Understanding Personal Attacks
on Wikipedia

Ellery Wulczyn and Nithum Thain



Harassment is prevalent on
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the harassment of others. Out of 2,078 that
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Source: The Harassment Survey 2015



Most harassment occurs on
Wikipedia
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Victims of harassment are less likely to
contribute to Wikimedia projects

M Greatly decreased Decreased Neither increased nor decreased Increased B Greatly increased B Not sure/Don't know

Participating in Wikimedia _ .
projects online 22%

Participating in a Wikimedia

harassment

Participating in a new

Wikimedia project in which | _ 45%

did not experience harassment

Interacting with other users _
online

project in which | experienced _ 24%
9%

Source: The Harassment Survey 2015



Goals

. Develop an algorithmic approach to detect
personal attacks on Wikipedia

. Use these algorithms to extend the
analysis of personal attacks on Wikipedia
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Data Pipeline

Goal:
Set of labeled talk page comments

Input:
English Wikipedia revision history



Data Pipeline

Revisions >

mwdiffs python library

Raw Diffs
Clean Diffs
Labeled Diffs




Data Pipeline

Revisions >

Raw Diffs
Clean Diffs
Labeled Diffs

e extract content added
e remove mw markup, etc
e filter out administrative messages
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Data Pipeline

Revisions >

Raw Diffs
Clean Diffs
Labeled Diffs

crowdsourced labeling via
CrowdFlower
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Labelled Training Data

Random Data Blocked Data
A representative sample of A sample of revisions written
revisions from article and user by a user near a “block
talk pages event” for personal attacks
* Correct prior distribution e High proportion of
* Important for validation attacking comments

* Few examples of attack * Speeds up training
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Choosing a Question

Does the comment contain a personal attack or

harassment? Please mark all that apply:

Targeted at the recipient of the message
Targeted at a third party

Being reported or quoted

Another kind of harassment

This is not an attack or harassment
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Crowdsourced Annotation

Crowdflower platform
20,000 random revisions
50,000 blocked revisions
Each rated 10x

Quality control via test questions

14



Crowdflower Challenges

* Annotators working quickly
* May have imperfect knowledge of English

e Subjective nature of task
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Outline

1. Data Pipeline

2. Model Building

3. Analysis
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Model Building

Goal:

build classifier that takes in a talk page comment
and outputs the probability that the comment
contains a personal attack

Input:
70k comments, each annotated 10x
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Model Building: ML Overview

collection of comments + annotations

!

collection of features + labels

!

learning algorithm

!

classifier
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Model Building:
From Comments to Features

“That’s_great”

-

{that, hat’, at’s, t's_g, ..., grea, reat }

T

[0010...101... 001 ... 110...]



Model Building:
From Annotations to Labels
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personal attack \_/
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Model Building:
Learning Algorithms

Final Choice: Logistic Regression

Experimented with: MPLs, RNNs, CNNs:

added complexity, little performance gain
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Model Building: Evaluation

Question:
How good is our classifier/model?

Idea:

Use one group of people to predict what
another group of people thinks about a
comment. Compare our model’s predictive
power, to the predictive power of a group of
people.
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“Predictions” “Ground Truth”
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Model Building: Evaluation

Fix “Ground Truth group size at size 10

Prediction ROC

Group Size |AUC

1 0.854
2 0.911
4 0.941
6 0.950
8 0.961
10 0.963




Model Building: Evaluation

Fix “Ground Truth group size at size 10

Prediction ROC
Group Size |AUC

1 0.854
2 0.911
4 0.941
6 0.950
38 0.961

10 0.963




Demo

Available at: wikidetox.appspot.com
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Demo

Select Input Type:

(=) Text
Revision ID

Congratulations. | don't know whether you are aware of this fact or not, but you have shown
vour qualified stupidity.

oo |

Results:

not attack: 0.18

attack: 0.82
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Select Input Type:

(=) Text
Revision 1D

F#@$% you, a$$h0I3

Results:

not attack: 0.31
attack: 0.69




Select Input Type:

(=) Text
Revision 1D

| will punch your lights out.

=

Results:

not attack: 0.41

attack: 0.59

Demo

Select Input Type:

(=) Text
Revision 1D

Let's drink punch.

£33

Results:
not attack: 0.83

attack: 0.17
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Select Input Type:

(=) Text
Revision 1D

Your intellect is lacking

Results:

not attack: 0.90
attack: 0.10




Demo

Select Input Type:

(=) Text
Revision 1D

Please stop being such a f#@@#%ng a$$hole. Thank you!

=

Results:

not attack: 0.71

attack: 0.29
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select Input Type:

(=) Text
Revision 1D

piss offt

Results:

not attack: 0.78

attack: 0.22




Outline

1. Data Pipeline

2. Model Building

3. Analysis
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Analysis

Goal:

Explore prevalence, dynamics and impact of
personal attacks on English Wikipedia

Input:

Complete historical data set of talk page
comments + classifier scores
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How many comments are personal
attacks?
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How many attackers have been
warned/blocked?




Two major types of attackers

Cumulative Percentage of Attacks by Number of Revisions
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75.7% of attacks come from users that have made
fewer than 10 total revisions

Cumulative Percentage of Attacks by Number of Revisions
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9.3% of attacks come from users with over 200 total
revisions

Cumulative Percentage of Attacks by Number of Revisions
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Next Steps

Improve Modeling
Extend Analysis
Release of Annotated Datasets

Integration with ORES
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Questions?
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