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ABSTRACT

This thesis investigates the requirements demanded of

programming languages employed in Artificial Intelligence

f Pil) research. The primary focus is on the data structures

and control structures implemented in a variety of fl I

lans'uap'es , past and present. An aspendix contains a

discussior of the trend toward increased declarative

capability in the AI lan^uap-es. Another appendix c-resents a

review of the design cnaracteris t ics and major

accomplishments of several AI aDnlicat ions systems.
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I. INTRODUCTION

It may ^ell be that ultimately,
the field of AI will in large
part "be concerned with the
development of superpowerf ul
computing languages. In this
light, the best way to measure
A I progress is to look: at AI

languages [38] .

The sophistication of most computing tasks in

Artificial Intelligence (AI) can be informally measured by

the amount of additional tire and memory the designer claims

necessary to perfect operation. Of course, time is a

constraint that will never really be eliminated - our lives

are only so long. The memory constraint may be slightly

relieved as more is continually packed into smaller

packages. Consequently, as Nilsson suggests, emphasis must

be placed en the development of "superpowerf ul computing

languages" that will, in effect take better advantage of the

memory and time available than past or even current

programming languages.

The fundamental problem of any complex AI computing

task is how to efficiently access, search, modify, or even

create large stores of knowledge. Thus, the development of

more powerful languages must include the development of more

powerful data representation and program control techniques

than are currently available. In most cases, a refirement of





current techniques, such as pattern matching-, or an

implementation of a current theory, e.g., Minsky's frame

concept, is what is needed to advance the state cf the art.

Whether this can "be done by extending the capabilities of

current AI languages or by starting from scratch to create

entirely new ones tnat are based on new points of view,

still remains to be determined.

This thesis examines several data representation

techniques and program control structures that have been

developed and implemented in programming languages to

specifically satisfy the needs of AI research, cast av.i

present. The particular languages that were selected to

demonstrate the implementations of concepts in the two a r eas

mentioned above are listed below. Most are popular general

purpose AI languages that account for most of the

programming* applications to date. The last three are fairly

new and still in tneir acceptance pease.

IFL (1956 - A. Newell, H.Simon) Information Processing
Language. Introduced the concept of list processing-.
First implemented on a JOENNIAC, it went through 5

iterations in development. The final version, I?I- Tr

,

was implemented on an IBM 704 by late 1359. The
language was widely used over the next 5 or 7 years on
a variety of machines including an ISM 650, 709/7(292,
1620, UNIVAC 11^5 and 1107, Control Lata 16£^ and 620,
2urrougns 220, Fhilco 2*00, and AN/FSQ-32 [4Sj .





p:

write programs needed to carry out his research.
Development began on an IBM 704 and shifted to the
709/90. An improved version, COMIT II, appeared in 1968
on the IBM 7090/94 and was implemented on the
System/360 by 1975 [49]

.

LISP (1959 - J. McCarthy) List Processing language. The
most recent and widely version of this language is LIS?
1.5. It is a machine independent, theoretically
oriented language designed for problems requiring list
processing, recursive or hierarchical control, and
symbol manipulation. It is was originally implemented
on machines' such as the IBM 1630, 709/90/94, DEC PDP-1

,

SDS 940, and has been implemented on a variety of
machines since [48]

.

LEAP (1969 - J.Feldman, P.Rovner) language for the
Expression of Associative Procedure's. It is based en
ALGOL 60 and contains set theoretic and associative
operations and data types. It has been implemented en a

DEC PDP-10 and PDP-11, as uart of the SAIL language
[IS].

SAIL (1971 - D.Swinehart, B.Sproul) A beavily used
language based on ALGOL employing list data structure
and containing the set theoretic, associative
operations and data types of LEAP. It has been
implemented on a PDP-10 ana PDP-11 [4]

.

PLANNER (1971 - C.Hewitt) A goal-directed language for
proving theorems and manipulating models for a robot.
Facilities include creation and dismissal of goals,
provision for recommendations on which theorems to use
in trying to draw conclusions from an assertion, and a

powerful deductive system [49]. Th*3 language introduced
the important coupled concepts of pattern-directed
procedure invocation and the procedural representation
of knowledge [4]. PLANNER has never been fully
implemented. A subset of the language called
Micro-PLANNER nas been implemented in LISP on a DEC
PDP-10 at at MIT f49]

.

10





COMMIVEP (1972 - G.Sussman, u.McEermo tt ) A language
with LISP-liIre syntax. Its development was motivated "by

the desire to eliminate the defeats in Micro-PLANNER
[49] .

M uch of the control wnich is automatic in PLANNER
is returned to the user ir. CONNIVER. The extra
responsibility also rraK.es this language more difficult
to learn. It is implemented on a EEC PEF-12 at MIT [4j .

INTERLISP (1971 - W".Te i telma n ) Interactive LISP. As an
extension of LISP 1.5 it adds debugging aids, user file
structure, and. other features not previously available,
such as arrays, strings, and user-definable data types
[54] . It has been implemented on a variety of macnines

,

primarily SEC PBP-10's [49]

.

CUSP (1973 - F.Rebch, E.Sacerdoti) Formerly the CA4
programming language, an experimental language written
in LISP and implemented at the Stanford research
Institute around 1973. OLISF offers data types and
pattern matching facilities that cause it tc resemble
PLANNER in philosophy and detail [49]. Py embedding
CLIS? into I.NTEPLISP additional features of fast
execution, debugging aids, and utility functions are
acquired. The result is the QLISP/INT2RLISF system, one
of the most flexible AI programming systems currently
available. This system das been implemented on a EEC
PDF-10 and an IEM System 360/270 [4]

.

POPIER (1973 - J.Lavies) Rased on the POP-? low level
language designed at tne University of Edinburgh for
application to AI programming. The current version of
FOPIE^, POPLER 1.5, provides Tost tne facilities of a

PLANNER—like system. It is currently implemented on a

EEC FEP-12 at Edinburgn [4]

.

A2SET (IS 7 ! - E.Slccc>, J. Poster, P.Gray, J. McGregor

,

A.Murray) An interactive programming language based on
sets developed at the University of Aberdeen. Its
invention is an attempt to provide a programming
environment in which it is possible to take or aefer
decisions abcut a program. Logically separable
decisions can be taien separably and in any order [15].

11





PROLOG (1972 - A . Colmerauer , H.Kanovi, R.Pasero,
P.Koussel) Programming in Logic. A PLANNER-like
language founded on symbolic logic-computational
mechanisms and embodying procedural interpretation of
deduction. Instead of functions it uses relations,
i.e., ordered sets of clauses eacn of tne form
pat tern: -"body [36]. It is a pattern matching process
operating on general record, structures [62j .

TELOS (1977 - L.Travis, M. Honda, R.LeSlanc, S.Zeigler)
An extension of PASCAL with additional data and control
abstraction mechanisms to suit it to AI programming
reauirements . It does not include a list data type nut
provides a data encapsulation mechanism for tne u c er to

define tnis and a variety of other types as well [59].

The next chapter examines tne fundamental programming

requirements as imposed "by the nature of the research and as

implemented in the earliest AI languages.

Chapters Three and Pour consider data representation

and program control structures and concepts available or

employed in current established AI lane-uas'es as well as the

newer languages not so well established. Chanter Five

contains a chart summarizing the data and control features

of the languages described above.

Following that, Appendix A offers a discussion of tne

trend of the newer languages to be progressively more

nonprocedural. Appendix B contains tne general designs and

distinguishing characteristics of 15 AI applications

systems

.
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II. £ACCOUNT

Artificial Intelligence is the "branch of computer

science devoted to programming computer? to carry out tasks

that if carried cut "by human beings would require

intelligence [23]." This is a broad definition but

indicative of the comprehensiveness of the research

dedicated to that purpose. The areas of current

investigation include robotics, game-playing, computer

understanding of natural language, computers as

knowledgeable experts in a variety of scientific fields,

computers as commonsense problem solvers, computers <=s

mechanical assistants for menial tasks, and as educational

assistants. I^any systems nave been designed to accomplish a

variety of tasks in th = se areas (see Appendix E) . All ar°

prodigious undertakings, but few are fully developed or

utilized outside of the laboratory environment in which they

were created. Generally, those that aren't experimental ar<=>

of a special purpose nature. ZaCci of these however have

advanced the state of the art toward the #cal of AI as

identified by Graham, above, or that by 2cd«=n: to use

"computer programming to cast liffht on the principles of

intelligence in general and human thought in particular.'

Thus, scientists ar<= employed in either trying to discover

how the human mind works by computer modelling of

13





information processing behavior demonstrated in

game-playing, natural language understanding, and general

problem solving, or they are interested in developing

systems to assist or replace humans in tasks requiring high

visual concentration, a great deal of knowledge in a

specific field, a large amount of physical strength, cr

complicated and time-consuming computation.

Implementation of the systems to achieve these ends

will most, likely con ti rue to he realized in software. It

becomes evident that the development of programming

languages to facilitate AI researcn must occupy a place of

high priority. "Theoretical and practical advance" in AI is

dependent upon it [5] .

A programming lan^ua^e for AI interests invariably has

more demanded of it than one used for general purpose

computing. Tasks in A I involve an enormous amount of

database updating, searching, and manipulation in order to

discover or deduce the solutions from a large store of

knowledge pertinent to the problem at hand. For example,

consider a system like INTERNIST, created by H. ?ople in

19^5 to "provide cognitive support in the formation and

solution of difficult clinical problems in internal medicine

[40]." Its knowledge is represented in two element types.

Either something is a disease entity or a manifestation of

some disease. There are about 4>J0 of the former and well

over 2000 of the latter (see Appendix 3). Given that each

14





disease entity is associated with a list of manifestations,

a metnod mist be derived for entering the knowledge base at

a reasonable location in order to begin a sensible search.

In INTERNIST this is assisted by the fact that the database

is partitioned semantical].? around organ systems. Once a

start point is found, backward chaining on a conceptual tree

representation of the knowledge could take pla~ c as actual

symptoms are matched to the system's manifestations.

Additional irput would at times be requested, and "backing

up" would most likely occur whenever there is insufficient

certainty in the matching process. At such a point return to

an earlier instance where there was an untried but feasible

alternative would occur and tne search would head in a

related direction still trying to accurately pin down the

correct disease. An efficient programming language designed

to anticipate such needs as backward chaining-, backtracking,

pattern-matching, and content saving becomes desirable, if

not necessary, for most A I problems, of which INTERNIST is

typical .

INTERNIST is exemplary of another basic characteristic

of AI programming tasks, that is the manipulation of

non-numeric, or symbolic, data. Such data includes strings

of characters that one would find in research with natural

language systems or mathematical expressions like trose

found in theorem—provers . In general, the sort of work a

computer would be required to perform for AI includes

15





algebraic formula manipulation, computational linguistics,

information retrieval, or automatic decision making, all of

wnicn turn it into a symbol processor rather than a number

processor [42] . \

languages dedicated to non-numeric computation are

mown as symbol manipulation lansua^es. Furthermore, within

this category there are two types, list processors and

string processors. These are net necessarily mutually

exclusive classifications. String and list structure differ

primarily in the way they are stored internally in the

computer. A "string is a sequence of elementary items,

usually alphabetic characters" that are generally, though

not necessarily by definition, tightly packed in sequential

memory for the sake of efficiency [44]. A list, on the other

nand , may be a sequence of items whicn are elementary

(atoms) or lists themselves. Associated with each item is

the sequencing information needed to locate the next item,

usually not in an adjacent location [44]. Lists require rrore

memory than strings because of tne additional locations

required for the pointers directing the sequencing. In

general, lists are easier to modify," insertions and

deletions car be made by changing a few pointers rather than

by having* to move larp-e amounts of data.

16





list Processing:

A list processing lane-ua^e is one whose primary data

type is a list. A list is a sequence of elements which are

either atomic symbols or lists. For example, (A ? C) is a

list wnere A, 3, and C are simple units (atoms) tnat s^and

only for themselves. (X(T(Z)tf)) is a list where X and VI are

atomic tut (YfZ)) and (Z) are lists themselves.

A word has two parts, traditionally called the

"address" and the "decrement". The address Holds a pointer

to the location of the property list, in LISF, holding

descriptive information for the atom of interest, or to the

nead of another list. The decrement maypcint to the next

list item or an atom although usually the next list item.

The two previous examples would possess the following

internal arrangement:

(A £ ij =

•s •>-

/}

9 h -'

(x(Y(z)-y)) =

r

Y

i
w

1?





The basic operations applicable to lists a re retrieval o

the first el cment and retrieval of the list that results

from removing tne first element, i.e., of accessing eitner

the address or decrement part. The "basic prcperty cf a iata

element is that of being atomic or itself a list. The basic

relation "between data elements is that of >eing identical or

net [11] .

A valuable quality of list structure is that, it divides

the data being represented into "major components which ray

be accessed independently, and which may themselves be

hierarchically structured [44]
."

An important advantage of a list proc a ssinp- language is

the ability and ease it provides tc allocate storage

dynamically. Memory space for data structures need net be

preassigned. Storage for each structure is allocated only as

needed, and it is almost never in sequential locations.

Since memory reassignment, as well as assi="rn a nt, is

dynamic, there must be a store of cells available for use

and mechanisms for obtaining "new" cells from, and returning

unneeded cells to, that store [4-]. The problem that arises

is in keeping track known as the "erasure problem," is in

keeping track of used, unused, and "erased" memory cells.

One method of handling the problem is for the programmer to

reclaim cells as tney are no longer needed by linking them

to a 'free storage list.' Another method is that of "Varba^e

collection" (see definition, p. 64).

IS





List processing languages advantageously provide for

'recursive definitions of routines. Recursion is dependent on

dynamic storage allocation for efficiency sinoe when a

function is defined in terms of itself the programmer

usually does not know in advance how deeply nested tne

process will go before natural termination.

The list structure concept was first introduced by

Newell, Simon, and Shaw as early as 1956. Newell and Simon

had designed a system, the LOGIC THEORIST (IT), which was

tasked with proving theorems in prepositional calculus, in

particular the theorems in Frincipia Mathematics by

Whitehead and Russell. Their objective had been to simulate

a theory of Human problem solving on a computer. IT was

highly res t ricted in application but it did demonstrate that

a machine "could perform tasks neretofcre considered

intelligent, creative and uniquely human [35]." mhe language

they created in which to implement their theorem prover was

I rL. The LOGIC TH2CRIST program consumed vast amounts of

memory so there was no possibility of allocating storage

permanently for any particular function. Faced with limited

computer memory, they devised the list structure. It turns

nut, as well, that the representation of data in lists lends

itself nicely to the simulation of human thinking processes.

19





Like most languages available in 1956, IPI was

primitive. Programs written in it closely resembled machine

language programs (see figure 2a). Storage allocation,

including retrieval of abandoned list cells for re-use. was

entirely the responsibility of the programmer [43] . It used a

sequential control scheme with some provision for two-way

branching and subroutine calling. There was no distinction

made between main program and subroutine. Any routine could

call any other. Translation terminated only a'ter the

highest level routine terminated [43]. The programmer was

responsible for parameter passing. Recursion was easily

achieved since any routine could execute itself as a

subroutine. It was possible to call a routine with a name

that was supplied as input data» or to construct arbitrary

lists at run-time in the proper format for a routine and

then execute that routine. Furthermore, since a program

could also manipulate existing routines, an IFL program was

self-modifiable.

In 1959, not long after the appearance of IPI, J.

McCarthy introduced his list processing language, LISP. Eis

intention was to make the ideas inherent in IPI (and E.

Gelernter's plane geometry theorem proying program; cleaner,

more elegant, and more powerful [35] . LI3? was more readable

than IPI. Storage allocation and deallocation were made a

system responsibility via a garbage collection algorithm.

2C
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(sicip first element)
(terminate if dene)
(save current place)
(reverse rest of lis: recursively^
(get current element)
(insert at end)
(delete from top and stop)

An IPL program to reverse the order
of elements in a list
(reprinted from [43]).

Figure 2a

An additional and still valuable quality of IIS? is the

capability to represent instructions as well as data

internally in a list structure. Thus, program and data are

indistinguishable. A program may in fact be data for itself

or another program. This allows programs to use their "their

list-processing abilities on themselves to modify themselves

[5]."

McCarthy strove for, and to a great extent achieved, a

quality still ur.equaled in its comprehensiveness by most

other languages: that of mathematical neatness. His goal was

to "allow proofs of properties of programs usin-p* ordinary

mathematical methods [34]." He was able to do this by basing

the lan^uas'e en the lambda calculus.

US'? programs clearly demonstrate another advantage of

the use of recursion, namely clarity and simplicity of the

prop-ram text for iterative procedures. The figures below

provide a simple illustration of this fact. Figure 2b

contains IIS? code f nr a routine tc reverse the elements of

21





an arbitrary list. Figure 2c is a PL/I-SZ routine to perform

a similar task:, i.e., reverse the characters in an arbitrary

sentence. Event ho ugn tne FL/I-S21 routine need not worry

about individual elements that miarht themselves be sentences

it is still a ^reat deal longer.

Other 'list prc r essin^' languages include PI ANN!7 ?,

CCNNIVEE, PROLOG, INTEHLISP, and QLIS?.

(RSTIIST (LAMBDA (LIST)

(CONE (NULL LIST ())

(T (APPEND (HEVIIST (CDS LIST))

( CCi\S (CO LIST ())))

LIS?
(Reprinted from Siklossy, 1976)

Figure 2b
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pve rse '

proc options (main )

;

sentence ptr,
I wordnode "based (sentence),

2 word char'
2 next ptr;

' "i0) varying.

do while ( 'I'd) ;

call read();
if null thensentence =

stop;
call wri te( )

;

end;
read :

oroc;
del

newword char (32) varying,
newnode ptr;

sentence = null;
put siip list ( 'Yhat "s

io wnile ( 'l't);
get list' newword ) ;

i f newword = '
.

'
t!

return ;

allocate wordnode set (newwerd);
ne*node->next = sentenreJ
sentence = newnode;
word = newword;
end;

end read;

UD

.en

write:
pro c;

del

p ptr;
put siip list ( 'Actually, '}>

do wnile (sentence = null);
put lis

t

(word ) ;

p = sentence;
free p—>wordnode;
end;

put list( '.
') ;

put strip?

end write;

end reverse;

FL/ j. -62
(Preprinted from the PL/I-Applications Suide-19=2>

Figure 2c

23





String Processing:

The basic idea of a string processing language is that a

program consists of an ordered firit-3 set of transf ormation

rules, an ilea inspired "by Markov algorithms . l&cY of these

has a left-hand-side describing the composition of a string

of characters, and a rig-nt-hand-side specifying a

transformation to te applied to a string that it to matches

the pattern described by the left-hand-side [12] . Rules are

applied in order of their appearance in the text, in so far

as is appropriate. At every step the first applicable rule

is used and the process is repeated until no applicable rule

exists, or until an explicit stopping condition is riven. A

very simple example of this process is shown belcw.

Transformation rules:

1. *b / ab
2. bb / ba
3. aa / ab
4. a* / *

Given: bbabaab Produce: abababab (i.e. a

sequence of alternating a's
and b's, beginning with a

and end in-? with b
v

Application order of rules:
1.

2.
3.

2.
4.

done

.

new string
abbbabaab
aba tabaab
ababababb
ababababa
abababab

24





A string may be thought of as a vector, array, or

anytning that specifically represents an ordered sequence of

elements. However, the number of elements in a string is net

predetermined and may often vary dynamically [2] . Whereas a

list is a particular way cf representing information in a

computer, a string is one cf the types of information that

may he represented [48], In otner words, a string is a list

whose elements can not be lists.

The basic operations performed on strings include

searching for patterns and transforming them into different

patterns. The basic units cf a data string, called items,

ray be either individual alphanumeric characters, special

characters, or pre-specif ied strings of characters [43] .

Strings have been used primarily a^d conveniently in the

representation of text material, such as sentences in a

natural language or any arbitrary sequence of rharacters

from some particular data art a.

String processing was first featured as a fundamental

data structure in tne CC^IT programming language introduced

about 1358. Tevel oped by a group of researchers working

under the direction of Yngve at MlTi it was designed in-

order to provide the professional linguist with a

programming system in which he could easily write t
v e

programs needed for nis research [48]
.

"
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2 c m t vIT is primarily a sequentially controlled language.

orogra^mer defines 5°tuence of rules that are

ordered in the program on some arbitrary priority. Each rule

specifies a desired input that if found directs the action

in the rule's output specification to "be taken. There is

provision for branching, looping;, closed subroutines, and

recursive subroutines. The programmer is responsible for

keeping track of pararn°ter passing.

A COMIT program is not very readable (see figure 2d*,

although much of its early popularity was due to the actual

ease of writing and using the language. COMIT has served as

the r^odel for the type of facilities needed for strir^

manipulation, and virtually every language *
rhich has

included features of this kind has based the^ to a large

degree, in spirit as well as notation, on COMIT.

i N .

c
£j B i

100?

TESTB

$1=2
§1 + $+-=1 +2+3+-
Me+i
$2 +£-"— =

$0+K/.Ge=2/.Bl

LAS TUNE 5=-+l+*

(go if K=0)
(at least 1 blar.K; ICOr
(no blank)
//~'C<i^~<i ^ v c: *r

'

//*A4 1 LCCr
//*04 3 (remove TFST
all leading blanks)

LOO?
//*A4 1

//*wami 2 3 :^:t

COMIT routine to intersperse
blanks in a line of text

Figure 2d
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Application :

The choice of a list or string processing language will

usually depend on tne nature of the programming problem.

"Strings are more useful for linear comparisons, lists for

structural access [44] ." In natural language analysis of

translation, written strings of characters have been found

to represent spoken strings of sound in tne most natural

way, since language normally occurs in linear sequences.

Lists are most appropriate for tasks wherein some data

hierarchy is known or suspected tc exist.
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Ill . TATA 5TRUCTUE5S

The earliest programming languages manipulated only

scalars and arrays since computers were most useful for

numerical problems. Consequently, not until the introduction

of symbol manipulation languages allowing computation on

nonnumerio data items, did the field of Artificial

Intelligence, for which the computer is the major tool of

research, come into existence. In fact AI finally received

attention from the computing industry as a serious area of

research with the development of trie first programming

lane-ua^es designed for its needs. These lanp-ua^es were IPX,

LIS?, and COMIT. The first two are list processing languages

and the third is a string processing lan^uasre. Cut of the

three LI?? acquired the most popularity in and out of the A

I

arena

.

It is extremely important, no matter what tne field of

application, tea t data be represented in the most

appropriately direct and simple manner possible. In AI this

becomes critical as most programming tasks bump the upper

threshold of the computers available memory early in the

processing. Thus a programmer never wants to allocate more

storage than is absolutely necessary at any point in the

processing. A major breakthrougn in this respect was mace

with the invention of the list data structure waich makes
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convenient tne dynamic allocation and deallocation of

memory. List structure is also a perfect vehicle for

recursion (see definition, p. 93), now a capability often

taken for granted in most languages. The list structure

alone is not sufficient for all types of AI programming

tasks. For example, the EFARSAT-II speecn understanding

system is implemented in SAIL wnerein this system ray ta>e

advantage of the set data structure and association data

type.

"Before continuing, a subtle distinction between data

type and data structure must "be drawn. Fundamentally, a data

type is an interpretation applied to a string of tits [65].

It may be structured or scalar. A scalar lata type includes

real, integer, double precision, complex, logical,

character, pointer, and label. Structured data types include

arrays, sets, records, lists, etc. That is, they are objects

made up of elementary data types. Fcr instance, an array is

a set of index-value pairs. An array is usually assigned

consecutive memory locations, but ret necessarily. For ee^'n

index (usually an integer 1

* which is defined tnere is an

associated value (usually numeric). The structured data type

becomes a data structure wnen it is associated with a set of

well-defined operations that may be performed en that ^ata

type J to create, delete, access,_or modify it. Using1 the

p xample of an array again, it can be created by naming cr

declaring its size before it is referenced. A value ray be
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^etrievpd by specifying the ir.d o x associated with that

value. It may be stored similarly. lata structure operations

may be considered as a "definition" of a data type [24].

Furthermore, a "data type specification" (sometimes referred

to as an abstract data type) is a representation-independent

formal definition of each operation of a lata type [24].

In the past, programming languages left the

responsibility of creatine, indexing, and accessing data

files to the programmer. However, the newer AI languages

provide built-in automatic mechanisms for handling lar^e.

relatively permanent information files conveniently. The

exploitation of associative memory for structure storage and

subsequent information retrieval (a pattern matching

operation) is one example. Most of the new lans-ua^es are

list processors. Eesides the facilities for dynamic storage

allocation, they provide automatic garbage collection (see

definition, p. 64).

The programming languages developed for AI have been the

means by which some of the more novel invention? in data

representation have been introduced. The remainder of this

chapter will focus on the descriptions and implementations

of the most interesting and important of tnese. In

particular, they are lists and strings, tuples, bags, and

classes, sets, encapsulated, da ta types, semantic networks,

property lists, associations, and contexts and frames. Some

miscellaneous terms and conceots are also defined.
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A. LISTS AND STRINGS

The notions of list and string structures were

introduced in the preceding chapter. In general lists are

considered to te the fundamental data type for AI languages.

The concept was originally put forth with tne introduction

of IFL in 1957. Lan^ua^es which feature list data types and.

structures since that time include: LISP, QLISP, INTERLIS?,

PLANNER, CONNIVE?., LEAP, SAIL, and POPLER. It is interesting

to note that INTERLIS? and CLISP are extensions of LISP.

Also that PLANNER and CONNIVES are translated into LIS?

"before being compiled.

The string lata structure provides a means to manipulate

character data. CO^IT (1957) was the first language to

utilize ^this concept. Since then only SN020L remains as an

efficient and popular string-oriented language.

2. TUPLE, BAG, AND CLASS

These tnree structures are similar in nature as they all

represent some collection of items. All tnree are creviced

as standard features in CLISP [45], whereas in TEIOS they

may be constructed via a special data type specification

mechanism.

TUPLE. A tuple is similar to a list but may v e accessed

associatively. A . tuple may be asserted (placed in tbe data

base), deleted (removed from tne data base), cr retrieved

from the data base. For example, consider the tuple:





(AT MPS .

M ONTE"PE v
)

The statement ASSSRT(A? N?S MONTEREY 1 would store that tuple

in the data base as a true fact by placing the attribute

MODELTALUE with the value T on the property list for the

tuple. The statement IS(AT ^-thing NPS) would search the

data base trying to find a value previously asserted in a

3-tuple between the items AT and NPS. The search would be

done associatively . For example, if the tuple (AT CHILIANS

MPS) were stored in the data base with a T value for tne

MODEITALUE attribute in its property list then the value

'CIVILIANS' would be returned for the pattern variable

'<-thin^.

'

BAG. A bag is a "multi-set, an unordered collection cf

elements with possible duplication" [47]. Thus, (BAG A A 3

C) is equivalent to (BAG A C 3 A) but not equivalent to (BAG

A B C).

Bags are useful for "describing the argument lists of

associative commutative relations" TSacerdcti, et al, 19.76].

Suppose the relation PLUS were defined for a bag-type

argument, then the expressions PLUS (A A 3 C) and PLUS (A C 2

K) , wnich are both internally represented with (PLUS (LAG A \

EC)), would be equivalent, by definition [47],

CLASS. A' class, on the ctner hand, is an unordered

collection of elements wherein repeated elements are allowed

but the internal representation ignores tne duplications [4,! •
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Classes, ba^s , and tuples may be used together in a

statement to separate different types of elements. 5'or

example, consider the following statement and subsequent

request

:

On the kitchen table there is a cup, coffeepot,

newspaper, and toast. In the living room there is a

newspaper on a chair, a TV, and a lamp.

Wnat is on the kitchen table that is also in another

room?

The two statements could be represented more formally

as

:

(CLASS (TUPLE ON

((BAG cup coffeepot newspaper toast) ki tchentable )

)

(TUPLE IN 'EAG (TUPLE ON newspaper chair^ tv lamp)

livingroom ) )

.

One could at this point set up a template using special

pattern variables to specify a matching operation to deduce

the information requested above. This could in fact be ione

with the list representation:

(CLASS (TUPLE ON (BAG <-X <-<"-U ki tchentable ) )

(TUPLE IN (BAG <-I <-<-V <-Y))

where the variables prefixed with arrows are unbound pattern

variables that will be bound when a match is found. In this





example they receive the bindings:

lT=(BAG cup coffeepot toast)

T=newspaper

Y=livin.?room

?=(BAG (TTPLE ON chair) tv lamp)

where "newspaper (X) in the livingroom (I) is the answer

the request.

to

C. SET

Basically, a set type represents a finite unordered

collection of items (of the same type) containing at most

one occurrence of an item [1SJ . Thus, a set is also a class.

Although, a class may contain a collection nf items of

varying types whereas a set may not. Some languages (e.g.,

LSAP) do rea_uire an ordering property. Sets form the basis

for the APSST language [16] . LEAP and SAIL also provide

built-in functions for application to user-defined set data.

The basic operations on spts are union (conjoining two

sets), intersection (finding common elements in two sets',

test for membership, and insertion and deletion of

individual items.

The set concept can be a powerful one. It provides

clarity and a good foundation for ways of achieving

repetition. Pepetiticn formulas such as "this is true p cr

all members tni s set are used in ^lace of go f o

statements or recursion. Since A3SET is more strongly
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set -oriented than any of the other languages a closer look

at sere of its features is warranted.

In ABSET, sets czr, be defined in a general way, for

example, as all tnose items satisfying a certain predicate.

The domain and range of every function fall functions must

"be total) are specified in ter'ns of previously defined sets.

lor example if E is a new set ceing introduced it may be

defined in terms of a preexisting set and an equivalence

relation defined for that set. Some set A may have several

relations defined for it. If 2
. is the set of all fractions

we could create the equivalence set Tv'O-THIRIS which

contains all fractions that reduce to 2/3. 3 might then v °

simply defined as the set equal to A according to the

equivalent relation TWO-THIRDS.

The set structure is built on the following functions:

IN (the usual set-members nip predicate, yi c l
J
s

a boolean value)

EQniNSET (jives a equivalence relation over a set

r

?ITEi* (gives an item of a set, if empty gives

an arbitrary item)

SR!^ (fives a set which is tne same as the

original, but excluding tne item

specified in the SEEP* expression'1

referred to earl^ ^





C'JPF (a function that outputs the union of two

sets )

POWF (a function tnat *;ives the set of functions

from one set to another)

UFTGF (a function that outputs an ordered set)

THOSSF (a function tnat outputs a set of all iters

of a given set Wxiicn satisfy a given

predicate)

Thus, if setl=(a b q z),then 5REM(setl,q^ yields t
v e

set (a b z); IN(setl,p) yields a false value. If

5FT2=(7,2. 3,

2

C
, 1.9,51, C,?.,~ ) , SST3=Eooleans , and

SFT4=Integers then

CTJP7 'SET? S3T4)= (T,F ,1,2 ,3 , . . . ) . and

TROSEOJ "2T2 IN SiT4= (7 ,23,51 ).

The motivation for the development of a.55TT was to

distinguish between 'an ordering of decisions and an

ordering of evaluation [Id]
.

" 1977], The desire was to T^ere

a lan^ua,?'3 that does not force the programme i to early

commitment of decisions he or sne would rather prefer to

postpone. For example, after indicating an object is an

array, it snould be possible to defer declaration of its

size, or if it is a procedure to defer specification of the

detail? of the corresponding algorithm. The set concept was

considered a natural vehircle for achieving these ^cals.





D. ENCAPSULATE! DATA TYPE

Encapsulation is tne process of defining a data

structure from a user-specified, data type alone with a

specification of tne type's structuring metnod and tne set

of procedures that determine the primitive operations [59].

An example of the encapsulation of a binary tree data type

(horrowed from [24] ) is shown in figure 3a.

In tne TEIOS language a"capsule data type generator" is

provided to assist in constructing "capsules (encapsulated

data types)." TELOS does not directly provide tne user with

lists, classes, hags, trees, cr graphs. However, all of these

may "be easily constructed with the use of tne capsule

gene ra tor.

The capsule structure provides localization of

representation of detail, tnat is, scope or context within

which the specified type is applicable. This is a powerful

lata abstraction mechanism that combined with i nos 's

control abstraction mechanisms is ~apabie of establishing a

simple and direct means of implementing high-level

theoretical concepts necessary for the development of a

general theory of intelligence [59]

.
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type Binarytree [item]
declare E^ DTYT?EE() -> Binarytree

^AEE (Bina rytree , i ten f B ina ry tree - N 3inarytree
IS EMPTY TP.SS( Einarytree ) -> ' Boolean
LEFT(Binarytree) -> Pi nary tree
DATA(Binarytree) -> item 1 {UNDEFINED}
RIGHT (Binarytree) -> Binarytree
IS IN ( binarytree ritem) -> boolean;

for all l,r Binarytree, d,e item let
ISEMFTYTEEE (EMPTYTREE) =true
ISEMPTVTPEE(MAZE( 1 ,d ,r) )=false
LEFT ( EMPTYTRFE )=EMFTYTREE
IEET(rAKE(l,d t r

x
> )=1

DATA(EMPTYTPEE)=UNDSFINED
DATA(MAXE(l,d, r) ) =d
RIGHT (EMPTYTREE )-EM?TYTREE
P.IGET(MAEE(l,d,r) ) = r

ISIN(E^PTYT?.EE,e)=false
ISlN(MAKE(l t d,r) ,e) =

if d=e
then true
else ISIN(l f e) or ISIN(r,e)

end
end 3inarytree

Usinsr the encapsulation above a simple program may be
written to construct a binary tree ana extract the left
subtree

:

TREE1=EMPTTTREE(

)

TPEE2=EMPTTTP.EE( )

TRE23=EMPTYTREE()

TREE1=MAKE(TREE1,A»TREEE)
TPEE2=MA£3(T?.EE2 f B ,T p EE3)
TREE0=MAKE (TREE! , C ,TPEE2

)

LEIT(TEEEe

)

The implementation independent way of evaluating an
expression involving the operators of the data structure
would yield :

LEFT ( MAKE (MAKE(EMPTYTREE() ,A,3MFTYTREE( )) ,C,
(^AKE(Ei*PTYTP.EE { ) ,5 , EMPTYTREE( ) ) ) ) .

This reduces to

MAKE(EMFTYTREE( ) , A ,EMFTYTREE ( ) )

which is equivalent to k)

Encapsulation of a Binary tree.
Figure 3a
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S. P"R0?2?T V LIST

A property list is a structure used in list processing

languages and is associated witn an atom. It is a list made

up of attribute-value pairs. The size of the list is not

fixed and may snrink or grow during computation [lj via

special functions for inserting and deleting- attribute-value

pairs. In LIS?, tnese a^e 'putprop' and
'

a et' respectively

[63] .

Example of a property table representing a property-list:

Colorado E.

Toad
o o m m o r.

Toad
"tfoodnouse 's

Toad

Attribute; Yalup:

Color

Ave. Size

Croak-

Ik. brown

o Inches

Kabi ta t

Other Members

Same Family

iOW

j- es e r t

Common Toad

Wcodnouse Toad

Thought of as data structure abstractions, property

lists are symbol tables, as the example above illustrates.

The name entries are the properties and the value-entries

are tne property values [l] . An attribute may also name a
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relationship between the describe! object and other objects,

wnere the value identifies the otner part/ or parties to the

relationship (see last entry in example arcve) [44], In a

data base, equivalent expressions will nave the same

property list [47]

.

Property lists were first introduced to programming

languages in I?L, They are basic structures for any list

processing language. Mo atom has meaning without sore

specification of its characteristics in some ccntext. By the

same token, no property list is accessible unless it has

explicit association to some atom.

In LIS?, property lists are incorporated into the

lansua^e features that is, functions for ma nipula tins' them

exist as built-in operators [23]. The internal

representation of the property list shown above would appear

as follows (demonstrating that a p-list is a list of

associated pairs):

Colorado ?. . Toad-

color 3 b rown

4?





The LISP functions that are used to manipulate property

lists include[63]

:

GET(T T) which searches a list X for an attribute which

matches Y. If such an attribute is found then the next list

element, i.e., the attribute's value, is returned. Otherwise

the value of GST is NIL.

PUT(X Y Z) puts on a property list of literal atom J. the

attribute v followed by value Z. Any previous o^ T is

replaced by Z. The value returned for PUT is Y.

P?o?( T v FN) searches list X for an attribute equal tc

I. If one is found, the value returned, for PEG? is the rest

of the- list beginning immediately after that attribute.

Otherwise, the value is FN( ) , where FN is a function of no

argumer ts

.

REMPROF'X Y^ removes all occurrences of the attribute Y

and its value from property list I. The value returned is

ML.
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F. SEMANTIC NETWORKS

A semantic network (net) is a graph define! by objects

and their property lists (list of attribute-value pairs

describing the object). Tne object and -the values are

uniquely represented by nodes wnile attributes label arcs

[23]. A program can traverse the graph in a semantically

ordered fashion by starting at the specified node of

interest and following arcs sequentially tc nearby related

nodes. This is an appealing- notion in that it seers

analogous to the way tne human brain will jump from one

related idea to another.

^ost of tne work on semantic memory representation nas

been done with respect to natural larp-ua.ee understanding.

The original intent of such research is to represent

semantic knowledge in a computer in tne way in which humans

would store such knowledge in the brain. A data base

partitioned into a semantic ret provides inferencing

capability. In other words, a program can ferret information

from the data base that is not explicitly represented. Tee

value of this quality is in not having to clutter the data

base with noncritical facts tnat are derivable from other

facts already present.

A semantic net scheme devised by Cuillian (see figure

2b) segments the data base into "planes." A plane is a

collection of concepts (nodes) connected by directed arcs

(pointers) which together represent a certain semantic

4?





"topic"; a disiinct piece of knowledge. Pointers are used

extensively to connect related nodes witnin planes (solid

arrows) as well as between planes (dashed arrows). Pointers

between planes point from node to plane, ratner tnar. node to

node. In figure 3d there are four topics, three concerning

various meanings of the word, plant* one aaving to do witn a

particular meaning of 'food.' Additional inowled.ee (planes)

may he added to the net. Modes may be connected explicitly

(within the plane) and implicitly '"between planes) by

initiating a pattern search throughout the data base

network. Information may be retrieved from the net by

requesting that one or more rela t ipjaships , if they exist, be

found between two topics. The program would start at one

node of interest, follow arcs to related nodes, then follow

from those to still mere distantly related nodes and so on

to retrieve a related concept.

Semantic nets nave also been used in visual scene

analysis [64j . Figure 3e is a picture of a simple arch and

an initial representation of it in e semantic net. ^5 the

program is exposed to other examples and varieties of

arches, and structures that are not exactly arches but

similar, this simple net may be refined and expanded to

account for various arrangements by adding nodes and ar~s

specifying possible additional parts and relationships (as

in figure 'he final expansion also contains all

information learned along the way, e.g., in the example, A





is not merely supported by 5 and C as was assumed in the

beginning. It was discovered that A must in fact be su ported

by 5 and C. Later a new structure may be described anr' a

determination made by the program as tc whether it misrht te

a sort of arcn based on a pattern match atter.pt between the

network representation and tne actual components of the

object. Furthermore, questions may be asked about the

results of the matching p r ocess.

As mentioned earlier, a valuable quality of semantic

networks is that they allow inferencing of information not

explicitly stated in the data base. This capability '.ar be

demostrated by means of a dialogue that occurred between

Raphael and his semantic information processing; program, SI?.

[41] . Figure cc shows the actual dialogue and figure 3u

depicts the semantic representation where the nodes are

otjects or nouns and the arcs are their asserted

relationships. The information being sought is the number of

John's finp-ers All that is explicit in the network is that

John has two arms, each am nas one nana, and ea<":: hand z~?

five finders. Once the necessary relations have been

established, as the diagram snows, tne program calls a

procedure that is invoked whenever the task is tc "reply as

to now many elements of tne set x are parts of tne

individually," where here x=fingers and y=Jcnn. T::e answer

is computed by tne procedure and tne program reports it to

be "10" T4H .

^.z.





Although semantic networ&s are not actually featured as

data structures in any of tne AI lan^ua^es considered, it

nas become an important scheme for data base organization.

Tnis is true for tne reas.on just citec. as well as tne fact

that they are relatively easily implemented with the new

list processing languages.
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The inferencing capability of Quillian's nets may demonstrated

in the example as different planes are shown to have intersections

(live, for plant and food; sad, for cry and comfort). The claim is

that the distance from the planes to their intersections is dir-

ectly proportional to the relatedness of the concepts.

Semantic Network - Quillian

Figure 3b
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.

.- Boy Is a Person^
(I Understand)

(
:;::;:;;:

^ ^ JchD IS d Ecy)
(I Understand)

(***. A Finder Is Part of a Hard)
(I Understand)

(#** #
p-ow jv)an y Fingers Does John Eave 0)

(The ahove Sentence Is Amhiguous :;::;: But I Assume (Fas)
Means (Has As Parts))

(I Don't Know Whether Finger Is Part Of John)

(*** # There Is One Hand On Each Arm)
(I Understand)

(***. There Are Two Arms On A Person)
(I Understand)

(*** . How ManyFingers Does John Have 0)
(The Ahcve Sentence Is Ambiguous *~ But I Assume (Fas'
Yeans (Has As Parts))
((How Many Finger Per Hand Q))

(***•. A Hand Has 5 Fingers)
(The Aoove SEntence Is Amciguous :;::,: Put I Assume (Has)
Means (Has As Parts )

)

(I Understand)

(***. How Many Finders Toes John Have Q)
(Tne Ahove Sentence Is Amciguous *~ Put I Assume ( Fas)
Means (Has As Parts))
(The Answer Is 10)

Semantic Network - Raphael.

Figure 3c
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G. ASSOCIATION AND ASSOCIATIVE RETRIEVAL

Many of the new lan^ua^es recognize that provision of the

capability to store and access data associative!-/ 'i.e., on

the "basis of some property it possesses with no refira'rd to

name or location) a "basic necessity for current and future

research. CLISr, SAIL, LEA?, POPISH, and 7EL0S all provide

for an associative cata type ana. therefore, associative data

base organization. This powerful mechanism is critical tc

the construction of goal-oriented systems, wnere procedures

to be tried for reaching a goal are identified by

description rather tnan by name. Furthermore, it enables tne

appending of procedural or declarative chunks tc a

knowledge-based data store. Subsequent use of these chunks

is determined by some control abstraction (e.g., a demon, on

the lookout for an instance of a certain situation) whose

specification most likely preceded the entry of the chunks

into the system [59].

In e-eneral r an association data structure is a

three-tuple of data elements of the form iteml * item2 -

item3 [18]. For specified sets of items an association is

executable. For example, the following three-tuple:

MAKE * AUTOMOBILE = FIAT

could be analogous to the executable statement:

foreach x such that x in AUT0M0JIL2 do MAKE.x = FIAT

which instructs that all elements (x) in the set "AUTOM03ILS"

will have their "MAKE" property set to "FIAT". Thus, the

5£





primary interest is in attribute values of one or mere s c t

elements. In the example, AUTOMOBILE, (item2) is the set,

MAKE (iteml) is the attribute, and FIAT (item.?) is the value

of the attribute [4]

.

One obvious application of association occurs witn the

implementation of a property list as a list of pairs

(property, value) linked to an object. However, from a user

point-of-viev this scheme is handicapped, as it is one-way.

For instance, there could exist a situation where a list

contains sublists of three atoms each, representing three

things that a family might own such as an automobile, a

house, and a net. Eacn has a property list as shown in

figure 3^. The problem arises when one has a value with no

idea of wnat attribute it belongs to. The value could be a

number like 197*£. This could stand for thp year of the auto,

the year of the house, or the square footage of the house.

Associative retrieval based on wanting to Know the value for

a specified attribute is acceptable since the order ar.d

determination of attributes is known for each p-list. There

is no way to find an attribute based on an arbitrary value

save to brute-force a pattern matcn through every ceil of

every p-list for each element of the set. Such a search

would require an enormous (if not unreasonable) expense in

bookkeeping and time. SAIL and LEA?, However, provide a

storage scheme that allows such a "backward" associative

retrieval operation on p-lists. It is done cy designating a
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continuous block of storage for each p-list ir which each

attribute is assigned a relative address. A hashing scherre

or. values is then use^ to store and retrieve the attribute

data [18] . This setup allows the flexible access of items in

a p-list either by attribute or value. However, it also

implies a requirement of twice as much storage as usual.

(AUTO HOUSE ?2T)

Make *

vear 0*0

Color • m

Address -*• 9

vear * •»

S q . Foot. "-

Property Lists.

Figure Zs.

Type ...

H are § *

M a n y ..'

H. CONTEXTS AND FRAMES

There is not universal agreement on the meaning of the

words context and frame. Some use them synonymously, yet

others draw a distinction, albeit a subtle one. For

instance, context represents an implemented programming

mechanism, whereas a frame ref°rs to a data structuring

concept only. This policy is sufficient for the purposes of

this discussion. In a rough sense a context may be tnought

of as a "viewpoint on a data bas° [47] .
"

,,1 ore specifically,

it is a data structure representing previously stored chunks

of stereotyped knowledge (e.g., driving to work, making a





pnone call, typing a paper, etc.) [9j . It is provided as a

limited attempt to implement Minsky's complex frame lata

structure idea in CUSP, CONNIVER, and POPLER. In tnese

lansua^es, the mechanism works in the following manner: all

expressions in the data base are factored into segments,

each of which may he referred to as a "context." Assertions

may fee entered and subsequently retrieved from the data base

with respect to a context. (This is analogous to a ""block"

in a block-structured language.) The content, may v e

manipulated explicitly or by default (i.e., based on the

structure of the flow of program control) [4j . Ecr example,

consider the CONNIVES program module:

1. (PROG(Y)

2. (SETC T 100?

3. (SETv 7AR2 (TAG LA3L)

)

4. (SETQ VARl (FRAME))

5. (PRINT 'HELLO)

S. LASL (PRINT 'GCODRTSj

7. (SETC T 5F)

S. (?*>I^T CEVAL 'Y VARl)
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The routine stove demonstrates the use of two special

commands offered in C0NNI7ER for manipulation of contexts.

The commands are called ERAME wnich creates a pointer to the

current frame so it may be modified or executed ae-ain later,

and TAG which is similar hut it also specifies a starting

location within the frame [4] . Vith respect to the example,

one could issue a CONTINUE 7AR1 instruction causing

processing to commence at statement 4. A CONTINUE VA7.2

instruction would send control to statement 6. The CE7AI

command in statement 8 would cause the value Y (=1££) within

the context of TATtt to he printed. The mechanism in each of

the tnree languages works in very much the sarre way. and

provides the same principal value, teat cf allowing the

programmer to consider alternative situations, without

changing a global data base, by specifying the scopes of

variable bindings, i.e., switching informational "~ontexts"

or "franes" of reference. The frame structure has >e c n

referred to by many other names including' "script" (Scfcani *

Abelson), "units" (3otrow & tfinograd), "depictions' (Hayes),

and "common sense algorithms" (Riee-er') [9].

A new "context" is created, in a program, whenever a

user-defined block is entered (or a CIAMETA function is

encountered in CLISF). The current "context" is set to be a

descendent of the previous "context." This is known as

"pushing" a context [61]. Tnis means that variable bindings

and assignment of properties to expressions that are local
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to a context are accessible only from tnat context or a

descendant context.

Parent Context Tl f ASSERT: Signatures are on thesis.

Eescendent

Context

T2 * ASSERT: Tnesis is on library snelf

( collecting dust )

.

With respect to the drawing above, scope rule? dictate

that any assertion made with respect to Tl will be available

to queries made with respect to T2. Thus, if asked whether

signatures are on thesis, with respect to T2, the answer

will be 'yes". But, assertions made with respect to that

descendent are invisible tc queries made with respect to its

parent, or any otner context aside from it? own descendants,

For instance, if thesis is asserted to be on the library

shelf, with respect to T2, tnat information will not be

available to queries made with respect to Tl [51]

.

Marvin Minsky was the first to seriously put forth the

concept of a frame data structure. He suggests a frame re

thought of as a network of nodes and relations. He further

explains his idea with the following elaboration:
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The top levels of a frame are
fixed, and represent things tnat ^re
always true

m
about the supposed

situation. The "lower levels" have many
"terminals"-" slots" that must be filled
"by specific instances or data. Each
terminal can specify conditions its
assignment must meet [32] .

The conditions can he either simple (i.e., requiring

assignment he made to a person, object or pointer to another

assignment) or complex (i.e., a relation existing among some

things assigned to several terminals) [64]. All terminal

nodes are loosely assigned default values thereby conferring

on a frame many details whose supposition is not

specifically warranted by the situation. These assignments

may he easily displaced by ne>< items that are discovered to

better describe the current situation.

An example of a typical use of tee frame corcept is

borrowed from Winston to now a room could he described with

a frame in figure 3h [64], A frame may cor tain subframes.

That is, a frame "slot" may simply contain a pointer- to

another frame. In the figure each frame slot for a wail

contains a pointer to a wall frame, wnicn may again contain

subframes

.
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S pace Accesse
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"Room Frame - Winston.

Figure 3h

57





The frame concent has stimulated an area of current

investigation namely, tne frame pro tier-. Tins

problem of creating and maintaining an appropriate

informational context, or frame c^ reference, at earn stage

in certain problem-solving contexts [42]." The essence of

the "problem" is book-keeping. Tnere are an enormous nur v = r

of details to keep track o^ in the hypothetical worlds

resulting- from alternative actions which could be taken in

order to carry out a given task:. Much of tne proclem is due

to complexity. For example, a typical situation might

require a frame description of 1,320 elementary facts. It is

not unreasonable to think that an average of 6 different

actions is plausible in any situation and tnat 4 successive

actions are required to achieve a eoal state. This implies

that there are 6 =1296 possible intermediate and terminal

situations to be considered. Storing 1,F0C facts to describe

each of more tnan I r 000 situations means storing over one

million facts, which is not yet a feasible thing to do if

all facts must be available in main memory [44]. To relieve

this problem current research is concerned with

investigating the possibilities of using state variables

(each node would carry only cnange information). This allows

the incorporation of the "STRIPS assumption [51]" into

context mechanisms, ""he STRIP? assumption is that an action

leaves all the relations in the model unchanged, unless

otherwise specified. Generally, the specification of change
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is made in "add lists" and "delete lists' which accompany

tne application of an operator to a situation, Eor example,

consider a situation where a car with a driver and a

sleeping passenger is going down the roan. The state may te

represented by the assertion of all tne following

predicates

:

MOVE (car forward)

HAS (car fourdoors)

IS (car red)
I

AT (driver steerin^wheel )

SIESPS (passenger backseat)

MILES (car 60K)

IN (spa re tire trunk)

Now apply the Flat Tire operator. It has add and delete

lists as follows:

ADD LIST DELETE LIST

AT (driver tire)

IS (driver mad)

MOVE (car nowhere)

On (sparetire axle)

In (flattire trunk)

AT (driver steering wheel)

MOVE (car forward)

IN (sparetire trunk)

The application of the flat tire operator creates a new

state wnich is different from the first as prescribed by the

add and delete lists for that action. The entir° model need
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not be regenerated since it is known to be the sarre as

before with the exception of a few modifications. In the

example above for instance, without having to be explicitly

stated it is known that the passenger is still asleep in the

backseat, "he resulting state is analogous to a descendent

context .

Similar to a frame is Schank's notion of a script.

Whereas a frame usually depicts a static scene, a script is

used to represent an event, something that includes an

implicit time ordering. Figure 31 shews a script generated

by Charniak about grocery shopping.

The advantage of a frame cr script-type representation

is that it will contain information expected to construct a

specific ordinary even,t whether static or dynamic. A program

operating on a frame-oriented data base need be told

explicitly only that information which is net accurate in

the frame. Tor example, a shopper may not use a basket at a

grocery store. m he slot for that aspect is loosely bound to

the value that is initially installed there. loth frames and

scripts mav be stored, retrieved, and modified. Retrieval

may be done via a pattern match on a soal 'frame heading' or

via a link from a frame slot to another frame or frame slot.

A <?reat deal of work remains to be done in order to

fully realize the details of Minslcy's frame abstraction.

rut, any progress made alor? that continuum will contribute

to the simplification of inherently complex programming
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tasks as one would find in a question-answering syster cr a

problem—solving system.

GOAL: SHOPPER owns PURCHASE-ITEMS
SHOPPE- decide if to use basket,

if so set up cart-carry Frame Ira.^e
SHOPPER obtain BASKET -cart-carry
SHOPFER obtain PURCHASE-ITEMS

me thod-su^res ted
10 for all ITEM PURCHASE-ITEMS
SHOPPER cheese ITEM ? rJRCHASE-ITEM5-B0NZ
SHOPPER at ITEM

side-condition DCNE at item also
me thod-sugges ted
cart-~arry (SHOPPER, PAS IET,E0NE, I TE v :

SHOPPER no Id ITEM
ITEM in Basket 5;j cart-carry
DONE<-DONE+IT*EM
END

SHOPPER at CHECK-OUT-COUNTED
side-condition PURCHASE-ITEMS at CHECK-OUT COUNT:

me tnod-suggested
cart-carry (SHOPPER., BASKET, PURCHASE-ITEMS ,

CHECK-OUT-COUNTER)
SHOPPER pay for PURCHASE-ITEMS
SHOPPER leave SUPERMARKET

IB alsc

'eans »et tr.e following fra^e if appropriate.

Supermarket Script - Charniak

Figure 3i
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I. DEFINITIONS FOR LATA STRUCTURES

Tree

A tree is similar to a natural tree except that it

is drawn upside down. Technically, it is a directed grapft in

which each node has at most one predecessor. The rcot node

(at the top) has no predecessor ever. A node with no

successor is called a terminal nod°. The lines (all having a

downward direction) connecting nodes are called arcs.

Each node is associated with a level of the tree.

Tne level of a node is one more than its distance from the

root node. All the nodes on each distinct Horizontal plane

represent another level. The depth of the tree is eaual to

the number of levels it has.

Trees may he used to conceptually represent the

organization of a data base, or the search space for a

problem.

Tree nodes are examined for solution in a certain

order. The most common orderings are breadth-first,

deptn-first and best-first. Breadth-first examines the nodes

on each level, starting at tne root, in a left to right

direction usually. Depth-first search, on the other hand,

travels all the way down the left most branch of a tree to

the end, or as far as a pre-specif ied bound. The search

successively makes its way rigntward always going down tne

left most branch till a solution is found. Vhen there is a
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cost associated with eacn arc and trie protlem is to find the

least cost goal node, test-first search is the most

efficient method, although it is expensive in terms of

storage. This metnoa will choose to explore past a node if

the cost on any arc leading out of that node (added to the

total cost so far on the path) is less than or possibly

equal to the cost of a path leading into another node at the

same level. current least cost path. The first goal node

found will he the one at the end of the total least cost

path

.

Figure 3J shows a tree with cost values en the arcs.

Tne goal nodes are blackened. Results from eacn of tne tnree

search searcn methods is shown also.

Order of Discovery of Goal Nodes:
Depth-first Breadth-first Best-first

3 ?
5 3
7 e

8 5

Evaluation of a Tree

Figure 3j

8
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2. Atom

Atom is a term derived from LISP. It is a symbol

used to name an object, sucn as a variable, function, or

some object in the world in which the program is operating.

In a robot world an atom could be a table, or box. An atom

is the smallest meaningful unit of information. The

following examples could be atoms in a program: A, X9, SORT,

WINDOW, FROG, etc.

3. S -expression

This is a LISP term that is used when referring to

lists or atoms in general, and neither in particular.

4-. Garbage Collection

This is a facility some languages offer for

examining- memory at periodic intervals to determine which

locations are not currently in use and returning these to

the free list. This is done by following the chains of

pointers from active list variables. Any cells wnicn cannot

be reached are considered no longer needed [66] . When this

mechanism is supplied by tne language tne programmer is

freed from having to fceep trade of used and unused memory

wbich in a list processing language without garbage

collection requires very careful and attentive programming.

See also [54j

.
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17. CONTROL STRUCTURES

Control structures are an integral part of the

pros- ramming- environment. They provide the framework or

operations for specifying rules directing the flow of

processing and interpretation for programs or parts of

programs [21]. For example, a control structure might

include a general rule that dictates that statements be

executed one at a time in order as tney appear in the

program description. A discussion of control then must also

include consideration of program sequencing rules (or tne

lack of such) or °ven the i nde terminancy of the desired

sequencing.

In early programming languages, flow of control was

strictly hierarchical, meaning every module (procedure,

function or any primitive program unit) was expected to

complete its tas& before returning control to the module

that activated it [
A

] . Processing occurred sequentially

except when interrupted by iteration or conditionals or

branches like go to's [21]. Such limitations on flexibility

were too constraining when it came to programming complex Al

systems that accessed and manipulated very large stores of

knowledge and more often than not* required subsequent

program control to be dependent on the result of an access

or manipulation





It is little surprise tiien to discover that witn the advent

of the "first" AI language , IPL, a new control structured

was introduced.

IPL was originally designed to implement the LOGIC

THEORIST (LT) theorem-proving system of Simon and -Jewell.

LT's task was to prove theorems in prepositional calculus.

In so doing it would iteratively apply a variety of logical

rules to the proposition. A mpcnanism was needed to halt the

application and pursue proof of a subproblem and then

possibly continue where processing had earlier left off. The

"generator" was that mechanism and it enabled repetitive,

non-hierarchical processing. It would produce a sequence of

outputs to which it iteratively applied a specified process.

Any iteration producing a false (boolean) value could

terminate the venerator, but not before ensuring a possible

later reentry at that point [21].

Cf course IPL was also a list processing lansruape ah^ as

such, one of its basic control structures was recursion,

which is a naturally hierarchical structure. Each recursive

call creates a separate activation at a new level.

COPIT, a string processing language that appeared about

the same time as IPL, was characterized by a primarily

sequential program flow. A program was simply a prioritized

list of rules for replacing- characters in string data.

However, only the rules that contained a specified pattern

in a substring of the data were executed.
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^uch of t h e power and sophistics ti or. of the control

structures of AI languages, over and a cove *nat i c available

in the conventional programming la^ua^s , is due to the

inclusion of a variety of deductive mechanisms. These are

mechanisms that provide an automatic or at least

semi-automatic data tase searcn capability. The more

automatic they are the more nonprocedural the language turns

out to be. The "lost nonprocedural language is PLANNER ace, it

indeed offers the most automatic deductive mechanisms.

PLANNER'S primary tool for deduction is the consequent

theorem. It has two parts, a pattern statement and a

procedure "body (") whicn are employed in a £=>? manner. Thus

if the program Q were successfully executed then the

assertion matched by the pattern ? would he proven [4].

Frequently the program C requests that an assertion bp

proven, i.e., that a subgoal he achieved. The consequent

theorem may thus set up a backward chaining mechanism *'c t

searching the data base. For example, consider the situation

wherein a ^oal is to assert that there are giraffes in San

Tiego :

U-Ai41w G-iiiAFfiLS bAivEli^-J;

In the data base might be found tne following assertions:

(IN ZOO SANDIEGO)

(IN GIRAFFES ZCC)

The assertion desired is not explicitly available so tne

next step is to find a consequent theorem that woi 16. enable
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its derivation. The theorem below would do just that.

[CONSEQUENT

(IN X Z)

(GOAI IN X v
;

(GOAL IN Y Z)]

The first step is tc match the target pattern (IN X Z)

against the desired assertion (IN GIRAFFES SANTISGO). The

body of the consequent theorem instructs that two sut^oals

be achieved. The data base is searched for an assertion that

matches (IN GIRAFFES ?T ) where ? means that any value found

in this position will be acceptable. In the data base is

found (IN GIRAFFES ZOO) which matches. One subgoal has v een

achieved. The second causes a data case search to find a

match 'or (IN ZOO 11). It finds the fact that (IN ZOO

SANEIEGO). Thus the consequent theorem has been successfully

°xecuted and the assertion has teen proven to be true.

Pattern matching capability is fundamental to the success of

this type of deduction.

Other languages that offer mechanisms as described above

include CONNI7EP, QLISP, and POPISH. In all four languages

the data base search is initiated zy an explicit poal

statement. Tne differences between them is the amount of

programmer interference allowed in constraining tne searcn.

In PLANNER there is little or no opportunity for tne

programmer to explicitly direct tne searcn process whereas





in CCNMVSH and CLISr there is a sreat deal. These two

languages provide a frame construct whi ch specifies

different data and control contexts. A new frame is created

eacn time a non-atonic expression is encountered, ^ne fra^e

contains all the information associated with every

activation of tne access module in which that expression

resides. Furthermore, the programmer has access f c all

components of a frame including linlcs to module continuation

points, "bound variables and free variable environments.

The CONNIVE? analog to the PIANNS2 consequent theorem is

the IF-NEEDEE demon, for C II ?? it is the combination of the

'is' and 'cases' commands, where 'is' directs the data base

search and 'cases' performs pattern directed execution.

Likewise POPISH offer similar features in tne form of the

'achieve' and 'infer' commands whicn ar° eacn a form cf

consequent tneorems. 'Achieve' will attempt to assert a

specified goal whereas 'infer' will merely check the status

of a specified goal, lasically, all these mechanisms provide

a capability to "deduce desired logical expressions from

previously specified expressions in a manner similar to the

deducton of theorems from axioms in theorem-proving programs

[4].

In keeping with the philosophy that "use of control

structures better suited to a programming task can simplify

tbat task and expose the significant problems in that

problem," a variety of control structures for AI programming
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languages suited to a variety of AI tasks nave been

developed and refined continuously since the cqntri "but ions

of IPI and COMIT were made [2lJ

.

The remainder of the chapter describes many of the new

structures employed in AI programming, and discusses their

implementations in the AI lan^ua^es. The following

structures and concepts are included: Data-driven

programming, demons, coroutines, procedural networks,

chaining, backtracking, deduction systems, pattern-directed

invocation, and discrimination networks. Some miscellaneous

terms and concepts are defined at the end of tn p chapter.

A. DATA-DRIVEN PROGRAMMING ( DISPATCHING )

Data-driven programming is a style of
programming in which the boundary be-
tween programs and data becomes even
more blurred than usual [64] .

Data-driven programming is a method of attaching

programs to data, thereby relieving the programmer of the

detail of
.

predetermining much of the program control. T v e

incoming data actually takes control by causing invocation

of pre-specif ied , data-type dependent routines for

application and execution [9J

.

This may be done by supplying* a call in/* procedure with

the user or argument input data that has teen associated

with procedures in the data base. This causes these

procedures to be invoked and executed [51], In particular,
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in IIS? this is done by storing type specific functions in

the form of IAMBEA expressions or. the property lists of

type-describing atoms. These functions t h e n

aut omat icaily fetched later when an argument of a driven type

appears

.

A simple example may be contrived to demonstrate the

idea of attaching programs to data. Consider the situation

in which one would like to assert tn c relationship

COMPONENTS (finger, hand, 5) or COUSINS (mary ,bob^ . In ord^r

to do so, a general purpose procedure 'store', with its

arguments, must be called. This procedure will allow the

programmer to assert different relations, each type of which

may very well requirp a different, method of storage into the

data base. For example the 'components' relation may use a

hashing scheme, whereas the 'cousins' relation may be pushed

onto a stack. In any case, there might be several different

types of relations that are asserted at various times. It is

highly desirable then to have a general function. in t
v is

cas<= 'store', that would take as arguments the relation and

its arguments. This function would then proceed to lock on

the property list of that relation to find and execute the

associated storing function. In a situation such as this the

general function (e.g., stored is said to "dispatch" to

(i.e., send off or away with promptness; procedures

associated with relation names.

A benefit of data-driven programming is that program
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surgery is avoided whenever additional information is made

available to the system [64] . If a new relation were created

or an old one altered in the example it would be taken care

of via property lists and the program code need never be

changed. Furthermore, it is a necessity for the

implementation of pattern directed invocation and demons

that are invoiced on the basis cf recognition of a

pre-specif ied data type [51].

3. B3 M 0\'S

The idea of a demon is well-known in many other

programming' areas besides AI, e.g., operating systems

development. A demon is a procedure that is automatically

invoked when a pres-pecif ied event takes place, such as a

condition "becoming true, a certain value being changed, or

some relation being altered in a certain way [2?.\ .
w ost

commonly they are invoked by data base additions or

removals. Activation occurs with a successful match between

a data item and a pattern associated with a deron [64],

Frames are in essence a demon-based scneme. \ frame may

provide the capability of a demon by containing- a pattern

that invokes a certain procedure. Programming languages that

offer demon-like facilities include FLANKER, CONMVER,

QIISP, and TEIOS.

In OLISP, tne programmer is allowed sufficient

flexibility to design an efficient system in wnich a demon
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is activated only at appropriate times, or a mere carefree

system wherein the demon is invoked at every opportunity

[4]. Groups of functions niay be defined to act as "teams" of

demons that may be associated with an arbitrary database

storage or retrieval command.

In PLANNER, there are the antecedent and consequent

theorems. The former are, in effect, demons that act

independently to add and delete facts to the data base as

other facts arrive. An antecedent theorem or demon

represents a fact in the form of: pattern (p) and body (b).

Whenever anything is asserted (entered into the data bas°)

all antecedent theorems are en e eked against the data bas°.

If the recent assertion matches the p part then the b part

is immediately executed. Consequent theorems, on the other

hand, are not really demons but rather "fact-finders." They

are deductive mechanisms used to establisn facts that are

comparatively unimportant and that by not having >een

asserted do not clutter the data base. Their information is

easily derivable. Similarly, CONNIVE?, has IT-NEEDED and

IP-ADDED demons that are analogous to PLANNER'S consequent

and antecedent theorems.

In TSIOS , the use of demons occurs "in a clearly

demarcated textual scope." A demon-like event mechanism is

used to allow the programmer to detect and trap error

conditions and, if desired, to limit the effects of their

scope during execution [59]

.
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Eemons are used, among' other places. in story

understanding programs that attempt to ma v e inferences while

reading. For example, a demon with the pattern "person ? is

outside" could contain in its body the fact:

If it is (or will be) raining and E is outside

then ? will get wet.

'v'hile reading, the program may come across the sentences:

It was raining. Jack was outside.

The first sentence would likely invoke a routine ''called a

base routine or high level demon) about rain that alerts all

demons related to that topic. The next sentence would then

invoke the specific demon described above.

An example of a simple demon in CONNIVEE that is invoked

wee never person ? loses his or her joh may be defined to

alter the content of the data base in the following manner:

DEFINE DEMON

IF-ADEEE

(? LOSES JOS)

(Remove '? is-a Happy Person)

(Add 'F is-a Sad Ferson)

(Add '? has-no Steady Income'

(Add '? pays-no Income Taxes)

2ND rEFINlTION
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Statements ^av be added at the end to nave the demon

deactivate itself when it is through or no longer needed.

Eemons are very useful as they "add knowledge to a system

without specification of where it will be used [64]." They

are easily attacned and encapsulate the bookkeeping

operations that otherwise litter programs. Thus, programs

are more readable.

C. COROUTINE?

Coroutines are "specialized control mechanisms for

situations in which the natural division of a process into

subtasks is not hierarchical [21]." Three program structures

that are analogous to coroutines, and s~rv° to demonstrate

their appropriateness are: DMutual subroutines, a

simplistic point of view wherein each of several procedures

are to be written so that each procedure may call the others

as if the others were subroutines, 2) The most characteristic

perspective of coroutines is that of procedures with 'own'

storage such that a procedure's variables retain their

values between calls. The 'own' variables retai^ not only

local procedure data, but also the state of processing

within the procedure so that processing will continue from

that point at the next invocation, and 3) Symmetrical

control achieved by separating programs into logically

disjoint parts and describing eacn part separately. Their

various stages of execution are then interleaved [21]. This
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last view may be considered more as a side-effect of tne

implementation of a coroutine regime tnan analogy.

Any implementation of coroutines implies that at eacn

point of invocation the calling routine, which was

executing", is suspended, not to he resumed except by

explicit call, and tne routine wnich is called is resumed at

tne point from which it last left off, with all of its

internal variables unchanged, tnat is, tne previous state is

restored [52] .

The advantage of using coroutines is tnat eacn of

several processes can he described as a main routine (vs.

subroutine) with minimal concern for the interface with

other processes r 2i] .
t\ coroutine may be given more than cne

continuation point and use only one of tnerr depending on tne

result of some t<=st [9] .

A simple example would be producer-consumer situation

involving two routines A zni. 3. routine ft 's job is to search

a data base for a certain type of expression or datum. tffcen

it has found one not previously found it fetches it, leaves

it in a certain location, suspends itself and resumes tne

processing of routine P. routine E's job is to fetch from a

certain location an expression on which it is to perform

some computation. Oncp this is dene it suspends itself arc

resumes processing of routine A. Routine A continues where

it left off in its data base search and fetch. Tnis back and

forth processing continues until A can no longer fine
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expressions or until 5 has performed a pre-specif ied amount

of computation, roth routines in this situation operate as

though each were a main routine.

In TSIOS, there is a mechanism (function) called

NewProcess which provides a coroutine capability. NewFrocess

creates a coroutine as a process with specified actual

parameters. The value returned by MewProcess i? a reference

to the newly created process. The state in which the new-

process begins execution will "be that which was operative

when Newprocess was executed [59]

.

In CONNIVEE, there are "generators" which are a kind of

coroutine process. A generator will generate requested data

items t one or a few at a tine, to which sone specified

process will he applied. The environments of the process and

the generator are independent and not hierarchically

defined. If more data items are later requested, the

generator resumes in the data context of the previous

request. An analogy would be a FOREACH statement wherein,

the head would represent the generator and the body of the

statement would represent the specified process. Tut

,

imagine that that particular tody may be interchanged with

another body perhaps of another FOREACE statement in another

data context. Then execution would continue in different

data and control contexts for the two parts.

SAIL also provides a limited coroutine capability. With

the use of a command called SPROUT a new process may be
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created to commence execution at tne point it is created and

run parallel to the process that executed trie command. True

parallelism is net possible on a single processor computer

so the SAIL run time system includes a scheduler that

supervises the multiprocessing regime by deciding which

process is to be executed at a given instant. Processes can

contain instructions to suspend or terminate themselves or

other processes. ™ne RESUME command will suspend the current

process and reactivate a named suspended process. But « no

capability exists for one process to pass any information to

another except via side effects.

D. PHOCEDURAI NETWORKS

Procedural nets are usually used for representing plans

created by problem-solving systems, k problem-solver such as

STRIPS (see Appendix E) will generate hierarchical plans

beginning at the highest level of abstraction of tne £oal

state to be achieved until a sufficiently detailed level is

reached to allow execution.

Tne simplest possible procedural net consists of a

single node with two directed arcs, one leading in and one

leading out? this would specify the single step in a

one-step plan.

^ Pick: up rail *
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A refined procedural net describing a premier*- involving

reconfiguring arrangement 1 to set arrangement 2 is shown

"below. In the problem, only 1 letter may "he moved a distance

of one space in any direction that an empty space exists.

arrangement 1:

INPUT 0SE3R(A 1 C)

arrangement 2:

GOAL 0HEEE(I C A)

A 3 C

—

I

1

B C A

(note: steps stacked vertically may be done in any order.}

On more complex nets the nodes are the steps or actions to

be taken, whereas the edges (directed arcs) imply the

sequencing of the steps.

An important feature of procedural nets is that when a

plan is generated it is often unclear what will te the best

order to carry out seme cf the steps. The order is allowed

to be left unspecified until sore later time when the

correct ordering does become clear [23]. This may not take

place till the plan is actually executed. Lan^ua^es which

allow this type of feature include PLANNEP, CONNIVE?., CUSP,

and PROLOG.
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i. CHAINING

There are two types of chaining: forward and backward.

If the goal of a search is to discover all that can be

deduced from a £iven set of facts then forward chaining is

appropriate. Progress is made as the system worlds from and

initial state toward a e-oal state. The shape of the state

space is fan-in. Figure 4a. is an example of such a space.

A forward chaining technique (means-end analysis) is

enployed in GPS (see Appendix B). At the start there a^e a

numher of differences existing- between the initial state and

goal state. At each point GPS selects what it figures to be

the most prcminant difference and attempts tc eliminate it

[64:].

initial
states

goal
states

initial
states

goal
states

Forward Cnaining
(Fan-In

)

Figure 4a

/ Backward Chaining
(Fan-Cut

)

Figure 4t
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Backward chaining works in just trie oppcsite manner.

First of all, the shape of tne state s^ace is fan-out, as in

figure 4b. The goal is to verify or deny a particular

conclusion. Thus, progression is fron the ?oal state toward

the initial state. Often backward chaining will lead to dead

ends, i .e . ,subs, oai s which cannot he deduced from information

available in the database. In that case, a return to the

state that induced the subp-oal takes place and a new sub^oal

is selected, if one eTists[64j.

Backward chaining techniques are employed in rule-based.

systems [27] such as MYCIN and DECAIES, in FLANNSR-like

lan^uaee systems, and in theorem-proving systems, such as

BUILD and HACKER (see Appendix: 3)

F. NONDETSRMINISM and BACKTRACKING

Tnese two programming concepts go hand-in-hand.

Backtracking is usually applied to nondeterministic

programs. A nondeterministic progran is one that may have

its solution spa^e represented as a search tree, wr. c r c each

terminal node is a potential solution. Tne task is to

traverse tne tree starting at tne root node, and find i

solution node [21]

.

Backtracking is basically an exhaustive depth-first

search procedure. Tne algorithm to traverse the tree is

executed, making choices at eaci node regarding what path to

take next according* to sore choice function, '/hen a solution
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node turns out to be a failure, the algorithm backs up ,

restoring all variable values to tne last choice point at

wnich one or more feasible choices remain, indicating

alternative paths [21]

.

Backtracking has been considered as a special coroutine

regime (in the sense tnat a coroutine is characterized v
y

the ability to suspend a processing state of a routine that

may then be resumed at a later time wnere it left off).

Instances of the program environment (called modules) are

saved at the choice points, and restored in a LIFO sequence

when subsequent modules "fail" [4]

.

In PLANNER, a nondeterminist i c language, backtracking is

provided completely automatically. The advartae-es of this

are that the programmer does not have to wor^y about writing

such a complex search strategy, and the program text becomes

relatively easy to read. However, this latter advantage can

turn into a disadvantage when tne programmer is urable to

infer from tne text precisely what is happening. Tor

°xample, a typical task for the SHRPLU problem-solver (see

Appendix 3^ written in Micro-PLANNSE, a subset of PIANNEP,

could be to "locate the big, blue block, or tne small

pyramid shaped one." 3FREI7 would have tc set up the

following three goals:

1

.

Look f r a block.

2. Check to see if it is blue or pyramid shaped.

3. Check the size.

82





If the block is blue the program will proceed to determine

if it big. If not, it will back up to the previous decision

point to see perhaps if it pyramidal. If it is, it will

check the size again since tee result of the previous check

is unavailable now. If the test fails again the program will

backtrack again to get. another block this time. Backtracking

must be used nere as tnere is no way to determine in advance

which block, 21, 22, R3, etc. is the ore which will have the

three properties. This tends to encourage the construction

of programs that r°ly too heavily on b^Lind search. An

additional disadvantage of automatic backtracking in PLANNER

is that there is no way to determine why a particular

failure occurred, as the environmental context at the point

of failure is deleted[~J.

The development of CONNIVSR was an attempt to retain all

of PLANNEP 's good features and replace the baa ones, namely

that of automatic backtracking. C0NNIV1SR provides a

capability for a failed routine not only to tell a higher

level module why it failed but to even pass on information

about the successive world changes it encountered along the

way [5], The power of tais facility allows systems to v e

implemented in COMNIVEF that attempt to learn from their

mistakes. This is not possible with FIANKS?. . The

problem-solving systems EACSSF (written in CCNNI73E; and

5HRDLU (written in PLANNER) are examples of this difference

(see Appendix 3).
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PROLOG provides for a backtracking capability. Since

PROLOG is a predicate losic-fcased system, it searches or

tries to deduce a clause to matcn a goal clause. When it

fails and rejects a clause the original sroal clause is

reconsidered and an attempt is made to find a subsequent

clause which also matches the eoal [59] .

G. PRODUCTION RULES and DEDUCTION SYSTEMS

Production rules, as they occur in deduction systems,

are general statements in the form cf ' implications, which

the system uses to deduce new or implicit knowledge.

Conceptually a rule would have the format

antecedent => consequent.

The antecedent part of a rule (lhs: left-hand-side)

represents a set of assumptions or conditions, and the

consequent part (rns: right-hand-side), a set of goals or

actions [27] . Thus, the control structure amounts to a

simple "recogni ze-act" paradigm.

Each rule is designed to "be ideally,
an independent chunk of knowledge
with its own statements of relevance
(either the conditions of the lhs,
as in a data- driven system, or the
action of an res, as in a

a-oal-directed system [1£] .

The significance of the production rules is revealed

when they are considered together with a data base of facts

and an interpreter for the rules. With this combination, a
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deduction systen-1 may b a constructed. For erarrple. the

deduction system below called ES.CV has two productions, LSI

and LS2, and one fact, Fl, also found in the data base.

IS.CV: (LSI, IS2)

DS1: ((car is FIAT) and (type is Sportscar) =>

(car is Spyder )

)

DS2: ((make is Foreign) and (size is Small) =>

(car is Sportscar") )

Fl : FIAT is foreign-made.

Given that we nave a small FIAT, we would like to

determine if it is a Spyder. This can be done by applying

the rules and the facts in the following manner:

1) Apply Fl => foreign-made

2) Apply IS 2 => car is a Sportscar

3^ Apply ESI => Spyder (which was what we wanted )

This graphs into:

F1: X is FIAT X is foreign-marie

(by DS2)

X is SDortsca:

* (by DS1)

X is Soyder

X is small

Any conclusion is usually derived from many productions,

'he A conclusion in an individual production follows from a
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conjunction of the facts ,all asserted to be true, In the

antecedent part. A conclusion reacned by more tnan one

production is done so through tne disjunction of those

productions. This translates into an And/Cr tree

representation of the productions and conclusions. Figure 3c

is an example of such a representation.

Working from known facts to new, or deduced facts (as in

the above example) utilizes forward-chaining. However, a

deduction system can also employ backward-chaining- by

hypothesizing a conclusion and using tne productions, to won 1*

backward toward an assertion of all the facts necessary to

support the hypothesis [64]

.

The advantages of deduction systems include:

l^They seem to provide a decent model of human

problem-solving behavior. Humans informally deduce

much from their own observations, experiences and

education .

2)The knowledge base provided by all thP

productions may grow incrementally with the simple

addition of new productions.

3 )Da ta-driven programming is induced. Thus, a

piece of knowledge (that is, procedure) nay be

applied whenever it is appropriate without having

to have been planned for anead of tine.

The second advantage can become more a problem if the
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growth of the 'cnowled^e base is allowed to ^et unreasonably

out o** bounds. A way tc prevent this is to partition the

facts and productions into subsystems (based on sore

relationship) so that at any given time only a manageabl

number are available.

PLANNER, CONNIVES, and POPUP, are nicely suited for

implementation of a deduction system. PLANNER provides

consequent theorems, CONNIVE?, offers II-NEELED demons, and,

PCPLSR has a rondi ti on-consequen t conditional. All are

analogous to the "si tuation=>action"-type production needed

to represent knowledge in the data base. Also. PLANNER'S

antecedent theorem and CONNITEP's I7-ALDEL demon will add

and delete facts from the data base as new facts are

introduced

.

Deduction systems are being veil-exploited for the

development of cnowledfe-base''. expert systems (e.£r.» VYCIN.

BENDRAI, LECAICS, CEYSALIS, and PROSPECTOR, see Appendix I \

where formal and informal knowledge of the domain, and even

the way the expert thinks in that domain (e.g., MTCIN), is

crystallized into a set of production rules [12].





H. PATTTERN-DIRECTED INVOCATION and RETRIEVAL

Pattern-directed invocation of functions ana

pattern-directed data retrieval are deductive techniques

tnat nave recently tecome quite popular ana for some tasks

absolutely necessary. The phrase "pattern-directed

invocation is somewhat self-explanatory. It refers to the

method of invoking procedures indirectly, i.e., based on a

pattern match, rather than an explicit call to a location.

The match takes place between the desired output and and a

procedure header. pattern-directed data retrieval is based

on a similar notion. One mignt retrieve an assertion (fact)

f^om tne data base by matching a pattern containing the

known components and their order against all the assertions

in the data base. In this manner lar^.e stores of symbolic

data may be manipulated efficiently.

The essence of these techniques is a pattern-matchins"

algorithm which will oerfcrm symbolic eypressicn

comparisons ,a torn—"by-atom. It will allow an expression to v °

specified as a template against data items, in the case of

data retrieval. An example of this idea r&y he taken from

C0NNI 1T iP
t whose pattern matcher may be used or arbitrary

IIS? data. It is desired to fetch items from the data base

that match tne pattern (template):

( ( EUREKA ?X) ??.EST)
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The above template is found tc mat eft both

((EUREKA EUMBOLET) COUNTY) dad

((EUREKA I'VE ) FO'JiMT IT).

generating the association lists

(

(

I HUM EOLD? ) (REST ( C OU N TT ) ) ) and

( (I I '72) (''EST (FOUND IT)))

wnere 7. and REST are specified as open pattern variables.

They are so indicated by the prefix "?
. In general pattern

variable must nave type declarations which are done via

special prefix symbols [4] .

Templates provide a very flexible
and easily understood way to specify
the form of data items required,
without the user having to be aware
of how the items are stored [4]

.

In the case of subroutine selection. a template is

specified as part of the definition of eecc subroutine. Tee

subroutine will be executed if its template matches the

actual arguments of the expression that invoked it. ".n

example from [4] demonstrates this idea. Consider t
v e

following two functions, PIUSS INGLE and FLUSZERO, which

might be part of an algebraic simplifier.

PLUSSIMGIE : (GLAMBLA (PLUS <-I) *(s^

PLU3ZSR0 : (CLAMEDA (PLUS £ <-<-T)
('(PLUS $$X))).

99





The single arrow prefix (<-) indicates that a single

argument is to "be matched. A doutle arrow prefix (<-<—) on a

pattern variable indicates tnat any numter of arguments will

be accepted but considered as a single entity. PLUSSINGL2

will, given any form of PLUS followed by any single element,

return that single element. PLUSZEF.O presented with any form

of PITTS followed by any number of elements, one cf which is

2, will return the form PLUS followed by all the other

elements of the argument [47]

.

Functions invoked by patterns are typically defined for

an application toward a specified purpose. Some functions

are used for consequent reasoning, and some for antecedent

reasoning. In the first case, a function Consequent

reasoning is required wnen trying to determine the truth cf

as assertion not explicitly represented in tne data bas=.

?ome consequent procedure would be invoked by a successful

match of tne assertion in questionto a pattern that

indicates the type of assertion proven true by a successful

execution of the boay of the procedure. On the other hand,

antecedent reasoning is used when a program attempts to

cause effects on tne data base [47]. Thus, consequent

functions are tried when a goal is desired and antecedent

functions when the data base is to be updated. This allow? a

top-level program to invoke a subroutine to produce a

certain data structure, without having to know which

subroutine will respond to the request [4]

.
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Pattern variables are special variables used in a

pattern specification or template to indicate what the

context or binding of the variable rust be in order to make

it eligible for a match. In general, a pattern variable is

typed as bein^ "open" or "closed". An open variable will

piatch anything whereas a closed variable will match only an

item equal to the previously assigned type-value of the

variable. Although PLANNER and C0NNIV3R 'aave no closed

pattern variable, they,li*ce 51I5F and INTSELISP (which do

have a closed pattern variable type ), provide a semi-open

type. It will match any item, if it has net been previously

matched

,

otherwise it will match the previously assigned one.

Thus, it acts as an open variable tne first time and a

closed variable thereafter. Instead of a semi-open pattern

variable, CONNIVE? ha? a type "macro". The macro has two

values, one which instructs substitution of a CONNIVER value

and anotner to substitute tne LIS? value in the template

[4]. FOPLE^ offers the greatest variety; four types, two

modes, and restrictions for any of tne types. The

restrictions are in terms of data type or some

user-specified tests. The variable types include one closed,

one semi-open and two types of open. One that permanently

assigns values and another that temporarily assigns a value.

setting up a failure-action to restore the old value.

In addition to COMNIVEF, PLANNER, CUSP, and INTERIISP,

the languages SAIL, TELOS, and PROLOG also lcsspss pattern
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matching facility. In SAIL, the mechanism is Limited sines a

template is simply created by specifying ore or more items

of an association. A search on the data base then occurs in

order to find all tne associations whose items match tne

specified items in the template. For example, the

association

MONTEREY - = .

could be provided as a template. Ail the triples in tne data

base with iteml = MONT5!RE ?r would be returned as matches, and

each triple would be executed in turn.

In 7EL0 C
, as well as SAIL, the primary use cf patterns

is in associative referencing. For instance, tne instruction

GET(person[ ? age rgrpater (20) ? ])

» can serve as a template for retrieving a data base item,

where the "prea ter"is a pattern function [59].

In PROLOG, there is a facility called "unification" which

is explained as "pattern matching + logical variable [62] ".

19771. A logical variable is distinguished by tne fa^t that

it is unprefixed. That is, there is no distinction made by

the programmer as to whether it is open, close, semi-open,

etc. The programmer need never be concerned with whether it

is assigned or bound or not. The system manages that aspect.

To execute a *oal, the system searches for the *'irst clause

(recall that PROLOG is a predicate logic based language)
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wnose head (i.e., procedure entry point) matches or

"unifies" with the goal . The process of unification then

finds the most general common instance of the two terms. If

a match is found the found-clause is activated by executing

in turn each of the goals within its body. Absence of a

ma.tch causes backtracking- to occur to the point that the

original goal may he reconsidered and an attempt made to

find a subsequent clause that also matches the goal [52],

GLISP also offers a "unification" mechanism for pattern

matching. It does not have the same effect as that of

PFOLOG, however. In CUSP* this mechanism will let eacn of

two expressions act as templates for one another. Tee

facility is invoked by the keyword MATCEQQ. An example of

its usage may be shown as follows:

MATCPCC (A (I <-X) <-!)( <-X <-Z (A (I C))).

Here X, I, and Z are open variables. The effect produced is

that X is matched to A, Y to ( \ (3 C)) and Z to (5 k)

.
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I. DISCRIMINATION NETWORK

A discrimination net classifies information on the basis

of some of its properties. It is a tree—like structure in

which the nodes represent tests to apply to an expression

and tne arcs represent values returned by the tests. These

tests can then be set up to find out if some specified fact

(in the form of a list of atoms or an arbitrary expression)

is stored in the data base [9] .

In OIISP, a discrimination net is used to represent the

form of. a data base. All data is stored in a conmon net so

that equivalent expressions may be represented uniquely.

Only one instance of an expression may occur, so. before an

expression is entered into the data base it is transformed

into a canonical form [471. This enables an expression in

the net to possess a permanent property list just like that

of a IISP atom [4]. JTcr example, the discrimination net in

figure 4c contains the expression USE (dinkshot) which would

possess a property list that includes the following

information:

locatior Fron tside

Shot Length Short

Type of Return Defensive
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DEFINITIONS FOR CONTROL STRUCTURES

1. Recursion

A recursive technique is one with an
essentially hierarchical character, that can
he naturally described in several levels of
detail. And a recursive procedure is one that
can refer to and operate on itself, so that
it can he "nested" within itself to an
indefinite number of hierarchical levels [5] .

The factorial routine below is an example of a recursive

subroutine

.

SUBROUTINE FACTORIAL (N)
FACTORIAL 1=1
IF N > 1, FACTORIAL N = N » FACTORIAL (N-l)
END SUBROUTINE

Using iteration instead of recursion tnis routine would

appear somewhat longer and more awkward to read and write:

SUBROUTINE FACTORIAL (N)
FACTORIAL = 1

IF N <= 1 THEN X:
FOR I - 2 TO N

FACTORIAL = FACTORIAL * I

NEXT I

X: RETURN
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2. Unification and Instantiation

Unification attempts to find substitutions of terms

for varables to mafce expressions (well-formed formulas)

identical .

Very briefly and according to [39], a well-formed
formula (wff) is any legitimate expression of the
predicate calculus. For example,

0N(20AT, LAKE)
0N(x, y).

The elementary components of predicate calculus
are: l)predicate symbols-represents a relation in
a domain of discourse, e.g., ON.

2)variable symbols-permits one to be indefinite
about which entity is bein? referred to, e.g,, x

and y.

3)function symbols-denote functions in the domain
of discourse. For example in^tne statement "The
fast car beat the slow car" wnich may be
represented by the expression BEAT ( fas t( CAR )

,

slow(CAR)), fast and slow are the function
symbols

.

4)constant symbols-simple term used to represent a

physical object or entity in the domain of
discourse, e.g., BOAT, LAKE.

The wffs above are atomic. More complex wffs may
be formed with connectives such as (and), V (or),
=> (implies). Example: ON (BOAT, LASS)
IN (FISHERMAN, WATER).

Any wff, atomic or complex, will evaluate to a

true or false value.

With regard to unification, wff W2 may be obtained from the

wffs of the form Wl and W1=>W2 via Modus Ponens inference

rule. Furthermore, the universal specialization rule of

inference allows the wff W(A) to be derived from the wff
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(7x) 'tf(x), where A is any constant symbol. Usins* the two

rules togetner produces the wff W2(\) from the wffs

(Vx) [Wl(x)=>W2(x)] andWl(A). Thus unification is required

to find tne substitution "a for x" that maxes the

well-formed formulas W1(A) and rfl(x) identical [39]. There

are two reasons for performing unification:

1. Resolution. If the two atoms that were
unified (made identical) occur in different
clauses and with opposite "signs'* (one
positive, one negative), tnen tne clauses in
which tne two occur can be resolved.

2. Factoring. If the two atoms that were
unified occur in the same clause with the
same sien, then the clause contains two
identical literals. The duplica te

t

li teral can
be eliminated. This is called "factoring",
and the clause with the substitutions made
and the duplicate literal eliminated is a

"factor" of the original clause [23].

Instantiation occurs wnen the name of a particular

individual or object is substituted for a variable. The

individual is then an "instance" of tne variatle.
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3. Predicate logic

Predicate logic breaks up proposi ti onal clauses

(statements) in order to consider individually the items

about which something is being asserted. For example, the

proposition,

"the frog is in the water"

would be dealt with as one statement or entity in

propositional logic, about which one would assert its truth

or falsity. This statement however contains two items from

the real world, namely "the frog" and "the water." The

relationship between the two is expressed by the words "is

in." The phrase "is in" may be represented by IN and is

considered the predicate. The individuals, "the frog" (FROG)

and "the water" (WATER) are the arguments for the predicate.

Thus, the original proposition may be restated in the

following way:

IN (FROG, WATER)

Any of the operations of propositional logic may still be

applied to the statement.

The power that predicate logic adds is in the fact

that the arguments of the predicate need not be named

explicitly (instantiated). They may be variables, i.e.,

IN(x, y), a much more general statement yielding a more

general and flexible reasoning capability [23] .
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4 . Pesolution Logic

The basic idea of tHe resolution principle is to

prove the the converse of a theorem is false. Thus,

resolution is a metnod for proving tnat a false statement os

indeed false, hut not necessarily that a true statement, is

true. Nevertheless, the advantage of this method is that if

a theorem is true, a proof will he produced after a finite

number of steps [26]. The fundamental technique employed is

the conversion of an implication to an expression that

contains no implication. That is, if 'p implies q' thee it

is eqivalent to state 'not p or q.'

Given a set of premises, the procedure for deriving

a conclusion is as fellows:

1. Form a new set of premises from the given
premises and a negation of the conclusion.

2. Derive a contradiction from this new set.

3. Assumption of tne original premises to be true
and the derived conclusion to he false leads tc a

contradiction, therefore tne desired conclusion
must he true wnenever tne premises ar true. Thus
the desired conclusion follows from the premises
[23J .

In general, resolution is more easily programmed

than the other computational logics. It can nandle complex

premises and conclusions. However, because of combinatorial

explosion it can't be used to prove deep mathematical

theorems verifying complex, computer programs or to aid a

robot cope with real world complexities. This is a result of
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tne need to derive many clauses (through unification,

resolution and factoring) that are relevant tc deriving a

conclusion. A great deal of time is wasted though following

lines of reasoning that cere to dead ends [23]

.

Resolution can "be used as the logical mechanism for

theorem-pro vers. It has also been used in natural lan^uap'e

understanding systems, formula manipulation and symbolic

integration systems, and STRIPS-style problem-solvers.

One language especially well-suited for resolution

programming is PROLOG [60] .
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V. SUMMARY

Summary Ciaart of AI Languages and Tiieir

Data and Control Structures

LANGUAGE: TATA STRUCTURE: CCNTRCL STRUCTURE

irii

CC^IT

ISiisr

INTERLIS?

OIISP

PLANNED

List

S trini?

List

property lists

Sequential

Sequential

Hierarchical

recursion

as in LIS? plussame as LIS?

plus strings, pattern matcnir.g and

arrays, and user frame-oriented

defined data types control

sane as above

plus tuples,

bags , classes ,

and vectors,

discrimination

net data "base

List, data base

made of assertions

and antecedent and

consequent theorems

sane as above plus

demons

global backtracking

pattern matching,

demons

recursion

10;





C0NNIV3H

LEAP

SAIL

list, If-added,

If-needed theorems

in a context

oriented data "base

Sets, associative

data "base, pro-

perty lists

same as LEAP plus

non-recursive list

s tructure

pattern matching,

demons

,

coroutine capability

recursion

oat tern matching

pattern matching,

coroutine capatility

recursion

-r ur Li a list, con text-

oriented data base

with PLANNEa-like

theorems

pattern matching

recurs i on

??OI3G

A252T

List, record ,

frame, assert-

ional data base

Sets

pattern matching,

backtracking

recursion

TSLOS as in PASCAL plus

encapsulated data

s tructuring

pattern matching,

coroutine capatility,

demons, recursion
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71. CONCLUSIONS

Artificial Intelligence is the use
of programs as tools in the study of

intelligent processes, tools that help
in the discovery of the
thinTcing-procedures and epistemologi cal
structures employed by intelligent
creatures [5]

.

This statement is generally representative of the

feelings of many AI researchers. The role of prc?rarrmin<?

languages in AI is an undeniably major one. Moreover, the

requirements of AI are complex, ambitious, and demanding to

the point that general purpose conventional languages are

inadequate. In fact, it is likely that data representation

tecnniques or control structures invented for today's AI

needs will inevitably be incorporated in conventional

languages for more general purpose computing [22j

.

There is sor^e mild difference of opinion as to the

importance of data structures versus control structures. The

argument is that the data structures needed in Artificial

Intelligence do not really differ from those needed in

general. Thus the key to efficient processing really lies in

the available control mechanisms of a programming language

[22]. However, this statement becomes l°ss accurate as th c

distinction between aata structure and control structure

becomes increasingly fuzzy. For instance, frames and

contexts are considered a? data structures in Chapter III.
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Tb.e reasoning was tnat they can be considered data entities

with which are associated certain operations for their

manipulation, e.g., create, delete, and modify. It may also

he argued however that these are control structures. A frame

slot for instance may cause the invocation of some procedure

or the retrieval of another frame. Therefore in order to v e

thorough in the coverage of the special feature^ required

for AI programming, data structures as well as control

structures must te considered equally important, to the

possible extent at times that their distinction ray seem

entirely arbitrary.

Without exception, the languages employed in AI are

symbol manipulators. More specifically, as mentioned

earlier, they are either list processors cr string

processors (although a string- may be manipulated as a linear

list). The idea of a string processing language is becoming

an obsolete one, as strict string manipulation is too

restrictive for most applications. The current trend is to

incorporate string processing capabilities in li c t

processing languages. The notion of 'CDP-encoding ' was

intended to achieve just that for LIS?. It implies that

segments within a list will be stored in sequential

locations in memory. Instead of the normal representation

for a list, e.g., 1IST(W X I 2):

f €1 H
iV\

w

105





it mi^nt look something like:

^4^t
W X Y Z

This would be nicely suited to records or packed data

structures that are generally manipulated as whole entities.

The advantage is a substantial savings of storage as

locations containing pointers to the next list item are no

longer needed. This is the very advantage that string

processing has always had over list processing [S]

.

Sy now, there can be little disagreement as tc the

primacy of the list structure in AI programming. lata that

is represented internally in a list structure conveniently

allows for dynamic storage allocation, a basic necessity for

AI computing. Those languages which don't provide it as a

built-in feature provide ^ood facilities for allowing- the

user to define sucn a data type as well as operations for

its creation, deletion, and manipulation. Although list

processing is a necessary capability for a good AI language

tc possess, there are other capabilities that should be

considered highly desirable as well. Tne qualities listed

below are seven of tne most important.

1. Languages snould be based on a single compiler or

interpreter so that the basic control structures needed are

easily accessed and AI systems may be developed by writing

packs of procedures [22]

.

106





OIIS? , CONNIVER, and PLANNER must be translated into

LISP as a halfway sta^re. Most systems written in these

languages have some modules or procedures written in LISP or

INTERLISP. In sore cases it is even necessary to write a

special purpose language in order to do processing on a

certain task efficiently {e.g., STRIPS, SFRDLU, ^ee appendix

3). The result is that most systems are implemented in

INT2RLISF.

2. Languages should offer simple control structures as

opposed to complex, elaborate ones [22],

Elaborate control structure can hinder as often as help

the user rot intimately familiar with its manner of

operation. The well-used example of Global backtracking in

PLANNER demonstrates this point. Its casual usage by a naive

programmer will lead to considerable inefficiency.

3. The ways in which complex control structures ar c us e d

should be studied to determine if more efficient

implementations coula be designed into a language [22].

Tor example, recursion is generally space consumptive

and slow. It was discovered tnat many uses involve recursir*?

an expression to ^et a value that is then merely passed back

up through the chain in which tne expressions themselves do

not change. This is net an efficient use of recursion.

Tail-recursion is a compromise between recursion and

iteration, was invented to make recursion more efficient

107





under such, circums tances . In a tail-recursion situation,

recursion is used to compute a value, which is then passed

back up the chain at which point the procedure can he

converted to a simple iterative procedure. The value of this

technique is in the substantial space (and time) savings,

since tne intermediate activation records for eacn recursive

step need not he saved.

4. Garbage collection remains as one of tne most

effective and simple methods for reclaiming abandoned

storage cells.

5. The use and manipulation of patterns is becoming an

increasingly important capability for variety of operations

including data retrieval, procedure invocation, and

unification.

Currently the general pattern matching operation returns

too little information. Either a failure is reported on a

match is with no indication as to how close the matcn might

have been in the case of failure. It would be useful to have

a measure of 'fuzzy' matcning for dealing with expressions

on a semantic level [47] .

6. Lata storage and retrieval mechanisms should be

incorporates that will not just distribute data randomly

throughout the store [47]

.
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It would "be useful to many applications to nave data

stored on a semantic "basis rather than a syntactic cne as is

most oft*=n the case. That is, seme method of storing that

considers some relation among some data items such that they

are linked or stored in close proximity to one another.

7. Facilities for user defined data types should be

considered more desirahle than a multitude of "built-in types

that may turn out to he insufficient for unanticipated

needs

.

LIS? is one of the oldest high level pro,? ramming

languages, the second oldest in fart according to its

inventor, John McCarthy [34] (FORTRAN being considered the

oldest). It is also the most popular for AI programming. For

no one particular reason, but rather a combinatior of

several (including the rapid growth of AI research), IIS?

has become tne AI programming standard. There n.a.va teen and

still are many contenders for that position but so far none

offer sufficient improvement over LISP's capabilities to

warrant majority acceptance. The fact that LIS? gives good

access to the features of the nost macnine and its operating

system, the availability of its interpreter as 5 command

lan^uap-e for driving" other programs, alcn^ with its internal

list structure that makes it a good target for translating

from yet higher level languages, make it a convenient

vehicle for higher level systems for AI [34] .
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LISP possesses nearly all the qualities of a s-ood AI

language that were listed above. It Has tne distinction of

having the first compiler written in the language to "be

compiled [34j . The LISF interpreter is also written in LISP

and is about one pa,?e in Length..

LIS? has a small set of selector and constructor

operations that are expressed as functions. Simplicity is

derived from the small number of these functions. The fact

that these operations were made into functions together with

the ability to have branching within function definitions

enabled LIS? to become an entirely applicative language.

That is, everything in a LIS? program is presented as an

expression. Separate procedures for function definition are

not needed. There is no need for statements (such as koto's

and assignments) of the type found in most lansruaees. LIS?

is based on the iaeas of the Lambda calculus. Conditional

expressions may be recursively employed for building

computable functions. Programs ™&y be represented as data,

and data as programs for that matter. These aspects

contribute to the partial, but significant, achievement of

one of McCarthy's original design goals, that is, +o provide

the capability for programs to be proved correct.

The availability of a property list structure, automatic

garbage collection combined with features already mentioned

(such as recursion and data-program ind is tinguishab ili ty

)

have made LISP extremely well-suited to past AI programming
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needs. This has led McCarthy to make the clain and justly so

that "IIS? will become obsolete when someone makes a rore

comprehensive language that dominates LISP practically and

also gives a clear mathematical semantics to a rore

comprehensive set of features [34]." Altncugh LISP is

adequately suited to most current AI programming needs,

capabilities such as pattern matching, meaningfully

organized data storing, and user defined data s t ru~ turps ,

all of which are becoming increasingly important to the

implementation of applications systems, are not offered.

However, IIS? does provide the framework for building higher

level languages that do offer these features. QIISP,

CON NITER, ^v.d. PLANNER are examples of such languages. In

seeding a higher level of program abstraction certain

flexibilities are inevitably sacrificed. This is mcst often

the case when the new extensions are convenient for certain

types of applica tiers . If an application is ^a unusual one

and efficiency is required the designer is usually forced

back to a familiar basic language-such as LIS?-to either

utilize directly or build a new special purpose language

upon (e.g., the PROGRAMMAR language in Winograd's SHRDI1

system, see Appendix B). PLANNER fell victim to such a

circumstance. PLANNER'S emphasis is or its ability to

procedurally embed knowledge. Global backtracking hs

included to relieve the programmer of having to specify how

it should be done, thus making the language as nonprocedural
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as possible. What was not anticipated was the number of

applications that preferred a PLANNSR-like language for

implementation but required programmer control over

backtracking, as in the case of learning systems. FLANNEL

has nevertheless made a significant contribution to lan^ua^e

design. It has pointed out a path toward the ultimate

desirable characteristic of any AI language, that of

nonprocedural! ty (see appendix *).

CONNIVER is an improvement over PLANNER (e..<*., Global

backtracking removed) and it is an implemented language

whereas full PLANNER never has been. CONNITTSR is of course a

PLANNEF-like language. Tnerefore one may program

instructions to the system such as "imagine you were to do

that, and tell me what would happen if you were to find that

such and such were true," or "What did you learn about this

wni le you were trying out tnat huncn that eventually you

abandoned? [5]" n ere, as in most CONNIVES programs, the

programmer is relieved of the considerable detail of

specification of the manner of achieving various goals.

"Such intellectual subtleties are not straightforwardly

expressible [5]
."

Another PLANNER-like lan^ua^e is PHOIOG. Unlike PLANNER

it is not based on LIS? and it does have working compilers.

Pattern matching is extensive and an assertional data base

is provided [36], The efficient usage of this language is

highly dependent on the expertise of the programmer.
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Although current users are nearly fanatical in their

devotion, it is not an easy language to learn and will

likely not acquire massive popularity in the near future

[36].

The POPLER language is asrain PLANNEE-like . It is

written in a lower level language called POP-2 which is

similar to IIS? in many respects. POPLEB combines features

of PLANNER and CONNIVE?. It has "borrowed the concepts of

assertions and theorems from the form°r and context

mechanisms from the latter. Also, as in PLANNER, a failure

mechanism and backtracking are an important part of the

control facility. However in POPLER tne user is allowed to

specify failure actions via an "action list." F0FLE5 is a

well-documented and user-friendly system but has not yet

been used for any major projects and currently resides only

in Edinburgh O]

.

m here are a few other languages that na.ve no relation to

LISP, and are not FLANNER-like , but are AI languages

nonetheless. They include TEIOS, A3SET, and SAIL. TELOS

,

founded on the PASCAL language, provides pattern-mat chin?,

an elaborate user-def ineable data structure mechanism,

coroutine capability and even demons. It should be able to

compete successfully with most of the popular AI languages.

No major systems to demonstrate its potential have as yet

been implemented in TELOS.
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The ASSET language is founded on ABSIS , a declarative

language with heavy emnhasis on the use of proposi tional

logic. ASSET is a/i extensive improvement over its

predecessor but maintains the same goals, that is, to

distinguish between the ordering of decisions and the

ordering of evaluation, and the manipulation of partially

evaluated programs [16j . These are valuable iaeas for AI

applications systems development. Like TELOS , no major

system has been written in A3SET making it difficult to

remark: on its practical merit.

SAIL is an established , relatively well-known language.

It is an extension of LEAF which is based on ALGOL 60

constructs. It has its own compiler, a feature that makes it

unique among most AI languages. It has a few limitations

nowever, including the fact that erasure of abandoned

storage is the programmer's responsibility, as is the

specification of which variables to save or restore upon

backtracking. Lists are a recently added data type but will

not efficiently represent multi-level linked structures such

as trees and graphs in a uniform way. However, SAIL dops

have elaborate process control (see Coroutines, Chapter IV)

and some new communication features. It will likely maintain

its current, general popularity as it evolves in a stable,

reliable manner to meet the needs of its users [4].
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Finally, OLISP, another PLANNEH-like lan^uare, offers a

rich variety of 'lata and control structures over which the

user may opt for control. The most hopeful prospect for a

general, efficient, and flexiole programming system for AI

lies in a QIISP/INTEH1ISP marriage [4] . INTEP.LISP is an

extension of LISP 1.5 and currently the preferred lan?ua,?e

for applications systems implementation. Its popularity is

srowinp* as it offers the user all the desirable basi~

features of LISP plus aids that make it more user-friendly.

The two-la n?ua?e pro^ramminp- system is presently under

development. It is likely that AI programming will proceed

in the direction of CLISP/INTEP.LIS? until a rajor conceptual

breakthrough is made in the -Hdy in which programming is

approached

.

Although LIS? has been the standard AI lans-uae'e for over

two decades it has only been in the last few years teat it

has acquired most of the popular attention that it now

receivps. Either mere users and system implementers

discovered a need for its capabilities or were simply

finally ready to accept its unfamiliar appearance. Likewise,

the next major advance in programming languages will

probably be based upon an old idea or a current one perhaps.

Tor instance, it may include Eackus 's notions of functional

programming, that would liberate programming from its von

Neumann, word-at-a-time , style. No doubt. this would

ultimately be beneficial to AI programming needs.
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APPENDIX A

??CC£i:T ?.AIMT5?.

In the roughest sense, proceduralness refers to the

decree to which a programming lan^uave will allow the

programmer to specify ho* operations on data are to be

carried out. Thus, a lacic of proceduralness constrains a

programmer to merely specifying what is to be done to the

data, while the system is left to worry about how to do it.

Procedural vs. nonprocedural may also te viewed as the

difference between explicit and implicit specification for

processing of information [25J . At one end of the spectrum

exist these nonprocedural, or declarative, lans-uaves (i.e.,

the "what" languages), wnile at the other end can te found

the procedural languages (i.e., the "hew" languages"). Among

tiie latter, as far toward tne end as one may go, ere machine

languages (in which a programmer must, give tne rncst detailed

instructions to the computer}. At tne other extreme, one

would find all tne pro clem describing languages, which a^e

declarative by nature [46]. Included in this group are The

report veneration lan^ua^es , in which a sample command would

be "calculate the payroll for tne ABC Ccmpany."

According to Sammet [
A c\ , a language demonstrates its

nonprocedural character in one of two manners. Either tne

user is required to submit an ordered sequence cf steps,

each of which is 'somewhat nonprocedural", or a set cf
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executable operations whose sequence is not user-specified.

Report generators (e.g., RPG-) are constrainec in application

and the user need only specify the input and aesired output

without any specific indication as to the procedures needed.

Thus they are exemplary of the most nonprocedural lan^ua^res.

It nas been contended that progress along the

hcw-to-what soectrum may he considered as a measure cf

progress in AI research, provided that a proper ^oal therein

is to create sophisticated declarative higher level

languages. N'ilsson[36] feels that AI languages are already

moderately far alcng toward tne "what end of the spectrum.

PLANNER is probably the most declarative of the current .-.I

languages. It is a goal-directed language in which the user

may "specify high level roais in general t = rms without

individuating all the particular objects and. operations

involved in their achievement [5]." It has established the

model for nonprocedural, or FLANNER-like , languages.

Here a^ain, the user specifies "what" rather than "how'

.

In PLANNER, one states a goal tnat the systen thee matches

to the index of ?ener^i patterns and for which it attends to

certain "bookkeeping matters. However, FLANNSP has been found

to he "inefficient and hard to control [35]." Only a portion

rf it, called ^icro-PIANNSF nas ever been fully implemented

.

In fact, it seems that PLANNER'S major drawback is its

inflexibility. M ost users want more control than PIANNFR

allows, to tailor some procedures such as deoth-first search
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ana backtracking (automatic features of tne language ), to

mere efficiently fit the particular problem at r.an J
. Cut of

tnis type of frustration, Sussman and Mdermott [5c] created

the CONM^SR language. CONNI^SR is more procedural, ar.d was

designed to implement Sussman 's problem-solving system,

HACKER (s^e Appendix 3). Curing tne implementation he

discovered potential inefficiencies and dead ends of which

he would otherwise nave remained unaware nad he continued to

program the system in PLANNEE. CONNIVES allows greater

programmer control ever backtracking for mere efficient

t ree-searchine1

.

The tasic argument in favor of working toward tne

development of increased nonprcceduralness is that

declarative languages are relatively easier for people to

understand and communicate. Tne programmer is also freed to

think about a problem at a more atstract level. Eut» in

order to accomplish the goal cf developing a sopnist icatec"

nonprocedural programming language for AI the computer must

have stored within it a large amount of background and

Knowledge of the subject matter of a request. Thus the more

nonprocedural a language is, tne mere knowledge it rust nave

proredurally embedded withn itself. FIANN'EE, without a

doubt, is furthest along in this d c sirTn. Hewitt has

developed and incorporated into FLANNEE a "Tresis of

procedural embedding" wnich states that "intellectual

structures should be analyzed through their procedural

118





analogues. For example, the analogue of a data type is the

set of procedures which create, destroy, recognize, and

transform data, or, tne analogue of a drawing is a procedure

for making the drawing [2?].

k language that is even more nonprocedural than PIANNSP.

but, still far less nonprocedural than a report ^Heratc*-.

is an older language, COI^IT, which was created to facilitate

string data handling. Everything to be done in this language

is embodied within a so-called "rule' . Any action to >e

taken depends upon notation and position within 1-1 a ruli

[43 J.

The format of a C3 M IT rule is:

statement la eel target pattern = actior // go -to

In each rule, tne programmer specifies what the pattern o^

interest is, what is to be done if the target pattern is

found, and what location to branch to in order to find the

next rule to evaluate. An entire CCiv IT program is nothing

more tnan a series of such rules.

Nonprocedural is really a relative term that in fact

changes with the state of the art. As compilers are

developed to cope with increasingly complex sentences, the

nature of tne term changes. Thus, what is considered

nonprocedural today may well be procedural tomorrow [4*r] .

The debat<= over tne amount of proceduralness an HI

language should possess will likely continue for sore time.

The principle is that of tne proceduralist versus tne
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declarat ivis t philosopy of knowledge representation. The

claim of trie proceduralist is that knowledge should be

represented procedurally, rather than factually. 7cr

example, the information that

"all weekends are relaxing"

would be represented in a declarativi s t 's data base in

exactly that form, i.e., as a single specific fact. A.

proceduralist, on the otner hand, woulo represent it in a

such a way as to allow it to be used more flexibly. The fact

above could represented with four statements, each with a

slightly different viewpoint:

1. Something is relaxing if ev c r it is found rr

be a weekend.

2. (Alternatively) if one wants to snow something

is relaxing, then trying to shew that it is a

weekend may be a good way.

(These are the antecedent and consequent choices tha 1
"

cannot be shown witn a declarative representation.) Then

there are the parallel possibilities taxen from the

negations :
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2. If something is shewn to he not relaxing,

then one nay deduce that it is not a weekend.

4. (Alternatively) if it is desired to show that

something is not a weekend, then snowing it is

not relaxing may he reasonable [64] .

A procedural ist does not like to dpfer the decision about

how a fact may be used. The decla ra ti vi s t however, would

prefer to do so while claiming intent to avoid predjud icing

the future use of the fact.

There are some sound arguments favoring both sides,

such as, y more nonproceduralness in a ian^ua^e irulies a

lower amount of programming effort to produce a working

program. However, it also implies a loss of programmer

control over I/O functions and inability to minimize memory

usage or execution time through more direct control of

hardware operations. In figures Al and A?, Fletcher has

clearly identified the advantages and disadvantages of

procedural and nonprocedural languages, in general.

The dichotomy amen? proficient programmers for

preference of explicit control over various mechanisms has

prompted some language experts to suggest the es Tablish"" p n t

of a "proceduralness factor" [50j . If machine code

represents the most-procedural end and a true

problem-describing language the most-nonprocedural, then

all other languages cculd be each assigned sore value
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indicating how close it is to one end or tne other. m his

would be an interesting exercise, however the final result

would be little more than informational (see fig. A3). \

pros-rammer loo^in,? for a ian^ua^e in which to express a

problem would not nave an appreciation for the difference

in utility of two closely valued languages (like CONNIVE?.

and PLANNER for instance) unless he or she nas prior

knowledge of the basic differencps between the two

languages. This is particularly true when consider ins-

languages that may actually be a mixture of procedural and

nonprocedural parts.

It would be more useful, tut of course more complicated

as well, to devise some type of 'measuring scale by which

the amount of pro ceauralness , to be specified by the user,

can be defined for any ?iven lan^uape [50]." A feature such

as this in PLANNER would have obviated the necessity of

creatine CONNIVSR.
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Nonprocedural
advantages :

Procedural
di sadvantage

-less attention to
utilization of R/W
res ources

use of E /"•/ resources
involved in planning
program

little need to
concentrate or mech-
anical relationships
of I/O processing

-must carefully think
through the program
sequence in the order
the computer will per
form it

focuses programmer's
attention on the pro-

clem itself, and not
on the requirements
of the computer

-programmer s time
divided between under'
standing the problem
and understanding the
computer

•mostly self-document'
ing

-requires additional
effort to properly
document

•relatively simple
learn

to -moderately difficult.
to learn

easier to produce work-
ing programs du c to

more extensive diagnos-
tics and automatic
inclusion
structure
program

of internal
of object

•requires ^ore time to

debug programs

D.A. Fletcher
(Reprinted from Tne Encyclopedia

o'f ComDUter Science, 1375)

Figure Al
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Nonprocedural
disadvantages :

Procedural
advantages

doesn't provide com-
plete control over I/O
functions

•relatively complete
control over I/O
functions

-requires considerable
knowledge of the impl-
entation of control
me chan isms in order to

use the lan^ua^e most
effect ively

little knowledge of
implementation of con-
trol necnanisms needed
as these ar° programmer
resoonsibil ities

•less efficient use
memory

of programs may ><= written
to minimize memory
usage

pro^rarrs require some-
wnat nore time to be
executed

-programs car. be vrit* c n

to minimize execution
time by taking into
account specific E/W
cnaracteristics

T.A. Fletcher
(Reprinted from The Encyclopedia

cf Computer Science, 1976)

Figure A..?

124





NONPROCEDURAL: Frob 1 err—des cr i bi ilp.

COM IT

PLANNER

PROLOG

CONN 1733

P0PL3P

CI IS?
4.3SE7
INTER LISP

71 3 1 S

SAIL
LEA?
LIS?

IFL

PROCEDURAL: Machine Code

Relative Proceduralness
of a I Languages.

F i m re A 2

125





APPENDIX 3

APPLICATIONS SYSTEMS

Practical applications of Artificial Intelligence

research can be found in medicine, chemistry, geology,

general science, psychology, and corr1rcr.5pr.5e

problem-solving. Systems currently operating in some of

these fields are being utilized as knowledge experts, or

consultants. Seme prominent and successful examples of such

systems are included in this appendix.

The following information is presented for each system:

1. Principal designer(s)

2. Location of system development

3. Bate of introduction

4. Implementation language

5. Functional description

6. General design characteristics

7. Where possible, accomplishments and/or

limitations of the system are presented.

Some common terms and concepts referred to in the

descriptions of several of the systems discussed are

explained below.
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i. Theorem prover:

A program whose function is to deduce theorems fro*- an

axiomatic case of knowledge by using strictly logical

methods of reasoning. Sore programs employ very general

methods, wnich are universally applicable in principle

although not necessarily always sufficient in practi^ Q to

solve the problem at hand. Resolution is an example of such

a general met nod, whereby an assertion is shown to >e a

theorem by proving that its negation is im^ossibl^ [5].

ii. Cuesticn-answerer:

A Fro^ram which allows the user to interrogate a data base

(generally, domain-specific) via a natural language (e.g.,

English). Ideally, the system (program N should be able to

"store a large number of facts a^d respond to reasonable

questions whose answers could be deduced from these facts

[38 J .

One of the first question-answering (C-A) systems to

nave been developed was one called EASEEALI [F5] . This

system, written in IPL-Y, could answer questions asked in

ordinary English about the montn, day, place, teams, and

scores for each baseball game played in the American league

in one year. The primary goal of the development of BASEIAIL

was to provide some insight to possible basic mechanisms for

lans'ua^e comprehension.
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* C-A system such as BASE3ALL is made i:p of two basic

parts, a linguistic part and a processor. The linguistic

part syntactically parses ( semant ically as well wnere

possible) the question and determines what information is

being given atout the data teing reauested. Tne processor

searches through the data base for the appropriate

information, processes tne results and reports the answer,

usually in an abbreviated form [35].

iii. Generat ion-and test:

A technique first introduced in GPS, in which plausible

guesses are made of solutions (regarding differences to

reduce between an initial state of a problem and e goal

state) and then tests are made tc see how well the p-uess

fits the circumstances [35].

"Different systems have different veneration processes

for proposing solution hypotheses. Tne particular process is

usually dependent on the nature of tne task. For example,

CENDRAI employs a combinatorial algoritnm that can produce

all the tooologically legal candidate structures for an

unknown organic molecule, ihereas PYCIN uses a logical rule

of inference (backward chaining of production rules) r 17]

.

iv. Hierarchical vs. Heterarchical control:

In hierarchical control (the most usual type) one program

has overall control. All others are subordinate to it as

subroutines are to a master routine. Subordinate programs
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neei not be directly accountable to the highest one, since

tnere nay >e several levels of 'hierarchy
.

' However tee flow

of control passes in one direction only, downward. worpover,

no 'sideways' communication is allowed [5], Figure SI from

[5] is an example of hierarchical control between programs.

In heterarchi cal control, tne responsibility for control

is more equally distributed usually throughout the system

with a greater degree of internal communica ti or . Programs

can address or call one another either 'up,' 'down,' or

'sideways.' furthermore, they may do so at different points

in their processing [5] . Figure £2 demonstrates a

heterarchical control scneme [5].

Hierarcny

Figure Bl

Heterarchy

Figure 22
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1. AM

Douglas B. Lenat

Carnegie-Mellon University

1976

INTERLISP

Functional description:

AM's task is tc formulate scientific tn c ory. In

particular to make new definitions, explore new concepts and

judge the "interes tingness" of its discoveries.

AM is a theorem proposer, as opposed to a theorem

prover, in a primarily mathematical knowledge domain.

General design characteristics:

AM is a heuristic rule-euided system, consisting of a

set of a few hundred rules.

It works on packages called "concepts" whicn- are made

up of many "facets". The facets are attritutes of some

concept that AM would be exploring at seme point. E7ampl°s

of facets are concept name, associated definition, exa^ple^ ,

analogies, etc. AM makes repeated attempts tc fill in values

for (make discoveries about) tnese concepts. Eacn concept is

represented as an active, structured knowledge module. One

hundred very incomplete modules are initially supplied, each
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one corresponding tc and elementary set-theoretic concept

(e.g.* Union). This provides a definite but intense space

which AM begins to explore.

An agenda of "jobs" is maintained. A jet could te

finding a value for a facet in a concept. When a jot is

chosen for processing all potentially relevant heuristic

rules are gatnered and executed. A typical agenda entry

would "be:

CTIVITY :

FACET:
CONCEPT:

Masons :

(1)

(2)

(3)
(4)

Priority :

Fill in some entries
for the GENERALIZATIONS facet
of the FRIMES concept.

because
There is only 1 fcnown 2-enerali za ton of
PRIMES 50 far.
?h° worth rating of PRIMES is now very nigh.
Focus of attention: AM just worked on PRIMES
Very few *s are PRIMES; a slightly more
plentiful concept may be more interesting.

350 (on a scale of 0-12/00) [29].

Accomplishments /I i mi ta t ions :

In one hour of CPU time discovered tne obvious finite

set theoretic concepts and relationships sucn as BeMorgan's

laws and singletons. AM also discovered Squaring.

Squar^root, Natural #s, fundamental theorem cf arithmetic

(unique factorization into primes'!, Goldbach's conjecture

(every » > 2 is the sum of 2 primes), and literally hundreds

of other common concepts [29] .

131





AM qu icily finds its limitations as it has no anility

to discover or create new heuristic rules. Another system

under development "by Lenat, called EUP.ISKO, attempts to

improve on AM in just that regard [27]

.

2. BUILD

S.E. Fanlman

1974

CONNIVE!

Functional description:

BUILD is tasked with solving logic or common sense

problems occurring in a ""blocks world".

General design characteristics:

BUILD's knowledge base includes facts about tre physics

of weight and levers, stability and friction.

BUILD is heterarchically organized around seven high

level procedures. These modules each nave memory and

reasoning power that allow them to call one another when in

trouble.

A typical task would be to rearrange an odd assortment

of blocks into a specific order. BUILD starts by drawing up
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a very simple plan, whicn is gradually elaborated as

necessary or at the reauest of other experts. The first plan

follows SMILES comparison of goal state with initial state

and is sirrply a list of the clocks that are not yet in treir

correct position. The list is ordered, its first members

beins- those blocks whose supports (table or other blocks)

are already in position. Starting with these, BUI ID plans to

call the PLACE routine to deal with them one by one. If

PLACE succeeds immediately in eacn case, the problem is

solved [5]

.

Accomplishments /Limitations:

The modular programming approach yields easier

understanding of the functions of the various parts. Also

BUILD need not compute thoroughly beforehand all the facts

that may be relevant. The system is capable of backtracking

and utilizing all pre-faiure information before cheesing an

alternative path, tfhen it fails BULL! does not back to

the previous choice-point and pick an alternative method at

random? instead it uses its understanding of its failure to

select the method most likely to succeed. If the failed

method is due not to unfortunate choice of method but rather

to a small local difficulty in applying it, 3UILD can adjust

this as reauired and restart the failed method ["5] .
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C ?.
v SAh 1

S

E. Feifenhaum, E.P. Mi,

Stanford University

1377

INTEHIISF

. Enge lm o re

Functional description:

The CRTS AIIS system hypothsizes the structure cf a

protein from a map of electron density that is derived from

x-ray crys tallop-raphi c data.

General design characteristics:

CRYSALIS is a knowledge—"based, rule-grided inference

systerr where tne rules are cf the form:

situation => action

The 'situation' can "be thought of as trie current hypothesis.

The 'action' is a process that modifies the current

hypothesis. Internally, tee si tuation-nypcthesis is

represented as a node-link graph with distinct levels, each

representing a degree cf abstraction. A node represents ar

nypotnesis and a link represents support for a hypothesis.

The situation-hypothesis is formed incrementally via a

seauence cf local generate-and-tes t activities.
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A simplifying strategy is employed that maintains only

one best situation-hypothesis at a time and rrodi +, ies it

incrementally as necessary as the data changes [17j.

4. DSCAIDS

T. Busce^i and J. Masica

Naval Postgraduate, Monterey

197~

INTERLIS?

Functional description:

DSCAIDS has designed to assist in the organization of

decision aiding cnaracteristics relating to m d i) t e r

resource allocation alternatives j Inf ormat ion

concerning tne organization s tas'-r, technology, environment,

and structure characteristics is sought from tne user during

an interactive consultation session. Eecommendations a^e

then provided by tne system.
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C-eneral design characteristics:

DECAII? is a knowledge-based production rule system that

employs a backward chaining search strategy. T^e knowledge

base consists of 41 rules and 23 parameters represented in

an implied ANE/OE tree.

The framework: of Stanford University's E^V CIN inference

engine (a product of the MYCIN project) was adapted fcr

DEC-AIDS f?] .
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I. Feigenbaum and I. Lederber*;

Stanford University

1965

INTEELIS?

Junctional iescription:

DE ND3AI " s task is to assist the an a 1 y t i s cne m i s t in

enumerating plausible structures (atom-bond graphs] for

organic molecules. Given an observed fragmentation pattern,

C3NDRAI hypothesizes the best structural explanation cf the

data. Its urinary source of empirical data is a mass

spectrometer-an instrument that fragments molecules of a

chemical sample (using an electron beam) and records tne

results. A mass spectrum, tn 3 output of tee ^ass

spectrometer, is a 2 dimensional record of tne abundance of

various fragments plotted as a function of their molecular

weights. A secondary source of data is a nuclear magnetic

resonance spec t rom e t e r ( iMM"R- ) .

DKNDRAL's output is a praph, i.e., a topological model

of the molecular structure of the unknown compound, or the

output is a list of plausible molecular grraphs, rank ordered

with their relative plausibility scores.
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The total size of the problem space is the number of

t opologically possible molecular structures generated with

valence considerations alone.

MetaDENBRAI worics with EENIEAI to automatically form.

test, and modify inference rules. It infers rules of mass

spectrometry by induction from empirical lata for possible

late'" use bv DSNDHAL.

General design characteristics:

EENDP.AL is a heuristic rule-guided system. Rules are of

the form:

situation => action

each with an associated probability of occurrence.

&oal—seeking and achievement is done via the three stage

process, plan-genera te-test [17],

Accomplishments /Limitations:

Heuristic DEN'DRAI has solved hundreds of structural

inference problems, most recently of structures in the

family of organic amines, for which the analysis is

reasonably comlpex. The improvement in running speed of

solving these problems usin^ the specialized heuristi^

methods found in DENERAL over solving them by more general

methods is estimated to be as ±>reat as a factor of ?i6,£CG

[6] .
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6. SLI?A

J. Weizencaum

i

M IT S, Stanford University

1966

COM IT

Functional description:

2II 7 A is a question-answering system tnat is intended to

simulate the conversations "between a -psychoanalyst (the

machine) and a patient. Tne point of interest is the

two-person conversation [5]

.

G-eneral design characteristics:

Noncommital natural English statements are generated ty

ELIZA in response to Questions tendered in English as well.

The system coes not 'understand' questions but rather

att°mpts to make sense (i.e., find an appropriate response)

of them througn extensive pattern matching and

classification [35]. It locks for key words, e.g., I, you,

alike, father, etc. If found the sentence is transformed

according to a rule associated with tne word. If no key word

is found ELIZA responds with a content-free formula such as

Why do you think that?" or with a reference to an c arlier

remark

.
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The knowledge "base is relatively small, a consequence of

having chosen the psychiatric node of conversation . Recent

versions employ frames to make 2II 7 A mcr° in owl edge a tie . A

frame is an organized tody of data, in this case comprising

a specific set of key words and associated transformation

rules [5]

.

a ccomplishments/Limi tat ions :

ELIZA has no capability for understanding the semantics

of the conversation in which it participates. However, it

successfully presents the illusion of sucn. It has lured

many knowledgeable individuals, even sophisticated computer

scientists, into engaging in personal conservations [35].
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7. SPAM

S. Feigenbaum and H. Simon

UC , Berkeley and RAND Corp.

1961

IPL-V

Functional description:

IPA M (Elementary Perceiver and Memorized was designed

to model the human cognitive process of tne rote learning of

nonsense syllables. It is an information pro^essin^

psychology model of a classical phenomenon (rote learning)

well-known in the literature. It serves also as a simulation

of verbal learning "behavior [53] .

General design characteristics:

SPAM utilizes a discrimination network as tne basis fcr

an associative memory scheme. The net is an adaptive

structure that can srrow over time tc incorporate new

stimulus objects that need to be recognized in an efficient

manner [5]

.
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Accomplishments/limitations

:

^he d isc rimina tion net concept of E?AM has been adapted

for other applications, including chess playing- programs,

where it used to represent the patterns of chess "boards

during play [35] .

Spay successfully provided a clear and sirple

information processing structure? the patterns were easy to

understand and gave rise to complex "behavior and interesting

explanations of phenomena that were well understood

experimentally [53].
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3. G3N3HAI PROBLEM SOLVES—GPS

A. Newell and H. Simon

Carnegie Teen., and RAND Corp.

1973

IFL-V

Functional description:

GPS grew out of the LOC-IC THEORIST Machine [37J . It was

aimed at trying to solve a variety of unrelated logic

problems. Emphasis was placed on attaining generality in

problem solving. Tne Quality of tne problem solving process

was a secondary consideration [37].

General design characteristics:

G?^ employs a heuristic search paradigm. This method

consists cf two entities, objects and operators. An operator

wnen applied to an object produces a new object or indicates

inapplicability. A heuristic search problem is:

Given: An initial situation represented as

an object .

A desired situation representation
as an object.
\ set of operators.

To Find: A sequence of operators that will
transform tne initial situation into
the desired situation.

The operators are rules for generating objects and thus
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define a tree of objects. Each node represents an object and

each branch f^om a node represents tne object produced by

the application of the operator.

A method for solving a heuristic search problem is to

search the tree defined by the initial situation and the

operators for a path from the initial situation to the

desired situation [37]

.

The effectiveness of this method is determined by its

rules for selecting operators to be tried (rules for g-uidin,?

the search) There are two basic criteria for selecting

operators •'

Desirability— the operator should produce
an object that is similar to
the desired situation.

Feasibility— the operator should be
applicable to its input
object .

GPS uses the heuristic search paradigm directly? a

problem is given to GPS in terms of objects and operators.

It employs a general technique called means-ends analysis to

guide its tree search. Means-ends analysis is accomplished

by taking differences between what is given and what is

wanted, e.g., between two objects, or between an oblect and
)

the class of objects to which an operator -an be applied. A

difference designates some feature of an object that is

incorrect. GPS uses the difference to select a desirable

operator—one that is relevant to reducing the difference.
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If an operator is not applicatle to an object, an atterrpt to

apply it will result in a difference

—

tne reason it is not

applicable. If the difference is not too difficult* GFS will

tackle it as it would any difference between two objects. If

it is successful, a new object will be produced that

hopefully may nave tne operator applied to it.

GF? has four types of <?oals that amplication of the

operators atterrpt to achieve:

1. Transform object A into object I.
2. Peduce difference D on object A.

3. Apply operator C to object A.

4. Select the elements of set S wnich
best fulfill criterion C [37],

Accomplishments /Limitations '

The introduction of means-ends analysis provided a new

and widely applicable method of Foal achievement [5j .

G-FS successfully solved a variety Of problems including:

tne Missionaries and the Cannibals problem, Integration of

problems such as (sin (ct)cos t(ct) + t )dt, the Towers of

Hanoi problem, the Bridges of Koni^sberg problem, Letter

series completion (e.^., complete the series: LC5L IT . . .
N

problems, and many others [37]..
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9. HACK3R

&. Suss man

MIT

1975

CONNIVER

Functional description:

HACKEE operates in a blocks world where its task is to

develop procedures for retting a Mock or group of blocks

from an initial configuration to a specified goal

configuration.

General design characteristics:

HACKER uses means-ends analysis (see GPS) to accomplish its

task. The data base maintains information en operators

(actions), as well as preconditions and effects of the

operators .

Initial plans are rougn so that wnen mistakes are made

HACKER must analyze what went wrong- and where. Special

debugging programs are supplied for this. Mistakes are then

classified, ^eneralizpd and placed on a list of traps to te

avoided later.
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Accomplishments/Limitations:

HACK3R may be considered a system for automatic

programming, in tiiat it is a problem solving program that

itself writes and improves programs and learns to do so

better with practice [5].
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10. INTERNIST

p. ?ople

University of Pit ts burgh

1975

INTERLISP

Functional inscription:

INTERNIST is a system developed to provide support in

the formation and solution of difficult clinical problems in

internal medicine.

General design characteristics:

INTSP.NIST is a know ledge -based system wherein the

knowledge is represented in two different elemen 1" types:

disease entities and manifestations. Tnere are about 4?£

disease entities and ever 2£k<Z manifestations 'including

symptoms, lab data, etc). Eacn disease entity has an

associated list of manifestations. A value between one and

five is assigned to eacn manifestation estimating its

frequency of occurrence. £y the same token, each

manifestation has an associated list of disease entities,

each of which has a weishtins* factor "between zero and five.

\ partitioned semantic network is used to represent a

hierarchy of disease categories, organized primarily around
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the concept of organ systems, e.g., liver, lung, kidney

diseases, etc. [40]

.

The number of distinct disease entities known to a

practicing pnysician is about 42. However, a patient may

demonstrate /symptoms of the co-occurrence of several

hitherto unrelated diseases. If an upper bound of ten is

imposed on the number of concurrent disease processes

possible, tnen tne number of diagnostic categories required

to classify arbitrary patients is o ^ the order of ten to the

40th.

A. c c o mp 1 i s hme n t s .
/Limitations :

INTERNIST II is a recent enhancement of t
v e original

INTERNIST system. It embodies strategies of concurrent

problem formation that yield more rapid convergence to a

correct diagnosis in many cases, and at least some cases

provide more accurate results [*•£] . One complex case on

which INTERNIST II consulted produced a diagnosis consisting

of: primary cardiomyopathy, congestive heart failure with

pleural effusion, transvdative ascites, cardiac cirrhosis

resulting from chronic hepatic congestion, and acute tubular

necrosis of kidneys caused by cardiogenic snock. Evidence of

systemic embolism was also reported [4£] . The system

required S0 seconds of execution tine to generate that

particular diagnosis of what was considered a relatively

complex case.
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11. MVCIN

E. Snortliffe, R. Eavis, E. iucnanan

Stanford University

1976

INTSRIIS?

Functional description:

M^CIM was designed to assist a physician ^y providing

consultative advice on diagnosis of and therapy for

infectious diseases— in particular bacterial infectious in

the blood. The system is capable of handling interactive

dialogue regarding the diseases and capable of supplying

coherent explanations of its results [11].

General design characteristics:

MYCIN is a mle-guided inference system that employs a

backward chaining search strategy. A certainty factor

between £ and 1 (i.e., probability) is associated with eacn

conclusion.

Each rule embodies a single, modular chunk of knowledge

and states explicitly in the premise all necessary context.

Specifically, a rule is a simple conditional statement

(IF/TEEN or premise/action format). The premise is a Boolean

expression. The action part contains one or more
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conclusions. Eacn is completely nodular and independent of

the others. They are invoked in a 'backward unwinding scheme

that produces a depth-first search of an AND/OB eoal tree

(similar in some respects to PLANNER'S consequent theorems)

of more than 202 rules. The maximum number of rules for a

single sub^oal is 30. veta-rules are available as strategy

rules for su^es tin.? the "best approach to a ?iven subgoal.

They have the same format as trie clinical rules "but can

indicate that certain clinical rules should be tried first,

last, "before others, or not at all. These then provide a

capability f or pruning the search tree, thereby reducing the

feasible searcn space.

Accomplishments/Limi tat ions

:

In mid 1974 a semi-formal study was conducted in which

five infectious disease experts not associated with the

project were asked to evaluate the system's performance en

15 cases of bacteremia selected from current patients. The

experts approved of MYCIN'S therapy recommendations in 72%

of tne evaluations. This is a significant appraisal of

MvCIN's success especially considering that the experts were

not unanimous in their own recommendations [11]

.
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12. PROSPECTOR

R. Duda, P. Hart, P. Barret, J. Gaschnig,
K. Konoli^e, R. Re "boh, J. S locum

AI Center, SRI International

1976

INTERLISP

Functional description:

PROSPECTOR was designed to assist exploration geologists

in interpreting and evaluating data en specific rineraliz^d

sites or prospects [15].

General design characteristics:

PROSPECTOR is a lencwiedge-tased , rule-guided inference

system organized internally as a partitioned semantic

network. The partitioning is hierarchical, in order to

represent a taxonomy of minerals. Top-level nodes of the net

correspond to top-level hypotheses about th a presence of

various types of ore deposits. lower-level redes <re:r

correspond to directly observable p-eolo^ic data, or to

intermediate concepts that can be inferred from cbservables.

A principal taSK is to infer probabilities for the top-level

hypotheses on the basis of available observations [14].
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Pules are of tne form, A => E. A probability factor is

associated with the conclusion B. Two adiitional nurbers

measure the decrees to which A is necessary and sufficient

for B

.

Accomplishments/Limi tat ions :

This system has "been employed successfully as a teaching1

tool for learning about types of ore deposits.

PROSFECTQR has a slight handicap in that a body of

observations, often uncertain in nature, must be interpreted

with the aid of a knowledge base that supports plausible

reasoning but not strict logical inference [14]

.
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13. SERDLU

T. ; ».
r inograd

MIT

1971

tflcro-PLANNER, LISP, PROGAAMMAR

Functional description:

Tile SHRDLTJ program represent? a robot tnat car respond

verbally as well as actively. Emphasis is pieced on language

interpretation rattier than generation. SHREIU's area of

concern and universe of discourse is problem solving in a

blocks world.

General design characteristics:

The SHHDI t
t program is hierarchically organized. Its

knowledge is conprised of those types required for abstract

general pro bl err solving, linguistic processing, and

reasoning in the specific domain of discourse. The combined

store of knowledge is represented procedurally, du° in part

to the use of micro-PLANNER as the primary language of

implementation .

The heterarcny of the system is expressed with three

major programs each written in a different language. The

deduction program, written in micro-PIANNER, nas its own
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"body of Knowledge regarding the specific universe of

discourse chosen. It solves problems of various 'ci nd s in the

~ourse of exploring the consequences of facts presented,

planning actions, and answering questions. The semantic

program, written in LISP, is actually a set of programs

dealing with meaning (whetaer of rfords, word groups, or

whole sentences). The third program does grammatical

parsing. Embodied within it is a particular theory of

"nglish grammar which is used to recognize the st nurture cf

sentences [5]. For this, im'inograd wrote a special purpose

language called PF.OGRAMMAR.

Accomplishments /limitations :

Although SHRD1U can 'converse' sensibly only a tout

pyramids and other inhabitants of the blocks world, it can

parse sentences containing non-Bloc is wcrds, lilre 'eggs,

cake, mother, and recipe,' provided the minimal relevant

semantic information (such as that mother is an animate

noun' is included with the definitions of the words in

question. For instance, the program can parse (thougn not

reply to) the sentence, "How many e??s would you have teen

going to use in the cake if you hadn't learned your mother's

recipe was wren?? [5]".
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14. 5"n
'R IF? /\2 S?HI?£

H. Fikes, N. Nilsson, P. Raphael,
T. G-arvey, R. tfaldinger, J. Munson/
S . Saoe rd o t i

Stanford Research Institu te

1971/1974

CLISF, INTEHIIS?

Junctional description:

STRIPS is used to formulate plans (i.e., a series of

actions that together establish preconditions necessary for

the final action) for the robot SEAKEY, which spends rest cf

its time in a world consisting of 7 rooms variously

connected by £ doors and containing several large boxes to

be pushed from one place to another [5]

.

ABSTRIFS ( Abs t rac ton-based STRIPS) is a modification or

improvement on STRIPS. Preconditions necessary for the

attainment of <=*oals or subgoals are ordered by criticality.

This insures that the most critical preconditions are

satisfied first. Planning is done therefore in a hierarchy

of abstraction spaces [46].

General design characteristics:

STRIPS searches a space of 'world mod=ls' tc find one in

which a given coal is achieved. Each world model includes a
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large number of facts and relations dealing with the

position of the robot and the attributes of various o h je^ts,

open spaces, and boundaries. It is represented by a set of

well-formed formulas (wffs) of the first order predicate

calculus [2£] . The problem space is composed of three

entities:

1. Initial world model—a set of wffs describing

the present state of the world.

2. A set of operators—including a c>scri pti or. of

their effects and precondition wff schemata.

3. A goal condition stated as a wff

—

the problem

is solved when STRIPS produces a world model

that satisfies the goal wff.

For searching the space of world models, STRIPS uses a

OFS-like means-ends analysis strategy. The combination of

means-ends analysis and formal theorem proving methods

allows objects (world models) to be mucn more complex and

general than any of those used in GPS. It also provides rr-ore

powerful search heuristics than any of those found in

theorem proving programs [2£j .
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Accomplishments/Limitations:

STRIPS is able to solve a variety of problems of tne

following nature:

1. Turn on a ligntswitcn (must climb on a box first—
must find a box before that).

2. Push tnree boxes togetner.

3. Go to a location in another room [20].

15. TALE-SPIN

J. Meehan

IJC, Irvine

1977

INTERLISF

Functional description

TALS-SPI^J is a program tnat generates stories by using

diverse sources of knowledge including English, physical

space, problem-solving, story structure, social

relationships, and bodily needs. The purpose of the work is

to test the combination and interaction of many sources of

knowledge [31] .
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General design characteristics:

TALE-SPIN is a, top-down, goal-oriented pro blem-solver .

Its output may be regarded as a trace through problem

solving procedures [31]. It nay be viewed as a program that

simulates rational behavior by characters in the world. It

is composed of three parts: a problem solver, an assertion

mechanism (adds events to memory), and an inference

mechanism (produces consequences of an event).

TAL3-SFIN draws on frame-oriented knowledge to direct

story development. The user may initially specify the

characters, environment, and a problem for each character to

solvet or may specify a moral and the system generates the

problems. Each character in a story has a goal stack

associated with it. An example of a goal is 'hunger' which

possesses a set of rules sucn as, 'If you are hungry and see

some food, you'll want to eat it,' and 'If you are trying to

get some food and you fail, you will get sic 1*.' Achievement

of the goals developes the story.

Problems are associated with an area of knowledge, i.e.,

the problem domain. This is defined by set of

representational primitives, a set of goal states or

problems pxpressed in terms of those primitives, and

procedures for solving those problems [31].
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Accomplishments/limitations:

A sampl° story generated ^y TME-SFIN

Once upon a time George Ant lived near a patch of
ground. m here was a nest in an ash tree. Wilma
Eird lived in the nest. T^ere was some water in a

river. ¥ilma knew that the water was in tne river.
George knew that the water was in the river. Ore
day 'Vilma was very thirsty. !Vilm.a wanted to set
near some water. Vilma flew from her nest across a

meadow througn a valley to the river. Vilma drank
the water. 'Vilma wasn't thirsty any more.
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