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Effect of curvature on
wetting and dewetting of
proboscises of butterflies
and moths
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Environmental Sciences, Clemson University, Clemson, SC 29634, USA

KGK, 0000-0002-4513-1915

Proboscises of butterflies are modelled as elliptical hollow
fibres that can be bent into coils. The behaviour of coating films
on such complex fibres is investigated to explain the remarkable
ability of these insects to control liquid collection after dipping
the proboscis into a flower or pressing and mopping it over a
food source. By using a thin-film approximation with the air–
liquid interface positioned almost parallel to the fibre surface,
capillary pressure was estimated from the profile of the fibre
surfaces supporting the films. The film is always unstable
and the proboscis shape and movements have adaptive value
in collecting fluid: coiling and bending of proboscises of
butterflies and moths facilitate fluid collection. Some practical
applications of this effect are discussed with regard to fibre
engineering.

1. Introduction
Butterflies and moths (Lepidoptera) are opportunistic feeders,
consuming a wide range of fluids, from thick, highly viscous
liquids, such as honey, to thin, almost inviscid mineral water [1–
4]. Lepidoptera, like all insects, struggle with capillary forces. John
Haldane highlighted a uniqueness of lepidopterans and certain
other insects: ‘An insect going for a drink is in as great danger as
a man leaning out over a precipice in search of food. If it once falls
into the grip of the surface tension of the water—that is to say, gets
wet—it is likely to remain so until it drowns. A few insects, such
as water beetles, contrive to be unwettable; the majority keep well
away from their drink by means of a long proboscis’ [5].

The lepidopteran proboscis is a highly flexible device capable
of a wide range of actions, from coiling in the vertical
plane to prehensile-like movements for acquiring liquids and
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pollen [1]. These movements can, for instance, alter the spacing of the interlegular gaps to regulate fluid
entry into the food canal, enlarge the food canal of the narrowed apex to reduce the suction pressure
required to bring fluids to the mouth and package the proboscis in a tight coil when not in use [1].

The chemical composition of the proboscis includes hydrophobic chitin in its cuticle, coupled with
surface lipids and waxes [6–9]. These abundant materials are integrated in a manner allowing the
insects to solve the dual challenge of acquiring fluids from diverse nutrient sources while maintaining a
clean proboscis [10,11]. The roughness of the proboscis surface significantly changes the surface energy,
decreasing it in the case of waxed hydrophobic patches and increasing it in the case of protein-rich
hydrophilic patches [12–16].

Drinking from floral corollas, insects encounter nectar in the form of pools, droplets or films adhering
to the corolla surface, often in limited quantities. The extent of insertion of the proboscis into the corolla
influences the extent of the proboscis exposed to fluid [17–20]. However, the physical principles of nectar
movement to the food canal are poorly understood.

Lepidoptera are often observed drinking mineral water from the soil by bending their proboscises
into a J-configuration with the distal portion pressed to the ground [21–24]. The physical phenomena
that facilitate feeding when the proboscis is bent are unknown [2,25–27]. Generally, in the bent or
coiled proboscis, the series of legular plates are prone to open up the interlegular pores [17]. This effect
can favour fluid uptake when the insect feeds, but it is unfavourable for maintaining moisture in the
proboscis: when the proboscis is coiled, the interlegular pores could allow evaporation if they remain
open. This structural arrangement would seem to contradict the terrestrial organism’s need to minimize
evaporation [7,27–29].

When the insect acquires a thin liquid film after each dip of the proboscis into a flower or other food
source, the problem of delivery to the food canal is reduced to the analysis of the flow of this liquid film.
Before formulating the fluid mechanics model for this process, an understanding of the driving forces
causing the flow of thin films towards the food canal is required. We focus this study on the analysis of
these forces.

We studied the capillary effect of a liquid film associated with a flexed or coiled proboscis to answer
the question of how coiling and bending the proboscis might benefit the insect. An understanding of
wetting phenomena of complexly shaped fibres is relevant not only to insect biology but also to materials
engineering [12–14,30–36]. We examine the stability of liquid films on a hollow fibre, with elliptical cross
section, coiled in a ring. We previously introduced the idea of our method [37]; it is further generalized
and developed here, and some possible engineering applications are offered.

2. Proboscis
2.1. Structure
Micro-computed tomography (micro-CT) scans of the head and proboscis of the monarch butterfly
(Danaus plexippus) were acquired using the technique described in [38]. The scan shows the complex
three-dimensional structure of the butterfly feeding device (figure 1b). When the insect is not feeding,
its proboscis is coiled in a spiral with multiple loops tightly wound one over the other (figure 1a), the
number of loops varying from species to species.

The lepidopteran proboscis consists of two C-type fibres called galeae; when the insect emerges from
the pupa, it assembles the galeae so that their C-shaped faces unite to form a food canal (figure 1b,c).

To acquire liquid and restrict entry of debris, Lepidoptera use a fence-like linking mechanism, called
legulae, to hold the two galeae together and facilitate fluid entry (figure 1d,e). The legulae sit next to one
another or overlap [10,11,17,18,39–41]. Experimental analysis of the wetting properties of the external
surface of the proboscis reveals a hydrophobic–hydrophilic dichotomy [11]; about 5–20% of the proboscis
length has a net hydrophilic surface, with the remaining 80–95% of each proboscis of the tested species
having a net hydrophobic surface, except the two legular bands of the linking mechanism, which are
hydrophilic [42].

2.2. Geometrical model of proboscis
We modelled a single loop of the proboscis as a ring of radius r (figure 2). Hereafter, the left cross section
(figure 2b,c) is used as the reference; hence, all angles and positions will be evaluated according to the
left cross section. When r → +∞, the model describes a straight proboscis. The notations are presented
in table 1.
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Table 1. Notations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M (x, Z) point on the ring surface defined in figure 2a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω plane passing through pointM and the OZ axis, defined in figure 2a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ the longitude angle formed by planeΩ and plane X = 0, defined in figure 2a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ the latitude angle formed by vector n and plane Z = 0, defined in figure 2b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O centre of the ring, defined in figure 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r1, r2 two principal radii of curvature at pointM defined in figure 2c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O2, O3 centres of two radii r1, r2, respectively, defined in figure 2c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

O1 centre of ring cross section, defined in figure 2a
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r ring radius defined in figure 2c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n outward unit normal vector at pointM, defined in figure 2c
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a, b two semi-axes of an ellipse in figure 2b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ the auxiliary angle used for parametrization of the local coordinates (x, Z)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ radius in polar system of coordinates (ρ , θ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ polar angle defined in polar system of coordinates (ρ , θ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α angle formed by the tangent line passing through pointM and the x-axis (definition in figure 2b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

e= b/a ellipticity of cross section
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h thickness of liquid film deposited on ring surface
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pl pressure inside a liquid film
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pa atmospheric pressure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R= r/a normalized r
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R1 = r1/a normalized r1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R2 = r2/a normalized r2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P = (Pl − Pa) a/σ dimensionless pressure difference
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


P = (Plocal minl − Pabsolute minl ) a/σ normalized pressure difference between local and absolute minima
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θ c critical polar angle defining the position of attractors in figure 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The position of any point M sitting on the ring surface is conveniently specified by a Cartesian system
of coordinates (X, Y, Z), with the Z-axis taken perpendicular to the ring plane (X, Y). The centre of this (X,
Y, Z) coordinate system is placed in the ring centre O. The ring surface is created by rotating an ellipse
with semi-axes a and b around the Z-axis. It is convenient to introduce a local system of coordinates (x, Z)
(figure 2b), with its centre placed at the centre of the ellipse O1. Thus, the profile of this ellipse is defined
by the formula (x2/a2) + (Z2/b2) = 1.

One can introduce an alternative system of coordinates specifying the position of point M on the ring
surface by latitude φ and longitude λ. The latitude φ is measured by the angle formed by the outward
normal vector n at point M and the ring plane Z = 0. We introduce the plane Ω containing the vector n at
point M and axis OZ. The longitude λ is defined as the angle formed by the plane Ω and reference plane,
X = 0.

All points on the proboscis surface with the same latitude φ form a closed curve called the parallel.
All points on the proboscis surface with the same longitude λ form a closed curve called the meridian.
Meridians and parallels constitute a parametric grid on the proboscis surface, with the ellipses as
meridians and circles as parallels. Point M, for example, belongs to the meridian formed by cutting
the ring by the plane Ω (figure 2a,b). Using the latitude and longitude, we can make an alternative
parametrization specifying the position of point M as (φ, λ).

There is another convenient parametrization with an auxiliary angle 0 < ϕ < 2π such that x = a cos ϕ,
Z = b sin ϕ. With this parametrization, the local coordinates of point M(x, Z) on this ellipse are expressed
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Figure 1. (a) Coiled proboscis of a monarch butterfly (Danaus plexippus). (b) Longitudinal section of the proboscis revealed by micro-CT.
(c) Cross section of the proboscis of a hawk moth (Manduca sexta); areas in the dashed boxes are magnified in (d) and (e). (d) Dorsal
legulae, showing their overlapping configuration. (e) Ventral legulae, showing their interdigitation. (f ) Movement of methylene blue-
dyed water through interlegular dorsal pores of the hawk moth (Manduca sexta) proboscis. (g) J-configuration of the proboscis of a
monarchbutterfly (Danausplexippus). (h) Tiger swallowtail (Papilio glaucus) dipping its proboscis into aflower corolla.When thebutterfly
pulls the proboscis out, nectar remains on the external surface of the proboscis, which then moves to the permeable dorsal and ventral
legular bands. (i) Monarch butterfly, showing schematic of different stages of proboscis coiling and uncoiling during feeding.
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Figure 2. (a) A single loop of the proboscis is modelled as a ring of radius r with an elliptical cross section. Longitudeλ is defined as the
angle formed by the planeΩ and the plane X = 0. (b) Cross section of the ring formed by cutting it with planeΩ . (c) Definitions of
principal radii of curvature r1 = O3M and r2 = MO2of the ring surface at point M. The distance OO1 is equal to the ring radius OO1 = r.
The proboscis cross section is assumed to be elliptical with semi-axes O1C = b and O1D= a, where O1C⊥O1O and O1D ‖ O1O.
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as M(a cos ϕ, b sin ϕ). Alternatively, this point can be specified in the local polar system of coordinates
M(ρ(θ ),θ ), with angle θ formed by the line MO1 with the ring plane Z = 0; the radius ρ(θ ) is defined from
equation ρ(θ ) = ab((bcosθ )2 + (asinθ )2)−1/2. In the polar system of coordinates, the vertexes of the ellipse
are identified by angle θ : at point A, θ = −π/2, at point B, θ = 0, at point C, θ = π/2 and at point D, θ = π

(figure 2b).
The tangent plane at point M is associated with the normal vector n at point M (figure 2b,c). The

tangent plane is perpendicular to the normal vector n and makes angle α with the ring plane Z = 0,
figure 2b. Thus, the angle α defining the slope of the ellipse at point M, tan α, can be found through
derivative tan α = dZ/dx, and can be further expressed through angle ϕ by applying the chain rule of
differentiation with x = a cos ϕ, Z = b sin ϕ as:

tanα = dZ
dx

= dZ
dϕ

· dϕ

dx
= −b

a
cot ϕ = −e cot ϕ. (2.1)

The angle θ of the polar system of coordinates and the auxiliary angle ϕ are connected through the
following relationship:

tan θ = Z
x

= b sin ϕ

a cos ϕ
= etanϕ. (2.2)

In equations (2.1) and (2.2), the proboscis ellipticity e is introduced as e = b/a. All proboscises elongated
along the Z-axis have ellipticity greater than 1, e > 1, and all proboscises elongated in the ring plane Z = 0
have e < 1.

3. Laplace law of capillarity applied to a thin coating film
Each time the insect dips its proboscis into a flower, it picks up a thin, external layer of nectar. The
surface of the liquid film is subject to the action of surface tension σ . The thickness of the liquid film
h is small, so that it is safe to assume that gravity plays an insignificant role and only capillary force
is important [11,37]. Field observations suggest that the thickness h of the nectar layer is much smaller
than all characteristic dimensions of the proboscis, h � a, h � b, h � r. These values vary with different
proboscises, but typically h is at the level of 10−6 m, a and b are at the level of 10−4 m and r is at the level
of 10−3 m [1]. Therefore, film non-uniformity can be neglected, assuming that the air–liquid interface h(X,
Y, Z) is positioned equidistant to the proboscis surface; in other words, at any longitude λ, the film profile
is specified by equation (x2/( a + h) 2) + (Z2/(b + h)2) = 1. Because the film is thin, h � a, h � b, one can
estimate the pressure distribution over the air–liquid interface by applying the Laplace Law of capillarity
directly to the proboscis surface, (x2/( a + h) 2) + (Z2/(b + h)2) ≈ (x2/a2) + (Z2/b2) ≈ 1. The Laplace law
of capillarity states that the pressure under the film surface Pl differs from atmospheric pressure Pa, and
the pressure differential is determined by the surface tension σ and the mean curvature of the surface as

Pl − Pa = σ

(
1
r1

+ 1
r2

)
, (3.1)

where r1 and r2 are the principal radii of curvature of the liquid–air interface, which, in a first
approximation, coincides with the proboscis surface.

We distinguish the behaviour of internal films coating the walls of the food canal from that of external
films coating the external surface of the proboscis. To understand the differences in pressure distributions
for external and internal films, one has to bear in mind that the sign of curvature in the Laplace law is
associated with the outward normal vector to the given point at the surface [43]. Because the directions
of outward normal vectors for the internal and external films are different, the capillary pressures also
differ.

According to differential geometry [43], the circle centres O2 and O3, defining the principal radii of
curvature, are sitting on the line obtained by continuation of the outward normal vector n to the surface
at point M. For any axisymmetric surface, one centre of these circles must be sitting on the Z-axis. In
figure 2c, this centre of curvature is O2. Another centre can be located anywhere along the line MO2. In
figure 2c, the two principal radii of curvature for the ring surface are denoted as MO3 = r1 and MO2 = r2,
respectively. We define the radii of curvature r1 and r2 as positive when the vectors MO2, MO3 are
pointing towards the Z-axis.
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For convenience of calculation and analysis, we normalize all geometric parameters by the distance a.

Therefore, the dimensionless radius of the ring is

R = r
a

(3.2)

and the principal radius of curvature of the meridians is R1 = MO3/a = r1/a. The radius R1 is calculated
by using the definition of curvature of a plane curve from differential geometry [43]:

R1 = r1

a
= a−1

(
(1 + (dZ/dx)2)

3/2

|d2Z/dx2|

)
= (a4 − a2x2 + b2x2)3/2

a5b
.

Inputting x = a cos ϕ, Z = b sin ϕ, e = b/a, we finally obtain

R1 = r1

a
= (sin2ϕ + e2cos2ϕ)

3/2

e
. (3.3)

When an observer moves along the meridian, the radius of curvature changes from one position to the
other.

The second principal radius of curvature r2 = MO2 is calculated using the geometrical construction in
figure 2c. For the two intervals θ ∈ [−π/2, π/2] and θ ∈ [π/2, 3π/2], the expressions of r2 are different:

R2 = r2

a
= (r − |a cos ϕ|)

a sin α
= (R − |cos ϕ|)

sin α
, θ ∈

[
−π

2
,
π

2

]
(3.4)

and

R2 = r2

a
= (r + |a cos ϕ|)

a sin(α − π )
= − (R + |cos ϕ|)

sin α
, θ ∈

[
π

2
,

3π

2

]
. (3.5)

Substituting these equations into the Laplace law of capillarity, equation (3.1), we obtain two different
representations of the dimensionless pressure difference, P = a(Pl − Pa)/σ , for a film coating the food
canal and for a film coating the external surface of the proboscis.

Film coating the external surface of the elliptical proboscis:

P = (Pl − Pa)a
σ

= e

(sin2ϕ + e2cos2ϕ)
3/2 − sin α

(R − cos ϕ)
. (3.6)

Film coating the internal surface of the elliptical food canal:

P = (Pl − Pa)a
σ

= −
(

e

(sin2ϕ + e2cos2ϕ)
3/2 − sin α

(R − cos ϕ)

)
. (3.7)

These two formulae together with equations (2.1) and (2.2) describe the pressure distribution over
the liquid–air interface of a film covering either the external surface of the proboscis or the wall of the
food canal. Two limiting cases of a straight proboscis and a proboscis loop made of a circular cylinder
provide the physical background to illustrate a counterintuitive behaviour of liquid films on elliptical
proboscises.

4. Behaviour of liquid films on straight elliptical proboscises
As the ring radius goes to infinity, R → +∞, equations (3.6) and (3.7) are simplified to

P = a(Pl − Pa)
σ

= e

(sin2ϕ + e2 cos2 ϕ)
3/2 (4.1)

and

P = a(Pl − Pa)
σ

= − e

(sin2ϕ + e2 cos2 ϕ)
3/2 , (4.2)

respectively. These pressure distributions are plotted in figure 3a,b for external and internal films,
respectively. Figure 3e,f are the schematics showing where the liquid should be collected based on the
pressure distribution predictions in figure 3c,d, respectively.

This model of films is important to understand scenarios of food flow in the straightened proboscises
of Lepidoptera. In contrast to the circular proboscis where the pressure in the film is uniform along
the circumference, this model emphasizes the effect of non-uniformity or circumferential distribution of
capillary pressure that is spontaneously built on an elliptical surface of the proboscis. The model suggests
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Figure 3. (a) Pressure distribution in the external film on a straight elliptical proboscis. (b) Pressure distribution in the internal film on
a straight elliptical food canal. (c,d) Schematics showing positions where liquid is expected to flow and collect. (c) The external film is
expected to collapse into two semi-cylindrical columns at the flattened sides of the proboscis. (d) The internal film is expected to flow
towards the most curved sides of the food canal where it will form two liquid menisci. (e,f ) Schematics of surface activity showing fluid
flow and collection, (e) externally at flatter regions and (f ) internally at more curved regions.

that as soon as a liquid film is deposited on the proboscis surface, the fluid is prone to move towards the
dorsal and ventral legular bands where it can be collected and then enter the food canal.

To examine our hypothesis that liquid can be passively collected at the permeable dorsal and
ventral legular bands due to proboscis ellipticity, an experiment (figure 4) was designed to observe
film development after coating a fibre. We experimented with straight proboscises of Manduca sexta. In
additional experiments, we used a solid SUS-304 stainless steel wire of elliptical cross section (a = 300 µm,
b = 200 µm) without any holes to suck in the liquid. The presence of the film and its thickness were
evaluated using a dry elliptical wire (figure 6a) as a reference.

The proboscis of Manduca sexta was straightened, dried at room temperature for 48 h (figure 5a),
and inserted into a capillary tube (inner diameter of 1.6 mm), filled with black ink (Radiant™ Colors
Turbo Black). It was then exposed by moving the tube at 1 mm s−1 with linear positioning stages (VT-21,
Micos) to the left while filming from the top using a high-speed camera (POINTGREY® FL3-U3-13S2C-
CS) and microscopic lens (Meiji Techno® Short UNIMAC MacroZoom Lense MS-40); thus, we were
able to magnify the proboscis and distinguish the flow features (figure 5). Once the proboscis leaves
the tube, its surface is covered with a film of ink (figure 5b,c). The film gradually flows from the sides
with a smaller radius of curvature towards the dorsal legular band, leaving the proboscis sides dewetted
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Figure 4. Experimental set-up used in proboscis- andwire-coating experiments. The tubewith thewetting liquid ismoved at a constant
speed, 1 mm s−1, and the meniscus leaves behind a film coating the fibre surface.
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Figure 5. Dewetting of the proboscis ofManduca sexta by an ink film. (a) A dry, straightened proboscis before it is coated with ink. The
dorsal legular band running along the proboscis appears darker compared with the rest of the proboscis. (b,c) Film deposition process.
The tube of ink (left of the dashed line) is moved to the left and a black film is deposited on the proboscis. (d,e) After the film forms, it
flows from the sides to the centre (i.e. towards the legular band). (d) The proboscis is completely covered with the film. (e) Two contact
lines (shown by arrows) form after dewetting of the proboscis sides. (f ) Schematic of themovement of the external film in images (d) and
(e). (g,h) The contact lines recede from the proboscis sides towards the legular band. (i) Schematic of the movement of liquid in images
(g) and (h). ( j,k) The legular bands dewet as the film moves into the food canal. The bright bands (shown by arrows) are the grooved
features of this band shown in detail in figure 1c. (l) Schematic of the movement of liquid in images ( j) and (k).

(figure 5d,e,g,h). The arrows in these figures mark the two contact lines receding towards the dorsal
legular band. At the same time, liquid is drawn into the food canal through the porous legular band; the
arrows in figure 5j,k show the two boundaries of the legular band that become visible through the ink.

To reveal the contribution of dorsal legulae to the development of film instability, we conducted the
same experiment with an elliptical wire. The film of ink broke up too quickly on the wire to document the
process with available cameras. We, therefore, applied glycerin, which is about 1000 times thicker than
the ink. Yet, the wetting properties of the glycerin–wire pair are similar to those of the ink–proboscis
pair (figure 6). Glycerin deposition on the proboscis showed the same features as those with the ink
in figure 5. The film was broken, with formation of four almost straight contact lines receding towards
the two legular bands. However, visualization of the dewetting processes with glycerin is challenging
because of weak optical contrast. On the other hand, the wire surface is shiny and allows visualization
of flow of the glycerin film. Our experiments deal with static properties of liquid films; thus, viscosity
does not affect the results. In addition, pressure distribution is linearly proportional to surface tension;
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Figure 6. Instability of a glycerin film deposited on an elliptical wire. The narrow side is facing the camera. (a) Dry wire before film
deposition. (b) Wire with a film after its deposition. (c) Formation of a contact line (shown by arrow). (d–f ) The main features of the
process of film break-up and separation into two clam-shell droplets sitting on the wider parts of the wire.

therefore, the ratio of pressure to surface tension that we examined should not be affected by surface
tension.

The wire was covered with a film of glycerin after withdrawal from a capillary tube (figure 6b). Within
0.1 s, the film lost its stability and broke into islands, with the liquid at the narrow side flowing to the
wide sides of the wire, as shown by the observed contact line (white arrow in figure 6c–e). The film finally
broke into two parts sitting on each of the wide sides, forming clam-shell droplets (figure 6f ).

The flow patterns for the proboscis and the wire are similar but bear distinguishable features. In both
experiments, as theory predicts, liquid from the most curved parts of the fibres moved to the less curved
sides. However, the film of the less viscous ink was more stable on the proboscis and moved along
meridians over the entire visible length of the proboscis, forming a long liquid column (figure 5). Finally,
the film moved completely into the food canal through the legular band. In contrast to figure 1f, when a
droplet was applied directly onto the legular band and was pinned at the contact line, the coating film
initially enveloped the entire proboscis. The final stage was the same: complete absorption of the droplet
and film by the food canal.

The film deposited on elliptical wires could not move along meridians over the entire length of the
wire. Instead, some liquid bands at the most curved parts flowed faster. In figure 6, these bands are
located at the right ends of the viewing regions. Once some islands on the wire surface were dewetted
a meniscus formed, which moved to the left, uncovering the rest of the surface. Finally, the liquid from
the most curved parts was fully drawn away and formed a series of clam-shell droplets (figure 6) at the
wide sides; the liquid bridges connecting them disappeared (figure 6f ). This scenario can explain the
appearance of droplets on proboscises of long-tongued butterflies and moths (e.g. [44, figs 8 and 10]),
where nectar droplets on the proboscis of a hovering moth are visible. The observed pattern of break-up
of liquid films on elliptical fibres is probably common for many natural fibres including ribbon-like fibres
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Figure 7. (a) Pressure distribution in the film coating the food canal; pressures for three different loop radii are shown. (b) Pressure
distributions in the films coating the proboscis exterior for three different loop radii. (c,d) Schematics showing the flow directions for the
internal (c) and external (d) films. (e,f ) Schematics showing the possible final configurations of the internal (e) and external (f ) films. In
theory, they should be shaped as unduloids [46].

such as grass leaves and short lepidopteran proboscises. For these fibre shapes, the clam-shell droplets
are formed when the contact angle is greater than 38.24°, i.e. when the droplet is supposed to bead up
on the ribbon surface [45]. The clam-shell droplets are easily shaken off, demonstrating that the natural
design of elliptical fibres helps maintain surface cleanliness.

5. Behaviour of liquid films on coiled circular proboscises
Consider a single loop of a circular proboscis, e = 1. In contrast to the straight proboscis of circular cross
section, for which the pressure in the film is uniform along the circumference, the pressure becomes
circumferentially non-uniform when the proboscis is coiled. Taking into account equations (3.6) and (3.7),
we obtain the following for the limit as e = 1.

Film coating the external surface of the elliptical proboscis:

P = (Pl − Pa)a
σ

= 1 − sin α

(R − cos ϕ)
. (5.1)

Film coating the internal surface of the elliptical food canal:

P = (Pl − Pa)a
σ

= −
(

1 − sin α

(R − cos ϕ)

)
. (5.2)

Comparison of equations (5.1) and (5.2) and equation (3.3) reveals that the contribution of surface tension
acting along the meridians to the capillary pressure is constant along the proboscis; for the external film,
this contribution to the pressure difference is written in dimensional form as (Pl − Pa)meridian = σ/a, and
for the internal film it is (Pl − Pa)meridian = −σ/a. This contribution is equal to the capillary pressure
in a straight liquid cylinder (where pressure in the liquid is greater than the reference atmospheric
pressure) or outside a cylindrical bubble (where pressure in the liquid is smaller than the reference
atmospheric pressure in the bubble). Thus, the non-uniformity of the capillary pressure in equations
(5.1) and (5.2) comes solely from the bending of the proboscis. In figure 7a, we plot the distribution of
capillary pressure that is spontaneously generated in the internal film when the insect coils its proboscis.
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Figure 8. Evolution of a thin glycerin film deposited on a circular loop with different radii of curvatures. (a) 5.4 mm, (b) 2.2 mm and
(c) 0.9 mm. The film develops into a droplet collecting the film fluid on different regions of the loop.

Figure 7b illustrates the effect of proboscis coiling on the external film, provided that in both cases the
film coats the respective surfaces of the proboscis uniformly.

According to figure 7a,b, the capillary pressure is minimal at the parallel θ = π for the internal film
(point D in figure 7c) and at the parallel θ = 0 for the external film (point B in figure 7d). These two
parallels are identified as liquid attractors. Hence, the liquid will tend to flow spontaneously towards
these attractor parallels as the most favourable locations for it to be collected, as shown in figure 7e,f.
These considerations help to understand the effect of concave–convex bends on the pressure distribution
in the film.

As an illustration of these findings, we traced the evolution of thin glycerin films deposited on nylon
fishing line (Berkley Trilene® Super Strong™, diameter 0.28 mm) looped for different radii of curvature
(figure 8). Using the capillary rise experiment as discussed in [32], we obtained the contact angle of 31° for
glycerin on these fibres. The loops were vertically withdrawn from a glycerin reservoir with the liquid
completely covering the entire surface. The Bond numbers of drops formed, Bo = ρgV2/3/σ , where ρ

is liquid density, g is acceleration due to gravity, and V is droplet volume, serve as the measures of
importance of droplet weight with respect to the capillary forces. Estimating the volume of the drop from
figure 8a, we obtained its volume as approx. 2 µl. Inputting ρ = 1.26 × 103 kg m−3, σ = 64 × 10−3 N m−1,
the resulting Bond number is estimated as Bo = 0.3. Thus, the effects of droplet weight and surface tension
are comparable to each other, so that they both play important roles in the observed phenomenon shown
in figure 8. When the radius of curvature of the loop is large (figure 8a), the capillary pressure differential
is small (figure 7), so that the effect of gravity dominates and the drops roll over to the bottom of the
loop. In contrast to this case, when the radius of the loop decreases, the induced capillary pressure
differential increases pushing the film to move towards the loop interior, as theory predicts. This capillary
force is so strong that gravity can be defeated and the droplet forms on the internal side of the loop
(figure 8b,c).

6. Pressure distribution in external liquid films on a coiled elliptical
proboscis

The two analysed limiting cases, a straight elliptical and a coiled circular proboscis, establish the
groundplan for analysis of insect feeding behaviour. The Laplace law of capillarity imposes a constraint
on the uniformity of circumferential distribution of pressure in elliptical proboscises, as well as in coiled
circular proboscises. Thus, the direction of cross-sectional elongation of the proboscis in the coiled state
affects the attractor positions. Below, we evaluate the effect of coiling on liquid distribution for elliptical
proboscises. Two cases of orientation of proboscis cross section, with the ellipse elongation perpendicular
to the coil plane (i.e. ellipticity e > 1), and with the ellipse elongation parallel to the coil plane (e < 1) are
discussed separately. In both cases, the food canal is considered circular (e = 1). Therefore, the results of
§5 hold for the internal film coating the walls of the food canal.

We apply equations (2.1), (2.2) and (3.6) for the pressure distribution analysis.
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Figure 9. (a) Dimensionless pressure difference P versus angle θ for different dimensionless coil radii R at fixed ellipticity e= 2. (b)
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(d) Dimensionless pressure differential of the absoluteminimum and local minimum,
P = (Plocal minl − Pabsolute minl )a/σ , as a function
of the dimensionless coil radius of the proboscis model.

6.1. Case e> 1
The effect of ring radius R and cross-section ellipticity e on the pressure distribution in the film is
illustrated in figure 9a,b. The dimensionless pressure difference P is plotted as a function of the polar
angle θ . Compared to the film on a circular proboscis where the pressure has only one minimum and
one maximum (figure 7), the film on an elliptical proboscis has a more complex pressure distribution.
There are two local minimums and two local maximums. The ventral and dorsal legular bands are the
attractors for the liquid; that is, the pressure at these parallels has a local minimum. The ventral legular
band B, θ = 0 (figure 9c) is always more attractive, as it has the lowest pressure. The parallels A and C,
θ = ±π/2, have maximum pressure and, hence, liquid moves from these parallels towards the ventral or
dorsal legular bands.

Although the location of the attractor parallels is not influenced by the value of parameters R and
e (figure 9a,b), the driving pressure differential might be affected by these parameters. We, therefore,
examined the dependence of the driving pressure differential 
P = (Plocal min

l − Pabsolute min
l )a/σ on these

parameters:


P = (Plocal min
l − Pabsolute min

l )a
σ

= 1
(R + 1)

+ 1
(R − 1)

. (6.1)

This pressure differential does not depend on proboscis ellipticity. Figure 9d summarizes the results of
calculations of 
P for different coil radii.

6.2. General case 0< e< ∞
In figure 10a, we plot the pressure distribution over the liquid film deposited on the external walls of
proboscises with different ellipticity e. The pressure profile changes drastically when the orientation of
proboscis elongation changes from the case discussed in §6.1 to the case when proboscis elongation
flips to become parallel to the plane of proboscis coiling, as in figure 10b, with the ellipticity less than
one, e < 1. As an illustration, in figure 10a, we plot the pressure profile for the proboscis with ellipticity
e = 1/2. The graph suggests that the pressure reaches the two local minimums at the mirror-symmetrical
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attractors specified by polar angle θ c as a function of the dimensionless ring radius R for the three different proboscis ellipticities. (h)
Location of one of themirror-symmetrical attractors specified by polar angleθ c as a function of proboscis ellipticity for the three different
ring radii R.

positions shifted from parallel B towards parallels A and C (figure 10b). Thus, parallel B is no longer a
single attractor for the liquid; the liquid collection can occur at the two mirror-symmetrical parallels.

The transition from a single attractor to two attractors with the same absolute minimum pressure
occurs when the pressure at the parallel θ = 0 flips from a minimum to a maximum. Mathematically, this
transition happens when the pressure profile passes an inflection point; that is, the second derivative
of equation (3.6) with respect to θ turns to zero. The same arguments are applied to the pressure at the
parallel θ = π . These derivatives give us two quadratic equations

3(e2 − 1)
e4 (R − 1)2 + 1

e2 (R − 1) + 1 = 0, criterion for transition at θ = 0 (6.2)

and
3(e2 − 1)

e4 (R + 1)2 + 1
e2 (R + 1) + 1 = 0, criterion for transition at θ = π . (6.3)

By solving these two equations, we can plot the diagrams specifying a transition from a single attractor
to the two attractors that identify the potential location of the liquid columns (figure 10e,f ).

These two parallels–attractors are specified by two angles ±θc. Their location is influenced by the ring
radius R and the proboscis ellipticity e as shown in figure 10g,h. At the given ellipticity e, the attractor
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position θc increases along with the coil radius R (figure 10g), approaching θ = π/2 as the radius R goes
to infinity and the proboscis straightens out.

At the given coil radius R, the attractor position θc changes non-monotonically with e, having a well-
pronounced maximum (figure 10h). This non-trivial result deserves special analysis.

When e is close to 1 (i.e. the proboscis is close to circular), the attractors ±θc should be positioned close
to the parallel B, θc → 0 . This explains why the attractor angular location goes to zero, θc → 0 (ribbon-
like, figure 10d), when the ellipticity is finite. Once the attractor hits θc = 0, further increase of proboscis
ellipticity e does not change the attractor position (figure 10e).

We must turn to the opposite limit as e goes to zero. In this case, the proboscis coil looks like a thin
washer with nearly flat sides and sharp edges (figure 10b,e). On the washer sides, the capillary pressure
goes to zero because the film is almost flat (figure 11). Therefore, we need to study pressure behaviour
near the edges B and D.

The behaviour of pressure in the vicinity of parallel B can be studied asymptotically using equation
(3.6). In the vicinity of parallel B, one can asymptotically evaluate the α and ϕ parameters from equations
(2.1) and (2.2) as α ≈ π/2, ϕ ≈ θ/e, provided that θ → 0. Substituting these parameters into equation (3.6),
we rewrite the Laplace equation in its asymptotic form as

(Pl − Pa)a
σ

≈ e4

(θ2 + e4)3/2 − 1
(R − 1)

, θ → 0, e → 0, R > 1. (6.4)

When θ ≈ ±e4/3(R − 1)1/3, the solution of equation (Pl − Pa)a/σ ≈ 0 can be matched to the zero pressure
at the washer sides. As one moves further towards parallel B, decreasing the angular coordinate θ , the
pressure increases because of the first term in equation (6.4). In the vicinity of parallel B, the pressure
becomes anomalously large, (Pl − Pa)a/σ ≈ 1/e2. At parallel D, similar arguments suggest that the
pressure remains anomalously large with a similar asymptotic behaviour (Pl − Pa)a/σ ≈ 1/e2. Equation
(6.4) accurately describes the pressure distribution near the edge (figure 11).

This analysis reveals that the attractors ±θc must remain separated from the parallel θ = 0 where the
pressure is expected to be high and the liquid will be squeezed out immediately towards the proboscis
sides. The curvature associated with the coil radius R changes the scenario of a straight washer-like
proboscis e → 0, creating the two attractors in the vicinity of parallel B at θ = 0.

7. Pressure distribution in internal liquid films inside elliptical food canals
of coiled proboscises

We relax the assumption about the circularity of the food canal and apply equations (2.1), (2.2) and
(3.7) for the pressure distribution analysis. With the ideas of §6.2 in mind, the pressure distribution and
associated scheme of fluid flow in the film are shown in figure 12a. Compared to circular food canals, in
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the case of washer-like food canals illustrated by the e = 1/2 curve in figure 12a, the pressure reaches its
absolute minimum at the dorsal legular band θ = π ; an additional local minimum of pressure occurs
at the ventral legular band θ = 0. The pressure reaches its maximum at the two mirror-symmetrical
positions near attractor θ = 0. Therefore, due to this spontaneously built differential of the capillary
pressure, the film will move towards the parallels, θ = 0 and θ = π , where it will form a meniscus
(figure 12b).

For proboscises with the food canal elongation perpendicular to the loop plane, e = 2 illustrates this
case, the pressure reaches its absolute minimum at two mirror-symmetrical attractors specified by the
angles ±θc. Thus, the film will move towards these parallels and will collect there as menisci (figure 12d).

Equations (6.2) and (6.3) can be used to identify the transition from a single attractor to two attractors.
Indeed, equation (3.7) for the pressure distribution of the internal film differs from equation (3.6) for
the external film only by the negative sign, which will not affect the inflection point conditions defined
by equations (6.2) and (6.3). However, the meaning of each area in the diagram in figure 12e,f changes,
compared with figure 10e,f.
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The locations of the two parallel–attractors specified by the angles ±θc are influenced by ring radius R

and proboscis ellipticity e (figure 12g,h). At given ellipticity e, angle θc decreases along with ring radius
R (figure 12g), approaching θ = π/2 as radius R goes to infinity and the proboscis straightens out. At
given radius R, angle θc decreases along with ellipticity e (figure 12h), approaching θ = π/2 as ellipticity
goes to infinity and the food canal is transformed into a coiled slit-like channel. Thus, menisci are formed
at the ends of this slit-like channel, as expected.

8. Discussion
Liquid collection is a critical initial step in fluid feeding [47]. However, fluids available from floral
corollas and other food sources are often limited. Fluid availability, therefore, can be a significant
determinant of foraging behaviour [48]. Maximizing fluid acquisition and minimizing evaporation,
thus, become essential for efficient feeding and water balance, and should be under strong selection
pressure. Physical principles of the proboscis that enhance fluid collection would have been important
in palaeoenvironments with limited availability of suitable resources, and might have been critical in
the evolution of the proboscis [10]. Our findings suggest that coiling and bending have adaptive value
beyond the conventional benefits of packaging and protecting the proboscis; these movements provide
an additional means of optimizing fluid intake.

When a butterfly inserts its proboscis into a flower or applies it to a liquid pool or surface, fluid
gathers on the proboscis as a film, similar to industrial dipcoating. Liquid evenly distributed on a
straight proboscis must then be transferred to the legulae where the interlegular gaps will allow fluid
to enter the food canal. Thus, the second step in fluid feeding involves directional movement of the
liquid. Bending or flexing of the proboscis causes dewetting—movement of fluid to the legular bands
of permeability. On a straight proboscis, the ventral and dorsal legular bands are equivalent attractors
of fluid. Once the proboscis bends, the attractors are no longer symmetrical, and liquid moves to the
dorsal legulae. Bending brings into play gravitational forces; any increase in gravity will aid directional
movement of fluid. The process would be facilitated during feeding as the proboscis undergoes flexion at
the knee-bend (sensu Krenn [1]) or assumes a J shape, as well as between feeding bouts when the insect
bends or coils the proboscis as it moves between flowers. Passive fluid collection would be aided not
only by gravity, but also by acceleration from the sweeping and mopping movements of the proboscis,
as described [49] for fruit- and sap-feeding Lepidoptera. An important materials feature aiding fluid
movement includes the chemical and physical composition of the proboscis surface. The fine surface
sculpture of the proboscis typically has micro-ridges and valleys that aid capillarity and direct fluid
towards the hydrophilic legulae [11].

Water conservation could be enhanced not only during actual feeding but also by efficiently recycling
body fluids. Many Lepidoptera produce saliva or exude water droplets from the anus to solubilize
nutrients and make them available for uptake via the proboscis. Hesperiids, for example, direct the
abdomen anteriorly to exude droplets of fluid onto dry surfaces and then reimbibe the liquid [21],
particularly on dry days (unpublished observations) when conservation of fluids is most critical.
Recycling essential fluids in saliva and exudates could be facilitated by proboscis bending and coiling.

The dorsal and ventral legular bands of the linking mechanisms at the C-edges of the galeae are
hydrophilic [11,41]. Thus, fluid readily spreads over the legular bands and sinks into the food canal
through the interlegular gaps. The insect, therefore, is tasked to bring the liquid to the dorsal and ventral
legular bands while drinking from floral corollas or other food sources. Our results corroborate our
hypothesis that liquid is passively collected at the permeable dorsal and ventral legular bands due to
proboscis ellipticity, as seen from the analysis of pressure distribution in a thin film covering an elliptical
proboscis. An elliptical, rather than circular, proboscis brings the contact line of the meniscus higher on
the drinking region, increasing the number of interlegular spaces covered with liquid [11].

This mechanism of nectar collection is important for Lepidoptera with long proboscises, such as
Xanthopan morganii praedicta [44]. The moth inserts the proboscis into the flower and after about one
second withdraws it. In so doing, the moth acquires a liquid film, and as it removes the proboscis from
the corolla, the film remains on the exterior surface of the proboscis. According to our results, this film is
unstable and is prone to move towards the dorsal and ventral legulae.

Proboscis ellipticity is more notable in non-flower visiting butterflies and moths that probe sap flows
and animal wastes (e.g. dung) with bacteria and sticky compounds [1,50]. These insects move the
liquid from the sides of the proboscis towards the central (legular) area, which is subject to rubbing
during coiling and uncoiling of the proboscis such that the probability of removing debris is greater.
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300 mm

Figure 13. (a) Scanning electronmicroscope image of the proboscis ofManduca sexta in cross section, showing the position and structure
of dorsal (red box) and ventral (blue box) legulae. Schematic showing capillary adhesion of (b) dorsal and (c) ventral legulae (black lines)
by trapped fluid (blue).

Table 2. Capillary pressure in a thin liquid film coating the proboscis exterior. Atmospheric pressure is taken as the reference, Pa = 0.
AM is the absolute minimum pressure at the ventral legular band (parallel B in figure 9); LM is the local minimum pressure at the
dorsal legular band (parallel D in figure 9); DLA is the difference between LM and AM; Max is the maximum pressure at parallels A and
C in figure 9; and DML is the difference between Max and LM. Proboscis cross section is assumed to be elliptical with semi-axes O1D= a
and O1C = b (figure 2).

pressure (Pa)

species a (µm) b (µm) r (mm) AM LM DLA Max DML

Danaus plexippus 56 135 1.5 173 270 97 3125 2874
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Papilio glaucus 65 182 1.5 92 189 97 3128 2939
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vanessa cardui 36 105 1.5 187 284 97 5882 5598
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Limenitis arthemis astyanax 32 252 1.5 −13 84 97 17 866 17 782
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Polygonia interrogationis 48 149 1.5 107 204 97 4695 4491
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lepidoptera, thus, solve the problem of keeping their proboscises clean, while at the same time acquiring
liquid food.

Figure 9d shows that the pressure differential between the dorsal and ventral legular bands increases
when the radius of the proboscis coil, R, decreases. The drinking region with enlarged interlegular pores
is near the proboscis tip. Therefore, by coiling the proboscis (figure 1j), the liquid moves faster under a
stronger pressure differential. This same coiling scenario supports the movement of liquid from distant
regions of the proboscis towards the drinking region; the pressure at the ventral band (absolute minimum
in figure 9a) decreases as the insect bends its proboscis. Therefore, the 3–2–1 sequence of coiling (figure 1j)
is important: these steps are natural and ensure that liquid will not be lost but will be collected at the
ventral legular band of the outmost loop and then transferred to the more permeable dorsal legular band
[10] of the neighbouring loop.

To quantitatively estimate the pressure differentials, we calculated capillary pressure for films on
the proboscises of five species of butterflies, based on geometric parameters of their proboscises [11]
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(table 2). The pressure difference between the dorsal and ventral legular bands is small; it requires about
a 2% pressure difference between the pressure differential forcing the liquid to move from the proboscis
sides (parallels A and C) to the dorsal legular band (parallel D) when the loop radii are of the order of
a millimetre. Thus, when these butterflies coil their proboscises, they trigger liquid collection by lateral
movement of liquid films towards the drinking region.

Greater proboscis ellipticity is associated with butterflies that routinely feed from wetted surfaces
rather than from floral corollas. This ellipticity confers adaptive value when drinking from films because
the contact line of the meniscus rises higher on the proboscis, compared with a cylindrical proboscis,
thereby covering more interlegular spaces with fluid [11]. We found that capillary pressure suggests
a relationship with feeding habits. The greatest pressures are associated with surface-film feeders (e.g.
Limenitis arthemis astyanax) and the lowest pressures with routine flower visitors (e.g. Danaus plexippus
and Papilio glaucus) (table 2). Thus, the extremes of this pressure range reflect two long-recognized
feeding guilds of Lepidoptera: flower visitors (nectar feeders) and non-flower visitors (non-nectar
feeders) [42].

Liquid collection at the dorsal legular band from inside the food canal (as suggested by the analysis
summarized in figures 7 and 9) suggests that wetting of the dorsal and ventral legular bands benefits
lepidopterans. An important implication of this effect is related to the mechanism of holding the paired
galeae together, especially at the dorsal legular band where the legulae do not have a lock-and-key
mechanical linkage, in contrast to the ventral band for which this mechanism was identified long ago [51–
54]. The dorsal legulae weakly overlap one another, forming slit-like pores of hundreds of nanometres
[10]. In the slit pores formed by two adjacent legulae, the liquid bridge could create a colossal capillary
pressure, of the order of 10 atmospheres (figure 13). Because the legulae are hydrophilic, this capillary
pressure tends to bring the legulae together and hold them in place, yet allow them to slide over one
another with little resistance [17–20].

9. Engineering applications
Analysis of the stability of liquid films on the external surface of the proboscis is useful for engineering
applications involving an elliptical fibre bent into a loop. One example would be mail armour, which is
usually made of metal rings (figure 14a). The main enemy of mail armour is corrosion, caused by water
films that might be left on the ring surface after a rain. To prevent corrosion, water should collect at those
sides of the ring where it can easily evaporate or be shaken off, that is, at the ring sides. According to the
analysis in §6.2, the most attractive candidates for mail armour should have ellipticity less than one, e < 1
(figure 10b). In this case, one would intuitively think of using washer-like rings with e close to 0. These
rings, with a high curvature at θ = 0, would force the liquid to flow towards the rings’ flattened sides.
However, the analysis summarized in figure 10h shows that the most attractive positions for water to flow
are still near the ring edges where water can bridge two adjacent rings and might be trapped between
them. The most distant position from the ring edges is determined by the maximum θc (figure 10h). In
figure 14e these maximums are plotted as a function of ring radius R. In figure 14f, we plot the critical
ellipticity ec taken from figure 10h, corresponding to the given maximum θc; this is another version of
figure 14e, which is useful for ring design.

If the rings need to be coated with an anti-corrosion layer, our analysis suggests that elliptical rings
would never have a uniform coating thickness (figure 10a). When a liquid film is deposited on a ring
surface, the liquid will move towards the ring half closer to the axis of rotation. Therefore, the final
coating layer will be thicker at the ring half closer to the axis of rotation (figure 14c). This effect is
attractive for coating applications; it ensures that the thicker anti-corrosion coating will be deposited
on its own at the ring contacts in the mail armour where water is likely to be trapped.

Another example is the design of knitted fabrics, in which the fibres or yarns are bent in loops forming
the structure shown schematically in figure 14b. In a first approximation, these loops can be modelled
as parts of a circular loop. Because the fibres and yarns are typically round in cross section, the results
summarized in figure 10c can be applied to the analysis of behaviour of finishes or inks at the fibre or
yarn level. By introducing a local system of coordinates placing its centre at the centre of each loop, one
can directly use the results of §7. As follows from that analysis, liquid is expected to move towards the
parallel θ = 0, as shown in figure 14d. This effect can be used, for example, in making a fabric with a
gradient of coloration at the loop scale: the outermost layers of the loop will be less coloured than those
sitting closer to the loop axis.
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Figure 14. (a) Schematic of mail armour and (c) magnified picture of a ring couple with a non-uniform finish thickness. (b) Schematic of
a knitted fabric. Some parts of the loop boxed by the dashed lines can bemodelled in a first approximation by circular rings. (c) Illustration
of the effect of non-uniform film thickness on mail armour rings: the darker, thicker films protect the rings against corrosion if water is
trapped at the ring connections. (d) In the knitted fabric, the darker, thicker film is located at the loop interior while the brighter, thinner
film is at the loop exterior. (e) Position of the finish collection as a function of radius R of a washer-like ring of ellipticity ec specified in (f ).

10. Conclusion
The capillary effects of a coating film inside or outside an elliptical hollow fibre were studied with regard
to insect biology and applications to textile engineering. In thin films where the air–liquid interface
is positioned almost parallel to the fibre surface, capillary pressure can be estimated by knowing the
profile of the fibre surfaces supporting the films. Using this thin-film approximation, we examined the
stability of liquid films on a hollow fibre with elliptical cross section coiled in a ring. The shape and
movements of the proboscis represent evolutionary compromises between selection forces for optimal
coiling, fluid uptake, and self-cleaning. Here we show that movements of the proboscis have heretofore
unappreciated adaptive value in collecting fluid. Specifically, we show that coiling and bending of
the proboscises of butterflies and moths facilitate fluid collection (table 3). The phenomenon of liquid
collection by the proboscis and its facilitation via movement represents yet another deviation from the
conventional drinking-straw model of the proboscis. Some possible applications to textile engineering
where this effect of capillary instability of liquid films is important are discussed.
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Table 3. Summary of steps for fluid collection by lepidopteran proboscises.

condition cross section activity consequence

straight circular if proboscis length is greater than
circumference, film forms droplets
due to Plateau–Rayleigh instability

fluid is not necessarily collected at the
legular bands

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coiled circular external filmmoves to inner radius
(figures 7d,f and 10c); internal film
moves to outer radius of the food
canal (figures 7c,e and 12c)

fluid moves to ventral legulae on the
external surface of the proboscis, and to
dorsal legulae in the food canal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

straight elliptical; dorsoventrally
flattened (ribbon-like)

external filmmoves to flatter areas
(figure 3e); internal filmmoves to
more curved areas of the food canal
(figure 3f )

fluid moves to dorsal and ventral legulae
on the external surface of the proboscis,
and away from dorsal and ventral
legulae in the food canal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coiled elliptical; dorsoventrally
flattened (ribbon-like)

external filmmoves to inner radius
(figure 10d); internal filmmoves to
outer radius of the food canal
(figure 12d)

fluid moves to ventral legulae on the
external surface of the proboscis and to
regions near dorsal legulae in the food
canal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

straight elliptical; laterally
flattened, legular bands
are positioned at the
most curved edges

external filmmoves to flatter areas
(figure 3e); internal filmmoves to
more curved areas of the food canal
(figure 3f )

fluid moves away from dorsal and ventral
legulae on the external surface of the
proboscis, and to dorsal and ventral
legulae in the food canal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coiled elliptical; laterally
flattened (washer-like)

external filmmoves to inner radius
(figure 10b); internal filmmoves to
outer radius of the food canal
(figure 12b)

fluid moves to regions near ventral legulae
on the external surface of the proboscis
and to dorsal legulae in the food canal

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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