

which can also be written

(T-P)*D(X, 7,Z) + (T-P)Q(X, Y,Z) + X(X, Y, Z) = 0,

where P denotes \,X + X2F+ \3Z, n = 2PD + flc ,
and X = DP2 + H P +X ,

as above.

It can be immediately shewn (i) that the enveloping cone of the cubic

surface just obtained, whose vertex is the point X = = F= Z, is the quartic

cone whose intersection with the plane T = gives the fundamental quartic

curve, (ii) that the tangent plane of the cubic surface at the point
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X = = Y = Z is the plane D (X, Y, Z) = 0, (iii) that the planes joining
the point X = = F = Z to the 27 straight lines of the cubic surface

intersect the plane T=0 in the 27 double tangents of the fundamental

quartic other than D
t (iv) that the fundamental quartic curve may be

considered as arising by the intersection of an arbitrary plane with the

quartic cone of contact which can be drawn to an arbitrary cubic surface

from an arbitrary point of the surface.

Thus the theory of the bitangents is reducible to the theory of the right
lines lying on a cubic surface. Further development must be sought in geo
metrical treatises. Cf. Geiser, Math. Annal. Bd. I. p. 129, Crelle LXXII. (1870);
also Frahm, Math. Annal. vn. and Toeplitz, Math. Annal. XL; Salmon, Higher
Plane Curves (1879), p. 231, note

; Klein, Math. Annal. xxxvi. p. 51.

247. We have shewn that there are 28 double tangents each associated

with one of the odd characteristics
;
the association depends upon the mode

of dissection of the fundamental Riemann surface. We have stated moreover

( 205, Chap. XL), in anticipation of a result which is to be proved later, that
there are 8 . 36 = 288 ways in which all possible characteristics can be repre
sented by combinations of one, two, or three of seven fundamental odd
characteristics. These fundamental characteristics can be denoted by the
numbers 1, 2, 3, 4, 5, 6, 7, and in what follows we shall, for the sake of

definiteness, suppose them to be either the characteristics so denoted in the
table given 205, or one of the seven sets whose letter notation is given at
the conclusion of 205. Thus the sum of these seven characteristics is the

characteristic, which, save for integers, has all its elements zero
; or, as we

may say, the sum of these characteristics is zero.

A double tangent whose characteristic is denoted by the number i will be

represented by the equation m = 0. A combination of two numbers also

represents an odd characteristic
( 205, Chap. XL), so that there will also be

21 double tangents whose equations are of such forms as u
itj
= 0. The three

products Vi^ttj,, 4/t%,7, *Ju3ul2 will be radical forms, such as have been denoted

by V3&amp;gt;, each with the characteristic 123. Hence if suitable numerical

multipliers be absorbed in ul} u3 ,
we have ( 245) an identity of the forms

vVw^ + Vi*2w31 + V-M.WU = 0, (u,u3l + u3u12
- ulU23)

2 = 4,u2u3u3^2 ;

this must then be a form into which the equation of the fundamental quartic
curve can be put. Further, each of the six forms

has the same characteristic, denoted by the symbol 1. Thus, if suitable
numerical multipliers be absorbed in u2 , u4 , the equation of the quartic can
also be given in the form
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If therefore

/= UaUsi + U3U12 WiW2 3&amp;gt;
&amp;lt;j)

- U2u12 + U^uu U3U 13 ,

we have

(/- 0) (/+ &amp;lt;#&amp;gt;)

= 4u2u12 (wsM,,
- w,4w14).

Now
if/-&amp;lt;

were divisible by u2 , and/+&amp;lt;/&amp;gt;
divisible by ul2 , the common

point of the tangents u2
=

0, u12
= would make /= 0, and therefore be upon

the fundamental quartic, / 2 = 4w2w3w31w12 ;
this is impossible when the quartic

is perfectly general. Hence, without loss of generality, we may take

f&amp;lt;f&amp;gt;

=

2

X being a certain constant, and therefore

*u2 u12 ,
= u3uls

- X (u.2u3l + usu12
-

u-^

Therefore, when the six tangents uly u2 ,
u3 , u^, uzl ,

ulz are given, the tangents
ut ,

w]4 can be found by expressing the condition that the right-hand side

should be a product of linear factors
;
as the right-hand is a quadric function

of the coordinates this will lead to a sextic equation in X, having the roots

X = 0, X = oo
;
if the other roots be substituted in turn on the right-hand, we

shall obtain in turn four pairs of double tangents ;
these are in fact (u4 , Uu),

(us ,
u15), (ue , ULG), (UT, ul7).

We use the equation obtained however in a
different way ; by a similar proof we clearly obtain the three equations

W4W14
= U3U13 Xj (U2 U31 + U3U12 l^U^} + X^WgWjj,

u^u^ = UiUn - X2 (u3u12 + u^i^ - u2u31) + X2
2M3 W23, (B)

\s (U^zs + U2U31 U3U12) + X3
2^ U31 ,

and hence

from this we infer that the common point of the tangents wlT u4 either lies on
11

w23 or on X2u3 + -2 = Q; as the fundamental quartic may be written in the
A-3

form ^AU^UM + \/Bu2u^ + VC^t^ = 0, it follows that if ^, M4 ,
u.23 intersect,

they intersect on the quartic, which is impossible. Hence w4 must pass

through the intersection of ^and X2w3 + -^ =
;
now we may assume that

X3

the tangents uly u2 ,
u3 are not concurrent, since else, as follows from the

equation Vw^ + Vw2w31 + *Ju3u12
=

0, they would intersect upon the quartic ;

thus w4 may be expressed linearly by u1} u2 ,
u3 ,

and we may put

+ a2u2 + asu3
= a^ + -x^Us +~)X3 X
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and so obtain X2=Aia3 ,
X3
=

1/^a.j, hi being a certain constant; then the

equation under consideration becomes

or

/M24 7/34 ,
\ /^,U*

V7u X~
~

lW23
J
= Ml

I XT
+ ^ Wsi

&quot;

/2

so that, if &! denote a proper constant,

, ^34 _ 7 &1
I -v

-
Wl &quot;^S 7 Wl

A.3 fli

ci3 &%

We can similarly obtain the equations

- k2 u, =^ +^- h,u3i (2 + a

where /i2) /&amp;lt; 3 ,
Ar2 , A?3 are proper constants; therefore, as u.a ,

u3l ,
ua are not

concurrent tangents, since else they would intersect on the fundamental

quartic, we infer, by comparing the right-hand sides in these three equations,

and hence, k1
= k.2

= ks ,
=

k, say, and 1 + 2^ + a,
2
/*,

2 = or hi = - i
a,

7
1 I 1

//,,
= --

, *,- -- .

tt2 a
:i

Thus

-fa l
=2 + ^!+^

&amp;gt;

ttj a., as

or

w.,8 31 7^],
+-+&quot; + ^ (! Wj + 2 u2 + a3u3)

= 0. (C)
u-i a2 t 3

Further we obtained the equation

&quot;24^34 A?j_ +_ = /,
1^__ Wi;

thus we have

25
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and therefore, as Xj = ---, X3
= --

-, and similarly Xj = -, we have, by
ft] (12 d3

the equation (C),

---uu = + k (a2u 2 + a3u3),
ct/% (LI

Cvj ^31 7 / \-- M24
=--

1- fc (a3u3 + aiWj),
CL3 CL2

2 12 7 / \
^34

^~-
I iG \ ^1 ^1 I ^2 ^2/

tti CL3

But if we put

u5
= b1 u1 + b2u2 + b3 it3 ,

^ e
= c1 M1 + c2M2 + c3w3 ,

U7 =dlul +d2u2 + d3u3 ,

we have also three other equations such as (C), differing from (C) in the

substitution respectively of the coefficients b1} b.2) b3 clf c2 , C3 and dlt d2 ,
ds in

place of alt a2 ,
a3 ,

and of three constants, say I, m, n, in place of k. As the

tangents u5 ,
u6 ,

u7 are not concurrent (for the fundamental quartic can be

written in a form v usu l5 + *Ju6uls + ^u 7u17
=

0) we may use these three last

equations to determine u23 ,
u3l , u12 in terms of w1} w2 ,

us ;
the expressions

obtained must satisfy the equation (C). Thus there exist, with suitable

values of the multipliers A, B, C, D, the six equations

A B C D
Dndl

= 0,
/i Ui ] C/i

A B C D
+ Dnd2

= 0,
ct% 2 c2 d2

A B C D- + j- + -- +
-j
= 0, Aka3 + Blb3 + Cmc3 + Dnd3

= 0.
C13 3 C3 Cl3

From these equations the ratios of the constants k, I, m, n are determinable;

suppose the values obtained to be written pk , pi , pm , pn ,
where p is undeter

mined, and k
,

I
, m, n are definite

; then, if we put a; for af VK, & for

biVl ,
&amp;lt;yt

for C;Vm , Si for di^ln, v^ for u^/p, vsl for ti3l /p, and v12 for u12 /p, the

equations obtained consist of

(i) four of the form

Vos VS1 V,o //^(
,,-+~ + --+alul + a2u2 + a3u3

= (C )a
i

a2 a3

in which there occur in turn the sets of coefficients (alt 2 , a3), (y81} ^2 , /93),

(71. 72, 7s)&amp;gt; (^i, S2 ,
S3) ;

from any three of these v^, v3l ,
vl2 may be expressed in

terms of u1} u2 ,
us ;

(ii) four sets of the form

where v, 4
= uujp ^k , v^ = u^/p VF, VM = u^/p VF.
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It will be recalled that in the course of the analysis the absolute values,

and not merely the ratios of the coefficients in u^, u2 ,
u3 ,

u4 , u^, u6 , u?, have

been definitely fixed. Thus when these seven bitangents are given the

values of alt a,, a3 ,
blt b,, ba ,

etc. are definite
;
therefore the equations of the

15 bitangents v.a ,
v3l ,

vn ,
v

u&amp;gt; v, VM ,
...... are now determined from the seven

given ones in an unique manner, and there is an unique quartic curve

expressed by
12
= 0,

which has the seven given lines as bitangents.

It remains now to determine the remaining six double tangents whose

characteristics are denoted by

45, 46, 47, 56, 57, 67.

If the characteristics 1, 2, 3, 4, 5, 6, 7 be taken in the order 1, 4, 5, 2, 3, 6, 7

it is clear that as we have determined the double tangents u^, u3l ,
ul2 in

terms of ul} u, u3 ,
so we can determine the tangents u^, usl ,

uu in terms

of ul} ut ,
u5 . Thus the tangent can be found by substitutions in the

foregoing work. For the actual deduction the reader is referred* to the

original memoir, Riemann, Ges. Werke (Leipzig, 1876), p. 471, or Weber,

Theorie der Abel schen Functionen vom Geschlecht 3 (Berlin, 1876), pp. 98100.

Putting ct
l
u

l
= x, o2 -M2

=
y, a

3 u3
=

z, i^fa
=

, %/, =
??, v12 /a3 =^, /3i

/&amp;lt;x
i
= A

i ,

yi/di
= Bi, Bifai

= Gi (i= 1, 2, 3), the quartic has the form

= 0,

and the 28 double tangents are given by the following scheme, where the

number representing the characteristic is prefixed to each

(1) *=0, (2) y = 0, (3) *=0, (23) | = 0, (31) 7;
=

0, (12) =0,

(4) x + y+z = 0, (5) A
1
x + A&amp;lt;,y+A 3 z = 0, (6) B^x + B^y + B3z= 0,

(7) (7^ + 0^ + 6^ = 0,

(14) % + y + z = 0, (24) ^+z + x = 0, (34) + x + y = 0,

(15)
- + A,y + A 3z = Q, (25)

- + A 3z + A lX=0, (35)
AI A-i --

(16)
L + B.2y + B3z = 0, (26) + B3z + B1x=Q, (36) -^ + B& + B,y = 0,

Jji E*i **&amp;gt;

(17) | + C,y + G3z = 0, (27) ^- + G3z + C,x = 0, (37) + C,x + C,y = 0,

GI G 2 ^3

* For the theory of the plane quartic curve reference may be made to geometrical treatises
;

developments in connection with the theta functions are given by Schottky, Crelle, cv. (1889),

Frobenius, Crelle, xcix. (1885) and ibid. cm. (1887) ;
see also Cayley, Crelle, xciv. and Kohn,

Crelle, cvn. (1890), where references to the geometrical literature will be found.

252
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* *
(67)

(75)

- _ _
J- ^In-Aft A -/la^li J.

___

(d,(i\ __
51 (1

- B,BZ} B, (1
-

1 - CaC3 1 - (73^ 1 - 0,

(47} ____ ____
, (1

- G2G3) C, (1
- ^00 C, (1

- C

Here the six quantities x, y, z, g, i), are connected by the equations

= 0,

rr + 7T + rr + CiX+C,y+C3z = 0.
U, l/j O 3

Conversely, if we take arbitrary constants ^.,, ^ 2 ,
A 3 , 5,, 52 , 3, whose

number, 6, is, when ^ = 3, equal to Sp 3, namely equal to the number
of absolute constants upon which a Riemann surface depends when p = 3,

and, by the first three of the equations (D) determine
, 77, f in terms of the

arbitrary lines x, y, z, the last of the equations (D) will determine Clt C.,, C3

save for a sign which is the same for all
;
then it can be directly verified

algebraically that the 28 lines here given are double tangents of the quartic
curve V# + \/yt] + \/z%= 0.

248. Before leaving this matter we desire to point out further the

connection between the two representations of the tangents which have been

given. Comparing the two equations of the fundamental quartic curve

expressed by the equations ( 246, 247)

and putting, in accordance therewith,

D (xl ,
x2 ,

x3}
= H (xl , x., , as,)

=z- x% - yq, X (xl ,
x2 , a?,)

= xyq

and (cf. p. 382) replacing the fourth coordinate T by T + u, where
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u is an arbitrary linear function of x, y, z or xlt x2 ,
x3) the equation of the

cubic surface

(T+ )
2 D + (T+ u) + X = 0,

becomes

T* + T (z%- x% - y-n + 2i*f) + u*% + u (z%
-

y&amp;lt;n

-
x%} + xyrj

= 0,

or

which will be found to be the same as

Write now

v = u x z, w = u x %, u = u x, v = u+y, iv = u+ rj;

then we obtain the result, easy to verify, that if u, v, w, u
,
v

,
w be arbitrary

linear functions of the homogeneous space coordinates X, Y, Z, and T be

the fourth coordinate, the tangent cone to the cubic surface*

(T + u)(T+v)(T+w)-(T+u )(T + J)(T+v/) = Q (i)

from the vertex X = = Y= Z can be written in the form

V(P - P) (u- u } + \/(u - v ) (u
- w ) + V(M

-
v) (u

- w) = 0,

where P P = u + v + w u v w
;
we have in fact

x = u u
, y =v u, z = u v, 77

= w u, %=u w,

Now the 27 lines on the cubic surface (i) can be easily obtainedf; and
thence the forms obtained in 247, for the bitangents of the quartic, can be
otherwise established.

249. Ex. i. Prove that when the sum of the characteristics of three bitangents of the

quartic is an even characteristic, their points of contact do not lie upon a conic.

By enumerating the constants we infer that it is possible to describe a plane quartic
curve having seven arbitrary lines as double tangents. By the investigation of 247
it follows that only one such quartic can be described when the condition is introduced
that no three of the tangents shall have their points of contact upon a conic. By the

theory here developed it follows that for a given quartic such a set of seven bitangents can
be selected in 8 . 36= 288 ways.

Ex. ii. We have given an expression for the general radical form \/A (
3

&amp;gt; of any given
odd characteristic. Prove that a radical form \/XM whose characteristic is even, denoted,
suppose, by the index 123, can be written in the form

*
Any cubic surface can be brought into this form, Salmon, Solid Geometry (1882), 533.

t See Frost, Solid Geometry (188(5), 537. The three last equations (D) of 247 are deducible
from the equations occurring in Frost. The three equations correspond to the three roots of the
cubic equation used by Frost.
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where X, A1? X 2 ,
X
3
are constants, and MJ, M^- denote double tangents of the characteristics

denoted by the suffixes, as in 247.

Ex. iii. If (^q, &amp;lt;? )&amp;gt; (i r? iO denote any two odd characteristics of half-integers,

express the quotient

algebraically, when p= 3.

Ex. iv. Obtain an expression of the quotient of any two radical forms \/X$\
of assigned characteristics and known zeros, by means of theta functions,/* being equal to 3.

250. Noether has given* an expression for the solution of the inversion

problem in the general case in terms of radical forms, which is of importance
as being capable of great generalization.

Using the places m1} ..., mp ,
associated as in Chap. X. with an arbitrary

place m, and supposing them, each repeated, to be the remaining zeros of a

form X (3)
,
which vanishes to the second order in each of the places A lt ..., A.2p_3

in which an arbitrary ^-polynomial, &amp;lt;

,
which vanishes in m, further vanishes,

as in 244, let VF (3) be any radical form, and &amp;lt;I&amp;gt;

(1)

any (^-polynomial whose

zeros are a1} ...
, 0^-2- Then ( 241) the consideration of the rational function

&amp;lt;/&amp;gt;

2
F&amp;lt;

3)

/[&amp;lt;E&amp;gt;

(1)

]
2^ (3) leads to the equations

wherein the places

X} ,
. . .

, &-2p 3 ,
C i ,

. . .
, Cp

are the zeros of \/F (3)
,
all of o-u ..., crp , a/, ..., arp are integers, and z is an

arbitrary place; and, as follows from these equations, the places xlt ..,x2p-3

may be arbitrarily assigned, the places c1; ..., cp and the form \/F (3
&amp;gt;

being

determinate, respectively, from these equations and the equation

, ^.. -f-.. rt n
g

5^W]P&amp;gt;

=C
1&amp;gt;a

......
&quot;*&quot;

-
+

&quot;
&quot;
+ ...... +

e
&quot;

m

r / ^ / -^j ^n
+

Tn[&amp;lt;rl
vl + ...... + &amp;lt;rp vp J,

wherein the place a is arbitrary. Hence if we speak of

as the characteristic of VF (3)
,
it follows, if \IZ ( be another radical form with

the characteristic

and the zeros

Xl, . . . , ^2p_3 , ttj ,
. . .

, Clp ,

* Math. Annal. xxvm. (1887), p. 354, &quot;Zum Umkehrproblem in der Theorie der Abel schen

Functionen.&quot;



250] OF THE INVERSION PROBLEM

that the quotient */Y/*/Z (3)
,
which is equal to

391

wherein A is a quantity independent of x, is ( 187, Chap. X.) also equal to

_: r/ _ / _ - /\
~j%t ^4- -|- ((T fi

f
\ v^ ^1 (\ / %&amp;gt;

m GI j &quot;^1
&amp;lt;i/^*

* &quot;*P\

(7e
d ~d m

where (7 is a quantity independent of x
;
but by the equations here given

this is the same as

. {l , M *,
, , / ;

&amp;gt;\ ,#, a-,

vi[(ff l -p l )v l + + (*!, -P,,)vp ]

Ce

where H^ denotes p such quantities as
J(&amp;lt;7{

+ CT/T,:, j + + o-p ritp); thus,

if we put

and recall the formula ( 175)

we infer that

where E is a quantity independent of x.

Now in fact
( 245) the general radical form \/F (3)

,
of assigned charac

teristic (^cr, ^&amp;lt;r )&amp;gt;

is given by

/ (3) / (3)

where ^ F! ,...,* F
2p_ 2 are special forms of this characteristic, and Xj ,

. . .
,
X 2̂ 2

are constants. If we introduce the condition that VF (3) vanishes at the

places x
1 , ...,#.,p_3 we infer that VF (3) is equal to F^ (x, xly ..., #2p_3), where

/Q\

F is independent of x and Aa (x, xlt ..., #
21&amp;gt;

_3) denotes the determinant

in which t is to be taken in turn equal to 1, 2, ..., 2p 3. Hence we have

(3)

, _~~
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where, from the symmetry in regard to the places x, xly ..., x.,p_3 ,
G is

independent* of the position of any of these places, and v is given by
y = lf&amp;gt;

2p- 2-j-fl*!.
i + ...... _|_^2p-3. 2j&amp;gt;-3.

To apply this equation to the solution of the inversion problem expressed

by p such equations as

Vx &amp;gt; *&amp;gt; + ...... + Vxi&quot; ^P U,

where pl , ..., ^p denote p arbitrary given places, we suppose the positions of

the places xp+l , ..., x2p_3 to be given ;
then instead of &(%, xly ..., #2p_ 3 ) we

have an expression of the form

where v }
7
[ (a), ...,

v Yp+i(x) denote forms \/F (3)

(x) vanishing in the given

places asp+1 , ..., xw_z ,
and A 1} ..., Ap+1 are unknown constants. Since the

arguments u are given, the arguments v are of the form if a
%&amp;gt;-

2 + w, where w
is known. If then in the equation

we determine the unknown ratios A 1 : A 2 : ...... : Ap+1 : B : ...... : Bp+\
by the substitution of 2p + 1 different positions for the place x, this equation

itself will determine the places xlt ..., xp . They are, in fact, the zeros of

either of the forms

other than the given zeros xp+l) ..., ^
2p_3 . If the first of these forms be

multiplied by an arbitrary form \/F (3)

(x), of characteristic (Jo-, ^cr ),
the

places #a , ..., xp are given as the zeros of a rational function of the form

of which
4&amp;gt;p

6 zeros are known, consisting, namely, of the places xp+1 , ..., Xy,-*

and the zeros of ViT(3)
(x).

In regard to this result the reader may consult Weber, Theorie der A bePschen Functio-

nen vom Geschlecht 3 (Berlin, 1876), p. 157, the paper of Noether (Math. Annal. xxvm.)

already referred to, and, for a solution in which the radical forms are with roots of rational

functions, Stahl, Crelle, LXXXIX. (1880), p. 179, and Crette, cxi. (1893), p. 104. It will be

seen in the following chapter that the results may be deduced from another result of

a simpler character ( 274).

251. The theory of radical functions has far-reaching geometrical applications to

problems of the contact of curves. See, for instance, Clebsch, Crelle, LXIII. (1864), p. 189.

For the theory of the solution of the final algebraic equations see Clebsch and Gordan,

Abel sche Functnen. (Leipzig, 1866), Chap. X. Die Theilung; Jordan, Traite des Sub

stitutions (Paris, 1870), p. 354, etc.; and now (Aug. 1896), for the bitangents in case p= 3,

Weber, Lehrbuch der Algebra (Braunschweig, 1896), II. p. 380.

* For the determination of G see Noether, Math. Annal. xxvm. (1887), p. 368, and Klein,

Math. Annal. xxxvi. (1890), pp. 73, 74.
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CHAPTER XIV.

FACTORIAL FUNCTIONS.

252. THE present chapter is concerned* with a generalisation of the

theory of rational functions and their integrals. As in that case, it is conve

nient to consider the integrals and the functions together from the first. In

order, therefore, that the reader may be better able to follow the course of

the argument, it is desirable to explain, briefly, at starting, the results

obtained. All the functions and integrals considered have certain fixed

singularities, at placesf denoted by clf ..., ck . A function or integral which

has no infinities except at these fixed singularities is described as everywhere
finite. The functions of this theory which replace the rational functions of

the simpler theory have, beside the fixed singularities, no infinities except

poles. But the functions differ from rational functions in that their values

are not the same at the two sides of any period loop ;
these values have a

ratio, described as the factor, which i^ constant along the loop ; and a system
of functions is characterised by the values of its factors. We consider two

sets of factors, and, correspondingly, two sets of factorial functions, those of

the primary system and those of the associated system; their relations are

quite reciprocal. We have then a circumstance to which the theory of

rational functions offers no parallel ;
there may be everywhere finite factorial

functions^.. The number of such functions of the primary system which are

linearly independent is denoted by cr + 1
;

the number of the associated

system by a- + 1. As in the case of algebraical integrals, we may have every
where finite factorial integrals. The number of such integrals of the primary

system which are linearly independent is denoted by CT, that of the associated

system by CT . The factorial integrals of the primary system are not integrals
of factorial functions of that system ; they are chosen so that the values u, u

* The subject of the present chapter has been considered by Prym, Crelle, LXX. (1869), p. 354;

Appell, Acta Mathematica, xm. (1890); Hitter, Math. Annal. XLIV. (1894), pp. 261374. In

these papers other references will be found. See also Hurwitz, Math. Annal. XLI. (1893), p. 434,

and, for a related theory, not considered in the present chapter, Hurwitz, Math. Annal. xxxix.

(1891), p. 1. For the latter part of the chapter see the references given in 273, 274, 279.

t In particular the theory includes the case when & = 0, and no such places enter.

This statement is made in view of the comparison instituted between the development of

the theory of rational functions and that of factorial functions. The factorial functions have

(unless k= Q) fixed infinities.
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of such an integral on the two sides of a period loop are connected by an

equation of the form u = Mu + p,, where p, is a constant and M is the factor of

the primary system of factorial functions which is associated with that period

loop. The primary and associated systems are so related that if F be a

factorial function, of either system, and G a factorial integral of the other

system, FdG jdx is a rational function without assigned singularities. In the

case of the rational functions, the smallest number of arbitrary assigned poles

for which a function can always be constructed is p + 1. In the present

theory, as has been said, it may be possible to construct factorial functions of

the primary system Avithout poles ;
but when that is impossible, or &amp;lt;r + 1 = 0,

the smallest number of arbitrary poles for which a factorial function of the

primary system can always be constructed is or + 1. Similarly when

a- + 1 = 0, the smallest number of arbitrary poles for which a factorial func

tion of the associated system can always be constructed is OT + 1. Of the

two numbers cr + 1, cr +l, at least one is always zero, except in one case,

when they are both unity. When o- + l is &amp;gt; 0, the everywhere finite fac

torial functions of the primary system can be expressed linearly in terms of

the everywhere finite factorial integrals of the same system. We can also

construct factorial integrals of the primary system, which, beside the fixed

singularities, have assigned poles ;
the least number of poles of arbitrary

position for which this can be done is a- + 2. And we can construct factorial

integrals of the primary system which have arbitrary logarithmic infinities
;

the least number of such infinities of arbitrary position is cr + 2. For the

associated system of factors the corresponding numbers are cr + 2.

It will be found that all the formulae of the general theory are not imme

diately applicable to the ordinary theory of rational functions and their

integrals. The exceptions, and the reasons for them, are pointed out in

footnotes.

The deduction of these results occupies 253 267 of this chapter. The

section of the chapter which occupies 271 278, deals, by examples, with

the connection of the present theory with the theory of the Biemann theta

functions. With a more detailed theory of factorial functions this section

would be capable of very great development. The concluding section of the

chapter deals very briefly with the identification of the present theory with

the theory of automorphic functions.

253. Let G!, ..., Ck be arbitrary fixed places of the Riemann surface,

which we suppose to be finite places and not branch places. In all the

investigations of this chapter these places are to be the same. They may be

called the essential singularities of the systems of factorial functions. We

require the surface to be dissected so that the places c1} ..., ck are excluded

and the surface becomes simply connected. This may be effected in a manner

analogous to that adopted in 180, the places c1} ..., Ck occurring instead of
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zlt ...,zk . But it is more convenient, in view of one development of the

theory, to suppose the loops of 180 to be deformed until the cuts* between

the pairs of period loops become of infinitesimal length. Then the dissection

will be such as that represented in figure 9
;
and this dissection is sufficiently

Fig. 9.

well represented by figure 10. We call the sides of the loops (ar), (br), upon
which the letters ar ,

br are placed, the left-hand sides of these loops, and by
the left-hand sides of the cuts (7^, ..., (7^), to the places clt ..., c&, we mean

the sides which are on the left when we pass from A to d, ..., c^ respec

tively. The consideration of the effect of an alteration in these conventions

is postponed till the theory of the transformation of the theta functions

has been considered.

* These cuts are those generally denoted by clt ...,cp_,. Cf. Forsyth, Theory of Functions,
181.
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254. In connection with the surface thus dissected we take now a series

of 2p + k quantities

Xj, ...,\k, hl} ..., hp , gi,...,gp ,

which we call the fundamental constants; we suppose no one of \1} ..., \k to

be a positive or negative integer, or zero
;
but we suppose X, + . . . + \t to be

an integer, or zero
;
and we consider functions

(1) which are uniform on the surface thus dissected, and have, thereon,

no infinities except poles,

(2) whose value on the left-hand side of the period loop (a,f) is

g-STriAj times the value on the right-hand side
;
whose value on the left-hand

side of the period loop (h) is e27
&quot;^ times the value on the right-hand side,

(3) which*, in the neighbourhood of the place c;, are expressible in the

form t~^fa, where t is the infinitesimal at c; and fa is uniform, finite, and not

zero in the neighbourhood of the place c;,

(4) which, therefore, have a value on the left-hand side of the cut 7;

which is e~-ni*i times the value on the right-hand side.

Let 1( ..., OM, &, ..., f3N be any places; consider the expression

x,a x, a x, a x,a x,a x,akx,a
f= ^e11

/?,, m+--- + lip,,, m
- n

ai) m -
...

- n
aj/&amp;gt;

m - 2 [(A+ ffJ vi +... + (hp +Hp) rp ]
- S

XjIIc., ,

/ t=l

wherein A is independent of the place x,

N-M=2\, (i),
*=i

SX being an integer (or zero), m is an arbitrary place, and H
l , ..., Hp are

integers. It is clear that this expression represents a function which is

uniform on the dissected surface, which has poles at the places al} ..., a
M&amp;gt;

and

zeros at the places /3j, ..., /3N ,
and that in the neighbourhood of the place c;

this function has the character required. For the period loop (a^) the

function has the factor e~ Zvt ^hi+a^ = e~ Zwihi
,
as desired; for the period loop

(bi) the function has the factor eZwtK
,
where

r=l r=l

and this factor is equal to e2niyi if only

k

r=l

r=p

r=l

Gi being an integer.

*
It is intended, as already stated, that the places c

l , ..., c* should be in the finite part of the

surface and should not be branch places.
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It follows therefore that, subject to the conditions (i) and (ii), such a

function as has been described certainly exists.

Conversely it can be immediately proved that any such function must be

capable of being expressed in the form here given, and that the conditions

(i), (ii) are necessary.

Unless the contrary be expressly stated, we suppose the quantities

X^.-.jXjfc, hly ...,hp , g1 ,...,gp always the same, and express this fact by

calling the functions under consideration factorial functions of the primary
system. The quantities e~2iri

^, ..., e~-ni*k
,

e&quot;

2 1

*, ..., e~Zwihp, e27 ^
, ..., e27

^&amp;gt; are

called the factors. It will be convenient to consider with these functions

other functions of the same general character but with a different system of

fundamental constants,

Xt ,
. . .

, Xj/, /*/, . . .
,
hp , g-t, ..., gpi

connected with the original constants by the equations

X; + X/ +1=0, hi + hi = 0, g{ + g-
=

;

these functions will be said to be functions of the associated system. The fac

tors associated therewith are the inverses of the factors of the primary system.

255. As has been remarked, the rational functions on the Riemann
surface are a particular case of the factorial functions, arising when the
factors are unity and no such places as cl5 ..., ck are introduced. From this

point of view the condition
(i), which can be obtained as the condition that

Id log/, taken round the complete boundary of the dissected surface, is zero,

is a generalisation of the fact that the number of zeros and poles of a rational

function is the same, and the condition (ii) expresses a theorem generalising
Abel s theorem for integrals of the first kind.

Now Riemann s theory of rational functions is subsequent to the theory
of the integrals ;

these arise as functions which are uniform on the dissected
Riemann surface, but differ on the sides of a period loop by additive
constants. In what follows we consider the theory in the same order, and

enquire first of all as to the existence of functions whose differential coefficients

are factorial functions. For the sake of clearness such functions will be
called factorial integrals; and it will appear that just as rational functions
are expressible by Riemann integrals of the second kind, so factorial functions
are expressible by certain factorial integrals, provided the fundamental con
stants of these latter are suitably chosen. We define then a factorial integral
of the primary system, H, as a function such that dH/dx is a factorial
function with the fundamental constants
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thus dH/dx has the same factors as the factorial functions of the primary

system, but near the place d, dH/dx is of the form t~ (
*i+l}

fa, where fa is

uniform, finite and not zero in the neighbourhood of d- Similarly we define

a factorial integral of the associated system, H ,
to be such that dH /dx

is a factorial function with the fundamental constants

V + 1, . . .
, V + 1, A/, . . .

, V, ffi, ..., ffp,

or

A] ,
. . .

,
A.

, III, ...
, lip, (/i ,

. . .
, ffp 5

thus, if/ be any factorial function of the primary system, fdH /dx is a

rational function on the Riemann surface, for which the places c1} .... Ck

are not in any way special. And similarly, if/ be any factorial function

of the associated system, and H any factorial integral of the primary

system, / dH/dx is a rational function.

The values of a factorial integral of the primary system, H, at the two

sides of any period loop are connected by an equation of the form

where p is one of the factors e~-irihr
,
e^UJr

,
and fl is a quantity which is

constant along the particular period loop. Near d, H is of the form

where A t is a constant, fa is uniform, finite, and, in general, not zero in the

neighbourhood of C;, and (7f is a constant, which is zero unless Xt
-

-f- 1 be a

positive integer (other than zero), and may be zero even when X; + 1 is a

positive integer. After a circuit round d, H will be changed into

H = Ai + e~z^ rA*
fa + Z-jriCi + Gi log t

;

thus, when Gt
= 0,

H= He-zvi^ + Ai(l- er****),

and when d is not zero, and, therefore, \ + 1 is a positive integer,

H=H
in either case we have

where 7 = e~2iriki
,
and F is constant along the cut (7;).

Thus, in addition to the fundamental factors of the system, there arise,

for every factorial integral, 2p + k new constants, *2p of them such as that

here denoted by ft and k of them such as that denoted by F. It will be

seen subsequently that these are not all independent.
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As has been stated we exclude from consideration the case in which any
one of \i, ..., At is an integer, or zero. Thus the constants Ci will not enter;

neither will the corresponding constants for the associated system.

256. Consider now the problem of finding factorial integrals of the

primary system which shall be everywhere finite. Here, as elsewhere, when
we speak of the infinities or zeros of a function, we mean those which are not

at the places d, ..., ck ,
or which fall at these places in addition to the poles

or zeros which are prescribed to fall there.

If V be such a factorial integral, dVjdx is only infinite when dx is zero

of the second order, namely 2p 2 + 2n times, at the branch places of the

surface. And d V/dx is zero at x = oo
,
2n times*. Thus, ifN denote the num

ber of zeros of dVjdx which are not due to the denominator dx, or, as we may
say (cf. 21) the number of zeros of dV, we have by the condition (i) 254,

N + 2n = 2p
- 2 + 2/i + 2 (X* + 1),

1=1

so that the number of zeros of dV is 2p - 2 + 2 (X; + 1).

Now let f denote a factorial function with the primary system of

factors, but with behaviour at a like J-to+D fa, where fa is uniform, finite,

and not zero at a. Then, if an everywhere finite factorial integral V
exists at all, Z, =f

-l

dV/dx, will be a rational function on the Riemann
surface, infinite at the (say N ) zeros of / , and 2w + 2p-2 times at the

branch places of the surface, and zero at the (say M ) poles of / ,
and In

times at x = oo (beside being zero at the zeros of dV). Conversely a rational
f

function Z satisfying these conditions will be such that \ZfQdx is a function V.

Thus the number of existent functions V ivhich are linearly independent is at

least

provided this be positive. We are therefore sure, when this is the case, that
functions V do exist. To find the exact number, let F be one such

;
then

if F be any other, dV/dV is a rational function with poles in the

2p
- 2 +S(X+ 1) zeros of dV

;
and conversely if R be a rational function

e

whose poles are the zeros of dVQ , the integral IRdV is a function F. Thusf

the number offunctions V, when any exist, is ( 37, Chap. III.)

*r, =p-l + 2(X + l) + &amp;lt;r+l,

* These numbers may be modified by the existence of a branch place at infinity. But their
difference remains the same.

t For the ordinary case of rational functions er + 1, as here defined, is equal to unity, and,
therefore, omitting the term S (\ + l), we have -a -p.
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where &amp;lt;r + 1 is the number of linearly independent differentials dv, of ordinary

integrals of the first kind, which vanish in the 2p 2 + 2 (X+l) zeros of the

differential dV of any such function V . Since dV/dV is a rational

function, the number of differentials dv vanishing in the zeros of dV is the

same as the number vanishing in the zeros of dV. Since dv has 2p 2 zeros,

a + 1 vanishes when 2 (A + 1) &amp;gt; 0.

Ex. For the hyperelliptic surface

the factorial integrals, V, having the same factors at the period loops as the root function

J(x a} (x b), and no other factors, are given by_ dx
*l(x-a)(x-V) (x, l)p _ 2

and -u3=p 1. Here =0
;
there are no places clt ...

,
ck .

257. The number &amp;lt;r + 1 is of great importance ;
when it is greater

than zero, which requires 2 (X + 1) to be negative or zero, there are cr + 1

factorial functions of the associated system which are nowhere infinite.

For if V be an everywhere finite factorial integral of the primary system,
and dv1} ..., dvv+1 represent the linearly independent differentials of integrals

of the first kind which vanish in the zeros of dV, the functions

dV&quot;

&quot;

whose behaviour at a place Ci is like that of
TT^+T, &&amp;gt;

where fa is uniform,

finite and not zero in the neighbourhood of a, namely of t^ fy, are clearly

factorial functions of the associated system, without poles. Conversely if K
denote an everywhere-finite factorial function of the associated system, the

integral \K dV is the integral of a rational function, and does not anywhere

become infinite. Denoting it by v, dv vanishes at the 2p 2 + 2(A. + l)
k

zeros of dV as well as at the 0+2 A,/,
= 2 (A. + 1), zeros of K (cf. the

t=i

condition (i), 254). Thus, to every factorial integral V we obtain &amp;lt;r + 1

functions K
;
and since, when &amp;lt;r + 1 &amp;gt; 0, the quotient of two differentials

dV, dV can* be expressed by the quotient of two differentials dv, dv
,
we

cannot thus obtain more than &amp;lt;r + 1 functions K
; while, conversely, to every

function K we obtain a differential dv which vanishes in the zeros of any

assigned function V; and, as before, we cannot obtain any others by taking,

instead of V, another factorial integral V .

*
Cf. Chap. VI. 98.
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258. The existence of these everywhere finite factorial functions, K ,
of

the associated system can also be investigated a priori from the fundamental

equations (i) and (ii) ( 254). These give, in this case,

-
TI, p (hp + Hp), (iii)

and N=- 2 (Xr +l),
r=l

where Glt ..., Gp ,
H

l , ..., Hp are integers.

Hence no functions K exist unless 2 (A, + 1) be a negative integer or be
zero

;
we consider these possibilities separately.

When 2(X+1) = 0, it is necessary, for the existence of such functions,
that the fundamental constants satisfy the conditions

conversely, when these conditions are fulfilled, taking suitable integersHl} ..., Hp ,
it is clear that the function

wherein A is an arbitrary constant, and a, m are arbitrary places, is an

everywhere finite factorial function of the associated system, and it can be

immediately seen that every such function is a constant multiple of E . If

then we denote the number of functions K by 2 + 1 (to be immediately
identified with a + 1

),
we have, in this case, 2 + 1 = 1; and there are p

functions V, given by V=\E^dv, where dv is in turn the differential of

every one of the linearly independent integrals of the first kind
;

it is easy to

see that every function V can be thus expressed. Thus, in the zeros of a
differential dV there vanishes one differential dv, so that a +1 = 1. Hence
o- + 1 = 2 + 1, and the formula w =p l + 2(\ + l) + &amp;lt;r + l is verified.

When 2(\ + l) is negative and numerically greater than zero, and the

equations (iii) have any solutions, let t denote the number of linearlv in

dependent differentials dv which vanish in the places of one and therefore of

every set, &, ..., /9 V , which satisfies these equations; then* the number of

sets which satisfy these equations is oo S-P+*
}
where s = 2 (X + 1) ;

thus the

quotient of two functions K is a rational function with 2 + 1, =sp+t + l

arbitrary constants, one of these being additive. This is then the number of

linearly independent functions K . If K be one of these functions, and

Cf. 158, Chap. VIII.
; 95, Chap. VI.

B- 26
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dVi, ..., dvt
denote the differentials vanishing in the zeros of K

,
it is clear

that the functions

fdv l rdvt

JK&quot;
&quot;&quot; IK

are finite factorial integrals of the primary system, that is, are functions V
;

conversely if Fbe any finite factorial integral of the primary system, \K dV

is an integral, v, of the first kind such that dv vanishes in the zeros of K .

Hence the number t, which expresses the number of differentials dv which

vanish in the zeros of K
,
is equal to the number, CT, of functions V. But we

have proved that & =p I + 2t (\+l)+&amp;lt;T+l, and, above, that t=p -I s+2+1.
Hence o- + l =2+ 1. .vl

Thus we have the results*: The number, cr + 1, of everywhere finite

factorial functions, K , of the associated system is equal to the number of

differentials dv which vanish in the 2p 2 + 2 (X + 1) zeros of any differential

dV; hence ( 21, Chap. II.) &amp;lt;7 + 1 is less than p, unless 2 (X + 1)
= -

(2^&amp;gt;

-
2).

Also, when a + 1 &amp;gt; 0, the number, vr, of everywhere finite factorial integrals,

V, of the primary system, is equal to the number of differentials dv which

vanish in the s,
= - 2 (X + 1), zeros of any function K . The argument by

which this last result is obtained does not hold whenf cr + 1 = 0. When

o- + 1 &amp;gt; 0, it follows that OT is not greater than p.

Similarly when s
,
= - 2 (X + 1),

= Sx, = - s - k, is &amp;gt; 0, we can prove, by

considering the primary system, that there are a + 1 everywhere finite

factorial functions K of the primary system, where cr + 1 is the number of

differentials dv vanishing in the 2p
- 2 - 2X, =2p 2 + s + k. zeros of any

differential dV
&quot;;

and that, when cr +l&amp;gt;0, the number &
,
of everywhere

finite factorial integrals, V ,
of the associated system is equal to the number

of differentials dv vanishing in the s zeros of any function K. Hence

a + 1 = when s &amp;gt; 0, and, then, no functions K exist. When s = we have

seen that there may or may not be functions K
;
but there cannot be func

tions K unless k = 0, since otherwise 2p 2+s + k&amp;gt;2p
2. And then the

existence of functions K depends on the condition whether the fundamental

constants be such that

is a function of the primary system or not, Hl} ...,HP being suitable integers,

namely whether there exist relations of the form

9i. + Gi+fa + H,} n, l + + (hp + Hp) ri&amp;gt;p

= 0, (i
= 1, 2, ..., p),

* Which hold for the ordinary case of rational functions, &amp;lt;r + l being then unity.

t In the case of the factorial functions which are square roots of rational functions of which

all the poles and zeros are of the second order, so that the places c
l , . . . , ck are not present, and

the numbers g, h are half integers, we have cr=p -
1, a + 1 = 0.
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where Glt ..., Gp are integers. In such case E is a finite factorial function

of the associated system.

On the whole then the theory breaks up into four cases (i) a + 1 = 0,

&amp;lt;r + I = 0, (ii) a- + 1 &amp;gt; 0, a- + 1 - 0, (Hi) o- + 1 = 0, a + 1 &amp;gt; 0, (iv) a + 1 = 1,

&amp;lt;T + 1 = 1. Of these the cases (ii) and (iii) are reciprocal.

259. One remark remains to be made in this connection. When
v + 1 &amp;gt; there are everywhere finite functions, K , of the associated system,

given ( 257) by
dvi cfag dva+l
dV&quot; dV&quot;

&quot;

~dV*

these have, at any one of the places clt ..., Ck, a behaviour represented by
that of

t~*&amp;lt;f&amp;gt;
;
hence the differential coefficients of these functions satisfy all

the conditions whereby the differential coefficients, dV /dx, of the everywhere
finite factorial integrals of the associated system, are defined. Therefore* the

functions K are expressible linearly in terms of the functions F/, ..., V w &amp;gt;

by equations of the form

where the coefficients, \j, \ are constants.

Hence also the difference nr (a + 1) is not negative. This is also

obvious otherwise. For when &amp;lt;r + 1 &amp;gt; 0, 2 (X + 1), =s, is zero or positive,
and cr + l&amp;gt;jp ( 258), and, therefore, v -

a; =p -(a- + 1) + er + 1 + k + s,

can only be as small as zero when k = =
s, and a + 1 = p ;

these are in

compatible.

Similarly, when a + 1 &amp;gt; 0, the everywhere finite factorial functions of the

original system are linear functions of the factorial integrals Vl} ..., Vw .

It followsf therefore that of the periods of the functions F15 ..., FOT ,

at any definite period loop, only -a - (a- + 1) can be regarded as linearly

independent; in fact, a + 1 of the functions V1} ..., FOT may be replaced

by linear functions of the remaining w -
(a- + 1), and of the functions

Klt ..., KV +I.

260. A factorial integral is such that its values at the two sides of a period loop of

the first kind are connected by an equation of the form u = fiiU + Qiy its values at the two
sides of a period loop of the second kind are connected by an equation of the form
w =/* M+ Q

t&amp;gt;

and its values at the two sides of a loop (y { ) are connected by an equation
of the form u ^yiU + Ti, where J 1^= ^(1-^). Of the 2p+lk periods Qi} Q f , I\ thus

*
It is clearly assumed that K i is not a constant ; thus the reasoning does not apply to the

ordinary case of rational functions.

t In the ordinary case of rational functions this number or -
(&amp;lt;r

+ 1) must be replaced by p.
See the preceding note.

J 255. The case where one of \j , ..., \k is zero or an integer is excluded.

262
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arising, two at least can be immediately excluded. For it is possible, by subtracting one

of the constants A
lt ..., A k from the factorial integral, to render one of the periods

TU ..., Tk zero; and by following the values of the factorial integral, which is single-

valued on the dissected surface, once completely round the sides of the loops, we find, in

virtue of y1y2 yt= lj that

2 [Oi (l-/ii )-ai
/

(l-f*i)]
= ri+ y1

ra+ y1y2r3+ ... +y1y2 ...yk - l
Tk .

i=l

Thus there are certainly not more than 2p 2+k linearly independent periods of a

factorial integral.

Suppose now that V is any everywhere finite factorial integral of the original system,

and Vi is any one of the corresponding integrals of the associated system. The integral

I Vd F/, taken once completely round the boundary of the surface which is constituted by

the sides of the period loops, is equal to zero. By expressing this fact we obtain an

equation which is linear in the periods of V and linear in the periods of F/. By taking i

in turn equal to 1, 2, ...
,
or

,
we thus obtain 07 linear equations for the periods of V,

wherein the coefficients are the periods of F
1 ,

. . .
,
Vw &amp;gt;. As remarked above these coeffi

cients are themselves connected by &amp;lt;r + 1 linear equations ;
so that we thus obtain at most

or
(&amp;lt;r
+ l) linearly independent linear equations for the periods of F. If these are inde

pendent of one another and independent of the two reductions mentioned above, it follows

that the 2p+ k periods of V are linearly expressible by only

2p

periods, at most. Now we have

and therefore

so that

Thus
or-(&amp;lt;r -f 1) is the number of periods of a function V which appear to be linearly

independent; and, taking account of the existence of the functions K^ ..., Ka +\, this is

the same as the number of independent linear combinations of the functions Fn ...
,
FOT ,

which are periodic*. But the conclusions of this article require more careful considera

tion in particular cases
;

it is not shewn that the linear equations obtained are always

independent, nor that they are the only equations obtainable.

Ex. i. Obtain the lineo-linear relation connecting the periods of the everywhere finite

factorial integrals F, V, of the primary and associated system, which is obtained by

expressing that the contour integral I VdV vanishes.

Ex. ii. In the case of the ordinary Kiemann integrals of the first kind, the relation

is identically satisfied, and further &=0. Thus the reasoning of the text does not holdt.

* We can therefore form linear combinations of the periodic functions V, for which the inde

pendent periods shall be 1, 0, . . .
, ; 0, 1, . . . , ; etc., as in the ordinary case.

t In that case the numbers -a
(ff + 1), 2p-2 + k, are to be replaced respectively by p and 2p.

See the note t of 259.
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261. We enquire now how many arbitrary constants enter into the

expression of a factorial function of the primary system which has M
poles of assigned position.

Supposing one such function to exist, denote it by FQ ;
then the ratio F/F ,

of any other such function to F, F ,
is a rational function with poles at the

zeros of F
; conversely if R be any rational function with poles at the zeros

of F
,
F R is a factorial function of the primary system with poles at the

assigned poles of F . The function R contains

N-p+ 1+h+l

arbitrary constants, one of them additive, where N is the number of zeros of

k

F
0&amp;gt;

so thatN=M + 2 \r ,
and h + l is the number of differentials dv vanish-

r=l

ing in the zeros of FQ .

But in fact the number of differentials dv vanishing in the zeros of F is

the same as the number of differentials dV vanishing in the poles of F
,
V

being any everywhere finite factorial integral of the associated system.

For if dv vanish in the zeros of F
0&amp;gt;

the integral ldv/FQ is clearly a factorial

integral, V, of the associated system without infinities, and such that dV
vanishes in the poles of F

; conversely if V be any factorial integral of the

associated system such that dV vanishes in the poles of FQ , the integral

lF dV is an integral of the first kind, v, such that dv vanishes in the zeros

QfJt

Thus, the number of arbitrary constants in a factorial function of the

primary system, with M given arbitrary poles, is

k

M+ 2 \r -p+I+h + l, =N-p + i+h+ 1, =M-*r + h + I+&amp;lt;r +l
r=\

where N is the number of zeros of the function, and h + l the number of

differentials dV vanishing in the M poles*.

In particular, putting M=0, h . + 1 = *r (cf. 258), we have the formula,

already obtained,
k

o- +l= 2 \r -p + !+-& .

r=1

We can of course also obtain these results by considering the fundamental

equations (i) and (ii), 254.

262. Hence we can determine the smallest value of M for which a
factorial function of the primary system with M given poles always exists.

*
Counting the additive constant in the expression of a rational function, the last formula

holds in the ordinary case.
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When M = & + 1 it is not possible to determine a function V, of the

form

wherein A 1} ..., A^&amp;gt;
are constants, to vanish in M arbitrary places; and

therefore h + 1 = 0. Thus a factorial function of the primary system with

-OT + 1 arbitrary poles will contain, in accordance with the formula of the

last Article,
fc

*r + l + S Xr-p + 1,
=

&amp;lt;r +2,
r=l

arbitrary constants.

When a + 1=0, this number is 1, and the factorial function is entirely

determined save for an arbitrary constant multiplier. Hence we infer that

when a- + 1 = the smallest value of M is CT + 1.

We consider in the next Article how to form the factorial function in ques
tion from other functions of the system. Of the existence of such a function

we can be sure a priori by the formulae (i) (ii) of 254. Such a function

will have N = & + 1 + Sx, =p, zeros. They can be determined to satisfy the

equations (ii). Then an expression of the function is given by the general
formula of 254.

When a + I &amp;gt; 0, there are a + 1 everywhere finite factorial functions

Kl} ..., KS+I, of the primary system, and the general factorial function with

TV + 1 poles is of the form

where \ , ..., X^+j are constants, and F is any factorial function with the

assigned poles. In this case also there exist no factorial functions with

arbitrary poles less than is + 1 in number
;
the attempt to obtain such

functions leads* always to a linear aggregate of Klt ...,^T&amp;lt;r +1 .

263. Suppose that a + 1 =
;

we consider the construction of the

factorial function of the primary system with & + 1 arbitrary poles.

Firstly let a + 1 &amp;gt; 0, so that there are cr + 1 everywhere finite functions,

K
,

of the associated system, and cr + 1 differentials dv vanish in the
k k

2p 2 + 2 (Xf + 1) zeros of any differential dV. Hence s,
= 2 (Xr +l),

r=l r=l

is greater than zero or equal to zero. We take first the case when s &amp;gt; 0.

*

Then ^ =p I 2 \ =p 1 + s + k, and it is possible to determine a
r=l

rational function with poles at -57 + 1 =p + s + k arbitrary places. This

function contains s + k + 1 arbitrary constants, one of these being additive.

It can therefore be chosen to vanish at the places clt ..., c
k&amp;gt;

and will then

* For J/= or -
r, we shall have h + 1 = r, and, therefore, M - & + h + 1 + a + 1 = &amp;lt;r + 1.
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contain at least, and in general, s+I arbitrary constants. Taking now any

everywhere finite factorial function K of the associated system, let the

rational function be further chosen to vanish in the s zeros of K
;
then the

rational function is, in general, entirely determined save for an arbitrary

constant multiplier. Denote the rational function thus obtained by R.

Then RjK is a factorial function of the primary system with the -a 4- 1

assigned poles, and is the function we desired to construct. And since the

ratio of two functions K is a rational function, it is immaterial what function

K is utilised to construct the function required.

This reasoning applies also to the case in which &amp;lt;r + l
&amp;gt;0,

s = 0, unless

also k = 0. Consider then the case in which a + 1 &amp;gt; 0, s = and k = 0.

There is ( 258) only one function K
,
of the form

- a
+ ...... + (hp +Hp)

v
x

; &quot;]

,

or or -f 1 = 1
;
and E ~l

is a function of the primary system without poles.

Thus a + 1 = 1, and the case does not fall under that now being considered,

for which a + I = 0. The value of w is p, and the factorial function with

BT + 1 arbitrary poles is of the form (F + C) E , where F+ C is the general
rational function with the given poles.

Nextly, let cr + 1 = 0, as well as &amp;lt;r + 1 = 0. Then there exist no functions

K and the previous argument is inapplicable. But, provided OT + 1
&amp;lt;fc 2, we

can apply another method, which could equally have been applied when
o- + 1 &amp;gt; 0. For if P be the factorial function of the primary system with

is + 1 assigned poles, and V be one of the CT factorial integrals of the

associated system, and v be any integral of the first kind, P , is a rational

function whose poles are at the w + 1 poles of P and at the 2p 2 zeros of

dv. Conversely, if R be any rational function with poles at these places

(c37, Ex. ii. Chap. III.), and zeros at the 2p
- 2 - 2\ zeros of dV, R\

d
J

I
civ

is the factorial function required. It contains at least

arbitrary constant multiplier.

In case *r + 1 &amp;lt; 2, so that = 0, S\ = p - 1, there are no functions V,
and we may fall back upon the fundamental equations of 254. In this case

the least number of poles is 1.

264. Consider now the possibility of forming a factorial integral of the

primary system whose only infinities are poles. We shew that it is possible
to form such an integral with &amp;lt;r + 2 arbitrary poles, and with no smaller

number.
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Suppose G to be such a factorial integral, with &amp;lt;r + 2 poles, and, under the

hypothesis CT &amp;gt; 0, let V be an everywhere finite factorial integral, also of the

primary system. Then dG/dV is a rational function, with poles at the

2p
- 2 + 2(A + 1) zeros of dV, and poles at the poles of G] near a pole

of G, say c, the form of dG/dV is given by

where t is the infinitesimal for the neighbourhood of the place c, the

quantities 0, A, B are constants, and DCV denotes a differentiation in regard
to the infinitesimal

;
this is the same as

-r E\- + - + terms which are finite when t =
,

where E = C/DC V. Thus dG/dV is infinite at a pole of G like a constant

multiple of

. nr* &amp;gt;a
DC*V x,a

y = DC l- C
-
p~y

I C ,

a being an arbitrary place.

Conversely if R denote a rational function which is infinite to the first

order at the zeros of d V, and infinite in the a- + 2 assigned poles of G like

functions of the form of ty, \RdV will be such a factorial integral as desired.
J

Now R is of the form ( 20, Chap. II.)

e
&amp;gt;

a
, ft FT-) -p*.

a D
Xl
V x, a\

L &quot;*i J

|~
,a

D
*&amp;lt;r+2

V
x,a 1

wherein a is an arbitrary place, e1} ..., er denote the zeros of dV, x-^, ..., xy+n
denote the assigned poles of G, and A, A 1} ..., A r ,

Blt ..., Bv+ .

2 are constants;
the period of R, in this form, at a general period loop of the second kind, is

given by

-O-iiij \@i) &quot;T&quot; T -^-r^^i \^r) -^

where ^(x), ..., Qp (x) are as in 18, Chap. II., and this must vanish for

i = l, 2, ..., p. Now ( 258) in the places el} ..., er there vanish a + 1 linear

functions of f^ (x), ..., O^ (a;). Thus, from the conditions expressing that the

periods of R are zero, we infer a + 1 linear equations involving only the

constants Blt ..., Ba+2 , which, since the places oelt ..., ov+a are arbitrary, may
be assumed to be independent. From these cr + 1 equations we can obtain
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the ratios Bl :Bz : ...... : B^ 2 . There remain then, of the p equations

expressing that the periods of R are zero, p (cr + 1) independent equations

containing effectively r + 1 unknown constants. Thus the number of the

constants A lt ..., A ri Blt ..., B^ left arbitrary is r+ 1 -p + a- + I, which is

equal to 2p -2 + 2 (X + !) + ! p + a + 1 or tzr, and the total number of

arbitrary constants in R is CT + 1. Thus we infer that, on the whole, G is of

the form*

where [G] is a special function with the cr + 2 assigned poles, multiplied by
an arbitrary constant, and Glt ..., G^ ,

G are arbitrary constants. And this

result shews that cr -f 2 is the least number of poles that can be assigned for

G. The argument applies to the case when cr + 1 = provided that w &amp;gt; 0.

The proof just given supposes w &amp;gt;
;

but this is not indispensable.

Let f be a factorial function with the primary system of multipliers but

with a behaviour at the places c; like t~ (^+1)
(j&amp;gt;i i

where fa is uniform, finite

and not zero in the neighbourhood of a. Then if, instead of IRdV, we

consider an integral IRfodv, wherein dv is the differential of any Riemann

integral of the first kind, and R is a rational function which vanishes in the

(say M) poles of / ,
and may become infinite in the zeros of dv and the

(say N) zeros of f0i
we shall obtain the same results. It is necessary to

take N&amp;gt; 1 (cf. 37, Ex. ii. Chap. III.).

265. Another method, holding whether -sr = or not, provided a + 1 &amp;gt; 0,

may be indicated. Let K (x) be one of the everywhere finite factorial func

tions of the associated system. Consider the function of x,

a, c, 7 being any places and A a constant
;
when x is in the neighbourhood

of the place c it is of the form

l_ \ X _l t_ I

where t is the infinitesimal in the neighbourhood of the place c, and terms
which will lead only to positive powers of t under the integral sign are

omitted
;
this is the same as

* In the ordinary case of rational functions, where V is replaced by a Rieinann normal inte

gral v, the coefficients of #,, ...
, B&amp;lt;r+2, in the expression for the general period of R, vanish for

one value of i, namely when V=v( . Thus o- + l(= l) pole is sufficient to enable us to construct

the factorial integral ; it is the ordinary integral of the second kind.
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hence if A be DK\c)/K (c), the function
i/r

is infinite at c like - --
t K (c)

A

At the place 7 the function ty is infinite like -
JJTT-^ log t

y ,
where t

y
is

the infinitesimal in the neighbourhood of the place 7.

Putting now M*]* = 1^
a
+ ^ IlJ &quot;,

consider the functionK (C)

A */ix &amp;gt;

a
, n x

&amp;gt;

a -n x
+ A *+*M*r+z,v + B^ + + BPVP

where a, 7 are arbitrary places and A^..., A a+t ,
Bl} ..., Bp are constants,

subject to the conditions

(i) that

A lDxMx
x

[&quot;y + ...... + A 9+iD,M2^ty + BA(x)+ ...... + Bp flp (a&amp;gt;)

vanishes at each of the - 2 (X + 1) zeros of K (x),

(ii) that

DK (*d DK (x&amp;lt;r+ .)
1 ZW A +9 K (a,.+t )

=

the first condition ensures that G(x} is finite at the zeros of K (x), the

second condition ensures that G(x) is finite at the place 7. If we suppose*
v

i ,-&amp;gt; v&
a

to be those integrals of the first kind whose differentials

vanish at the zeros of K (x) ( 258), the conditions (i) will involve only the

constants A 1} ..., A a+z , B^+l , ..., B
p&amp;gt;

and if these conditions be independent
these a- + 2 + (p w) coefficients will thereby be reduced to

&amp;gt;sr + 2(\ + l),
= 2

;

thus, if the condition (ii) be independent of the conditions (i), the number
of constants finally remaining isw + 2 l=r + l, and the form of G(x} is

[G] + C
1
V

1 + ...... + CW V^ + C
as before.

Ex. Prove that, when s,
= - 2 (X + 1

), is positive, we have

266. The factorial integral of the primary system with o- + 2 arbitrary

poles can be simplified. If a;
1 , ..., av+2 be the poles, its most general form

may be represented by

* This is to simplify the explanation. In general it is tzr linear combinations of the normal

integrals, whose differentials vanish in the zeros of K (x). The reduction corresponding to that of

the text is then obtained by taking or linear combinations of the conditions (i).
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where E, Elt ..., E^, C are arbitrary constants. Near a place clt one of the

singular places of the factorial system, the integral will have a form

represented by A^ +
~A

&amp;gt;

&amp;lt;f&amp;gt;

;
we may simplify the integral by subtracting

from it the constant A^, the consequence is that the additive period

belonging to the loop (7^ is zero
;
further there is one other linear relation

connecting the additive periods of the integral, which is obtainable by

following the value of the integral once round the boundary of the dissected

surface (cf. 260). Thus the number of periods of the integral is at

most 2p 2 + k. We suppose the additive periods of the functions

G (xl , . . .
, av+2), y\ , ,

Vw ,

at the loop (71), to be similarly reduced to zero
;

then the constant C is zero. The linear aggregate E1
V

1 + ...... + E^ V^
may be replaced by an aggregate of the non-periodic functions Klt ..., K^+i,

and
Br-(&amp;lt;r + l) of the integrals F,,..., FOT ,

so that the integral under

consideration takes the form

EG fa, ..., av+a) + CM + ... 4- CW- ((r
&amp;lt;+1 )

FOT _ ((r
.

+1)

where C1} ..., C^-^ +D, Flt ..., F^+i are constants. We can therefore, pre

sumably, determine the constants Cl} ..., C^_ (.+!), so that sr (a- + 1) of

the additive periods of the integral vanish. The integral will then have

2p 2 + k (w a- 1),
= CT (a- + 1), periods remaining, together with one

period which is a linear function of them. A particular case* is that of

Riemann s normal integral of the second kind, for which there are p periods.

As in that case we suppose here that the period loops for which the additive

periods of the factorial integral shall be reduced to zero are agreed upon before

hand. We thus obtain a function

wherein F, Fly ...
, F^+i are arbitrary constants, and G^ (a-j. ..., xff+ .i) has

additive periods only at CT (cr + 1) prescribed period loops, beside a period

which is a linear function of these. We may therefore further assign &amp;lt;r + 1

zeros of the integral and choose F so that the integral is infinite at a\

like the negative inverse of the infinitesimal. When the integral is so

determined we shall denote it by F(a;1 , a;.,, ...
, av+g). The assigned zeros are

to be taken once for all, say at a ly ..., &amp;lt;v+1 .

267. The factorial function of the primary system with -or + 1 assigned

arbitrary poles can be expressed in terms of the factorial integral of the

primary system with &amp;lt;r + 2 assigned poles. Let xly ..., xw &amp;gt;

+l be the assigned

poles of the factorial function. Then we may choose the constants C\ , ...,

G-aj -a, so that the & (a- + 1) linearly independent periods of the aggregate

are. all zeros. The result is a factorial function with x
l ,

. . .
, av+1 as poles,

* Of the result. The reasoning must be amended by the substitution of p, 2p for -as
-

(a + 1)

and 2p - 2 + k respectively. Cf. the note t of 260.
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which vanishes in the places a1} ..., cv+1 . Or, taking arbitrary places
d1 , ..., da+l we may choose the constants El} . . .

,
EW &amp;gt;

+1 so that the w (a + 1)

linearly independent periods of the aggregate

El Y(xl ,
dl} ..., d &amp;lt;T+1) + E2T(x2,d1 , ...,d.+l) + .

are all zero, and at the same time the aggregate does not become in

finite at di, ...,dv+1 . Then the addition, to the result, of an aggregate
F1K1 + ...... + Fa +1K +1 ,

wherein Fl} ..., F^+l are arbitrary constants, leads

to the most general form of the factorial function with xl} ..., xw +l as poles.
For the sake of definiteness we denote by ty (x ; z, tlt . . .

,
tw &amp;gt;}

the factorial

function with poles of the first order at z, t1} ..., t&&amp;gt;,
which is chosen so that

it becomes infinite at z like the negative inverse of the infinitesimal, and
vanishes at the places a^, ..., aa

&amp;gt;

+1 . A more precise notation would be*

^r (x, alt . . .
, &amp;lt;v+1 ; z, t1} . . .

, t&&amp;gt;).
This function contains no arbitrary constants.

Denoting this function now, temporarily, by -fy,
and any everywhere

finite factorial integral of the inverse system by V, the value of the integral

fydV, taken round the boundary of the dissected surface formed by the

sides of the period loops, is equal to the sum of its values round the poles
of

i|r.
Since ^dV/dx is a rational function the value of the integral taken

round the boundary is zero. Near a pole of ^r, at which t is the infinitesimal,

the integral will have the form

where D denotes a differentiation. Thus the value obtained by taking the

integral round this pole is A (DV). If then the values of A at the poles

Fn ..., FOT be denoted by A lt . .., A^, we have, remembering that the

value of A at z is 1, the -nr equations

A,

where F/, ..., V w are the or everywhere finite factorial integrals of the

associated system, (DF/) r denotes the differential coefficient of F/ at tr ,
and

(DVt\ denotes the differential coefficient at z. Thus, if wr (x) denote, here,

the linear aggregate of the form

wherein the constants Elt ..., E^&amp;gt;
are chosen so that wr (tr)

= 1 and wr (ts)
=

when ts is any one of the places ^, ..., t^&amp;gt;

other than tr ,
we have A r

= o)r (z).

Hence we infer by the previous article ( 266) that ty(x\ z,t1} ..., tw &amp;lt;)

is

equal to

T(z,dlt ...,C?(T+])-WI(^) F(^, d1} ..., dc+1)- ...... -a)w&amp;gt;(z)r(t^ y
dl) ...,d0+1),

*
Cf. 122, Chap. VII. etc.
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where dl} ..., da+l are arbitrary places. For these two functions are infinite

at the places z,tlt ..., tw &amp;gt; in the same way and both vanish at the places

ttl, ..., & +\

As in the case of the rational functions, the function ty (#; z, ti, ..., OT )

may be regarded as fundamental, and developments analogous to those given
on pages 181, 189 of the present volume may be investigated. We limit

ourselves to the expression of any factorial function of the primary system by
means of it. The most general factorial function with poles of the first

order at the places ^ ,
. . .

,
zm may be expressed in the form

where A 1} . .., A u ,
Blt ..., B^+l are constants. The condition that the

function represented by this expression may not be infinite at tr is

A 1 a&amp;gt;r (z1)+ ...... +A jrur (zM)=0;

in case the ta equations of this form, for r = 1, 2, ..., CT
,
be linearly indepen

dent, the factorial function contains M+ a- + 1 m arbitrary constants;
but if there be h + 1 linearly independent aggregates of differentials, of the

form

C1dVl + ...... + CW dFV,

which vanish in the M assigned poles, then the equations of the form

A 1 a&amp;gt;r (z1)+

are equivalent to only vr (h + l) equations, and the number of arbitrary
constants in the expression of the factorial function is M + cr + 1 vr

f

+ h + 1,

in accordance with 261.

Ex. i. Prove that a factorial integral of the primary system can be constructed with

logarithmic infinities only in o-+ 2 places, but with no smaller number.

Ex. ii. If the factorial integral Q (x^ x%, ...
, #&amp;lt;r + 2) become infinite of the place xt like

j ,
where t is the infinitesimal at x^ prove, by considering the contour integral \GdKr ,

where A
,.

is one of the a-+ 1 everywhere finite factorial functions of the associated system,
and denotes G (xlt x2 , ...

, #&amp;lt;r + 2)j the &amp;lt;r + 1 equations

^

D denoting a differentiation. From these equations the ratio of the residues R
1 ,
R9 , ...,

Ra + 2 can be expressed.

268. The theory of this chapter covers so many cases that any detailed

exhibition of examples of its application would occupy a great space. We
limit ourselves to examining the case p = 0, for which explicit expressions can
be given, and, very briefly, two other cases ( 268 270).
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Consider the case p = 0, k = 3, there being three singular places such as

have so far in this chapter been denoted by clt C2 , ..., but which we shall

here denote by a, /3, 7, the associated numbers* being \l
=

3/2, X2
=

3/2,

\2 = 2. At these places the factorial functions of the associated system

behave, respectively, like
t~^(j)ly t~^2 , t~l

&amp;lt;f&amp;gt;z,

and the difference between the

number of zeros and poles of such a function is N M = 2 (X + 1)= 2.

Thus there exist factorial functions of the associated system with no

poles and two zeros. By the general formula of 254, replacing 11*
&quot;

by

(CC

~~ G I Ct ~~ G\-
I
-

1 ,
the general form of such a function is found to be

as-yi a - 7/
+ Bx + C=

(x-ri x-ax-
and involves three arbitrary constants, so that a + 1 = 3. In what follows

K (x) will be used to denote the special function l/(x y)(a; OL^(X /3)i

The difference between the number of zeros and poles of factorial functions

of the primary system is N M = o
;
hence M=Q is not possible, and

a- + 1 = 0. Further

OT
,
=p _ 1 + (\ + 1) + &amp;lt;r + 1, =-1-2 + 3 = 0,

or
, =p-l-2\ + &amp;lt;r + l ,=-1 + 5 =4,

and the factorial function of the primary system with fewest poles has

BT + 1 = 5 poles, as also follows from the formula N M = 5. This function

is clearly given by
(x-

(x x-i) (x x2) (x x3) (x #4 ) (x xs)

Putting

i/r (x}
= (x-a.)(x- 0) (x

-
7), f(x) = (x- tfj) (as

- x2) (x
- x3) (x

- xt) (x
- #5 ),

&amp;lt; O) = DK (x)IK (x}
= -[(oc- 7)-

1 + i
(x
-

a)&quot;

1 + (x
- P)

1

],

and putting A,,-
=

ty ()/./&quot; O^f)* where i is in turn equal to 1, 2, 3, 4, 5 and

f (x} denotes the differential coefficient of f(x), it is immediately clear that

P(x) is infinite at x^ like Xj/(# x-^ K (x^ It can be verified that

2\! = 0, i^^^l, i^1\1
&amp;lt;/&amp;gt;(a;

1 )
= 0, ^scl-\l (j)(xl}= -2, SX10(^1 )

= 0,111 i i

and these give

1 X, [1 + x^ (x,)}
= 0, i\, [2^ + xty (x,)]

= 0.

i i

The factorial integral G, of the primary system, with &amp;lt;r + 2 = 4 poles,

T, , 77, ,
is ( 265) given by

*
It was for convenience of exposition that, in the general theory, the case in which anj

r of the

numbers X,, ...
,
\k are integers, was excluded.
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where the sign of summation refers to r, %, 77,
and the constants A l} A 2 ,

A 3 , AI are to be chosen so that (i) the expression

Arf (r) + A 2$ (f) + A 3
&amp;lt;j&amp;gt;

(77) + A&amp;lt;4&amp;gt; ()

is zero, this being necessary in order that G(r, f, 77, ) may not become

infinite at the place c, and (ii) the expression

vanishes to the fourth order when x is infinite
;

the expression always

vanishes to the second order when x is infinite
;
the additional conditions are

required because K (x) is zero to the second order when x is infinite.

Taking account of condition (i), we find, by expanding in powers of -
,
that

JO

the condition (ii) is equivalent to the two

1 A l [1 4-
T(f) (T)]

= 0, I A, [2r + T2
&amp;lt; (T)]

= 0.

i i

Thus, introducing the values of A 1} ..., A 4 into the expression for

G (T, g, 77, ), we find, by proper choice of a multiplicative constant,

1 $ (T) /t\ t \ (
i ()&amp;gt; (^X (

(a;
-

r)
2 x - r

1 + T
&amp;lt;/&amp;gt;

(r),

....ax

in which the second, third and fourth columns differ from the first only in

the substitution, respectively, of
, 77, in place of T.

The factorial integral G(r, g, 77, ) thus determined can in fact be

expressed without an integral sigo. For we immediately verify that

is equal, save for an additive constant, to

T- + 1 + r0 (r) + i \x
- 7 - i (a + )} (T)(^a)- ft)

)
-

{7 (T)) + *7 (a

x log \x
-

I

&amp;lt;#&amp;gt;
(T)

T a T

xlog
a; - /8) (r -a) + V(a?

-
a) (T

-

Va; T
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and, by the definition of
&amp;lt;f&amp;gt;

(#), the coefficient of the logarithm in the last line

of this expression is zero
;
if we substitute these values in the expression

found for G (r, %, rj, ) we obviously have

7 T

(j) (T), .
,

.
, .

-f constant,... (2),

where the second, third and fourth columns of the determinant differ from

the first only in the substitution, in place of r, respectively of V, We

proceed now to prove that this determinant is a certain constant multiple of

(x
-

a) (x - ft) (x
-

fi)/(x -T)(X- f) (x -^(x- ),
where n is determined by

4-T

If we introduce constants, A, B, C, A ,
B

, 6&quot;, depending only on a, ft, 7,

defined by the identities

2
Co? + Bx + A = n(x

4

we can immediately verify that

A(j&amp;gt; (a-) + B [1 + x$ (x)] + C [2a? x a

[1+

and hence that

CC T

thus

7 T

(a r) (/3 T) x r

7~ T ! m f,
, w2f -x- -. .

(a T) (/3 T) x T

&amp;lt;(r),
. ,

. ,

1-f T$ (T), .
,

.
,

-f constant,

...(3)
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now it is clear from the equation (2) that G (T, g, i), )/V(# a) (x /?) is of

the form (x, l\j(x r)(x ) (x rj)(x ),
where (x, I), denotes an integral

cubic polynomial; and since l/K (x) vanishes when a; = y, it follows from

the equation (1) that the differential coefficient of G(T,%,V), ) vanishes

when a&quot;
=

y. Hence we have

where
//.

is such that the differential coefficient of this expression vanishes

when x = y, and has therefore the value already specified, L is a constant

whose value can be obtained from the equation (3) by calculation, and M
is a constant which we have not assigned. In the neighbourhood of the

place a, G (r, , 77, ) has the form M + L(x- a)- [\ + p (x - a) + v (x -&f + ...},

and similarly in the neighbourhood of the place @. In the neighbourhood
of the place y, G (r, g, 77, ) has the form

N + (x
- 7)- [V + // (a

- 7) + v (x - 7)2 + ......
].

where N is a constant, generally different from M.

In the general case of a factorial integral for p=0, k=3, the behaviour of the integral
at a, /3, y is that of three expressions of the form

provided no one ofX + l,/t+ l,j/+l be a positive integer; herein one of the constants

A, B, C may be taken arbitrarily and the others are thereby determined. The factorial

integral becomes a factorial function only in the case when all of A, B, C are zero.

We have seen that the factorial function of the primary system with

fewest poles has 5 poles ;
let them be at T, rl} %, 97, ; then, taking G (r, %, rj, )

in the form just found, the factorial function can be expressed in the form

P (x} = CO (r, fc rj, ^ + C
tG (TU fc 77, + D,

when the constants C, Gl} D are suitably chosen.

For clearly D can be chosen so that the function P (x) divides identically

by (x af-(x ftf-. It is then only necessary to choose the ratio G : Cl}

if possible, so that the function P (x) divides identically by (x y)-. This

requires only that

X-T l

X - T,
^
(X
-

T) (X
-

Tj)

where p is a constant, or that the expression

B. 27
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divide by (x
-

7)-. Thus C : C, = -
(7
-

T) (7
-

/*,) : (7
-

/*) (7
-

TJ), and

27 - /A
-

TI _ 27 - /*!
- r

(7
-

fl) (7
-

Tj) (7
-

/ij) (7
-

T)

or

7 - /* 7-r 7
-

/*i 7 Ti

this condition is satisfied
;
both these expressions are by definition equal to

J_ J_ _J__a J J

I t 2

From the theoretical point of view it is however better to proceed as

follows Let the poles of P (x} be at ar, ,
. . .

,
&amp;lt;r5 . Then P (a-) can be expressed

in the form

Px = ClG(xl , 77, + 0,0 (a? 3&amp;gt; 77, 0+ ...... +CBG(ar , fc 17, + C,

the constants C, Glt C.,, ..., Cs being suitably chosen. This equation requires,

by equation (1),

+ 0, #, J7

,
S

r [1 + xr
&amp;lt;f&amp;gt; (#,)], 1 4- ^ (|), 1 + it (*)),

1 + ^ (D

i

5

wherein A (, 77, ) is the minor, in the determinant occurring in equation (1),

of the first element of the first row, and E = (x
-

%)~
2 +

&amp;lt;/&amp;gt;
() (x

-
I)-

1

,

F= (x
-

r})-&quot; +
&amp;lt;f&amp;gt; (77) (x

-
rj)~

l

,
G = (x- ^)~

2 +
&amp;lt;f&amp;gt;

(^) (^
-

f)-
1

. If now we take

C
j ,

.... (75 so that55 5

^ /&quot; *Jv / /v \ rt ^? t r 1 l /y /&quot;fk / *v* i I C\ ^^ I , \ s nr I ^ * /T\ i &quot;T* i I
~~* 1 1*

CD \ w-&amp;gt;* I V/j .^^l^ i I -L
&quot;T&quot; vUf^r \ T/ I ^? ^*\J

-p \t*Asf i^ tAsj* \L/
y**

/
j*/J

^^ ^j11 i

this leads to

/ /yi /y /y /y&amp;gt;

\ I. f] 7j /Jt / // // /V
0&quot; I

l w/j j tX/2 j ^s j *^4/ T^ ^^5-*-^ ^* V 1 ) 2 ? 3 3 5/J

77, g
and the solution can be completed as before.

There are TS = 4 everywhere finite factorial integrals of the associated

dV .

system ;
if V be one of these, then by definition, -^

is a factorial function
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which has at a the form (x a)~
3

&amp;lt;,
and similarly at ft, and has at 7 the

form (x y)-
2

&amp;lt;f&amp;gt;.

Further dV jdx is zero to the second order at x = x .

Hence we have

(x, 1)3 cfa_ _
Jx-

and dV has 2p 2 t\ = 2 + 5 = 3 zeros.

Thus V can be written in the form

dx La? + MX +

= NK (x) + Mr/ O) + #, (a?) + ^F ,

where JV, Jlf, Z, .R are constants, K (x), KJ (x), K2 (x) are particular, linearly

independent, everywhere finite factorial functions of the associated system,
and FO is a particular everywhere finite factorial integral of the associated

system.

Ex. i. In case of a factorial system given by p= 0, k= 2, X
t
= -f, X2

=
f, prove that

&amp;lt;r-M=2, a- +1=0, or= 0, or = 2
; prove that the factorial function of the primary system

with fewest poles is P (x}
= (x-aft (x

-
@$l(x - x^) (x-x^ (x-xj) ;

obtain the form of the

factorial integral of the second kind of the primary system with fewest poles, and prove
that it can be expressed in the form AP(x)+B ; and shew that the everywhere finite fac

torial integrals of the associated system are expressible in the form (Ax+B)/\/(x a) (x ft),

their initial form being

(Ax+E)dx

Ex. ii. When we take p= Q and k, =2n+ 2, places c
lt ..., c

2tt+2 ,
and each X=-i,

prove that the original and the associated systems coincide, that a+ 1 = o- + 1 = 0, w= & =
n,

that the everywhere finite factorial integrals, and the integral with one pole are respec
tively

fo!)-irfr /T /(a) +i^ (a)1
dx

J -JfV) JL(. -)2
+
*^^Jx//^)

where f(x) = (x-cl) ...... (^-c.2)l + 2). The factorial function with fewest poles is

^/ (*)/(-r, l) + i; express this in the form

JfW _+&amp;gt; (T ffa) ../ (oi)! dx
L r(^l)-x , ,

/_, i\
= 2 AI I

------a+f . + I V- - dx+ constant,
(x, l)n + 1 ,-=i j\_(x-a i }

i - A
-aJv//(.r) J v(/(.^)

a,, ...
,
nn + 1 being the zeros of (x, 1),, + 1 ,

and determine the 2?i+ l coefficients on the right-
hand side.

269. One of the simplest applications of the theory of this chapter is to
the case of the root functions already considered in the last chapter ; such a
function can be expressed in the form e+, where

272
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where /3l5 ..., /3N are the zeros, al , ..., a.N the poles, h; is a rational numerical

fraction, Hi is an integer, and 7 is an arbitrary place. The singular places,

Cj, ...,Cfc are entirely absent. The zeros and poles satisfy the equations

expressed by

where Gl} ..., Gp are integers; and since, if m be the least common denomi

nator of the 2p numbers g, h, the rath power of the function is a rational

function, there is no function of the system which is everywhere finite,

and the same is true of the associated system. Hence er + l=0 = o- + l,

sr = OT =p 1
;

thus the function of the system with fewest poles has

p poles, and every function of the system can be expressed as a linear

aggregate of such functions ( 267. Cf. 245, Chap. XIII.).

Ex. i. Prove that when the numbers g, h are any half-integers, the everywhere finite

integrals of the system are expressible in the form

[

V=j
civ?- 1

.- S

where v is an arbitrary integral of the first kind,
(f&amp;gt;

is the corresponding (^-polynomial,

and 3&amp;gt;t-, &amp;lt;&i
are (^-polynomials with p 1 zeros each of the second order (cf. 245,

Chap. XIII.). It is in fact possible to represent any half-integer characteristic as the

sum of two odd half-integer characteristics in 2 p ~ 2
(2

p ~ 1
-l) ways.

Ex. ii. In the hyperelliptic case, when the numbers g, h are any half-integers, prove
that the function of the system with 07 + 1 =p poles is given by

\f &amp;gt;

)}

where the places (xlt y), ... are the poles in question,

^ (#)= (#- #1) ... (%
- xp), V/ Or)

=
dty (x}jdx, u= (x a) (x 6),

and a, b are two suitably chosen branch places*, and u
i
= (xi -a)(xi

b
).

Shew that in

(T (it - 1) l
\ &quot;Wi

the elliptic case this leads to the function .
-r e~v (&quot;~&quot;).

cr (u
-

V)

270. In the case in which the factors at the period loops are any

constants, the places c
1? ...,ck being still absent, it remains true that the

number of zeros of any function of the system is equal to the number of

poles; but here there may be an everywhere finite function of the system,

and there will be such a function provided

gi + Ti,i h,+ ...... +Tilp hp = -[Gi + Tiil H,+ ...... + Titp Hp], (i
= l, 2, ...,p)

in which G1} ..., Hp are integers, the function being, in that case, expressed by

* For the association of the proper pair of branch places a, b with the given values of the

numbers g, h, compare Chap. XI. 208, Chap. XIII. 245, and the remark at the conclusion of

Ex. i.
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then E~ l
is an everywhere finite function of the associated system, and

a + I = a- + 1 = 1, ur = CT = p. It is not necessary to consider this case, for

it is clear that every function of the system is of the form ER, R being a

rational function.

When a- + 1 = a- + 1 = we have or = p 1 = CT . Then every function

of the system can be expressed linearly by means of functions of the system

having p poles. If #, ,
. .., xp be the poles of such a function and z1} ..., zv the

zeros, and the relations connecting these be given by

**&amp;gt;+ + vz&amp;lt;

x =f/+G + T(h + H).

There is beside the expression originally given, a very convenient way of

expressing such a function, whose correctness is immediately verifiable,

namely

wherein

and m, mly ...,mp are related as in 179, Chap. X. Omitting a constant

factor this is the same as

r v /&amp;gt; j
&amp;lt;s) (u)

since the difference between the values of the logarithm of
&amp;lt;f&amp;gt;

(u) at the two
sides of any period loop is independent of u, and of x, it follows that
o

p,

^- log &amp;lt;/&amp;gt;
(u) is a rational function of x, and that

^- log &amp;lt;j&amp;gt; (u) is a periodic

function with 2p sets of simultaneous periods ;
thus the function &amp;lt; (a)

satisfies linear equations of the form

^\.7
* o

W =
RlJ &amp;gt;

55^
- B * &amp;lt;M

=
1,2,...,,C),

where R, R,j are rational functions of x, and 2/;-ply periodic functions of u.

given* by

The 2/ constants a, X can be chosen so that

satisfies the equations &amp;lt; (M +2) = zl^(?),
&amp;lt;/&amp;gt; (M+ 2

)
= ^l 0(?0. whore .4, J each represents

p given constants, and the notation is as in 189, Chap. X.

*
Cf. Halphen, Fonct. Ellipt., Prem. Part. (Paris 1886), p. 235, and Forsyth, Theory of Func

tions, pp. 275, 285, for the case p = l. By further development of the results given in Chap. XI.
of this volume, and in the present chapter, it is clearly possible to formulate the corresponding
analytical results for greater values of

j&amp;gt;.
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271. We have seen ( 261) that the number of arbitrary constants

entering into the expression of a factorial function of the primary system
with given poles is N jj+l+/i + l, =R say, where N is the number of

zeros of the function, and JL + 1 is the number of linearly independent

differentials, dv, of integrals of the first kind, which vanish in the zeros

of the function. When h + I vanishes the assigning of the poles of the

function, and of R 1 of the zeros determines the other NR + l, =p,
zeros

;
in any case the assigning of the poles and of R 1 of the zeros

determines the other N R + l, =2) (h+l), of the zeros. Denote the

poles by a1} ...,OLM and the assigned zeros by j31} ..., @R-i ,
then the remaining

zeros /3R , ..., ftN are determined by the congruences

0i , 0/(_i! &amp;lt;*-i,
a O-M, a er , a ,

, ,
.

Vi + . . . + Vi -Vi - ... - Vi
- Z \.Vi

-
(ffi + A, T it !+...+ IlpT {,p)

r-l

a being an arbitrary place. Now, let the form of the factorial function when
the poles are given be

where C\, ..., CR are arbitrary constants, and F1 (ac), ..., FR (x) are linearly

independent ; then, when the zeros /3U ...,/3JC
_1 are assigned, the function is a

constant multiple of the definite function

the zeros of this function, other than filt ..., fiR -1} are perfectly definite, and

are determined by the congruences put down. Let H denote the quantities

given by

Hi = 2 \.v
c
-

a
+ gi + /tjTt,! + ...... + hpTitp ;

r=l

take any places yl} ..., 7^+1, of assigned position, and take a place m and p
dependent places m1} ..., mp defined as in 179, Chap. X., and consider the

function of #

if the function does not vanish identically, its zeros, x1} ..., xp ,
are ( 179,

Chap. X.) given by the congruences denoted by

m*+2
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or, what is the same thing, by

now, from what has been said, it follows, comparing these congruences with

those connecting the poles and zeros of A (x), that if xl} ..., xh^ be taken at

7i, ..., 7/,+i, these congruences determine xh+y , ...,xp uniquely as the places

&K&amp;gt; &amp;gt; ftx- Thus the zeros of the theta function are the places 7lf ..., yh+i

together with the zeros, other than /31} ..., yS^_i, of the function A (x).

We suppose now M to be as great as p 1, = r + p 1
, say ;

as in 184,

p. 269, we take nly ..., ?ip_j
to be the zeros of a (^-polynomial of which all the

zeros are of the second order, so that

,
in _

is an odd half-period, equal to H
gi s

&amp;gt;

say ;
and we take the poles ar+1 ,..., at

nlt ..., Wp_i. Further*, in this article, we denote

(v*&amp;gt;

z + in s , ,.) e**
* *

by X (x, z\

so that ( 175, Chap. X.) \(x, z) is also equal to e-^&amp;gt;+^ &amp;gt;

6(t&amp;gt;*. *; i, I* ).

The function X (x, z) must not be confounded with the function X (, /A) of 238.

Then in fact, denoting the arguments of the theta function by V, we
have the following important formula,

r h+l k

A (x) U X (a?, Zj) U X (x, 7j) II [X (x, C;)]*&amp;gt;

where ^. is a quantity independent of a;. In order to prove this it is

sufficient to shew (i) that the right-hand side represents a single-valued
function of x on the Riemann surface dissected by the 2p period loops,

(ii) that the right-hand side has no poles and has only the zeros of @(F),
and (iii) that the two sides of the equation have the same factor for every one
of the 2p period loops.

Now the function X (x, z) has no poles ;
its zeros are the place z, and the

places ?ij, ..., np^. The places n l} ..., np^l occur on the right hand

(a) as poles, each once in A(#), each (R 1) times in the product

r h+l

(p) as zeros, each r times in II X (x, a,-),
h + l times in II X

(as, 7;), and
.7
= 1 j= l

* For the introduction of the function X (x, z) see, beside the references given in chapter XIII.

( 250), also Clebsch u. Gordan, Abel. Functnen. pp. 251256, and Riemann, Math. Werke (1870),

p. 134.
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k k

S \j times in II
[A, (a, GJ)]^ ;

thus these places occur as zeros, on the right
.7
= 1

.7
= 1

hand,
M- (p

-
1) +h+ 1+ SX;

-A = -AT- p + 1+ h + 1 - H,

times, that is, not at all.

Thus the expression on the right hand may be interpreted as a single-
valued function on the Riemann surface dissected by the 2p period loops
for we have seen that the places nl} ..., np_ l

do not really occur, and the

multiplicity, at
c/,

in the value of such a factor as \\(x, c/)]
A

&amp;gt; is cancelled by
the assigned character of the factorial functions F(x) occurring in A(.r).

Nextly, the zeros of the denominator of the right-hand side, other than at

MI, ..., iip-i, are zeros of A (as), and the poles of A (#), other than n lt ..., np_l ,

r

are zeros of the product II \(x, &amp;lt;Xj),

so that the right-hand side remains
j=i

finite. The only remaining zeros of the right-hand side consist of 71, ..., yh+1
and the zeros of A(#) beside &, ..., /3^_j ;

and we have proved that these are

the zeros of ( V). It remains then finally to examine the factors of the

two sides of the equation at the period loops. The factors of the left-hand

side at the i-ih period loops respectively of the first and second kind are

(see 175, Chap. X.)

e
- 27TJ (hi

- K) and e
~ 2^* S (V - JV) *&amp;gt;, i

- 2iri
(
V

t +K 4 ).

the factor of the right-hand side at the i-th period loop of the first kind is

e*, where
I

^r
= -

Vnrihi + ririsl + (h + 1) iriSi + irisl 2 \j (R-l) iris-
;

;=i

k

now R = N - p + 1 + h + 1 = r + 2
X,- + h + 1

;
thus

i/r
= -

2Trih[ + 7m/, and
j=i

e* = e-*ri(hi-W) }
or the factors of the two sides of the equation to be proved, at

the i-th period loop of the first kind, are the same. Since the factor of

X (x, z) at the t-th period loop of the second kind is e^ where

i

~

+ ^S{ + faiTi, 1 + + s p
T

i, P + % ri,

it follows that the factor of the right-hand side at the i-ih period loop of the

second kind is ex where

[
T r a h+ l

Cf v k R ~ l T

v^ a
;+ Svr^+SV? - 2 v

j=i j=i j=i j=i

r h -i

- iri \r + h + 1 + l\j-R+l\ (T/ f + A-),

L .;=i

2 a!,|8.
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now we have

a,, a a
, a )i 1( a-vf -...-v-J -Vi

and

(si + S/TI, ,+ ...

thus

.7
= 1

further

_ x,a ,, n x a;, a. /T3 ^ . x, a x, a ^ ~ x, a=
Vi -\- \ll -f- 1 ) Vi \l~i i)Vi -f- TVi T ^

&quot;-jfj ^

hence

A+l
3.^.

JB-l
a

.

) /3 .

r
x&amp;gt;

a

or

/* r h+l h B-l

S(AM-K )^i+^--flr,- + i*,-+ 2t;?*&amp;gt;+ S vf
v

&amp;gt; + S \X - ^ v? *,
/*
= ! ./

= ! ?
= 1 J = l ;

= !

and thence the identity of the factors taken by the two sides of the equation
to be proved, at the t-th period loop of the second kind, is manifest.

And before passing on it is necessary to point out that if the functions

X (x z}
\ (x, z) be everywhere replaced by r ,

and A (x) be replaced by i/r
A (x},

^r being any quantity whatever, the value of the right-hand side of the

equation is unaltered. For there are R factors A, (x, z} occurring in the

numerator of the right-hand side of the equation beside A (x), and R 1

factors \(x, z) occurring in the denominator of the right-hand side of the

equation. In particular ty may be a function of x.

272. We can now state the following result: Let a, n ..., r be any
assigned places; let TO,, n.2 , ..., ?t

j&amp;gt;

_1 be the zeros of a ^-polynomial, or of

a differential, dv, of the first kind, of which all the zeros are of the second

order, and

&amp;gt;u,,,m n,,i, n,,-i, mt &amp;gt;-i , ,

Vi -V { -...-Vi =$(s i + s i T;il +...+Sp

/

T i
, p), (l

=
1, 2, ...,})),

111, MI,, ..., mp being such places as in 179, Chap. X.; let li+l be the

number of linearly independent differentials, dv, which vanish in the zeros of

a factorial function of the primary system having cti, ..., or,., n lt ..., np_ 1 as
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poles, or the number of differentials dV, of everywhere finite factorial

integrals of the associated system, which vanish in the places n lt ..., np_1}

k

a,, ..., a,.; let yl , ..., yh+i be any assigned places; denote r + 2 \j + h+l
j=i

by R, and let* xl} ..., XR be any assigned places; let the general factorial

function of the primary system having a1} ..., a.,, n1} ..., ip_ x as poles be

0^(0,)+ + CRFR (x),

wherein Glt ..., GB are constants, and let

(X), ,FR (xl ] \^(xl),...,^(xK) )

,FH (xB}

where ty (x) denotes any function whatever
;
let

7? y 7i 4- 1 Z-

Tr x.,a a., a &quot;JT

1
y.,a c., a

U{= 2tv - 2
Vi&amp;gt;

- 2 v - 2 \jvf ,

j= l j=l j=l ./
= !

which is independent of a, and let the row
of^&amp;gt; quantities

i
&amp;gt;

x ...... p
-

p it p

be denotedf by g-^8 + r(h-^8 )j then if, modifying the definition of

X (x, z\ we put

we have

A. (a- r r&quot;
R ( r h+l k

=
t,j-i,i ,

2

V&quot;
n n \(^ ,)

n x (^ 7j ) n [x^,, Cj)

nri x (xit Xj}
i=l u=1 ; =1

i&amp;lt;j

wherein (7 is a quantity independent of xlt ..., XR ,
which may depend on

Cj, ..., Cfc, !, ..., ,., yl} ..., 7A+1 .

273. The formula just obtained is of great generality; before passing
to examples of its application it is desirable to explain the origin of a certain

function which may be used in place of the unassigned function ty (as).

We have ( 187, p. 274), in the notation of 272,

if the zeros of the rational function of x, (x
1

x)j(x 2), be denoted by
* These replace the x

l , ft, ... , ^..j of 271.

t So that V= U -
(g

-
$g)

- r (h
-
^* ).
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x, xl , ..., c H_i, n being the number of sheets of the fundamental Riemann

surface, and the poles of the same function be denoted by z, zlt ..., zn_^ we

have, by Abel s theorem,

= 1
^ -^_lr_

now let the places x, z approach respectively indefinitely near to the places

x, z which, firstly, we suppose to be finite places and not branch places ;
then

the right-hand side of the equation just obtained becomes

log
\_-(x=zY

&quot;

X(cc)X(z)
where

p x v
\ i /v i ^&amp;gt; (\ f 1 (~\ \ 7~i ~V / \ ^*

&quot;^ \ * ) &quot;^ ^^ / \ &quot;9&quot;

* ^x v /
-*^ ^/ i -^*- \ -^ /

^~
- /

Z) denoting a differentiation, and a denoting an arbitrary place ;
but we have

(Chap. X. 175)

thus, on the whole, when the square roots are properly interpreted, we
obtain

/ aTz

\un.X =x , ,__, \/ (x x) (z z) e x&amp;gt;z = *
&quot;-

&quot;V A/V/\V/\
\i \ i np i \ i^i-*v V / ^ V /

When the places ,
^ are finite branch places we obtain a similar result.

Denote the infinitesimals at these places by t, t1} and, when x, z are near to

as, z, respectively, suppose of = x + t
w+1

,
z =z + ^1+1

;
then from the equation

given by Abel s theorem we obtain, if 7 denote an arbitrary place,

w r x z1 i &quot;j:

1 v / w
i r r- / i -! -^ ,-

S n; -
log d + s nj;,; + 2 n^;:

-
logd + 2 nj^=l L J r=w+l r=l L J r=w,+l

where X (#), X (2) are of the same form as before, save that the differentia

tions Dvi , Dvi ,
are to be performed in regard to the infinitesimals t, ^.

If the limit of the first member of this equation, as x, z respectively

approach to x, z, be denoted by Z, we therefore have

- IT*
&quot; H (vx &amp;gt;

z
-4- ill -\** U +g= =(x-z)e^ (ii)

x) X(z)



428 THE SCHOTTKY-KLE1N PRIME FORM. [273

The equations (i), (ii) are very noticeable
;
there is no position of x for

which the expression (v
x z + JHg) g ) . e^18 **

z

/vX (x) X (z) is infinite, and there

is only one position of so, namely when x is at z, for which the expression

vanishes; for ( 188, p. 281) the expression *JX (x) vanishes, to the first

order, only when x is at one of the places nlt ..., np^, and (v
x

&amp;gt;

z + ^ls,s )

vanishes only when x is at one of the places z, n lt ..., np^ ;
there is no

position of x for which \/X (x} is infinite. Putting

T(x ._(

we have further GTI (x, z}
= TS

I (z, x}, and if t denote the infinitesimal near

to z, we have, as x approaches to z, limita;=z [CTZ (x, z)jt\
= 1. For every

position of a; and z on the dissected Riemann surface sr
1 (x, z) has a perfectly

determinate value, save for an ambiguity of sign, and, as follows from

the equations (i), (ii), this value is independent of the characteristic

(H iO-

There are various ways of dealing with the ambiguity in sign of the

function ta l (x, z). For instance, let
(f&amp;gt; (x) be any ^-polynomial vanishing in

an arbitrary place m, and in the places A 1} ..., A.
2p
_3 (cf. 244, Chap. XIII.),

and let Z (x) be that polynomial of the third degree in the p fundamental

linearly independent ^-polynomials which vanishes to the second order in

A 1) ...,A 2p
^3 and in the places ml} ..., mp . Further let 3?(x) be that

^-polynomial which vanishes to the second order in the places nj, ..., ?ip_!.

Then we have shewn ( 244) that the ratio \/Z
(x)/(f&amp;gt; (x) \/&amp;lt;I&amp;gt; (x), save for an

initial determination of sign for an arbitrary position of x, is single-valued on

the dissected Riemann surface
;
hence instead of the function CTJ (x, z) we

may use the function

E (x z} =

which has the properties ; (i) on the dissected Riemann surface it is a single-

valued function of x and of z, (ii) El (x, z) = E1 (z, x}, (iii) as a function of x

it has, beside the fixed zeros m1 , ..., mp , only the zero given by x = z, and it

has no infinities beside the fixed infinity given by x = m, where it is infinite

to the first order. At the r-th period loops respectively of the first and

second kind it has the factors

I g
-

*&amp;lt;&amp;lt;? *+tort)

But there can be no doubt, in view of the considerations advanced in

chapter XII. of the present volume, as to the way in which the ambiguity of

the sign of sr
l (x, z} ought to be dealt with. Suppose that the Riemann

surface now under consideration has arisen from the consideration of the
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functions there considered ( 227) which are unaltered by the linear substitu

tions of the group. Let the places in the region S of the f plane which

correspond to the places x, z, x , z of the Riemann surface be denoted by

&amp;gt; .

&quot; Then by comparing the equation obtained in chapter XII. ( 234),

with the equation here obtained,

z

and noticing that X (x), -^ agree in being differential coefficients of an
a

integral of the first kind, which vanish to the second order at w,, ..., np^l ,

we deduce the equation

, . I / dt dt^

&amp;lt;.*&amp;gt;/V3 &quot;3?f
&quot;

now we have shewn that ro-(, ) is a single-valued function of f and
;
and

any one of the infinite number of values of
,
which correspond to any value

of #, has a continuous and definite variation as x varies in a continuous way;

hence it is possible, dividing TJ (x, z) by the factor A / -^ . -^ , which byV Okc^ ft ^

itself is of ambiguous sign, to destroy the original ambiguity while retaining
the essential character of the function CTJ (x, z). The modified function is

infinitely many-valued, but each branch is separable from the others by a

conformal representation. Thus the question of the ambiguity in the sign of

CTI (x, z) is subsequent to the enquiry as to the function which will conform

ably represent the Riemann surface upon a single f plane in a manner

analogous to that contemplated in chapter XII. 227, 230*.

In what follows however we do not need to enter into the question of the

sign of vr l (x, z}. It has been shewn in the preceding article that the final

formula obtained is independent of the form taken for the function there

denoted by ty (x). It is therefore permissible, for any position of x, to take

for it the expression VZ (x), with any assigned sign, without attempting to

give a law for the continuous variation of this expression. The advantage is

in the greater simplicity of nyl (x, z) ;
for example, when x is at any one

* Klein has proposed to deal with the function sr
l (x, z) by means of homogeneous variables.

The reader may compare Math. Annal. xxxvi. (1890) p. 12, and Eitter, Math. Annal. XLIV. (1894)

pp. 274 284. In the theory of automorphic functions the necessity for homogeneous variables

is well established. Cf. 279 of the present chapter. For the theory of the function &
1 (x, z) in

the hyperelliptic case see Klein, and Burkhardt, Math. Annul, xxxn. (1888).
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of the places n lt ..., np_lt the function \(as, z), as denned in 271, vanishes

independently of z
;
but this is not the case for TS^ (x, z).

Ex. i. Prove that

c)* z
=\oe i i

B
,(*,),(* a)

Ex. ii. Prove that any rational function of which the poles are at a
t , ...

, a.,, and the
zeros at /3j , . . .

, /Sj,, can be put into the form

where

**!(#, a^ ...... or^a?, a*)

j, ... ,
X

;,
are constants, and a is a fixed place.

Tn what follows, as no misunderstanding is to be apprehended, we shall

omit the suffix in the expression ^ l (x, z}, and denote it by OT
(as, z). The

function -a ( ) of chapter XII. does not recur in this chapter.

274. As an application of the formula of 272 we take the case of the

root form \/X&amp;lt;
3

&amp;gt;

(x)j (as)*/X (x), where Z (3)

(x) is a cubic polynomial of the

differential coefficients of the integrals of the first kind, having 3 (p
-

1) zeros,

each of the second order (cf. 244, Chap. XIII.). Then the poles a1} ..., a,, are

the 2p 2 zeros of any given polynomial &amp;lt;I&amp;gt; (x), which is linear in the

differential coefficients of integrals of the first kind. Thus r = 2p 2,

A + 1 = 0, R, =r + h+I + 2\j =2p -2 + + = 2p -2; U=
P

^
^&amp;gt;&quot;y, and,

i i

taking for the function
i/r (x), the expression VX (x), the formula becomes

&quot;

2p-2 2p-S
n n

i, j=l, 2, ...,

n n n

Herein
4&amp;gt;()

is a given polynomial with zeros at Oj, ..., ap-2 , and the forms

v
JTj (), ..., _^(x) are any set of linearly independent forms, derived

as in 245, Chap. XIII., and having (g1 ,..., h-l ,..., hp) for characteristic.

From this formula* that of 250, Chap. XIII. is immediately obtainable.

The result is clearly capable of extension to the case of a function

*
Cf. Weber, Theorie der AbeVschen Functionen vom Geschlecht 3, Berlin, 1876, 24, p. 156;

Noether, Math. Annul, xxvm. (1887), p. 367; Klein, Math. Annal xxxvi. (1890), p. 40. For the

introduction of ^-polynomials as homogeneous variables cf. 110114, Chap. VI. of the present
volume. See also Stahl, Crelle, cxi. (1893), p. 106; Pick, Math. Annal. xxix. &quot; Zur Theorie der

AbeFschen Functionen.&quot;
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275. A general application of the formula of 272 to the case of rational

functions may be made by taking al} ..., a,, to be any places whatever, r

being greater than p-l. Then A + 1=0 and R = r\ and if the general
rational function with poles in a,, ..., ar ,

nl} ..., np, l be

A-Fi (x) + + A^F^ (x) + A,,

where A ly ..^A r are constants, and we take for the function ^ (x) the

expression VX (x\ and modify the constant C which depends in general upon
,, ..., &amp;lt;xr ,

we obtain the result (cf. 175, Chap. X.)

, ..

II II f, O;)

^T(xl)...X(xr}X(a,} ...X (

276. This formula includes many particular cases*. We proceed to
obtain a more special formula, deduced directly from the result of 272.
Let !, .... ar = nll ..., np_lf Then the everywhere finite factorial integrals
of the associated system are the ordinary integrals of the first kind,
and the number, h + 1, of dV which vanish in the places a,, ..., aj,
nl} ..., ?i_p_ 1&amp;gt;

that is, which vanish to the second order in the places
i, is 1. The number ^, =

general function having the poles

1,
=

, =p. The

...,?iVi mf()^(te)/Z(ai)t where
X (x) is the expression employed in 273, and &amp;lt;& (x) denotes the differential

coefficient of the general integral of the first kind. Further

a - 2 vni a -
i

7 being an arbitrary place. Hence

-8- rs =

and
eirw df+J.+ i

is equal (175, Chap. X.) to

=
say,

. , @ ( 7+

since ss is an odd integer. Therefore taking for the function

expression VZ (ar), X (x, z) is CT (x, z), and

A (f T \LA \^i, . . .
, O/y.^

(x} the

. xxxvi. p. 38.
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where &amp;lt;I&amp;gt; (a;), . . . ,
4&amp;gt;p (x) denote dv*

&quot;fdt, ..., dv% */dt. Thus on the whole

-^l- n * *..

n n

where G is a quantity which, beside the fixed constants of the surface, depends
only on the place 7. Let us denote the expression

which clearly has no zeros or poles, by p (#;) ;
then we proceed to shew that

in fact G = Ap, (7), where A is a quantity depending only on the fixed

constants of the surface, so that we shall have the formula

v
( V) =

n n nr (xi, Xj} /i (7)
i&amp;lt;j

where
p

i

In this formula 7 only occurs in the factors

_

herein the factor JT (7) occurs once in the denominator of each of CT(^-, 7),

and p times as a denominator in
/j, (7) ;

thus this factor does not occur at all.

In determining the factors of M*, as a function of 7, it will therefore be suffi

cient to omit this factor. Thus the factor of ^ at the t-th period loop of the

first kind is enis (p~P~l) or e . At the t-th period loop of the second kind the

factor of (v
x z + %(l s

,
S ) e

1
* *

is e
- 2l

&quot;&amp;gt;f

&amp;gt;e+K.
)-&quot;*, and therefore the

factor of ^ is

e
-

iris,
- 2*i (v

y XP + v
n

&amp;gt; *4 ...... + f
71

&quot;- 1 Xp 1 + IT,. ,).

Consider now the expression

at the i-th period loop of the first kind, this function, regarded as depending

upon 7, has the factor e
;
at the i-ih period loop of the second kind it has

the factor
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but since

iti (Si + Ti
,
l s\+ ...... + Ti.ps y)

it follows that

is equal to

-
irisi

thus, changing 7 into x, we have proved that the function of x

has the same factors at the period loop as the function, of x, given by

w 0, #1) ...... (#, arp)//* (a;) ;

it is clear that these functions have the same zeros, and no poles.

Hence the formula set down is completely established*.

277. We pass now to the particular case of the formula of 272 which

arises when the fundamental Riemann surface is hyperelliptic, and associated

with the equation

if
= 4*

Then the places n1} ..., np^ are branch places. We suppose also that p + 1

of the places alt ...,ar are branch places, say the place for which x = dl , ...,

c M+1) and that
//. + 1 of the places xly ...,xr are branch places, say those

at which # = b1} ..., b^+1 . It is assumed that the branch places n1} ...,

WP_,, dl} ..., c^+i, b1} ..., 6^+1 are different from one another. We put
r (/j,+ l)

= v, then the determinant of the functions Ft (xj\ ( 272),

regarded as a function of asl ,
is a rational function with poles in nl} ...

, Wp_1}

flj, ..., a.v ,
d1} ..., c?M+1 and zero in ar2 , ..., , 6X , ..., 6M+1 . Provided v is not

less than
//,,

such a function is of the form

-ttl^-fo-Wp.^-^...^^^
(^-^.&quot;(afi-Wp-iX^-^ C^-^+iX^-ai)---(i-r)

where the degrees of
(a?,, !)_!_, (a?,, 1),_1+M are determined by the condition

that the function is not to become infinite when a^ is infinite. When v =
//,,

the terms (a^, l)^.^ are to be absent. When i&amp;gt; &amp;lt; //,,
the conditions assigned

do not determine the function
;
we shall suppose v 5 /A. The 2y 1 ratios

of the coefficients in the numerator are to be determined by the conditions

that the numerator vanishes in x2 , ...,# and in the places conjugatef

* See the references given in the note *, 274, and in particular Klein, Math. Annul, xxxvi.

p. 39.

t The place conjugate to (x, y) is (x, -y)
B- 28
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to !, ..., . Hence, save for a factor independent of x1} the determinant

of the functions F{ (xj) is given by

wherein
i/r (as)

= (x-n1)...(x- n____) (x-d^)...(x- d^) (x-b^...(x- 6M+1),

(a?)
=

y^l^r (x), and the determinant has 2v rows and columns ; denoting

this determinant by D^ +, the determinant of the functions Fi (xj) ( 272) is

therefore equal to

* 1 /(xi -b1)...(xi
-

*
i=i

(a?i
-o1)...(a?&amp;lt;-a,)V(a;i-n1)...(a!f-v5 V (

-
dj. ..(xt

-
-b

l.+l )

Hence, from 272, taking ^(x) = ^(x -n,) ...(x-n^), so that (a;, *) will

denote

we have

where C is independent of #_, ..., xv .

Now, if b, d be any two branch places, and a an assigned branch place,

and hence, if

r, 6)

b,a

where ft, ..., /Op ,
S1} ..., 8/ are integers, we have ( 175, Chap. X.)
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where A is independent of x. Thus the expression

(8Hn& a *r (x, d) /x-b
vr(x,b) V x-d

which clearly has no poles or zeros, is such that its factors at the period loops
are all + 1. The square of this function is therefore a constant, and the

expression itself is a constant.

Therefore if

M+l
di l.

&amp;lt;
f(&amp;lt;r&amp;lt;

4 a-i Tt , i + ...... + &amp;lt;rp T
i&amp;gt;p),

where o-,, ...,&amp;lt;rp are integers, it follows that the function

e -Ki&amp;lt;r (v
x

&quot;
a

&amp;gt; + ...... +t*M jj
M
jj^0t, &amp;lt;;) /Xj - bj

i= l j=l -57 (#i, bj)
V

fc (^

is independent of a^, ..., a?,,. Further

@ (u - \&amp;lt;r

-
\-rcr ; \s, \s} = Be *

[u; %(S-&amp;lt;T),I (s
- a- )]

by 175, Chap. X. Thus on the whole we have

eejji
; K - XW-

, , t- ^ a
&amp;lt;j f=ij=i

j&amp;lt;j

where C is independent of ^, ..., a?,. Hence we can infer that C is in fact

independent also of a, ,...,. For when the sets xlt ...,#, a lt ..., are

interchanged, ^^ is multiplied by (-)&quot;

2^-M = (_ I}
M

and&amp;gt; since CT (^ ^= - -sr (^ ), this is also the factor by which the whole right-hand side is

multiplied. The theta function on the left-hand side is also multiplied
by + 1. Thus the square of the ratio of the right-hand side to the theta
function on the left is unaltered by the interchange of the set xlt ..., xv with
the set

,, ..., . Thus C2
is independent of ^, ..., Xv and unaltered when

a?,, .... av are changed into a,, ...,. Hence C is an absolute constant.

It follows that the characteristic *(*
-

er), W - *\ and the theta
functions, are even or odd according as ^ is even or odd.

In the notation of 200, Chap. XL, the half-periods \^, are given by

hence, if the half-periods given by

be denoted by
^ft,

the half-periods associated with the characteristic
f(*-*)i $(s

- o- ) are congruent to expressions given by

282
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while
-fy,

which is of degree p + 1 + 2/i, is. equal to

(an-O ...(a?- n^) (x
- &0 ...(a?- 6M+1) (a;

- dj ... (a;
-
d^+1 );

by means of the formula ( 201, Chap. XI.)

the half-periods associated with the characteristic ^(s a), ^(s &amp;lt;r ) can be

reduced to be congruent to expressions denoted by

where elt ..., ep-2li+1 are given by

also, in taking all possible odd half-periods ng)S&amp;lt;,all possible sets of p 1

of the branch places will arise for the set nly ..., np^. Hence it follows that

the formula obtained includes as many results as there are ways of resolving

(x, l)ap+2 into two factors ^+1_2F , T/r^+i +2M&amp;gt;

f orders p + 1 2/A, p + 1 + 2/4,

and ( 201) that all possible half-integer characteristics arise, each associated

with such a resolution. We have in fact, corresponding to
fj,
= 0, 1, 2, ...,

E (^~ )
,
a number of resolutions given by

It has been shewn ( 273) that the expression ta (x, z) may be derived,

by proceeding to a limit, from the integral IIJt J.
Hence the formula that

has been obtained furnishes a definition of the theta function in terms

of the algebraic functions and their integrals, and has been considered from

this point of view by Klein, to whom it is due. After the investigation

given above it is sufficient to refer* the reader, for further development, to

Klein, Math. Annal. xxxn. (1888), p. 351, and to the papers there quoted.

Ex. i. Prove that the function 6 [u ; i (s
-

&amp;lt;r),
i (*

-
o- )] vanishes to the /*th order for

zero values of the arguments.

Ex. ii. In the notation of 200, Chap. XL, prove, from the result here obtained, that

each of the sums

r+2

Ci ,a a,, a
&amp;lt;r+4

c
it
a a,,a ,

4r+3
c
if
a

2 v*
,

v + 2 v l
,

v } + 2 v l

represents an odd half-period ;
here

c&amp;lt;

is any one of the places c,clt ... ,
cp ,

a is any one of

the places 15 ... ,
ap , a,-

is any one of the places a1} ... ,
ap ,

and r is an arbitrary integer

* See also Brill, Grelle, LXV. (1866), p. 273; and the paper of Bolza, American Journal, vol.

xvii., referred to 221, note, where Klein s formula is fundamental.

By means of the rule investigated on page 298, of the present volume, the characteristic

(s
-

ff), J (s
-

ff ) can be immediately calculated from the formula here (p. 436) given for it. Cf.,

also, Burkhardt, Math. Annal. xxxii., p. 426; Thompson, American Journal, xv. (1893), p. 91.
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whose least value is zero, and whose greatest value is given by the condition that i cannot
be greater than p+ 1. Prove also that each of the sums

4r+l 4r 4r4-2 4r-M

2 /
&quot;, S/*, **+*%**, v

a
*
a
+ l

1=1 i=l i=l t=l

represents an even half-period. For a more general result cf. the examples of 303 (Chap.

XVII.).

Ex. iii. By taking i/=p+ l,/x
=

0, and the places b, d so that ^Qit s,
=

iP&amp;gt;

d
) finally

putting nv , ...
,
np _ l , b, d for a^ ...

,
ap , aj, + 1 , obtain, from the formula, the result

(x, q) s-q P (x-xi

izr (., #;) zzr (2. Ov)i a;, z i , izr ., #; zzr 2. Ov . , ,
. .

where n replaces log j-2
K p L J, (^)= (^

- a) ... (x ), and the branch placesx
i
a

i TZ (X, tti) & (z, Xi)

a, a, , ... ,
ap are, as in 203, Chap. XI., such that the theta function in the numerator of

the left-hand side vanishes as a function of x at the places 1? ..., gp , conjugate to

x
,

. . .
,
xp ; and verify the result d priori. By the substitution

xi ,ai=e

this formula can be further simplified. Deduce the results

x.z x,* =1 e(^ &amp;gt;a -pa?
&quot;
a - ...... - tr^p

a

n - g

9 dx
where w= y-

r
&quot; ai

-|- ...... + v
x

&quot;

a
&quot;, Zi(u)= ^-\oge(u),

and
-^ ,... are as in 123, Chap. VII.

These results have already been given (Chap. X.).

278. It is immediately proved, by the formula ( 187)

_-

that the general expression of a factorial function given in 254 can be

written in the form

n [(^.-i + ^n, ^e
&quot;*

*^ n
1 L J i L

And, by the use of the expression TS (x, z), this may be put into the form

_2Tri ()l
. + H.)v

x y M
[ &quot;I&quot;

1 *
f ~|-\

t

f *
t [

*&amp;gt; *

J t [
CT (* ^

J
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Ex. i. In the hyperelliptic case associated with an equation of the form

y*
= (x,l)w + s,

if x denote the place conjugate to the place x, it follows from the formula of 273 that

in* 2

si (x, z}
= (x z)e

2
x,z,

unless x or z is a branch place.

Ex. ii. In the hyperelliptic case, if
,
&
15 ..., denote branch places, and

and the equation associated with the surface be y
z= f(x\ where f(x) = &amp;lt;(#) ty(x\ and if

we take places x, xv ,
...

,
xp , z,

z
lt ...

,
zp ,

such that

&amp;lt;*
+ ...... + ? *&amp;gt;=$*, %*&amp;gt;

+ ...... +
i&amp;gt;J&quot;*&quot;

S
tf*, (t=l,2,... f p),

then it is easily seen that the rational function having x,x^ ..., xp as zeros and Z,ZI} ...,ZP

as poles, can be put into the form [y
1

^ (x)+y(f&amp;gt; (* )] -^I (*) + &amp;lt; (*01 wb-ere
^&amp;gt; / are the

variables and s is the value of y
1

at the place z. Hence prove, by Abel s theorem, that

Ex. iii. Suppose now that a, a^ ..., p are the branch places used in chapter XL

( 200), so that

...... +u x&amp;gt;z

and suppose further that |Q,=(s+ rs
)&amp;gt;

is an even half-period such that

and

then deduce that

_

The results of examples i, ii, iii are given by Klein.

Ex. iv. Prove that, if z, f, c
x ,

. . .
,
cp be arbitrary places, and y v ,

. . .
, yp be such that

the places , yls ...
, yp are coresidual with the places z, c

t ,
...

,
cp ,

then

p
-&(x,z)w (f, z)

hence deduce, by means of the result given in Ex. iv., page 174, that

where a is an arbitrary place.

279. The theory of the present chapter may be considered from another

point of view. We have already seen, in chapter XII., that the theory of

rational functions and their integrals may be derived with a fundamental

surface consisting of a portion of a single plane bounded by circles, and the
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change of independent variables involved justified itself by suggesting an

important function, CT (f, 7). We explain now*, as briefly as possible, a more

general case, in which the singular points, c1} ..., Ck, of this chapter, are

brought into evidence.

Suppose that a function exists whereby the Riemann surface, dissected

as in 253, can be conformally represented upon the inside of a closed

curvilinear polygon, in the plane of f, whose sides are arcs of circles^; to the

four sides, (a;), (a/), (&;), (&/), of a period-pair-loop are to correspond four sides

of the polygon, to the two sides of a cut (7) are to correspond two sides of

the polygon ;
the polygon will therefore have 2 (2p -f k) sides.

Fig. 11.

Then it is easily seen that if C be the value of at the angular point C of

the polygon, which corresponds to one of the singular points c1} ..., Ck on the

Riemann surface, and D be the value of at the other intersection]: of the

circular arcs which contain the sides of the polygon meeting in C, we can

pass from one of these sides to the other by a substitution of the form

where ITTJI is the angle G of the polygon, (I being supposed an integer other
than zero) ;

as we pass from a point of one of these sides to the corresponding
point of the other side, the argument of the function [(- C)/(- D)]* increases

by 2?r
;
if therefore t be the infinitesimal at the corresponding singular point on

the Riemann surface, we may write, for small values of t, (f- C)/(-D) = tf
,

i
i_

so that - C= t (C - D) (1
-

*)-!. Further if be corresponding points

*
Klein, Math. Annal. xxi. (1883), &quot;Neue Beitrage zur Kiemann schen Functionentheorie &quot;

;

Ritter, Math. Annal. XLI. (1893), p. 4; Ritter, Math. Annal. XLIV. (1894), p. 342.
t See Forsyth, Theory of Functions, chapter XXII., Poincare, Acta Math, vol s. i. v. We may

suppose that the polygon is such as gives rise to single-valued automorphic functions.
J Supposed to be outside the curvilinear polygon.
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011 the sides of the polygon which meet in C, we have for small values of t,

&quot; &quot;* = *
&quot;

*

d = (C
_ D) t

l

dt, d? = (C-D) t e V dt, or
V V

I

ultimately, the factor omitted being a power series in t
l or ( C)/( D),

whose first term is unity.

We shall suppose now that the numbers Xx , ..., \k of this chapter are

given by X^ = mt/li, where mi, li are positive integers. Then a function

whose behaviour near a is that of an expression of the form t~*
&amp;lt;/&amp;gt;,

will, near

Gi, behave like ( Ci)
m

i&amp;lt;f&amp;gt;,

that is, will vanish a certain integral number of

times. Further, for a purpose to be afterwards explained, we shall adjoin to

the k singular points cl5 . .., Ck, m others, ely ..., em ,
for each of which the

numbers X are the same and equal to e, so that, if t be the infinitesimal

at any one of the places el} ..., em ,
the factorial functions considered behave

like &amp;lt; at this place. These additional singular points, like the old, are

supposed to be taken out from the surface by means of cuts (ej), . . .
, (em) ;

and it is supposed that the corresponding curves in the curvilinear polygon
of the -plane are also cuts passing to the interior of the polygon, as in the

figure, so that at the point E^ of the -plane which corresponds to the place el

of the Riemann surface, is of the form ^ = E^-\-
t&amp;lt;j&amp;gt;,

where
&amp;lt;f&amp;gt;

is finite and not

zero for small values of t, t being the infinitesimal at el ,

Factorial functions having these new singular points as well as the

original singular points will be denoted by a bar placed over the top.

Let dv denote the differential of an ordinary Riemann integral of the

first kind which has p I zeros of the second order, at the places

MI, ..., %_j. Consider the function

where a, c are arbitrary places, and p is determined so that Z2 is not

infinite at the place c, or

this function is nowhere infinite on the Riemann surface
;

it vanishes to the

first order only at = oo
;
for each of the cuts (e^, . . .

, (em) it has a factor

nip 1

em
;

at a singular point c; it is expressible as a power series in t
1

,
or

(? ty/(-D), whose first term is unity. The values of Z2 at the two sides

of a period loop are such that Z2 /Z2
= Vc^/c^ ; but since these two sides

correspond, on the -plane, to arcs of circles which can be transformed into

one another by a substitution of the form = (a + /3)/(7 + 8), wherein we

suppose aS - fiy
=

1, it follows that Z2 /Z2
= y^+8. If then we also introduce
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the function Zlt
= Z.

2&amp;gt;

we have for the two sides of a period loop, equations of

the form
Za
= j

Consider now a function

where K is a factorial function with the k + m singular points, and R=2me/p.
i

At a singular point C;, or (7{ ,
its behaviour is that of a power series in r or

(_(?)/(_), multiplied by (?-Ci)
m
i; at a singular point a, or Eit its

behaviour is that of a power series in the infinitesimal t multiplied by

or unity ;
at a period loop it is multiplied by a factor of the form p, (y%+ &)~

R
,

where p, is the factor of K. The function has therefore the properties of

functions expressible by series of the form*

wherein the notation is, that ft
83

(&t +&)/(?&amp;lt; +$0 is one f the finite

number of substitutions whereby the sides of the curvilinear polygon are

related in pairs and R(i) is a rational function of &. The equation

connecting the values / , /, of the function /, at the two sides of a period

loop, may be put into the form

and we may regard Z.2 f, or K, as a homogeneous form in the variables

Zlt Z2 , of dimension R.

The difference between the number of zeros and poles of such a factorial

function K is ( 254)

adding the proper corrections for the zeros of the automorphic form K at

the angular points Gl , ..., Ck (Forsyth, Theory of Functions, p. 645) we have,

for the excess of the number of zeros of the automorphic form over the

number of poles

2X + 2 = - 2 - 2 + k + m + 1 - 2 + m + 1

*

where q = k + m + 1, 2 - = 2 7- + m + 1.

/^ ti

We may identify this result with a known formula for automorphic
*
Forsyth, Theory of Functions, p. 642. The quantity R is, in Forsyth, taken equal to - 2m.
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functions Forsyth, Theory of Functions, p. 648
;

if in the formula

m ( n 1 2 -
)

,
there given, we substitute, by the formula of p. 608, 293,

V f^/

n = 2JV 1 + q, we obtain m (ZN 2 + q 2 -
]

;
for each of the angular

V A1 / J

points G!, ..., Ck is a cycle by itself, each of the points E1} ..., Em is a cycle

by itself, and the remaining angular points together constitute one cycle

(cf. Forsyth, p. 596) ;
the sum of the angles at the first k cycles is 2?rS T- ,

k
the sum of the angles at the second m cycles is 2?rm, the sum of the angles
at the other cycle is 2?r*.

There is a way in which the adjoint system of singular points elt ..., em

may be eliminated from consideration. Imagine a continuously varying

quantity, xZ) which is zero to the first order at et , ..., em and is never infinite,

and put x
l
= xxz ;

the expression Kx2

~e

may then be regarded as a homo

geneous form in xlt #2 on the Riemann surface, without singular points at

el , ..., em \
and instead of the function Zz we may introduce the form

_j&amp;gt;_

2
= Z^x2

Zm
,
which is then without factor for the cuts (ej), . . .

, (em), or, as we

may say, is unbranched at the places e1; ..., em ;
and may also put ^= ^2 .

Thus, (i), a factorial function, considered on the -plane, is a homogeneous

automorphic form, (ii), introducing homogeneous variables on the Riemann

surface, the consideration of factorial functions may be replaced by the con

sideration of homogeneous factorial forms.

Ex. Shew that the form

1 f-fX, a 1 /r,x, a . r,x, a \ , x x, a z, c- n (n + +n j+sXj.-v. v.
n, \ // \ z, c m\ elt c em , c , ,

t
-7 t j

P(x,z)=x2 f(z)e *J
,

where a, c are arbitrary places and X
i y

are constants, is unbranched at e^ ... ,
em ,

that it

has no poles, and vanishes only at the place z. Here f(z) is to be chosen so that, when x

approaches 2, the ratio of P (x, z) to the infinitesimal at z is unity. At the t-th period

loop of the second kind the function has a factor ( )* where

If n i

^7r*
/ / \ &quot;ifl i C,, C . . 6m, CN . _ N z, cM=2mr+(qt-q)-(vt

1 + +^ ) + ^_X i&amp;gt;y

v rit t ,

q 2 q denoting the number of circuits, made in passing from one side of the period loop to

the other, of x2 about #2=0 other than those for which x encloses places e
lt ...

,
em ,

and r

denoting the number of circuits t of x about z.

* The formula is given by Ritter, Math. Annal. XLIV. p. 360 (at the top), the quantity there

denoted by q being here -
\ p. We do not enter into the conditions that the automorphic form

be single-valued.

t The reader will compare the formula given by Ritter, Math. Annal. XLIV. p. 291. It may be

desirable to call attention to the fact that the notation &amp;lt;r + 1, &amp;lt;r + 1, as here used, does not coincide

with that used by Ritter. The quantities denoted by him by a, a1

may, in a sense, be said to

correspond respectively to those denoted here, for the factorial system including the singular

points elt ..., em , by &amp;lt;r + l and w .
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CHAPTER XV.

RELATIONS CONNECTING PRODUCTS OF THETA FUNCTIONS INTRODUCTORY.

280. As preparatory to the general theory of multiply-periodic functions

of several variables, and on account of the intrinsic interest of the subject, the

study of the algebraic relations connecting the theta functions is of great

importance. The multiplicity and the complexity of these relations render

any adequate account of them a matter of difficulty ;
in this volume the plan

adopted is as follows : In the present chapter are given some preliminary

general results frequently used in what follows, with some examples of their

application. The following Chapter (XVI.) gives an account of a general

method of obtaining theta relations by actual multiplication of the infinite

series. In Chapter XVII. a remarkable theory of groups of half-integer

characteristics, elaborated by Frobenius, is explained, with some of the theta

relations that result
;
from these the reader will perceive that the theory is of

great generality and capable of enormous development. References to the

literature, which deals mostly with the case of half-integer characteristics, are

given at the beginning of Chapter XVII.

281. Let
&amp;lt;j&amp;gt;(u

l} ...,Up) be a single-valued function of p independent
variables wlf ...,vp ,

such that, if a1} ...,ap be a set of finite values for

MJ, ..., up respectively, the value of
&amp;lt;j&amp;gt; (u^, ..., up), for any set of finite values

of Wj, ...,up ,
is expressible by a converging series of ascending integral

positive powers of u^
- a1} u^ a2 ,

. . .
,
up ap . Such a function is an integral

analytical function. Suppose further that
&amp;lt;f)(u1} ..., up) has for each of its

arguments, independently of the others, the period unity, so that if m be any

integer, we have, for a = 1, 2, . ..
, p, the equation

Then* the function
&amp;lt;(?*!, ..., up) can be expressed by an infinite series of

the form

S ...... 2 A
ni .....

W,= -oo wp=-oo

* For the nomenclature and another proof of the theorem, see Weierstrass, Abhandlungen
aiis dcr Functionenlehre (Berlin, 1886), p. 159, etc.
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wherein n1} ...,np are integers, each taking, independently of the others, all

positive and negative values, and A
Hj&amp;gt; ..., np is independent of u1} ..., up .

Let the variables ul9 . . .
,
up be represented, in the ordinary way, each by

the real points of an infinite plane. Put xl
= e2niUt

,
. . .

,
xp = e2

&quot;?

;
then to

the finite part of the wa-plane (a=l, &quot;-,p) corresponds the portion of an

avplane lying between a circle Fa of indefinitely great but finite radius Ra ,

whose centre is at xa = 0, and a circle ja of indefinitely small but not zero

radius ra ,
whose centre is at xa = 0. The annulus between these circles may

be denoted by Ta . Let aa be a value for xa represented by a point in the

annulus Ta ;
describe a circle (A a) with centre at aa ,

which does not cut the

circle ^a ;
then for values of aca represented by points in the annulus Ta which

are within the circle (^o), u* may be represented by a series of integral

positive powers of xa aa ;
and by the ordinary method of continuation, the

values of ua for all points within the annulus Ta may be successively re

presented by such series; the most general value of wa ,
for any value of xa , is

of the form xa + m, where m is an integer. Thus, in virtue of the definition,

(f)(u1 , ...,up) is a single-valued, and analytical, function of the variables

xl} ...,xp ,
which is finite and continuous for values represented by points

within the annuli Tl ,...,Tp and upon the boundaries of these. So considered,

denote it by -\Jr (^ ,
. . .

,
xp ).

Take now the integral

1

wherein xl ,...,xp are definite values such as are represented by points

respectively within the annuli T1} ..., Tp ;
let its value be formed in two

ways;

(i) let the variable ta be taken counter-clockwise round the circum

ference Fa and clockwise round the circumference 7a (a
=

l, ...,j9); when ta is

upon the circumference F put

JL -1. Xd *a. x* ft

&quot;1 ^
&quot;&quot;

~~Q
i

*
^ -j-i

&amp;gt;

ta Xa Va. ta ta -~
&quot;a

when ta is upon the circumference 7a put

4+..-) = -
.

T 2^ l~ &quot;I . .*tt
+l

ta.-X,. \Xa Xa X. fc
a
= ~ C

^ft

then the integral is equal to

where dZa represents an element dta taken counter-clockwise along the

circumference F
,
and dza represents an element dta taken clockwise along
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the circumference ya ;
since the component series are uniformly and absolutely

convergent, this is the same as
Mi ftp

i oo oo r r r T*.. T1
2 ... 2

//..,/*( .W^Sr^*...^^.iiTn^r 1= -oo np =-&amp;lt;x&amp;gt;JJ J
ti ...tp

where for 4 the course of integration is a single complete circuit coincident

with F when na is positive or zero, and a single complete circuit coincident

with 7 when na is negative, the directions in both cases being counter

clockwise
;
thus we obtain, as the value of the integral,

00 002-^ A &quot;I
nP

2* A.
n,, ... ,

np &\ . . . Xp ,

n\= o
MJ&amp;gt;=

oo

where

and the course of integration for ta may be taken to be any circumference

concentric with Fa and ya ,
not lying outside the region enclosed by them

;

(ii) let the variable ta be taken round a small circle, of radius pa ,

whose centre is at the point representing xa (a = 1, . . .
, w) ; putting

we obtain, as the value of the integral, -v/r (as1} ..., xp).

The values of the integral obtained in these two ways are equal*; thus

we have
00 00

&amp;lt;p (Ui, . . .
, Up)

= _* ... &amp;lt;

&quot;-!, ..., nlt
&

w,= oo rip= cc

where
/I /&quot;I

^!
MI n = ... g-2( 1 1 +...+ pMp )

^(-Wi) ; i^)dtt, ... dup .

Jo Jo

By the nature of the proof this series is absolutely, and for all finite

values of ult . . .
,
up , uniformly convergent. If ua = va + iw* (a.

= 1, . . .
, p), and

M be an upper limit to the value of the modulus of
(f&amp;gt;

(MJ ,
. . .

,
up) for assigned

finite upper limits of wl} ..., wp , given suppose by |

wa
\ ^&amp;gt;

Wa ,
we have

where Na =

Ex. i. Prove that

r
OW i nas &quot;

Ex. ii. In the notation of 174, Chap. X.,

*
Cf., for instance, Forsyth, Theory of Functions, p. 47. The reader may also find it of

interest to compare Kronecker, Vorlesungen iiber Integrate (Leipzig, 1894), p. 177, and

Pringsheim, Math. Annal. XLVII. (1896), p. 121, ff.
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282. Further it is useful to remark that the series obtained in 281 is

necessarily unique ;
in other words there can exist no relation of the form

00 00V V A ni Mp f\
2, ... 2, A

Hi&amp;gt; ^ ttlp Xi ...Xp
= 0,

!= 00 Wp=-00

valid for all values of xlt ..., xp which are given, in the notation of 281, by
^a&amp;lt;|^ |&amp;lt;

-Ra ,
unless each of A

ni&amp;lt;
___

&amp;gt;np

be zero. For multiplying this equation

by #1 ... xp dx1 ... dxp , and integrating in regard to xa round a circle,

centre at xa = 0, of radius lying between ra and Ra , (a= 1, ..., p), we obtain

An important corollary can be deduced. We have remarked ( 175,

Chap. X.) on the existence of 2^ theta functions with half-integer character

istics
;

it is obvious now that these functions are not connected by any linear

equation in which the coefficients are independent of the arguments. For an

equation
22P oo oo

2 C
gg kg 2 ... S e^(n +i*&amp;gt;+&(-H*)*+ttrgr(n+i*,) = 0,

S = l i
= Wp=-oo

where the notation is as in 174, Chap. X., and ks , gs denote rows of p
quantities each either or 1, can be put into the form

i .....

NI = - oo
Np=-&amp;lt;x&amp;gt;

where 27n 71 , ..., ZiriUp are the quantities denoted by hu, A^ ..... Np is

given by
A Nl , .... Np

= 2 C
ffii

!)&amp;gt;

where the summation includes 2^ terms, and N1} ..., Np take the values

arising, by the various values of n and ks ,
for the quantities 2n + ks ;

it is clear

that the aggregate of the values taken by 2n + ks when n denotes a row of p
unrestricted integers, and ks a row of quantities each restricted to be either

or 1, is that of a row of unrestricted integers.

Hence by the result obtained above it follows that -Ajr,, .... jyp
= 0, for all

values of n and ks . Therefore, if A, denote a row of arbitrarily chosen

quantities, each either or 1, we have

=
;

adding the 2^ equations of this form in which the elements of n are each

either or 1, the value of ks being the same for all, we have

where n,l , ..., /JLP are the elements of the row letter
/JL given by fj.

= gs + \;

the product (1 + ein^} ... (1 +eiwfj
-&quot;)

is zero unless all of /^, ..., yuy are even,
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that is, unless every element of gg is equal to the corresponding element of X.

Hence we infer that C^ k,
=

;
and therefore, as \ is arbitrary, that all the 2 2̂

coefficients C
(Ji t ^ are zero.

Similarly the r2?
possible theta functions whose characteristics are rth

parts of unity are linearly independent.

283. Another* proof that the 2* theta functions with half-integer

characteristics are linearly independent may conveniently be given here : we

have ( 190), if m and q be integral,

and therefore if A; be integral and Q = q + k
, Q = q + k,

Therefore a relation

8=1

leads to

2 CU &amp;lt;&amp;lt;2*

-
&amp;lt;W * (u fa) = 0,

8=1

where Qg
= qs + k, Qg

=
qs + k

;
in this equation let (m, m ) take in turn all

the 2^ possible values in which each element of m and m is either or 1
;

then as

^gwUmQg -m Q,)
t

_
[]_ + gfilQ,

),-]
... [1 + e (Q

)p] [1 -f g-(Q)i] ... [1 + e

is zero unless every one of the elements (Q/X, ..., (Q)^ is an even integer,

that is, unless qs
= k, qg

= k
,
we have

2 .&amp;lt;*
-* ^ (M ; fa) = 2*pCk &amp;lt;$ (u P) =

;

TO 8= 1

thus, for any arbitrary characteristic (k, k
), C^ = 0. Thus all the coefficients

in the assumed relation are zero.

284. We suppose now that we have four matrices
o&amp;gt;,

&&amp;gt;

, 77, 77 ,
each ofp

rows and columns, which satisfy the conditions, (i) that the determinant of o&amp;gt;

is not zero, (ii) that the matrix a)&quot;
1^ is symmetrical, (iii) that, for real values

of !&!,..., np ,
the quadratic form co^ca n2 has its imaginary part positive^,

(iv) that the matrix 7]w~
l
is symmetrical, (v) that 77

= v)w~
l

&amp;lt;o ^ 7ria)~l

;
then

the relations (B) of 140, Chap. VII., are satisfied
;
we put a =

^rjco&quot;

1
,

h = %iri(D~~
l

,
b = Triarl

a&amp;gt;,
so that (cf. Chap. X., 190)

77
= 2aeo, t]

=
2aa&amp;gt; h, hat = \tn, hco = ^b ;

*
Frobenius, Crelle, LXXXIX. (1880), p. 200.

t Which requires that the imaginary part of the matrix &amp;lt;a~

lu has not a vanishing de

terminant.
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as in 190 we use the abbreviation

\m (u)
= Hm (u + Hm)

where
Hm = 2r)m + 2r) m ,

Hm = 2&&amp;gt;m + 2&&amp;gt; ?n
/

.

We have shewn ( 190) that a theta function ^ (u, q) satisfies the

equation
^ (u + Slm ,q) = e*mW+*ri(/-W ^ ( u&amp;gt; g,),

m and m each denoting a row of integers; it follows therefore that, when

m, m each denotes a row of integers, the product of r theta functions,

n (u) =* (u, q() * (u, ?
(2

&amp;gt;)

...... *t(u, q^l

satisfies the equation

n (U + nm)
= e *m (W)+2&amp;lt;mQ -m Q) n (u),

wherein Qit Q/ are, for i=l, 2, ..., p, the sums of the corresponding com

ponents of the characteristics denoted by q
{l)

, ..., q
(r)

.

Conversely*, Q, Q denoting any assigned rows of p real rational

quantities, we proceed to obtain the most general form of single-valued,

integral, and analytical function, II (u), which, for all integral values of

m and m, satisfies the equation just set down. We suppose r to be an

integer, which we afterwards take positive. Under the assigned conditions

for the matrices
o&amp;gt;,

&&amp;gt;

, 77, ?/, such a function will be called a theta function

of order r, with the associated constants 2, 2&&amp;gt;
, 2?;, 2V, and the characteristic

(Q, Q l

Denoting the function 3(u; Q), of 189, either by 3 (it; 2o&amp;gt;,
2

, fy, 2i/; &amp;lt;?, (?) or

3(u; a,b,h; Q, Q ),
the function 3(u; 2a&amp;gt;/r,

2w
, 2rj, 2n/ ; Q, Q /r) is a theta function of

the first order with the associated constants
2o&amp;gt;/r,

2o&amp;gt;
, 2?;, 2rr) ,

and (Q, Q /r) for charac

teristic
; increasing u by 2&amp;lt;am + 2a&amp;gt; m

,
where m, m are integral, the function is multiplied

by a factor which characterises it also as a theta function of order r, with the associated

constants 2, 2&amp;lt;o
, 2rj, ty and ($, &amp;lt;7)

for characteristic. We have, also,

B(u; ra, rb, rh) = $(u; ,
2

, 2^, irVj-^fnt;
2a, 2&amp;gt;-o&amp;gt; ;

-^, 2^
J
= sfra; &quot;, A,

rfcj,

where the omitted characteristic is the same for each.

Let ki be the least positive integer such that kiQJ is an integer, =/j, say ;

denote the matrix of p rows and columns, of which every element is zero

except those in the diagonal, which, in order, are kl} k
z&amp;gt;

.... kp , by k; the

inverse matrix Ar1 is obtained from this by replacing k^ ... respectively by

*
Hermite, Compt. Rend. t. XL. (1855), and a letter from Brioschi to Hermite, ibid. t. XLVII.

Schottky, Abriss einer Theorie der AbeVschen Functionen von drei Variabeln (Leipzig, 1880), p. 5.

The investigation of 284 is analogous to that of Clebsch and Gordan, Abel. Funct., pp. 190, ff.

The investigation of 285 is analogous to that given by Schottky. Of. KSnigsberger, Crelle, LXIV.

(1865), p. 28.
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l/&i ,
...

;
iu place of the arguments u introduce arguments v determined by

the p equations
hiil u1 + +h

i&amp;gt;p

up = ki vi , (i
= 1

,
. . .

, p),

which we write hu = kv; then, by the equations hw = ^TTI, ha) = 6, it follows

that the increments of the arguments v when the arguments u are increased

by the quantities constituting the p rows of a period ftw ,
are given by the p

rows of Um defined by
kUm = Trim + bmf

;

we shall denote the right-hand side of this equation by Tm ;
thus

Now we have

a (u + nm)
2 auz =

and, since* the matrix a is symmetrical, and Hm = 2aflm - 2hm
,

this is

equal to

2atlmu + alm = 2aHm (u + flm)
= (Hm + 2hm ) (u

and therefore equal to

\n (u) + Trimm + 2hum + hlmm
or

^m (u) + Trimm + 2kvm + Tmm ;

thus, by the definition equation for the function II (u), we have

e n (u + n,n)
= Q rau n (ii) .

therefore, if Q (v) denote e~rau
* U (u),

G (11 -4- JT \ f) I w\ ar[Trimm +W \v -\- um) \j \u) e L

now let m = 0, and m = ks, where s denotes a row of integers s1} . . .
,
sp ;

then

mQ = ksQ =&
1 s1 Q/+ + kpspQp =skQ ,

=
sf, is also a row of integers;

and Um = Trik~lm + k~*bm = TTIS
;
thus we have

Q (v + Tris)
= Q (v),

or, what is the same thing, the function Q(v) is periodic for each of the

arguments vlt ...,, separately, the period being TTI; it follows then ( 281)
that the function is expressible as an infinite series of terms of the form
tfn

1 ,n2 ,..., p e2(n l 1+ &quot;

~Hvp)
&amp;gt;

where nlt ..., np are summation letters, each of

which, independently of the others, takes all integral values from - x to

+ 00, and the coefficients (?, np are independent of vlt ..., vn . This we
denote by putting

Q(v) = e-rau*n(u) = 2Cne\
To this relation, for the purpose of obtaining the values of the coefficients

*
By a fundamental matrix equation, if M be any matrix of p rows and columns, and

,
7- be

row letters of p elements, n u v =
fi.
v u.

B - 29
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Cn ,
we apply the equation, obtained above, which expresses the ratio to

Q (v) of Q (v + Um) or Q (v + k~lTm) ;
thence we have

26

in this equation, corresponding to a term of the left-hand side given by the

summation letter n, consider the term of the right-hand side for which the

summation letter s is such that

Si
= n{ + rkinii, (i

=
1, 2, . . . , p) ;

thus s = n + rkm
,
and 2vt Si

= 2^w; -I- 2rkiVtmi ,
or 2vs = 2wn + 2rkvm

f

;
hence

we obtain

therefore, equating coefficients of products of the same powers of the

quantities e2 &quot;

1

,
. . .

, e?p, we have

n _ n 0-&amp;gt;k-

lYmn+r(irimm +Ymm )zni(m&amp;lt;Xm Q)
^n+rkm ^n &

&amp;gt;

and this equation holds for all values of the integers denoted by n, m, m.

By taking the particular case of this equation in which the integers m
are all zero we infer that the quantity

. k-irrmn mQ ,

=
. k~l

(Trim) n mQ ,

= S ms ( r ns Q, ]
TTl Til s= l \KS /

must be an integer for all integral values of the numbers rag and ns ;
therefore

the only values of the integers n which occur are those for which the

numbers (ng -k8Qs )/ks are integers; thus, by the definition of ks ,
we may put

n =f+ kN, N denoting a row of integers, and/= kQ .

With this value we have

k~lftmn k~l

(Trim) n = k~l

(bm
f

) n = k~l n (bin }
= k~ l n . bin

= (&-/+ N) . bm = (Q + N) . bm = bm (Q + N) ;

hence, as mQ = k~lmn mN, the equation connecting Cn and Cn+rkm &amp;gt; becomes

g

e27rtVmm being equal to unity because r is an integer, and bm Q bQm = bQ m ;

therefore

--Hm r-fA
T

)
2 ~ 1&^2 ov ,

e * Cf+k(m .

r+N} = e * Gf+kN . e^ n
,

TQ being mQ + bQ ,
or
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thus, if the right-hand side of this equation be denoted by DN ,
we have, for

every integral value of m, DN+rm&amp;gt;

= DN ;
therefore every quantity D is equal

to a quantity D for which the suffix is a row of positive integers (which may
be zero) each less than the numerical value of the integer r. If then p be

the numerical value of r, the series breaks up into a sum of pP series; let J9M

be the coefficient, in one of these series, in which the integers p are less than

p ;
then the values of the integers N occurring in this series are given by

JV&quot;
=

fj,
+ rM, M being a row of integers, which, as appears from the work,

may be any between oo and oo
;
and the general term of Q (v) is

for k.(Q + N)v = kv(Q + N)=kv(Q + N) = hu (Q + N) ;
thus the general

term is

now, as Tg = TriQ + bQ ,
and b is a symmetrical matrix, the quantity

is immediately seen to be equal to

rb M + thi?
1

+ 2&amp;lt;3 r r

therefore the general term of n (u), or erau
~

Q (v), with the coefficient DM ,
is

e++x ,
where

= rait + Zrhu (j\f + ?--} + rb(M+ ^Y + 2-rriQ (M +
\ r I \ r J V T

V M M

and this is the general term of the function

Q + n

where ^ denotes a theta function differing only from that before represented

( 189, Chap. X.) by ^, in the change of the matrices a, b, h respectively into

ra, rb, rh
;
the condition for the convergence of the series ^ requires that r

be positive ;
thus p

= r
; recalling the formulae

we see, as already remarked on p. 448, that, instead of

w, &&amp;gt;
, 77, ij ,

292
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the quantities to be associated with the function ^ are

6)-
,
a

, 97, rrj ,

with this notation then we may write, as the necessary form of the function

it(X

n (u) = 2tf * (u Q, QP]~
\ r )

wherein K^, = D^e
r r is an unspecified constant coefficient, ft denotes

a row of p integers each less than the positive integer r, and the summation

extends to the rp terms that arise by giving to
yu,

all its possible values.

From this investigation an important corollary can be drawn
;

if a single-

valued integral analytical function satisfying the definition equation of the

function II (M) (p. 448), in which r is a positive integer and the quantities

Q, Q are rational real quantities, be called a theta function of the rth order

with characteristic (Q, Q ),
then* any rp + l theta functions of the rth order,

having the same associated quantities 2o&amp;gt;,
2&&amp;gt;

, 2rj, 2rj and the same charac

teristic, or characteristics differing from one another by integers, are connected

by a linear equation or by more than one linear equation, wherein the

coefficients are independent of the arguments u^, ..., up ; and therefore any

of the functions can be expressed linearly by means of the other rp functions,

provided these latter are not themselves linearly connected.

For the determining equation satisfied by II (u) is still satisfied if, in

place of the characteristic (Q, Q ),
we put (Q + N, Q + N ),

N and N each

denoting a row ofp integers; and if

p + N = v (mod. r), say p + N = v + rL
,

we have ( 190, Chap. X.)

and therefore

where Hv
=K^nlN~^

;
and the aggregate of the rP values of - is the

CV -i.

same as that of the values of .

r

Thus any rp + 1 theta functions of the rth order, with the same charac

teristic, or characteristics differing only by integers, and associated with the

* The theorem is attributed to Hermite : cf. Compt. Rendus, t. XL. (1855), p. 428.
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same quantities 2&amp;lt;w,
2o&amp;gt;

, 2??, 2tj ,
are all expressible as linear functions of

the same r# quantities ^ (
u

; Q,
-

)
with coefficients independent of

\ r I

u1} ..., up . Hence the theorem follows as enunciated.

Ex. i. Prove that the r&quot; functions 3 (u
; Q, ^-^-\ are linearly independent ( 282).

Ex. ii. The function $ (u+ a ; Q) $ (u-a Q) is a theta function of order 2 with

(2Q, 2&amp;lt;7)
as characteristic. Hence, if 2P+1 values for the argument a be taken, the

resulting functions are connected by a linear relation.

For example, when p= l, we have the equation

o-
2
(a) a- (u -b)&amp;lt;r(u+ b)- a* (b) or (u

-
a) &amp;lt;r (u + a)= a3 (u) . &amp;lt;r (a-b)tr (a+ b).

Ex. iii. The function 9 (ru, Q) is a theta function of order r2 with (rQ, r(?) as
characteristic. Prove that if denote a theta function with the associated constants

w
&amp;gt;

r2&)
&amp;gt; ^ / m place of

a), w , T), T) respectively, then we have the equations

where the summation letters
/*, j/ are row letters of p elements all less than r, and each

summation contains f? terms.

Ex. iv. The product of k theta functions, with different characteristics,

is a theta function of order k for which the quantities

2
Lr=
2 $ r)-

2r/ 2 wM, 2 ^ (
r

&amp;gt; + 2^ 2
r=l r=l

enter as characteristic. Thus a simple case is when uW + . .. + uW = 0.

For p= l a linear equation connects the five functions
4 4 4n a(u+ut), n ir (v+|+4X u r(+t+7, n

!=1 =

Ex. v. Any (p+ 2) theta functions of order r, for which the characteristic and the
associated constants w

,
o&amp;gt;

, ,, ^ are the same, are connected by an equation of the form
P=0, where P is an integral homogeneous polynomial in the theta functions. For the
number of terms in such a polynomial, of degree N, is greater than (Nrf, when N is taken
great enough. That such an equation does not generally hold for (p+ l) theta functions

may be proved by the consideration of particular cases.

285. The following, though partly based on the investigation already
given, affords an instructive view of the theorem of 284.

Slightly modifying a notation previously used, we define a quantity,
depending on the fundamental matrices

&amp;lt;a,
&&amp;gt;

, rj, r} , by the equation
X (u ; P, P) = HP ( U + $n p)

- -n-iPP

= (2r)P + 27/P ) (U + 0)P + 0) P )
- TTiPP,
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where P, P each denotes a row ofp arbitrary quantities. The corresponding

quantity arising when, in place of
&&amp;gt;, &/, 77, if we take other matrices &amp;lt;o

(1)
,

w w, 77
(1)

, ?/
(1) may be denoted by X (1)

(u; P, P ).
With this notation, and in

case

are respectively
,-

,
eo

, 77 , rrj ,

r

where r is an arbitrary positive integer, we have the following identity

r 2 &amp;lt; *r /i
r\\u-\-- s

;
Jv

,
m

=
X&amp;lt; [M + n^ ; A;, 0] + X 1 *

[u ; m, m ]
- X*1

[M ; s, 0]
-

where s, N, m, m, k each denotes a row of p arbitrary quantities subject to

the relation

s + rN = m+k;

this the reader can easily verify ;
it is a corollary from the result of Ex. ii.,

190.

Let the abbreviation R (u ; /) be denned by the equation

R (u ; /) = SeT
2* (

+v) - 2 &quot;if r n (u + 2 -V
fc V T

&amp;gt;

^ -\(1)
[tt;/(-, 0]-2iri/- ,-r / . M= Ze f II M + 2&) -

,

V r;

wherein A; denotes a row of p positive integers each less than r, and the

summation extends to all the rP values of k thus arising, / is a row of p

arbitrary quantities, and II (u) denotes any theta function of order r.

Consider now the value of R (u + fli ; /) ; by definition we have

n rt* + 2 + n ) =n

therefore, if m + k = s (mod. r), say m + k = s + rN, we have, by the defin

ition equation ( 284) satisfied by II (M),

where (Q, Q ) is the characteristic of II (u), and hence

R(u+ n|l ; /) = 2e*II (M+ 2 ft&amp;gt;&amp;lt;

1

&amp;gt;s),

in which
.*
r
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by the identity quoted at the beginning of this Article, i/r
can also be put

into the form

i/r
=

\a&amp;gt; [u ; ra, m ]
-

X&quot;&amp;gt; [u ; s, 0]
- Zirim k - Zirif- + Z-rri (NQ

1 -m Q),

= X (1)

[u ; Tii, m ]
-

V&quot; [it ; s, 0]
- 2-jrim k - 2-irim Q + 2-iriN(Q -/)

&quot; s

in the definition equation for II (u), the letters m, m denote integers ;
and

k has been taken to denote integers ;
if further f be chosen so that Q f is

a row of integers, we have, since, by definition, N denotes a row of integers,

_(D A (1)
[M; m, m ] +2iri(mf-m Q) -\(1)

(u ; s, 0) -Zirifi ,_,
12 (M + ftjf ; /) = e \ r 2e r II (u + 2&amp;lt;w

(1
&amp;gt;

s)

= e
; m, m ]+2iri ^w ~-m Q\

&amp;gt; R (u f).

Hence R(u; f) satisfies a determining equation of precisely the same
form as that satisfied by II (u), the only change being in the substitution of

,
w

, 77, rrj respectively for
&amp;lt;w,

&amp;lt;y

, 77, 77 ;
so* considered R(u; f) is a theta

function of the first order with (Q,
-

J
as characteristic; putting, in ac

cordance with the definition of f above, f= Q + fj,,
where p is a row of p

integers, we therefore have, by 284,

R (u;?+)- KQ^ * (u
; Q,

Q^} ,

= Kq+. * (ru

*
, h, rb

; *?} ,

\ r / \ r Q /

(p. 448) where Kq +lli
is a quantity independent of u, and ^ is the same theta

function as that previously so denoted ( 284), having, in place of the usual

matrices a, 6, h, respectively ra, rb, rh.

Remarking now that the series

wherein p denotes a row of p integers (including zero), each less than r, and
the summation extends to all the rp terms thus arising, is equal to r? when
the p integers denoted by k are all zero, and is otherwise zero, we infer that

the sum

1
.

which, by the definition of R (u, /), putting /= Q + p, is equal to

i 2
[.-*&quot;*&quot;

* - *

n
(+ a.^

B
( ; /) may also be regarded as a theta function of order r, with the associated constants

2tu, 2u
, 2?;, 217 and characteristic (Q, f).
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is, in fact, equal to II (u). Hence as before we have the equation

286. Ex. i. Suppose that m is an even half-integer characteristic, and that

are s,
= W, half-integer characteristics such that the characteristic formed by adding the

three characteristics m, ait a,-
is always odd, when i is not equal to j. Thus when m

is an integral, or zero, characteristic, the condition is that the characteristic formed by

adding two different characteristics a
t , 0,-may be odd. The characteristic whose elements

are formed by the addition of the elements of two characteristics a, b may be denoted by

a+ b
;
when the elements of a+ b are reduced, by the subtraction of integers, to being less

than unity and positive (or zero), the reduced characteristic may be denoted by ab.

For instance when p= 2, if a, ft, y denote any three odd characteristics, so that * the

characteristic afty is even, and if
/*

be any characteristic whatever, characteristics satis

fying the required conditions are given by taking m, a
lt

a.
2 ,

a3 ,
a
4 respectively equal to

afty, p., fifty, pya, ^aft ;
in either case a characteristic mo^o,- is one of the three a, ft, y and is

therefore odd.

When jo
=

3, corresponding to any even characteristic m, we can in 8 ways take seven

other characteristics a, ft, y, K, X, p, v, such that the combinations a, ft, y, K, X, p, v, ma/3,

man, mX/i constitute all the 28 existent odd characteristics ;
this is proved in chapter

XVII.
; examples have already been given, on page 309. Hence characteristics satisfying

the conditions here required are given by taking

m, 19 2 &amp;gt; 3&amp;gt;
-&amp;gt;

a
s

respectively equal to

m, m, a, ft, ..., v.

Now, by 284, every 2&quot; + 1 theta functions of the second order, with the same periods

and the same characteristic, are connected by a linear equation. Hence, if p, q, r denote

arbitrary half-integer characteristics, and v, w be arbitrary arguments, there exists an

equation of the form

A9(u+ w; q)S(u-iv; r)= 2
A~*=l

wherein A, A^ are independent of u ;
for each of the functions involved is of the second

order, as a function of u, and of characteristic q+ r.

We determine the coefficients A^ by adding a half period to the argument u
;

for u

put u+ Qm-aj-p ;
then by the formula

S (u+ QP, &amp;lt;?)

=/ &amp;lt;&quot; ; P] -*&quot;iP q B (u ; P+q),

where
X (u ; 1&amp;gt;]

= HP (u+a P )
-

viPl&quot;,

noticing, what is easy to verify, that

(u-v; P)-\ (u+w; P}-\(u-iv\ P) =

As the reader may verify from the table of 204 ;
a proof occurs in Chap. XVII.
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we obtain

= 2 A^[u+ v; (m-aj-a^ + q+ r-2p)]$[u-v; (m - a,- -f

But since m-aj+ a^ (which, save for integers, is the characteristic maja^ is an odd

characteristic when./ is not the same as X, we can hence infer, putting u= v, that

Hence the form of the relation is entirely determined. The result can be put into

various different shapes according to need. Denoting the characteristic m + q + r

momentarily by k, so that k consists of two rows, each of p half-integers, and similarly

denoting the characteristic (t^+p momentarily by a
A,
and using the formula for integral M,

el$(u; q),
we have

e-
a
^3(Zv; k);

we shall denote the right-hand side of this equation by

e -4rf&amp;lt;aA+P)(, +9 + r )
.jra,,

; (m+q+ r)] ;

hence the final equation can be put into the form

; m]

It may be remarked that, with the notation of Chap. XI., if 6
15 ..., bp be any finite

branch places, and A r denote the characteristic associated with the half-period ub
&amp;gt;--

a
,
and

we take for the characteristics a
: , ..., g the 2 characteristics A, AA^ ... A k ,

formed by
adding an arbitrary half-integer characteristic A to the combinations of not more than p
of the characteristics A

1 , ..., Ap ,
and take for the characteristic m the characteristic

associated with the half-period ii
b

i&amp;gt;

a
i + ... + ub

p&amp;gt;

a
p, then each of the hyperelliptic functions

5(0; raaiO,-) vanishes
( 206), though the characteristic rn.^^ is not necessarily odd.

Hence the formula here obtained holds for any hyperelliptic case when m, a
lt ..., a,, have

the specified values.

Ex. ii. When p= 2, denoting three odd characteristics by a, /3, y, we can in Ex. i. take

P, q, r
, m, i, 2 &amp;gt;

a&amp;gt;

a
i

respectively equal to

a^y, q, 0, a/3y, 0, /3y, ya, a/3,

wherein denotes the characteristic of which all the elements are zero, and y denotes
the reduced characteristic obtained* by adding the characteristics # and y. Then the

general formula of Ex. i. becomes, putting v= and retaining the notation m for the
characteristic

a/3y,

3(u+w; q)3(u-w; 0)5(0; q+ m)3(0; TO)

A +
&quot;)(-

+
-) 3 (u; q-m-a^3(u; m+a^S(w; q-aj9(w, aA ).

So that all the elements of 7 are zero or positive and less than unity.

2
A 1
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EM. iii. As one application of the formula of Ex. ii. we put

10\ , /10\ , /01\ , /Ol

and therefore

ION , /oo\ , /oom=

hence we find, comparing the table of 204, and using the formula

where M, =(
M
^/}, consists of integers, f-Cffi), and Mf=MJ^+MJ^ that*

\M1
M2 J V/i/2/

(u-&amp;lt;w; 0)= 56 (M-w), 5(0; ? + m)= 5
J2 (0), 5(0; m) = 301 (0;,

3(u;q-m-a3)
= 524(w),5(

5 (M ; ?
- m- o4)

= - 514(), 5(M ;
m+ eg = - 53 (w),5 (w ; g-

- a
4)
= 5M(w),5 (w ;

a4)
= - 524(w),

all the factors of the form eiwi(a\ + mXm + q
&quot;&amp;gt; being equal to 1

; by substitution of these

results we therefore obtain

502 (u + w) 5
5 (u-w) 5

12 (0) 501 (0)
= 5

12
5
01
502

5
6+ 502 56518

5
,
+ 5

01
52453 5 14+535M504

5
!J4 ,

where 512 denotes 512 (w), etc., and 302 denotes 502 (w), etc.
;

this agrees with the formula

of 219, 220 (Chap. XI.).

Ex. iv. By putting in the formula of Ex. ii. respectively

obtain the result

which is in agreement with the results of 219, 220.

Dividing the result of Ex. iii. by that of Ex. iv. we obtain an addition formula for the

theta quotient 502 (tt)/56 (w), whereby 9oz (u+ w)/$5 (u+w) is expressed by theta quotients

with the arguments u and w.

Ex. v. The formula of Ex. ii. may be used in different ways to obtain an expression

for the product 3 (u+ w; q) 5(w w; 0). It is sufficient that the characteristics m and

o+m be even and that the three odd characteristics a, /3, y have the sum m. Thus,

starting with a given characteristic y, we express it, save for a characteristic of integers,

as the sum of two even characteristics, m and q+m, which (unless q be zero) is possible

in three wayst, and then express m as the sum of three odd characteristics, a, /3, y,

which is possible in two waysj; then we take ^= 0, a2
=

/
3

7&amp;gt;

a3
= ya t 4=o. Taking

,

ave

* In Weierstrass s reduced characteristic symbol the upper row of elements is positive, and

the lower row negative ;
cf. 203, 204, and p. 337, foot-note.

t This is obvious from the table of 204, or by using the two-letter notation
;
for instance

the symbol (a^J^a^) + (a2c)
=

(a1c1 ) + (a 2c1)=(a 1
c2) + (a^).

t For example, (ac)
=

(t^a) + (a2a) + (c^)
= (a^) + (cjc) + (cc2). See the final equation of 201.

The six odd characteristics form a set which is a particular case of sets considered in

chapter XVII.

Moreover we may increase M and w by the same half-period. But the additions of the half-

periods P, P + fl3 lead to the same result ; and, when q is one of a, /3, 7, the same result is

obtained by the addition of P + ttm and of P + QTO + i2a .
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10\ /10\ /00\ /01\ /11\ /00\ /IO

putting m=\ fwvi
we may

10

Hence obtain the result

502 (u+w) 55 (M- w) 5 12 (0) 301 (0)-*M5w5tt5,+3w5il51458+Vu^^+^^S^,,
where, on the right hand, 5 12

denotes 512 (w), etc., and 502 denotes 502 (w), etc. Comparing
this result with the result of Ex. iii., namely

5 (u-w) 512 (0) 501 (0)
= ^

12
50102 55+ 502^5512

501+ 5 ^2453514+ 53^4504
524 ,

we deduce the remarkable identity

54 (u) 513 (M) 523 (w) 503 (w) +^ (w) 5M () 5 (w) 32 (w)

= 502 (w) 55 (u) 31S (w) 501 (w) +33 (M) 514 (w) 5M (w) 524 (w),

wherein w, w tare arbitrary arguments ;
this is one of a set of formulae obtained by

Caspary, to which future reference will be made.

Ex. vi. By taking in Ex. v. the characteristics q, m to be respectively

( *($
and resolving m into the sum a+/3+ y in the two ways

respectively, obtain the formulae

502 (M+ w) $B (u-w) B (0) 52CO)^^JA+\^U - 54^i85M5M - 3M3M51S
$
4)

502 ( + w) 5- (M
-
w) 5 (0) 32 (0)

= 5 52 502 55
- SM5W545 13

- 5 14 5,503523+^5^0, 512 ,

and the identity

^34 ^1 ^01 ^12+ i 13 ^24 ^04
=

^5^02 ^0^ 2+ ^14 ^3 03 ^23

Putting in this equation w = 0, we obtain a formula quoted without proof on page 340.

Ex. vii. Obtain the two formulae for 502 (?&amp;lt;
+ w) 55 (u w) which arise, similarly to

those in Exs. v. vi., by taking for m the characteristic | (

J
,
the characteristic q being

unaltered.

Ex. viii. Obtain the formulae, for p= 2,

523 (u+ w) ^ (u
- w) 56 (0) 523 (0;

=^^ia^^+^ 5,^5! 5^ - 53525352
- 5

13
512513512 ,

where the notation is as in Ex. v.

For tables of such formulae the reader may consult Konigsberger, Crelle, LXIV. (1865),

p. 28, and ibid., LXV. (1866), p. 340. Extensive tables are given by Rosenhain, M4m. par
divers Savants, (Paris, 1851), t. XL, p. 443 ; Cayley, Phil. Trans. (London, 1881),
Vol. 171, pp. 948, 964 ; Forsyth, Phil. Tram. (London, 1883), Vol. 173, p. 834.
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Ex. ix. We proceed now to apply the formula of Ex. i. to the case p= 3
; taking the

argument v= 0, the characteristics p, r both zero, and the characteristics TO, CTJ,
a
2 , ...... ,

a
s

to be respectively TO, m, a, /3, ...... , f, where a, /3, y, K, X, p, v are seven characteristics

such that the combinations a, /3, y, K, X, p., v, ma/3, TOOK, mX/x are all odd characteristics,

TO being an even characteristic, and removing the negative signs in the characteristics by
such steps

* as

= e
-
47rim(a A + p + m

) $
(

= e -47rim(p
+ a A)^( M;

.

the formula becomes t

8

= 2 e~Mm
A.
+ a

A&amp;gt;.(

\=i

In order that the left-hand side of this equation may not vanish, the characteristic

q+m must be even; now it can be shewn that every characteristic (q), except the zero

characteristic, can be resolved into the sum of two even characteristics (TO and q+ m)
in ten ways, and that, to every even characteristic (TO) there are 8 ways of forming such

a set as a, /3, y, K, X, /x,
v (cf. p. 309, Chap. XI.). Hence, for any characteristic q there

are various ways of forming such an expression of 3(u+ w; q)3(u w; 0) in terms

of theta functions of u and w
;
moreover by the addition of the same half-period to u

and w, the form of the right-hand side is altered, while the left-hand side remains

effectively unaltered. In all cases in which q is even we may obtain a formula by

taking TO = 0.

Ex. x. Taking, in Ex. ix., the characteristics q, m both zero, prove in the notation

of 205, when a, /3, ......
,

v are the characteristics there associated with the suffixes

1, 2, ......
, 7, that

3(u+u;)3(u-w)9*= 2 $?(u}S?(w}.
i=0

Prove also, taking m=0, q= ^ ( AAn ) ,
that 3456 (u+ w) 3 (u

- w) 5456
9 is equal to

\UUv/

3 (u) 3 (w) Sm (u) 3456 (w) +$t (u) 54 (w) $56 (u) 556 (w) + S5 (u) 9, (w) \4 (u) 364 (w)

+V)?(*
- 3

7 (u) 57 (w) 3123 (u) $m (w)
- ^ (u) 3, (w) 9237 (u} 3237 (w)

- 32 (u) $2 (w) 3317 (u) 9317 (w)

-$3 (u)93 (w)9ia (u)9 l27 (w),

where 3, #456 denote respectively 9 (0), 456 (0).

Hence we immediately obtain an expression for 9456 (+ w)j(u + w} in terms of theta

quotients $t (u)/3 (u), 3* (w)/& (w).

Ex. xi. The formula of Ex. i. can by change of notation be put into a more symmetrical

form which has theoretical significance. As before let TO be any half-integer even

characteristic, and let
: , ...... ,

as be s, =2&quot;, half-integer characteristics such that every

* Wherein the notation is that the characteristic p is written (
Pl P* Ps

} and p denotes the

\PiPzPs I

row ( PI, p2 , p3 ) ; and similarly for the characteristics m, a^.

t This formula is given by Weber, Theorie der AbeVschen Functionen vom Geschlecht 3

(Berlin, 1876), p. 38.



287] ODD AND EVEN FUNCTIONS. 461

combination mc^o,-, in which i is not equal to
,; ,

is an odd characteristic
;

let /, g, h be

arbitrary half-integer characteristics
;

let J denote the matrix of substitution given by

J=\(-\ 1 1 1),
1-111
1 1-1 1

1 1 1-1

and from the arbitrary arguments u, v, w determine other arguments U, V, W, T by the

reciprocal linear equations

(Uit Vit W&amp;lt;,
Ti }

= J(ui ,
vit wt , 0), (i

=
l, 2, , p\

or, as we may write them,

( U, V, \V, T) = J(u, v, w, 0) ;

further determine the new characteristics F, O, ff, K by means of equations of the

form

(F, G,H, K)=J(f,g,h,m),

noticing that there are 2p such sets of four equations, one for every set of corresponding
elements of the characteristics

;

then deduce from the equation of Ex. i. that

3(0; m)3(u;f)3(t&amp;gt;; g)3(w; h)

ZP

A = l
A A

Putting m = 0, we derive the formula

3(0; Q)3(v+ w; g+h)3(w+ u; h+f) 3(u+ v; f+g)

= 2 3(u+v+ w; f+g+ h+ a,,) 3(u; / a.) 3(v: a a ) 3 (w h a )
A=l

wherein u, v, w are any arguments and/, g, h are any half-integer characteristics.

Ex. xii. Deduce from Ex. i. that when jo
= 2 there are twenty sets of four theta

functions, three of them odd and one even, such that the square of any theta function can
be expressed linearly by the squares of these four.

287. The number, r?, of terms in the expansion of II (u) may be

expected to reduce in particular cases by the vanishing of some coefficients

on the right-hand side. We proceed to shew* that this is the case, for

instance, when II (u) is either an odd function, or an even function of the

arguments u. We prove first that a necessary condition for this is that the
characteristic (Q, Q ) consist of half-integers.

For, if II (- u) = ell (u), where e is + 1 or -
1, the equation

n&amp;lt;ti

gives

Schottky, Abrins einer Theorie der Abel nchen Functional von drn Varialeln (Leipzfg, 1880).
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while, the left-hand side of this equation is, by the same fundamental

equation, equal to

er\- m {-u)-2m(mQ -m Q) H ( w)

hence, for all values of the integers m, m ,
the expression

r
|&amp;gt;m (M)

- \_m (- M)] + 4ffiri (mQ
f - m Q)

must be an integral multiple of 2?
; since, however,

Xm (u)
= Hm (a + Hm)

- irimm = X_m (- u),

this requires that 2 (raQ
- m Q) be an integer ;

thus 2Q, 2Q are necessarily

integers.

Suppose now that Q, Q are half-integers; denote them by q, q ;
and

suppose that II (u) = ell (- u), where e is +1 or - 1. Then from the

equation

T

since, for any characteristic, S- (u, q)
= ^ ( zt, q), we obtain

(M)
= eH (- M) = eSJf^ (- w

; q, ^-] = eZK,,.* (u
;

-
q,
-

/A \ ^ /u\
* L 2^ t*; q

where v is a row of positive integers, each less than r, so chosen that

), (mod. r) ;

thus the aggregate of the values of v is the same as the aggregate of the

values of p,\ therefore, by the formula ( 190), ^(u-, q + M, q + M )
.

^ q ^ wnerein M, M are integers, we have

. . ^ T.
-- V= H (u) = eS^e ^ f

; q,

comparing these two forms for II (u) we see that in the formula

the values of /A that arise may be divided into two sets
; (i) those for which

2/4 + 2q
=

(mod. r) ;
for such terms the value of v defined by the previously

written congruence is equal to
/*,

and the transformation effected with the

help of the congruence only reproduces the term to which it is applied ; thus,

_ fX+g

for all such values of /j,
which occur, e r is equal to e

; (ii) those terms
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_ v+V

for which 2/z, + 2g $ (mod - r) 5
for such terms ^ = e^e r Hence

on the whole II (u) can be put into the form

where the first summation extends to those values of p for which

2/A + 2q
=

(mod. r), and the second summation extends to half those values

of
fj,

for which 2//, + 2q $ (mod. r). The single term

which can also be written in the form

is even or odd according as II (u) is even or odd
;
and this is also true for the

term ^ (u ; q, J arising when 2/u + 2g
=

(mod. r).

Hence if x be the number of values of
p,, incongruent for modulus r,

which satisfy the congruence 2/* + 2^ = (mod. r\ and y be the number of

-*ir ^
these solutions for which also the condition e r = e is satisfied, the

number of undetermined coefficients in II (u) is reduced to, at most,

288. We proceed now to find x and y ;
we notice that y vanishes when

x vanishes, for the terms whose number is y are chosen from among possible

terms whose number is x. The result is that when r is even and the

characteristic (q, q) is integer or zero, and II ( 11)
= ell (u), the number of

terms in II (u) is ^rf + 2p
~1

e; while, when r is odd, or when r is even and

the half-integer characteristic (q, q ) does not consist wholly of integers, or

zeros, the number of terms in II (u) is ^ r? + [1 ( )
r
] ee4 59

.

Suppose r is even
;
then the congruence 2/i + 2q

=
(mod. r) is satisfied

by taking p.
= M -

q, and in no other way, M denoting a row of p arbitrary
z

integers. Thus unless q consists of integers, x is zero, and therefore, as

remarked above, y is zero, and the number of terms in II (11) is \rp. While,

when q is integral, the incongruent values for /i (modulus r) are obtained by

taking the incongruent values for M for modulus 2, in number 2^
;
in that

_4-io^t?
case x = 2p

;
the condition e r = e is the same as e~ ZwiqM = e

;
when q is

integral, this is satisfied by all the 2P values of Jl/, or by no values of M,

according as e is -f 1 or is 1
;
in both cases y = 2^~l

(1 + e) ;
when q is not
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integral, p 1 of the elements of M can be taken arbitrarily and the con

dition e -2?.af =e determines the other element, so that y = 2?&quot;
1
. Thus,

when r is even, we have

(1) when q, q are both rows of integers (including zero), ac = %p
,

y = 2*
~1

(1 + e), and the number of terms in II (u) is

2&quot;-
1

(1 + e) + (rf
- 2) = 7* + %&amp;gt;~

l
e,

as stated, there being \ rp + 2^-1 terms when II (u) is an even function, and

^ rp %&amp;gt;-i terms when II (u) is an odd function
;

(2) when q is integral, and q is not integral, # = 2p
, y = 2*&quot;

1

,
and there

fore the number of terms in II (u) is

2?-i + %(rP
-

2*) = rP,

in accordance with the result stated
;

(3) when q is not integral, both x and y are zero, and the number of

terms is ^r?, also agreeing with the given formula.

Suppose now that r is odd, then the equation

rM-2q M-2q
2/1, + 2q = rM, or p = ^-- ,

= integer + 1-4 ,

wherein Jlf is a row of integers, requires M to have the form 2q + 22V, where

.2V is a row of integers, and therefore

this equation, since p consists of positive integers all less than r, determines

the value of N uniquely ;
hence x = 1. The condition

determines y = 1 or y = according as ee^iqq = + 1 or = 1
;

hence the

number of terms in II (u) is

-, or

according as ee^iqq = + 1 or 1
;
this agrees with the given result when r is

odd, the number of terms being always one of the numbers
(r*&amp;gt;

+ 1).

289. It follows from the investigation just given that if we take pro

ducts of theta functions, forming odd or even theta functions of order r, with

the same half-integer characteristic (q, q), and associated with the same

constants
2o&amp;gt;,

2&/. 2?/, 2?/, then when r is even, the number of these which

are linearly independent is, at most, | T? + ^&amp;gt;~
l e when the characteristic is

integral or zero, and is otherwise \r? ; while, when r is odd, the number

which are linearly independent is, at most, | (rP+ee^w ),
e being 1 accord

ing as the products are even or odd functions.
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Ex. i. In case
jt?
= 2 there are six odd characteristics, and the sum of any three of

them is even*, as the reader can easily verify by the table of page 303. Let a, /3, y, 8, e, f
denote the odd characteristics, in any order, and let a/3y denote the characteristic formed

by adding the characteristics a, ;3, y. Then the product

n(u)= 3 (u, a) 3 (u, ft) 3 (u, y) 3 (u, afty)

is an odd theta function of the fourth order with integral characteristic. Hence this

product can be written in the form

where
p. has the 42 values arising by giving to each of the two elements of

/*, independently
of the other, the values 0, 1, 2, 3. Changing the sign of u we have

where v is chosen so that

^ + i/
= 0(mod. 4).

This congruence gives 16 values of v corresponding to the 16 values of /x; of these
there are 4 values for which n=v and 2/x=0 (mod. 4) ; these are the values

M= (0,0), (0,2), (2,0), (2,2),

greater values for the elements of /* being excluded by the condition that these elements
must be less than 4. We have by the formula ( 190) 3 (u; q+M)= eZlriMi 3 (u),

comparing this with the original formula for n (u}, we see that

so that the terms in the original formula for n(u) for which v=p are absent, and the

remaining twelve terms may be arranged as six terms in the form

where the summation extends to the following values of /*,

M= (0, 1), (1,0), (1,1), (1,2), (1,3), (2,3);

these values may be interchanged respectively with

M = (0,3), (3,0), (3,3), (3,2), (3,1), (2,1),

if a proper corresponding change be made in the coefficients A.^.

The number 6 is that obtained from the formula $i*+ 2p- l e
, by putting r= 4,

f=-l, p= 2.

Ex. ii. In case p= 2, denoting the odd characteristics by a, ft, y, 8, t, , and the sum
of two of them, say a and

/3, by a
,
and so on, each of the four products

3 (11, a) 3 (u, oefl, 3 (u, ft) 3 (u, /3,f), 3 (u, y) 3 (u, y({), 3 (u, d) 3 (u,

or, in Weierstrass s notation, if a, ft, y, 8, e, f be taken in the order in which they occur in
the table of page 303, each of the products

* This is a particular case of a result obtained in chapter XVII.

&quot; 30
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is an odd theta function of order 2, and of characteristic differing only by integers

from the characteristic denoted by , or, in the arrangement here taken, ( j ; thus

any three of these products are connected by a linear equation whose coefficients do not

depend upon u.

Similarly each of the products

3 (u, aSe) 3 (u, aSO, -9 (^ 08*) 3 (, /Mflt 5 (u, 78f) 3 (u, ySf), * (u, 3 (u, f),

or, in Weierstrass s notation, if a, , y, 8, e, f be taken in the order in which they occur

in the table of p. 303, each of the products

314()V), 3oi(*)V), SiM^M, S i3 (tt)S8 (tt),

is an even theta function of order 2, and of characteristic differing only by integers

from the characteristic denoted by e, or, in the arrangement here taken,
( j

;
thus

any three of these products are connected by a linear equation whose coefficients do not

depend upon u.

Ex. iii. For p= 2 the number of linearly independent even theta functions of the

fourth order and of integral characteristic is 42+ 2 = 10. If q, r be any half-integer

characteristics, it follows that any eleven functions of the form 32
(u, q) 32

(u, r) are

connected by a linear equation. Taking now, with Weierstrass s notation, the four

functions*
t= $& (u), x= 3M (u), ,y

= 3 12 (tt), z= \(u\

it follows that there exists an identical equation

in which the eleven coefficients A
,

......
,
H2 are independent of u.

The characteristics of the theta functions #6 (), ^(u), 3l2 (u), B (u) may be taken,

respectively, to be (cf. 220, Chap. XL)

/O, 0\ , /O, 0\ _ //&amp;gt;/, P2 \
.
A 0\ _ /ft , ?2 \ /O, 0\ _ /&amp;lt;,

rA
.

U oj u i;
-U.; y

Vi oj
-
u, & ;

y U y
~
W; v y

hence, by the formulae ( 190)

5(M + P ; ? )
= e

A^M)- 2 riP^(u; q+ p),$(U t q+M }
= &amp;lt;?*** 3 (u q],

wherein M denotes a row of integers, we obtain

3
5 (U + Op)

= M&amp;gt;
^34 ()&amp;gt; ^34 ( + P)

=^ (W&amp;gt;

-6 ()&amp;gt;
512( + Op)

=
&amp;lt;^

(M)
^0 (),

hence the substitution of u+ Qp for u in the identity replaces t, x, y, z respectively by

x, t, z, y. Comparing the new form with the original form we infer that

Similarly the substitution of u+ Qq for u replaces t, x, y, z respectively by y, z, t, x ;

making this change, and then comparing the old form with the derived form, we infer

that

* Which are all even and such that the square of every other theta function is a linear

function of the squares of these functions. It can be proved that these functions are not

connected by any quadratic relation.
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Thus the identity is of the form

Taking now the three characteristics

(& , /A = /O, i\ /&amp;lt;?/, &amp;lt;72 \ _ ft,
0\ //V, h

2
\ _ ft,

\

v/i, fj \o, oj u&amp;gt; ffj
~

vo, &amp;lt;&amp;gt;; U.v &quot;

v&amp;gt;, o;
&amp;gt;

and adding to the argument u, in turn, the half-periods Q,, a,, OA and then putting u = 0,
we obtain the three equations

where 3* denotes ^(0), etc., and the notation is Weierstrass s, as in 220. By these

equations the constants F, G, H are determined in terms of zero values of the theta
functions. The value of C can then be determined by putting u= Q in the identity
itself.

Thus we may regard the equation as known
;

it coincides with that considered
in Exx. i. and iv. 221, Chap. XL, and represents a quartic surface with sixteen nodes.
With the assumption of certain relations connecting the zero values of the theta functions,
proved by formulae occurring later (Chap. XVII. 317, Ex. iv.), we can express the
coefficients in the equation in terms of the four constants S

6 (0), SM (0), 5ia (0), 4 (0).We have in fact, if these constants be respectively denoted by d, a, b, c

hence the identity under consideration can be put into the form

^-^+*^
where the ri denotes the product of the four factors obtained by giving to each of Cl , e2
both the values +1 and -1. The quartic surface represented by this equation (Ma be
immediately proved to have a node at each of the sixteen points which are obtainable
from the four,

(d, a, 6, c), (d, a, -b, -c), (d, -a, b, -c), (d, -a, -b, c),

by writing respectively, in place of d, a, b, c,

(i) (d, a, b, c), (ii) (a, d, c, 6), (iii) (b, c, d, a), (iv) (c, b, a, d).

Ex. iv. We have in Ex. iii. obtained a relation connecting the functions

in Ex. iv. 221 we have obtained the corresponding relation connecting the functions

and in Ex. i. 221 we have explained how to obtain the corresponding relation connecting
the functions

302
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There are* in fact sixty sets of four functions among which such a relation holds
; and

these sixty sets break up into fifteen lots each consisting of four sets of four functions,
such that in every lot all the sixteen theta functions occur, and such that in every lot one

of the sets of four consists wholly of even functions while each of the three other sets

consists of two odd functions and two even functions. This can be seen as follows : using
the letter notation for the sixteen functions, as in 204, and the derived letter notation

for the fifteen ratios of which the denominator is 9 (u), as at the top of page 338, it is

immediately obvious, as on page 338, that any four ratios of the form

l
&amp;gt; 2*,*. 2 Al . V 2*,

in which the letters k, I, lf l
lt k% constitute in some order the letters a

lt 2,
c

&amp;gt;

c
i&amp;gt;

C
2&amp;gt;

are

connected by a relation of the form in question. Now such a set of four ratios can be

formed in fifteen ways ; there are firstly six such sets in which all the ratios are even

functions of u, obtainable from the set

1&amp;gt; 2e 2a ,, c, ?aa , c3

by permuting the three letters c, c
lt c2 among themselves in all possible ways ; and nextly

nine such sets in which two of the ratios are odd functions, obtainable from the set

by taking instead of the pair a^ each of the three pairs t a
1 2 ,

aalt aa2 ,
and instead of

the pair CjC2 each of the three pairs c^, ccj, cc
2 . Since ( 204) the letter notation for an

odd function consists always of two a-s or two e-s, and for an even function consists of

one a and one c, the number of odd and even functions will remain unaltered. Further

from each of these fifteen sets we can obtain three other sets of four ratios by the addition

of half-periods to the argument u, in such a way that all the sixteen theta functions

enter into each lot of sets. The fifteen lots obtained may all be represented by
the scheme

1, a
, /3 , a/3

i &amp;gt;

aa
i &amp;gt;

^a i &amp;gt;

a/3ai

ft , aft , #3, , a/3ft

ajft, aajft, /Sajft, a/3aift,

where 1, a, ft a/3 denote the characteristics of one of the fifteen sets of four theta functions

just described, such as S (u), &
e (u), \ Ci

(w), ^ (u), or &(u), $
c (u), \ tta

(), ^(u),
aft denoting the characteristic formed by the addition of the characteristics a, /3 ;

and a
t , ft

denote any other two characteristics other than a, ft or aft and such that a/3 is not the

same characteristic as a
xft. This scheme must contain all the sixteen theta functions

;

for any repetition (such as a= /3ajft, for example) would be inconsistent with the

hypothesis as to the choice of a,, ft (would be eqxiivalent to a^= ajft). It is easily seen,

by writing down a representative of the six schemes in which the first row consists

wholly of even functions, and a representative of the nine schemes in which the first

row contains two odd functions, that in every scheme there are three rows in which two

odd functions occur J.

Ex. v. There are cases in which the number of linearly connected theta functions, as

given by the general theorem, is subject to further reduction. For instance, suppose we

*
Borchardt, Crelle, LXXXIII. (1877), p. 237. Each of the sixty sets of four functions may be

called a Gopel tetrad.

t The letter a, when it occurs in a suffix, is omitted.

J A table of the sixty sets of four theta functions is given by Krause, Hyperelliptische

Functionen (Leipzig, 1886), p. 27.
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have w = 2p
~

1 odd half-integer characteristics A
lt ..., Jm ,

and another half-integer charac

teristic P, not (integral or) zero, such that the characteristics* A
{ P, ..., AmP, obtained

by adding P to each of A
lt ..., A m ,

are also odd +
; suppose further that A is an even

half-integer characteristic, and that ylPis also an even characteristic, and that the theta

functions 3 (u ; A), 3(u; AP) do not vanish for zero values of the argument. Then, by
288 the W^ + l following theta functions of order 2,

3(u; A)3(u; AP), 3 (u A
l)3(u; A,P), ..., 3(u; Am)3(u; A mP),

which are all even functions with a characteristic differing only by integers from the

characteristic P, are connected by a linear equation with coefficients independent of u.

But in fact, if we put u= 0, all these functions vanish except the first. Hence we infer

that the coefficient of the first function is zero, and that in fact the other 2p
~l functions are

themselves connected by a linear equation.

Ex. vi. In illustration of the case considered in Ex. v. we take the following : When
/&amp;gt;

=
3, it is possible ,

if P be any characteristic whatever, to determine six odd characteristics

A
19 ..., A 6 ,

whose sum is zero, such that the characteristics A
tP, ...,A 6P&re also odd, and

such that all the combinations of three of these, denoted by AiAjA k , AiAjA k P, are even.

By the previous example there exists an equation

AS (u ; J 4)
3 (u ; J 4P)

; A 2)3(u; A
2P)+\33(u; A

s )
3 (u A

3P),

wherein X, A 1} A2 ,
A3 are independent of u. Adding to u any half-period Q fi ,

this equation
becomes

A3 (u ; AiQ) 3 (u ;
A

tPQ)
= X

1 1S(M ;
A

lQ)S(u; A
1PQ) + \2f23(u; A

2Q)3(u; A
z P&amp;lt;j) +\^(u; A

3Q)3(u; A
3PQ),

where fi(i=l, 2, 3) is a certain square root of unity depending on the characteristics

^4&amp;gt; ^i&amp;gt; P, Q, whose value is determined in the following example. Taking in particular
for Q2 the half-period associated with the characteristic A

Z
A 3 ,

so that the characteristics
A

2PQ, A
3PQ become respectively the odd characteristics A 3P, A 2P, and putting =

0,
we infer

A4(0; A
4
A

ZA 3)3(0- A,A 2A 3P) = \lfl 3(0 ^ 2
J

3)3(0; A,A 2A 3P),

where */ is the particular value of fl when Q is A
2A 3

. This equation determines the ratio
of A

t
to A

; similarly the ratios A
2 : A and A3 : A are determinable.

Ex. vii. If r, $q be half-integer characteristics whose elements are either or
,
and

$k=$rq be their reduced sum, with elements either or
, prove that

*. = -.+ ?.-2rB?a&amp;gt; *.
=

-. + ?.
- 2ra ?a , (a= l,2, ...,p),

and thence, by the formulae
( 190)

e*** S (u ; 2 ),

* A characteristic formed by adding two characteristics A, P is denoted by A + P. Its
reduced value, in which each of its elements is or

,
is denoted by AP.

t It is proved in chapter XVII. that, when j2, the characteristic P may be arbitrarily
taken, and the characteristics A

lt ...,Am thence determined in a finite number of ways.
t This is proved in chapter XVII.

Schottky, Crelle, en. (1888), pp. 308, 318.
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where M is integral, prove that

X (u ; i r\ + wi I (raga?a + gjy-J
3 (w+iQP ;?) =

If^ ^a, \q be any reduced characteristics, infer that

where

r 2 [rag fta. + (raga + ra ?a + ra )
oJ

e = e a=1 -
;

.;

^p. viii. If ^u ^4
2 ,
^ 3 , AI denote four odd characteristics, for

jt&amp;gt;

= 2, and 5 denote an

even characteristic, the 12 + 2P-1+ 1 = 5 theta functions, of order 2 and zero (or integral)

characteristic, &(u; B), &(u; AJ, ...,5
2 (; Aj are, by 288, connected by a linear

equation. As in Ex. v. we hence infer an equation of the form

adding to w the half-period associated with the characteristic A ZA3 ,
and putting M=0, we

deduce by Ex. vii. that

Xe** 1 * 52
(0 ; A,A zA.}= \,e

ivk^ V (0 ; ^^ 2
^ 3),

where A 2A z
= \k^ A

l
= ^a1 ,

^
4
= ^a4 . Hence we obtain an equation which we may write

in the form

where (
A ^
A
t

3\ denotes a certain square root of unity. Such a relation holds between everyVM 4/

four of the odd theta functions.

If A !,..., A 6 be the odd characteristics, and Q be any other characteristic, the six

characteristics A$t ..., A 6Q are said to form a Kosenhain hexad. It follows that the

squares of every four theta functions of the same hexad are connected by a linear relation.
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CHAPTER XVI.

A DIRECT METHOD OF OBTAINING THE EQUATIONS CONNECTING ^-PRODUCTS.

290. THE result given as Ex. xi. of 286, in the last chapter, is a

particular case of certain equations which may be obtained by actually

multiplying together the theta series and arranging the product in a

different way. We give in this chapter three examples of this method, of

which the last includes the most general case possible. The first two furnish

an introduction to the method and are useful for comparison with the

general theorem. The theorems of this chapter do not require the charac

teristics to be half-integers.

291. Lemma. If b be a symmetrical matrix of p2
elements, U, V, u, v,

A, B, f, g, q, r,f, g , q , r, M, N, s, t , m, n be columns, each of p elements,

subject to the equations

n -f m = 2N + *
, q + r =f , q + r=f,

then

2 U (n + q) + b (n + qj + Zniq (n + q ) + 2 V(m + r ) + b (m + rj + 2-Trir (m + r )

/ + 26

This the reader can easily verify.

Suppose now that the elements of s and t are each either or 1, and
that n and m take, independently, all possible positive and negative integer
values. To any pair of values, the equations n + m = 2JV + s

, n + m = 2M + 1

give a corresponding pair of values for integers N and M, and a pair of

values for s and t . Since 2m = 2JV+ 2M + s + t
, s + t is even, and there

fore, since each element of s and t is &amp;lt; 2, s must be equal to t . Hence by
means of the 2? possible values for s

,
the pairs (n, m} are divisible into 2^

sets, each characterised by a certain value of s . Conversely to any assignable
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integer value for each of the pair (N, M) and any assigned value of s
(&amp;lt; 2)

corresponds by the equations n =NM, m =N+M + s a definite pair of

integer columns n, m.

Hence, b being such a matrix that, for real x, ba? has its real part negative,

(n+tf) +b (n+q
1

) +2mq (n+q )

j T^g2
V(m+r ) +b (m+r

1

)
s+2jrir (m+r ) 1

m

-z

thus, if *(u; \), or *u; , denote S^ujn+vj+Kn+vj^+shrtxjn+x^ ^(Mj X) or
V A,/ n

/ A/\
^ ft*; denote 2e4M(n+V)+26(n+v &amp;gt;

2+2 riA(n+v
&amp;gt;,

we have
V A/ n

_

where the equation on the right contains 2? terms corresponding to all

values of s ,
which is a column of p integers each either or 1

;
all other

quantities involved are quite unrestricted.

Therefore if a be a symmetrical matrix of p* elements and h any matrix

of p- elements, we deduce, replacing u by hu, and v by hv, and multiplying
both sides by eau +av

\ the result

where e denotes all possible 2^ columns of p elements, each either or 1,

and ^ differs from S- only by having 2a, 2h, 2b instead of a, h, b in the

exponent ;
thus we may write, more fully,

2&),

jEvp. i. When the characteristics q, r are equal half-integer characteristics, say

&amp;gt; , &quot;&quot;i

-
the equation is

multiplying this equation by e
wwn

,
when n denotes a definite row of integers, each either
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or 1, and adding the equations obtained by ascribing to a all^he 2^ possible sets of values

in which each element of a is either or 1, we obtain

for we have

a f=l

Ex. ii. Deduce from Ex. i. that when p= l, the ratio of the two functions

is independent of ..

^r. iii. Prove that the 2?&amp;gt; functions ^ ( u
;

ft ) j
obtained by varying ,

are not

connected by any linear equation with coefficients independent of u.

Ex. iv. Prove that if a, a be integral,

From this set of equations we can obtain the linear relation connecting the squares of

(or less) assigned theta functions with half-integer coefficients.

Ex. v. Using the notation
(X,-,,-)

for the matrix in which the j-th element of the i-th

row is Xf ,y, prove that if u
l , ..., u,., v

t , ..., vr be 2.2? arguments, and $(
a

J
any half-

integer characteristic,

.[&amp;gt; *o]
and, denoting the determinant of the matrix on the left hand by {?/ f ,

v
}} and the determi

nant of the second matrix on the right hand by {v}, deduce that

where A is the sum of the p elements of the row letter a. When the characteristic | ( J

is odd, {u( , Uj} is a skew symmetrical determinant whose square root is* expressible

tionally in terms of the constituents $Ffc|+1^j i{* ji *[&amp;lt;-%
i iff]- For

instance when p= I, we obtain, with a proper sign for the square root, the equation of

three terms t.

Since any 2*+ 1 functions of the form 3 \ u+vp ; \ (
a

J
5

1

u - vp ; % (
a

j |

are connected

by a linear equation with coefficients independent of u, it follows that if w
1? ..., um ,

v
i&amp;gt;

... ^m be any 2m arguments, m being greater than
2&quot;,

the determinant of m rows and

columns, whose (/, th element is
*|n+y; ^ ()~|^ F^-

v
s ;

i(&quot;)l,
vanishes identi

cally. When ^ f
a

j
is odd and m is even, for example equal to 2&quot;+ 2, this determinant is

*
Scott, Theory nf determinants (Cambridge, 1880), p. 71.

t Halphen, Fonet. EUip. (Paris, 1886), t. I. p. 187.
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a skew symmetrical determinant whose square root may be expressed rationally in terms of

the functions
5| tlf-HV j ill rH ui~ vi &amp;gt; if) The resu^ obtained may be written

{ut , ,-}*
=

(),

wherein* the determinant {uit v
}] has m rows and columns, m being even and greater than

2 p
. When m is odd the determinant {;, Vj] itself vanishes.

A proof that for general values of the arguments the corresponding determinant

{ut , ^j},
of 2P rows and columns, does not identically vanish is given by Frobenius, Crelle,

xcvi. (1884), p. 102.

A more general formula for the product of two theta functions is given below

Ex. ii. 292.

292. We proceed now to another formula, for the product of four theta

functions. Let J denote the substitution

l 1 1 1),1-11111-11111-1
and Jrs be the element of the matrix which is in the r-th row and the 5-th

4

column
;
then 2 Jir Jis

= or 1, according as r
=f= s, or r = s (r, s = 1, 2, 3, 4).

i= l

Let MU u2 ,
u3 ,

u4 denote four columns, each of p quantities; written down

together they will form a matrix of 4 columns and p rows. Let U1} U2 ,
U3 ,

U4 be four other such columns, such that the j-th row of the first matrix

(j
= 1, 2, ..., p) is associated with thej-th row of the second by the equation

Let vlt vz ,
v3 ,

v4 and V1} F2 ,
Vs ,

V4 be two other similarly associated sets,

each of four columns of p elements. Then if h be any matrix whatever, of p
rows and columns, we have

hu^ + huzvz + hu3v3 + hu4v4 = hU1V1 + hU2V2 + hU3V3 + hUt V^;

this is quite easy to prove : an elementary direct verification is obtained by

selecting on the left the term hj^u^v^j + hjk(u2)k(vz)j+hjk(u3 )k(v3)j+ hj

= h
jk 2 [Jrl ( ujk + J* ( u,\ + Jr3 ( u3)k + Jr4 (u4)k] [Jrl

= h k

= h
jk {(U1\(Vl )j + (U2)k (F2)j

and this is the corresponding element of hUl Vl + hU2V2 + hU3V3 +hU4V4 .

* The theorem was given by Weierstrass, Sitzungsber. der Berlin. Ak. 1882 (i. xxvi., p. 506),

with the suggestion that the theory of the theta functions may be a priori deducible therefrom, as

is the case when|?= l (Halphen, Fonct. Ellip. (Paris (1886)), t. i. p. 188). See also Caspary,

Crelle, xcvi. (1884), and ibid. xcvu. (1884), and Frobenius, Crelle, xcvi. (1884), pp. 101, 103.
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Now we have

Sr (Ml , ?1) ^ (u.2 , qa) $ (u3 , q3}

In the exponent here there are four sets each of four columns of p quantities

namely the sets

Mr, Kr, qr, tfr ,

we suppose each of these transformed by the substitution J. Hence the

exponent becomes

Flf 2T,, 2T,. JT,

wherein the summation extends to all values ofNrj given by
t

N
rj
= % (nl}

+ n
zj
+ n

3j
+ n

4j
- 2n

rj),

for which all of nrj are integers.

All the values Nrj
will not be integral. But since Nrj Ngj

=
rigj

n
rj
the

fractional parts of N^, N2j ,
N3j,

N
tj

will be the same, = e/, say, (e/
= or 1).

Let
rrirj

be the integral part ofNrj.
We arrange the terms of the right hand

into %P classes according to the 2? values of e/. Then since

every term of the left-hand product, arising from a certain set of values of

the
4&amp;gt;p integers nrj, gives rise to a definite term of the transformed product on

the right with a definite value for e/, while, since

every assignable set of values of the
4&amp;lt;p integers mrj

and value for e/ (which
would correspond to a definite term of the transformed product) will arise,

from a certain term on the right, provided only the values assigned for mrj be

such that ^ (rn^j + m%j + m3j + m4j + e/) is integral.

Now we can specify an expression involving the quantities

A*j, =1 0ij + m*j + msj + m4j + c/),

which is 1 or according as ft
=

(/A1 , /A2 , ..., fip) is a column of integers or

not. In fact if e = (e!, ..., ep) be a column of quantities each either or 1

so that e is capable of 2^ values the expression

J_ 2e*nV = 1 (^ea-nv.M,) . . . (^ez^ = J_
(i + e

2&amp;gt;,) (j + ezm^ . . . (i + #**,)

has this property ;
for when ^ ,

. . .
, /j.p are not integers they are half-

integers.
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Hence if the series =- 2e7ri 6 (mi+ &quot;l2+m3+m &amp;lt;

+O be attached as factor to every
2P f

term of the transformed product on the right we may suppose the summation

to extend to all integral values of mrj,for every value of e.

Then the transformed product is

1 V pZaUr+VZhUr (mr+be +Q rl+ S.b (mr+K+Q r )

2
+2Jrt2Qr (mr+Je + QVl+jrie (?,+Jn1!+?ft3+m1+e )

Opsf m lm.im3m,t e

1 2= _ ^n^Ur+ihUr (mr+p r)+b (mr+p r ) *+2iripr (mr+p r )
_ Q~^f (2pV- &amp;gt;

2P r

where

Pr=^+Qr , Pr=^+Qr,
so that

2p/=2e + 2Q/=2e +% .

Thus we have

S- (MJ, g,) ^ (u2 , qj % (u3 , q3) ^ (w4 , q4)

^
This very general formula obviously includes the formula of Ex. xi., 286,

Chap. XV. It is clear moreover that a similar investigation can be made for

the product of any number, k, of theta-functions, provided only we know of a

matrix J, of k rows and columns, which will transform the exponent of the

general term of the product into the exponent of the general term of the sum

of other products.

It is for this more general case that the next Article is elaborated.

It is not necessary for either case that the characteristics q1} q2 ,
... should

consist of half-integers.

Ex. i. If q be a half-integer characteristic, = Q, say, and we use the abbreviation

0(M, v, w, t\ Q)= $(u; Q)3(v, 0)3(1* , 0)*(t&amp;gt; Q},
we have

i

(f)(u + a, u-a, v+ b, v-b, Q) =^ 2 e~nife
&amp;lt;f&amp;gt;[u

+ b, u-b, v+ a, v-a ;

f,f

where the summation on the right hand extends to all possible 22p half-integer character

istics r
J

; putting Q + $(
f
\ = R, so that R also becomes all 22^

half-integer character

istics, this is the same as

, u-a, v+ b, v-b; Q)= &amp;gt;

2e&quot;
ilQ Rl + wi [Rl

&amp;lt;f&amp;gt;(u
+ b, u-b, v+ a, v-a; R),

where,

if &amp;lt;?
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By adding, or subtracting, to this the formula derived from it by interchange of v and

a, we obtain a formula in which only even or odd characteristics R occur on the right hand.

Thus, for p= l, we derive the equation of three terms.

Ex. ii. If a, |3, y, 8 be integers such that ay is positive and /38 is negative, p = a8-j3y,
and r be the absolute value of p, prove that

ayr /38r

e -

where e f w ; r
J
denotes the theta function in which the exponent of the general term is

2 iriu (n+ e
) + iirr (n+ 1 )

2+ 2irie (n+ e ),

and
|t,

* are row letters of p elements, all positive (or zero) and less than r, subject to the

condition that (8/x
-

/3i&amp;gt;)/p, (av y/i)/p are integral, while e, /, g, h are row letters of p
elements which are all positive (or zero) and less than r.

Ex. iii. Taking, in Ex. ii., a, @, y, 8 respectively equal to 1, 1, 1, -k, we find

p= v&amp;lt;k+ 1, k being positive. Hence, taking &= 3, prove the formula (Konigsberger,

Crelle, LXIV. (1865), p. 24), of which each side contains 2P terms,

26 (u; r\\
S&amp;gt;

V It
QU; 3r I f

$ -

if

s 9 /O; r .} Q (lu; 3r ! ? V
\ liv V If*/

s, being rows of p quantities each either or 1.

293. We proceed now to obtain a formula* for the product of any
number, k, of theta functions.

We shall be concerned with two matrices X, x, each of p rows and k
columns

;
the original matrix, written with capital letters, is to be trans

formed into the new matrix by a substitution different for each of the

p rows
;

for the j-th row this substitution is of the form

(Xij, X 2j, ..., Xrj, ..., Xktj)=- a&amp;gt;j(xliit asaj, ..., xrj, ..., oc
ktj);r

j

herein
TJ is a positive integer; to,-

is a matrix of k rows and columns,

consisting of integers ; the determinant formed by the elements of this

matrix is supposed other than zero, and denoted by /^; bearing in rnind

that throughout this Article the values of r are 1, 2, ..., k and the values of^
are 1, 2, . . .

, p, we may write the substitution in the form

The substitution formed with the first minors of the determinant of
etj will

be denoted by ft,-; that formed from
flj by a transposition of its rows and

columns will be denoted by IL. Then the substitution inverse to -
, is

r
i

fy } denoting the former substitution by X,-,
the latter is X/-

1
.

Prym und Krazer, Neue Grundlagen...der allgemeinen thetafunctionen, Leipzig, 1892.
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If for any value of j a set of k integers, Prj, be known such that the k

quantities

are integers, then it is clear that an infinite number of such sets can be

derived; we have only to increase the integers Prj by integral multiples of

jj,j.
But the number of such sets in which each of Prj is positive (including

zero) and less than the absolute value of ft is clearly finite, since each

element has only a finite number of possible values. We shall denote this

number by Sj
and call it the number of normal solutions of the conditions

A*. _
flj (Pr,j)

=
integral ;

ft

it is the same as the number of sets of k integers, positive (or zero) and less

than the absolute value of ft, which can be represented in the form ^j(pr,j),

for integral values of the elements prj.

The k theta functions to be multiplied together are at first taken to be

those given by

r
= 2e2W+^W

(r
= 1 ,...,&),

wherein Br is such a symmetrical matrix that, for real values of the p
quantities X, the real part of the quadratic form denoted ( 174, Chap. X.) by
BrX2

is negative. The p elements of the row-letters Vr ,
Nr are denoted by

Vrj, Nr&amp;gt; j(j = 1, ...,p). The substitutions Xj are supposed to be such that

k

the equations (Xr&amp;gt; j)
=

*hy(ar,j) transform the sum 2 BrXr
2 into a sum

r=l
t

S
brXr*&amp;gt;

in which the matrices br are symmetrical and have the property that
r=l

for real xr the real part of byX? is negative.

Taking now quantities mrj, vrj determined by

(mr, j)
=

X,--
1 (Nr&amp;gt; j)

= p n,- (Nr&amp;gt; j), (vr , j)
=

\j (Vr&amp;gt; j)
= -

&j ( Vr
, j),

/*;
r
j

k k k

the expressions X BrNr
z
, S NrVr are respectively transformed to 2 brm t

?

r=l r=l r=l

and
p P
2, \j (m r&amp;gt; j) ( V

r&amp;gt; j)
= S Xj (

V
r&amp;gt; j) (mr, j)

= 2 vrmr ;

j=l j=l r=l

hence the product II r is transformed into 1 e%&quot;

rWr
,
rmr

t
where the

r=l N, ..... Nk

quantities mrj have every set of values such that the quantities \j(mrj) take

all the integral values, Nrj, of the original product.



293] FOR THE PRODUCT OF THETA FUNCTIONS. 479

As in the two cases previously considered in this chapter, we seek now to

associate integers with the quantities mrj. Let (Pr,j)
be any normal solution

of the conditions

^
tij (Prj)

=
integral,

= (p r&amp;lt; j), say ;

Pt

put, for every value of j,

(Nrj)-(Prj)
= Hj(Mrtj) + (E rJ\ (r

= l, ..., k)

wherein (Mrj} consists of integers, and (E r,j)
consists of positive integers

(including zero), of which each is less than the absolute value of
/j,j.

For an

assigned set (Pr&amp;gt; j)
this is possible in one way ;

then

(mr , j)
= 2 Qj(Nrti)

= (pflj) + rjQj (MrJ) + ^ ^(E r&amp;gt;j
}

Pi Pi

=
(nr,j)+ -;(e r,j), say,

where

(r,j)
=

(Pr.j) + rjflj (MrJ), (e r&amp;gt;j)
=

Tj&j (E rj)

by this means there is associated with (Nrj), corresponding to an assigned

set (Pr,j),
a definite set of integers (nrj), and a definite set (E rj). We do

not thus obtain every possible set of integers for (nrj), for we have

~
/ K, j)

=
j (Pr, j) + ft (Mr , j)

= (Pr , j) + HJ (Mr&amp;gt; j),

Tj Tj

so that the values of n
r&amp;gt; j

which arise are such that Xj (w r&amp;gt; j)
are integers.

Conversely let (nr. j) be any assigned integers such that \j(nrj) are

integers ; put
\
j (n r&amp;gt;j)

= (PrJ) + ftj (Mr!J),

wherein the quantities Mrj are integers, and the quantities Prj are positive

integers (or zero), which are all less than the absolute value of
/^-;

this is

possible in one way ;
then taking any set of assigned integers (E r

, j),
which

are all positive (or zero) and less than the absolute value of
fij,

we can define

a set of integers Nr&amp;lt; j by the equations, wherein \f~
l

(P r&amp;gt; j)
=

integral,

(Nrtj)
= (E rJ) + (PrJ) + pj (MrJ)

- (E r&amp;gt;j) + X,. (nrj).

Thus, from any set of integers (Nrj), arising with a term e*
(Z rNr+SrNr*)

of
I

the product II r ,
we can, by association with a definite normal solution

r=l

(Pr,j)
of the conditions \f* (Prj)

=
integral, obtain a definite set (E rij), and

a definite set (nr,j) such that \j(nrj) are integers. And conversely, from any
set of integers (wr,j)

which are such that \j(nfi j) are integral, we can, by
association with a definite set (E r&amp;gt;j ),

obtain a definite normal solution (Pr,j)

and a definite set (Nrj).
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It follows therefore that if the product H r be written down ^ . . . sp times,
r=l

a term e r
being associated in turn with every one of the Si ...sp

normal solutions of the p conditions
X/&quot;

1

(Pj)
=

integral, then there will arise,

once with every assigned set (E Tj j), every possible set (n r&amp;gt; j)
for which Xj (n r&amp;lt; j)

are integers.

We introduce now a factor which has the value 1 or according as the

integers (nTi j) satisfy the conditions
X,- (nri j)

=
integral, or not. Take k in

tegers (Erj), which are positive (or zero), and less than
r,-; put

then

. j_ !?jj
]
= 22 e,

,-
mr 4

= 2X9
- (Er ,) (mr ,-)

= 2X,- (mr ,) (Er ,-)
&amp;gt;j I -_ i j ij

.
j \ &amp;gt;tj/ \ M^/ .

j \ &amp;lt;j j

j

and this is integral when Nr is integral, that is, for all the values (nrj) which

actually occur
;
in fact the quantities Nr&amp;gt; j

denned by

1 / \ ~\

(Nr&amp;gt;j)
= \j(mrt})

= -
^(%^-t-^)

= -
!/ (r, j) + (E rj)

= ^ Kj) + (E rJ)
r
j \ n i

are integral or not according as Xj (nfj j)
are integers or not.

Hence, for a given set nrjy and a given set E rj, the sum

wherein the summation extends to all positive (and zero) integer values of

(Erj) less than TJ,
is equal to r^ ... r^j

when (Nrj) are all integral, and other

wise contains a factor of the form

which is zero because TJ (Nr,j)
is certainly integral. Hence if we denote

22 - erj (nri j +
e

^} by S I er fn, + ^) ,

j r r,-

3
V /A?

/ r ^ V /* /

J^ having the values r^ ..., rp ,
then we can write

1 v ZTriZ^er (nr+-\ n n
,
-^2e r \ ft/ = l, or 0,

(n . . . r^f .E

according as X^ (?i r&amp;gt; j)
are all integers or not.

If then every term of the transformed series, in which, so far, only those

values of nrj arise for which \j(nrj) are integers, be multiplied by this factor,
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and the transformed series be completed by the introduction of terms of the

same general form as those which naturally arise in this way, so that now all

possible integer values of (n r&amp;gt; j) are taken in, the value of the transformed

series will be unaltered. In other words we have

n,E,E r

wherein all possible integer values of (nrj) arise on the right ;
thus the right-

hand side is equal to

E\ E r

and this is the desired form of the transformed product. For con

venience we recapitulate the notations; Er ,
Er each denote a column of

p integers, positive or zero, such that E
r&amp;gt;j

&amp;lt; ^ ,
ErJ &amp;lt;

r,- ; (Yr,j)
=

rjfy (E ft} )\

(e
r&amp;gt; j)

=
ajj(E,.j); Sj is the number of sets of integral solutions, positive or

zero, each less than ^ ,
of the conditions

ij.j~

l

rjLj(Prt ,-)
=

integi-al ;

(vr, j)
=

rj~
l

6&amp;gt;j
(V

r&amp;gt; j) ;
the function

,.
is a theta function in which the ordinary

matrices a, b, h ( 189) are respectively 0, 6,., 1
; by linear transformation of

the variables of the form Vr
= hrWr , and, in case the matrices

coj
be suitable,

S.ArV^

multiplication by an exponential e
r

, these particularities in the form of

the theta functions may be removed.

The number of sets (Erj) is (^...rp)*; the number of sets (E rtj)
is

l/Ltj*
... np

k
;
the product of these numbers is the number of theta-products on

the right-hand side of the equation.

Ex. i. We test this formula by applying it to the case already discussed where
,
is

an orthogonal substitution given by

which is independent ofj, r,-=2, 6r
= = 4; then ^= -

16, -Er,j&amp;lt;2,
E rJ &amp;lt;lG,

and

thence -j\ (i,j- ^ f
2,y
=

-^2,&amp;gt;~-^u
= integral, etc., so that the fractional part of j,tr,j is in

dependent of r : similarly the fractional part of -
(e r&amp;gt; &amp;gt;)

is independent of r and we may

write (f r.j)
=

(kf j + I
i.j, \t j+ L 2&amp;lt;i

, ..., ^t j +L^) wherein 2Z
riJ

- + e y &amp;lt;16. By the formula

B. 31
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= e Mq&amp;gt;ff

S(v, q}, when N is integral, we know that 9,. (
v,. ; *][]

is independent
\ fr/-*V

of the integral part of f r/p. Hence the (16)
4 = 216 ) terms on the right-hand side of the

general formula, which, for a specified value of (Er&amp;gt;i\ correspond to all the values of

\a&amp;gt;(E r,j\ reduce to 2P terms, in which, since (E r,j)
=

i&amp;lt; (a f i+ ^i,i &amp;gt; &amp;gt; ^ 6 j + A,j)&amp;gt;
*U

values of e
(&amp;lt;2)

arise. Hence there is a factor 216p and instead of the summation in

regard to E, E we have a summation in regard to E, e
,
the right hand being in fact

(7.2p 2 neftv, f
6

A
,
e \ | (,A

and containing 2 4j&amp;gt; terms.

Now put $(Ei,j+E2,i +E3 ,s+ E4,J

Mj being integral ; then the factor of a general term of the expanded right-hand product

which contains the quantities %a&amp;gt; (Eft j)
is

ne2iriifcr(,.+* )

}

where
kr , J

=E
1 , j+ E,, j+E3 , j+ Et, j

-2Er , j
= (

and
farie&quot;SJcr 11$) (tej+SMjZej-lMj) _ jj
*

i 3

while

22Trik,.t jnrt j
=

iri22fjnrj (mod. 2), =iric . 2 r ,

j r j r r

so that

ne27riP,.(n,.+K) _rne27r^(nr+Je )-j
g- .

,. ,.

therefore the right-hand product consists only of terms of the form 116 (v,., f
J

e~&quot;

M
.

Hence the 24^ terms arising, for a specified value of e
,
for all the values of Erti)

reduce to

2p terms, and there is a further factor 23j) the right hand being

where

C7-(ii...^)-
1
(rI...rf)-*-(ik-i)&quot;

1 &quot; - &quot;*1 &quot;

IPli

To determine the value of C we must know the number (s) of positive integral

solutions, each less than 16, of the conditions o&amp;gt; (#)
= integral, =(y) say, namely of the

conditions, x
1 + x2+x^+xi

= 2(xr+ i/r}. Now of these any positive values of x^ x^ xz ,
x

(&amp;lt;16)
are admissible for which ^+ ^2+ ^3+^4 is even. They must therefore either be

all even, possible in 84
ways, or two even, possible in 6 . 82

. 82
ways, or all odd, possible in

84
ways. Hence s= 8 . 8^= 2^. Hence &amp;lt;7=1/2

15
&quot;2

4P= 1/2
19P and therefore C. ^8p=

^-

Making now in the formula thus obtained, which is

the substitution Vr = kUr ,
we have vr

= $(Vl
+ Vs+V3 + F

4
- 2 T&quot;r)

= hur ,
where

Ur=%(U1+ U2+U3+Ui-2Ur); and if we multiply the left hand },;}

which is equal to e^+^+^+^\ we obtain
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Therefore if Qly Q2 , Q3 , Q^ denote any characteristics, and, as formerly, QQ denote the

period-part corresponding to Qr ,
we have

n3(Ur , Qr)
= ne-^ ur&amp;gt; ^(Ur+QQ o)=n&amp;lt;r

A
&amp;lt;^ -) n*(Ur+a Q , o),

of which the first factor is easily shewn to bemT^
*&amp;gt;,

if fa, ?2 , ?3 , ?4 )
= ^ w (&amp;lt;21 , &, Q3 , Qt)

thus

, Qr)= e
-

ne-^&amp;lt;r&amp;gt;
*)

which is exactly the formula previously obtained
( 292).

Ex. ii. More generally let A =
-&amp;lt;o,-

be any matrix such that the linear equations

wherein m is independent of ^, ..., xk ; then, since, by a property of all linear substitutions,
the equations (Yr)= \ (yr) lead to

r a ^v 8 3 9
Jl a^

+ ...... + F^ryi
8^

+ ...... +^9V
we have also*

Hence, if A be any matrix ofp rows and columns and

(Xrti )
= \(xrti\ O =l, ...,P),

we have

^2^,. F
r&amp;gt; &amp;lt;

= j 2 ^
i,^.

r i,jr
where Ar

1} a,\, etc. now denote rows ofp quantities.

tution furnishes a

,-

=
, n= +r*, r̂&amp;gt;y

&amp;lt; r, A&quot;
P&amp;gt;&amp;gt;

Thus any orthogonal substitution furnishes a case of our theorem. Taking a case
where

we have

so that the new characteristics will be r-th parts of integers.

Suppose now, in particular, that the substitution is

*
2 2-/t... 2

2

*
Therefore mxy = XY=\x . \y = \\xy, so that \\=m

; hence the determinant formed with the

elements of X has one of the values ^/m*.

312
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which gives

= 2R
; Oi + . . . + #fc)

- xr
= k ^. . . . . . . . . + xk)

2 + 2A&amp;gt;

2 -
^

2^,. (^ + . . . +xk)
= 2J?r

8

and

A\+ ...... +Xk
= A\ + ...... + A

fc ,
Ar

1
-Z2

= ^2 -^1 ,
etc.

The previous example is a particular case, namely when = 4. In what follows we

may suppose k odd so that
r,-
= &. When is even r, may be taken = &. The work is

arranged to apply to either case.

The fractional parts of -
( ,., y) being independent of the suffix r because

e\,j--&amp;lt; -2,J
= -E

&amp;gt;t,J-
E

i,i&amp;gt;

etc
-&amp;gt;

we may put -(? ,-, j)
=
(-,/+A, &amp;gt;&amp;gt;

&amp;gt;

- fj + ^k,j] &amp;gt;

aild may therefore write

ne f*v
r
!\ in the form ne

(v,., JV) .

r \ frltij r \ frl^-J

The equation

shews that all values of -
e/ (&amp;lt; 1) do arise. Hence for a given value of (Efti )

there are,

instead of 1^1^= ?-^ terms given by the general formula, only r \ and the factor H*2 &quot;1^

divides out.

The values of (*,-,,) given by the general formula are in number r
**&amp;gt;, corresponding

to all the values of (Er&amp;gt;j ).
As before the fractional part of -

(,., ,-)
is independent of r. Let

where T&amp;lt;! ;
then

K

,., .

The factor in the general term of the expanded product on the right hand which

contains c
r&amp;gt; j

is

Now
12ri / 77f \

,. ,-

= 2 (Jii r j) =&amp;lt;

r 1 r

therefore, as r is k or a factor of k,

Zm e e Znite + IcM )
ei Ztri j^i-

Ile
r rj =e } } r e f

r

and

= 2ft+ 2
J/,-

- /?r , f] n r , ,-

= -
k ^

fjn r , ,. (mod. 1 ).
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Hence the factor above is

r 2e / e\~\ te

T- ^ 2lrl T (&quot;
+ -) -Jrt 2ni

K=\l\.e k \ r r/
\ e &amp;gt; e r ,

L r

and the general term of the right hand is

[(* )&amp;gt;&quot;*

1 /2f, \
06

7?( fr&amp;gt; * I ir+^J^ ETti ]
we may suppose all values of

tj&amp;lt;*
to arise. Hence

\ K j
instead of I*P we have k*&amp;gt; and a factor

i*i&amp;gt;\ki

&amp;gt; divides out.

To evaluate the factor (^ ... rp}-
1
(sl

...s
]t)-

k
, =C, say, we must enquire how many

positive solutions exist of the conditions

-#,.= integral,(#1 + ......

namely, how many solutions of the conditions

2
T (-^i 4- +%k) = integral,

exist, for which each of .r
t , ..., xk &amp;lt;r

k
;

let s be this number
;
then C=s-Pr~ kJ)

,
and

ne
(
Vr,0) =^~^- 5

where
&amp;lt;r,

e &amp;lt;

^r, the number of terms on the right being (rky. For values of f &amp;gt;

- we

may utilise the equation 3(v, q+ N)= e~niNq 3 (v, q). For example, when *= r= 3 there

are 3* terms, corresponding to characteristics (*/? ) . When k= 4, r=2, the character-

2e e
istics - = -

will, effectively, repeat themselves. We can reduce the number of terms from

8 or 23P to W. We shall thus get factors

that already found.

= l and so the formula reduces to

Ex. \\i. Apply the formula of the last example to the orthogonal case given by ,
= w ,

(A , Y, Z, T, U, K) = (#, y, z, t, u, v),

&amp;lt;&amp;gt;

=
( 1 1 1 -1

),
-i =

&amp;lt;

1 1 00-1 1

1-1 1 1

-1111
001-111
00-1 1 1 1

which lead to = 64 and

1 1 1-1
),

1 1-1 1 00
001 1 1-1

0011-11
1-1 00 1 1

-110011

A + r +Z +T + U + V =.v +y +z +t +u
Z-T=x-y, U-V=z-t, X-Y=u-v,



[294

CHAPTER XVII.

THETA RELATIONS ASSOCIATED WITH CERTAIN GROUPS OF CHARACTERISTICS.

294. FOR the theta relations now to be considered*, the theory of the

groups of characteristics upon which they are founded, is a necessary

preliminary. This theory is therefore developed at some length. When the

contrary is not expressly stated the characteristics considered in this

chapter are half-integer characteristicsf ;
a characteristic

i

Wi, q-2, -.., qp

is denoted by a single capital letter, say Q. The characteristic of which all

the elements are zero is denoted simply by 0. If R denote another charac

teristic of half-integers, the symbol Q + R denotes the characteristic, 8 = |s,

* The present chapter follows the papers of Frobenius, Crelle, LXXXIX. (1880), p. 185, Crelle,
xcvi. (1884), p. 81. The case of characteristics consisting of rt-th parts of integers is considered

by Braunmiihl, Math. Annal. xxxvn. (1890), p. 61 (and Math. Annal. xxxn. (1888), where the

case ?i= 3 is under consideration).
To the literature dealing with theta relations the following references may be given : Prym,

Untersuchungen iiber die Riemanrische Thetaformel (Leipzig, 1882) ; Prym u. Krazer, Acta Math.
in. (1883) ; Krazer, Math. Annal. xxn. (1883) ; Prym u. Krazer, Neue Grundlagen einer Theorie
der allgemeinen Thetafunctionen (Leipzig, 1892), where the method, explained in the previous

chapter, of multiplying together the theta series, is fundamental : Noether, Math. Annal. xiv.

(1879), xvi. (1880), where groups of half-integer characteristics are considered, the former paper
dealing with the case p = i, the latter with any value of p; Caspary, Crelle, xciv. (1883), xcvi.

(1884), xcvii. (1884) ; Stahl, Crelle, LXXXVIII. (1879) ; Poincare&quot;, Liouville, 1895; beside the books
of Weber and Schottky, for the case p = 3, already referred to

( 247, 199), and the book of

Krause for the case p = 2, referred to 199, to which a bibliography is appended. References to

the literature of the theory of the transformation of theta functions are given in chapter XX.
In the papers of Schottky, in Crelle, en. and onwards, and the papers of Frobenius, in

Crelle, xcvn. and onwards, and in Humbert and Wirtinger (loc. cit. Ex. iv. p. 340), will be found

many results of interest, directed to much larger generalizations ; the reader may consult Weier-

strass, Berlin. Monatsber., Dec. 1869, and Crelle, LXXXIX. (1880), and subsequent chapters of the

present volume.

t References are given throughout, in footnotes, to the case where the characteristics are n-th

parts of integers. In these footnotes a capital letter, Q, denotes a characteristic whose elements
are of the form q Jn, or of the form qjn, qt , q^ being integers, which in the reduced case are

positive (or zero) and less than n. The abbreviations of the text are then immediately extended
to this case, n replacing 2.
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whose elements si, st are given by S{
= q{ -I- r/, Si

=
qi + Ti. The charac

teristic, \t, wherein /= s/, ti
=

S{ (mod. 2) and each of /, ...,tp is either

or 1, is denoted by QR. Unless the contrary is stated it is intended in

any characteristic, $q, that each of the elements qj, qi is either or 1. If

^q, ^r, ^k be any characteristics, we use the following abbreviations

p

Q\=-.qq =
q1 q1 + ...... +qp qp , i Q, R = qr

-
q r = 2

(g&amp;lt;r&amp;lt;

-
ft r&amp;lt;),

t=i

|Q, R,K\ =
\R, K + K, Q + Q, R , ( ]

= e^r = e^ r
&amp;gt;

+ -+M
\-ft/

further we say that two characteristics are congruent when their elements

differ only by integers, and use for this relation the sign =. In this sense

the sum of two characteristics is congruent to their difference. And we

say that two characteristics Q, R are syzygetic or azygetic according as

|
Q, .R = or = 1 (mod. 2), and that three characteristics P, Q, R are

syzygetic or azygetic according as P, Q, R = or = 1 (mod. 2).

Ex. Prove that the
2/&amp;gt;
+ l characteristics arising in 202 associated with the half

periods ua \ ua a&amp;gt;

,
ua c

% ..., u&quot;

a
P, u

a
&amp;gt;

c
are azygetic in pairs. Further that if any four of

these characteristics, A, B, C, D, be replaced by the four, BCD, CAD, ABD, ABC, the

statement remains true; and deduce that every two of the characteristics 1, 2, ..., 7 of

205 are azygetic.

295. A preliminary lemma of which frequent application will be made

may be given at once. Let
a,, ,, ..., a,, , ..., a

r&amp;gt;
,, ..., a

r&amp;gt;n

be integers, such

that the r linear forms

Ui = a
itl

x
l + ...... + a

is nxn , (i
=

1, 2, . . .
, r),

are linearly independent (mod. 2) for indeterminate values of xlt ...,#;
then if Oi, ..., ar be arbitrary integers, the r congruences

f/i
=

! ,
. . .

,
Ur

= ar , (mod. 2),

have 2n
~r sets of solutions* in which each of xlt ..., xn is either or 1. For

consider the sum

2 [i + e^tf.-a.)] ... [1 + e^Wr- &quot;

&amp;gt;].*
*i, .-., xn

wherein the 2n terms are obtained by ascribing to x
l , ..., xn every one of the

possible sets of values in which each of #,, ..., xn is either or 1. A term in

which xl} ..., xn have a set of values which constitutes a solution of the

proposed congruences, has the value unity. A term in which xly ..., xn do
not constitute such a solution will vanish

;
for one at least of its factors will

vanish. Hence the sum of this series gives the desired number of sets of

* When the forms
C/j , . . . , Ur are linearly independent mod. m, the number of incongruent

2irr

sets of solutions is mn~ r
. In working with modulus m we use u= e m

, instead of e
iw

; and instead

of a factor i + e
(u&amp;lt;-^ we U8e a factor 1 + M +^ +- ... +/j.

n~\ where n = t
Ul

~
n&amp;gt;

.
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solutions of the congruences. Now the general term of the series is typified

by such a term as

where /* may be 0, or 1, or . . . ,
or p ;

and this is equal to

where

and, therefore, equal to

now, when
//,

&amp;gt; 0, one at least of the quantities clt ...,cn must be = 1 (mod. 2),

since otherwise the sum of the forms Ult ..., U^ is = (mod. 2), contrary to

the hypothesis that the r forms Ult ..., Ur are independent (mod. 2); hence

the only terms of the summations which do not vanish are those arising for

fj,
= 0, and the sum of the series is

Is iOr &amp;gt;

* x

or 2n
~r

.

Ex. i. If, of all 22P
half-integer characteristics, %q, the number of even characteristics

be denoted by g, and h be the number of odd characteristics, prove by the method here

followed that g-h, which is equal to Se?9
,
is equal to 2&quot;. This equation, with g+ h=

2*&amp;gt;,

determine the known numbers* g= ^-\ (2*&amp;gt;
+ l), h= &amp;lt;2P~ l

(2&quot;- 1).

Ex. ii. If \a denote any half-integer characteristic other than zero, and %q become in

turn all the 2*&amp;gt; characteristics, the sum Se
7

1
^ Ql = 2e ^- a ^ vanishes. For it is equal to

and if \a be other than zero, one at least of these factors vanishes. On the other hand it

is obvious that 2e - Q = 22P.

We may deduce the result from the lemma of the text. For by what is there proved

there are 22*-1 characteristics for which \A, Q\ = (mod. 2) and an equal number for

which
|
A, |

= 1.

296. We proceed now to obtain a group of characteristics which are

such that every two are syzygetic.

Let P! be any characteristic other than zero
;

it can be taken in 2 2^ 1

ways.

Let P2 be any characteristic other than zero and other than Pj ,
such that

P1} P2 =0(mod. 2);

* Among the n2? incongruent characteristics which are 7i-th parts of integers, there are

,,P-I
(
wp + r?

-
1) for which Q

\

= (mod. n), and n?-1
(n?

-
1) for which

| Q = r (mod. n), when r

is not divisible by n.
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by the previous lemma ( 295), P2 can be taken in 2 *&quot; 1 2 ways ;
also by

the definition, if P
1
P.1 be the reduced sum* of P,, P2 ,

P^PJP.H P^P, + P,, P,|
= 0(mod. 2).

Let P3 be any characteristic, other than one of the four 0, PI, P2 , PiP2 ,

such that the two congruences are satisfied

|

P3 , P! =
0,

| P,, P2
=

0, (mod. 2) ;

then P3 can be chosen in 22*~2 2 2

ways ; also, by the definition,

|

P3 , P,P,
|

= P,, P, + P,, P2
=

0, (mod. 2),

|
P,, P,P, |

=
0, etc.

Let P4 be any characteristic, other than the 23 characteristics

0, Plf P2 , P,, P.P,, P2P3 , P.P,, P.P.P3,

which is such that

|

P4 , A =
0, P4 ,

P2
=

0, P4 ,
P3

=
0, (mod. 2) ;

and

then P4 can be chosen in 2^~3 - 2s

ways, and we have

and
P2P3 ,

P4
= P2 , P4 + P3 ,

P4 !

=
0, (mod. 2), etc.,

P,P,P,, P4
1

= Plf P4 ,
P4

=
0, (mod. 2).

P P I

*ti ft
\

Proceeding thus we shall obtain a group of 2r characteristics,

P, Po P Po PPPv
&amp;gt;

* 1) * 2 1 &quot;?
* I* 2?

&amp;gt;

-*
1 -* 2-* 3j *

&amp;gt;

formed by the sums of r fundamental characteristics, and such that every
two are syzygetic. The r-th of the fundamental characteristics can be
chosen in 22?-r+1 - 2r~1 = 2 r~l

(2*p-*-+*
-

1) ways; thus we may suppose r as

great as p, but not greater. Such a group will be denoted by a single

letter, (P) ;
the r fundamental characteristics, P1} P2 ,

P3 , ..., may be called

the basis of the group. We have shewn that they can be chosen in

or
/ ff&amp;gt;*&amp;gt;Jl 1 \ /V&amp;gt;1 O 1 \ / C*O*i 1 1 \ /flOl) ftf-L.it t \ Cl* I / f -i \ f I

I 1 I &quot;P
- I* __ I \ J^ \* *) j \f*

ways. But all these ways will not give a different group ; any r linearly

independent characteristics of the group may be regarded as forming a basis

of the group. For instance instead of the basis

we may take, as basis,

P P Pj. i, J. 2 , , r

PPP P* I-1- 2&amp;gt;

-* 2) t
*

r&amp;gt;

wherein PiP2 is taken instead of P, ;
then P

l
will arise by the combination

* So that the elements of PjPo are each either or .
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of PjP2 and P2 . Hence, the number of ways in which, for a given group, a

basis of r characteristics, P/, ..., P/, may be selected is

(2*
1 -

1) (2
r -

2) . . . (2*-
- 2

-1

)/|r,

for the first of them, P/, may be chosen, other than 0, in 2r 1 ways ;
then

P2 ,
other than and P/, in 2r 2 ways ;

then P/ may be chosen, other than

0, P/, P/, P/Pa ,
in 2 r 22

ways, and so on, and the order in which they are

selected is immaterial.

Hence on the whole the number of different groups, of the form

p p p p P P P
Vj -L i) J- 21 )

-L I-1- 2&amp;gt; &amp;gt;

* I-4 I* 3&amp;gt;

of 2r
characteristics, in which every two characteristics of the group are

syzygetic*, is

(2^ 1) (2
2^- 2

1) ...... (%ip-vr+2 1)~ ~

Such a group may be called a Gopel group of 2r characteristics. The

name is often limited to the case when r=p, such groups having been

considered by Gopel for the case p = 2 (cf. 221, Ex. i.).

297. We now form a set of 2 r characteristics by adding an arbitrary
characteristic A to each of the characteristics of the group (P) just obtained

;

let P, Q, R be three characteristics of the group, and A
, A&quot;, A &quot;,

the three

corresponding characteristics of the resulting set
;
then

\A ,A&quot;,A
&quot; = \AP,AQ,AR\ = \P,Q,R =

Q, R + R,P + P,Q , (mod. 2),

as is immediately verifiable from the definition of the symbols ;
thus the

resulting set is such that every three of its characteristics are syzygetic, that

is, satisfy the condition

|

A
, A&quot;,

A &quot; =
0, (mod. 2) ;

this set is not a group, in the sense so far employed ;
we may choose r + 1

fundamental characteristics A, A l} ..., A r , respectively equal to A, APl}

J.P2 , ..., APr&amp;gt;
and these will be said to constitute the basis of the system;

but the 2r characteristics of the system are formed from them by taking only
combinations which involve an odd number of the characteristics of the basis.

The characteristics of the basis are not necessarily independent ;
there may,

for instance, exist the relation A + AP1
= AP2 ,

or A ^P^. But there can

be no relation connecting an even number of the characteristics of the basis
;

for such a relation would involve a relation connecting the set, Pl} P2 ,
. .., Pr ,

of the group before considered, and such a relation was expressly excluded.

Hence it follows that there is at most one relation connecting an odd number

* When the characteristics are n-th parts of integers, the number of such syzygetic groups is

(n
2
&quot;-!)

... (n
2P-2r+2

-l) divided by (n
r
-l) ... (n- 1).
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of the characteristics of the basis
;

for two such relations added together

would give a relation connecting an even number.

Conversely if A, A ly ..., A r be any r+l characteristics, whereof no

even number are connected by a relation, such that every three of them

satisfy the relation

A
, A&quot;,

A &quot; =
0, (mod. 2),

we can, taking Pa = A aLA, obtain r independent characteristics P1( ..., Pr&amp;gt;

of

which every two are syzygetic, and hence, can form such a group (P) of 2r

pairwise syzygetic characteristics as previously discussed. The aggregate of

the combinations of an odd number of the characteristics A, A lt ..., A r may
be called a Gopel system* of characteristics. It is such that there exists no

relation connecting an even number of the characteristics which compose the

system, and every three of the 2r characteristics of the system satisfy the

conditions

|

A
, A&quot;,

A &quot; =
0, (mod. 2).

We shall denote the Gopel system by (AP).

To pass from a definite group, (P), of 2r
pairwise syzygetic characteristics

to a Gopel system, the characteristic A may be taken to be any one of the

2^ characteristics. But if it be taken to be any one of the characteristics of

the group (P), we shall obtain, for the Gopel system, only the group (P) ;
and

more generally, if P denote in turn every one of the characteristics of the

group (P), and A be any assigned characteristic, each of the 2r characteristics

AP leads, from the group (P), to the same Gopel system. Hence, from a

given group (P) we obtain only 2*~r
Gopel systems. Hence the number of

Gopel systems is equal to

(2* -1) (*&quot; -1)... (2*-*+ -1)

We shall say that two characteristics, whose difference is a characteristic of
the group (P). are congruent, mod. (P). Thus there exist only 2P&amp;gt;-r

characteristics which are incongruent to one another, mod. (P).

It is to be noticed that the 2 2̂ ~r
Gopel systems derived from a given

group (P) have no characteristic in common; for if P1} P2 denote character

istics of the group, and A 1} A z denote two values of the characteristic A, a

congruence A^ = A 2P2 would give A^A^P^^, which is contrary to the

hypothesis that A
l and A 2 are incongruent, mod. (P). Thus the Gopel

systems derivable from a given group (P) constitute a division of the 2=*

possible characteristics into 2^~r
systems, each of 2 r

characteristics. We can
however divide the 2^ characteristics into 2^-r

systems based upon any
group (Q) of 2r characteristics

;
it is not necessary that the characteristics of

the group (Q) be syzygetic in pairs.

By Frobenius, the name Gopel system is limited to the case when r = p.
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Ex. For &amp;gt;

=
2, r= 2, the number of groups (P) given by the formula is 15. And the

number of Gopel systems derivable from each is 4. We have shewn in Example iv.,

289, Chap. XV., how to form the 15 groups, and shewn how to form the systems

belonging to each one. The condition that two characteristics P, Q be syzygetic is equiva

lent to
|
PQ |

= P
|
+

1 Q | (mod. 2), or in words, two characteristics are syzygetio when their

sum is even or odd according as they themselves are of the same or of different character.

It is immediately seen that the 15 groups given in 289, Ex. iv., satisfy this condition.

The four systems derivable from any group were stated to consist of one system in which

all the characteristics are even and of three systems in which two are even and two odd.

We proceed to a generalization of this result.

298. Of the 2 2*
~r

Gopel systems derivable from one group (P), there is a

certain definite number of systems consisting wholly of odd characteristics,

and a certain number consisting wholly of even characteristics*. We shall

prove in fact that when
p&amp;gt;r

there are 2
&quot;&quot;1

(2&quot;
+ 1) of the systems which

consist wholly of even characteristics, o- being p r
;
these may then be

described as even systems ;
and there are 2 &amp;lt;r

~1

(2&quot; 1) systems which may be

described as odd systems, consisting wholly of odd characteristics. When p = r,

there is one even system, and no odd system. In every one of the 22cr

(2
r

1)

Gopel systems in which all the characteristics are not of the same character,

there are as many odd characteristics as even characteristics.

For, if Pj, ..., Pr be the basis of the group (P), a characteristic A which

is such that the characteristics A, APl} ..., APr are all either even or odd,

must satisfy the congruences

\XP,\= XP2 = = X
, (mod. 2)

which are equivalent to

Y P- =\ P- a i 9 T\
&amp;lt;*-&amp;gt;

-L I
\

-L I &amp;gt; \ fc
~

1&amp;gt; 6} &amp;gt; }}

as is immediately obvious. Since, when X, Pl
\

=
j
7^ ,

and X, P2
1

= P

X, P, X,P.2 \+
=

I Pj I + P2 + I PI, P2 I
=

!

etc., it follows that these r congruences are sufficient, as well as necessary.

These congruences have ( 295) 2 2̂ ~r solutions. If A be any solution, each

of the 2r characteristics forming the Gopel system (AP) is also a solution
;

for it follows immediately from the definition, if P, Q denote any two

characteristics of the group, that

\APQ\ = \A + P\+ Q + A, p +\A,Q + P, Q
= \A\ + 2\P +2JQ + P,Q\
= \A ,

because P, Q.\
= 0. Hence the 2*~r solutions of the congruences consist of

* This result holds for characteristics which are -;t-th parts of integers, provided the group (P)

consist of characteristics in which either the upper line, or the lower line, of elements, are zeros.
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2w- -f2
r = &amp;lt;2?p-

-

characteristics A, and the characteristics derivable therefrom

by addition of the characteristics, other than 0, of the group (P) ; namely

they consist of the characteristics constituting 2 2̂ ~2r
Gopel systems, these

systems being all derived from the group (P). In a notation already

introduced, the congruences have 2^~2 solutions which are incongruent

(mod. (P)).

Ex. If S be any characteristic which is syzygetic with every characteristic of the

group (P), without necessarily belonging to that group, prove that the 22P~ 2r characteristics

SA are incongruent (mod. P), and constitute a set precisely like the set formed by the

characteristics A.

299. Put now a = p r, and consider, of the 2 2&amp;lt;r

Gopel systems just

derived, each consisting wholly either of odd or of even characteristics,

how many there are which consist wholly of odd characteristics and how

many which consist wholly of even characteristics. Let h be the number of

odd systems, and g the number of even systems. Then we have, beside the

equation

g + h = 22
-,

also

g k = 2~- &quot;S,e
&quot; ilRl

[ I+^^^.-P.I-^I^I] ... [i + e*i\it,p r \*i\p r
n

wherein Plt ..., Pr are the basis of the group (P), and R is in turn every one
of the 2 2̂

possible characteristics. For, noticing that the congruence
|

RP = .ft
|

is the same as
| R, P \

=
\

P
|,

it is evident that the element of

the summation on the right-hand side has a zero factor when R is a

characteristic for which all of R, RPlt ..., RPr are not of the same
character, either even or odd, and that it is equal to 2~r

enilRl when
these characteristics are all of the same character; while, corresponding
to any value of R, say R = A, for which all of R, RP1} ..., .RPr are of

the same character, there arise, on the right hand, 2r values of R, the
elements of the Gopel set (AP), for which the same is true.

Now if we multiply out the right-hand side we obtain

wherein^
2 denotes a summation extending to every set of

/j, of the
/&quot;i, PI, ...

characteristics P1( ..., PM ,
and /a is to have every value from 1 to ?; but

we have, since P,, P.2 ,
...

, are syzygetic in pairs,

and therefore

where S, = RP1 ... P^, will, as R becomes all 2^ characteristics in turn,
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also become all characteristics in turn; also ^eniljl] = ^ewils ^ is immediately
R s

seen to be 2^
;

it is in fact the difference between the whole number of even

and odd characteristics contained in the 22p characteristics. Hence

and therefore g-h =
%&amp;gt;-

r =
2&quot;.

This equation, with g + h = 2 2&amp;lt;r

,
when cr &amp;gt; 0, determines g = Z*~l

(2&quot;
+ 1)

and h = 2
&quot;&quot;1

(2
CT

1), and when cr = determines g = 1, h = 0.

These results will be compared with the numbers %&amp;gt;-
1

(2^ + 1), 2p
~l

(2
p -

1),

of the even and odd characteristics, which make up the 22p
possible character

istics.

If Pi denote every characteristic of the group (P) in turn, and Pm denote

one characteristic of the bases P
} , ..., Pr ,

and R be such a characteristic that

the 2r characteristics RPi are not all of the same character, at least one of

the r quantities R, Pm
\
+

\

Pm
|

is = 1 (mod. 2), and therefore the product
r

IJ H + 0iri\Pm \+iri\R,Pm \\

m=l

is zero. But, in virtue of the congruences,

I p.p. I I P. I _l_ I P. I 17? P. I 4. 7? P. =17? P.P. I

I ***J I

=
I

* i
\ I *} I I

&quot; -*i
I

-**t *i =
I

&quot;
) *** J I

this product is equal to

2r 2r

^ girilPil +ni\R, Pi I Qr g-Tril^l ^ gTril/JPil _

Now e
fip is 1 or 1 according as RPi is an even or odd characteristic.

Hence the system of 2r characteristics RPi contains as many odd as even

characteristics, and therefore 2r~l of each, unless all its characteristics be of

the same character.

300. The 2 2&amp;lt;r Gbpel systems thus obtained, each of which consists wholly

of characteristics having the same character, either even or odd, have a

further analogy with the 22p
single characteristics. We have shewn ( 202,

Chap. XL) that the 2^ characteristics can all be formed as sums of not more

than p of 2p + 1 fundamental characteristics, whose sum is the zero character

istic; we proceed to shew that from the 2 2cr

Gopel systems we can choose

2cr + 1 fundamental systems having a similar property for these 2 2&amp;lt;r

systems.

Let the s = 2 2&amp;lt;r

Gopel systems be represented by

(^P), ...,(2L.P),

the first of them, in a previous notation, consisting of A l
and all characteristics

which are congruent to A for the modulus (P), and similarly with the others.

Then we prove that it is possible, from A 1} ..., As to choose 2&amp;lt;r + 1 character-
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istics, which we may denote by A lt ..., A 2^+1 ,
such that every three of them,

say A , A&quot;,
A&quot;

, satisfy the condition

j

A
, A&quot;,

A &quot;

|

=
1, (mod. 2) ;

but it is necessary to notice that, if P be any characteristic of the group (P),

I A P, A&quot;,
A &quot;

,

= \A , A&quot;,
A &quot; +

| P, A&quot; + P, A &quot;

is = A ,A&quot;,A &quot;\;
for

|
P, P

,
is also = P, A

&quot;

; hence, if B
, B&quot;,

B &quot;

be any three characteristics chosen respectively from the systems (A P),

(A&quot;P), (A &quot;P),
the condition

|

A
, A&quot;,

A &quot;

\

= 1 will involve also Bf

, B&quot;,
B &quot; = I

;

hence we may state our theorem by saying that it is possible, from the

2 2&amp;lt;r

Gopel systems, to choose 2&amp;lt;r -f 1 systems, whereof every three are azygetic.

Before proving the theorem it is convenient to prove a lemma
;

if B be

any characteristic not contained in the group (P), in other words not

= (mod. (P)), and R become in turn all the 2 2&amp;lt;r characteristics A 1} ..., A 8 ,

then*
e i R, B i

_
o.

R

For let a characteristic be chosen to satisfy the r + 1 congruences

X, B =1, X, P! =
0, ...,|Z, Pr =0, (mod. 2),

and, corresponding to any characteristic R which is one of A lt ..., A s , and

therefore satisfies the r congruences |
R, P;

|

= PJ ,
take a characteristic

S = RX; then

\8,B\- R,B = \X,B EEl.and S,Pt \= RX,Pi
\

= \R,Pi
\

+ \X,Pi
=

P&amp;lt;|,

because
|
X, Pi =

;
hence the characteristics A lt ..., A s can be divided into

pairs, such as R and S, which satisfy the equation eni s&amp;gt;
B = evi R

&amp;gt;

B
. This

provesf that ^e^ R
&amp;gt;

B{ = 0.

R

We now prove the theorem enunciated. Let the characteristic A l be

chosen arbitrarily from the s characteristics A lt ..., A s \
this is possible in

2 2&amp;lt;r

ways. Let A 2 be chosen, also from among A 1} ...,A S ,
other than A l ;

this is possible in 2 2&amp;lt;r 1 ways. Then A 3 must be one of the characteristics

A-i, ...,A S&amp;gt;

other than A lt A 2 , andj must satisfy the congruence |

A l) A z ,
X

\

=1.

The number of characteristics satisfying these conditions is equal to

* We have proved an analogous particular proposition, that if B be not the zero characteristic,

and R be in turn all the 2- *&amp;gt;

characteristics, Se
R B =

( 295, Ex. ii.).
R

t If R be all the 2*P characteristics in turn, Se
1&quot;

0&amp;gt;
R = 2^. If P be one of the group (P),

and tf be one of A lt ... , A,, so that
| R, P \

=
\
P

|,
we have Se

7
&quot;* 1 A *

l = e
wi P

22
&quot;.

t We do not exclude the possibility ^as^^jj. Since l^,^,,, ^^,,1 = 1

A
l , A.2 \,

it is a

possibility only if |^ lt A^\
= l.
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wherein R is in turn equal to all the characteristics A lt ..., A s . For a term

of this series, in which R satisfies the conditions for A 3 ,
is equal to unity*,

while for other values of R the terms vanish. Now, since A 1} A 2 ,
R

R, A 1A 2 \

+
|

A 1} A 2 ,
the series is equal to

the characteristic A 1
A 2 cannot be one of the group (P), for if A 1A 2

= P, then

A 2
= A 1P &amp;gt;

which is contrary to the hypothesis that A lt ..., A s are incon-

gruent for the modulus (P); hence by the lemma just proved the sum of the

series is 2 2&amp;lt;r

~1

,
and A 3 can be chosen in 220&quot;&quot;1

ways.

We consider next in how many ways A 4 can be chosen
;

it must be one of

A 1} ..., A s other than A lt A 2 ,
A 3 and must satisfy the congruences

i

A 1} A 2 ,
X

I

=
1,

|
Ai t A 3 ,

X =
1,

which, in virtue of the congruence A 1} A 2 ,
A 3

=
1, and the identity

A 2 ,
A 3) X ,

A lt X ,
X ly A 2 ,

A 3

involve also
j

A 2 ,
A s ,

X = 1. The number of characteristics which satisfy

these conditions is equal to

or

2 , R\_ -2

where R is in turn equal to every one of A 1} ..., A s ; hence, in virtue of the

lemma proved, using the equations,

A 1}

2 ,
R A lt A 2

R,

j, A 3 + A 2A S ,
R

the number of solutions obtained is 22a~2
. But we have

\A 1A 2A 3 ,A 1 ,A 2 A 1A.2A 3,A 1
A

so that AiA^Az also satisfies the conditions.

Now it is to be noticed that, for an odd number of characteristics

Blt ..., -B^+1 ,
the condition that every three be azygetic excludes the

possibility of the existence of any relation connecting an even number of

these characteristics, and for an even number of characteristics B1} ...,5^,

the condition that every three be azygetic excludes the possibility of the

existence of any relation connecting an even number except the relation

B1B2 . . . B^ = 0. For, B being any one of Blt ..., -5o*+i other than Blt ..., B2m ,

we have, as is easy to verify,

B1B2 . . . \Blt Btm,B\-^B9t Bm,tB
It is immediately seen that A, B, B

\

= 0.

,
B
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so that the left hand is = 1
; therefore, as B2m ,

B2m ,
B =

0, we cannot have

B2m = B1B2 ... #&amp;gt;,_!
This holds for all values of m not greater than k, and

proves the statement.

Hence, 2o-+ 1 being greater than 4, we cannot have A 4
= A

1A 2A 3 ,
for we

are determining an odd number, 2cr + l, of characteristics. On the whole,

then, A 4 can be chosen in 2 2&amp;lt;7

~2 1 ways.

To find the number of ways in which A 5 can be chosen we consider the

congruences
I, A 2 ,

.A. =1, AI, A 3 ,
JL = 1, ,

2L
\

= 1,

which include such congruences as A 2 ,
A 3 ,

X
\

=
1, A 2 , A, X\ =

1, etc.

The characteristic A 5 must be one of A lt ..., A s ,
other than A l} A 2 ,

A3 ,
A t \

the condition that A 5 be not the sum of any three of AI, A
2&amp;gt;

A 3 ,
A 4 is

included in these conditions. The number of ways in which A s can be

chosen is therefore

where R is in turn equal to every one of A lt ..., A s ; making use of the fact

that A 1A 2A 3A 4 is not = 0, we find the number of ways to be 2 2&amp;lt;r

~3
.

Proceeding in this way, we find that a characteristic A2m+1 can be chosen

in a number of ways equal to the sum of a series of the form

2~ (zrn-i) 2 (&quot;l e
1
&quot;!-4 ! ^2 ^H [1 e

1 !-4 !
4 -R

i&quot;|
... fl e

1
&quot;!-4 ! Azm

&amp;gt;

R
\~\

R

and therefore in 22(7
~&amp;lt;
2m~1)

ways, and that a characteristic A^ can be chosen

in 2 2&amp;lt;r
-&amp;lt;
2m-2) 1 ways, the value Azm = A 1A 2 ... A2m^ being excluded. In

particular A^ can be chosen in 22 1 ways, and -4 2&amp;lt;r+i
in 2 ways.

To the 2&amp;lt;r+l characteristics thus determined it is convenient* to add

the characteristic A
2&amp;lt;r+2

= A 1A 2 . . . A 2(r+1 ;
if A i} Aj be any two of A l} ..., A 2ff+l

we have

A
2&amp;lt;r+2t A{, Aj

=
I
A{, Aj, AI

|

+ ...... +
|
A{, Aj, A 2a-+i \

= 1,

the expressions A i} Aj, A t \,
\

A it Aj, Aj \ being both zero. We have then

the result : From the 2 2&amp;lt;r characteristics A l} ..., A s it is possible to choose a

set AI, ..., -4 2&amp;lt;H-2&amp;gt;

such thut every three of them satisfy the condition

\A ,A&quot;,A
&quot;

=1,
in

1

(2
2ff~2 -

1) ... (2
2 -

1) 2 2*r+ff8
(2

ar -
1) (2

2ff~2 -
1) ... (2

2 -
1)

ways ; there exists no relation connecting an even number of the characteristics

A l} ..., -A 2 &amp;lt;r+2 except the prescribed condition that their sum is zei*o ; since the

sum of two relations each connecting an odd number is a relation connecting

* In the particular case of 202, Chap. XI., A 2tT+2 is zero.

B. 32
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an even number, there can be at most* only one independent relation con

necting an odd number of the characteristics A!, ..., -4
2&amp;lt;7+2 . And, as before

remarked, to every one of the characteristics A l} ..., -4
2&amp;lt;r+2

is associated a

Gopel system of 2r characteristics.

301. The 2 2or

systems. (A 1 P), ..., (A SP), which have been considered,

were obtained by limiting our attention to one group (P) of 2r pairvvise

syzygetic characteristics. We are now to limit our attention still further to

the sets A lt ..., -A
2&amp;lt;r+o just obtained satisfying the condition that every three

are azygetic.

If to any one of the characteristics A l} ..., A
2&amp;lt;T+2 , say A^, we add the

characteristic X, the conditions that the resulting characteristic may still

be a characteristic of the set A lt ..., A s ,
are ( 298) the r congruences

XAk, Pi
|

=
j Pi \,

in which i= 1, ..., r
;
in virtue of the conditions

|
A^, Pi

\

=
|
Pi ,

these are equivalent to the r congruences \X, Pi
\

=
0, which are

independent of k; these latter congruences have 2^~r
solutions, but from

any solution we can obtain 2 r others by adding to it all the characteristics of

the group (P). There are therefore 22p
~2r = 2 2&amp;lt;T

congruences X, incongruent
with respect to the modulus (P), each of which -f, added to the set A lf . . .

,
A 2(r+z ,

will give rise to a set AS, ..., A 2(T+2 ,
also belonging to A lt ..., A s . Further

|
Ai, A/, Ajc

\

= XAi, XAj, XA k
\

= A i} Aj, A k
= 1

;
and any relation con

necting an even number of the characteristics
J./&amp;gt; ..., A 2lT+2 gives a relation

connecting the corresponding characteristics of A lf ..., A^+2 . Thus the

2 2&amp;lt;r sets derivable from A 1} ..., A^+2 have the same properties as the set

A AXI i, ...
,

,TL 2o.-|_2
.

Hence all the sets A lt ..., A ZtT+2 can be derived from

root sets by adding any one of the 2 2&amp;lt;r characteristics X to each characteristic

of the root set.

302. Fixing attention upon one of these root sets, and selecting

arbitrarily 2&amp;lt;7 + 1 of its characteristics, which shall be those denoted by
A ly ..., A 2(r+i, we proceed to shew that of the 2 2&amp;lt;r characteristics X, there is

just one such that the characteristics XA 1} ..., XA 2&amp;lt;T+l ,
derived from

A lf ..., A 2tr+1 , have all the same character, either even or odd. The

conditions for this are

| .A.n.1 = XAf
*

If the characteristic of which all the elements, except the z-th element of the first line, are

zero, be denoted by /, and E^ denote the characteristic in which all the elements are zero

except the t-th element of the second line, every possible characteristic is clearly a linear aggre

gate of Ejf, ... , Ep, El , ..., Ep. Thus when a has its greatest value, =p, there is certainly one

relation, at least, connecting any 2o- + 1 characteristics.

t It is only in case all the characteristics of the group (P) are even that the values of A&quot; can

be the characteristics A
l , ...

,
A g .
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which are equivalent to the 20- congruences

X.A.Ai = A^ + lAil (i=2,3, ...,(2&amp;lt;r + l));

if X be a solution of these congruences, and P be any characteristic of the

group (P), we have

XP,A,Ai\ = X,A l
A i

\

+ \P,A l +\P,A t
= A, + Ai\ + 2\P\,

so that XP is also a solution; since the other congruences satisfied by X
were in number r, and similarly, associated with any solution, there were 2r

other solutions congruent to one another in regard to the group (P), it

follows that the total number of .characteristics X satisfying all the

conditions is %#-r-**-r = l. Thus, as stated, from any 2&amp;lt;7+ 1 characteristics,

AI, ..., -0.7+1, of a root set, we can derive one set of 2&amp;lt;r + l characteristics

A ly ...^A 2&amp;lt;r+1 ,
which are all of the same character, their values being of the

form Ai = XAi.

Starting from the same root set, and selecting, in place of A lt ..., Av+lt
another set of 2&amp;lt;r+l characteristics, say A^, ..., Av+z ,

we can similarly
derive a set of the form

X A 2 , ..., X 4lsrffi

consisting of 2cr + 1 characteristics of the same character. The question
arises whether this can be the same set as A lt ..., A.M+1 . The answer is in

the negative. For if the set X A a , ..., X A
2&amp;lt;r+2

be in some order the same as

the set XA lt ..., XA 2&amp;lt;r+l ,
or the set XX A 2 , ..., XXA

2&amp;lt;r+2
the same as the

set A lt ..., A^+1 , it follows by addition that XX A^ = A^+2 or XX = A^A*^.
Thence the set A.A.A^,, A.A-.A,^, ..., A^A^A^, A l is the same as

A lt A.,, ..., A^+l ,
or we have 2&amp;lt;7 equations of the form A^A^^^Aj, in

which i = 2, ..., 2a+l,j = 2, ..., 2&amp;lt;r + l. Since there is no relation con

necting an even number of the characteristics A lt ..., A 2&amp;lt;T+2 except the one

expressing that their sum is 0, these equations are impossible*.

Similarly the question may arise whether such a set as A lt ..., A +l ,
of

2o- + l characteristics of the same character, azygetic in threes, subject to no
relation connecting an even number, and incongruent for modulus (P), can
arise from two different root sets. The answer is again in the negative.
For if A 1} ..., A.&+1, and B1} ..., Bw+l be two sets taken from different root

sets, the 2r+l conditions XAi = X Bi, for i = l, ..., 2&amp;lt;r+l, to which by
addition may be added XA^^X B^^, shew that the set Blt ..., 5

2&amp;lt;r+2
is

derivable from the set A ,,..., A 2IT+2 by addition of the characteristic XX to

every constituent. This is contrary to the definition of root sets. Conversely
if AI, ..., A 2a+ be any one of the 2^ sets which are derivable from the root
set A lt ..., Av+a by equations of the form A-=ZAi, the set of 2&amp;lt;r + l

To the sets A lt ..., A^^ and X A 2 , ..., X A
2&amp;lt;r+2

we may adjoin respectively their respective
sums. The two sets of 2ff + 2 characteristics thus obtained are not necessarily the same. When
ff is odd they cannot be the same, as will appear below

( 303).

322
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characteristics of the same character, say AI, . .., A 2&amp;lt;r+l ,
which are derivable

from AI, ..., -A ar+i by equations of the form Ai =X Al, will also be derived

from A 1} ..., A 2a+l by the equations AJ = XA i} in which X = X Z.

On the whole then it follows that there are

different sets, A ly ...,A 2&amp;lt;T+1 ,
of 2&amp;lt;r + l characteristics of the same character,

azygetic in threes, subject to no relation connecting an even number, and

incongruent for the modulus (P).

Of the characteristics A 1} ..., A 2&amp;lt;T+1
there can be formed

(2&amp;lt;r
+ 1, 1) + (2&amp;lt;r+ 1, 3) + ... + (2cr + 1, 2(7 + 1) = 2 2 &quot;

combinations*, each consisting of an odd number
; and, since there is no

relation connecting an even number of A l} ..., Aw+l ,
no two of these com

binations can be equal. These combinations all belong to the characteristics

A lt ..., A s , satisfying the r congruences X, Pf
=

|

Pt
\

;
for

I ~A ~A ~A PI T P I _i_ _i_ I /T PI IP
| -0.1-0.2 &quot;2fc 1&amp;gt;

* i
\

&quot;!&amp;gt;
r i

I

T T
I

&quot;&amp;lt;& 1&amp;gt;

*
&amp;lt;

I

=
I

J t

And no two of them are congruent in regard to the modulus (P) ;
for a

relation of the form

AI . -a.2k i ^m-^-m+i &quot;m+2jA-*&amp;gt;

wherein P is a characteristic of the group (P), would lead to a relation of the

form A
2p
= A 1A 2 ...A 2p

_1 P, and thence give

whereas

P A A
pl-L ,

-0. 2p, -tlj A 1 ... A 2p_ly A.
2p ,
A.

2p , 2p+1

T T ~A 7 i

-&quot;i
-&quot;2p-i&amp;gt;

/1
2p&amp;gt; -&quot;ap+i |

-&quot;!)
-&quot;-2p&amp;gt; -&quot;2p+l

H~ +
-&quot;-2p

1 -&quot;-2p,

Thus the 2 2(r
combinations, each consisting of an odd number of the

characteristics A 1} ..., -4ar+i&amp;gt;
are in fact the characteristics ^4 a , ..., A s . We*f*

call the set A 1} ...,Aw+l & fundamental set. We may associate therewith

the characteristic -4
2&amp;lt;r+2

= .4 1 ... A 2a+l ,
which is azygetic with every two of the

set A 1} ..., Aw+l ;
the case in which it has the same character as these will

appear in the next article. And it should be remarked that the argument

establishes, for the 2 2&amp;lt;r

Gopel systems (A 1 P), ..., (A S P), the existence of

fundamental sets, (yljP), ..., (A 2(r+l P), which are Gopel systems, by the odd

combinations of the constituents of which, the constituents of the systems

(A-iP), ..., (A SP) can be represented.

* Where (n, k) denotes n (n- l)...(?i- k+ l)/k I

t By Frobenius the term Fundamental Set is applied to any 2o- + 2 characteristics (incon

gruent mod. (P)) of which every three are azygetic.
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303. The characteristics A ly ..., A.^+i have been derived to have the

same character. We proceed to shew now, in conclusion, that this character

is the same for every one of the possible fundamental sets, and depends only

on &amp;lt;r. Let
(-7)

be the usual sign which is +1 or 1 according as a- is a
\4/

quadratic residue of 4 or not, in other words, (-) = 1 when a- is = 1 or
\4/

=
(mod. 4), and (

y
j

= 1 when & is = 2 or = 3 (mod. 4) ;
then the character

of the sets A lt ..., Aw+l is
|-J ,

that is, A 1} ...,Aw+l are even when
f-J

= + 1

and are otherwise odd, and the character of the sum A
2&amp;lt;r+2

= A
l ... Ay,+\ is

e I -7
)

Or, we may say

when er = 1 (mod. 4), A lt . .., A^+1 are even, A.2a+ .2 is odd
;

when a = 0, A lt ..., A 2a+l are even, -4^+2 is even,

when a = 2 (mod. 4), A lf ..., A Z&amp;lt;7+1
are odd, A 2 &amp;gt;,+&amp;lt;,

is odd
;

when a = 3, A I} ..., Aw+l are odd, -4^+2 is even.

For if A ly ..., A 2&amp;lt;T+l
be all of character e we have

|

A lA 2 ... A*+1 1

=
| lj |

+ ... +
| Z*+1 1

+ 2
|

A it AJ |,

where ^1^, AJ consist of every pair from A ly ..., A^^ ;
also

where ^Ij, 4;, -4/, consist of every triad from A lt ..., -4afc+il hence, since

\Ai, AJ, A h \

= l, and, as is easily seen, n(n \}(n 2)/3 ! is even or odd

according as n is of the form 4m + 1 or 4m + 3, it follows that S
| -4{, -4j |

is

even or odd according as 2& + 1 is of the form 4&amp;gt;m + 1 or 4m + 3
;
therefore

A
1
A Z ... A&+1 has the character e or e according, as 2k + 1=1 or

= 3 (mod. 4). Thus the number of combinations of an odd number from

AI, ..., -4ar+i which have the character e is

+ 1,5) + (2o-+ 1,9) + ...

= i {(1 + )
2&amp;lt;r+1 -

(1
-

)
2&amp;lt;r+1 + 1 (1

-
tV)

2&amp;lt;r+1 - i (1 + ^)2&amp;lt;7+1

} a;= 1

= 22 -1 + 2*-* sin TT
;

4

this number is 220&quot;&quot;

1 + 2&quot;

7&quot;1 when &amp;lt;r = or a = 1 (mod. 4) ;
otherwise it is

220&quot;&quot; 1
2&quot;

7 &quot;1

;
now we have shewn ( 298) that the characteristics A 1} ..., ^. g

contain respectively 22 &quot;7&quot;1 + 2
&quot;&quot;1

,
2 2 &quot;7&quot;1 2

&quot;&quot;

1 even and odd characteristics, and

( 302) that every one of A lt ..., A s can be formed as an odd combina

tion from A lt ...,Ayr+l ;
hence e = + l when a = or o- = l (mod. 4), and
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otherwise e= 1; this agrees with the statement made. Further, by the same

argument A^A Z . . . Aw+l has the character e or e according as 2o- + 1 = 1

or = 3 (mod. 4) ;
and this leads to the statement made for A 2^+2 .

The reader will find it convenient to remember that the combinations,

from the fundamental set A l} ..., A.^+1) consisting of 1, 5, 9, 13, ... of them,

are all of the same character, and the combinations consisting of 3, 7, 11, ...

are all of the opposite character.

Ex. If A
lt ..., ^4

2p + i
be half-integer characteristics azygetic in pairs, and S be the

sum of the odd ones of these, prove that a characteristic formed by adding S to a sum of

any p+ r characteristics of these is even when r=0 or =1 (mod. 4), and odd when r=2 or

= 3 (mod. 4). (Stahl, Crelle, LXXXVIII. (1879), p. 273.)

304. It is desirable now to frame a connected statement of the results

thus obtained. It is possible, in

(2*?
-

1) (2
2̂ -2 -

1) ... (2-^-
2 -+2 -

l)/(2
&amp;gt; -

1) (2
-1 -

1) ... (2
-

1)

ways, to form a group,

p p p p P P PU
J

*- 1 -1-
2&amp;gt; &amp;gt; *!* iJ *,!* t-*l

of 2r characteristics, consisting of the combinations of r independent charac

teristics Pa , ..., Pr ,
such that every two characteristics P, P of the group

are syzygetic, that is, satisfy the congruence |
P, P |

=
0, (mod. 2). Such a

group is denoted by (P), and two characteristics whose difference is a

characteristic of the group are said to be congruent for the modulus (P).

From such a group (P), by adding the same characteristic A to each

constituent, we form a system, which we call a Gbpel system, consisting of

the combinations of an odd number of r+ 1 characteristics A, AP1} ..., APr ,

among an even number of which there exists no relation
;
this system is such

that every three of its constituents, say L, M, N, satisfy the congruence

L, M, N
\

=
0, or, as we say, are syzygetic. Such a Gbpel system is

represented by (AP).

It is shewn that by taking 2 2̂ ~r different values of A and retaining the

same group (P), we can thus divide the 2 2̂

possible characteristics into

&amp;lt;pp-r Gopel systems. Among these %&-r Gopel systems there are 22P~2r

systems of which all the elements have the same character. Putting

2p 2r = 2&amp;lt;r we shew further that 2&quot;~
1

(2
a + 1) of these Gopel systems

consist wholly of even characteristics, and that 2 &amp;lt;r

~1

(2
cr

1) of them consist

wholly of odd characteristics. Putting s = 2 2&amp;lt;r we denote the 2 2&amp;lt;r

Gopel

systems which have a distinct character by (^iP), ..., (A SP); and, still

retaining the same group (P), we proceed to consider how to represent these

2 2&amp;lt;r

systems by means of 2cr -f 1 fundamental systems.

It appears then that from the characteristics A 1} ..., A s we can choose

2o--l-l characteristics A lf ..., A 2&amp;lt;T+1
in

2 -
1) ... (2

2 -



305] EXAMPLES. 503

ways, such that every three of them are azygetic, and all have the same

character; this character is not at our disposal but is that of (-
J

;
the sum

\ T? /

of A lt ..., A-a+i, denoted by A 2&amp;lt;r+2 ,
has the character e^). Then all the

\4v

combinations of 1, 5, 9, ... of A 1} ..., Aw^ have the character f^j. and all

\4/

the combinations of 3, 7, 11, ... have the opposite character. These combi

nations
in^

their aggregate are the characteristics A lt ..., A s . The charac

teristics A lt ..., A 2(r+1 are, like A 1} ..., A t , incongruent for the modulus (P).
To each of them, say A iy corresponds a Gopel system (AiP), to any con

stituent of which statements may be applied analogous to those made for Zf

itself.

The characteristic A^+ .2 is such that every three of the set A lt ..., A^+ .

2

are azygetic. This set is in fact derived, as one of 2cr + 2 such, from a set of

2&amp;lt;r + 2 characteristics, here called a root set, which satisfies the condition

that every three of its constituents are azygetic without satisfying the

condition that 2&amp;lt;r + 1 of them are of the same character. There are

such root sets. It is not possible, from any root set, to obtain another by
adding the same characteristic to each constituent of the former set.

The root sets are not the most general possible sets of 2&amp;lt;r + 2 charac
teristics of which every three are azygetic. Of such sets there are

2 r+,a
(2*r

-
1) . . . (2

2 -
I)/ 2CT + 2,

but they break up into batches of 2 2&amp;lt;r

,
each derivable from a root set by the

addition of a proper characteristic to all the constituents of the root set.

305. As examples of the foregoing theory we consider now the cases &amp;lt;r

=
0, &amp;lt;r= 1, o-= 2,

&amp;lt;r=p.
When

&amp;lt;r

=
0, the number of Gopel groups of 2&quot; pairwise syzygetic characteristics is

(2&quot;+l)(2J&amp;gt;-i + l) ...... (2 + 1);

from any such group we can, by the addition of the same characteristic to each of its

constituents obtain one Gopel system consisting wholly of characteristics of the same even
character. These results have already been obtained in case p= 2

( 289, Ex. iv.),

and, as in that particular case, the 2f&amp;gt;- 1 other systems obtainable from the Gopel group
by the addition of the same characteristic to each constituent, contain as many odd
characteristics as even characteristics.

When o-=l, we can, from any Gopel group of 2&quot;-
1
pairwise syzygetic characteristics,

obtain 4 Gopel systems, three of them consisting of 2&quot;-i even characteristics and one of
2* -i odd characteristics. The characteristics of the latter (odd) system are obtainable as
the sums of three characteristics taken one from each of the three even systems.

Whon o-= 2, the number of fundamental sets A lt ..., A & is
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each of them has the character
(jj,

or is odd, and their sum, A 6 ,
is odd. Among the

22*=16 characteristics A
1 , ..., A s there are ^

2cr~ 1 -2 &amp;lt;r

~ 1
or 6 odd characteristics; these

clearly consist of the characteristics A lf ..., A 6 ; the six fundamental sets are obtained by

neglecting each of A
lt ..., A 6 in turn. Among the characteristics A

lt ..., A s there are 10

even characteristics, obtainable by combining A^ ..., A g in threes. And, to each of the

characteristics A lt ..., A g corresponds a Gopel system of 2r
=2P-&amp;lt;

r= 2^
~ 2

characteristics,
for the constituents of which similar statements may be made.

Of the cases for which a- = 2, the case p= 2 is the simplest. After what has been said

in Chap. XL, and elsewhere, we can leave that case aside here. For jo
= 3 the Gopel

systems consist of two characteristics ; adopting, for instance, as the group (P), the pair

^ \OOOJ ^ (loo)
^G conc^tion for the characteristics A

l , ..., A^ namely | X, Pl
= P

1 \,

reduces to the condition that the first element of the upper row of the characteristic

symbol of X shall be zero ; hence the 16 characteristics A
lf ..., A, may be taken to be

i (n
1 2

)
wnere if

1 2
) represents in turn all the characteristic symbols for p= 2.

\0 QI a2 / \QI a2 /

Taking next the case o-= 3, there are s=2 2&amp;lt;r=64 Gopel systems, (AP), each consisting

wholly either of odd characteristics or of even characteristics, there being 2&quot;-
1
(2*

-
1),

= 28,

odd systems, and 36 even systems. From the representatives, A lt ..., A g ,
of these systems,

which are incongruent mod. (P), we can choose a fundamental set of 7 characteristics

A lt ...,Af in

29 (26-1) (2*- 1) (22-1) _
17

zoo,

ways; A lt ..., Aj will be odd, and their sum, J
8 ,

will be even; for
(?J

= ()=-!,

6
\4J

= 1 ^e set ^n &quot; ^
7&amp;gt;

^
8

^
s&amp;gt;

^n accor(iance witn ^e theory, derived from one

of 288/(2o-+ 2), =36, root sets A_...,A % ( 301), by equations of the form A^XAi, in

which X is so chosen that A 1} ..., A 7
are of the same character

;
from this root set we can

similarly derive 8 fundamental sets of seven odd characteristics, according as it is A
6
or is

one of A lt ..., A 7
which is left aside. Now the fact is, that, in whichever of the eight

ways we pass from the root set to the seven fundamental odd characteristics, the sum of

these seven fundamental characteristics is the same. We see this immediately in an
indirect way. Let A

lt ..., Aj be a fundamental set of odd characteristics derived from the

root_set
A lt ...,A 8_by_

the equations A^XAi; putting A 8
= A

1
... J7 ,

consider the set

A s , A^A^A^ ..., A^A VA^ A lt derived from A
1 , ..., J8 by adding A^A^ to each

;
in the first

place it consists of one even characteristic, J
8 ,
and seven odd characteristics

;
for

i, A t \= A
t ,Ai,At\ = l, (mod. 2),

because A lt ..., A & are azygetic in threes
;
in the next place

I

A S) A 1} A^AiAi\m\ A s , AH ^| = 1,

so
that^every

three of its constituents are azygetic. Hence the characteristics A
s
A

1
A

2 ,

..., A^Aj^Aj, Aj, which, as easy to see, are not congruent to A lt ..., Aj mod. (P), form,

equally with A ly ..., A 7 ,
a fundamental set, whose sum is likewise A s ; they are derived

from A lt ..., A 8 by adding A^A-^X to each of these. There are clearly six other
jsuch

fundamental sets, derived from A ly ..., A s by adding respectively A
S
A 2X, ..., A 8A^X.

Hence to each of the 36 root sets there corresponds a certain even characteristic and to

each of these even characteristics there correspond 8 fundamental sets. We can now shew

further that the even characteristics, thus associated each with one of the 36 root sets, are
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in fact the 36 possible* even characteristics of the set Jj, ..., A s
. This again we shew

indirectly by shewing how to form the remaining 7 . 36 fundamental systems from the

system A
lt ..., A n

. The seven characteristics A K
A

Z
A 3 ,

A
S
A 3A 1 , A^Aj^A^, A t , A^, A 6 ,

A
7 ,

are in fact incongruent mod. (P), they are all odd, have for sum A
1
A 2A 3 ,

which is even,

and are azygetic in threes
;
for A S A 2 A 3

is a combination of five of A
l , . . .

,
A

7 ,
and

1
4 ,
Z5 |+|13 ,

I4 ,
16 =1, |

Z4 , J6 ,
I6 |

= l,

(the modulus in each case being 2) ;
hence these seven characteristics form a fundamental

system. There are 35 sets of three characteristics, such as A lt A 2 ,
A

3 ,
derivable from the

seven A lt ..., A 7 ;
each of these corresponds to such a fundamental system as that just

explained ;
and each of these fundamental systems is associated with seven other funda

mental systems, derived from it by the process whereby the set A { , Z&amp;lt;ZS14S, ..., AiA s
A

7

is derived from A^ ..., A 7
.

When or
=/&amp;gt;,

a Gopel system consists of one characteristic only ;
we can, in

/p\
ways, determine a set of

2/&amp;gt;
+ l characteristics, all of character (

^ J
,
of which every three

/%)\
are azygetic ;

their sum will be of character e&quot;
ip I

^ ) &amp;gt;

a^ ^he possible 2% characteristics

can be represented as combinations of an odd number of these.

306. We pass now to some applications of the foregoing theory to the

theta functions. The results obtained are based upon the consideration of the

theta function of the second order defined by

&amp;lt;/&amp;gt;
(M, a

; %q) = ^ (u + a
; %q) ^ (u

- a
; %q),

where ^q is a half-integer characteristic; as theta function of the second

order this function has zero characteristic
;
the addition of any integers to

the elements of the characteristic ^q does not affect the value of the function.

By means of the formulae ( 190, Chap. X.),

wherein N denotes a row of integers and X(?*; s)
=H

ii (u + ^fls) iriss, we

immediately find

&amp;gt;

a
; 1 q)

=^ **&amp;gt;

&amp;lt;f&amp;gt; (u,
a

;

where %kq denotes the sum of the characteristics %k, ^q; to save the repeti
tion of the ^, this equation will in future be written in the form (cf. 294)

(u

when the contrary is not stated capital letters will denote half-integer
characteristics, and KQ will denote the reduced sum of the characteristics

K, Q, having for each of its elements either or .

*
Thus, when p = 3= ff , the result quoted in 205, Chap. XI., is justified.
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We shall be concerned with groups of 2 pairwise syzygetic characteristics,

such as have been called Gopel groups, and denoted by (P) ; corresponding

to the r characteristics P1( ...,Pr from which such a group is formed, we

introduce r fourth roots of unity, denoted by en ..., er ,
which are such that

6
2 _

Qiri
I P, I

?
_ ^2

_
ewi I Pf I

.

the signs of these symbols are, at starting, arbitrary, but are to be the same

throughout unless the contrary be stated. Since the characteristics of the

group (P) satisfy the conditions

|
Pi, Pj \

= 0, (mod. 2),

we may, without ambiguity, associate with the compound characteristics of

the group the 2r r symbols denned by

eo =l, ei)j
=

ei

i Pi \ /PA /PA /PA / P,- \ / P* \

*, ;, *
=

*&amp;lt;?;,
k (p pJ

= e f 6;
6A I I 1 (I =

6J6*. ; [ppj
=

* f, j
( p p I

,

\fjfJt/ \-L k/ V* / V-1-

j x-4 ik-^ t v* t-1 7

.

and ej
= et

-

f ^
=
e^e^ I p ,

etc.
V *&amp;lt;

Consider now the function* denned by

where A is an arbitrary half-integer characteristic, and Pi denotes in turn all

the 2r characteristics of the group (P). Adding to u a half-period Qpk ,

corresponding to a characteristic Pk of the group (P), we obtain

&amp;lt;t&amp;gt; (u 4- n
Pjfc

, a; A)

if then P^ = PiP*, or P{ = PhPk ,
we have

P\ / P, \ /Pi\ /P, \ /P, \ /P,\ /P,\ /P..
i\ I * 1 \ I

rh\ I J- k\ I * k\ (fm\ f
* il I

r h ,
.

fcfcc

now, as Pi becomes in turn all the characteristics of the group (P), Ph ,
= PiPk ,

also becomes all the characteristics of the group, in general in a different

order
;
thus we have

&amp;gt;,; A),

*
If preferred the sign ( ) ,

whose value is 1, may be absorbed in ej . But there is a

tain convenience in writing it explicitly.
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If 2fl3[ be any period, we immediately find

4&amp;gt; (w + 2&M, a
I -4)

= e2A(W;m &amp;lt;& (u, a
; A).

Thus, X(w; P*) being a linear function of the arguments %, ..., up ,
the

function &amp;lt;3&amp;gt; (w, a; -4) is a theta function of the second order with zero

characteristic, having the additional property that all the partial differential

coefficients of its logarithm, of the second order, have the 2r sets of simul

taneous periods denoted by the symbols ^ipk -

Ex. i. If S be a half-integer characteristic which in syzygetic with every characteristic

of the group (/*), prove that

* (u + Q,, a
; A) = e* (u &amp;lt;

and

jfilt
1
. ii. If Pj; be any characteristic of the group (1*), prove that

4&amp;gt; (u, a Al\} = ( -i * (, a
; ^1).

j&a;. iii. When, as in Ex. i., S is syzygetic with every characteristic of the group (P),

shew that

e- IS V * (, a
;
APk) * (, Z&amp;gt;

;
APt )

= e*
i{s *

*(M, a
; J) * (, 6

; ^1).

Conversely it can be shewn that if a theta function of the second order

with zero characteristic, H (w), which, therefore, satisfies the equation

II(tt+fl,) = e2A &amp;lt;
M) n(),

for integral m, be further such that for each of the two half-periods associated

with the characteristics \m = P, ^m = Q, there exists an equation of the form

n (u + %tim)
= e ^+&quot; 1 i+-+&quot;/.;. n (u),

where p, vl} ..., vp are independent of u, then the characteristics P, Q must

be syzygetic. Putting vii = v1n 1 + ...... + vpup ,
we infer from the equation

just written that

n (u + nm)
= ^+-(+im) n (u + ^nw)

= &+*+wm n (M) ;

comparing this with the equation

n (u + n,a) = e2A (M) n (M)
= e*u &amp;lt;

H+ * a &amp;gt;&amp;gt;-*
rimm n (%)

we infer that v =Hm , p = kiri + ^HmQm iriiniri, where k is integral, and

hence

n (u + |nm)
= + e-i-*M +2A&amp;lt;u s J?w) n ^w^

307. In accordance with these indications, let Q(u) denote an analytical

integral function of the arguments w1} ..., up which satisfies the equations

Q(u + nm)
= ^&quot;

^ Q(u); Q(w + ft
Pjfc)

= efc ei^i+^5^&amp;gt; Q(M),

for every integral m and every half-integer characteristic P^ of the group (P).
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We may regard the group (P) as consisting of part of a group of 2^

painvise syzygetic characteristics formed by all the combinations of the

constituents of the group (P) with the constituents of another pairwise

syzygetic group (R) of %P~r characteristics. Then the 2? characteristics of

the compound group are obtainable in the form PiRj, wherein P{ has the 2r

values of the group (P), and Rj has the 2^~r values of the group (R). Since

every 2^+1 theta functions of the second order and the same characteristic

are connected by a linear equation, we have

CQ(u)=2Ci&amp;gt;j &amp;lt;f&amp;gt;(u,a;

where C, Git j
are independent of u and are not all zero*. Hence, adding to

u the half-period Qpk ,
we have

*j Q (u) = 2 Citj e^-&amp;gt;^^ LJ 4&amp;gt; (u, a
;
P{PkRj),

and therefore, as q,^*
p*J =

e&quot;

1
,

/ p \

CQ (u)
= 2 Cij (p

-

J
e*&amp;lt;/&amp;gt; (w, a

; PiPkRj) ;

forming this equation for each of the 2r values of Pk ,
and adding the results,

we have

herein put Ph = PiPk, so that as, for any value of i, Pk becomes in turn all

the characteristics of the group (P), the characteristic P^ also becomes all the

characteristics in turn, in general in a different order
;
then

Ph\ /PhPi\ /Ph\ /Pm = hi

and, therefore,

u) = 2 2 eh

j h

where

*

and thus

Now the 2^~r functions &amp;lt;E&amp;gt; (tt, a ; Rj) are not in general connected by any
linear relation with coefficients independent of u

;
for such a relation would

be of the form

*
It is proved below

( 308) that the functions
&amp;lt;f&amp;gt; (u, a

; P{Rj) are linearly independent, so

that, in fact, C is not zero.
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wherein Hi is independent of u, and Qi becomes, in turn, all the constituents

of a group (Q) of 2^ pairwise syzygetic characteristics, and we shall prove (in

308) that such a relation is impossible for general values of the arguments
a. Hence, all theta functions of the second order, with, zero characteristic,

which satisfy the equation

Q(u + fl
Pjfc)

= et e i

p*i+ 2A
&amp;lt;s *V Q (u)

for every half-integer characteristic Pk of the group (P), are representable

linearly by 2^&quot;*&quot;,
=

2&quot;, of them, with coefficients independent of u. We have

shewn that the functions &amp;lt;I&amp;gt; (u, a; A), defined by the equation

u-a; APt),

where the summation includes 2r
terms, are a particular case of such theta

functions.

308. Suppose there exists a relation of the form

where the summation extends to all the 2 ?) characteristics Q{ of a Gopel group (Q), and Hi
is independent of u. Putting for u, it+ QQa ,

where Qa is a characteristic of the group (Q),

we obtain

hence, if tlt ..., ep are fourth roots of unity associated with a basis Qlt ..., Qp of the group

(Q), as before, and this equation be multiplied by fa ,
and the equations of this form

obtained by taking Qa to be, in turn, all the 2p characteristics of the group (Q), be added

together, we have

now let Qj-=QaQi} then for any value of i, as Qa becomes all the characteristics of the

group (Q), Qj will become all those characteristics
; therefore, substituting

we have

hence one at least of the expressions

2
f&amp;gt;

3 (u+ a; A Qj) 9(u + b
J i

must vanish.

Here 15 e2 , ... have any one of 2&quot; possible sets of values. The expression S/^ef
1
cannot

i

vanish for every one of these sets
; for, multiplying by e/

1

,
we have then

where f
iti ,

like e^, becomes in turn the symbol associated with every characteristic of the

group, and there are 2*&amp;gt; equations of this form; adding these equations we infer #, = 0,

and, therefore, as^ is arbitrary, we infer that all the coefficients are zero.
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Hence it follows that there is at least one of the 2p sets of values for e1} , ..., for

which
2c

y .9 (u+ a; A Q-) 3 (u+ b
;
A Qj)

= 0.
./

When the arguments u + a, u + b are independent, this is impossible; for putting
u + a=U, n +bV, this is an equation connecting the 2&quot; functions 3(U; AQj) in which
the coefficients are independent of 7(cf. 282, 283, Chap. XV.).

When the arguments u+ a, u+ b are not independent, this equation is not impossible.

For instance, if flc
= -e*1

1

&l, it is easy to verify that

; Qh)3(u; Qh)

and hence the equation does hold when A =
0, a = QQ ,

6= 0, ek= e*
1 ^*

,
for all

the values of e
1 , ..., *,._,, (k + l , ..., fp . For any values of the arguments u+ a, u + b

we infer from the reasoning here given that if the functions 9 (u+ a
; AQ^S^ + b; AQt)

are connected by a linear equation with coefficients, H^ independent of u, then (i) they
are connected by at least one equation

for one of the 2&quot; sets of values of the quantities fl ,
f
2 , ..., and (ii) similarly, since the 2*

functions 3 (u+ a; AQi)9(u+ b; AQ-) do not all vanish identically, that the coefficients

are connected by at least one equation

309. The result of 307 is of great generality; we proceed to give

examples of its application ( 309 313). The simplest, as well as the most

important, case is that in which cr = 0, r=p, and to that we give most
attention ( 309311).

When &amp;lt;r
= 0, any two of the functions

&amp;lt;(&amp;gt;, a; A) are connected by a

linear equation, in which the coefficients are independent of u. If v, a, b be

any arguments, and A, B any half-integer characteristics, introducing the

symbol e to put in evidence the fact that
3&amp;gt;(u, a; A) is formed with one

of 2^ possible selections for the symbols e1 ,..., p , and so writing &amp;lt;I&amp;gt; (u, a; A,e)
for

4&amp;gt;(w, a; A), we therefore have the fundamental equation

3&amp;gt;(u v A c^^(u&amp;gt;b;B,e)^(a,v-A,e)

By adding the 2? equations of this form* which arise by giving all the

possible sets of values to the fourth roots of unity e^ ..., e^, bearing in mind
that every symbol e{ , except e

,
=

1, occurs as often with the positive as with

the negative sign, we obtain

(a,v, A, e)

,3&amp;gt;(a,b;B, e)

* Wherein it is assumed that a, b have not such special values that any one of the 2? quanti
ties * (a, 6

; B, e) vanishes. Of. 308.
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whereby the function
&amp;lt;f&amp;gt;

(u, v
; A) is expressed in terms of 2^ functions

&amp;lt;I&amp;gt; (u, b
; B, e).

By taking, in the formula

3&amp;gt; (u, v; A, e) &amp;lt;& (a, b
; B, e)

= ^ (u, b; B, e)
&amp;lt;

(a, v
; 4, e),

or

A E
j X- 1 / \-O

= 2 2
6,6; &amp;lt;*&amp;gt; (*, 6

; BPt) ^(a,v; APj).

all the 2^ possible sets of values for elt ..., ep ,
and adding the results, we

obtain

increasing a and b each by the half-period H^, we have

t;
;
^^Pf)

&amp;lt;/&amp;gt;
(a, b

; 5JKP,-)

iWf**l.#&amp;lt;tfci BPi
)&amp;lt;f&amp;gt;(a) v;

taking R to be all the possible 2^ half-integer characteristics in turn, and

adding the resulting equations we deduce*, putting C = AB,

, b; AC)(j)(a,v; A)

e i^ i

&amp;lt;f&amp;gt; (u, v RAPt) &amp;lt;t&amp;gt;(a,b;
RAP)

i R \ ^ J

?(AS\ nilASl ., ^ .. , Q~= Zi I ~ I e
&quot;

i

&amp;lt;p
(ii, v

, &amp;gt;) &amp;lt;p (a, o
; &amp;gt;0),

s V t/ /

where -4, (7 are arbitrary half-integer characteristics, and S becomes all 2^

possible half-integer characteristics in turn
;
for (Ex. ii. 295), Se7&quot; 1 -^ ^1 = 2^

it

when P; = 0, and is otherwise zero, while, for any definite characteristic APit

as R becomes all possible characteristics, so does RAP{ . The formula can be

simplified by adding the half-period lc to the argument b; the result is

obtainable directly by taking C= in the formula written.

This agrees with a result previously obtained ( 292, Chap. XVI.) ;
for a

generalisation of it, see below, 314.

* This equation has been called the Riemann theta formula. Cf. Prym, Untersuchmifien Hber
(lit- Riemaim telu Thftnfarmcl, Leipzig, 1882.



512 INDICATION OF [310

310. The formula just obtained may be regarded as a particular case of another which

is immediately deducible therefrom. Let (K)
be a group of 2M characteristics formed by

taking all the combinations of
p. independent characteristics Klt ..., K^; if A be any

characteristic whatever, we have

according as \A, _ffj|==0 (for i= l, ..., /*),
or not; hence, putting (7=0 in the formula

of 309, and replacing the A of that formula by Kit we deduce

2^ ^
JT IT O

2^-M2e&quot;
|ji
^l^(M, 6; Ki)(f&amp;gt;(a,v,

Ar

i)
= 2- A 2 e&quot;

14^ 1 Se^ 1^81 ^ (w, v; S)&amp;lt;j)(a,b; S),

where becomes all 22
*&amp;gt; characteristics,

= 2 ^2 e
7

2 c
*

&amp;lt;p
(u, V

, S} &amp;lt;f&amp;gt;
(a, b

; &amp;gt;S)

,S i=l

/ 2^ \
n ~u Tri I j4 1

iri ^4-R / Trt 72, Ay \ . / A
r&amp;gt;\

i / T ,*
/&amp;gt;\

=: 2 e 2e (2e /V (% &amp;gt;

^
!

&quot; ^/ \^*&amp;gt;

^
&amp;gt;

&quot;

v&amp;gt;

J{ \i=l /

where R becomes all 22p characteristics,

(a,b; AR\
it

where R extends to all the 22p
~ A

characteristics for which
| R, Ki\ = 0, ...,

\
R,

Putting w+ Ojg,
a+ QB for u, a respectively, and replacing AB by C, we obtain

~
,

**
1
BCL; I /

e J $ (M, v

j=i

here
(A&quot;)

is any group of 2^ characteristics, (Z) is an adjoint group of 22p
~ 4

characteristics

defined by the conditions \L, K\ = Q (mod. 2), and B, C are arbitrary half-integer

characteristics. The formula of the previous Article is obtained by taking /x
= 0. The

formula of the present Article may be regarded as a particular case of that given below

in 315.

311. The function
&amp;lt;j)(u, v; A) is unaffected by the addition of integers

to the half-integer characteristic A
;
we may therefore suppose that in the

functions &amp;lt; (u, v, APi) which have frequently occurred in the preceding

Articles, the characteristic APi is reduced, all its elements being either or \.

In the applications which now immediately follow ( 311) it is convenient, to

avoid the explicit appearance of certain fourth roots of unity (cf. Ex. vii.,

p. 469), not to use reduced characteristics. Two, or more, characteristics

which are to be added without reduction will be placed with a comma between

them
;
thus A, Pi denotes A + Pt . The characteristics Pt

- are still supposed

reduced.

Taking the formula ( 309)

^ 3&amp;gt; (u, b
;
A

, e)
&amp;lt;

(a, v; A, e)-
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where A replaces the B of 309, suppose a = b, and put, for

u - b, a + v, a-v, u + v, u-v, a + b, a - b, u + b,

respectively,

U, V, W, U+V, U+W, V+W, 0, U+V+W;
then we obtain

; A)*(U+W; A)

! C )
e**(F+ w ;

A
&amp;gt;

adding to V and W respectively the half-periods flB ,
flc ,

this becomes

**\U, F; A,B][U, W- A,C]

2 2 vMttjW V, W; A , B, C, PJ [U; A ,
P{] [V;A,B, Pj] [ W; A, C, Pj]= 2 1 3

2vk8t[V, W; A .B, C,Pk][0- A ,Pk]
k

wherein [U,V;A,B] denotes ^ [U+V- A+B], etc., ^= f 6,, ^ =
it

\^L / V^l /
/ /Q \ / f\ / \

etc., and, if =
)

,
C = i(^ )

, P, = i(^ ) ,
then ^^ s

fc are fourth roots of
\P \V/ V^r/

unity given by ^^-
= e-J(^ -h )(?

l
.+g

(
.)

) 5jfc
= e-JiriO +y )9

Jfct

In connexion with this formula several results may be deduced.

(a) Putting W = -
V, A + B = K, A + G = D, A = D, the formula gives

an expression of *[U+ V; K]*[U-V; D] in terms of the quantities

* [V; KP&amp;lt;], *[U-t DP,], ^[V- DP,], *[0; KP,],

the expre-ssion contains in the denominator only the constants ^ [0 ; KPt],

[0; DP{]; it has been shewn ( 299) that not all the characteristics KP-,
i can be odd.

Putting further K = Q, we obtain an expression of ^IU+V- 01

*[U-V-, D] in terms of

-,

Pt], *[V- P.;], *[U; DP,], ^[F; DP,], ^[0; P,],

Dividing the former result by the latter we obtain an expression for
U+ V- K]/*[U+ V- 0] in terms of theta functions of U &nd Fwith the

characteristics DPt , KP,, P{ , the coefficients being combinations of & [0 ; PJ,
^[0; DP,], ^[0; KP{] with numerical quantities. In this expression the
characteristic D is arbitrary ;

it may for instance be taken to be zero.

33
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The formulae are very remarkable
; replacing, on the right hand, e

t
-e
wil ^ V

by i, as is clearly allowable, and taking .0 = 0, they are both included in the

following formula (cf. Ex. viii. 317)

-v; 0]

;
P )

ik \ !Q \
where K = 4

7 ) ,
Pa = i

,
and the summation in regard to a extends to

2W 2
Vga/

all the 2? characteristics, Pa ,
of the group (P).

It is assumed that the characteristic K is such that the denominator on

the right hand does not vanish for any one of the 2? sets of values for the

quantities ea . For instance the case when K is one of the characteristics of

the group (P), other than zero, is excluded (cf. 308).

Ex. i. For p= l, if P denote any one of the half-integer characteristics other than

zero,

[3* (u) 3
2
(v) + 3*p (u)4 ()] 5

2
(0)

-
[3

2
(u)4 (v) +e I

p
1^ (it) 3

2
(*)]4 (0)

where 5 (w), ^P (w) denote 3 (u; 0), 5 (u; P), etc.

.&. ii. By putting, in case p = 2,

deduce from the formula of the text that

4^2 (0) $01 () 502 (&quot;
+ ) ^5 (v ~u )= 2

^1 &amp;gt;
^2

wherein ,= +1, f2= +1, and

A
,
B

, C&quot;,
I? denoting the same functions of the arguments u .

Hence obtain the formula given at the bottom of page 457 of this volume.

08) Putting B= C, V=W=0,A = A, we obtain

tij [U; A, B, B, P{][U; AP&amp;lt;] [0 ; A, B,

o
; A,B,B,Pk][0; A, Pk]

k

which shews that the square of any theta function is expressible as a linear

function of the squares of the theta functions with the characteristics forming

the Gopel system (^1P). We omit the proof that these 2? squares,

^(U; APi), are not in general connected* by any linear relation in which

the coefficients are independent of U.

* Cf. the concluding remark of 308, 291, Ex. iv. and 283.
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Ex. For p= 2 obtain the formula

where 52
= 52 (0), etc.

(7) There is however a biquadratic relation connecting the functions

(u ; APi) provided p be greater than 1. In the formula ( 309)

(a-b; A, Pt)

(a-v; A, 1\\

supposing the characteristic A to be chosen so that all the characteristics

APt are even, as is possible ( 299) by taking A suitably, substitute for

u + v, u-v, a + b, a b, u + b, ub, a + v, av
respectively

u + v + w, u-v, a + b + w, a-b, u + b + w, u - b, a + v+w, a - v;

then, putting a = b = 0, we have

n- v
-

A, Pi)*(u + v + w ; A, P&amp;lt;)

(v + w; A, P,);

herein put w = n
Pi ,

v = u + LPn , where P,, P2 are two of the characteristics

belonging to the basis Plt ..., Pp of the group (P) ;
then we obtain

/PP

l

)r&amp;lt;i

J
M&amp;lt;tii 4, Pf)*(; ^, P,, PW*; ^^2 &amp;gt; A-)^(; A, plt p., PA

t /

Now every characteristic of the group (P) can be given in one of the forms

Qg, Q*Pi, QsPz, QPiP2 ,
where Qs becomes in turn all the characteristics of

a group (Q) of 2^~2
characteristics

; putting

we immediately find

* ( ; Q.) = * ( ; Q., P,) = *(*;&. A) = ^ (* ; Q-, A, P9) ;

hence the equation just obtained can be written

u

where Rm has the four values 0, P,, P,,, P, + P.,.

Again, if in the formula ( 309)

332
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we add to u the half period Op ,
we obtain, after putting u = v, a = b = 0, the

result

,0; A,e)
where

By substitution of the value of ^ (2u ; A, Pk) given by this formula, in

the formula above, there results the biquadratic relation* connecting the

functions ^ ( ii
;
A PI).

(8) As an indication of another set of formulae, which are interesting as

direct generalizations of the formulae for the elliptic function $(u), the

following may also be given. Let

a a
o A,j ~ r ~r A^ ,5 ,

dvl

r
ovp

where \, ...,\p are undetermined quantities, SS- (v)
= & (v*), 8*$ (v)

=W (v),

and let

+W(v; A)-

then, differentiating the formula

(u, b; A, e) 3&amp;gt; (a, v
; A, e)

twice in regard to v, and afterwards putting v = and b = 0, we obtain

wherein

(* j APk)

the 2^ quantities Ct being independent of M and of a. By this formula the

function
%&amp;gt;(u , A) is expressed linearly by the squares of 2P theta quotients

(cf. Chap. XI. 217).

*
Frobenius, Crelle, LXXXIX. (1880), p. 204. The general Gopel biquadratic relation has also

been obtained algebraically (for Riemann theta functions) by Brioschi, Annal. d. Mat., 2a Ser. ,

t. x. (18801882).
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312. These propositions ( 309 311) are corollaries from the fact that

the functions Q(u, a; A, e) are linearly expressible by 2*
~r of them; we

have considered the case r=pa,t great length, on account of its importance.

Passing now to the case r = p 1, there is a linear relation connecting

any three of the functions

&amp;lt;f&amp;gt; (u, a
; A, e)

=
2

S
(

P
f] ei* (u + a- AP{) *(u-a; APt ).

i= l \-- /

There is one case in which we can immediately determine the coefficients in

this relation
;
we have &amp;lt;r

= p -r=l, 2 2(T = 4
;
there are thus four character

istics A, whereof three are even and one odd, which are such that all the

2P-1 characteristics (AP) are of the same character. Taking the single case

in which these are all odd, we have

4&amp;gt;(M, a; A, e)
=

-&amp;lt;(, u; A, e), and $&amp;gt; (a, a; A, e)
= 0;

hence, if, in the existing relation

X4&amp;gt; (u, a; A,e) + n$&amp;gt;(u,b; A, e) + i/&amp;lt;X&amp;gt; (u, c; A,e) = 0,

wherein X,, p, v are independent of u, we put u = a, we infer

yu : v = &amp;lt;5&amp;gt; (c, a
; A, e) : &amp;lt;b (a, b

; A, e) ;

thus the relation is

,
c- A,)(u,a; A, e) + 3&amp;gt; (c, a

; A, )(u,b; A, e)

+ 4&amp;gt; (a, 6; A, e) &amp;lt;!&amp;gt;(, c; A,e) = 0,

or
2P-1
V

where

-c-, AP})

-a; AP,)

Adding together all the equations thus obtainable, by taking all the

possible sets of values for the fourth roots of unity ely ..., ep-lt we obtain

For instance, when
/&amp;gt;

=
!, this is the so-called equation of three terms, from which all

relations connecting the elliptic functions can be derived. When p= 2, it is an equation
of six terms and there are fifteen such equations, all expressed by

;A)$(b-c ,A)

A and B being any two odd characteristics*.

*
Cf. Frobenius, Crelle, xcvi. (1884), p. 107.
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313. Taking next the case r=p 2, every 22 + 1, or 5, functions

&amp;lt;&amp;gt;

(w, a; .4, e) are connected by a linear relation. In this case there are

sixteen characteristics A such that all the 2p
~2 characteristics (AP) are of

the same character, six of them being odd. Denoting the six odd character

istics in any order by A 1} ..., A s ,
and an even characteristic by A, there is an

equation of the form

\^ (u, a; A lt e) + X2 3&amp;gt; (u, a
;
A 2 , e) + \3 &amp;lt;& (u, a; A 3 , e)

=
4&amp;gt; (u, a

; J.4, e) + X3&amp;gt; (w, a
; A, e) ;

putting herein u = a, this equation reduces to
\&amp;lt;I&amp;gt;(a, a; J., e)

= 0, so that

A, = 0. The other coefficients can also be determined
; for, if C = A 2A 3 ,

we

have ( 306, Ex. i.),

4&amp;gt; (M + flc ,
a

; A, e)
= e*(-. O (^

a

/
3

)
&amp;lt;X&amp;gt;

(ti, a ; 44.A,, e) ;

putting therefore for u, in the equation above, the value a + Hc ,
where

C= A 2A 3 ,
and recalling ( 303) that A^A^As, A 4A 2A 3 are even characteristics,

we infer

X,
*

&amp;lt;S&amp;gt; (a, a A,A 2A S , e)
= **

4&amp;gt; (a, a
; A,A,A 3 , e).

Proceeding similarly with the characteristics A 3A lf AjA 2 in turn, instead of

A 2A 3 ,
we finally obtain

3&amp;gt; (a, a
;
A tAM &amp;lt;$&amp;gt; (u, a- A,) +

*
3&amp;gt; (a, a ;

A 4A 3A,) & (u, a
; A,)

\-d. 2-^4

&amp;gt;

(a, a; A.A.A,) $&amp;gt; (u, a
;.
A 3)

=
$&amp;gt;(a,a; A.A^A,) &amp;lt;& (u, a

;
A t),

where, for greater brevity, the e is omitted in the sign of the function 3&amp;gt;

(cf. Ex. viii., 289).

Ex. For p= 2, deduce the result

*MSM (2-t;) 502 (u+ v) \, (u-v)- 403303 (2 v) $u (u+ v)9M (u-v) + 523^23 (Zv)^(u+ v} S0i(u-v)

where ^34
=

^34(0), etc. When v= Q this is an equation connecting the squares of 302 (),

3-24 (tt), ^04 (), ^1 ()-

314. The results of 309, 310 are capable of a generalization, obtainable by a repeti

tion of the argument there employed.

A group of 2fc

pairwise syzygetic characteristics may be considered as arising by the

composition of two such groups. Take k,
= r+ s, characteristics Ply ..., Pr , Qi, &amp;gt; Qs,

every two of which are syzygetic ;
form the groups

(P) = 0, /j, ..., Pr , PI&quot;Z, , j*n

respectively of 2 &amp;gt;- and 2s characteristics
;
the 2 &amp;gt;- + 8 combinations R

iyj
= PiQj form a group

(/) of 2r + *
pairwise syzygetic characteristics; for distinctness the fourth roots of unity
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associated respectively with 1\, ..., Pr , Qlt ..., Qt , may be denoted by *j, ..., f r , f,, ..., ( ;

then with /W, Qj,jlt Ri,j will be associated the respective quantities

(Pi\ ,, (Qt\
&amp;lt;.&amp;lt;,

=
,

(pj , &,*
=

&&amp;lt;*

(QJ ,
-

thus if J be any characteristic

- . .

A &quot;\ A Q,
-

;
*

Therefore, using the symbol for a sum extending to the whole group (PQ\

* (u, a
; A, E)= 2 E

{ f
$ (u+ a

; AR^) 3(u-a; ARU]

; AQJ
P

i)9(u-a; AQ.P,)

where * denotes a sum extending to the 2 r terms corresponding to the characteristics of

the group (7*).

By the theorem of 307 the functions obtainable from * (?*,
a

; A, E) by taking

different values of a and A, and the same group (PQ), are linearly expressible by
2P-r- = 2&amp;lt;r- Of them, if v=p r, with coefficients independent of u. The 2s functions

* (u, a
; AQjy e), obtained by varying a and Qit are themselves expressible by 2&quot; of them.

Thus, taking r+s=p, or s=
cr,
we have

* (M, w
; J, J) * (a, 6

; ^1, ^) =* (u, b
; 4, #) V (a, v; A, E)

or

.2 (^
= s

taking for \, ..., f, all the possible 2* values, and adding the 2* equations of this form,

we obtain

2e&quot;lfcl*(M, v; 4Q,,f)*(a,6; 4^, )=2 H|* #(%6j .!&amp;gt;, e) * (a, ; 4&, e).

J=i j=i

Suppose now that A
1 ,...,A^ are the 2217 characteristics satisfying the r relations

| X, Pi |

=
| PJ |, (mod. 2), and let (7m=^ 1

^4m ;
then

|

Cm) Pi
|

=
; hence, by the formulae of

306, Ex.
i., adding the half period QCm to u and 6, and dividing by the factor e

77 *
1
*7

&quot;&quot;
Al

,

we have

taking, here, all the 2 2&amp;lt;r values of (7m in turn, and adding the equations, noticing that

is zero because Qj is not a characteristic of the group (/ ), except for the special value

Qj=0, when its value is 2 2&amp;lt;r

( 300), we derive the formula

2*r * (M, i
; J, * (, ; 1,0=2 S c

f ic
&amp;gt;

(
M , v

;
.IC ,,,^, f) * (, b

;
.K ,,,^, e) ;

J-=l m=l
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now, as already remarked
( 298, Ex.), if a characteristic S which is syzygetic with

every characteristic of the group (P) be added to each of the 2 2&amp;lt;7 characteristics A
lt ..., A k

the result is another set of 22a characteristics satisfying the same congruences, | X, I\ =
\ 1\\ ,

as the set A 1} ..., A^, and incongruent mod. (P) ; thus, taking a fixed value of j, we have
CmQj=CnPi, where, as C,n takes its 2 2&amp;lt;T

values, Cn also takes the same values in another

order, and Pi varies with m. Hence (Ex. iii. 306) we have

^KW *(w,t, ; ACmQJt e)* (0,6; ACmQj, f )
= e

nilc*pi
l *

(
u

,
v- ACnPit i) * (a, b; ACnPit ),

=e^ c
&amp;lt;*(u,v; ACn ,

()*(a,b; ACn ,t),
and

and therefore, finally, dividing by a factor 2 (there being 2 &amp;lt;r characteristics in ($)), we
have

2 2&amp;lt;T

2** (w,6; A, )*(, v; ^,0= 2 e* 1^* *(*,; 4J^m , e)*(a, 6; ^J^m , e).
m=l

When 0-=^, this becomes the formula of 309. We infer that the functions

&amp;lt;J&amp;gt;(M, a; -4, e) are connected by the same relations as the functions of the form

; A) 3 (u-a; A] when the number of variables (in the latter functions) is &amp;lt;r.

Ex. Prove that, with the notation of the text,

f *(a,b;A,E)

315. The formula of the last Article is capable of a further generalization. Let (R) be

a group of 2^ characteristics, formed with Jtlt ..., R^ as basis, which satisfy the conditions

R P =0 /f P \
=

Jt, 1
j V, . . .

, ./,, 1
,. |

U.

Thus (P) is a sub-group of (R) ;
the group (If) consists of (P), together with groups (RP),

whereof the characteristics R form a group of 2*~ r
characteristics, whose constituents are

incongruent for the modulus (P). The basis of this sub-group of 2^~ J characteristics will

be denoted by R 1 , ..., R,j._ r . The total number of characteristics satisfying the prescribed
conditions is 22p

~ r
;
thus p^2p r, and, when

/z&amp;lt;2jo-r
the given conditions are not

enough to ensure that a characteristic belongs to the group (R).

Then, if F, G be arbitrary characteristics, and R
t become in turn all the characteristics

of a group of 2A*~ r characteristics of the group (R) which are incongruent mod. (P), we
have

I

* (, 6; GF&i, t) * (a, v
;
GR

t , e)

SJM-r

where (7m= A^Am . Since
| ^, P =0, the constituents of the set RiCm ,

where /? is a fixed

characteristic and m=l, 2, ..., 22(T
,
are in some order congruent (mod. (P)) to the con

stituents of the set Cm ;
hence

( 306, Ex. iii.) the series is equal to

M, v
;
6 &amp;lt;7m ,

e
) * (a, b

; (70^, c),

*ilj $ (M) v; (yc^, e) * (a, 6; (?(7m , e) ;
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&amp;lt;jy-r

now 2 e
nl

* is zero, \mless \L, lii\=0 (mod. 2) for every characteristic Ii^ in which
i=l

case its value is 2 4 ~ r
;
thus the series is equal to

where Sm satisfies the conditions involved in
|

Sm ,
R

f =0, FGCm=Smj namely the con
ditions

\Sm , R, =0, ..., \Sm , ^_ r |sO, FGSm ,
P

l =0, ..., \FGSm ,
Pr

\

=
,

the number of characteristics satisfying these
/* conditions is 2

2
^~^; the number of these

which are incongruent for the modulus (P) is 2
2P~ *~ r=22o +r ~ i

.

Suppose now that \FG, Pj =0, ..., | FG, Pr
|

=
;

then the characteristics Sm con
stitute a group satisfying the conditions

|

Sm ,
R =0, where R becomes in turn all the 2^

characteristics of the group (R). The group (S) of the characteristics Sm may be obtained

by combining the characteristics of the group (P) with the characteristics of a group of

2 f-f. r
characteristics which also satisfy these conditions and are incongruent for the

modulus (P) ; putting fj.
= r+ p, we have therefore*

i,

*(,*; FSm ,t)*(a,b; FSm , e).

In this equation each of Rit Sm represents the characteristics, respectively of the

groups (R), (S), which are incongruent mod. (P). But it is easy to see
( 306, Ex. iii.)

that we may also regard Rt ,
Sm as becoming equal to all the characteristics, respectively,

of the groups (R), (S}.

316. We have shewn in Chap. XV. ( 286, Ex. i.) that a certain addition
formula can be obtained for the cases p= 1, 2, 3 by the application of one
rule. We give now a generalization of that rule, which furnishes results for

any value of p.

Suppose that among the 2 2&amp;lt;r characteristics A lt A 2 , ..., A^ which, for any
Gopel system (P) of 2r

characteristics, satisfy the conditions

we have k + 1 = 2-+ 1 characteristics B,, ...,Bk , B, of which B is even, which
are such that, when i is not equal to j, BBiBj is an odd characteristic

; as
follows from 302 of this chapter, and 286, Ex. i., Chap. XV., this is

certainly possible when o- = 1, or 2, or 3
; and, since

\BBiBj,P\= B,P\ + \Bi,P + ^,Pj =
|P|,

* The formula is given by Frobenius, Crelle, xcvi. p. 95, being there obtained from the
formula of 310, which is a particular case of it. The formula is generalised by Brauninuhl to
tlieta functions whose characteristics are n-th parts of integers in Math. Annal. xxxvn. (1890),
p. 98. The formula includes previous formulae of this chapter.
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the characteristics BBiBj will be among the set A1} ..., A^, so that all

characteristics congruent to BBiBj (mod. (P)) are also odd. Then by 307

there exists an equation of the form*

k

, c; B,e) = 2 \m $&amp;gt;(u, a; Bm , e),
m=l

wherein the coefficients \, \lt ..., \k ,
are independent of u. Put in this

equation u = a + O,BB . ;
then we infer ( 306, Ex. i.)

X&amp;lt;J&amp;gt; (a, c
; BI, e)

=
X;&amp;lt; (a, a

; -B, e) ;

hence we have
k

$&amp;gt;(a,a; B, e) 3&amp;gt; (M, c
; B, e)

= 2 ê \^Bm \

&amp;lt;|&amp;gt; ( a&amp;gt;
c

- sm , e) &amp;lt;l&amp;gt; (M, a
;
Bm , e),

m=l

which is the formula in question f.

Adding the 2r
equations obtainable from this formula by taking the

different sets of values for the fourth roots of unity els ..., er ,
there results

2 e- f
I^

l^-o (#?&amp;lt;)= 2 2 e-l
i=l m=l i=l

where

= * (0 ; BPi) * (2o ; &P&amp;lt;)
^ (u + c

; JBP*) ^ (u
- c

;

= * (a + c
; BJPi) * (a

- c
; 5^) ^ (u + a

;
5w

Herein we may replace the arguments

2a, u + c, u c, a + c, a c, u + a, u a

respectively by

U, V, W, i(U+ V- W\ (U- V+ W), (U+ V+ W), i(- U+ V+ W),

and thence, in case p =
2, or p = 3, obtain the formula of Ex. xi., 286,

Chap. XV.

Or we may put a 0, and so obtain

2
r

2el p
il^(0; BPi)*(u + c; BPi)*(u-c; BP{ }

1=1

= | e i\Bm,BPi\^ (u
.

^p.)^^. Bmp.} .

m=\ i=\

Other developments are clearly possible, as in 286, Chap. XV.

Ex. When ar=l there are three even Gopel systems, and one odd; let (BP\ (B^P),

(B2 P) be the three even Gopel systems; then we have

* (a, a ; B, c) * (u, c; B, e)

= e*i|M *(a, c; B,, ) * (a, a; Blt f }+ e
ni

\
BB*\ * (a, c; 52 , c) * (M, a; 2 , e ),

* We may, if we wish, take, instead of the characteristic B on the left hand, any characteristic

A such that
| A, Pf \

=
\

P( |
, (i

= 1, ...
,
2

).

t For similar results, cf. Frobenius, Crelle, LXXXIX. (1880), pp. 219, 220, and Noether, Math.

Annal. xvi. (1880), p. 327.
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where * (, a
; B, t) consists of 2&quot;&quot;

1 terms ; for instance when p= 1 we obtain

3(0; B)3(2a; B)3(u+ c; B)9(u-e; B)

r, B l)3(a-c; B
l)9(u+ a; B1)3(u-a; Bj)

B
2)3(u-a; B

2 ).

317. Ex. i. If P be a fixed characteristic and
&amp;lt;1f(u; A) denote the function

3(u; A)3(u; A + P), prove that

&amp;gt;ty(ii- A\- . *
\ &amp;gt;

-&quot;

;,

and

, B+Q).

Hence, if B^ ..., Bk ,
Bbe ^+ 1=2P- 1+ 1 characteristics each satisfying the condition

I JT, P\= | P\, such that, when i is not equal to j, BB^B, is odd, we have
( 307) an

equation
2P-1

A(; .4)= 2 \mV(u; Bm),

where ^1 is any other even characteristic such that
| A, P\ = \

P
| ; putting u= QB+ a#., we

obtain

therefore

fia-. ii. Obtain applications of the formula of Ex. i. when p= 2, 3, 4; in these cases
&quot;

=P-1&amp;gt;
=1 2

&amp;gt;

3 respectively, so that we know how to choose the characteristics
B

11 ...
t
Bk,B (Ex. i., 286, Chap. XV., and 302 of this Chap.).

Ex. iii. From the formula
( 309)

5(M + 6; A)3(u-b; A)$(a+ v; A)3(a-v; A)

= -2e*i
\
AR

\9(u+ v, R)B(u-v; R)9(a+ b; Ji)S(a-b; R),

by putting a+ QP for a, and b= v=0, we deduce

52 (tt; A) 3* (a; JP) =2^2 e^ 1
^

f / } 3* (u- R)9*(a-, PR),
it \aLK/

where A, I1
are any half-integer characteristics and R becomes all the 22

&quot;

half-integer
characteristics in turn

; putting RP for R we also have, from this equation,

; If);

therefore

; AP)

The values of R may be divided into two sets, according as \R,P\ + \P\
= l (mod. 2),

or =0; for the values of the former set the corresponding terms vanish; the values of R
for which \R,P\ + \P\= Q (mod. 2) may be either odd or even; for the odd values the
zero values of the corresponding theta functions are zero

; there remain then
( 299) only

2. 2&quot;

- 2
(2&quot;- + 1) terms on the right hand corresponding to values of R which satisfy the
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conditions
|

R
\

=
\

RP
\

= (mod. 2) ;
these values are divisible into pairs denoted by

R= E, R= EP; for such values \ +e^ R p l+&quot;l p l =
2, and

i\AE\( f\, eni\AEP\(
1&quot; \

\AE)
+

\AEP)

,*i\AE\ (
P

\ r-i.jd\AB,P\-in\AJB\(
P r, , ri\A,

=&amp;lt; AE L

P \ r, , ri\

AE) L

thiis, provided | A, P \

+
1

P
\

= (mod. 2),

(; EP), (i),

wherein 32
(; -4) denotes 32

(0; J), etc., and, on the right hand there are 2&quot;~
2
(2P~

terms corresponding to values of E for which
| E\ = \

EP
|

=
(mod. 2), only one of the two

values, E, EP, satisfying these conditions being taken.

Putting P=0, u= a, in the second equation of this example, we deduce in order

S*(M; A) = Z-^e ^ AR ^*(u , R); 3*(u; AP} = Z~^e^ APR
\ & (u; R);

R R
so that, by addition,

$*(u; A) + e
iri \

A Pl 3i
(u; ^P)=2-&quot;S&quot;

&amp;lt;l
^Jl|

[H-e
ir* |p|+iri|Ji&quot;p|

]5*(; R);
R

thus, as before,

; EP)}, (ii).

Ex. iv. Taking p= 2, let (P)= 0, Px ,
P

2 , P^P-,, be a Gopel group of even charac

teristics*; let B
l ,
S2 , B^BI be such characteristics ( 297) that the Gopel systems

(P), (B1 P\ (BZ P}, (J31
B2 f} constitute all the sixteen characteristics; each of the systems

(B^P), (B2 P), (Bl
B

i&amp;gt; P) contains two odd characteristics and two even characteristics.

Then, in the formulae (i), (ii) of Ex. iii., if P denote any one of the three characteristics

P15
P2J

P
l
P2t

the conditions for the characteristics E are E, P\= P| = 0, 1^1 = 0; the

2. 2^~ 2
(2

p ~ 1+ l), =6, solutions of these conditions must consist of 0, Q, B and P, QP, BP,

where Q is defined by the condition that the characteristics 0, Q, P, QP constitute the

group (P), and B is a certain even characteristic chosen from one of the systems (Bl P),

(B2 P), (B1
B

2 P). Hence, when P=Pi, we may, without loss of generality, take for the

2P-2 (2
p ~ 1 + l)

= 3 values of E which give rise to different terms in the series (i), (ii), the

values 0, P2 ,
B

l ; similarly, when P=P2 &amp;gt;

we have, for the values of E, E=0, P1?
B2 ;

and

when P=P1
P2 , E=0, P

15 B^; taking A to be respectively t Bly B2 , B^ in these

cases, we obtain the six equations

* There are six such groups (Ex. iv. 289).

f We easily find
|

B
lB%Pl \

=
\ B^P* = -

| BJt* j

. Thus the case when B^ is odd is

included by writing B
1
P

1
in place of 2i

x
.
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wherein^.^i/ _ _ i. These formulae express the zero values of

all the even theta functions in terms of the four(; 0), B(; PJ, $(; Pz), 3(; P^P^.
Thus for instance they can be expressed in terms of ^5,^34, S12 ,

$
;
the equations have

been given in Ex. iii., 289, Chap. XV.

Ex. v. We have in Chap. XVI. (291) obtained the formula

S(u-v,

where t represents a set of p integers, each either or 1, and has therefore 2 values.

Suppose now that q, r represent the same half-integer characteristic, =i( ) +| ( /. ) ,

\c / Vp/=C+Ka , say; then we immediately find

*.[ *^
+o

&amp;gt;[- *3J#KT ty [- *r|.

where t c denotes the row of p integers, each either or 1, which are given by (c &amp;lt;f)i

= fj+cj

(mod. 2); herein the factor e&quot;

wc
S^ is independent of k

a
. For Ka we take now, in

turn, the constituents

0, Klt A 2 , ..., Kp, Kl
K.

i , ..., K^K^K^ ...

of a Gopel set of 2p characteristics, in which

0,0,0, ...\
1 /0,0,0,..A /O, ...,0,0\=

then denoting $[u + v; CKJ $[u-v; CKa] by [CKa], we obtain 2 equations which are all

included in the equation

wherein *=2P
, e/, ..., es represent the different values of

,
and ,/ is a matrix wherein the

/3-th element of the a-th row is ^ \u
;

- f
&
C

\.

The 2p various values of c ^c ,
for an assigned value of c

, are, in general in a different

order, the same as the various values of t o
; we may suppose the order of the columns of

t7 to be so altered that the various values of e ^c
become the values of e in an assigned

order, the order of the elements &c ^ \v
;

5 *
1

,
. . .

,

&quot; &quot; ^ \v
;

^ **
being correspond

ingly altered. When this is done the matrix J is independent of the characteristic C.

Now it is possible to choose 2&quot; characteristics (7, say Clt ..., Cg such that the Gopel
systems (CtK) give, together, all the 2&quot; possible characteristics

; then the 2? equations
obtainable from that just written by replacing C in turn by Clt ..., C,, are all included,

using the notation of matrices, in the one equation*

wherein a denotes a row of
jt? integers, each either or 1, and has 2&quot; values. In each

matrix the element written down is the ;3-th element of the a-th row.

* We can obviously obtain a more general equation by taking 22
&quot; different sets of arguments,

the general element of the matrix on the left hand being 3-[&amp;gt;

(a) +v^ }

; CaKfi]$[u
w -v ]

; CaKft].
Cf. Chap. XV. 291, Ex. v., and Caspary, Crelle, xcvi. (1884), pp. 182, 324; Frobenius, Crelle,
xcvi. (1884), p. 100. Also Weierstrass, Sitzuni/abfi: der Ak. &amp;lt;l. Wins, zn Herlin, 1882, i. xxvi

p. 500.
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Ex. vi. If in Ex. v., jo
=

2, and the group (A ) consists of the characteristics

oi

while the characteristics C consist of

/00\ , /10\
*
(oo)

2
(oo)

and the values of f are, in order,

(0,0), (0,1), (1,0), (1,1),

shew that the sixteen equations expressed by the final equation of Ex. v. are equivalent to

=
( 4 , 0.5, a.2 , &quot;i ) ( ft? ft? ft) ft)oon rion ron

iiJ [_ooj L10J O

n
r
oi
i

LHJ
oi

oi

o1

io

00

ao , ao
,

a4 , nj ,
a2

a , a,, i

2&amp;gt; -1) a4) 3

Q C) Q Q
P-2 P3 ft&amp;gt; &quot;ft

-ft) ft) ft) ft

ft) ft) &quot;ft) ft

wherein, on the left hand, denotes S u + v;
?[-,-.}

^ u-v; |(n J
L etc., and

the right hand,

--*.[! *Q]. *-.[!
/31? /32 , ft, ft being respectively the same theta functions with the argument v.

Now if A, B denote respectively the first and second matrices on the right hand, the

linear equations

(#1. ^2&amp;gt; #3&amp;gt; 2/4)
=^ (#11 -^2&amp;gt; ^3&amp;gt;

-r
4)&amp;gt; (-^I, #2. r

3&amp;gt; ^4)
=

-B
(

;

l 2&amp;gt; % ^4)

are immediately seen to lead to the results

V+V+V+V=(ft2
+ft

2
+ft

2
+ft

2
) (V+^+V+O ;

hence if the^-th element of the j-th row of the compound matrix J.B, which is the matrix

on the left-hand side of the equation, be denoted by y?

. .

,
we have

i1t&quot;i*l*i^rn.
&quot;^ (

r** r *=1 2 3 4
)

and these equations lead to

A&amp;lt;*-A*^A^v^
Denoting , , by [a^g] , [a^J , etc., as in the table of 204, and inter

changing the second and third rows of the matrix on the left-hand side, we may express
the result by saying that the matrix

K^L KcJi -|&amp;gt;i&amp;lt;| , [aj

-[cc,] , -[cc2] , -[0^2], [0]

gives an orthogonal linear substitution of four variables*.

* An algebraic proof may be given ;
cf. Brioschi, Ann. d. Mat. xiv.
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Ex. vii. Deduce from 309 that

AP
^^(v;

Al&amp;gt;S\-
,

e ifa * (,
U

&amp;gt; OJTf}
a.

where
/&amp;lt;,

Pa are characteristics of a Gopel group (P\ of 2 characteristics. Infer that, if
n be any positive integer, and A Pi be an even characteristic, 3(nv; APj) is expressible as an

integral polynomial of order n2 in the W functions 9(v; AP ).

Ex. viii. If K= | ( ) , P. = | (

q a
) ,

deduce from 309, puttingW \?a/

a= b=u- U=v V=\Qk ,

that

r, -F),
where

x (u, v]
= 2fa e~

&quot;

5
( ; /r+P )

3 (v ;
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CHAPTER XVIII.

TRANSFORMATION OF PERIODS, ESPECIALLY LINEAR TRANSFORMATION.

318. IN the foregoing portion* of the present volume, the fundamental

algebraic equation has been studied with the help of a Riemann surface.

Much of the definiteness of the theory depends upon the adoption of a

specific mode of dissecting the surface by means of period loops ;
for instance

this is the case for the normal integrals, and their periods, and consequently

also for the theta functions, which were defined in terms of the periods

Tij of the normal integrals of the first kind; it is also the case for the

places ml ,...,mp of 179 (Chap. X.), upon which the theory of the

vanishing of the theta functions depends. The question then arises
;
if we

adopt a different set of period loops as fundamental, how is the theory

modified, and, in particular, what is the relation between the new theta

functions obtained, and the original functions ? We have given a geometrical

method ( 183, Chap. X.) of determining the places ml , ...,mp from the

place m, from which it appears that they cannot have more than a finite

number of positions when m is given, and coresidual places are reckoned

equivalent; the enquiry then suggests itself; can they take all these possible

positions by a suitable choice of period loops, or is one of these essentially

different from the others ? The answers to such questions as these are to be

sought from the theory of the present chapter.

There is another enquiry, not directly related to the Riemann surface,

but arising in connexion with the analytical theory of the theta functions.

Taking p independent variables ul} ..., itp ,
and associating with them, in

accordance with the suggestion of 138 140 (cf. 284), the matrices

2&), 2&/, 2rj, 2?/, we are thence able, with the help of the resulting equations

2//W = TTI, 2ha&amp;gt; = 6, i)
=

2a&&amp;gt;, rf = 2aa&amp;gt; h,

to formulate a theta function. But it is manifest that this procedure makes

an unsymmetrical use of the columns of periods arising respectively from

the matrices co and o&amp;gt;

;
and it becomes a problem to enquire whether this

* References to the literature dealing with transformation are given at the beginning of

Chap. XX.
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want of symmetry can be removed
;
and more generally to enquire what

general linear functions of the original 2p columns of periods, with integral

coefficients, can be formed to replace the original columns of periods; and, if

theta functions be formed with the new periods, as with the original ones,

to investigate the expression of the new theta functions in terms of the

original ones.

So far as the theta functions are concerned, it will appear that the

theory of the transformation of periods, and of characteristics, includes the

consideration of the effect of a modification of the period loops of a Riemann

surface
;
for that reason we give in this chapter the fundamental equations

for the transformation of the periods and characteristic of a theta function,

when the coefficients of transformation are integers ;
but the main object

of this chapter is to deal with the transformation of the period loops on a

Riemann surface. The analytical theory of the expression of the transformed

theta functions in terms of the original functions is considered in the two

following chapters.

In virtue of the algebraical representation which is possible for quotients
of Riemann theta functions (as exemplified in Chap. XI.), the theory of

the expression of the transformed theta functions in terms of the original

functions, includes a theory of the algebraical transformation of the funda

mental algebraical equation associated with a Riemann surface
;

it is known
what success was achieved by Jacobi, from this point of view, in the case of

elliptic functions
;
and some of the earliest contributions to the general

theory of transformation of theta functions approach the matter from that

side*. We deal briefly with particular results of this algebraical theory in

Chap. XXII.

319. Take any undissected Riemann surface associated with a funda

mental algebraic equation of deficiency p. The most general set of 2p

period loops may be constructed as follows :

Draw on the surface any closed curve whatever, not intersecting itself,

which is such that if the surface were cut along this curve it would not be

divided into two pieces ;
of the two possible directions in which this curve

can be described, choose either, and call it the positive direction
;

call the

side of the curve which is on the left hand when the curve is described

positively, the left side
;

this curve is the period loop (A^ ; starting now
from any point on the left side of (A^, a curve can be drawn on the surface,

which, without cutting itself, or the curve (A^, and without dividing the

surface, ends at the point of the curve (AJ at which it began, but on the

right side of (AJ ;
this is the loop (BJ, and the direction in which it has

*
See, in particular, Richelot, Crelle, xvi. (1837), De transformatione...integralium Abelian-

orum primi ordinis
;

in the papers of Konigsberger, Crelle, nx.iv., LXV., LXVII., some of the

algebraical results of Richelot are obtained by means of the transformation of theta functions.

B. 34
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been described is its positive direction
;

its left side is that on the left hand

in the positive description of it. The period associated with the loop (^i),

of any Abelian integral, is the constant whereby the value of the integral

on the left side of (Aj) exceeds the value on the right side, and is equal to

the value obtained by taking the integral along the loop (B^ in the negative

direction, from the end of the loop (BJ to its beginning. The period
associated with the loop (BJ is similarly the excess of the value of the

integral on the left side of the loop (B^ over its value on the right side, and

may be obtained by taking the integral round the loop (A^) in the positive

direction, from the right side of the loop (BJ to the left side. These periods

may be denoted respectively by Ox and fl/.

320. It is useful further to remark that there is no essential reason why what we have

called the loops (Aj), (B^j should not be called respectively the loops [5J and [JJ. If

this be done, and the positive direction of the (original) loop (Z?t ) be preserved, the

convention as to the relation of the directions of the loops [A{\, [B^\ will necessitate a

reversal of the convention as to the positive direction of the (original) loop (Aj). If the

periods associated with the (new) loops [A^, [B^\ be respectively denoted by [Q] and [Q ],

we have, therefore, the equations

These equations represent a process of interchange of the loops (AJ, (BJ, with retention

of the direction of (BJ which may be repeated. The repetition gives equations which we

may denote by

{Q} = [O J
= -

O, {& }
= -

[Q]
= - Q

,

and the two processes are together equivalent to reversing the direction of loop (Aj) t
and

(therefore) of the loop (Bj). The convention that the loop (BJ shall begin from the left

side of the loop (Aj) is not necessary for the purpose of the dissection of the surface into a

simply connected surface
;

but it affords a convenient way of specifying the necessary
condition for the convergence of the series defining the theta functions.

321. The pair of loops (AJ, (Bj) being drawn, the successive pairs

(A 2), (.B2), ..., (Ap), (Bp) are then to be drawn in accordance with precisely

similar conventions the additional convention being made that neither

loop of any pair is to cross any one of the previously drawn loops. If

the Riemann surface be cut along these 2p loops it will become a p-ply
connected surface, with p closed boundary curves. It may be further

dissected into a simply connected surface by means of (p 1) further cuts

((7j), ..., (C^-j), taken so as to reduce the boundary to one continuous closed

curve.

Upon the p-p\y connected surface formed by cutting the original surface

along the loops (AJ, (B^, ..., (Ap), (Bp\ the Riemann integrals of the first

and second kind are single-valued. In particular if Wl} ..., Wp be a set of

linearly independent integrals of the first kind defined by the conditions

that the periods of Wr at the loops (A^, ..., (Ap) are all zero, except that at
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(Ar\ which is 1, and if rr
,
g be the period of Wr at the loop (Bs\ the imaginary

part of the quadratic form

Tunj
2 + ...... + 2T12n1n2 + ...... + TpflPp

is necessarily positive* for real values of n 1 , ..., np . This statement remains

true when, for each of the p pairs, the loops (A r), (Br) are interchanged,
with

e.g. the retention of the direction of (Br) and a consequent change in the

sign of the period associated with (Ar\ as explained above ( 320) ;
if the

loops (A r), (Br) be interchanged without the change in the sign of the period

associated with (A r), the imaginary part of the corresponding quadratic
form is negative*}-.

322. In addition now to such a general system of period loops as has

been described, imagine another system of loops, which for distinctness we

shall call the original system ;
the loops of the original system may be

denoted by (ar), (br) and the periods of any integral, ui} associated therewith,

by 2ft&amp;gt;;ir ,
2(o

i&amp;gt;r ;
the general system of period loops is denoted by (A r), (Br),

and the periods associated therewith by [2^ .,.], [%w i
t
r]. For the values of

the integral ui} the circuit of the loop (Br), in the negative direction, from

the right to the left side of the loop (Af), is equivalent to a certain number,

sayj to
a.j &amp;gt;r&amp;gt;

of circuits of. the loop (bj) in the negative direction, together

with a certain number, say a
j &amp;gt;

r ,
of circuits of the loop (a,-)

in the positive

direction (r,j=I, 2, . .., p}] hence we have

p

[a&amp;gt;it r]
= 2

(&&amp;gt;;, j /, r +
G&amp;gt;\ j* j,r\ (r 1

, 2, . . .
, p ) ;

j=i

similarly we have equations which we write in the form

K& r +
a&amp;gt;\ jfi j, ,), (r

= 1, 2, . . .
, p),

the interpretation of the integers /8j &amp;gt;r
, j3 jjr being similar to that of the

integers ,-_,., afj &amp;gt;r

.

Thus, if uly ...,up denote p linearly independent integrals of the first

kind, and the matrices of their periods for the original system of period

loops be denoted by 2&&amp;gt;,
2&&amp;gt;

,
and for the general system of period loops by

[2&amp;lt;a], [2ft) ],
we have

[o&amp;gt;]

= wo. + a/a
,

[&&amp;gt; ]
=

a&amp;gt;/3 + &//3 ,

where a, a
, ft, @ denote matrices whose elements are integers.

* And not zero, since n
l
W

l
+ ... + npWp cannot be a constant. Cf. for instance, Neumann,

Riemann s Theorie der AbeVschen Integrate (Leipzig, 1884), p. 247, or Forsyth, Theory of
Functions (1893), p. 447. (Riemann, Werke, 1876, p. 124.)

t As previously remarked, p. 247, note.

J A circuit of (&,) in the positive direction furnishing a contribution of - 1 to a,-(
,.

342
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If L1} ..., Lp be a set of p integrals of the second kind associated with

ul} ..., up ,
as in 138, Chap. VII., and satisfying, therefore, the condition

x, a-.
r&amp;gt; / \ a2 t\ \ / \

X
i ]

= Dx \(z, x) T \- Dz \(x, z) -r ,

L at j L acJ

and the period matrices of Llt ..., Lp at the original and general period

loops be denoted respectively by -
2rj,

-
2?/ and -

[2iy],
-

[2^ ],
we have,

similarly, for the same values of a, a
, /3, /3 ,

[?;]
=

7/-
+ 7?

a
, [r/]

=
??/3 + T//3 .

We have used the notation flp for the row of P quantities 2o&amp;gt;P + 2&/P
,

where P, P each denotes a row of p quantities ;
we extend this notation to

the matrix 2eoa + 2a/a
,
where a, a each denotes a matrix of p rows and

columns, and denote this matrix by Qa ; similarly we denote the matrix

2r)d + 2?/a by Ha ;
then the four equations just obtained may be written

[2] = n. f [2a/]
= fV [27,]

= #a , [27/]
= #0. (I.)

Noticing now that the matrices
[2&amp;lt;o], [2o&amp;gt; ], [2?;], [2?/] must satisfy the

relations obtained in 140, we have

iTrt
=

[ifl [ ]
-

[5] [V] =

= a

=
(a/3

- a /3) ^wt,

in virtue of the relations satisfied by the matrices
2&amp;lt;o, 2a/, 2i;, 2?/; and

similarly

=
[fj] [] -

[5] [T/]
= i ( âOa

- H aJffa)
= (oV - a a) J^ri,

and
= [5HM - [1M = 1 (Hefy ~n^) =

(^/3
-

/S /S) i^ri ;

thus we have

off -30 = 1 =&*-&* ,
aa -a a = 0, /3/S

-
/S /3

= 0, (II.)

namely, the matrices a, /S, of, /3 satisfy relations precisely similar to those

respectively satisfied by the matrices to, co
, 77, 77

x

,
the ^-m which occurs

for the latter case being, in the case of the matrices a, /3, a
, /3 , replaced

by 1
;
therefore also, as in 141, the relations satisfied by a, /3, a

, /S can be

given in the form

a/S -/Sa
/ = l=

/9
/a-a/

/S, a/S-/Sa=0, a /S
- /SV = 0. (III.)

In virtue of these equations, if

denote the matrix of 2p rows and columns formed with the elements of the matrices a, ,

a
, ,

we have (cf., for notation, Appendix ii.)

a,/3W ^ , -j8\ /a|8 -/3a , /3a-aj8\/10\
a

, (87 V
- 5

, a^ \ftjf
-

jS a , /3*d
-*W \0 V
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and therefore

and the original periods can be expressed in terms of the general periods in the form

w= [w] /3 [to ]
a

,
a) = [w] + [to ] a,

If denote the matrix of jo rows and columns whereof every element is zero, and

1 denote the matrix of p rows and columns whereof every element is zero except those in

the diagonal, which are all equal to 1, and if e denote the matrix of 2p rows and columns

given by

then it is immediately proved that the relations (II.), (III.) are respectively equivalent to

the two equations

where

7&quot;
/o , Q

/=
(

- -

\P&amp;gt; P

and it will be noticed that the equations (III.) are obtained from the equations (II.) by

changing the elements of J into the corresponding elements of J.

It follows* from the equation JfJ=e that the determinant of the matrix J is equal to

+ 1 or to - 1. It will subsequently ( 333) appear that the determinant is equal to +1.

Ex. Verify, for the case ^=2, that the matrices

_/ 4, -20\
fl

/-29, 124\

, /-3, 20\ / 22, -124\Q=
V-8, -7&amp;gt; &quot;=( 56, 43J

satisfy the conditions (III.) (Weber, CreUe, LXXIV. (1872), p. 72).

323. It is often convenient, simultaneously with the change of period

loops which has been described, to make a linear transformation of the

fundamental integrals of the first kind, u^, ...,up . Suppose that we intro

duce, in place of ult ..., up ,
other p integrals w1} ..., wp ,

such that

ui
=M

iil
wl + +M

i&amp;gt;p

wp ,

or, as we shall write it, u = Mw, M being a matrix whose elements are

constants and of which the determinant is not zero. We enquire then what
are the integrals of the second kind associated with w1} ..., wp . We have

( 138) denoted Dui by /*;(#), and the matrix of the quantities /*;(&amp;lt;?;) by p, ;

* For another proof of the relations (II.), (HI.) of the text, the reader may compare Thomae,
Crelle, LXXV. (1873), p. 224. A proof directly on the lines followed here may of course be

constructed with the employment only of Riemann s normal elementary integrals of the first

and second kind. Cf. 142.
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denote now, also, Dwf
a

by p t (x), and the matrix of the quantities pt (GJ) by p ;

then we immediately find
//.
= pM, and the equation ( 138)

Lx
&amp;gt;

a = p-
lHx

&amp;gt;

a - 2aux &amp;gt;

a

gives

ML* a = p~
lHx a - 2MaMwx

&amp;gt;

a
;

thus the integrals of the second kind associated with w1} ...,wp are the p
integrals given by MLx

&amp;gt;

a
, and, corresponding to the matrix a for the

integrals L^ , ..., Lp , we have, for the integrals MLx a
,
the matrix

a = MaM. If 2u, 2i/ denote the matrices of the periods of the integrals w,

and 2, 2&quot; denote the matrices of the periods of the integrals MLx
-
a

,
so

that ( 139)

we therefore have w = Mv, w = Mv and

= 2MaMv = Mi), Z = 2MaMv -M
fJ
L-^ =M

r) ; (IV.)

it is immediately apparent from these equations that the matrices v, v,
&quot;

satisfy the equations of 140,

vv - v v = 0, ? -
? = 0, v l -vl =

\ Tri = & - ?v.

324. The preceding Articles have sufficiently shewn how the equations
of transformation of the periods arise by the consideration of the Abelian

integrals. It is of importance to see that equations of the same character,

but of more general significance, arise in connexion with the analytical

theory of the theta functions.

Let
&amp;lt;w,

&&amp;gt;

, 77, ?; be any four matrices of p rows and columns satisfying

the conditions (i) that the determinant of &&amp;gt; does not vanish, (ii) that co~l
a)

is a symmetrical matrix, (iii) that the quadratic form co^tw w2 has its

imaginary part positive when nly ...,np are real, (iv) that r)a)~
l

is a sym
metrical matrix, (v) that rj

= t]w~
l

o&amp;gt; ^Triw~
l

. The conditions (i), (ii), (iv),

(v) are equivalent to equations of the form of (B) and (C), 140, and,

taking matrices a, b, h such that a = ^t}(o~
1

)
h = ^7riw~

l
,

b = Triw^co
,
or

2hw = TTI, Zha) =
b, i]

= 2a&), ?/
=

2aa&amp;gt; h, the condition (iii) ensures the

existence of the function defined by

^.
( u

. &amp;lt;2 \ _ ^eo
2+2to(n+Q )+6(n+Q )2+2Q(n+Q )

)

wherein Q, Q are any constants (cf. 174).

Introduce now two other matrices
[&&amp;gt;], [&/], also of p rows and columns,

defined by the equations

[&&amp;gt;]

= cow + &)V, = ^Ha , say, [CD ]
=

(u/3 + &//3 ,
= 00, say,

where a, a
, /3, ft ,

are matrices of p rows and columns whose elements are
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integers*, it being supposed i&quot;
that the determinant of the matrix

[&amp;lt;w]

does

not vanish
;
and introduce p other variables wi} ..., wp denned by

m= Mif !/! + ...... +Miipwp , (i= 1, 2, ...,p)

or u = Mw, where M is a matrix of constants, whose determinant does not

vanish; let the simultaneous increments of wl} ...,wp when ult ...,up are

simultaneously increased by the constituents of the j-th column of
[&amp;lt;w]

be

denoted by v
lt j,

. .., vpj, and the simultaneous increments of w
l&amp;gt;

. .., wp
when MJ, ...,up are simultaneously increased by the elements of the j-ih

column of [ ] be denoted by v ^j, ...,V PI J\
then we have the equations

2Mv = 2
[CD]

= fta ,
2Mi/ = 2

[&&amp;gt; ]
= Hp, where u, i/ denote the matrices of

which respectively the (i,j) elements are Vij and v ij.

The function S-(w; ^)
is a function of w1; ..., wp ;

we proceed now to

investigate whether it is possible to choose the matrices a, a.
, /3, ft and the

matrix M, so that the function may be regarded as a theta function in

wlt ...,wp of order r (cf. Chap. XV. 284).

Let the arguments wl} ..., wp be simultaneously increased by the con

stituents of the j-th column of the matrix
2t&amp;gt;; thereby u^, . .., up will be

increased by the constituents of the j-ih column of the matrix
[2&&amp;gt;], and,

since a, a, /3, /3 consist of integers, the function S- (u ; ^ )
will (Chap. X.

190) be multiplied by a factor e^i where

Z,-
=

(#.)&amp;gt; [w + i(fla )tf&amp;gt;]-7rt

t

() ( )

(a )
(j) +27rt

[(a)tf&amp;gt; Q -(O (j)

Q],

(a)
(^

denoting the row of ^ elements forming the J-th column of the matrix

a, and (na)
(

-&quot;, (Ha}
(h

denoting, similarly, the j-ih columns of the matrices

2&amp;lt;a + 2&amp;lt;a a
, 2?;a + 277V respectively ;

this expression Lj, is linear in w/u . . . , wp ,

and can be put into the form

where (wlt ..., wp) denotes the row letter whose elements are wlt ..., wp ,
and

similarly (vlt j, ..., v
p&amp;gt; j) is the row letter formed by the elements of the j-th

column of the matrix v, r is a positive integer which is provisionally

arbitrary, Kj and 2
1| j, ..., 2%pj are properly chosen constants, and

(%ij, ..., 2^i?-)
is the row letter formed of the last of these. Similarly, if

the arguments w1} ...,wp be simultaneously increased by Zv ^j, ...
,
2v pj, the

function S- (u ; ^ )
takes a factor e^

i,
where

Lf = (Hf )&amp;lt;* [u + (Q,)(J&amp;gt;]
- m (/3)0

)

(/3 )U&amp;gt;
+ 2^ [(ft)* Q - (P)& Q],

and, with the same value of r, this can be put into the form

* The case when a, a
, j8, /3 are not integers is briefly considered in chapter XX.

t We have jnur 1

[w]= iria + ba
; we suppose that the determinant of via + ba does not

vanish.
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where Kj,
&quot;

1)7-, ..., pj are properly chosen constants. In these equations
we suppose^ to be taken in turn equal to 1, 2, . .., p.

Comparing the two forms of Lj we have

or

so that the (i, j)th element of the matrix MHa is 2rij; hence if f, denote

respectively the matrices of the quantities ^j and % ij, we have

toa = 2r MH? =
2&amp;lt; ; (V.)

from these we deduce, in virtue of the equations *2Mv = la ,
2Mv =

Zip,

and therefore, in particular, comparing the (j, j)ih elements on the two sides

of these equations,

where, as before, (t/)^ is the row letter formed by the elements of the j-th
column of the matrix v, etc.; therefore the only remaining conditions

necessary for the identification of the two forms of Lj and L/, are

Kf = (a)0 Q -
(a )&quot; Q - 1

(a)U&amp;gt; (a ) *,
-
Kj = (/3)

(j) Q -
(/3 )

(j) Q -

and the j9 pairs of equations of this form are included in the two

K = Q -a Q-^d (fia ),
-K = 0Q- Q - $d (0/3 ), (VI)

where K
,
K are row letters ofp elements and d (aaf), d(ft/3 ) are respectively

the row letters of p elements constituted by the diagonal elements of the

matrices aa
, y9/3 .

The equations (VI.) arise by identifying the two forms of Lj and Z/; it is

effectively sufficient to identify the two forms of e
L
J and e

Li
\
thus it is

sufficient to regard the equations (VI.) as congruences, to the modulus 1.

We now impose upon the matrices v, v
, ,

the conditions

f, - X= = I v - V?, lv
- V? = %7Ti, (VII.)

which, as will be proved immediately, are equivalent to certain conditions

for the matrices a, /3, a.
, /3 ; then, denoting *r(u; J) by &amp;lt;f&amp;gt;(w

ly ...,wp) or

&amp;lt;f&amp;gt;(w),

it can be verified* that the 2p equations

&amp;lt;t&amp;gt;(...,Wr
+ 2vrJ ,...) = e

L
&amp;gt;&amp;lt;l&amp;gt;(w\ $(..., wr + 2v\.

&amp;gt; i,...)
= e

L
&amp;gt;

&amp;lt;t&amp;gt;(w),(j

=
l,...,p\

where Lj, L/ have the specified forms, lead to the equation

&amp;lt;j&amp;gt;

(w + %vm -f 2l m )
= er^m+2 m

&amp;gt; (w+vm+v m1

) rmmm +2Tri(mK-m K) A /^,\

wherein m, m are row letters consisting of any p integers ;
and this is the

* The verification is included in a more general piece of work which occurs in Chap. XIX.
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characteristic equation for a theta function of order r with the associated

constants 2u, 2i/, 2 2 ( 284, p. 448).

The equations (VII.) are equivalent to conditions for the matrices v, v\

, , entirely analogous to the conditions (ii), (iv), (v) of 324 for the

matrices w, &&amp;gt;

, 77, 77 . The condition analogous to (i) of 324, namely that the

determinant of the matrix v do not vanish, is involved in the hypothesis
that the determinant of Trio. + ba. do not vanish. It will be proved below

( 325) that the remaining condition involved in the definition of a theta

function, viz. that the quadratic form v~ lv n* has its imaginary part positive
for real values of nlt ..., n

p&amp;gt;

is a consequence of the corresponding condition

for the matrices
&&amp;gt;,

&&amp;gt; . We consider first the conditions for the equations

(VII).
In virtue of equations (V.), the equations (VII.) require

= 4r ($/ - v?) =

and, similarly,

HaCla
- iiJJ. = 0, Hftflft

- npHft
=

;

but

) (&&amp;gt;/3 + o /S )
-

(aa&amp;gt; + oV) (77/3 + T//3 ),

j3 + a
(rf(*&amp;gt;

-
0/77) /3 + a (tfw

-
wrf} $ ,

and this, by the equations (B), 140, is equal to

i7n (a/3 -a /3);
thus

a/3
- a /3

=
yg a - yga = r, ( VIII.)

and, similarly,
aa -o a = 0, /9/g

-
J3 /3 = ;

and as before ( 322) these three equations can be replaced by the three

ay8 = /Sa, offt
= /Pa , *$ - $* = r = jS a- * $, (IX.)

the relations satisfied by the matrices a, /9, a , respectively being similar to

those satisfied by o&amp;gt;,
o&amp;gt;

, 77, 77 , with the change of the ^-rri, which occurs in the
latter case, into r.

The number r which occurs in these equations is called the order of the

transformation; when it is equal to 1 the transformation is called a linear

transformation.

Ex. i. Prove that, with matrices of 2p rows and 2p columns,

0W ? -0\ A 0\ / a

ana
/a 0WO -IWa a \ /O - 1\

W/r/v oA/3)3 ;-
r

Vi o;-

The determinant of the matrix will be subsequently proved to be
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Ex. ii. Prove that the equations (V.) of 324 are equivalent to

(M \ /2v 2iA _ /2o&amp;gt; 2A
fa |3 \

Vo RfftVW V
&quot;

k*i *i ) V ft J

Ex. iii. If x, y, xlt y be any row letters of p elements, and X, Y, Jfo Y be other

such row letters, such that

f
. X

tey), T

then the equations (VIII.) are the conditions for the self-transformation of the bilinear

form xy x$, which is expressed by the equation

XT
l
-X

l Y^r(xy^-xly).

325. Conversely when the matrices a, a, j3, ft satisfy the equations

(VIII.), the function ^ (u ; ^ )
satisfies the determining equation for a theta

function in w1} ..., wp ,
of order r, with the characteristic (K, K },

and with

the associated constants 2u, 2t/, 2f, 2&quot;;
and in virtue of the equations (VII.),

the determinant of v not vanishing, matrices a, b, h, of which the first two

are symmetrical, can be taken such that

a = \ v~l

,
h = ^ Triv~l

,
b = 7riv~

l v
;

we proceed now to shew* that the real part of the quadratic form bw3
is

negative for real values of nl} ...,n
p&amp;gt;

r being positive, as was supposed.

The quantity, or matrix, obtainable from any complex quantity, or

matrix of complex quantities, by changing the sign of the imaginary part

of that quantity, or of the imaginary parts of every constituent of that

matrix, will be denoted by the suffix
;
and a similar notation will be used

for row letters
;
further the symmetrical matrices w~l

(a, v~l v will be denoted

respectively by T and r
,
so that b = TTIT, b = TTIT

;
also r, r will be written,

respectively, in the forms TL + ir
z&amp;gt; T/ + ira ,

where T!, r2 , iV, r2 are matrices

of real quantities. Then, putting

x = vM(a~[
x, and therefore # = V^MQW^XQ,

where x, x denote rows of p complex quantities, and x
,
x the rows of the

corresponding conjugate complex quantities, and recalling that

r ^r = vv-1

,
a&amp;gt;-

1Mv = OL + TCL
,

a)~lMv =
/3 + rft,

we have _ _ _
^x . V^M^W^XQ = v MwT^x . v^M^^Xo

and, if x = xl + ix2 ,
sc = x1 ix^, where xlf x 2 are real, this is equal to

(]3 + ft^ + ift-r.?) (^ + ix2) . (a + S T!

or

\ftP + ftP + i (J3Q + ftQ }} [5P + fi P - i (aQ + a Q )],

*
Hermite, Compt. Eendus, XL. (1855), Weber, Ann. d. Mat., Ser. 2, t. ix. (18789).
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where P, P , Q, Q are row letters ofp real quantities given by

P = Xlt P = T^ - T2#2 , Q = X2 , Q = 7V

so that

thus the coefficient of i in T X XQ is

(fiP + a F) 08Q + ft Q )
-

(ftP + ft P ) (Q + a Q ),

which, in virtue of the equations (IX.), is equal to r (PQ P Q) or

rrz (x? + #2
2
) ;

thus the coefficient of i in r afx^ is equal to the coefficient

of i in rTXxn . Since x may be regarded as arbitrarily assigned this proves

that the imaginary part of r x x is necessarily positive ;
and this includes

the proposition we desired to establish.

Ex. Prove that the equation obtained is equivalent to

J/QVQT2 vM= rWQT2 &amp;lt;5.

326. Of the general formulae thus obtained for the transformation of

theta functions, the case of a linear transformation, for which r=l, is of

great importance ;
and we limit ourselves mainly to that case in the

following parts of this chapter. We have shewn that a theta function of the

first order, with assigned characteristic and associated constants, is unique,

save for a factor independent of the argument ;
we have therefore, for r = 1,

as a result of the theory here given, the equation

We suppose a, ft, a, ft to be any arbitrarily assigned matrices of integers

satisfying the equations (VIII.) or (IX.); then there remains a certain

redundancy of disposable quantities ; we may for instance suppose co, w , 77, T/

and M to be given, and choose v, v, ,
in accordance with these equations ;

or we may suppose to, &&amp;gt;

, v, % and to be prescribed and use these equations
to determine M, v

, r) and ?/. It is convenient to specify the results in two
cases. We replace u, w respectively by U, W.

(i) 2o) = 1, 2co = r
, T;

= a, T/
= ar m, h = TTI, b = TTIT,

2u = 1, 2i/ = T
,

= 0,
&quot; = iri

,
a =

,
h = iri , b = TTIT

,

U = MW, M = a + ra
, (a + TO!) r = ft + rft ,

so that, as immediately follows from equations (IX.),

Ta )
= r = (/3

/

-aV)(a + aT), U=(a + Ta )W, W=\(&-r a. )U,

and, because ij
=

rjr TTI and = 0,

|

from which we get

7T&quot;?

a =
77
= iria! (a + ra )

1 = ~ a (ft
- r a),
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a U* = (
- T O ) tf2 = TriVFU= TrtV (a + ra ) Fa

.

These equations satisfy the necessary conditions, and lead, when r = 1, to

;

*
) f (X.)

where A is independent of /!, ..., Up ,
and the characteristic (K, K } is deter

mined from (Q, Q } by the equations ( 324)

IT = aQ - a Q - id (aa ),
-K = 0Q[

The appearance of the exponential factor outside the e-function, in equation (X.),

would of itself be sufficient reason for using, as we have done, the 5-function, in place of

the 6-function, in all general algebraic investigations*.

If in 324 we put

we easily find

via
1

(a+ ra )
TF2=

^o&amp;gt;

~%2 -
irfw

~%2
;

thus
( 189, p. 283) equation (X.) includes the initial equation of this Article.

In general the function occurring on the left side of equation (X.) is

a theta function in W of order r with associated constants 2v 1, 2i/ = T
,

2=0, 2 =-27rt, and characteristic (K, K ).

(ii) A particular case of (i), when the matrix a! consists of zeros, is given

by the formulae

2&) = 1, 2&&amp;gt;
= T

, V)
= 0, t\

=
TTI, a = 0, A = 7n, 6 = THT

,

2u = 1, 2i/ = T
,

= 0, = -
Tri, a = 0, h = TTt, b = TUT

,

7 = If, T = a-1

( + r/3 ), r = -
(err

7 -
/3) a,

r

/a \ /a /3 \ , 5
/o

= A i &amp;gt;

wnere a =
/3a.

\a p 1 \0 ra V

Then the function @((7; r; )
or

[
a W; 1

(ar
7 -

/9) a
; |]

is a theta

function in W, of order r, with associated constants 2u = 1, 2i = r
/

, 2^=0,
2

^&quot;

=
2-Tn, and characteristic (.ST, K ) given by

and, in particular, when r = 1 we have

. -- :

, e(tr;r;f)=4@(Tf;T ;5 ) )

&quot;

(XL)

where A is independent of U1} ..., Z7P .

*
Of. 189 (Chap. X.); and for the case _p

= l, Cayley, Liouville, x. (1845), or Collected

Works, Vol. i., p. 156 (1889).
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327. It is clear that the results just obtained, for the linear trans

formation of theta functions, contain the answer to the enquiry as to the

changes in the Riemann theta functions which arise in virtue of a change in

the fundamental system of period loops. Before considering the results in

further detail, it is desirable to be in possession of certain results as to the

transformation of the characteristics of the theta function, which we now

give ;
the reader who desires may omit the demonstrations, noticing only the

results, and proceed at once to 332. We retain the general value r for the

order of the transformation, though the applications of greatest importance
are those for which r = 1.

As before let ^(7) denote the row of p quantities constituted by the

diagonal elements of any matrix 7 of p rows and columns
;
in all cases here

arising y is a symmetrical matrix
;
then we have

a d 03/3 ) + /3d (aa )
=
rd(aft ), ft d (aft) + fid (aft ) = rd (ftft )

_ _ _ (mod. 2)
ad (ftft ) + ft d (aa )

= rd (a ft ), * d (aft) + ad (a/3 )
= rd(aa )

and

d (a* ) d (#3 )
= (r+l) 2d (fta)

=
(r + l) 2d (ft a)

- - _ (mod. 2),
d (a/9) d (a ft ) = (r + I) 2d (aft )

=
(r + 1) 2d (fta )

so that, when r = 1 or is any odd integer,

d (aa) . d (ft/3 )
= d (aft) . d (a ft )

=
(mod. 2).

The last result contains the statement that the linear transformation of

the zero theta-characteristic is always an even characteristic.

For the equations

ft d -a ft
=

r, aft = ftd,

give

aftft a -ftaa ft
=

raft,

and therefore

ftft z*-aay= raftx
2
,

where x is any row letter of p integers, and zax, y= $x; but if y be a symmetrical
matrix of integers and t be any row letter of p integers yp, =yn^2+ ... + 2y12^2 -f..., is

= yn i

2+ +Wp2
&amp;gt;

and therefore =yu t
1 +... +ypp tp ,

or =d(y). t,
for modulus 2

; hence

d (ftp) z-d (aa ) y= rd (aft) x (mod. 2)
or

[ad (ftp) +pd (aa )
- rd

(aft)] x= (mod. 2) ;

and as this is true for any row letter of integers, #, the first of the given equations follows

at once. The second of the equations also follows from /3 a
- a J3

=
r, in the same way, and

the third and fourth follow similarly from pa fia=r.

To prove the fifth equation, we have, since PS aft= r,

ftft aa = fta fta
or
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where b=ftft
r

,
a= aa, c= fta ; hence, equating the sums of the diagonal elements on the two

sides of the equation, we have

p P p p P2T 7). -n ^ T P ./&amp;gt;. .-L.V *9 s&amp;gt; . .
i k% j MJ, i ^ ^ ^j V C-* j T- / 2i Cj ^ ,

j=l i=l j=l i=l i=l

therefore, as, unless i=j, b
it jO,jti

=
bj &amp;lt;i

ai
&amp;gt; j, because a, b are symmetrical matrices, and as

we obtain

p P P
2 a

iti \i= 2 (c
2

i&amp;gt;i
+rc1

-

)i)
= (r+ 1) 2 c,-jt

-.

The sixth equation is obtained in a similar way, starting from ft a fta = r.

Of the results thus derived we make, now, application to the case when r is odd, limiting
ourselves to the case when the characteristic (Q, Q ) consists of half-integers ;

we put then

Q fyi Q =Wi so that q, q each consist of p integers ;
then K, K are also half-integers,

respectively equal to \k, \k , say, where

k = aq -a q-d (aa ),
-k= ftq -ft q-d (ftft ).

In most cases of these formulae, it is convenient to regard them as congruences, to

modulus 2. This is equivalent to neglecting additive integral characteristics.

From these equations we derive immediately, in virtue of the equations of the present
Article

q=ak+ ftk + d(aft), q
= a k+ ft k + d (a ft ) (mod. 2)

and

qq
= kk (mod. 2).

Further if p, p be row letters ofp integers, and

v =
afj.

a
p. d(aa), v=ftp ft fj.

d (ftff),

we find, also in virtue of the equations of the present Article,

kv - k v= qp
-
q fi.+ (p + q )

d (aft)+ (n+ q)d (aft ), (mod. 2) ;

therefore, if also

o- = ap
- a p

- d (aa), a~= ftp ft p d (ftft ),

we have

kv - k v+ vcr v cr -f o-fc a k= qp q p.+pp p p+ pq p q (mod. 2
).

Denoting the half-integer characteristics i
(

^
)

. A y } . A
(

p
} by A, B, C,2

V? /
2W VP /

*
,7/, . A / \

and the characteristics A( 7 1, Jr f 1, |f ( J, which we call the transformed
\K I \v J \cr J

characteristics, by A ,
B

,
C

, we have therefore the results ( 294)

A\= A
\, \A,B,C =\A ,B ,C \, (mod. 2)

or, in words, in a linear transformation of a theta function with half-integer

characteristic, and in any transformation of odd order, an odd (or even)

characteristic transforms into an odd (or even) characteristic, and three

syzygetic (or azygetic) characteristics transform into three syzygetic (or

azygetic) characteristics.

Of these the first result is immediately obvious when r= \ from the equation of

transformation ( 326), by changing w into w.
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Hence also it is obvious that if A be an even characteristic for which

; A) vanishes, then the transformed characteristic A is also an even

characteristic for which the transformed function ^ (0 ;
A ) vanishes.

328. If in the formula of linear transformation of theta functions with

half-integer characteristic, which we may write

we replace u by u + ^lm = u + com + a&amp;gt; m
,
where m, m denote rows of

integers, and, therefore, since w =M(vJ3 v af), w M ( v/3 + i/a), (cf. Ex. i.,

324), replace w by w + vn + v n
,
where

n = am a m, n = $m! J3 m,

we obtain ( 189, formula (L))

f
\

u
;

|_

=
&amp;lt; a \

w
;-

where A is independent of u1} ..., up , and k + n
,
k + n are obtainable from

q +m , q +m by the same formulae whereby k
,
k are obtained from q , q,

namely

k + m = a (q + m ) -a (q + m)-d (aa ),

-
(k + m)=0(q + mf)

- ff (q + m)-d(J3ff);

these formulae are different from those whereby n
,
n are obtained from

m
,
m

;
for this reason it is sometimes convenient to speak of 1 f

^
] as a theta2

\qJ

characteristic, and of ^ I
)
as a period characteristic ; as it arises here the

difference lies in the formulae of transformation
;
but other differences will

appear subsequently; these differences are mainly consequences of the
obvious fact that, when half-integer characteristics which differ by integer
characteristics are regarded as identical, the sum of any odd number of
theta characteristics is transformed as a theta characteristic, while the
sum of any even number of theta characteristics is transformed as a

period characteristic. In other words, a period characteristic is to be

regarded as the (sum or) difference of two theta characteristics.

It will appear for instance that the characteristics associated in 244, 245,

Chap. XIII. with radical functions of the form JX (2 &quot;+1
&amp;gt; are to be regarded as

theta characteristics and the characteristics associated in 245 with radical

functions of the form JX^, which are denned as sums of characteristics

associated with functions JX (

*&quot;+v, are to be regarded as period characteristics.
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We may regard the distinction* thus explained somewhat differently, by taking as the

fundamental formula of linear transformation that which expresses # \ u
;

( j
in terms

whereQ,.; |ffj
L

and
l = k

r+ d(aa )
= aq -aq, -1= - k+ d ($$}= &q

-
ffq.

In the following pages we shall always understand by characteristic, a

theta characteristic ;
when it is necessary to call attention to the fact that a

characteristic is a period characteristic this will be done.

329. It is clear that the formula of linear transformation of a theta

function with any half-integer characteristic is obtainable from the particular
case

where r = d (act), r = d (ftft), by the addition of half periods to the argu
ments. It is therefore of interest to shew that matrices a, ft, of, ft can be

chosen, satisfying the equations

aft = fta, a ft
= ft a, aft -fta=l,

ir \
which will make the characteristic ^ I

j equal to any even half-integer

characteristic.

Any even half-integer characteristic, being denoted by

/If If \
1

K
i

Kp \
2 I J, I. &amp;gt;

\n,i . . . Up J

lk \
we may, momentarily, call

(

*

)
the i-th column of the characteristic

;
then

V^i /

the columns may be of four sorts,

o

but the number of columns of the last sort must be even
;
we build now a

matrix
*
*}
ft )

* Theta characteristics have also been named eigentliche Charakteristiken and Primcharak-

teristiken ; they consist of 2&amp;gt;

- 1
(2P-l) odd and 2P~ 1

(2*&amp;gt;
+ 1) even characteristics. The period

characteristics have been called Gruppencharakteristiken and Elementarcharakteristiken or

sometimes relative Charakteristiken. For them the distinction of odd and even is unimportant
while the distinction between the zero characteristic which cannot be written as the sum of two

different theta characteristics and the remaining 22P - 1 characteristics, is of great importance.

The distinction between theta characteristics and period characteristics has been insisted

on by Noether, in connection with the theory of radical forms Cf. Noether, Math. Annal.

xxvin. (1887), p. 373, Klein, Hath. Annal. xxxvi. (1890), p. 36, Schottky, Crelle, en. (1888),

p. 308. The distinction is in fact observed in the Abel sche Functionen of Clebsch and Gordaii,

in the manner indicated in the text,
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of *2p rows and columns by the following rule* Corresponding to a column

of the characteristic of the first sort, say the i-th column, we take
&i,i=l3&amp;gt;i,i=

1
,

but take every other element of the t-th row and t-th column of a and /3 ,

and every element of the i-th row and i-th column of $ and a to be zero
;

corresponding to a column of the characteristic of the second sort, say the

j-ih column, we take
/,_,-

= P jj
=

afjj 1, but take every other element of

the j-th row and j-th column of a, /? ,
a

,
and every element of the j-th row

and column of @, to be zero
; corresponding to a column of the characteristic

of the third sort, say the ra-th column, we take a
m&amp;gt;m

=
fim,m = ftm,m = 1, but

take every other element of the m-th row and column of a, /3, /3 and every

element of the m-th row and column of to be zero
; corresponding to a pair

of columns of the characteristic of the fourth sort, say the p-ih and cr-th, we

take a
p&amp;gt; p
=

/3P) p
=

j3 pi p
=

l, a
&amp;lt;r&amp;gt;tr

= a^ =
ft *,

= 1, a^ p
=

1, /8pt v
= -

1, a!
Vt p

= 1,

/3 p)(r
=

1, and take every other element of the p-ih row and column and of

the o--th row and column, of each of the four matrices a, a
, yS, /3 ,

to be zero.

Then it can be shewn that the matrix thus obtained satisfies all the

necessary conditions and gives k = d ( ),
k = d (/S/3 ).

Consider for instance the case p = 5, and the characteristic

/O 1 1 1\

\0 1 1 \)

the matrix formed by the rules from this characteristic is

1
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Ex. For the hyperelliptic case, when jo
= 3, the period loops being taken as in 200,

the theta-function whose characteristic is \ ( , ., , )
vanishes for zero arguments ( 203) ;

prove that the transformation given by

a= ( 100), /3=(
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i=l, ..., 2p, j= 2, ..., 2/&amp;gt;-fl,
we have \D, Dt , D, =1

;
then it is possible to choose a half-

integer characteristic E, and a linear transformation, such that the characteristics

ED, EDlt ..

transform into

0, Xu ...,

where Xj, ..., X2P + 1
are certain characteristics to be specified, of which (by 327) every two are

azygetic. It will follow that if D
, D^, . . . ,

D 2P + 1
be any other set of 2p + 2 characteristics

of which every three are azygetic, a characteristic E
,
and a linear transformation, can be

found such that, with a proper characteristic E, the set ED, ED, ..., ED2p + l
transforms

into E D1

,
E Di, ..., E D ^p + l

. It will be shewn that the characteristics X 1} ...,X2p + 1

can be written down by means of the hyperelliptic half-periods denoted
( 200) by u a&amp;gt;

c
\

ua,a^ ua,c^ ^
ua a

&quot;,

ua
;

it has already been remarked
( 294, Ex.) that the charac

teristics associated with these half-periods are azygetic in pairs. The proof which is to be

given establishes an interesting connexion between the conditions for a linear transforma

tion and the investigation of 300, Chap. XVII.

Taking an Abelian matrix,

/- P-\

V/37
for which

aa -a a= 0, jS/S
-

J3 /3
=

0, ap -& &=!,

define characteristics of integers by means of the equations

where a
g&amp;gt;r

is the r-th element of the s-th row of the matrix a
,
etc. and r=l,2, ...

, p tfeen

the symbol which, in accordance with the notation of 294, Chap. XVII., we define by the

equation

Mr&amp;gt; 5i=ai,r i &amp;gt;

*+ &quot;+ ap,rP
&amp;gt;

p,~ a/
l,&amp;gt;-P

&amp;gt;

l,~ O-
p, r Pp,s&amp;gt;

is the (?, s)-th element of the matrix a/rf-a p
1

,
and may be denoted by (a^ -a /3) r)g ;

thus

the conditions for the matrices a, a
, /3, p&quot;

are equivalent to the p (2pl) equations

\A r,Br \

=
l, \A r,B8 \=0, 1^,^1=0, \J3r,Bs =0, (r=j=, r, s = l, 2, ..., p),

whereof the first gives p conditions, the second p(p- 1) conditions, and the third and

fourth each \p(p 1) conditions. It is convenient also to notice, what are corollaries

from these, the equations

\B,,A r \=- A r,,=0, \Br,A r \=-\A r,Br \=-l, Br ,
A r \= -\A r\Br

\

= \A r) Br
\

= l.

Consider now the 2p+ l characteristics, of integers, given by

whereof the first 2p are pairs of the type

for r=l, 2, ..., p, and a^b^ means the sum, without reduction, of the characteristics a/,
blt a.j, and so in general. The sum of these characteristics is a characteristic consisting

wholly of even integers. If these characteristics be denoted, in order, by cn c
2 , ..., c2p+l ,

it immediately follows, from the fundamental equations connecting a
t , ..., 6P ,

that

35 -2
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Thus the (2p+ l) half-integer characteristics derivable from clt c
2 , ..., c-2p + 1 , namely

Ci = ii CIP+I=&*P+I&amp;gt;
are azJgetic in Pairs-

Conversely let
Z&amp;gt;, D^ ..., D2p + l

be any half-integer characteristics such that, for
i&amp;lt;j,

i= l, ..., 2jt&amp;gt;, .7
=

2, ..., 2/&amp;gt;
+ l, we have

| D, A, A =1 so that
(

30
, P- 496)

there exist

connecting them only two relations (i) that their sum is a characteristic of integers, and

(ii) a relation connecting an odd number of them
; putting Ci=Df

Di(i=l, ..., *2p),
where

2y= - D, we obtain a set of independent characteristics C1} ..., C2p ,
such that for

i&amp;lt;j,

taking

tions

Thus putting ^= 1^, ..., C
2J) +

the equations, previously given,

the i-th column of this matrix consisting of the elements of the lower and upper rows of

the integer characteristic a
f
or bt , according as

i&amp;lt;p+ l or
i&amp;gt;p.

We proceed now to find

the result of applying the linear transformation, given by this Abelian matrix, to the

half-integer characteristics C1} ..., C2P+1 .

The equations for the transformation of the characteristic ( to the characteristic

j= 2, 3, ...,2p

where C&quot;2)._ 1
= (72,._ 1 ,

we have also the 2p equa-

=
1, (m=l, 2, ...,2p).

+ 1 ,
we can obtain an Abelian matrix by means of

,
which are ( 324, VI.),

/?;

/= aj
/-a /

2 -c?(aa ), -k= $q -ftq-d 0/3 ),

are equivalent, in the notation here employed, to

# = 1^*, e|-[^(Sa )]i, -*i= |5t , -[^(^ )]i, (*
=

1, 2, ...,

where ^=^4, ^^Jg-; taking

in turn, we immediately find that the transformations of the characteristics &amp;lt;72r -i&amp;gt;

1 ,
are given, omitting integer characteristics, by

1...100...0\ ,/rf(fi )\ ,/11...110...0\ ,/rf(aa )\ ,A1...

l...l 10.. .O *d(pp)
+
*\II...IQO...O) *VW)/ ^Vll-

or, say, by

rf(aa )\ ,

*
, !

respectively.

Now let the characteristics

\ f

i/vp

be respectively denoted by

then we have proved that the half-integer characteristic DDi transforms, save for an

(r
\

),
where r=c?(/3/3 ),

r = d(aa); since the transforma-
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tion of the sum of two characteristics is the sum of their transformations added to \ (
r

\
,

- -
and since the characteristic

( ),
where s = d(a p ),

s= d(ap), transforms into the zero
\s /

//\
characteristic ( 327), it follows that the transformation of the characteristic |( )+DDi

\s /

is the characteristic Xj ; hence, putting E=$ ( } +D, and omitting integer characteristics,
v*/

the characteristics

ED, ED,, ..., ED2p + l

transform, respectively, into

0, Xj, ..., X2p + 1 ;

and this is the result we desired to prove.
The number of matrices of integers, of the form

in which aa-aa= 0, /3/3
- =0, 5/3 -a /3

=
l, is infinite; but it follows from the

investigation just given that if all the elements of these matrices be replaced by their

smallest positive residues for modulus 2, the number of different matrices then arising is

finite, being equal to the number of sets of 2p+ l half-integer characteristics, with integral

sum, of which every two characteristics are azygetic. As in 300, Chap. XVII., this

number is

3
...... (2

2
-l)2;

we may call this the number of incongruent Abelian matrices, for modulus 2. Similarly
the number* of incongruent Abelian matrices for modulus n is

Ex. By adding suitable integers to the characteristics denoted by 1, 2, 3, 4, 5, 6, 7 in

the table of 205, for p= 3, we obtain respectively

-100N /-i -ION /-l-lix ,/-101
-i o o) o -i o o o i o i

00 -IN /O 1 -IN
(01 ON.

1 o -I/
1

*Vi i o/ *v i i/

denoting these respectively by C^ C
2 , ..., Cr ,

we find, for
i&amp;lt;j,

that

The equations of the text

give

and therefore, in this case, we find

- 1 ON / - 1 IN /O - 1

i n n &amp;gt;

aZ
=

[ -, )i &amp;lt;

=
(

1 O/ \ Illy \ 1

-1-1 ON
ft
_ / - 1 1 IN /Ol-l

* Another proof is given by Jordan, Traits des Substitutions (Paris, 1870), p. 176.



550 TRANSFORMATION OF AZYGETIC SYSTEMS. [331

hence the linear substitution, of the text, for transforming the fundamental set of

characteristics Clt ...,
C&amp;lt;j

is

(-1-1 0-1 0)

1

1 -1

-1

1 -1
1

1-1

T7 *l.- C. Afrom this we find 1=
f( 1 a

\s / \(
(a p)/ \ ^

integral characteristic, it follows by the general theorem, that if the characteristic

matrix be applied, they will be transformed respectively into the characteristics X1? ..., \j.

A further result should be mentioned. On the hyperelliptic Riemann surface suppose
the period loops drawn as in the figure (12) ;

l 1 t n ,1
\\ j, 3()

=
f( 1 a

)&amp;gt;

since the sum of Clt ..., C
7
is an

\(
(a p)/ \ ^ /

llows by the general theorem, that if the characteristic

be added to each of 0^ ..., C7 ,
and then the linear transformation given by the

FIG. 12.

then the characteristics associated with the half-periods u a&amp;gt; l

,
u a&amp;gt;

a
\ ..., u

a
&amp;gt; Cp

,
ua&amp;gt;

**&quot;,

ua c
will be, save for integer characteristics, respectively X1}

X
2 , ..., X2P ,

X2P+1 ;
this the

reader can immediately verify by means of the rule given at the bottom of page 297 of the

present volume.

Ex. Prove that if the characteristics 0, Xj,...., X2P + 1
be subjected to the transforma

tion given by the Abelian matrix of 2p rows and columns which is denoted by

then, save for integer characteristics, Xf is changed to Si+ ^f
J

,
where

1,
-

0,

iN /ov

(0(o)
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are the characteristics which arise in 200, Chap. XI. as associated with the half-periods

ua&amp;gt;Cr

,
ua ar

,
ua respectively. The characteristics 2n ..., 22p + 1 satisfy the p(2p-I)

conditions
| 2(, 2/|

=
l, for

i&amp;lt;j.

332. We proceed now to shew how any linear transformation may be

regarded as the result of certain very simple linear transformations performed

in succession. As a corollary from the investigation we shall be able to infer

that every linear transformation may be associated with a change in the

method of taking the period loops on a Riemann surface
;
we have already

proved the converse result, that every change in the period loops is associated

with matrices, a, a
, /3, /3 , belonging to a linear substitution ( 322).

It is convenient to give first the fundamental equations for a composition

of two transformations of any order. It has been shewn ( 324) that the

equations for the transformation of a theta function of the first order, in the

arguments u, with characteristic (Q, Q ) and associated constants 2eo, 2&amp;lt;u
,

277, 27; ,
to a theta function of order r, in the arguments w, where u = Mw,

with characteristic (K, K } and associated constants 2v, 2v, 2, 2f, are

K = aQ - a Q - \d (aa ),
-K = $Q - P Q

M, \ /2u, 2iA _ /2w, 2ftA /a
,

0, rM-*J fa 2(T/

~
U?, 27/J U ,

and from the last equation, writing it in the form /*U = OA, it follows, in

virtue of the equations OeH = -
^Trie, UeU =

^irie ( 140, Chap. VII.), and

the easily verifiable equation JLep = re, where the matrix e is given by

O -

that also AeA = re, as in Ex. i., 324. And, just as in 324, it can be proved

that equations for the transformation of a theta function of order r in the

arguments w, with characteristic (K, K ),
and associated constants 2u, 2i/, 2f,

2
,
to a theta-function of order rs, in the arguments u1} given by w^Nu^,

with characteristic (Ql9 Q/), and associated constants 2o)!, 2ft)/, 27/j, 2?7/, are

Q/ = yK - y K - %rd (77 ),
- & = 8K - I K -

N,
_

0,

and writing the last equation in the form vfli = UV, we infer as before that

^ eV = se.

Now from the equations /u,U
= HA, i/n i

= UV, we obtain
//-i&amp;gt;ni=;u,UV

=

or, if A! = AV,

fMN, _0_
\ /2ft),, 2&&amp;gt;A = /2ft), 2ft) \

.

V , rtinSr-V UT;,, 2r/ 1

/) ~U^, 2V/
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from this equation we find as before that the matrix A1} given by

A -AV-Al - -
7 + /3V,

satisfies the equation Aj eAj = rse. Similarly from the two sets of equations

transforming the characteristics, by making use of the equations

d (aja/) =
7&amp;lt;Z (oa ) + yd ( ) + rd (77),

d (&& )
= $d (aa ) + B d ( ) + rd (SS ), (mod. 2),

which can be proved by the methods of 327, we immediately find

), -Q,=M - fr Q - \d (&& ), (mod -

Hence any transformation of order rs may be regarded as compounded of

two transformations, of which the first transforms a theta-function of the

first order into a theta function of the r-th order, and the second transforms

it further into a theta function of order rs.

It follows therefore that the most general transformation may be con

sidered as the result of successive transformations of prime order. It is

convenient to remember that the matrix of integers, A1? associated with

the compound transformation, is equal to AV, the matrix A, associated

with the transformation which is first carried out, being the left-hand

factor.

One important case should be referred to. The matrix

is easily seen to be that of a transformation of order r
; putting it in place of y, the final

equations for the compound transformation Vi may be taken to be

The transformation rA~ : is called supplementary to A (cf. Chap. XVII., 317, Ex. vii.).

333. Limiting ourselves now to the case of linear transformation, let

AK (k = 2, 3, . . .
, p) denote the matrix of 2p rows and columns indicated by

^* =
(A*t, ),

0, /**

where
fj,k has unities in the diagonal except in the first and &-th places, in

which there are zeros, and has elsewhere zeros, except in the &-th place of

the first row, and the k-ih place of the first column, where there are unities
;

let J9 denote the matrix of *2p rows and columns indicated by
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which has unities in the diagonal, except in the first and (p + l)-th places,

where there are zeros, and has elsewhere zeros except in the (p + l)-th place
of the first row, where there is 1, and the (p + l)-th place of the first

column, where there is + 1
;

let C denote the matrix of 2p rows and columns

indicated by

which has unities everywhere in the diagonal and has elsewhere zeros,

except in the (p + l)-th place of the first row, where it has - 1
;
let D denote

the matrix of 2p rows and columns indicated by

D = (l 0-1 ),

1 -1
1

1

1

1

1

1

which has unities everywhere in the diagonal and has elsewhere zeros, except
in the (p + 2)-th place of the first row and the (p + l)-th place of the second

row, in each of which there is 1. It is easy to see that each of these
matrices satisfies the conditions (IX.) of 324, for r = 1.

Then it can be proved that every matrix of 2p rows and columns of

integers,
a

,

,
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for which aft = fta, a ft
=

ft a, aft @a? = 1, can be written* as a product of

positive integral powers of the (p + 2) matrices A Z) ..., Ap , B, C, D. The

proof of this statement is given in the Appendix (II) to this volume.

We shall therefore obtain a better understanding of the changes effected

by a linear transformation by considering these transformations in turn. We
have seen that any linear transformation may be considered as made up of

two processes, (i) the change of the fundamental system of periods, effected

by the equations

[&amp;lt;w]

= coo. + co a.
,

[&&amp;gt; ]
=

6&amp;gt;/3
+ aft ,

[77]
=

773 + 7/a , [77 ]
=

7}ft + rj ft ,

(ii) the change of the arguments, effected by the equation u = Mw, and

leading to

of these we consider here the first process. Applying the equations }

[CD]
= oa + &&amp;gt;V, [&&amp;gt; ]

=
to/3 + a) ft ,

respectively for the transformations A k , B, C, D, we obtain the following results :

For the matrix (A k) we have

[(i&amp;gt;r,i]

=
&amp;lt;0r,k, [&amp;lt;0r,k]

=
Vr,i, [&amp;lt;&amp;gt;&amp;gt; r,i]

=
&amp;lt;0

r,k, [a&amp;gt; r,k]
=

&amp;lt;

r,i, 0&quot;

=
1, 2

&amp;gt; P) &amp;gt;

or, in words, if 2a)
r&amp;gt;

i, 2&&amp;gt;

r&amp;gt;

; be called the i-th pair of periods for the argument
ur ,

the change effected by the substitution A^ is an interchange of the first

and A;-th pairs of periods no other change whatever being made.

When we are dealing with p quantities, the interchange of the first and -th of these

quantities can be effected by a composition of the two processes (i) an interchange of the

first arid second, (ii) a cyclical change whereby the second becomes the first, the third

becomes the second, ..., thep-th becomes the Q-l)-th, and the first becomes the p-tln.

Such a cyclical change is easily seen to be effected by the matrix

1
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which verifies the equations (IX.) 324, for r=l. Hence the matrices A
3 , ..., Ap can

each be represented by a product of positive powers of the matrices E and A z . Thereby
the (jo + 2) elementary matrices A 2 , ..., A p , B, C, D can be replaced by only 5 matrices E,
A

z , B, C, D*.

Considering next the matrix B we obtain

[1 r n r n r / n / f* ^ *&amp;gt; ^&amp;gt; &amp;gt; ?^\
ft)nlj

= ft)
r)1 ,

|G&amp;gt;
r,iJ= Wr,i, |wr,tj = &amp;lt;r,ii L ft) r

( rJ
=

&amp;lt;w r,i, I.. o 1,
\1 Z, . . ., JP/

so that this transformation has the effect of interchanging m.
r&amp;gt;l

and &&amp;gt;

,., i&amp;gt;

changing the sign of one of them
;
no other change is introduced.

The matrix G gives the equation

[w r.i]
=

0&amp;gt; r,i
-

r,i, (r = 1, 2, . . . , p),

but makes no other change.

The matrix D makes only the changes expressed by the equations

[&amp;gt;, 1]
= w

r, i
d&amp;gt;r,

2 , [w r, 2]
=

&amp;lt;u

r, 2
~

&&amp;gt;r,
i

In applying these transformations to the case of the theta functions we
notice immediately that A^, C and D all belong to the case considered in

326 (ii), in which the matrix a = 0.

Thus in the case of the transformation A^ we have

where w differs from u only in the interchange of u^ and uk ,
T differs from r

only in the interchange of the suffixes 1 and k in the constituents T
r&amp;gt;s

of the

matrix T, and K, K differ from Q, Q only in the interchange of the first and
&-th elements both in Q and Q . Thus in this case the constant A is equal
to 1.

In the case of the matrix (C), the equations of 326 (2) give

where

u-w, T =T save that r\ tl
=T

ltl -I, and K =Q , K=Q save that Ki=Ql

now the general term of the left-hand side, or

is equal to

r (n+K )*+iir

_ g-tV (Q,
2 -

Q, ) e2wiw (n+K )+iirr (n+K&quot;Jf&amp;gt;+2niK(n+K ) .

thus in the case of the transformation (C) the constant A is equal to

g-i&amp;gt;&amp;lt;Q,&quot;-Q,
)

;
wnen Q/ is a half-integer, this is an eighth root of unity.

* See Krazer, Ann. d. Mat., Ser. n., t. xii. (1884). The number of elementary matrices is

stated by Burkhardt to be further reducible to 3, or, in case p = 2, to 2; Getting. Nachrichten

1890, p. 381.
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In the case of the matrix (D), the equations of 326 (ii) lead to

where u = w, r r save that r
1)2
= r

li2 1, r
2) i
= r

2)1 1, and K = Q ,
K = Q

save that Kl
= Q1 + Q2 ,

Kz
= Q2 + Q/ ;

now we have

riK (n+K 1

)

thus, in the case of the matrix (D) the constant A is equal to e~ ZiriQ i Q*.

We consider now the transformation (B) which falls under that con

sidered in (i) 326. In this case Trio. (a + TO?) wz is equal to irir
ltl w-?, and

the equation (a + TO?) r =
J3 + r/3 leads to the equations

or, the equivalent equations (?^,
s = 2, 3, . . . , p),

Iii /it _ /
/ .

i.x /T&quot; 1,1&amp;gt; ^&quot;l,r ,ttrl*1t\i ^&quot;r,8 *f,t T
i,r

T i,/ r
i,i&amp;gt;

also WI = TI )I
WI ,

w
;
. = T

ljr Wj + wr ,
so that Wj = r ^iMj, wr

= wr r\
&amp;gt;T

ult and

Tl)1 Wj
2 = - T

J,! Mj
2

;
further we find

K = Q save that K, =-Ql,andK=Q save that K-, = Q/ ;

with these values we have the equation

334. To determine the constant A in the final equation of the last

Article we proceed as follows* : We have

ri

(i)
e*
wimw dw = or 1,

Jo

according as m is an integer other than zero, or is zero
;

(ii) if a be a positive real quantity other than zero, and /9, 7, 8 be real

quantities,

where for the square root is to be taken that value of which the real part is

positive*f ;

* For indications of another method consult Clebsch u. Gordan, Abel. Funct., 90; Thomae,

Crelle, LXXV. (1873), p. 224.

+ By the symbol *Jn, where /* is any constant quantity, is to be understood that square root

whose real part is positive, or, if the real part be zero, that square root whose imaginary

part is positive.
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(iii) with the relations connecting u, w and r, r given in the previous

Article,

un = (wn\ + (T!, l nt + + r
lt p np) wl ,

where (wn\ denotes W2n2 + + wpnp ;

(iv) the series representing the function (w, T ) is uniformly con

vergent for all finite values of wlt ..., wp ,
and therefore, between finite limits,

the integral of the function is the sum of the integrals of its terms.

Therefore, taking the case when (? )
and therefore

(j )
are (), and

integrating the equation

in regard to Wi, ...
,
wp ,

each from to 1, we have

oo oo, oo rl rl

Ao=
n

l=-,n^,n l,L &quot;h

e7&amp;gt;

n*dw1 ...dwp ,

where, on the right hand, the integral is zero except for n2
= 0, . . .

,
np = ;

thus
oo rl

n,= -oo Jo

v f
1

i
2

M1= -oo JO

J ao

hence since the real part of irir
ltl

is negative ( 174), we have

A l^ I *=
A/ :

=
A/v 7rir

ltl v r
lfl

where the square root is to be taken of which the real part is positive.
Hence

eir.,.wi(M; T)
= A @(w; T ) fV T

1&amp;gt;a

and from this equation, by increasing w by K+rK ,
we deduce that

er*TIllWl 0(M; T Q
)
= /J.^.riQ.Q, ^; T ^

Hence, when the decomposition of any linear transformation into trans
formations of the form A k , B, C, D is known, the value of the constant

factor, A, can be determined.

335. But, save for an eighth root of unity, we can immediately specify the value in
the general case

; for when Q, $ are zero, the value of the constant A has been found to
be unity for each of the transformations A k , C, D, and for the transformation B to have a
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value which is in fact equal to *Ji/\M\, \M\ denoting the determinant of the matrix M.

Hence for a transformation which can be put into the form

, ...................
a 7 * *

if the values of the matrix M for these component transformations be respectively

...M^...\...\...M^.. .!...!...,

the value of the constant A, when Q, ty are zero, for the complete transformation, will be

but if the complete transformation give u = Mw, we have M=...M2M1 ...; thus, for any
transformation we have the formula

\M\

where M=a+ ra, u= Mw, and e is an eighth root of unity, r, r being as in 328, p. 544.

Putting 2o&amp;gt;M,
2vw for u, w, as in 326, this equation is the same as

3 (u ; 2, 2
,
2V , 2, )= 7=== * U 5 2u, 2

, 2f, 2f | fl/JV|*

where
|

o&amp;gt;

|

is the determinant of the matrix w, etc.

Of such composite transformations there is one which is of some importance, that,

namely, for which

so that

Then

We may suppose this transformation obtained from the formula given above for the

simple transformation B thus Apply first the transformation B which interchanges

&quot;mi r,i
with a certain change of sign of one of them; then apply the transformation

A
2BA 2 which effects a similar change for the pair &amp;lt;or)2 ,

a&amp;gt;

r&amp;gt;2

then the transformation
A 3 A

3 ,
and so on. Thence we eventually obtain the formula

Q

where

t T -i a .. . T o oJ Iji f / &t QT
2, 2 T

2, 2 )
r

.3, 3 T
3, 3 ~i

&amp;gt;
&amp;gt;

T
l, 1 T

2, 2

and, save for an eighth root of unity,

/~*~ / ~~i~ / i~ 1

where |T| is the determinant of the matrix T.
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The result can also be obtained immediately, and the constant obtained by an integra

tion as in the simple case of the transformation B
;
we thus find, for the value of the

constant here denoted by x/ x/~ ..., the integral*v T
i, i

v T
2, 2

r ... r e
x* dxi---dxP-

J -CO J _CO

^!r. i. Prove that another way of expressing the value of this integral is

4tStan-i\r .

e r=i /V|TTO |,

where, if the matrix T be written p + icr, TTO |

is the determinant of the matrix p
2+ o-

2
,

which is equal to the square of the modulus of the determinant of the matrix T, also

A!, ..., \p are the (real) roots of the determinantal equation \p-\a-\ = 0, and tan&quot;
1 Ar lies

between -
7r/2 and w/2. Of the fourth root the positive real value is to be taken.

Ex. ii. For the case p= 1, the constant for any linear transformation is given by

according as a or a is odd
;
where a is positive, and

i / 7r â
&amp;gt; I

as a S aa
, T .

2
/ i

L= e*&amp;lt;&amp;gt;- \/ /

336. Returning now to consider the theory more particularly in con

nexion with the Riemann surface, we prove first that every linear trans

formation of periods such as

[to]
= toot + 6&amp;gt;V, [a/]

= w/3 + to /S ,

where

a-o = 0,
- a = 0, a0 -/3a =

l,

can be effected by a change in the manner in which the period loops are

taken. For this it is sufficient to prove that each of the four elementary

types of transformation, Ak, B, G, D, from which, as we have seen, every

such transformation can be constructed, can itself be effected by a change in

the period loops.

The change of periods due to substitutions A k can clearly be effected

without drawing the period loops differently, by merely numbering them

* Weber has given a determination of the constant A for a general linear transformation by
means of such an integral, and thence, by means of multiple-Gaussian series. See Crelle, LXXIV.

(1872), pp. 57 and 09.
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differently attaching the numbers 1, k to the period-loop-pairs which were

formerly numbered k and 1. No further remark is therefore necessary in

regard to this case.

The substitution B, which makes only the change given by

[Q)riJ = ft)
,., j , [ft/r , i]

= -
ft),., ! ,

can be effected, as in 320, by regarding the loop (6j) as an \a^\ loop, with

retention of its positive direction
;
thus the direction of the (old) loop (a^),

which now becomes the [6J loop, will be altered
;
the change is shewn by

comparing the figure of 18 (p. 21) with the annexed figure (13).

FIG. 13.

The change, due to the substitution G, which is given by

[** r, i]
= to

r, 1
~

Mr, i &amp;gt;

is to be effected by drawing the loop [aj in such a way that a circuit of it

(which gives rise to the value [2ft/r,i] for the integral ur) is equivalent to a

circuit of the original loop (j) taken with a circuit of the loop (6j) from the

positive to the negative side of the original loop (a^.

This may be effected by taking the loop [aj as in the annexed figure (14)

(cf. 331).

FIG. 14.

For the transformation D the only change introduced is that given by

[ft) r
, i]
=

ft&amp;gt;

r, i
&&amp;gt;r,

2 &amp;gt;

[o&amp;gt; r, 2]
=

,
2
~

&amp;lt;&amp;gt;,
1 ,

and this is effected by drawing the loops \a^\, [a2],
so that a circuit of
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[j] is equivalent to a circuit of the (original) loop (a^ together with a

circuit of (62 ),
in a certain direction, and similarly for [a2].

This may be

done as in the annexed diagram (Fig. 15).

FIG. 15.

For instance the new loop [ 2] in this diagram (Fig. 15) is a deformation of a loop
which may be drawn as here (Fig. 16) ;

FIG. 16.

since the integrand of the Abelian integral ur is single-valued on the Riemann surface,

independently of the loops, the doubled portion from L to M is self-destructive
; and

a circuit of this new loop [a2] gives w
r&amp;gt; 2

-
a&amp;gt;

r&amp;gt; j ,
as desired.

Hence the general transformation can be effected by a composition of the

changes here given. It is immediately seen, for any of the linear transform

ations of 326, that if the arguments there denoted by Ult ..., Up be a set

of normal integrals of the first kind for the original system of period loops,
then Wlt ..., Wp are a normal set for the new loops associated with the

transformation.

337. Coming next to the question of how the theory of the vanishing of

the Riemann theta function, which has been given in Chap. X., is modified

B. 36
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by the adoption of a different series of period loops, we prove first that when

a change is made equivalent to the linear transformation

[eo]
=

&amp;lt;ya + a/a
, [a/]

=
&&amp;gt;/3

+ &//3 ,

the places m^, ..., mp of 179, Chap. X., derived from any place TO, upon
which the theory of the vanishing of the theta function depends, become

changed into places TO/, . . .
,
mp which satisfy the p equations

)], + J T;, , [d ( )]! +... + lriip [d

wherein tt1} ..., t*p denote the normal integrals of the first kind for the

original system of period loops.

For let w1} ...,wp be the normal integrals of the first kind for the new

period loops, and let TO/, . . .
,
mp be the places derived from the place TO, in

connexion with the new system of period loops, just as m1} ..., mp were

derived from the original system. In the equation of transformation

e
*ia ,a+ra) vfi

&amp;lt;H)

;
T = A, (w J

T ),

put
= Wx m

so that the right-hand side of the equation vanishes when x is at any one of

the places TO/, ..., mp ;
then we also have

u =
hence the function

f , ; 3 (
l^(a /5)J

vanishes when x is at any one of the places acl) ..., xp \ therefore, by a

proposition previously given (Chap. X., 184 (X.)), the places TO/, ..., TO/

satisfy the equivalence stated above.

It is easy to see that this equivalence may be stated in the form

It may be noticed also that, of the elementary transformations associated

with the matrices Ak , B, C, D, of 333, only the transformation associated

with the matrix C gives rise to a change in the places mlf ..., mp \
for each

of the others the characteristic [^d(a/3), ^d(ct /3 )] vanishes.

338. From the investigation of 329 it follows, by interchanging the

rows and columns of the matrix of transformation, that a linear trans-
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formation can be taken for which the characteristic [^d (ot/3), |d

represents any specified even characteristic; thus all the 2p-1 (2
p + 1) sets*,

/, ..., mp ,
which arise by taking the characteristic Jrj in the equivalence

to be in turn all the even characteristics, can arise for the places w/, . . .
,
mp .

In particular, if ^fi^ M
&amp;lt; be an even half-period for which (i^M , /*) vanishes,

we may obtain for w/, ..., mp a set consisting of the place m and p-l
places ??/, ..., n p_i, in which w/, ..., yi ^-j are one set of a co-residual lot of

sets of places in each of which a ^-polynomial vanishes to the second order

(cf. Chap. X., 185).

Ex. If in the hyperelliptic case, with
jt&amp;gt;

=
3, the period loops be altered from those

adopted in Chap. XI., in a manner equivalent to the linear transformation given in the

Example of 329, the function e (w ; T ),
denned by means of the new loops, will vanish

for w = 0; and the places mx ,
m

2 ,
m3 , arising from the place a

( 203, Chap. XL), as

m
lf ...,mp arise from m in 179, Chap. X., will consist t of the place a itself and two

arbitrary conjugate places, z and ~z.

339. We have, on page 379 of the present volume, explained a method

of attaching characteristics to root forms V.X (1)
,
VF (3)

;
we enquire now how

these characteristics are modified when the period loops are changed. It will

be sufficient to consider the case of VF (3)
;
the case of */Xw arises ( 244) by

taking &amp;lt;f&amp;gt;

*/X w in place of VF (3)
. Altering the notation of 244, slightly, to

make it uniform with that of this chapter, the results there obtained are as

follows
;
the form X is a polynomial of the third degree in the fundamental

^-polynomials, which vanishes to the second order in each of the places

A lt ..., Azp-3, ml , ..., mp ,
where A 1} ..., A 2p_3 are, with the place m, the

zeros of a ^-polynomial &amp;lt;

;
the form F (3) is a polynomial, also of the third

degree in the fundamental ^-polynomials, which vanishes to the second order

in each of the places A 1} ..., Azp_ 3 , fj,1 , ..., /^; if

g/T&amp;lt;ll +...+2P

/

T
iiJ,), (i

= 1,2,. ..,|&amp;gt;),

where ul} ..., up are the Riemann normal integrals of the first kind, the

characteristic associated with the form F (3) is that denoted by K
J

; andj

it may be defined by the fact that the function \/F (3) /VZ (3)
,
which is single-

valued on the dissected Riemann surface, takes the factors ( I)?. , ( 1)
?

respectively at the t-th period loops of the first and second kind.

Take now another set of period loops ;
let m/, . . .

,
mp be the places

* Or lot of sets, when the equivalence has not an unique solution.

t Cf. the concluding remark of 185.

t Integer characteristics .being omitted.

362
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which, for these loops, arise as ??ij, ..., mp arise for the original set of period

loops; let Z {s) be the form which, for the new loops, has the same character

as has the form X (*} for the original loops, so that Z vanishes to the second

order in each of A l} ..., A 2p- 3&amp;gt; m/, ..., mp ;
then from the equivalences

( 337)

* mp s * [d (0/3% + K&amp;lt;,i [d (fiaOl + + i r it p (d (aa )]p ,

where wlt ..., wp are the normal integrals of the first kind, it follows, as in

244, that the function V/ (3) /VJT (3) is single-valued on the Riemann surface

dissected by the new system of period loops, arid at the r-th new loops,

respectively of the first and second kind, has the factors

e -iri[d (oa ( ~\r Qiri
[d (J3|3 )

],._

The equations of transformation,

[&amp;lt;w]

= &) + &&amp;gt;V, [&&amp;gt; ]
= w/3 + o) /3 ,

of which one particular equation is that given by

express the fact (cf. 322) that a negative circuit of the new loop [br] is

equivalent to a
i&amp;gt;r negative circuits of the original loop (bi) and d

i&amp;lt;r positive

circuits of the original loop (o^) ;
thus a function which has the factors e~ q

t,

e^i at the i-th original loops, will at the r-th new loop [ar] have the factor

e *Ur
\ where lr is an integer which is given by

- lr
= S [- qi i, r + qt &amp;lt;*

i, r], (mod. 2) ;

i=l

thus the factors of VF (3) /VX (3) at the new period loops are given by e~ vil/
,

e
1&quot;1

,
where I, I are rows of integers such that

I = aq
- a q,

-l =
J3qf- ft q, (mod. 2).

Therefore the factors of \iT/^Z
1 = (VF^Vl/^^/VZ^Xat the

new period loops, are given by e~irik&amp;gt;

, e*, where

k = aq -aq-d (aa
x

),
-k = P&amp;lt;f-ffq-d (yS/9

7

), (mod. 2) ;

now the characteristic associated with VF (3)

corresponding to the original

system of period loops may be defined by the factors of VF (3)

/VjT&amp;lt;

3
&amp;gt; at those

loops; similarly the characteristic which belongs to VF (3) for the new system
_ _ / \

of loops is defined by the factors of \/F (3) /*JZ, and is therefore
if.,);

the

equations just obtained prove therefore that the characteristic associated with

VF (3) is transformed precisely as a theta characteristic.
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The same result may be obtained thus
;
the p equations of the form

are immediately seen, by means of the equation (a +TO. ) (& r d
)
= 1 to lead to p equations

expressible by

if&quot;
m

4- . . .

subtracting from these the equations

(i=},...,

we obtain equations from which (as in 244) the characteristic of V F&amp;lt;

3
&amp;gt;,

for the new

loops, is immediately deducible.

Similar reasoning applies obviously to the characteristics of the forms

considered on page 380 ( 245). But the characteristic for a form

(p. 381), which is obtained by consideration of the single-valued

function ^JT***/^W into which the form *JX, depending on the places
m1) ..., mp ,

does not enter is transformed in accordance with the equations

k =
aq -aq, -k =

J3q
-

J3 q, (mod. 2),

and may be described as & period-characteristic, as in 328.

340. Having thus investigated the dependence of the characteristics

assigned to radical forms upon the method of dissection of the Riemann

surface, it is proper to explain, somewhat further, how these characteristics

may be actually specified for a given radical form. The case of a form

\/Jfw differs essentially from that of a form VJT (2 &quot;+1
&amp;gt;. When the zeros of a

form \fX (&amp;lt;i&amp;gt;i) are known, and the Riemann surface is given with a specified

system of period loops, the factors of a function VX (a t)

/3&amp;gt;

( t) at these loops

may be determined by following the value of the function over the surface,

noticing the places at which the values of the function branch which places
are in general only the fixed branch places of the Riemann surface

;
the

process is analogous to that whereby, in the case of elliptic functions, the

values of Vp (u + 2^) - ^ / \/p (u)
- el , Vp (u + 2&&amp;gt;o)

- ej^p (u)
- ^ may be

determined, by following the values of Vp (u)
- el

over the parallelogram of

periods. But it is a different problem to ascertain the factors of the function

\/F (3)

/v
A

A&amp;gt;
) at the period loops, because the form VZ (3)

depends upon the

places MI, ..., mp ,
and we have given no elementary method of determining

these places ;
the geometrical interpretation of these places which is given in

183 (Chap. X.), and the algebraic process resulting therefrom, does not

distinguish them from other sets of places satisfying the same conditions;
the distinction in fact, as follows from 338, cannot be made algebraically
unless the period loops are given by algebraical equations. Nevertheless we
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may determine the characteristic of a form F(3)
,
and the places m^ ..., mp ,

by the following considerations*: It is easily proved, by an argument like

that of 245 (Chap. XIII.), that if there be a form VX (1)

having the same

characteristic as \/F (3)

,
there exists an equation of the form *JX (l] \/F (3) =

&amp;lt;E&amp;gt;

(2)

;

and conversely, if q + 1 linearly independent polynomials, of the second

degree in the p fundamental ^-polynomials, vanish in the zeros of VF (3)
,
and

M^2* denote the sum of these q + 1 polynomials, each multiplied by an

arbitrary constant, that we have an equation \/F(1) \^F 1!* ,
where VF(1) is

a linear aggregate of q + 1 radical forms like *JX(l)
,

all having the same

characteristic as VlT(s)
;

in general, since a form M^2 can contain at most

3 (p 1) linearly independent terms ( 111, Chap. VI.), and the number of

zeros of VF(3) is 3 (p 1), we have ^ + 1=0; in any case the value of q + 1

is capable of an algebraic determination, being the number of forms 4&amp;gt;

( 2)

which vanish in assigned places. Now the number of linearly independent

forms VjT (l) with the same characteristic is even or odd according as the

characteristic is even or odd ( 185, 186, Chap. X.) ; hence, without deter

mining the characteristic of VF(3) we can beforehand ascertain whether it is

even or odd by finding whether q + 1 is even or odd. Suppose now that

fa, ..., fj,p and fa, ..., fjLp are two sets of places such that

m being an arbitrary place, and m, A 1} ..., A 2p_3 being the zeros of any

^-polynomial
&amp;lt;/&amp;gt;

;
so that /^ ,

. . .
, pp and /V, &amp;gt; /V are two sets arbitrarily

selected froni 22p sets which can be determined geometrically as in 183,

Chap. X. (cf. 244, Chap. XIII.) ;
let F(3) vanish to the second order in each

of
yLtj, ..., /Ap ,

A 1} ..., A 2p_3 and F/3 vanish to the second order in each of

pi&amp;gt; , Pp, AI, ..., A 2p_3 ; by following the values of the single-valued

function VF^ys/F^ on the Riemann surface, we can determine its factors at

the period loops ;
at the r-th period loops of the first and second kind let

these factors be (I)*
-

, ( !)* respectively; then if ^(qit ...,
&amp;lt;&, )

and

2&quot; (Qi&amp;gt; Qp) be respectively the characteristics of VF (3) and VF/3
,
which we

wish to determine, we have ( 244)

kr
f = Qr

-
qr ,

kr = Qr
-
qr , (mod. 2).

Take now, in turn, for /*/, ..., /A/, all the possible 2^ sets which, as in 183,

are geometrically determinate from the place m; and, for the same form

VF(3)
, determine the 2* characteristics of all the functions VF^ /VF*

3

arising

*
Noether, Jahresbericht der Deutschen Mathematiber Vereinigung, Bd. iii. (1894), p. 494,

where the reference is to Fuchs, Crelle, LXXIII. (1871) ;
cf. Prym, Zur Theorie der Fumtionen in

einer zweibldttrigen Fldche (Zurich, 1866).
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by the change of the forms \fY^ ;
then there exists one, and only one,

s \
}

, satisfying the condition that the characteristic

_
is even when VF/3 has an even characteristic and odd when VFj(3) has an odd

characteristic
; for, clearly, the characteristic \ (

1 is a value for \ ( ]
which

\q / \s /

satisfies the condition, and if i I I were another possible value for 1-
(

1

\&amp;lt;r ) \s)
we should have

(k + o-) (k +
&amp;lt;/)

=
(k + q)(k + q ) (mod. 2),

or

k
(&amp;lt;r

-
q) + k

(&amp;lt;r-q)
=

qq
-

&amp;lt;ra

for all the 2 2̂

possible values of
|-

,
;
and this is impossible (Chap. XVII.,

\fc 1

295).

Hence we have the following rule : Investigate the factors of VF^/VF(3)

for an arbitrary form VF(3) and all 2^ forms V F^
3

; corresponding to each

form VFj 3
determine, by the method explained in the earlier part of this

Article, whether its characteristic is even or odd ; then, denoting the factors of

any function \/Fj
(3)

/v F(3)

respectively at the first and second kinds of period

loops by quantities of theform ( !)*,( 1)*, determine the characteristic M ),

satisfying the condition that the characteristic A-
( , 1 is, for every form
\ + k )

y J

j
3

, even or odd according as the characteristic of thatform, VF/3
, is even or

odd; then ^ (
}
is the characteristic of the form VF(3)

; this being determined

the characteristic of everyform VF^ is known; the particularform ^Y^ for
which the characteristic, thus arising, is actually zero, is the form previously

denoted by VZ (3&amp;gt;

namely theform vanishing in the places ml} ..., mp which are

to be associated (as in 179, Chap. X.) with the particular system of period

loops of the Riemann surface which has been adopted.
Thus the method determines the places m1} ...,mp and determines the

characteristic of every form \/F(3)

;
the characteristic of any other form

v/F(2l/+1) is then algebraically determinable by the theorems of 245 (p. 380).

341. For the hyperelliptic case we have shewn, in Chap. XL, how to

express the ratios of the 2^ Riemann theta functions with half-integer
characteristics by means of algebraic functions

; the necessary modification
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of these formulae when the period loops are taken otherwise than in

Chap. XL, follows immediately from the results of this chapter. If the

change in the period loops be that leading to the linear transformation

which is associated with the Abelian matrix formed with the integer
matrices a, /3, a , ft ,

we have ( 324)

where

k = aq -a q-d (aa ),
- k = J3q

-
q
-

If now, considering as sufficient example the formula of 208 (Chap. XL), we
have

u
r

a = ?l6)M + &quot; +
&amp;lt;fp

t r,p + qi w r.i + + Qp O&amp;gt;r,p,

then we have

W
r

a = ll V
r&amp;gt;1
+ ... + lpVr,p + liV rtl + ... +lpVfip ,

where
l = aq -a q = k +d(aa ),

- I = 0q -
/3 q

= - k + d(W) ;

therefore, if the characteristic \ (d (/9/3 ), d (aa )) be denoted by p, the function

&r 1 40 ; ( ,
)

I is a constant multiple of ^x \w ; \ ( ,
)
+ p ;

and we may
\/c / \ \*/

denote the latter function by ^ [w\w
b a + fi\. Thus the formula of 208 is

equivalent to -
\ 71
-

~\ n ^i (w I
w* a + /*),...6-=

where C is independent of the arguments w1} ..., wp , and, as in 206,

Wr =
&amp;lt;&quot;&quot;

+ . .. +
&amp;lt;&quot;&amp;lt;**,

(r = 1,2,.. .,/)).

Similar remarks apply to the formula of 209, 210. It follows from

337 that the characteristic fj, is that associated with the half-periods

where m^, ..., mp are the places which, for the new system of period loops,

play the part of the places ml} ..., mp of 179, Chap. X. It has already

( 337) been noticed that for the elementary linear substitutions A k , B, D the

characteristic
yu,

is zero.

342. In case the roots clt alt ca , 2 &amp;gt; &amp;gt; c, in the equation associated with

the hyperelliptic case

7/2
_ 4 (x

_
Cj) ^ _

tti) ^ _
Cz) (x at)...(x- Cp) (x

-
Op) (x

-
c),

be real and in ascending order of magnitude, we may usefully modify the

notation of 200, Chap. XI. Denote these roots, in order, by byp ,
6
2p_i, . .., b ,
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so that bti, byi-i are respectively cp_t+i, ap-i+i and b is c, and interchange

the period loops (a;), (&amp;gt;;),
with retention of the direction of (&{), as in the

figure annexed (Fig. 17).

FIG. 17.

Then if U*
a

, ..., U x&amp;lt;
a
are linearly independent integrals of the first kind,

such that dUx

r

a
ldx = -^r/y, where tyr is an integral polynomial in x, of degree

p 1 at most, with only real coefficients, the half-periods

are respectively real and purely imaginary, so that
[a/,.,;] is also purely

imaginary ;
if now w*

a
, ..., w^

a
be the normal integrals, so that

then the second set of periods of w*
a

, ..., w
x a

,
which are given by

T
r, i
= L

r&amp;lt;l [2a&amp;gt;\ !i] + ...+L
r&amp;gt;p [2a&amp;gt; p&amp;gt;i], (r,s=l, 2, ...,p\

are also purely imaginary* ; forming with these the theta function (w ;
T

),

the theta function of Chap. XI. is given ( 335) by

e-in* @
(u

. T Q
)
= AeMQQ &amp;gt;

(w
. r &amp;gt;\ -x) t

where K, K are obtainable from Q, Q respectively by reversing the order

of the p elements, and A is the constant Vt/A7 VtSi/A^ VtA2/A3 . . .
,
in which

^ =
TI,I, A2

= T^T^ T2

1)2 ,
etc. We find immediately that

(i
=

(), 1, .... p), and may hence associate with &_,, 62i the respective odd and
even characteristics

vo; v- 1

* The quantities r
t., of Chap. XI. (of which the matrix is given in terms of the r

&amp;lt;

of 342
by rr = -

1) are also purely imaginary when
c, , a,, ..., cp ,

ap , c are real and in ascending order
of magnitude.
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and may denote the theta functions with these characteristics respectively by
@2t-i(w; T ), (w; T ); if bk ,

blt bm , ..., be any of the places b.
2p , ..., 6

,
not

more than p in number, and if, with
}&amp;gt; qt &amp;lt; 2, &amp;gt; g/ &amp;lt; 2, we have

then the function whose characteristic is A-
(

* J may be denoted by-

This function is equal to, or equal to the negative of, the function with

characteristic J ( ) j according as the characteristic is even or odd.

We have thus a number notation for the 22p
half-integer characteristics*,

equally whether the surface be hyperelliptic or not
;
this notation is under

stood to be that of Weierstrass (Kbnigsberger, Crelle, LXIV. (1865), p. 20).

For the numerical definition of the half-periods, which are given by the rule

at the bottom of p. 297, precise conventions are necessary as to the allocation

of the signs of the single valued functions V# br on the Riemann surface

(cf. Chap. XXII.).

In the hyperelliptic case j
=

2, the characteristics of the theta functions given in the

table of 204 are supposed to consist of positive elements less than unity ;
when Q1 , Q2 ,

Qi, Q2 are each either or ^, the formula of the present article gives

&quot;*&quot; 9 \u ; r
\ y Vl^Ae-MW 6 \w ;

r
**1 % J I-

the number notations for the transformed characteristics are then immediately given by
the table of 204. The result is that the numbers

02, 24, 04, 1, 13, 3, 5, 23, 12, 2, 01, 0, 14, 4, 34, 03

are respectively replaced by

3, 1, 13, 24, 04, 02, 5, 0, 4, 2, 34, 23, 14, 12, 01, 03.

* For convenience in the comparison of results in the analytical theory of theta functions, it

appears better to regard it as a notation for the characteristics rather than for the functions.
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CHAPTER XIX.

ON SYSTEMS OF PERIODS AND ON GENERAL JACOBIAN FUNCTIONS.

343. THE present chapter contains a brief account of some general ideas

which it is desirable to have in mind in dealing with theta functions in

general and more especially in dealing with the theory of transformation.

Starting with the theta functions it is possible to build up functions

of p variables which have 2p sets of simultaneous periods as for instance

by forming quotients of integral polynomials of theta functions (Chap. XL,

207), or by taking the second differential coefficients of the logarithm of

a single theta function (Chap. XL, 216, Chap. XVIL, 311 (8)). Thereby
is suggested, as a matter for enquiry, along with other questions belonging to

the general theory of functions of several independent variables, the question

whether every such multiply-periodic function can be expressed by means of

theta functions*. Leaving aside this general theory, we consider in this

chapter, in the barest outline, (i) the theory of the periods of an analytical

multiply-periodic function, (ii) the expression of the most general single

valued analytical integral function of which the second logarithmic dif

ferential coefficients are periodic functions.

344. If an uniform analytical function of p independent complex
variables ul} ...,up be such that, for every set of values of u^, ...,up ,

it

is unaltered by the addition, respectively to u1} ...,up , of the constants

PH ..., Pp , then Pj, ..., Pp are said to constitute a period column for the

function. Such a column will be denoted by a single letter, P, and Pk will

denote any one of Plt ..., Pp . It is clear that if each of P, Q, R, ... be

period columns for the function, and X, p, v, ... be any definite integers,

independent of k, then the column of quantities \Pk + (jbQk + vRk + ... is

also a period column for the function
;
we shall denote this column by

\P + pQ + vR+ ..., and say that it is a linear function of the columns

P, Q, R, ..., the coefficients X, p, v, ..., in this case, but not necessarily

*
Cf. Weierstiass, (Jrelle, LXXXIX. (1880), p. 8.
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always, being integers. The real parts of the new column are the same

linear functions of the real parts of the component columns, as also are the

imaginary parts. More generally, when the p quantities XP* + pQk + vRk +

are zero for the same values of X, /JL, v, . . .
,
we say that the columns P,Q,R,...

are connected by a linear equation ;
it must be noticed, for the sake of

definiteuess, that it does not thence follow that, for instance, P is a linear

function of the other columns, unless it is known that X is not zero.

It is clear moreover that any 2p + l, or more, columns of periods are

connected by at least one linear equation with real coefficients (that is, an

equation for each of the p positions in the column p equations in all, with

the same coefficients) ; for, in order to such an equation, the separation of

real and imaginary gives 2p linear equations to be satisfied by the 2p 4- 1

real coefficients
; allowing possible zero values for coefficients these equations

can always be satisfied.

For instance the periods Q Qj^ + iQ^, o) = &amp;lt;a

1 + t&amp;lt;

2&amp;gt;

w ^wj + iwg ,
are connected by an

equation

in which however, if a&amp;gt;

1
a&amp;gt;2 ^ta^O, also = 0.

Thus, for any periodic function, there exists a least number, r, of period

columns, with r lying between 1 and 2p + 1, which are themselves not

connected by any linear equation with real coefficients, but are such that

every other period column is a linear function of these columns with real

finite coefficients. Denoting such a set* of r period columns by P (1)
, ...,P (r)

,

and denoting any other period column by Q, we have therefore the p
equations

Xr P&amp;lt;

r)

wherein X1? ..., Xr are independent of k, and are real and not infinite. It is

the purpose of wharf follows to shew, in the case of an uniform analytical

function of the independent complex variables ult ..., up , (I.) that unless the

function can be expressed in terms of less than p variables which are linear

functions of the arguments ul} ..., up ,
the coefficients \ly . . .

, X,. are rational

numbers, (II.) that, Xls ...,X,. being rational numbers, sets of r columns of

periods exist in terms of which every existing period column can be linearly

expressed with integral coefficients.

Two lemmas are employed which may be enunciated thus :

(a) If an uniform analytical function of the variables u lt ..., up have a

column of infinitesimal periods, it is expressible as a function of less than

p variables which are linear functions of w1 , ..., up . And conversely, if such

*
It will appear that the number of such sets is infinite ; it is the number r which is unique.

t These propositions are given by Weierstrass. Abhandlungen am der Functionenlehre

(Berlin, 1886), p. 165 (or Berlin. Monatsber. 1876).
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uniform analytical function of ul} ..., uv be expressible as a function of less

than p variables which are linear functions of ull ..., up ,
it has columns of

infinitesimal periods.

(#) Of periods of an uniform analytical function of the variables

ult ...,up ,
which does not possess any columns of infinitesimal periods,

there is only a finite number of columns of which every period is finite.

345. To prove the first part of lemma (a) it is sufficient to prove that

when the function f(ui, ..., up) is not expressible as a function of less than

p linear functions of ult ..., up ,
then it has not any columns of infinitesimal

periods.

We define as an ordinary set of values of the variables ult ...,up a set

Ui, ..., up ,
such that, for absolute values of the differences ut /, ...,up Up

which are within sufficient (not vanishing) nearness to zero, the function,

/(MI, ..., Up), can be represented by a converging series of positive integral

powers of these differences the possibility of such representation being the

distinguishing mark of an analytical function
;
other sets of values of the

variables are distinguished as singular sets of values*.

Then if the function be not expressible by less than p linear functions of

!, ..., Up, there can exist no set of constants d, ..., cp such that the
function

vanishes for all ordinary sets of values of the variables; for this would

require / to be a function of the p-l variables c^ - c&i (i
=

2, ..., p).
Hence there exist sets of ordinary values such that not all the differential

coefficients df/du,, ...,df(dup are zero; let
&amp;lt;$\ ....u be such an ordinary

set of values; for all values of ,, ..., up in the immediate neighbourhoods

respectively of , , ..., u, the statement remains true that not all the partial
differential coefficients are zero.

Then, similarly, the determinants of two rows and columns formed from
the array

dup

do not all vanish for every ordinary set of values of the variables; let

*!,...,*, be an ordinary set for which they do not vanish
;
for all values of

* The ordinary sets of values constitute a continuum of 2p dimensions, which is necessarily
limited; the limiting sets of values are the singular sets. Of. Weierstrass, Crelle LXXXIX
1880 . 3.(1880), p. 3.
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ul} ...,up in the immediate neighbourhoods respectively of u? , ..., U*
,
the

statement remains true that not all these determinants are zero.

Proceeding step by step in the way thus indicated we infer that there exist

sets of ordinary values of the variables, (ul\ ..., u
(

p), . . .
, (u\

p
\ . . .

, z/jf

)

), such

that the determinant, A, of p rows and columns in which the k-ih element of

the r-th row is df(u
(

i\ ..., u^^/du^, does not vanish; and since these are

ordinary sets of values of the arguments, this determinant will remain

different from zero if (for r=l, . .., p) the set u
(

i\ ..., u
(

p be replaced

by vf , ..., Vp, where t^ is a value in the immediate neighbourhood of
(r)%

This fact is however inconsistent with the existence of a column of

infinitesimal periods. For if Hl} ..., Hp be such a column, of which the

constituents are not all zero, we have

f TT J r,,w _L A TT Jr)
. a 77 1=

k=i du L + l &quot;
&quot;

p +WW
where #1} ..., 0p are quantities whose absolute values are ^ 1, and the

bracket indicates that, after forming df/duk ,
we are (for ra=l, . .., p) to

substitute u
r

m + 6mHm for u^ ;
these p equations, by elimination ofH

l&amp;gt;

...
, 5^

give zero as the value of a determinant which is obtainable from A by slight

changes of the sets u[ , ...,Up ;
we have seen above that such a determinant

is not zero.

To prove the converse part of lemma (a) we may proceed as follows.

Suppose that the function is expressible by m arguments vl} ..., vm given by

Vk = a
ktl
u1 + ... + a

kt pup , (k = 1, . . ., m),

wherein m&amp;lt; p. The conditions that v1} ...,vm remain unaltered when

MI, ..., up are replaced respectively by u1 + tQi, ..., up + tQp are satisfied by

taking Q1} ..., Qp so that

and since
m&amp;lt;p these conditions can be satisfied by finite values of Qlt ...,QP

which are riot all zero. The additions of the quantities tQi,...,tQp to

HI, ...,up ,
not altering vlt ..., vm ,

will not alter the value of the function f.

Hence by supposing t taken infinitesimally small, the function has a column

of infinitesimal periods.

346. As to lemma (@), let Pk = pk + ia-k be one period of any column of

periods, (k=I, ..., p), wherein pk ,
&amp;lt;rk are real, so that, in accordance with the

condition that the function has no column of infinitesimal periods, there
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is an assignable real positive quantity e such that not all the 2p quantities

pk ,
ak are less than e. Then if fit ,

vk be 2p specified positive integers,

there is at most one column of periods satisfying the conditions

&amp;lt;(/**+l)e, vke$\&amp;lt;rk\&amp;lt;(vk
+ l)c, (k

=
1, ..., p) ;

wherein \pk\, \&amp;lt;fk\

are the numerical values of pk ,
crk ;

for if pk + i&amp;lt;rk were

one period of another column also satisfying these conditions, the quantities

pk pk -|- { (0-j/
_

o-j.)
would form a period column wherein every one of the

2p quantities pk p k&amp;gt;

a-k o~k was numerically less than e.

Hence, since, if g be any assigned real positive quantity, there is only a

finite number of sets of 2p positive integers /jik , vk such that each of the

2p quantities pk e, rk e is within the limits (g, g), it follows that there

is only a finite number of columns of periods Pk
=

pk + i(rk ,
such that each of

pk ,
&amp;lt;rk is numerically less than g. And this is the meaning of the lemma.

347. We return now to the expression ( 344) of the most general

period column of the function /by real linear functions of r period columns,

of finite periods, in the form

here the suffix is omitted, and we make the hypothesis that the function

is not expressible by fewer than p linear combinations of ult ..., up .

Consider, first, the period columns Q from which X2
= X3

= ... = Xr
=

and &amp;lt; A!
:}&amp;gt;

1. Since there are no columns of infinitesimal periods, there

is a lower limit to the values of \ corresponding to existing period columns

Q satisfying these conditions
;
and since there is only a finite number of

period columns of wholly finite periods, there is an existing period for which

Xj is equal to this lower limit. Let X
ltl

be this least value of \1} and Q (1)

be the corresponding period column Q.

Consider, next, the period columns Q for which X3
= \4 . . . = Xr

= 0,

and O^-Xj^-l, &amp;lt; X-j ^ 1. As before there are period columns of this

character in which X2 has a least value, which we denote by X
2) 2 . If there

exist several corresponding values of X1} let X1)2 denote one of these, and

denote \
1&amp;gt;2

PW + X2)2 P&amp;lt;

2
&amp;gt;

by Q&amp;lt;

2
.

In general consider the period columns of the form

wherein

Since there are no infinitesimal periods, there is a lower limit to the values

of \m corresponding to existing period columns satisfying these conditions
;

since there is only a finite number of period columns of wholly finite periods,

there is at least one existing column Q for which X is equal to this lower
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limit; denote this value of X by Xm ,w ,
and denote by X

1(TO , ..., \m-i,m values

arising in an actual period column Q (w)
given by

Q&amp;lt;&amp;gt;

= X1)W P&amp;lt;

1
&amp;gt; + X2

,
m P&amp;lt;

2
&amp;gt; + ... + \m

,
mP (m &amp;gt;

5

there may exist more than one period column in which the coefficient of

P&amp;lt;&amp;gt; is Xw
,
m .

Thus, taking m = l, 2, ..., r, we obtain r period columns Q*
1
*, ..., Q (r)

.

In terms of these any period column Q,
= XjP 1 + ... + XrP (r

&amp;gt;,

in which

Xj, ..., Xr are real, can be uniquely written in the form

wherein Nlt ..., Nr are integers, and ^, ..., /ir are real quantities which are

zero or positive and respectively less than \
l&amp;gt;1

, ..., \r,r- For, putting Xr into

the form Nr\r, r + Pr, where Nr is an integer and fir ,
if not zero, is positive

and less than \
rtr ,

we have

where
Xj = Xj lv,.X1)r ,

. . . ,
X r_j = Xr_j IV r \r i

&amp;gt;r
,

and herein the column Q = X1
/

P&amp;lt;
1) + ... + X/

r_iP (r
~

1) can quite similarly be

expressed in the form

and so on.

But now, ifAW + ... + ^rQ (r) +/*iP (1) + ... +
P&amp;lt;rP

(r) be a period column,

it follows, aaNlt ...,Nr are integers, that also ^Pw +...+ /^rP (r
&amp;gt; is a period

column; and this in fact is only possible when each of ^, ..., /j,r is zero.

For, by our definition of Q (r)
,
the coefficient

fj,r is zero
; then, by the definition

of Q (r
~

l)
,
the coefficient /*,._!

is zero
;
and so on.

On the whole we have the proposition (II., 344) if

Qw =X1
,
m P&amp;lt;

1 + ... +Xm
,
m P&amp;lt;&amp;gt;, (m = l, ..., r),

be that real linear combination of the first in columns from P (1

&amp;gt;, ..., P (r] in

which the m-th coefficient \m
,
m has the least existing value greater than zero

and not greater than unity, or be one such combination for which \m,m satisfies

the same condition, then every period column is expressible as a linear combina

tion of the columns Q (1)
, ..., Q (r) with integral coefficients.

It should be noticed that #*), ..., $ r
&amp;gt; are not connected by any linear equation with

real coefficients, or the same would be true of PW, ..., &rl And it should be borne

in mind that the expression of any period column by means of integral coefficients,

in terms of QW, ..., ty
r
\ is a consequence of the fact that the function /(MI} ..., up)

has only a limited number of period columns which consist wholly of finite periods.

Conversely the period columns, of finite periods, obtainable with such integral coefficients,

are limited in number,
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Another result (I., 344) is thence obvious The coefficients in the linear

expression of any period column in terms of P (1)
, ..., P (r) are rational

numbers.

For by the demonstration of the last result it follows that the period

columns P (1)
, ..., P {r} can be expressed with integral coefficients in terms of

Q 1

, ..., Q (r) in the form

P&amp;lt;&amp;gt;
= N( &quot;l]

Q (l} + ... + N^Qv, (m= 1, ..;,*) ;

from these equations, since the columns P (1)
, ..., P (r) are not connected by

any linear relation with real coefficients, the columns Q (1)
, ..., Q (r) can be

expressed as linear combinations of P (1)
, ..., P (r) with only rational numbers

as coefficients; hence any linear combinations of Qw , ..., Q (r) with integral

coefficients is a linear combination of P (1)
, ..., P (r} with rational-number

coefficients.

It needs scarcely* to be remarked that the set of period columns

Q (l)

, ..., Q (r}
,
in terms of which any other column can be expressed with

integral coefficients, is not the only set having this property.

348. We consider briefly the application of the foregoing theory to the case of uniform

analytical functions of a single variable which do not possess any infinitesimal periods. It

will be sufficient to take the case when the function has two periods which have not a real

ratio
;
this is equivalent to excluding singly periodic functions.

If 2(0!, 2
2
be two periods of the function, whose ratio is not real, and 2Q be any other

period, it is possible to find two real quantities X
x ,
X2 such that

Q = X
1

o&amp;gt;

1 -|-X 2&}2 ;

then of periods of the form 2X
1

o&amp;gt;

1 ,
in which 0&amp;lt;X 1 ^&amp;gt;1,

of which form periods do exist, 2&amp;lt;a

1

itself being one, there is one in which Xj has a least value, other than zero as follows

because the function has only a finite number of finite periods. Denote this least value

by /ij,
and put Q l =p.1ta l

. Of periods of the form 2X
1

o&amp;gt;

1 + 2X 2w 2
in which

G^&amp;gt;X! ^&amp;gt;1,
0&amp;lt;X 2 ^&amp;gt;1,

there is a finite number, and therefore one, in which X 2
has the least value arising, say /z2 ;

let one of the corresponding values of X, be X
; put Q2

=
Xa&amp;gt;

1 + /i2 &amp;lt;B2- Then any period

2Q = 2X
1

&&amp;gt;

1 + 2X2 o&amp;gt;2 is of the form 2N
l
Q

l +2N2Q2+ 2v
1

o&amp;gt;

1 + 2v&amp;lt;2 &amp;lt;o2 ,
where vlt v2 are (zero or)

positive and respectively less than ^ and p2 ,
and jYj, Nz

are integers, such that X 2
= -/V

2/i2+ 2&amp;gt;

Xj N^ =N
lp l -\-vl . But the existence of a period Q-2iV

1
Q

1
-2iV2G 2

= 2j/
1

a&amp;gt;

1 + 2i/2 &amp;lt;B 2 with

!/!&amp;lt;/*!, v%&amp;lt;pi
is contrary to the definition of /^ and ^2 ,

unless vv
and i&amp;gt;.2 be both zero.

Hence every period is expressible in the form
.

where N^ N2
are integers.

In other words, a uniform analytical function of a single variable without infinitesimal

periods cannot be more than doubly periodic^.

* For the argument compare Weierstrass (1. c., 344), Jacobi, Ges. Werke, t. ii., p. 27,

Hermite, Crelle, XL. (1850), p. 310, Biemarm, Crelle, LXXI. (1859) or Werke (1876), p. 276. See

also Kronecker, &quot;Die Periodensysteme von Functionen reeller Variabeln,&quot; Sitzungsber. der

Berl. Akad., 1884, (Jun. bis Dec.), p. 1071.

t Cf. Forsyth, Theory of Functions (1893), 108, 107. It follows from these Articles, in

this order, that any three periods of a uniform function of one variable can be expressed, with

B. 37
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It follows also that every period is expressible by 2o&amp;gt;

l ,
2o&amp;gt;2

with only rational-number

coefficients.

349. Ex. i. If r quantities be connected by k homogeneous linear equations with

integral coefficients (r&amp;gt;k\
it is possible to find r - k other quantities, themselves expressible

as linear functions of the r quantities with integral coefficients, in terms of which the r

quantities can be linearly expressed with integral coefficients.

Ex. ii. If PW, ...
,
PM be r columns of real quantities, each containing r - 1 constituents,

a column JV
l
P( l

) + ...+JVrP^r) can be formed, in which Nlt ..., Nr are integers, whose r-l

constituents are within assigned nearness of any r 1 assigned real quantities (cf.

Chap. IX., 166, and Clebsch u. Gordan, Abels. Funct., p. 135).

Ex. m. An uniform analytical function of p variables, having r period columns P*1
),

..., PW, each of p constituents, and having a further period column expressible in the

form X
1

P&amp;lt;

1
) + ...+Xr P&amp;lt;

r
),

wherein X1} ..., Xr are real, will necessarily have a column of

infinitesimal periods if even one of the coefficients X 1} ...
,
Xr be irrational.

From this result, taken with Ex. i.,
another demonstration of the proposition of the

text
( 347) can be obtained. The result is itself a corollary from the reasoning of the

text.

Ex. iv. If
7/j

a
, ..., u

x a
be linearly independent integrals of the first kind, on a

Riemann surface, and the periods, 2a&amp;gt;r, g ,
2w r, 8 ,

of the integral u*
a
be written pr,,-Hoy,,,

p^+ iV,.,,, shew that the vanishing of the determinant of 2p rows and columns which is

denoted by

V,i&amp;gt; &amp;gt; V, PJ &amp;gt;,i&amp;gt;
&amp;gt; &quot;r,p

would involve* the equation

(
M

l iNj) u*
a+ . . . +(Mp iNp} u

x&amp;gt;
a= constant,

where M
l ,
Nlt ..., Mp ,

JVP are the minors of the elements of the first column of this

determinant and are supposed not all zero.

The vanishing of this determinant is the condition that the period columns of the

integrals should be connected by a homogeneous linear relation with real coefficients.

350. The argument of the text has important bearings on the theory of the Inversion

Problem discussed in Chap. IX. The functions by which the solution of that problem is

expressed have 2p columns of periods in terms of which all other period columns can be

expressed linearly with integral coefficients ;
these %p columns are not connected by any

linear equation with integral coefficients ( 165), and, therefore, are not connected by any

linear equation with real coefficients.

It has been remarked ( 174, Chap. X.) that the Riemann theta functions whereby the

2j9-fold- periodic functions expressing the solution of the Inversion Problem can be built

up, are not the most general theta functions possible. The same is therefore presumably

true of the 2/?-fold periodic functions themselves. Weierstrass has stated a theorem t

integral coefficients, in terms of two periods. These two periods, and any fourth period of the

function, can, in their turn, be expressed integrally by two other periods and so on. The

reasoning of the text shews that when the function has no infinitesimal periods, the successive

processes are finite in number, and every period can be expressed, with integral coefficients,

in terms of two periods.
*

Forsyth, Theory of Functions (1893), p. 440, Cor. ii.

t Berlin, Monatsber. Dec. 2, 1869, Crelle, LXXXIX. (1880). For an application to integrals

of radical functions, Cf. Wirtinger, Untersuchungen ilber Thetafunctionen (Leipzig, 1895), p. 77.



351] DEFINITION OF GENERAL JACOBIAN FUNCTION. 579

whereby it appears that the most general 2p-fold periodic functions that are possible can
be supposed to arise in the solution of a generalised Inversion Problem

;
this Inversion

Problem differs from that of Jacobi in that the solution involves multiform periodic

functions*; the theorems of the text possess therefore an interest, so far as they
hold, in the case of such multiform functions. The reader is referred to Weierstrass,

Abhandlungen am der Functionenlehre (Berlin, 1886), p. 177, and to Casorati, Acta

Mathematica^ t. viii. (1886).

351. We pass now to a brief account of a different theory which is

necessary to make clear the position occupied by the theory of theta

functions. Considering, a priori, uniform integral analytical functions

which, like the theta functions, are such that their partial logarithmic
differential coefficients of the second order are periodic functions, we in

vestigate certain relations which must necessarily hold among the periods,
and we prove that all such functions can be expressed by means of theta

functions.

Suppose that to the p variables u^, ...,up there correspond a- columns of

quantities af(i=l, ..., p, j = 1, ..., a) and a columns of quantities &(

/&amp;gt;

according to the scheme

a
&quot;

and suppose &amp;lt;/&amp;gt;(V)

to be an uniform, analytical function of Wj, ..., up which
for finite values of ult ..., up is finite and continuous which further has the

property expressed by the equations

&amp;lt;

(U + d) = e*r
W

[+JaM]+2*&amp;lt;&amp;gt;
(U\ (j=l,...,a), (I.)

wherein fttf) is a symbol for a column 6&amp;lt;

J)
, ..., by and c ^ is a single quantity

depending only on
j. The aggregate of c(1)

,...,c&quot; will be called the
characteristic or the parameter of

&amp;lt;f&amp;gt;(u); af will finally be denoted by a
itj

.

We suppose that the columns a^ are independent, in the sense that there
exists no linear equation connecting them of which the coefficients are

rational numbers; but it is not assumed that the columns a constitute all

the independent columns for which the function $ satisfies an equation of
the form (I.). Also we suppose that the equation (I.) is not satisfied for

any column of wholly infinitesimal quantities put in place of a&. The
reason for this last supposition is that in such case it is possible to express
&amp;lt;/&amp;gt;

as the product of an exponential of a quadric function of ul} ..., up ,

multiplied into a function of less than p variables, these fewer variables

being linear functions of u1} ..., up . The function
&amp;lt;j&amp;gt;(u)

in the most general
* With a finite number of values.

372
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case is a generalisation of a theta function
;

it will be distinguished by the

name of a Jacobian function ; but, for example, it may be a theta function,

for which, when &amp;lt;r &amp;lt; 2p, the columns a (J) are a- of the 2p columns of quasi-

periods, 2o&amp;gt;tf
)
.

A consequence of the two suppositions is that in the matrix of a

columns and 2p rows, of which the (2t l)th and 2t-th rows are formed

respectively by the real and imaginary parts of the row
c^

1

*, ...,a,
(

?\ not

every determinant of a- rows and columns can vanish. For if with a arbitrary

real variables x1 ,...,xa. we form 2p linear functions, the (2i l)th and

2t-th of these having for coefficients the (2i l)th and 2*-th rows of the

matrix of cr columns and 2p rows just described, the condition that every

determinant from this matrix with a rows and columns should vanish, is

that all these 2p linear functions should be expressible as linear functions of

at most cr 1 of them. Now it is possible to choose rational integer values

of xi} ...,0V to make all of these cr 1 linear functions infinitesimally

small*; they cannot be made simultaneously zero since the cr columns of

periods are independent. Therefore every one of the 2p linear functions

would be infinitesimally small for the same integer values of xly ...,xa .

Thus there would exist a column of infinitesimal quantities expressible in

the form ^a 1 + +x
&amp;lt;r

aw . Now it will be shewn to be a consequence of

the coexistence of equations (I.) that also an equation of the form (I.) exists

when a (b is replaced by an expression acja^ + ... +#aa (&amp;lt;r)

,
wherein xl} ...,xa

are integers. This however is contrary to our second supposition above.

Hence also the matrix of a- columns and 2p rows, wherein the (2* l)th

and 2i-th rows consist of a(

}\ ..., a(* ] and the quantities which are the

conjugate complexes of these respectively, is such that not every determinant

of cr rows and columns formed therefrom is zero.

And also, by the slightest modification of the argument, a cannot be

&amp;gt; 2p. The case when a is equal to 2p is of especial importance ;
in fact

the case cr &amp;lt; 2p can be reduced to thisf case.

352. Consider now the equations (I.). We proceed to shew that in

order that they should be consistent with the condition that
&amp;lt;f&amp;gt; (u) is an

uniform function, it is necessary, if a, b denote the matrices of p rows and cr

columns which occur in the scheme of 351, that the matrix of cr rows and

columns^, expressed by
ab ba, (A),

should be a skew symmetrical one of which each element is a rational

*
Chap, ix., 166.

+ When ff= 2p, the hypothesis of no infinitesimal periods is a consequence of the other

conditions (cf. 345).

J The notation already used for square matrices can be extended to rectangular matrices.

See, for example, Appendix n., at the end of this volume ( 406).
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integer. Denote it by k, so that kaa = 0, kap
= kpa . But further also we

shew that it is necessary, if x denote a column of cr quantities and x^ denote

the column whose elements are the conjugate complexes of those of x, that

for all values, other than zero, satisfying the p equations

ax = 0, (B),

the expression ikxxl should be positive. We shew that ikxx
l cannot be zero

unless, beside ax, also a#j be zero : a condition only fulfilled by putting each

of the elements of x (as follows because the a- columns of periods are

independent and there are no infinitesimal periods). The condition (B) is in

general inoperative when cr &amp;lt; p + 1.

353. Before giving the proof it may be well to illustrate these results by shewing that

they hold for the particular case of the theta functions for which (cf. 284, Chap. XV.)

(r= 2p, a=
\ 2o&amp;gt;,

2o&amp;gt;

|,
2irib= 2rj, 2ij ,

and therefore

ax-Za&amp;gt;X+^(a X Qx ,
bx= - .Hx ,

ZTTl

where X is a column of p quantities, X a column of p quantities, and x= Let
X
X

Y
y, , where, similarly, each of Y and Y is a column ofp quantities ;

then*

XY -
XT=^.(HxQy-HYQx)

= ay . bx - ax . by= (ab
-
ba) xy=kxy,

but

where ei+wi = +1= ti, i + p and fj,j
= when i~j is not equal to p ; thus we may write

kxy=XY -X Y=exy,

namely, the matrix k is in the case of the theta functions the matrix
,
of 2p rows and

columns, which has already been employed (Chap. XVIII., 322).
It can be similarly shewn that in the case of theta functions of order r, k= r*.

Next if a, b, h denote the matrices occurring in the exponents of the exponential in the
theta series, we havet

namely h. ax= iriX+\&amp;gt;X . Hence the equations ax= give X=--.bX . If -X
t , X

denote the conjugate complexes of X, X we have therefore X
l
=

. \X{.
Tfl

Hence ikxx^
= ifxx

l
=i(XXJ -X XJ = - 1 [bX X^+ \X^X ]

= - -
(b+bx )

X X, ,
since

b=b and b^b^ Thus if b= c+id, \= c-id, the quantity -cX X^ is positive unless
each element of X is zero, namely, the real part of bX X^ is negative for all values of X
(except zero). If X =m+ in, b (m

2 + 2
)
is equal to bm2 +b?i2

; and the condition that this
be negative is just the condition that the theta series converge.

* For the notation see Appendix n.

t Chap. x. 190, Chap. vn. 140.
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354. Passing from this case to the proof of equations (A), (B) of 352,

we have, from equation (I.),

* [t*

_ 2Ti6 (1
[ + a( + Jo

1
&quot;]
+ 2iric + 2iri&&amp;lt;

s
&amp;gt;[tt

+ a&amp;lt;

2
)] + 27ric 2

&amp;gt; .

where Lu = iri [6
(1) a (2) - 6 (2

&amp;gt;a
(1)

],
= - L2l . Since the left-hand side of the

equation is symmetrical in regard to ax and a2 ,
eL &quot; must be = eL

&quot;,
and

hence LK/iri is a rational integer, =k2l say, such that k12
= k2l .

Obviously, in &u = a &amp;lt;1

&amp;gt;&

(3) -a (2) 6 (1)
,
the part a (1 6 (2) is formed by compound

ing the first column of the matrix a (of a- columns and p rows) with the

second column of the matrix 6. Similarly with a (s) 6 (1)
. Namely k12 is the

(1, 2)th element of k = ab - ba. Since similar reasoning holds for every

element, it follows that the matrix & is a skew symmetrical matrix of

integers. Conversely, if this be so, it is easy to prove by successive steps

the equation

u)

=

where
a&amp;lt;/3

and mi, ..., mff are integers ;
this equation may be represented* by

P am~|
a

&amp;lt; ^

tb? + -^-
+27riCHi+ 7ri S

L ^ J
&amp;lt;f&amp;gt;(u

+ am) = &amp;lt;f)(u)e

In fact, assuming the equation (II.) to be true for one set ml , ..., wff ,
we

have, by the equations (I.),

a&amp;lt;/3

- ^am] + 27ri& (1)
[M + am + Ja

11
] + 2iricm+ 27ric (1) + iri S fc

a)3
ia JK^ ^ /^

a&amp;lt;/3

_
e
27ri [6m + & 1

] [M+ ^aw+ ^a
11
] + 2^1 [cm+ c 11

] + vi S fc
a)3 7^?)^ + irf-R

^ ^ u^

For the notation see Appendix 11. or thus

.m
1 + +b (&amp;lt;T) u.m

&amp;lt;T

= bwm
1 .u+ +b((T)m

ff
.u
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where R is equal to b (l}
. am bm . a (1)

, namely equal to

a&amp;lt;/3

R + S k

1

so that

= 2 (k2lm2 + . . . + knm ) + &, 2 (7^ + 1) m.2 + . . . + &1(r (m^ + l)mv + &23ra2ra3 + . . .
;

hence
iriR + iri S k-giH-iiig iri S kaoma i&amp;gt;io

6 aO = 6
a&amp;lt;/

3
r

,

where

[m/, . . .
, wi, ]

= [X + 1, 7 2 , . . .
, m,] ;

therefore

. r 1-1 27ri6nt ru + inm l + 2iricm + 7rt S k.om mo i / \

&amp;lt;f&amp;gt; [u + am ]
= e

a&amp;lt;/5

ap a ^ 9 (?*)

Similarly we can take the case
&amp;lt;f&amp;gt;(u

+ am a (1)

), noticing that equation

(I.) can be written

where v = w + ft -&quot;.

355. The theorem (A) is thus proved. The theorem (B) is of a different

character, and may be made to depend on the fact that a one-valued

function of a single complex variable cannot remain finite for all values of

the variable.

Consider the expression

L () = e-^t (o+4af)-*rfcf
(v + a

),

wherein %l , ..., %g are real quantities.

Then ({ + )/(), wherein m lt ..., wa are rational integers, is equal
a&amp;lt;/3

to e
*ikmt +lfi s V71*7

&quot;?,
as immediately follows from equation (L), and is

therefore a quantity whose modulus is unity. Now when ,..., ff are each

between and 1 and v is finite, L () is finite. Its modulus is therefore

finite for all real values of
;
let be an upper limit to the modulus of L () ;

G can be determined by considering values of between and 1. Let now

#!, ...,xa be such that ax 0, and let x1 denote the column of quantities
which are the conjugate complexes of the elements of the column x. Put

f = x + #1, so that af = a#j.

Then

wherein an upper limit of the modulus of L () is a positive quantity G whose

value may be taken large enough to be unaffected by replacing x by any
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other solution of ax =
;

it is necessary in fact only to consider the modulus

of L () when is between and 1.

We have

b% . a^ = b (x + x^) . a (x + x^)
= bx . ax1 + bxl . axl

= bx . a#! bxl . ax + bxl . axl
= kxxl + abxf,

(c + bv) %,
= w (x + xj, say,

= wx + w^ + (w w^ xlt

where w = c + bv
;
therefore

gTri&f
. af+27ri (c+bv) f J^

/ fc\ _ giirkxx^iTrdbx^+zni (wwj a;, gini (wx+w tx,) J^ / fc\

this equation is the same as

where
J _ / fc\

has the same modulus as L (), less than G, and where

p =

yiZj}
=

Zirkyz, is a real quantity (x being equal to y + iz).

Now if x be any solution of the equations ax = 0, then ^x is also a

solution, yu, being any arbitrary complex quantity and ^ its conjugate

complex. Replace x throughout by fj^x, and therefore by ^x + /JLXI . Then

the equation just written becomes

K having also its modulus &amp;lt; G.

Herein the left side, if not independent of
//,, is, for definite constant

values of v and x, a one-valued continuous (analytical) function of p which is

finite for all finite values of p. Hence it must be infinite for infinite values

of
ytt.

Hence p must be positive, viz., values of x such that ax=0 are such

that the real quantity ikxxl is necessarily positive provided only the ex

pression

is not independent of /a.

Now if this expression be independent of p, it is equal to
&amp;lt;/&amp;gt;

(v), the value

obtained when ft
= 0, and therefore

(0)

here the left side is a function of v provided ax be not zero
;
when ax

1

is zero its value is unity ;
we take these possibilities in turn :

(i) Suppose first ax^ is not zero,
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then

(w w-i) xl
=

(bv b^) x
l *=bx1 .v b^ . v1

must, like the left side, be a function of v and therefore a linear function, say

^-.(Bv+C),
so that

&amp;lt;f) (v + fiax^
=

&amp;lt;f&amp;gt;
(v) e^H-BBM+e^ where A = iirabx? ;

hence pax^ represents a column of periods* for the function &amp;lt; (v) and this

for arbitrary values of /A.

In this case however
&amp;lt;f&amp;gt;

(v) would be capable of a column of infinitesimal

periods, contrary to our hypothesis.

Hence p must be positive for values of x such that ax = 0, ax^ 4 0.

(ii) But in fact as there are a- columns of independent periods we cannot

simultaneously have ax = 0, axl
= 0. For the last is equivalent to a^x = ;

and ax = 0, a^x = 0, together, involve that every determinant of &amp;lt;r rows and

columns in the matrix
a

is zero and thence involve the existence of
o,

infinitesimal periods ( 351).

Hence ikxxl is necessarily positive for values of x, other than zero,

satisfying ax =
;
and this is the theorem (B).

Remark i. From the existence of two matrices a, b of p rows and o- columns, for

which ab ba is a skew symmetrical matrix of integers k such that ikxx
l

is positive
for values of x other than zero satisfying ax= 0, can be inferred that in the matrix

,
not every determinant of a- rows and columns cana

i \

vanish and also that the o- columns of quantities which form the matrix a are inde

pendent, namely that we cannot have the p equations a,-,.r&amp;lt;

1
) + ...+a

i&amp;lt;T

x(&amp;lt;
r)= Q satisfied

by rational integers oX 1

), ..., yW. For then, also, a
1
^?= 0, since x=x

v
.

Remark ii. In the matrix k, if &amp;lt;r be not less than p, all determinants of 2 (o- -p) rows
and columns cannot be zero. In the matrix a, not all determinants of

\&amp;lt;r

or (o-+ l) rows
and columns can be zero. In particular when o-= 2p, for the matrix k, the determinant is

not zero
; for the matrix a, not all determinants ofp rows and columns can be zero.

Let
, TJ

be columns each of or quantities. Then the coexistence of the 3 sets of

equations

is inconsistent with the conditions (A) and (B) ( 352), except for zero values of and
The second of them obviously gives also at] l

= 0.

For from these equations we infer that k^= a^ . b^ - b . a^ is zero, and also

and therefore also k^ is zero. But by condition (B) the vanishing of ki^ when, as here,

7i
=

0, enables us to infer rj=0.

* We use the word period for the quantities ( occurring in our original equation (I.).
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Similarly

is zero when I
( + ?i)

=
0, &amp;lt;%

=
(),

a = 0. Thence by condition (B), since a|=0, is zero.

Suppose now that the number of the p linear functions a which are linearly inde

pendent is v, so that all determinants of (/+ !) rows and columns of the matrix a are zero,

but not all determinants of v rows and columns
; and that the number of the a linear

functions k which are linearly independent is 2**, so that in the matrix k all determinants

of 2/c+ l rows and columns vanish, but not all of 2/c rows and columns. Then we can

choose 2/+ 2K linearly independent linear functions from the 2p+ o- functions
, a^,

& (!+ ?)
If this number, 2i/+ 2*, of independent functions, were less than the number 2o-

of variables |, rj,
the chosen independent functions could be made to vanish simultaneously

for other than zero values of the variables, and then all the linear functions dependent on

these must also vanish.

Hence

2i/ + 2* 5 2o- or v + K &amp;gt; (r.

Now

i/&amp;lt;jt&amp;gt;, 2K&amp;lt;&amp;lt;r;
hence v^\v, 2ic&amp;gt;2(o--j).

Remark iii. It follows from (ii) that if =
0, then i/= &amp;lt;r and

&amp;lt;r=jo.
Also that a function

ofp variables which is everywhere finite, continuous and one-valued for finite values of the

variables and has no infinitesimal periods cannot be properly periodic (without exponential

factors) for more than p columns of independent periods ;
in every set of o- independent

periods of such a function the determinants of a- rows and columns are not all zero. The

proof is left to the reader.

Remark iv. When a-=2p we can put a=|2&&amp;gt;,
2

,
wherein the square matrix 2o&amp;gt; is

chosen so that its determinant is not zero. When we write a\ 2&amp;lt;o,
2o&amp;gt;

|
we shall always

suppose this done.

356. Ex. i. Prove that the exponential of any quadric function of u
lt ..., up is a

Jacobian function of the kind here considered, for which the matrix k is zero.

Ex. ii. Prove that the product of any two or more Jacobian functions, &amp;lt;,
with the

same number of variables and the same value for o-, is a function of the same character,
and that the matrix k of the product is the sum of the matrices k of the separate factors.

Ex. iii. If be considered as a function of other variables v than u, obtained from
them by linear equations of the form u=n+ cv (p being any column ofp quantities, and c

any matrix of p rows and columns), prove that the matrix k of the function $, regarded
as a function of v, is unaltered.

Obtain the transformed values of a, 6, c and bm(u+^am) + cm. (Of. Ex. i., 190,

Chap. X.)

Ex. iv. If instead of the periods a we use a = ag, where g is a matrix of integers with

&amp;lt;r rows and columns, prove that
&amp;lt;^(u

+ a m} is of the form e
^ib ^( ll+Wm)+Zniem^^ and

that V=gkg ;
and also that kxy becomes changed to kxy by the linear equations x=gx

f

,

y =gy . In such case the form k xy is said to be contained in kxy. When the relation is

reciprocal, or #
2=

1, the forms are said to be equivalent. Thus to any function $ there

corresponds a class of equivalent forms k. (Cf. Chap. XVIII., 324, Ex. i.)

Examples iii. and iv. contain an important result which may briefly be summarised by

* That the number must be even is a known proposition, Frobenius, Crelle, LXXXH. (1877),

p. 242.
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saying that for Jacobian functions, qua Jacobian functions, there is no theory of transfor

mation of periods such as arises for the theta functions. A transformed theta function is

a Jacobian function
;
the equations of Chap. XVIII.

( 324) are those which are necessary

in order that, for this Jacobian function, the matrix k should be the matrix e, or n
(cf. 353).

Ex. v. If A be a matrix of 2p rows and &amp;lt;r columns of which the first p rows are the

rows of a and the second p rows those of b, prove that

In fact if g= Ax, g^Ax
1

,
then

kx x= ax . bx - ax .bx= 2 [& &amp;lt; + p
-

/& + p]
=

= fAx . Ax = A eA . x x.

Hence also when a-= 2p the determinant of A is the square root of the determinant of /,

which in that case, being a skew symmetrical determinant of even order, is a perfect

square.

Ex. vi. Shew that when tr Zp and with the notation a= |2co, 2a&amp;gt;
|,

2irib= \2r), 2^ |,

that

2
I

7] T) CO, ?; T!
ft)

,
AtA = -

(a
T) tj &amp;lt;o,

co
77 T)

a&amp;gt;

the notation being an abbreviated one for a matrix of 2p rows and columns. Thus in the

case when k= e, the equation of Ex. v. expresses the Weierstrass equations for the periods

(Chap. VII., 140).

Ex. vii. In the case of the theta functions we shewed ( 140, and p. 533) that the

relations connecting the periods could be written in two different ways, one of which was
associated with the name of Weierstrass, the other with that of Riemann. We can give a

corresponding transformation of the equations (A), (B) ( 352) in this case, provided &amp;lt;r

=
2jo,

the determinant of the matrix k not being zero.

As to the equation (A), writing it in the equivalent form given in Ex. v., we
immediately deduce

Ak-iA= e
, (A ),

which is the transformation of equation (A).
As to the equation (B), let x be a column of a-=2p arbitrary quantities, and determine

the column 2, of &amp;lt;r

= 2p elements, so that the 2p equations expressed by az=0, bz=x, are
satisfied. Then

thus
C(x=abz= (ab-ba)z= h, =/*, say; so that k~ l

u=z, k- 1 u,=z,

ikzz
l
= i (ab- ba) zz

t
= i (azl .bz-az.bz})

= iaz
l

. bz= iaZjX= iaxz
l
= i

= ik~ l

Hi/j,
= ik-^a^ . ax= iak~ la^x ;

therefore, the form

(B ),

is positive for all values of the column x, other than zero. This is the transformed form
of equations (B).

Ex. viii. When a=
\ 2, 2

,
b =

l
.

\ 2,, 2, | ,
a-= 2jo, we have

27Tl

A (A
2o&amp;gt;,

2o&amp;gt;

n ni

- 1
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Hence when k= e, the equation (A ) of Ex. vii., equivalent to A(A=-e, expresses the

Biemann equations for the periods (Chap. VIL, 140). In the same case the equation

(B ), of Ex. vii., expresses that

= 2 2
V=l K, \ = l

is negative for all values of x other than zero.

Ex. ix. When&amp;gt; = l, the two conditions (B), (B ),
or

= positive for axQ, iaea
l
x

l
x= negative for arbitrary x,

become, for a= |2o), 2a&amp;gt;
,
if the elements of x be denoted by x and x

,
and the conjugate

imaginaries by xlt x^ respectively,

i
(wwj)&quot;

1

(cow/
- co dj) x x =

positive, i (o^w
-

&&amp;gt;/) xx^= negative,

and if
o&amp;gt;=p + io-, &amp;lt;

1 =p-io-, a&amp;gt;

= p + i&amp;lt;r
, &&amp;gt;/

= p
- ia-

,
these conditions are equivalent to

pa- p &amp;lt;r&amp;gt;0,

and express that the real part of io&amp;gt; /a) is negative.

357. Suppose now that cr = 2p ;
we proceed ( 359) to consider how to

express the Jacobian function. Two arithmetical results, (i) and (ii), will be

utilised, and these may be stated at once : (i) if k be a skew symmetrical

matrix whose elements are integers, with 2p rows and columns, and e have the

signification previously attached to it, it is possible to find a matrix g, of 2p
rows and columns, whose elements are integers, such that* k = geg. For

instance when p = 1, we can find a matrix such that

&12

-k #12 #22

-1

1

ffll ff

ffa. #22 !

fu
- gng* g&amp;lt;*g

-

ll
-

#12^21 #20^12
-

namely, such that &12
= #2i#i2 #11^22 ;

f r this we can in fact take gn , g12

arbitrarily. In general the 4p
2

integers contained in g are to satisfy

p (2p 1) conditions.

Ex. i. If a be a matrix of integers, ofp rows and columns, and X be an integer, and

0, Xa

Xa,

g may have either of the two following forms

ffi
=

X,

0, a

for we immediately find p.k/ji=k.

Xa,

0, 1

= X,

0, a

a,

0, a- 1

For a proof see Frobenius, Crelle, LXXXVI. (1879), p. 165, Crelle, LXXXVIII. (1880), p. 114.
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Ex. ii. If /x
be any matrix of integers, with 2jo rows and columns, such that ntn= f

(cf. 322, Chap. XVIIL), we have, if k=*geff, also k=g^~ l
(

t
i- l

g)
and instead of g we may

take the matrix p~
l
ff.

(ii) If g be a given matrix of integers, of 2p rows and columns, and x be

a column of 2p elements, the conditions, for ac, that the 2p elements gas

should be prescribed integers cannot always be satisfied, however the elements

of x (which are necessarily rational numerical fractions) are chosen. If for

any rational values of x, integral or not, gx be a row of integers, and we put

x = y -4- L, where y has all its elements positive (or zero) and less than unity,

and L is a row of integers (including zero), then gx = gy + gL = gy + M,

where M is a row of integers ;
in this case the row gx will be said to be con

gruent to gy for modulus g. The result to be utilised* is, that the number

of incongruent rows gx, namely, the number of integers which can be repre

sented in the form gx while each element of x is zero or positive and less than

unity, is finite. It is in fact equal to the absolute value of the determinant of

9-
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M
variation of z = -^ ,

as M changes, approaches to that of a continuous quan

tity, and the number of its values, being the same as the number of values

ofM
,
is

where zlt ..., za vary from zero to all values which give to x, in the equations

gas
= 2, a value less than unity. Now this integral is

l ....
&amp;lt;,

V*l&amp;gt; !
x

&amp;lt;r)

Since this is equal to tN&quot;, it follows that t is equal to \g\, as was stated.

358. Supposing then that the matrix g, with 2p rows and columns each

consisting of integers, has been determined so that k = abI&amp;gt;a = geg, we

consider the expression of the Jacobian function when cr = 2p. The deter

minant of k not being zero, the determinant of g is not zero.

Put K=ag~ l
,
so that K is a matrix of p rows and 2p columns, and

a = Kg ; put similarly b = Lg ; also, take a row of 2p quantities denoted by

G, such that c = gC + J [g], where c is the parameter ( 351) of the Jacobian

function, and [g] is a row of 2p quantities of which one element is

take x, x , X, X ,
rows of 2p quantities such that

X =
gx, X = gx ,

so that ax = Kgx = KX, bx = LX, ax = KX
,
bx = LX

;

then as

kx x, = ax . bx ax . bx, = (KL LK) X X,

is also equal to

gegx x = egx . gx = eX X,
we have

so that
i, ..., p

KxLx Kx Lx = (KL LK) x x ex x = S (ittaffff
x
j ^J+P) &amp;gt;

i,j

further, as ikxx1 is positive for ax = 0, we have

ieXX\ = positive when KX = 0, (D) ;

jr
thus, if A denote the matrix r ,

we have, from the equation (C),
Li

and, if z be a row of p arbitrary quantities, and Z be a row of 2p quantities
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such that KX=0, LX =
z, so that Kz = KLX = (KL - LK) X = eX, and

therefore eKz = - X, K& = eXlt we have

iK
l
eKzz

1
=

positive, for arbitrary z other than zero, (F) ;

for

iKl eKzz l
= iKlXzl

= - i

If we now change the notation by writing K= |2o&amp;gt;,
2o&amp;gt;

|,
2mL =

\2ij, 2i) \,

and introduce the matrices a, b, h ofp rows and columns defined by

a= ^r)o)~
l

,
h =

^7rio)~
l

,
b =

it being assumed, in accordance with Remark iv. ( 355) that the determinant

of the matrix w is not zero, then the equation (E) shews (cf. Ex. viii., 356)

that the matrices a, b are symmetrical, and that rf
=

?7a&amp;gt;~

1
a&amp;gt; ^iriS

l
,
so that

we can also write

r)
=

2a&&amp;gt;, t]
=

2ao&amp;gt; h
,

2hw = iri, 2h&&amp;gt;
= b

;

also, by actual expansion,
- _ 1

b] &&amp;gt;
= --

&&amp;gt;! [bj + b]
7T

WjCft), if b = c + *
7T

thus

_ 2
iKleKzzl

= -- ctj, where t = wz, z and t being rows ofp arbitrary quantities ;

7T

and therefore, by the equation (F), for real values of n1} ..., np other than

zero, the quadratic form bn2 has its real part essentially negative.

Hence we can define a theta function by the equation

|
u .

) 2eau2+2hM (w+V
V 7/ n

wherein 7, 7 are rows of p quantities given by G = (y , 7), that is, Cr = yr ,

Gp+r
=

7r&amp;gt;
for r &amp;lt; p + 1. Denoting this function by ^ (u ; C) and taking /* for

a row of 2p integers, the function is immediately seen ( 190, Chap. X.) to

satisfy the equation

^^^(u- C),

which is the definition equation for a Jacobian function of periods K, L and

parameter (7, for which the matrix k is e.

Further, if p be a matrix of integers with 2p rows and columns, such that

/Ze/x
=

e, and (Ex. ii., 357) we replace g by fjr^g, the matrices K, L are

replaced by Kp and Z/A. Thus instead of the theta function (u; C)
we obtain a linear transformation of this theta function (cf. 322 Chap
XVIII.).
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359. Proceeding further to obtain the expression for the general value

of the Jacobian function
&amp;lt;,

let $ (u ; v) denote

d&amp;gt; (u + Kv) e~ ZlriLv (U

where Vi = ni} Vi+p
= ni, for

i&amp;lt;p
+ l. Then, since a = Kg, and therefore

aN = KgN, we have

(u + aN, v)
=

&amp;lt;f) (u + KgN, v)
=

&amp;lt;j&amp;gt;
(u + Kp, v), (I),

where
/j,

denotes the row gN, so that aN=Kp, N being a column of
2jt&amp;gt;

integers and therefore p a column of integers ;
thus &amp;lt; (u + aN, v) is equal to

(U + aN+ Kv) e~^iLv (*+*/*+**&quot;) -2&quot;iCv+ninn =
fy (u

where

u + K/j, + %Kv) 2-rriCv + winn
,

by the properties of
(f&amp;gt;,

N being a column of integers ;
thus

&amp;lt;f&amp;gt;(u
+ aN, v) is

equal to
&amp;lt;x&amp;lt;0

* /.. \ a2TribN(u+ ^aN) + 2wicN+n S kaBNaNs + 2Tri(bN .Kv - Lv .K/j.)
Q) I

i-Cj
l/ } c/

Now bN=LgN = L/j,, therefore

IN . Kv Lv . Kp = (KL LK} pv = epv = mri m n,

where ^ = mf , m+p = m/, etc. for
i&amp;lt;p

+ l. If then we take v, as well as p,

to consist of integers, it will follow that

and therefore that

$ (u + aN) _ &amp;lt;f&amp;gt;(u

+ aN, v) _ ^ibN (u + &N) + z-wicN+^ 2

&amp;lt;f&amp;gt; (u) (/&amp;gt;
(u, v)

Next

(&amp;gt; U,

and this

=
&amp;lt;f)(u

+ K/J,, v) eM,

where

M = 27riLv (u + K/J, + ^Kv) + Z-rriCv - -rrinn - ZTTI (Lp + Lv) (u

ZTTI (Op + Cv) + iri (m + m) (n + n ) ;

therefore

&amp;lt;f&amp;gt;
(U + Kfl, v) _frriLn (u

(f&amp;gt; (U, ft + v
iinni +irinriiri (m+m ) (n+i )
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of which the exponent of the right side is

iri [(KL - LK) pv - mri - m n]
= TTI \rnri

- m n - (mri + m n)]
= - Zirim n,

so that, since /*, v consist of integers, the right side is unity.

Hence we have

(ft (U -f KfJ,, V) _ griLli (u+lKrt+tonCn-Trimm^

&amp;lt;ft
(u, fi + v)

It is to be carefully noticed that this equation does not require /A
=

(mod. g).
a&amp;lt;0

We suppose now that p=0 (mod. g). Then cN+$ 2 ka^NaN^ = Cfji,-^mm

(mod. unity) and L(j,
= bN, K^ = aN, as will be proved immediately ( 360) ;

thus
a

&amp;lt;f&amp;gt;
(u) (f) (u, v)

~

&amp;lt;j&amp;gt;(u, p + v}

and therefore $ (u, ^ + i&amp;gt;)

=
&amp;lt; (u, v) for integer values v and any integer

values p that can be written in the form gN, for integer N ; namely (f&amp;gt;(u, v)

is unaltered by adding to v any set of integers congruent to zero for the

matrix modulus g.

The set of g integers gr, wherein r has all rational fractional values less

than unity will now be denoted by v, each value of v denoting a column of

2p integers in particular r = corresponds to a set of integers
= p (mod. g}.

And v shall denote a special one of the sets of integers which are similarly a

representative incongruent system for the transposed matrix modulus g, such

that v =gr, the quantities r being a set of fractions less than 1. With the

assigned values for v, let

^(w) = 2e- 27rir/v
0(w, v);

V

then

ijr (u + K\) = Se-2 1
&quot;

&amp;lt;f&amp;gt; (u +K\, v}
= Ze-

11 & LK
&amp;lt;+***&amp;gt; +ar&amp;lt;cx-i ^ ( M&amp;gt;

x + v)

for any set of integers X, as has been shewn (\ being such that, for

If now v + \ = p, so that p also describes, with v, a set of integers

incongruent in regard to modulus g, those for which the necessary fractions

s, in p = gs, are &amp;gt; 1 being replaced, by the theorem proved *, by others for

which the necessary fractions are &amp;lt; 1, so that the range of values for p is

precisely that for v, then we have

u

g2irl
r X+2jrtl/X (M+iX A)+2irtCA iriM ^g SirirV

V

riiA. (M+JA A) +2iriCA-irtf&amp;lt; /\

* That 0(w, y) is unaltered when to / is added a column =0 (mod. g).

B. 38
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Hence, by the result of 284, Chap. XV., we have

1r(u)
= A,*(u, C+r ),

the theta function depending on the a, b, h derived in this chapter ( 358).

Now let v describe a set of incongruent values for the modulus g ;
then

* (u, C + r )=^ 0) = 22e-2 &quot;

&amp;lt; (u, v) ;

v

and since v = gr, we have v r = gr r = grr = vr
;
thus

Vg-2jnVV _ ^ /g
2irwV\ _ ^ (Q 2Trirl\v\ /g 2r2y2

_ _ _ /g lTrinp\v -tp
;

v v v

this sum can be evaluated :

when v = (mod. g), or the numbers r are zero, its value is equal to the

number of incongruent columns for modulus g,
=

\g\.
Since k = geg, we

have
\k\

=
(|#|)

2
,
so that \g

=
J~k\.

when v ^0 (mod. g), so that some of rl} ..., r
2p

are fractional, its value is

zero, as is easy to prove (see below, 360).

Hence we have the following fundamental equation :

Vpfcf (j&amp;gt; (u)
= 2As* (u, C + v \

v

which was the expression sought.

Thus betiveen V| k \

+ 1 functions &amp;lt;f&amp;gt;

with the same periods and parameters

there exists a homogeneous linear relation with constant coefficients*.

Ex. i. Prove that a product of n functions ^ is a function $ for which
Vl^&quot;!

is changed

into nP *J\k \.
In fact the periods are na, nb.

Ex. ii. Prove that the number of homogeneous products of n factors selected from

jo+ 2 functions &amp;lt; of the same periods and parameters is greater than np
^\k\ when n

is large enough. And infer that there exists a homogeneous polynomial relation con

necting any p+ 2, functions of the same periods and parameters. (Of. Chap. XV., 284,

Ex. v.)

360. We now prove the two results assumed.

(a) If
/j,
= (mod. g) or ^ = gN, where N are integers, then

a&amp;lt;|3

cN + \ 2 k^N+Np = Cfji- %mm (mod. unity).

For
2p p

k e
= fag)*?

= S (g\y(eg}yt
= 2 (g)ay 2

y y=l A=l

P P P
= 2,gya z&amp;lt; [ey\gw + ey,\+pg*+p,fi] + ^
y=l A=l y=

*
Weierstrass, Berl. Monatsber., 1869; Frobenius, Crelle, xcvn. (1884); Picard, Poincar^,

Compt. Rendus, xcvn. (1883), p. 1284.
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therefore

a&amp;lt;/3 p a&amp;lt;/3

2 kaftNaN = 2 2

= 22
[ffy+p,aN..gy,itNfi+ffv,aNa.ffv+p,pNe], (mod. 2),

y-i

a&amp;lt;/3 a&amp;lt;/3
\

v=i

= 2 2?,gy+ptaNa .
$ry,^ , (mod. 2),

y-i

where the 22 indicates that the summation extends to every pair a,

except those for which a = ft ;
thus

P
= * E0*A
y-i

= 2 /iy . /iy+p = mm , (mod. 2) ;

y=l

therefore, since %Na
2 = ^Na (mod. unity), and therefore

u y=1
we have

N = {gC + [g]} N + mm -
\g\ N,

(mod. 1),

= gN . C + %mm = fiC + \mm! =Cjj,- ^mm , as required.

(6) If r1} ......
, r^ be any set of rational fractions all less than unity

and not all zero and such that the row gr = v consists of integers, and

(v\, ......
, Vsp),

= v , be every integer row in turn which can be represented in

the form gr for values of / less than unity, then

is zero. Since, as remarked
( 359), the sum can also be written

2 (e~
r

wherein i/,, ..., v^ are integers, the sum is unaffected by the addition of any
integers to any one or more of the representants r\, .... r

ap, namely it has
the same value for all sets, v, of incongruent columns (for the modulus g).
If to each of any set of incongruent columns v we add the column

(0, ..., 0, \i, 0, ...,0), all of whose elements are zero except that occupying
the i-th place, which is an integer, we shall obtain another set of in-

congruent columns.

382
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Suppose then in the above sum TI is fractional. Add to every one of

the incongruent sets v the column (0, 0, ..., 1, 0, ..., 0), of which every

element except the i-ih is zero. In the summation everything is unaffected

except the powers of e~ 2lfir
^, which are multiplied by e~ 2nir

*. Hence the

sum is unaffected when multiplied by e~ Znir
*, and must therefore be zero.

We put down the figures for a simple case given by

4 5

then gr=(4rl+ 5r
z ,

?
1+ 2r

2 )
and the equations gr= v give

thus the values of rlt r
2
and v lt v2 are given by the table

ri, ra
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the conditions ab ba = k, and geg = k, if a = (a, a), b = (b, b
), become

ab -a b = -
3, g^g* - 9u(/^ = - 3

;

taking for instance

4 5

1 2

we have, if x = (x, x ),
x

l
=

(xl) &/), and ax + ax = 0, the equation

., 9m/ \- 3tV#/ , , , __
QX XI , ,

i/K/XJU-^
~ Ot- ( JuJU-^

*&quot;&quot;&quot; CG &\) ^~ ~~^
\CL CL-\

&quot;~

CL d-\ ) ( Ct/j
*~*

OL yO )

tZCvj CLCt~\

where a = a. + i/3, a a. + ift . Thus, beside ab ab = -
3, we must have

a/3 &amp;gt; a ft. The quantities a, b, a, b are otherwise arbitrary.
The equations a = Kg, b = Lg give (a, a }

= (4-K + K ,
oK + *2K ) ;

there

fore

3JT = 2a - a
,

3L = 26 - b ,

further the equation c = gC + % [g] gives

4 1
, C&quot;)

+ (4, 10) = (46 + (7 + 2, 5C 4- 2C&quot; + 5),

.5 2
so that

3a=2c-c/

+l, W = 4c - 5c - 10.

Also, from K=\ 2(o, 2o/
1

, 2-iriL =
, 2?;, 2?; |

, with

we obtain

a = 7rt(26-6 )/(2a-a ), b = 7ri(4a
- 5a)/(2a-a ), h = 3iri/(2a

- a ).

If then S- (u ; (7) denote the theta function, with characteristic
[ n , } ,\-C J

given by
^ (u ; (7)

= 2eaM2+2hM(w+C)+b(+C )

! ~2*iC (n+C)

then the Jacobian function, with a, b as periods, and c as parameter, is given
by

where, in the three terms of the right hand, r is in turn equal to i

/1/3N /2/3N

\2/3j u/3;

The function
&amp;lt;f&amp;gt;(u) may in fact be considered as a theta function of the

third order
;

its various expressions, obtainable by taking different forms for
the matrix g, are transformations of one another, in the sense of Chap. XVIII
and XX.
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362. The theory of the expression of a Jacobian function which has

been given is for the case when a- = 2p. Suppose cr &amp;lt; *2p, and that we have

two matrices a, b, each of p rows and a- columns, such that ab ba, = k, is a

skew symmetrical matrix of integers, for which ikxx^ is a positive form for

all values satisfying ax = 0, other than those for which also a^x = 0, or x =
;

then it is possible* to determine other 2p a columns of quantities, and

thence to construct matrices, A, B, of 2p columns (whereof the first &amp;lt;r

columns are those of a, b), such that AB BA = K is a skew symmetrical
matrix of integers for which iKxxl is positive when Ax=0, except when
x= or A-^x-= 0.

There will then correspond to the set A, B a function
&amp;lt;I&amp;gt;, involving ^\K\

arbitrary coefficients, such that, for integral n,

The function &amp;lt; (u), which is subject only to the condition that

is then obtained by regarding &amp;lt; (u) as a particular case of &amp;lt;I&amp;gt; (u), in which

the added columns in A, B are arbitrary except that they must be such that

the necessary conditions for A, B are satisfied.

For further development the reader should consult Frobenius, Crelle,

xcvii. (1884), pp. 16, 188, and Crelle, cv. (1889), p. 35.

*
Frobenius, Crelle, xcvn. (1884), p. 24.
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CHAPTER XX.

TRANSFORMATION OF THETA FUNCTIONS.

363. IT has been shewn in Chapter XVIII. that a theta function of the

first order, in the arguments u, with characteristic (Q, Q ), say S- (u, Q), may
be regarded as a theta function of the r-th order in the arguments w, with

characteristic (K, K ), provided certain relations, (I), (II), of 322, p. 532, are

satisfied. Let this theta function in w be denoted by II (w, K). We confine

ourselves in this chapter, unless the contrary be stated, to the case when

(Q&amp;gt; Q ) is a half-integer characteristic. Then the function *b(u, Q) is odd or

even
; therefore, since u = Mw, the function II (w, K} is an odd or even

function of the arguments w. Now we have shewn, in Chap. XV. ( 287),
that every such odd, or even, theta function of order r, is expressible as a

linear function of functions of the form

tyr (w\ K, K + //,)
= S- rw

; 2u, 2?V, 2f/r, 2 ** + ^ r

I K J

(K 4- LL\

-rw\ 2v, 2n/, 2/r, 2f
v

K

where e is + 1, according as the function is even or odd. The most important
result of the present chapter is that the functions tyr (w ; K, K + p) which
occur can be expressed as integral polynomials of the r-th degree in 2*&amp;gt; theta(n \w

; 2v, 2v
,
2 2% )

, whose characteristics are those of a
: It J

Gopel system of half-integer characteristics (Chap. XVII., 297) ;
the earlier

part ( 364 370) of the chapter is devoted to proving this theorem.

The theory is different according as r is odd or even. When r is odd,

e is ewi]Q]
,
and we have shewn ( 327 Chap. XVIII.) that, for odd values of r,

\Q\ = \K\, (mod. 2) ;
the theory deals then only with functions

*

\lrr (w ; K, K + //.)
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in which e = elrfl -K 1

. When r is even, e, though still equal to e77*^ 1

, may or

may not be equal to e7 1 Kl
, according to the integer matrix which determines

the transformation
;
but in this case, also, the value of e in the functions

tyr (iu; K, K + /LI)
which occur is determinate.

The proof of the theorem is furnished by obtaining actual expressions for

the functions ^rr (w ; K, K + /*) as integral polynomials of the r-th degree in

/ R \
the 2? functions $ I w

; 2v, 2t/, 2 2&quot;
j ) ;

the coefficients arising in these
\

|

-R /

polynomials are theta functions whose arguments are r-th parts of periods,
of the form (2vm + 2i/w )/r. The completion of the theory of the trans

formation requires that these coefficients should be expressed in terms of

constants depending on theta functions with half integer characteristics

( 373).

Further the theory requires that the coefficients in the expression of the

function II (w ; K} by the functions ^,, (w ; K, K + /A) should be assigned
in general. In simple cases this is often an easy matter. The general case

is reduced to simpler cases by regarding the general transformation of the r-th

order as arising from certain standard transformations for which there is no

difficulty as to the coefficients, by the juxtaposition of linear transformations

(|| 3712)*.

364. It follows from 332, Chap. XVIII. that any transformation may
be obtained by composition of transformations for which the order r is a

prime number. It is therefore sufficient theoretically to consider the two

cases when r = 2, and when r is an odd prime number. We begin with the

former case, and shew that the transformed theta function can be expressed
as a quadric polynomial in 2^ theta functions belonging to a special Gbpel
system. A more general expression is given later ( 370).

* For the transformation of theta functions, and of Abelian functions, the following may be

consulted. Jacobi, Crelle, vm. (1832), p. 416
; Eichelot, Crelle, xn. (1834), p. 181, and Crelle,

xvi. (1837), p. 221 ; Eosenhain, Crelle, XL. (1850), p. 338, and Mem. par divers Savants, t. xi.

(1851), pp. 396, 402; Hermite, Liouville, Ser. 2, t. in. (1858), p. 26, and Comptes Rendus, t. XL.

(1855); Konigsberger, Crelle, LXIV. (1865), p. 17, Crelle, LXV. (1866), p. 335, Crelle, LXVII. (1867),

p. 58; Weber, Crelle, LXXIV. (1872), p. 69, and Annali di Mat. Ser. 2, t. ix. (1878); Thomae,
Ztschr. f. Math. u. Phys., t. xn. (1867), and Crelle, LXXV. (1872), p. 224 ; Kronecker, Berlin.

Monatsber., 1880, pp. 686, 854
;
H. J. S. Smith, Report on the Theory of Numbers, British Associa

tion Reports, 1865, Part vi., 125 (cf. Weber, Acta Math., vi. (1885), p. 342; Weber, Elliptische

Functionen (1891), p. 103; Dirichlet, in Riemann s WerJce (1876), p. 438; Cauchy, Liouville, v.

(1841), and Exer. de Math., n., p. 118; Gauss, Werke (1863), t. n., p. 11 (1808), etc.; Kronecker,

Berlin. Sitzungsber. 1883
; Frobenius, Crelle, LXXXIX. (1880), p. 40, Crelle, xcvn. (1884), pp. 16,

188, Crelle, cv. (1889), p. 35 ; Wiltheiss, Crelle, xcvi. (1884), p. 21
;
the books of Krause, Die

Transformation der Hyperelliptischen Functionen (1886), (and the bibliography there given),

Theorie der Doppeltperiodischen Functionen (1895) ; Prym u. Krazer, Neue Grundlagen einer

Theorie der allgemeinen Thetafunctionen (1892), Zweiter Teil. See also references given in

Chap. XXI., of the present volume, and in Appendix n.
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By means of the equations u = Mw, a function S- fn
; 2w, 2&amp;lt;w

, 2?;, 2rj } ,

with half-integer characteristic ( ] ,
becomes a theta function in lu,

\Q I

n (w ; K, K },
of order 2, with the associated constants 2u, 2i/, 2 2^ and

the characteristic (K, K ),
where ( 324, Chap. XVIII.)

2o//3 ,

= && a/3
- a yS = /8 a

-
y8a = 2

;

and

this theta function in w, U(w; K, K ),
can by 287, p. 463, be expressed as

a linear aggregate of terms of the form

; 2u, 2n/, 2

- rw
, 2(r/r,

r being equal to 2
;
here e,

= eMQQ ,
is + 1, according as the original function,

that is, according as the function II (w ; K, K },
is even or odd. For brevity

we put w = 2vW, VT = V, and denoting by @ (W, r) the series

we consider the function

.8
[-rF;

V (A
&quot;+f

/r

],

which is equal to e-Mv~lvfl
tyr (w ; -ff&quot;,

K + p}. Throughout the chapter the

/ K \ f I
^ \

symbols ^ (
w } , (W }

denote respectively
\ K. / \ I K /

; 2u,

/o \ /r \

Taking the final formula of 291, p. 472, replacing co, , 1^, 9, ( ), I
J

respectively by v, v, f, 5&quot;, -|(

a
) , %{ } + (

K
} , multiplying both sides of the

\ct j \a / \ K I

equation by e
a(M-tf -&amp;lt;O

;
where ft is a row of integers each either or 1, and

adding the % equations obtainable by giving a all values in which each of its

elements is or 1, we obtain
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V

IT
+ * )

K

and hence, replacing V, U respectively by W, 0,

2F&quot;;

i-* }

This may be regarded as the fundamental equation for quadric transformation
;

we consider various cases of it.

(i) When (K, K ) is the zero characteristic we obtain

;
2r :

the right-hand side being independent of a
,
which for simplicity may be

put = 0.

We can infer that in any quadric transformation, when the transformed

function has zero characteristic, it can be expressed as a linear aggregate of the

,
in which is an arbitrary row of integers (eachz^ squares 5r I w

or 1) and a has all possible values in which its elements are either or 1.

(ii) When JK = Q, K=^n is not zero, we obtain

where on the right side only 2^-1 terms are to be taken in the summation in

regard to a, two values of a whose difference is a row of elements congruent

(mod. 2) to the elements of n not being both admitted. When jH )
is an

even characteristic we may put a =
;
when Jj is an odd characteristic we

may put a =
/i.

In this case, as before, only 2^ theta functions enter on the right hand,

and their characteristics form a special Gopel system.
The cases (i) and (ii) give the transformation of any theta function when

the matrix, of 2p rows and columns, associated with the transformation* is

For the notation, cf. Chap. XVIII., 322, 324..
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/20
(

. It can be shewn that by adjunction of linear transformations every

quadric transformation is reducible to this case (cf. 415 below); so that

theoretically no further formulae are required. As it may often be a matter

of difficulty to obtain the linear transformations necessary to reduce any given

quadric transformation to this one, it is proper to give the formulae for the

functions

2r *&quot;^1 +6 F-2TT 2r

by this means the problem is reduced to finding the coefficients in the

expression of any theta function in w, of the second order, in terms of

functions W2 (W; K, K + yu.) (see 372 below). Hence we add the following
case.

(iii) When K is not zero, we deduce, by changing the sign of W in the

fundamental formula, the equation

;

2r 2 (JF; K,

;

where, putting K= |&, K =
^lc, we have Ca = 1 + eeniklk +a }+niak

. When e is

+ 1, there are 2f~l values of a for which atf = k(k + a ) + 1 ( 295, Chap. XVII.);
for these values Ga = ;

when e = -l, there are 2?-1 values of a for which
ok = k (k

r + a
) ;

for these values Ca = 0. In either case it follows that the

right side of the equation contains only 2?~l

terms, and contains only 2^

theta functions whose characteristics are a special Gopel system.
It is easy to see that the results of cases (ii) and (iii) can be summarised

as follows: when the characteristic (K, K ) is not zero the transformed function
is a linear aggregate of 2*-1

products of theform ^ [w ; A, P{] ^ [w ; A, K, P,:]

wherein the 2&quot;-
1
characteristics P{ are of the form |fj , K=(

K
}, and

\a / V K)
A, K are such that* e&quot;*i

*i +* i A *i = e.

These results are in accordance with 288, Chap. XV.
;

there being
2P-i (1 + e) linearly independent theta functions of the second order with
zero characteristic and of character e, namely 2*&amp;gt; such even functions and no
odd functions, and there being 2?-1

linearly independent theta functions of
the second order with characteristic other than zero.

365. Ex. i. When p = l, the results of case (i), if we put egh (W; r ) for

9
I

w
&amp;gt;

T k ( _ f)
I ,

as is usual, are

800(2 w- yj-^^^+oiiWO eL(jV
2000(20 -ae

* For the notation, see Chap. XVII., 294.
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and

where e (2r ) denotes e (0 ; 2r ). If then we introduce the notations

VI e^r ) e01 (2r ) /

X_e10 (r ) /r&amp;gt;_e01 (r )
&quot; VX-~ VX -

4 v _
;
2r

)

~ V *
01 (2 TF; 2r )

* ~
01 (2 W- 2r )

r )

;
r )

=-1 ^liJ^JL) ./- A A! Qio(J
F
;j- ) i/?-^ 6&quot;^ r )

VAe01 (JF; r )
V&amp;gt;?

- V X 601 (Pf; r )
Vf~ VX e

we find by multiplying the equations above that

and therefore that

so that also

while, comparing the two forms for 0^ (2 IF; 2r ), putting 1F=0, we obtain

/ /
X

,
1 X . . 2 V^

giving K*

further the equations for 600(2 W; 2/) and 10 (2TF; 2r ) give the results

from which we find

r?
= l-, C=1 -X^; thus also

//
= 1-A-, z= I-k*x.

Ex. ii. The equations of case (ii), also for p = l, give

eol(2if; ^^(^O^^O 20=
e10 (ir;.Qe

yoi V^r -&amp;gt;

6
i (2r )

From these we have by division

while from these and the results of Ex. 1, we find

]/ Vi^X^, \/~z= [i
-

(i
- x ) ^l/Vr^W-

t-. iii. When p= 1, by considering the change in the value of the function

3* (w] P11^
when ?y is increased by a period, we immediately find that it is a theta function in w of

the second order with characteristic (j hence by the result of case (iii) above, the

function is a constant multiple of 310 (w) Sw (w) ; determining the constant by putting
iv=0, we obtain the equation

oo(Oe 10 (r )[0 u (TF; r )001 (JF; r )-e ol( JF; r)0n (IF; r )]

= e u (r ) 01 (r ) 610 ( W , r ) 0oo ( W; r
),
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which is immediately seen to be equivalent to

e u(r ) 600(1- ) w= ft
d

01 (O e10 (r ) J

605

[We may obtain the theta relation, here deduced, from the addition formula of Ex. i.,

286, p. 457 ; taking therein m= $( ^\ , a^=\ ( _ A , 2
= |

( _ i)
W=G

&amp;gt; ?= ^
(Q)

r=p= % (
)

,
we immediately derive

^10 (w) Soo () 3U (2)V (0)
=

5oo (0 310 (0 [$oi 0*
-

*&amp;gt;)

if, for small values of v, this equation be expanded in powers of v, and the coefficients of v

on the two sides be put equal, there results the equation in question.]

Ex. iv. By differentiating the second result of Ex. ii., putting TP=0, and putting

TF=0 in the first result of the same example and in the second value for 600(2 W; 2i-
)
in

Ex. i., we obtain

600 (2r ) 601 (2r ) 610 (2r ) 6^ (r )
601 (r ) 610 (r)

so that the second of these functions is unaltered by replacing T by 2 V, n being as large

as we please. Hence we immediately find from the series for the functions, by putting

T = oc
,
that each of these fractions is equal to TT. Hence if the integral occurring in the

last example be denoted by J we have ,7=776^ (r) W. In precisely the same way we find

7=2776^(21- ) W, where 7 is an integral differing only from J by the substitution of x for $

and k for X. Hence

as follows from the first result of Ex. 1.

From these results we are justified in writing the formula of Ex. ii. in the form

T+X
~

dn(/,X)

and this is Landen s first transformation for Elliptic functions.

Ex. v. The preceding examples deal, in the case p= 1, with the quadric transformation

associated with the matrix (
j

. Prove when p= 1 that for any matrix of quadric

transformation the transformed theta function is expressible linearly in terms of one or

more of the eight functions

6 =
;
2r ), 2

= 6
10 (2TF; 2r ),

6 (W; 2r

= 601 (2 W; 2r
), j

2r ),

4

)-
6
(2

IF; 2r

-^2 TF;67
= 6 2 TT;

Prove in particular that the functions arising for the transformation associated with

the matrix ( )
are expressed as follows :

\U ^/

, e, (Tr ; ^- )=e4 ,
en (Tf; i- )=-tea ;
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and that the functions arising for the transformation associated with the matrix
( )

are
\U 2J

expressed as follows :

oo(^; r -i) = e-ie2 ,
e01 (TF; r -|)

_
ew (W;br -to = e ~^ ee ,

eu ( W; r -|) = e8 e
r

.

Obtain from the formulae of the text the expressions of the functions 64 , 5 ,
86 , 7

of

the form

), e5=65e01 (TF)en (TF), ec =&amp;lt;7 e01 (TF)e10 (TF), e
r
=C

7

where 64 ,
C5 ,

Ce ,
C&quot;

r
are constants.

Ex. vi. The reason why the matrices
( A1 ), ( A0 ), ( no )

are selected in Ex. v. will

\u i/ \u // \u zj

appear subsequently ( 415) ;
the matrix

( ) gives the transformation which is supple-U /

mentary to that given by L
J

;
it gives results leading to the equation

sn [(1 +k) u, 2

by combination of these results with those for the matrix (

j
we obtain the multiplica

tion formula

n (2TF; r )
=^en (TF; r )e01 (Pf; r )e10 (^; r )6oo(TF; r

),

where ^ is a constant (cf. Ex. vii., 317, Chap. XVII. and 332, Chap. XVIIL).
The matrix associated with any quadric transformation can be put into the form

where fl, Q are matrices of linear transformations
;
for instance we have

- 1\ /2 0\ / 1\ _ /I

Oj (o l) V-l 0/~ \02

with the corresponding equations

U=rW^ TF
1
= 2TF

2 ,
&amp;gt;F

2=-r2
PF3 ; r^-l/r, r2

= r
1 /2, rs =-l/r2 ,

from which we have, for instance,

- 901 (2 TF2 ; 2r2)

= e~ - EQm (
TF

2 ;
r2) G01 (

T&amp;lt;F2 ;
r2) =^e^ (

TF
3 ;

r3) 10 (
TF

3 ; r3),

(E, F being constants) whereby the transformation formula for 10 (
TF

3 ; ^r3 )
is obtained

from those for 610 (2 TF; 2r
),
with the help of those arising for linear transformation.

366. We pass now to the case when the order of transformation is any
odd number, dealing with the matter in a general way. Simplifications that

can theoretically be always introduced by means of linear transformations are

considered later ( 372).
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We first investigate a general formula* whereby the function

can be expressed in terms of products of functions with associated constants

2v, 2t/, 2, 2 . We shall then afterwards employ the formulae developed in

Chap. XVII., to express these products in the required form.

Let a, a- be two matrices each of p rows and m columns, whose constitu

ents are any constants ;
let the j-th columns of these be denoted respectively

by &amp;lt;r and &amp;lt;r &, so that the values of j are 1, 2, ..., m; let T, denote the

matrix 2v&amp;lt;7 + 2i/&amp;lt;r ,
which hasp rows and m columns, and let the j-th column

J

of this matrix, which is given by 2i;o- (^ + 2wV^, be denoted by TV
J

; also,

K, K being rows of any p real rational elements, let TK ,
ZK denote the

rows 2vK+ 2v K , 2K+2 K
;
and use the abbreviation

(w ; K, K )
= ZK (w + %TK)

- TriKK ;

finally, let s = (s
(1)

, ..., s (w)
) be a column of m integers whose squares have

the sum r, so that

then, using always ^ (w) for ^ (w ; 2v, 2i/, 2^, 2^)&amp;gt;
the function

Uw = e~
rw l

w K^ K W 3 ^

is, m w, a theta function of order r with associated constants 2u, 2u
, 2f, 2

characteristic (K, K }.

For when the arguments w are increased by the elements of the row

where N, N are rows ofp integers, the function

is multiplied by a factor e*i, where tyj is equal to

that is

the sum of the m values of ^- is given by

7
= 1

*
Konigsberger, Crelle, LXIV. (1865), p. 28. See Eosenhain, Crelle, XL. (1850), p. 338, and

Mm. par divers Savants, t. xi. (1851), p. 402.
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also, when w is increased by Ty, the function rtx [w ; K/r, K \r) is increased

by ZjrTA-; thus the complete resulting factor of II (w) is

of which ( 190, p. 285) the exponent is equal to

m (w ; N, N } + Ziri (NK -N K) ;

thus ( 284, p. 448) II (w) is a theta function in w, of the r-th order with

(K, K ) as characteristic.

Therefore ( 284, p. 452) we have an equation

II (w) = 2A^ \rw ; 2v, 2rv
, 2/r, 2

^ +

n L K

where
yu,

is a row of p integers each positive (including zero) and less than r,

and the coefficients A^ are independent of w. The coefficients A^ are inde

pendent of K, K ,
as we see immediately by first proving the equation which

arises from this equation by putting K and K zero, and then, in that equation,

replacing w by w + ZvKjr -f- 2v K /r.

In this equation, replace K by K + h, where h is a row of p integers, each

positive (including zero) and less than r
; then, using the equation previously

written ( 190, p. 286), for integral M, in the form

*(u; q + M} = e^iM(i^(u\ q\

we find

- rat [w ; (K+ h)jr, K /r]
- 2 (K + e) ft/r g ^ (})

j=i

rw
; 2v, K

where e is taken to be any row of p integers each positive (or zero) and less

than r
; ascribing now to h all the possible r? values, and using the fact that

h

according as /* e = or ^ 0, (mod. r), we infer, by addition, the equation

C^ rw
; 2v, 2n/,

v&amp;gt; +-
I
+ TJ

h j=i |_ \ r

where

^r
= TOT [w ; {K + h)/r, K /r] 2jri (K + /A) hfr,

and C^, = rPAp, is independent of w and of the characteristic (K, K ).
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367. We put down now two cases of this very general formula :

(a) if each of the matrices
&amp;lt;r,

a- consist of zeros, and each of the m

integers s (1)
, ..., s (m) be unity, so that m = r, we obtain

, 2n/, 2/r, 2

r K ^ ~ ir r w + -
r

In using this equation we shall make the simplification which arises by

putting w = 2u W, v~ l v = r, and

@ ( W, r) = e-M-w * (w) = 2e*riw
r +*T 8

;

71

then the equation can be transformed without loss of generality, by means of

the relations connecting the matrices v, v, f, (cf. 284, p. 447), to the form

(I)

(7 e-&amp;lt;twiK&quot;\_W+WK lr-\-lTnKK lr rW, TT

where Cy is independent of W and of K and K .

This equation is of frequent application in this chapter ;
it is of a different

character from the multiplication formula given Chap. XVII., 317, Ex. vii.,

whereby the function (rW, r ) was expressed by functions @(W, r ) with

different characteristics but the same period, r .

Ex. \. When r= 2, p= 2, we have

F, 2r )=e2
(Tru wz

- r j+e^i^+i, TF
2 ;

r )+ e2
(iF15 2̂ +i; r )

Ex. ii. If X, /LI,
/i be rows ofp integers each less than r, prove that the ratio

2&amp;lt;r
*n^/rer T |p+

J
X/rH ^^^.p^ T

Tf+
AJ

is independent of W.

(/3) if the matrix or consist of zeros, and if each of the m integers

sw , ..., s (m) be unity, so that m = r, and if the matrix
&amp;lt;r,

of p rows and r

columns, have, for the constituents of every one of its rows, the elements

i ?
,

r r

then the matrix Tff will have, for the constituents of its i-ih row, the

elements

H. 39
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where fl; is the sum of the elements of the i-ih row of the matrix
2i&amp;gt;,

so that
p

fit = 2 2 vi h ;

A = l

also the *-th of the p elements denoted by
- T^s will be

(r-i)nri_r-i~

and therefore the i-th of the elements of T^ -- T s will be
r

r 2r

Thus, denoting the row (fl lf ..., flp) by ft, the theorem is

A ,-=i

where -^ has the same value as in 366. And as before this result can be

written without loss of generality in the form

[rW,
rr /

where U = W (r l)/2r and, for any value of u,

&amp;lt;j)(u)
= (u; r) (u + -

;
r

j

...... 6 f w +
7 -

;
T

J
;

the number of different terms on the right side of this equation is r?~l

;

for if m be a positive integer less than r, the two values of h expressed by
h = (hrl&amp;gt; ..., hp) and h = (h1 , ..., hp \ in which h^li^ + m, ..., hp

= hp +m,

s i \ 1, ^ f ^fTT, h + ]K: + r̂ \
(mod. r), give the same value tor

&amp;lt;p

I u H-- I .

Ex. i. For
j
=

2, r=2, we obtain

)e(F1+ J, JT2+ i; r )

+i, TF
2 -i; r JeC^-i, TT2+ |; r ).

r. ii. For jo
=

2, r=3, we obtain, omitting the period r on the right side,

r
)
= e(TT1 , ^0(1^-1, Tf

2 -J)9 (W,+^, TT
2 +i)
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368. We consider now the expression of the function

%(r; K,K- +
rt-[rW;

rr (A
&quot; +

&quot;)/r

]
+ e \-rW ;

rr
j

&amp;lt;&quot;&quot;

+
*&amp;gt;

[

jR ~lW
;

T i

,
in the case when ?* is odd. We

suppose as before (K, K ) to be a half-integer characteristic, and we suppose
e = e*i\K\^ so ^hat e is + i according as the characteristic (K, K ) is even or

odd*. It follows from 327, Chap. XVIII., if (K, K ) has arisen by trans

formation of order r from a characteristic (Q, Q ), that e is also equal to ewi ^

and is + 1 according as the function is even or odd.

It is immediately seen that equation (I) ( 367) can be put into the form

h r J

from this equation by changing the sign of W, we deduce the result

where we have replaced ee~^irKK
,
= ee--\ K \ by unity, and a denotes the

expression [h -(r-l) (K + rK )]/r, which is an r-th part of a period. We
proceed to shew that the function

K
i (r-l) K WQr

can be expressed as an integral polynomial of the r-tli degree in 2^ functions

[IF; T APi], where APt are the characteristics of any Oopel system of
half-integer characteristics whereof (K, K ) is one characteristic.

From the formula of 311, p. 513, putting C=0, A = A,B = P =%(
q
} ,

fP \ /P \
and replacing U, V, W,

fVJ i , (jM e; respectively by Tf, a, b, i , e,-
we

obtain, if Pa =

*
Thus, when 2(K + /j.)-rm, m being integral,

e
_

e2iriK(rm-2p)_ ZwiKm_

as in 287, Chap. XV., and

tyr (W; K, K + u.) reduces to 29

K +u.

392
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; A)

;
A + P.),

&amp;gt; ) *&amp;gt; o.

where

X (u, v
; P, e)

= 2e e-W&amp;lt;?a (M ;
A + P + Pa) [&amp;gt; ;

4 + Pa] ;

the function x(u &amp;gt;

v
&amp;gt;
A, P, e) may be immediately shewn to be unaltered by

the addition of an integral characteristic to the characteristic P of one of its

terms
;
we may therefore suppose all these characteristics to be reduced

characteristics, each element being or |.

Hence we get

; A+Pa)(W; A + P.),

and hence 2^ 3
(TF+a; A) is equal to

^H^ea@(W- ^+Pa)2#22e/e-^V? /3 @(TF+3a; A + P,L+P
ft)(W;A+Pp ),

e a. e |3

where

77 = x (g g
; &amp;gt;

6) 77 = y (2a &amp;gt;

a
; -Pa. 6/) .

% (2a,0;0,e) X (3a, ; P., e )

proceeding in this way we obtain 2 (r
~

1)i} r
(W+ a

; J.)

2 ; CM
&amp;gt;, (ni)

where each of P
0i ,
P

02 ,
... becomes in turn all the characteristics of the

group (P), and e1} e2 ,
... relate respectively to the groups described by

Pa ,, Pa.,, ,
and further

+ l)a, 0; P0i
+ ... + P.^, em],

(m=l, ..., r-1),

em = eay@ ( If ;
^1 + P.J, X^ = -

^TTI (? 0l + ... + j a^^) ?am ,

(m=l, ...,r-2).

The equation (III) expresses
r (W + a; A) as an integral polynomial

which is of the (r
-

l)th degree in functions (W ;
J. + Pa ), whose charac

teristics belong to the Gopel system (AP), arid is of the first degree in

functions [W + ra; A +P ].
But it does not thence follow when a is an

r-th part of a period, that r (W + a; A) can be expressed as an integral

polynomial of the r-th degree in functions @[TT; .4+P ]; for instance

if the Gopel system be taken to be one of which all the characteristics are

even ( 299, Chap. XVII), it is not the case that the function @3 (W + ),
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which is neither odd nor even, or the function 3 (W+ ^) Ba

(W ),
which

is odd, can be expressed as an integral polynomial of the third degree in the

functions of this Gopel system ;
differential coefficients of these functions

will enter into the expression. The reason is found in the fact noticed in

308, p. 510
;
the denominator ofHr^ may vanish.

Noticing however, when P is any characteristic of the Gopel group
(P), that x (- u,-v; P, e)

= e i^i+i^-Pi x (
u

, v; P, e), so that the co

efficients Hm are unaltered by change of the sign of a, and putting the

(K
\

J
,
we infer, from the equation (III), that

is equal to

2^2 ...... 2#r_1 |&amp;gt;-

2
&amp;lt;--

1 &amp;gt;* ^% (TF + ra, W; P, eM)
e, ai r _i

+ e***W ir
x (W-ra, W ; P, e^)],

where P denotes P
fli
+ . . . 4- Pa

r 2
;
and it can be shewn that when a becomes

equal to [h -(r-l)(K + rK )]/r, the limit of the expression

U=Hr_1 [e
-^(r-vK w

x (W+ra, W; P, er_0 + e^^K w
X (W-ra, a; P, er_0],

if it is not a quadratic polynomial in functions @(TT; APa ), is zero. The

consequence of this will be that ^r [W ; K, K + //,]
is expressible as a

polynomial involving only the functions (TF; APa).

For the fundamental formula of 309, p. 510, immediately gives*, for

any values of a, b,

x (W+a, W + b; P, e) x (a + b, 0; P, e)
= x (a, b; P, ) x (W + a + b, W; P, e),

and hence, replacing e,._j simply by e, the expression U is equal to

2eae-*&quot;V9. {e-
-o-D K&amp;gt;W (W + a; A +PJ@[W + (r-l)a; A + P + PJ

where P, =i&amp;gt; is used for Pa + ...... + P and e1; e2 ,... for

(er-i)ai Replacing ra in this expression by the period h-(r-l)(K+rK ),

and omitting an exponential factor depending only on r, h, K, K and P, it

becomes

@[W-a; A + P + Pa]

* We take the case when the characteristics B, A of % 309 are equal. It is immediately
obvious from the equation here given that in the expressions here denoted by Hm the value of the

half-integer characteristic A is immaterial.
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A being as before taken = ( ^J and = .tf^&amp;gt;W^fr-*&amp;gt;* ;
and this

is immediately shewn to be the same as

*\ A+Pa)S(W-a; A + P + Ptt),

where ep is the fourth root of unity associated with the characteristic P of

the Gbpel group (P), which is to be taken equal to 1 in case P = 0. Thus

/A\
the expression vanishes when fp = e*

ni p
(

J
. Hence, in order to prove

that when the expression U is not a quadratic polynomial in functions

(W ;
APa),

it is zero, it is sufficient to prove that the only case in which

fA\U is not such a quadratic polynomial is when P = e?
ni p

( p )

Now the denominator ofHr^ is

2e e-^9 3
[ra ;

A + P + PJ @ [0 ;
A + Pa],

a

where P still denotes P
ai
+ . . . + Pa and ea has the set of values of er_2 ;

save for a non-vanishing exponential factor this is equal to

or

according as P = or not, where, in the second form, P^ is to describe a

group of %P~I characteristics such that the combination of this group with

the group (0, P) gives the Gbpel group (P). We shall assume that, when

fA\
P is not equal to e*wi p

( p j
,
neither of these expressions vanishes for

general values of the periods r.

Since the function *
r (W ; K, K + /jJ)

is certainly finite, we do not

examine the finiteness of the coefficients Hm when m is less than r 1,

these coefficients being independent of W
; further, in a Gopel system (AP),

any one of the characteristics APa may be taken as the characteristic A
;

the change being only equivalent to adding the characteristic P to each

characteristic of the group (P); hence ( 327, Chap. XVIII.), our investigation

gives the following result : Let any 2? functions ^f(u , 2o&amp;gt;,
2o&amp;gt;

, 2??, 277

whose (half-integer) characteristics form a Gopel system, syzygetic in threes, be

transformed by any transformation of odd order; let (AP) be the Gopel

system formed by the transformed characteristics
[ j J

then every one of the
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original functions is an integral polynomial of order r in the %&amp;gt; functions*

*b(w ; 2u, 2i/, 2 2f |
AP) : as follows from 288, Chap. XV., the number of

terms in the polynomial is at most, and in general, \ (/* + 1).

For the cases p = l,2, 3, and for any hyperelliptic case, it is not necessary

to use the addition formula developed in Chap. XVIII. We may use instead

the addition formula of 286, Chap. XV. It is however then further to be

shewn that only 2? theta functions enter in the final formula. For the case

p=3 the reader may consult Weber, Ann. d. Mat. 2a
Ser., t. IX. (1878),

p. 126.

369. We give an example of the application of the method here followed.

Suppose p= l, r= 3, and that the transformation is that associated with the matrix

;
then ( 324, Chap. XVIII.) taking l/=3, the function

9[u;
2, 2o&amp;gt;

, 2,,, 2,/ |

!(_?)],

or SOI (M), is equal to 5
01 (3zc; 2v, 6v , 2f/3, 2f) or ^ r)&amp;lt;1&amp;gt;

&quot; 1

&quot;&amp;gt;3 ( W; -, 0). Now we have,

also e^j ( W+ a) is equal to

a a ,
a, 0; 0, e) a e

/ x (3, 0; ^ a ,
e

) ^

if we take the Gopel system to be \ (
j

,
L

J
,
so that

*V&quot;i(i)j
tnis is e(lual to

e^(a)+ fl e;o (q) e01 (2a) e01 (a) + 1
e10 (2a) e10 (a)

J ,e01 (2a)e01+ fle10 (2a)e10

&amp;gt;

t
, e01 (3a)e01+ fl e10 (3)e10

6l(&amp;gt;
(2a) 9()1 (a)

&quot; *
1/e&amp;lt;)1 (2a) QI (a),! oi

&quot;

I:e01 (2a)e01 + 1
e10 (2a)e10

l

e
, e10 (3a)e01 -iVe01 (3a)e,

where 01 denotes 01 (0), etc., and

iV
1
8

01 ( ir+3a.)010 ( IV).

Now, in accordance with the general rules, the denominator of the fraction

610 (2a) 01 (a)
-
if/e01 (2a) 10 (a)

e10 (3a) e01
- ifl e01 (3a) e10

vanishes when ./= -^ e-^-2A )?l + 2^
s namelyj as =i _

= ^, when

,,
= _ le^+1

), and a= (A+ l)/3 ;
in fact, putting o=

e10 (3a) e01
-
W/GO! (3a) e10

= e
r ( t+1 ) e10 (.r) e01

- iV

* The expression of the transformed theta function in terms of 2?= 4 theta functions is given

by Hermite, Compt. Eendu*, t. XL. (1855), for the case p= 2. For the general hyperelliptic case

cf. Konigsberger, Crelle, LXIV. (1865), p. 32.
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for small values of .r, when ie
l
= e

1rl ^ +
,
because the differential coefficients of the even

functions, being odd functions, vanish for zero argument ;
thus the denominator of the

fraction vanishes to the second order. We find similarly, for ie
1
=

that the numerator of this fraction is equal to

in the same case also we find that the expression El
is equal to

e &amp;lt;*
+1

&amp;gt;

[e 10 ( W) e01 ( W) - e 01 ( W) e10

while the expression 10 (
W- 3a) 01 ( W) ?e/e01 (

W- 3a) 10 ( W) is equal to the negative

of this. Thus the function ^ ( W+a) can be expressed by the functions
10 ( TF), 01 ( W),

and their differential coefficients of the first order ; but the function ^ ( W+a) + 0^ (
W a)

can be expressed by the functions 10 ( W), Q
ol ( W) only.

In the function 0^ (
W+a) + 0^ (

W- a) the part

s 10 (2a) 01 (a)
- ^/001 (2cQ 10 (a)

e
/

10 (3a) 01
- tV 01 (3a) 10

furnishes only the single term for which ie{= -em ( 7t+1)
, namely,

h-l\ T *

GOI ( W) 10 ( TF).

e - e*% \ o I *T
\ * /

U01 U10

Ex. i. Prove that the final result is that ?C 301 (u) is equal to

-
[ej, (i) e^ - ^ (i) J ] a (w)

(j) [ 10 (j) 01
+

01 (j) 10] n 2 3

where
01 , 10 denote 01 (0) and

10 (0) respectively.

Ex. ii. Prove that

in (i) n=2-

370. General formulae for the quadric transformation are also obtainable.

The results are different, as has been seen, according as the characteristic

(K, K ) of the transformed function is zero (including integral) or not. The

results are as follows :

When (K, K ) is zero, the transformed function can be expressed as a

linear aggregate of the 2^ functions S-
2

(w A, Pi), whose characteristics are

those of any Gbpel system,
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When (K, K ) is not zero, the transformed function can be expressed as a

linear aggregate of the 2*&quot;
1

products ^ (w
\
A, PI) ^ (w \

A, K, Pi), in which

the characteristics Pi are those of any Gopel group whereof the charac

teristic K, = (K, K ),
is one constituent, and A is a characteristic such that

|
A, K |

=
|

K
|,
or

| A, K \

=
\

K
\

+ 1 (mod. 2), according as the function to be

expressed is even or odd*.

When (K, K ) is zero, the equation (I), 367, putting K = K =
/*
=

0,

and then increasing W by ^/u-r ,
where /A is a row of quantities each either

or 1, gives

2r
o )

hence, from the fundamental formula of 309 (p. 510), writing therein

v = 0,u=W + a,b = a = h/2, A =$ (
,
Pt

= $ (
qi

} ,
and

\W \(i/

we obtain

;
2r

i_i_ Vf .(S)2
/W . T I yj PA

2 2

(0 ;
T

|
APt) 7

?t ( l)

i

where (7 is independent of p. It is assumed that the sum 2 2

(0; T 4P;)
i

is different from zero for each of the 2? sets of values of the fourth roots &.
This formula suffices to express any theta function of the second order with

zero characteristic.

When (K, K } is other than zero, by putting in the equation (I), 367,
r = 2, /i=0, adding %rh to F, where h is a row of quantities each either

or 1, and then changing the sign of W, we obtain

Ce-**(K+M V2 (W; K,K + h )
= 2 [e

9^ ^ (W + a) + ee-^ ^& (W -
a)],

h

where X = K + h, X = K + h
, and C is the same constant as before, indepen

dent of W, K, K ,
h

, and a = \ + T \
,
the period T being omitted on the

right side. Hence, taking the fundamental formula of 309 (p. 510), putting
therein

t&amp;gt;=0, u=W+a, b= a, A=(),B=A, and then writing a-JX+|TV+4,
where # is a row of p equal quantities, we find, provided | K, Pf |

= 0, (mod. 2),

When (K, K ) is zero, the function is necessarily even
( 288, p. 463), and therefore |-fiT|=|Q|We have seen

( 327, Chap. XVIII.) that this is always true when r is odd. When r is 2, it is not
always so, as is obvious by considering the transformation, for p = l, in which a = 2, /3

= 0, a =
/3
= 1, and ((?,&amp;lt;? )

= (i,i); then we find (A ,
K

)
=

(J, 1) ; thus |Q| = 1, \K\ = 2.
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and ==en\K\ + ni\A,K\
t
that 2*W2 (W ; K, K + li) is equal to the limit,

when a; vanishes, of the expression

a;\A,K, Pi)

+ (W-x\A,K,P i)},

U y (
P

*\ rwhere c; i
=

{ A }
e

\ ^i_ /
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of which both numerator and denominator vanish for #= 0. The final result of the

formula is

Cen (2Tf; 2r )=-4eio (i; ^e^i; r )eu (JT; r }Qw (W- r )/en (0; r )e j(J (0 ; r ).

Prove this result, and also

&amp;lt;7e

ol (2Tf; 2r )
= 2e^(i; r&amp;gt;)eM (W; r )eoi (Tf; 0/6^(0; r ) 901 (0 ; r ),

and (cf. 365) obtain the formulae

or

A
or w

K

e,(i; r Hie^O; r )e01 (o ;
r )[e^(0; r )+e^(o ;

r )],

ej,(0j 20 = 4 [ej,(0; + 6^(0:0],

(7= V2[eJ,(0; + 8^(0; r )].

371. The preceding investigations of this chapter enable us to specify in

all cases the form of the function (u: 2o&amp;gt;,
2&&amp;gt; 2??, 2??

^
)

V QJ

when expressed in terms of functions ^ (w ; 2i/, 2i/. 2(T,
\

In many particular cases it is convenient to start from this form and
determine the coefficients in the expression by particular methods. But it

is proper to give a general method. For this purpose we should consider

two stages, (i) the determination of the coefficients in the expression of the
/

| Q
\

function ^ (u
L

J
by means of functions tyr (w ; K, K + /&), (ii) the determi-

\ c /

nation of the coefficients in the expression of the functions
i/rr (w ; K, K + //,)

(*
\

w \. The preceding formulae of this chapter

enable us to give a complete determination of the latter coefficients in a

particular form, namely, in terms of theta functions whose arguments are
fractional parts of the periods 2v, 2v

;
but this is by no means to be regarded

as the final form.

372. Dealing first with the coefficients in the expression of the function

*\ Q)
b^ functions $r(w, K,K + (JL), there is one case in which no

difficulty arises, namely, when the transformation is that associated with the

matrix ^ J ;
then S- (u I

Q

)
is equal to S (rw

; 2v, 2rv
, 2f/r, 2^

K ^
\

,

the row K being in fact equal to rQ , namely * (u
Q
} is ^,. (w ; K, K ).
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Now it can be shewn*, that if ftr be the matrix associated with any
transformation of order r, and r be a prime number, or a number without

square factors, then linear transformations, ft, ft
,
can be determined such

(T 0\
that ft,.

= ft f

j
ft . Hence, in cases in which the matrices ft, ft have been

calculated, it is sufficient, first to carry out the transformation ft upon the

given function Sfcfti
j;

then to use the formulae for the transformation

(r
0\

j
, whereby the original function appears as an integral polynomial of

order r in 2^ theta functions
;
and finally to apply the transformation ft to

these 2f theta functions. All cases in which the order of transformation is

not a prime number may be reduced to successive transformations of prime
order ( 332, Chap. XVITL).

We can however make a statement of greater practical use, as follows. It

is shewn in the Appendix II. ( 415, 416) that the matrix associated with

any transformation of order r can be put into the form ft ( ,

j
,
where ft

is the matrix of a linear transformation, and that, in whichever of the possible

ways this is done, the determinant of the matrix B is the same for all. In

all cases in which this has been done the required coefficients are given by
the equation

,,
V|ft)| |

W+^ .

Se --&amp;gt;-&amp;gt;. &
r

. 2v
_ w&amp;gt; 2?/)

.

2?
, &amp;lt;A&quot;+M)/r1

1

H K^\M\\v\\R

wherein, (Q, Q ) being a half-integer characteristic, e is an eighth root of unity,

u = Mw, \M\ is the determinant of the matrix M, etc., /m is in turn every
row of integers each positive (or zero) and less than r, which satisfies the

condition that the p quantities
- B

/j,
are integral, and, finally, 7 denotes the

symmetrical matrix BB
,
while d denotes the row of integers formed by the

diagonal elements of 7. It is shewn in the Appendix II., that the resulting

range of values for p is independent of how the original matrix is resolved

into the form in question. For any specified form of the linear transformation

ft the value of e can be calculated (as in Chap. XVIII., 3334); if e

*
Cf. Appendix II.; and for details in regard to the case^ = 3, Weber, Ann. d. Mat., Ser. 2a

,

t. ix. (18789). We have shewn (Chap. XVIII., 324, Ex. i.) that the determinant of the

matrix of transformation is ?-P. From the result quoted here it follows that that determinant

is +7*.
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denote its value when the characteristic (Q, Q ) is zero, its value for any other

characteristic is given by

where H =
,
and Q, = pQ -

p Q-^d(pp ),
-

Q, =5= Q -
&amp;lt;f Q -%d(&amp;lt;r&amp;lt;r ).

To prove this formula, we have first ( 335, Chap. XVIII.), if fl =
P

the equation

= *(u; 2(o, 2ft)
,

Q

\f\J\f,

where u = M1u l ,
Mlw l

=
cap + w p, etc. Writing ul

= 2o)1 Ul ,
W

I

/ = O) I TI ,
we

have

j (u^ 5 2o)i 2(&i , 2f]i, 2i)i

and the equations w.j
= J/2w, Jl/2 i;

= w^A, M^v = ^B + w^B , give, if w = 2vW,
v = vr\ and in virtue of AB r, the equations Ul

= A W, rr^ = AT A BA,
while, by the equation r= M^A, we find r} l

(o1
~1u1

2 = r%u~
l w*. Now it is

(oUl ;

X

gives

(m + -
}

\ r/

ym + dm) -
r

wherein 7 = 55 ,
and cZ denotes the row of diagonal elements of 7, and m, p,

are obtained by putting An- rm + p, m being a row of integers, and /* a row
of integers each less than r and positive (including zero) ;

this equation is

equivalent to n B m = -B
ij,; corresponding to every n it determines an

unique m and an unique p for which - is integral ; corresponding to any
TV

assigned p, for which - is integral, and an assigned m, the equation

determines an unique n. Since then yw2 + dm is an even integer, and, for

the terms which occur, B m is an integer, we have

Increasing, in this equation, U, by Ql + TjQ/, we hence deduce

;
T

, e
r

[r!T;
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where K = AQ, ,

- K = BQ1
- B Q1 -^d(BB ) i

so that (K, K ) is the

characteristic of the final theta function of w. Since now the matrix

MvB = M.M^B = M^AB = rMlw l ,
and therefore \M\ v\ B

\

= rP\Ml mi \,

we have, by multiplying the last obtained equation by e^ i&amp;lt;ai
u

&amp;gt;* = e%r&~lw2
, the

formula which was given above.

Ex. i. When p = l, the transformation associated with the matrix
( ) gives rise to
\ J

the function 9(TF ; \T} ;
we have

/ TI7 . 1 _ \ o /Q H7 Q \ l_ i I O TlT . O
^

rr
j &amp;gt;rT ^ O ^O rr

^
Or y ~J~ v7 I 5 rr

j OT
V

Other simple examples have already occurred for the quadric transformations
( 365).

Ex. ii. Prove when p= 2, by considering the transformation of order r (r odd) for

which

,0, */ vo, oy vo o.

that

6 it,
u.u&amp;lt;&amp;gt;. ru9 \

-
(T,, 2ur19+ u2

r.,.&amp;gt; 2X), 2r, 9 2uT9,, rrool^ j^^,\H I li I HI /7 \.t |~ ^^ 7 iJ

, 0)+
S

2

where ^(OTI , 74) denotes B^J rr + e
y

. (Wiltheiss,

Crelle, xcvi. (1884), pp. 21, 22.)

373. In regard now to the question of the coefficients which enter in the

/ K f
&quot;

expression of the functions
i/&amp;gt;y (w ; K, K + /i) by means of functions S-

(
w

r )
,

\ K )

the problem that arises is that of the determination of these coefficients in

terms of given constants, as for instance the zero values of the original theta

functions. The theory of this determination must be omitted from the

present volume. In the case when the order of the transformation is odd

these coefficients arise in this chapter expressed in terms of theta functions,

M~ 5 2t&amp;gt;, 2i/, 2, 2^ J
,
whose arguments are ? -th parts of the

periods 2i, 2i/. By means of two supplementary transformations, A, 7 A&quot;
1

,

(as indicated 332, Chap. XVIII.), or by means of the formulae of Chap. XVII.

(as indicated in Ex. vii., 317, Chap. XVII.), we can obtain equations for

functions ^ (rw ; 2u, 2i/, 2f, 2&quot;) as integral polynomials of degree r2 in

functions S-(w; 2v, 2t/, 2
2&quot;). By means of these equations the functions

^( -; 2u, 2i/, 2, 2
j

are determined in terms of functions

^ (0 ; 2u, 2i/, 2f, 2^ ) ;
or this determination may arise by elimination from

the original equations of transformation, without use of the multiplication

equations. There remains then further the theory of the relations connecting
the functions &(0; 2u, 2i/, 2 2f) and the functions ^(0; 2eo, 2ft)

, 277, 2?/),

which is itself a matter of complexity.
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For the case/&amp;gt;=l,
the reader may consult, for instance, Weber, Elliptische Functionen

(Braunschweig, 1891), Krause, Theorie der doppeltperiodischen Functionen (Erster Band,

Leipzig, 1895). For the case jo
=

2, Krause, Hyperelliptische Functionen (Leipzig, 1886),

Konigsberger, Crelle, LXIV., LXV., LXVII. For the form of the general results, the chapter,

Die Theilung, of Clebsch u. Gordan, AbeUsche Functionen (Leipzig, 1866), which deals with

the theta functions arising on a Riemaun surface, may be consulted. For the hyper-

elliptic case, see also Jordan, Traite&quot; des Substitutions (Paris, 1870), p. 365, and Burkhardt,

Math. Annal. xxxv., xxxvi., xxxvm. (1890 1).

In particular cases, knowing the form of the expression of the functions

3 (u ; 2o&amp;gt;,
2

, 2r], 2rj )

in terms of functions 3 (w ; 2v, 2i/, 2, 2f), we are able to determine the coefficients by the

substitution of half-periods coupled with expansion of the functions in powers of the

arguments. See, for instance, the book of Krause (Hyperelliptische Functionen} and

Konigsberger, as above.

Ex. i. In case p= 2, r= 3, the function 5 (3JF, 3r
)

is a cubic polynomial of the

functions 6 ( W, T ), 634 ( W, T ), t (
W

t
T

),
e02 ( W, r ), of which the characteristics are

respectively L
QJ,

$( _
V J/_ _\ $( QJ

;
these form a Gopel system.

The only products of these functions which are theta functions of the third order and of

zero characteristic are those contained in the equation

5 (3 W, 3r
)
= Atl+ B&amp;lt;t&amp;gt;5$l4

+ CWl +
D&amp;lt;t&amp;gt;^l2

+
E&amp;lt;p3t 4&amp;gt; 1^

where $6
=

5 (JF, T
), etc.; this equation contains the right number (r

p+ 1
)
= 5 of terms

on the right side. Putting instead of the arguments W1 ,
TF

2 respectively

we obtain in turn

eM (3lF, 3r )= A^
0, (Sir, 3/)= -A&amp;lt;fi

eM (3Tr, 30= -^L
whereby the Gopel system of functions

6 (3 W, 3r), 34 (3 W, 3r ), 6X (3 W, 3r
), e02 (3 IF, 3r )

is expressed by means of the Gopel system &amp;lt;

5 , ^34, &amp;lt;j, ^02 .

From the first two equations, by putting the arguments zero, we obtain

/;
e

fi-Q&amp;lt;u
e

&amp;lt;ut _ 65 3434 n_
** ~~

4 4 9

e5~ 634
9

5
e

34 (
6

6
~ 9

34

where 5
=

5 (0 ; 3r ), etc., and 0. = 5 (0 ; T
), etc. ; by the addition of other even half-

periods to the arguments, for instance, those associated with the characteristics

O,O -i,

we can obtain expressions for C, D, E ;
these substitutions give respectively

0,3 (3 IK
;
3r )

=
^&amp;lt;#

4 (311 ;
3r

)
=

A&amp;lt;f

0,, (3 IF
; 3r )

= .1
0J.,
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putting herein W=0 we obtain in succession the values of
Z&amp;gt;,

C and E, expressed in terms

of the constants previously used, 5 , 34 , 65 , 634 and the constants 23 , 4 , 12 , G^, 03 ,

4J
eM , 12 , ,

62 , 01 . Thus the zero values of each of the ten even functions 0( W \ r)

enter in the expression of the coefficients J, B, C, D, E ;
there remains then the question

of the expression of the zero values of the ten even functions in terms of four independent

quantities (cf. Ex. iv., 317, Chap. XVII.), and the question of the relations connecting

the constants 5 , 34, etc., and the constants 5 , 34 ,
etc. (cf. the following example).

Ex. ii. Denoting 01 (0 ;
3r ) 01 (0 ; r ) by &amp;lt;701 , etc., shew that when p= 2 the result of

Ex. iii., 292 (p. 477) gives the equations

^01 + ^2 = 5+ ^34
~

^12
~
^0 J

^4 + ^03
= ^5

~
^34+ ^12

~~
^0&amp;gt;

^23+ ^14
= ^5

~
^34

~
^12+ ^OJ

these being the only equations derivable from that result. By these equations, in virtue of

the relations connecting the ten constants (0 ;
r ), and the relations connecting the ten

constants (0 ;
3r ), (for the various even characteristics), the three ratios

634(0; 3r )/05 (0, 3r ), 12 (0; 3r )/e5 (0; 3r ), (0 ;
3r )/66 (0 ;

3r )

are determinate in terms of the three

34 (0 ;
r )/e5 (0 ;

T
), 12 (0, r )/05 (0 ;

r
), (0 ; r )/66 (0 ; r ).

By addition of these equations we obtain

^01 + ^2+ ^4+ ^03+ ^23+ ^14+ ^34+ ^12+ ^0= ^
Cfi

Obtain similarly from the result of Ex. iii., 292, for any value of p, the equation

20^0;
3r

i(j )]
e
[; i(j )]

= (2
p -l)e(0; 3r ) 6 (0 ; r ),

where the summation on the left extends to all even characteristics except the zero

characteristic
;
for instance, when p I, this is the equation

01 (0 ;
3r ) 01 (0 ;

r } + 610 (0 ; 3r ) 610 (0 ;
T )
= Qw (0 ;

3r ) 0^ (0 ; r ),

namely (cf. Ex. i., 365 of this chapter) it is the modular equation for transformation of

the third order which is generally written in the form (Cayley, Elliptic Functions, 1876,

p. 188),

As here in the case j
=

2, so for any value of p, we obtain, from the result of Ex. iii.,

292, 2P 1 modular equations for the cubic transformation.

Ex. iii. From the formula of 364 we obtain modular equations for the quadric

transformation, in the form

where s is a row of p quantities each either or 1, so that the right side contains 2&quot; terms,

and k, k
,
s are any rows ofp quantities each either or 1.

374. In the fundamental equations of transformation we have considered

only the case when the matrices a, a
, /3, /3 are matrices of integers ;

the

analytical theory can be formulated in a more general way, as follows; the

argument is an application of the results of Chap. XIX.
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Suppose we have the relations expressed (of. Ex. ii., 324, Chap. XVIII.)

by

( M, ) ( 2v, 2i/ )
=

( 2&), 2o&amp;gt; ) ( a , /3 ),

,
rJf-1

I 2 2 277, 277 , a.
,

where r is a positive rational number, M is any matrix ofp rows and columns,

whose determinant does not vanish, a, /3, a
, /3 are matrices of p rows and

columns whose elements are rational numbers not necessarily integers, &&amp;gt;,
w ,

V), ?; are matrices of p rows and columns satisfying the equations (B), 140

(Chap. VII.), and v, v
, f,

&quot;

are similar matrices satisfying similar conditions
;

then, as necessarily follows, the matrices a, @, a
, $ satisfy the relation

(viii) of 324 (Chap. XVIII.).

If now x, y be any matrices ofp rows and columns, the relations supposed
are immediately seen to be equivalent to

(M,

,
rM~

we suppose that x, y are such matrices of integers that ax, fty, ax, ft y are

matrices of integers, and, at the same time, such that rx is a matrix of integers ;

such matrices x, y can be determined in an infinite number of ways.

Let u, w be two rows ofp arguments connected by the equations u = Mw
;

when the arguments w are simultaneously increased by the elements of the

row of quantities denoted by 2vxm + 2vymf, in which m, m are rows of p

integers, the arguments u are increased by the elements of the row 2&&amp;gt;r? + 2&amp;lt;W,

where n = axm + &ym, n = a xm + ft ym are rows of integers. The resulting
factor of the function *&(u; 2&&amp;gt;,

2o&amp;gt; , 2?7, 277 ) is e
R

, where, if Ha = 2r)a+ ZrfoL,

etc., (cf. (v), 324, Chap. XVIII.), R is given by

R =Hn (u + ^Hn) irinri

= (Haxm + Hpym ) (Mw + Mvxm + Mv ym } -rrinn

= (MHaxm + MHpym } (w + vxm + vym) Trinri

= r (%%xm + 2^ ym ) (w + vxm + vym } trinn
;

now, since J3 a = r + /3a, and because ax, fty, OL X, ft y, rx are matrices of

integers, we have

nn = xa axm? + (yJ3a x + y^ax) mm + yft Pym&quot;
1

=fm +f m + ryxmm (mod. 2),

where /, / denote respectively the rows of integers formed by the diagonal
elements of the symmetrical matrices XOL OLX, yP fty (cf. 327, Chap. XVIII.).

Thus, if we denote ^ (u ; 2&amp;lt;w,
2&amp;lt;o

, 2?7, 277 ) by &amp;lt;f&amp;gt; (w), we have

(w + 2vxm + 2v ym )
= er{^xm+ * l

&amp;gt; ym &amp;gt;
(w+vam+w j/w )+ (/+/ ) +Tn(

B - 40
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Further if a, b denote the matrices of Zp columns and p rows, given

respectively by
a = (2ws, 2v y), Zirib = (2r(fo 2r y),

we have
fjr^

% (ab - &quot;0
=

y ?
=

( a; (v -),

0, -x

yoc,

so that a& 6a = k, say, is a skew symmetrical matrix of integers given by

ab ba = k = ( , rxy ),

ryx,
and we have

a&amp;lt;/3

2 & m = ryxmm ,

Finally, let X, /x be rows of &amp;gt; quantities, the rows of conjugate complex

quantities being denoted by X1; /ml} and let X, p be taken so that the row of

quantities a (X, p,) consists of zeros, or

a (X, /ji)
= 2twX + %v yp = 0,

so that af\ = T
yfji,

where* r =v~ l v
,
is a symmetrical matrix, = p + ia-

, say,

p and cr being matrices of real quantities ;
then by

we have

ik (X, = - r

in which v = yp, ^ = y^ ;
as in 325, Chap. XVIII., since r is positive, the

form ra- vv-i is necessarily positive except for zero values of p.

On the whole, comparing formula (II), 354, Chap. XIX., the function

&amp;lt;f&amp;gt;(w)

satisfies the conditions of 351 2, Chap. XIX., necessary for a

Jacobian function of w in which the periods and characteristic are given -f- by

i?, 2v y), e =

* The determinant of the matrix u is supposed other than zero, as in Chap. XVIII., 324.

+ In 351, Chap. XIX., the row letters have a elements
;
in the present case a is equal to 2p,

and it is convenient to represent the corresponding row letters by two constituents, each of p
elements ;

and similarly for the matrices of 2p columns and p rows.
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To this function we now apply the result of 359, Chap. XIX., in order to

express it by theta functions of w. The condition for the matrix of integers

there denoted by g, namely geg = k, is satisfied by g = (
)

,
for

v
&quot;

&amp;gt; yi

( rx, ) ( 0, -1 ) ( rx, )
=

( rx, ) ( 0, -y )
=

( , -rxy)\

0, y 1,0 0, y 0, y rx, ryx,

hence, with the notation of 358, Chap. XIX.,

]=(2v/r, 2t/),

o
, r 1

i
-X o U

, yr

Hence, as our final result, by 359, Chap. XIX., the function
&amp;lt;/&amp;gt;

(w), or

^ (u ; 2&), 2&)
, 2?;, 277 ), can be expressed as a sum of constant multiples of

functions* (w ; 2v/r, 2i/, 2 2f) m A different characteristics, the number of
such terms being at most VjlTi = T* # |y| t wAere [#(, |y| de,lote *Ae

determinants of the matrices x, y. This is an extension of the result

obtained when the matrices a, j3, a, j3 are formed with integers ;
as in that

y\, owing
case there will be a reduction in the number of terms, from r*

to the fact that the function
&amp;lt;/&amp;gt; (w) is even. A similar result holds whatever

be the characteristic of the function ^ (u ; 2&amp;lt;w,
2&amp;lt;o

, 277, 277 ). The generalisa
tion is obtained quite differently by Prym and Krazer, Neue Grundlagen
einer Theorie der allgemeinen Thetafimctionen (Leipzig, 1892), Zweiter Theil,
which should be consulted.

Ex. Denoting by E the matrix of p rows and columns of which the elements are zero,
other than those in the diagonal, which are each unity, and taking for the matrices a, /3,

a
, /^ respectively ^ E, 0, 0, E, where m, n are integers without common factor, we have

the formula

n
2261 *

ms/n\

nr/mj

wherein r, s are rows ofp positive integers, in which every element of r is or numerically
less than m, and every element of s is or numerically less than n. This formula includes
that of 284, Ex. iii. (Chap. XV.) ;

it is a particular case of a formula given by Prym and
Krazer (loc. cit., p. 77).

To obtain a verification the general term of the right side is e*, where

402
That is, functions 3 (rw, 2v, 2ri/, 2f/r, 2f) ; cf. 284, p. 448.
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hence 26* = unless N/m is integral ;
when N/m is integral, =M, say, then 2e*= ?

p
e*,

r r

where

K, =nM+s, obtaining all integral values when M takes all integral values and s takes all

integral values (including zero) which are numerically less than n.

375. The theory of the transformation of theta functions may be said to

have arisen in the problem of the algebraical transformation of the hyper-

elliptic theta quotients considered in Chap. XL of this volume. To practically

utilise the results of this chapter for that problem it is necessary to adopt

conventions sufficient to determine the constant factors occurring in the

algebraic expression of these theta quotients (cf. 212, 213), and to define

the arguments of the theta functions in an algebraical way. The reader is

referred* to the forthcoming volumes of Weierstrass s lectures.

It has already ( 174, p. 248) been remarked that when
p&amp;gt;3

the most

general theta function cannot be regarded as arising from a Riemann

surface
;

for the algebraical problems then arising the reader is referred

to the recent papers of Schottky and Frobenius (Crelle, Gil. (1888), and

following) and to the book of Wirtinger, Untersuchungen uber Thetafunctionen

(Leipzig, 1895).

* Cf. Rosenhain, Mem. p. divers Savants, xi. (1851), p. 416 ft.; Konigsberger, Crelle, LXIV.

(1865), etc.
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CHAPTER XXI.

COMPLEX MULTIPLICATION OF THETA FUNCTIONS. CORRESPONDENCE OF

POINTS ON A RIEMANN SURFACE.

376. IN the present chapter some account is given of two theories
;
the

former is a particular case of the theory of transformation of theta functions
;

the latter is intimately related with the theory of transformation of Riemann
theta functions. Not much more of the results of these theories is given
than is necessary to classify the references which are given to the literature.

377. In the transformation of the function (u; T), to a function of the

arguments w, with period r ( 324, Chap. XVIII.), the following equations
have arisen

u = Mw, M=OL + TO.
,
Mr =

j3 + r/3 ;

there* are cases, for special values of r, in which T is equal to r. We
investigate necessary conditions for this to be so

;
and we prove, under a

certain hypothesis, that they are sufficient. The results are stated in terms

of the matrix of integers associated with the transformation
;
we do not enter

into the investigation of the values of r to which the results lead. We limit

ourselves throughout to the function (B) (u ; r) ;
the change to the function

^ (u ; 2o&amp;gt;,
2o)

, 2?7, 2?/) can easily be made.

Suppose that, corresponding to a matrix A = (
,

^
J

,
of 2p rows and

\W, fij /

columns, for which

a/8 = a, a /8
=

/S a
,

a - * = r = ffa.
- a /S,

where r is a positive integer, there exists a matrix T satisfying the equation

(a + ra ) r = + r/3 ,

which is such that, for real values of n l} ..., np ,
the imaginary part of the

quadratic form rn2
is positive.

* References to the literature for the case^= l are given below
( 383). For higher values of

p, see Kronecker, Berlin. Monatsber. 1866, p. 597, or Werke, Bd. i. (Leipzig, 1895), p. 146;
Weber, Ann. d. Mat., Ser. 2, t. ix. (18789), p. 140; Frobenius, Crelle, xcv. (1883), p. 281,
where other references are given ; Wiltheiss, Bestimmung Abehcher Funktionen mit zwei

Argumenten u. B. w. Habilitationsschrift, Halle, 1881 (E. Karras), and Math. Annal. xxvi.

(1886), p. 130.
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In that case, as follows from Chap. XX., the function [(a + rot ) w ; T],

when multiplied by a certain exponential of the form e?*, is expressible as an

integral polynomial of the r-th degree in 2p functions [w ; T] ;
on this

account we say that there exists a complex multiplication*, or a special

transformation, belonging to the matrix A. The equation (a + TO?)T
= /3+T/3

is equivalent to (/? TO!) r = ft + TO.
;
this arises from the supplementary

matrix

just as the former equation arises from A
;
we put M= a + TOE

,
N =

ft ra
;

we denote by A X the determinant of the matrix A \E, where E is the

matrix unity of 2p rows and columns, and X is a single quantity ; similarly we

denote by M X the determinant of the matrix M XJE&quot;, where E is the

matrix unity ofp rows and columns.

Then we prove first, that when there exists such a complex multiplication,

to every root of the equation in X of order p given by \

M X =0, there

corresponds a conjugate complex root of the equation N X
|

=
; that the Zp

roots of the equation A X =0 are constituted by the roots of the two equations

|lf-X| = 0, N-\\ = 0, or A-X = M \ \N-\\; and that all these

roots are of modulus *Jr. Hence when r = 1, they can be shewn to be all

roots of unity.

378. The equations of the general transformation, of order r, and its supplementary

transformation, namely

M
give

hence, if r=r1 +^r2 ,
where r

l
and r.2

are matrices of real quantities, and similarly r i-/+ tV2 ,

we have by equating imaginary parts

(a+ T^G ) T2
= r2 (&

~ a r
i ) J

therefore the two matrices

) r/+ tV2aV2 ,
r2^V= r2 (ft a r/) zV2aV2

are conjugate irnaginaries, =f+ig and/ igt say.

Now suppose T = T ; then from

MTZ=/+ ifft
T2F=/- iff,

we have, if X be any single quantity, and J/ be the matrix whose elements are the

conjugate complexes of the elements of J/,

(J/
-
X) r2=/- ig

- Xr2
= r2 (N - X),

and hence, as
|

r2 1

is not zero,

|jr.-xf-|jr-u

* The name principale Transformation has been used (Frobenius, Crelle, xcv.).
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which shews that to any root of the equation \M-\ \

= there corresponds a conjugate

complex root of the equation |
/V-X

|

=0. Further we have, if r = r
1

iY
2 ,

/I r \ /a 0\ = /J/ #r \ /J/ \ /I

VI rj U 07
&quot;

Wo JftfiJ V #o/ V
and writing this equation in the form

where
1

1

it easily follows that the determinant of the matrix t is not zero, and that, if X be any

single quantity, we have

so that
I A \ ,

I \ I Tf \ I
I/&quot;

\ I
I \f \ I

I AT&quot; &quot;\A A ^ Lt A == JJL A Jfl Q A
(

JJ1 A
|

XT A

Thus the roots of the equation |

A - X = are constituted by the roots of the equations

Further, from a result previously obtained (Chap. XVIII., 325, Ex.), when, as

here, T = T and 2&amp;lt;u
=

l, 2v= l, we have

also as, for real values of %, ..., np ,
the form r2

?i
2 is a positive form, it can be put into the

shape mj* + ...... +*, =Emz
, say, ^ being the matrix unity of p rows and columns, and

m being a row of quantities given by m= Sn, where S is a matrix of real elements ;
the

equation ri
nz= E. Sn. Sn gives Tz= tiES=X8 ;

for distinctness we shall write

r2
= AYf

,

K=K = S being conjugate complex matrices. Take now a matrix R=KMK~ l
;
then

K 1 - K~ lMrMK~ l = rK~ K~ l = r
;

thus if X be a root of
j

M\ =0, and therefore, as R-\ =K (M-\~) K~ l
,
also a root of

R-\
| =0, and if 2, =z+ iy, be a row of p quantities such that Rz=\z=E\z, where E is

the matrix unity of p rows and columns, we have

SiRfyz=R z . Rz E\ z . E\z= XX . Ez z

or

Therefore as Ez9 z, which is equal to 2 ( m̂ +y
2

m ), is not zero, it follows that XX = r; in

m=l

other words, all the roots of the equations ;
M X =0, |

A - X
|

= 0, are of modulus Jr.

Suppose now that r= l, so that the roots of the equation |

A X
|

= are all of modulus

unity ; then we prove for an equation

of any order, wherein the coefficients .1, /?, ..., AV are rational integers, and the coefficient

of the highest power of x is unity, that if all the roots be of modulus unity, they are also

roots of unity* ;
so that, for instance, there is no root of the form e

lV2
.

*
Kronecker, Crelle, LIII. (1857), p. 173; Werke, Bd. i. (1895), p. 103.
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Let the roots be e
1

&quot;, e^, ..., so that

A= -
(cos a+cos/3 + ...), #= cos

then A lies between - n and n, and B lies between \n (n
-

1), etc.
;
hence there can only

be a finite number, say k, of equations of the above form, whereof all the roots are roots of

unity. Thus, if xlt ..., xn be the roots of our equation, so that, for any positive integer /*,

the roots of the equation

are also roots of unity, it follows that, of the equations

^0*0 = 0, 2̂ (a;)
=

0, ..., Ft + l (x)
=

0,

there must be two at least which are identical. Hence, supposing F (x)
=

0, F (x)
= to

be identical, we have n equations of the form

fX._ V
fl_ Vx\~xrj ****%

&quot;

Choosing from these equations the cycle given by

i~
r, r, ,

&quot;&quot;

nti~ l

consisting, suppose, of o- equations, we infer that

and, hence, that x is a (p* v&quot;)-th root of unity.

Ex. Prove that, when M=a+ ra, .r = /3+ 7-/3 ,

/ir\/ 0\ /jrowiyx
Vl Tj\J ft) VO JfoAl rj

and deduce*, if A=
f

a
, )

and
\* P/

1

that

Hence, when T = T, if s be a row of
2jt? elements, and #= A?, we have

which expresses a self-transformation of the quadratic form Hz2
,
which has real coefficients.

Cf. Hermite, Compt. Rendus, XL. (1855), p. 785
; Laguerre, Journ. de I ec. pol., t. xxv.,

cah. XLII. (1867), p. 215
; Frobenius, Crelle, xcv. (1883), p. 285.

379. Conversely, let

be a matrix of integers of 2p rows and columns, such that

aa = a a, J3/3 = J3 j3, a/3
-

a/3 = r = yS a - /ffa ,

*
Cf. Chap. XVHI. 325, Ex.
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where r is a positive integer ;
and suppose that the roots of the equation

|

A \ = are all complex and of modulus \Jr. Under the special

hypothesis* that the roots of \

A A, =0 are all different, we prove now that

a matrix r can be determined such that (i) r is a symmetrical matrix, (ii) for
real values of nlt ..., np the imaginary part of the quadratic form rri* is

positive, (iii) the equation

(a + rat) r = /3 + r/3

is satisfied. Thus every such matrix A gives rise to a complex multiplication.

380. We utilise the following lemma, of which we give the proof at once. If A be a

matrix of n rows and columns, such that the determinant |A+ X
,
wherein X is a single

quantity, vanishes to the first order when X vanishes, and if #, y be rows of n quantities
other than zero, such that

hx=0, hy=Q,

then the quantity xy, =x1yl + ...... + xnyn ,
is not zero.

Denoting the row x by t ,
its elements being n , ..., ln ,

determine other n(n-l)
quantities

i&amp;gt;;

-

(i=2, ..., n ; _/=!,..., n) such that the determinant
|

|

does not vanish
;

similarly, denoting y by TJI} determine n(n-\) further quantities i^y such that the

determinant
| rj \

does not vanish. Then consider the determinant of the matrix
rj (h+ A) ;

the (r, s)-th element of this matrix is

2
rj r&amp;gt;

i 2 Ai, &amp;gt;,.,
+ X 2

77,., i gj i
= 2

,, y 2 /^ y^,-, f+ X 2
rjri ^r&amp;gt; iy

i j i .1 i i

(i=l, ...,; _/=!, ..., ),
and when r=l we have

2Ai
1

while when 8= 1, we have

2^,&amp;gt;&,,-=Wi, 1 + ...... +/*i,i,n=(^)=0;

thus the (1, l)-th element of this matrix is \xy, and every other element in the first row
and column has the factor X ; thus the determinant of the matrix is of the form X [Axy+ \B\.
But the determinant of the matrix is equal to|A+X||||?7|, and therefore by hypothesis
vanishes only to the first order when X vanishes. Thus xy is not zero.

381. Suppose now that X, X
, /*, ^ ,

... are the roots of the equation |
A A

| =0, where
X and X

,
and p and /*, etc. are conjugate complexes. It is possible to find two rows x, a/,

each ofp quantities, to satisfy the equations

x = \x
, or, say, (A-A)(#, tf

)
= 0, (i),

and similarly two rows z, /, each ofp quantities, to satisfy the equations

az + $z = iLZ, a z+P z = nz , (ii) ;

from equations (i), if o; be the conjugate imaginary to x, etc., it follows, since XX =r, that

V T

and hence, in virtue of the relations satisfied by the matrices a, /3, a
, ft, we have

.r - j3.r
= X.r

,
a ^ + ax = \x

,

* For the general case, see Frobenius, Crelle, xcv. (1883).

OF THF

UNIVERSITY
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which belong to the supplementary matrix rA&quot;
1
just as the equations (i) belong to the

matrix A
;

for our purpose however they are more conveniently stated by saying that

t= x
,

t = x
, satisfy the equations

(A-A)(*, = 0;

hence as x, x satisfy the equations

(A-(*,0=0,
it follows from the lemma just proved, putting n= 2p, that tx+ t x is not zero

;
in other

words the quantity

is not zero. Further from the equations (i), (ii) we infer

\H (xz
1 - x z]

= (ax+ Qz ) (a z+ /3Y)
-

(a x + /3V) (as+ /3/) ;

and by the equations satisfied by the matrices a, /3, a
, ft this is easily found to be the

same as

(X/Li
-

r) (xz
f - x z]

=
;

thus, as the equation X/z
= r would be the same as X = X

,
we have

xz x z= 0.

Also we have
az + ftz

=
fi

z
,

a z +p z =
/i ;

thus we deduce, as in the case just taken, that

(Vo-^O^o -AO^O;
and hence as X/*

-
r, =r (X/^i

-
1), is not zero, we have

xz x z = 0.

If we put x=x1 + -ix
z ,
x =x

l
-ix2 ,

x =x
l + ix

2 , x=x{-ix^, the quantity

xx X XQ= 2i (x^ -
x^x^)

is seen to be a pure imaginary ;
if in equations (i) X be replaced by X

,
the sign of xx^-x x^

is changed, but the quantity is otherwise unaltered
; since then the equations (i) de

termine only the ratios of the constituents of the rows x, x
,
we may suppose the sign of

the imaginary part of X in equations (i), and the resulting values of the constituents of x and
x

,
to be so taken that

uCtJGfr 3G X{\
:=

*

this we shall suppose to be done
;
and we shall suppose that the conditions for the (p 1)

similar equations, such as

zz -z z = -2i,

are also satisfied. With this convention, let the constituents of x and x1

be denoted by

si, i &amp;gt;
&amp;gt; si. i s i, 1 1

&amp;gt; it P 5

similarly let the constituents of the rows 2, &
,
which are taken corresponding to the root p,

be denoted by
S2, 1&amp;gt; &amp;gt; C2,P&amp;gt; b2, 1&amp;gt; ?2,P&amp;gt;

and so on for all
the/&amp;gt;

roots X, p, .... Then the equations xx - XXQ
= -2i, zz z z = 2i,

etc., are all expressed by the statement that the diagonal elements of the matrix

are each equal to - 2i. When r is not equal to s (r, s&amp;lt;p+ l), the (1, 2)-th element of this

matrix is
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which we have shewn to be zero
; similarly every element of the matrix, other than a

diagonal element, is zero
;
we may therefore write

Take now a row ofp quantities, ,
and define the rows X, X by the equations

X=lt, X =$t,
so that

^0= bO^O) ^0 = fo o&amp;gt;

then

hence it follows that the determinant of the matrix % is not zero, since otherwise it would
be possible to determine t, with constituents other than zero, so that Jf = 0, and therefore

also JT =0 ; as this would involve -2wy= 0, it is impossible.

382. If now the matrix T be determined from the equations

&amp;lt;u + TX = 0, 2 + rz = 0, ...
,

where x, x are determined, as explained, from a proper value of A,, etc., or,

what is the same thing, if r be defined by

r+fr-o,
then

fF-rf-r^-r^-rV-W;
but the equations of the form xz xz = Q are equivalent to

*F-ri=o;

now, since the determinant
|

does not vanish, a row of quantities t can be
determined so that X =

gt, for an arbitrary value of X
;
thus for this

arbitrary value we have

(T-r)Z /2 =
0,

and therefore

T = T,

or the matrix T is symmetrical.

Further, from the equation + V =
0, we have

& -
rl. = rroio

-
rr|o = r (T,

- T
&amp;gt; g/,

and hence, if r = p + to-, since
,

-
f | = -

2t, we have

I = f0io , or t t = &amp;lt;rXQ X ,

where is a row of any jt&amp;gt; quantities and X = t
; hence, since the determi

nant g does not vanish, it follows, if X be any row of p quantities, that
&amp;lt;rX X is positive ;

in particular when n 1} ...,np are real, the imaginary part
of the quadratic form r?i

2
is positive.

Finally from the equations

ax + fix = \x, afx + fix = \x
,
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putting x = TX, we infer

(/8 CUT) x \TX
, (/3 a r) x = \x ,

and therefore

T (/S
-

err) X +(/3 ar) a/ = 0,

or

[/8 + r/3
-

(a + TO?) T] # = 0,

and hence

[ + r/3
-

( + ra ) r]
= 0,

from which, as
| f j

is not zero, we obtain

/3 + r/3
-

(OL + ra. ) T = 0.

We have therefore completely proved the theorem stated.

It may be noticed, as follows from the equation + fr=0, that we may form a theta

function with associated constants given by

2o&amp;gt;
= 2

,
2co =-2;

these will then satisfy the equations

co co aw = 0, o&amp;gt;o&amp;gt;o

o&amp;gt;

O&amp;gt;Q

2*
;

the former equation always holds
;
the matrix a&amp;gt; can be determined so that the latter

holds, as is easy to see.

Ex. Prove that by cogredient linear substitutions of the form

u = cu, w = cw,

we can reduce the equations u=Mw to the form

where p. lt ..., p.p are the roots of
|

M-\ =0.

383. For an example we may take the case p= l
; suppose that a, ft, a, ft are such

integers that aft
- a ft=r, a positive integer, and that the roots of the equation

are imaginary ;
if a = 0, the condition thatr should not be a rational fraction requires that

a /n_/o\
a ft ) W

where a?= r, and then the equation for T is satisfied by all values of T
;
this case is that of

a multiplication by the rational number a, and we may omit it here
;
when a is not zero

we have _
2aV= -

(a
-

ft ) \/(a

and therefore (a+/3 )
2

&amp;lt;4r ;
this of itself is sufficient to ensure that the roots of the

equation

are unequal, conjugate imaginaries, of modulus -Jr.
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383]

If then r be any given positive integer and h be a positive or negative integer

numerically less than 2jr, and a, a be any integers such that (a
2-a+ r)/a is integral,

= -
ft we obtain a special transformation corresponding to the matrix

for a value of r given by

a h

A-2a

where
|

a
|

is the absolute value of a
,
and the square root is to be taken positively ;

the

corresponding value of M is a + ra . Hence by the results of Chap. XX., the function

when multiplied by a certain exponential of the form e
xw

*, is expressible as an integral

polynomial of order r in two functions [w ;

-
&quot;&quot;^

I
with different character

istics.

The expression for the elliptic functions is obtainable independently as in the general

case of transformation. When

Mv= &amp;lt;a + a&amp;gt; a, Mv = wj3+ &amp;lt;o |3 , ap
&amp;gt; -a @= r, tl=Mw,

if to any two integers m, m! we make correspond two integers n, n and two integers k, V,

each positive (or zero) and less than r, by means of the equations

rn + k= mfi - m fi,
rn + k =- ma +m a,

or the equivalent equations

= na + rip + -
(a

then we immediately infer from the equation

^(w)= tt- 2+22 [(tt+ 2m + 2?ftV)-
2
-(2

m m

by using n, ri, instead of m, m ,
as summation letters, that

2v,

wherein the summation refers to the r- 1 sets k, k other than k= k =Q, for which ( 357,

p. 589) the congruences
ak + pk = 0, a k+pk = (mod. r)

are satisfied*.

This formula is immediately applicable to the case when there is a complex multiplica

tion ; we may then put

2o) = 2u=l, 2 = 2w = T, p= h-a, -
ft
=

(a
2 - ha+ r)/a ,

r= (-2azV4r-/i2
)/2a ,

* When these congruences have a solution (k , kQ ), in which fr
, /r have no common factor,

i.e. (Appendix 11., 418) when a, a , /3, ft have no common factor, the remaining solutions are of

the form (XA- , \k ), where \&amp;lt;r; in that case taking integers x, x such that k x - k x= l, it is

convenient to take 2vk + 2v k and 2vx + 2v x as the periods of the functions g)
on the right side.
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and M(hi^4r-h2
)/2, as above, where A2

&amp;lt;4r. The application of the resulting

equation is sufficiently exemplified by the case of r 2 given below (Exx. ii., in.).

In the particular case where r=l, the condition 7i
2

&amp;lt;4r shews that h can have only the

values or + 1 or - 1
;
in this case the values

,
n given by

, ,,,,-, sm na + n (h a)
a

n m and m are integral;

immediately find

are integral when m and m are integral; hence as --- &quot;--
\-(k-a)T= MT, we

1= 6022
2 \
= =

) 3V
*-*2

7
-- u

n (ro+m r)
8

Thus when h= Q we have g3=0, and if a, a be any integers such that (a
2+ l)/a is integral,

we have T=( + ia)/a, the upper or lower sign being taken according as a is positive or

negative. In this case the function
g&amp;gt; (u) satisfies the equation

(iW=4($to)
where

When h= l we have
ff2
=

0, and if a, a be any integers such that (a
2 -a + l)/o is

integral, we have T= (l 2a + ^\/3)/a ;
in this case

When h = -
1, we have

&amp;lt;72
=

0, and, if (a
2+ a+ l)/a be integral, then r- (

- 1 - 2at V3)/a.

Ex. i. Denoting the general function
&amp;lt;@u by ljf&amp;gt;(; g%, &amp;lt;73 ),

it is easy to prove that the

arc of the lemniscate r2= a2 cos 2$ is given by a2
//-

2= &amp;gt; (s/a ; 4, 0) ;
when n is any prime

number of the form 4&+ 1 the problem of dividing the perimeter of the curve into n equal

parts is reducible to the solution of an equation of order k when n is a prime number

of the form 2
A+ 1, the problem can be solved by the ruler and compass only. (Fagnano,

Produzioni Matematiche, (1716), Vol. u.
; Abel, CEuvres, 1881, t. I., p. 362, etc.) It is

also easy to prove that the arc of the curve i^ a? cos 30 is given by a2
/r

2= $(s/a; 0, 4);

when n is a prime number of the form 6^+ 1, the problem of dividing the perimeter of

this curve into n equal parts is reducible to the solution of an equation of order k (Kiepert,

Crelle, LXXIV. (1872), etc.). These facts are consequences of the linear special transforma

tions of the theta functions connected with the curves.

Ex. ii. In case r 2, taking a= 4, a = 9, A= 0, we have T= (
l+ i ^2)/9, and

By expanding this equation in powers of w, and equating the coefficients of w2
,
we

find easily that, if
ft) (r/2)

=
e, then g2

= J^e2
,
and g3

= Je
3

; hence we infer that by means
of the transformation

o/: r I^$ t
T&quot;g

/ ,N

we obtain

dx
r ds

ih \/8P- 15 + 7 J

which can be directly verified. It is manifest that when r= 2, h=Q, we are led to this

equation for all values of a and a.
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Ex. iii. Prove that if m= \ (h+ i \/8
- A2

),
the substitution

,3m*-3 1
m* = x-\--T -.

---=m4+ 4 x-\

gives the equation

r *e _n r .

dx

Jl \/(m
4+ 4)

3 -15-(m4
-ll) ./* V( 4+4)**-!*-( -11)

This includes all such equations obtainable when r= 2. Complex multiplication arises

for the five cases /i= 0, h + 1, h= 2.

.Ek iv. When r-3 and_p=l, we see by considering the matrix

iwo -iwi i

that the function eia [(l+i \/2) w; i\/2] is expressible as a cubic polynomial in the

functions 8
0&amp;gt;1 (w; t \/2), e lf i(w; i\/2). The actual form of this polynomial is calculable

by the formulae of Chap. XXI.
( 366, 372), by applying in order the linear substitutions

C
1%

) (

&quot; l

}
and then the cubic transformation

( 3)
Hence deduce that k= *J2-l

and

sn[(l + i\/2) TT]
= (l+rV2)sn TT[l-sn

2 F/sn
2
y]/[l-^

2 sn2 JF.sn2
y],

where y= 2(K- iA )/3, K being ( 365, Chap. XXI.) =7^, and iK = rK.

For the complex multiplication of elliptic functions the following may be consulted :

Abel, (Euvres, t. I. (1881), p. 379
; Jacobi, Werke, Bd. I., p. 491

; Sohnke, Crelle, xvi.

(1837), p. 97 ; Jordan, Cours d Analyse, t. II. (1894), p. 531
; Weber, Elliptische Functionen

(1891), Dritter Theil ; Smith, Report on the Theory of Numbers, British Assoc. Reports,

1865, Part vi.
; Hermite, Theorie des equations modulaires (1859); Kronecker, Berlin.

Sitzungsber. (1857, 1862, 1863, 1883, etc.), Crelle, LVII. (1860) ; Joubert, Compt. Rendus,

t. L. (1860), p. 774; Pick, Math. Annal. xxv., xxvi. ; Kiepert, Math. Annal. xxvi. (1886),

xxxii. (1888), xxxvii., xxxix.
; Greenhill, Proc. Camb. Phil. Soc. iv., v. (18823), Quart.

Journal, xxil. (1887), Proc. Lond. Math. Soc. xix. (1888), xxi. (1890) ; Halphen, Liouville,

(1888); Weber, Ada Math. xi. (1887), Math. Annal. xxin., xxxin. (1889), XLIII. (1893);

Etc.

384. We come now to a different theory*, leading however in one phase

of it, to the fundamental equations which arise for the transformation of

theta functions, that namely of the correspondence of places on a Riemann

surface. The theory has a geometrical origin ;
we shall therefore speak

either of a Riemann surface, or of the plane curve which may be supposed to

be represented by the equation associated with the Riemann surface, accord

ing to convenience. The nature of the points under consideration may
be illustrated by a simple example. If at a point a; of a curve the tangent

be drawn, intersecting the curve again in z1} z.,, ..., n_2) we may say that to

the point x, regarded as a variable point, there correspond the n 2 points

* For references to the literature of the geometrical theory, see below, 387, Ex. iv., p. 647.

The theory is considered from the point of view of the theory of functions by Hurwitz, Math.

Annul, xxvin. (1887), p. 561; Math. Annal. xxxn. (1888), p. 290; Math. Annal. XLI. (1893),

p. 403. See also, Klein-Fricke, Modulfunctionen, Bd. n. (Leipzig, 1892), p. 518, and Klein, Ueber

Rienuinn t Theorie (Leipzig, 1882), p. 67. For (1, 1) correspondence in particular see the re

ferences given in 393, p. 634.
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z-i, . .., zn-2- To any point z of the curve, regarded as arising as one of a set

z-i, ..., zn-2 ,
there will reciprocally correspond all the points, xl ,

x2 , ..., x^^,
which are points of contact of tangents drawn to the curve from z. Such a

correspondence is described as an (n 2, m 2) correspondence. A point of

the curve for which x coincides with one of the points zlt ..., zn_2 correspond

ing to it, is called a coincidence
;
such points are for instance the inflexions

of the curve.

In general an (r, s) correspondence on a Riemann surface involves that

any place x determines uniquely r places z1 ,...,zr ,
while any place z,

regarded as arising as one of a set zlt . .., zr ,
determines uniquely s places

x-i, ..., Xg. The investigation of the possible methods of this determination is

part of the problem.

385. Suppose such an (r, s) correspondence to exist
;

let the positions of

z that correspond to any variable position of x be denoted by zlt ..., zr ,
and

the positions of x that correspond to any variable position of z be denoted by
x1 , ..., xs ;

and denote by c1} ..., cr the positions of zlt ..., zr when x is at the

particular place a, and by a1} ..., as the positions of #1; ..., XB when z is at

the particular place c
; denoting linearly independent Riemann normal inte

grals of the first kind by vlt ..., vp ,
consider the sum

as a function of x
;
since it is necessarily finite we clearly have equations of

the form

, r x, a -m f x, a Zj, c
l

zr, cr , , %M
i&amp;gt;l

vl + ...... +M
i&amp;gt;p

vp =vt + ...... +vt , (i = I,...,p\

where M
iil} ...,Mijp are constants. On the dissected surface the omitted

aggregate of periods of the integral vt indicated by the sign
= is self-deter

minative
;

if the paths of integration be not restricted from crossing the

period loops the sign
= can be replaced by the sign of equality (cf.

Chap. VIII. 153, 158).

If now x describe the &th period loop of the second kind, from the right

to the left side of the kih period loop of the first kind, the places zlt ..., zr

will describe corresponding curves and eventually resume, in some order, the

places they originally occupied ; since, on the dissected Riemann surface

v
*

l&amp;gt;Cl

-i- vf
Ca = V

J&quot;

Cl + v*i

C*

,
we may suppose each of them actually to resume

its original position ;
hence we have an equation

wherein a^fc, ;,&,
... are integers ; similarly by taking x round the kth period

loop of the first kind we obtain
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we have therefore 1p- equations expressible in the form

wherein a, a
, /3, /3 are matrices of integers, ofp rows and columns.

Consider next, as a function of x, the integral

/.
&quot;,(

vm

wherein z, c are, primarily, arbitrary positions, independent of x, and IIz j ;

C

Ci

is the Riemann normal integral of the third kind. The subject of integration
becomes infinite when any one of the places z

l , ..., zr coincides with z, or, in

other words, when z is among the places corresponding to x, and this happens
when x is at any one of the places xlt ...,xg ,

which correspond to z\ the

subject of integration similarly becomes infinite when x is at any one of the

places a1} ..., ag , which correspond to the particular position of z denoted by c
;

it is assumed that c does not coincide with any one of the places cl5 ..., cr

The sum of the values obtained when the integral is taken, in regard to a,

round the infinities xly ..., xs ,
a1} ..., as , is, save for an additive aggregate*

of periods of the integral vm , equal to

This quantity is then equal to the value obtained when x is taken round
the period loops on the Riemann surface. Consider first, for the sake of

clearness, the contribution arising as sc describes the Mb. period loop of the

second kind
;

if x described the left side of this period loop in the negative
direction, from the right to the left side of the Kh period loop of the first

kind, the aggregates of the paths described by z^...,zr would, in the

notation just previously adopted, be equivalent to a
A) it negative circuits of

the \th period loop of the second kind, and a
Aj k positive circuits of the Xth

period loop of the first kind (X = 1, . . .
, p). In the actual contour integration

under consideration the description by x of the left side of the Kb. period loop
of the second kind is to be in the positive direction

;
hence the contribution

arising fur the integral as x describes both sides of the Kh period loop of the
second kind is

s.-
2-TTlTm, k 2 a\, k V?,cA

similarly the contribution as x describes the sides of the kih period loop of

the first kind is

Which vanishes when paths can be drawn on the dissected surface connecting a lt ..., a,

respectively to ar
lt ..., x,, so that simultaneous positions on these paths are simultaneous posi

tions of
a-, , . . , x. . Cf . Chap. VIII. 153 ; Chap. IX. 165.

B - 41
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where E
m&amp;gt;

k
= unless m = k, and E

m&amp;gt;
m = 1. Taking therefore all the period

loops into consideration, that is, k = 1, ...
, p, we obtain

where JVm, x = ft\, m
- S T

m&amp;gt;
k x, t

*=i

so that #,, x is the (m, X)th element of the matrix

N =
ft -rS ;

since the equations if = a + ra
,
Mr =

/3 + rfi give

-y8+Ta = (^-Ta)T,
we have also _

TOt.

z, c

These equations express the sum v%
&quot;

+... +C in terms of integrals
j

manner analogous to the expression originally taken for C +...+ w t

-

in terms of integrals t;J

a

,_the
difference being the substitution, for the matrix

n a

386. The theory of correspondence of points of a Riemann surface now

divides into two parts according as the equation, which arises by elimination,

either of the matrix M or the matrix N, namely,

T T + O.T T/3 /3
= 0,

is true independently of the matrix r, in virtue of special values for the

matrices a, ft, a , /3 , or, on the other hand, is true for more general values of

these matrices, in virtue of a special value for the matrix T.

We take the first possibility
first

;
it is manifest that for any value of r

the equation is satisfied if

o = - 7#, ft
= 0,

= 0, ft
= -vE,

where 7 is any single integer, and E is the matrix unity of p rows and

columns ; conversely, if the equations are to hold independently of the value

of r, we must have the n2

equations

O, f a^r^

and, for general values of T, these give

0^ = 0, m
,

=
/S

/

A ,x, 9tiii+-fr&-*i A
which are equivalent to the results taken above.
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With these values we have, as the particular forms of the general

equations of 385,

Zi, C, Zr, Cr X, a ~

Vi + ...... + Vt +yVi =0,

x,,a, Xs,ag z,c f. /. -,
-.

v nt + ...... +vm + yvm =0. (i, m=l, ...,p).

Let the value on the dissected surface of the left side of the first of these

equivalences be

gi + giTi,i + ...... + g P Ti, P &amp;gt;

where glt ..., gp , #/, . .., g p are integers. Consider now the function

, Z] Zr,C
+yll

z c

wherein z1} ..., zr are the places corresponding to x, and clt ..., cr their

positions when x is at a, and z, c are arbitrary places. In virtue of the

equations just obtained it is a rational function of z, and rational in the

place c (cf. Chap. VIII.
, 158). Regarded as a function of x it is also

rational
;

for the quotient of its values at the two sides of a period loop

of the second kind, which, by what has just been shewn, must be rational in

z, is, by the properties of the integral of the third kind, necessarily of the

form

where K1} ..., Kp are integers; this quotient, as a function of z, has no

infinities
; being a rational function of z, it is therefore a constant, and

therefore unity, since it reduces to unity when z is at c
;
hence

&amp;lt;/&amp;gt; (x, z
; a, c),

as a function of x, has no factors at the period loops ;
as it can have no

infinities but poles it is therefore a rational function of x; it is similarly

rational in a. As a function of x it vanishes when one of zl} ..., zr coincides

with z, that is, when x coincides with one of xlt .... xs .

We have therefore the result. Associated with any (r, s) correspondence
which can exist upon a perfectly general Riemann surface, it is possible to

construct a function $ (x, z; a, c), rational in the variable places x, z and the

fixed places a, c, which, regarded as a function of x vanishes to the first order

at the places xly ..., xg , which correspond to z, and vanishes to order 7 {if 7 be

positive), at the place z ; which, as a function of x, is infinite to the first order

when x coincides with any one of the places aly . .., ag which correspond to c,

and is infinite to order 7 (7 being positive) when x is at c; which, as a function

of z, has similarly (for 7 positive) the zeros zlt ..., zr ,
xt and the poles

Ci, ..., cr ,
a*. An analogous statement can be made when 7 is negative.

Ex. i. Some examples may be given to illustrate the form of this rational function.

On a plane cubic curve we do in fact obtain a (1, 4) correspondence, for which
-y
=

2,

by taking for the point z
l
which corresponds to .r, the point in which the tangent at

412
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x meets the curve again, and therefore, for the points x
v , x^ x

3 , x^ which correspond to 2,

the points of contact of tangents to the curve drawn from z. The value y = 2 is obtained

from Abel s theorem, which clearly gives the equation

z,, c,
. n x, a -

v +2v =0

as representative of the fact that a straight line meets the curve twice at x and once at z
t

.

Denote the equation of the curve in the ordinary symbolical way by A X
3 Q

;
then the

equation A X
ZA 1

=
0, for a fixed position of x, represents the tangent at x

;
and for a fixed

position of z, represents the polar conic of the point z, which vanishes once in the points of

contact, #!, #2 ,
#3 ,

#
4 ,

of tangents drawn from z and vanishes also twice at z, where it

touches the curve
;
then consider the function

AX*A.

~A*A t .A*A n
*

when z, a, c are fixed, this function of x vanishes to the first order at x
lt
#

2 ,
x
s ,
x and to

the second order at z, and is infinite to the first order at the places a
x ,

a
2 ,

a
3 ,

a
4 which

correspond to c, and infinite to the second order at c
;
when z, a, c are fixed, this function

of z vanishes to the first order at zlt and to the second order at x, and is infinite to the

first order at the place Cj ,
which corresponds to a, and infinite to the second order at a.

Ex. ii. More generally for any plane curve of order n, and deficiency p, if to a point x

we make correspond the r= n 2 points z
l ,

. . .
,
zn _ 2 ,

in which the tangent at x meets the

curve again, and to a point z the s= 2n+ 2p 4 points of contact &
lt ..., xt of tangents

drawn to the curve from z (so that, for instance, when the curve has K cusps, K of the

points a?j, ..., xt will be the same for all positions of z\ we shall have an (r, s) corre

spondence for which y= 2. If Aj.
n= be the equation of the curve, the function

regarded as a function of x, for fixed positions of z, a, c (of which a and c are not to be

multiple points), has for zeros the places x
lt ..., xg ,

z2
,
for poles the places a

lt ..., a,, c2
,

and regarded as a function of z, has for zeros the places z
lt ..., zr ,

x2
,
and for poles the

places Cj, ..., cr ,
a2

.

Ex. iii. If from a point x a tangent be drawn to a plane curve, and the corresponding

points be the points other than the point of contact, in which the tangent meets the curve

again, we have

where z
1

is the point of contact of one of the tangents drawn from x, there being as many
such equations as tangents to the curve from x

;
since the 2n+ 2p 4 points z

1

lie on the

first polar of #, it follows by Abel s theorem that

2j

therefore

/&quot;
c + ...... +

so that y= 2/i+ 2jp-8. As a function of z the function &amp;lt; (#, z
; a, c) has therefore the

(n 3) (2n+ 2p 4) zeros z
1? ..., zr ,

which correspond to x, as well as the zero x, of the

(2n+ 2p-8)th order, and has as poles the places cly ..., cr ,
which correspond to a, as well

as the zero a, of the (2n + 2p
-
8)th order.

For instance for a plane quartic, there are 10 places corresponding to x, one for each of

the tangents that can be drawn from x to the curve ; the function $ (x, z
; a, c), as a
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function of z, vanishes to the first order at each of these ten places, and vanishes to the

sixth order at x
;

its infinities are the places similarly derived from the fixed position, a,

of x. We can build up this function in the manner suggested by the use already made of

Abel s theorem in the determination of the value of y ;
for a fixed position of x, let T(z) =

be the equation, in the variable 2, for the ten tangents to the quartic drawn from z
;

let

P (z)
= be the first polar of x ; the quotient

vanishes when z is at the places z
lt ..., z

10 ,
and vanishes when z is at x to order

10-2(2)= 6; let Ta (z\ Pa (z) represent what T(z\ P(z) become when x is at a
;
then

the function of z

T(z)

has the same behaviour as has the function (x, z
; a, c) as a function of z. From this

function, by multiplication by a factor involving x but independent of 2, we can form a

symmetrical expression in x and z ; this will be the function
&amp;lt;f&amp;gt; (x, z

; a, c). In fact,

denoting the equation of the quartic curve by ^1^= 0, and expressing the fact that the line

joining the point x of the curve to the point not on the curve should touch the curve,

viz., by equating to zero the discriminant in X of (Ax+\Atf-Ax*, we obtain an equation
of the form

^ [C
6
, *&quot;]

= (A XA? [9WAfF - IGAXA* . AJAJ,

which represents the tangents to the curve drawn from x. Replacing by z, a point on
the curve, so that A,*= 0, we have, since AXA ,

3=0 is the first polar of x,

T(z)/P*W= 9(A X*A*)*-16AXA* . AJA. ;

hence

A(x z- a c)= XX ..
[9 (Au*A*r - \&amp;lt;&amp;gt;A aA? . AJA.] [9 (AX*A*? - IQAXA* . Ax*A e]

Ex. iv. If a (1, 1) correspondence exists, the rational function of x, denoted by
&amp;lt;f&amp;gt; (x, z

; a, c), is of order y+ 1.

387. A problem of great geometrical interest is to determine the number
of positions of x, in which x coincides with one of the places zl} ..., zr ,

which

correspond to it. This is called the number of coincidences.

A simple way to determine this number is to consider the rational func
tion of x obtained as the limit when z = a;,of the ratio $(x,z\ a, c)/(x zf ;

putting

$(x\ a,c) = Km
[&amp;lt; (x, z

; a, c)/(x
-

z)*],

and bearing in mind that if t be the infinitesimal on the Riemann surface,

dx/dt vanishes to the first order at every finite branch place, and is infinite to
the second order at every infinite place of the surface, we immediately find
from the properties of the function

^&amp;gt;(x t z\ a, c), on the hypothesis that none
of the branch places of the surface are at infinity, the following result ; the
rational function of x denoted by &amp;lt;j&amp;gt;(x; a, c) vanishes to the first order at

every place x of the surface at which x coincides with one of the places
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z1} ..., zr which correspond to it, vanishes also to order 2y at each of the n

infinite places of the surface, and is infinite to order 7 at each of the branch

places of the surface and at each of the places a, c, while it is infinite to the

first order at each of the places cx , ..., cr which correspond to a, and at each

of the places 1} ..., as which correspond to c
; hence, denoting the number of

coincidences by C we have

C + 2ny = (2n + 2p
-

2) 7 + 7 + r + s,

so that*

The same result is obtained when there are branch places at infinity.

The argument has assumed 7 to be positive ;
a similar argument, when 7 is

negative, leads to the same result.

Ex. i. The number, i, of inflexions of a plane curve of order n and deficiency p is

given (Ex. ii. 386) by

where h is the number of coincidences arising other than inflexions, as for instance at the

multiple points of the curve. In determining h it must be remembered that we have not

excluded the possibility of there being fixed positions of x which correspond to z for all

positions of z
;
for instance in the case of a curve with cusps all these cusps have been

reckoned among the places &\, ...,# which correspond to z. Therefore for a curve with

K cusps, h will contain a term 2
;
for a curve with only 8 double points and K cusps, the

formula is the well-known one

i = 3 (m ri),

where m is the class of the curve, equal to n(n l)-28 3x.

Ex. ii. Obtain the expression of the function &amp;lt; (x ; a, c) determined by the limit

{Af-*AJ(*-*?.Af-\A..AS-*A}^t

where Ax
= Q=A*=A a =A c

n
. (Cf. Ex. ii. 386.)

Ex. iii. The number of double tangents of a curve of order n and deficiency p may be

obtained from Ex. iii. 386, if we notice that a double tangent, touching at P and Q, will

arise both when P is a coincidence, and when Q is a coincidence
;
hence if T be the number

of double tangents, and h the number of coincidences not giving rise to double tangents,

we have

where tr= n-\-p 3. For instance for a -curve with no singular points other than 8 double

points and K cusps, there will be a contribution to h equal to twice the number of those

improper double tangents which are constituted by the tangents to the curve from the

cusps and the lines joining the cusps in pairs. The number of tangents, t,
from a cusp is

given (cf. 9, Chap. I., Ex.) by

-2, or i!
= 2/i-5-

There will not arise any such contribution corresponding to a double point, since the two

* This result was first given by Cayley ; see, for references, Ex. iv. below.
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points of the curve that there correspond are different places (cf. 2, Chap. I.) ;
hence

we have

and therefore r= 2&amp;lt;r (a- + 1)
-
4p

- *t - 1(*
2 -

K) ;

substituting the values for
&amp;lt;r, p and t, we find the ordinary formula equivalent to

where m is the class of the curve.

Ex. iv. The points of contact of the double tangents of a quartic curve A X
4 = lie

upon a curve whose equation is obtainable by determining the limit, when z=x, of the

expression

[9 (
Jz

2
^2)2

_ 16AxA? . A*A^(X -
Zf.

For the result, cf. Dersch, Math. Annal. vn. (1874), p. 497.

For the general geometrical theory the reader will consult geometrical treatises ;
the

following references may be given here
; Clebsch-Lindemann-Benoist, Lemons sur la Geo

metric (Paris, 18791883), t. I. p. 261, t. n. p. 146, t. in. p. 76 ; Chasles, Compt. Rendus,

t. LVIII. (1864) ; Chasles, Compt. Rendus, t. LXII. (1866), p. 584
; Cayley, Compt. Rendus,

t. LXII. (1866), p. 586, and London Math. Soc. Proc. t. I. (1865 6), and Phil. Trans.

CLVIII. (1868) (or Coll. Works, v. 542
;

vi. 9
;

vi. 263) ; Brill, Math. Annal. t. vi. (1873),

and t. vn. (1874). See also Lindemann, Crelle, LXXXIV. (1878); Bobek, Sitzber. d. Wiener

Akad., xcin. (ii. Abth.), (1886), p. 899
; Brill, Math. Annal. xxxi. (1887), xxxvi. (1890) ;

Castelnuovo, Rend. Ace. d. Lincei, 1889; Zeuthen, Math. Annal. XL. (1892), and the

references there given.

Ex. v. If we use the equation (Chap. X. 187)

where Q is an odd half-period, equal to X + rX say, X, X being each rows of p integers, and

form the rational function of x and a,

. .
7

. . _, yR (x, a)
=hmz=x (

-
l)
y -

,
-

c=a (#, * j 0, C)

[&amp;lt;t)(x, z; a, c

we have
l 1 IT,x, a

which is a generalisation of the equation (i), p. 427.

The function R(x, a) vanishes when x is at any one of the places c1? ..., cr ,
which

correspond to a, and when x is at any one of the places an ..., at which correspond to the

position a of the place c
;

it vanishes also 2y times at each of the zeros of the function

e^.a-t-^Q). It is infinite C times, namely when x has any of the positions in which it

coincides with one of the places 2j, ..., zr which correspond to it. In the particular case

of Ex. i. p. 427, the function R(x,a) is (#
-
a)

2 Jf (#), and the equation C=r+ s+ 2py

expresses that the number of branch places (where two places for which x is the same

coincide) is 2 (n- l) + 2p.

Ex. vi. Determine the periods of the function of x expressed by
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where z
lt ..., zr are the places corresponding to x, and clt ..., cr are the places correspond

ing to a.

Ex. vii. If there be upon the same Riemann surface two correspondences, an (r, )

correspondence and an (r ,
a

) correspondence, then to any place z will correspond, in virtue

of the first correspondence, the places xlt ...
,
& and to any one of these latter, say xit will

correspond, in virtue of the second correspondence, say z
itl , ..., z

i&amp;gt;r

,
; conversely to any

place z will correspond, in virtue of the second correspondence, the places xlt ..., xs/ ,
and

to any one of these latter, say x
t) will correspond, in virtue of the first correspondence,

say z
itl , ..., z

it ,. ;
we have therefore an (r s, rs

) correspondence of the points (z, z
).

In

virtue of the equations

we have

i=l J=l

Hence* we can make the inference. If upon the same Riemann surface there be two

correspondences, an (r, s) correspondence ofplaces x, z, and an (/, s
) correspondence of places

of, z
1

,
then the number of common corresponding pairs of these two correspondences, for which

both x, x coincide, and also z and z
,
is

r s+ rs 2yyp.

388. We have so far considered only those correspondencesf which can

exist on any Riemann surface. We give now some results relating to

correspondences which can only exist on Riemann surfaces of special cha

racter, more particularly (1, 1) correspondences.

We prove first that any (1, s) correspondence is associated with equations
which are identical in form with those which have arisen in considering the

special transformation of theta functions. For any such correspondence, in

which to any place x corresponds the single place z, and to any position of z

the places xly ..., #, we have shewn that we have the equations (i= 1, ...,&amp;gt;)

v
x

;
a

,
M=a +roc ,

Mr= ft+rff,

hence

P

z
&amp;gt;

c _ JUT 51 * ft *- c x
&amp;gt;&amp;gt;

a

m=l

P

S MI &
A=i

r ^. c
.

, T z
&amp;gt;

c+L
i&amp;gt;p

vp ,

* Provided the (r s, rs
) correspondence is not an identity.

t Called by Hurwitz, Werthigkeit-correspondenzen, y being the Werthigkeit.

{ For other results, see Klein-Fricke, Modulfunctionen, Bd. n. (Leipzig, 1892), pp. 540 if.
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where L
i&amp;gt;m

is the (i, m)th element of the matrix L, = MN. This matrix is

therefore equal to .9. Now

MN =M( J3 -Ta) = (a + ra) ft
-

(/8 + r/3 ) a = aft
- /8o + T(a /8 -/8

/

a
/

),

MNr =M (- J3 + ra )
= -

(a + ra) + (/3 + r/8 ) a = -
(a)8 -/3o)+r(/3 a - a ^ ),

which we may write in the form

if now T = T
1 -MY2 ,

where rlt T2 are matrices of real quantities, it follows

by equating to zero the imaginary part in the equation

that T2
= 0; since for real values of ?i1} ..., np the quadratic form r.2n

2 is

necessarily positive, the determinant of the matrix r2 is not zero
;
hence we

must have B =
;
hence also H = s and A =

;
or

=
*, &amp;lt;*

=
/3 a , a/3 -/3a = ffa-a. /3

= s;

and these equations, with the equation (a + ra ) r = + r/3 ,
are identical

in form with those already discussed in this chapter ( 377, ff.).

We are able then as in the former case to deduce certain conditions

for the matrices a, /3, a
, /9 ,

which in their general form necessarily involve

special values for the matrix T.

389. In particular, in order that a (1, 1) correspondence* may exist,

the roots of the equation M A, = must be conjugate imaginaries of the

roots of the equation \N X
j

= 0, must be all of modulus unity, and must

be roots of the equation A X
]

=
0, where A = (

, ^, j

. They must there-
\^ /&quot;^ /

fore be roots of unity. For the sake of definiteness we shall suppose p &amp;gt; 1

and that A and r are such that the roots of
|

M \ =0 are all different
;

this excludes the case already considered when A =
( /[ )

. Supposing
\ 7/

a (1, 1) correspondence to exist, for which this condition is satisfied, if in

the fundamental equations (i=l, ...,p)

z,c -, , x,a
, Tif x,a

v
t SMttl 9l + ...... +Miip v

1&amp;gt;

,

we introduce other integrals of the first kind, say Ff &quot;, ..., F^
a

,
where

* The (1, 1) correspondence for the case p = l is considered in an elementary way in 394.

The reader may prefer to consult that Article before reading the general investigation.
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then we can put the fundamental equations into the form

for this it is necessary that X; should be a root of the equation M \ = 0,

and that the p quantities ajl} ..., citp should be determined from the

equations

Ci,iM1&amp;gt;r
+ ...... + citpMptr

= \iCitr , (r= 1, ...,&amp;gt;);

under the prescribed conditions the determinant of the matrix c will be

different from zero.

Hence as X^ is a root of unity, it can be shewn, when
p&amp;gt; 1, that every

such (1,1) correspondence is periodic, with a finite period ; that is, if the place

corresponding to x be zlt the place corresponding to the position zl ,
of x,

be z2 ,
the place corresponding to the position #2 ,

of x, be z3 , and so

on, then after a finite number of stages one of the places zl} z2 , z
3&amp;gt;

...

coincides with x. In order to prove this, suppose that all the roots of the

equation |

M X
\

= are &-th roots of unity ;
then denoting the place

x by z and the place a by c
,
the equations of the correspondence may

be written

these give

and therefore

r 7 Zk,Ck j Zoi c
&amp;lt;n

. r 7 z
*&amp;gt;

c* 7 zoi p
&amp;lt;n /\

Ci^ldv, -dv
l ]+ ...... +Ci, p [dvp -dvp ]

= 0;

hence on the dissected Riemann surface we have equations of the form

vr
* * - v? = \r + X/T

r&amp;gt;
! + ...... + \p r

r&amp;gt; p&amp;gt; (r = l,...,p),

where X1( ..., Xp are integers. Thus either zk = z and ck = c
,
which is the

result we wish to obtain, or else there is a rational function expressed by

f-fX,a Tt x &amp;gt;

a o -/\ / *i&amp;lt;* , , \ / x
&amp;gt;

a \

A.a-^.co- 2^^^ + ...... +VV
&amp;gt;,

which is of the second order, having zk , c as zeros and z
,
ck as poles; now

a surface on which there is a rational function of the second order is

necessarily hyperelliptic (Chap. V. 55) but, on a hyperelliptic surface,

for which
p&amp;gt;\,

of the two poles of such a function either determines

the other, and of the two zeros either determines the other
;

it is not

possible to construct such a function whereof, as here, one pole ck is fixed,

and the other arbitrary and variable ( 52).

Hence we must have zk
= z

,
and ck = c0) which proves the result

enunciated.

There is no need to introduce the integrals V in order to establish this result. It

is known (Cayley, Coll. Works, Vol. n. p. 486) that if Xl5 X
2 ,

... be the roots of the equation

|j^_A| = 0, the matrix M satisfies the equation (M Xj) (M X2) ...... = 0; when the roots
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Xj, X.j, ... are different &-th roots of unity it can thence be inferred that the matrix M
.satisfies the equation Mk= \ then from the successive equations dv*1

c = Mdv* c
,

dvz* et=Mdvfl Cl
, etc., we can infer dvZk k=dvZl&amp;gt;

c
,
and hence as before that zk=z0) ck=c .

A proof of the periodicity of the (1, 1) correspondence, following different lines, and
not assuming that the roots of the equation \M\\ = Q are different, is given by Hurwitz,
Math. Annal. xxxn. (1888), p. 295, for the cases when

p&amp;gt;l.
It will be seen below that

the cases p = 0, p= \ possess characteristics not arising for higher values ofp ( 394).

390. Assuming the periodicity of the (1, 1) correspondence, we can

shew that all Riemann surfaces upon which a (1, 1) correspondence exists,

can be associated with an algebraic equation of particular form. As before

let k be the index of the periodicity, and let w = eZnilk
;

let 8, T be any
two rational functions on the surface, and let the values of S at the

successive places x, zlt z.2 , ..., zh_lt x which arise by the correspondence be
denoted by 8, Sl} ..., $A_1} S, and similarly for T

;
then the values of the

functions

at the place zr are respectively

sr = S,. + w- ]Sr+1 + ...... + o)-t*-i Sr+M = a&amp;gt;

r
s, and t

;

hence it can be inferred (cf. Chap. I., 4) that there exists a rational

relation connecting s
k and t. Conversely S and T can be chosen of such

generality that any given values of s and t arise only at one place of

the original Riemann surface. Thus the surface can be associated with
an equation of the form

(*,0 = 0,

wherein every power of s which enters is a multiple of k.

Such a surface is clearly capable of the periodic (1, 1) transformation

expressed by the equations
s = MS, t = t.

i* .The following further remarkable results may be mentioned

(a) The index of periodicity k cannot be greater than 10 (p
-

1).

(/3) When k &amp;gt; 2p
- 2 the Riemann surface can be associated with an

equation of the form
* = t*i (t

-
1)* (t

-
c)*.

(7) When k &amp;gt;

4&amp;gt;p

-
4, the Riemann surface can be associated with an

equation of the form

sk = t^(t-l)^.

Herein klt Ar2 ,
k3 are positive integers less than k.

*
Hurwitz, Math. Annal. xxxn. (1888), p. 294.
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391. We can deduce from 389 that in the case of a (1, 1) correspond

ence the number of coincidences is not greater than 2p -f 2. In the case of

a hyperelliptic surface, when the correspondence is that in which conjugate

places of the canonical surface of two sheets are the corresponding pairs,

the coincidences are clearly the branch places, and their number is
&quot;2p

4- 2
;

for all other (1, 1) correspondences on a hyperelliptic surface, the number of

coincidences cannot be greater than 4.

For, when the surface is not hyperelliptic, let g denote a rational function

which is infinite only at one place z of the surface, to an order p + 1
;
and

let g be the value of the same function at the place z1} which corresponds

to z
;
then the function g g is of order 2p + 2, being infinite to order

p + 1 at zQ and to order p + 1 at the place z^ to which z corresponds ;
now

every coincidence of the correspondence is clearly a zero of g g ;
thus

the number of coincidences is not greater than 2p + 2. In the case of a

hyperelliptic surface

2/

2 =
\x &amp;gt; 1)20+1 &amp;gt;

we may similarly consider the function x x, of order 4
;

unless the

correspondence be that given by y =
y, x = x, for which x x is identically

zero. We thus obtain the result that the number of coincidences cannot

be greater than 4, except for the (1, 1) correspondence y =
y, x = x.

It can be shewn for the most general possible (r, s) correspondence, associated with the

equations

by equating the value obtained for the following integral, taken round the period loops,

to the value obtained for the integral taken round the infinities of the subject of integra

tion, that the number of coincidences is

C=r+s-(an + + OPP+&II+ +/3 pp)-

Since au + +/3V- ^s ^ne sum of the roots of the equation |A X|
=

0, it follows for a

(1, 1) correspondence, in which all the 2p roots of A X|=0 are roots of unity, that

C^-2p+ 2. For any (r, s) correspondence belonging to a matrix A=f
^ j,

the same

formula gives C=r+ s+ 2py, as already found.

We have remarked
( 386, Ex. iv.) for the case of a (1, 1) correspondence associated with

a matrix A of the form | l ) , the existence of a rational function of order 1 +y. For
\ (| ~yj

any such (1, 1) correspondence, if p be
&amp;gt;1, y must be equal to +1 in order that the

number 1 + 1-f 2py of coincidences may be
;^&amp;gt;2jo

+ 2. Thus such a correspondence involves

the existence of a rational function of order 2, and involves therefore that the surface be

hyperelliptic. This is also obvious from the fact that such a correspondence is associated

with equations of the form
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conversely, for y= 1, equations of this form are known to hold for any hyperelliptic surface,

associated with the correspondence of the conjugate places of the surface. From the

considerations here given, it follows for
p&amp;gt;\

that for a (1, 1) correspondence the number
of coincidences can in no case be

&amp;gt;2/?+ 2.

392. In conclusion it is to be remarked that on any Riemann surface

for which p &amp;gt; 1, there cannot be an infinite number of (1, 1) correspondences.
For consider the places of the Riemann surface that can be the poles of

rational functions of order
&amp;lt;(p+l) which have no other poles ( 28, 31,

34 36, Chap. III.). Denote these places momentarily as (/-places. As
such a (1, 1) correspondence is associated with a linear transformation of

integrals of the first kind, which does not affect the zeros of the de

terminant A, of 31, it follows that the place corresponding to a ^-place
must also be a

&amp;lt;jr-place. Now, when the surface is not hyperelliptic, every
#-place cannot be a coincidence of the correspondence; for we have shewn

(Chap. III., 36) that then the number of distinct (/-places is greater
than 2p + 2; and we have shewn in this chapter ( 391) that the number
of coincidences in a (1, 1) correspondence, when

p&amp;gt;l,
can in no case

be &amp;gt; 2p + 2. Therefore, when the surface is not hyperelliptic, a (1, 1)

correspondence must give rise to a permutation among the ^-places; since

the number of such permutations is finite, the number of (1, 1) corre

spondences must equally be finite. But the result is equally true for a

hyperelliptic surface; for we have shewn ( 391) that for such a surface the
number of coincidences of a (1, 1) correspondence cannot be greater than 4,

except in the case of a particular one such correspondence; since the
number of distinct ^-places is 2p + 2, every (1, 1) correspondence other than
this particular one must give rise to a permutation of these ^-places. As
the number of such permutations is finite, the number of (1, 1) corre

spondences must equally be finite.

It is proved by Hurwitz* that the number of (1, 1) correspondences,
when p &amp;gt; 1, cannot be greater than 84 (p

-
I). In case p = 3, a surface is

known to exist having this number of (1, 1) correspondencesf.

393. The preceding proof ( 392) is retained on account of its

ingenuity. It can however be replaced by a more elementary proof j by
means of the remark that a (1, 1) correspondence upon a Riemann surface
can be represented by a rational, reversible transformation of the equation of
the surface into itself. Let the equation of the surface be f(x,y) = Q;
let (z, s) be the place corresponding to (x, y) ;

then z, s are each rational
functions of x and y such that f(z, s)

=
; conversely x, y are each

*
Math. Annal. XLI. (1893), p. 424.

+ Klein, Math. Annal. xiv. (1879), p. 428; Modulfunctionen, t. i., 1890, p. 701.
Hurwitz, Math. Annal. XLI. (1893), p. 406.

Weierstrass, Math. Werke, Bd. 11. (Berlin, 1895), p. 241.
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rational functions of z, s. To give a formal demonstration we may
proceed as follows

; supposing the number of sheets of the Riemann surface

to be n, let z1} ..., zn denote the places corresponding to the n places

#1 , ,..,* for which x = 0, and let zj , ...,z n denote the n places corre

sponding to the places d4 , ..., ae^ for which x is infinite
;
as # is a rational

function on the surface we have, for suitable paths of integration (cf. Chap.

VIII. 154)
J0&amp;gt; J&amp;gt; JO) J&amp;gt; - ,.

v*i
x

&amp;gt; + ...... +
J&quot;

f =0, (i
=

l, ...,_p);

hence from the equations

z, c ir a;. &amp;lt;* . n f & a

Vi = M
itl Vi + ...... +Miipvp ,

we have

there exists therefore (Chap. VIII., 158) a rational function having the

places z-i, ..., zn as zeros, and the places zj, . .., zn as poles ; regarding this as

a function of z, s and denoting it by (f&amp;gt;
(z, s), it is clear therefore that x\$ (z, s)

is a constant, which may be taken to be 1. Hence x =
(j&amp;gt;(z, s), etc.

For the theorem that for
p&amp;gt;l

the number of (1, 1) correspondences is limited the

reader may consult, Schwarz, Crelle, LXXXVII. (1879), p. 139, or Gesamm. Math. Abhand.,

Bd. II. (Berlin, 1890), p. 285
; Hettner, Gotting. Nachr. (1880), p. 386

; Noether, Math.

Annal., XX. (1882), p. 59
; Poincare, after Klein, Acta Math., vn. (1885) ; Klein, Ueber

Riemann s Theorie u. s. w. (Leipzig, 1882), p. 70 etc.
; Noether, Math. Annal., xxi. (1883),

p. 138
; Weierstrass, Math. Werke, Bd. n. (Berlin, 1895), p. 241

; Hurwitz, Math. Annal.,

XLI. (1893), p. 406.

394. In regard to the (1, 1) correspondence for the case p= l, some remarks may be

made. The case p= needs no consideration here
; any (1,1) correspondence is expressible

by an equation of the form

thus there exists a triply infinite number of (1, 1) correspondences.

In case p= l, if there be a (1, 1) correspondence, whereby the variable place x

corresponds to #
,
and a, a! be simultaneous positions of x and x

,
it is immediately

shewn, if vF&amp;gt;

a denote the normal integral of the first kind, that there exists an equation of

the form

tfV,
a =

ptf,
a

?

wherein
/*

is a constant independent both of a and x. From this equation, by supposing x

to describe the period loops, we deduce eqxiations of the form

where a, a
, /3, & are integers. By supposing x to describe the period loops we deduce

equations of the form

), (ii),

where y, y , 8, 8 are integers. The expression of these integers in terms of a, a
, ft ft is
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known from the general considerations of this chapter ;
it is however interesting to

consider the equations independently. From the equations (ii) we deduce

8 -
ry =n (y8

f -
y 8), 8 - ry= -

r/x (yS
-
y 8) ;

if now y8 -y 8= 0, either y and y are zero, which is inconsistent with 1 =p (y+ ry ),
or else

T is a rational fraction
;

it is known that in that case the deficiency of the surface is not 1

but
; we may therefore exclude that case

;
if y8

-
y 8 be not zero, we have

hence, unless T be a rational fraction, we have

* &
-y _, y _ ff

-o _
yV-y 6 y8 -y 8~ y8 -y 8~

P
y8 -y 8~

P&amp;gt;

and therefore

l = (a/3 -a /3)(y8 -y 8);

thus af? a P= y8 -y 8= + 1 or - 1
;
let t denote their common value

; then we deduce
fc/ f f \t & n
a = ea, y = a e, y= pt, o= pe ;

by these the equations (ii) lead to

that is, to the equations (i).

Further, from the equations (i) we deduce in turn

so that
/i is a root of the equation

-/* ft =0;

a /3 u

now if a be zero, the first of equations (i) gives p= a, and, therefore, as r cannot be
the rational fraction 0/(a-00, the second of equations (i) gives a=p , 0=0 ;

the equations

give /*
2
=f, or, since

/u, =a, is an integer, they require e= +1 and /i=+l or/i=-l; the

equations corresponding to
/*
= + 1 and p= I are

these do belong to existing correspondences of the kind considered in 386, 387, the

coefficient y being \*. But they differ from the (1,1) correspondences which are possible

whenp&amp;gt;l, in each containing an arbitrary parameter ;

if next, a be not zero, the equation for T gives

2ra = -
(a
- 00 \i(a+pj-4f ,

so that, as T cannot be real, we must have

( + )
2 -4f ),

* For instance, on a plane cubic curve, the former equation is that in which to a point of

argument u we make correspond the point of argument u + constant ; the line joining these two
points envelopes a curve of the sixth class, which in case the difference of arguments be a

half-period becomes the Cayleyan, doubled
; while the latter equation is that in which we

make correspond the two variable intersections of a variable straight line passing through a
fixed point of the cubic.
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and this shews that, in this case also, e= l. Hence the equations are reduced to precisely

the same form as those already considered for the special transformation of theta functions

( 383) ;
and the result is that the only special surfaces, having p= l, for which there exists

a (1, 1) correspondence are those which may be associated with one of the two equations

the former has the obvious (1, 1) correspondence given by x = A; y = iy ;
the latter has

the obvious correspondence given by x1= e 3
x,

/

i/=y ;
the index of periodicity is 2 in the

former case and 3 in the latter case.

Ex. Consider the (1, 2) correspondence on a surface for which p = \ in a similar way.

For the equation
7/2=8^-15^+ 7

shew that a (1, 2) correspondence is given (cf. Ex. ii. 383) by

8 (.*-!)
* * 4 (x-\f
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CHAPTER XXII.

DEGENERATE ABELIAN INTEGRALS.

395. THE present chapter contains references to parts of the existing

literature dealing with an interesting application of the theory of trans

formation of theta functions.

It was remarked by Jacobi* for the case p = 2, that if the fundamental

algebraic equation be of the form

2/

2 = x (x
-

1) (x K) (x \) (x K\),

an hyperelliptic integral of the first kind is reducible to elliptic integrals ;

in fact, putting | = x + K\/X, we immediately verify that_(x V/cX) dx___df_
-X) &amp;lt;/(+

2 V/t

396. Suppose more generally that for any value of p there exists an

integral of the first kind

U = X^^ 4- ...... -f \pUp ,

wherein ul} ...,up denote the normal integrals of the first kind, which is

reducible to the form

_
R(%) being a cubic polynomial in f, such that and (f) are rational

functions on the original Riemann surface; then there exist p pairs of

equations of the form

wherein at-, &;, a/, &/ are integers ;
we may suppose H to be chosen so that

the *2p integers
a1} ..., ap , a/, ..., ap

have no common factor and so that

aM + a2b2 + ...... + ctpbp a/tj - a/62 ...... ap bp
= r,

*
Crelle, vm. (1832), p. 41G.

B. 42
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where r is a positive integer; we assume that r is not zero. Eliminating

the quantities X1; ..., \p ,
and putting &&amp;gt;

= H /Il, we have the p equations

if therefore the matrix of integers, A = f
, \L,

]
,
of 2p rows and columns,

\(* ^j /

wherein the first column consists of the integers aly ..., ap in order, and the

(p + l)th column consists of the integers bl} ..., bp
r

in order, be determined

to satisfy the conditions for a transformation of order r,

oa = a a, J30 = ff&, a/3
-

a/3 = r,

( 420, Appendix II.), then it immediately follows from the equation, for

the transformed period matrix T
, namely

that r u = to, r 12
=

0, ..., r
y,
=

;
to see this it is sufficient to compare the

elements of the first columns of the two matrices /3 + r/3 , (a + rot)r . In

other words, when there exists such a degenerate integral of the first kind as

here supposed, it is possible*, by a transformation of order r, to arrive at

periods r for which the theta function ^(w, T
\ q) is a product of an elliptic

theta function, in the variable wlt and a theta function of (p 1) variables,

w2 , ...,wp .

397. It can however be shewn that in the same case it is possible by a

linear transformation to arrive at a period matrix r&quot; for which

r&quot;13 =0, T*14
= 0, ...,r% = 0,

while
r&quot;i2 ,

=
1/r, is a rational number. We shall suppose -f* two rows oc, x .

each of p integers, to be determined satisfying the equations

ax ax = 1, bx b x = 0,

such that the 2p elements of rx b, rx b have unity as their greatest
common factor, a denoting the row a1} ..., ap , etc., and suppose ( 420) a

matrix of integers, of 2p rows and columns,

x, ..
** / / 11
6J \a, rx -b, ...

to be determined, satisfying the conditions for a linear transformation,

^y=ry ry )
SB =8 8, j8 j8 = l,

wherein the first column consists of the elements of a and a
,
the second

column consists of the elements of rx b and rx b
,
and the (jp + l)th

* This theorem is due to Weierstrass, see Konigsberger, Crelle, LXVII. (1867), p. 73 ; Kowal-

evski, Acta Math. iv. (1884), p. 395. See also Abel, (Euvres, t. i. (1881), p. 519.

t The proof that this is possible is given in Appendix II., 419. It may be necessary, before

hand, to make a linear transformation of the periods ft, ft .
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column consists of the elements of as and x
;
the conditions for a linear trans

formation, so far as they affect these three columns only, are

a (rx _ & )
_ a (rx

-
b)
= 0, ax -a x=l, (rx -b)x -

(rx -b )x = Q,

and these are satisfied in virtue of the equation ab a b = r. Then the

equation for the transformed period matrix r&quot;, namely

(7 + Ty ) T&quot;
= 8 + T&,

leads to T&quot;S
,

i
= 0, . . .

,
T&quot;PI t

= if only the p equations

[7&amp;lt;,i
+ (T7 ki] A, + [7,-|8 + (T7 )i,J T

7/

a&amp;gt;1

= B
itl + (rS Xi, (i

=
1, ..-, P),

which are obtained by equating corresponding elements of the first columns

of the matrices S + rS
, (7 + T7 )T&quot;,

are satisfied; these p equations are

included in the single equation

T&quot;J, i [a + TO, ] + T\ i[ras-b + r (rx
- b )]

= x + rx,

and are satisfied* by T&quot;V =
ta/r, T&quot;

2)1
=

l/r ;
for we have, as the fundamental

condition, the equation
a) (a + TO!)

= b + rb .

398. It follows therefore in case p= 2 that the matrix r&quot; has the form

&quot;u, 1M .

/r, r&quot;J

hence it immediately follows that beside the integral of the first kind already

considered, which is expressible as an elliptic integral, there is another

having the same property. In virtue of the equations here obtained the first

integral having this property can be represented, after division by fi, in the

form

U = (V -rr\XK
where u denotes the row of 2 integrals uly u2 ;

consider now the integral

V = [rf
- a -

rr&quot;
2&amp;gt;2 (rx

- b )] u,

where t is a row of two elements, these being the constituents of the first

column of the matrix 8
;
the periods of Vat the first set of period loops are

given by the row of quantities

rtf a ? T&quot;
2)2 (rx b ),

* See Kowalevski, Acta Math. iv. (1884), p. 400
; Picard, Bulletin de la Soc. Math, de France,

t. xi. (18823), p. 25, and Conipt. Itendtis, xcn. xciu. (1881); PoincarS, Bulletin de la Soc. Math,

de France, t. xn. (18834), p. 124
; Poincare, American Journal, vol. vin. (1886), p. 289.

422
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and are linear functions of the two quantities 1, rr&quot;
2i2 ;

the periods of Fat
the second set of period loops are given by

[r (rt
- a )l

-
rr&quot;2

,
2 [T (rx

-
V)] it (

= 1, 2) ;

now the equation (7 + TJ) r&quot;
= 8 + r8 gives

(7 + T7)f,i r\ 2 + (y + ry\, r&quot;2
,
2
=

(8 + rS\ 2 , (i
= 1, 2),

and hence we have

T*I, S [a + ra] + r&quot;
2&amp;gt;2 [rx-b + r (rx

- b )]
= t + rt

,

where t is the row formed by the constituents of the first column of the

matrix B; therefore, as T
//

1)2 =l/r, the periods of V at the second set of

period loops are expressible in the form

-
(rt

-
a)i + rr\

t
2 (rx

-
b){ , (i

= 1
, 2),

and these are also linear functions of the two quantities 1, rr&quot;
2j2

. Hence it

may be inferred that the integral V is reducible to an elliptic integral.

399. It has been shewn in the last chapter that for special values of the

periods T there exist transformations of the theta functions into theta func

tions for which the transformed periods are equal to the original periods. It

can be shewn* that for the special case now under consideration such a

transformation holds. Suppose that a theta function S-, with period r, is

transformed, as described above, into a theta function
&amp;lt;,

with period T, for

which r
li2
= = ... = T

I&amp;gt;P
, by a transformation associated with the matrix

A =
( , ni

}
5 suppose further that there exists, associated with a matrix

H ( , , ) ,
a transformation whereby the theta function &amp;lt;f&amp;gt; is transformed

\x nJ
into another theta function with the same period T

;
then it is easy to prove

that there exists a corresponding transformation of the theta function ^

whereby it becomes changed into a theta function with the same period T,

namely the transformation is that associated with the matrix

,f g J U/3AxVA-a
to prove this it is only necessary to shew that the equations

(X + r A/) r =
fj, + r /jf, (a + rot) T

=
{3 + r/3

give the equation

Wiltheiss, Math. Annal. xxvi. (1886), p. 127.
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Hence it follows that in order to determine a transformation of the function

^ which leaves the period r unaltered, it is sufficient to determine a trans

formation of the function
&amp;lt;f&amp;gt;

which leaves the period r unaltered
;

this

determination is facilitated by the special values of T\,Z, ..., T\, P \
and in

fact we immediately verify that the equation (A, + T \ ) T =
//- + T JA is satisfied

by taking X = p = and by taking each of X and p to be the matrix in

which every element is zero except the elements in the diagonal, each of

these elements being 1 except the first, which is 1.

400. Thus for the case p =
2, supposing r = 2, the original function ^ is

transformed into a theta function with unaltered period T, by means of the

transformation of order 4 associated with the matrix,

where m denotes the matrix
( j

;
the matrix V is equal to 2A&quot;

1

,
and it

is easy to see that this transformation of order 4 is equivalent to a multipli

cation, with multiplier 2, together with a linear transformation associated

with the matrix

We have therefore the result
; when, in case p 2, there exists a transforma

tion of the second order whereby the periods r are changed into periods T for

which T I
F
2
= 0, then there exists a linear transformation whereby the periods

T are changed into the same periods r, or what we have called in the last

chapter a complex multiplication.

401. The transcendental results thus obtained enable us to specify the

algebraic conditions for the existence of an integral of the first kind which is

reducible to an elliptic integral.

Thus for instance when p = 2, to determine all the cases in which an

integral of the first kind can be reduced to an elliptic integral by means of a

transformation of the second order, A = (, Q , } ,
it is sufficient to consider

\a p )

the conditions that the transformed even theta function ^\w\ T ^L ])

may vanish for zero values of w
;
for when T

, i2
= this function breaks up into

the product of two odd elliptic theta functions. By means of the formulae*

for transformation of the second order, it can be shewn*f- that this condition

leads to the equation

*
Chap. XX. 364.

t Konigsberger, Crelle, LXVII. (1867), p. 77.
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and by means of the relations expressing the constants of the fundamental

algebraic equation in terms of the zero values of the even theta functions* it

can be shewn that this is equivalent to the condition that the fundamental

algebraic equation may be taken to be of the form

2/

2 = x (x 1) (x K) (x \)(x K\),

so that the case obtained by Jacobi is the only one possible for transformations

of the second order.

In the same case of p = 2, r = 2, the same result follows more easily from

the existence, deduced above, of a complex multiplication belonging to a

transformation of the first order. For it follows from this fact that the

algebraic equation can be taken in a form in which it can be transformed

into itself by a transformation in which the independent variable is trans

formed by an equation of the form

_~

and this leadsf to the form, for the fundamental algebraical equation,

S2 = (
2 _ ft2) ^a _ fc)^ _ ca^

which is immediately identified with the form above by putting

X = \/KX(Z +

the quantities a, b, c being respectively

Similarly for p = 3, when the surface is not hyperelliptic, it can be shewnj

from the relations connecting the theta functions when a theta function is the

product of an elliptic theta function and a theta function of two variables,

that the only cases in which an integral of the first kind can be reduced to

an elliptic integral are those in which the fundamental algebraic equation
can be taken to be of the form

Jx(Ax+By) + \/y(Cx + Dy) + Vl + Fas + Gy
= 0.

The Riemann surface associated with this equation possesses a (1, 1) corre

spondence given by the equations

*
Cf. Ex. v. p. 341. By means of the substitution x= c

l + (a1
-c

1 )l-,
the branch places can be

taken at = 0, 1, K, X, /x, wherein, if c
x ,

a1( c2 ,
a
2 , c be real and in ascending order, 0, 1, K, X, ft

are in ascending order of magnitude. For complete formulae, when the theta functions are

regarded as primary, and the algebraic equation as derived, see Eosenhain, Mem. p. divers

Savants, xi. (1851), p. 416 ff.

t Wiltheiss, Math. Annal. xxvi. (1886), p. 134.

Kowalevski, Acta Math. iv. (1884), p. 403.
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APPENDIX I.

ON ALGEBRAIC CURVES IN SPACE.

404. GIVEN an algebraic curve ((7) in space, let a point be found, not on the curve,
such that the number of chords of the curve that pass through is finite

;
let the curve

be projected from on to any arbitrary plane, into the plane curve (/), and referred to

homogeneous coordinates
, r],

T in that plane, whose triangle of reference has such a

position that the curve does not pass through the angular point TJ,
and has no multiple

points on the line r=0; let the curve (C) be referred to homogeneous coordinates
, 77, f, T

of which the vertex f of the tetrahedron of reference is at 0. Putting X= /T, y= r)/r,

Z= C/T, it is sufficient to think of x, y, z as Cartesian coordinates, the point being at

infinity. Thus the plane curve (/) is such that y is not infinite for any finite value of x,
and its equation is of the form f(y, x)=y

m+ A 1y
m ~ 1+ ......+Am=Q, where A^..,,Am

are integral polynomials in x
;
the curve (C) is then of order ra; we define its deficiency

to be the deficiency of (/); to any point (x, y) of (/) corresponds in general only one

point (x, y, z) of (C), and, on the curve (C), z is not infinite for any finite values of x, y.

Now let / (y)
= 9/(y, x)fiy, let &amp;lt; be an integral polynomial in x and y, so chosen

that at every finite point of (/) at which f (y)
=

0, say at x=a, y= b, the ratio

(x
-
a) (fr/f (y) vanishes to the first order at least

;
let a=n (x- a) contain a simple factor

corresponding to every finite value of x for which / (y)
= 0; let y, ...,ym be the values

of y which, on the curve (/), belong to a general value of x, so that to each pair (x, y&amp;gt;)

there belongs, on the curve (C), only one value of z; considering the summation

% (c-yQ ......(c-ym)r ^ 1
i=i c -Vi L/ (#)&amp;gt;=&quot;*

where c is an arbitrary quantity, we immediately prove, as in 89, Chap. VI., that it

has a value of the form
a (c

m~ l
tt

x+ cm
~2 U2 + ...... + wj,

where
1 ,..., m are integral polynomials in x\ putting yi for c, after division by a, we

therefore infer that z can be represented in the form

where 0, ^ are integral polynomials in x and y, whereof
&amp;lt;/&amp;gt;

is arbitrary, save for the
conditions for the fractions (x

-
a] &amp;lt;// (y). This is Cayley s monoidal expression of a

curve in space with the adjunction of the theorem, described by Cayley as the capital
theorem of Halphen, relating to the arbitrariness of (Cayley, Collect. Works, Vol. v. 1892,

p. 614).
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It appears therefore that a curve in space may be regarded as arising as an

interpretation of the relations connecting three rational functions on a Riemann surface
;

and, within a finite neighbourhood of any point of the curve in space, the coordinates

of the points of the curve may be given by series of integral powers of a single quantity t,

this being the quantity we have called the infinitesimal for a Riemann surface; to

represent the whole curve only a finite number of different infinitesimals is necessary.

More generally the representation by means of automorphic functions holds equally well

for curves in space. And the theory of Abelian integrals can be developed for a curve

in space precisely as for a plane curve, or can be deduced from the latter case; the

identity of the deficiency for the curve in space and the plane curve may be regarded as

a corollary. Also we can deduce the theorem that, of the intersections with a curve in

space of a variable surface, not all can be arbitrarily assigned, the number of those whose

positions are determined by the others being, for a surface of sufficiently high order, equal
to the deficiency of the curve.

Ex. If through p - 1 of the generators of a quadric surface, of the same system, a

surface of order p+ l be drawn, the remaining curve of intersection is representable by
two equations of the form

y =W 1 /2P + 2 &amp;gt;

ZU
1
= M

2

where (x, l)2P + 2 is an integral polynomial in x of order 2/? + 2, and wn w2 are respectively
linear and quadric polynomials in x and y.

For the development of the theory consult, especially, Noether, Abh. der Akad. zit

Berlin vom Jahre 1882, pp. 1 to 120
; Halphen, Journ. cole Polyt., Cah. LII. (1882),

pp. 1200; Valentiner, Acta Math., t. n. (1883), pp. 136230. See also, Schubert,
Math. Annal. xxvi. (1885); Castelnuovo, Rendiconti delta R. Accad. dei Lincei, 1889;

Hilbert, Math. Annal., xxxvr. (1890).
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APPENDIX II.

ON MATRICES*.

405. A SET of n quantities

(#j ,
. . .

,
Xn)

is often denoted by a single letter a, which is then called a row letter, or a column letter.

By the sum (or difference) of two such rows, of the same number of elements, is then

meant the row whose elements are the sums (or differences) of the corresponding elements

of the constituent rows. If m be a single quantity, the row letter mx denotes the row

whose elements are mx^ ..., mxn . If x, y be rows, each of n quantities, the symbol xy
denotes the quantity x

lyl -f- + xnyn .

406. The set of n equations denoted by

#&amp;lt;

=
0i,i!i+ + ai, p j (i=l, ,n)

where n may be greater or less than p, can be represented in the form a;=a, where a

denotes a rectangular block of np quantities, consisting of n rows each of p quantities,

the r-th quantity of the i-ih row being a
i&amp;gt;r

. Such a block of quantities is called a

matrix
,
we call a

it r the (i, r)th element of the matrix. The sum (or difference) of two

matrices, of the same number of rows and columns, is the matrix formed by adding (or

subtracting) the corresponding elements of the component matrices. Two matrices are

equal only when all their elements are equal ;
a matrix vanishes only when all its

elements are zero. If
x ,

. .
, p be expressible by m quantities X1 ,... )

Xm by the equations

f.
= &r,i^l + +1&amp;gt;r, m Xm * (r=l, 2

&amp;gt; ,P\

so that = bX, where b is a matrix ofp rows and m columns, then we have

^= ct,i^i + +c
i&amp;gt;m

Xm , (i=l, , n),

or x=cX, where

/i=l, , n\
c;,s=i, 101,8+ +ai, p b

p&amp;gt;s ,
I I,
\ i

) &amp;gt;

m/
* The literature of the theory of matrices, or, under a slightly different aspect, the theory of

bilinear forms, is very wide. The following references may be given : Cayley, Phil. Trans. 1858,

or Collected Works, vol. n. (1889), p. 475 ; Cayley, Crelle, L. (1855) ; Hermite, Crelle, XLVII.

(1854) ; Christoffel, Crelle, LXIII. (1864) and LXVIII. (1868) ; Kronecker, Crelle, LXVUI. (1868) or

Gesam. Werke, Bd. i. (1895), p. 143
; Schlafli, Crelle, LXV. (1866) ; Hermite, Crelle, LXXVIII.

(1874) ; Kosanes, Crelle, LXXX. (1875) ; Bachmann, Crelle, LXXVI. (1873) ; Kronecker, Berl.

Monatsber., 1874; Stickelberger, Crelle, LXXXVI. (1879); Frobenius, Crelle, LXXXIV. (1878),

LXXXVI. (1879), LXXXVIII. (1880) ; H. J. S. Smith, Phil. Trans., CLI. (1861), also, Proc. Lond. Math.

Soc., 1873, pp. 236, 241
; Laguerre, J. d. Vec. Poly.,t. xxv., cah. XLII. (1867), p. 215

; Stickelberger,

Progr. poly. Schule, Zurich, 1877 ; Weierstrass, Berl. Monats. 1858, 1868 ; Brioschi, Liouville,

xix. (1854) ; Jordan, Compt. Rendus, 1871, p. 787, and Liouville, 1874, p. 35 ; Darboux, Liouville,

1874, p. 347.
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c
it g being the (i, .&amp;lt;)th

element of a matrix of n rows and m columns
;

it arises from the

equations x=a, = &Jf, whereof the result may be written x=abX
; hence we may

formulate the rule : A matrix a may be multiplied into another matrix b provided the

number of columns of a be the same as the number of rows of b
;
the

(i, s)th element of the

resulting matrix is the result of multiplying, in accordance with the rule given above, the

\-th row of a by the &-th column of b. Thus, for multiplication, matrices are not generally

commutative, but, as is easy to see, they are associative.

The matrix whose (i, )th element is c
g&amp;gt;i ,

where cSii is the (s,
? )th element of any

matrix c of n rows and m columns, is called the transposed matrix of c, and may be

denoted by c
;

it has m rows and n columns, and, briefly, is obtained by interchanging the

rows and columns of c. The matrix which is the transposed of a product of matrices is

obtained by taking the factor matrices in the reverse order, each transposed ;
for example,

if a, 6, c be matrices,

abc=cba.

407. The matrices which most commonly occur are square matrices, having an equal
number of rows and columns. With such a matrix is associated a determinant, whose

elements are the elements of the matrix. When the determinant of a matrix, a, of p rows

and columns, does not vanish, the p linear equations expressed by x= a% enable us to

represent the quantities t , ..., p in terms of a,\, ..., xv ;
the result is written = a~ l

x, and

a&quot;
1 is called the inverse matrix of a

;
the (i, r)th element of a~ l is the minor of a

r&amp;lt;
f in

the determinant of the matrix a, divided by this determinant itself. The inverse of a

product of square matrices is obtained by taking the inverses of the factor matrices in

reverse order
;
for example, if a, b, c be square matrices, of the same number of rows and

columns, for each of which the determinant is not zero, we have

The inverse of the transposed of a matrix is the transposed of its inverse
; thus

The determinant of a matrix a being represented by |

a
\ ,
we clearly have

|

ah
\

=
\

a
\ \b\.

408. Finally, the following results are of frequent application in this volume : (i) If a
be a matrix of n rows and p columns, and a row of p quantities, the symbol a denotes

a row of ?i quantities ;
if

TJ
be a row of n quantities, the product of these two rows, or

(^X 7
?)*

is denoted by agij. When n=p this must be distinguished from the matrix
which would be denoted by a . fr this latter never occurs. We have then

and this is called a bilinear form
;
we also clearly have the noticeable equation

(ii) if b be a matrix of n rows and q columns, the product of the two rows
, brj, wherein

is now a row of q quantities, is given by either (ba) 17
or (ab) qg, so that we have

The result of multiplying any square matrix, of p rows and columns, by the matrix E
t

of p rows and columns, wherein all the elements are zero except the diagonal elements,
which are each unity, is to leave the multiplied matrix unaltered. For this reason the
matrix E is often denoted simply by 1, and called the matrix unity of p rows and
columns.
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409. Ex. i. If a bilinear form axy, wherein x, y are rows of p quantities, and a is a

square matrix of p rows and columns, be transformed into itself by the linear substitution

x= R, y= *S
7,
where R, S are matrices ofp rows and columns, then aR. iSr)

=
a^rj ; hence

SaR= a.

Ex. ii. If h be an arbitrary matrix ofp rows and columns, such that the determinants

of the matrices a+ h do not vanish, and the determinant of the matrix a do not vanish,

prove that

(a+h}a~ l (a-h)=a-ha~1 h= (a h)a~
1
(a+h) ;

hence shew that if

R= a~1
(a-h)(a+ h)-

1

a, S=a (a-h)~
l
(a+ h)a~\

the substitutions x= R%, y Sr] transform axy into a^rj.

For a substitution in which R= S see Cayley, Collected Works, vol. n. p. 505. Cf. also

Taber, Amer. Journ., vol. xvi. (1894) and Proc. Lond. Math. Soc., vol. xxvi. (1895).

Ex. iii. The matrices, of two rows and columns,

P (
l

\ 7Mo I/I
&quot;

give E2=
jE, J2= E ;

and the determinant of the matrix

vanishes, for real values of x, y, only when x 0, y= 0.

Ex. iv. The matrices, of four rows and columns,

/I 0\ / 1

e = l

010
001

-1 000
0-100 (oo

o r
00-10
01 00

-10 00
00107 \ 000 -II

1 V \
1

give j*=jf=j3*=-e, jJ3
= -J3j2 =ji, J3Ji=-JiJ3 =J2,

Hence these matrices obey the laws of the fundamental unities of the quaternion

analysis. Further the determinant of the matrix

which is equal to (x^+^+x^+a;^, vanishes, for real values of x, x^ x
2 ,
x3 , only when

each of a?,
tclt #2 ,

xz is zero. (Frobenius, Crelle, LXXXIV. (1878), p. 62.)

410. In the course of this volume we are often concerned with matrices of 2p rows

and 2p columns. Such a matrix may be represented in the form

/*
=

wherein a, b, c, d are square matrices with p rows and columns ;
if // be another such

matrix given by
b
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the (i, r)th element of the product /* /*, when i and r are both less than p+ 1 is

a ft j
&amp;lt;Z

1) r -f- + Q&amp;gt; i , p dp, r 4&quot;
b

i, \ C\, r+ -f- ^ i, p /&amp;gt;,
r

&amp;gt;

and this is the sum of the (i, r)ih elements of the matrices a a, b c
; similarly when i and r

are not both less than p+ 1
;
hence we may write

fa 6 \ fa 6\ _ fa!a+ b c
,
a b+ 6 cA

\c d J \c d) ~\ca+d c, c b+d d)

the law of formation for the product matrix being the same as if a, b, c, d, a
,
b

,
c

,
d were

single quantities.

Ex. Denoting the matrices
( n 1 ) , ( , A ] respectively by 1 and j, the matrices of

-

,

Ex. iv. can be denoted by

/I 0\ f-jO\ ( IN /
e

=(oi)&amp;gt; *~( oy&amp;gt; *K-io) *-(-,-

411. We proceed now to prove the proposition* assumed in 333, Chap. XVIII.

Retaining the definitions of the matrices A k , B, C, D there given, and denoting
A k

~ l
,
B~ l

,
C~ l

,
D 1

respectively by ak , b, c, d, we find

and

= A k ,
so that A k

2=
l,

b=
(
01 ), c=

(
1 1 ), d=( 1 01 )

1
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be formed
;
the resulting matrices will differ from A in respects which are specified in the

following statements :

(i) ak interchanges the first and Mh columns (of A), and, at the same time, the

(p+ l)th and (p+ k)th columns
(l&amp;lt; k&amp;lt; p + l). For the sake of uniformity we introduce

also al5
=1.

(ii) b interchanges the first and
(^&amp;gt;
+ l)th columns, at the same time changing the

signs of the elements of the new first column.

(iii) c adds the first column to the
(jt)+ l)th.

(iv) d adds the first and second columns respectively to the (p+ 2)ih and

the Qo+ l)th.

Hence we have these results : if the matrices denoted by the following symbols be

placed at the right side of any matrix A, of 2p rows and columns, so that the matrix

A acts upon them, the results mentioned will accrue :

Ik=akb
2ak , changes the signs of the k-th and (p+ k)th columns (of A),

t
}c
= akbalc , interchanges the k-th and (p+ k}th columns (of A), giving the new k-th

column an opposite sign to that it had before its change of place,

t k
= akb

5ak , interchanges the k-th and (p+ k)th columns, giving the new (p+ k)th

column a changed sign.

mk=akb
2cb*ak ,

adds the k-th column to the (p+ k)th.

m ic
=akb

3cbcb3ak=aic
b2c~ 1 b2ak ,

subtracts the k-th column from the (p + k)th.

nk= akb2cbcak= akbc~
1 b3ak ,

adds the (p + k}th column to the k-th.

n k=akb
3cbak ,

subtracts the (p+ k)th column from the k-th.

gr&amp;gt;a

=ara2
aaa2

b3dba2asa2
ar ,

subtracts the s-th column from the r-th, and, at the same

time, adds the (p + r}th column to the (p+ s)th.

g r&amp;gt;
s=ara2

aga2
&Q?&3a

2aga2a,.,
adds the s-th column to the r-th, and, at the same time,

subtracts the (p + r)th from the (p + s)th column.

fr,s ts9r,/at adds the (p+ r)th and (p+ s)th columns respectively to the s-th and

r-th columns.

f r,a tig r,/i subtracts the (^+ ?-)th and (p + s)th columns respectively from the s-th

and r-th columns.

To this list we add the matrix ak ,
whose effect has been described, and the matrix b2

,

which changes the sign both of the first and of the (p + l)th columns; then it is to be

shewn that a product, P, of positive integral powers of these matrices, can be chosen such

that, if A be any Abelian matrix of integers, given by

where aj8=/3a, a =
/3 a , a|3 -a =

l,

the product AP is the matrix unity of which every element is zero except those in the

diagonal, each of which is 1. Hence it will follow that
fj.
=P~ 1

; namely that every such

Abelian matrix can be written as a product of positive integral powers of the matrices

A k , B, C, D. Up to a certain point of the proof we shall suppose the matrix A to be

that for a transformation of any order, r.

In the matrices at ,
ar ,

aa ,
each of k, r, s is to be

&amp;lt;jo
+ l; and in general each of

k, r, s is &amp;gt;1 ; but for the sake of uniformity it is convenient, as already stated, to

introduce a matrix a
x
= l

;
then each of k, r, s may have any positive value less than p + l.



412] ABELIAN MATRIX. 671

412. Of the matrix A we consider first the first row, and of this row we begin with

the jo-th and 2p-th elements, a,jp , lip ;
if the numerically greater of these elements be

not a positive integer, use the matrix lp to make it positive* form, that is, the product
Alp . Then, let y be the greater, and 8 the less of these two elements

;
if 8 is positive,

use the matrix m p or the matrix n p ,
as many times as possible, to subtract from y the

greatest possible multiplef of 8 (i.e. if v be the matrix upon which we are operating, =A
or =&lp ,

form one of the products v(m p)
r

,
v (n p)

8
) ;

if 8 is negative, use mp or np to add
to y the greatest possible multiple of 8 ; so that, in either case, the remainder, y ,

from y, is numerically less than 8 and positive. Now, by the matrix lpt take the element
8 to be positivej ; then again, by application of mp or np or m p or n p replace 8 by a

positive quantity numerically less than y . Let this process alternately acting on the

remainder from y and 8, be continued until either y or 8 is replaced by zero. Then use

the matrix tp or l!v to put this zero element at the 2p-th place of the first row of the

matrix, A
, which, after all these changes, replaces A.

Let a similar process of alternate reduction and transposition be applied to A
,
until

the (1, 2/&amp;gt;-l)th
element of the resulting matrix is zero. And so on. Eventually we

arrive, in continuing the operation, at a matrix instead of A, in which there is a zero in

each of the places formerly occupied by /31(1 , , lt p .

Now apply the processes given by b2
,

lp , gltp , gp&amp;gt;l ,
and eventually ap ,

if necessary, to

reduce the (1, p)th element to zero. Then the processes b2
,

lp , 1 , g lt p _ 1 , gp _ ltl ,
ap _ 1 ,

as

far as necessary, to reduce the (1, p-l)th element to zero; and so on, till the places,
which in the original matrix were occupied by a

1&amp;gt;2 , ..., alip ,
are all filled by zeros.

Consider now the second row of the modified matrix. Beginning with the (2, p)th and

(2, 2/?)th elements, use the specified processes to replace the latter by a zero. Next

replace, similarly, the (2, 2p-l)th element by a zero; and so on, finally replacing the

(2, jo + 2)th element by a zero. The necessary processes will not affect the fact that all

the elements in the first row, except the (1, l)th element, are zero. Next reduce the
elements occupying the (2, p)th, ..., (2, 3)th places to zero.

Proceeding thus we eventually have (i) the (r, s+p)th element zero, for every r&amp;lt;p
and

every s&amp;lt;p,
in which

s&amp;gt;r, (ii) the (r, s)th element zero, for every r&amp;lt;p
and every s&amp;lt;p,

in

which s&amp;gt;r. In other words the matrix has a form which may be represented, taking p = 4,

by the matrix p,

p= ( an );

21
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for greater generality supposed primarily to be associated with a transformation of order r,

the value r=l being introduced later, the determinant of the matrix is rf ( 324, Ex. i.)

and is not zero
; hence comparing in turn the 1st, 2nd, ..., rows of the matrices a and d

we deduce that in the matrix p the elements /821 , /331 , /332 , ... of the matrix /3 which are on
the left side of the diagonal are also zero

; thus, in p, every element of the matrix is zero.

Apply now to the matrix p the relation

a/3 -/3d = r,

which in this case reduces to aft= r. Then it is immediately found that the elements of
the matrix ft which are on the left side of the diagonal are also zero and also that

an #11 = = appftpp =r.

The resulting form of the matrix p may then be shortly represented by

If now to the matrix a- we apply the processes given by the matrices glt 2 or g
1

^ 2 and 2 ,

we may suppose a21 numerically less than a^, and a22 positive ;
if then we apply the

processes given by the matrices glt 3 or g l&amp;gt; s
and 13 ,

and the processes given by the matrices

#2, 3 or # 2, s and ^3? we may suppose a31 ,
a32 numerically less than a33 ,

and may suppose a33
to be positive. Proceeding thus we may eventually suppose all the elements of any row of

the matrix a which are to the left of its diagonal to be less than the diagonal elements of

that row and may suppose that all the elements of the diagonal of the matrix a are

positive ;
this involves that the diagonal elements of ft are positive, and in particular

when r is a prime number involves that these elements are each 1 or r.

Further we may reduce the elements of the matrix a which are in the diagonal of

a
,
and those which are to the left of this diagonal, by means of the diagonal elements of

the matrix ft. We begin with the elements of the last row of a
; by means of the

processes given by the matrices np or rip we may suppose a pp to be numerically less than

#PP 5 by means of the processes given by the matrices fp, p - l
or f p, p -i we may suppose

P,P-I to be numerically less than ftp , p ;
in general by means of the processes given by

fp,s or f p,s we may suppose a
p&amp;gt;g

to be numerically less than ftp, p . Similarly by the

processes given by p _ 1
or n p _ 1

we may suppose a p _ 1&amp;gt;p
_

1 numerically less than ftp - llp -i,

and by the processesfp _ lt s or/ p _ 1)g ,
where

s&amp;lt;p-l, we may suppose a p _ ljg numerically
less than ftp^ lip_ 1

. The general result is that in every row of the matrix a we may
suppose the diagonal element, and the elements to the left of the diagonal, to be all

numerically less than the diagonal element of the same row of the matrix ft.

413. If then we take the case when r= l we have the result that it is possible to form

a product Q of the p + 2 matrices ak , b, c, d, such that the product AQ has a form which

may be represented, takingp= 3, by

A0= ( 100000),
01 00
00 1 00

a 12 a 13 1 ft12 ftl3

a 23 1 #23

00 00 1

wherein all the elements of each of the matrices a and ft to the left of the diagonals are

zero, and all the elements of the matrix a both in the diagonal, and to the left of the
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diagonal, are zero. Applying then the condition a/3 = l, we find that the elements of the

matrix /3 to the right of its diagonal are also zero, so that /3
=a= 1. Then finally, applying

the condition a ft
= fta, equivalent to a = a

,
we have a = 0. Thus the reduced matrix is

the matrix unity of 2p rows and columns, and A, =O -1
,

is expressed as a product of

positive integral powers of the p+Z matrices A k , B, C, D, as desired. Since the determinant

of each of the matrices A k , B, C, D is +1, the determinant of the linear matrix A is also

+ 1.

414. In the particular case p= \ the only matrices of the p + 2 matrices A k , B, C, D
which are not nugatory are the two matrices B and C

;
we denote these here by U and V

and put further

u=U~ l
( \, v=V~ l= (

),
v
l
= uvu3vu3

,
w= uvu3

,
w

then we immediately verify the facts denoted by the following table

M
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a prime number, it is 1 +r+ r*+ 2r3+ ri+r5+ r6
;
for details the reader may consult Hermite,

Compt. Rendus, t. XL. (1855), p. 253, Wiltheiss, Crelle, xcvi. (1884), pp. 21, 22, and the

book of Krause, Die Transformation der Hyperelliptischen Functionen (Leipzig, 1886),
which deal with the case p= 2

;
for the case&amp;gt;= 3, see Weber, Annali di Mat. Ser.

2&quot;,
t. ix.

(1878), p. 139, where also the reduction to the form A=Q (
r

\ Q
,
in which Q, Q are

linear matrices, is considered. Of. also Gauss, Disq. Arith., 213
; Eisenstein, Crelle, xxviu.

(1844), p. 327; Hermite, Crelle, XL., p. 264, XLI. (1851), p. 192; Smith, Phil. Trans. CLI.

(1861), Arts. 13, 14.

416. Considering (cf. 372) any reduction, of the form

A

where (
p

, j is a linear matrix, we prove that however this reduction be effected, (i) the

determinant of the matrix B is the same, save for sign, (ii) if p be a row of p positive

integers each less than r (including zero), the rows determined by the condition,

- -B
/i integral, are the same. For any other reduction of this kind, say A=Q A

,
must

be such that

,_p &amp;lt;r\ / q -q\ _p q\ A B~

where ( % ^
J

is a linear matrix
;
the condition that the matrix a of the matrix A should

vanish, namely p A = 0, requires (since |4| 1^1=7* and therefore \A\, the determinant of

A, is not zero) that p =
; thus the reduction A= Q A can be written

(a
p\ = /pq , -pq+ &amp;lt;rp\ fpA , pB+qB \

\ft.-ftj \p q , -p q+ v p) \0 , q B )

Now pq
1= 1

;
therefore \q \=l ;

thus \q B \= \B \,
which proves the first result. Also,

if
fj.
be a row of integers such that - B

p.
is a row of integers, =m say, then -

q B p, =q m,

is also a row of integers ;
while if -q B p be a row of integers, =n say, then -p

which is equal to -B p, is equal to pn, and is also a row of integers ;
since qB is the

matrix which, for the reduction A=Q A
, occupies the same place as that occupied, for the

reduction A= QA
, by the matrix B

,
the second result is also proved.

417. Considering any rectangular matrix whose constituents are integers, if all the

determinants of ( + 1) rows and columns formed from this matrix are zero, but not all

determinants of I rows and columns, the matrix is said to be of rank I. The following
theorem is often of use, and is referred to 397, Chap. XXII.

; In order that a system of
simultaneous not-homogeneous linear equations, with integer coefficients, should be capable

of being satisfied by integer values of the variables, it is necessary and sufficient that the

rank I of, and the greatest common divisor of all determinants of order I which can be

formed from, the matrix of the coefficients of the variables in these equations, should be

unaltered when to this matrix is added the column formed by the constant terms in these

equations. For the proof the reader may be referred to H. J. S. Smith, Phil. Trans. CLI.

(1861), Art. 11, and to Frobenius, Crelle, LXXXVI. (1879), pp. 1712.

418. Consider a matrix of n+l columns and n+1 or more rows, whose constituents

are integers, of which the general row is denoted by

^f &quot;i
...... ^

t j tj ^i 5
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let A be the greatest common divisor of the determinants formed from this matrix with

n+ 1 rows and columns; let A be the greatest common divisor of the determinants

formed from this matrix with n rows and columns
; then, since every determinant of the

(n + l)th order may be written as a linear aggregate of determinants of the n-th order,
the quotient A/A is integral, = M, say. Then the n+ l or more simultaneous linear

congruences

Ui
= a

ix+biy+ ...... +&ie+lit+ eju=Q (mod. M)

havejust A incongruent sets of solutions, and have a solution whose constituents have unity as

their highest common divisor. Frobenius, Crelle, LXXXVI. (1879), p. 193.

Also, if in the m linear forms (m&amp;lt;
= or &amp;gt;n+ l)

Ui=aix+biy+ ...... +kiz+ li t+ eiut (i=l, ...,m),

the greatest common divisor of the m(n+ l) coefficients be unity, it is possible to determine

integer values of x,y, ...,t, u, such that the m forms have unity as their greatest common

divisor; in particular, when n=l, if the 2m numbers a
t ,

bt have unity as their greatest
common divisor, and the fyn(m-l) determinants ai bj -aj bi be not all zero, it is possible to

find an integer x so that the m forms atx+bi have unity as their greatest common divisor.

Frobenius, loo. cit., p. 156.

419. The theorem of 418 includes the theorem of 357, p. 589
;

it also includes the

simple result stated 383, p. 637, note. It also justifies the assumption made in 397,
that the periods Q, Q may be taken so that the simultaneous equations aotf -a x=\,
bxf -b x=Q can be solved in integers in such a way that the 2p elements rx-b, rod -b
have unity as their greatest common divisor; assuming that r is not zero so that the

p (2p- 1) determinants a^j-afc, ai6/-a/6i , a^ -a-b- are not all zero, and that Q has
been taken so that the 2p integers a

v , ..., ap , a/, ..., ap have no common divisor other

than unity, the necessary and sufficient condition for the solution of the equations
ax - a x=\, bx

1 - b x=Q is
( 417) that the greatest common divisor, say M, of the p (2p

-
1)

binary determinants spoken of should divide each of the 2p integers b1} ...,bp \ if this

condition is not already satisfied we may proceed as follows : find two coprime integers

( 418) which satisfy the 2p congruences

i =0, \bi+nai= (mod. M), (*=1,

and thence two integers p, a- such that Ao--/*p = l
; put Q, =\Q. + p.Q, Q

1
=

i
= b

i\+ai fji, Ai bip + aia; Bi=bl\ + ain, .4/= 6^+ 0/0-; then

and the greatest common divisor of the p(2p-l} binary determinants AiBj-AjBi,
AiBj -Aj Bi, A^Bj - A-Bi, which is equal to M, divides the 2jo integers lt ..., Bp ;

thus M is the greatest common divisor of these 2p integers; next put Q2=MQ l , Q^Q/,
bi= Bi/Af, \&amp;gt;i=BijM, &i= Ai, aj =Ji ; then the greatest common divisor of the p(2p- 1)

binary determinants a^- a,-bi, etc., is unity, and this is also the greatest common divisor

of the 2p integers b
t , ..., bp . Now let (x, x

1

} be any solution of the equations &x -a x=l,
b^-b ^=0, so that (rx b, rx&quot; -\j] is a solution of the equations a a =

0, b -b =0;
let

( I ) be an independent solution of these latter equations (Smith, Phil. Trans., CLI.

(1861), Art. 4) so that the p(2p-l) binary determinants
#i&-#&amp;gt;&, etc., are not all zero,

so chosen that the 2p elements
,-, & have unity as their highest common divisor; then if

h be any integer, the 2p elements
#&amp;lt;+!!&, a?/+h^ form a solution of the equations

ajcf-& x=\, bo/-b ar=0; let h be chosen so that the 2p elements rxt
-

b&amp;lt;+ hr,- ,

7vr/-b/+ hr i have no common factor greater than unity ( 418). Putting A&quot;=.r
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2T =a/+h| ,
the first column of the matrix in 397 will consist of the elements of (a, a ),

the (p+ l)th column will consist of the elements of (b, b
), the second column will

consist of the elements of rJT-b, rJT -b ;
and since these latter have unity as their

greatest common factor, it is possible to construct the (^+ 2)th and all other columns

of this matrix ( 420).

420. A theorem is assumed in 396, which has an interest of its own If of an

Abelian matrix of order r there be given the constituents of the first r columns, and also the

constituents of the (p+ l)th, ..., (p+ r}th columns (r&amp;lt;p\
it is always possible to determine

the remaining 2(p-r) columns. For a general enunciation the reader may refer to

Frobenius, Crette, LXXXIX. (1880), p. 40. We explain the method here by a particular case ;

suppose that of an Abelian matrix of order r, for p= 3, there be given the first an

columns
;
denote the matrix by

(
a x t

y? t

b y u );

b
y&quot;

u I

the elements of the given columns will satisfy the relation ab -a b=r ;
it is required to

determine in order the second, the fifth, the third and the sixth columns ;
the relations

arising from the equations

aa a a= 0, ftft
1

ft ft
=

0, ap a ft
= T

so far as they affect these columns respectively, are as follows :

ax -a x=Q\ . ay
&amp;gt; -ay= Q\ at -a t= Q\ au -a u= (

bx b x O] by b y=0\- (ii), bt b t= 0\ ..... bu b u= (

I r (111)1 i / \

xy -yfy= r] xt-x t= Q\ xu -afu=QY (iv);

yt i/t
= 0j yu y u=Q\

. .

. . tu - tu = r&amp;gt;

now let (x, x
1

)
be a solution of equations (i) in which the 2p constituents have no common

factor other than unity ; determine 2 rows of p elements
,

such that xg ofg= l, and

denote ag - a by A and bg - 6 | by B ;
then it is immediately verified that the values

y=r-(Ab-Ba], T/
= rg - (AV - Ba&quot;),

satisfy equations (ii) ;
next let (t, t) be a solution of equations (iii) in which the 2p

constituents have no common factor other than unity ;
determine 2 rows of p elements,

u, v, such that tv t v= l, and denote av -a v, bv -b v, xv -x v, yv -y v respectively by

A, B, X, T; then it is immediately verified that the values

u=rv -(Ab-Ba}- (Xy - Yx\ u1= rv -(Ab ~ Ba
) -(Xy - IV)

satisfy the equations (iv).
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Riemann s normal elementary integrals

of first kind, generally, v*
a

, ... , v*
a

, p. 15. For periods, p. 16,

of second kind, T*
a

; periods of, fy, ... , ftp , or Q
a (z), ... , Op (z), pp. 15, 21,

of third kind, II*
&quot;, p. 15.

Integral, rational, functions, git or gt (x, y), or
&amp;lt;/; (y, x), pp. 55, 61.

0-polynomials, special functions, numerators of differential coefficients of integrals of the first

kind, 1} ..., #_!, p. 61. Also 1( ..., P , p. 146.

Elementary integral of third kind, P, p. 68. (Canonical integral), Q* B

a
, p. 185. (Canonical

integral), jR*
c&quot;, p. ]94.

Integrals of second kind, associated with given system of integrals of first kind, L* a
, p. 193;

periods of, 196. Also #*
&quot;, p. 182, and F*

, p. 291, are used for integrals of second kind.

*(*, a? 2, CL ..., cp), pp. 77, 171, 177. This is called Weierstrass s fundamental rational
function.

$(x,a; z, c), pp. 174, 175, 178, 200.

E(x, z), pp. 171, 178 (Prime function).
E (x, z), pp. 176, 178, 205 (Prime function).

Matrices, see Appendix n., p. 666.

; &amp;lt;?,&amp;lt;? ) ore(M , r
Q
Q \ or Q ( u \%\ or 0(; Q, Q&amp;gt;)

\
&quot;

/ \ i V /

(; Q, Q )
or 3

o

), p. 287.

j\rt

Pi, i (
u

)
= -

^5^. Io8 M). P- 292. See also p. 516.

Wi(x) (Differential coefficient of integral of first kind), p. 169. Also u- (r) p 192

,-,_,, p. 192.
?,.,-, p. 288.

W(x, z; clt ..., &amp;lt;:), p. 174.

(f. 7). P- 360 (Prime function). But for w (x, z), see pp. 430 428
\ (fc |t), p. 367.

| Q |, Q,R |,

Qj).P.48f,
* (u, a

; J), p. 509.

(u), a Jacobian function, p. 579, ff.

^r (w; K, K + fj.),
^r (ir; A

,
K + /JL), p. 601.
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Abelian functions, 236, 600, see Inversion ;
in

tegrals, see Integrals; matrix, 669.

Abel s theorem, 207, ff.; statement of, 210,

214
; proof of, 213

;
number of inde

pendent equations given by, 222 ff.
;

for radical functions, 377 ;
for factorial

functions, 397 ; for curves in space,

231; Abel s proof of, 219, 220; con

verse of, 222.

Abel s differential equations, 225, ff.

Addition equation for hyperelliptic theta func

tions, deduced algebraically, 331, ff. ;

for theta functions in general, 457

461, 472, 476, 481, 513, 521.

Adjoint polynomial (or curve), definition of,

121
;
number of terms in, 128

;
ex

pression of rational function by, 127 ;

see Integrals, Sets, Lots.

Argument and parameter, interchange of, 16,

185, 187, 189, 191, 194, 206.

Associated : Forms associated with fundamental

integral functions, 62 ; integrals of

second kind associated with integrals

of the first kind, 193, 195, 198, 532 ;

associated system of factorial func

tions, 397

Automorphic functions, simple case of, 352, ff.;

connection with factorial functions,

439, ff.

Azygetic characteristics, 487, 497 ;
transforma

tion of, 542, 547 ;
see Characteristics.

Bacharach s modification of Cayley s theorem

for plane curves, 141.

Biquadratic, see Gopel.

Birational transformation of a Eiemann sur

face : does not affect the theory, 3, 7 ;

number of invariants in, 9, 144, 148,

150 ; of plane curves, 11
; by 0-poly-

nomials, 142 152
;

for hyperelliptic

surface, 152, 85; when p l, or 0,

153 ;
of surface into itself, 653. See

Invariants, and Curves.

Bitangents of a plane curve, 381390; 644, 646.

Branch places, see Places.

Canonical equation for a Kiemann surface, 83,

91, 103, 143, 145, 152; curve discussed

by Klein, 159 ; integral of the third

kind, 168, 185, 189, 194, 195.

Cayley s theorem for plane curves, 141.

Characteristics: of a theta function, number

of odd and even, 251; expression of

any half-integer characteristic by

means of a fundamental system, 301,

487, 500, 502; Weirstrass s number

notation for, 570, 337, 303 ;
tables of

half-integer characteristics for p= 2,

p= 3, 303, 305; syzygetic, azygetic,

487; period characteristics and theta

characteristics, 543, 564; of radical

functions, 380, 564
; Gopel groups

and systems of, 489, 490, 494, ff. ;

general theory of, 486, ff .
;
transform

ation of, 536, 542, 547, 564, 568.

Coincidences of a correspondence, 645.

Column and row. See Matrices.

Column of periods, 571.

Complex multiplication of theta functions,

629, ff., 639, 660.

Composition of transformations of theta func

tions, 551.

Condition of dimensions, 49.

Confonnal representation, 343, 356, 372.

Congruence, meanings of sign of, 236, 256, 261,

264, 487.

Constants, invariant in rational transformation,

9, 88, 144, 148, 150
;
in linear trans

formation of theta functions, 555

559; in any transformation of theta

functions, 620, 622.

Contact curves, see Curves, and Radical.
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Convergence of an automorphic series, 350;

of transformed theta function, 538.

Coresidual sets of places on a Riemann surface,

135, ff., 213; are equivalent sets, 136;

enter in statement of Abel s theorem,

210.

Correspondence of Riemann surfaces, 3, ff.,

81, 639, 642, 647, 648, 649, 654, 662.

Covariant, see Invariant.

Cubic surface associated with a plane quartic

curve, 382, 389.

Curves : as alternative interpretation of fun

damental algebraic equation, 11
;

in

flexions of a plane quartic in con

nection with the gap theorem, 36 ;

generalisation, 40 ; inflexions and

bitangents in connection with theory

of correspondence, 644, 646 ; bitaugents
of a plane quartic curve, 384

; adjoint

curves, 121, 129
;

coresidual and

equivalent sets upon, 134 136
;
trans

formation of, see Birational, In

variants, and Constants ; correspon
dence of, see Correspondence ; special

sets upon, 146, ff.; contact curves,

381
; general form of Pliicker s equa

tions for, 124
;
Weierstrass s canon

ical equation for, 93, 103 ; Cayley s

theorem for, 141
; curves in space, 157,

160, ff., 166, 664; Abel s theorem for,

231.

Cusps, 11, 114.

Deficiency of a Riemann surface, 7, 55, 60.

Denning relation for theta functions, 443.

Definition equation of theta functions of general

order, 448.

Degenerate Abelian integrals, 657.

Dependence of the poles of a rational function,

27.

Differential equations of inversion problem,

225, ff. ; of theta functions, see Ad

denda (p. xx).

Differentials of integrals of first kind, 25, 62,

67, 127, 169.

Dimension of an integral function, 48, ff., 55 ;

condition of dimensions, 49.

Discriminant of a fundamental set of integral

functions, 74, 101, 124.

Dissection of the Riemann surface, 26, 529,

253, 257, 569, 297, 550, 560.

Double points of a Riemann surface (or curve),

1, 2, 3, 11, 114; tangents of a plane

curve, 644, 646.

Elementary integrals, see Integrals.

Equivalence, meanings of sign of, 236, 256,

261, 264, 487.

Equivalent sets of places on a Riemann sur

face, 134, ff., 136, 213.

Essential factor of the discriminant, 60, 74, 124.

Existence theorems, algebraically deducible,

78 ; references, 14.

Expression of any rational function, 77, 176,

212
; of fundamental integral func

tions, 105, ff. ; of half-integer charac

teristic by means of a fundamental

system, 301, 487, 500, 502.

Factorial functions, 392, ff.; definition of, 396;

which are everywhere finite, 399; ex

pressed by factorial integrals, 403 ;

expressed by fundamental factorial

function, 413; with fewest poles, 406;

used to express theta functions, 423,

426
;

connection with automorphic

functions, 439, ff.

Factorial integrals, 398 ; which are everywhere

finite, 399 ; fundamental, having only

poles, 408 ; simplified form of that

integral, 411
; expression of factorial

function by means of that integral,

412.

Function, automorphic, 352, ff., 439, ff.; fac

torial, see Factorial
; integral, see

Rational, and Transcendental ; ^ func

tion, 292, 324, 333, 516 ; prime, 172,

177, 205, also 360, 363, 428
; radical,

374, 390, 565
; rational, see Rational

;

Theta, see Theta functions, and

Transformation ; I function, 287, 292,

320 ; see Fundamental rational.

Fundamental algebraical equation, 10, 113.

Fundamental rational function, Weierstrass s,

171, 175, 177, 178, ff., 182.

Fundamental set for the expression of rational

integral functions, 48, ff., 55, 56, 57,

105, ff.

Fundamental system of theta characteristics,

301, 487, 500, 502.

Gap theorem, 32, 34, 93, 174.

Geometrical investigations, 113; see Curves.

Gopel biquadratic relation, 338 340
; 465

468
;
see Addenda (p. xx).

Gopel group and system, see Characteristics.

Grade, of a polynomial, 120.

Group, Gopel, see Characteristics.

B. 44
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Hensel s determination of fundamental integral

functions, 105, ff.

Homogeneous variables, 118, 441.

Homographic behaviour of differentials of in

tegrals of first kind, 26.

Hyperelliptic surfaces, 80, ff., 152, 153, 373;

see Theta functions and Transforma

tion.

Independence of the poles of a rational func

tion, 27; of the 22p theta functions

with half-integer characteristics, 446,

447 ; See Linearly.

Index of a place on a Riemann surface, 122,

123, 124; at the infinite place of

Weierstrass s canonical surface, 129.

Infinitesimal on a Riemann surface, 1, 2, 3.

Infinitesimal periods, 238, 573.

Infinities of rational function, 27, ff.; see

Residue.

Infinity, the places at infinity on a Riemann

surface, algebraic treatment of, 118.

Inflexions of a plane curve, 36, 40, 646.

Integrals, degenerate, 657; factorial, see Fac

torial; Riemann s, normal elementary,

15
;

all derivable from integral of third

kind, 22
; algebraic expression of, 65,

ff., 127, 131, 163, 185, 189, 194;

hyperelliptic, 195 ; formulae connect

ing with logarithmic differential coeffi

cients of theta functions, 289, 290,320.

Integral functions, see Rational and Transcen

dental.

Interchange of argument and parameter, 16,

185, 187, 189, 191, 194, 206; of period

loops, see Transformation.

Invariants in birational transformation: the

number p, 7; the 3p-3 moduli, 9,

144, 148, 150; the ratios of ^-poly

nomials, 26, 153
;

the contact
&amp;lt;f&amp;gt;-

polynomials, 281, 427; the 0-places,

38, 653; for transformation of the

dependent variable, 74, 124.

Inversion theorem, Jacobi s, 235, ff., 270;

solution of, 239, 242, 244, 275; by

radical functions, 390; in the hyper

elliptic case, 317, 324.

Jacobi s inversion theorem, see Inversion.

Jacobian functions, their periods, are generali

sation of theta functions, 579 588;

their expression by theta functions,

588 594 ;
there exists a homogeneous

polynomial relation connecting any

p + 2 Jacobian functions of same

periods and parameter, 594.

Klein, prime form, 360, 427, 430, 433.

Laurent s theorem, for p variables, 444.

Left side of period loop, 529.

Linearly independent ^-products of order /u,

154; columns of periods, 575; theta

functions, 446, 447; Jacobian func

tions, 594.

Linear transformation, see Transformation.

Loops, period loops on a Riemann surface, 21,

529.

Lots, of sets of places on an algebraic curve,

or Riemann surface, 135.

Matrices, 248, 283, 580, 666, 669.

Mittag-Leffier s theorem for uniform function

on a Riemann surface, 202.

Moduli, of the algebraic equation, are 3p - 3 in

number, 9, 144, 148, 150; for the

hyperelliptic equation, 88.

Moduli of periodicity, see Periods.

Multiplication, complex, of theta functions,

629, ff. ; by an integer, for theta

functions, 527.

Multiply-periodic, 236 ;
see Inversion.

Noether s (Kraus s) 0-curve in space, 156, 157.

Normal equation for a Riemann surface, 83,

91, 103, 143, 145, 152.

Normal integrals (Riemann s) see Integrals.

Number of independent products of
/j. 0-poly-

nomials, 154; of odd and even theta

functions, 251
;

of theta functions of

general order, 452, 463; of Jacobian

functions, 594.

Order of small quantity on a Riemann surface, 2;

of a theta function, 448.

#&amp;gt;
Function, 292, 324, 333, 516.

Parameter, interchange of argument and para

meter, see Interchange.

Parameters, in the algebraic equation, see

Constants.

Period loop, see Loops.

Period characteristics, see Characteristics.

Periodicity of a (1, 1) correspondence, 650.

Periods of Riemann s integrals, 16, 21
;
Rie

mann s and Weierstrass s relations for

the periods of integrals of the first

kind, and of associated integrals of

the second kind, 197, 285, 581, 587 ;
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rule for half-periods on a hyperelliptic

surface, 297 ;
for integrals of second

kind, 323
;
of factorial integrals, 404 ;

linear transformation of periods, 532 ;

general transformation, 536, 538
;

general theory of systems of periods,

571, ff., 579, ft&quot;.
; of degenerate inte

grals, 657.

Picard s theorem (Weierstrass s), G58.

Places, of a lliemann surface, 1, 2, 3
;
branch

places, 7, 9, 46, 74, 122, 297, 569;
where a rational fiinction is infinite,

to order less than p + l, 38, 41, 90,

653;

the places mlt ..., m
}&amp;gt;

, 255
;

their geo

metrical interpretation, 265, 2G6
;
after

linear transformation, 562 ; deter

mination of, for a Riemann surface

with assigned period loops, 567 ; for a

hyperelliptic surface, 297, 563.

Plucker s equations, generalised form of, 123,

124
;
for curves in space, 166.

Poles, see Infinities.

Polynomial, grade of, 120
; algebraic treat

ment of, 120; adjoint, 121, 128;

0-polynomials, 141
; transformation

of fundamental equation by ^-polyno

mials, 142, 154
; expression of rational

functions, and algebraic integrals by
means of adjoint polynomials, 156 ;

see Curves.

Positive direction of period loop, 529.

Primary and associated systems of factorial

functions, 397.

Prime function (or form), see Function.

Product expression of uniform transcendental

function with single essential singu

larity, 205.

Quartic. Double tangents of plane quartic

curve, 381390, 647.

Quotients of theta functions, 310, 311, 390,

426, 516.

Radical function, see Function.

Rational function, of order 1, only exists when

p = 0, 8
;

is an uniform function on the

Riemann surface whose only infinities

are poles, 27 ; infinities of, Riemann -

Iloch theorem, Weierstrass s gap theo

rem, 27, ff.
; special, 25, 137 ; of order

p, 38, 137; integral function, 47, ff.,

55, 91, ff.
;
of the second order, 80, ff.

;

fundamental integral rational func

tions, algebraic determination of, 105,

ff. ; algebraic expression of, by adjoint

polynomials, 125, ff., 156 ; Weier

strass s fundamental, 171, 175, 177,

178, ff., 182
; expressed by Riemann s

integrals, 24, 212 ; expressed by Weier

strass s function, 176.

Reciprocal sets of zeros of adjoint polynomials,

134.

Residual sets of places, 135.

Residue, fundamental residue theorem, 232,

189, 20.

Reversible transformation, see Birational.

Riemann-Roch theorem, 44, 133 ; for factorial

functions, 405.

Riemann and Weierstrass s period relations,

197, 285, 581, 587.

Right side of period loop, 529.

Row and column, see Matrices

Schottky- Klein prime form and function, 360,

427, 430, 433.

Sequence, theorem of, 114, 161, 165.

Sequent sets of places, 135.

Sets of places on a Riemann surface or algebraic

curve, 135. See Special.

Sign of equivalence and congruence, 236, 256,

261, 264, 487.

Special correspondences on a Riemann surface,

648.

Special rational functions, 25, 62, 137.

Special sets of zeros of adjoint polynomials,

134, 147.

Special transformation of a theta function,

629, ff. , 639, 660.

Strength of assigned zeros, as determinators of

a polynomial, 133.

Supplementary transformations of a theta

function, 552.

System, Gopel, see Characteristics.

Syzygetic characteristics, 487, 542.

Tables of Characteristics, 303, 305.

Tangents, double, of a plane curve, by the

principle of correspondence, 644, 646.

Theta functions :

Riemann s theta functions, 246, ff. ; con

vergence of, 247; determination of,

from periodicity, 444 ; period proper
ties of, 249; number of odd and even,

251, 446; zeros of, 252, 255, 258, 567;

identical vanishing of, 258, 271, 276,

303; hyperelliptic, 296, ff.
; algebraic

expression of quotients of, 310, 311,
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390, 426 ; addition theorem for hyper-

elliptic, 332, 337; algebraic expression

for hyperelliptic, 435; algebraic ex

pression of first logarithmic derivatives

of, 288, 290, 320; algebraic expression

of second logarithmic derivatives of,

293, 324, 329, 333
;
solution of inver

sion problem by means of, 275, 324,

390, 426, ff .
;
Kiemann s functions not

the most general, 248, 628.

General theta function of first order, 283,

444; period relations, 285, 197, 581,

587; second logarithmic derivatives

of, 516; addition theorems for, 457,

472, 481, 513, 521
; Gopel relation for,

in case p= 2, see Gopel; expression

of Jacobian functions by means of,

594.

Theta functions of second and higher order,

448 ; expression of, number of linearly

independent, 452, 463; of order 2, of

special kind, 509, 510; every p + 2

theta functions of same order, periods,

and characteristic, connected by a

homogeneous polynomial relation, 453.

Transformation of theta functions, see

Transformation ;
characteristics of

theta functions, see Characteristics ;

complex multiplication of theta func

tions, 629, ff., 639, 660; theta func

tions expressed by factorial functions

and simpler theta functions, 426;

particular cases, 430, ff .
; hyperelliptic

case, 433.

Transcendental uniform function, 200
; Mittag-

Leffler s theorem for, 202; expressed

in prime factors, 205; application of

Laurent s theorem when the function

is integral, 444.

Transformation

of the algebraic equation (or Kiemann

surface), 3, 143, 145, 151, 152, 654,

655 ; see Birational ;

of theta functions, 535; linear trans

formation, 539; constants in, 554

559; for hyperelliptic case, 568; of

second order, 603, 617; for any odd

order, general theorem, 614; con

stants in, 620, 622; when coefficients

not integers, 625 ; supplementary

transformations, 552
; composition of,

551; special transformations, 629,

630, 660;

of periods, 528, 534, 539, 551, 553, 555,

559, 568;

of characteristics, see Characteristics.

Uniform, see Rational, and Transcendental.

Vanishing of theta function, 253, 258, 271 ff.,

276, 303.

Variables, homogeneous, 118, 429, 441 _

\ /
Weierstrass s gap theorem, 32, 34, 93, 174;

special places which are the poles of

rational functions of order less than

p + l, 34, ff . ;
canonical surface (or

equation), 90, ff., 93; fundamental

rational function, 171, 175, 177, 178,

182, 189; period relations, 197, ff.,

285, 581, 587; rule for characteristics

of hyperelliptic theta functions, 569 ;

theorem for degenerate integrals, 658.

Zeros, generalised zeros of a polynomial, 121
;

zeros of Eiemann theta function,

252.

Zeta function, 287, 292, 320.
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