
BLM LIBRARY 

88069879 

Report No. 

UNITED STATES 

DEPARTMENT OF THE INTERIOR 
BUREAU OF MINES 

HELIUM ACTIVITY 

HELIUM RESEARCH CENTER 

INTERNAL REPORT 

APPLICATION OF THE METHOD OF THE AUXILIARY MATRIX IN EVALUATING 

VIRIAL COEFFICIENTS FROM PVT DATA 

3* J> Pa It on 

BRANCH _TyffitoaenUl .iteaearch 

PROJECT NO. 4335 __ 

- 

DATE _November 1964 

HD 

9660 

. H43 

M56 

no. 62 
AMARILLO, TEXAS 





n> s 9^ 

.M3 
fA^fo 

Report No. 62 ^*-* 

HELIUM RESEARCH CENTER 

INTERNAL REPORT 

APPLICATION OF THE METHOD OF THE AUXILIARY MATRIX IN EVALUATING VIRIAL 

COEFFICIENTS FROM PVT DATA 

By 

B. J. Dalton 

Fundamental Research Branch 

Project No. 4335 

November 1964 

BUREAU OF LAND MANAGEMENT LIBRARY 

BLDG. 50, 
DENVER FEDERAL CENTER 

P.O. BOX 25047 
DENVER, COLORADO 80225 





2 

CONTENTS 

Page. 

Abstract.. .. 3 

Introduction . 4 

Calculation of the standard error 

1. Rules for obtaining the auxiliary matrix 
from the given coefficient matrix . 10 

2. Rules for obtaining the final results 
from the auxiliary matrix. 12 

Conclusions. ..25 

Appendix.26 

References 30 



* 

- 

■ 



3 

APPLICATION OF THE METHOD OF THE AUXILIARY MATRIX IN EVALUATING VIRIAL 

COEFFICIENTS FROM PVT DATA 

by 

B. J. Dalton^ 

ABSTRACT 

An important application of the method of the auxiliary matrix 

is in the least squares evaluation of virial coefficients from PVT data. 

This analytical method for solving constants from general equations 

containing these coefficients is much shorter than a solution by deter¬ 

minants and is most desirable for desk calculation work as the only 

writing involved is that of writing the auxiliary matrix and the final 

results . 

This report gives a brief summary of the method of the auxiliary 

matrix, previously published by Crout, and its application to rational, 

integral functions of one to four degrees together with formulas for 

evaluating the standard error in a single measurement, the standard 

error in each coefficient, and the standard error of these functions. 

1/ Chemist (Physical), Helium Research Center, Bureau of Mines, 
Amarillo, Texas. 

Work on manuscript completed November 1964 
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The formulas presented in this report for evaluating the standard 

errors mentioned above are expressed in terms of the elements of the 

auxiliary matrix. These formulas were derived by expressing the 

constants in terms of the original data and applying the law for the 

"Propagation of Errors", unit weight being assigned to each of the 

observed measurements. 

INTRODUCTION 

2/ 
In a previous publication (_3)— , formulas were presented for eval- 

2/ Underlined numbers in parentheses refer to items in the list of 

references at the end of this report. 

uating the constants of rational integral functions of one to four 

degrees together with formulas for calculating the standard error of 

a single measurement, the standard error in each coefficient, and the 

standard error of the resulting function. The derivations for calcu¬ 

lating the errors mentioned above were based on the law for the "Prop¬ 

agation of Errors" (1_, 4), unit weight being given to each of the 

observed measurements. 

After publication, this author became aware of the Crout Method (2) , 

the method of the auxiliary matrix. This method is a modification of 

the elimination method and it is most desirable for desk calculation 

work. It is a fact that this analytical method for solving a set of 

normal equations is much shorter than a solution by determinents as 
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given previously (_3) . Therefore, it was decided to derive the equations 

for evaluating the above-mentioned errors. This author does not claim 

any originality with respect to this method for solving constants from 

general equations containing these coefficients. 

The purpose of this report is to give, without proof, the Crout 

Method as applied to rational, integral functions of one to four degrees 

together with formulas which I have derived for evaluating the standard 

error in a single Y^, in each coefficient, and in the resulting function. 

The formulas presented for evaluating these errors are expressed in 

terms of the elements of the auxiliary matrix and they were derived 

on the basis of the law for the "Propagation of Errors", each observation 

having unit weight. 

CALCULATION OF THE STANDARD ERROR 

An important application of the method of the auxiliary matrix 

is in the least squares evalation of the coefficients from a general 

equation containing these constants. For example, the PV product of 

a gas is represented as a function of either the pressure or the density 

by an equation such as 

Y = A + Bx1 + Cx0 + Dx0 + Ex. + ... 
1 l J 4 

in which Y is the PV product; x^, x^, x^, , ... are forms of either 

the pressure or the density variable; and A, B, C, D, E, ... represent 

so-called virial coefficients to be determined by least squares 

solution using the Crout method. 
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The form of the general equation given above is desirable when 

considered from the standpoint of the independent variable. That is, 

the PV-dependent variable may or may not be expressed in terms of a 

power series expansion 

x = 
2 3 

x = x2; x = x^; 

of the independent variable. 

The following symbolism has been used in the derivation of all 

equations for evaluating standard errors contained in this report: 

y., x^ , x^ , ... designate observed values; Y refers to the function; 

i i 

2 2 2 
sA , s„, ... are the variances in the coefficients; and S,7 are the 

A ’ B Y. Y. 
l l 

2 
variance and the standard error in a single Y respectively; and 

S are the variance and the standard error in the function, respectively 

R and C represent the words row and column, respectively, and refer 

to those elements of the given coefficient matrix; and r and c represent 

the words row and column, respectively, and refer to those elements 

of the auxiliary matrix. 

Now if one has a function, F, of a number of independently observed 

quantities, Y^, Y^ , ..., whose standard errors 

are known, then the variance, S^, in F is given by the formula (JL, 4) 

for the "Propagation of Errors": 

s2= 
F VdY- 

S. )2 + 
dY, 

2 
SY } + 

2 
+ (: 

dF 
dY 

n 
S Y } 

n 
(1) 
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Extracting the square root of the variance, one obtains a value on 

the same scale as the original measurements; this value is called 

the standard error or standard deviation. 

Suppose we have a function of the kind 

Y = A + BX]l (2) 

where A and B are to be evaluated by least squares solution (using 

the method of the auxiliary matrix) along with the following errors: 

the standard error of a single measurement; the standard error in each 

coefficient; and the standard error of the resulting function. The 

2 
estimated variance, S , of a single Y is given as 

Y i 1 

Y. - Y 

,2 _ £( 1obs XcalV 
Y. 
i 

n - 2 
(3) 

Now in order to evaluate the standard error in both intercept 

and slope, we must express these quantities in terms of the original 

data. The residuals, W., are 
l 

W. = (Y. - A - Bx. ) 
li 1. 

l 

and the sum of the squares of the residuals is 

(4) 

ZW2 = Z (Y - A - Bx. )2 (5) 
l l 1. 

, l 

the summation being over i for 1 to n for the n observations. Taking 

the partial derivative of equation (5) with respect to first A and 
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then B and setting each derivative equal to zero gives the normal 

equations 

(Y, - A - Bx, ) + . . . + (Y - A - Bx, ) = 0 (6) 
11, n 1 

i n 

x, (Y - A - Bx, )+... + x, (Y - A - Bx. ) = 0 (7) 
1,1 1, In 1 

1 In n 

or their equivalents 

An + BZx.. * EY. 
1. i 
i 

(8) 

A Ex, + BEx, • Ex, Y. 
1. 1. l.i 
l ii 

(9) 

Now equations (8) and (9) can be written as a general coefficient matrix 
> 

as 

(Matrix 10) 
n Ex. 

# 
l 

EY. 
l 

Sxi. 
l 

Zxi. 
l 

Ex, Y. 
1. l 
l 

or, abbreviating the above, using the letters R and C to represent the 

words row and column, respectively, as 

R1C1 R1C2 RlS 

R2C1 R2C2 R2C3 

(Matrix 11) 

where R^C^ = n; R^C2 = i RlC3 = ^Yi’ ^2^1 = ^X1 ’ R2C2 = ^X1 ’ and 

R2C3 5itl.Yi‘ 
The solution of the constants of equation (2) requires 
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that we evaluate an auxiliary matrix and a final result. Now our 

auxiliary matrix is of the form 

R1C1 rlc2 

! 

rlc3 
(Matrix 12) 

R2^1 r2C2 r2c3 | 
1 

and our final results are 

B = r2c3 (13) 

A = rlC3 ' rlC2 ’ B 
04) 

The expressiorB derived by me for evaluating the variances in A and 

in Bare of the form 

2 r2C2 sl ’ (i^> SB ' (rlc2) ’AB 
(15) 

2 2 1 

sB - Sy. 
i 2 2 

(16) 

where sA„ is 
AB 

SAB = ('rlC2) • SB 
07) 

From the variance in a single , in A, and in B, we can evaluate 

the variance in our function, equation (2). This is done by applying 

the general equation for the "Propagation of Errors", equation (1). 

To avoid repetition, familarity with the techniques given in reference 3 

is assumed. The formula for evaluating the variance in our function, 

equation (2), can be determined from the equation O): 
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SY = SA + 2x1sAB + X1SB (18) 

1. Rules for obtaining the auxiliary matrix from the given coefficient 
matrix 

The steps to follow in going from the given coefficient matrix, 

(Matrix 11), to the auxiliary matrix, (Matrix 12), are as follows: 

(1) The first column of the auxiliary matrix is identical to the 

first column of the given coefficient matrix. Each element of the 

first row of the auxiliary matrix, except the first element, is obtained 

by dividing the corresponding element of the coefficient matrix by the 

first element of the coefficient matrix. 

(2) "Each element on or below the principal diagonal (of the 

auxiliary matrix) is equal to the corresponding element of the given 

matrix (Matrix 11) minus the sum of those products of elements in 

its row and corresponding elements in its column (in the auxiliary 

matrix) which involve only previously computed elements" (2). 

(3) "Each element to the right of the principal diagonal (of 

the auxiliary matrix) is given by a calculation which differs from 

rule 3 (rule 2 of this report) only in that there is a final division 

by its diagonal elment (in the auxiliary matrix)" (2). 

Suppose we follow the above steps and proceed to go from our 

coefficient matrix to our auxiliary matrix. Now the coefficient 

matrix, in abbreviated form, is given as 



■ 

' 

. 



(Matrix 11) 

R2C1 R2C2 R2C3 

Now rule 1 says that the first column of the auxiliary matrix 

is identical to the first column of the coefficient matrix. Hence, 

and aPPear in the first column of the auxiliary matrix. 

Rule 1 also says that each element which lies in the first row of 

the auxiliary matrix, excluding R^C^, is equal to the corresponding 

element in the coefficient matrix divided by R^C^. Hence, R-^C^, 

Rj^/R^C^, and R^C^/R^C^ appear in the first row of the auxiliary 

matrix. 

Rule 2 states that any element in the auxiliary matrix which 

3/ 
lies on or below the principal diagonal— of the auxiliary matrix 

3/ The principal diagonal is composed of those elements which 

have the same row and column index—i.e.: R^C^, ^2^2 * * *’^n^n* 

The principal diagonal starts with that element in the upper left 

hand corner and slopes down to the right. In our coefficient 

matrix, the principal diagonal is made up of R^C^ and R2C2 * 

is equal to the corresponding element in the given matrix, ^^2’ minus 

the sum of those products of elements in its row and corresponding 

elements in its column, R^C^.r^c^. Therefore, from our auxiliary 
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matrix 

(Matrix 12) 

Vi 

we see from rule 2 that *2C2 ~ R2C2 " R2Gl’rlC2* 

Finally, rule 3 says that in evaluating an element which lies 

to the right of the principal diagonal of the auxiliary matrix, we 

follow step 2 and then divide by the diagonal element. That is, 

is equal to the corresponding element in our coefficient matrix, ^2^3* 

minus the sum of those products of elements in its row and corresponding 

i 
elements in its column of the auxiliary matrix, R2^^*ric3» an<* then 

all of this is to be divided by the diagonal element of the auxiliary 

matrix which lies in the same row as r2c3* Therefore, 

R2C3 ~ R2Cl,rlc3 

r2C2 

Now all of the elements which make up our auxiliary matrix have been 

defined and we proceed to outline the procedure for going from our 

auxiliary matrix to a set of final results. 

2. Rules for obtaining the final results from the auxiliary matrix 

In going from the auxiliary matrix, (Matrix 12), to the final 

result, equations (13) and (14), we proceed as follows: 

(1) We evaluate our coefficients of equation (2) in reverse order; 

for example, we evaluate first B and then A. 

(2) The last coefficient, B, is numerically equal to the cor¬ 

responding element in the last column of our auxiliary matrix. 
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(3) Each of the other coefficients is "...equal to the cor¬ 

responding element of the last column of the auxiliary matrix minus 

the sum of those products of elements in its row in the auxiliary 

matrix and corresponding elements in its column in the final matrix 

which involve only previously computed elements" (2). 

Now suppose we follow the above steps in going from our auxiliary 

matrix to our final solution. Now the auxiliary matrix, in abbreviated 

form, is given as 

Rlcl rlC2 rlc3 

¥i r2C2 r2C3 

(Matrix 12) 

Rule 1 says that the first constant we evaluate is B and the 

second constant we evaluate is A. Rule 2 says that B is numerically 

equal to the last element in the last column of the auxiliary matrix. 

Therefore, B = Rule 3 then says that A is equal to the next 

to the last element in the last column of the auxiliary matrix (r.,^) 

minus the sum of those products of elements in its row in the auxiliary 

matrix and corresponding elements in the last column of our final results. 

Therefore, A = r^c^ " ric2*B* 

For curves of higher degree, the following formulas for evaluating 

coefficients are given along with formulas derived by me for evaluating 

the above-mentioned errors. 

For a function of the kind 

Y = A + Bx1 + Cx2 (19) 
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the method of the auxiliary matrix can be used for the solution of 

the set of normal equations. The normal equations are: 

An + BZx, + 
CEx2. --SYi 

(19a) 

l i 

“*1. 
+ BZx^ + 

CExl.X2. =-Exl.Yi 
(19b) 

l i 1 1 1 

AZX2 + BZx^ x^ + CLx2 =LZx0 Y. 
2, l 

(19c) 

Therefore, our coefficient matrix is of the form 

n 
Exl. 

1 
Ex2. 

1 

ZY. 
l 

Zx.. 
Ex1.X2. 

1 1 
Zx- Y. 

1. l 
l 

(Matrix 19d) 

Ix2. 
1 

ZX1.X2. 
1 1 

v 2 
EX2. 

1 
Zx. Y. 

2 . i 
i 

or, if we use the symbolism R and C to represent the words row and 

column, respectively, we can abbreviate (Matrix 19d) as 

Rici R1C2 R1C3 R1C4 

R2^1 R2C2 R2C3 R2C4 
(Matrix 19e) 

R3C1 R3C2 R3C3 R3C4 

and from the rules cited for obtaining the auxiliary matrix from the 

4 / 
given coefficient matrix, we have as our auxiliary matrix- 

47 The relations for obtaining each element of the auxiliary matrix from 

the given coefficient matrix for third and fourth order matrices, respec¬ 

tively, are given in the appendix of this report. 
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Rlcl rlC2 rlC3 rlc4 

Vi r2C2 r2C3 r2c4 

R3C1 r3C2 r3C3 r3c4 

and our final result is of the form 

C = r3c4 

B = r2c4 ‘ r2c3C 

A = r.c. - r1c. • C - rnc0 • B 
14 13 12 

The variance in a single is given as 

(Matrix 19f) 

(19g) 

(19h) 

(19i) 

Y - Y. 2 

o2 - 1ob8 1cal) 
SYi n - 3 

(19 j) 

The error in our function, equation (19), can be evaluated from the 

expression (3) 

2 2 , 0 2 2 2 . 2.o 2,22 
SY = SA + 2XlsAB + XlsB + 2XlX2sBC + 2X2sac + Vc 

where 

(19k) 

8A (r3c3/RlCl) * SC ‘ (rlc3^ ' 8AC “ (rlc2) AB 
(19m) 

s 
AB 

(rlc3) • sBC - (r^c2) • Sg 

SAC = ‘ (rlC3) • SC _ (rlC2) • SBC 
(19o) 

(r3C3/r2C2) • SC ‘ (r2C3) • SBC 
2 _ 

(19p) 
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BC 
- (r2c3) • sc (19q) 

SC = SY (1/r3c3) 
i 

(19r) 

For an equation of the form 

Y = A + Bx^ + Cx^ + Dx^ (20) 

our normal equations are 

An + BZx^ + 
i 

CZx2 + 
i 

DZx 
i 

* ZY. 
l 

AZx.. + BZx? + 
i l 

CZx x + 
i i 

DZX1.X3. 
i l 

x Zx Y. 
1. i 
l 

AZx2 + BZx^ x^ + 
i i i 

2 
CZx + 

l 
D2x2.x3. 

1 1 
^ £x. Y. 

2 . i 
l 

AZx _ + BZx1 x_ + 
Ji i i 

CEx2.x3. + 
1 1 

D£x* 
1 

- Zx. Y. 
3. i 
i 

our coefficient matrix is of the form 

n Sx 
1 

Ix2. 
1 

SX3. 
1 

ZY. 
l 

Zx, Zx? 
l l 

2x1.x2. 
1 1 

EX1.X3. 
1 1 

Zx, Y. 
1. i 
l 

Zx« Zx1 x. 
i i i i 

EX2 X3. 
i l 

Zx0 Y. 
2 . i 
l 

ZxQ Zx_ x 
j . i, j , 
i i i 

£x~ x„ 
i i 

Zxir 
i 

Zx. Y. 
3. l 
l 

(20a) 

(20b) 

(20c) 

(20d) 

(Matrix 20e) 
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We can write (Matrix 20e) in abbreviated form as 

Rlcl R1C2 R1C3 R1C4 RiS 

Vi R2C2 R2C3 R2C4 R2C5 

R3C1 R3C2 R3C3 R3C4 R3C5 

Vl R4C2 R4C3 
r.c. 

4 4 R4C5 

(Matrix 20f) 

Proceeding from (Matrix 20f), we can write our auxiliary matrix as 

R1C1 rlc2 rlc3 rlc4 rlc5 

R2C1 r2c2 r2°3 r2c4 r2c5 

RjCl r3c2 r3c3 r3c4 r3c5 

R4C1 r4C2 r4c3 r4c4 r4c5 

and our final result is of the form 

(Matrix 20g) 

D ’ r4c5 

C - r3c5 - (r3c^) • D 

(20h) 

(201) 

B - r,c5 - (r2c4) • D - (r^) • C 

A “ - (r c^) • D - (r^Cj) • c - (r^) ' B 

(20 j ) 

(20k) 

The variance in our function, equation (20), can be determined from 

the expression (3) 



' 
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SA + 2x18AB + 2x2SAC + 2x3SAD 

+ x*.I + 2Xlx282c + 2xxx382d (20m) 

,22.. 2 2 2 
+ x2sc + 2x2x3scd + x3sD 

where 
- Y 

S* - 

2 
•a.' 4 4 Tr ' bD - (rIc4) 

SAB “ ' (rlC4} • *BD 

8 
AC 

■Id 

T*4' 

14' 

’B 4W4' 22 

2 
*CD 

2 
*D * 

2 
*D * 

8 
BC 

2 
‘bd 

vt2u4' 

6 " (r2c4: 

:4c4^r3c3' 

2 
®CD 

n - 4 

2 f . 2 
8AD " (rlC3) * ®AC (ric2) • sL (20o) 

(rlC3) ‘ *BC ’ (rlC25 
2 

1 • 8b 
(20p) 

<rlc3) * «c ' (rlc2) 
2 

SBC 
(20q) 

(rlc3) ' 8CD ‘ (rlc2) 
2 

SBD 
(20r) 

(r2c4) • SBD ‘ (r2c3) 
2 

SBC 
(20s) 

• 8CD ’ (r2c3) • 8C 
(20t) 

2 , N 2 
flD “ r2C3^ ' ®CD 

(20u) 

• SD ‘ (r3C4) • 8CD 
(20v) 

“ <r3c4) * sd 
(20w) 



' 

' 
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®D = S2 Cl/r4c4) (20x) 

Attention has been given to functions of the kind 

Y = 1 + BX]L + Cx2 (21) 

and of higher degree and to the standard error associated with each 

coefficient. The normal equations for equation (21) are 

BZx* + CZx- x =. (Zx Y. - Zx ) (21a) 

i i l ii 1 i 

BZx x + CZx9 s (Zx9 Y. - Zx« ) (21b) 

ii i i i 1 i 

and our coefficient matrix is of the form 

o 
Zx- Zx- x„ (Zxn Y- - Zx- ) 

Li Li Zi Li i Li 

Zx- x9 Zx? (Zx9 Y - Zx9 ) 
i i i i i 

Writing ( Matrix 21c) in abbreviated form, we have 

R1C1 R1C2 R1C3 

R2^*l R2^*2 R2C3 

(Matrix 21c) 

(Matrix 21d) 

as our given coefficient matrix. The auxiliary matrix is given by 

R1C1 rlc2 rlc3 

Vl r2c2 r2c3 

(Matrix 21e) 
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Thus, our final result is 

13 

r2C3 
(2 If) 

(ric2) • c (21g) 

The variance in our function, equation (21), is given by (3) 

2 _ 2 2' 2 2(2 
SY ‘ X1SB + 2x1x2SBC + X2SC 

(21h) 

where 

r 2J BC 
2 2 2 

SB = (r2C2/RlCl) ‘ 8f’ ’ ‘ 8' 

2 
SBC = " (rlC2> ' SC 

(21i) 

(21j) 

8C = Sy (1/r2C2) 
(21k) 

and 

Yi - Yi 2 
Z ( obs_cal) 

n - 2 
(21m) 

For the function 

our normal equations are 

2 . _ 
BZx. 

BZx. 

‘1 2 
Ai i 

kl 3 
i Ji 

BZx- xQ + CZx„ x, + DZxq 
Ji Zi Ji i 

Dx3 
(22) 

(Zx, Y - Zx1 ) (22a) 

ii i 

(2x2 Y 
i 

- Zx„ ) 
i 

(22b) 

(SX3 Y1 
- Zx^ ) (22c) 
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From equations (22a) , (22b) , and (22c) , we can write our coefficient 

matrix as 

| 

! 2 
; Ex, Ex. 

1. i l 
x2 • • 

i i 
SX1.X3. 

1 1 
(Zxi.Yi l 

- Ex^ ) 
i 

i i 

1 
2 

Ex^ x2 Ex2 
i i i 

SX2.X3. 
1 1 

(Ex_ Y. 
2 . i 
l 

- Zx2 ) 
1 

(Matrix 

i 

Zxl.x3. Sx2 
1 1 

.X3. 
i i 

2X3. 
1 

(Zx3 ^ 
1 

- Zx3 ) 
1 

• 

In abbreviated form, ( Matrix 22d) is given as 

R1C1 R1C2 R1C3 R1C4 
1 

j R2C1 
1 
' 

R2C2 ^2^3 R2C4 
(Matrix 22e) 

| R3C1 R3C2 R3C3 R3C4 

and from ( Matrix 22e) , we can write our auxiliary matrix as 

Rl°l 1 rlC2 rlC3* 
r c ' 
14 

! r2C1 
1 

r2°2 r2c3 r2C4 ! 
! t 

(Matrix 22f) 

1 R3C1 r3C2 r3C3 r3C4 

Hence, our final result is given to be 

D = 
r3C4 

(22g) 

C ■ 
r2C4 (r2c3^ 

. D (22h) 

B = rlC4 
- (rlC 3) • D - (r c ) • r 

ir12; 
(22i) 



j 
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We can determine the error in our function, equation (22), from the 

expression Q) 

where 

c2 _ 2 2 . 2 2 2 2 
SY " X1SB + 2x1X2SBC + 2x1X3SBD + X2SC 

+ 2x2X3SCD + X3SD 

SB <‘r3c3'/RXCl'> ‘ SD ‘ <-rlc3') ' SBD " ^rlc2') ' SBC 

s 
BC ‘ ' SCD • (rlC2) ' SC 

'BD = - (ric3) • s2 - (ric2) • o2D 

SC ^r3°3^r2c2') ’ SD * <'r2c3') ' SCD 

'CD ” <-r2c3') ' SD 

SD = SYi (1/r3C3) 

and 
Yi ' Yi 2 

q2 _ Z ( obs_cal) 
Y. n - 3 
l 

Finally, for the function 

(22 j) 

(22k) 

(22m) 

(22n) 

(22o) 

(22p) 

(22q) 

(22r) 

Y = 1 + Bx^ + Cx^ + Dx^ + Ex^ (23) 

we have the set of normal equations 

BZx^ + CZxn xn + DZx, x_ + EZx, x. r (Zx.. Y. - Zx.. ) 
1. 1. 2. 1. 3. 1. 4. 1. i 1. 
i ii ii ii i i 

(23a) 
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BZx.. x„ + CZx~ + DZx„ x + EZxn x. = (Zx_ Y. - Zx~ ) 
1 • ^ • Z • t.j, Z . M- , Z , i Z . 
11 1 11 11 1 1 

(23b) 

BZX1.X3. + 
1 1 

CZx2 
,X3. + °ZX3. 
11 1 

+ EZx x. r 
3. 4 . 
l l 

(Zx, Y. - Zx, ) (23c) 
3.i 3. 
i l 

BZx. x. + 1. 4 . 
l l 

CZx2 X + DZx X . 4 . 3.4 
ii l 

+ EZx^ = 
4 . 

i l 

(Zx. Y. - Zx. ) (23d) 
4.i 4. 

l l 

from which we can evaluate B, C , D, and E. Our given coefficient matrix , 

written in abbreviated form. is given as 

Rici R_ C. 
1 2 R1C3 R1C4 R1C5 | 

R2C1 R2C2 
R_C_ R0C. 

2 3 2 4 

1 
R2C5 1 

(Matrix 23e) 

R3C1 R3C2 R3C3 R3C4 R3C5 

Vl R4C2 
R.C0 R.C, 

4 3 4 4 R4C5 

Proceeding from (Matrix 23e), we can write our auxiliary matrix as 

Rici rlc2 rlC3 rlC4 rlC5 ♦ i 
R2C1 r2c2 r2c3 r2c4 r2C5 

(Matrix 23f) 

i 
i 

R3C1 r3c2 r3c3 r3C4 r3C5 
! 1 

Vl r4C2 r4c3 r4c4 r4c5 

Hence, from our auxiliary matrix, ( Matrix 23f), we have as our final 

result 

E = r.c_ (23g) 
4 5 
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° " r3C5 ' (r3c4) * E 
(23h) 

C - r2c^ " ^r2c4^ * E " ^r2c3^ * D (2 3 i ) 

B = rlC5 “ ^rlC4') * E " ('rlC3') * D " ^rlc2^ ’ C (23j) 

The variance in our function, equation (23) , can be determined from 

the equation (3) 

X1SB + 2x1X2SBC + 2x1X3SBD 

where 
2 

SB = 

SY ' + 2x1x4SBE + 
22, 

X2SC 2x2X3SCD 
(23k) 

+ 2x2x^sce + 2 2 
X3SD + 2x3X4sDE 

,22 
+ X4SE 

2 
(r4c^/R^C• s£ - (r^c^) 

2 
SBE - (r1c3) 

2 ( * 2 
* SBD “ r1C2^ SBC 

(23m) 

2 
SBC = ' (rlc4) ‘ SCE ' (rlc3) 

2 
• s 

CD (rlC2} * SC 
(23n) 

2 
SBD = ' (rlc4) ’ SDE ‘ (rlC3) 

2 
SD ^rlC2^ ’ SCD 

(23o) 

2 
SBE 

= - (rxc4) • s2 - (rlc3) 
2 

SDE (rlC2} * SCE 
(23p) 

2 
SC = : (r4c4/r2C2) * SE - <r2c4 ) * s2 ; CE 

f x 2 
r2C3^ ’ SCD 

(23q) 

SCD = • (r2C4) 
2 

SDE 
- (r2c3) 

2 
' SD 

(23r) 

SCE = ' (r2C4) 
2 

SE 
(r2c3) 

2 
SDE 

(23s) 
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(23t) 

(23u) 

(23v) 

and 

q2 _ E( ^obs_^cal) 

Y. n - 4 n - 4 
(23w) 

CONCLUSIONS 

The method of treating PVT data on gases consists of expressing 

the isothermal variation of the PV product of a gas in terms of a 

power series in either the pressure or the density and of evaluating 

so-called virial coefficients by least squares solution. This report 

gives a brief summary of the method of the auxiliary matrix, previously 

published by Crout, and its application to rational integral functions 

of one to four degrees, without going into any details of the mathe¬ 

matical background of statistics or into the various approaches to the 

problem of curve fitting. 

Formulas for calculating the standard error in a single measure¬ 

ment, the standard error in each coefficient, and the standard error 

of the respective functions are given, without proof, and are presented 

on the basis of unit weight being given to each observed measurement. 
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APPENDIX 

In evaluating the elements of the auxiliary matrix, it is most 

convenient to determine these elements in the following order: First, 

we evaluate all elements which lie in the first column of our auxiliary 

matrix. We then evaluate all elements which lie in the first row of 

our auxiliary matrix. Next we evaluate all elements in the second 

column and then all elements in the second row and so on until all 

elements of our auxiliary matrix are defined. 

Now suppose we have a third order coefficient matrix of the form 

Rici R1C2 R1C3 R1C4 

R2C1 R2C2 R2C3 R2C4 
(Matrix 19d) 

R3C1 R3C2 R3C3 R3C4 

a third order auxiliary matrix of the form 

R1C1 rlC2 rlc3 rlC4 

P'2C1 r2c2 r2c3 r2°4 
(Matrix 19e) 

R3C1 r3C2 r3C3 r3C4 

From the rules given on page 10 of this report , the elements of 

our third order matrix, (Matrix 19e), can be determined from the following 

relations 
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r-c, = FLC, -r R-CL 
14 14 11 

r2c2 ** ^2^2 ~ ^2^1 *rlc2 

r3C2 ^3^2 ** R3C1 *rlc2 

r2C3~^ " LR2C3 " R2Cl'rlc3^ * r2c2 

r2C4 * ^R2C4 ’ R2Cl*rlc4^ * r2C2 

r3C4 = ^R3C4 “ R3Cl’rlc4 " r3c2*r2c4^ * r3C3 

It is to be noted that (Matrix 19e) and (Matrix 22f) are third order 

auxiliary matrices. Therefore, the elements of (Matrix 22f) are deter 

mined as outlined above. 

Now suppose we have a fourth order coefficient of the form 

Rlcl R1C2 R1C3 R1C4 RlS 

Vi R2C2 R2C3 R2C4 R2C5 

R3C1 R3C2 R3C3 R3C4 R3C5 

Vl R4C2 
R, C 

4 3 R4C4 R4C5 

and a fourth order auxiliary matrix of the form 

(Matrix 20f) 

5/ Since our auxiliary matrix is symmetrical about the principal 

diagonal, then this particular element can be evaluated by dividing 

its symmetrically opposite element below the principal diagonal, 

r3c2» by the diagonal element which lies in the same row as r2c3* 

That is, r^c^ ** f r2c2* 
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(Matrix 20g) 

R1C1 rlc2 rlc3 ric4 ric5 

Vl r2c2 r2C3 r2C4 r2c5 

R3C1 r3C2 r3c3 r3c4 r3c5 

R, C_ r.c0 r.c0 r.c. r.cn 
41 42 43 44 45 

Now we determine the elements of our auxiliary matrix in the same order 

as cited above — i.e., first column and then first row ; second column 

and then second row, and so on until all of the elements are defined. 

Now from the rules given on page 10 of this report, we see that 

the elements of (Matrix 20g) can be evaluated from the following relations 

rlC2 * R1C2 ~ R1C1 

r^c3 ~ ^1^3 ~ Rl^l 

rlC4 ~ R1^4 ~ Rl^l 

rlC5 ~ R1^5 ~ Rl^l 

2 3 

r2C2 
= r2c2 - RjCj-r^ 

r c„ = RoC0 - R_C_ • r, c„ 
3 2 3 2 3 1 12 

r, c„ * R, Cn - R. C ,• r, c_ 
4 2 4 2 4 1 12 

' = ^ R2C3 - R2Gl*rlC3^ v r2c2 

J5/ Since our auxiliary matrix is symmetrical about the principal diagonal, 

then this particular element can be evaluated by dividing its sym¬ 

metrically opposite element below the principal diagonal, r^c2» by 

the diagonal element which lies in the same row as r2c3* That is, 

r2C3 r3C2 ' r2C2‘ 
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It is to be noted that (Matrix 20g) and (Matrix 23f) are fourth order 

auxiliary matrices. Therefore, the elements of (Matrix 23f) are deter¬ 

mined as outlined above. 

7/ Since our auxiliary matrix is symmetrical about the principal 

diagonal, then this element can be determined by dividing its 

symmetrically opposite element below the principal diagonal, 

r4C2 ’ ^ t^ie diagonal element which lies in the same row as 

r^c. . That is, r„c. = r.c. -r r c0. 
24 24 42 2 *■ 

8/ Since our auxiliary matrix is symmetrical about the principal diagonal 

then this element can be determined by dividing its symmetrically 

opposite element below the principal diagonal, r^c^, by1 the diagonal 

element which lies in the same row as r^c^. That is, r^c^ ~ r^C3 ^ r 
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