Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

LEVELS-OF-GROWING-STOCK COOPERATIVE STUDY IN DOUGLAS-FIR REPORT NO. 7

PRELIMINARY RESULTS, STAMPEDE CREEK, AND SOME COMPARISONS WITH IRON CREEK AND HOSKINS

Leveis-of-growing-stock study treatment schedule, showing percent of gross basal area Increment of control plot to be retained in growing stock								
Thinning								
	1	2	3	4	5	6	7	8
				Percent				

Abstract for Report No. 1

Public and private agencies are cooperating in a study of eight thinning regimes in young Douglas-fir stands. Regimes differ in the amount of basal area allowed to accrue in growing stock at each successive thinning. All regimes start with a common level-of-growing-stock which is established by a conditioning thinning.

Thinning interval is controlled by height growth of crop trees, and a single type of thinning is prescribed.

Nine study areas, each involving three completely random replications of each thinning regime and an unthinned control, have been established in western Oregon and Washington, U.S.A., and Vancouver Island, Canada. Site quality of these areas varles from I through IV.

Climatic and soil characteristics for each area and data for the stand after the conditioning thinning are described briefly.

KEYWORDS: Thinnings, stand growth, Douglas-fir, Pseudotsuga menziesii.

LEVELS-OF-GROWING-STOCK COOPERATIVE STUDY IN DOUGLAS-FIR

 Report No. 7-Preliminary Results, Stampede Creek, andSome Comparisons With Iron Creek and Hoskins

Richard L. Williamson, Silviculturist (now retired)
and
Robert O. Curtis, Principal Mensurationist

Other LOGS (levels-of-growing stock) reports:

WILLIAMSON, RICHARD L.; STAEBLER, GEORGE R. A cooperative level-of-growingstock study in Douglas-fir. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1965. 12 p. Describes purpose and scope of a cooperative study which is investigating the relative merits of eight different thinning regimes. Main features of six study areas installed since 1961 in young stands are also summarized.

WILLIAMSON, RICHARD L.; STAEBLER, GEORGE R. Levels-of-growing-stock cooperative study on Douglas-fir: Report No. 1-Description of study and existing study areas. Res. Pap. PNW-111. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1971. 12 p.
Thinning regimes in young Douglas-fir stands are described. Some characteristics of individual study areas established by cooperating public and private agencies are discussed.

BELL, JOHN F.; BERG, ALAN B. I_evels-of-growing-stock cooperative study on Douglas-fir: Report No. 2—The Hoskins study, 1963-1970. Res. Pap. PNW-130. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1972. 19 p.
A calibration thinning and the first treatment thinning in a 20 -year-old Douglas-fir stand at Hoskins, Oregon, are described. Data tabulated for the first 7 years of management show that growth changes in the thinned stands were greater than anticipated.

DIGGLE, P. K. The levels-of-growing-stock cooperative study in Douglas-fir in British Columbia (Report No. 3, Cooperative L.O.G.S. study series). Inf. Rep. BC-X-66. Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre; 1972. 46 p .

WILLIAMSON, RICHARD L. Level-of-growing-stock cooperative study in Douglasfir; Report No. 4-Rocky Brook, Stampede Creek, and Iron Creek. Res. Pap. PNW-210. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1976. 39 p.
The USDA Forest Service maintains three of nine installations in a regional, cooperative study of influences of levels of growing stock (LOGS) on stand growth. The effects of calibration thinnings are described for the three areas.
Results of first treatment thinning are described for one area.
BERG, ALAN B.; BELL, JOHN F. Levels-of-growing-stock cooperative study on Douglas-fir; Report No.5-The Hoskins Study, 1963-1975. Res. Pap. PNW-257. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1979. 29 p.
The study dramatically demonstrates the capability of young Douglas-fir stands to transfer the growth from many trees to few trees. It also indicates that at least some of the treatments have the potential to equal or surpass the gross cubic-foot volume of the controls during the next treatment periods.

ARNOTT, J. T.; BEDDOWS, D. Levels-of-growing-stock cooperative study in Douglas-fir; Report No.6-Sayward Forest, Shawnigan Lake. Inf. Rep. BC-X-223. Victoria, BC: Canadian Forestry Service, Pacific Forest Research Centre; 1981. 54 p.

Data are presented for the first 8 and 6 years at Sayward Forest and Shawnigan Lake, respectively. The effects of the calibration thinnings are described for these two installations on Vancouver Island, British Columbia. Results of the first treatment thinning at Sayward Forest for a 4 -year response period are also included.

Reference Abstract

Research Summary

WILLIAMSON, RICHARD L.; CURTIS, ROBERT O. Levels-of-growing-stock cooperative study in Douglas-fir: Report No. 7-Preliminary results, Stampede Creek, and some comparisons with Iron Creek and Hoskins. Res. Pap. PNW-323. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1984. 42 p.

Results of the Stampede Creek LOGS study in southwest Oregon are summarized, and results are compared with two more-advanced LOGS studies and, in general, are similar. To age 43, thinning in this low site III Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand resulted in some reduction in volume growth and moderate gains in diameter growth. Growth was strongly related to level of growing stock. Desirable density levels are recommended for young Douglas-fir stands.

KEYWORDS: Growing stock (-increment/yield, increment -)growing stock management, stand density, thinnings, Douglas-fir, Pseudotsuga menziesii, southwest Oregon, Oregon (southwest), series-Douglas-fir LOGS.

Results of the Stampede Creek LOGS study in southwest Oregon are summarized through the first treatment period. Results are compared with those from two more-advanced LOGS studies and, in general, are similar. To age 43, thinning in this low site III Douglas-fir (Pseudotsuga menziesii) (Mirb.) Franco) stand resulted in some reduction in volume growth and moderate gains in diameter growth. Gains from thinning would be minor if this stand were harvested now, but the comparisons indicate a much more favorable evaluation of thinning when rotations are longer or stands are on higher sites. Growth was strongly related to growing stock level, and there is little indication of any plateau of constant growth over a range of stocking in young stands. Recommendations are made for desirable density levels in young Douglas-fir stands.

1 Introduction
4 Objectives
4 Data Summarization
5 Results--Stampede Creek
5 Calibration Period
5 First Treatment Perlod
11 Results--Comparisons With Iron Creek and Hoskins
11 Initial Stand Conditions
12 Growth Relative to Control Plot Growth
13 Growth:Growing Stock Relationships
14 Gross Ylelds Relatlve to Stand Age
14 Gross Yleids Relative to Stand Height
16 Comparison of Volume Growth Per Unit of Height Growth Relative to Average Growing Stock for Stands 65 Feet in Height
17 Cumulative Net Production by Size Classes
18 Discussion
20 Metric Equivalents
20 Literature Clted
22 Appendlx 1
24 Appendix 2
32 Appendix 3

Introduction

The Stampede Creek levels-of-growing-stock (LOGS) study is one of nine thinning studies established in young, even-aged Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands according to a common work plan (Williamson and Staebler 1971) (see appendix 1 in this report). These studies are a regional cooperative effort involving Weyerhaeuser Company, Oregon State University, Washington Department of Natural Resources, Canadian Forestry Service, and the USDA Forest Service. The objective is to compare tree and stand development under eight thinning regimes, begun before the onset of severe competition between trees. When the study was established, trees in all areas generally had live branches down to breast height, but other stand characteristics varied considerably among areas.

The Stampede Creek stand is located on the Tiller Ranger District, Umpqua National Forest, near Tiller in southwest Oregon (fig. 1). It is of natural origin after wildfire. When the study was established in 1968, the stand was older (33 years) and taller than other LOGS stands were at the time of study establishment. The ages of dominant and codominant trees varied from 29 to 36 years. Elevation is 2,700 feet. Soils are heavy loam over heavy clay loam and clay derived from wellweathered volcanic tuffs and breccias. Average (1972-78) growing season (MaySeptember) temperature and precipitation are $54.9^{\circ} \mathrm{F}$ and 7.71 inches. Based on the 1978 measurement, estimated average site index (based on crop tree heights) is about 100 in King's (1966) system (50 years at breast height), and 120 according to McArdle and others (1961) at 100 years total age.

The Stampede Creek study, like the other LOGS studies, is a completely randomized experiment comparing eight thinning regimes, with three replications each, plus control. An initial "calibration" thinning at age 33 reduced all treated plots to a common basal area level (table 1). Subsequent thinnings retain varying percentages of gross periodic increment observed on the untreated control plots (inside front cover) and are expected to produce the basal area trends shown schematically in figure 2. The thinning interval is the time required for crop trees to grow 10 feet in height (averaged over all treatments). The principal features of the general LOGS plan are reproduced in appendix 1, and they are more fully described by Williamson and Staebler (1971).

The Stampede Creek study has completed only the calibration (ages 33-38) and first treatment (ages 38-43) growth periods. This report presents some interim results of the Stampede Creek study as of the end of the first treatment period and updates a previous report (Williamson 1976). Early results from this and similar studies can provide some information on desirable levels of growing stock for intensively managed young stands. Early results from the Stampede Creek study are of particular interest in connection with the FIR program, $\stackrel{1}{1}^{1}$ because this is the only LOGS study located in southwest Oregon.

[^0]

Figure 1.-Triangles indicate locations of the nine levels-of-growing-stock studies in coastal Douglas-fir.

Table 1-Stand values after the callbration thinning for the Stampede Creek, Iron Creek, and Hoskins LOGS studles

Study araa and year astablishad	Estinatad site indax at index aga (years):		Aga		Avarage neight of crop traas	Quadratic meen d.b.h.		Number of traes, all spectas		Basal araa	
	$\text { breast } 50, \frac{1}{1} /{ }^{5}$	$\begin{aligned} & 100+\frac{2 /}{2 /} \\ & \text { totat } \end{aligned}$	Brasast height	Total		Contro	Thinnad	Control	Thinned	Control	Thinnad
	- . Feat . .		Years		Faot	..- - ${ }^{\text {nchas }}$ - -		- Par acra -		$\frac{\text { Squara faat }}{\text { Per acre }}$	
Stampede Craek. 1968	100	120	25	33	56	4.7	6.6	995	290	118.5	68.1
$\begin{aligned} & \text { iron Creak, } \\ & \text { i } 1966 \end{aligned}$	127	150	12	19	36	3.7	6.0	1,125	335	82.0	47.4
$\begin{gathered} \text { Hoskings, } \\ 1963 \end{gathered}$	130	160	13	20	36	3.8	6.2	1,727	345	113.8	49.8

1/King (1966),
2/McArdle and other (1961).

Height
Figure 2.-Levels-of-growingstock study in Dougias-fir: ideaiized trends of basal area for the eight thinning regimes.

This report also makes some comparisons with results from two other LOGS studies, Iron Creek (Wiliiamson 1976) and Hoskins (Berg and Bell 1979). The Iron Creek and Hoskins studies are on higher sites and differ in some other respects (table 1). Because Iron Creek and Hoskins are now further advanced in the planned treatment sequence, comparisons may provide some indications of consistency of resuits at different locations and of the probable applicability of results from other LOGS studies to stands of the Pacific Douglas-fir type (Williamson 1980) in southwest Oregon.

The objectives of this report are to:

1. Present revised data summaries showing development of the Stampede Creek LOGS stands through age 43 (end of the first treatment period). These tables incorporate the most recent measurement and replace the tables published by Williamson in 1976.
2. Compare results from the Stampede Creek LOGS study with the Iron Creek and Hoskins studies for: (a) relationship of growth to growing stock, (b) growth of crop trees versus growth of all trees, (c) growth by treatment groups, and (d) effects of treatments on tree size and merchantable volumes.
3. Compare consistency of results at Stampede Creek, Iron Creek, and Hoskins LOGS studies for (a) initial stand densities, (b) growth of thinned stands relative to growth of controls, (c) relationship of growth to growing stock for all available periods and for the period at each area when initial heights of crop trees averaged about 65 feet, and (d) gross yields relative to stand age and to average height of crop trees.
4. Examine the possibility that results at Iron Creek and Hoskins are indicative of probable future development of the Stampede Creek study.

Data Summarization

Volume and increment statistics discussed in this report were obtained by the following procedures:

1. Diameters (to the nearest 0.1 inch) at breast height were measured on all trees 1.6 inches in d.b.h. (diameter at breast height) and larger on each plot.
2. Total height (to the nearest foot) was measured on a sample of at least 15 randomly chosen trees per plot, distributed throughout the diameter range, with two-thirds of the sample trees larger than the stand quadratic mean diameter.
3. Total volume, inside bark, was calculated for each sample tree by the Bruce and DeMars (1974) volume equation.
4. Total cubic volume of every tree on each plot was calculated, using a regression logarithm of volume on logarithm of diameter at breast height fit to the sample tree measurements for that plot and measurement date. Plot volume was then calculated as the summation of tree volumes.
5. Periodic gross growth In total cubic volume was calculated as the difference between live volumes at start and end of the growth period, plus mortality and ingrowth.

Data compilations for all three study areas were done with a common set of computer programs. Complete summaries are given for all available periods for Stampede Creek (tables 5 to 10 in appendix 2 and 16 to 33 in appendix 3). Data for the Hoskins study are from Berg and Bell (1979), plus unpublished data for the 1975-79 period provided by John Bell of Oregon State University. Pertinent values for Iron Creek are glven in tables 11 to 15 (appendix 2), including previously unpublished data for the 1973-77 and 1977-80 periods.

ResultsStampede Creek Calibration Period

FIrst Treatment Period

All trees.-Prethinning numbers of trees and basal areas were about 83 percent of normal for the stand diameter (table 25 in McArdle and others 1961). This suggests relatively low competition and incomplete site utilization at younger ages and is consistent with the observation that live crowns extended nearly to breast height at the time of study establishment.

Gross volume growth of thinned plots was 80 percent of that of control plots (table 2) even though the mean volume in cubic feet was only 66 percent of the volume of the controls. Average growth percent (based on mean growing stock for the period) of thinned plots was 10.0, compared with 8.3 for controls. ${ }^{2 /}$ Growth per unit of growing stock volume on the thinned plots was about 20 percent (10.0/8.3) higher than on the control plots.

Table 2-Stampede Creek: perlodic annual gross volume growth, growing stock, growth percent, and initial volume per tree for crop trees, noncrop trees, and all trees, ages 33-38, callbration period

1/Calculated as percentage of mean growing stock for the period.
Crop trees.-Crop trees had been chosen on the basis of spacing, dominance, and vigor, as trees expected to be retained in subsequent thinnings. Crop trees in thinned plots grew 12 percent more than those in control plots, though later discussion suggests that some of this improvement was due to a slight edge in beginning volume for control trees (table 2). Average growth percent of crop trees for thinned plots was 10.3 compared with 9.1 for controls (table 2). This suggests a 13 -percent (10.3/9.1) improvement in growth per unit of growing stock volume because of thinning.

All trees.-Average gross growth on the thinned plots during this period was 80 percent of gross growth on the control plots, whereas growth per unit of growing stock volume was about 28 percent higher on the thinned plots than on the controls (table 3).

[^1]Table 3-Stampede Creek: perlodlc annual gross volume growth, growlng stock, growth percent, and Initial volume per tree for crop trees, noncrop trees, and all trees, ages 33-38, by treatment group, 1st treatment perlod

Component and treatment	Gross growth per year	Mean growing s tock	Growth percent 1/	Initial volume per tree	Ratio, thinned:control	
					Gross growth	Growth percent
	Cublc feet per acre		Percent	Cubic feet		
Crop trees:					1.14	1.09
1 and 2	140	1,612	8.7	15.8		
3 and 4	132	1,534	8.6	15.0		
5 and 6	136	1,612	8.4	15.9		
7 and 8	135	1,687	8.0	16.9		
Control	119	1.551	7.7	15.7		
Noncrop trees:					. 56	1.42
1 and 2	68	755	9.0	5.3		
3 and 4	94	1,044	9.0	6.7		
5 and 6	103	1,117	9.2	4.9		
7 and 8	106	1,331	8.0	6.4		
Control	166	2,680	6.2	2.5		
All trees:					. 80	1.28
1 and 2	208	2,367	8.8	9.7		
3 and 4	226	2,578	8.8	10.0		
5 and 6	238	2.729	8.7	8.4		
7 and 8	241	3,018	8.0	9.8		
Control	285	4,231	6.7	3.5		

$1 /$ calculated as percentage of mean growing stock for the period.
The treatments combined in table 3 were identical for the first treatment period (see treatment schedule on inside front cover); during this period, there are effectively four thinning treatments, plus control. Differences in gross growth among these four treatment groups for the first treatment period were (barely) significant at the 0.10 level; treatment means of gross growth increased from treatments 1 and 2 through 7 and 8 .

Gross growth of control plots during this period (table 3) was roughly equivalent to normal yield table estimates for midsite III (Curtis 1967, Curtis and others 1982, Staebler 1955).

When gross volume growth per year is plotted over periodic average growing stock (fig. 3), a positive slope is evident. If only the thinned plots are considered, the relationship approximates a straight line through the origin.

In figure 4 we have chosen to fit the data, including the controls, with the equation $Y=b X-c X^{2}$ because:

1. This meets the logical requirements that zero stocking should produce zero growth and that growth cannot increase indefinitely as stocking increases.
2. This is the equation of best fit (minimum standard error of estimate) when the control plots are included, and the curves with and without the control plots are almost the same.
3. This is the curve form found best in concurrent work with the Iron Creek and Hoskins data.

Figure 3.-Stampede Creek, Iron Creek, and Hoskins: periodic annual gross volume increment (trees 1.6 inches in d.b.h. and larger) in relation to volume of growing stock, first treatment period.

Figure 4.-Stampede Creek, Iron Creek, and Hoskins: regressions expressing periodic annual gross volume increment (trees 1.6 inches in d.b.h. and larger) as a function of volume of growing stock, first treatment period. Solid portions of curves represent range of thinned plot data: dashed portions Include range of control piots.

Variability about the regression was greater and the curve was less clearly defined than for the comparable period at Iron Creek and Hoskins (fig. 3). This could be related to the initially greater height and less homogeneous stand conditions at Stampede Creek than at the other two areas.

Crop trees.-Gross volume growth percent for crop trees in treatments 1 and 2 was 8.7 percent compared with 7.7 percent for controls. Inspection of growth percents by treatment groups suggests a trend of decreasing growth percents with increase in growing stock, although differences were not statistically significant (table 3).

Growth percents for crop trees in all thinning treatments (except 7 and 8) were slightly less than those for noncrop trees, probably reflecting the greater average size of crop trees. Since tree size affects growth percent, a more meaningful comparison is that of crop trees and all trees at the times their average dimensions were similar. Average heights and diameters were comparable for crop trees at the start of the calibration period and for all trees at the start of the first treatment period. For comparable tree size, growth percents of crop trees exceeded those of all trees. This suggests that the smaller trees (in these thinned stands, codominants) grew less efficiently than the larger trees.

A similar result has been obtained in an older stand (Williamson 1982). Both growth efficiency and stand security considerations indicate that larger trees should be favored.

Cubic volume yields to age 42.-Tables 16 to 33 in appendix 3 illustrate the yields obtained at Stampede Creek by tree diameter at breast height, both separately and cumulatively, from largest diameter to smallest for each of the eight thinning treatments and the unthinned control.

Figure 5 shows cumulative cubic volume production in trees larger than 7.6, 9.6, and 11.6 inches for eight thinning treatments and the control. At age 43, after 10 years of thinning, average cumulative yield of the thinned plots in trees 7.6 inches and larger is 86 percent of that of the control plots. Cumulative yield of thinned plots in trees 9.6 inches and larger is about the same as that of the controls, whereas yield in trees 11.6 inches and larger is 140 percent of that of the controls. At age 43, average diameters range from 6.1 inches for the controls to 10.4 inches for treatment 1.

This stand was of natural origin, somewhat uneven aged, with considerable crown differentiation. To age 43, thinning has produced no gains in usable fiber production, if all trees 7.6 inches and larger are assumed to be merchantable. All thinning treatments exceed the controls in volumes of trees over 11.6 inches, however, and the effects of thinning in increasing tree size and value should become more evident with advancing age.

Figure 5.-Stampede Creek: cumulative volume production for trees 11.6 inches in d.b.h. and larger and for trees 9.6 to 11.5 and 7.6 to 9.5 inches in d.b.h. at end of first treatment period (age 43). Volumes are for live stand at age 43, plus trees cut in thinning (calibration cut excluded).

Results-Comparisons With Iron Creek and Hoskins initlal Stand Conditions

The Iron Creek and Hoskins study areas were initially similar in stand characteristics, except for a much greater number of trees at Hoskins. Although Iron Creek and Hoskins controls started with the same average crop tree height and a considerable difference in number of trees, initial average diameters were almost identical; evidently, initial competition was low. The Stampede Creek stand was older and considerably taller at the time of establishment than were the Iron Creek and Hoskins stands (table 1). Iron Creek was a plantation with considerable natural fill-in. Hoskins was an unusually uniform natural stand. Stampede Creek was a natural stand with considerably more variation in tree ages and sizes.

A relative density scale useful in comparisons is provided by a measure (Curtis 1982) defined as:
$R D=($ basal area $) /(\mathrm{Dg})^{1 / 2} ;$
where: Dg is quadratic mean diameter, and the units are square feet per acre for basal area and inches for diameter. This measure is similar to Reineke's (1933) Stand Density Index but more convenient to use. Dividing RD values by 65 gives a close approximation to normality ratio according to table 25 in McArdle and others (1961).

Values of RD for the control plots at the time of the calibration thinning were:

Stampede Creek	55
Iron Creek	43
Hoskins	71

Hoskins 71
The common study plan for the regional cooperative LOGS studies assumed that the spacing equation used to guide the calibration thinning would provide equal levels of competition among installations that differ in initial average diameter and would thereby facilitate comparisons between areas. Average RD values for the thinned plots at the end of the calibration period were 34, 32, and 33 at ages 38, 23. and 23 for Stampede Creek, Iron Creek, and Hoskins. This goal was accomplished.

Subsequent to the calibration period, the Hoskins control plots have developed and maintained extremely high densities. At the end of the first treatment period, RD values for these plots were 74, 74, and 95 for Stampede Creek, Iron Creek, and Hoskins. Increases since the calibration thinning were consistent with site, age, and initial stocking. The Hoskins control had 37 percent more basal area and 54 percent more volume than the Iron Creek control. Since then, Hoskins has stabilized at RD's just below 100. The Iron Creek control was at RD 92 at age 33 and appears to be approaching the RD of the Hoskins control as initial differences in density are reduced through greater natural mortality at Hoskins.

Growth Relative to Control Plot Growth

Figure 0-Stampede Croak Iron Crook, and HoskIns' gross cubic volume growth (Irees 16 inches in d bh and Inrger) by Ireatments expressed as percentages of growth of conirol. first treatment period.

Calibration period.-For the cailbration period, the ratios of gross volume growth of thinned piots to growth of control piots foilow a logical order for the three studies (tabie 4). Stampede Creek has the largest ratio (0.80), perhaps because of greater average height and slightiy higher relative density. Hoskins is lowest (0.61), probably because the much greater initiai density resuited in greater growth of the controi and in a heavier cailbration thinning.

First treatment perlod.-A simiiar comparison (fig. 6) for the first treatment period shows that differences among thinning treatments in gross voiume increment as percents of controi piot growth were much more pronounced for Iron Creek and Hoskins (which behaved similarly) than for Stampede Creek. The reason for this difference in response is not clear; it may be associated with the later start of thinning (both in years and in attained stand height) at Stampede Creek.

Table 4-Perlodic annuai net growth in quadratic mean diameter, and gross growth in basal area and total cublc volume during the calibration perlodStampede Creek, iron Creek, and Hoskins studies

Study and treatment	Total age	Net growth in quadratic mean dlameter	$\begin{gathered} \text { Gross growth } \\ \text { in } \\ \text { basal area } \end{gathered}$	Gross growth in total volume	Ratio, thinnedicontrol	
					Gross volume growth	Net diameter growth
	Years	Inch	$\frac{\text { Square feet }}{\underline{\text { per acre }}}$	$\frac{\text { Cubic foet }}{\text { per acre }}$		
Stanpeoe Ereak: Control Thinned	33-38	$\begin{array}{r} 0.09 \\ .26 \end{array}$	$\begin{aligned} & 7.0 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 246 \\ & 196 \end{aligned}$	0.80	2.89
Iron Creak: Control Thanned	19-23	. 19	$\begin{array}{r} 12.1 \\ 9.0 \end{array}$	$\begin{aligned} & 306 \\ & 219 \end{aligned}$. 72	2.16
Hosking: Control Thinned	20-23	$\begin{aligned} & .21 \\ & .55 \end{aligned}$	$\begin{aligned} & 16.2 \\ & 12.3 \end{aligned}$	$\begin{aligned} & 469 \\ & 285 \end{aligned}$. 61	2.62

Growth:Growing Stock Relationships

Curves of periodic annual increment in gross volume over mean volume by periods (fig. 4) indicate much lower gross growth rates for given levels of growing stock at Stampede Creek than at the other two areas. Conversely, results for Iron Creek and Hoskins are much closer (figs. 4, 7, and 8). The lesser growth:growing stock ratios at Stampede Creek reflect its greater age and lower site index.

Figure 7.-Iron Creek and
Hoskins: regressions expressing periodic annual gross volume increment (trees 1.6 inches in d.b.h. and larger) as a function of volume of growing stock, second treatment period. Solid portions of curves represent range of thinned plot data; dashed portions include range of control plots.

Figure 8-Iron Creek and Hoskins: regressions express= ing perlodic annual grose volume Increment (trees 1.6 Inches in d.b.h. and larger) as a function of volume of growing stock, third treatment perlod. Solld portions of curves represent ringe of thinned plot data; dished portions Include range of control plots.

Relationships of gross yields to stand age (fig. 9) correspond to those expected according to age, site index, and initial stocking. Iron Creek is not illustrated because trends there were similar to those at Hoskins. Stampede Creek has substantially lower site index than the other two areas; thus, slopes of the yield curves are less. Though Initial volume at Stampede Creek was about the same as that at Hoskins, Stampede Creek was 13 years older when the study was established.

Though well into the planned thinning regimes, with 40 to 50 feet of height growth since the calibration thinning, both Iron Creek and Hoskins are still in a period of growth acceleration for the control and most treatments, as shown by the upward curvature of these yield curves (fig. 9).

Cumulative yields by treatments in gross cubic feet per acre for Hoskins and Stampede Creek are shown plotted over average height of crop trees in figure 10. (Curves for Iron Creek were similar to those for Hoskins and are not shown.) Mortality has been negligible at these two areas, except on the Hoskins control plots where about 12 percent of gross production was lost to mortality. The wide spread in cumulative yields among the Hoskins thinning treatments corresponds to the relationshlp of growth to growing stock showr in figures 6 to 8 .

Figure 9.-Hoskins and Stampede Creek: cumulative gross yleld (trees 1.6 inches in d.b.h. and larger, callbration cut excluded) In relation to stand age, for controls and for thinning treatments 1, 3, 5, and 7 . Net yleld is shown for Hoskins control only.

Figure 10.-Hoskins and Stampede Creek: cumulative gross yleld (trees 1.6 inches in d.b.h. and larger, calibration cut excluded) in relation to mean height of crop trees, for controls and for thinning treatments 1, 3,5, and 7. Net yield is shown for Hoskins control only.

Comparison of Volume Growth Per Unlt of Height Growth Relatlve to Average Growing Stock for Stands 65 Feet In Height

Figure 11.-Diameter distributions of control for Stampede Creok at start of first treatment poriod and for Hoskins at start of third treatment period, when both stands were about 65 feet tall.

If the curve for the Stampede Creek control were extrapolated back to a height of 36 feet, it would be close to the curve at that height for the Hoskins thinning treatments and would suggest initial low density. This initial similarity in volume of the Stampede Creek control and the Hoskins thinned plots is associated with differences in the diameter distributions at the two locations. The diameter distribution for the stand at Stampede Creek at the start of the first treatment period was somewhat J-shaped, with a large number of trees in the smallest size classes. Though ranges in diameter were similar, Stampede Creek had many more trees in the smallest size classes (fig. 11). This suggests a somewhat greater range in tree ages at Stampede Creek, with greater initial crown differentiation. Such stands are common in the South Umpqua drainage.

It seems reasonable to compare growth at Stampede Creek during its first treatment period with growth at Hoskins and Iron Creek when the latter stands were of similar height (third treatment period). Volume growth should be closely related to initial height and to periodic height increment (Evert 1964), and comparisons of growth per unit of height growth are one way of removing effects of age and site differences.

Since periodic height increments were not identical nor exactly 10 feet, volume growth was expressed as gross cubic volume growth per foot of height increment for the period, when stands were about 65 feet tall at the start of the period.

Graphical comparisons of the results indicate, as expected, general similarity among installations (fig. 12). Stampede Creek appeared to have slightly more volume growth per foot of height growth, for a given initial volume. It also had slightly higher values of relative density, presumably reflecting its different structure and earlier stage in the thinning regime. These data suggest no density type III (flg. 13) as postulated by Langsaeter (Braathe 1957), and the Hoskins controls are very dense. Such a density type has been suggested for older stands (Williamson and Price 1971, Williamson 1982), and it may be that the hypothesis is more appropriately applied to older stands past the period of rapid height growth.

Figure 12.-Stampede Creek, Iron Creek, and Hoskins: volume growth per foot of crop tree height growth in relation to volume of growing stock, when stands were about 65 feet tall.

Volume per acre
Figure 14 shows cumulative yields in total volume of trees, 7.6 inches and larger, 9.6 inches and larger, and 11.6 inches and larger, at the end of the fourth treatment period in the Hoskins study. At that time, average crop tree height was 86 feet, with 50 feet of elapsed height growth since the calibration thinning.

Total production in trees 7.6 inches and larger was less on the thinned treatments than on the control, in trees 9.6 inches and larger it was about the same, and in trees 11.6 inches and larger it was roughly twice as much on the thinned treatments as un the contic!. Any economic evaluation depends on the premium for large size irees and on the choice of harvest age. Differences can be expected to continue to increase as stand age increases.

Figure 14. $=$ Hoskins: cumulative volume production for trees 11.6 Inches In d.b.h. and larger and for trees 9.6 to 11.5 and 7.6 to 5.5 inches In d.b.h. at and of fourth treatment period (age 37), plus trees removed in thinnings (callbratlon cut excluded).

Treatment
The 16 years of record on the Hoskins plots are probably a good indication of what can be expected in the future from the other studies, although the lesser initial density and less uniform nature of the Stampede Creek control may reduce the differences between thinned treatments and the control at Stampede Creek.

Early resuits show that Stampede Creek differs somewhat from Iron Creek and Hoskins in the relationship of growth to growing stock and of growth of thinned stand to growth of control. Possible causes include: (1) differences in initial stand structure and stand homogeneity, (2) the later start of thinning at Stampede Creek, and (3) the evident differences in site quality and site characteristics.

Because of the later start of thinning at Stampede Creek, the thinning treatments lag behind those at the other studies, in relation to height development. This introduces some differences, but the general pattern of future development will probably be similar. In particular, relationships of growth to growing stock will be similar to those observed at Iron Creek and Hoskins, but at lower levels because of lower site quality.

To age 43, the Stampede Creek thinnings have resulted in some reduction in total production accompanied by moderate gains in diameters. In this stand and similar stands having moderate initial numbers of stems and considerable early crown differentiation, thinning probably is not economically justifiable if the objective is fiber production on very short rotations (for example, 50 years or less for this low site III stand). The large increases in tree diameters attained at Hoskins by the end of the fourth treatment period, however, indicate a different picture for longer rotations or higher sites.

The particular thinning regimes used in the LOGS studies were designed to determine growth to growing stock relationships, rather than operationally optimum regimes. Most managers would make only one precommercial thinning and would probably adopt somewhat longer intervals between commercial thinnings. The principles of growth to growing stock relationships, however, would remain much the same.

At the time the LOGS studies were established, thinking was strongly influenced by the so-called Langsaeter hypothesis (fig. 13). As stated by Braathe (1957, p. 49):

The roman numerals [in figure 13] denote what Langsaeter called "density types". In density type I the stand is so open that the individual tree exerts no influence on its neighbours, and the annual yield is therefore proportional to the number of trees or the volume of the stand.

Density type II shows a flattening curve for the annual yield; i.e., the trees are beginning to crowd each other increasingly.

The broad band of type III shows an almost horizontal line for the yield curve denoting a rather wide band in which the yield is independent of stand density. Density type IV indicates a rather abrupt change to declining yield, as stand density becomes excessive and leads to declining tree vigor.

This decreasing yield is even more pronounced in density type V, the condition of density where the trees have been so crowded that their resistance to disease and injury has been greatly lowered, and where pronounced stagnation results.

Metric Equivalents $\quad 1$ centimeter $\equiv 0.3937$ inch
1 meter $\equiv 3.2808$ feet
1 square meter $=10.7643$ square feet
1 cublc meter $=35.3107$ cubic feet
1 square meter per hectare $=4.3560$ square feet per acre
1 cuble meter per hectare $=14.2918$ cubic feet per acre
${ }^{\circ} \mathrm{C}=0.5556$ (${ }^{\circ} \mathrm{F}$ minus 32)
Literature Cited
Berg, Alan B.; Bell, John F. Levels-of-growIng-stock cooperative study on Douglasfir, report No. 5-the Hoskins study, 1963-1975. Res. Pap. PNW-257. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experlment Station; 1979. 29 p.

Braathe, Peder. Thinnings In even-aged stands. A summary of European literature. Fredericton, NB: University of New Brunswick, Faculty of Forestry; 1957. 92 p.

Bruce, David; DeMars, Donald J. Volume equations for second-growth Douglas-fir. Res. Note PNW-239. Portland, OR: U.S. Department of Agriculture, Forest Service, Paciflc Northwest Forest and Range Experiment Station; 1974.5 p.

Curtls, Robert O. A method of estimation of gross yield of Douglas-fir. For. Sci. Monogr. 13; 1967. 24 p.

Curtis, Robert O. A slmple Index of stand density for Douglas-fir. For. Sci. 28: 92-94; 1982.

Curtls, Robert O.; Clendenen, Gary W.; Reukema, Donald L.; DeMars, Donald J. Yield tables for managed stands of coast Douglas-fir. Gen. Tech. Rep. PNW-135. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1982. 182 p.

Evert, F. Components of stand volume and its increment. J. For. 62: 810-813; 1964.
King, James E. Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser For. Pap. 8. Centralia, WA: Forestry Research Center; 1966. 49 p.

McArdle, Rlchard E.; Meyer, Walter H.; Bruce, Donald. The yield of Douglas-fir in the Pacific Northwest. Tech. Bull. 201. Washington, DC: U.S. Department of Agriculture; 1961. 74 p.

Staebler, George R. Gross yield and mortality tables for fully stocked stands of Douglas-fir. Res. Pap. 14. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1955. 20 p.

Relneke, L. H. Perfecting a stand density index for even-aged forests. J. Agric. Res. 46: 627-638; 1933.

Willamson, Richard L. Levels-of-growing-stock cooperative study in Douglas-fir, report No. 4-Rocky Brook, Stampede Creek, and Iron Creek. Res. Pap. PNW-210. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1976. 39 p.

Williamson, Richard L. Pacific Douglas-fir (229). In: Eyre, F. H., ed. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters; 1980: 106-107.

Willlamson, Richard L. Response to commercial thinning in a 110-year-old Douglas-fir stand. Res. Pap. PNW-296. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1982. 16 p.

Williamson, Richard L.; Price, Frank E. Initial thinning effects in 70- to 150-year-old Douglas-fir-western Oregon and Washington. Res. Pap. PNW-117. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1971. 15 p.

Williamson, Richard L.; Staebler, George R. Levels-of-growing-stock cooperative stiudy on Douglas-fir, report No. 1-description of study and existing study areas. Res. Pap. PNW-111. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1971. 12 p.

DESCRIPTION OF EXPERIMENT

The experiment is designed to test a number of thinning regimes beginning in young stands made alike at the start through a "calibration" thinning. Thereafter, through the time required for 60 feet of helght growth, growing stock is controlled by allowing a specified addition to the growing stock between successive thinnings. Any extra growth is cut and is one of the measured effects of the thinning regime.

Experimental Design

A single experiment consists of eight thinning regimes plus unthinned plots whose growth is the basis for treatment in these regimes. There are three plots per treatment arranged in a completely randomized design for a total of twenty-seven $1 / 5$-acre plots. ...

Interaction of site quality and treatment can be evaluated by replicating Installations on each site quality class. Cooperative effort has made this repllcation possible.

Crop Tree Selection

Well formed, uniformly spaced, dominant trees at the rate of 80 per acre, or 16 per plot, are designated as crop trees prior to initial thinning. Each quarter of a plot must have no fewer than three suitable crop trees nor more than five-another criterion for stand uniformity.

Initial or "Calibration" Thinning

All 24 treated plots are thinned initially to the same density to minimize the effect of variations in original density on stand growth. Density of residual trees is controlled by quadratic mean diameter [diameter of tree of average basal area] of the residual stand according to the formula:

Average spacing in feet $=0.6167$ (quadratic mean d.b.h.) +8 .

Treatments

The eight thinning regimes tested differ in the amount of basal area allowed to accumulate in the growing stock. The amount of growth retained at any thinning is a predetermined percentage of the gross increase found in the unthinned plots since the last thinning... [table inside front cover]. The áverage residual basal area for all thinned plots after the calibration thinning is the foundation upon which all future growing stock accumulation is based. As used in the study, control plots may be thought of as providing a "local gross yield table" for the study area.

Control of Thinning Interval

Thinnings will be made [after the calibration thinning] whenever average height growth of crop trees. . .comes closest to each multiple of 10 feet [above the initial height].

Control of Type of Thinning

As far as possible, type of thinning is eliminated as a variable in the treatment thinnings through several specifications:

1. No crop tree may be cut until all noncrop trees have been cut (another tree may be substituted for a crop tree damaged by logging or killed by natural agents).
2. The quadratic mean diameter of cut trees should approximate that of trees that are available for cutting.
3. The diameters of cut trees should be distributed across the full diameter range of trees available for cutting.

Appendix 2
Tables 5 to 10-summary data for live stand, periodic annual growth, and cut trees: Stampede Creek

Tables 11 to 15-summary data for live stand and perlodic annual growth: Iron Creek

Table 5-Stampede Creek: stand data for all live trees, by treatment, at beginning and end of period-1968-73 and 1973-78

Treetment	Trees per acre				Quadratic moan d, b, h.				Basal area por acre				Total stem volume per acre			
	Calibration		1st treatment		Coilbration		1st troatment		Calibration		1st troatment		Calibration		1 st treatnent	
	1968	1973	1973	1978	1968	1973	1973	1978	1968	1973	1973	1978	1968	1973	1973	1978
	- . - - Number - Inches				- - - Square foet - ...				- - Cublc fect - . . .			
1	293 287	292 283	192 190	190	6.6	7.9 7.9	8.4 8.3	9.9	68.7	98.4 96.0	73.2 71.8	100.5 97.5	1,475 1,440	2,448 2,389	1,868	2,975 2,789
3	288	287	197	197	6.7	7.9	8.6	10.0	69.6	98.9	78.8	107.1	1,466	2,440	2,004	3,147
4	296	290	207	235		7.9	8.4	9.9					1.448	2,469	2,037	3,125
6	283 320	282 317	2,35 278	235 275	6.7	${ }_{7.4}^{8.0}$	8.2	9.5 8.9	68.9	97.6 94.4	${ }_{85.8}^{86.4}$	114.6 119.0	1.505	2,482	2,238	
7	278	277	258	250	6.7	8.0	8.1	8.5			92.9				2,403	
	255	253	235	233	7.0		8.5	9.7			91.8	120.3	1,498	2.518	2,441	3,597
Control	997	1,010	1,010	887	4.7	5.3	5.3	6.1	119.2	152.0	152.0	181.9	2,354	3,557	3,557	4,905

Table 6-Stampede Creek: stand data for crop trees, by treatment, at beginning and end of period-1968-73 and 1973-78

Treatment	Trees per acre				Quadratic mean d.b.h.				8asal area per acre				Total stem volumo per acre			
	Calibration		1st treatrient		Calibration		1 st treatment		Calibration		1st treatment		Caltroation		1st treatment	
	1968	1973	1973	1978	1968	1973	1973	1978	1968	1973	1973	1978	1968	1973	1973	1978
	- . - - - umber - . .				.-... Inches - .-.				-- -5quare feet - .-				-.- -Cubic feet - . -			
1	80	80	80	80	8.3	10.0	10.0	11.7	30.0	43.4	43.4	59.7	713	1.182	1.182	1,871
2	80	80	80	78	8.8	10.6	10.6		33.9		48.9		802	1,340	1,349	
4	880	80 80	${ }_{80}^{80}$	${ }_{80}^{80}$	8.4 8.3	10.0 10.1	10.0 10.1	11.7 11.8	30.6 30.3	43.9	43.9 44.3	59.7 60.7	705	1.191	1,191	
6	80	80	80	80	9.1	10.8	10.8		36.2		51.2	67.8	885	1,471	1,471	
6	80	80	80	80	8.0	9.8	9.8		28.0		41.4		645	1,076	1,076	1,739
7	80	80	80	80	8.4	10.1	10.1	11.6	30.8	44.4	44.4	58.8	740	1,236	1,236	1,882
	80	80	80	80	8.9	10.7					49.9	$\stackrel{66.3}{57}$	827 790	1.462	1,462	2,167
Control	80	80	80	80	8.7	10.1		11.5	33.0	44.8	44.8	57.6	790	1,254	1,254	1,849

Table 7-Stampede Creek: perlodic annual growth, total growth, and cumulative volume yleld for all trees, by treatment and perlod-1968-73 and 1973-78

Treatment	Quadratic mean d.b.h.			Basal area		
	Perlodic annual net growth			Periodic annual gross growth		
	$\begin{aligned} & \text { Calibration, is } \\ & 1968-13 \end{aligned}$	$\begin{aligned} & \text { 1st treatment, } \\ & \text { 1973-78 } \end{aligned}$	$\begin{gathered} \text { Total growth, } \\ 1968-78 \end{gathered}$	Calibration 1968-73	$\begin{gathered} \text { 1st treatment, } \\ 1973-78 \end{gathered}$	$\begin{aligned} & \text { Total growth, } \\ & 1968-78 \end{aligned}$
-. .-. - - - Inches - . - . . - . - - Square feet per a						
1	0.26	0.29	2.7	6.0	5.5	57.5
2	. 26	. 28	2.7	5.8	5.3	55.9
3	. 26	. 28	2.7	5.9	5.7	57.9
4	. 26	. 28	2.7	6.0	5.7	58.6
5	. 25	. 25	2.5	5.8	5.6	57.0
6	. 26	. 27	2.6	6.0	6.7	63.4
7	. 26	. 24	2.5	5.7	6.0	58.8
8	. 27	. 25	2.6	5.6	5.8	57.0
Control	. 09	. 11	1.0	6.9	6.9	69.3
	Total stem volume					
	Periodic annual gross growth			Cumulative yield		
	$\begin{gathered} \text { Callbration, } \\ 1968-73 \end{gathered}$	$\begin{array}{r} \text { n, } \quad \text { lst treat } \\ 1973-7 \end{array}$		$\begin{array}{cc} \text { Calibration, } \\ 1973 & \text { lst treatment, } \\ 1978 \end{array}$		
- - - . - - - - - Cubic feet per acre- - - - . . . -						
1	190 222			2,456 3,564		
2	$\begin{array}{ll}193 & 195 \\ 196 & 229\end{array}$			2,407 3,383		
3				2,448 3,591		
4	207	222		2,481 3,593		
5	196	225		$\begin{array}{ll}2,484 & 3,610\end{array}$		
6	179	251		2,215 3,472		
7	193	249		2,511 3,754		
8	204	233		2,518 3,684		
Control	246	285		3,584 5 5,009		

Table 8-Stampede Creek: periodic annual growth, total growth, and cumulative volume yield for crop trees, by treatment and period-1968-73 and 1973-78

Treatment	Quadratic mean d.b.h.		Basal area			
	Perlodic annual net growth		Periodic annual gross growth			
	$\begin{gathered} \text { Calibration, } 1 \text { st treatment, } \\ 1968-73 \end{gathered}$	$\begin{gathered} \text { Total growth, } \\ 1968-78 \end{gathered}$	Calibration, 1968-73	$\begin{aligned} & 1 \text { st treatment, } \\ & 1973-78 \end{aligned}$	Total growth, 1968-78	
	- - Inches - -		--- - Squar	re feet per acre	- - -	
1	$0.33 \quad 0.35$	3.4	2.7	3.3	29.7	
2	. 35 . 36	3.5	3.0	3.6	32.9	
3	. 33 . 33	3.3	2.7	3.2	29.0	
4	. 35 . 34	3.4	2.8	3.3	30.3	
5	. 35 . 33	3.4	3.0	3.3	31.6	
6	. 35 . 35	3.5	2.7	3.2	29.6	
7	. 34 . 30	3.2	2.7	2.9	28.0	
8	.36 . 33	3.4	3.1	3.3	31.7	
Control	.29 . 27	2.8	2.4	2.6	24.6	
	Total stem volume					
	Periodic annual gross growtr	Total growth, 1968-78	Cumulative yield			
	$\begin{aligned} & \text { Calfbration, } 1 \text { st treatment, } \\ & 1968-73 \\ & 1973-78 \end{aligned}$		Calibration, 1st treatment, 1973 1973			
1	$94 \quad 138$	1,159	1,182	1,871		
2	108142	1,249	1,340	2,052		
3	97132	1,145	1,191	1,850		
4	104132	1,184	1,216	1,878		
5	117	1,278	1,471	2,164		
6	86	1,094	1,076	1,739		
7	$99 \quad 129$	1,142	1,236	1,882		
8	127141	1,339	1,462	2,167		
Control	$93 \quad 119$	1,059	1,254	1,849		

Table 9—Stampede Creek: trees cut, by treatment and thinning-1973 and 1978

Treatment	Trees per acre		Quadratic mean d.b.h.		Basal area per acre		Total stem volume per acre	
	1973	1978	1973	1978	1973	1978	1973	1978
	- Number- -		- - - Inches - .		- Square feet -		- -Cubic feet - -	
1	100	62	6.8	8.7	25.2	25.3	580	699
2	93	62	6.9	7.8	24.1	20.6	553	521
3	90	42	6.4	8.6	20.1	16.8	437	456
4	83	47	6.5	8.4	19.3	18.0	432	482
5	47	32	6.6	8.6	11.1	12.9	244	353
6	38	57	6.4	7.9	8.6	19.4	180	494
7	18	20	6.8	8.5	4.6	7.9	107	218
8	18	25	6.1	8.1	3.7	9.0	77	238

Table 10-Stampede Creek: mean helght of crop trees by treatment and measurement year-1968, 1973, and 1978

Treatment	Trees measured			Mean height		
	1968	1973	1978	1968	1973	1978
	- - Nurnber - -			- - - Feet - -		
1	11	19	31	56.2	67.3	76.2
2	13	16	33	56.5	67.0	78.0
3	12	14	31	55.2	68.0	76.9
4	11	16	32	57.6	68.5	77.3
5	14	18	35	57.1	67.5	79.7
6	13	15	28	55.0	65.3	75.9
7	10	16	31	56.0	67.9	77.8
8	10	16	31	57.9	69.4	79.8
Cuntrol	12	16	24	57.7	69.1	78.4
Thinued treatments only	94	130	252	56.4	67.6	77.7
All treatments	106	146	276	56.5	67.8	77.8
Standara deviation				1.01	1.14	1.31

Table 11-Iron Creek: stand data for all live trees, by treatment, at beginning and end of perlod-1966-70, 1970-73, 1973-77, 1977-80

Prostment	Trees per acre								Quadratic mean d.b.h.							
	Calrbratien		16t treatment		2 d treatment		3 d treatment		Callibration		1st treatment		2d treatment		3d treatment	
	1966	1970	1970	1973	1973	1977	1977	1980	1966	1970	1970	1973	1973	1977	1977	1980
1	366 360	343 347	233 198	210 189	152 165	145 159 15	100	97 123	4.7 5.0	6.4 6.7	6.6 6.9	8.1 8.4	8.3 8.5	10.2 10.4	10.6 10.6	11.9 11.8
3	348	340	248	237	193	188	162	160	4.9	6.6	6.8	8.2	8.3	10.0	10.1	11.3
4	362	353	298	227	196	190	178	177	6.0	6.7	6.9	8.4	8.5	10.3	10.4	11.5
8	347	338	277	273	242	237	227	227	6.1	6.7	6.9	8.2	8.3	9.9	9.9	10.8
6		343	307	895	252	247	205	20 20	4.8	6.5	6.6	7.9	8.0	9.6	9.6	10.7
7		347	333	317	305	297	297	293	5.0	6.7	6.7	7.9	8.0	9.4	9.4	10.2
8	352	345	313	290	276	273	257	250	6.1	6.8	6.9	8.2	8.3	9.7	9.8	10.7
Centrol	1.128	1,193	1.193	1,198	1.192		1.183	1,095		4.5	4.5	5.1	6.1	5.1	6.7	6.8
	Bagal area per acre								Tetal stem volume per acre							
	Calloration		19t treathent		ed treatment		3 d treatment		Calboration		1st treatment		2d treatrient		3d treatment	
	1966	1970	1973	1973	1973	1977	1977	1980	1966	1970	1970	1973	1973	1977	1971	1980
		76.0				82.7	60.9	74.7	600	1,370	964	1.552	1,205	2,020	1,505	2,087
?	48.6	84.4	51.6	72.2	60.8	89.9	71.5	94.0	735	1,638	1.013	1,659	1.404	2,344	2,031	2,763
3	46.3	79.9	61.9	86.1	72.0	102.1	90.7	11.5	698	1.474	1,151	1,834	1,539	2,592	2,308	3,168
4	49.5	86.2	63.2	86.6	77.2	110.4	104.7	126.8	771	1,703	1.272	1,970	1.761	2,899	2, 752	3,762
5	48.6	82.6	71.3	99.7	91.3	125.3	120.7	145.3	733	1,688	1,383	${ }^{2} .2368$	2.055	3,297	3,178	4,293
6	45.4	79.0	71.9	100.0	87.2	123.1	103.3	125.9	$\stackrel{629}{ } 734$	1.428 1.590	1,303	2,085	1,922	3,070	2,584	
7	49.2	83.7	80.7	108.9	106.9	142.6	142.5	167.2	734	1,590	1,534	? 448	2.378	3,739	3,739	4,649
8	49.2	86.7	80.9	106.5	102.6	140.9	133.9	156.5	763	1,667	1.562	2,364	2,282	3,589	3,419	4,464
Control	82.4	129.9	129.9	156.6	166.6	209.4	209.4	228.8	1,116	2,32退	2,328	3,510	3.510	6,170	5.170	5,404

Table 12-Iron Creek: stand data for crop trees, by treatment, at beginning and end of period-1966-70, 1970-73, 1973-77, 1977-80

	Trees per acre								Quadratic mean dib.h.							
	Calloration		1at treatment		ad treatment		3 d treatment		Calibration		$15 t$ treatment		2d treatment		3 d troatment	
Prestment	1966	1970	1970	1973	1973	1977	1977	1980	1960	1970	1970	1973	1973	1977	1977	1980
1	80 80	77	78 80	$\begin{aligned} & 75 \\ & 73 \end{aligned}$	75 73	72	73	72 73	5.6		7.4	9.1	9.1 9.2	11.1 11.2	11.9	12.4 12.4
3	80	80	80	78	78	17	17	17	6.9	7.8	7.8	9.9	9.2	11.0	11.0	12.4 12.8
4	80	78	80	75		71	77	76	5.9	7.8	7.8	9.3	9.3	11.2	11.2	12.4
6	30	80	80	30	78	77	77	77	6.1	8.0	8.0	9.5	9.5	11.2	11.2	12.4
6		78	80	80		78	71	75	6.7	7.6	7.5	9.0	9.0	10.8	10.8	12.0
1		77	78	12	77	77	77	76	5.7	7.5	7.5	9.0	8.9	10.5	10.5	11.5
8	78	77	78	70	80	80	82	82	6.0	8.0	8.0	9.6	9.4	11.1	11.1	12.1
Contro?	78	78	78	76	78	77	78	77	6.18	7.4	7.4	8.6	8.6	9.7	9.7	10.4
	Hagal area per acre								Total stem volume per acre							
	Calloration		1st treatment		20 treatment		3d treatment		Calibration		1st treatment		2d treatment		3d treatuent	
	1960	1970	1970	1973	1973	1977	1977	1980	1905	1970	1970	1973	1973	1977	1977	1980
	13.6 14.9	23.3 24.7	23.7 26.5	33.6 34.6	33.6 34.1	48.0 49.0	49.1 51.7 50.8 52.5 52.9 48.7 16.4 55.2 40.3	60.5 61,5 62.6 63.0 63.8 69.2 50.3 65.6 45.7	$\begin{aligned} & 200 \\ & 238 \\ & 227 \\ & 2293 \\ & 258 \\ & 207 \\ & 217 \\ & 247 \\ & 115 \end{aligned}$	440 603 $51 ?$ 552 563 46 ? 460 545 459	446 520 511 557 570 466 465 564 459 459	$\begin{aligned} & 728 \\ & 819 \\ & 797 \\ & 893 \\ & 908 \\ & 769 \\ & 726 \\ & 826 \\ & 717 \end{aligned}$	$\begin{aligned} & 728 \\ & 803 \\ & 796 \\ & 866 \\ & 908 \\ & 769 \\ & 768 \\ & 905 \\ & 717 \end{aligned}$	$\begin{aligned} & 1,206 \\ & 1,216 \\ & 1,312 \\ & 1,195 \\ & 1,427 \\ & 1,227 \\ & 1,245 \\ & 1,427 \\ & 1,062 \end{aligned}$	1,230 1,699 1,357 1,823 1,312 1,807 1,483 1,895 1,427 1,942 1,257 1,766 1,245 1,644 1,458 1,927 1,082 1,393	
3	15.2	26.4	26.3	35.4	36.3	60.0										
4	16.2	26.3	26.6	35.5	36.5	52.2										
6	16.2	27.18	28.1	38.7	38.7	62.9										
6	14.0	24.5	24.8	36.6	35.1	69,5										
7	13.9	23.7	24.0	31,6	33.4	46.4										
	15.2 14.4	26.8 23.4	27.2 23.4	36.2 31.2	38.8 31.2	53.9 39.5										
Control	14.4	23.4	23.4	31.8	31.2	39.5										

Table 13-Iron Creek: periodic annual growth and cumulative volume yleld for all trees, by treatment and perlod-1966-70, 1970-73, 1973-77, 1977-80

Table 14-Iron Creek: perlodic annual growth and cumulative volume yleld for crop trees, by treatment and perlod-1966-70, 1970-73, 1973-77, 1977-80

Treatment	Quadratic maan d.b.h. perfadic annual not grawth				Bosal areo perlodic annual gross growth			
	Colibrotian, 1966-70	1st treotment. 1970-73	2d traatment, 1973-77	$\begin{gathered} 30 \text { treotment, } \\ 1977-80 \end{gathered}$	Celibretion, 1966-70	$\begin{aligned} & \text { Ist treatment, } \\ & \text { 1970-73 } \end{aligned}$	2d treotment,	3d treatnent, $1977-80$
.........- ${ }^{\text {nch }}$........... ${ }^{\text {Square feet per ocre- }}$								
1	0.45	0.51	0.48	0.45	2.5	3.6	3.9	4.2
2	. 44	. 51	. 48	. 41	2.6	3.8	3.9	4.0
3	. 47	. 49	. 45	. 41	2.8	3.6	3.9	3.9
4	. 47	. 49	. 46	. 39	2.8	3.7	3.9	3.8
5	. 47	. 49	. 42	. 37	2.9	3.7	3.7	3.6
6	. 47	. 50	. 44	. 39	2.7	3.6	3.8	3.7
1	. 45	. 45	. 40	. 32	2.5	3.1	3.2	2.9
$\operatorname{contral}^{8}$. 50	. 49	. 42	. 35	3.0	3.6	3.8	3.5
	. 40	. 39	. 30	. 25	2.2	2.6	2.4	2.2
	Parlodic annual gross growth				Cumulative yiold			
	Calibretian, 1906-70	1st treotmont, ad traetmant, 3 d treotment, 1970-73 1973-77 1977-80			Callbration, 1966-70	1st treatment, 2 d trootment, 1970-73 1973-77		3d treotment 1977-80
-.-.-. .-. .-. .-. . Cubic foet per ocre..............................							
1	62	100	125	167	449	749	1,251	1.751
2	69	116	128 136	$\begin{aligned} & 174 \\ & 165 \end{aligned}$	514	886	1,377	1.900
4	76	109	135	172	555	888	1.421	1,935
5	76	116	134	172	563	911	1,448	1,963
6	65	101	133	162	468	770	1,302	1.787
7	63	100	119	142	468	769	1,245	1.670
${ }^{8}$	76	111	130 95	156	550 459	884	1,406	1.875
Control	61	86	95	116	459	717	1,096	1,443

Table 15-Iron Creek: mean height of crop trees, by treatment and measurement year-1966, 1970, 1973, 1977, and 1980

Treatment	Trees measured					Mean height				
	1966	1970	1973	1977	1980	1966	1970	1973	1977	1980
	- . . - Number - . . . - -					- . . . - Feet - -				
1	16	22	21	28	32	34.4	45.9	53.5	63.6	71.9
2	16	22	21	30	30	36.4	48.7	56.4	66.3	75.6
3	16	24	23	31	30	34.9	47.0	53.9	64.6	72.8
4	15	22	23	28	26	38.8	50.5	58.5	68.6	77.4
5		22	19	30	30	37.6	48.9	57.3	67.5	77.0
6	15	21	22	27	28	35.4	45.8	53.2	64.6	72.8
7	16	24	24	30	27	36.7	46.7	55.2	67.3	76.1
3	15	21	20	30	29	38.4	49.6	57.7	66.5	75.1
Control	14	19	18	20	20	35.4	47.5	55.7	65.9	75.1
Thinned only	124	178	173	234	232	36.6	47.9	55.7	66.1	74.8
All treatments	138	197	191	254	252	36.4	47.8	55.7	66.1	74.8
Standard deviation						1.47	1.58	1.83	1.52	1.87

Appendix 3
Tables 16 to 24-Stampede Creek: llve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulatlve volume per acre, treatments 1 through 9 at beginning and end of perlod-1968 to 1973

Tables 25 to 33-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatments 1 through 9 at end of period-1978

Table 16-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 1 at beginning and end of perlod-1968-73

	Trees per acre 1/		Cuinulative trees per acre		Yolunie per tree		Volume per acre				Cumulative volume per acre			
O.b.h. class	1908	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
Inches	- - -Number- - - -				- - - Cubic feet $-=-$ Percent -						- Cubic feet -		- -Percent - -	
13.6-14.5		2		2		33.9		56.6		2.3		56.6		2.3
$12.6-13.5$		3		5		27.1		90.3		3.7		146.9		6.0
$11.6=12.5$	2	3	2	8	23.1	22.7	38.4	75.6	2.61	3.1	38.4	222.5	2.6	9.1
$10.6=11.5$	2	12	3	20	18.0	18.5	30.0	216.3	2.03	8.8	68.4	438.8	4.6	17.9
$9.6-10.5$	5	35	8	55	14.7	14.9	73.3	522.3	4.97	21.3	141.7	961.0	9.6	39.2
$8.6-9.5$	23	48	32	103	10.7	11.3	249.6	545.2	16.93	22.3	391.3	1,506.2	26.5	61.5
$7.0-8.5$	42	50	73	153	8.0	8.8	332.9	440.3	22.58	18.0	724.2	1,946.6	49.1	79.5
6.0 - 7.5	65	37	138	190	5.8	6.1	379.3	224.2	25.72	9.2	1,103.5	2,170.8	74.8	88.7
$5.6-6.5$	48	42	187	232	3.9	4.0	189.7	165.9	12.87	6.8	1,293.3	2,336.7	87.7	95.4
$4.0-5.5$	48	25	235	257	2.4	2.7	114.3	66.5	7.75	2.7	1,407.5	2,403.2	95.5	98.2
3.6-4.5	38	22	273	278	1.4	1.6	54.8	33.7	3.72	1.4	1,462.3	2,437.0	99.2	99.5
$2.6-3.5$	18	13	292	292	. 6	. 8	11.5	11.3	. 78	. 5	1,473.8	2,448.3	99.9	100.0
$1.6=2.5$	2		293		. 4		. 7		. 05		1,474.5		100.0	
Total Average	293	292			5.0	8.4	$1,474.5 \quad 2,448.3$		100.0	100.0				

$1 /$ Rounded to whole numbers.
Table 17-Stampede Creek: live trees per acre by d.b.h. class, voiume per tree, volume per acre, and cumulative volume per acre, treatment 2 at beginning and end of perlod-1968-73

	$\begin{aligned} & \text { Trees } \\ & \text { per acre } 1 / \end{aligned}$	Cumulative trees per acre		Volume per tree		Volurse per acre				Cumilative volume per acre			
class	19681973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
Inches	- = Nuntoer: $=-$ -			. -	- Cubic feet		- - -	- Percent -		- Cubic feet -		- Percent -	
15.6-16.5	2		2		51.2		85.3		3.6		85.3		3.6
$14.6-15.5$	2		3		44.7		74.5		3.1		159.8		6.7
$13.6=14.5$	25	2	8	34.6	33.8	57.7	169.0	4.0	7.1	57.7	328.8	4.0	13.8
$12.6-13.5$	25	3	13	26.8	26.6	44.7	133.1	3.1	5.6	102.4	462.0	7.1	19.3
$11.6=12.5$	512	8	25	21.4	21.1	106.8	246.7	7.4	10.3	209.2	708.6	14.5	29.7
$10.6-11.5$	$5 \quad 13$	13	38	16.2	18.8	80.8	250.3	5.6	10.5	290.0	958.9	20.1	40.1
$9.6=10.5$	13 28	27	67	12.9	14.0	1/1.8	396.0	11.9	16.6	461.9	1,354.9	32.1	56.7
$8.6-9.5$	1820	45	87	10.5	10.5	193.3	209.5	13.4	8.8	655.1	1,564.4	45.5	65.5
$7.6=8.5$	2733	72	120	7.7	8.5	204.7	281.9	14.2	11.8	859.8	1,846,3	59.7	77.3
$6.6=7.5$	4230	113	150	5.4	5.9	223.4	177.3	15.5	7.4	1,083.2	2,023,6	75.2	84.7
$5.6=6.5$	4348	157	198	3.7	4.1	161.4	197.1	11.2	8.2	1,244.6	2,220.7	86.4	93.0
$4.6=5.5$	4243	198	242	2.3	2.1	96.7	116.0	6.7	4.8	1,341.3	2,336,7	93.1	97.8
$3.6-4.5$	5230	250	272	1.4	1.4	74.4	42.7	5.2	1.8	1,415.8	2,379.4	98.3	99.6
$2.6-3.5$	3512	287	283	. 7	. 6	24.0	9.7	1.7	. 4	1,439.8	2,389.1	99.9	100.0
$1.0=2.5$	2			. 3		. 6		. 0		1,440.4	2,389.1	100.0	
Total Average	287283			5.0	3.4	1,440.4	2,389.1	100.0	100.0				

I/kounded to whole nuibers.

Table 18-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 3 at beginning and end of perlod-1968-73

1/Rounded to whole numbers.
Table 19-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 4 at beginning and end of perlod-1968-73

$\begin{aligned} & \text { D.o.n. } \\ & \text { class } \end{aligned}$	Treosper acre 1/Cumulative trees per treo				Vol unie por treo		Volume per acre				Cumulstive volume per acre			
	1908	1973	1968	1973	1968	1973	1968	1973	1968	1973	1963	1973	1968	1973
Inches	- Nunber				-... Cubic		feet-	- -	- Percent		- Cubic feet		- Percent -	
11.6-12.6		8				22.9		190.8		7.7		190.8		7.7
10.6-11.5		20		28		18.6		371.8		15.1		562.6		22.8
$9.6-10.5$	8	38	8	67	13.8	14.8	115.0	567.8	7.9	23.0	115.0	1.130 .3	7.9	45.8
$8.6-9.5$	23	33	32	100	10.6	11.4	247.5	379.8	17.1	15.4	362.6	1,510.2	25.0	61.2
$7.6=8.5$	48	40	80	140	8.0	8.5	384.3	338,9	26.5	13.7	746.9	1,849.1	51.6	74.9
6.6 - 7.6	53	54	133	198	5.6	6.2	299.4	360.1	20.7	14.6	1,046.3	2,209.2	72.2	89.5
5.0 - 6.5	62	42	195	240	3.7	4.0	228.2	167.6	15.8	6.8	1,274.4	2,376.8	88.0	96.2
$4.6=5.5$	48	22	243	262	2.5	2.7	120.4	57.5	8.3	2.3	1,394.8	2,434.3	96.3	98.6
3.6 - 4.5	28	17	272	278	1.4	1.6	38.7	26.2	2.7	1.1	1,433.5	2,460.5	99.0	99.6
$2.6-3.5$	20	12	292	290	. 7	. 8	13.7	9.0	1.0	. 4	1,477.2	2,469.5	99.9	100.0
1.6-2.5	3		295		. 3		1.0		.1		1,448.2		100.0	
Total Average		290				8.5	$1,448.2$	$2,469.5$	100.0	100.0				

[^2]Table 20-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 5 at beginning and end of perlod-1968-73

U.b.h. class	Treesper acre 1/Cumuldtive trees per acre				volume per tree		Volume per acre				Cumulative volume per acre			
	1968	19\%3	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
Inches	.-. - Number - . - - - - Cubic feet - . - - Percent -										- Cubic feet - - Percent -			
14.6 - 13.5		3		3		406		135.5		5.5		135.5		5.5
$13.6-14.5$		2		5		37.7		62.8		2.5		198.3		8.0
$12.6=13.5$	2	8	2	13	26.2	28. 2	43.7	235.1	2.9	9.5	43.7	433.4	2.9	17.5
$11.6-12.5$	3	10	5	23	23.3	24.9	77.5	248.6	5.2	10.0	121.2	682.0	8.0	27.5
$10.6=11.5$	13	20	18	43	17.0	19.4	226.2	387.9	15.0	15.6	347.4	1,069.9	23.1	43.1
$9.6=10.5$	10	12	28	55	13.3	14.0	133.5	163.5	8.9	6.6	480.9	1,233.3	32.0	49.7
$8.6=9.5$	15	37	43	92	11.4	11.5	170.4	421.1	11.3	17.0	651.3	1,654.4	43.3	66.7
$7.6-8.5$	28	37	72	128	7.8	8.4	219.8	309.1	14.6	12.4	871.1	1,963.5	57.9	79.1
$6.6=7.5$	45	32	117	160	5.8	6.1	259.2	191.9	17.2	7.7	1,130.3	2,155.4	75.1	86.8
$5.6-6.5$	40	47	157	207	4.0	3.9	158.6	183.2	10.5	7.4	1,288.8	2,338,6	85.6	94.2
$4.6-5.5$	55	40	212	247	2.5	2.6	134.9	102.9	9.0	4.2	1,423.8	2,441,6	94.6	98.4
$3.6-4.5$	47	22	258	268	1.4	1.5	66.6	31.9	4.4	1.3	1,490.4	2,473.4	99.0	99.7
$2.6-3.5$	18	13	277	28.2	. 7	. 6	12.8	8.5	. 8	. 3	1,503.1	2,481,9	99.9	100.0
$1.6-2.5$	7		283		. 3		2.2		. 1		1,505.3		100.0	
Total Average		282			5.3	8.8	1,505.3	2,481.9	100.0	100.0				

1 /Rounded to whole numbers.
Table 21-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 6 at beginning and end of perlod-1968-73

	Trees per acre 1/		Cuinuldtive trees per tree		Volunie per tree		Voluine per acre				Cumulative volume per acre			
cldss	1968	1973	1908	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
Inches	- - - Number $-=$				- - - - Cuoic feet $=-=$ - Percent -						- Cubic feet -		- Percent -	
$13.6=14.6$		3		3		30.9		102.9		4.6		102.9		4.6
$12.6-13.5$		2		5		26.3		43.9		2.0		146.8		6.6
$11.6=12.5$	3	3	3	8	21.1	23.9	70.2	79.8	5.3	3.6	70.2	226.6	5.3	10.2
$10.6-11.5$	2	12	5	20	15.4	17.2	25.7	200.8	2.0	9.1	95.8	427.3	7.3	19.3
$9.6=10.5$	5	23	10	43	14.6	14.4	73.0	335.0	5.5	15.2	168.8	762.3	12.8	34.5
$8.6=9.5$	10	43	20	87	10.2	10.7	102.4	465.3	7.8	21.0	271.2	1,227.6	20.6	55.5
$7.6=8.5$	38	40	58	127	8.1	8.0	308.9	321.5	23.4	14.5	580.1	1,549.1	44.0	70.0
$6.6=7.5$	48	47	107	173	5.6	5.7	270.3	267.2	20.5	12.1	850.4	1,816.3	64.5	82.1
$5.6=6.5$	62	52	168	225	3.7	4.1	228.8	209.3	17.4	9.5	1,079.3	2,025.6	81.9	91.6
$4.6=5.5$	52	50	220	275	2.4	2.5	124.2	126.1	9.4	5.7	1,203.5	2,151.7	91.3	97.3
$3.6=4.5$	67	35	287	310	1.4	1.5	90.9	53.8	6.9	2.4	1,294,4	2,205.5	98.2	99.7
$2.6=3.5$	33	7	320	317	. 7	. 9	23.6	6.2	1.8	. 3	1,318.0	2,211.7	100.0	100.0
Total Average	320	317			4.1	7.0	1,318.0	2,211.7	100.0	100.0				

I/Rounded to whole numbers.

Table 22-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 7 at beginning and end of perlod-1968-73

$\begin{aligned} & \text { O.b.n } \\ & \text { class } \end{aligned}$	Trees per acre 1/		Cumulative trees per acre		Volume per tree		Volume per acre				Cumulative volume per acre			
	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
inches Number . . .				- - - - - . - Percent -						- -Cubic feet - - Percent-			
12.6-13.5		8		8		27.8		231.3		9.2		231.3		9.2
$11.6=12.5$		8		17		23.5		195.6		7.8		426.9		17.0
$10.6-11.5$	8	12	8	28	17.5	18.4	146.1	215.0	9.5	8.6	146.1	641.8	9.5	25.6
$9.6-10.5$	8	18	17	47	13.5	15.1	112.9	277.6	7.3	11.1	259.0	919.4	16.8	36.6
$8.6=9.5$	18	52	35	98	10.6	11.7	193.6	602.6	12.5	24.0	452.5	1,522.0	29.3	60.6
$7.6=8.5$	38	58	73	157	7.8	8.6	297.5	504.3	19.3	20.1	750.1	2,026.3	48.6	80.7
$6.6-7.5$	63	37	137	193	6.1	6.3	387.6	232.2	25.1	9.2	1,137.7	2,258.5	73.7	90.0
$6.5=5.6$	57	33	193	227	4.2	4.3	237.5	141.9	15.4	5.6	1,375.2	2,400.4	89.1	95.6
$4.6-5.5$	45	25	238	252	2.6	2.8	116.6	70.6	7.5	2.8	1,491.8	2,471.1	99.6	98.5
$3.6-4.5$	25	18	263	270	1.6	1.8	40.7	33.2	2.6	1.3	1,532.6	2,504.3	99.3	99.8
$2.6-3.5$	12	7	275	277	. 8	. 8	9.6	5.3	. 6	. 2	1,542.1	2,509.6	99.9	100.0
$1.6-2.5$	3		278		. 4		1.5		.1		1,543.6		100.0	
Total Ayerage	278	277			5.5	$9.1{ }^{1}$	$, 543.6$	2,509.6	100.0	100.0				

I/Rounded to whole numbers.

Table 23-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulatlve volume per acre, treatment 8 at beginning and end of perlod-1968-73

$\begin{gathered} \text { 0.b.n } \\ \text { class } \end{gathered}$	Trees per acre 1/		Cumulative trees per acre		volume per tree		Volume per acre				Cumulative volume per acre			
	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973	1968	1973
Inches	ber				.-. - - - Cubic feet - . - - Percent -						-Cubic feet -		- Percent- -	
13.6-14.5		3		3		38.8		129.3		5.1		129.3		5.1
12.6-13.5		8		12		29.9		249.5		9.9		378.8		15.0
11.6-12.5	3	12	3	23	21.9	24.3	73.1	284.1	4.9	11.3	73.1	662.8	4.9	26.3
10.6-11.5	8	22	12	45	17.1	19.5	142.1	422.8	9.5	16.8	215.3	1,085.7	14.4	43.1
9.6-10.5	13	20	25	65	13.7	14.6	182.4	291.9	12.2	11.6	397.7	1,377.6	26.5	54.7
$8.6-9.5$	20	32	45	97	10.8	11.5	216.1	363.5	14.4	14.4	613.7	1,741.1	41.0	69.2
7.6 - 8.5	33	47	78	143	7.9	8.8	263.2	409.6	17.6	16.3	877.0	2,150.7	58.5	85.4
6.6-7.5	58	27	137	170	5.8	6.0	338.8	160.9	22.6	6.4	1,215.8	2.311 .6	81.2	91.8
$5.6-5.5$	40	32	177	202	4.1	4.0	163.1	128.1	10.9	5.1	1,378.9	2,439.7	92.0	96.9
4.6 - 5.5	32	22	208	223	2.5	2.2	79.6	48.0	5.3	1.9	1,458.5	2,487.7	97.4	98.8
3.6-4.5	13	17	222	240	1.3	1.3	17.0	20.9	1.1	. 8	1,475.5	2,508.6	98.5	99.6
2.6 - 3.5	28	13	250	253	. 8	. 7	21.4	9.0	1.4	. 4	1,496.9	2,517,6	99.9	100.0
1.6 - 2.5	5		255		.3		1.3		. 1		1,498.2		100.0	
Total Average	255	253			5.9	9.9	1,498.2	2,517.6	100.0	100.0				

1 Rounded to whole numbers.

Table 24-Siampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 9 (control) at beginning and end of period-1968-73

1/Rounded to whole numbers.
Table 25-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 1 at end of period-1978

1/Rounded to whole numbers.

Table 26-Stampede Creek: llve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 2 at end of perlod-1978

$\begin{aligned} & \text { D,b,h. } \\ & \text { class } \end{aligned}$	Frees per acre $1 /$	Cumulative trees par dere	Volume per tree	Volume per	ere	Cumulative volume	per ecre
Inches	- $=$	er $=$	Cubic foet	Cubic foet	Percent	Cubic feet	Percent
$18.6=19.8$	2	2	73.8	122.1	4.4	122.1	4.4
$17.6=18.8$	2	3	62.4	104.0	3.7	225.0	8.1
$16.6=17.8$	2	5	65.4	92.3	3.3	318.4	11.4
$15.6=16.8$	3	8	48.0	149.0	6.4	468.3	15.8
$14.6=15.8$	2	10	39.0	65.0	2.3	633.3	19.1
$13.6=14.5$	12	22	32.7	381.3	13.7	914.5	32.8
$12.6=13.6$	12	33	28.9	337.7	12.1	1,252.2	44.9
$11.6=12.8$	16	48	22.9	343.3	12.3	1,595.6	57.2
$10.6=11.8$	17	65	18.7	311.6	11.2	1,907.2	68.4
$9.6=10.8$	23	88	14.5	338.4	12.1	2,246.6	80.6
$8.6=9.5$	${ }^{8}$	97	10.6	88.5	3.2	2,334.2	83.7
$7.6=8.6$	18	115	8.2	160.8	6.4	2,484.9	89.1
$6.6=7.8$	28	143	6.0	170.6	6.1	2,655.6	96.2
$5.6=3.8$	20	133	4.2	83.7	3.0	2,739.3	98.2
$4.6=5.5$	12	175	2.8	32.2	1.2	2,771,5	99.4
3.6 - 4.6	12	187	1.6	18.0	. 6	2,789.5	100.0
Total Average	187		14.9	2.789 .5	100.0		

$1 /$ Rounded to whole numbers.
Table 27-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulatlve volume per acre, treatment 3 at end of perlod-1978

$\begin{aligned} & \text { D.B.A. } \\ & \text { class } \end{aligned}$	Trees per aere 1/	Cumblative trees per acpe	Volume per tree	Volume per	acro	Cumulative vol	per ocre
Inches	- - Number $=$.		Cubic feet	Luble foet	Percent	Cuble feet	Percent
$16.6=16.5$	2	2	99.2	82.0	2.6	82.0	2.6
$14,6-16,6$	0	2	0	0	0	82.0	2.6
$13.6=14.6$	$?$	8	34.1	230.8	7.3	312.8	9.9
$12.6=13.6$	17	25	29.6	49318	15.7	805.5	25.6
11.6 - 12.6	20	45	24.4	487.5	15.5	1,294,0	41.1
$10.6=11.6$	28	73	19.5	551.2	17.5	1,845.2	58.5
$9.6=10.6$	38	112	15.5	595.6	18.9	2,440,8	77.6
$8.6=9.6$	30	142	12.7	380.0	12.1	2,820,8	89.5
7.0 - 8.6	13	165	8.9	119.1	3.8	2,939.9	93.4
6.6 - 7.6	17	172	6.5	109.0	3.5	3,048.9	96.9
$6.6=6.5$	18	190	4.7	85.1	2.7	3,135.0	99.6
$4.6=5.6$		192	2.5	4.2	. 1	3,139.?	99.8
$3.6=4.6$		195	1.7	5.5	. 2	3,144.7	99.9
$2.6=3.6$	2	197	1.1	1.8	. 1	3,145.5	100.0
Total	197		16.0	3,146.5	100.0		
Average							

[^3]Table 28-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 4 at end of period-1978

$\begin{aligned} & \text { O.b.n. } \\ & \text { class } \end{aligned}$	Trees per acre 1/	Cumulative trees per acre	Volume per tree	Volume per acre		Cumulative vol	per acre
Inches	- - Number - . -		Cubic feet	Cubic feet	Percent	Cubic feet	Percent
13.6-14.5	8	8	34.3	286.1	9.2	286.1	9.2
12.6-13.5	13	22	28.9	384.9	12.3	671.0	21.5
$11.6-12.5$	30	52	25.2	755.9	24.2	1,425.8	45.7
10.6-11.5	28	80	19.7	558.3	17.9	1,985.1	63.5
9.6-10.5	23	103	15.3	356.5	11.4	2,341.6	74.9
8.6-9.5	27	130	12.0	320.2	10.2	2,661.9	85.2
$7.6-8.5$	25	155	9.4	234.7	7.5	2,896.6	92.7
6.6-7.5	22	177	6.5	140.9	4.5	3,037.5	97.2
$5.6-6.5$	13	190	4.3	58.0	1.9	3,095.5	99.1
4.6-5.5	7	197	2.8	18.4	. 6	3,113.9	99.6
$3.6-4.5$	7	203	1.6	10.9	. 4	3,124.8	100.0
Total Average	203		15.4	3,124.8	100.0		

1/Rounded to whole numbers.

Table 29-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 5 at end of period-1978

D.b.h. class	Trees per acre 1/	Cumulative trees per acre	Volume per tree	Volume	acre	Cumulative vol	per acre
Inches	- - Number - -		Cubic feet	Cubic feet	Percent	Cubic feet	Percent
17.6-18.5	20	2	60.3	100.5	3.0	100.5	3.0
16.6-17.5		2	0	0	0	100.5	3.0
15.6-16.5	3	5	53.7	179.1	5.3	279.6	8.3
14.6-15.5	7	12	41.8	279.0	8.3	558.5	16.6
13.6-14.5	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	23	35.5	414.6	12.3	973.1	28.9
12.6-13.5		37	30.1	401.7	11.9	1,374.8	40.9
11.6-12.5	$\begin{aligned} & 13 \\ & 12 \end{aligned}$	48	24.6	286.9	8.5	1,661.7	49.4
10.6-11.5		72	19.2	448.4	13.3	2,110.1	62.7
9.6-10.5	23 23	95	16.2	377.7	11.2	2,487.8	74.0
8.6-9.5		123	11.8	335.6	10.0	2,823.4	83.9
7.6-8.5	28 13	137	9.5	126.3	3.8	2,949.7	87.7
6.6-7.5	28	165	6.5	185.2	5.5	3,134.9	93.2
5.6-6.5		197	4.6	146.3	4.4	3,281.2	97.5
$4.6-5.5$	32 25	222	2.8	69.3	2.1	3,350.5	99.6
$3.6-4.5$		227	1.3	6.4	. 2	3,356.9	99.8
2.6-3.5	5 8	235	. 8	7.0	. 2	3,363.9	100.0
Total Average	235		14.3	3,363.9	100.0		

1/Rounded to whole numbers.

Table 30-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulatlve volume per acre, treatment 6 at end of perlod-1978

D.b.h. class	Trees per acre $1 /$	Curiulative trees per acre	Voluine per tree	Volume per acre		Cumulative volume per acre	
Inches	- - -	Number . . -	Cublc feet	Cubic feet	Percent	Cubic feet	Percent
15.6-16.5	3		48.2	160.8	4.9	160.8	4.9
$14.6=15.5$	3	7	42.1	140.3	4.3	301.1	9.2
$13.6-14.5$?	8	35.5	59.2	1.8	360.3	11.0
12.6-13.5	5	13	28.1	140.6	4.3	500.9	15.3
11.6-12.5	27	40	23.9	637.2	19.4	1,138,1	34.7
10.6-11.5	28	68	18.6	525.8	16.0	1,663.9	50.7
9.6-10.5	30	98	15.4	462.7	14.1	2,126.6	64.8
8.6 - 9.5	32	130	11.8	372.9	11.4	2,499.4	76.1
$7.6=8.5$	33	163	8.6	285.4	8.7	2,784,8	84.8
$6.6=7.5$	40	203	6.5	261.0	8.0	3,045,8	92.8
5.0 - 6.5	32	235	4.4	140.1	4.3	3,185.9	97.0
$4.6=3.5$	27	262	2.9	76.5	2.3	3,262.5	99.4
$3.6-4.5$	12	273	1.7	19.3	. 6	3,281, 8	99.9
$2.6-3.5$	2	275	1.1	1.9	.1	3,287.7	100.0
Total Average	275		11.9	3,287.7	100.0		

I/kounded to whole numbers.
Table 31-Stampede Creek: llve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulatlve volume per acre, treatment 7 at end of perlod-1978

$\begin{aligned} & \text { D.b.h. } \\ & \text { class } \end{aligned}$	Trees per acrel/	Cumulative trees per acre	Volume per tree	Volume per acre		Cumulative volume per acre	
Inches	- - -	ber	Cuble feet	Cuble feet	Percent	Cuble feet	Percent
14.6-15.5	5	5	43.4	217.1	6.0	217.1	6.0
13.6 - 14.5	10	15	36.0	359.8	9.9	576.9	15.9
$12.6=13.5$	7	22	30.0	200.0	5.5	776.9	21.4
$11.6-12.5$	18	40	25.6	468.7	12.9	1,245.6	34.3
10.6 - 11.5	22	62	20.5	445.2	12.3	1,690,8	46.6
$9.6=10.5$	45	107	16.3	732.2	20.2	2,423.0	66.8
$8.6=9.5$	48	155	12.8	617.2	17.0	3,040.2	83.8
$7.6-8.5$	33	188	9.2	308.2	8.5	3,348.4	92.3
6.5-7.5	25	213	6.6	166.1	4.6	3,514,6	96.8
$5.6=6.5$	12	225	4.4	51.0	1.4	3,565,6	98,3
$4.6=5.5$	17	242	2.9	48.5	1,3	3,614.1	99.6
$3.6=4.5$	7	248	2.0	13.1	. 4	3,627.1	99.9
$2.6-3.5$	2	250	1.1	1.8	.1	3,628.9	100.0
Total Average	250		14.5	3,628,9	100.0		

1/Rounded to whole numbers.

Table 32-Stampede Creek: Ilve trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 8 at end of perlod-1978

$\begin{aligned} & \text { O.b. n. } \\ & \text { class } \end{aligned}$	Trees per acre 1	Cumulative trees per acre	Volume per tree	Volume per acre		Cumulative volume per acre	
Inches	- - -	Number -	Cubic feet	Cubic feet	Percent	Cuble feet	Percent
$16.6-17.5$	2	2	59.7	99.5	2.8	99.5	2.8
$15.6-16.5$	2	3	50.0	83.3	2.3	182.8	5.1
14.6 - 15.5	5	8	44.0	220.2	6.1	403.0	11.2
13.6-14.5	8	17	36.8	306.8	8.5	709.7	19.7
$12.0-13.6$	22	38	31.5	682.7	19.0	1,392.4	38.7
$11.6-12.5$	15	53	24.9	373.7	10.4	1,766.1	49.1
$10.6=11.5$	25	78	20.2	504.4	14.0	2,270.5	63.1
9.6-10.5	30	108	15.7	470.0	13.1	2,740.4	76.2
$8.6-9.5$	32	140	12.4	391.2	10.9	3,131.6	87.1
$7.6-8.5$	22	162	9.1	197.9	5.5	3,329.5	92.6
$6.6-7.5$	23	185	6.1	143.5	4.0	3,473.0	96.6
$5.6-6.5$	12	197	4.6	53.8	1.5	3,526.8	98.0
$4.6-5.5$	18	215	2.6	47.1	1.3	3,573.9	99.4
$3.6-4.5$	17	232	1.3	22.0	. 6	3,595.9	100.0
$2.6-3.5$	2	233	. 8	1.3	. 0	3,597.2	100.0
Total Average	233		15.4	3,597.2	100.0		

1/Rounded to whole numbers.
Table 33-Stampede Creek: live trees per acre by d.b.h. class, volume per tree, volume per acre, and cumulative volume per acre, treatment 9 (control) at end of period-1978

$\begin{aligned} & \text { D.u.h. } \\ & \text { class } \end{aligned}$	Trees per acre 1/	Cumulative trees per acre	Volune per tree	Volume per acre		Cumulative	per acre
Inches	- - Number - -		Cubic feet	Cubic feet	Percent	Cubic feet	Percent
16.6-17.5	2	2	59.3	98.8	2.0	98.8	2.0
15.6-16.5	0	2	0	0	0	98.8	2.0
14.0 - 15.5	2	3	45.9	76.5	1.6	175.3	3.6
13.6-14.5	2	5	37.5	62.4	1.3	237.7	4.8
12.6-13.5	8	13	31.3	258.9	5.3	496.6	10.1
11.6-12.5	20	33	26.0	520.7	10.6	1,017.3	20.7
10.6-11.5	42	75	20.7	862.7	17.6	1,880.0	38.3
9.6-10.5	37	112	16.1	589.0	12.0	2,469.0	50.3
8.6-9.5	52	163	12.8	658.9	13.3	3,127.8	63.8
$7.6-8.5$	50	213	9.5	473.5	9.6	3,601.3	73.4
$6.6-7.5$	60	273	6.7	403.0	8.2	4,004.3	81.6
$5.6-6.5$	70	343	4.7	326.1	6.6	4,330.4	88.3
$4.6-5.5$	95	438	2.8	262.9	5.4	4,593.4	93.6
$3.6-4.6$	92	530	1.5	141.5	2.9	4,734.8	96.5
$2.6-3.5$	130	660	. 8	101.5	2.1	4,836.3	98.6
1.6-2.5	227	887	. 3	68.6	1.4	4,904.9	100.0
Total Average	887		5.5	4,904.9	100.0		

$1 /$ Roundes to whole numbers.

Study area	Cooperator
Skykomish	Western Forestry Research Department Weyerhaeuser Company Centralia, Washington
Hoskins	School of Forestry Oregon State University Corvallis, Oregon
Rocky Brook	USDA Forest Service Pacific Northwest Region and Pacific Northwest Forest and Range Experiment Station Portland, Oregon
Clemons	Western Forestry Research Department Weyerhaeuser Company Centralia, Washington
Francis	Washington State Department of Natural Resources Olympia, Washington
Iron Creek	USDA Forest Service Pacific Northwest Region and Pacific Northwest Forest and Range Experiment Station Portland, Oregon
Stampede Creek	USDA Forest Service Pacific Northwest Region and Pacific Northwest Forest and Range Experiment Station Portland, Oregon
Sayward Forest	Canadian Forestry Service Department of the Environment Victoria, British Columbia
Shawnigan Lake	Canadian Forestry Service Department of the Environment Victoria, British Columbia

WILLIAMSON, RICHARD L.; CURTIS, ROBERT O. Levels-of-growing-stock cooperative study in Douglas-fir: Report No. 7-Preliminary results, Stampede Creek, and some comparisons with Iron Creek and Hoskins. Res. Pap. PNW-323. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station; 1984. 42 p.

Results of the Stampede Creek LOGS study in southwest Oregon are summarized, and results are compared with two more-advanced LOGS studies and, in general, are similar. To age 43, thinning in this low site III Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand resulted in some reduction in volume growth and moderate gains in diameter growth. Growth was strongly related to level of growing stock. Desirable density levels are recommended for young Douglas-fir stands.

KEYWORDS: Growing stock (-increment/yleld, increment -) growing stock management, stand density, thinnings, Douglas-fir, Pseudotsuga menziesii, southwest Oregon, Oregon (southwest), serles-Douglas-fir LOGS.

The Forest Service of the U.S. Department of Agriculture is dedicated to the principle of multiple use management of the Nation's forest resources for sustained yields of wood, water, forage, wild life, and recreation. Through forestry research, cooperation with the States and private forest owners, and management of the National Forests and National Grasslands, it strives - as directed by Congress - to provide increasingly greater service to a growing Nation.
The U.S. Department of Agriculture is an Equal Opportunity Employer. Applicants for all Department programs will be given equal consideration without regard to age, race, color, sex, religion, or national origin.

Pacific Northwest Forest and Range
Experiment Station
319 S.W. Pine St.
P.O. Box 3890

Portland Oregon 97208

[^0]: ${ }^{1}$ Funding for preparation of LOGS Report 7 was provided by the FIR (Forestry Intensified Research) program for southwestern Oregon, administered by Oregon State University and the Pacific Northwest Forest and Range Experiment Station.

[^1]: ${ }^{2}$ Growth percents used in this report were calculated as:
 100(periodic annual increment in X).

 $$
 \left(x_{1}+x_{2}\right) / 2
 $$

 where: X_{1} and X_{2} are values of the variable at start and end of the growth period. This expresses current rate of change in X in relation to inean value of X for the period, rather than the initial value of X used in previous LOGS reports. The change in method of computation was made to facilitate comparisons among different installations.

[^2]: 1/Rounced to wrole numbers.

[^3]: 1/Rounded to whole numbers.

