NPS ARCHIVE
1968
SPARKS, D.

AN ALEORITHM FOR THE SOLUTION OF LINEAR PROGRAMING PROBLEMS

DONALD LEROY SPARKS
i

```
    AN ALGORITHM FOR THE SOLUTION OF
    LINEAR PROGRAMMING PROBLEMS
                        by
            Donald Leroy Sparks
        Captain, United States Army
    B.S., Oklahoma State University, 1963
```

```
    Submitted in partial fulfillment of the
    requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH
    from the
    NAVAL POSTGRADUATE SCHOOL
    June l968
```


ABSTRACT

Linear programming techniques are becoming of greater importance because the use of computerization has increased the fields for applications for linear programs. The primaldual algorithm, in which the constraints are added one at a time, is investigated as a possible faster solution method. A computer program was developed to compare this method with the standard primal-dual algorithm using the full set of constraints at one time. Several random problems were solved using these two methods, and the results indicated a significant improvement in the solution time by the use of adding the constraints one at a time.

TABLE OF CONTENTS

SECTION PAGE
I. Introduction 5
II. Notation 6
III. Formulation of the Problem and Solution 8 Procedure
IV. Sample Problem 13
V. Programming Technique 19
VI. Efficiency of the Alqorithm 20
VII. Summary and Conclusions 23
BIBLIOGRAPHY 24
Appendix
A Flow Diagrams of the Computer Program 25
B FORTRAN Listing of the Computer Program 30

I. INTRODUCTION

New linear programming algorithms have been developed to reduce the computational time in solving linear programs. The purpose of this thesis is to investigate the merits of one such new algorithm. This method consists of introducing the constraint equations one at a time. After each constraint is added, the "smaller", or submatrix, problem is solved using the primal-dual algorithm. This continues until all constraints have been added and a solution is obtained.

The rationale for this approach is that small matrices are used in the initial stages of solving the linear proqram; the size of the matrices increases only when additional constraints are introduced. If the number of iterations used in this method is not significantly different from the number of iterations used with the full matrices, the manipulation of the smaller matrices in the initial stages will reduce the solution time.
II. NOTATION

A
mxn matric of coefficients of the constraint equations with elements $a_{i j}, i=1, \ldots, m, j=1, \ldots, n$.

P mxm matrix of the basis vectors.
P^{-1} inverse of the basis.
$P_{j} \quad m x l$ column vector which is the $j^{\text {th }} \operatorname{column}$ of A.

$$
\text { i.e., } P_{j}=\left[\begin{array}{c}
a_{i j} \\
\bullet \\
\cdot \\
a_{m j}
\end{array}\right], j=1, \ldots, n
$$

Pai mxl column vector associated with the $i^{\text {th }}$ artificial variable, $i=1, \ldots, m$.
${ }^{\mathrm{x}}{ }_{j}$
C nxl column vector with elements c_{j} which are the costs of the legitimate variables.

B mxl column vector with elements b_{i} which are the righthand sides of the constraint equations.
sj dual slack variables.
\hat{s}_{j} dual slack variables after a dual iteration.
\bar{d} mxl column vector whose elements are the coefficients of the basis variables of the added constraint equation.

Notation used with tableau:

$\uparrow \quad$ the vector to be introduced into the basis.e.g., in this tableau P_{0} will be introduced.
(1) pivot element for a primal iteration, i.e., the θ criterion is $\theta=\min _{i}\left(x_{i B} / x_{i j}\right)$ such that $x_{i j}>0$.
-1 pivot element for a dual iteration, i.e., the $\hat{\theta}$-criterion is $\hat{\theta}=\min _{j}\left(-s_{j} / z_{j}-c_{j}\right)$ such that $z_{j}{ }^{-C_{j}}<0$.
III. FORMULATION OF THE PROBLEM AND SOLUTION PROCEDURE The general linear programming problem is to maximize

$$
z=\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to

$$
\begin{equation*}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \geq 0, i=1, \ldots, m \tag{1}
\end{equation*}
$$

and

$$
x_{j} \geq 0, j=1, \ldots, n
$$

The modified primal uses an additional constraint

$$
x_{0}+\sum_{j=1}^{n} x_{j}=b_{0}
$$

where the cost of x_{0} is zero and b_{0} is arbitrarily large, so that for $x_{0}>0$ the constraint adds no additional restriction on (1).

The modified primal is written to maximize

$$
z=\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to

$$
\begin{array}{r}
x_{0}+\sum_{j=1}^{n} x_{j}=b_{0}, \tag{2}\\
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m,
\end{array}
$$

and

$$
x_{j} \geq 0, j=i, \ldots, n
$$

From (2) we can write the modified dual with slack variables, $s_{j}, j=0,1, \ldots, n$, added. That is to minimize

$$
w_{0} b_{0}+\sum_{i=1}^{m} w_{i} b_{i}
$$

subject to

$$
\begin{align*}
& w_{0}-s_{0} \\
&=0, \tag{3}\\
& w_{0}+\sum_{i=1}^{m} w_{i} a_{i j}-s_{j}=c_{j}, j=1, \ldots, n,
\end{align*}
$$

and

$$
w_{i} \text { unrestricted for } i=0,1, \ldots, m
$$

The starting feasible solution to the primal dual algorithm is $w_{i}=0, i=1, \ldots, m$, and $w_{0}=\max _{j}\left(c_{j}, 0\right)$.

For an optimal solution the complementary slackness condition must hold. That is

$$
\begin{equation*}
s_{0} x_{0}+\sum_{j=1}^{n} s_{j} x_{j}=0 . \tag{4}
\end{equation*}
$$

Adding artificial variables, $x_{a i}, i=0,1, \ldots, m$, to (2) with the cost of the artificial variables set to -1 and the cost of the legitimate variables set to zero, the extended primal can be written as
maximize

$$
-x_{a 0}-\sum_{i=1}^{m} x_{a i}
$$

subject to

$$
\begin{aligned}
& x_{0}+\sum_{j=1}^{n} x_{j}+x_{a 0}=b_{0}, \\
& \sum_{j=1}^{n} a_{i j} x_{j}+x_{a i}=b_{i}, i=1, \ldots, m,
\end{aligned}
$$

and

$$
x_{j} \geq 0, j=1, \ldots, n, \text { and } x_{a i} \geq 0, i=0, \ldots, m
$$

Solving the extended primal is similar to using a Phase I Revised Simplex method. (1) However, in the primal-dual algorithm, when Phase I ends the linear program is solved because complementary slackness is maintained throughout the solution procedure.

If a new constraint is added to the tableau, complementary slackness is maintained without changing the dual slack variables. This can be shown as follows:

Assume we have a feasible solution to the problem with k constraint equations. This means that $s_{j}=0$ for all j such that $P_{j} \in P$ and $x_{j}=0$ for all j such that $P_{j} \notin P$. These conditions imply that complementary slackness is maintained, and that the modified dual also has a feasible solution.

Now we add the $k+1^{s t}$ constraint which introduces a new dual variable, w_{k+1}, but no new dual slack variables, $s_{j}, j=0,1, \ldots, n$. We need a feasible solution to the modified dual for the enlarged system. Observe that we have a feasible solution if we set $w_{k+1}=0$ since then the $s_{j}, j=0,1, \ldots, n$, remain unchanged. In particular, $s_{j}=0$ for all j such that $P_{j} \in P$, that is, for the legitimate variables. Also, $x_{j}=0$ for all j such that $P_{j} \notin P$, which implies that we have maintained complementary slackness.

It is worth noting that the $z_{j}-c_{j}, j=0,1, \ldots, n$, must be recalculated since the new constraint which is added to the
extended primal starts with its artificial variable, $x_{a, k+1}$, in the basis with its cost set at -1.

$$
\begin{array}{lll}
\mathrm{P} & \overline{0} & \overline{0}
\end{array}
$$

The new basis is $\overline{\mathrm{P}}=\overline{\bar{d}}^{\mathrm{T}} \quad$, where $\mathrm{P}_{\mathrm{a}, \mathrm{k}+1}=$ is the artificial vector associated with $x_{a, k+1}$. Now we can solve the new $k+1$ system using the primal-dual algorithm since complementary slackness has been maintained.

An optimal solution exists if and only if the following criteria are satisfied:

1. $z_{j}-c_{j} \geq 0$ for $j=0,1, \ldots, n$,
2. $z_{B}-C_{B}=0$, and
3. $x_{0}>0$.

The solution procedure is as follows:
The first tableau is set up using the first two constraints of the extended primal and the starting solution to the modified dual, which implies that at least one $s_{j}=0$.
Step 1. Is there a j, say j_{0}, such that $s_{j 0}=0$ and $\mathrm{z}_{\mathrm{j} 0^{-\mathrm{C}}}^{\mathrm{j} 0}$ < 0 ?
a. Yes. Go to 2 .
b. No. Go to 3 .

Step 2. Introduce $P_{j 0}$ into the basis using the minimum θ-criterion and a primal iteration. Since the extended primal is bounded a pivot will always exist. Note that the s_{j} remain unchanged for all j. Go to 1.
Step 3. Is $\mathrm{z}_{j}-\mathrm{C}_{j}<0$ for some j ?
a. Yes. Go to 4.
b. No. Go to 5 .

Step 4. Use the minimum $\hat{\theta}$-criterion. Is $\hat{\theta}$ bounded?
a. Yes. Perform a dual iteration to compute a new set of s_{j} 's, say $\hat{\mathrm{s}}_{j}$'s. Go to 1.
b. No. The linear program has no feasible solution. Stop.

Step 5. Is $z_{B}-C_{B}<0$?
a. Yes. The linear program has no feasible solution. Stop.
b. No. Go to 6 .

Step 6. Have all of the constraints been added?
a. Yes. Go to 9 .
b. No. Go to 7 .

Step 7. Introduce the next restraint, say the $k+1^{\text {st }}$. Place the artificial vector $P_{a, k+1}$ in the basis. Compute $x_{B, k+1}$. Is $x_{B, k+1} \geq 0$?
a. Yes. Go to 8.
b. No. Multiply all coefficients of the new constraint, except for the artificial variable, by -1 . This assures that $x_{B, k+1} \geq 0$ and the artificial variable is non-negative. Go to 8 .

Step 8. For the system with $k+1$ restraints, compute the new values of $z_{j}{ }^{-c}{ }_{j}$ for $j=0,1, \ldots, n$. fo to 1 .
Step 9. Is $x_{0}=0$?
a. Yes. The linear program is unbounded. Stop.
b. No. An optimal solution has been found. Stop.

IV. SAMPLE PROBLEM

Consider the following example:
maximize

$$
z=2 x_{1}+4 x_{3}
$$

subject to

$$
\begin{aligned}
3 x_{1}+4 x_{2}+6 x_{3}+x_{4} & =24 \\
4 x_{1}+3 x_{2}+12 x_{3}+x_{5} & =24 \\
x_{1}+x_{2}+4 x_{3} & =8
\end{aligned}
$$

and

$$
x_{j} \geq 0, j=1, \ldots, 5
$$

Then the extended primal is maximize

$$
-x_{a 0}-x_{a 1}-x_{a 2}-x_{a 3}
$$

subject to

$$
\begin{aligned}
& x_{0}+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{a 0}=b_{0} \\
& 3 x_{1}+4 x_{2}+6 x_{3}+x_{4}+x_{a l}=24 \\
& 4 x_{1}+3 x_{2}+12 x_{3}+x_{5}=24, \\
& x_{1}+x_{2}+4 x_{3}+x_{a 3}= \\
& x_{j} \geq 0 \text { for } j=0, \ldots, 5, \text { and } x_{a i} \geq 0 \text { for } i=0, \ldots, 3 .
\end{aligned}
$$

The dual slack variables are $s_{0}=\max _{j}\left(c_{j}, 0\right)=4$ with $j=3$.
Then $s_{B}=x_{0} b_{0}=4 b_{0}$, and $s_{j}=s_{0}-c_{j}$ for $j=1, \ldots, 5$, so that $s_{1}=2, s_{2}=4, s_{3}=0, s_{4}=4$, and $s_{5}=4$.

The starting tableau, using the first original constraint, is

P	B	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	$P_{a 0}$	$P_{a l}$
$P_{a 0}$	b_{0}	1	1	1	1	1	1	1	0
$P_{a l}$	24	0	3	4	6	1	0	0	1
$z_{j} c_{j}$	$-b_{0}-24$	-1	-4	-5	-7	-2	-1	---	---
s_{j}	$4 b_{0}$	4	2	4	0	4	4	---	---

From step 1 , we see that $s_{3}=0$ and $z_{3}-c_{3}<0$. Using the minimum θ-criterion (as discussed in section III) in step 2, we introduce P_{3} into the basis and remove $P_{a l}$ from the basis.

Since there is no j_{0} for which $s_{j 0}=0$ and $z_{j 0}-c_{j 0}<0$, but $z_{j}{ }^{-c}<0$ for several values of j, we arrive at step 4 . Using the minimum $\hat{\theta}$-criterion a new set of s_{j} 's, called $\hat{s}_{j}{ }^{\prime} s$ are calculated.

P	B	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	$P_{a 0} P_{a l}$	
$P_{a 0}$	$b_{0}-4$	1	$1 / 2$	$1 / 3$	0	$5 / 6$	1	1	$-1 / 6$
P_{3}	4	0	$1 / 2$	$2 / 3$	1	$1 / 6$	0	0	$1 / 6$

Now $\hat{s}_{0}=0$ and $z_{0}-c_{0}<0$ so, from step 2 , we introduce P_{0} into the basis and remove $P_{a 0}$ from the basis.

P	B	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	$P_{a 0}$	$P_{a l}$
P_{0}	$\mathrm{~b}_{0}-4$	1	$1 / 2$	$1 / 3$	0	$5 / 6$	1	1	$-1 / 6$
P_{3}	4	0	$1 / 2$	$2 / 3$	1	$1 / 6$	0	0	$1 / 6$
$z_{j}-c_{j}$	0	0	0	0	0	0	0	--	---
s_{j}	16	0	0	$8 / 3$	0	$2 / 3$	0	\ldots	$-\ldots$

From the above tableau we trace through steps $1 \mathrm{~b}, 3 \mathrm{~b}$, 5b, 6b, and arrive at step 7. Note that we have obtained an optimal solution to the subproblem with one constraint. In step 7 we introduce the second constraint. Since P_{0} and P_{3} are basis vectors, $\overline{\mathrm{a}}^{\mathrm{T}}=\left(\mathrm{a}_{20}, \mathrm{a}_{23}\right)=(0,12)$; the new basis consists of P_{0}, P_{3} and $P_{a 2}$. With this basis we find that $\mathrm{x}_{\mathrm{B} 2}=-24<0$ so that step 7 b must be used. The second restraint is replaced by

$$
-4 x_{1}-3_{x 2}-12 x_{3}-x_{5}+x_{a 2}=-24
$$

which is used throughout the remainder of the solution procedure. Note that now $\overline{\mathrm{d}}^{\mathrm{T}}=(0,-12)$ and $\mathrm{x}_{\mathrm{B} 2}=24>0$. New values of $x_{j}-c_{j}$ for $j=0,1, \ldots, n$ are computed (step 8), and the new tableau is

Since $s_{1}=0$ and $z_{1}-c_{1}<0$ (step l) we go to step 2. Using a primal iteration, we introduce P_{l} into the basis and eliminate P_{3} from the basis.

Now $\mathrm{z}_{\mathrm{j}}{ }^{-\mathrm{C}} \mathrm{j}_{\mathrm{j}} \geq 0$ for all j for which $\mathrm{s}_{\mathrm{j}}=0$. From steps lb, Ba, and $4 a$, a new set of s_{j} 's are computed. Then \hat{s}_{4} becomes zero and $\mathrm{z}_{4}-\mathrm{C}_{4}$ < 0 so, from step $2, \mathrm{P}_{4}$ enters the basis and $P_{a 2}$ is removed from the basis.

P	B	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	$P_{a 0}$	$P_{a 1}$	$P_{a 2}$
P_{0}	$\mathrm{~b}_{0}-12$	1	0	$-3 / 2$	1	0	$3 / 2$	1	-1	$-1 / 2$
P_{1}	6	0	1	$3 / 4$	3	0	$1 / 4$	0	0	$-1 / 4$
P_{4}	6	0	0	$7 / 4$	-3	1	$-3 / 4$	0	1	$3 / 4$
$Z_{j}-C_{j}$	0	0	0	0	0	0	0	---	---	---
s_{j}	12	0	0	$3 / 2$	2	0	$1 / 2$	---	---	--

Optimality has now been obtained with the second restraint added. Following steps $1 \mathrm{~b}, 3 \mathrm{~b}, 5 \mathrm{~b}, 6 \mathrm{~b}$, and 7, we introduce
the third and final restraint. Since the basis vectors were P_{0}, P_{1}, and $P_{4}, \bar{d}^{T}=\left(a_{30}, a_{31}, a_{34}\right)=(0,1,0)$. The new basis vectors are $P_{0}, P_{1}, P_{4}, P_{a 3}$. We find that $x_{B 3}=2>0$ so we go to step 8 and recompute $z_{j}-c_{j}$ for $j=0,1, \ldots, n$.

The next sequence of steps is $1 b, 3 a$, and $4 a$, which leads to a new set of s_{j} 's.

Steps la and 2 bring P_{3} into the basis with the eliminatimon of $P_{a 3}$ from the basis. The new tableau is:

P	B	P_{0}	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	$P_{a 0}$	$P_{a 1}$	$P_{a 2}$	$P_{a 3}$
P_{0}	$b_{0}-14$	1	0	$-7 / 4$	0	0	$7 / 4$	1	-1	$-3 / 4$	-1
P_{1}	0	0	1	0	0	0	1	0	0	-1	-3
P_{4}	12	0	0	$5 / 2$	0	1	$-3 / 2$	0	1	$3 / 2$	3
P_{3}	2	0	0	$1 / 4$	1	0	$-1 / 4$	0	0	$1 / 4$	1
$z_{j}-C_{j}$	0	0	0	0	0	0	0	---	---	---	---
S_{j}	8	0	0	1	0	0	1	---	---	---	---

This tableau is the final tableau since the sequence of steps $1 \mathrm{~b}, 3 \mathrm{~b}, 5 \mathrm{~b}, 6 \mathrm{a}$, and 9 b inform us that we have found an optimal solution to the original linear program. Note that the complementary slackness condition has been maintained, that is, $s_{0} x_{0}+\sum_{j=1}^{n} s_{j} x_{j}=0$. Therefore, the optimal solution is

$$
\begin{aligned}
& x_{0}=b_{0}-14>0, \\
& x_{1}=x_{2}=x_{5}=0, \\
& x_{3}=2, \text { and } \\
& x_{4}=12,
\end{aligned}
$$

with the optimal cost $z=s_{B}=8$.

V. PROGRAMMING TECHNIQUE

The linear programming technique described in this thesis was programmed in FORTRAN IV for use on the IBM $360 / 67$ computer. One subroutine is used for the primal simplex iteration and another is used for the dual iteration. The final subroutine is used for the addition of constraints. The main (driving) routine is used to solve both the full linear program and the linear program using addition of constraints as described in this thesis. Using the main routine to solve both problems elıminates any time differences due to differences in programming techniques. Both of the solution procedures were timed*, and the number of iterations of each were counted. Read and print times were not included in the timing.

[^0]
VI. EFFICIENCY OF THE ALGORITHM

To eliminate the considerable time and effort required to input data by hand, a subroutine was designed which generates random problems of a large size. This routine uses a random number generator to produce the elements of the A, B, and C matrices. The following criteria were used in order to insure the existence of a bounded feasible solution: maximize

$$
z=\sum_{j=1}^{n} c_{j} x_{j}
$$

subject to

$$
\sum_{j=1}^{n} a_{i j} x_{j}-x_{s i}=b_{i}, i=1, \ldots, m,
$$

and

$$
\begin{gathered}
c_{j} \leq 0, x_{j} \geq 0, x_{s i} \geq 0, a_{i j} \geq 0, b_{i} \geq 0 \\
\text { for } i=1, \ldots, m, j=1, \ldots, n,
\end{gathered}
$$

where $\mathrm{x}_{\text {si }}$ is the slack variable for the $i^{\text {th }}$ constraint.
For this investigation the subroutine generated problems having 70 variables (including 20 slack variables), 20 constraint equations, and 50 cost coefficients using the following uniform distributions:

$$
\begin{aligned}
& a_{i j} \text {, uniform }(0,1) \text {; } \\
& b_{i^{\prime}} \text { uniform }(0,5) \text {; } \\
& c_{j^{\prime}} \text { uniform }(-1,0) \text {. }
\end{aligned}
$$

A total of 40 problems were solved using the random problem generator described above. The execution times for these problems are given in Table I at the end of this section.

The comparison of solution times shows that all 40 problems ran faster using the method described in this thesis, than with the standard primal-dual algorithm. The time differences range from 15.17 seconds to 48.18 seconds with an average time difference of 27.53 seconds.

Prob. No. 1	Full Array		Addition of Constraints		$\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}$
	$\text { Time }\left(x_{i}\right)$	Iter.	$\begin{gathered} \text { Time }\left(y_{i}\right) \\ (\text { sec. })_{i} \end{gathered}$	Iter	
1	87.82	23	56.50	21	31.32
2	87.84	23	56.91	23	30.93
3	80.22	21	56.53	21	23.69
4	87.93	23	56.70	22	31.23
5	84.06	22	58.61	23	25.45
6	91.63	24	56.62	22	35.01
7	95.45	25	58.65	23	36.80
8	80.31	21	56.52	21	23.79
9	99.60	26	65.67	32	33.93
10	80.16	21	56.51	21	23.65
11	80.18	21	56.50	21	23.68
12	91.65	24	65.12	29	26.53
13	80.19	21	57.99	22	22.20
14	91.74	24	64.35	30	27.39
15	80.20	21	56.48	21	23.72
16	84.02	22	57.10	22	26.92
17	95.52	25	59.36	24	36.16
18	83.95	22	58.71	22	25.24
19	84.14	22	65.47	25	18.67
20	99.25	26	70.03	28	29.22
21	107.08	28	58.90	25	48.18
22	87.85	23	56.51	21	31.34
23	84.01	22	61.39	24	22.62
24	80.16	21	56.52	21	23.64
25	80.17	21	56.49	21	23.68
26	80.16	21	56.50	21	23.66
27	80.19	21	56.52	21	23.67
28	84.21	22	58.84	23	25.37
29	103.27	27	57.85	24	45.42
30	87.83	23	59.47	23	28.36
31	84.07	22	59.33	22	24.74
32	88.19	23	56.92	23	31.27
33	80.28	21	56.56	21	23.72
34	87.96	23	56.56	21	31.40
35	84.11	22	57.09	23	27.02
36	84.05	22	56.56	21	27.49
37	80.20	21	56.51	21	23.69
38	80.18	21	56.54	21	23.64
39	84.03	22	68.86	26	15.17
40	80.29	21	56.54	21	23.75
Total	3454.01		2352.77		1101.24
Average	86.35		58.82		27.53

VII. SUMMARY AND CONCLUSIONS

A modification of the primal-dual algorithm has been presented. This modification differs from the standard primal-dual algorithm in that the constraint equations are introduced one at a time, and each subproblem is solved before the next constraint is added.

This algorithm was programmed in FORTRAN IV for the IBM 360/67. The program was designed so that any given linear program is solved first by the standard primal-dual algorithm, and then is resolved using the modified primal-dual procedure. Further, the same subroutines are used for both methods in order to eliminate timing bias due to coding differences. In fact the modified procedure contains steps which are not included in the timing of the standard routine.

In all cases the modified procedure was faster than the standard procedure. Of 40 test problems the standard method averaged 86.35 seconds per problem, whereas the modified method averaged 58.82 seconds per problem. One should not judge the actual running time of the test problems since no attempt was made to improve the efficiency of the computer program on an absolute basis; only the relative speeds of the two methods is of importance.

BIBLIOGRAPHY

1. Hadley, G., Linear Programming. Reading, Mass: AddisonWesley Publishing Co., Inc., 1962.

APPENDIX A

FLOW DIAGRAMS OF THE COMPUTER PROGRAM

1. MAIN PROGRAM

2. SIMPIEX ITERATICN SUBROUTINE

3. DLAL ITERATICN SUBROUTINE

4. ADDITION CF NEVi RESTRAINT SUBROUTINE

APPENDIX B

FORTRAN LISTING OF THE COMPUTER PROGRAM

 COMMON／INTIIUNR，IM：M，N，IRAS，ITER8888838 0003
${ }_{C}^{C}$ C NOTE－WSIJ）IN THIS PROGRAM AND S（J）IN THFSIS ARE EOIIIVALENT
$\begin{aligned} & C \\ & C \\ & C\end{aligned} K O=1$ IS FOR USF OF CCMPLETE TABLEAU
$K J=1$
$I M=\frac{1}{M}$
$E P=10.0 E-t$
0001050 $\bar{X} F=U R N(O)$
－IPROB＝ 000650 IPROH＝IPRCR＋1 CALL PSEUJIN $M=M+1$ 0030070 0000080 0000080 nn00080
0000090 0000100

C
C
C INITIALIZE TABLEAU

$1 \mathrm{P}(1,1)=0.0$
ITER = $=$
- (1)
$\operatorname{BT}(1, j)=1.0$
$B T(1,1)=1.0$
$R T(1,2)=0.0$
$003 \quad 1=1, M$
IBAS(I) $=N+I$
3 ONE II $=-1 \cdot 0$
กก $10 \quad I=1$, M
DO $10 \mathrm{~J}=1$, N
IF(I.En.J) r.C Tn 9
DINV(I,J) $=0.0$
Gr TO io
9 PINV(IIJ) $=1.0$
CALL TIMEIT(C,CL)
$\operatorname{CB}(1)=-1.0$
zC.B(2) $=0.0$
11 TCR(2) $=2 C H(2)-B T(1,2)$
$2 C(1)=-\frac{1}{2} .0$
on $20 \mathrm{~J}=2$, N
$2 C(j)=-1: C$
$2 C(j)=\overline{=} C(j)-P(I, J)$
$\mathrm{NO}=0$
$\begin{array}{ll}W S(1)=0.0 \\ 00 & J=20\end{array}$
IF(C(J).LE.WS(1))GO TO 30
$W S(1)=C(j)$
IND = J
WSB(1) = WS(1)
$W S R(2)=0 \cdot C^{2}$
$0 G 40 \quad J=2, ~$
$40 W S(J)=W S(1)-C(J)$
C
C
C
DFTERMINE VECTCR TII INTROOUCE
IFIIND.EQ.O.CIGO TO 50
IFIZCINOI.C.F.O.0IGOTO TO
IFIZCIINOI. \dot{C} F. 0 OIGO TO 70
GOTO 60
50 CALL SIMPLX(1)
50 CALL SIMPLX(1)
60 IF IUNR-1)TC,130,190
0000770
0000790
0000290
000030 n
000 フ205
0000310
00003 ?
$00003>5$
0000375
0007340
0000350
0000360
0000370
0000390
0010300
0000400
0000400
0000410
0000470
0000430
0000435
0000440
0000440
0000450
0000450
0000460
020450
0200470
0000490
00004 a
0000400
0000500
0000510
0000570
0000530
0000540
0000540
0000559
0000560
COOO570
0000590
30 CONTINUF
0000500
0000 Kก
0000510
0000570
0000830
C
C
C
0ロOOK30

0000660
0000670
0000680
60 IF（IUNQ－1） 7 C，130，190
co 00490
－00rフク）

C
C

```
Clu
C [ SURROUTINE SIMMPLX(J)
```



```
C [ SURROUTINE SIMPLX(J)
C MOM,
C (%)
C [ SURROUTINE SIMMPLX(J)
                                    0001140
C (%)
C (%)
C [ SURROUTINE SIMMPLX(J)
                    0001150
                    0001160
                    0001170
0001180
00011190
000120n
0001205
0001210
0001211
0001215
0001ラ50
0001230
0001240
C001250
co012h%
00n1760
0001290
C (%)
C [ SURROUTINE SIMMPLX(J)
[F(TMI),FQ.g9999G.IGO TH 50
                                    0001300
{IF(T(I);FQ.g9999G.IGO TII 50
    ONE(ID)=0.0
        OO 30 I= = ,iM
        IF(I.EO.In)GO TO ?O
        Y = T(1) # < (I)
        gT(I,1)= BTII,1) - Y
        CALLRRAUND (RT(II,1),Y,EP)
        Y = T(2)*x(I)
        BT(I,2)=BT(I,2) - Y
        CALL}=ROUNO(BT(II,2),Y,EP
        xE = XII)/X(ID)
        ON = 30 K=1,IM
        Y = PINV (ID,K) % XE
        PINV(I,K) = PINV(I,K) - Y
        CALL ROUNO(PINV(I,K),Y,EF)
    30
        CONTINUE = RT(IN, 1)/x(IO)
        On 31 I=1,IM
        31 PINV(IC,I) = PINV(ID,I)/X(IO)
        70 2CA(1)=0.0
        MCA(1) =0:0
        2CB(1) =ZCB(1) + ONE(I)*RT(I, 1)
        80
        2CR(2)=2CHA(2)+CNE(I)*RT(I, 2)
            2C(1)= ONE(1)
        OC 90 L=2.N
        ZC(L) = = %.1
        DO 90 I=1.IM
    On 90 K=1:IM
        YY=ONNE(1i#PINV(I,K)*P(K,L)
        90 CALL) =UZCC(L) + Y',
0001310
00013320
```



```
C [ SURROUTINE SIMMPLX(J)
C [rM, SURROUTINE SIMPLX(J)
0001330
0001333
ONO1332
0001334
00011335
0001336
0001326
            xF
00013326
    O CCNTINUE
        BT(ID,2) = RT(ID,2)/X(In)
0001337
0001360
0001370
0001372
OOO1372
0001395
0001395
0001387
COD1339
COO13RA
C001389
0001390
00014410
0001420
    2C(1)= ONE(1)
0CN1430
0
0001450
00144C
00014470
0001470
0n01490
0001505
C
0025
0007
0007
0008
0009
0009
001
001
0012
001
0051
```

FORTRAN IV G LEVEL 1, MOD 1
SIMPLX
OATE = 68159
05/22/31
๕ CHECK FUR AN ADDITION ITERATION WITH PRIMAL
TEMP = O.O
TEMP = O.O
TEMP = O.O
IF(IBASII).EQ.LIGO TO 120
110 CONTINUE
IF(ZC(L).GE.TEMP) GO TO 120
J=L
TEMP = ZC(L)
120 CONT INUE
ITER =ITER.+.l GO TO 5
200 RETURN
130 IBAS(1)=1
130 IBAS(1)=1
ID = 1 % TO
C C
50IF(IM.GE.M) GO TO 60
IUNB = I
60 WRITE (6,4020)
4020 FORMAT/1IOX.'SOLUTION UNROUNDED•//।
4020 FORMAT (10X. SOLUTION UNROUNDED.// /
0001520
0059
0060
0061
0063
0064
0064
0066
0067
0068
0069
0069
\&
0001530
00015550
0001560
0
0001570
0001580
0001590
120 CNNTINUECL)
0001600
00150n
0001610
0001615
0001630
001530
001650
0001650
0001655
0083
20
0001610
0001640
0001670
0001670
GO TO 200
0001690
0001700
0001710
0001720
0001730
0001740

```
E
c
```

```
            SURRIJITINF IUULI (J)
```

 SURRIJITINF IUULI (J)
 OOIMENSION P(53,151), H(52), C(151), BT(53.2),IBAS(57), ONE (53), TFM(2),
 OOIMENSION P(53,151), H(52), C(151), BT(53.2),IBAS(57), ONE (53), TFM(2),
 IPINV(53.53),2CS(2), TC (151),WSR(2),WS(151),T(2), X(53), ORAP(53)
 IPINV(53.53),2CS(2), TC (151),WSR(2),WS(151),T(2), X(53), ORAP(53)
 COMMJN/INTIIUNB,IM,MPN,IRAS,ITFR
 COMMJN/INTIIUNB,IM,MPN,IRAS,ITFR
 CMMON/FLOAT/P,B,C,RT,ONF,TFM,PINV,ZCR,ZC,WSR,WS,T,X,DRAR,EP \(\quad 000178 n\)
 CMMON/FLOAT/P,B,C,RT,ONF,TFM,PINV,ZCR,ZC,WSR,WS,T,X,DRAR,EP \(\quad 000178 n\)
 ${ }_{C}^{C}$ COMPUTF NF.W WS(J) WHICH IS EDUIVAIFNT TO S(J)
${ }_{C}^{C}$ COMPUTF NF.W WS(J) WHICH IS EDUIVAIFNT TO S(J)
$X F=W S(J) / Z C(J)$
$X F=W S(J) / Z C(J)$
DO $10 \mathrm{~K}=1: N$

```
        DO \(10 \mathrm{~K}=1: N\)
```



```
        \(C A L L\)
\(Y\)
\(=\)
ROUND (WS
```

 \(C A L L\)
 Y
$=$
ROUND (WS
Y = lCB(1)*XE

```
        Y = lCB(1)*XE
```



```
        \(Y=\) ZCB( 21 \#XF
```

 \(Y=\) ZCB(21 \#XF
 \(W S B(2)=W S B(2), Y\)
 $C A L L R O U N O(W S B(?), Y, E P)$
$W S B(2)=W S B(2), Y$
$C A L L R O U N O(W S B(?), Y, E P)$
CALL ROUNO (WSIS(?), Y,EP)
RETURN
CALL ROUNO (WSIS(?), Y,EP)
RETURN
END

```
        END
```

 0001700
 0001802
0001804
0001805
conlrot
0001807
0001807
000181 n
0001840
0001850

SURROUTINE REST
0001860
0001870 0001880
 C COMPUTE D-BAR AND B VECTOR
C
$K=I M-1=0(0$
$B T(I M, 1)=B(K)$
IF(IBAS(II;.GT.N) GO TO 5
$L=$ IBAS(I)
;GT.N) GO TO 5
DBAR(I) = -P(IM,L)
$B T(I M, 1)=B T(I M, 1)+D B A R(I) * B T(I, 1)$
BT(IM,2) $=\operatorname{BT}(I M, 2)+\operatorname{DBAR}(I) * B T(I, 2)$
GOAR (I) ${ }^{\text {GO }}=0.0$
10 CONTINUE
IF(BT(IM,1))50.2C,30
20 IF(BT(IM, 2).LT.0.0) GO TO 50
C
C
C COMPUTE NEW INVERSE ANO COST VECTOR
$\begin{array}{llll}30 & D C & 40 & J=1, K \\ 00 & 40 & I=1 & K\end{array}$
40 PINV(IM,J) = PINV(IM,J) + DRAR(I)*PINV(I,J)
2C(1) = ONF(1)
DO $45 \mathrm{~J}=2, N$
$2 C(J)=0.0$

$Y=$ ONE (I)*PINV(I,IK)*P(IK,J)
CALL ROUND 2 + ${ }^{+}$
45 CALL ROUNO (ZC (J), Y,EP)
$2 C B(1)=2 C R(1)-B T(I M, 1)$
$2 C B(2)=2 C B(2)-B T(I M, 2)$
100 RETURN
0002000
0002010
00002020
0002020
0002021
0002022
0002023
0002024
0002025
0002027
0002028
0002029
0002031
טuט

C USED TO INSURE FEASIABILITY RY MAKING THE R COMPONENT NON-NEGATIVE
$\begin{aligned} 50 \mathrm{BT}(I M, 1) & =-R T(I M, 1) \\ \text { BTIIM,2) } & =-B T(I M, 2)\end{aligned}$
DO 60 I $I=1, K$
60 DBAR(I) $=$-DRAR(I)
PINV $(I M, I M)=-1.0$
GO TO 30

```
ORTRAN IV G LEVEL 1, MOD 1 MAIN DATF=6815Q 05/22/31
C
00C1
0002
0 5O3
0004
0005
0006
SURRIJIITNE RCUND(A,R,EP)
000?160
c. A=STARTING VALUE, R=ADDFO VALUE, EP= LOWEST ROUND-NFF DESIRFO
IF(A.EQ.O.O.CR.R.EN.O.0) CHO TOE 2OO
00021770
0002170
IF(ABS(A/B):GT:EP)GOC TN 200
0002190
    2 0 0
0002?00
RE=ORM
0002210
END
@00???0
```


SUBRDUTINE TIMEIT(N,TIME)

$\begin{aligned} & \text { C } \\ & \text { C }\end{aligned} \quad N=0$ STARTS CLOCK, $N=-1$ STOPS CLOCK
IT=N+2
GO TO 20,10$),$ IT
CALL TMON(M)
0002270
10 CALL TIMON(M), IT
TIMEM=M
20 CALL TIMOFF(N)
TIME
TIME
RETIMEM-TIME) ${ }^{26} 0$ RETURN
END

0002330
0002340
0002350
0002360

```
0001
0002
0003
004
\(00 C 5\)
00006
0007
0008
0000
0010
0011
0012
0013
0014
0015
0016
0017
0018
0015
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
\(M=20\)
\(N=70\)
\(\mathrm{IM}=M+1\)
\(\mathrm{IN}=N+\frac{1}{2}\)
\(k_{1}=N-M+1\)
\(\begin{array}{ll}K 2 & =K_{1}+1 \\ C(J) \\ = & -U R N(1)\end{array}\)
0002430
```



```
    io กั 20 I=2, 1 M
        \(\begin{array}{ll}\text { P(I,J) }=\text { URN(1) } & 0002470\end{array}\)
        IF(P(I,J).r.T.O.OO1) GO TO 20 00224R0
        20 CNTNE O.0
    Oก \(30 \quad I=1\), M
```



```
    و(1) \(=0.0\)
        30
        CONT INUE
DO 40 J \(=K 2\), IN
        \(C(J)=0.0\)
        DC \(11, \mathrm{~J}, \mathrm{I}=2.1 \mathrm{M}\)
```



```
    \(50 \begin{aligned} & \mathrm{K}(\bar{I}, N-M)=-1 . \mathrm{K}\end{aligned}\)
        RETURN 0002640
0002640
```

No. Copies

1. Defense Documentation Center 20 Cameron Station Alexandria, Virginia 22314
2. Library 2
Naval Postgraduate School Monterey, California 93940
3. Chief of Naval Operations (OP-96) 1
Department of the Navy Washington, D. C. 20350
4. Department of the Army 1
Civil Schools Branch, OPO, OPD Washington, D. C. 20315
5. Department of Operations Analysis 1
Naval Postgraduate School
Monterey, California
6. Professor Rex H. Shudde (Thesis Advisor) 1
Operations Analysis Department Naval Postgraduate School Monterey, California 93940
7. Lt. E. E. Flesher, Jr. 1 COMASWFORPAC
FPO San Francisco 96610
8. Capt. Donald L. Sparks 1
5131 E. 30th Place Tulsa, Oklahoma 74114

DOCUMENT CONTROL DATA - R \& D

\qquad
Naval Postgraduate School
Monterey, California 93940

Unclassified
2b. Group

AN ALGORITHM FOR THE SOLUTION OF LINEAR PROGRAMMING PROBLEMS

4 DESCRIPTIVE NOTES (T)Pe of report and. inclusive dates)
Thesis
5 AUTHORIS) (First name, middle initial, last name)
SPARKS, Donald Leroy, Captain, USA

11. SUPPLEMENTARY NOTES 2. SPONSORING MILITARY ACTIVITY

Naval Postqraduate School Monterey, California

Linear programming techniques are becoming of greater importance because the use of computerization has increased the fields for applications for linear programs. The primaldual algorithm, in which the constraints are added one at a time, is investigated as a possible faster solution method. A computer program was developed to compare this method with the standard primal-dual algorithm using the full set of constraints at one time. Several random problems were solved using these two methods, and the results indicated a significant improvement in the solution time by the use of adding the constraints one at a time.

14
LINEAR PROGROS

-

[^0]: *The timing routine was developed by Lt. E.A. Singer, a student at the Naval Postgraduate School.

