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Improving the effect of microbial denitrification under low-
temperature conditions has been a popular focus of research in
recent years. In this study, graphene oxide (GO)-modified
polyvinyl-alcohol (PVA) and sodium alginate (SA) (GO/PVA–SA)
gel beads were used as a heterotrophic nitrification–aerobic
denitrification (HN–AD) bacteria (Pseudomonas fluorescens Z03)
carrier to enhance nitrogen removal efficiency levels at low
temperatures (6–8°C). The removal efficiency of NH þ

4 -N and
NO �

3 -N and the variations in concentrations of extracellular
polymeric substances (EPS) under different GO doses (0.03–
0.15 g l−1) were studied. The results indicated that the addition of
GO can improve the efficiency of nitrogen removal, and the
highest removal efficiency level and highest carbohydrate,
protein, and total EPS content levels (50.28 mg, 132.78 mg and
183.06 mg (g GO/PVA–SA gel)−1, respectively) were obtained
with 0.15 g l−1 GO. The simplified Monod model accurately
predicted the nitrogen removal efficiency level. These findings
suggested that the application of GO serves as an effective
means to enhance nitrogen removal by stimulating the activity of
HN–AD bacteria.
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1. Introduction

The heterotrophic nitrification–aerobic denitrification (HN–AD) process is widely considered one of the
most ground-breaking technological innovations for removing nitrogenous pollutants from sewage. This
removal process involves heterotrophic microorganisms oxidizing ammonia nitrogen into nitrate
nitrogen and nitrous nitrogen while nitrous nitrogen is reduced to nitrogen by anti-nitrification in the
oxygenated environment. As a new, economical and efficient treatment method, a series of studies
have been carried out on the characteristics of HN–AD since the discovery of a group of bacteria with
HN–AD capabilities. So far, it has been proven that a variety of bacterial species exhibit depredating
capabilities, including Bacillus methylotrophicus strain L7 [1], Klebsiella pneumoniae CF-S9 [2], Vibrio
diabolicus SF16 [3], Pseudomonas fluorescens wsw-1001 [4], Cupriavidus sp. S1 [5], Ochrobactrum sp.
HXN-1 and Aquamicrobium sp. HXN-2 [6]. With significant nitrogen removal capabilities, these
functional bacterial strains also have a higher growth rate than autotrophs and can resist high organic
loads [7,8]. Although the HN–AD process offers many potential advantages, some researchers have
also indicated that the survival, growth and reproductive characteristics of microorganisms could be
inhibited at low temperatures, which might consequently create difficulties for highly nitrogenous
wastewaters in the biodegradation stage [9].

Bacteria immobilization remains an ideal form of wastewater treatment technology. Under numerous
conditions, immobilized microbial cells achieve an improved biodegradation rate through a higher cell
loading, and this bioprocess can be controlled more easily. It cannot only significantly increase the
growth activity of microorganisms but also improve its tolerance of toxic or harmful substances
produced during sewage treatment [10–12].

As a novel carbon material with excellent properties, graphene oxide (GO) sheets are mono-layers of
carbon atoms with a carboxyl group, an epoxy group and a hydroxyl group on their bases and edges.
Their extraordinary characteristics (e.g. low production costs, large specific surface area, high colloidal
performance and low cytotoxicity [13,14]) have attracted considerable attention in the field of
microbiology. A number of reports show that GO is a superior biocompatible material that can
provide ideal growth environments with limited or no cytotoxicity to certain species of bacteria. For
instance, when GO is placed on a filter it causes bacteria to grow faster, with bacteria growing 2 times
and 3 times faster on filters coated with 25 and 75 µg than on filters without GO [15]. Therefore, GO
has a large specific surface area, exhibits higher levels of hydrophilicity and reactive activity and
could be considered to be a suitable carrier material for bacteria immobilization.

As noted above, research on HN–AD bacteria, as microorganisms with unique denitrification
characteristics, has mainly focused on their characteristics, while less research has attempted to
improve their denitrification performance, especially at low temperatures. This study is mainly
focused on the HN–AD bacteria Pseudomonas fluorescens Z03 immobilized by GO-modified polyvinyl-
alcohol (PVA) and sodium alginate (SA) (GO/PVA–SA) gel beads and investigates the positive effects
of GO on Pseudomonas fluorescens Z03 in improving its nitrogen removal performance in low-
temperature environments. In addition, the optimal dose of GO for PVA–SA gel beads for nitrogen
removal and the specific effects of GO on Pseudomonas fluorescens Z03 are studied and discussed.
2. Material and methods
2.1. Graphene oxide synthesis
The synthetic method of modified GO refers to the bacteria-friendly method used in a previous work by
Zhou et al. [12].

2.2. Microbial carrier synthesis and immobilization
Pseudomonas fluorescens Z03 was embedded during wastewater treatment with seven different types of
microbial carriers, including PVA–SA and GO/PVA–SA at different concentrations. PVA and SA
carrier solutions were prepared by dissolving 100.0 g of PVA in 500.0 ml of deionized water and
10.0 g of SA in 100.0 ml deionized water and stirring them in a 90°C water bath for 1 h and finally
mixing the gel. A volume of graphene oxide stock solution (1.5 g l−1) was added to the 600 ml of
PVA–SA carrier solution to prepare the GO/PVA–SA carrier solution with GO concentrations of 0.03,
0.05, 0.1, 0.15, 0.3 and 0.5 mg l−1. Ultrasonic conditions were applied for 30 min (the ultrasonic
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Figure 1. The gel beads used and a schematic diagram of the continuously stirred tank reactor.
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frequency was set to 40 kHz), and the solution was cooled to 30°C. Then, 200 ml of enriched Pseudomonas
fluorescens Z03 was mixed with the material solution and a volume of deionized water was added to
obtain a total material solution volume of l litre that was stirred for 1 h. The mixture was added to a
saturated boric acid solution of 2% of CaCl2 with a particle size of approximately 3 mm through the
granulator and was then cross-linked on the magnetic agitator for 30 min. Cross-linking embedding
particles were then removed after 2–3 rounds of rinsing with physiological saline, stored in deionized
water and preserved in a 4°C refrigerator.

2.3. Reactor operation, bacteria cultivation and wastewater treatment
A continuously stirred tank reactor with a total working volume of 1 l, a 10% (g (gel bead) ml−1

(wastewater volume)) packing ratio of gel beads and synthetic wastewater was used (figure 1).
Pseudomonas fluorescens Z03 was isolated from wastewater biosludge provided by the Shandong

Public Utility Group Qufu Water Co., Ltd. (116.970921E, 35.583021N).
The nitrogen wastewater was prepared by adding 0.228 g of glucose, 0.382 g of NH4Cl, 0.01 g of MgSO4 ·

7H2O, 0.304 g of NaNO3, 0.0877 g of KH2PO4, 0.0076 g of CaCl2 · 7H2O and 0.0504 g of Na2CO3 in 1.0 l
of deionized water. Ten grams of PVA–SA or GO/PVA–SA gel beads fixed with Pseudomonas fluorescens
Z03 were separately added to 1.0 L of wastewater. The experimental temperature was set to 6–8°C and
DO 2–4 mg l−1. Water and GO/PVA–SA materials were sampled at regular intervals for analysis.

2.4. Analysis
Specific surface area and aperture were analysed with Gemini VII 2390p. Scanning electron microscope
(SEM) images were obtained with JSM-6700F at 8.0 kV (JEOL, UK). Infrared (IR) spectroscopy involved
employing the KBr tablet method and using 633 nm lasers to obtain Raman spectra through an inVia
Raman microscope (RENISHAW, UK). Concentrations of ammonia, nitrite, nitrate, total nitrogen and
COD were measured according to standard methods (APHA, 1998). Extracellular polymeric
substances (EPS) of GO/PVA–SA gel samples were extracted by cationic exchange. Using glucose as a
standard, the carbohydrate content of EPS was measured using the anthracene method. Using bovine
serum albumin as a standard, the protein content of EPS was measured using the Lowry method [16].
3. Monod kinetic model
A simplified Monod kinetic model was used to simulate the denitrification efficiency of immobilized
Pseudomonas fluorescens Z03 in a continuous stirred tank reactor [17]. It is assumed that the
degradation of nitrogen is subordinate to Monod kinetics and that the reactor is a continuous stirred
tank reactor (CSTR). Therefore, the Monod equation can be expressed as follows:

K ¼ qðCin � CoutÞðChalf þ CoutÞ
Cout

, ð3:1Þ



Figure 2. The modified gel beads.

Table 1. Apparent characteristics of the modified gel beads.

characteristics of the modified
gel beads results

appearance the modified gel beads are light black and approximately 3 mm in diameter; the

modified gel beads are compact on the outside and porous on the inside with

uniformly dispersed visible black and fine GO particles

density the density of the modified gel beads was roughly 1.061 × 103 kg m−3, which is

close to the density of water, rendering them easy to fluidize

elasticity particle gelation is high and elastic

mechanical strength after considerable shock agitation, the modified gel beads did not break, indicating

that their mechanical strength was high

conglutination under the action of the magnetic agitator, spherical particles rapidly formed after the

mixture was dripped into the cross-linking agent, there were no bonds between

particles and the particles were uniform in shape and size
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where K is the constant removal rate of the largest area (g · (m2 d)−1), q is the hydraulic load rate (m d−1),
Cin is the nitrogen concentration of inflow (mg l−1), Chalf is the limiting factor’s half-saturation constant
and Cout is the nitrogen concentration of outflow (mg l−1).
4. Results and discussion
4.1. Apparent properties of the modified gel beads
The modified gel beads under optimized preparation conditions are shown in figure 2, and their
apparent characteristics are shown in table 1.

The BET method for nitrogen adsorption was used to determine the specific surface area and pore
size of embedded particles before and after modification. The results are shown in table 2.

Table 2 shows that the specific surface area and total pore volume of the modified gel beads were
substantially higher than those of the unmodified gel beads, increasing from 10.7284 m2 g−1 and
0.056725 cm3 g−1 to 13.5392 m2 g−1 and 0.072196 cm3 g−1, respectively.

In terms of pore size, the average pore size of the gel beads decreased from 11.03015 nm before
modification to 7.4832 nm after modification. Studies have shown that the existence of holes and gaps
can protect microorganisms from the effects of hydraulic disturbance and scour and that a decrease in
pore size has less of an impact on hydraulic impact such that the strength of gel beads is enhanced.



Table 2. Pore structure parameters of the gel beads before and after modification.

samples
specific surface
area (m2 g−1)

total pore volume
(cm3 g−1)

average pore
diameter (nm)

pore size
range (nm)

PVA–SA 10.7284 0.056725 11.3015 0.8–150.0

GO-PVA–SA (0.15 g L−1 GO) 13.5392 0.072196 7.4832 0.8–150.0
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Figure 3. SEM images of GO (a), PVA–SA (b) and GO/PVA–SA (c) carriers. The infrared spectrogram (d ) and Raman spectrum (e) of
GO/PVA–SA materials.

royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.7:191542
5

On the other hand, Pseudomonas fluorescens Z03 bacteria used in this experiment were (0.6–0.8) µm× (1.1–
1.4) µm in size, and their molecular and atomic diameters ranged 0.144–0.38 nm [18]. However, the
modified gel beads were approximately 7.5 nm in diameter, which is smaller than the size of the
bacteria but larger than the molecular diameter. Therefore, modified gel beads facilitated the efficient
mass transfer of internal and external pollutants and metabolites, prevented the loss of immobilized
microorganisms and promoted the growth and tolerance of microorganisms in the adverse environment.

4.2. Characterization of graphene oxide-modified polyvinyl-alcohol and sodium alginate
material

SEM images of GO, PVA–SA and GO/PVA–SA are shown in figure 3a–c. The original GO did not have a
pronounced reticular formation and was only observed in PVA–SA and improved in the GO/PVA–SA
material. This result echoes those of the previous studies [19,20] showing PVA–SA gel beads to have a
stable spherical shell with a honeycomb internal structure but with a compact surface structure. This
structure is not suitable for bacterial attachment and proliferation and is also not conducive to mass
transfer. By contrast, GO/PVA–SA gel beads have no obvious spherical shell with a remarkable
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layered and very loose chemical structure formed by GO that can support bacterial immobilization,
growth and faster mass transfer [21]. Therefore, it is recommended that GO/PVA–SA gel beads are
designed with an advantageous microstructure with a high surface area so that microbes can be
immobilized and facilitate faster mass transfer, in turn helping bacteria maintain high levels of
biodegradability efficiency by tolerating low temperatures.

As is shown in figure 3d, the infrared spectrum of GO presents a strong absorption peak of 3381 cm−1,
which refers to the tensile vibration of -OH. The high hydrophilicity of PVA produces stretching vibrations
among intermolecular and intramolecular hydrogen bonds [22]. Absorption peaks at 2941 cm−1, 1622 cm−1,
1431 cm−1, 1342 cm−1 and 1120 cm−1 represent the vibrations of C–H, –COO, –CH2 and C–O, consistent
with data from past studies [22,23]. Similar results are shown by the Raman spectrum presented in
figure 3e. PVA–SA has strong peaks of υ(C–C) at 789 cm−1, υ(O–O) at 858 cm−1, υ(C–O–C) at 997 cm−1 and
1123 cm−1, and δ(CH3) at 1422 cm−1. The G-band of the GO/PVA–SA material was set at 1574 cm−1,
and the D-band was set at 1360 cm−1. Further evidence indicates the occurrence of close interactions
between the hydrophilic functional group of the GO material and the PVA–SA matrix [24,25], whereby
this structure supported bacterial immobilization for bio-augmentation.
c.open
sci.7:191542
4.3. Effect of different doses of graphene oxide in polyvinyl-alcohol and sodium alginate
carriers on the nitrogen removal effect in one period

To study the characteristics of GO on the modified PVA–SA as a Pseudomonas fluorescens Z03 carrier,
a single-period synthetic water treatment test was conducted to investigate its nitrogen removal effect
in seven gel carriers. The experimental results are illustrated in figure 4a–c and tables 3 and 4.

In the control experiments without GO gel, NO �
3 -N and NH þ

4 -N concentrations reduced from
100 mg l−1 to 26.37 mg l−1 and 36.85 mg l−1, respectively, after 72 h of culturing (figure 4a,b). At the
same time, the concentration of NO2

−-N increased from 0 to 62.91 mg l−1 over the first 36 h and then
dropped to 0.013 mg l−1 after 72 h (figure 4c). The fluctuation of concentrations of three different
nitrogen forms proves that heterotrophic nitrification and aerobic denitrification were successfully
executed in the experiments.

As is shown in tables 3 and 4, the concentrations of NH þ
4 -N and NO �

3 -N show a significant
correlation with GO doses in the GO/PVA–SA gel. Compared to that of PVA–SA carriers, the
nitrogen removal efficiency of GO/PVA–SA gel (0.03–0.15 g l−1 GO) material was found to be
significantly higher. Specifically, when the GO dose in the GO/PVA–SA gel reached 0.15 g l−1 GO,
NH þ

4 -N and NO �
3 -N concentrations, respectively, dropped to 3.62 and 0.91 mg l−1 after 72 h of

culturing, proving it to be the best carrier in these batch tests. Under the same conditions, when the
GO dose was 0.3–0.5 g l−1, the decline of NH þ

4 -N and NO �
3 -N concentrations occurred rather slowly,

while their removal rates reached 24.83% and 23.37%, respectively. This occurred because the GO/
PVA–SA carrier has better biological enhancement properties because GO has a highly specific surface
area and functional groups support and stimulate bacterial growth. Although GO may have
antibacterial effects [26], this problem could be resolved by surface modification, which could also
promote the growth of certain strains. However, when the GO dose exceeded 0.3 g l−1, this surface
modification was no longer useful, and bacterial growth should have been suppressed, causing the
nitrogen removal efficiency level to decline. In this work, the manufacturing process of the GO/PVA–
SA carrier is considered to reduce the surface modification of GO to bacterial toxicity. The reaction
between the GO carboxyl group and PVA–SA hydroxyl group forms a condensed layer, which
provides space for bacterial adhesion and growth.

As is shown in figure 4, the amount of GO added has no effect on the intermediates of heterotrophic
nitrification. Almost no accumulation of nitrite, nitrate or other intermediates occurs throughout the
whole heterotrophic nitrification process, which is consistent with results found for Pseudomonas putida
ZN1 [27] and Klebsiella sp. TN-10 [28].

The few accumulations of nitrates and nitrites observed signify that ammonia nitrogen might be
converted directly into nitrogen gas, and N2 production was measured by gas chromatography after
72 h of culturing, further verifying that strain Z03 can directly transform ammonium into nitrogen
gas. Meanwhile, when ammonia nitrogen was the sole nitrogen source, 16.76–60.33% of the initial
NH þ

4 -N was transformed into N2, 10.66–36.18% was converted into intracellular nitrogen and 3.49–
72.58% of ammonia nitrogen was left. This result shows that (i) strain Z03 can transform ammonium
into N2 directly, verifying its strong aerobic denitrification abilities, and (ii) the appropriate amount of
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Figure 4. Concentrations of NH þ
4 -N (a), NO2

−-N (b), NO �
3 -N (c) and EPS (d ) under the influence of various GO doses.

Table 3. Correlations between GO doses in GO/PVA–SA gel and NH þ
4 -N concentrations at 72 h.

GO dose in GO/PVA–SA gel NH þ
4 -N concentration

GO dose in GO/PVA–SA gel Pearson Correlation 1 0.757a

Sig. (two-tailed) 0.049

N 7 7

NH þ
4 -N concentration Pearson Correlation 0.757a 1

Sig. (two-tailed) 0.049

N 7 7
aDenotes that the correlation is significant at the 0.05 level (two-tailed).

Table 4. Correlations between GO doses in GO/PVA–SA gel and NO �
3 -N concentrations at 72 h.

GO dose in GO/PVA–SA gel NO �
3 -N concentration

GO dose in GO/PVA–SA gel Pearson Correlation 1 0.825

Sig. (two-tailed) 0.022

N 7 7

NO �
3 -N concentration Pearson Correlation 0.825a 1

Sig. (two-tailed) 0.022

N 7 7
aDenotes that the correlation is significant at the 0.05 level (two-tailed).
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Figure 5. The long-term treatment effect of optimally modified gel beads fixed with Pseudomonas fluorescens Z03 on nitrogenous
wastewater: (a) non-GO gel beads and (b) GO-modified gel beads (0.15 g l−1 GO).
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GO cannot only provide microorganisms with space to grow but can also stimulate the growth of
microorganisms, thus improving its HN–AD ability.

4.4. Effects of graphene oxide on extracellular polymeric substances
Various microbial aggregates, such as biofilms, flocculants and sludge, are held together through EPS,
and together, they play an important role in understanding the functions of microbial aggregation
[29,30]. To further determine the effect of GO on the activity of Pseudomonas fluorescens Z03, EPS
concentration variations at different GO doses were studied. As shown in figure 4d, the concentration
of EPS increased within the range of 0.03 to 0.15 g l−1 GO. In addition, under the combined action of
0.15 g l−1 GO and Pseudomonas fluorescens Z03, the increase in carbohydrate, protein and total EPS
production reached a maximum (50.3, 132.9 and 183.2 mg · g of GO/PVA–SA gel−1, respectively).
However, when the GO dose was increased to 0.3–0.5 g l−1, yields of carbohydrate, protein and total
EPS decreased. These results indicate that GO has a significant effect on the production of EPS and
plays an important role in the study of microbial bioactivity [31].

As is indicated in previous reports, due to the special characteristics of the polymers’ rich matrix
structures, EPS include numerous oxygen-containing functional groups (e.g. –COOH, –NH, –OH and
–CO–). EPS also shape the formation of multilevel porous structures, in which smaller microcolonies
can form macroflocs through the cohesion of microorganisms [31–33]. In this experiment, the volumes
of EPS increased when the GO dose was in the range of 0.03–0.15 g l−1. It could be roughly inferred
that GO has a positive effect on Pseudomonas fluorescens Z03 in producing EPS, which leads to the
formation of more macroscopic flocculants in GO/PVA–SA gel beads and enhances the activity of
Pseudomonas fluorescens Z03. However, when GO doses increased to 0.3–0.5 g l−1, EPS production
greatly decreased, which can be ascribed to structural damage to and characteristic changes in
bacteria [34–36].

4.5. Long-term impacts of optimal modified gel beads on the nitrogen removal effect
A long-term synthetic water treatment test was conducted to evaluate the impacts of the optimized
modified gel beads on the nitrogen removal effect. The results are recorded and illustrated in figure 5.

As shown in figure 5, the best GO-modified gel beads (0.15 g l−1) fixed with Pseudomonas fluorescens
Z03 for three consecutive months (water temperatures of 6–8°C and DO of 2–4 mg l−1) have a stable
denitrification effect. The removal efficiencies of NH þ

4 -N and NO �
3 -N were measured as 96.38–97.24%

and 98.82–99.12%, respectively, and the cumulant of NO2
−-N was very low at less than 0.1 mg l−1. By

contrast, the denitrification effect of the control (non-GO gel beads) consistently decreased overtime.
With continuous processing for 31 days, the removal efficiency of NH þ

4 -N and NO �
3 -N reached only

16.69% and 25.26%, respectively, as the non-GO gel beads became swollen and damaged by long-term
effects of aeration agitation, causing Pseudomonas fluorescens Z03 to be lost with the outflow.
Meanwhile, the removal efficiency levels of NH þ

4 -N and NO þ
3 -N in optimal GO-modified gel beads

(0.15 g l−1 GO) were 5.81 and 3.92 times those of the control (non-GO gel bead). Furthermore, the
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average concentrations of NH þ
4 -N, NO �

3 -N and NO2
−-N in the effluent reached 3.46, 0.97 and

0.019 mg l−1, respectively, falling below grade A status according to the Chinese national pollutant
discharge standard for municipal wastewater treatment plants (GB18918-2002).

The highly stable denitrification effect may have occurred for the following reasons: (i) GO rendered
the gel bead surfaces rougher and pore structures more abundant and increased specific surface areas
and the number of micropores, providing space for Pseudomonas fluorescens Z03 to inhabit and
reproduce, preventing it from being removed through the outflow of water and improving its
tolerance of the environment (e.g. pH levels, temperatures, toxic substances, etc.). Thus, the stability of
nitrogen removal in low-temperature wastewater was improved. (ii) Low concentrations of GO had a
positive effect on the growth of Pseudomonas fluorescens Z03, corroborating previous studies [15,24,37].

4.6. Simulation and validation of the model
Relative to the pseudo-first-order kinetic model, the Monod kinetic model conforms better to the actual
conditions of microbial treatment, and thus it is more applicable to the degradation process of pollutants,
in which microorganisms play a leading role [38]. When the abovementioned Monod model was used to
simulate the nitrogen removal efficiency of optimal modified gel beads fixed with Pseudomonas fluorescens
Z03 in the continuously stirred tank reactor, the Chalf values of this model for NH þ

4 -N and NO �
3 -N were

1.0 mg l−1 [39] and 0.76 mg l−1, respectively [40]. Therefore, the following three parameters were
introduced to estimate the advantages of this model:

Coefficient determination: R2 ¼
PN

i¼1 ðXi � XÞðYi � YÞ
h i2

PN
i¼1 ðXi � XÞ2 P

N

i¼1
ðYi � YÞ2

(value range: 0–1), ð4:1Þ

Relative root-mean-square error: RRMES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPN

i¼1 ðYi � ŶÞ2
q

Ŷ
(value range: 0–1) ð4:2Þ

and Model efficiency: ME ¼ 1�PN
i¼1 ðYi � ŶÞ2

PN
i¼1 ðYi � YÞ2

ðvalue range:�1–0Þ , ð4:3Þ

where Xi and Yi were the nitrogen concentrations in the inflow and outflow at different times,
respectively; X and Y were the mean nitrogen concentrations in the inflow and outflow, respectively,
and Ŷ was the predictive value.

As shown in figure 6, the simplified Monod model reveals the relationship between f (Cin, Cout, q) and
Cout. The maximum removal rate for nitrogen (K, g m−2 d−1) equals the slope of the regression line, and
the deviation between the measured and predicted values of nitrogen is indicated by statistical
parameters (R2, RRMSE and ME). The dotted line represents the 95% confidence band and reflects the
real regression line.

Figure 6 shows that statistical parameter R2 for NO �
3 -N and NH þ

4 -N was valued at 0.8937 and
0.9577, respectively, and RRMSE and ME values fell within the expected range. The study results
reveal a good fit between the predicted and experimental values of the nitrogen removal rate when
using optimized modified gel beads fixed with Pseudomonas fluorescens Z03 in the continuously stirred
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tank reactor. Degradation rates were identified when pollutants were used as the sole energy or carbon

source, and the relationship between rates and biomass generated by every unit of energy or carbon
source consumed was also investigated [41]. Moreover, when the contaminants were at a controlled
concentration, the model was also able to describe the degradation rate with different microorganism
doses. Therefore, this simplified Monod model can accurately and efficiently predict the nitrogen
removal rate.
lishing.org/journal/rsos
R.Soc.open

sci.7:191542
5. Conclusion
In this study, GO/PVA–SA gel beads were used as Pseudomonas fluorescens Z03 carriers to enhance
nitrogen removal efficiency levels at low temperatures (6–8°C). GO was dispersed into PVA–SA gel
beads and stimulated the bioactivity of Pseudomonas fluorescens Z03 immobilized by PVA–SA. When
GO was added at 0.15 g l−1, the removal efficiency levels of NH þ

4 -N and NO �
3 -N were 96.38–97.24%

and 98.82–99.12%, respectively, and the cumulant of NO2
−-N was very low at below 0.1 mg l−1. The

highest volumes of carbohydrate, protein and total EPS were also obtained under this value. In
addition, an appropriate GO dose can be effective in stimulating an increase in EPS. The simplified
Monod model accurately predicted the nitrogen removal efficiency level with optimally modified gel
beads fixed with Pseudomonas fluorescens Z03 in a continuously stirred tank reactor. Therefore, the
application of GO constitutes an effective means to enhance nitrogen removal by stimulating the
activity of HN–AD bacteria.
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