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Networks are increasingly used in various fields to represent
systems with the aim of understanding the underlying rules
governing observed interactions, and hence predict how the
system is likely to behave in the future. Recent developments in
network science highlight that accounting for node metadata
improves both our understanding of how nodes interact with
one another, and the accuracy of link prediction. However, to
predict interactions in a network within existing statistical and
machine learning frameworks, we need to learn objects that
rapidly grow in dimension with the number of nodes. Thus, the
task becomes computationally and conceptually challenging
for networks. Here, we present a new predictive procedure
combining a statistical, low-rank graph embedding method
with machine learning techniques which reduces substantially
the complexity of the learning task and allows us to efficiently
predict interactions from node metadata in bipartite networks.
To illustrate its application on real-world data, we apply it to a
large dataset of tourist visits across a country. We found that
our procedure accurately reconstructs existing interactions and
predicts new interactions in the network. Overall, both from a
network science and data science perspective, our work offers
a flexible and generalizable procedure for link prediction.
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1. Introduction

Real-world network datasets are often largely incomplete owing to non-exhaustive sampling or the
presence of complex hidden processes making data collection difficult [1,2]. As a result, accounting for
incompleteness within data (e.g. ‘missing links’) is of key importance both to understand how
different components in a system interact with one another and to accurately predict future trends in
a system [3–5]. The act of predicting ‘missing links’ or new links in a network is referred as link
prediction in various fields [5,6]. The most commonly used methods to tackle link prediction include
topological approaches, block model-based methods and graph-embedding methods. In topological
methods, certain metrics describing the structure of a network (e.g. network properties such as node
degree and various centrality measures) are used to predict interactions [6]. Block model-based
approaches, such as the probabilistic generative family of Stochastic Block Models (SBMs) (and
variants), aggregate nodes into groups based on their similarity of interactions [7–11]. Graph
embedding methods on the other hand rely on projecting nodes onto an abstract latent feature space,
so that the interaction probabilities depend on these latent features [12–14].

Multiple studies have shown that incorporating node metadata as covariates can both deepen our
understanding of the network structure [15–18], and improve link prediction accuracy in networks
[17,19–21]. However, incorporating node metadata presents various challenges. For instance, metadata
diversity—i.e. whether the metadata variables are categorical or continuous—may require different
modelling frameworks [20,22]. Owing to the high number of nodes in large networks, they can be
considered as high-dimensional objects: indeed, when the network is represented as a matrix, each
node is an additional coordinate. Therefore, accounting for metadata at the node level may also make
the computational requirements overly demanding, as the complexity of the problem scales with the
square of the number of nodes. To date, most attempts to incorporate node metadata for link prediction
purposes have focused on node-aggregating methods such as SBMs and its variants [16,19,20,23]. These
methods make the prediction task more amenable by aggregating nodes into homogeneous groups.
However, by doing so, they assume that all nodes within one group behave according to the same
interaction probabilities, and thus are statistically indistinguishable [7,8]. Unfortunately by disregarding
the heterogeneity of interactions observed at the node level, such approaches oversimplify the network
data. Here, we instead focus on using graph embedding methods which allow us to predict the
interaction probabilities of each node directly, rather than aggregating the nodes in groups.

In ourcurrent study,wepropose anewprocedure that combines agraphembeddingmethodwithmachine
learning to predict interactions from node metadata. As the functional relationship between node metadata
and the abstract latent feature spaces of a network is often unknown prior to data inspection, and can be
very complicated, here we suggest using machine learning techniques to find an accurate mapping. In our
procedure, we first use the graph embedding method to project nodes of the observed network on an
abstract latent feature space at a lower-dimensional space. By doing so, it allows us to learn a mapping from
the node metadata to their abstract latent feature space (that we infer from the observed network) in an
adequately low-dimensional space. Because we move the problem from the original graph space to a lower
dimensional latent feature space, our procedure could potentially simplify the task of predicting interaction
in large networks. Here, we specifically used neural networks as our machine learning technique to relate
the observed node metadata onto the latent feature spaces of the observed network. The high flexibility of
neural networks allowed us to account for the diversity of metadata. To illustrate the application of the
proposed procedure in predicting interactions, we used a large dataset of tourist visits to destinations across
New Zealand. Overall, our results showed that the proposed procedure accurately predicts interactions in
bipartite networks using both the knowledge from the observed network and the node metadata.
Moreover, the proposed procedure also allowed us to predict interactions for new nodes.
2. Material and methods
In this article, we focus on bipartite networks—i.e. networks that feature nodes of two types and with
interactions (or links) that only occur between the different set of nodes. In the following sections, we
describe: (i) the adopted network modelling procedure: first describing the Random Dot Product
Graphs (RDPG) model, then explaining how to infer, from an observed network, the position of its
nodes in the latent feature space, and finally how to relate the node metadata to the nodes in their
latent feature space using a machine technique; (ii) an application to empirical network data; and
(iii) the sensitivity and performance analyses we conducted to validate the proposed procedure.
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2.1. Extending the Random Dot Product Graphs model to bipartite networks

RDPGs are a class of latent position models [24] developed originally to analyse social networks [25,26],
and then extended to many other applications and types of networks [13,22,27–29]. To describe
interactions in a network, such models assume that the probability of observing an interaction
between two nodes is a function of the nodes’ features [25,26]. Here, we specifically use the RDPG
implementation of Young & Scheinerman [25] to predict interactions in a bipartite context.

We define a bipartite network G as two distinct sets of nodes, V and P containing M and N nodes,
respectively, that is where V = {v1,…, vn} and P = {p1,…, pm}, respectively; and a set of links, E,
between the sets of nodes—i.e. (vi, pj)∈ E. We denote such a bipartite network as G(V, P, E). The
bipartite network can be further represented as an adjacency matrix, where G is represented as the
matrix A ∈ {0, 1}M×N, where Aij = 1 if (vi, pj)∈ E and Aij = 0 otherwise.

In a bipartite RDPG model, each node vi and pj is assigned a vector of latent features xi [ Rd and
y j [ Rd. We call d the dimension of the network’s latent feature space, and the vectors xi and yj
indicate the positions of the nodes vi and pj, respectively, in the network’s latent feature space. The
bipartite RDPG model further treats links as independent Bernoulli variables: two nodes interact with
a probability equal to the dot product of their latent vectors, in the formula

Prððvi, p jÞ [ EÞ ¼ xi � y j: ð2:1Þ
In matrix notation, we can represent the latent positions of all the nodes in V and P as the rows of a
matrix V and the columns of a matrix P, respectively. As a result, the matrix of probabilities of
interactions between the two node types in the network can be written as the matrix product VP.

For the matrix product to have meaning, the two matrices V and P need to have compatible dimension,
which is satisfied if the latent feature spaces for V and P are equidimensional (that is, if the vectors xi and yj
have the same number of coordinates). Moreover, for the matrix product to represent probabilities, the
products must be in the [0, 1] range, which imposes additional geometric constraints on the latent feature
spaces [14]. Lastly, it is worth noting that any orthogonal transformation—e.g. a rotation—applied to both
V and P would result in an equivalent matrix of interaction probabilities: this will limit us to be able to
infer the latent feature spaces up to an orthogonal transformation. Thus, we should refrain from reading
any meaning in the absolute position of a node in the latent feature space.

2.2. Inferring the position of nodes in the latent feature space
In theory, neither the nodes’ positions in the latent feature space, nor the dimension of the latent feature space
are observable. Thus,weneed to infer themfromtheobservednetwork.Todoso,we canexploit the adjacency
spectral embedding—which is the truncated singular value decomposition (SVD) of a network adjacency
matrix—to obtain an unbiased estimate of the nodes’ positions in the network’s latent feature spaces [29].

The full rank SVD of the observed adjacency matrix A is given by three matrices L, S and R such that
A ¼ L� S� RT , with L and R real orthogonal matrices, and S a diagonal matrix whose entries are the
singular values of A in decreasing order. As the sets of nodes V and P contain M and N nodes,
respectively, the matrices L, S and R will have dimensions M × S, S× S and N × S, respectively, where S=
min (M, N). To compute the SVD of a matrix, we used the default svd function in R [30], which
performed well for the large visitation dataset described in later sections (Other fast algorithms that allow
the decomposition of very large matrices such as in Liang et al. [31] and Zhou & Li [32] also exist if needed).

Let d be the chosen dimension for the observed network latent feature space. We denote L̂, Ŝ and R̂ as
the d-truncations of L, S and R, respectively. We obtain them by retaining all the rows and the first d
columns of L and R, and the first d rows and columns of S. We then compute the d-dimensional
bipartite adjacency embedding of A as

V � V̂ ¼ L̂
ffiffiffiffî
S

q

P � P̂ ¼
ffiffiffiffî
S

q
R̂T ,

9>=
>;and

ð2:2Þ

where
ffiffiffiffî
S

p
is a d × d diagonal matrix defined by the square root of the d greatest singular values of A.

Note that as we are interested in truncated SVD calculated at an adequate d as in Athreya et al. [14],
all the results from the dot products are kept within the range of [0, 1]—i.e. all values below zeroes
are treated as zeroes, and all values above ones are treated as ones. As such, one can interpret them
as probabilities. We specifically used the profile-likelihood criterion of Zhu & Ghodsi [33] to estimate
an adequate dimension d≤ S for the latent feature space.
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2.3. Relating node metadata to the latent feature space to predict interactions

in a network
Given the positions of all nodes in the latent feature spaces, the RDPG model completely determines the
interaction probabilities between all nodes in the network. This implies that, if we were able to go from a
node’s metadata to its position in the network’s latent feature space, we would be able to estimate its
interaction probabilities with all other nodes in the network.

Let us consider the simplest scenario where we have a one-dimensional latent feature space (in other
words, the latent feature space is a vector with one coordinate, d = 1) and real-valued metadata for the
nodes in V and P. We can learn a mapping from the metadata to the latent feature space by fitting a linear
regression model with the positions of nodes vi in the latent feature space, xi [ R, as dependent variables
and the metadata vectors mi as independent predictor variables, provided that we have at least as many
nodes as predictors. Let β0 and β be the estimated intercept and vector of slope parameters for the linear
model. The resulting model allows us to get the position of node vi in the predicted latent feature space:
x�i [ R. We can then estimate the interaction probabilities of vi via the dot product of x�i with the positions
of the nodes in P’s latent feature space. Similarly, we can use the inferred linear model to predict the latent
features of a new node vn+1 added to the network—i.e. a node which was previously not observed—from
the node’s metadata as follows: x�nþ1 ¼ b0 þmnþ1 � b. Then, to estimate the interaction probabilities of vn+1,
we proceed with the dot product of xn+1 with the positions of the nodes in P’s latent feature space.

The latent feature space of large empirical networks ismultivariate (even if not necessarily large, 1 < d≪
min (M, N)). In general, node metadata are of different types—i.e. categorical and continuous. Finally, the
relationship between node metadata and latent feature spaces are often nonlinear. Fortunately, a variety of
statistical andmachine learning approaches exist to solve the task of predicting a d-dimensional real-valued
vector fromanother vector (potentially larger andmixed valued). In particular, neural networks approaches
can be used [34,35]. In our application, we compare the performance of a classic linear regression, using
ordinary least squares, and different neural network architectures.

To conclude, we have shown that one can use (i) a truncated SVD to estimate the latent feature spaces
of nodes in a bipartite network, (ii) a variety of statistical and machine learning approaches to predict the
latent features from the node metadata, and (iii) a simple dot product to predict interaction probabilities
from nodes’ latent features (figure 1). In the next section, we apply our procedure to a large bipartite
network of tourist–place visitation data deploying both linear regression models and two different
neural network architectures.

2.4. Application to real-world data: predicting tourist destinations from visitors
and places metadata

To test the presented procedure, in this section, we describe its application to visitation data representing
the travel destinations of tourists across New Zealand. We specifically show how one can use visitor and
place metadata, respectively, to estimate the interaction probabilities for visitors to travel to places within
the country (or the likelihood for places to be visited). By doing so, this allowed us to both predict the
likelihood for new visitors to travel to existing destinations (observed nodes in the network), and the
likelihood for visitors (existing or new) to travel to new places (or new tourist attractions/travel
destinations). As such, we show how the proposed procedure allows us to reconstruct the observed
visitation network. Moreover, we show how one can potentially use the proposed procedure to
predict new interactions—i.e. when new visitors and places are added to the visitation network—
using only the new node metadata and knowledge from the existing network.

2.5. Visitation data
To get an overview of the visitor travelling patterns across New Zealand, we extracted data from two
national surveys conducted by the New Zealand Ministry of Business, Innovation and Employment
(MBIE): The International Visitor Survey [36] and the Domestic Travel Survey [37]. The International
Visitor Survey targeted international visitors departing New Zealand at the four main international
airports (Auckland, Wellington, Christchurch and Queenstown), whereas the Domestic Travel Survey
contacted domestic travellers via phone interviews about their recent trips. Both surveys record the
list of places to which each visitor travelled during their trip within New Zealand. This accounted for
a total of 189 942 visitors travelling to 2616 places across the country. Note that these numbers refer to
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Figure 1. Using a Random Dot Product Graphs framework to predict interactions in a bipartite network. Note that here we use our case
study—i.e. the travelling patterns of visitors to touristic destinations—to illustrate the framework. We first consider the travelling
patterns of visitors as network data. In (1), the bipartite representation of travelling patterns of visitors: nodes are of two types—
circles represent visitors and squares represent places, and links indicate a trip travelled by a given visitor to a given place. Here,
the solid lines represent the observed links. In (2), we first estimate the position of nodes within the observed bipartite network
using a singular value decomposition (SVD) on the adjacency matrix representing the visitor–place interaction matrix. As a result,
we obtain two latent feature spaces: a visitor latent feature space and place latent feature space. Note that here we show the
embeddings of nodes of both visitors and places, respectively, in a latent feature space of dimension d = 2: LD1 and LD2. In (3),
we then relate the node metadata directly to their latent feature spaces. To do so, we use machine learning techniques to find
the relationship between the two. Step (3) allows us to reconstruct interactions between observed nodes (visitors and places,
respectively). To further predict new interactions in the network using observed metadata of new visitors and new places,
respectively—the models used to find the relationship of the node metadata to the latent feature spaces are used. By doing so,
we can project the new visitor and new place into the respective latent feature spaces LD1 and LD2. Finally, in (4), using the dot
product, we are able to predict the probability of interaction between the new visitor and the new place added to the visitation
network. Here, the dashed lines represent the new predicted links for observed and new nodes.
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only visitor and places for which the complete set of metadata were available (electronic supplementary
material, table S1).

2.6. Node attributes: visitor and place metadata
Visitor metadata includes age, gender, activity type and the mode of transportation used during their trip
(table 1). These characteristics are present for both the Domestic Travel Survey and the International



Table 1. Summary of node metadata used.

node
type metadata data type classes

visitor gender categorical male, female

visitor age categorical age group: <20, 21–25, 26–34, 35–39, 40–44, 45–49, 50–51, 64–69,

>70

visitor activity type categorical hiking, site-seeing, water activities, museums and other heritage sites,

visiting family, work purposes

visitor mode of

transportation

categorical car, van, boat, tour bus, bus, helicopter, aeroplane

place place geolocation continuous latitude and longitude of locations

place place type categorical heritage site, crown protected area, town, village, recreational site

place regional council categorical Northland, Auckland, Waikato, Bay of Plenty, Gisborne, Hawke’s Bay,

Taranaki, Manawatu-Wanganui, Wellington, Tasman/Nelson,

Marlborough, West Coast, Canterbury, Otago, Southland, and areas

outside regional council
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Visitor Survey. As the survey data only had the name of places visited by travellers, we had to define the
attributes of the different places within the visitation data. In general, places across New Zealand can be
categorized based on the ownership of the land or the type of activities performed on those lands.
Therefore, to identify the land type of each place within the visitation data, we used the geospatial
maps provided by Land Information New Zealand [38] to map the places extracted from the different
national surveys. For example by doing the latter, this allowed us to distinguish whether a particular
place was categorized as a recreational site or national heritage site (table 1).
2.7. Predicting visitor–place interactions in visitation network using node metadata
Here,weareparticularly interested in testingourpredictiveprocedure in twodifferent contexts. First, predicting
the probabilities of missing interactions of in-sample nodes present in the observed network and for which we
have node metadata, which we henceforth refer to as ‘observed’ nodes. Second, predicting the probabilities of
missing interactions of out-of-sample nodes for which we only have the node metadata, which we henceforth
refer as ‘new’ nodes. As such, we split the visitation data based on the visitor–place interactions, as well as in-
sample and out-of-sample nodes, into a training and a validation set. The training set contains only observed
nodes and in-sample visitor–place interactions; the validation set contains a mixture of observed and new
nodes, both of which will feature out-of-sample visitor–place interactions as stated in table 2. Note that to
make sure that part of the validation set served as new data—i.e. for new visitors and places, respectively—
we made sure that the validation set contained both visitors and place identities not present in the training
set. Artificially removing nodes from the observed network allows us to further test the ability of the
proposed predictive procedure to predict interaction probabilities of new nodes—i.e. when either new
visitors or places are added to the network—using only their metadata and information from the observed
visitation network which can be thought of as the cold-start problem in recommender systems. By including
both the observed and new nodes in the validation set, it allows us to validate our predictive framework. More
specifically, it allows us to verify whether our predictive framework is able to predict out-of-sample
interactions for observed nodes within the observed network and to predict out-of-sample interactions of
new nodes if they were to be added in the network using their node metadata.

In the rest of this section, we explain our predictive procedure in detail. The procedure involves three key
steps: (1)weuse the trainingset toperformanSVDof the adjacencymatrixof theobservednetwork to compute
the positions of the observed nodes in their latent feature space; (2) we use the model training set to fit
regression models that predict the nodes’ positions in the latent feature space as a function of the node
metadata, and we validate this process with the model test set; and (3) then, we use the fitted regression
models to predict the positions of the nodes from the validation set in their latent feature space; and we use
these predicted positions to estimate the interaction probabilities of nodes in the validation set.



Table 2. Summary of number of visitors and places used for the different steps of the predictive procedure.

dataset analysis no. visitors no. places
visitor–place
interactions

training set (70% of full dataset) SVD 101 656 430 421 784 625

model training set (50% of training set) neural network 71 159 301 210 892 312

model test set (50% of training set) neural network 30 497 129 210 892 313

validation set (30% of full dataset) neural network,

dot product

88 286

(43 662 new)

360

(120 new)

140 594 875
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(1) We computed the SVD of the training network’s adjacency matrix AT.
Then, truncating the SVD, we computed the positions of the observed visitor and place nodes in their

respective latent feature spaces, V̂T and P̂T , respectively:

AT � L̂
ffiffiffiffî
S

q
�

ffiffiffiffî
S

q
R̂T :¼ V̂TP̂T : ð2:3Þ

(2) To predict the nodes’ positions from the node metadata, we fit three different types of multivariate
regression models on the training set. Let vT and pT be the metadata for visitor and places nodes in the
training set, then the regression modelling task is to find a pair of functions �f and �g such that �fðvTÞ and
�gðpTÞ best approximate V̂T and P̂T , respectively, where �f and �g are part of some family of functions
�f [ ffg and �g [ fgg. For the sake of clarity, �f and �g are functions from the space of metadata (visitor node
and place node metadata, respectively) to the space of latent features (for visitors and places, respectively).

We fit: (i) a linear regression (baseline)—whereweuseda linear function to relatedirectly themetadata to the
latent feature space (specified as in the electronic supplementarymaterial, table S3); (ii) a multilayer perceptron
(MLP)—i.e. a neural network with one dense hidden layer of 200 nodes using a rectified linear unit (ReLU) as
our activation function; and (iii) a neural networkwith twodense hidden layers (NN) of 250 nodes each and the
ReLU activation function. Owing to the variety of data types—i.e. varying from categorical to continuous
variables (electronic supplementary material, table S2)—and the high flexibility of neural networks in
solving regression and classification problems [39], we compared two learning rates: a constant learning rate
of 0.01 and a time-based decay—where the initial learning rate (0.01) decreased by 0.0001 after each epoch.
We used the mean absolute error to measure the distance between the predicted and estimated latent
features and to assess the accuracy of the model training (refer to the electronic supplementary material,
table S4 to see the results obtained when the accuracy of the models were computed using other metrics). To
monitor the training of the different models and ensure that they were not overfit, we split the training set
into two sets (table 2): a model training set (50% of the training set) and a model test set (50% of the training
set)—which serves as a means to validation of the different regression models.

We trained all the regressionmodels on themodel training set and evaluated their accuracy on themodel
test set.We used Google’s deep learning software TensorFlow [40] and Keras [41] implemented in Python
2.7 [42] to fit all the aforementioned models using the adaptive moment estimation (Adam) optimizer [43]
with 30 epochs and a batch size of 20. We then used the fitted multivariate regression models to predict
the positions of the nodes from the validation dataset in the latent feature space, �VV and �PV , respectively.
The predicted values �VV and �PV are functions of the node metadata:

�VV :¼ �f(vV)
�PV :¼ �g(pV),

)
and

ð2:4Þ

wherevVandpVare themetadata for visitorandplaces nodes in thevalidation set, and �f and�g are the function
obtained from the training set.

(3) Using the nodes’ positions �VV and �PV predicted by the models in step (2), we estimated the
interaction probabilities for all nodes present in the validation set and the nodes in the training set by
multiplying the matrices containing the nodes’ position in their respective latent feature spaces:

Pr(ðvV , pTÞ [ E) :¼ �VVP̂T

Pr(ðvT , pVÞ [ E) :¼ �VTP̂V

9=
;and

ð2:5Þ

where, with some abuse of notation, Pr((vV, pT)∈E) and Pr((vT, pV)∈E) are the matrices of interaction
probabilities between visitor nodes in the validation set and places nodes in the training set, and between
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visitor nodes in the training set and places nodes from the validation set. Note that similarly, we can estimate

the interaction probabilities for all nodes present within the training set—i.e. Pr((vT, pT)∈E).
Specific pairwise interaction probabilities can be estimated by multiplying the vector of the predicted

latent feature position of new nodes (inferred from the regression methods) to the latent features position
vectors (estimated from the SVD) for all observed nodes present in the observed network, that is, using
the dot product. For example, considering a new visitor node n + 1 with metadata vn+1, a predictive
function �f , and a known place node j whose position in the latent feature space (as obtained by SVD
in step 1) is yj, the interaction probability between n + 1 and j is

Pr(ðvnþ1, jÞ [ E) :¼ �f(vnþ1) � yj: ð2:6Þ
rnal/rsos
R.Soc.Open
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2.8. Sensitivity and performance analysis of predictive procedure
To validate the proposed predictive framework, we were particularly interested in assessing the
performance of the following steps: (i) relating node metadata to the corresponding latent feature spaces
(which we refer as the node metadata validation), and (ii) predicting out-of-sample interactions for both
observed nodes and new nodes (which we refer as the link prediction validation). As such, we carried
out two validations. The node metadata validation was carried out entirely on the training set. The
main purpose of the node metadata validation was to ensure that the regression models were accurately
relating the node metadata to the corresponding latent feature spaces. To do so, the training set was
split into the model training set and model test set (table 2). The model training set was used to train
the regression models whereas the model test was used to validate the regression models.

To assess the overall performance of our proposed predictive procedure, we carried out a link
prediction validation using the validation dataset. To do so, we calculated the probability of
interaction between the nodes in the validation set as

Pr(ðvvalidation, pvalidationÞ [ E) :¼ �Vvalidation�Pvalidation ¼ �f(vvalidation)�g(pvalidation), ð2:7Þ
where vvalidation and pvalidation are the nodes in thevalidation set, �Vvalidation and �Pvalidation are thepredicted latent
features positions, vvalidation and pvalidation are the nodes metadata, and �f and �g are the trained predictive
functions. To assess the performance of the overall predictive procedure, we calculated the sensitivity—i.e.
the ratio of correctly predicted links to observed links, and the accuracy—i.e. the ratio of correctly predicted
observed links (true positive) and correctly absent links (true negative)—in our validation set [44].

Furthermore, to evaluate and assess the performance of the different combinations of RDPG-regression
models in correctly predicting the observed interactions, we used the area under curve-receiver operator
curve (AUC-ROC) to evaluate the performance of the different combinations. To do so, we calculated the
rate of true positives—i.e. predicting an interaction when it is actually present—and false positives—i.e.
predicting an interaction when it is actually absent—at different thresholds varying from 0 to 1. AUC-ROC
is used as a measure to assess the ability of different models to distinguish between a true positive and a
false positive. For instance when AUC ¼ 1, the predictive model is able to perfectly distinguish between all
the true positive and the true negatives. However, if AUC= 0, then the predictive model is performing as
worse as possible—i.e. it is predicting all true negatives as positives (termed as false positives), and all true
positives as negatives (termed as false negatives). When 0.5 <AUC≤ 1, there is a high chance that the
predictive model is performing well in distinguishing the true positives from the false positives. When
AUC= 0.5, then the predictive model is not able to distinguish between true positives and true negatives—
i.e. the predictive model is either predicting randomly true positives as positives and true negatives as
negatives or constantly predicting true positives as negatives and true negatives as positives. Thus, the
lower the AUC value, the lower the ability for the predictive model to distinguish true positives and true
negatives. To quantify the uncertainty associated with the various predictive models we considered, we
randomly selected a sample of 1000 observations from the validation set. This subset, which we called the
bootstrap dataset is then used to evaluate the various predictive models. We computed the AUC at 95%
confidence interval (CI) with 2000 stratified bootstrap replicates. These results provide an indication of the
variance of the models performance. Note that the sampling is performed with replacement.
3. Results
For the training visitation dataset (number of visitors = 136 910, number of links = 636 497), the
Zhu & Ghodsi [33]’s profile-likelihood criterion indicated a six dimensional latent feature space
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the baseline model.
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(d = 6) as adequate. This accounted for approximately 70% variability of the visitation network data
(figure 2).

Overall we found that the neural networks performed better than the baseline model in finding the best
mapping from the node metadata to the latent feature spaces. More specifically, for the visitor metadata, we
found that theNN(mean squared error (MSE) = 0.0009) andMLP (MSE= 0.0010) performedbetter compared
to the baseline model (MSE = 0.0014) using a constant learning rate (figure 3). We found similar patterns for
the time-based learning rate (electronic supplementary material, figure S1).

For the place metadata, we found that the MLP model (MSE = 0.125) and linear regression model
(MSE = 0.141) performed better than the NN (MSE= 0.143) (figure 4). We also observed similar patterns
for models run with the time-based learning rate (electronic supplementary material).
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Figure 4. Training of regression models over time when projecting observed place metadata onto the latent feature space using an
adaptive moment estimation (Adam) optimizer run with 30 epochs and a batch size of 20. The plot shows the model validation—
i.e. the subset of training visitation dataset used—to validate the three different models in finding the best mapping from the node
metadata to the latent feature space. The x-axis indicates the epochs. The y-axis indicates the mean absolute error (MAE), which is
the cost function used to measure the accuracy of model predictions—i.e. it measures the distance between the estimated latent
feature space (SVD) and the predicted latent feature space. The red line shows the learning rate of the linear regression model
(baseline), the green line indicates the learning rate of the multilayer perceptron model (MLP), and the blue line indicates the
neural network with two hidden layers (NN). Here the MLP model seems to perform better than the baseline and NN models.

Table 3. Accuracy of model predictions obtained from RDPG-regression procedure. (The table indicates the area under curve
(AUC) values for each model calculated using mean absolute error as the cost function to measure the distance between the
estimated latent feature spaces and the predicted latent feature space. Note that the value in italics indicates the model with
the highest AUC value across all models. The values in brackets are AUC values computed at 95% confidence interval (CI).)

place

baseline MLP NN

vis
ito
r

baseline 0.630 (95% CI

[0.623, 0.625])

0.736 (95% CI

[0.735, 0.795])

0.699 (95% CI

[0.596, 0.6002])

MLP 0.645 (95% CI

[0.629, 0.634])

0.701 (95% CI

[0.702, 0.715])

0.665 (95% CI

[0.617, 0.621])

NN 0.653 (95% CI

[0.630, 0.635])

0.699 (95% CI

[0.619, 0.622])

0.670 (95% CI

[0.605, 0.609])
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The predictive procedure we proposed performed significantly better than at random—i.e. when
compared against AUC = 0.5 (electronic supplementary material, table S5). Comparing the different
latent feature prediction models, we found that the dot product of the visitor baseline model and the
place MLP performed better with AUC = 0.736, followed by dot product of the visitor MLP and
the place MLP model with AUC = 0.701 (table 3).
4. Discussion
In the current study, we present a new predictive procedure which allows us to use both the node
metadata and the knowledge gained from the observed network to predict interactions in bipartite
networks. Overall, we showed that our proposed predictive procedure works in a real-world context
with an accuracy of AUC = 0.736. This indicates that the procedure performed relatively well in
distinguishing between true positives and true negatives when predicting interactions. Moreover, we
showed that our procedure also allowed us to predict out-of-sample interactions for observed nodes,
and more importantly, predict interaction for new nodes added to the network.
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To our knowledge, few studies have focused on exploiting node metadata to predict interactions

using graph-embedding methods. Most research including node metadata to predict interactions have
used node-aggregating methods [16,20,23]. The aforementioned variants of the SBM assume that all
nodes belonging to a given group behave identically, ignoring that certain nodes within the given
group might be interacting with other nodes in the network to different extents. Note however that
recent advances in the field have shown that some SBM variants such as the Mixed Membership
Stochastic Block Model [9], or even the degree-corrected SBM [45] can be considered as embedding
approaches [29], and can additionally account for the heterogeneity of interactions at the node level
[45,46]. However, within the scope of this paper, we did not consider the aforementioned SBM
variants. We instead propose using a predictive procedure based on the RDPG model combined with
a machine learning algorithm to account for the heterogeneity of interactions observed at the node
level. Moreover, using the truncated SVD allows us to represent an observed network at a lower
dimension. Then, using the statistical properties of the RDPG model, we can proceed to predict
interactions at the node level in a network by simply calculating the dot product of the given node to
the other nodes present in the network [27,29,47].

Machine learning techniques such as neural networks are increasingly popular tools in various
applications owing to their high predictive accuracy [48,49]. Here, we used neural networks to relate
the node metadata to their latent feature spaces obtained from a truncated SVD. Various studies
suggest that deeper neural networks—i.e. neural networks with a high number of hidden layers—
tend to outperform shallow neural networks in a wide variety of tasks [35,39]. While both of the
neural network architectures we tested outperformed the linear regression model in mapping the
node metadata onto the latent feature spaces, our results showed that the linear regression model (for
the visitors’ metadata) and the neural network with one hidden layer (for the places’ metadata)
outperformed the neural network with two hidden layers in predicting links. This therefore suggests
that the more complex models are overfitting. Note, however, that the main purpose of our study was
not to find the absolute best neural network architecture, and hence we do not expect further studies
to necessarily confirm this result.

Metadata are known to be good proxies from which to predict interactions in a network [15,17–19,23].
Incorporating node metadata as covariates to network models for link prediction can be tedious.
Especially as node metadata can be of varied type—i.e. categorical and continuous variables, and
these variables might not have linear relationships to the latent feature space; these factors together
necessitate different modelling frameworks [20,22]. Here, we showed that the high flexibility of neural
networks (or other machine learning algorithms) enabled the identification of an accurate mapping
from the visitors’ metadata onto the visitors’ latent feature space and from the places’ metadata to the
places’ latent feature space, respectively. As the functional relationship between node metadata and
their position in the latent feature space can be very complicated, neural network methods are a
promising approach to learn it. Note that over the past years, a wide suite of methods have been
developed to incorporate node metadata as covariates [16,19,23]. It would eventually be important to
compare our proposed framework to the existing ones as a benchmark to objectively compare across
these different techniques. However, this was beyond the scope of this paper.

While each step of the presented procedure is robust, there might be many sources of error. In the
current study, we only present an exploratory analysis of a bipartite network to predict interactions in
a visitation network using both node types’ metadata. Rather than attempting to find the optimal
dimension of our network data, we instead chose d according to the Zhu & Ghodsi’s [33] profile-
likelihood criterion. We selected d a priori, based only on the topological structure of the network. It
could be interesting to further explore whether using a different procedure to select the dimension of
the latent feature space improves the accuracy of link prediction. Indeed, a posteriori selection (trying
to identify which dimension d grants a higher prediction accuracy) is another possibility, but may
require substantially greater computational effort.

Theway inwhichwe split our training and test set implies that the observed and new nodemetadata are
sampled from the same distribution. Therefore, themodels learn a relevantmapping of the newnodes into a
suitable region of the latent feature space.However, if this is not the case, and themetadata of the new nodes
is completely different from one of the observed nodes, nothing guarantees a good placement in the latent
feature space. For instance, in the case of our real-world example, we assumed that the type of visitors
(characterized by their node metadata) and their travelling patterns are consistent over time. However, in
reality, new visitors with completely different characteristics, with different interests could arrive in the
country, which may make using the current proposed framework difficult in predicting their future
travelling patterns. How to deal with new nodes with ‘surprising’ metadata is an open problem.
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Similarly, even if visitors with consistent characteristics were to come, predicting the dynamics of their

travelling patterns can be hard as it is highly dependent of the visitors’ behaviour. Accounting for
human behaviour has shown to be crucial, especially when predicting their travelling patterns [11,50,51].
For example, seasonal changes, accessibility to places, or even the increasing popularity of particular
places owing to social media can influence visitors’ behaviour in travelling across a country [50–52].
Thus, another important aspect that one should consider would be the dynamic nature of the observed
network which would influence the link prediction task.

In addition, we assumed all the node metadata could be informative when predicting interactions. As
a result, we learnt a mapping from the nodes’ full metadata to their respective latent feature spaces
obtained from the truncated SVD. However, we know that not all of the metadata is necessarily
informative, especially when predicting interactions [18,53]. Therefore, further investigating the
relationship between the node metadata and the latent feature space obtained from the truncated SVD
should be done to understand whether certain node metadata are affecting the link prediction
accuracy in the presented procedure.

Moving forward, it would be interesting to extend the current procedure to account for missing data
in: (i) the interaction probability matrix—i.e. distinguishing new and absent interactions—and (ii) the
metadata—i.e. when some of the node metadata are missing. One can imagine a scenario where a
survey was carried out, and a person did not complete the full survey. If we were to have the
metadata of that particular person, we could potentially interpolate some of their answers. Similarly,
in the case where data is extracted from an experimental set-up, data might be missing as a result of
failed experiments. Accounting for such missing information can be particularly important. In this
direction, deeper or dedicated neural network architectures, such as the ones in Smieja et al. [54] and
Przewikélikowski et al. [55], could be used. More recently, Lerique et al. [56] have used a neural
network approach to find the joint embedding of metadata and the network structure to predict the
interaction probabilities. However, one of the main limitations of the latter approach is the need to
find an optimal dimension for the both the node metadata and the network data. Using a machine
learning approach to learn a mapping of node metadata directly to their interaction probabilities in
large networks remains a hard problem when performed in a very high-dimensional space. Here, we
showed that we can simplify that problem by exploiting the properties of a well understood statistical
model for complex networks, the RDPG model, and combining it with standard machine learning
techniques. The RDPG model grants us a robust estimation of a low-dimensional network embedding
(the nodes’ latent feature spaces) and a convenient way to estimate its dimension. As in other
examples [57], promising results are obtained not by abandoning a model-based approach to science
but by merging it with machine learning techniques.

Data accessibility. All visitation data from the Ministry of Business Innovation & Employment (MBIE) used in this study
are publicly available on https://www.mbie.govt.nz/immigration-and-tourism/tourism-research-and-data/tourism-
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