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Chapter 1

1 OVERVIEW

Preamble
his  book  is  about  the  creation  and  analysis  of  efficient  algorithms.  After  introducing  some 
necessary mathematical background this book covers:T

• the divide and conquer technique; 
• the use of randomization in algorithms; 
• the general, but typically inefficient, backtracking technique; 
• dynamic programming as an efficient optimization for some backtracking algorithms; 
• greedy algorithms as an optimization of other kinds of backtracking algorithms; and 
• hill-climbing techniques, including network flow. 

The goal of the book is to show you how you can methodically apply different techniques to your 
own algorithms to make them more efficient. While this book mostly highlights general techniques, 
some well-known algorithms are also looked at in depth. This book is written so it can be read from 
"cover to cover" in the length of a semester, where sections marked with a * may be skipped.

This book is a tutorial on techniques and is not a reference. For references we highly recommend 
the tomes by [Knuth] and [CLRS]. Additionally, sometimes the best insights come from the primary 
sources themselves (e.g. [Hoare]).

Why a Wikibook on Algorithms?
A  wikibook is an undertaking similar to an open-source software project: A contributor creates 

content for the project to help others, for personal enrichment, or to accomplish something for the 
contributor's own work (e.g., lecture preparation).

An open book, just like an open program, requires time to complete, but it can benefit greatly from 
even modest contributions from readers. For example you can fix "bugs" in the text (where the bug 
might be typographic, expository, technical, aesthetic or otherwise) in order to make a better book. If 
you find an opportunity to fix a bug, simply click on "edit", make your changes, and click on save. 
Other contributors may review your changes to be sure they are appropriate for the book. If you are 
unsure, you can visit the discussion page and ask there. Use common sense.

If you would like to make bigger contributions, you can take a look at the sections or chapters that 
are too short or otherwise need more work and start writing! Be sure to skim the rest of the book first in 
order to avoid duplication of content. Additionally, you should read the  Guidelines for Contributors 
page for consistency tips and advice.

This book is intentionally kept narrow-in-focus in order to make contributions easier (because then 
the end-goal  is  clearer).  This book is part  two of a series of three computer science textbooks on 
algorithms, starting with Data Structures and ending with Advanced Data Structures and Algorithms. If 
you would like to contribute a topic not already listed in any of the three books try putting it in the 
Advanced book, which is more eclectic in nature. Or, if you think the topic is fundamental, you can go 
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Overview

to either the Algorithms discussion page or the Data Structures discussion page and make a proposal.

Additionally, implementations of the algorithms (in either Ada, C, Python, Java, or Scheme) as an 
appendix are welcome.
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2 INTRODUCTION
live version • discussion • edit lesson • comment • report an error • ask a question

This book covers techniques for the design and analysis of algorithms. The algorithmic techniques 
covered include: divide and conquer, backtracking, dynamic programming, greedy algorithms, and hill-
climbing.

Any solvable problem generally has at least one algorithm of each of the following types:

1. the obvious way; 
2. the methodical way; 
3. the clever way; and 
4. the miraculous way. 

On the first and most basic level, the "obvious" solution might try to exhaustively search for the 
answer.  Intuitively,  the  obvious  solution  is  the  one  that  comes  easily  if  you're  familiar  with  a 
programming language and the basic problem solving techniques.

The second level is the methodical level and is the heart of this book: after understanding the 
material presented here you should be able to methodically turn most obvious algorithms into better 
performing algorithms.

The third level,  the clever  level,  requires  more understanding of  the elements involved in the 
problem and their  properties  or  even  a  reformulation  of  the algorithm (e.g.,  numerical  algorithms 
exploit mathematical properties that are not obvious). A clever algorithm may be hard to understand by 
being non-obvious that it is correct, or it may be hard to understand that it actually runs faster than what 
it would seem to require.

The fourth and final level of an algorithmic solution is the miraculous level: this is reserved for the 
rare cases where a breakthrough results in a highly non-intuitive solution.

Naturally, all of these four levels are relative, and some clever algorithms are covered in this book 
as well, in addition to the methodical techniques.

Prerequisites
To understand the material presented in this book you need to know a programming language well 

enough to translate the pseudocode in this book into a working solution. You also need to know the 
basics about the following data structures: arrays, stacks, queues, linked-lists, trees, heaps (also called 
priority queues), disjoint sets, and graphs.

Additionally,  you should  know some basic  algorithms  like  binary  search,  a  sorting  algorithm 
(merge sort,  heap sort,  insertion sort,  or  others),  and breadth-first  or  depth-first  search.  If  you are 
unfamiliar with any of these prerequisites you should review the material in the Data Structures book 
first.
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Introduction

When is Efficiency Important?
Not  every  problem requires  the  most  efficient  solution  available.  For  our  purposes,  the  term 

efficient is concerned with the time and or space needed to perform the task. When either time or space 
is abundant and cheap, it may not be worth it to pay a programmer to spend a day or so working to 
make a program faster.

However, here are some cases where efficiency matters:

• When resources are limited, a change in algorithms could create great savings and allow 
limited machines (like cell phones, embedded systems, and sensor networks) to be stretched to 
the frontier of possibility. 

• When the data is large a more efficient solution can mean the difference between a task 
finishing in two days versus two weeks.  Examples include physics, genetics,  web searches, 
massive online stores, and network traffic analysis. 

• Real time applications: the term "real time applications" actually refers to computations that 
give time guarantees, versus meaning "fast." However, the quality can be increased further by 
choosing the appropriate algorithm. 

• Computationally expensive jobs, like fluid dynamics, partial differential equations, VLSI 
design,  and  cryptanalysis  can  sometimes  only  be  considered  when  the  solution  is  found 
efficiently enough. 

• When  a  subroutine  is  common  and  frequently  used,  time  spent  on  a  more  efficient 
implementation can result in benefits for every application that uses the subroutine. Examples 
include  sorting,  searching,  pseudorandom  number  generation,  kernel  operations,  database 
queries, and graphics. 

In short, it's important to save time when you do not have any time to spare.

When is efficiency unimportant? Examples of these cases include prototypes that are used only a 
few times, cases where the input is small, when simplicity and ease of maintenance is more important, 
when the area concerned is not the bottle neck, or when there's another process or area in the code that 
would benefit far more from efficient design and attention to the algorithm(s).

Inventing an Algorithm
Because we assume you have some knowledge of a programming language, let's start with how we 

translate an idea into an algorithm. Suppose you want to write a function that will take a string as input 
and output the string in lowercase:

// tolower -- translates all alphabetic, uppercase characters in str to lowercase
function tolower(string str): string

What first comes to your mind when you think about solving this problem? Perhaps these two 
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considerations crossed your mind:

1. Every character in str needs to be looked at 
2. A routine for converting a single character to lower case is required 

The first point is "obvious" because a character that needs to be converted might appear anywhere 
in the string. The second point follows from the first because, once we consider each character, we 
need to do something with it. There are many ways of writing the tolower function for characters:

function tolower(character c): character

There are several ways to implement this function, including:

• look  c up in a table -- a character indexed array of characters that holds the lowercase 
version of each character. 

• check if c is in the range 'A' ≤ c ≤ 'Z', and then add a numerical offset to it. 

These techniques depend upon the character encoding. (As an issue of separation of concerns, 
perhaps the table solution is stronger because it's clearer you only need to change one part of the code.)

However such a subroutine is implemented, once we have it, the implementation of our original 
problem comes immediately:

// tolower -- translates all alphabetic, uppercase characters in str to lowercase
function tolower(string str): string
  let result := ""
  for-each c in str:
    result.append(tolower(c))
  repeat
  return result
end

This code sample is also available in Ada.

The loop is the result of our ability to translate "every character needs to be looked at" into our 
native programming language. It became obvious that the  tolower subroutine call should be in the 
loop's body. The final step required to bring the high-level task into an implementation was deciding 
how to build the resulting string. Here, we chose to start with the empty string and append characters to 
the end of it.

Now suppose you want to write a function for comparing two strings that tests if they are equal, 
ignoring case:

// equal-ignore-case -- returns true if s or t are equal, ignoring case
function equal-ignore-case(string s, string t): boolean

These ideas might come to mind:

1. Every character in strings s and t will have to be looked at 
2. A single loop iterating through both might accomplish this 
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3. But such a loop should be careful that the strings are of equal length first 
4. If the strings aren't the same length, then they cannot be equal because the consideration of 

ignoring case doesn't affect how long the string is 
5. A tolower subroutine for characters can be used again, and only the lowercase versions will 

be compared 

These  ideas  come  from  familiarity  both  with  strings  and  with  the  looping  and  conditional 
constructs in your language. The function you thought of may have looked something like this:

// equal-ignore-case -- returns true if s or t are equal, ignoring case
function equal-ignore-case(string s[1..n], string t[1..m]): boolean
  if n != m:
    return false               if they aren't the same length, they aren't equal
  fi
  
  for i := 1 to n:
    if tolower(s[i]) != tolower(t[i]):
      return false
    fi
  repeat
  return true
end

This code sample is also available in Ada.

Or, if you thought of the problem in terms of functional decomposition instead of iterations, you 
might have thought of a function more like this:

// equal-ignore-case -- returns true if s or t are equal, ignoring case
function equal-ignore-case(string s, string t): boolean
  return tolower(s).equals(tolower(t))
end

Alternatively, you may feel neither of these solutions is efficient enough, and you would prefer an 
algorithm that only ever made one pass of  s or  t. The above two implementations each require two-
passes:  the first  version computes the lengths and then compares each character, while the second 
version computes the lowercase versions of the string and then compares the results to each other. 
(Note that for a pair of strings, it is also possible to have the length precomputed to avoid the second 
pass, but that can have its own drawbacks at times.) You could imagine how similar routines can be 
written to test string equality that not only ignore case, but also ignore accents.

Already you might be getting the spirit of the pseudocode in this book. The pseudocode language 
is not meant to be a real  programming language: it  abstracts away details that you would have to 
contend with in any language. For example, the language doesn't assume generic types or dynamic 
versus static types: the idea is that it should be clear what is intended and it should not be too hard to 
convert  it  to  your  native language.  (However,  in  doing so,  you might  have to  make some design 
decisions that limit the implementation to one particular type or form of data.)

There  was  nothing  special  about  the  techniques  we  used  so  far  to  solve  these  simple  string 
problems: such techniques are perhaps already in your toolbox, and you may have found better or more 
elegant ways of expressing the solutions in your programming language of choice. In this book, we 
explore general algorithmic techniques to expand your toolbox even further. Taking a naive algorithm 
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and making it more efficient might not come so immediately, but after understanding the material in 
this book you should be able to methodically apply different solutions, and, most importantly, you will 
be able to ask yourself more questions about your programs. Asking questions can be just as important 
as answering questions, because asking the right question can help you reformulate the problem and 
think outside of the box.

Understanding an Algorithm
Computer programmers need an excellent ability to reason with multiple-layered abstractions. For 

example, consider the following code:

function foo(integer a):
  if (a / 2) * 2 == a:
     print "The value " a " is even."
  fi
end

To understand this example, you need to know that integer division uses truncation and therefore 
when the if-condition is true then the least-significant bit in  a is zero (which means that  a must be 
even). Additionally, the code uses a string printing API and is itself the definition of a function to be 
used  by  different  modules.  Depending  on  the  programming  task,  you  may  think  on  the  layer  of 
hardware, on down to the level of processor branch-prediction or the cache.

Often an understanding of binary is crucial,  but many modern languages have abstractions far 
enough away "from the hardware" that these lower-levels are not necessary. Somewhere the abstraction 
stops:  most  programmers  don't  need  to  think  about  logic  gates,  nor  is  the  physics  of  electronics 
necessary. Nevertheless, an essential part of programming is multiple-layer thinking.

But  stepping  away  from  computer  programs  toward  algorithms  requires  another  layer: 
mathematics. A program may exploit properties of binary representations. An algorithm can exploit 
properties  of  set  theory or  other  mathematical  constructs.  Just  as  binary  itself  is  not  explicit  in  a 
program, the mathematical properties used in an algorithm are not explicit.

Typically, when an algorithm is introduced, a discussion (separate from the code) is needed to 
explain the mathematics used by the algorithm. For example, to really understand a greedy algorithm 
(such as Dijkstra's algorithm) you should understand the mathematical properties that show how the 
greedy strategy is valid for all cases. In a way, you can think of the mathematics as its own kind of 
subroutine that the algorithm invokes. But this "subroutine" is not present in the code because there's 
nothing to call. As you read this book try to think about mathematics as an implicit subroutine.

Overview of the Techniques
The techniques this book covers are highlighted in the following overview.

• Divide and Conquer: Many problems, particularly when the input is given in an array, can 
be  solved  by  cutting  the  problem  into  smaller  pieces  (divide),  solving  the  smaller  parts 
recursively (conquer), and then combining the solutions into a single result. Examples include 
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the merge sort and quicksort algorithms. 

• Randomization:  Increasingly,  randomization  techniques  are  important  for  many 
applications. This chapter presents some classical algorithms that make use of random numbers. 

• Backtracking: Almost any problem can be cast in some form as a backtracking algorithm. 
In backtracking,  you consider all possible choices to solve a problem and recursively solve 
subproblems under the assumption that the choice is taken. The set of recursive calls generates a 
tree in which each set of choices in the tree is considered consecutively. Consequently, if a 
solution exists, it will eventually be found. 

Backtracking is generally an inefficient, brute-force technique, but there are optimizations that 
can  be  performed  to  reduce  both  the  depth  of  the  tree  and  the  number  of  branches.  The 
technique is called backtracking because after one leaf of the tree is visited, the algorithm will 
go back up the call stack (undoing choices that didn't lead to success), and then proceed down 
some other branch. To be solved with backtracking techniques, a problem needs to have some 
form of "self-similarity," that is, smaller instances of the problem (after a choice has been made) 
must  resemble  the original  problem. Usually,  problems can be  generalized to  become self-
similar.

• Dynamic  Programming:  Dynamic  programming  is  an  optimization  technique  for 
backtracking algorithms. When subproblems need to be solved repeatedly (i.e., when there are 
many duplicate branches in the backtracking algorithm) time can be saved by solving all of the 
subproblems  first  (bottom-up,  from  smallest  to  largest)  and  storing  the  solution  to  each 
subproblem in  a  table.  Thus,  each  subproblem is  only  visited  and  solved  once  instead  of 
repeatedly. The "programming" in this technique's name comes from programming in the sense 
of writing things down in a table; for example, television programming is making a table of 
what shows will be broadcast when. 

• Greedy Algorithms: A greedy algorithm can be useful when enough information is known 
about possible choices that "the best" choice can be determined without considering all possible 
choices. Typically, greedy algorithms are not challenging to write, but they are difficult to prove 
correct. 

• Hill Climbing: The final technique we explore is hill climbing. The basic idea is to start 
with a poor solution to a problem, and then repeatedly apply optimizations to that solution until 
it becomes optimal or meets some other requirement. An important case of hill climbing is 
network  flow.  Despite  the  name,  network  flow is  useful  for  many  problems  that  describe 
relationships, so it's not just for computer networks. Many matching problems can be solved 
using network flow. 
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3 MATHEMATICAL BACKGROUND
live version • discussion • edit lesson • comment • report an error • ask a question

Before  we  begin  learning  algorithmic  techniques,  we  take  a  detour  to  give  ourselves  some 
necessary mathematical tools. First, we cover mathematical definitions of terms that are used later on in 
the book. By expanding your mathematical vocabulary you can be more precise and you can state or 
formulate problems more simply. Following that, we cover techniques for analysing the running time 
of an algorithm. After each major algorithm covered in this book we give an analysis of its running 
time as well as a proof of its correctness

Mathematical Definitions
A set is a collection of objects, containing at most one of each object. An object can be anything, 

including another set. The fundamental operation on a set is "member of", written " ". Two sets are 
equal if and only if they contain the same members. The following are all sets:

{1,2} 
The set containing the integers "1" and "2". 

 
The set of all natural numbers. We define  such that , but  is sometimes defined 
such that . 

 
The set of all positive and negative integers and zero. 

 
The set of all rational numbers (i.e. well-defined ratios of two integers). 

 
The set of all real numbers, rational numbers and numbers like π and e with infinite decimal 
expansions. 

 
The set that contains nothing, known as the empty set. 

We can also describe a new set using a set comprehension of the form

 

where S is an already-defined set and P is an arbitrary predicate (something that is either true or 
false of everything it is applied to). You get the new set by going through all of the elements  i in  S 
(whose elements you already know), and picking out the ones for which P(i) is true. For example,

 

is the set of all even integers. Frequently in this book, we will leave out the  and expect it to 
be implied from the context.
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An ordered n-tuple, often called just an n-tuple, is an ordered group of n objects, possibly not all 

of the same type. It is written " ". The same object can appear more than once in a given 
n-tuple. Two n-tuples are considered equal when they have exactly the same objects in exactly the 

same positions. The most common n-tuple is the "ordered pair," written " ".

We can compare sets based on their elements. The fundamental comparisons are true when one set 
contains all of the members of another set. In the following definitions, A and B, and C are sets.

Comparison 
name Notation Mathematical 

definition English definition

Subset
All members of A are also members of B. For 
any set A,  and 

Proper subset This comparison is used when we want to 
exclude the set itself.

Superset

Proper superset
There are also many operations that apply to sets.

Operation 
name Notation Mathematical definition English definition

Union The set of things that are in either A 
or B.

Intersection The set of things that are in both A 
and B.

Set difference
 or 

sometimes A - 
B

The set of things in A but not B.

Complement A - 1, AC, or A'
The set of things not in A. This is 
only well-defined with respect to 
some implied universal set U.

Power set  or 2A
The set of subsets of A. For any set 

A,  and 

Cartesian 
product

The set of every pairing of an 
element from A with an element 
from B.

We can extend the Cartesian product definition to include n-ary products, defined as

 

Using this extension, we can also define Cartesian exponentiation:
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A relation R on a set S is a subset of . We often write xRy to mean . Some 
common relations are: "is taller than", "knows about", "is derived from", "lives near", and "<". We can 
classify relations by what objects they relate:

A relation R on S 
is when (for all a, b, and c in S)

reflexive aRa
irreflexive
symmetric if aRb then bRa
antisymmetric if aRb and bRa, then a = b

asymmetric if aRb then 
transitive if aRb and bRc then aRc
intransitive if aRb and bRc then 
a weak partial order it is reflexive, antisymmetric, and transitive
a weak total order it is a weak partial order and either aRb or bRa
a strict partial order it is irreflexive, asymmetric, and transitive

a strict total order it is a strict partial order and either aRb, bRa, or a = 
b

well founded there are no infinite descending chains in S
We usually use the symbol "≤" for a weak order and "<" for a strict order. The set of integers, the 

set of floating-point numbers, and the set of strings can all have a total ordering defined on them.

Note that none of the pairs of reflexive and irreflexive, symmetric and asymmetric, or transitive 

and intransitive are opposites of each other. For example, the relation   is neither 
reflexive nor irreflexive.

A sequence is an ordered list, ordered multiset, or an ordered array of items of the same type. The 
following variables are all sequences:

let A := array {"a", "tree", "that", "is", "inflexible", "will", "snap"}
let B := list {1, 4, 1, 5, 9, 2, 6, 5, 3, 5}
let C := array {}

Here, A is an array of strings, B is a list of integers, and C is an empty array. Note that B contains 
the values "1" twice and "5" three times.

A subsequence of a sequence is a new sequence formed by deleting some elements from the old 
sequence and leaving the remaining elements in the same relative order. For example,

let A_T_words:= array {"tree", "that"}
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let B_evens := list {4, 2, 6}
let B_odds := list {1, 1, 5, 9, 5, 3, 5}
let B_primes := list {5, 2, 5, 3, 5}
let B_empty := list {}

Note that the empty sequence (C and B_empty, above) is a subsequence of every sequence. Also 
note that a sequence can have many different subsequences.

A  median of a set of values is the value that separates the highest half of the values from the 
lowest half. To find the median, arrange all the observations from lowest value to highest value and 
pick the middle one. If there are an even number of values, the median can be defined as the mean of 
the two middle values.

The  closed form of a function is a description of the function in mathematical terms that use a 
bounded number of well-known operations. For example, expressions using only addition, subtraction, 
multiplication, division, exponentiation, negation, absolute-value, and the factorial function would be 
considered closed form. Specifically not allowed is when the number of operations depends upon the 
values  of  the  function's  variable.  For  example,  here  is  a  non-closed  form version  of  the  function 
sum(n), the sum of the first n positive integers:

 

And, here is the closed-form version of that same function:

 

Asymptotic Notation
In addition to correctness another important characteristic of a useful algorithm is its time and 

memory  consumption.  Time  and  memory  are  both  valuable  resources  and  there  are  important 
differences (even when both are abundant) in how we can use them.

How can you measure resource consumption? One way is to create a function that describes the 
usage in  terms of some characteristic  of  the input.  One commonly used characteristic of  an input 
dataset is the its size. For example, suppose an algorithm takes as input an array of n integers. We can 
describe the time this algorithm takes as a function  f written in terms of  n. For example, we might 
write:

f(n) = n2 + 3n + 14 

where the value of f(n) is some unit of time (in this discussion the main focus will be on time, but 
we could do the same for memory consumption). Rarely are the units of time actually in seconds, 
because that would depend on the machine itself, the system it's running, and its load. Instead, the units 
of  time typically  used are  in  terms of  the number  of  some fundamental  operation performed.  For 
example,  some  fundamental  operations  we  might  care  about  are:  the  number  of  additions  or 
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multiplications needed; the number of element comparisons; the number of memory-location swaps 
performed; or the raw number of machine instructions executed. In general we might just refer to these 
fundamental operations performed as steps taken.

Is this a good approach to determine an algorithm's resource consumption? Yes and no. When two 
different algorithms are similar in time consumption a precise function might help to determine which 
algorithm is faster under given conditions. But in many cases it  is either difficult or impossible to 
calculate  an  analytical  description of  the  exact  number  of  operations  needed,  especially  when the 
algorithm performs operations conditionally on the values of its input. Instead, what really is important 
is  not  the  precise  time  required  to  complete  the  function,  but  rather  the  degree  that  resource 
consumption changes depending on its inputs. Concretely, consider these two functions, representing 
the computation time required for each size of input dataset:

f(n) = n3 - 12n2 + 20n + 110 
g(n) = n3 + n2 + 5n + 5 

As n gets larger, the other terms become much less significant in comparison to n3.

As  you  can  see,  modifying  a  polynomial-time  algorithm's  low-order  coefficients  doesn't  help 
much. What really matters is the highest-order coefficient. This is why we've adopted a notation for 
this kind of analysis. We say that:

f(n) = n3 - 12n2 + 20n + 110 = O(n3) 

We ignore the low-order terms. We can say that:

 

This gives us a way to more easily compare algorithms with each other. Running an insertion sort 
on n elements takes steps on the order of O(n2). Merge sort sorts in O(nlogn) steps. Therefore, once the 
input dataset is large enough, merge sort is faster than insertion sort.

In general, we write

f(n) = O(g(n)) 

when

 

That is, f(n) = O(g(n)) holds if and only if there exists some constants c and n0 such that for all n > 
n0 f(n) is positive and less than or equal to cg(n).

Note that the equal sign used in this notation describes a relationship between f(n) and g(n) instead 
of reflecting a true equality. In light of this, some define Big-O in terms of a set, stating that:
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when

 

Big-O notation is only an upper bound; both these two are both true:

n3 = O(n4) 
n4 = O(n4) 

If we use the equal sign as an equality we can get very strange results, such as:

n3 = n4 

which is obviously nonsense. This is why the set-definition is handy. You can avoid these things 
by thinking of the equal sign as a one-way equality, i.e:

n3 = O(n4) 

does not imply

O(n4) = n3 

Always keep the O on the right hand side.

Big Omega

Sometimes, we want more than an upper bound on the behavior of a certain function. Big Omega 
provides a lower bound. In general, we say that

f(n) = Ω(g(n)) 

when

 

I.e. f(n) = O(g(n)) if and only if there exist constants c and n0 such that for all n>n0 f(n) is positive 
and greater than or equal to cg(n).

So, for example, we can say that

n2 - 2n = Ω(n2) - (c=1/2, n0=4) or 

n2 - 2n = Ω(n) - (c=1, n0=3), 
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but it is false to claim that

n2 - 2n = Ω(n3). 

Big Theta

When a given function is both O(g(n)) and Ω(g(n)), we say it is Θ(g(n)), and we have a tight bound 
on the function. A function f(n) is Θ(g(n)) when

 

but most of the time, when we're trying to prove that a given f(n) = Θ(g(n)), instead of using this 
definition, we just show that it is both O(g(n)) and Ω(g(n)).

Little-O and Omega

When the asymptotic bound is not tight, we can express this by saying that f(n) = o(g(n)) or f(n) = 
ω(g(n)). The definitions are:

f(n) is o(g(n)) iff  and 

f(n) is ω(g(n)) iff  

Note that a function f is in o(g(n)) when for any coefficient of g, g eventually gets larger than f, 
while for O(g(n)), there only has to exist a single coefficient for which g eventually gets at least as big 
as f.

Algorithm Analysis: Solving Recurrence Equations
Merge sort of n elements: T(n) = 2 * T(n / 2) + c(n) This describes one iteration of the merge sort: 

the problem space n is reduced to two halves (2 * T(n / 2)), and then merged back together at the end of 
all the recursive calls (c(n)). This notation system is the bread and butter of algorithm analysis, so get 
used to it.

There are some theorems you can use to estimate the big Oh time for a function if its recurrence 
equation fits a certain pattern.

Substitution method

Formulate a guess about the big Oh time of your equation. Then use proof by induction to prove 
the guess is correct.
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Draw the Tree and Table

This is really just a way of getting an intelligent guess. You still have to go back to the substitution 
method in order to prove the big Oh time.

The Master Theorem

Consider a recurrence equation that fits the following formula:

 

for a ≥ 1, b > 1 and k ≥ 0. Here, a is the number of recursive calls made per call to the function, n 
is the input size, b is how much smaller the input gets, and k is the polynomial order of an operation 
that occurs each time the function is called (except for the base cases). For example, in the merge sort 
algorithm covered later, we have

 

because two subproblems are called for each non-base case iteration, and the size of the array is 
divided  in  half  each  time.  The  O(n)  at  the  end  is  the  "conquer"  part  of  this  divide  and conquer 
algorithm: it takes linear time to merge the results from the two recursive calls into the final result.

Thinking of the recursive calls of T as forming a tree, there are three possible cases to determine 
where most of the algorithm is spending its time ("most" in this sense is concerned with its asymptotic 
behaviour):

1. the tree can be top heavy, and most time is spent during the initial calls near the root; 
2. the tree can have a steady state, where time is spread evenly; or 
3. the tree can be bottom heavy, and most time is spent in the calls near the leaves 

Depending upon which of these three states the tree is in T will have different complexities:

The Master Theorem

Given  for a ≥ 1, b > 1 and k ≥ 0:

• If a < bk, then  (top heavy) 

• If a = bk, then  (steady state) 

• If a > bk, then  (bottom heavy) 

For the merge sort example above, where
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we have

 

thus,  a =  bk and so this is also in the "steady state": By the master theorem, the complexity of 
merge sort is thus

T(n) = O(n1logn) = O(nlogn). 

Amortized Analysis
[Start with an adjacency list representation of a graph and show two nested for loops: one for each 

node n, and nested inside that one loop for each edge e. If there are n nodes and m edges, this could 
lead you to say the loop takes O(nm) time. However, only once could the innerloop take that long, and 
a tighter bound is O(n+m).]
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4 DIVIDE AND CONQUER
live version • discussion • edit lesson • comment • report an error • ask a question

The first major algorithmic technique we cover is divide and conquer. Part of the trick of making 
a good divide and conquer algorithm is determining how a given problem could be separated into two 
or more similar, but smaller, subproblems. More generally, when we are creating a divide and conquer 
algorithm we will take the following steps:

Divide and Conquer Methodology

1. Given a problem, identify a small number of significantly smaller subproblems of the same 
type 

2. Solve each subproblem recursively (the smallest possible size of a subproblem is a base-case) 
3. Combine these solutions into a solution for the main problem 

The first algorithm we'll present using this methodology is the merge sort.

Merge Sort
The problem that merge sort solves is general sorting: given an unordered array of elements that 

have a total ordering, create an array that has the same elements sorted. More precisely, for an array a 
with indexes 1 through n, if the condition

for all i, j such that 1 ≤ i < j ≤ n then a[i] ≤ a[j] 

holds, then a is said to be sorted. Here is the interface:

// sort -- returns a sorted copy of array a
function sort(array a): array

Following  the  divide  and  conquer  methodology,  how  can  a be  broken  up  into  smaller 
subproblems? Because a is an array of n elements, we might want to start by breaking the array into 
two arrays of size n/2 elements. These smaller arrays will also be unsorted and it is meaningful to sort 
these smaller problems; thus we can consider these smaller arrays "similar". Ignoring the base case for 
a moment, this reduces the problem into a different one: Given two sorted arrays, how can they be 
combined to form a single sorted array that contains all the elements of both given arrays:

// merge -- given a and b (assumed to be sorted) returns a merged array that
// preserves order
function merge(array a, array b): array

So far, following the methodology has lead us to this point, but what about the base case? The base 
case is the part of the algorithm concerned with what happens when the problem cannot be broken into 
smaller subproblems. Here, the base case is when the array only has one element. The following is a 
sorting algorithm that faithfully sorts arrays of only zero or one elements:
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// base-sort -- given an array of one element (or empty), return a copy of the
// array sorted
function base-sort(array a[1..n]): array
  assert (n <= 1)
  return a.copy()
end

Putting this together, here is what the methodology has told us to write so far:

// sort -- returns a sorted copy of array a
function sort(array a[1..n]): array
  if n <= 1: return a.copy()
  else:
    let sub_size := n / 2
    let first_half := sort(a[1,..,sub_size])
    let second_half := sort(a[sub_size + 1,..,n])
    
    return merge(first_half, second_half)
  fi
end

And, other than the unimplemented merge subroutine, this sorting algorithm is done! Before we 
cover how this algorithm works, here is how merge can be written:

// merge -- given a and b (assumed to be sorted) returns a merged array that
// preserves order
function merge(array a[1..n], array b[1..m]): array
  let result := new array[n + m]
  let i, j := 0
  
  for k := 1 to n + m:
    if i >= n: result[k] := b[j]; j += 1
    else-if j >= m: result[k] := a[i]; i += 1
    else:
      if a[i] < b[j]:
        result[k] := a[i]; i += 1
      else:
        result[k] := b[j]; j += 1
      fi
    fi
  repeat
end

This merge sort algorithm can be turned into an iterative algorithm by starting with all pairs, then 
all fours, et cetera... However, because the recursive version's call tree is logarithmically deep, it does 
not require much run-time stack space: Even sorting 4 gigs of items would only require 32 call entries 
on the stack, a very modest amount considering if even each call required 256 bytes on the stack, it 
would only require 8 kilobytes.

The iterative version of mergesort is a minor modification to the recursive version - in fact we can 
reuse the earlier merging function. The algorithm works by merging small, sorted subsections of the 
original array to create larger subsections of the array which are sorted. To accomplish this, we iterate 
through the array with successively larger "strides".

// sort -- returns a sorted copy of array a
function sort_iterative(array a[1..n]): array     
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   let result := a.copy()
   for power := 0 to log2(n-1)
     let unit := 2^power
     for i := 1 to n by unit*2
       let a1[1..unit] := result[i..i+unit]
       let a2[1..unit] := result[i+unit..i+unit*2]
       result[i..i+unit*2] := merge(a1,a2)
     repeat
   repeat
   
   return result
end

This works because the array starts out as a set  of chunks length 1 which are "sorted." Each 
iteration through the array (using counting variable  i) doubles the size of sorted chunks by merging 
adjacent  chunks  into  sorter  larger  versions.  The  current  size  of  sorted  chunks  in  the  algorithm is 
represented by the unit variable.

Binary Search
Once an array is sorted, we can quickly locate items in the array by doing a binary search. Binary 

search is different from other divide and conquer algorithms in that it is mostly divide based (nothing 
needs to be conquered). The concept behind binary search will be useful for understanding the partition 
and quicksort algorithms, presented in the randomization chapter.

Finding an item in an already sorted array is similar to finding a name in a phonebook: you can 
start by flipping the book open toward the middle. If the name you're looking for is on that page, you 
stop. If you went too far, you can start the process again with the first half of the book. If the name 
you're searching for appears later than the page, you start from the second half of the book instead. You 
repeat this process, narrowing down your search space by half each time, until you find what you were 
looking  for  (or,  alternatively,  find  where  what  you  were  looking  for  would  have  been  if  it  were 
present).

The following algorithm states this procedure precisely:

// binary-search -- returns the index of value in the given array, or
// -1 if value cannot be found. Assumes array is sorted in ascending order
function binary-search(value, array A[1..n]): integer
  return search-inner(value, A, 1, n + 1)
end

// search-inner -- search subparts of the array; end is one past the
// last element 
function search-inner(value, array A, start, end): integer
  if start == end: 
     return -1                   // not found
  fi

  let length := end - start
  if length == 1:
    if value == A[start]:
      return start
    else:
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      return -1 
    fi
  fi
  
  let mid := start + (length / 2)
  if value == A[mid]:
    return mid
  else-if value > A[mid]:
    return search-inner(value, A, mid + 1, end)
  else:
    return search-inner(value, A, start, mid)
  fi
end

Note  that  all  recursive  calls  made  are  tail-calls,  and  thus  the  algorithm  is  iterative.  We  can 
explicitly remove the tail-calls if our programming language does not do that for us already by turning 
the argument values passed to the recursive call into assignments, and then looping to the top of the 
function body again:

// binary-search -- returns the index of value in the given array, or
// -1 if value cannot be found. Assumes array is sorted in ascending order
function binary-search(value, array A[1,..n]): integer
  let start := 1
  let end := n + 1
  
  loop:
    if start == end: return -1 fi                 // not found
  
    let length := end - start
    if length == 1:
      if value == A[start]: return start
      else: return -1 fi
    fi
  
    let mid := start + (length / 2)
    if value == A[mid]:
      return mid
    else-if value > A[mid]:
      start := mid + 1
    else:
      end := mid
    fi
  repeat
end

Even though we have an iterative algorithm, it's easier to reason about the recursive version. If the 
number of steps the algorithm takes is T(n), then we have the following recurrence that defines T(n):

 

The size of each recursive call made is on half of the input size (n), and there is a constant amount 
of time spent outside of the recursion (i.e., computing  length and  mid will take the same amount of 
time, regardless of how many elements are in the array). By the master theorem, this recurrence has 
values a = 1,b = 2,k = 0, which is a "steady state" tree, and thus we use the steady state case that tells us 
that
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Thus, this algorithm takes logarithmic time. Typically, even when n is large, it is safe to let the 
stack grow by logn activation records through recursive calls.

Integer Multiplication
If you want to perform arithmetic with small integers, you can simply use the built-in arithmetic 

hardware of your machine. However, if you wish to multiply integers larger than those that will fit into 
the  standard  "word"  integer  size  of  your  computer,  you  will  have  to  implement  a  multiplication 
algorithm in software. For example, RSA encryption needs to work with integers of very large size 
(that is, large relative to the 64-bit word size of many machines) and utilizes special multiplication 
algorithms.

Grade School Multiplication

How do we represent a large, multi-word integer? We can have a binary representation by using an 
array (or an allocated block of memory) of words to represent the bits of the large integer. Suppose 
now that we have two integers, X and Y, and we want to multiply them together. For simplicity, let's 
assume that both X and Y have n bits each (if one is shorter than the other, we can always pad on zeros 
at the beginning). The most basic way to multiply the integers is to use the grade school multiplication 
algorithm. This is even easier in binary, because we only multiply by 1 or 0:

         x6 x5 x4 x3 x2 x1 x0
      ×  y6 y5 y4 y3 y2 y1 y0
      -----------------------
         x6 x5 x4 x3 x2 x1 x0 (when y0 is 1; 0 otherwise)
      x6 x5 x4 x3 x2 x1 x0  0 (when y1 is 1; 0 otherwise)
   x6 x5 x4 x3 x2 x1 x0  0  0 (when y2 is 1; 0 otherwise)
x6 x5 x4 x3 x2 x1 x0  0  0  0 (when y3 is 1; 0 otherwise)
  ... et cetera

As an algorithm, here's what multiplication would look like:

// multiply -- return the product of two binary integers, both of length n
function multiply(bitarray x[1,..n], bitarray y[1,..n]): bitarray
  bitarray p = 0
  for i:=1 to n:
    if y[i] == 1:
      p := add(p, x)
    fi
    x := pad(x, 0)         // add another zero to the end of x
  repeat
  return p
end

The subroutine add adds two binary integers and returns the result, and the subroutine pad adds an 
extra digit to the end of the number (padding on a zero is the same thing as shifting the number to the 
left; which is the same as multiplying it by two). Here, we loop n times, and in the worst-case, we make 
n calls to add. The numbers given to add will at most be of length 2n. Further, we can expect that the 
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add subroutine can be done in linear time. Thus, if  n calls to a  O(n) subroutine are made, then the 
algorithm takes O(n2) time.

Divide and Conquer Multiplication

As you may have figured, this isn't the end of the story. We've presented the "obvious" algorithm 
for multiplication; so let's see if a divide and conquer strategy can give us something better. One route 
we might want to try is breaking the integers up into two parts. For example, the integer  x could be 
divided into two parts, xh and xl, for the high-order and low-order halves of x. For example, if x has n 
bits, we have

 

We could do the same for y:

 

But from this division into smaller parts, it's not clear how we can multiply these parts such that 
we can combine the results for the solution to the main problem. First, let's write out  would be 
in such a system:

 

This  comes  from simply  multiplying  the  new  hi/lo  representations  of  x and  y together.  The 
multiplication of the smaller pieces are marked by the " " symbol. Note that the multiplies by 2n / 2 

and (2n / 2)2 = 2n does not require a real multiplication: we can just pad on the right number of zeros 
instead. This suggests the following divide and conquer algorithm:

// multiply -- return the product of two binary integers, both of length n
function multiply(bitarray x[1,..n], bitarray y[1,..n]): bitarray
  if n == 1: return x[1] * y[1] fi          // multiply single digits: O(1)
  
  let xh := x[n/2 + 1, .., n]               // array slicing, O(n)
  let xl := x[0, .., n / 2]                 // array slicing, O(n)
  let yh := y[n/2 + 1, .., n]               // array slicing, O(n)
  let yl := y[0, .., n / 2]                 // array slicing, O(n)
  
  let a := multiply(xh, yh)                 // recursive call; T(n/2)
  let b := multiply(xh, yl)                 // recursive call; T(n/2)
  let c := multiply(xl, yh)                 // recursive call; T(n/2)
  let d := multiply(xl, yl)                 // recursive call; T(n/2)
  
  b := add(b, c)                            // regular addition; O(n)
  a := shift(a, n)                          // pad on zeros; O(n)
  b := shift(b, n/2)                        // pad on zeros; O(n)
  return add(a, b, d)                       // regular addition; O(n)
end

We can use the master theorem to analyze the running time of this algorithm. Assuming that the 
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algorithm's running time is T(n), the comments show how much time each step takes. Because there are 
four recursive calls, each with an input of size n / 2, we have:

T(n) = 4T(n / 2) + O(n) 

Here, a = 4,b = 2,k = 1, and given that 4 > 21 we are in the "bottom heavy" case and thus plugging 
in these values into the bottom heavy case of the master theorem gives us:

 

Thus, after all of that hard work, we're still no better off than the grade school algorithm! Luckily, 
numbers and polynomials are a data set we know additional information about. In fact, we can reduce 
the running time by doing some mathematical tricks.

First, let's replace the 2n / 2 with a variable, z:

 

This appears to be a quadratic formula, and we know that you only need three co-efficients or 
points on a graph in order to uniquely describe a quadratic formula. However, in our above algorithm 
we've been using four multiplications total. Let's try recasting x and y as linear functions:

 

 

Now, for  we just need to compute . We'll evaluate Px(z) and Py(z) at 
three  points.  Three  convenient  points  to  evaluate  the  function  will  be  at 

:

Base Conversion
Along with the binary, the science of computers employs bases 8 and 16 for it's  very easy to 

convert between the three while using bases 8 and 16 shortens considerably number representations.

To represent 8 first  digits in the binary system we need 3 bits.  Thus we have, 0=000, 1=001, 
2=010,  3=011,  4=100,  5=101,  6=110,  7=111.  Assume  M=(2065)8.  In  order  to  obtain  its  binary 
representation, replace each of the four digits with the corresponding triple of bits: 010 000 110 101. 
After removing the leading zeros, binary representation is immediate: M=(10000110101)2. (For the 
hexadecimal system conversion is quite similar, except that now one should use 4-bit representation of 
numbers below 16.) This fact follows from the general conversion algorithm and the observation that 
8=23 (and, of course, 16=24.) Thus it appears that the shortest way to convert numbers into the binary 
system is to first convert them into either octal or hexadecimal representation. Now let see how to 
implement the general algorithm programmatically.
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For the sake of reference, representation of a number in a system with base (radix) N may only 
consist of digits that are less than N.

More accurately, if

(1) M = akNk+ak-1Nk-1+...+a1N1+a0

with 0 <= ai < N we have a representation of M in base N system and write

M = (akak-1...a0)N If we rewrite (1) as

(2) M = a0+N*(a1+N*(a2+N*...))

the algorithm for obtaining coefficients ai becomes more obvious. For example, a0=M modulo n 
and a1=(M/N) modulo n, and so on.

Recursive Implementation

Let's represent the algorithm mnemonically: (result is a string or character variable where I shall 
accumulate the digits of the result one at a time)

result = "" if M < N, result = 'M' + result. Stop. S = M mod N, result = 'S' + result M = M/N goto 2 
A few words of explanation.

"" is an empty string. You may remember it's a zero element for string concatenation. Here we 
check whether the conversion procedure is over. It's over if M is less than N in which case M is a digit 
(with some qualification for N>10) and no additional action is necessary. Just prepend it in front of all 
other digits obtained previously. The '+' plus sign stands for the string concatenation. If we got this far, 
M is not less than N. First we extract its remainder of division by N, prepend this digit to the result as 
described previously, and reassign M to be M/N. This says that the whole process should be repeated 
starting with step 2. I would like to have a function say called Conversion that takes two arguments M 
and N and returns representation of the number M in base N. The function might look like this

1 String Conversion(int M, int N) // return string, accept two integers 2 { 3 if (M < N) // see if it's 
time to return 4 return new String(""+M); // ""+M makes a string out of a digit 5 else // the time is not 
yet ripe 6 return Conversion(M/N, N) +

          new String(""+(M mod N)); // continue 

7 }

This is virtually a working Java function and it would look very much the same in C++ and require 
only a slight modification for C. As you see, at some point the function calls itself with a different first 
argument.  One may say  that  the  function  is  defined  in  terms  of  itself.  Such  functions  are  called 
recursive. (The best known recursive function is factorial: n!=n*(n-1)!.) The function calls (applies) 
itself to its arguments, and then (naturally) applies itself to its new arguments, and then ... and so on. 
We can be sure that the process will eventually stop because the sequence of arguments (the first ones) 
is decreasing. Thus sooner or later the first argument will be less than the second and the process will 
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start emerging from the recursion, still a step at a time.

Iterative Implementation

Not  all  programming  languages  (Basic  is  one  example)  allow  functions  to  call  themselves 
recursively. Recursive functions may also be undesirable if process interruption might be expected for 
whatever  reason.  For  example,  in  the Tower of  Hanoi  puzzle,  the user  may want  to  interrupt  the 
demonstration being eager to test his or her understanding of the solution. There are complications due 
to the manner in which computers execute programs when one wishes to jump out of several levels of 
recursive calls.

Note however that the string produced by the conversion algorithm is obtained in the wrong order: 
all  digits  are  computed  first  and  then  written  into  the  string  the  last  digit  first.  Recursive 
implementation easily got around this  difficulty.  With each invocation of the Conversion function, 
computer creates a new environment in which passed values of M, N, and the newly computed S are 
stored. Completing the function call, i.e. returning from the function we find the environment as it was 
before the call. Recursive functions store a sequence of computations implicitly. Eliminating recursive 
calls implies that we must manage to store the computed digits explicitly and then retrieve them in the 
reversed order.

In  Computer  Science  such  a  mechanism  is  known  as  LIFO  -  Last  In  First  Out.  It's  best 
implemented with a stack data structure. Stack admits only two operations: push and pop. Intuitively 
stack can be visualized as indeed a stack of objects. Objects are stacked on top of each other so that to 
retrieve an object one has to remove all the objects above the needed one. Obviously the only object 
available for immediate removal is the top one, i.e. the one that got on the stack last.

Then iterative implementation of the Conversion function might look as the following.

1 String Conversion(int M, int N) // return string, accept two integers 2 { 3 Stack stack = new 
Stack(); // create a stack 4 while (M >= N) // now the repetitive loop is clearly seen 5 { 6 stack.push(M 
mod N); // store a digit 7 M = M/N; // find new M 8 } 9 // now it's time to collect the digits together 10 
String str = new String(""+M); // create a string with a single digit M 11 while (stack.NotEmpty()) 12 
str = str+stack.pop() // get from the stack next digit 13 return str; 14 }

The function is by far longer than its recursive counterpart; but, as I said, sometimes it's the one 
you want to use, and sometimes it's the only one you may actually use.

Closest Pair: A Divide-and-Conquer Approach

Introduction

The brute force approach to the closest pair problem (i.e. checking every possible pair of points) 
takes quadratic time. We would now like to introduce a faster divide-and-conquer algorithm for solving 
the closest pair problem. Given a set of points in the plane S, our approach will be to split the set into 
two roughly equal halves (S1 and S2) for which we already have the solutions, and then to merge the 
halves in linear time to yield an O(nlogn) algorithm. However, the actual solution is far from obvious. 
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It is possible that the the desired pair might have one point in S1 and one in S2, does this not force us 
once again to  check all  possible  pairs  of  points?  The divide-and-conquer  approach presented here 
generalizes directly from the one dimensional algorithm we presented in the previous section.

Closest Pair in the Plane

Alright, we'll generalize our 1-D algorithm as directly as possible (see figure 3.2). Given a set of 
points S in the plane, we partition it into two subsets S1 and S2 by a vertical line l such that the points 
in S1 are to the left of l and those in S2 are to the right of l.

We now recursively solve the problem on these two sets obtaining minimum distances of d1 (for 
S1), and d2 (for S2). We let d be the minimum of these.

Now, identical to the 1-D case, if the closes pair of the whole set consists of one point from each 
subset, then these two points must be within d of l. This area is represented as the two strips P1 and P2 
on either side of l

Up  to  now,  we  are  completely  in  step  with  the  1-D  case.  At  this  point,  however,  the  extra 
dimension causes some problems. We wish to determine if some point in say P1 is less than d away 
from another point in P2. However, in the plane, we don't have the luxury that we had on the line when 
we observed that only one point in each set can be within d of the median. In fact, in two dimensions, 
all of the points could be in the strip! This is disastrous, because we would have to compare n2 pairs of 
points to merge the set, and hence our divide-and-conquer algoritm wouldn't save us anything in terms 
of efficiency. Thankfully, we can make another life saving observation at this point. For any particualr 
point  p  in  one strip,  only points  that  meet  the  following constraints  in  the other  strip  need to  be 
checked:

• those points within d of p in the direction of the other strip 
• those within d of p in the positive and negative y directions 

Simply because points outside of this bounding box cannot be less than d units from p (see figure 
3.3). It just so happens that because every point in this box is at least d apart, there can be at most six 
points within it (I won't let myself get away with that scot-free, click here to see the proof). Well this is 
simply fantastic news, because now we don't need to check all n2 points. All we have to do is sort the 
points in the strip by their y-coordinates and scan the points in order, checking each point against a 
maximum of  6  of  its  neighbors.  This  means  at  most  6*n  comparisons  are  required  to  check  all 
candidate pairs. However, since we sorted the points in the strip by their y-coordinates the process of 
merging our two subsets is not linear, but in fact takes O(nlogn) time. Hence our full algorithm is not 
yet O(nlogn), but it is still an improvement on the quadratic performance of the brute force approach 
(as we shall see in the next section). In section 3.4, we will demonstrate how to make this algorithm 
even more efficient by strengthening our recursive sub-solution.

Summary and Analysis of the 2-D Algorithm

We present  here  a  step  by  step  summary of  the  algorithm presented  in  the  previous  section, 
followed by a performance analysis. The algorithm is simply written in list form because I find pseudo-
code to be burdensome and unnecessary when trying to understand an algorithm. Note that we pre-sort 
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the points according to their x coordinates which in itself takes O(nlogn) time.

ClosestPair of a set of points:

1. Divide the set into two equal sized parts by the line l, and recursively compute the minimal 
distance in each part. 

2. Let d be the minimal of the two minimal distances. 
3. Eliminate points that lie farther than d apart from l 
4. Sort the remaining points according to their y-coordinates 
5. Scan the remaining points in the y order and compute the distances of each point to its five 

neighbors. 
6. If any of these distances is less than d then update d. 
7. Steps 2-6 define the merging process which must be repeated logn times because this is a 

divide and conquer algortithm: 
8. Step 2 takes O(1) time 
9. Step 3 takes O(n) time 
10.Step 4 is a sort that takes O(nlogn) time 
11.Step 5 takes O(n) time (as we saw in the previous section) 
12.Step 6 takes O(1) time 

Hence the merging of the sub-solutions is dominated by the sorting at step 4, and hence takes 
O(nlogn) time.

This must be repeated once for each level of recursion in the divide-and-conquer algorithm,

hence the whole of algorithm ClosestPair takes O(logn*nlogn) = O(nlog2n) time.

Improving the Algorithm

We can improve on this algorithm slightly by reducing the time it takes to achieve the y-coordinate 
sorting in Step 4. This is done by asking that the recursive solution computed in Step 1 returns the 
points in sorted order by their y coordinates. This will yield two sorted lists of points which need only 
be merged (a linear time operation) in Step 4 in order to yield a complete sorted list. Hence the revised 
algorithm involves  making  the  following  changes:  Step  1:  Divide  the  set  into...,  and  recursively 
compute the distance in each part, returning the points in each set in sorted order by y-coordinate. Step 
4: Merge the two sorted lists into one sorted list  in O(n) time. Hence the merging process is now 
dominated by the linear time steps thereby yielding an O(nlogn) algorithm for finding the closest pair 
of a set of points in the plane.
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5 RANDOMIZATION
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Increasingly,  randomization is being used to obtain algorithms that are fast in the average case 
and  only  perform  poorly  under  highly  improbable  situations.  Randomization  is  also  used  for 
approximation algorithms.

Ordered Statistics
Before covering randomized techniques, we'll start with a deterministic problem that leads to a 

problem that utilitizes randomization. Suppose you have an unsorted array of values and you want to 
find

• the maximum value, 
• the minimum value, and 
• the median value. 

In the immortal words of one of our former computer science professors, "How can you do?"

find-max

First, it's relatively straightforward to find the largest element:

// find-max -- returns the maximum element, or -infinity if the array is empty
function find-max(array vals): element
  let result := 
  for-each v in vals:
    result := max(result, v)
  repeat
  
  return result
end

Here, we use the special value of negative infinity for when there are no elements in the array. 
When negative infinity is compared it is always less-than any value, thus

v == max(v, )

for  all  v.  You could write  a  similar  routine to  find the minimum element  by calling the min 
function instead of the max function, and by beginning with the value of positive infinity (this is left as 
an exercise). In a programming language without infinity, you could use an additional flag that is set to 
true when the value should be interpreted as infinity instead and then check the flag before checking 
the value itself.
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find-min-max

But now suppose you want to find the min and the max at the same time; here's one solution:

// find-min-max -- returns the minimum and maximum element of the given array
function find-min-max(array vals): pair
  return pair {find-min(vals), find-max(vals)}
end

Because find-max and find-min both make n calls to the max or min functions (when vals has n 
elements), the total number of comparisons made in find-min-max is 2n.

However, some redundant comparisons are being made. These redundancies can be removed by 
"weaving" together the min and max functions:

// find-min-max -- returns the minimum and maximum element of the given array
function find-min-max(array vals[1..n]): pair
  let min := 
  let max := 
  
  if n is odd:
    min := max := vals[1]
    vals := vals[2,..,n]          // we can now assume n is even
    n := n - 1
  fi
  
  for i:=1 to n by 2:             // consider pairs of values in vals
    if vals[i] < vals[i + 1]:
      let a := vals[i]
      let b := vals[i + 1]
    else:
      let a := vals[i + 1]
      let b := vals[i]            // invariant: a <= b
    fi
    
    if a < min: min := a fi
    if b > max: max := b fi
  repeat
  
  return pair {min, max}
end

Here,  we  only  loop  n /  2  times  instead  of  n times,  but  for  each  iteration  we  make  three 
comparisons. Thus, the number of comparisons made is (3 / 2)n = 1.5n, resulting in a 3 / 4 speed up 
over the original algorithm.

Only three comparisons need to be made instead of four because, by construction, it's always the 
case that . (In the first part of the "if", we actually know more specifically that a < b, but under 
the else part, we can only conclude that .) This property is utilized by noting that a doesn't need 
to  be  compared  with  the  current  maximum,  because  b is  already greater  than  or  equal  to  a,  and 
similarly, b doesn't need to be compared with the current minimum, because a is already less than or 
equal to b.
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In software engineering,  there  is  a  struggle  between using libraries versus  writing customized 
algorithms. In this case, the min and max functions weren't used in order to get a faster find-min-max 
routine. Such an operation would probably not be the bottleneck in a real-life program: however, if 
testing reveals the routine should be faster, such an approach should be taken. Typically, the solution 
that  reuses  libraries  is  better  overall  than  writing  customized  solutions.  Techniques  such  as  open 
implementation and aspect-oriented programming may help manage this contention to get the best of 
both worlds, but regardless it's a useful distinction to recognize.

find-median

Finally, we need to consider how to find the median value. One approach is to sort the array then 
extract the median from the position vals[n/2]:

// find-median -- returns the median element of vals
function find-median(array vals[1..n]): element
  assert (n > 0)
  
  sort(vals)
  return vals[n / 2]
end

If our values are not numbers close enough in value (or otherwise cannot be sorted by a radix sort) 
the sort above is going to require O(nlogn) steps.

However, it is possible to extract the nth-ordered statistic in O(n) time. The key is eliminating the 
sort: we don't actually require the entire array to be sorted in order to find the median, so there is some 
waste in sorting the entire array first. One technique we'll use to accomplish this is randomness.

Before presenting a non-sorting  find-median function, we introduce a divide and conquer-style 
operation known as partitioning. What we want is a routine that finds a random element in the array 
and then partitions the array into three parts:

1. elements that are less than or equal to the random element; 
2. elements that are equal to the random element; and 
3. elements that are greater than or equal to the random element. 

These three sections are denoted by two integers: j and i. The partitioning is performed "in place" 
in the array:

// partition -- break the array three partitions based on a randomly picked 
element
function partition(array vals): pair{j, i}

Note that when the random element picked is actually represented three or more times in the array 
it's possible for entries in all three partitions to have the same value as the random element. While this 
operation may not  sound very useful,  it  has a  powerful  property that  can be exploited:  When the 
partition operation completes, the randomly picked element will be in the same position in the array as 
it would be if the array were fully sorted!

This property might  not  sound so powerful,  but  recall  the opitimzation for the  find-min-max 
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function: we noticed that by picking elements from the array in pairs and comparing them to each other 
first we could reduce the total number of comparisons needed (because the current min and max values 
need to be compared with only one value each, and not two). A similar concept is used here.

While the code for partition is not magical, it has some tricky boundary cases:

// partition -- break the array into three ordered partitions from a random 
element
function partition(array vals): pair{j, i}
  let m := 0
  let n := vals.length - 1
  let irand := random(m, n)   // returns any value from m to n
  let x := vals[irand]
  
end

We can use partition as a subroutine for a general find operation:

// find -- moves elements in vals such that location k holds the value it would 
when sorted
function find(array vals, integer k)
  assert (0 <= k < vals.length)        // k it must be a valid index
  if vals.length <= 1:
    return
  fi
  
  let pair (j, i) := partition(vals)
  if k <= i:
    find(a[0,..,i], k)
  else-if j <= k:
    find(a[j,..,n], k - j)
  fi
end

Which leads us to the punch-line:

 // find-median -- returns the median element of vals
function find-median(array vals): element
  assert (vals.length > 0)
  
  let median_index := vals.length / 2;
  find(vals, median_index)
  return vals[median_index]
end

One  consideration  that  might  cross  your  mind  is  "is  the  random call  really  necessary?"  For 
example, instead of picking a random pivot, we could always pick the middle element instead. Given 
that our algorithm works with all possible arrays, we could conclude that the running time on average 
for all of the possible inputs is the same as our analysis that used the random function. The reasoning 
here is that under the set of all possible arrays, the middle element is going to be just as "random" as 
picking anything else. But there's a pitfall in this reasoning: Typically, the input to an algorithm in a 
program isn't random at all. For example, the input has a higher probability of being sorted than just by 
chance alone. Likewise, because it is real data from real programs, the data might have other patterns in 
it that could lead to suboptimal results.
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To put  this  another  way:  for  the randomized median finding algorithm, there is  a  very small 
probability  it  will  run  suboptimally,  independent  of  what  the  input  is;  while  for  a  deterministic 
algorithm that just picks the middle element, there is a greater chance it will run poorly on some of the 
most frequent input types it will receive. This leads us to the following guideline:

Randomization Guideline:
If your algorithm depends upon randomness, be sure you introduce the randomness yourself instead of 
depending upon the data to be random.

Note that there are "derandomization" techniques that can take an average-case fast algorithm and 
turn it into a fully deterministic algorithm. Sometimes the overhead of derandomization is so much that 
it requires very large datasets to get any gains. Nevertheless, derandomization in itself has theoretical 
value.

The randomized  find algorithm was invented  by C.  A.  R.  "Tony" Hoare.  While  Hoare  is  an 
important  figure  in  computer  science,  he  may be  best  known in  general  circles  for  his  quicksort 
algorithm, which we discuss in the next section.

Exercises
1. Write  a  find-min function  and  run  it  on  several  different  inputs  to  demonstrate  its 

correctness. 
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Backtracking is  a  general  algorithmic  technique  that  considers  searching  every  possible 
combination in order to solve an optimization problem. Backtracking is also known as  depth-first 
search or  branch and bound. By inserting more knowledge of the problem, the search tree can be 
pruned to avoid considering cases that don't look promising. While backtracking is useful for hard 
problems to which we do not know more efficient solutions, it  is a poor solution for the everyday 
problems that other techniques are much better at solving.

However,  dynamic programming and greedy algorithms can be thought of as optimizations to 
backtracking,  so the general  technique behind backtracking is useful for understanding these more 
advanced concepts. Learning and understanding backtracking techniques first provides a good stepping 
stone to these more advanced techniques because you won't have to learn several new concepts all at 
once.

Backtracking Methodology

1. View picking a solution as a sequence of choices 
2. For each choice, consider every option recursively 
3. Return the best solution found 

This methodology is generic enough that it can be applied to most problems. However, even when 
taking care to improve a backtracking algorithm, it will probably still take exponential time rather than 
polynomial  time.  Additionally,  exact  time  analysis  of  backtracking  algorithms  can  be  extremely 
difficult: instead, simpler upperbounds that may not be tight are given.

Longest Common Subsequence (exhaustive version)
Note that the solution to the longest common subsequence (LCS) problem discussed in this section 

is  not  efficient.  However,  it  is  useful  for  understanding the  dynamic  programming version  of  the 
algorithm that is covered later.

The LCS problem is similar to what the Unix "diff" program does. The diff command in Unix 
takes two text files,  A and  B,  as input and outputs the differences line-by-line from  A and  B.  For 
example, diff can show you that lines missing from A have been added to B, and lines present in A have 
been  removed from  B.  The  goal  is  to  get  a  list  of  additions  and removals  that  could  be  used  to 
transform A to B. An overly conservative solution to the problem would say that all lines from A were 
removed, and that all lines from B were added. While this would solve the problem in a crude sense, we 
are concerned with the minimal number of additions and removals to achieve a correct transformation. 
Consider how you may implement a solution to this problem yourself.

The LCS problem, instead of dealing with lines in text files, is concerned with finding common 
items between two different arrays. For example,

let a := array {"The", "great", "square", "has", "no", "corners"}
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let b := array {"The", "great", "image", "has", "no", "form"}

We want to find the longest subsequence possible of items that are found in both a and b in the 
same order. The LCS of a and b is

"The", "great", "has", "no" 

Now consider two more sequences:

let c := array {1, 2, 4, 8, 16, 32}
let d := array {1, 2, 3, 32, 8}

Here, there are two longest common subsequences of c and d:

1, 2, 32; and 
1, 2, 8 

Note that

1, 2, 32, 8 

is not a common subsequence, because it is only a valid subsequence of d and not c (because c has 
8 before the 32). Thus, we can conclude that for some cases, solutions to the LCS problem are not 
unique. If we had more information about the sequences available we might prefer one subsequence to 
another: for example, if the sequences were lines of text in computer programs, we might choose the 
subsequences that  would keep function definitions or paired comment delimiters  intact  (instead of 
choosing delimiters that were not paired in the syntax).

On the top level, our problem is to implement the following function

// lcs -- returns the longest common subsequence of a and b
function lcs(array a, array b): array

which takes in two arrays as input and outputs the subsequence array.

How do you solve this problem? You could start by noticing that if the two sequences start with 
the  same  word,  then  the  longest  common  subsequence  always  contains  that  word.  You  can 
automatically put that word on your list, and you would have just reduced the problem to finding the 
longest common subset of the rest of the two lists. Thus, the problem was made smaller, which is good 
because it shows progress was made.

But if the two lists do not begin with the same word, then one, or both, of the first element in a or 
the first element in b do not belong in the longest common subsequence. But yet, one of them might be. 
How do you determine which one, if any, to add?

The solution can be thought in terms of the back tracking methodology: Try it both ways and see! 
Either way, the two sub-problems are manipulating smaller lists, so you know that the recursion will 
eventually terminate. Whichever trial results in the longer common subsequence is the winner.

Instead of "throwing it away" by deleting the item from the array we use array slices. For example, 
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the slice

a[1,..,5] 

represents the elements

{a[1], a[2], a[3], a[4], a[5]} 

of the array as an array itself. If your language doesn't support slices you'll have to pass beginning 
and/or ending indices along with the full array. Here, the slices are only of the form

a[1,..] 

which, when using 0 as the index to the first element in the array, results in an array slice that 
doesn't have the 0th element. (Thus, a non-sliced version of this algorithm would only need to pass the 
beginning valid index around instead, and that value would have to be subtracted from the complete 
array's length to get the pseudo-slice's length.)

// lcs -- returns the longest common subsequence of a and b
function lcs(array a, array b): array
  if a.length == 0 OR b.length == 0:
    // if we're at the end of either list, then the lcs is empty
    
    return new array {}
  else-if a[0] == b[0]:
    // if the start element is the same in both, then it is on the lcs,
    // so we just recurse on the remainder of both lists.
    
    return append(new array {a[0]}, lcs(a[1,..], b[1,..]))
  else
    // we don't know which list we should discard from. Try both ways,
    // pick whichever is better.
    
    let discard_a := lcs(a[1,..], b)
    let discard_b := lcs(a, b[1,..])
    
    if discard_a.length > discard_b.length:
      let result := discard_a
    else
      let result := discard_b
    fi
    return result
  fi
end

Bounding Searches
If you've already found something "better" and you're on a branch that will never be as good as the 

one you already saw, you can terminate that branch early. (Example to use: sum of numbers beginning 
with 1 2, and then each number following is a sum of any of the numbers plus the last number. Show 
performance improvements.)
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Constrained 3-Coloring
This problem doesn't have immediate self-similarity, so the problem first needs to be generalized. 

Methodology: If there's no self-similarity, try to generalize the problem until it has it.
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Dynamic programming can be thought of as an optimization technique for particular classes of 
backtracking  algorithms  where  subproblems are  repeatedly  solved.  Note  that  the  term  dynamic in 
dynamic programming should not be confused with dynamic programming languages, like Scheme or 
Lisp. Nor should the term programming be confused with the act of writing computer programs. In the 
context of algorithms, dynamic programming always refers to the technique of filling in a table with 
values computed from other table values. (It's dynamic because the values in the table are filled in by 
the algorithm based on other values of the table, and it's programming in the sense of setting things in a 
table, like how television programming is concerned with when to broadcast what shows.)

Fibonacci Numbers
Before presenting the dynamic programming technique, it will be useful to first show a related 

technique, called memoization, on a toy example: The Fibonacci numbers. What we want is a routine 
to compute the nth Fibonacci number:

// fib -- compute Fibonacci(n)
function fib(integer n): integer

By definition, the nth Fibonacci number, denoted Fn is

F0 = 0 
F1 = 1 
Fn = Fn - 1 + Fn - 2 

How would one create a good algorithm for finding the nth Fibonacci-number? Let's begin with 
the naive algorithm, which codes the mathematical definition:

// fib -- compute Fibonacci(n)
function fib(integer n): integer
  assert (n >= 0)
  if n == 0: return 0 fi
  if n == 1: return 1 fi
  
  return fib(n - 1) + fib(n - 2)
end

This code sample is also available in Ada.

Note that this is a toy example because there is already a mathematically closed form for Fn:
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Chapter 7

where:

 

This latter equation is known as the Golden Ratio. Thus, a program could efficiently calculate Fn 
for even very large  n. However, it's instructive to understand what's so inefficient about the current 
algorithm.

To analyze the running time of fib we should look at a call tree for something even as small as as 
the sixth Fibonacci number.

Note that every leaf of the call tree has the value 0 or 1. All of these ones are summed together to 
give the final answer, so for any n the number of leaves in the call tree is actually Fn itself! The closed 
form thus tells us that the number of leaves in fib(n) is approximately equal to

 

(Note the algebraic manipulation used above to make the base of the exponent the number 2.) This 
means that there are far too many leaves, particularly considering the repeated patterns found in the call 
tree above.

One optimization we can make is to save a result in a table once it's already been computed, so that 
the same result needs to be computed only once. The optimization process is called memoization and 
conforms to the following methodology:

Memoization Methodology

1. Start with a backtracking algorithm 
2. Look up the problem in a table; if there's a valid entry for it, return that value 
3. Otherwise, compute the problem recursively, and then store the result in the table before 

returning the value 

Consider the solution presented in the backtracking chapter for the Longest Common Subsequence 
problem. In the execution of that algorithm, many common subproblems were computed repeatedly. As 
an optimization, we can compute these subproblems once and then store the result to read back later. A 
recursive memoization algorithm can be turned "bottom-up" into an iterative algorithm that fills in a 
table of solutions to subproblems. Some of the subproblems solved might not be needed by the end 
result (and that is where dynamic programming differs from memoization), but dynamic programming 
can be very efficient because the iterative version can better use the cache and have less call overhead. 
Asymptotically, dynamic programming and memoization have the same complexity.

So how would a fibonacci program using memoization work? Consider the following program 
(f[n] contains the nth Fibonacci-number if has been calculated, -1 otherwise):
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function fib(integer n): integer
  if n == 0 or n == 1:
    return n
  else-if f[n] != -1:
    return f[n]
  else
    f[n] = fib(n - 1) + fib(n - 2)
    return f[n]
  fi
end

This code sample is also available in Ada.

The code should be pretty obvious. If the value of fib(n) already has been calculated it's stored in 
f[n] and then returned instead of calculating it again. That means all the copies of the sub-call trees are 
removed from the calculation.

The values in the blue boxes are values that already have been calculated and the calls can thus be 
skipped. It is thus a lot faster than the straight-forward recursive algorithm. Since every value less than 
n is calculated once, and only once, the first time you execute it, the asymptotic running time is O(n). 
Any other calls to it will take O(1) since the values have been precalculated (assuming each subsequent 
call's argument is less than n).

The algorithm does consume a lot of memory. When we calculate fib(n), the values fib(0) to fib(n) 
are stored in main memory. Can this be improved? Yes it can, although the  O(n) running time of 
subsequent calls are obviously lost since the values aren't stored. Since the value of fib(n) only depends 
on fib(n-1) and fib(n-2) we can discard the other values by going bottom-up. If we want to calculate 
fib(n), we first calculate fib(2) = fib(0) + fib(1). Then we can calculate fib(3) by adding fib(1) and 
fib(2). After that, fib(0) and fib(1) can be discarded, since we don't need them to calculate any more 
values.  From fib(2) and fib(3) we calculate fib(4) and discard fib(2),  then we calculate  fib(5) and 
discard fib(3), etc etc. The code goes something like this:

function fib(integer n): integer
  if n == 0 or n == 1:
    return n
  fi

  let u := 0
  let v := 1

  for i := 2 to n:
    let t := u + v
    u := v
    v := t
  repeat
  
  return v
end

This code sample is also available in Ada.

We can modify the code to store the values in an array for subsequent calls, but the point is that we 
don't  have to. This method is typical for dynamic programming. First we identify what subproblems 
need to be solved in order to solve the entire problem, and then we calculate the values bottom-up 
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using an iterative process.

Matrix Chain Multiplication

Suppose  that  you need  to  multiply  a  series  of  n matrices   together  to  form a 
product matrix P:

 

This will require n - 1 multiplications, but what is the fastest way we can form this product? Matrix 
multiplication is associative, that is,

 

for any  A,B,C, and so we have some choice in what multiplication we perform first. (Note that 
matrix multiplication is not commutative, that is, it does not hold in general that .)

Because you can only multiply two matrices at a time the product  can be 
paranthesized in these ways:

((M1M2)M3)M4 
(M1(M2M3))M4 
M1((M2M3)M4) 
(M1M2)(M3M4) 
M1(M2(M3M4)) 

Two matrices M1 and M2 can be multiplied if the number of columns in M1 equals the number of 
rows in M2. The number of rows in their product will equal the number rows in M1 and the number of 

columns will equal the number of columns in M2. That is, if the dimensions of M1 is  and M2 
has dimensions  their product will have dimensions .

To multiply two matrices with each other we use a function called matrix-multiply that takes two 
matrices and returns their product. We will leave implementation of this function alone for the moment 
as it is not the focus of this chapter (how to multiply two matrices in the fastest way has been under 
intensive study for several years). The time this function takes to multiply two matrices of size  
and  is proportional to the number of scalar multiplications, which is proportional to abc. Thus, 
paranthezation matters: Say that we have three matrices M1, M2 and M3. M1 has dimensions , 

M2 has dimensions   and  M3 has dimensions  . Let's parantezise them in the 
two possible ways and see which way requires the least amount of multiplications. The two ways are

((M1M2)M3), and 
(M1(M2M3)). 
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To form the product in the first way requires 75000 scalar multiplications (5*100*100=50000 to 
form product (M1M2) and another 5*100*50=25000 for the last multiplications.) This might seem like 
alot, but in comparison to the 525000 scalar multiplications required by the second parenthesization 
(50*100*100=500000  plus  5*50*100=25000)  it  is  miniscule!  You  can  see  why  determining  the 
parenthesization is imporant: imagine what would happen if we needed to multiply 50 matrices!

Forming a Recursive Solution

Note that we concentrate on finding a how many scalar multiplications are needed instead of the 
actual order. This is because once we have found a working algorithm to find the amount it is trivial to 
create an algorithm for the actual parenthesization. It will, however, be discussed in the end.

So how would an algorithm for the optimum parenthesization look? By the chapter title you might 
expect that a dynamic programming method is in order (not to give the answer away or anything). So 
how would a dynamic programming method work? Because dynamic programming algorithms are 
based on optimal substructure, what would the optimal substructure in this problem be?

Suppose that the optimal way to parenthesize

 

splits the product at k:

. 

Then the optimal solution contains the optimal solutions to the two subproblems

 

 

That is, just in accordance with the fundamental principle of dynamic programming, the solution to 
the problem depends on the solution of smaller sub-problems.

Let's say that it takes c(n) scalar multiplications to multiply matrices Mn and Mn + 1, and f(m,n) is 
the number of scalar multiplications to be performed in an optimal parenthesization of the matrices 

. The definition of f(m,n) is the first step toward a solution.

When n − m = 1, the formulation is trivial; it is just c(m). But what is it when the distance is larger? 
Using the observation above, we can derive a formulation. Suppose an optimal solution to the problem 

divides the matrices at matrices k and k+1 (i.e ) then the number of 
scalar multiplications are.

f(m,k) + f(k + 1,n) + c(k) 

That is, the amount of time to form the first product, the amount of time it takes to form the second 
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product, and the amount of time it takes to multiply them together. But what is this optimal value k? 
The answer is, of course, the value that makes the above formula assume its minimum value. We can 
thus form the complete definition for the function:

 

A straight-forward recursive  solution  to  this  would look something  like  this  (the language is  
Wikicode):

function f(m, n) {
    if m == n
        return 0

    let minCost := 

    for k := m to n - 1 {
        v := f(m, k) + f(k + 1, n) + c(k)
        if v < minCost
            minCost := v
    }
    return minCost
}

This rather simple solution is,  unfortunatly, not a very good one. It spends mountains of time 
recomputing data and its running time is exponential.

Parsing Any Context-Free Grammar
Note that special types of context-free grammars can be parsed much more efficiently than this 

technique, but in terms of generality, the DP method is the only way to go.
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8 GREEDY ALGORITHMS
live version • discussion • edit lesson • comment • report an error • ask a question

In the backtracking algorithms we looked at, we saw algorithms that found decision points and 
recursed  over  all  options  from  that  decision  point.  A  greedy  algorithm can  be  thought  of  as  a 
backtracking algorithm where at each decision point "the best" option is already known and thus can be 
picked without having to recurse over any of the alternative options.

The name "greedy" comes from the fact that the algorithms make decisions based on a single 
criterion, instead of a global analysis that would take into account the decision's effect on further steps. 
As we will see, such a backtracking analysis will be unnecessary in the case of greedy algorithms, so it 
is not greedy in the sense of causing harm for only short-term gain.

Unlike backtracking algorithms greedy algorithm can't  be made for  every problem. Not  every 
problem  is  "solvable"  using  greedy  algorithms.  Viewing  the  finding  solution  to  an  optimization 
problem as a hill climbing problem greedy algorithms can be used for only those hills where at every 
point taking the steepest step would lead to the peak always.

Greedy algorithms tend to be very efficient and can be implemented in a relatively straightforward 
fashion. Many a times in O(n) complexity as there would be a single choice at every point. However, 
most  attempts  at  creating a  correct  greedy algorithm fail  unless a  precise  proof  of  the algorithm's 
correctness is first demonstrated. When a greedy strategy fails to produce optimal results on all inputs, 
we instead refer to it as a heuristic instead of an algorithm. Heuristics can be useful when speed is more 
important than exact results (for example, when "good enough" results are sufficient).

Event Scheduling Problem
The first problem we'll look at that can be solved with a greedy algorithm is the event scheduling 

problem. We are given a set of events that have a start time and finish time, and we need to produce a 
subset of these events such that no events intersect each other (that is, having overlapping times), and 
that we have the maximum number of events scheduled as possible.

Here is a formal statement of the problem:

Input: events: a set of intervals (si,fi) where si is the start time, and fi is the finish time. 
Solution: A subset S of Events. 
Constraint: No events can intersect (start time exclusive). That is, for all intervals i = (si,fi),j = 

(sj,fj) where si < sj it holds that . 
Objective: Maximize the number of scheduled events, i.e. maximize the size of the set S. 

We first begin with a backtracking solution to the problem:

// event-schedule -- schedule as many non-conflicting events as possible
function event-schedule(events array of s[1..n], j[1..n]): set
  if n == 0: return  fi
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  if n == 1: return {events[1]} fi
  let event := events[1]
  let S1 := union(event-schedule(events - set of conflicting events), event)
  let S2 := event-schedule(events - {event})
  if S1.size() >= S2.size():
    return S1
  else
    return S2
  fi
end

The above algorithm will faithfully find the largest set of non-conflicting events. It brushes aside 
details of how the set

events - set of conflicting events 

is computed, but it would require O(n) time. Because the algorithm makes two recursive calls on 
itself,  each  with  an  argument  of  size  n -  1,  and  because  removing  conflicts  takes  linear  time,  a 
recurence for the time this algorithm takes is:

 

which is O(2n). 

But suppose instead of picking just the first element in the array we used some other criterion. The 
aim is to just pick the "right" one so that we wouldn't need two recursive calls. First, let's consider the 
greedy strategy of picking the shortest events first, until we can add no more events without conflicts. 
The idea here is that the shortest events would likely interfere less than other events.

There are scenarios were picking the shortest event first produces the optimal result. However, 
here's a scenario where that strategy is sub-optimal:

Event B

Event A    Event C

----------- time ----------->

Above, the optimal solution is to pick event A and C, instead of just B alone. Perhaps instead of 
the shortest event we should pick the events that have the least number of conflicts. This strategy seems 
more direct, but it fails in this scenario:

11         12  

9   6   7   8  

5   6   7   8 

1   2  3   4 
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A  B  C  D  E 

----------- time ----------->

Above, we can maximize the number of events by picking A, B, C, D, and E. However, the events 
with the least conflicts are 6, 2 and 7, 3. But picking one of 6, 2 and one of 7, 3 means that we cannot 
pick B, C and D, which includes three events instead of just two.

Dijkstra's Shortest Path Algorithm
With two (high-level, pseudocode) transformations, Dijsktra's algorithm can be derived from the 

much less efficient backtracking algorithm. The trick here is to prove the transformations maintain 
correctness, but that's the whole insight into Dijkstra's algorithm anyway.
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Hill climbing is a technique for certain classes of optimization problems. The idea is to start with a 
sub-optimal solution to a problem (i.e.,  start at the base of a hill) and then repeatedly improve the 
solution (walk up the hill) until some condition is maximized (the top of the hill is reached).

Hill-Climbing Methodology

1. Construct a sub-optimal solution that meets the constraints of the problem 
2. Take the solution and make an improvement upon it 
3. Repeatedly improve the solution until no more improvements are necessary/possible 

One of the most popular hill-climbing problems is the network flow problem. Although network 
flow may sound somewhat specific it is important because it has high expressive power: for example, 
many algorithmic problems encountered in practice can actually be considered special cases of network 
flow. After covering a simple example of the hill-climbing approach for a numerical problem we cover 
network flow and then present examples of applications of network flow.

Newton's Root Finding Method

Newton's  Root  Finding  Method  is  a  three-centuries-old  algorithm  for  finding  numerical 
approximations to roots of a function (that is a point x where the function f(x) becomes zero), starting 
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from an initial guess. You need to know the function   and its first derivative   for this 
algorithm. The idea is the following: In the vicinity of the initial guess  x0 we can form the Taylor 
expansion of the function

 

which gives a good approximation to the function near x0. Taking only the first two terms on the 
right hand side, setting them equal to zero, and solving for ε, we obtain

 

which we can use to construct a better solution

 

This new solution can be the starting point for applying the same procedure again. Thus, in general 
a better approximation can be constructed by repeatedly applying

 

As shown in the illustration, this is nothing else but the construction of the zero from the tangent at 
the initial guessing point. In general, Newton's root finding method converges quadratically, except 

when the first derivative of the solution  vanishes at the root.

Coming back to the "Hill climbing" analogy, we could apply Newton's root finding method not to 

the function  , but to its first derivative  , that is look for  x such that  . This 
would give the extremal positions of the function, its maxima and minima. Starting Newton's method 
close enough to a maximum this way, we climb the hill.

Instead of regarding continuous functions, the hill-climbing method can also be applied to discrete 
networks.

Network Flow
Suppose you have a directed graph (possibly with cycles) with one vertex labeled as the source and 

another vertex labeled as the destination or the "sink". The source vertex only has edges coming out of 
it, with no edges going into it. Similarly, the destination vertex only has edges going into it, with no 
edges coming out of it. We can assume that the graph fully connected with no dead-ends; i.e., for every 
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vertex (except the source and the sink), there is at least one edge going into the vertex and one edge 
going out of it.

We assign a "capacity" to each edge, and initially we'll consider only integral-valued capacities.

We'd like now to imagine that we have some series of inputs arriving at the source that we want to 
carry on the edges over to the sink. The number of units we can send on an edge at a time must be less 
than or equal to the edge's capacity. You can think of the vertices as cities and the edges as roads 
between the cities and we want to send as many cars from the source city to the destination city as 
possible. The constraint is that we cannot send more cars down a road than its capacity can handle.

The goal of network flow is to send as much traffic from s to t as each street can bear.

To organize the traffic routes, we can build a list of different paths from city s to city t. Each path 
has a carrying capacity equal to the smallest capacity value for any edge on the path.

Even though the final edge has a capacity of 8, that edge only has one car traveling on it because 
the edge before it only has a capacity of 1 (thus, that edge is at full capacity). After using this path, we 
can compute the residual graph by subtracting 1 from the capacity of each edge.

We can say that the path has a flow of 1. Formally, a flow is an assignment f(e) of values to the set 
of edges in the graph G = (V,E) such that:

1.  

2.  

3.  

4.  

Where s is the source node and t is the sink node, and  is the capacity of edge e. We 
define the value of a flow f to be:

 

The goal of network flow is to find an f such that Value(f) is maximal. To be maximal means that 
there is no other flow assignment that obeys the constraints 1-4 that would have a higher value. The 
traffic example can describe what the four flow constraints mean:

1. . This rule simply defines a flow to be a function from edges in the 
graph to real numbers. The function is defined for every edge in the graph. You could also 
consider the "function" to simply be a mapping: Every edge can be an index into an array and 
the value of the array at an edge is the value of the flow function at that edge. 

2. . This rule says that if there is some traffic 
flowing from node u to node v then there should be considered negative that amount flowing 
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from v to u. For example, if two cars are flowing from city u to city v, then negative two cars 
are going in the other direction. Similarly, if three cars are going from city u to city v and two 
cars are going city v to city u then the net effect is the same as if one car was going from city u 
to city v and no cars are going from city v to city u. 

3. . This rule says that the net flow (except for the 
source and the destination) should be neutral. That is, you won't ever have more cars going into 
a city than you would have coming out of the city. New cars can only come from the source, 
and  cars  can  only  be  stored  in  the  destination.  Similarly,  whatever  flows  out  of  s must 
eventually flow into t. Note that if a city has three cars coming into it, it could send two cars to 
one city and the remaining car to a different city. Also, a city might have cars coming into it 
from multiple sources (although all are ultimately from city s). 

4. .  This rule says that the flow must never be greater than the 
capacity allows. 

The Ford-Fulkerson Algorithm
The  following  algorithm  computes  the  maximal  flow  for  a  given  graph  with  non-negative 

capacities.  What  the algorithm does  can be easy to  understand,  but  it's  non-trivial  to show that  it 
terminates and provides an optimal solution.

function net-flow(graph (V, E), node s, node t, cost c): flow
  initialize f(e) := 0 for all e in E
  loop while not done
    for all e in E:                         // compute residual capacities
      let cf(e) := c(e) - f(e)
    repeat
    
    let Gf := (V, {e : e in E and cf(e) > 0})

    find a path p from s to t in Gf         // e.g., use depth first search
    if no path p exists: signal done

    let path-capacities := map(p, cf)       // a path is a set of edges
    let m := min-val-of(path-capacities)    // smallest residual capacity of p
    for all (u, v) in p:                    // maintain flow constraints
      f((u, v)) := f((u, v)) + m
      f((v, u)) := f((v, u)) - m
    repeat
  repeat
end
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Introduction
Welcome to the Ada implementations of the Algorithms Wikibook. For those who are new to Ada 

Programming a few notes:

• All examples are fully functional with all the needed input and output operations. However, 
only the code needed to outline the algorithms at hand is copied into the text - the full samples 
are available via the download links. (Note: It can take up to 48 hours until the cvs is updated). 
• We seldom use predefined types in the sample code but define special types suitable for the 

algorithms at hand. 
• Ada allows  for  default  function  parameters;  however,  we  always  fill  in  and  name  all 

parameters, so the reader can see which options are available. 
• We seldom use shortcuts - like using the attributes Image or Value for String <=> Integer 

conversions. 

All  these rules make the code more elaborate then perhaps needed. However, we also hope it 
makes the code easier to understand

Introduction
The following subprograms are implementations of the Inventing an Algorithm examples.

To Lower

The Ada example code does not append to the array as the algorithms. Instead we create an empy 
array of the desired length and then replace the characters inside.

File: to_lower_1.adb (view, plain text, download page)

  function To_Lower (C : Character) return Character renames
     Ada.Characters.Handling.To_Lower;

  --  tolower - translates all alphabetic, uppercase characters
  --  in str to lowercase
  function To_Lower (Str : String) return String is
     Result : String (Str'Range);
  begin
     for C in  Str'Range loop
        Result (C) := To_Lower (Str (C));
     end loop;
     return Result;
  end To_Lower;
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Would  the  append appoach be  impossible  with  Ada?  No,  but  it  would  be  significantly  more 
complex and slower.

Equal Ignore Case

File: to_lower_2.adb (view, plain text, download page)

  --  equal-ignore-case -- returns true if s or t are equal,
  --  ignoring case
  function Equal_Ignore_Case
    (S    : String;
     T    : String)
     return Boolean
  is
     O : constant Integer := S'First - T'First;
  begin
     if T'Length /= S'Length then
        return False;  --  if they aren't the same length, they
                       --  aren't equal
     else
        for I in  S'Range loop
           if To_Lower (S (I)) /=
              To_Lower (T (I + O))
           then
              return False;
           end if;
        end loop;
     end if;
     return True;
  end Equal_Ignore_Case;

Dynamic Programming

Fibonacci numbers

The following codes are implementations of the Fibonacci-Numbers examples.

Simple Implementation

File: fibonacci_1.adb (view, plain text, download page)

...

To calculate Fibonacci numbers negative values are not needed so we define an integer type which 
starts at 0. With the integer type defined you can calculate up until Fib (87). Fib (88) will result 
in an Constraint_Error.

  type Integer_Type is range 0 .. 999_999_999_999_999_999;
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You might notice that there is not equivalence for the  assert (n >= 0) from the original 
exapmle. Ada will test the correctness of the parameter before the function is called.

  function Fib (n : Integer_Type) return Integer_Type is
  begin
     if n = 0 then
        return 0;
     elsif n = 1 then
        return 1;
     else
        return Fib (n - 1) + Fib (n - 2);
     end if;
  end Fib;
...

Cached Implementation

File: fibonacci_2.adb (view, plain text, download page)

...

For this implementation we need a special cash type can also store a -1 as "not calculated" marker

  type Cache_Type is range -1 .. 999_999_999_999_999_999;

The actual type for calculating the fibonacci numbers continues to start at 0. As it is a subtype of 
the cache type Ada will automaticly convert between the two.  (the convertion is - of course - checked for 
validity)

  subtype Integer_Type is Cache_Type range
     0 .. Cache_Type'Last;

In order to know how large the cache need to be we first read the actual value from the command 
line.

  Value : constant Integer_Type :=
     Integer_Type'Value (Ada.Command_Line.Argument (1));

The Cache array starts with element 2 since Fib (0) and Fib (1) are constants and ends with the 
value we want to calculate.

  type Cache_Array is
     array (Integer_Type range 2 .. Value) of Cache_Type;

The Cache is initialized to the first valid value of the cache type - this is -1.

  F : Cache_Array := (others => Cache_Type'First);

What follows is the actual algorithm.

  function Fib (N : Integer_Type) return Integer_Type is
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  begin
     if N = 0 or else N = 1 then
        return N;
     elsif F (N) /= Cache_Type'First then
        return F (N);
     else
        F (N) := Fib (N - 1) + Fib (N - 2);
        return F (N);
     end if;
  end Fib;
...

This implementation is faithful to the original from the  Algorithms book. However, in Ada you 
would normaly do it a little different:

File: fibonacci_3.adb (view, plain text, download page)

when you use a slightly larger array which also stores the elements 0 and 1 and initializes then to 
the correct values

  type Cache_Array is
     array (Integer_Type range 0 .. Value) of Cache_Type;
  F : Cache_Array :=
     (0      => 0,
      1      => 1,
      others => Cache_Type'First);

and then you can remove the first if path.

     if N = 0 or else N = 1 then
        return N;
     elsif F (N) /= Cache_Type'First then

This will save about 45% of the execution-time  (measured on Linux i686) while needing only two 
more elements in the cache array.

Memory Optimized Implementation

This version looks just like the original in WikiCode.

File: fibonacci_4.adb (view, plain text, download page)

  type Integer_Type is range 0 .. 999_999_999_999_999_999;
  function Fib (N : Integer_Type) return Integer_Type is
     U : Integer_Type := 0;
     V : Integer_Type := 1;
  begin
     for I in  2 .. N loop
        Calculate_Next : declare
           T : constant Integer_Type := U + V;
        begin
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           U := V;
           V := T;
        end Calculate_Next;
     end loop;
     return V;
  end Fib;

No 64 bit integers

Your Ada compiler does not support 64 bit integer numbers? Then you could try to use decimal 
numbers instead. Using decimal numbers results in a slower program (takes about three times as long) but 
the result will be the same.

The following example shows you how to define a suitable decimal type. Do experiment with the 
digits and range parameters until you get the optimum out of your Ada.

File: fibonacci_5.adb (view, plain text, download page)

  type Integer_Type is delta 1.0 digits 18 range
     0.0 .. 999_999_999_999_999_999.0;

You should  know that  floating  point  numbers  are  unsuitable  for  the  calculation  of  fibonacci 
numbers. They will  not report  an error condition when the number calculated becomes too large - 
instead they will lose in precision which makes the result meaningless.
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13 GNU FREE DOCUMENTATION LICENSE

Version 1.2, November 2002

Copyright (C) 2000,2001,2002  Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The  purpose  of  this  License  is  to  make  a  manual,  textbook,  or  other  functional  and  useful 

document  "free"  in  the  sense  of  freedom:  to  assure  everyone  the  effective  freedom to  copy  and 
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this 
License preserves for the author and publisher a way to get credit  for their work, while not being 
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must 
themselves be free in the same sense. It complements the GNU General Public License, which is a 
copyleft license designed for free software.

We have designed this  License in  order to use it  for manuals  for free software,  because free 
software needs free documentation: a free program should come with manuals providing the same 
freedoms that the software does. But this License is not limited to software manuals; it can be used for 
any  textual  work,  regardless  of  subject  matter  or  whether  it  is  published  as  a  printed  book.  We 
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by 

the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a 
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated 
herein. The "Document", below, refers to any such manual or work. Any member of the public is a 
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work 
in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of 
it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals 
exclusively with the  relationship of  the publishers  or  authors of  the Document  to  the Document's 
overall subject (or to related matters) and contains nothing that could fall directly within that overall 
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not 
explain any mathematics.) The relationship could be a matter of historical connection with the subject 
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or with related matters, or of legal, commercial, philosophical, ethical or political position regarding 
them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those 
of Invariant Sections, in the notice that says that the Document is released under this License. If a 
section  does  not  fit  the  above definition  of  Secondary  then  it  is  not  allowed to  be  designated  as 
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any 
Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover 
Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format 
whose  specification  is  available  to  the  general  public,  that  is  suitable  for  revising  the  document 
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs 
or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters 
or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in 
an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart 
or  discourage  subsequent  modification  by  readers  is  not  Transparent.  An  image  format  is  not 
Transparent  if  used for any substantial  amount of text.  A copy that  is  not  "Transparent"  is  called 
"Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo 
input format, LaTeX input format,  SGML or XML using a publicly available DTD, and standard-
conforming  simple  HTML,  PostScript  or  PDF  designed  for  human  modification.  Examples  of 
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats 
that can be read and edited only by proprietary word processors, SGML or XML for which the DTD 
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or 
PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are 
needed to hold, legibly, the material this License requires to appear in the title page. For works in 
formats which do not have any title page as such, "Title Page" means the text near the most prominent 
appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely 
XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here 
XYZ  stands  for  a  specific  section  name  mentioned  below,  such  as  "Acknowledgements", 
"Dedications",  "Endorsements",  or "History".)  To "Preserve the Title" of such a section when you 
modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License 
applies to the Document. These Warranty Disclaimers are considered to be included by reference in 
this License, but only as regards disclaiming warranties: any other implication that these Warranty 
Disclaimers may have is void and has no effect on the meaning of this License.
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2. VERBATIM COPYING
You  may  copy  and  distribute  the  Document  in  any  medium,  either  commercially  or 

noncommercially, provided that this License, the copyright notices, and the license notice saying this 
License applies to the Document are reproduced in all copies, and that you add no other conditions 
whatsoever to those of this License. You may not use technical measures to obstruct or control the 
reading  or  further  copying  of  the  copies  you  make  or  distribute.  However,  you  may  accept 
compensation in exchange for copies. If you distribute a large enough number of copies you must also 
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display 
copies.

3. COPYING IN QUANTITY
If  you publish printed copies  (or  copies  in  media that  commonly have printed covers)  of  the 

Document, numbering more than 100, and the Document's license notice requires Cover Texts, you 
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover 
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and 
legibly identify you as the publisher of these copies. The front cover must present the full title with all 
words of the title equally prominent and visible. You may add other material on the covers in addition. 
Copying with changes limited to the covers, as long as they preserve the title of the Document and 
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones 
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must 
either include a machine-readable Transparent copy along with each Opaque copy, or state in or with 
each Opaque copy a  computer-network location from which the general  network-using public  has 
access  to  download  using  public-standard  network  protocols  a  complete  Transparent  copy  of  the 
Document, free of added material. If you use the latter option, you must take reasonably prudent steps, 
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will 
remain thus accessible at the stated location until at least one year after the last time you distribute an 
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It  is  requested,  but  not  required,  that  you  contact  the  authors  of  the  Document  well  before 
redistributing any large number of copies,  to  give them a chance to  provide you with an updated 
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 

2 and 3 above, provided that you release the Modified Version under precisely this License, with the 
Modified Version filling the role of the Document, thus licensing distribution and modification of the 
Modified Version to whoever possesses a copy of it.  In addition, you must do these things in the 
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Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and 
from those of previous versions (which should, if there were any, be listed in the History section 
of the Document). You may use the same title as a previous version if the original publisher of 
that version gives permission. 
B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of 
the modifications in the Modified Version, together with at least five of the principal authors of 
the Document (all of its principal authors, if it has fewer than five), unless they release you from 
this requirement. 
C. State on the Title page the name of the publisher of the Modified Version, as the publisher. 
D. Preserve all the copyright notices of the Document. 
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright 
notices. 
F. Include, immediately after the copyright notices, a license notice giving the public permission 
to use the Modified Version under the terms of this License, in the form shown in the Addendum 
below. 
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts 
given in the Document's license notice. 
H. Include an unaltered copy of this License. 
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least 
the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If 
there is no section Entitled "History" in the Document, create one stating the title, year, authors, 
and publisher of the Document as given on its Title Page, then add an item describing the 
Modified Version as stated in the previous sentence. 
J. Preserve the network location, if any, given in the Document for public access to a Transparent 
copy of the Document, and likewise the network locations given in the Document for previous 
versions it was based on. These may be placed in the "History" section. You may omit a network 
location for a work that was published at least four years before the Document itself, or if the 
original publisher of the version it refers to gives permission. 
K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the 
section, and preserve in the section all the substance and tone of each of the contributor 
acknowledgements and/or dedications given therein. 
L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. 
Section numbers or the equivalent are not considered part of the section titles. 
M. Delete any section Entitled "Endorsements". Such a section may not be included in the 
Modified Version. 
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any 
Invariant Section. 
O. Preserve any Warranty Disclaimers. 

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary 
Sections and contain no material copied from the Document, you may at your option designate some or 
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the 
Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of 
your Modified Version by various parties--for example, statements of peer review or that the text has 
been approved by an organization as the authoritative definition of a standard.
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You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words 
as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage 
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) 
any one entity. If the Document already includes a cover text for the same cover, previously added by 
you or by arrangement made by the same entity you are acting on behalf of, you may not add another; 
but you may replace the old one, on explicit permission from the previous publisher that added the old 
one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their 
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the 

terms defined in section 4 above for modified versions, provided that you include in the combination 
all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant 
Sections  of  your  combined  work  in  its  license  notice,  and  that  you  preserve  all  their  Warranty 
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant 
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same 
name but different contents, make the title of each such section unique by adding at the end of it, in 
parentheses, the name of the original author or publisher of that section if known, or else a unique 
number. Make the same adjustment to the section titles in the list of Invariant Sections in the license 
notice of the combined work.

In the combination,  you must  combine any sections  Entitled "History" in  the various  original 
documents,  forming  one  section  Entitled  "History";  likewise  combine  any  sections  Entitled 
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled 
"Endorsements."

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this 

License, and replace the individual copies of this License in the various documents with a single copy 
that  is  included in  the collection,  provided that  you follow the rules  of  this  License for  verbatim 
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this 
License,  provided  you insert  a  copy of  this  License  into  the  extracted  document,  and  follow this 
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents 
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or  works,  in  or  on a  volume of  a  storage or  distribution  medium,  is  called an  "aggregate"  if  the 
copyright resulting from the compilation is not used to limit the legal rights of the compilation's users 
beyond what the individual works permit. When the Document is included in an aggregate, this License 
does not apply to the other works in the aggregate which are not themselves derivative works of the 
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if 
the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed 
on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the 
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole 
aggregate.

8. TRANSLATION
Translation  is  considered  a  kind  of  modification,  so  you  may  distribute  translations  of  the 

Document under the terms of section 4. Replacing Invariant Sections with translations requires special 
permission from their copyright holders, but you may include translations of some or all Invariant 
Sections in addition to the original versions of these Invariant Sections. You may include a translation 
of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided 
that you also include the original English version of this License and the original versions of those 
notices and disclaimers. In case of a disagreement between the translation and the original version of 
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the 
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided 

for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is 
void,  and will  automatically  terminate  your  rights  under  this  License.  However,  parties  who have 
received copies, or rights, from you under this License will not have their licenses terminated so long 
as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation 

License from time to time. Such new versions will be similar in spirit to the present version, but may 
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies 
that a particular numbered version of this License "or any later version" applies to it, you have the 
option of following the terms and conditions either of that specified version or of any later version that 
has been published (not as a draft) by the Free Software Foundation. If the Document does not specify 
a version number of this License, you may choose any version ever published (not as a draft) by the 

Wikibooks | 67

http://www.gnu.org/copyleft/
http://wikibooks.org/


Chapter 13

Free Software Foundation.
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