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A weakly nonlinear stability analysis of shear flows based

on amplitude expansion is re-examined. While it has been

known that the condition required to define the coefficients of

the resulting Stuart–Landau series representing the nonlinear

temporal evolution of the most amplified Fourier component

of a disturbance is not unique, we show that it can be

formulated in a flexible generic form that incorporates different

conditions used by various authors previously. The new

formulation is interpreted from the point of view of low-

dimensional projection of a full solution of a problem onto

the space spanned by the basic flow vector and the eigenvector

of the linearized problem. It is rigorously proven that the

generalized condition formulated in this work reduces to a

standard solvability condition at the critical point, where the

basic flow first becomes unstable with respect to infinitesimal

disturbances, and that it results in a well-posed problem for

the determination of coefficients of Stuart–Landau series both

at the critical point and a finite distance away from it. On a

practical side, the generalized condition reported here enables

one to choose the projection in such a way that the resulting

low-dimensional approximate solution emphasizes specific

physical features of interest via selecting the appropriate

projection weight matrix without changing the overall

asymptotic expansion procedure.
1. Introduction
Weakly nonlinear stability analysis of fluid flows is a mature area of

research. It was introduced in its most well-known form in the 1960s

in pioneering works [1,2] with a number of notable contributions

throughout the 1970s, see [3–6] and references therein, to name a

few. The essence of such an analysis is in the representation of the

full solution of the governing equations as a sum of the so-called
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basic flow, which is a relatively simple solution of the governing equations obtained analytically or

numerically, and perturbations. Linearization of a problem about the basic flow results in an eigenvalue

problem for perturbations. Upon a suitable discretization a problem containing differential operators is

typically converted to a generalized algebraic eigenvalue problem and the resulting eigenvectors

determine the spatial distribution of perturbed flow quantities. However, the magnitude of such

disturbances cannot be determined within the framework of a linearized problem so that the

perturbation amplitude is taken as an unknown time-dependent factor multiplying the spatial

eigenfunction. One of the main goals of a weakly nonlinear analysis is to model the temporal evolution

of the disturbance amplitude A(t) and to determine whether and at what value it saturates. This leads to

the derivation of the so-called amplitude equations of Stuart–Landau type [1,7]

dA
dt
¼ sAþ A

X1
k¼1

KkjAj2k: (1:1)

There have been suggested several ways for such a derivation with one of the most common methods using

the multiple time scale expansion approach [8]. More recently, procedures based on a centre manifold

reduction were also used and shown to produce identical results, however, at a much higher

computational cost comparable with that of direct numerical computations, see [9]. This frequently

makes the multiple scale expansion the method of choice when relatively inexpensive practical results in

the finite neighbourhood of a critical point are of interest.

A crucial point in developing weakly nonlinear analysis is the choice of a small parameter that is used for

producing asymptotic series approximating the full nonlinear solution of the problem. The relative

parametric distance kR 2 Rck/kRck � 1, where R and Rc represent the sets of problems’ governing

parameters at which the solution is required and of their critical values at which the basic flow first

becomes unstable with respect to infinitesimal disturbances, respectively, is frequently chosen as the

expansion parameter following the pioneering work [1]. This enforces a specific scaling of solution

quantities near the critical point. In particular, the amplification rate of infinitesimal disturbances needs to

be proportional to kR 2 Rck/kRck. The validity of such a rigid scaling is expected in the asymptotic

vicinity of the critical point but cannot be guaranteed in practically important regimes characterized by

small but finite values of kR 2 Rck/kRck. Moreover, such a parameter cannot be introduced in principle

for flows that are always linearly stable such as pipe Poiseuille or plane Couette flows [10].

From a physical point of view, it appears more natural to take the magnitude of the perturbation

amplitude itself as a small parameter. This leads to the so-called amplitude expansion [2,10]. It has been

shown that its introduction does not rely on the proximity of the critical point or any rigid a priori scaling

assumptions on solution quantities. In particular, in this approach the amplification rate of infinitesimal

disturbances may happen to be, but does not have to be asymptotically small. The only validity

condition for such a procedure is imposed by the requirement that the perturbation amplitude remains

sufficiently small so that its powers form a set of elements with magnitudes progressively decreasing at a

sufficiently fast rate to ensure the meaningful truncation of the asymptotic series (1.1) [11–13].

Despite this apparent advantage of using amplitude expansion there exists a very large body of literature,

where parametric expansions about the critical point are favoured as the main tool of weakly nonlinear

analysis. A comprehensive review of this field is outside the scope of the present paper, but we point an

interested reader to studies reported in [8,14–16], where the comparison of parametric and amplitude

expansion methods demonstrating the equivalence of various approaches near the critical point can be

found and the methods are presented in a way similar to the amplitude expansion summarized in §2. One

of the reasons the parametric expansion first introduced in [1] remains a popular choice is that algebraically

it enables one to estimate the coefficients of the Stuart–Landau series (1.1) modelling a temporal evolution

of the disturbance amplitude using the information from a critical point alone by employing the uniquely

defined solvability condition (see equation (2.23) in §2.3). This, however, comes at a price of a reduced

convergence range [17]. The parametric expansion approach about a critical point also suffers from a subtle

inherent inefficiency. Before the method can be applied, the critical point in the problem parameter space

has to be found. This is typically done iteratively by solving the linearized eigenvalue problem over a range

of the parameter values R until Rc is found. Therefore, the eigenfunctions are readily available at the

parametric point of interest R and can be used as the basis of the amplitude expansion. However, in order

to cast the problem in the form suitable for the application of the solvability condition this readily available

eigenfunction of interest is ignored and replaced by the one computed at the critical point.

By contrast, the amplitude expansion procedure summarized in §2 allows using the eigenfunction

computed for the parametric values of interest away from a critical point directly. This, however,

introduces the ambiguity demonstrated in §2.3 in supercritical regimes the definition of the eigenfunction
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amplitude becomes non-unique and requires an additional condition to be fixed. Such an ambiguity has been

recognized from the inception of the method [2] and various authors proposed different ways of fixing it [9–

11,13,18]. In the present paper, we show that previous individual attempts of fixing this ambiguity can be cast

in a flexible general form that has a straightforward interpretation in the context of projecting fully nonlinear

solutions onto the space spanned by the vector of the basic flow and the eigenvector of the linearized problem.

The procedure enables one to effectively choose ‘the projection angle’ in such a way that the resulting low-

dimensional solution is optimized to emphasize the desired aspects of the full solution. From a practical

point of view, this, perhaps, is the main feature of the procedure described in this paper. We start with the

idea first formulated in [19] and subsequently prove that the weakly nonlinear stability problem

complemented with the specific projection criterion is well-posed at the critical point and away from it.

Therefore, Landau constants in the Stuart–Landau series (1.1) can be efficiently evaluated taking into

account the chosen meaning of the amplitude.
Soc.open
sci.5:180746
2. Summary of the expansion formalism and properties of the
resulting operators

2.1. Basic flow
Consider a system of governing equations of Navier–Stokes type written in an appropriately non-

dimensionalized form. Such a system of equations includes linear and nonlinear (at least quadratic)

terms and represents the fundamental physical principles of conservation of momentum, mass and

thermal energy and can include constitutive equations describing various fluid properties and

processes taking place in it. The actual form of equations depends on the physical problem at hand

and is not of importance for the analysis presented in this paper, but we will refer to the following set

of non-dimensional equations describing a two-dimensional fluid flow between two infinitely wide

and long differentially heated vertical plates, see [12] and §6 for details, as an illustration of the

overall equation structure that is taken into account in the subsequent derivations:

@u

@t
þ u � ru ¼ �rp� Tg

Gr
þ 1

Gr
r2u, r � u ¼ 0 (2:1)

and

@T
@t
þ u � rT ¼ 1

GrPr
r2T: (2:2)

Here u ¼ (u, v) is the vector of fluid velocity, p is the pressure, T is the fluid temperature, g ¼ (0, �1) is

the unit vector in the direction of gravity and R ¼ (Gr, Pr) is the set of the governing non-dimensional

parameters (Grashof and Prandtl numbers in this example). The fluid flow is considered in a domain that

is bounded in at least one spatial (21 � x � 1 in the above example) direction and unbounded in at least

one other (21 , y , 1 in the above example) direction. Assume that the above equations subjected to

appropriate boundary conditions have a ‘simple’ steady solution w00 ¼ (u00, T00, p00)T referred to as the

basic flow. By ‘simple’, it is typically meant that for any fixed set of the governing parameter values R
such a solution depends on the spatial coordinate in the direction of finite system extent (x), but not the

one extending to infinity (translational symmetry in y). Symbolically, this is written as w00 ¼ w00(x; R).
2.2. Linear stability and operators
Once the basic flow is found the question arises whether it is stable with respect to infinitesimal

perturbations. In spatially extended systems, they can be conveniently given in the normal form

A(t)w11(x)Eþ c:c:, where A(t) is the time-dependent complex amplitude of disturbances with time

evolution generally given by

dA
dt
¼ F(A), (2:3)

the term E ; exp(iay) signifies the fact that the disturbance is 2p/a periodic in the extended direction,

a is the spatial wavenumber and c.c. stands for complex conjugate. Substituting

w ¼ w00 þ Aw11Eþ c.c. (2:4)
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into (2.1) and neglecting terms containing higher powers of amplitude one obtains a system of linear

partial differential equations that can be written in a matrix operator form as

AAa;Rw11E ¼ dA
dt

Bw11E: (2:5)

Here matrix operator Aa;R represents terms involving spatial derivatives. This operator also contains

governing parameters R appearing in the original equations. Matrix B arises from terms containing

time derivatives so that for time-dependent problems Bw11=0. Typically, the governing equations can

be written in such a form that this matrix does not contain the governing parameters, but it is

singular as some of the governing equations, such as the continuity equation in system (2.1) does not

contain time derivative explicitly. Thus B contains zero rows. This, however, does not affect the proofs

and discussions presented in the subsequent sections as long as the condition Bw11=0 remains valid.

In practice, equation (2.5) is solved numerically upon adopting a suitable discretization scheme for

approximating spatial derivatives. As a result, matrix differential operators Aa;R and B are converted

to square N � N matrices with complex elements, where size N depends on the number of individual

scalar functions forming solution w and the number of discretization points for each of them. Thus in

what follows we will treat these operators as regular matrices and solution vectors as regular vectors.

Equation (2.5) can only be satisfied for any time if F(A) ¼ sA that is

dA
dt
¼ sA (2:6)

and

A(t) ¼ A0 exp (st), (2:7)

where s is referred to as the complex amplification rate: s ¼ sR þ isI. Equation (2.5) is then rewritten in

the operator form as

(Aa;R � sB)w11 ; La,s;Rw11 ¼ 0: (2:8)

The above has a non-trivial solution w11=0 only if s is the eigenvalue of the operator La,s;R. When the

problem domain is bounded (e.g. in x in the illustrative example considered above) the eigenvalue

spectrum is discrete for each fixed value of wavenumber and governing parameters and the eigenvalues

si(a; R), i ¼ 1, 2, . . . can be arranged in the order of decreasing real part. The basic flow is deemed

linearly unstable if the real part of at least the first of the so-sorted eigenvalues satisfies the condition

sR
1 max ; maxa (sR

1 ) . 0, where the maximum is achieved at a ¼ a1max. The value of the governing

parameters R ¼ Rc at which sR
1 max ¼ 0 is called critical. It corresponds to the bifurcation point at which

the basic flow becomes linearly unstable. Of primary interest here is the 2p/a1max periodic disturbance

corresponding to the fastest growing small amplitude mode with s ¼ s1 the temporal evolution of

which we aim to investigate at the supercritical values of the governing parameter set R.

While the linearized consideration is capable of predicting the spatial shape of such a mode, its amplitude

cannot be determined in the framework of linear analysis and this necessitates weakly nonlinear

consideration. We outline it next for the situation when the basic flow becomes linearly unstable with

respect to exactly one mode (and its complex conjugate), that is when sR
1 � 0 . sR

2 � sR
3 � . . .. In doing

so, we will rely on the following two properties of the linear operator La,s;R.

Remark 2.1. The leading eigenvalue s1 of the linear operator La,s;R has multiplicity 1 so that the rank

of the N � N operator La,s;R is N 2 1.

Remark 2.2. For any complex number s such that <{s} ¼ sR . sR
1 max . 0 operator La,s is non-

singular.

2.3. Hierarchy of nonlinear terms and corresponding equations
Because of a quadratic nonlinearity of the governing equations, substitution of (2.4) in them produces

terms that can be generally written as jAj2f20 and A2f22E2 þ c.c. They can only be balanced if (2.4) is

extended to include functionally similar terms:

w ¼ w00 þ jAj2w20 þ (Aw11Eþ A2w22E2 þ c.c.): (2:9)

It is easy to show that the additional terms must satisfy

jAj2A0;Rw20 �
djAj2

dt
Bw20 ¼ jAj2f20 (2:10)
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and

A2A2a;Rw20 �
dA2

dt
Bw22 ¼ A2f22: (2:11)

Given (2.7) these become

L0,2sR ;Rw20 ¼ f20 and L2a,2s;Rw22 ¼ f22, (2:12)

respectively. Since in (2.12) a ¼ a1max and s ¼ s1max, we set sR ¼ 2sR
1 max . sR

1 max . 0 in remark 2.2 and

conclude that the operators in the left-hand sides of the above equations are non-singular and remain so

even when R! Rc and sR! 0. Therefore, unique solutions for w20 and w22 always exist.

Substituting (2.9) into the governing equations will produce yet another group of terms that are

generally written as AjAj2f31Eþ c.c. and A3f33E3 þ c.c. in the equations. Balancing them requires a

further extension of (2.9):

w ¼ w00 þ jAj2w20 þ (Aw11Eþ A2w22E2 þ AjAj2w31Eþ A3w33E3 þ c.c.): (2:13)

In a way similar to that discussed above, we can show that a unique solution for w33 is obtained from

A3A3a;Rw33 �
dA3

dt
Bw33 ¼ A3f33 (2:14)

or
L3a,3s;Rw33 ¼ f33, (2:15)

since the operator in the left-hand side of (2.15) is non-singular in view of remark 2.2 and remains so

when R! Rc and sR! 0. However, handling of equation for w31 needs to be more delicate. It becomes

AjAj2Aa;Rw31 �
dAjAj2

dt
Bw31 ¼ AjAj2f31 (2:16)

or

La,sþ2sR;Rw31 ¼ f31: (2:17)

If sR . 0, then in view of remark 2.2 the operator in the left-hand side of (2.17) is non-singular and the

unique solution for w31 can be found. However, if R! Rc and sR! 0, La,sþ2sR;R ! La,s;Rc
and becomes

singular so that the existence of solution w31 cannot be guaranteed. Note that to this point no

approximation has been introduced in the above procedure and all results obtained so far are exact.

However, to resolve the potential unsolvability problem for w31 the following approximation is

required: it needs to be assumed that the evolution function F(A) can be represented in terms of an

asymptotic series in amplitude

dA
dt
¼ F(A) ¼ sAþ KAjAj2 þ � � � , (2:18)

that can be meaningfully truncated after a finite number of terms (of particular interest here is truncation

after a cubic term in amplitude that leads to the so-called cubic Landau equation [20], where K is known

as Landau constant). This requires the perturbation amplitude to remain small yet this does not impose

any other explicit restrictions. In particular, it does not necessitate any explicit scaling restrictions on the

parametric distance from a critical point (sR, R) ¼ (0, Rc) or, in fact, on the magnitude of sR.

Consequently, as stated in [10] such an approach termed amplitude expansion can in principle be

applied for a weakly nonlinear analysis even of linearly stable flows such as plane Couette or circular

pipe Poiseuille flows for which a critical point cannot be found.1

Adopting (2.18) instead of (2.6) does not affect the linearized equation (2.8) or unconditionally

solvable hierarchical equations (2.12) and (2.15), but it leads to the appearance of an additional term

in equation (2.17) that becomes

La,sþ2sR;Rw31 ; (La,s;R � 2sRB)w31 ¼ KBw11 þ f31: (2:19)

Equation (2.19) requires different treatments in cases sR! 0 and sR
= 0.
1In this case, sR , 0 so that remark 2.2 does not necessarily hold and the issue of subcritical resonances may arise, see, for example,

[3,21] and references therein for a more detailed discussion.
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In the limit of sR! 0, the existence of the solution w31 can only be ensured by enforcing the so-called

solvability condition. Consider the adjoint eigenvalue problem

Lya,s;Rwy11 ; (AH
a;R � s�BH)wy11 ¼ LH

a,s� ;Rwy11 ¼ 0, (2:20)

where * denotes complex conjugation and the adjoint operator is defined with respect to some

appropriately chosen inner product as

hwy11, La,s;Rw11i ¼ hLya,s;Rwy11, w11i ¼ 0: (2:21)

Considering the inner product of the adjoint eigenfunction wy11 with (2.19) in the limit sR! 0, we obtain

0 ¼ Khwy11, Bw11i þ hwy11, f31i (2:22)

and, assuming that hwy11, Bw11i= 0, the Landau constant is uniquely defined using the chosen inner

product as

K ¼ � hw
y
11, f31i

hwy11, Bw11i
: (2:23)

The derivation above demonstrates that the definition of the Landau constant is unique at a critical point

(sR, R) ¼ (0, Rc). However, if sR
= 0, the operator in the left-hand side of (2.19) is non-singular and the

solution can be obtained for any value of K, which introduces the ambiguity at supercritical points with

sR . 0 that are of main practical interest. Such an ambiguity was discussed in [10], where it was proposed

to use an additional condition different to the above solvability condition to evaluate the Landau constant

in supercritical regimes. However, the procedure was found to lead to numerical errors in the vicinity of

the critical point because of the ill-conditioning of operator La,sþ2sR;R there. Subsequently, it was

suggested in [19] to combine the tasks of finding w31 and determining K into a single problem by adding

an extra condition to the system. This was shown to work in practice, but no formal algorithmic proof was

developed. In the next section, we present a generalization of the procedure for determining the Landau

constant suggested in [19] along with a full proof of the algorithm that guarantees its uniform

performance both at a critical point and a finite distance from it. We also prove that at a critical point the

generalized procedure reduces to the application of a conventional solvability condition.

3. Evaluation of Landau constant
As follows from remark 2.2, system (2.19) is unconditionally solvable for any value of parameter K if sR .

0. To eliminate the ambiguity in defining the value of K, an additional condition is required. We choose to

specify it in terms of the inner product

hw11, Mw31i;wH
11 � (Mw31) ¼ (wH

11M) �w31 ¼ 0, (3:1)

where the superscript ‘H’ denotes Hermitian (conjugate) transpose and bold symbols represent N component

complex-valued column vectors. The N � N matrix operator M must satisfy the positivity condition

hw, Mwi ¼ wH � (Mw) ¼ (wHM) �w . 0, (3:2)

for any complex valued vector w such that Mw = 0, but otherwise it is arbitrary.

Combining (2.19) and (3.1) leads to the extended system of dimension N þ 1

L̂ŵ31 ¼ f̂31, (3:3)

where

L̂ ¼ La,s;R � 2sRB �Bw11

wH
11M 0

� �
, ŵ31 ¼

w31

K

� �
, f̂31 ¼

f31

0

� �
, Mw11 = 0:

First, we show that matrix operator L̂ is non-singular that is

det L̂ = 0 (3:4)

for any value of sR so that the unique solution

ŵ31 ¼ L̂�1f̂31

can be always found. We consider cases sR
= 0 and sR ¼ 0 separately.
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Case 1: sR

= 0. We will prove (3.4) by contradiction.

Proof. Suppose det L̂ ¼ 0. Then the columns of L̂ are linearly dependent vectors and there exists the

coefficient vector

d̂ ¼
d1

..

.

dNþ1

2
64

3
75= 0̂ (3:5)

such that the linear combination of the column vectors

L̂d̂ ¼ 0:

This leads to

(La,s;R � 2sRB)d ¼ dNþ1Bw11 (3:6a)

and

(wH
11M) � d ¼ 0, (3:6b)

where d ¼ (d1, . . . , dN)T. If dNþ1 ¼ 0, then it follows from (3.6a) that d ¼ 0 since the operator in the left-

hand side is non-singular and thus d̂ ¼ 0̂, which contradicts (3.5). Therefore, dNþ1 = 0 and without loss

of generality we set dNþ1 ¼ 1. Then d is uniquely defined by

d ¼ L�1
a,sþ2sR ;RBw11:

Taking into account that by construction La,s;Rw11 ¼ 0, it is easy to check that this unique solution of

(3.6a) is

d ¼ � 1

2sR w11: (3:7)

By substituting (3.7) into (3.6b), we obtain (1=2sR)(wH
11M) �w11 ¼ 0. Since Mw11 = 0, this contradicts

(3.2). Thus, det L̂ = 0 when sR
= 0. B

Case 2: sR ¼ 0. In this case,

La,s;R � 2sRB ¼ La,s;R, (3:8)

which is singular by construction. However, we will prove that

det L̂ ¼ �hwy11, Bw11i= 0, (3:9)

where wy11 is the eigenfunction of the adjoint problem defined as

Lya,s;Rwy11 ; (AH
a;R � s�BH)wy11 ¼ LH

a,s�;Rwy11 ¼ 0: (3:10)

Proof. Consider the co-factor matrix
(3.11)
of the matrix operator L̂, where Ĉij ¼ (�1)iþj det (L̂ij) and L̂ij is a N � N matrix formed by deleting the ith
row and jth column from L̂. The last element in (3.11) is zero because detLa,s;R ¼ 0 in Case 2. Introduce

vector

cT ¼ (Ĉ1(Nþ1), . . . , ĈN(Nþ1))

obtained from the last column in the matrix Ĉ (the framed part of (3.11)) by deleting the last element and

compute det L̂ by expanding by the last column in L̂

det L̂ ¼ �cT � (Bw11) ¼ �hc�, Bw11i: (3:12)
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Further, we expand the individual co-factors Ĉi(Nþ1), i ¼ 1, . . ., N by the last row in each matrix L̂i(Nþ1)

and obtain

c ¼ C(MTw�11),

where

C ¼
C11 C12 � � � C1N

..

. ..
. . .

. ..
.

CN1 CN2 � � � CNN

2
64

3
75 (3:13)

is the co-factor matrix of matrix La,s;R, Cij ¼ (�1)iþj det (Lij) and Lij is a (N 2 1) � (N 2 1) matrix obtained

by deleting the ith row and the jth column in La,s;R. This implies that

cT ¼ wH
11MCT: (3:14)

Then upon right-multiplying by La,s;R we obtain

cTLa,s;R ¼ wH
11MCTLa,s;R (3:15)

Remark 3.1 (see section 0.8.2 in [22] for details). If La,s;R is a square matrix with complex elements,

then

CTLa,s;R ¼ La,s;RCT ¼ (detLa,s;R)I , (3:16)

where I is the identity matrix of the same size as La,s;R.

Thus

cTLa,s;R ¼ wH
11M( detLa,s;R)I ¼ 0T (3:17)

since detLa,s;R ¼ 0. Upon taking Hermitian transpose, (3.17) becomes

(cTLa,s;R)H ¼ LH
a,s�;Rc� ¼ Lya,s;Rc� ¼ 0: (3:18)

We show next that c = 0 and thus

c� ¼ wy11: (3:19)

Proposition 3.2. c = 0.

Proof. Suppose c ¼ 0 or Ĉi(Nþ1) ¼ (�1)iþjdet (L̂i(Nþ1)) ¼ 0, i ¼ 1, . . ., N. Recollect that matrices L̂i(Nþ1)

consist of N 2 1 rows of La,s;R

{r1, r2, . . . , ri�1, riþ1, . . . , rN},

and wH
11M. Since det (L̂i(Nþ1)) ¼ 0, the rows of L̂ij are linearly dependent and there exist a set of scalar

coefficients

{ai1, ai2, . . . , ai(i�1), ai(iþ1), . . . , aiN , ai}

that are not zero simultaneously such that

ai1r1 þ ai2r2 þ . . .þ ai(i�1)ri�1 þ ai(iþ1)riþ1 þ � � � þ aiNrN þ aiw
H
11M ¼ 0:

If ai ¼ 0 for all i ¼ 1, . . ., N, then any selection of N 2 1 rows from La,s;R forms a linearly dependent set

meaning that rank(La,s;R) , N � 1, which contradicts remark 2.1. Thus, the coefficient ai = 0 for some

value of i in the range between 1 and N. Without loss of generality, it can be set to 1 to obtain

wH
11M ¼ �ai1r1 � ai2r2 � . . .� ai(i�1)ri�1 � ai(iþ1)airiþ1 � . . .� aiNrN

¼ aTLa,s;R ,
(3:20)

where aT ¼ �(ai1, ai2, . . . , ai(i�1), 0, ai(iþ1), . . . , aiN ). Upon right-multiplying equation (3.20) by w11,

we obtain

wH
11Mw11 ¼ (aTLa,s;R)w11 ¼ aT(La,s;Rw11) ¼ 0:

This, however, contradicts condition (3.2). Thus, c = 0. B
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The substitution of (3.19) into (3.12) then leads to

det L̂ ¼ �hc�, Bw11i ¼ �hwy11, Bw11i: (3:21)

Now we prove that hwy11, Bw11i= 0. To do so, we first demonstrate the validity of the following

proposition.

Proposition 3.3. Rank(CT) ¼ 1.

Proof. Since rank(La,s;R) ¼ N � 1 (see remark 2.1), this matrix contains N 2 1 linearly independent

column vectors. Then equation (3.16) becomes CTLa,s;R ¼ detLa,s;RI ¼ O, where O is a zero matrix of

size N � N. This means that the dimension of the null space of CT is n�N 2 1, or

rank(CT) ¼ N � n � 1. Given that rank(La,s;R) ¼ N � 1 there exists at least one non-zero minor of La,s;R

of size N 2 1 so that the co-factor matrix CT of La,s;R is non-zero and so is its rank. Thus, rank(CT) ¼ 1. B

Remark 3.4 (Full-rank factorization, see section 0.4.6 in [22] for details). Let CT be an N � N matrix

with complex elements. If rank(CT) ¼ 1 then there exist two non-zero column vectors u and v such that

CT ¼ uvT.

From equation (3.16), we obtain

La,s;RCT ¼ La,s;RuvT ¼ (La,s;Ru)vT ¼ O: (3:22)

Since vT
=0, La,s;Ru ¼ 0. Moreover, since u = 0 there exists a non-zero constant g1 such that u ¼ g1w11.

Similarly, from equation (3.16) we obtain

CTLa,s;R ¼ uvTLa,s;R ¼ u(Lya,s;Rv�)T ¼ O: (3:23)

Since u=0, Lya,s;Rv� ¼ 0 and since v = 0 there must exist a non-zero constant g2 such that v� ¼ g2wy11.

Therefore,

CT ¼ gw11wyH11 , g ¼ g1g2 = 0:

Differentiating the determinant of La,s;R with respect to s (see section 0.8.10.11 in [22]) we obtain

d

ds
detLa,s;R ¼ tr CT d

ds
La,s;R

� �
,

where tr( � ) denotes trace of the matrix expression in parentheses. Since La,s;R ¼ Aa;R � sB,

(d=ds)La,s;R ¼ �B. This leads to

d

ds
detLa,s;R ¼ �tr(CTB) ¼ �g tr(w11wyH11 B): (3:24)

Since the trace of a matrix product does not depend on the order of multiplication,

tr(w11w
yH
11 B) ¼ tr(Bw11w

yH
11 ):

Let w11 ¼ (m1, . . . , mN)T, wy11 ¼ (my1, . . . , myN)T and denote the elements of matrix B by bij, i, j ¼ 1, 2, . . ., N.

Then

(Bw11)T ¼
XN

j¼1

b1jmj,
XN

j¼1

b2jmj, . . . ,
XN

j¼1

bNjmj

0
@

1
A

T

and

(Bw11)w
yH
11 ¼

my�1

PN
j¼1 b1jmj my�2

PN
j¼1 b1jmj � � � my�N

PN
j¼1 b1jmj

..

. ..
.

� � � ..
.

my�1
PN

j¼1 bkjmj my�2

PN
j¼1 bkjmj � � � my�N

PN
j¼1 bkjmj

..

. ..
.

� � � ..
.

my�1

PN
j¼1 bNjmj my�2

PN
j¼1 bNjmj � � � my�N

PN
j¼1 bNjmj

2
66666666664

3
77777777775
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and then equation (3.24) assumes the form

d

ds
detLa,s;R ¼ �g

XN

j¼1

my�j
XN

k¼1

b jkmk ¼ �ghwy11, Bw11i: (3:25)

As stated in remark 2.1 the algebraic multiplicity of eigenvalue s is equal to 1. Thus the characteristic

polynomial p(t) ¼ detLa,t is factored as

p(t) ¼ (t� s) p1(t),

where p1(s) = 0. Then it follows that:

d

ds
detLa,s;R ¼

d p
dt

����
t¼s
¼ � p1(s) = 0:

Hence hwy11, Bw11i= 0 and we finally conclude that det L̂ = 0 when sR ¼ 0. B

The main result of the above derivation is that a unique solution of (3.3) can always be found because

the matrix operator in its left-hand side is non-singular. In particular, a unique (for a chosen weight

matrix M) value of Landau coefficient can be obtained using Cramer’s rule

K ¼ det Ŝ
det L̂

, (3:26)

where Ŝ is obtained from L̂ by replacing �Bw11 with f31 for both cases sR
= 0 and sR ¼ 0.

Corollary 3.5. In the limiting case of sR ¼ 0 (critical or bifurcation point), the Landau coefficient is
independent of the choice of the weight matrix M and is defined via the conventional solvability condition.

Proof. If sR ¼ 0, the numerator in (3.26) becomes

Ŝ ¼ La,s;R f31

wH
11M 0

� �
:

Since the only difference between Ŝ and L̂ is due to the replacement of the element �Bw11 with f31, the

procedure identical to that used to derive (3.21) leads to det Ŝ ¼ hwy11, f31i, which can be formally

obtained by replacing �Bw11 with f31 in (3.21). Therefore, (3.26) becomes (2.23). Note that the adjoint

eigenfunction wy11 is defined up to an arbitrary multiplicative constant. Since we have shown that

hwy11, Bw11i= 0 it can be chosen in such a way that �hwy11, Bw11i ¼ 1. Then

K ¼ hwy11, f31i,

which is independent of M and is identical to the definition of Landau coefficient using a conventional

solvability condition (2.23). B
4. Interpretation of the procedure
To interpret the main results of §3 refer to a schematic diagram shown in figure 1. Parametric point Rc

(critical or bifurcation point) separates two qualitatively different regions. In the case of supercritical

bifurcation for R , Rc a ‘simple’ basic flow solution to the problem at hand exists, while for R . Rc

the full flow solution containing basic flow and its perturbations is found. The two types of solution

have different dimensionalities: basic flow is shown by a segment of the horizontal line to the left of

Rc while the full solution is represented by the conical region to the right of Rc. To the leading order,

the amplitude expansion procedure described in §2 projects the full flow solution onto a space

spanned by the vector of the basic flow w00 and the eigenvector w11 of a linearized problem (2.8). The

two principal points need to be emphasized here. First, no assumption of the closeness to the critical

point is made, that is the condition kR 2 Rck/kRck � 1 commonly used in weakly nonlinear stability

studies is not enforced here. Second, the eigenfunction used in the outlined projection procedure is

evaluated at the parametric point of interest R rather than at the critical point Rc. It corresponds to the

fastest growing perturbation at point R rather than to the neutral disturbance at Rc frequently chosen

for algebraic convenience in stability studies. As argued in [17], this choice is physically more relevant

and it improves the convergence properties of the resulting asymptotic series.

The full solution of a problem at the parametric point R of interest is shown by an elliptic region in

figure 1. The procedure outlined in the previous sections essentially selects a low-dimensional projection
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Figure 1. Schematic diagram of low-dimensional projection of supercritical flow solutions enforced by the procedure of §§2 and 3.
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of this solution (circles inside the ellipse) by specifying the ‘angle’ of projection schematically represented

by the slope of the dashed lines at the intersection of which with the ellipse the projected solutions lie.

Such an ‘angle’ is defined by the properties of the used inner product k . . . , . . .l and, more specifically, by

the structure of matrix M. Different projections corresponding to different matrices M1 and M2 (see the

dashed lines with different slopes in figure 1) ‘puncture’ distinct points in the ellipse meaning that

the outlined projection procedure can lead to different results away from the critical point. Yet when

approaching the critical point in the limit R! Rc all projections must result in the same solution

obtained using the solvability condition. In the view of the above, when applying the reduction

procedure a finite distance away from the critical point one needs not only to perform a formal

amplitude expansion, but also specify the ‘angle’ under which the desired result should be viewed.

To clarify this point, we consider several examples of projections reported in the literature applied to

three- or five-component solution wT
31 ¼ (u31, v31, p31) or wT

31 ¼ (u31, v31, w31, u31, p31), where u31, v31,

w31, u31 and p31 contain discretized values of the flow velocity components, temperature and

the pressure.

(i) All elements of M are zero apart from Mii ¼ 1 for some i so that Mw31 ¼ (0, 0, . . . , 0, (u31)i, 0, . . . , 0)T.

This condition was used in the work of Herbert [10]. In this case, the higher order in amplitude

terms are chosen in such a way that the perturbation velocity component u31 at point xi is set to zero

so that in the vicinity of this particular point the perturbation of this specific velocity component is

given completely by Au11(xi). As was shown in [17], the results of such a projection depend on a

(subjective) choice of the ‘pinning’ point xi. This inherently local procedure would also break if

u11(xi) and/or u31(xi) happen to be zero so that the compulsory condition (3.2) is violated.

(ii) In our earlier studies [18,23], M ¼ I was chosen that corresponds to the global orthogonality

condition hw11, w31i ¼ 0. As was demonstrated in [17] such a choice removes the ambiguity

associated with a subjectivity of choosing a ‘pinning’ point mentioned above. It also improves the

convergence properties of the resulting asymptotic series. To see that rearrange (2.13) to read

w ¼ w00 þ A(w11 þ jAj2w31 þ � � � )Eþ � � � : (4:1)

Asymptotically, the term in parentheses represents the fundamental disturbance harmonic given by

an eigenfunction w11 of the linearized problem and its higher-order distortion w31 due to

nonlinearity, with the leading term Aw11E being of primary interest. If hw11, w31i ¼ 0, the leading-

order approximation w ¼ w00 þ Aw11E is not modified by the addition of higher order in

amplitude terms as they are guaranteed to be orthogonal vectors. Essentially, (4.1) becomes an

orthogonal expansion and its convergence properties improve.

(iii) In [21], M was chosen to be the identity matrix Iu,v, where the diagonal elements corresponding to

pressure p were set to zero so that hw, Mwi ¼ u2 þ v2, which has the meaning of kinetic energy.

Such a choice preserves the benefits of the orthogonal expansion but produces the expansion that

is optimal for capturing the kinetic energy of perturbations. This is useful when weakly nonlinear

stability analysis results are compared with experimental flow data where velocity fields are

measured directly while the pressure fields are not recorded (e.g. [24]).

(iv) When integral spectral collocation methods are used as, for example, in [18,23], where the vector of

unknown quantities is written in terms of a vector of their highest derivatives present in the

governing equations multiplied by a spectral integration matrix (e.g. [25]), the diagonal identity

matrices in the above examples become block-diagonal and so does matrix M.
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(v) The possibility of using a less conventional normalization condition for the disturbance amplitude

was mentioned in [26] in the context of Rayleigh–Bénard problem: kv11, u31l ¼ 0, where the

solution vector w ¼ (u, v, w, u, p)T consists of the velocity components u, v and w, temperature u

and pressure p. While the physical meaning of such a normalization has not been discussed,

formally it can be cast in the form of (3.1) with

M ¼

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2
66664

3
77775:

5. An alternative condition
So far, a procedure for calculating Landau constants using condition (3.1) was discussed, in which the

orthogonality of the higher-order perturbations with the eigenfunction w11 or its selected components

was used and interpreted from a physical point of view. The main result was that such a procedure

automatically reduces to the use of a standard solvability condition involving the adjoint

eigenfunction at a critical point. For completeness of the discussion, we should mention here that it is

possible to formally apply this condition away from a bifurcation point enforcing

hwy11, Bw31i ; wyH11 � (Bw31) ¼ (wyH11 B) �w31 ¼ 0: (5:1)

as has been done in [12]. In this case, M ¼ B and (3.3) is transformed to a different form

L̂ ¼
La,s;R � 2sRB �Bw11

wyH11 B 0

" #
: (5:2)

The proof that L̂ in expression (5.2) is non-singular is similar to that presented in §3 and is not repeated

here. The meaning of the corresponding amplitude expansion in this case is that the full flow solution is

projected onto a space spanned by w00 and wy11. While such a projection is formally possible, its physical

interpretation away from the critical point is not clear. In this context, the formulation considered in §3

that enables one to choose upfront a type of projection suited for particular practical purposes such as

those listed in §4 is more flexible and thus may be preferred.
6. Illustrative example
In this section, we illustrate the numerical results obtained for various choices of M in the well-studied

example of natural convection flow of fluid with Prandtl number Pr ¼ 7.5 contained between two vertical

plates placed at non-dimensional positions x ¼+1 and maintained at uniform non-dimensional

temperatures T(+1)¼+1. The sketch of a physical set-up and non-dimensional basic flow solutions

are shown in figure 2. The solution vector in this case consists of four elements wT ¼ (u, v, T, p).

Complemented with no-slip/no-penetration boundary conditions for velocities the system of

equations (2.1) and (3.1) admits a steady basic flow solution of the form

u00(x) ¼ 0, v00(x) ¼ 1

6
x(1� x2), T00(x) ¼ x, p00 ¼ const. (6:1)

Such a simple flow becomes linearly unstable with respect to stationary y-periodic disturbances forming

rolls with the axes in the mid-plane of the layer and wavenumber ac¼ 1.383 at Grc ¼ 491.8. Note that

these values differ somewhat from ac ¼ 1.414 and Grc ¼ 492.3 reported in [12] and are presumed to

be more accurate given that they were obtained here using a spectral [25,27] rather than finite

difference approximation.

Because the developing instability is stationary, the linear amplification rate remains real (s ¼ sR) and

so does Landau constant K (figure 3a,b). In supercritical regimes, the wavenumber corresponding to the

largest value of sR decreases and sR increases mostly linearly with Grashof number. The numerical

values of Landau constant K are computed for the eigenfunctions of the linearized problem

normalized to satisfy u11(0) ¼ 1. They remain negative indicating the supercritical nature of

bifurcation. However, the K values deviate significantly (and nonlinearly) from the value determined
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Figure 2. Sketch of a physical set-up of (a) and basic flow temperature and velocity profiles (b) for an illustrative example of
convection between two differentially heated walls.
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at the critical point in supercritical regimes. The comparison of the values of Landau constant K and

equilibrium perturbation amplitude jAej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sR=K

p
obtained using various weight matrices M and

approaches is given in figure 3b–d. It enables one to make the following observations.

Consistent with the proof given in §3 the use of all weight matrices M leads to the same value of

Landau constant at the bifurcation point. This value K ¼ 211.632 is identical to that obtained from a

solvability condition (2.23) involving the adjoint eigenfunction. This value is also close to the one

obtained using the correlation formulae K ¼ �720(Pr1:325=Grca
2
c) 	 �11:050 suggested in [15]. The

values of K ¼ 210.102 and K ¼ 26.153 that we calculated following the procedure outlined in §5 (see

the thin solid lines in figure 3) by fixing a0 ¼ 1.414 for supercritical values of Gr ¼ 500 and Gr ¼ 550

as was done in [12] agree with their values of K ¼ 210.100 and K ¼ 26.151 (obtained upon rescaling

the values given in Table I in [12] as K! K=(Gra2
0), which results from a different normalization of

the eigenfunctions of a linearized problem used here).

As expected, in the close vicinity of the critical points all projections based on various weighted inner

products produce numerical estimations of the perturbation amplitude that are virtually

indistinguishable from each other (figure 3d ). However, they all differ noticeably from the amplitude

predictions based on Landau constant evaluated at a critical point shown by the thick dashed-dotted

line. This is due to an inherent inconsistency of the way such a prediction is obtained. While its core

assumption is that K remains constant for supercritical values of Gr, see the thick dashed-dotted line

in figure 3b, to estimate non-trivial values of the amplitude jAej ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sR=K

p
one has to use the actual

supercritical values of sR computed for Gr . Grc as shown in figure 3a.

Further away from a critical point the amplitude estimations based on different weighted products

produce numerically different results. Again, this is expected because the ‘effective dimensionality’ of

the full problem solution increases, see the oval region in figure 1, while by its very nature each low-

dimensional projection can emphasize only a limited subset of full flow features. Therefore, it becomes

important to specify which solution characteristics are of the main interest in a particular physical

context and embed this focus in the projection procedure from the outset. For example, in studies of

isothermal fluid flows the dynamic characteristics of a perturbed flow are of primary interest [24] so

that the projection selecting the kinetic energy [21] could be preferred, see Case 3 in §4. On the other

hand, the main practical interest in convection problems such as the one considered in this section is
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the heat flux across the fluid layer. It is characterized by the average Nusselt number that is the ratio of

the total heat flux to its conduction component. In terms of weakly nonlinear theory presented here, it is

given by

Nu ¼ 1þ jAej2
dT20

dx
, (6:2)

where the temperature derivative is evaluated at one of the walls at x ¼+1. Therefore, the use of the

weight matrix

M ¼

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

2
664

3
775, (6:3)

that selects the perturbation temperature and downplays the other components of the solution may

be preferred. The behaviour of the so-computed Nusselt number in supercritical regimes is

demonstrated in figure 4a by the dotted line. It is virtually indistinguishable from that obtained by

following the procedure outlined in §5 and previously used in [12] near the critical point, but the values

obtained using these two approaches deviate somewhat further away from it. The dashed line depicts

results obtained using a weight matrix emphasizing kinetic energy of the perturbation. They are close to

but not identical to predictions based on (6.3).

To compare the Nusselt number estimations with DNS and experimental data available in the literature,

we also computed the results for Pr ¼ 0.71. They are shown in figure 4b. As expected, the low-dimensional

projection results underestimate those of direct numerical simulations [29] and experiments [28] because

they only take into account one fastest growing Fourier component with a fixed wavenumber while

Fourier components covering a finite wavenumber range are present in supercritical regimes (see also
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discussion in [18]). Nevertheless, the agreement is reasonable2 and the closest match with experimental data

is indeed obtained by choosing the weight matrix (6.3) emphasizing the temperature distribution in the

disturbed flow. Qualitatively, after the quick initial growth near the bifurcation point the value of

Nusselt number levels out. Such a behaviour is captured in the discussed projection by taking into

account the variation of spatial eigenfunctions in supercritical regimes. At the same time, the estimation

based on the data computed at the critical point alone is only capable of predicting the slope of the

Nusselt number curve at the bifurcation point, see the thick red dashed-dotted lines in figure 4a, but the

corresponding linear Nusselt number behaviour fails to follow the experimentally observed trends of

levelling the Nusselt number curves away from a bifurcation point.
7. Conclusion
In this study, we revisited the procedure of amplitude expansion in the context of weakly nonlinear stability

theory of flows arising in extended domains with at least one finite dimension. We emphasized the

application of this procedure at parametric points located finite distance away from the critical point

where the real amplification rate of infinitesimal disturbances becomes zero. We confirmed that the

definition of the perturbation amplitude in this case is not unique and its meaning has to be specified

from the outset to obtain meaningful physical interpretation of results. We demonstrated that this can be

done by introducing an appropriate orthogonality condition with respect to a weighted inner product.

The non-uniqueness of the amplitude definition offers an opportunity for choosing it in such a way that

the resulting low-dimensional projection of the full solution emphasizes its specific features (e.g. kinetic

energy or heat flux) that are of interest in a particular physical context. The current procedure is a

generalization of those previously suggested in [10,12,18] and contains them as special cases. The main

outcome of the current work is that the computational procedure for evaluating Landau constants in

supercritical regimes finite distance away from a critical point, the idea of which was initially formulated

in [19], has been put on a firm ground by formal proof of the facts that it does not result in any

singularities and automatically recovers standard solvability condition at a critical point. While the work

has focused on the evaluation of the first Landau constant appearing at the third order of amplitude,

exactly the same procedure can be uniformly applied to evaluate Landau constants at higher orders of

disturbance amplitude. Finally, we note that the procedure for evaluating Landau constants discussed

here is also applicable for amplitude expansions in subcritical regimes (e.g. when basic flow is subject

to a subcritical bifurcation at a critical point or when the basic flow remains stable with respect to
2Note that both DNS and experimental results are obtained for fluid layers of large but finite height and that the value of Nusselt

number decreases with the height of the cavity. Therefore, it is expected that in the limit of an infinite vertical layer considered

here both numerical and experimental results would extrapolate to lower values so that the difference between the data in

figure 4b would be smaller.
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infinitesimal disturbances). However, in this case special care needs to be taken in treating subcritical

resonances that occur between decaying instability modes, see [3,11,18]. It follows from the presented

proof that such resonances cannot arise in supercritical systems, but one has to be mindful of them in

subcritical regimes because La,sþ2sR;R can in principle become singular if sR , 0. If this occurs, a system

of coupled amplitude equations accounting for the resonant mode interaction needs to be considered, as

discussed in [21]. A systematic procedure of resolving second and higher-order subcritical resonances

suggested there can be used to derive a system of coupled Landau equations modelling the evolution of

resonating subcritical modes. The computational procedure formulated here does not require any

modifications to be used for evaluating Landau coefficients of such a system.
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