Understanding Personal Attacks on Wikipedia

Ellery Wulczyn and Nithum Thain
Harassment is prevalent on wikimedia projects

Respondents were asked if they had **personally experienced harassment**. Out of 2,495 that responded to this question:

- 38% said yes
- 16% were unsure
- 47% said no

Respondents were asked if they had **witnessed the harassment of others**. Out of 2,078 that responded to this question:

- 51% said yes
- 17% were unsure
- 32% said no

Source: The Harassment Survey 2015
Most harassment occurs on Wikipedia

Source: The Harassment Survey 2015
Victims of harassment are less likely to contribute to Wikimedia projects

Source: The Harassment Survey 2015
Goals

1. Develop an algorithmic approach to detect personal attacks on Wikipedia

2. Use these algorithms to extend the analysis of personal attacks on Wikipedia
Outline

1. Data Pipeline
2. Model Building
3. Analysis
1. Data Pipeline

2. Model Building

3. Analysis
Data Pipeline

Goal:
Set of labeled talk page comments

Input:
English Wikipedia revision history
Data Pipeline

- Revisions
- Raw Diffs
- Clean Diffs
- Labeled Diffs

mwdiffs python library
Data Pipeline

- revisions
- raw diffs
 - extract content added
 - remove mw markup, etc
 - filter out administrative messages
- clean diffs
- labeled diffs
Data Pipeline

- Revisions
- Raw Diffs
- Clean Diffs
- Labeled Diffs

crowdsourced labeling via CrowdFlower
Labelled Training Data

Random Data
A representative sample of revisions from article and user talk pages

- Correct prior distribution
- Important for validation
- Few examples of attack

Blocked Data
A sample of revisions written by a user near a “block event” for personal attacks

- High proportion of attacking comments
- Speeds up training
Choosing a Question

Does the comment contain a personal attack or harassment? Please mark all that apply:

• Targeted at the recipient of the message
• Targeted at a third party
• Being reported or quoted
• Another kind of harassment
• This is not an attack or harassment
Crowdsourced Annotation

• Crowdflower platform
• 20,000 random revisions
• 50,000 blocked revisions
• Each rated 10x
• Quality control via test questions
Crowdflower Challenges

• Annotators working quickly
• May have imperfect knowledge of English
• Subjective nature of task
Outline

1. Data Pipeline
2. Model Building
3. Analysis
Model Building

Goal:
build classifier that takes in a talk page comment and outputs the probability that the comment contains a personal attack

Input:
70k comments, each annotated 10x
Model Building: ML Overview

collection of comments + annotations

\[\downarrow\]

collection of features + labels

\[\downarrow\]

learning algorithm

\[\downarrow\]

classifier
Model Building:
From Comments to Features

“That’s_great”

\[
\{ \text{that, hat', at's, t's_g, ..., grea, reat} \}
\]

\[[0 \ 0 \ 1 \ 0 \ ... \ 101... \ 001 \ ... \ 110...] \]
Fraction of annotators who thought the comment is a personal attack is 0.7.
Model Building: Learning Algorithms

Final Choice: Logistic Regression

Experimented with: MPLs, RNNs, CNNs: added complexity, little performance gain
Model Building: Evaluation

Question:
How good is our classifier/model?

Idea:
Use one group of people to predict what another group of people thinks about a comment. Compare our model’s predictive power, to the predictive power of a group of people.
“Predictions”

C1 → 0.45
C2 → 0.95
CN → 0.30

“Ground Truth”

0.55 ←
0.90 ←
0.45 ←
Model Building: Evaluation

Fix "Ground Truth group size at size 10"

<table>
<thead>
<tr>
<th>Prediction Group Size</th>
<th>ROC AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.854</td>
</tr>
<tr>
<td>2</td>
<td>0.911</td>
</tr>
<tr>
<td>4</td>
<td>0.941</td>
</tr>
<tr>
<td>6</td>
<td>0.950</td>
</tr>
<tr>
<td>8</td>
<td>0.961</td>
</tr>
<tr>
<td>10</td>
<td>0.963</td>
</tr>
</tbody>
</table>
Model Building: Evaluation

Fix "Ground Truth group size at size 10"

<table>
<thead>
<tr>
<th>Prediction Group Size</th>
<th>ROC AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.854</td>
</tr>
<tr>
<td>2</td>
<td>0.911</td>
</tr>
<tr>
<td>4</td>
<td>0.941</td>
</tr>
<tr>
<td>6</td>
<td>0.950</td>
</tr>
<tr>
<td>8</td>
<td>0.961</td>
</tr>
<tr>
<td>10</td>
<td>0.963</td>
</tr>
</tbody>
</table>

Model: 0.951
Demo

Available at: wikidetox.appspot.com
Demo

Select Input Type:

- Text
- Revision ID

Congratulations. I don’t know whether you are aware of this fact or not, but you have shown your qualified stupidity.

Score

Results:
not attack: 0.18
attack: 0.82
Demo

Select Input Type:
- Text
- Revision ID

F#$@$ you, a$$h0l3

Score

Results:
- not attack: 0.31
- attack: 0.69
Demo

Select Input Type:

I will punch your lights out.

Results:
not attack: 0.41
attack: 0.59

Select Input Type:

Let’s drink punch.

Results:
not attack: 0.83
attack: 0.17
Demo

Select Input Type:
- Text
- Revision ID

Your intellect is lacking

Score

Results:
not attack: 0.90
attack: 0.10
Demo

Select Input Type:

- Text
- Revision ID

Please stop being such a f#@@#%ng a$$hole. Thank you!

Score

Results:
not attack: 0.71
attack: 0.29
Demo

Select Input Type:
- Text
- Revision ID

p i s s o f f!

Score

Results:
- not attack: 0.78
- attack: 0.22
Outline

1. Data Pipeline

2. Model Building

3. Analysis
Analysis

Goal:
Explore prevalence, dynamics and impact of personal attacks on English Wikipedia

Input:
Complete historical data set of talk page comments + classifier scores
How many comments are personal attacks?
How many attackers have been warned/blocked?
Two major types of attackers
75.7% of attacks come from users that have made fewer than 10 total revisions
9.3% of attacks come from users with over 200 total revisions
Next Steps

- Improve Modeling
- Extend Analysis
- Release of Annotated Datasets
- Integration with ORES
Questions?