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To explore how particularities of a host cell-virus system,
and in particular host cell replication, affect viral evolution,
in this paper we formulate a mathematical model of
marine bacteriophage evolution. The intrinsic simplicity of
real-life phage-bacteria systems, and in particular aquatic
systems, for which the assumption of homogeneous mixing
is well justified, allows for a reasonably simple model.
The model constructed in this paper is based upon the
Beretta—Kuang model of bacteria—phage interaction in an
aquatic environment (Beretta & Kuang 1998 Math. Biosci.
149, 57-76. (doi:10.1016/50025-5564(97)10015-3)). Compared to
the original Beretta-Kuang model, the model assumes the
existence of a multitude of viral variants which correspond
to continuously distributed phenotypes. It is noteworthy that
the model is mechanistic (at least as far as the Beretta—
Kuang model is mechanistic). Moreover, this model does not
include any explicit law or mechanism of evolution; instead
it is assumed, in agreement with the principles of Darwinian
evolution, that evolution in this system can occur as a result
of random mutations and natural selection. Simulations with
a simplistic linear fitness landscape (which is chosen for the
convenience of demonstration only and is not related to any
real-life system) show that a pulse-type travelling wave moving
towards increasing Darwinian fitness appears in the phenotype
space. This implies that the overall fitness of a viral quasi-
species steadily increases with time. That is, the simulations
demonstrate that for an uneven fitness landscape random
mutations combined with a mechanism of natural selection
(for this particular system this is given by the conspecific
competition for the resource) lead to the Darwinian evolution.
It is noteworthy that in this system the speed of propagation
of this wave (and hence the rate of evolution) is not constant
but varies, depending on the current viral fitness and the
abundance of susceptible bacteria. A specific feature of the
original Beretta—Kuang model is that this model exhibits a
supercritical Hopf bifurcation, leading to the loss of stability
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and the rise of self-sustained oscillations in the system. This phenomenon corresponds to the paradox
of enrichment in the system. It is remarkable that under the conditions that ensure the bifurcation
in the Beretta-Kuang model, the viral evolution model formulated in this paper also exhibits a rise
in self-sustained oscillations of the abundance of all interacting populations. The propagation of
the travelling wave, however, remains stable under these conditions. The only visible impact of the
oscillations on viral evolution is a lower speed of the evolution.

1. Introduction

Owing to very high replication rate combined with high mutability, viruses are able to evolve
considerably faster than larger cellular organisms. In many instances, viral mutations and evolution are
responsible for emergence of new pathogens and determine pathogenesis of existing diseases. The high
level of evolvability also makes viruses a good model in evolutionary biology. Moreover, study of viral
mutations and evolution is also indispensable for designing and estimating efficacy of antiviral therapies
and vaccination strategies, for determining the risk of the development of drug resistance, and other
similar tasks.

Accordingly, during the last 20 years, a number of mathematical models of viral evolution have
been suggested. Probably the first step in this direction was done by Pease [1], who formulated a
simplistic model of inter-host viral evolution to study evolutionary changes in influenza A virus. Later,
Tsimring et al. [2] suggested an elegant model of within-host RNA virus evolution where virus types were
assumed to be distributed in a one-dimensional continuous space according to their fitness. The use of a
continuous fitness space allows representation of random mutations by diffusion operator. The Tsimring—
Levine—Kessler model (the TLK model) exhibited a solution in the form of a pulse-type travelling wave
of evolution moving in the space towards higher fitness. Sasaki and his collaborators [3-5] used an intra-
host pathogen-antibodies model with a discrete or continuous one-dimensional strain space to study
antigenic drift and host-virus co-evolution. These models exhibit evolution of antigen variants in the
form of a pulse-type travelling wave in the strain space. Lin et al. [6] studied inter-host antigenic drift,
using a generalization of the classical SIR model where mutations were included as a diffusion process
in a one-dimensional continuous phenotype space. This model also exhibits travelling wave solutions.

While these and other recently suggested models brought important insights into the problem, nearly
all these models also possess an apparent shortcoming. Specifically, the above-mentioned models, as well
as the majority of other recently proposed models of viral evolution, are essentially phenomenological.
That is, while such models can produce qualitative description of a process, biological interpretation of
obtained results, as well as model parameters, is dubious.

In contrast to phenomenological models, the so-called mechanistic models are based upon a clearly
defined set of assumptions and hypotheses (the ‘first principles’). For mechanistic models, physical
or biological interpretation of results and model parameters is usually straightforward. This makes
mechanistic models suitable for complementing real-life experiments and verifying hypotheses, as well
as for quantitative (rather than qualitative) studies. However, since mechanistic models necessarily take
into consideration particularities of studied physical or biological systems, they are usually considerably
more complex than phenomenological models.

A reasonably simple mechanistic model of HIV within-host evolution was recently suggested by
Korobeinikov & Dempsey [7]. This model is based upon the Nowak and May model of HIV intra-host
dynamics [8] and is mechanistic (as far as the Nowak-May model is mechanistic). Several variants of this
model were considered [9-12]. However, all these variants are also based on the Nowak-May model, and
hence their applicability to other virus-host systems is questionable.

Compared to other viral dynamics models, the most notable particularity of the Nowak-May model
is the target cell reproduction mode. This model is specifically designed for HIV infection and postulates
that the target cells (which in this case are T-helper lymphocytes) do not reproduce and that, instead,
there is a continuous influx of the cells into the system (from the thymus, where they mature). In contrast,
in the majority of virus-host systems the hosts reproduce within the system, whereas their immigration
into the system can be assumed complementary.

To explore potential impacts of particularities of a virus-host system, and in particular impacts
of the host reproduction modes, on viral evolution, in this paper we construct a model of marine
bacteriophage evolution that is based upon a model of marine bacteriophage dynamics suggested by
Beretta & Kuang [13]. The major difference between the Beretta-Kuang model and the Nowak-May
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model is the host cell reproduction mode. While this difference may appear insignificant, it results in
a distinctive dynamics exhibited by the Beretta-Kuang model that makes it particularly attractive for
our objectives. Specifically, the Beretta—Kuang model exhibits the effect of enrichment, that is the loss of
stability and a rise of self-sustained oscillations in response to an increment of the environment carrying
capacity.

A comparative simplicity of the aquatic bacteria—phages systems makes them particularly suitable
for our objectives. Thus, real-life marine bacteria—phages systems typically comprise bacteria, phages
and nutrients. These systems do not include complications such as immune response, which is an
essential component of real-life virus-human and virus-animal interactions. Furthermore, phages are
usually host-specific and form stable phage-host bacteria couples. Moreover, aquatic environments are
fairly homogeneous (at least on a limited spacial scale that, however, is sufficiently large for modelling
bacteria-phages interaction), and the assumption of homogeneous distribution of all components is well
justified.

1.1. Background on bacteriophages

Bacteriophages are small viruses that infect and replicate within bacteria, effectively killing their bacterial
host. Bacteriophages were discovered independently by Frederick Twort in 1915 and by Félix d'Herelle in
1917. However, the viral nature of phages was recognized only after invention of the electron microscope.

Bacteriophages are one of the most widespread and diverse entities in the biosphere [14]. Sea water is
one of the densest natural sources for phages and other viruses, where up to 9 x 108 virions per millilitre
have been found in microbial mats at the surface [15]. Moreover, it was estimated that up to 70% of
marine bacteria may be infected by phages [16].

Scientific interest in phages was significantly promoted by their potential use against bacterial
infectious diseases. Probably the first advance in this direction was made by d’Herelle, who used phages
to treat dysentery. However, d"Herelle did not published this study immediately, and the first published
report about the therapeutic use of bacteriophages was made by Richard Bruynoghe and Joseph Maisin
in 1921, who used phages to treat a staphylococcal skin disease [17]. Research in this direction ceased in
the 1960s when antibiotics had become widely available. However, low costs of such treatment, as well
as the development of antibiotic resistance by bacteria, revitalized research in this direction.

A typical phage consists of a protein hull (or capsid) and the enclosed genetic material. For the
majority of the known phages the genetic material consists of double-stranded DNA, but phages with
single-stranded DNA and RNA genomes are also known. Some phages also have a ‘tail” that serves for
injecting the genetic material into a bacterium. By their mode of reproduction, phages can be roughly
divided into lytic and non-lytic (or temperate) types. The lytic phages are a highly virulent type that
start reproducing immediately after infecting a bacterium and after a short time lyse (destroy) the host
bacterium, releasing new free phages at the instance of bacterium death. The non-lytic or temperate
phages either integrate their genetic material into the chromosomal DNA of the host or establish
themselves as plasmids, and then are copied with every cell division together with the DNA of the host
cell. When the host cell starts to show signs of stress (meaning it might be about to die), the endogenous
phages become active again and start their reproductive cycle, resulting in the lysis of the host cell.

In this paper, we consider phages with the lytic reproduction cycle only.

2. Model

We use the Beretta—Kuang model of lytic marine bacteriophagesdynamics [13] as a basis for constructing
a model of bacteriophage evolution. The Beretta—Kuang model describes the dynamics of three
interacting populations, namely a population of susceptible target bacteria, of size (or concentration)
S(t), a population of bacteria infected by the bacteriophages, of size (or concentration) I(t), and free
bacteriophages of size (or concentration) P(t). All three populations are assumed to be homogeneous.
The model postulates that the susceptible bacteria replicate according to the logistic law, with per capita
reproduction rate « and carrying capacity of the environment C. The susceptible bacteria are infected by
free bacteriophages at bilinear rate kSP. Infected bacteria do not reproduce and die with per capita rate
A, releasing at the instance of death on average b phages. Free viruses die at per capita rate ;1. Moreover,
the model also takes into account that the free phage population decreases by those phages that infect
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bacteria. Accordingly, the model equations are

5 _ s (1— %) _kSP,

dt
dr_ kSP — Al, (2.1)
dt
dpP
— =bM — kSP — uP.
and T b kS 1%

An important feature of this model is that the model is based upon a clearly identified set of
assumptions and hypotheses (the first principles); that is, model (2.1) is mechanistic.

The phase space of the model is Rio. The model always has an equilibrium state Eg = (0,0,0) at
the origin and a phage-free equilibrium state Ef= (C,0,0). Apart from these two equilibrium states, the
model can have a positive equilibrium state E with coordinates

_C _ aC Rg-—-1 P _)»R()I
Jr_)»Ro-i—ot Ry ’ Tk

where Rg = (b — 1)kC/p is the phage’s basic reproduction number.

The model dynamics is determined by the basic reproduction number Ryp. In particular, if 0 < Ry <
1, then the phage-free equilibrium state Ey is globally asymptotically stable, and no positive equilibria
exist. At Rp =1, equilibrium states Ef and E; merge, and a saddle-node bifurcation occurs. Positive
equilibrium state E; exists for all Ry > 1; Ef is unstable (a saddle point) for these Ro.

As the basic reproduction number grows further, a supercritical Hopf bifurcation occurs in the system:
equilibrium state E loses its stability, and a stable limit cycle appears in the phase space [13,18]. This
phenomenon is usually referred to as the paradox of enrichment in ecology [19]. The possibility of the
supercritical Hopf bifurcation in the Beretta-Kuang model is the principal difference between this model
and simpler models, such as the Nowak-May model of HIV-1 dynamics that served as a basis for a model
of viral evolution [7,9-11].

Model (2.1) postulates that all elements in each of the three populations are identical. In order to
develop a model of bacteriophage evolution, let us assume, instead, that a multitude of viral genotypes
exists and that several genotypes are simultaneously present in the environment. Each genotype is
characterized by a set of phenotypic traits, which in this model framework is represented by parameters
k, A, uwand b.

It is reasonable to assume that the phenotypic traits of closely related genotypes are also close. To
define distance between genotypes A and B, one can assume that the distance is inversely proportional
to the probability of mutation of genotype A to B (and vice versa) [20]. Please note that such a definition
implies that the probability of mutations A — B and B — A are equal. However, the equality does not
necessary hold in every case. Nevertheless, if the probability of mutations A— B and B— A are not
equal, then probabilities of mutations in a predefined direction can be used to define the distance. Then
to take into account the disparity in the probabilities of mutations in the opposite direction one can use
an asymmetric mutation operator.

The set of viral genotypes is discrete. However, due to phenotypical plasticity and stochasticity of the
environment, values of parameters k, 1, © and b corresponding to a specific viral genotype vary within
certain tolerance intervals. Moreover, for closely related genotypes these intervals are likely to overlap.
Therefore, we can use a continuous phenotype (or variant) space instead of a discrete genotype space.
In the Beretta-Kuang model, a viral type is described by four parameters, k, A, u and b, and hence a
continuous phenotype space should be of dimension up to 4.

A particular choice for a phenotype space, 2, is arbitrary and to a large extent is a matter of
convenience. As the simplest (and probably the most natural) choice, a four-dimensional real space
R* = (—o0, +00)* can be used as the phenotype space. In this paper, for convenience, we assume that
phenotype space is the positive four-dimensional orthant of the four-dimensional real space, £2 = R: =
(0, +00)*, and r € £2 is the space coordinate.

For distributed viral variants, we define in the variant (phenotype) space density distribution p(r, t),
such that P(t) = [, p(r, t) dr holds. We also have to segregate the infected bacteria with respect to a viral
variant that these are infected with, defining density distribution of the infected bacterial population
i(r, t). (Hence, I(t) = [, i(r, t) dr.) Thus, we have a model with three variables: the susceptible population
S(t) (which is independent of viral phenotypes), the density distribution of infected population i(r, t) and
the density distribution of free phages population p(r, t).
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In order to model random mutations, let us assume that with a certain probability an infected
bacterium can switch from producing the genotype that it is infected with to a different genotype. We
assume that the probability of such a mutation is small and is quickly (e.g. exponentially) decreasing
with the growth of the distance between the original and mutant genotypes. In the continuous phenotype
space such random mutations can be modelled by an integral operator or by the dispersion (diffusion)
operator [2-5,7]. An integral operator provides more flexibility and potentially can describe more
complicated features of real-life systems (such as asymmetric mutations). However, the dispersion leads
to a simple model, is easier for analysis and is ‘cheaper” for numerical simulations. For simplicity, in this
paper we prefer to use the dispersion operator.

Under these assumptions, the continuous phenotype space model of bacteriophage evolution is
represented by the following system of integro-partial differential equations:

d
%t) —aS() (1 - é (S(t) + JQ i(r, ) dr)) - Lz k(r)p(r, HS(t) dr,
WD) ki, 050 — 203, )+ i, ), 22
and WD) i, 050 — wptr, )+ HOMOIC, .

Here the coefficient of dispersion g is proportional to the probability of mutation and is assumed to be
variant-independent (constant) and small.

The model should be completed by initial and boundary conditions. For an unbounded phenotype
space, it is natural to assume that i(co, t) =p(co,t) =0 holds everywhere at infinity. For a bounded
phenotype space, Robin-type conditions,

di(r,t) ap(r, t)

QT - 1(7’, t)/ 5] mn = p(rr t)/

where 0i(r, t)/9n, dp(r, t)/dn are the normal derivatives to the boundary, can be applied.

Furthermore, functions r(r), A(r), u(r) and b(r) (that is, the fitness landscape) should be defined.

We have to stress that model (2.2) does not include any explicit law of evolution, or a mechanism
of evolution. Instead it includes only a possibility of random mutations and a mechanism of natural
selection (a possibility for conspecific competition for a limited resource). We assume that, in agreement
with the Darwinian principles, these are sufficient to produce viral evolution.

It is also noteworthy that model (2.2) includes at least four time scales, namely life-spans of the
susceptible bacteria, the infected bacteria and free phages and the characteristic time of evolution. This
fact makes analysis of the model rather challenging.

3. Results

We mentioned above that in the model (2.2) framework each viral variant is described by four
parameters, namely k, A, i and b. For the sake of simplicity, let us assume that only one of these four
parameters, say k = k(r), is variable in phenotype space §2, whereas %, 1 and b are variant-independent
and constants. This assumption allows to reduce the dimension of phenotype space to one. Moreover,
for simplicity let us assume that k = &r. Then the variant-specific reproduction number Ry(r), which can
serve as a measure of the Darwinian fitness, is
(b(r) = 1)Ck(r) _ (b— 1)C§r

p(r) 1 '
That is, the Darwinian fitness linearly grows in the phenotype space §2. In numerical simulations we use
£ =0.002 ml (cells day)~'. The other parameters are as follows: 1 =3days !, u =20days ™!, b =149.254,
a=15days ! and C =100 cellsml~!. (Please note that variable r and parameter b are non-dimensional.)
For these values Ry~ 1.5 at r =1. In simulations the coefficient of diffusion g, which is proportional to
the rate of mutation, is g = 10~® days .

In the simulations we assume that initially all bacteria are susceptible. That is, S(0) = C, whereas the
initial distribution of infected bacteria is identically equal to zero. The initial distribution of free virus
differs from zero only in a narrow vicinity of » = 1. For the simulations, we use a finite interval r € (0, 7eng)
of phenotype space £2, rather than the entire semi-axis (0, +00), applying the Robin boundary conditions

Ro(r)=

9. ap 9. ap
5]5 =ily—o, QE =plr=0, 45 = llr=renar 175 =Plr=rena
at both ends.
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Figure 1. Density distribution of the infected population i(r, t) by viral variant in time. Here ¢ = 10-¢ days_1, a=15 days_1,
C=100cellsml™", » =3days™", u =20 days ™", b =149.254 and &€ = 0.002 ml cell day". The colours correspond to the density
magnitude; see the legend on the right-hand side. Please note the formation of a pulse-type travelling wave moving in the phenotype
space in the right-hand direction. The speed of the wave varies in time depending on the fitness of the virus and size of the infected
population.

distribution of infected cells at t = 1000

Figure 2. Distribution of the infected bacteria i(r, t) by viral variants they are infected with at t = 1000 days.

Figure 1 shows distribution of infected bacteria in the viral variant space and time for the parameters
above. In this figure, colours correspond to the density i(r, t) at a particular point. Thus, black colour
corresponds to the zero level; see legend at the right-hand side of the panel for detail. The formation
of a pulse-type travelling wave moving in the variant space towards higher Darwinian fitness (towards
higher Rq(r)) is clearly seen in this figure. This result indicates that for this particular fitness landscape
the bacteriophages’ Darwinian fitness (which is represented by the basic reproduction number Ry)
is increasing in time. That is, the simulations confirm that, for an uneven fitness landscape, random
mutations combined with natural selection results in evolution towards increasing Darwinian fitness.
Figure 2 shows a typical profile of the travelling wave, that is a typical distribution of infected bacteria
i(r,t) by viral variants they are infected with, at a particular time moment (figure 2 depicts the data for
t =1000 days).

Figure 3a,b shows the dynamics of the susceptible population S(t) and the total infected population
I(t)= [ i(r,t)dr. It is easy to see that, apart from a short initial transition period, the susceptible
population is monotonically decreasing. This outcome can be expected, as for the fitness landscape that
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Figure 3. Dynamics of the susceptible population S(t) (a) and the total infected population /(t) = | o flr,t)dr (b).

we used the incidence rate k(r) monotonically grows. The dynamics of the total infected population is
more intriguing. Here, after a short transition period, there is an increase of the infected population due to
increase of the incidence rate k. However, after reaching a certain level of r, the infected population (and
hence the free phage population) is steadily decreasing. This decrease can be explained by the shortage
of the resource (that is, by low abundance of the uninfected bacteria in this particular case).

It is noteworthy that the speed of the travelling wave in figure 1, and hence the speed of evolution, is
not constant. It can be seen in figure 1 that initially evolution accelerates as the fitness grows. Then, when
a certain level of the Darwinian fitness is reached, the evolution abruptly slow down. (In figure 1 this
slow-down occurs at t ~ 500 days.) However, it can be seen that speed of evolution is not constant after
this moment either. This outcome qualitatively matches previous results [7,10], where similar variations
of the speed of evolution were observed for the HIV within-host evolution models. In contrast, in
simulations with the TLK model the speed remains constant after an initial transition period.

It can be conjectured that the speed grows with the Darwinian fitness and with population size. The
deceleration of evolution seen in figure 1 is likely caused by the reduction of the infected population and
by the lack of available resources (that is, the susceptible bacteria), which is seen in figure 3b.

As we mentioned above, the Beretta—Kuang model exhibits a supercritical Hopf bifurcation. That is,
there is a critical value of the basic reproduction number Rf such that a supercritical Hopf bifurcation
occurs at Ry = R(C)r, and a stable limit cycle exists in the model phase space for all Rg > R(C)r. Figures 1-
3 correspond to Ry < R§". However, model (2.2) preserves this property of the original Beretta-Kuang
model: that is, at Ro=R{ model (2.2) loses its stability, and, as Ro grows further, self-sustained
oscillations arise. Figures 4 and 5 show the dynamics of the system for this case. In these figures,
¢ =0.02ml cell day !, while all other parameters are the same as in figures 1-3. Figure 4 shows the pulse-
type travelling wave in the virus variant space: while self-sustained oscillations of the viral abundance
are clearly seen in this figure, the wave propagation remains steady. The dynamics of the susceptible
population for model (2.2) and a typical distribution of the infected population in the phenotype space
i(r, t) are shown in figure 5 (2 and b, respectively).

The simulations demonstrate that the self-sustained oscillations do not affect propagation of the
travelling wave and, hence, the progress of viral evolution. It may appear initially that figures 1, 2, 4
and 5 show a slower evolution in the oscillating system. However, we have to remember that figures 1
and 2, on one side, and figures 4 and 5, on the other side, are produced for the fitness landscapes of
different slopes. Specifically, figures 1 and 2 depict data for ¢ =0.002ml cell day !, whereas figures 4
and 5 are for ¢ =0.02 ml cell day_l. That is, in figures 1 and 2, for 1000 days the mean value of k(r) =¢r
of the viral quasi-species changes from 0.002 to 0.0116 mlcell day ™! (and hence the mean value of Ry
changes from 1.48 to 8.288), whereas in figures 4 and 5 for the same 1000 days the mean k(r) changes
from 0.02 to 0.084 ml cell dayf1 (and hence the mean Ry changes from 14.8 to 62.16). That is, in fact,
changes of viral fitness in figures 4 and 5 occur faster. However, this acceleration of evolution most likely
should be attributed to a higher fitness and to a considerably larger slope of the fitness landscape.

Please note that as the basic reproduction number Ry(r) grows due to evolution, periods of the self-
sustained oscillations grow as well. (This can be expected, as the basic reproduction number Ry is the
bifurcation parameter for the Beretta-Kuang model (2.1), and the size of the limit cycle in the model
phase space, as well as the period, grows as the bifurcation parameter grows.) Moreover, as the cycle
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Figure 4. Density distribution of the infected population i(r, ) by viral phenotype in time. The colours correspond to the density
magnitude; see the legend on the right-hand side. Please note the formation of a pulse-type travelling wave moving in the phenotype
space in the right-hand direction. Here g =10 days ™', v =1.5days ", ( =100 cellsml~", A =3 days™", .t = 20days ", b =
149.254 and & = 0.02 ml cell day "
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Figure 5. The dynamics of the susceptible bacterial population S(t) (a) and the density distribution of the infected population by viral
phenotype i(r, t) at t = 1000 days (b) for Ry > RY'.

in the phase space of ODE model (2.1) grows, it is squeezed to the coordinate planes. This implies that
throughout a period, the infection levels remain very low most of the time. This accounts for the very
low magnitude of distribution i(r, t) seen in figure 5 and potentially can lead to extinction of the virus or
of both species.

4. Conclusion

The aim of this paper was to construct a reasonably simple model of viral evolution and to explore how
particularities of a virus dynamics model, and in particular a host cell replication mode, affect viral
evolution. To address this question, in this paper we constructed a model of aquatic bacteriophage
evolution. This model is based on the Beretta-Kuang model of bacteriophage dynamics and is
mechanistic (based on the first principles), at least as far as the Beretta—Kuang model is mechanistic. In
contrast to the original Beretta—Kuang model, the model in this paper postulates existence of a multitude
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of viral variants with continuously distributed phenotypes that are arranged in a continuous phenotype
space. Random mutations are modelled by the dispersion in the phenotype space.

The model constructed in this paper does not include any explicit law, or a mechanism, of evolution.
The authors expect instead that, according to Darwinian principles, random mutations combined with
natural selection and an uneven fitness landscape are sufficient to initiate viral evolution. One of authors’
intentions was to compare this model’s dynamics with that of the earlier considered model of within-host
HIV evolution [7,9,11]. The latter model uses the same set of assumptions but is based upon the Nowak-
May within-host HIV model. The principal difference between these two models of viral evolution is the
target cell replication mode. While this difference may appear insignificant, it leads to different dynamics,
as the paradox of enrichment is possible in the Beretta-Kuang model.

Numerical simulations with the bacteriophage evolution model exhibit the formation of a pulse-type
travelling wave moving in the phenotype space towards the increasing Darwinian fitness (increasing
Rop). This confirms the expectation that on an uneven fitness landscape random mutations and natural
selection (which in this model is provided by the conspecific competition for a limited resource) lead to
the Darwinian evolution. It is noteworthy that the speed of this wave (and hence the speed of evolution)
is not constant, but depends on the current viral fitness and the abundance of susceptible cells. These
results qualitatively coincide with results obtained previously [7,9,11] for HIV within-host evolution,
where travelling waves of evolution of varying speed were also observed.

The numerical simulations also exhibit the loss of stability and the rise of self-sustained oscillations in
the bacteriophage evolution model (2.2), which correspond to the paradox of enrichment in the original
Beretta—Kuang model and occur when Ry exceeds a certain critical value R{'. The authors have to
note, however, that, while for Ry in the vicinity of Rf the dynamics of model (2.2) closely resembles a
supercritical Hopf bifurcation, and corresponds to that in the Beretta—Kuang model (2.1), the term ‘Hopf
bifurcation’ in its precise meaning is not applicable to this case, as this model is not in an equilibrium
state. Furthermore, the numerical simulations show that the only effect that the loss of stability and
the following rise of the self-sustained oscillations have on the viral evolution is a deceleration of the
evolution. No other effects, and in particular qualitative effects, were observed. This observation is the
most important outcome of this study.

We also would like to stress that the simplistic fitness landscape that was used in this paper is
for illustration purpose only and is not related to any real-life system. This simplest case, however,
demonstrates that the Darwinian fitness of virus should monotonically increase on any uneven parts
of more realistic fitness landscapes.

In this model, we completely disregard the possibility of co-evolution of the bacteria and phages
and completely neglect bacterial evolution. Apart from our intention to keep the model as simple as
possible, the major reason for this assumption is a considerable (of orders of magnitude) difference in the
characteristic time scales of all processes (in particular reproduction and mutation rates) in the interacting
viral and bacterial populations. We have to note, however, that the co-evolution can be considered in the
same modelling framework: in order to do this, one has to assume existence of a multitude of bacterial
phenotypes (continuously distributed, for the sake of consistency), define a model for the bacterial
mutation mechanism (in the same way as it was done for the virus), define a bacterial phenotype space,
£2p, define a bacteria fitness landscape over this space, modify the viral fitness landscape postulating its
dependence on bacterial phenotype, and then consider the same process in §2 x £2;,. While such a task is
not impossible, it would require very large computational power. Nevertheless, despite these difficulties
and because of these difficulties, modelling the co-evolution remains one of the most exciting problems
in evolutionary biology [21-24].
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