
Cool new
things in PHP

“While I wasn't paying attention,
PHP got quite good” [1]

https://dnlytras.com/blog/modern-php

What’s
already
available
added in PHP ≤7.4, or polyfilled by MediaWiki

01

public function provideValues(): iterable {

yield 'null' => [null];

yield 'empty string' => [''];

foreach ([0, 1, -1] as $number) {

yield "int $number" => [$number];

yield "string $number" => [(string)$number];

}

}

/** @dataProvider provideValues */

public function testSomething($value): void { /* ... */ }

yield

yield
● generator syntax
● returns an iterable object
● extremely useful for PHPUnit data providers

https://www.php.net/manual/en/language.generators.syntax.php

...
public function msg(string $msg, ...$args): Message {

return wfMessage($msg, ...$args)

->inLanguage($this->getTargetLanguage())

->page($this->getPage());

}

$array1 = [2, 3, 4];

$array2 = [0, 1, ...$array1, 5];

// [0, 1, 2, 3, 4, 5]

includes/parser/Parser.php,
as of commit a4da635e8a,

GPL-2.0-or-later

...
● you can mostly forget about func_get_args() and call_user_func() /

call_user_func_array()
● writing functions that wrap other functions, passing through all their

arguments, is much easier now 😌
● spreading in arrays is neat too I guess

array destructuring
[$causeAction, $causeAgent] = $this->getCause();

[, $lag, $index] = $this->loadBalancer->getMaxLag();

[

'tables' => $tables,

'fields' => $fields,

'joins' => $joins,

] = $revStore->getQueryInfo();

includes/Storage/DerivedPageDataUpdater.php,

includes/api/ApiQuerySiteinfo.php,
as of commit a4da635e8a,

GPL-2.0-or-later

array destructuring
● forget about list(), just like you forgot about array() – both are [] now
● we can also destructure associative arrays now

static types / type declarations
class CreditsAction extends FormlessAction {

 /** @var LinkRenderer */

 private $linkRenderer;

 /** @var UserFactory */

 private $userFactory;

/**

 * Convert a Message to a MessageValue

 * @param Message $m

 * @return MessageValue

 */

public function convertMessage($m) {

includes/actions/CreditsAction.php (edited),

includes/Message/Converter.php (edited),
as of commit c40084e898,

GPL-2.0-or-later

💩

static types / type declarations
class CreditsAction extends FormlessAction {

 private LinkRenderer $linkRenderer;

 private UserFactory $userFactory;

/** Convert a Message to a MessageValue */

public function convertMessage(Message $m): MessageValue {

includes/actions/CreditsAction.php (edited),

includes/Message/Converter.php (edited),
as of commit c40084e898,

GPL-2.0-or-later

🤩

static types / type declarations

source

https://chaos.social/@nota/110374401222845707

static types / type declarations
● type declarations, unlike PHPdoc comments, get checked at runtime and are

guaranteed to be correct
○ // sometimes I believe compiler ignores all my comments

● mostly obsoletes Assert:parameterType('MyType', $x, '$x');
● if the doc comment has no information beyond the types, it s̓ redundant and

can be left out altogether

https://stackoverflow.com/a/185803/1420237

strict types
<?php // a.php

function f(string $a) {

 var_dump($a);

}

<?php // b.php

require_once __DIR__ . '/a.php';

f(1);

logs string(1) "1"

strict types
<?php // a.php

function f(string $a) {

 var_dump($a);

}

<?php // b.php

declare(strict_types = 1);

require_once __DIR__ . '/a.php';

f(1);

TypeError: f(): Argument #1 ($a) must be of type string, int given

strict types
● without strict types, PHP attempts to cast arguments to the expected

parameter type
● if you would rather have an TypeError, declare strict types
● note that the strict types declaration affects the caller, not the callee
● in other words, at the callee, a type declaration guarantees that the parameter

now has the expected type, but it might have been cast to that type depending
on the caller s̓ argument and its strict types declaration

arrow functions
$messageKeys = array_map(fn(MessageSpecifier $m) => $m->getKey(), $messages);

$database->method('newSelectQueryBuilder')

->willReturnCallback(fn() => new SelectQueryBuilder($database));

tests/phpunit/includes/api/ApiBaseTest.php,
tests/phpunit/unit/includes/PingbackTest.php,

as of commit a4da635e8a,
GPL-2.0-or-later

arrow functions
● short and sweet 🙂
● automatically capture variables from the outer scope – notice that the second

example didnʼt need use ($database)!
○ but if you want to capture by reference, i.e. use (&$database),

youʼll still need an old-style function expression

new operators
'cat_pages' => $countByType['page'] ?? 0,

'cat_subcats' => $countByType['subcat'] ?? 0,

'cat_files' => $countByType['file'] ?? 0

// If length is null, calculate and remember it (potentially SLOW!).

// This is for compatibility with old database rows that don't have the field set.

$this->mSize ??= $this->mSlots->computeSize();

return count($a) <=> count($b);

includes/Category.php,

includes/Revision/RevisionStoreRecord.php,

includes/GlobalFunctions.php,
as of commit 5c9674df53,

GPL-2.0-or-later

new operators
● ?? and ??= effectively replace isset() (not empty()!) – like isset(),

there is no error if anything is unset (e.g. missing array key, undefined
variable)

● $a ?: $b evaluates to $b if $a is falsy in any way (zero, empty string, etc.),
whereas $a ?? $b only evaluates to $b if $a is null

● <=> (“spaceship” :3) is useful for making comparator functions – it compares
the two operands and evaluates to an integer less than, equal to or greater
than 0, respectively

new functions
public function isKeyGlobal($key) {

return str_starts_with($key, self::GLOBAL_PREFIX);

}

if (str_ends_with(MW_CONFIG_FILE, '.php')) {

public static function isExternal($username) {

 return str_contains($username, '>');

}

includes/libs/objectcache/BagOStuff.php,

includes/Setup.php,

includes/user/ExternalUserNames.php,
as of commit a4da635e8a,

GPL-2.0-or-later

new functions
● harder-to-read workarounds (strpos(), substr(), whatever) are no longer

needed (see the two RFCs for other problems with such workarounds)
● technically, these functions are from PHP 8.0, but MediaWiki pulls in

symfony/polyfill-php80 – thanks to Symfony for this useful library ♥

https://wiki.php.net/rfc/add_str_starts_with_and_ends_with_functions
https://wiki.php.net/rfc/str_contains
https://packagist.org/packages/symfony/polyfill-php80

02 What’s
coming

up
PHP ≥8.0, coming soon™ to a production near you!

Union types
public function getWikiId(): string|false;

public function getId(string|false $wikiId = self::LOCAL): int;

public function createComment(

 IDatabase $dbw,

 string|Message|CommentStoreComment $comment,

 array $data = null

) {

includes/page/PageReference.php (edited)

includes/page/PageIdentity.php (edited),

includes/CommentStore/CommentStoreBase.php
(edited)

as of commit c40084e898,
GPL-2.0-or-later

Union types
● weʼve been using them in PHPDoc for a long time
● now we can finally make them proper types too, and get a runtime error if

the value isnʼt one of the expected types
● mostly obsoletes Assert:parameterType('A|B|C', $x, '$x');

never return type
public function dieReadOnly(): never {

$this->fail('Unexpected call to selectField');

throw new LogicException('Ooops'); // Can't happen, make analyzer happy

includes/api/ApiBase.php (edited),

tests/phpunit/includes/Revision/
RevisionRendererTest.php,

as of commit c40084e898,
GPL-2.0-or-later

never return type
● have a guarantee, at the language level, that the method will never ever

return normally
○ if it doesnʼt exit or throw an exception, then PHP will throw an error when the end of the

method body is reached
● lets us get rid of all sorts of throw new LogicException('dieError

did not throw an exception');

Named arguments
self::$extensionJsonCache[$this->extensionJsonPath] = json_decode(

 file_get_contents($this->extensionJsonPath),

 true,

 512,

 JSON_THROW_ON_ERROR

);

tests/phpunit/integration/includes/
ExtensionJsonTestBase.php,

as of commit c40084e898,
GPL-2.0-or-later

💩

Named arguments
self::$extensionJsonCache[$this->extensionJsonPath] = json_decode(

 file_get_contents($this->extensionJsonPath),

 associative: true,

 flags: JSON_THROW_ON_ERROR

);

🤩

tests/phpunit/integration/includes/
ExtensionJsonTestBase.php (edited),

as of commit c40084e898,
GPL-2.0-or-later

Named arguments
● can make code much more readable
● can skip parameters instead of having to specify the default value
● caution: are parameter names part of the stable interface? is renaming a

parameter a breaking change? to be decided…

?->
return $this->user === null ? null : $this->user->getName();

return $this->user?->getName();

$revComment = $rev->getComment() === null ? null : $rev->getComment()->text;

$revComment = $rev->getComment()?->text;

includes/session/UserInfo.php,
(edited),

includes/actions/HistoryAction.php,

(edited),
as of commit c40084e898,

GPL-2.0-or-later

?->
● like -> but only if left-hand side is not null
● if used in a chain, the rest of the chain is skipped in case of null, i.e. you can

chain normal ->s after the first ?-> and they wonʼt crash

Attributes
/**

* @return stdClass|array|false

*/

#[\ReturnTypeWillChange]

public function current();

includes/libs/rdbms/database/
resultwrapper/IResultWrapper.php,

as of commit c40084e898,
GPL-2.0-or-later

Attributes
● syntax for adding additional information to classes, methods, etc.
● can be retrieved via reflection
● backwards-compatible: single-line attributes will simply be parsed as

comments by PHP <8
● ReturnTypeWillChange lets us acknowledge the upcoming change to the

return type of e.g. Iterator::current() in PHP 9, to avoid a deprecation
warning in PHP 8, while staying compatible with PHP 7

Constructor property promotion
class CreditsAction extends FormlessAction {

 private LinkRenderer $linkRenderer;

 private UserFactory $userFactory;

 public function __construct(

 Article $article,

 IContextSource $context,

 LinkRenderer $linkRenderer,

 UserFactory $userFactory

) {

 parent::__construct($article, $context);

 $this->linkRenderer = $linkRenderer;

 $this->userFactory = $userFactory;

 }

includes/actions/CreditsAction.php (edited),
as of commit c40084e898,

GPL-2.0-or-later

🤩

Constructor property promotion
class CreditsAction extends FormlessAction {

 public function __construct(

 Article $article,

 IContextSource $context,

 private LinkRenderer $linkRenderer,

 private UserFactory $userFactory

) {

 parent::__construct($article, $context);

 }

includes/actions/CreditsAction.php (edited),
as of commit c40084e898,

GPL-2.0-or-later

🤯

Constructor property promotion
● declare class properties as constructor parameters
● skip the $this->whatever = $whatever assignment in the constructor
● might be contentious, weʼll see 😇

match expressions
switch ($ext) {

 case 'gif':

 return 'image/gif';

 case 'png':

 return 'image/png';

 case 'jpg':

 case 'jpeg':

 return 'image/jpeg';

}

return 'unknown/unknown';

includes/StreamFile.php,
as of commit c40084e898,

GPL-2.0-or-later

💩

match expressions
return match ($ext) {

 'gif' => 'image/gif',

 'png' => 'image/png',

 'jpg', 'jpeg' => 'image/jpeg',

 default => 'unknown/unknown',

};

includes/StreamFile.php (edited),
as of commit c40084e898,

GPL-2.0-or-later

🤩

match expressions
● concise syntax
● strict comparison (===) unlike switch s̓ loose comparison (==)

enums
// Audience options for accessors

public const FOR_PUBLIC = 1;

public const FOR_THIS_USER = 2;

public const RAW = 3;

public function getUser($audience = self::FOR_PUBLIC, Authority $performer = null) {

// Audience options for accessors

public const AUDIENCE_PUBLIC = 1;

public const AUDIENCE_RAW = 2;

includes/Revision/RevisionRecord.php,

includes/user/CentralId/CentralIdLookup.php,
as of commit 973253a7ee,

GPL-2.0-or-later

😱

enums
enum RevisionAudience {

 case ForPublic;

 case ForThisUser;

 case Raw;

}

enum CentralIdAudience {

 case Public;

 case Raw;

}

😌

enums
● “fancy objects” flavor of enums, with potential for future extension to “full

Algebraic Data Types (ADTs)” flavor later
○ as opposed to “fancy constants” flavor
○ see their survey of enums in various languages

● “make invalid states unrepresentable” modeling technique
● see the Enumerations RFC, it s̓ well written

https://github.com/Crell/enum-comparison
https://wiki.php.net/rfc/enumerations

That’s all!

Enjoy writing nicer PHP code and look
forward to an even brighter future :)

