
•>.;-vVv% 
^4^0V^ 

:V^A'».N^. i^-» %; 

'mK4#' 

?j!VJ15i 
KM' 

u<., 
i’1, -,7fU 

1.K S*-1*^ v/i. •> ;»/> W •’/ a 1 ’.jV-^ 

IliipaSiSii 
t r *»•’/; *J)' < '*/,'•'■- r* '!i'^*' *'• ’^»' If 

; f r -.'Vi |i: y-v^ .• 



Natural History Museum Library 





•t 

I 

• I 

! 

/ 

1 

/ 



' ; ' 

■fl-' . ;■...' 

’ * ’ ■■V . 
... * “ 

' ji?- 



( 

S'. 3. C. 

I 
i 

•1 

I 

I 



PHILOSOPHICAL TRANSACTIONS 
OF THE 

EOYAL SOCIETY OE LONDON 

Series A, VOL. 201. TITLE, &c. 

TITLE, CONTENTS, INDEX, 

A, VOL. 201. 

LONDON: 

PUBLISHED FOR THE ROYAL SOCIETY 

BY DULAU AND CO., 37, SOHO SQUAEE, W. 

CONTINENTAL AGENTS, MESSRS. FRIEDLANDER AND SON, BERLIN 

1903. 

&c. 

A 345. 
Price Sixpence. 

26.S.03 





PHILOSOPHICAL 

TRANSACTIONS 

OF THE 

EOYAL SOCIETY OE LONDON. 

Series A 

CONTAINING PAPEES OF A MATHEMATICAL OP PHYSICAL CHAEACTEP. 

VOL. 201. 

LONDON: 

nilNTED BY HARRISON AND SONS, ST. MARTIN’s LANE, W.C., 

l^rintirs in fi^rbinarg to '§is |fiaifstg. 

August, 1903. 



j 

i 

1 

I 

.** 1 

I 

4 

3 



[ iii ] 

CONTENTS. 

(A) 

VOL. 201. 

List of Illustrations. .page v 

Advertisement.vii 

I. Exj)erimental Researches on Drawn Steel. By J. Reginald Ashworth, M.Sc. 

[Viet.). CommvMicated hy Professor K. F.R.S. .... page I 

II. The Specific Heats of Metals and the Relation of Sp)ccific Heat to Atomic 

Weight.—Part II. By W. A. Tilden, D.Sc., P.R.S., Professor of Cliemistrij 

in the Royal College of Science, London.37 

III. An Experimented Determination of the Variation with Temperature of the 

Criticed Velocity of Flow of Water in Pipes. By E. G. Coker, M.A. 

{Canted).), D.Sc. {Edin.), Assistant Professor of Civil Engineering, anel 

S. B. Clement, B.Sc. {McGill), Demonstrator in Civil Engineering, both of 

McGill University, Montreed. Communicateel hy Professor Osborne Reynolds, 

IV. On an Approximate Solution for the Beneling of a Beam of Rectangular Cross- 

Section under any System of Load, ivith Special Reference to Points of 

Concentrated or Discontinuous Loading. By L. N. G. Filon, B.A. {Cantab.), 

M.A., B.Sc. {Lond.), King’s College, Cambridge, Felloiv of University College, 

London, and 1851 Exhibition Science Research Scholar. Communicated by 

C. Chree, F.R.S.33 

a 2 f 



[ ] 

V. On the Vibrations and Stahdity of a Gramtalincj Planet. By J. H. Jeaxs, B. A. 

Isaac Neinton Student, and Fclloiu of Trinity CoUer/e, Cambridge. Communi¬ 

cated. by Professor G. IL Dakwin, F.R.S.157 

Yf. On the Formation of Definite Figures by the Deposition oj Dust. By Y'. J. 

Eitssell, Ph.D., F.R.S.185 

VIT. The Spectrum ofy Cygni. By Sir Norman Lockyer, K.C.D., F.R.S., and 

F. E. Bax AND ALL, A.R.C.Sc.- 0 5 

YITL Quaternions and Projective Geometry. By Professor Jasper Jota, 

Royal A.stronorner of Ireland. Communicated by Sir Eorert Ball, 

F.R.S..223 

IX. The Difiercntial Invariants of a Surface, and their Geometric Significance. By 

A. E. Forsyth, jM.A., Sc.D., F.R.S., Sadlerian Pivfessor of Pure Ilithe- 

matics in the University of Cambridge.'^29 

X. On the Lairs Governing Electric Discharges in Gases at Low Pressure.^. By 

AY. E. Carr, B.A., Post-graduate Student, University of Toronto. Communi¬ 

cated by Professor J. J. Thomson, F.R.S.. 

XL On the Dependence of the Refractive Lndex of Gases on Temperature. By 

GEORC4E W. Walker, M.A., A.R.C.Sc., Fellow of Trinity College, Cambridge. 

Communicated, by Professor J. J. Thomson, I.R.S.4-j5 

XTI. Solar Eclipse r/ 1900, 2^.—General Discu.‘^sion of Sjyectroscopic Results. 

By J. Eyershed, F.R.A.S. Communicated by the Joint Permanent Eclipse 

.. 

XITL Ihe Electrical Conductirity Imparted to a Vaciiurn by Hot Conductors. By 

O. AY. Eichardson, B.A., B.Sc., Fellow of Trinity College, Cambridge. 

Communicated by Professor J. J. Tikaison, I.R.S.497 

XIY. On. the Formation of Definite Figures by the Deposition of Dust. 7L/John 

Attken, F.R.S. 

Index to Volume 
559 



V 1 
J 

LIST OF ILLUSTRATIONS. 

Plate l. -Sir Norman Lockyer and Mr. F. E. Baxandall on the Spectrum of 
y Oygni. 

Plates 2 and 3.—Mr. J. Evershed on tlie Solar Eclipse of 1000, May 28.—General 
1 )iscussion of Spectroscopic Results. 



1 

I 

t 

il
k
ii

 



[ vi! ] 

ADVERTISEBIENT. 

The Committee appointed by the Royal Society to direct the publication of the 

Philosophical Transactions take this opportunity to acquaint the public that it fully 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made m several former Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh Volume; the Society, as a Body, never interesting themselves any 

further in their publication than by occasionally recommending the revival of them to 

some of their Secretaries, when, from the particular circumstances ol their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement ol knowledge and benelit of 

mankind : the great ends of their first institution by the Itoyal Charters, and which 

they have ever since steadily pursued. 

But the Society bemg of late years greatly enlarged, and their communications more 

numerous, it was thought advisable that a Committee of their members sliould be 

appomted to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Transactions; which was 

accordingly done upon the 26t]i of March, 1752. And the grounds of their choice are, 

and will continue to be, the importance and singularity ol the subjects, or the 

advantageous manner of treating them ; without pretending to answer for the 

certainty of tlie facts, or propriety of the reasonings contained in the several papers 

so pubhshed, which must still rest on the credit or judgment ol their respective 

authors. 

It is likewise necessary on this occasion to remark, that it is an established rule of 

the Society, to Avdiich they will always adhere, never to give their opinion, as a Body, 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter ot 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society; the authors whereof, or those 

who exhibit them, frequently take the liberty to report, and even to certify in the 

public newspapers, that they have met wdth the highest applause and approbation. 

And therefore it is hoped that no regard will hereafter be paid to such reports and 

public notices; which in some instances have been too lightly credited, to the 

dishonour of the Society, 
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PHILOSOPHICAL TRANSACTIONS 

I. E.xperimentdJ Researches on Draicn Steel. 

Bii J. IIeginald Ashworth, 31.Sc. {Vtct.). 

Communicated In/ Profr.'^sor A. Schuster, F.P.S. 

Ifcceived January 30,—Read March 6, 1902. Received in revised form August 12, 1902. 

PART 1. 

The Influenx’e of Changes of Temperature on Magnetism. 

1. Introductory. 

2. Influence of dimension ratio on residual magnetic intensity (I), temperature co¬ 

efficient (a), and permanent change (/3). 

3. 4, 5. Influence of annealing, tempering, and drawing on a. 

6. Influence of annealing, tempering, and drawing on I. 

7. Effect of rest in improving the drawing equalities of steel. 

8. 9, 10. Curves of cyclic magnetisation of drawn steel, cold and hot, and their application 

to temperature coefficients. 

11. Relation of temperature coefficient to intensity when induced. 

12. Relation of temperature coefficient to intensity when residual. 

13. Repetition of § 12 with demagnetisation between each step. 

14. Similar experiments upon iron. 

15. Relation of susceptibility to a and /3 in drawn steel and in iron. 

16. Application of results to the construction of permanent magnets. 

17. Time tests of a and I on drawn steel magnets. 

18. Similar tests on tempered drawn steel magnets. 

Page 
C 

6 

9 

9 

10 

11 

13 

15 

16 

17 

19 

20 

22 

1. The experiments which are included in this part are the outcome of a formei 

investigation, and relate chiefly to the influence of drawing on the magnetism of 

steel wires and its changes with moderate fluctuations of temperature. The effect of 

alterations of temperature on the residual magnetism of steel was examined many 

years ago by Wiedemann. His experiments, which have often been repeated, show 

that on heating a magnet to the temperature of steam much of the magnetism 

disappears, but that on cooling part of the magnetism so lost is restored; at each 

repetition of the heating and cooling the permanent loss becomes less and less, and 

ultimately the magnetic intensity fluctuates between two definite values, higher and 

lower intensities corresponding to lower and higher temperatures respectively. 1 he 

VOL. cci.—A 331. B 11.3.03 



2 MR. J. REGINALD ASHWORTH: 

change ot‘ intensity in this cyclic state is nearly a linear fnnction of the temperature, 

and tlie I'elatlon is 

I/' = 1/ {1 + — t)\, 

where 1/^ and 1/ are the magnetic intensities at the higher and lower temperatures d 

and t, and a is a coefficient which, in general, is negative. 

For a given range of temperature* the irreversible part of the change may be 

expressed by the et|uation 

+/8), 

where I, and !/■ are initial and final Intensities. Hitherto, almost without exception, 

for residual magnetism, has been found to be negative, that is to say, there is a 

permanent loss of magnetism as the result of repetitions of heating and cooling. 

The magnitude of both a and (3 varies considerably, but the conditions which 

determine the magnitude have not been exhaustively examined. Some of these 

conditions are investigated here, and it will be shown that under certain well-defined 

circumstances the coefficients a and /3 may change sign. 

2. In a former paperf it was proved that the dimension ratio of a magnet governing 

its demagnetising factor controls to a large extent the magnitude and even the sign 

of the temperature coefficient. The experiments then made were carried out on 

pianoforte drawn steel in the commercial state, but they have now been extended 

to steel in other conditions, and the results are given in Table I., from which 

Diagrams I. and II. are plotted.;]; 

* In the experiments in this paj^er the range of temperature is from 14° to 100° C. 

i ‘ Roy. Soc. Proc.,’ vol. 62, p. 210. 

I Throughout this paper all numerical results are expressed in c.g.s. units and in degrees Centigrade. 



8 EXPERIMENTAL RESEARCHES ON DRAWN STEEI.. 

Table I.—Relation of Dimension Ratio to Residual Magnetic Intensity and its 
I'emperatiire Coefticient in Steel Wire. 

H 30 Piano Wire. 

Length, in centims. 
Dimension ratio. 
Demagnetising factor 

3 
16 

0-1120 

6 
32 

0-0340 

9 
48 

0-0177 

12 
64 

0-0106 

15 
80 

0 - 0069 

18 
96 

0-0040 

Amieulal. 

Intensity initially, i.c., before heating and 
cooling. 160 161 276 387 461 525 

Intensity finally, i.e., after heating and 
cooling. 36 103 196 290 363 431 

Temperature coefficient (a) x 10“^ . . . - 35 • 3 -21-6 - 14-5 - 11-0 -9-2 -7-8 
Permanent loss (/3). - 0-78 - 0-36 - 0-29 - 0-25 -0-22 -0-18 

(rlas.i Hard. 

Intensity initially. 252 483 551 602 .570 580 
Intensity finally.■. . . 216 437 520 562 556 569 
Temperature coefficient (a) x lO"-* . . . -6-03 -2-28 -1-17 - 1-22 -0-97 -0-55 
Permanent loss {ft). 0-15 -0-09 -0-06 -0-07 -0-03 -0-02 

Glass Hard, llemagnetiscd. - 

Intensity initially. 299 524 608 655 681 659 
Intensity finally. 286 508 594 643 668 646 
Temperature coefficient (a) x 10“^ . -5-26 - 2 - 31 - 1-47 - 1-05 -0-91 -0-82 
Permanent loss (ft). -0-04 -0-03 -0-02 -0-02 -0-02 -0-02 

Cold Hravm. 

Intensity initially. 1.37 313 483 602 683 727 
Intensity finally. 79 204 378 514 595 637 
Temperature coefficient (a) x 10-^ . -7-32 -1-51 + 0-84 + 2-25 + 2-96 + 3-17 
Permanent loss (ft). -0-40 -0-35 -0-22 -0-15 -0-13 -0-12 
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Diagram 1. 

Piano Steel Wire. 

(X 

The relation of magnetie temperature coefficient (a) to dimension ratio. 
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Diagram IE 

Piano Steel Wire, 

The relation of residual magnetic intensity to dimension ratio. 

It was also shown, and it can be seen from the table and diagram, that a rise of 

temperature in the cyclic state increases the magnetic intensity, and a fall of 

temperature diminishes it in the case of a magnet of large dimension I'atio constructed 

of drawn steel of the kind supplied for pianofortes,"^^ an effect contrary to what is 

ordinarily observed. 

The results of these experiments, and of others whicli need not here Ije introduced, 

u})on a number of steels of different chemical composition, as well as the fact that 

stretching simj^ly does not produce any marked change in the temperature coefficient, 

strengthen the conjecture that the abnormal effect is due to repeated drawing. 

* Knitting needle and pinion wires do not yield this effect, as they are treated differently to music wire 

in the process of drawing. 
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3. Ill order detinitely to test this conclusion, it was necessary to procure samples 

of wires drawn down liner and finer from one original piece, and IMessrs. W. Smith 

and Soxs, of Warrington, kindly undertook to supply them. The first delivery which 

came to hand was drawn successively from a wire about 0T59 centim. in diameter, 

the appearance of the wire being like this :— 

The material of the whole was one and the same, and the only difierence between 

one part and another was the amount of traction which had been applied. Lengths 

were cut off from every stage in the drawing, so that each piece was 100 times 

longer than its diameter, and all were separately magnetised between the poles of a 

powerful electromagnet and then immediately examined for magnetic properties. 

The coefficient wdiich, at the first, is incremental (marked in Table II. ufith the 

Table II.—Residual Magnetic Intensity and Temperature Coefficient for Successive 

Amounts of Traction. 

Fine Piano Wire. 

1 
i No. Diameter. 

Dimension 
ratio. 

Residual intensity 
initially. 

Temperature 
coefficient, a. 

la 
eentims. 
0-159 100 608 

X lO-L 
+ 2-66 

8ff 0-134 100 677 + 2-39 
9rt 0-118 100 690 + 2-54 

10« 0-106 100 785 + 2-27 
11a 0-091 100 866 + 2-32 
12a 0-089 100 915 + 2-25 
13a 0-067 100 970 

_ 

+ 1- 22 

positive sign^), becomes not more so, but less so as the drawing proceeds, and is finally 

only half as large as at the begiiining, and it seems as if extreme traction might 

ultimately reduce it to zero. This unexpected result indicates that, if drav ing 

produces the abnormal effect, there must Ije some stage earlier than the first of this 

series where a maximum incremental coefficient would l)e developed. It liecame 

necessary again to apply to Messrs. W. Smith and Sons to prepare for me a 

complete set of Mures drawn successively as before, but beginning noAv at the rough 

* Ill a previous paper on this subject (‘iioy. Soc. Proc.,’ vol. 62, p. 210) ;ui opposite coinentiou was 

employed in regard to the sign, following an older usage. 
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rod as received from tlie rolling mill, and after some delay this set of samples was 

received. The wliole series comprised twelve stages in the manufacture of tijie ^vire 

as tblloA\"S 

4. (1) 'The Rolled Rod.—This is produced from a hillet of good Sheffield steel 

containing less than t per cent, of carbon. It is passed wliilst hot successively 

through a number of rolls until its diameter is about 0’5 centim. ; the liot rod is 

finally coiled in a heajD, and so cools quickly in the open air. 

(2) Rod Annealed.—The rod as received from the rolling mill is now annealed by 

enclosing it in pots from which air is excluded; these pots are heated in a furnace 

to a bright red heat, at wdrich jioint the firing is stayed and the fire is allowed to 

die out. This operation occupies 24 hours. 

(3) Rod Hcird Drawn.—-In this stage the annealed rod is forcibly drawn through 

a perforated plate, which at once reduces the sectional area by about 50 per cent. ; 

the rod now becomes hard. 

(4) Rod Tempered.—The process to which the rod is next submitted is sometimes 

called “ patenting” or “ improving.” It is carried out in different ways by different 

manufacturers, but in these wires it consisted in heating uniformly to a bright red 

heat in absence of air, and afterwards cooling slowly in a special chamber at a 

moderate temperature. 

(5) , (6), (7), (8) Wire Cold Drawn.—The tempered wire is drawn through smaller 

and smaller holes in tlie draw plate, the sectional area being reduced each time by 

about 40 per cent, of its [ireceding value; the diameter in tliese specimens is in this 

way diminished to 0T37 centim. at the 8th stage. 

(9), (10), (11), (12) The succeeding wires are now all drawn from No. 8 directly 

and do not pass thi'ough every intermediate hole ; thus No. 10 is not No. 9 drawn 

one hole smaller, ljut is No. 8 reduced at once by a single drawing, and similarly for 

the others, except, perhaps. No. 12, which probably passed through stage 9 or 10. 

These facts relating to the drawing of the last three stages are worthy of notice, 

as the results of a number of experiments on these wires show some irregularity in the 

progressive change of their physical properties in the final stages, and the method 

of drawing in these stages may in part account for the irregularity. 

5. The samples illustrating the twelve stages were not long enough to allow the 

thickest of them to Ije made more than 50 diameters long, and this fixed the 

dimension ratio for the whole series, but an additional series, from No. 5 upwards, 

was cut to a dimension ratio of 100. All the wires were magnetised in the same 

way between the poles of a powerful electromagnet, and then immediately examined 

for magnetic intensity, and its changes under variations of temperature, with the 

apparatus formerly described."^ The results, which are given in Table III., and 

plotted in Diagram III., disclose several interesting facts ; thus rolling hot and 

* ‘Roy. Soc. Proc.,’ vol. 62, p. 210. 



s ,Mi{. -I, i;i':(4]NALi) Asinvoirni: 

Table 111.—llesidual Magnetic Intensity, Temperature Coefficient, and Permanent 

Loss at Successive Stages in the DraAving of a Steel Rod to Fine Wire. 

No. Condition. Diameter. 

Dimemsion ratio = 50. Dimen.sion ratio = = 100. 

Residual 
intensity 
initial Iju 

Temperattu’e 
coefficient, 

a. 

Permanent 
loss, 
/i. 

Residual 
intensity 
initially. 

jTemperature 
' coefficient, 

a. 

Permanent 
loss, 

(i- 

centims. X 10--* X 10-* 

1 Hot rolled . 0-545 315 - 7-11 -0-110 1 — 

2 Annealed . 0-539 339 - 12-62 - 0 - 300 — — — 

3 Hard drawn 0-399 393 - 6-93 -0-084 ■ " — — 
4 Tempered . 0-381 352 - 11 - 66 -0-321 — ■ ' — — 
0 Cold drawn 0-333 396 — 8-70 - 0-292 469 - 2 - 35 -0-076 
6 0-253 424 - 3-78 -0-284 551 + 0-85 -0-180 
7 0-185 497 - 0-61 -0-248 701 + 3-43 -0-105 
8 0-137 519 - 0-19 -0-207 789 + 3-82 -0-032 
9 0-121 543 + 0-75 -0-192 840 + 2-28 -0-066 

10 0-109 557 + 1-33 -0-203 8.57 + 1-88 -0-041 
11 0-099 613 + 1-25 -0-155 881 + 1-99 -0-016 
12 0-089 574 + 0-00 -0-074 930 + 2-24 -0-028 

Diagrani III. 

Piano Steel AVii-e. 

The relation of residual niagnetie intensity and its temperature coefficient to drawing. 

■aao 
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drawing cold both tend to diminish the magnitude of a negative coefficient, whilst 

drawing the wire several times after tempering, and without re-annealing, completely 

reverses the sign of the coefficient, which then becomes positive. But extreme 

drawing bends the curve again to the zero line, and, in the case of the twelfth wire, 

50 diameters long, the coefficient actually becomes zero ; thus the curve for a dimension 

ratio of 50 cuts the zero line twice, namely, between the 8th and 9th stages and at 

the 12th stage. 

The diminution of the positive coefficient observed in the exjDerlments on the first 
set of wires received from Messrs. W. Smith and Sons is now explained, for it is 
evident that that series must have commenced beyond the final bend in the curve. 

This bend also marks a distinct change in other properties of tire wire, for steel 
wire when drawn too far loses the qualities of strength, elasticity, and electrical 
conductivity"*^ which moderate drawing confers to a high degree. 

The temjiering or patenting process in the 4th stage does not seem to lie essential 

to the production, by subsequent drawing, of an incremental coefficient; for if the 

curve belonging to the larger dimension ratio were continued backwards, following 

the same path as its companion curve, it nearly, if not quite, reaches the zero line at 

the 3rd stage, Avhere the wire is drawn after annealing, but before tempering, and if 

the exjieriments had been made on endless wires it is certain that the zero line would 

have been crossed at the 3rd stage. Hence the production of a positive temperature 

coefficient is entirely due to cold drawung, if not carried to an extreme stage. 

6. In Table III. the initial residual intensities have ' been calculated as the 

magnetic moment per unit volume, the volume being obtained from the mass and 

density. From the figures giA^en in the table, or more clearly from the curve given 

m Diagram III., it is seen that the intensity steadily mounts upAvards as the draAving 

proceeds. The maximum intensity reached is about 930 units; altogetlier the 

residual intensity, after magnetisation, has been increased from 469 at the first 

drawing to 930 at the last, for magnets 100 diameters long, an increment of no less 

than 100 per cent. Thus the magnetic properties of steel can be modified to an 

extraordinary degree by the simple operation of cold drawing through successive 

holes. 

7. Nevertheless, considerable skill and judgment are required in conducting the 
operation of drawing, if the peculiar qualities which piano wire possesses are to be 
developed in the highest degree. One fact in connection Avith the process of 
manufacture, which may be mentioned here because of its physical interest, is that 
a Avire after draAving through one hole diUAvs more satisfactoiily through the next if 
giAmn a period oj rest between the operations, and the longer the period of rest, 
extending even to many weeks, the more satisfactory is the subsequent draAving. f 

* Part II., §§ 2 and 4. 

t Tomlinson remarks that rest after strain diminishes internal friction, ‘Roy. Soc. Phil. Ti'ans.,’ 

vol. 177, Part II., p. 835; also vol. 174, p. 5; vide EwiNG, ‘Roy. Soc. Proc.,’ vol. 30, p. 510. 

VOL. CCI.—A. C 
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8. With the object of comparing the magnetisation curves of drawn steel wire 
when cold and when hot, and also of determining the relation of the temperature 

coefficient to the intensity, another series of experiments was undertaken. A wire. 
No. H 30,* was selected of the same diameter and gauge as one upon which a number 

of experiments had previously been made;! it was 0‘187 centim. in diameter, and its 
length was 85’3 centims., so that the dimension ratio was 456 and the demagnetising 
factor negligibly small. The wire was fixed in a glass tube in an upright solenoid, 
33'2 centims. from the magnetometer, and the usual arrangements were adopted 

for tracing the curve of magnetisation according to the one-pole method of Ewixg. 

In all the experiments the vertical component of the earth’s force was neutralized. 
After some prelimina,ry heatings and coolings the Avire Avas carried through a series 

of graded magnetic cycles at air temperature ; then, after demagnetisation, a current 

of steam was passed and maintained through the tube, and the same series of graded 
cycles Avas repeated, the forces used at either temperature being exactly alike. It 
AA'ill he seen from Diagram IV. that the susceptibility of the hot Avire when the force 

Diagram IV. 

Piano Steel "Wire. 

* Wires marked with the letter H were kindly sujiplied by Mr. W. D. Houghtox, of V arrington. 

t ‘ Eoy. Soc. Proc.,’ a'oI. 62, p. 210. 
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is about 11 or 12 units is nearly three times greater than tlie suscei)tihility of the 

wire cold, and throughout, up to the maximum force employed, the liot curve always 

lies above the cold curve. On the application of a demagnetising force, after 

maximum induction, the hot curve droops faster than the cold curve, and crosses it 

when — H is about 9 or 10 units, and for this force the intensity is the same 

whether the wire be hot or cold. 

9. This suggests that if a suitable demagnetising force be applied the temperature 

coefficient would be zero, and previous experiments'^' have verified that a wire of this 

kind does yield a zero coefficient with an appropriate self-demagnetising force. But 

it is not 230ssible to calculate with precision, from curves of induction, the requisite 

demagnetising factor, and consequently the dimension ratio to which such a wire 

must be cut, in order that the coefficient may be zero, because of complexities in 

magnetic behaviour arising in j)art from the irreversible effects of changes of tem¬ 

perature. Nevertheless, an estimate can be made, for, in order that the point of 

intersection of the curves should he on the ordinate of no external force, the curves 

must be sheared by an amount equivalent to about 10 units of force, and as the 

corresponding intensity is about 800, this would mean that the force per unit of 

intensity, that is to say the demagnetising factor, must be 0-0125, and in the case of 

a cylinder the dimension ratio for this factor is nearly 59. Experiment shows, how¬ 

ever, that a piece of this kind of wire has an approximately zero coefficient when it is 

8 centims. long, and thus the dimension ratio for this condition is 43 instead of 59. 

10. Again, the irreversilde changes which occur on heating and cooling do not 

allow the temperature coefficient to l^e simply calculated fi'om tlie difference of the hot 

and cold residual intensities which are left after removal of the maffnetisinn force. 
O O 

Experiments were made on the wire in two ways. Beginning with the wire hot, the 

intensity fell from 1294 to 1139 during a series of heatings and coolings, and the 

coefficient was + 0-000358. Then, repeating the experiment, but beginning with tlie 

wire cold, the intensity fell from 1204 to 112G, and the coefficient was + 0-000327, a 

value not very different from the former, but less than half the coefficient calculated 

from the difierence of the hot and cold intensities left immediately after the with¬ 

drawal of the magnetising force. 

Nevertheless, the relation of these hot and cold curves throws llnht on the fact 
o 

that the temperature coefficient of a magnet of drawn steel is positive or negative, 

according as the demagnetising factor is below or above a certain value, a result which 

has been fully established {vide Table I.). 

11. In another series of experiments the temperature coefficient was determined 

at different stages of the curve, the wire l^eing kept during heating and cooling 

under a constant force. The wire, the same one as before, was, in the first place, 

demagnetised carefully, and then a field of ll-Q units was applied and maintained; 

the intensity at 16° was 120-7, but on passing steam through the tube the intensity 

* ‘Roy. Soc. Proc.,’ vol. 62, p. 210. 
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immediately rose to 400, more than three times the former amount, and the subsequent 

alternations of temperature slowly augmented the intensity until a final value was 

approached at 477 ; the coefficient then was + 0-000731. Raised another step by a 

force of 19-1 units, the intensity became 724, and, after heating and cooling a few 

times, it rose to 993 ; the coefficient now was + 0-000466. And lastly, with a force 

of 76-5, the intensity was 1311 initially, and after heating and cooling 1316, the 

coefficient being + 0-000206. The enormous growth of magnetism under changes of 

temperature in the earlier stages of magnetisation, and the insignificant increment in 

the final state, concurrently with the large coefficient when the susceptibility is large 

and its diminution as the susceptibility becomes less, are the features here principally 

to notice. 

Applying next a small negative force of — 7-19 units, the intensity dropped finally 

to 745, and the coefficient was then + 0-000229 ; and it might be anticqmted from 

the position of the point of intersection of the hot and cold curves already examined, 

that a slightly larger demagnetising force ought to annul the positive coefficient, and 

that a still larger demagnetising force ought to yield a negative coefficient. 

A force of — 11-23 units was next applied and maintained, which, while less than 

the coercive force for the material hot or cold, was greater than the force at the point 

where the curves cross. With this force we get the following resrdt 

Intensity. 

Cold. Hot. 

+ G18 
- 

+ 259 
+ 227 

+ 134 
+ 145 1 

j- Here the south pole was uj^warcls. 
1 

+ 69 1 
+ 65 1 

I 
+ 8 J 

+ 10 Mao-netism reyei‘.sed. 

C
O

 
C

O
 

1 

- 34 
- 80 

- 74 
- 116 

> The north i^ole is now upwards. 

- 107 
- 151 

- 141 

Here it is evident that the force applied has been too large to allow a cyclic state 

to be established before reversal of the magnetism sets in, yet, in accordance with 

anticipation, up to the point where the original magnetism is entirely removed the 

hot value of the intensity intermediate between any two cold values is alv-ays less 
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than the mean of the cold values, a result which corresponds to a negative coefficient; 

later on, after the reversal, the hot is larger than the mean of the adjacent cold 

values, a result which corresponds to a positive coefficient, and this positive coefficient 

will, no doubt, continue uj) to maximum induction. 

Both before and after reversal heating appears to produce much larger effects than- 

cooling. 

Under alternate applications of heat and cold, the coercive force is greatly lessened, 

and now lies at less than 11-2, instead of its former value 13-5 hot and U’O cold. 

12. In the next place the effects of alternate changes of temperature on residual 

magnetism were studied. 

The same wire was again employed, and, starting from the demagnetised state, a 

small force was applied, and the residual magnetism subjected to heating and cooling. 

Then stronger forces were successively applied and, in the same way, at each step 

the coefficient was determined; after the maximum had been reached, part of the 

magnetism was removed, a step at a time, and again the temperature coefficient 

was examined at each stage. Table IV. is an abstract of the results so obtained. 

Table IV.—Effects of Heating and Cooling on Residual Magnetism for Progressive 

Magnetisation, 

H 30 Piano Wire. 

MaErnetisinp’ force, 
" H." 

Residual intensity. 

Temperature 
coefficient, 

a. 

Permanent 
chansie, 

/3. Initially, Finally, 

b- 

X 10-^ X 10-3 
10-32 107 91 + 3-10 - 15-0 
19-52 GIG 572 + 4-53 - 7-0 
23 - 33 838 794 + 3-59 - 5-0 

(About 100) 1022 9G7 + 2-82 - 5-0 
(Small negative force) 837 840 + 4-34 + 0-4 1 

- 10-54 7G2 775 + 4-42 + 2-0 
- 15-03 270 312 + 3-GG + lG-0 
-15-93 114 157 + 1-88 + 38-0 

— 21 G4 - 2-90 + 204-0 
- 12 + 30 - 4-70 — 

-G2 -20 + 25-00 -224-0 

From this table the influence of the intensity on the magnitude and sign of the 

coefficients a and can be traced. 

In the first place, the coefficient rises to an early maximum and then falls to a 

minimum at the highest intensity; on the return path the coefficient again attains a 

niaximum, which occurs at a liigher intensity than before, and after this it continually 
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grows less, and ultimately changes sign aiid becomes negative. The rise and fall 

suggest some connexion with susceptiliility, for which there is evidence in another 

group of experiments descril)ed later on. 

In the second place, wlien tlie magnetic intensity is rising, the final intensit}", after 

a series of heatings and coolings, is always less than Initially, and ^ is therefore 

negative, but on gradually removing successive fractions of the magnetism, then, at 

each stage, heatings and coolings jiroduce a f/ain of magnetism, and the loss or gain 

is always much greater the smaller the intensity ; indeed, the gain becomes very 

large at low intensities on the downward path, and at last, ^vhen the reversed 

magnetic field has been increased so far as to leave a small reversed residual maeiietic 
o 

intensity, then heatings and coolings clear this out and restore a small magnetisation 

of the original kind. 

Ihese results could l)e obtained repeatedly; thus, in the following example, which 

is a typical one, after magnetising to saturation a reversed force left a residual of 

109'2, which was augmented l)y lieating and cooling to 167’2 with a positive 

coefiicient of + 3'30 X 10“’'^, a further application of reversed force left a residual 

of 15'2 in the opposite direction, and then as follows :— 

Cold. Hot. 

- 15-2 

+ 19-0 
+ 11-4 Direction of original magnetisation restored. 

f 19-0 
+ 23-0 

+ 22-2 
+ 24-9 

+ 24-3 
+ 26-2 

+ 24-7 [The coefficient is negative and equal to 
+ 26-8 j -0-00085. 

Here there is a change in the direction of the magnetisation due to heating and 

cooling and a coefiicient which is now negative. But the negative coefiicient is found 

to Ijecome less negative when the intensity thus restored is greater, as the following 
ta])le shows :— 

Final intensity after 
reversal. Coefficient. 

j 

+ 23-8 -0-00120 
+ 26-8 - 0 - 00085 
4" 30 * 4 -0-00047 
+ 63-6 - 0-00029 

and no doubt a zero coefiicient would be reached for a still higher intensity than 63'6. 
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If, however, the magnetic force which has been applied is strong enough to leave 

a residual intensity which, after heatings and coolings, still remains in the reverse 

direction to the original, the positive coefficient is again established. 

13. In the experiments recorded above the intensity was raised a step at a time, 

after each series of heatings and coolings, and a suspicion might be entertained that 

the magnetic state at any stage had been seriously disturbed by the heatings and 

coolings at a preceding stage. The next series of experiments was undertaken to 

test this question, and accordingly, after any series of heatings and coolings, the wire 

was completely demagnetised by reversals before the magnetisation was carried a 

grade higher. Beginning at a low intensity, the magnetisation was thus carried to 

its highest value by easy steps. In returning, the wire was magnetised strongly and 

then a small reversed force applied, enough to remove some of the residual magnetism ; 

after heating and cooling, the wire was demagnetised, carried again to its highest 

intensity, and a larger fraction of the residual magnetism removed, heating and 

cooling repeated, and so on. In this way the following table was constructed 

(Table V.). 

Table V.—Effects of Heating and Cooling on Residual Magnetism with Demagne¬ 

tisation between each Step. Relation of Intensity to Temperature Coefficient. 

H 30 Piano Wire. 

Magnetising Induced 
Residual intensity. 

Temperature Permanent 
Smsceptilhlity, 

K = I/H. 
force, 

H. 
intensity, 

I. Initially, 
h. 

Finally, 

h 

coefficient, 
a. 

change. 

8 Ho 70 25 12 
X 10 

+ 3-05 
X 10-2 

- 50-8 
i 

8-2 
12-79 181 112 86 + 4-07 -23-1 14-1 
15-26 288 247 212 + 4-98 - 13-9 18-8 
18-18 500 476 432 + 5-15 - 9-4 27-5 
22-44 785 702 653 + 5- 06 - 7-0 35 - 0 
41-07 1141 915 839 + 4-66 - 6-5 27-7 

101-20 1334 1028 961 + 3-27 - 6-5 13-2 
- 8-53 — 810 813 + 4-45 + 0-4 
- 13-69 — 516 535 + 4-37 + 5-8 _ 
- 15-03 — 291 331 + 4-16 + 13-8 
- 17-05 - 17 + 39 -4-10 — 

The same general features as before again exlnljit themselves, namely, a rise and 

fall of the temperature coefficient as the intensity proceeds either to a maximum or 

proceeds to a minimum, the largest value of a occurring earlier for increasing than 

for decreasing intensities ; a loss, ^ negative, so long as the applied torce has been 

positive and a gain when the force has been negative, the magnitude of the gain 
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or loss being greater the less the intensity ; a reversal of the direction of the 

magnetisation at a low intensity hy the operation of changes of temperature ; and 

also a change in the sign of a. But the magnitude of the temperature coefficient 

and of the irreversible change is decidedly larger in this table than in the former one. 

Hence, for the production of a magnet of constant intensity constructed of drawn 

steel wire, it would appear to be advantageous to magnetise step by step, heating and 

cooling at each step without intermediate demagnetisations up to maximum intensity, 

and then to remove, a small fraction of the magnetism by a reversed force ; ^ is then 

at its least value.On the other hand, this gives a larger value for a than if no 

reversed force had been applied. 

14. In order to determine how far these results are due to drawing, it is necessary to 

have a comparison with similar experiments ^^erformed on an iron wire, and this was 

subsequently done. The iron wire was that which is supplied in commerce as such, 

but probably it borders on very mild steel; it was carefidly annealed, and then 

submitted to a cycle of magnetisation, at first cold and afterwards hot. The curves of 

magnetisation intersect in this material when the intensity, for rising forces, is about 

800 units ; at higher intensities the susceptibility is less hot than cold, and the hot 

residual lies below the cold residual,! accordingly subsequent heating is found to 

diminish and cooling to increase the residual magnetism. The coercive force is about 

4-0 units cold and a little less when hot. 

In the next place the wire, after demagnetisation by reversal, was submitted to a 

very small force and the force withdrawn, then a series of heatings and coolings vms 

applied, and the })ermanent loss and coefficient were calculated in the usual way. 

Again, after demagnetisation, a stronger force was applied and withdrawn and a 

series of lieatings and coolings executed. Repeating these operations a step higher 

each time and demagnetising between each step, we get the result exhibited in 

Table VI. 

* J ide Hookham, ‘Journal Inst. Electr. Engineers,’ vol. 18, p. 688. 

t Baur, ‘Wied Ann.,’ vol. 11, 1880; EwiNG, ‘Phil. Trans.,’ vol. 176, Part IP, p. 637. 
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Table VI—Effects of Heating and Cooling on Kesidual Magnetism with Demagne¬ 

tisation between each Step. Relation of Intensity to Temperature Coefficient, 

Annealed Iron Wire. 

Residual intensity. 

Magnetising 
force, 

H. 

Induced 
intensity, 

I. 
Initially, 

before heating 
and cooling. 

If* 

Finally, 
after heating 
and cooling, 

\f- 

Temperature 
coefficient, 

a. 

Permanent 
change, 

/?. 

Susceptibility, 
K = I/H. 

3-03 115 78 75 
X lO-i 
-2-14 

X 10-2 

- 3-67 37-9 
4-93 346 279 275 -1-49 - 1-57 70-2 
6-01 616 527 518 -1-24 - 1-71 102-5 
8-53 824 704 690 - 1-45 - 2-02 96-6 

14'13 1027 855 837 -1-45 - 2 • 1 -4 72-6 
40-70 1248 952 931 -1-40 - 2-14 30-6 
87-50 1346 962 941 -1-45 - 2-19 15-4 

- 2-69 733 750 752 - 1-44 + 0-35 
- 3-14 677 699 702 - 1-28 + 0-38 
- 3-81 218 271 276 - 1-68 + 1-70 

— 39 100 104 -1-68 + 4-62 
- 4-26 - 92 - 24 - 16 + 1-63 -35-00 — 

Here the temperature coefficient is negative throughout for rising forces; as the 

intensity progresses it diminishes to a minimum value when I is about 518 and then, 

increasing again, becomes nearly constant. For reversed forces the coefficient 

diminishes to another low value at about 700 units (a higher intensity than before), 

and then again increases, but if the reversed force is just sufficient to leave a 

small inverse magnetisation, the coefficient changes sign and becomes 'positive. It 

appears then that in iron similar features present themselves in the relation of a 

to I as in drawn steel, but in iron the coefficient is in general negative, and in drawn 

steel positive, and in each the sign of the coefficient can be reversed when a small 

inverse magnetisation succeeds a strong direct magnetisation. 

The permanent change, is larger for low intensities than for high ones, and 

fluctuates in sympathy witii a; for reversed forces it changes sign, that is to say, 

there is a gain of magnetism due to cyclic temperature changes as there was with 

diawn sheet. Throughout it will be noticed that in soft iron /3, as well as a, is much 

smaller than in drawn steel. The table shows that a very long soft iron wire may 

have a temperature coefficient of less than —0'00015 per degree centigrade ; also, 

that if a small reversed force be applied after magnetisation to saturation, no loss of 

residual magnetism takes place due to heating and cooling, but the intensity tends 

to increase. 

15. The experiments which have been narrated, show that the sign and the 
VOL. COT.—A. D 
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magnitude of the temperature coefficient may be inferred from the disposition of the 

hot and cold curves of magnetisation. This is still further confirmed by reference to 

Diagram V., where the temperature coefficient of drawn steel, for both ascending 

Diagram V. 

The relation of temperature coefficients (a) and (a^) and permanent change of magnetism (fi) to 

residual intensity. 

and descending values of magnetisation, is plotted against the residual intensities 

left finally after heating and cooling. The broken curve traced underneath is the 

change of residual magnetism per unit per degree of temperature calculated from 

curves of residual magnetism when the wire was at 16° and when it was at 100°. 

This is marked (as it corresponds to the temperature coefficient of suscejotibility for 

residual magnetism), and is traced for both ascending and descending intensities. 

The distinctive features of one curve are reproduced in the other, although, as might 

be expected, owing to irreversible changes, the curves are not an accurate fit. Thus, 

the zero coefficient experimentally found is displaced largely to the left of the zero 

position in the calculated curve. 

If the iron curves, traced in the same way, are examined, the distinctive features 

of the one will be found also reproduced in the other, but with a large displacement 



EXPEEIMENTAL EESEAECHES ON DEAWN STEEL. 19 

of one relatively to the other. Thus there is a small value of the negative coefficient 

in the calculated curve between intensities of 800 and 900, and a maximum about 

an intensity of 700 ; the counterpart to. these occur in the experimental curve 

between intensities of 400 and 500, and at less than 100 respectively. Still more 

interesting is the large displacement of the zero coefficient. In the curve the 

zero state occurs about an intensity of 560, and in the a curve probably at an 

intensity of only a few units. Although I have attempted to obtain experimentally 

the zero temperature coefficient in iron, I have not succeeded unmistakably, partly 

because of the general difficulty of working at very low intensities, and partly 

because of the special difficulty of clearing out all traces of pre-existing magnetisa¬ 

tion, which is a very necessary precaution, and of operating in a field of no force. 

But I have ascertained that at a very feeble intensity the negative coefficient becomes 

decidedly less negative, and that the curve tends towards zero at some extremely 

low magnetisation. 

Ewing, however, has obtained at a very early stage in the magnetisation of iron a 

positive, and at a higher but still a very low intensity a zero coefficient.* Although 

his experiment was not performed on residual magnetism alone, as the vertical 

component of the earth’s force was always in operation in such a way as to tend to 

increase the magnetisation, and at low intensities its efiect would be considerable, 

yet there is little doubt that at some very low residual intensity iron yields a 

zero coefficient. There is thus a satisfactory correspondence between the results 

calculated from the relation of the curves of residual intensity when hot and when 

cold and the results exjDerimentally found for the temperature coefficient of residual 

magnetism. Every magnet therefore may have a positive, a negative, or a zero 

coefficient, unless the hot and cold curves happen to be coincident throughout. 

The changes which take jilace in the magnitude of the permanent loss and gain 

of magnetism due to a series of headings and coolings, are shown graphically for both 

drawn steel and iron on the lower part of Diagram V. 

16. The experiments I have selected for description throw light, I think, on many 

of the numerous results which have been published on the effects of cyclic clianges 

of temperature on magnetism, f and also afford some guiding rules for the construc¬ 

tion of magnets of high permanence and wuth small temperature coefficients. 

* ‘Eoy. Soc. Phil. Trans.,’ vol. 176, p. 633. 

t Eeferences to pajjers on the “ Influence of Changes of Temperature on Magnetism ” and allied 
subjects:— 

Faraday, ‘Phil. Mag.,’ vol. 8, p. 177, 1836; Kater, ‘Eoy. Soc. Phil. Trans.,’ 1821; Barlow and 

Bonnycastle, ‘Eoy. Soc. Phil. Trans.,’ 1822; Eiess and Moser, ‘Pogg. Ann.,’ vol. 17, p. 425, 1829; 

Kupfeer, ‘Kastner’s Archiv,’ vol. 6; Lamont’s ‘ Magnetismus’; Scoresby, ‘ Edin. Phil. Trans.,’vol. 9, 

p. 254; Wiedemann, ‘Pogg. Ann.,’ vol. 103, p. 563, 1858; Mauritius, ‘Pogg. Ann.,’ 1863, ‘Phil. 

Mag.,’ 1864; Gore, ‘Phil. Mag.,’ 1869 and 1870; Gordon and Newall, ‘Phil. Mag.,’ vol. 42, p. 335, 

1871; Whipple, ‘Eoy. Soc. Proc.,’ 1877; Eowland, ‘Phil. Mag.,’ vol. 48, p. 321, 1874; Faye, ‘C.E.,’ 

vol. 82, p. 276, 1876; Gaugain, ‘C.E.,’ vol. 80, p. 297, vol. 82, p. 685, vol. 83, p. 896, vol. 85, pp. 219, 

D 2 
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When the magnet is short relatively to its thickness, the self-demagnetising force 

will have so iireponderating an influence, that it will be advisable, in order to reduce 

its effect to a minimum, to choose a material of small susceptibility ; a hard steel is 

thus preferred. If, however, the magnet is long and thin, attention must be paid 

chiefly to the quality and treatment of the material, so that it may develop that 

condition in which the hot and cold curves of its magnetisation aie sepaiated as 

little as possible. 
And further, it has been shown that drawing influences the disposition of the 

hot and cold curves in such a way tliat it affords an effecti've method of regulating 

the magnitude and sign of the temperature coefficient. 

Time Tests 

Oil the Constancy of Magnets ivith Neghgihle Coefficients. 

17. At the conclusion of a previous paper"^ reciting experiments upon the consti notion 

of magnets with zero temperature coefficients, a brief note was added on the question 

of the constancy of the zero state with lapse of time. This is obviously important in 

the application of such magnets to the work of an observatory, and it has therefore 

received some attention. 

In May, 1897, a magnet was constructed of a piece of H 30 wire, 0T87 centiin in 

diameter, and from a previous series of experiments upon this kind of wire it wms 

calculated that it should be cut to a length of 8 centims., having a dimension ratio of 

42'6, in order to yield a zero coefficient. It was then magnetised and heated and 

cooled about twenty times so as to reduce the magnetism to a settled state. The 

intensity before heating and cooling was 474-4 c.g.s. units, calculating this here, as 

elsewhere, as the magnetic moment per unit volume and, alter heating and cooling, 

the intensity was 28-1 per cent, less; the coefficient, a, w^as very small and positive, 

its value being + 0-000015 per degree centigrade. This magnet was tested at 

intervals for the next three years, and its history is given in Table VIL, and also 

in the diagram constructed from this table (Diagram VI.). After the fiist test iu 

615, 1014, and vol. 86, p. 5.36; Jamix and Gaugaix, ‘C.R.,’ 1876, ‘Phil. Mag.,’ 1876; POLOXI, ‘Mied. 

Beibl.,’ 1878; Wassmutii, ‘Wien. Per.,’ 1880-02; Baur, ‘ Wied. Ann.,’ vol. 11, 1880^ Browx, ‘Phil. 

Mag.,’ vol. 23, pp. 293, 420, 1887 ; Ciieesmax, ‘Wied. Ann.,’ vol. 15, p. 204, vol. 16, p. 712; Barus and 

STi-rouilAL, ‘Wied. Ann.,’ vol. 20, p. 662, 1883; ‘Bulletin U.S. Geol. Survey,’ No. 14, 1885; Barus, 

‘Phil. Mag.,’Nov., 1888; Gray, . ‘ Phil. Mag.,’ vol. 6, p. 321, 1878; Bosanquet, ‘Phil. Mag.,’^vol. 19, 

p. 57, 1885; Caxoani, ‘ Atti della R. Acc. dei Lincei’ (4), vol. 3, p. 501, 1887 ; Morris, IX K., ‘Phil. 

INlag.,’vol. 44, p. 213, 1897 ; DuRWAim, A., ‘Am. Journal of Sci.,’ April, 1898 ; Pierce, 1>. 0., ‘Am. 

Joimial of Sci.,’May, 1898; Ewing, ‘Roy. Soc. Phil. Trans.,’ vol. 176, 1885; also Canton and Hall- 

strOm, Coulomb, Hansteen, Christie, Lloyd, Ciiree, Ac. 

* ‘Roy. Soc. Proc.,’ vol. 62, p. 210. 
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Table VII.—Influence of Time on the Temperature Coefficient and Residual 

Magnetic Intensity of Drawn Steel. 

H 30 Piano Wire, 8 centims. long. 

Date. 

Residual intensity. 
Temperature 

coefficient, 
a. 

Remarks. 

Initially. Finally. 

X 10--' 
1897. 

May 21. 474 34] + 0-15 Magnetised for the first time. 
,,36. — — — Boiled for 2 hours. 

Jiuie 1 . — -- — 

„ 9. 265 264 + 0-15 
July 5. 255 255 -0-14 
September 10. . . 210 240 -0-40 
October 18 ... 200 — -0-40 

' 1898. 
s July 11. 222 222 -0'47 

! „ 11. 475 349 + 0-05 Remagnetised. 
„ 14. 341 338 + 0-12 Boiled for 44 hours. 
„ 17. --- — — 15 5? V )) 
„ 18. 333 330 + 0-00 

October 10, . . . 324 320 aO-09 
„ 14. . . . 310 307 + 0-07 

1899. 
June 16 .... 322 322 + 0-61 
October 30 . . . 317 316 + 0-58 

1900. 
March 29 . . . . 312 311 + 0-42 

Second Sample. 

H 30 Piano Wire, 8 centims. long. 

1898. 
' October 14 ... 474 — — Magnetised first time. Heated 
1 
: „ 21 . . . 

00 
■to 364 + 0-33 

and cooled 12 times. 

; „ 22 . . . — — — Remagnetised. Boiled for 3 

November 9 . . . 345 321 + 0-31 

hours. 
Heated and cooled 12 times. 

„ 14. . . 335 334 + 0-32 

1899. 
June 16 .... 341 337 + 0-76 
November 3 . . . 332 331 U * 6o 

1900. 
April 9. 331 327 + 0-59 
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was boiled for three and a half hours in two stages, and a week later the coefficient 

was exactly the same as before. It was now laid aside for a month, when the 

coefficient was found to have changed from +0'000015 to —O'OOOOII, and this again 

slowly altered for twelve months, and became finally nearly steady at — 0’000047, 

which is less than a half of 1 j^er cent, for 100° C. The intensity had also changed, 

at first quickly, but latterly very slowly. Here it is interesting to notice that at any 

stage heating and cooling through a range of 80° or 90° diminishes the intensity in 

the later tests to a very trifling extent, but the undisturbed action of time produces 

a very slow but steady diminution to the final limit; and this recalls the circumstance 

mentioned j^reviously, how the action of time alone alters the molecular structure of 

steel so that its drawing qualities are greatly improved (§ 7). 

The magnet was now remagnetised (July 11th, 1898), which immediately raised 

the intensity from 221’7 to 474'8, a value practically identical with its initial intensity; 

after a series of heatings and coolings, with boiling at intervals, the magnet was laid 

aside, its coefficient then (October 14th) being + 0•000007, and the intensity 306‘9. 

At the same time another piece of H 30 wire was cut so as to be 8 centims. long, 

magnetised and tested. Its intensity initially was 474'7 and its coefficient +0’000033. 

After a number of heatings and coolings, remagnetisation and boiling for several hours, 

it was tested again, and laid aside for comparison with the former. Its coefficient was 

then + 0‘000032, and the intensity 333‘9 (Table VII.). Both these magnets were 

tested in June and November, 1899, and again in April, 1900. It appears that in 

the summer of 1899 the coefficients were larger than seven months previously, and 

reached a maximum of + O'OOOOGl and + 0’000076, and that since then they have 

become a little less, and now (April, 1900) stand at + 0‘000042 and + 0'000059. 

The intensity after heating and cooling has only fluctuated to the extent of 

3 per cent. 

Both these magnets are almost exactly alike in all tlie details of their behaviour, 

and it will be noticed that the second magnet when magnetised and immediately 

remagnetised, without any long interval between the magnetisations as with number 

one, arrives at once at the same condition as the first. 

18. Magnets made from this wire with a larger dimension ratio would have higher 

intensities and yield still more constant results, but then the coefficients would depart 

considerably from zero, because of the too small demagnetising factor. If, however, a 

longer piece of the wire be taken, a part of its abnormal pro^^erties can be removed 

by heating to a suitable temperature and quenching, as already shown,and thus a 

zero coefficient can be obtained with a smaller deman’iietisiiiP' factor. 
cv O 

Two lengths of 12 centims. each were cut from the same kind and thickness of 

wire as before, and were heated until just red-hot and quenched in water; they were 

then magnetised and repeatedly heated and cooled. The coefficient was negative and 

in magnitude —0'000044, and the intensity about 670 for both, the original intensity 

* ‘Roy. Soc, Proc.,’ vol. 62, p. 215. 



EXPERIMENTAL RESEARCHES ON DRAWN STEEL. 23 

immediately after magnetisation and before heating and cooling being about 700. They 

were then remagnetised, boiled for some hours, heated and cooled many times, and 

the coefficient determined ; after this they were laid aside for several months. This 

was in November, 1898. When re-examined in June and November of 1899, and 

again in March, 1900, very little change had taken place in either the coefficients or 

the intensities, which were about — 0'000025 and 700 respectively. Both magnets 

were almost exactly the same in their behaviour in every respect, as will be seen from 

Table VIII., which gives their history. 

Table VIII.—Influence of Time on the Temperature Coefficient and Pvesidual 

Magnetic Intensity of Drawn Steel when Tempered. 

H 30 Piano Wire, 12 centims. long, heated to redness and quenched. 

Residual intensity. 
Temperature 

Date. coefficient. Remarks. 

Initially. Finally. 
a. 

X lO-i 
1898. Magnetised first time and heated 

and cooled 12 times. 
October 14. . . . 707 682 — 

„ 24. . . . 686 675 -0-44 
Remagnetised, boiled for 2| hours. 

and heated and cooled 12 times. 
November 9 . . . 740 716 -0-32 

1899. 
June 16 .... 736 730 -0-26 
November 8 . . . 718 711 -0-24 

1900. 
March 29 ... . 704 700 - 0 • 25 

Second Sample. 

II 30 Piano Wire, 12 centims. long, heated to redness and quenched. 

1898. Magnetised first time and heated 
and cooled 12 times. 

October 14 ... 700 680 — 

November 3 . . . 677 669 -0-45 
Remagnetised, boiled 2^ hours, 

heated and cooled 12 times. 
„ 9 . . . 742 728 -0-27 

1899. 
June 16. 749 742 -0-32 
November 8 . . . 726 721 -0-21 

„ 15 . . . — — — Boiled 3 hours. 
„ 15 . . . 724 720 -0-25 

1900. 
April 9. 709 709 -0-24 
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For steady values of a and I this latter method of constructing magnets is to be 

preferred, and with further experimental experience even the small coefficient here 

exhil)ited might yet he reduced ; the high intensity, too, which is yielded by this 

method of producing approximately zero coefficients is another advantage. The 

magnetic moment of these magnets was about 227 each for a weight of 2-59 grammes. 

It will be noticed that, in the magnets which have been constructed to have 

nearly zero coefficients liy cutting them to a suitable dimension ratio, there is a 

tendency for the positive coelficient to grow less and become negative as the intensity 

declines, and vice vevsd. This is in accord with the results already found for the 

relation of the hot and cold curves, where larger and smaller values of the intensities 

than those corresponding to the intersection of the curves give positive and negative 

coefficients respectively. 

Indeed, in any magnet we should expect a change of intensity to produce a change 

of the coefficient if the latter is dependent on the disposition of the hot and cold 

curves of magnetisation, and hence the decay of magnetism with the laj^se of time, or 

the increment of magnetism which takes place on remagnetisation, will tend to alter 

the magnitude of the temperature coefficient. In the latter case such effects have 

been noticed.* 

* Jhle CiiKEE, ‘Roy. Soc. Rroc.,’ vol. 65, p. 375. 
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Diagram VI. 

Change of magnetic intensity and temperature coefficient with lapse of time in drawn and tempered 

piano steel. 

Nos. 8a and 8b refer to the first and second samples of piano wire in the commercial state, 8 centims. long. 

Nos, 12ff and 12/^ refer to the first and second samples of tempered piano wire, 12 centims, long. 

VOL. CCI,—A E 
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PART II. 

PvRSISTTVITY, ELASTICITY, AND DENSITY, AND THE TEMPERATURE COEFFICIENTS 

OF IvESISTIYITY AND ELASTICITY. 

Page 

1. Introductory.26 

2. The relation of resistivity (p) to drawing.26 

3. The relation of the temperature coefficient of resistivity (a) to drawing.28 

4. The relation of Young’s modulus (Y) to drawing.29 

5. The relation of the temperature coefficient of Young’s modulus (y) to drawing . . . 31 

G. The relation of density to drawing and the influence of density on Young’s modulus 

and on magnetic intensity.33 

1. The magnetic liehaviour of repeatedly drawn steel More led to the suggestion 

that some of the other physical properties of such wire would also exhibit 

interesting changes. Besides, it was worth while to attempt to trace broadly some 

connection between one property and another, since, whilst no chemical change 

presumably takes place liy drawing, yet the physical properties might be consider¬ 

ably modified. 

The selfsame Mores Mdiicli Ymre employed in determining the change of magnetic 

properties, and which have been numbered (1) to (12), have been used in the experi¬ 

ments about to be described on resistivity, elasticity, and density, in order to remove 

any doubt which might be entertained that the material of any one of these 

specimens was not identically the same during the difterent tests for its several 

proiierties. This unquestionably added to the experimental difficulties, for a length 

or thickness suitable under one set of conditions was not so suitable under other 

conditions. Thus, in the determination of Young’s modulus, the method of flexure 

had to lie employed which, under other circumstances, tvould not have been adopted. 

As the methods used here for the determination of resistivity, elasticity, and 

density are those commonly employed, it vdll be unnecessary to describe at length 

the course of the experiments, and the present part will be confined to a brief recital 

of results. 

Resistivity. 

2. The resistivity of the wires was' observed by comparing the difference ol 

potential at the ends of a knoum resistance with the difference of jiotential between 

turn points along the wire vdien the same current was flowing through the wire and 

the known resistance. Each vure has been tested liy -two, and in some cases Iw 

three, indeiiendent experiments, in which as much variation was introduced as th^ 
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apparatus would allow, and the results in the table subjoined are the mean values 

of the experiments, which, however, differed very little among themselves. The 

principal source of error lay in the measurement of the diameters of the wires, for 

in one or two cases the wires appeared to be conical in shape, and in two cases were 

slightly elliptical in cross-section. By measuring the diameter at many places along 

the length of the wires, and confirming the results by calculation of the diameter 

from determinations of the density, the average sectional area has been arrived at. 

The numerical results are given in the third column of Table IX.,and in Diagram VII.; 

Diagram VI1. 

they are 2>lotted as a curve, the sectional areas of the wires, which may he taken as a 

scale of traction, being treated as abscissae. There is a small I'eduction of diameter 

on annealing and tempering which is due not to traction, hut presumaljly to the j^i’O- 

duction of a little oxidation, which would be rubbed off afterwards wlien tlie wire 

was cleaned. 

The effects of annealing or tempering upon the resistivity come out in the curve 

* The diameters of the wires are given in Tables IT and III., and are not repeated in Table IX. 

E 2 
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as two prominent peaks ; either of these processes increases the resistivity by about 
12 per cent, upon the initial state. Hard drawing after annealing between stages 

(2) and (3) brings the wire down to nearly the original condition, and again, after 

tempering, cold drawing through two or three holes decidedly reduces resistivity, but 

an unmistakable increase sets in at the 11th and 12th stages. From the last jDoint 
the curve has been extended by a broken line to include two more points belonging 
to still finer wires. Nos. 13a and 14a, which are not, however, of identically the same 

material as the others. Nevertheless, the broken line emphasizes the fact that the 

effect of extreme drawing is prejudicial to conductivity. These contrary effects 
of drawing, it will he remembered, were also in evidence in the curve of magnetic 
temperature coefficient, and in both curves the change occurs near to the 8th and 

9 th stages. A length of the steel wire upon which the experiments just described 

were carried out was subsequently made glass hard, and the resistivity in that 
state Avas 2760 X 10~®, or about 70 per cent, higher than the Avire in its state 

of least resistance. It is Avorth notice that minimum resistivity occurs in the 
hard drawn and hot rolled conditions, and hence the order of resistiAuty in an 

ascending scale is : hard draAvn or hot rolled ; annealed or tempered ; glass hard. 

Temperature Coefficient of Resistivity. 

3. A simple modification of the apparatus described in the la^st section alloAved 
the temperature coefficient of resistivity to be obtained. 

The same Avires were used as before. Each Avas fixed in a trough surrounded by a 

Avater-bath, Avhich could he raised in temperature by the apjAlication of gas jets from 

about 16° to 90° C. Readings AA^ere made at intervals during the process of heating 

and cooling, and the usual precautions Avere taken for the elimination of the effects 

of thermo-currents. 

Two independent sets of observations were taken for nearly all the specimens, and 
the mean results, Avhich ai-e given in the fourth column of Table IX., have been 

})lotted on the same diagram as the curve of resistivity, so that the tAvo curves may 
be conveniently compared. 

It will be noticed that the smallest value of the temperature coefficient, namely, 
0‘00294, occurs when the steel is annealed, and the highest Amlue, 0‘00466, AAdien hard 
draAvn, and these least and greatest values coincide respectively Avith the largest and 
smallest values of the resistivity. This confirms and extends a laAv Avhich Barus 
has sliown to he true for the iron carburets, accoixling to Avhich the temjjerature 

coefficient of resistivity is approximately inversely as the resistivity and in the 

* The relation given by Baiius is p {in + a) = Avliere p is the resistivity, a the temperature coefficient, 

and m and « are constants. ‘Bulletin 11.8. Geol. Survey,’ No. 14, 1885. 
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curves here plotted a similar relation between temperature coefficient and resistivity 
in general holds good, the two curves moving oppositely to each other. The change, 

however, in the magnitude of the temperature coefficient of the repeatedly drawn 
steel is small compared to the change in resistivity. 

The temperature coefficient of this steel made glass hard is only 0'00177, about 
half the average value in the drawn state; this again is an example of Barls’ law, 

for the resistivity when glass hard is, as stated, 70 per cent, greater than when 
hard drawn. 

The ascending order of the temperature coefficient is thus : glass hard ; annealed; 
hard drawn ; the inverse of resistivity. 

Young’s Modulus. 

4. The elastic properties of steel are known to undergo a considerable change with 
drawing, and it seemed desirable to discover if longitudinal elasticity was correlated 

in any way with the electric and magnetic properties of these steel wires, and how it 
was modified by annealing, tempering, and traction. The determination of Young’s 

modulus was eftected by measuring the amount of flexure of the wires when loaded 
at the middle, and with the ends resting on rigid supports. The depression produced 

by loading was observed through a telescope supplied with a micrometer eye-})iece, 
which allowed an exceedingly small interval to be measured with accuracy. After a 
leading had been taken of the fiducial mark, with no load hanging from the rod 

except the pan itsell, weights were applied one by one, great care being exercised so 
that there sliould be a minimum of vibration ; the weights were then removed, one 
at a time, the depression corresponding to these weights at each stage being observed 

through the telescope. Two, and in some cases three, independent sets of experi¬ 
ments of this kind were performed on each wire, and nearly always with different 

distances between the supports, and with difterent increments and amounts of load, 
and the mean of the several experiments was taken as the final result. 

In the formula for the calculation of the modulus the fourth power ol the radius 
appears as one of the factors, and hence an accurate value of the radius is required 
if errors are to be avoided. As already mentioned,^' a considerable number of careful 
measurements of the diameters of the wires were made, and these were confirmed from 
determinations of the density.! The values there used have been adopted here. 

The fifth column of Table IX. gives Young’s modulus for the twelve specimens ot 
steel upon which the magnetic and electric experiments already described had been 
cairied out. Diagram VIII. exhibits this column of figures as a curve with sectional 

* Vide § 2. 

t As the deviation of any single deteimination of the density from its mean never exceeded ^ per cent, 

in any one specimen, the maximum error on this accouzit in the fourth power of the radius will not be 

more than double of this. 
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JMagram Vill. 

Relation of Young’s modulus (Y) and its temperature coefiicient (y) to drawing in piano steel wires. 

areas as abscissae and Young’s modulus as ordinates ; on the same diagram the curve 

of the temperature coefficient of the modulus is plotted, but this will be referred to 

afterwards. 

A feature of this curve is that annealing, hard drawing, and tempering all produce 

an upward effect, which is continued until the last stages are reached, and then a 

decided drop occurs ; thus, again, the initial effects of drawing are reversed by extreme 

traction. The increase of the modulus is very conspicuous when the wire has been 

tempered, the rise at this stage being nearly one half of the whole change, which, 

from least to greatest, is about 21 per cent. On the other hand, drawing between 

the 2nd and 3rd stages has only a small effect on the modulus, and the influence 

of successive cold drawing after tempering for at least two stages is comparatively 

unimportant ; then, after a sharp rise at the 8th and 10th stages, with some 

irregularity at the 9th, there is the rapid fall to the 11th and 12th points. The 

irregularity in the final stages is here apparent, as in some of the other curves, and 

confiims the suspicion that there has probably been some departure from the 

even course of drawing after the 8th stage, as mentioned when the process of 

manufacture was described.'^ It seems not unlikely that it recpiires very skilhd 

manipulation of the material in order to obtain maximum elasticity, and about stages 

(8) to (10) the wire possibly develops a critical condition. 
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Temperature Coefficient of Young’s Modulus, 

5. In determining the temperature coefficient of Young’s modulus the same 

apjDaratus as before was used, with the addition of a brass tube in which slots were 

cut, so that the upper ends of the supports could project into the interior of it. This 

tube enclosed the steel wire, and another slot of smallest allowable size was cut at 

the centre of the tube to permit the passage of the suspension for the pan and 

weights. The slots near the ends were made steam-tight, but, necessarily, this could 

not be done for the central one, as the suspension wire which passed througli had to 

hang freely. One end of the tube was in connection with a boiler, and this produced 

a supjjly of steam which could pass freely along the tube and escape at the other 

end. No special arrangement, liowever, was made for the cooling of the tube, the 

steam was simply shut off and the tube and its contents allowed to grow cold 

gradually. A thermometer projected into the tube, with the bulb nearly at the 

centre, and the temperature of the steel was taken to be the reading of the 

thermometer. 

The apparatus thus set up was at first intended for rapid tests, to ascertain 

whether the sign of the coefficient changed at any stage, and less attention was paid 

to its magnitude, but later on it became possible to obtain numerical results which 

are worth recording. In some earlier experiments the metliod was tried of observing 

the position of the fiducial mark at air temperature, then at steam temperature, and 

again at air temperature, from which data the coefficient could easily have been 

deduced. But it was found much better to follow the plan of loading and unloading 

as already described for determining the modulus, carrying out the observations 

firstly at air temperature, secondly at steam temperature, again at air temperature, 

and so on alternately, and calculating the coefficient, y, from the observed depressions, 

Dq and D/, thus : 

y — 

By adopting this method, corrections for expansion of supports, etc., were eliminated. 

The formula assumes that the change in Young’s modulus is linear and that there are 

no hysteresis-like effects, but these assumptions are, no doubt, not quite justifiable, 

although probably not far from the truth. 

With rise of temperature the modulus was found to decrease, but on cooling it 

it was very seldom that it returned exactly to its original value, although, after a 

repetition of the experiments, the modulus was found to change from one to another 

of two nearly constant values ; thus there is a permanent change before a cyclic state 

is established, Here is an example ;— 
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Drawn Steel Wire No. 7. 

Temperature. 
Depression on arbitrary scale (load increment 

= 100 grammes). 

« 

Cold. 145-8 
Hot. — 147-6 
Cold. 144-0 — 

Hot. — 146-6 
i Cold. 

1 

144-0 — 

Each of these numbers has been arrived at after a series of loadings and 

unloadings as described above. Since the modulus is inversely proportional to the 

depression, the diminution of the latter from 145'8 to 144 means a “permanent” 

increase of 1‘25 per cent, in elasticity.'^ 

The amount of this increase of the modulus varies from stage to stage and roughly 

follows the variation of the temperature coefficient, large and small values of each 

being associated. Tlius there is a large “permanent” increase when the cyclic 

change is large. The average amount of the “ permanent ” increase of the modulus 

in these wires is about 2‘5 per cent, for 80° change of temperature, f 

The mean results of the several determinations of the temperature coefficient ot 

Young’s modulus on each wire are given in the sixth column of Table IX. 

The coefficient is throughout negative, implying that, in the cyclic state. Young’s 

modulus decreases with rise of temperature; the magnitude varies considerably, 

namely, from — r64 X 10“^ when annealed, at the 2nd stage, to a maximum of 

— 10’25 X at the 3rd stage, when hard drawn. There is a small value again 

of the coefficient at the 4th stage on tempering, and, after that, the figures for the 

cold drawn specimens j^resent apparently much irregularity, but if this column of 

figures be plotted, as in Diagram VIII., we get a curve which repeats in an inverse 

sense all the features of the modulus curve, so that a relation clearly exists betv^een 

the modulus and its temperature coefficient. Although the figures in the table do 

not exhibit a simple inverse j^roportion between the magnitude of the coefficient and 

Young’s modulus, yet the general statement may be made that larger and smaller 

values of the modulus are progressively associated respectively with smaller and 

larger values of its temperature coefficient. This law recalls the similar law 

connecting the resistivity of the iron carburets and their temi^erature coefficients, 

with this difference, that the coefficient for the modulus is negative, whereas the 

coefficient for resistivity is positive. The average value of the coefficient for Young’s 

* This “permanent” effect does not persist indefinitely, Imt probably disappears in a fev days 

or hours. 

t These curious effects of temperature on Young’s modulus are in accordance with results published by 

Mr. Shakspear in a paper which appeared just after these experiments were carried out. ‘Phil. Ma^,’ 

vol. 47, p. 539; also ride ToMLiNSON, ‘Roy. Soc. Phil. Trans.,’ vol. 174, Part L, p. 132. 



EXPEETMENTAL EESEAECHES ON DRAm^ STEEL. 38 

modulus 111 these wires is — 0'00045,* whilst for resistivity it is + 0 '0035 approxi¬ 

mately. 

Density. 

6. When a steel rod is drawn into wire the variation of density as the drawing 

proceeds may not progress uniformly, for it is not unlikely that the stress required to 

force the rod through the draw plate may so far separate the molecules longitudinally 

that the lateral compression does not compensate for the extension. In this case the 

density will diminish, and, in short, density will depend upon the ratio of extension 

to compression. It is, therefore, not only interesting, but of some importance to 

trace the change of density at each stage of manufacture and to compare this with 

the change of the properties already examined. 

The method adopted was to weigh a suitable length of the wire in air and after¬ 

wards in distilled water, at the same time noting the data necessary for corrections 

on account of density of the water, the buoyancy of the air, the weight of the 

suspending fibre, etc., the most important correction being the one wdiich makes allow¬ 

ance for the temperature of the water differing from that of its greatest density, 

approximately 4°. 

For the sake of confirmation an entirely independent duplicate set oi observations 

was carried out, and the agreement between the two sets was very satisfactory, 

especially in the earlier specimens, which, being of greater size and mass, could be 

weighed with relatively higher accuracy. The results are given in the last column of 

Table IX. It will be seen that they end at the eleventh wire, as the twelfth was 

accidentally mislaid; this is particularly unfortunate, as it would have been useful to 

know whether No. 12 exhibited a density greater or less than the abnormally high 

density of No. 11. 

The feature which first claims notice is the diminution of density, although only 

slight, which takes place when the rod is first subjected to traction, namely, between 

the 2nd and 3rd, and between the 4th and 5th stages. 

This appears to be an illustration of the remarks at the beginning of this section. 

Afterwards, as the drawing progresses, tliere is a steady increase of density, with a 

large increment between the 10th and 11th stages. The entire variation of density is 

about 2 5 per cent., the least and greatest values lying respectively at the beginning 

and end of the list. 

As a general rule, it has been observed that density and Young’s modulus in steel 

vary directly together, and this leads to a comparison of the present results with the 

curve of the modulus. The similarity is not immediately obvious, but, in both, 

annealing and tempering produce an upward movement, whilst the first drawing after 

either of these operations produces very little change, subsequent drawings, however, 

* According to Styfte the average value for ordinary steel is 0-0003. “ Strength of Iron and Steel,” 

by Knut Styffe, p. 122. Vide also Tomlinson, ‘Roy. Soc. Phil. Trans.,’ vol. 179, p. 23 ^ vol. 174, 

pp. 132-133. 
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bendiug the curves upwards rapidly. But the final drop in the modulus does not 

appear to have a counterpart here, unless the missing No. 12 diminishes in density. 

It is to be noticed that the percentage variation of Young’s modulus from one end 

of the curve to the other is about ten times the percentage variation of the density, 

and also the average temjjerature coefiicient of the modulus is about ten times the 

temperature coefficient of density, or cubical expansion, so that it is possible that much 

of the diminution of elasticity with rise of temperature may be due to thermal 

expansion diminishing the density. 

A more obvious correspondence exists between the curve of residual magnetic 

intensity (dimension ratio =100) and the curve of density, both rising continually 

and rapidly from the 5th point. The relationship is more easily traced when 

intensity is plotted against density, as in Diagram IX. Between the 5th and 9th 

Diagram IX. 

Y 

The relation of residual magnetic intensity and Youxg’s modulus to density in drawn steel. 

stages inclusive the ratio of the increment of magnetic moment per unit volume to 

the increment of mass per unit volume is nearly constantly 4100, or each molecule 

added per unit volume contributes directly or indirectly to the whole a magnetic 

moment 4100 times its mass. This is, however, a doubtful clue to even an inferior 

limit to the magnetic moment of a molecule, since it cannot be assumed that there is 
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an invariable structure maintained throughout the progress of the drawing. Indeed, 

it is not difficult to see from the fracture of the wires that as the drawing proceeds a 

fibrous structure is developed for several stages after tempering, and the formation 

of this fibrous structure may be of imj)ortance in augmenting the magnetic intensity. 

For the sake of comparison, Young’s modulus has been plotted on Diagram IX., 

the points being taken from a smooth curve of the modulus and traction, and the 

curs^e bears out the statement that an increase of density in general improves elastic 

properties. It also shows that elasticity and magnetic intensity are correlated. 

To complete this part of the investigation of the properties of drawn steel, it was 

intended to add an account of the changes which might take place in the cubical 

expansion of these wires, and to trace the connection of these with other changes, 

but although some preliminary experiments have been made, the results are not yet 

sufficiently advanced to be presented. 

This investigation has been carried out at the Owens College, Manchester, at 

intervals during the last tliree or four years, and I am greatly indebted to Professor 

Schuster for allowing me to avail myself of the facilities for research which tlie 

Physical Laboratory there provides. 

Table IX.—Influence of Drawing on liesistivity, Young’s Modulus, and their 

Temperature Coefficients, and Density. 

1 No. 
i 

Condition. 

Resi.stivity 
(at air tem¬ 

perature, 
about 16°). 
Ohms per 
centimetre 

cube, 

P- 

Temperature 
coefficient of 
resistivity, 

a. 

Young’s 
modulus (at 
air tempera¬ 

ture), 
Y. 

Temperature 
coefficient of 

Young’s 
modulus, 

/• 

Density. 
Grams, per 

cubic 
centimetre 

at 16°. 

X 10-^ X 10“3 X 10" X 10-* 

1 Rolled Rod 1-601 -8 3-43 1-78 - 3-35 7-803. 
2 Annealed 1-796 -8 2-94 1-83 - 1-64 7-827 
3 Hard drawn 1-585 -8 4-66 1-85 - 10-2 7-815 
4 Tempered 1-784 -83-49 2-04 - 2-30 7-818 
5 Cold drawn 1-716 -8 3-55 2-04 - 3-79 7-813 
6 1-657 -8 3-48 2-08 - 5-90 7-8.35 
7 ; > 1-645 -83-61 2-11 - 4-87 7-871 
8 1-638 + 3-51 2-20 - 2-79 7-881 

! 9 j? 1-627 + 3-43 2-13 - 6-53 7-902 
1 10 3) 1-633 + 3-52 2-21 - 1-79 7-913 

11 33 1 - 696 + 3-44 2-18 - 6-42 8-001 
12 33 1-738 + 3-48 1-95 - 4-24 — 

12(1 *3 1-739 _ _ 
13a 33 1-772 — — _ _ 
14n 53 1-876 — — — — 

Glass hard 2-760 + 1-77 — — 7-740 

F 2 
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n. The Specific Heats of Metals and the Relation of Specific Heat to Atvinic 

Weight.—Part II. 

By W, A. Tilden, D.Sc., F.K.S., Professor of Chemistry in the Royal College of 

Science, London. 

Received December 8,—Read December 11, 1902. 

In the Bakerian Lecture for 1900 (‘ Phil. Trans.,’ A, vol. 194, p. 233) it was shown 

that the specific heats ol very pure cobalt and nickel, when compared at temperatures 

fi-om 100° C. down to the boiling-point of licpiid oxygen, — 182°-5 C., steadily 

apjJioach each other and together tend towards a least value winch is at present 
unknown. 

It was thouglit desirable to increase the numljer of determinations at successive 

points on the tliermometric scale, and to extend the total range of the experiments so 

as to afford better data for calculation of tlie form of the curves. Tlie following is an 

account of the results obtained. 

It has not yet been possible to arrange for tlie conduct of experiments at 

temperatures lower than — 182°-5, as this could only be done with the aid of liquid 

hydiogen. The temperatures above 100° C. have been obtained bv the use of a hath 

of aniline vajiour, melted fusible metal or melted lead, and were estimated by the use 

of a platinum resistance thermometer which was carefully calibrated, and of viiich the 

fixed points 0°, 100°, and 184° (boiling-point of aniline) were verified. Tlie specific 

heats were determined m the same calorimeter and vith the same ju'ecautions as 

described in the Bakerian Lecture. 

The holder employed in the experiments at low temperatures was found equally 

useful in the experiments above 100°. Between air tenqierature and 100° the steam 

calorimeter was again employed. 

The figuies given in the following lable I. are in nearly all cases the mean values 

deduced from several experiments which were always closely concordant. 

The total amount of heat per unit mass measured in the calorimeter is equal to tlie 

pioduct of the mean specific heat and the range of temperature, beginning in eacli 

case at 15° C. Taking the values given in the table, this product, Q, may be jilotted 

as an ordinate, the liigher absolute temperature, t, being the abscissa. The result is 

Ihe nickel, cobalt, and platinum employed are the pure specimens prepared for the former series of 

experimente. Pure silver vas obtained from Messrs. John,sox and TlATTimY. For the aluminium I am 

indebted to Profe,ssor J. W. Mallet; it was described as nearlv pure. 

VOL. CC1.- --A 332. ‘ , 
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shown in fig. I. Cobalt has been omitted, as the metal apparently undergoes some 

oxidation at high temperatures and the results are less regular than the rest. 

Table 1. -Mean Specific Heats. 

Eange of temperature. 

+ 

° 0. 
-■ 182 to + 15 
— 78 ,, + 15 

15 „ +100 
15 „ 185 
15 „ 335 
15 ,, 
15 „ 
15 „ 
15 „ 
15 „ 
0 „ 
0 „ 

350 
415 
4.35 
550 
030 

1000 
1177 

Aluminium. Nickel. Col )alt. Silver. Platinum. 

• 1677 • 0838 ■0822 ■0519 • 0292 

•1984 ■0975 ■0939 ■0550 ■— 
_ • 1084 •1030 ■0558 ■0315 

•2189 •1101 •1047 •0561 — 

•2247 — — — 
_ •1186 •1087 •0576 — 
_ •1227 — .— .— 

• 2356 •1240 . •1147 •0581 •03.38 

_ •1240 •1209 — —• 

•1246 •1234 — — 

— — — 

•0377* 
•0388* 

The general shape of the curves is the same and the connection between Q and t 

may Ije assumed as hy})erholic : 

C" “h "t~ + y = !*• 

The values of /t, = c/Q/c/C for the specific heats at successive temperatures on the 

absolute scale are given in the followfing table :—• 

Table 11.—Specific Heats. 

t aljs. 

“ V. 
100 
200 
300 
400 
500 
GOO 
700 
800 
900 

1000 
1100 
1200 
1 300 
1100 
1500 

Aluminium. 

122G 
1731 
2053 
2254 
2384 
2471 
2531 

Nickel. 

•0575 
•0878 
•1054 
■ 1168 
•1233 
•1275 
•1301 
•1321 
•1338 

Silver. 

•0467 
•0528 
•0558 
•0572 
• 0581 
•0587 
• 0590 

Elatiimm. 

0275 
0293 
0311 
0328 
0344 
0358 
0372 
0385 
0397 
0409 
0421 
0432 
0442 
0452 
0461 

One important result of the extension of tlie experiments to other metals is that 

the assum])tion of a constant atomic heat at the absolute zero, which seemed justified 

■*' Yiui.lk, ‘ Comiites Eemlus ’ (1877), vol. 85, p. 543; ;ilso ‘ Ehil. iM:ig. [5], vul. 4, j). 318. 
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in the case of col)alt and nickel (see Appendix to Bakerian Lectfre), is apimrently 

nntenal )le. 

Plotting the specific heats in Table II. against absolute temperatures, the curves 

shown in fio’. 2 are obtained, from which it is obvious that unless some remarkable 

change in the specific heats of silver and platinum occurs helow — 182'’ C. the curves 

rejiresenting atomic heats cannot meet at the absolute zero. 

It will be observed that the influence of rise of temperature on the specific heat is 

in the inverse order of the atomic weights of the metals compared, being greatest in 

the case of aluminium and least in the case of platinum. This appears to he generally 

true and is supported l)y the experiments of Behn (‘Wiedemann’s Ann.,’vol. 6G, 

]). 237). It appears, therefore, that the usual application of the law of Dflong and 

Petit to the rectification of atomic weights is a rough empirical rule vdiich, setting- 

aside boron, carbon, silicon, and beryllium, is oidy available v-hen the specific heats 

have been determined at comparatively low temperatures, usually, and most con¬ 

veniently, between 0° and 100° C. 

What mechanical properties of the metals are concerned in affecting the value of 

the specific heat is not known. The work done in expansion has apparently very 

little to do with it. Lead and platinum, for example, the atomic weights and specific 

heats of which are near together, have very different coefficients of exjiansion, that of 

lead being nearly ten times as great as that of platinum. I have, however, on the 

suggestion of Professor Perry, thought it of some interest to determine the specific 

heat of the remarkable nickel steel which is said to have a smaller dilatation than 

that of any other metal. The sample used was found by analysis to contain 35‘92 

per cent, of nickel, practically 36 per cent., with 'll of carbon and about ‘30 of 

manganese. The mean specific heats observed at four widely separate temperatures 

show that there is decidedly an increase with rise of temperature to an extent about 

the same as in the case of nickel itself 

Range of temperature. 
]Mean specific heat of 

nickel steel. 

- 182 to + 1°5 •0947 
15 „ 100 •1204 
15 „ .360 • 1245 
15 „ GOO •1258 

Evidence as to the cause of the difference lietween two such metals as nickel and 

silver has been sought by making comparative experiments with the two metals in 

the form of sulphide. These compounds were prepared by precijiitation by hydrogen 

sulpliide from solufions of the sulphate and nitrate respectively, and subsequent 

fusion of the dry sulpliide with an excess of sulphur. If the differences between the 

metals are due to peculiai-ities of the atoms of each, similar differences would be 
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observed in the specific heats of their sulpiiides, in wliich presumably the atoms are 

separated. On the other hand, if the differences are due to molecular difterences or 

to the properties of the metal in mass, somewhat different values for the specific 

heats miglit Ije oljtained. In tlie result it was found that the mean specific heat of 

silver sulphide is less than that of nickel sulj^hide at all temperatures. 

Range of tempei’ature. 

Mean specific heats. 

Nickel sulphide.* Silver sulphide.* 

- 180 to + 15 •0972 ■0568 
15 „ 100 •1248 •07.37 
15 „ 324 • 1.333 •0903 

When these results are plotted in the same manner and on the same scale as 

shown for the metals in fig. I, the two curves for the sulphides are seen to he very 

similar to those for the metals. See fig. 3. 

* Reonaui.t foniul the mean specific heat of fused NiS to he '1281 and of fused Ago8 -0740 lietween 

0° and loot 
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This, however, takes no account of the sulphur in the compounds, and though the 

molecular heat of each may be calculated and the mean atomic heats of the Wo 

metals so obtained, the result is of little value without a knowledg’e of the rate at 

which the specific heat of sulphur increases with temperature. 

In conclusion, I desire again to acknoAvledge the skilful assistance of Mr. Sidney 

Young in tlie exjieriments. I have also to thank Mr. Leonaud Eaihstow, Whit. 

Sell., for valuable help in the calculations. 
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III. An Experimental Determination of the Variation loith Temperature of the 

Critical Velocity of Flow of Water in Fipes. 

By E. G. Coker, M.A. {Cantah.), D.Sc. (Edin.), Assistant Professor of Civil 
Engineering, and S. B. Clement, B.Sc. {McGill), Demonstrator in Civil 

Engineering, both of McGill University, Montreal. 

Communicated by Professor Osborne Eeynolds, F.R.S. 

Eeeeived July 16,—Read November 20, 1902. 

1. Introduction. 

The motion of water in pqDes and channels has been the subject of frequent 
investigation, both from the theoretical and the experimental side, and it is well 
known that while in some cases theory and experiment are in exact accord, yet in 
many others the experimental results difiPer Avidely from the calculated. 

In some cases, wliile tlm theory holds for one set of conditions, it is found not to 
hold for conditions which at first do not appear to be fundamentally different. 

A striking instance is that of the flow of a viscous liquid through a pipe of circular 
section, a case for which a strict mathematical solution can be obtained under 
certain assumed conditions of flow. Experiment shows that the theory is verified if 
the pipe IS of capillary bore and the motion small, while if the pipe is large and the 
motion appreciable, there is a large discrepancy between experiment and calculation. 
I he discrejDancy is due to tlie assumption that the motion is stream-line, a condition 
of things whicli is true for tubes of capillary bore, but in general is not true f<;)r 
tubes of apprecialde diameter unless the motion is lieloAv a certain limit, fixed by the 
size of the pipe and the physical characteristics of the liquid. Above this limit, the 
motion is eddying and the hydrodynamical equations no longer apply. 

The change from stream-line to eddy or sinuous motion was first studied by 
Osborne liEVNOLDS,^'' who shoAved that the determining factors in the case of a 
ciicular pipe depended on the dimensions of the pipe and the viscosity of the AAnteiv 
His results are liased partly on deductions from the equations of motion for a viscous 

An Experimental Iiive.stigalion of the Circiimstance.s which determine whether the Motion of Water 

shall be Direct or Sinuous, and of the Law of Resistance in Parallel Channels.” ‘Phil. Trans.,’ 1882 



4G PR(3FESS0K E. G. C0KE:R AND MR. S. B. CLEMENT ON THE VAPJATION 

fluid ; thus, if we take the general equations of motion for an incompressible fluid 

subject to no external forces, as of type 

t = “ "M * + 7/!; + '^"4 + i + pnw) 

and eliminate the pressures from the equations, we obtain the accelerations in terms 

of diflerent types. Thus, if we take the middle term, viz., — ^ ' ^ {2)^.1- fl- piiv), and 
p 

for 2->j^.v ^vrite p (4; + ), we get I I I _ Now, since dv/dx 
ax d)j j ' 

_ A [ fl: 
dx ' dij I’’ (lij p 

and dujdy have the dimension of a velocity divided by a length and the other term 

has dimension of the square of a velocity, the relative values of these two terms are 

to one anotlier as ju,/cp to v, where c is a length, say the radius of the tube. 

The equations do not show in what way the motion depends upon this relation, 

but it was inferred that the eddying motion must depend on some definite relation 

between v and y/cp, expressible in the form v = hpijcp, where h is some constant. 

The experijuental observations were of t^vo kinds, the earlier depending on the 

device of introducing a colour band into a glass pipe and observing the velocity at 

which break-down of the stream-line motion occurred, and the later method depending 

upon the fact that stream-line motion is associated Avith resistance proportional to 

the velocity, while for eddy motion the resistance is proportional to a higher jDOwer 

of the velocity. 

Both methods showed that the critical velocity at Avhich stream-line motion 

changed to eddy motion varied directly as the viscosity, and inversely as the radius 

of the pipe. 

Object of the Exirndmciits. 

In the experimental verification of the temperature efiect upon the critical velocity 
a satisfactory agreement Avas obtained Avith the formula, but as the range of 
temperature AA^as extremely limited, it Avas pointed out tliat “ it Avould be desirable 
to make experiments, at higher temperature; but there Avere great difficulties about 
this, Avhich caused me, at all events for the time, to defer the attempt.”!' 

It does not appear that such experiments haA^e since been made, and although the 

diificulties Avere not estimated lightly, it seemed Avorth Avhile to attempt experiments 

through a much larger range of tempeiature. 

Scope of the Ex/^erirneats. 

Althougfi it Avould be eminently satisfactory to make experiments througliout the 

whole range of temperature of AAuiter, yet the experimental difficidties of maintaining 

‘Phil. Tram.,’ A, 1895, p. 131. 
t ‘ Phil. Trans.,’ 1883, p. 977 
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a uniform temperature in the pipe increase in a much greater ratio than the increase 
of temiDerature beyond, say, 50° C., and there are other difficulties, due to convection 
and evaporation, which made it desirable to limit the investigation, at any rate for 
the time, to a range of 45° to 50° C. With these limits it was found that the 
decrease or increase of tem23erature along the pipe, when thickly lagged, was 
inconsiderable, and the correction to be apjolied was therefore small and not likely to 
cause an appreciable error. In order to carry on experiments at a higher temijerature, 

it would apj^arently be necessary to surround the experimental tube with a Avater- 
jacket maintained at the same temperature as the Avater in the tank, otherAvise dro2) 
of temperature along the pipe AAmuld be so considerable as to seriously Increase the 
chances of error. 

Method o f Experiment. 

The 251’biciple of the method is the same as originally devised by Osborne 

Reynolds, but the manner of carrying out the Avork differed someAAdiat in detail. 

The method of colour bands is unsuitable for Avater at a high teni23erature, as it is 

impossible to eliminate the effect of conduction and convection, and the AAmter 

consec2uently never comes to rest; moreover, ex23eriments by this method lead to a 

different form of the criterion, viz., the maximum limit at Avhich stream-line motion 

is 230ssible, Avhile ex23eriments on the Amriation in the resistance of pipes lead to tlie 

minimum criteiioii, viz., that at Avhich eddies change to steady motion. This latter 

method is also more likely to be accurate, for the maximum velocity of stream-line 

motion depends iqion external causes, Avhich influence it to a remarkable extent. 

Ex23eriments Avere made Avith the tank in the laboratory to discover hoAv far stream¬ 

line motion could be carried under faAmurable conditions; the tank rests directly 

upon the ground, and after Avater at the tem2)erature of the room had l)een alloAA^ed 

to stand therein for tAAm or three days, stream-line motion in 2)ipes could be maintained 

at higher velocities than that giA^en by the U2323er limit formula for the critical 
velocity viz. ; 

1 /('^) ^ 
43-79 I) 

the units being metres and degrees centigrade, a result no doubt due to the com2)lete 

absence of vibration in the tank, AAdiich AA^as founded on rock, and also the freedom of 

the AA-ater from sediment. 

Moreover, it is easy to loAver the critical velocity by subjecting the Avater to a 

disturbing cause; thus fine matter in sus23ension in the water aauII loAver the critical 

A^elocity. Ta2)2^iRg the pi23e or inter230sing therein a 23iece of Avire gauze Avill also act 

likeAAuse; in fact, the 2^oint of Ijreak-doAvn can be varied Avithin Avide limits 

according to the circumstances. 

Whatever be the disturljlng causes, hoAvever, if stream-line motion exists, tlie 

* ‘ Phil. Trans.,’ 1884, p. 957. 
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relation of slope to velocity is a perfectly definite one at a definite temperature for 

the flux, lieing expressed by the equation 

2 = 

If we write v = and -- , - ~ = i, we obtain = — i, and tliis relation between 
Try'- I o/j. 

V and i, plotted logarithmically, is, at a definite tem])erature, a line inclined at 45° to 

the axes. 

Slightly al)0^■e critical velocity, it can be shown experimentally that no definite 

relation exists, bid well above this point, where the motion is perfectly eddying, it 

can be shown experimentally that the relation between v and i is a perfectly definite 

one at a definite temperature, and is exjiressed by some straight line inclined at an 

angle tan“^ n, where n is a constant for any particular pipe. 

It tlierefore appears that the minimum critical velocity is the intersection of the 

t wo branches of the logarithmic honiologue; and throughout this paper this point has 

lieen taken as the critical velocity for the temperature considered. 

As the ex})eriments below the critical velocity require apjiaratus for measuring 

pressures of extreme accuracy and limited range, while above the critical velocity the 

limit of accuracy is relatively less important and the range is large, it simplifies 

matters to take a series of runs at diflerent tenqjeratures below the critical velocity 

without any cliange, and afterwards to take runs above the critical velocity. AVith 

this method tlie variation of temj^eratiire during a single series is small, and the 

correction to a standard temperature is generally negligible. 

Ai^parafus used in the Exp)eriments. 

The experimental tank A, fig. 1, is of cast-iron, 5 feet square in section and about 

30 feet in height, its base resting upon the earth, so that the water in it is not easily 

distur])ed by external causes. It is provided with a steam heater for the inflowing 

* Lamb’s ‘ Ilydrocfynamics,’ p. 5:!]. 
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water, and there is a direct steam connection to the boiler room, so that steam can be 

blown directly into the tank. About 8 feet above the base there is an opening, B, 

in the middle of one side, through which the tube C was inserted, its bell-mouth 

being placed at the centre ; and at suitable distances apart pressure chambers, D, were 

formed and connected up to the U-gauge E. The flow of water was controlled by a 

valve, F, and on the prolongation of the pipe a three-way plug valve, G, was inserted, 

so that the watei could run to waste through the H.) or could be discharged by 

the J^ipc J, into the glass flask K. The handle of this tajj w^as provided wuth a 

flexible brass plate, L, in circuit with a chronograph, so that at the middle of its 

swing a circuit was completed by the contact of the brass strip with the pipe, and a 

recoid was obtained on the drum of the chronograph. This latter instrument was 

furnislied with two pens, marking in 0|3posite directions, one ticking seconds and the 

other operating at the beginning and end of each run. This arrangement tends to 
prevent errors in reading. 

The j^ressure chambers were of a sjiecial design and consisted of three sejiarate 

^iieces, the outer one (A) of which coujiles the jiarts B and C togethei", leaving a 
continuous oiDening, D, which may be of any 

required width. In the jiresent case, the two 

sides forming the slit were separated by an 

interval not more than inch, so as to 

prevent, as far as j^ossible, any interference 

with stream-like flow. The part B is recessed 

to form a iiressure chamber, P, connected to the 

gauge by an opening, E. The parts B and C 

are faced so that when drawn togetlier by the 

coupling A, they form a water-tight joint at F, 

and the ends of the are screwed into 

corresponding recesses in B and C. This form of pressure chamber has several 

advantages. The continuous opening gives an accurate mean value of the j^ressure, 

and it can be faced without any burr ; moreover, it may be readily disconnected for 

insjjectioii. 

The i^ipe was of brass, wdthout seam, and 6 feet in length between the pressure 

chambers; its mean diameter was determined by first weighing emjity and then full 

of mercury. The mean diameter thus determined was 0‘3779 inch. 

21 le Measurement of Pressure. 

The accurate determination of the jiressures at the given sections of the pij^e is a 

matter of considerable difficulty, esjiecially at the very low difierences of head 

required for the accurate determination of the slope of j^ressure at velocities below 

the critical velocity. At the higher joressures, a U-tube containing mercury was 

VOL. cci.—A. H 
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found to answer all requirements. Errors due to the inequalities of the tube 

^y0Pe uot ]‘id of hv measurements taken on both tubes, while a suitable correction 

was made for temperature. At the low velocities, considerable difficulties were 

experienced. Tlie difference of heads between the two sections at the lowest 

velocities was about ’005 inch of mercury, and as this must be read very accurately, 

it became a matter of such difficulty that a new gauge was made and filled with 

carbon bisulphide. A number of trials were made, but it was found that the carbon 

bisulphide was very sluggish in action, and, unless a very considerable time was 

allowed between every two successive runs, its readings could not be relied upon. 

Another and more serious defect was the shape of the falling meniscus, which rarely 

assumed its proper form, so as to afford a definite measurement. This was due to 

the adherence of the carbon bisulphide to the glass; and in spite of repeated 

cleanings with different re-agents, no decided improvement was made and the gauge 

was abandoned. A return was made to the mercury gauge, and the cathetometer 

yms replaced by micrometer microscopes, vdiich had been carefully calibrated before¬ 

hand. These aflhrded much better results, but the observations were still irregular. 

Finally, tlie solution of the difficulty was found by turning the U-gauge upside 

down and imprisoning in its upper part a fixed column of air above the water in 

both limbs of the gauge. 

At first sight this might not seem to be a good arrangement, since any small 

variation of temperature vail affect the imprisoned volume of air considerably, hut 

this affects both legs equally, and there is no error from this cause. A possible 

source of error is the creeping of air from the pipe to tlie gauges. This is 

extremely unlikely, as the air in this case must first descend. If any liberation 

of air occurred from the water, its effect in altering the gauge would only be 

momentary. 

In practice, this gauge proved extremely sensitive and the readings could be 

repeated very accurately. 

The cathetometer used in reading the heights of the liquid in the U-tubes was 

of a standard pattern made by the Cambridge Scientific Instrument Company and 

capable of reading to of a millimetre. 

Stream-line Flow. 

The determination of tlie relation of slope to pressure, for vater in stream-line 

motion floydng through tubes of more than capillary size, is rendered somewhat 

difficult because of the smallness of the difference of pressure required to produce the 

flow. The difference may be increased by using a long length of pipe, or by using 

apparatus of extreme accuracy. The disposition of the permanent apparatus in the 

laboratory prevented tlie use of a pipe more than G feet in length between the 

pressure chambers; and at first considerable difficulty was experienced in obtaining 
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consistent results, but after many trials this was accomplished. A disturhing cause, 

which could not be altogether avoided, was the rise or fall of the temperature of the 

water as it flowed along the pipe ; a fall if the temperature of the room was above 

the temperature of the water, and vice vevsd. This was partly removed by coverino' 

the pipe with thick cotton-wool lagging overlaid with flannel, and in order to obtain 

a mean value of the temperatui'e of the water in the pipe a long-stem thermometer 

was fixed in the tank and another was immersed in the outflowing water, and a mean 

value of these readings was taken as the true temperature in the pipe. 

Temp^^C 
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50 

40 
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00 

10 

0 
10 00 30 40 50 60 

Fig. .3. 

A plot of the variations obtained is shown in fig. 3, in which the line AB gives the 

temperature of the outflow water, CD the temperature of the tank, and EF the 

corresponding temperature of the room. The relation between the tank temperature 

and outflow temperature is shown to be jiracticafly a linear one, thereliy warranting 

the correction. 

In all, ten series of runs were made at temjieratures covering tlie range, and the 

results obtained are recorded in the following talile, and are shown on fig. I. 

H 2 
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Table I. 

Number of 
experiment. 

Temperatui’e, 
° C. 

Time, 
seconds. 

Total weight 
of water 

discharged, 
pounds. 

Difference of 
head in 

centimetres 
of water. 

log V, 

V in feet per 
second. 

log h', 
h' in feet of 

water. 

1 4-3 121-28 7-112 3-819 0-0815 1-0975 
2 4-3 188-84 9-402 3-209 0-0102 1-0219 
3 4-4 148-60 6-312 2-713 1-9412 2-9491 , 
4 4-5 137-71 4-204 1-921 1-7978 2-7991 
5 4-6 164-92 4-033 1-539 1-7016 2-7028 
6 4-6 198-80 3 - 380 1-067 1-5436 2-5438 
7 4*7 84-26 1-336 0-999 1-5134 2-5152 

4-7 152-00 1-540 0-648 1-3189 2-3272 

9 11-2 141-18 6-130 2-315 1-9511 2-8799 ' 
10 11-2 168-15 5-131 1-570 1-7978 2-7133 
11 11-2 194-18 6-686 1-811 1-8503 2-7733 
12 11-2 140-40 3-318 1-224 1-6868 2-6032 
13 11-2 199-70 3-018 0-795 1-4925 2-4158 
14 11-3 235-68 2-407 0-507 1-3224 2-2204 1 
15 11-3 175-10 1-295 0-388 1-1824 2-1042 1 

16 16-8 70-90 1-991 1-221 1-7621 2-6020 
17 16-8 82-00 3-138 1-678 1-8964 2-7401 
18 16-8 75-70 3-565 2-088 1 - 9865 2-8351 
19 16-8 83-53 2-266 1-212 1-7470 2-5988 
20 16-8 88-28 1-320 0-660 1-4883 2-3348 
21 16-8 180-43 2-707 0-668 1-4898 2-3401 
22 16-9 143-75 1-347 0-404 1 - 2855 2-1217 
23 16-9 123-00 4-439 1 - 594 1-8710 2-7178 

24 18-0 188-60 7-150 1-671 1-8825 
1 

2-7380 1 
25 18-0 159-35 4-821 1-304 1-7945 2-6302 
26 18-0 182-55 3-973 0-932 1-6515 2-4844 
27 18-1 187-30 3-926 0-931 1-6353 2-4839 
28 18-1 190-15 2-713 0-604 1-4682 2-2960 , 
29 18-1 181-53 1-208 0-183 1-1368 3-7775 * 
30 18-1 181-30 3-790 0-886 1 - 6340 2-4624 
31 18-2 111-25 1-155 0-456 1-3301 2-1740 
32 18-2 346-40 10-932 1-376 1-8129 2-6536 

33 27 -2 135-85 4-594 1-232 1-8445 2 - 6059 
34 27-2 166-33 4-782 1-020 1-7733 2-5239 
35 27-2 135-12 2-929 0-779 1-6508 2-4068 
36 27-2 177-30 3-140 0-660 1-5629 2-3348 
37 27-1 195-48 2-294 0-443 1-3842 2-1617 
38 27-1 139-78 6-300 1-674 1-9684 2-7391 
39 27-1 83-33 4-404 2-028 0-0378 2-8224 

40 31-1 175-83 8-218 1-628 1-9848 2 - 7263 
41 31-1 123-95 4-346 1-172 1-8601 2-5837 
42 31-1 146-55 3-717 0-851 1-7194 2 - 4446 
43 31-1 150-30 1 - 334 0-304 1-2635 3-9976 
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Table I. — continued. 

Number of 
experiment. 

Temperature, 
° C. 

Time, 
seconds. 

Total weight 
of water 

discharged, 
pounds. 

Difference of 
head in 

centimetres 
of water. 

. logr, 
V in feet per 

second. 

^ log ll, 
h' in feet of 

water. 

44 34-5 157-70 4-329 0-871 1-7541 2-4553 
45 34-5 105-60 5-563 1-713 -0372 2-7490 
46 34-4 96-68 3-745 1-214 1 - 9037 2-5995 

1 47 34-4 158-10 4-122 0-767 1-7317 2-4001 
I 48 34-3 222-02 3-487 0-463 1-5117 2-1809 

49 34-2 1.38-63 2-105 0-458 1-4969 2-1762 
50 34-2 301-23 3-551 0-357 1-3870 2-0680 

51 38-0 251-10 9-849 1-179 1-9098 2-5866 
52 38-0 141-37 6-872 1-477 -0031 2-6844 
5.3 37-9 112-45 3-893 1-027 1-8556 2-5265 
54 37-8 265-68 6-681 0-719 1-7169 2-3717 
55 37-8 194-45 3-518 0-497 1-5738 2-2114 
56 37-7 162-95 2-043 0-371 1-4144 2-0844 
57 37-7 148-73 2-318 0-442 1-5089 2-1604 

1 
58 42-4 140-27 5 - 365 1-031 1-8998 2-5281 
59 42-4 121-07 3-532 0-779 1-7820 2-4064 
60 42-3 130-38 2-879 0-583 1-6613 2-2806 
61 42-3 158-38 2-720 0-474 1-5520 2-1907 
62 42-2 229-33 3-384 0-397 1-4860 2-1137 
63 42-2 167-63 1-825 0-294 I - 3541 3-9832 
64 42-1 124-75 4-365 0-933 1-8611 2-4848 

65 49-5 213-65 3-673 0-417 1-5539 2-1351 
66 49-4 268-15 7-015 0-637 1-7362 2-3191 
67 49-3 162-93 5-766 0-836 I - 8745 2-4372 
68 49-0 303-75 1-929 0-153 1-1214 3-6997 
69 48-9 134-80 2-383 0-423 1-5660 2-1413 
70 48-8 162-05 3-839 0-578 1 - 69.30 2-2769 
71 48-7 139-88 4-692 0-794 1-8440 2-4148 

In this table the observations are recorded in Cohimns 2, 3, 4 and 5, and from 

Columns 3 and 4 the mean values of the velocity of the water in feet per second 

have been calculated, and the logarithms of these quantities are given in Column 6. 

The observed difierences of head given in Column 5 liave been reduced to feet of 

water, /d, to correspond, and the values of log h' are given in Column 7. 

In most cases, owing to the large volume of water in the tank (usually not less 

than 300 cubic feet), the temperature remained remarkably steady during the runs 

forming a series, and no correction for temperature was necessary, and none was 

made unless the temperature differed more than 0°T C. In some cases, however, a 

much greater variation was met with, especially at the higher temperatures, and 

correction was necessary, not only in this series, but in the second series when the 
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motion was eddy or sinuous. The correction factor to ’oe applied may be obtained as 

follows :— 

If we assume that in stream-line motioji or sinuous motion the total resistance i 

depends on powers of the pipe I'adius, the kinematic viscosity, the density and the 

velocity, we may write, vcith the usual notation, 

i — 

where r = radius of the pipe, 

V = coefficient of kinematic viscosity, 

p = density, 

V = mean velocity of water along the pipe, 

h = a constant. 

Dimensionally this equation becomes 

[giving the relations 

and therefore 

[M] [L] 

[D1 
y DF - ~r 

T _ _L'b T_ 

2y -- 3^ + n = 1, y-\-n — o 

hp 

For the case of stream-line motion, n = 1 oivinar 

i = hprw. 

For the case of sinuous motion is greater than unity, and we may write the 

equation 

p r’'v'‘ 

= Kp- "p'* \ where K = 

Taking logarithms, we get 

log ^ = log K + (2 — n) log p + (n — 1) log p. 

Ditferentiating with v coiistant, we olRain 

1 di 

t dr 

Now p = 
+ OLT I3t~ 

approximately, therefore 

therefore 

1 da 

jjb dr 

1 (la 

p dr 

+ in 
p dr 

(a + 2/3t) 

1 + 
and p = Pq (I — yt) 
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Hence 

1 dp 7 

p dr 1 — 7T 

a. + 2/3t 

1 + tZT + /3t" 
cIt (l '— n) ' f/r.T''' 

1 — JT 

For stream-line motion n = 1, and the values of a and /S taken from Poiseuille’s 

formula are 
a =-03368, ^=-000221. 

The value of y for -water is approximately ‘00048, and hence the second term is 

never important, and the first term is oiily important where cIt is la,rge (and the 

term a 2^t is not small). 

For stream-line motion the correction for a difference of F at 10° C. is 

approximately ‘028, while at 50° C. it is '017. 

The observations recorded in the table, corrected to a mean temperature, are 

plotted in fig. 4. [tThe diagram shows the logarithmic homologues for streamdine 

motion in the pipe at ten different temperatures between 4° C. and 50° C., and 

these are represented by a series of straight lines equally inclined to the axes of 

co-ordinates. The mean temperatures to which the observations have been reduced 

are as follows :— 

Experiments. 
Reduced to a mean tem¬ 
perature Centigrade of 

Corresponding lines on 
«g. 4. 

1 to 8 
o 

4-5 1 
9 „ 15 11-2 2 

16 „ 2.3 16-8 3 
24 „ 32 18-1 4 
33 ., 39 27-2 5 
40 „ 43 31'1 6 
44 „ 50 34-4 7 
51 „ 57 37'8 8 
58 ,, 64 42-3 9 
65 „ 71 49-3 10 

These lines were] found to agree closely with the formula 

where r is the radius of the pipe, and p.2 the pressures at the ends, I the length oi 

pipe, aird [x is the coefficient of viscosity. 

* Corrected Nov. 14, 1902, as pointed out by the Referee, 

t Added Nov. 14, 1902. 

t Loc. (it. ante (p. 48). 
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This agreement is shown clearly by fig. 5, where the intersections of the logarithmic 

homologues with the zero ordinate are plotted with reference to the temperature as 

abscissa, and are compared with the intersections determined from the equation 

above, taking the value of jx according to Poiseuille’s formula. At temperatures 

between 5° and 20° C. the agreement is close, the values at 27°'2 and 31° do not 

correspond very well, and there is a very fair agreement at the higher temjDeratures. 

The dotted lines on fig. 4 are the logarithmic homologues at the temperatures of 4°, 

10°‘8, 21°‘2, 30°‘4, 35°, 39° and 50° C. respectively, and these have been interpolated 

by aid of figs. 4 and 5, in order to determine the intersections with the homologues 

for eddy motion also plotted on fig. 4, and which are referred to in the next section. 

The Relation of Slope to Velocity for Water in Eddy Motion. 

A second series of experiments was now commenced with water in eddy motion to 

determine the relation between the loss of head and the velocity at a sufficient 

number of temj^eratures within the range. 

It was extremely difficult to control the temperature, and so no attempt was made 

to obtain a series of runs with temperatures corresponding exactly to those obtained 

TTaipC 5 10 15 ^0 25 50 55 40 45 50 

Fig. 5. 

for stream-line motion, nor was this necessary, as the logarithmic homologuo for 

stream-line motion, corresponding to a similar one for eddy motion, was obtained by 

interpolation from figs. 4 and 5. The observations were made under precisely the 

same conditions as before, except that in the pressure gauge mercury in contact with 

VOL. cci.—A. T 
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water was used instead of water in contact with air and the gauge was in its normal 

position with the connecting U below. 

After some preliminary trials, seven complete series of runs were made, covering 

the range of temperature, and the observations made are recorded in Table II., and 

the logarithmic j^lots are shoAvn on fig. 4. 

As slight differences of temperature were now of much less importance, the j)lotted 

results lie much better upon the mean line, and enable the value of n to be determined 

with considerable accuracy. 

Table II. 

Number of 
experiment. 

Temperature, 
°C. 

Time, 
seconds. 

Total weight 
of water 

discharged, 
poimcls. 

Difference of 
head in 

centimetres of 
mercury. 

log- V, 

V in feet per 
•second. 

log h', 
]i' in feet of 

water. 

72 4-0 25 • 05 11-849 18-313 - 9882 •9119 
73 4-0 26-00 10-791 14-631 -9313 •8144 
74 4-0 36-20 12-873 11-353 -8642 •7042 
75 4-0 38-48 13-559 11-039 •8602 -6920 
76 4-0 49-30 12-780 6-520 •7270 •4633 
77 4-0 62-05 13-198 4-612 •6410 •3130 
78 4-0 98-08 12-603 1 - 945 •4221 1-9380 

■ 79 4-1 27-50 12-868 18-028 •9834 •9051 
80 4-1 34-83 13-665 13-327 •9068 •7738 
81 4-1 30-68 11-999 13-271 •9054 •7720 

82 10-8 31-10 12-605 13-422 •9224 •7763 
83 10-8 46-80 12-748 6-719 •7484 •4758 
84 10-8 62 - 95 13-257 4-300 •6368 •2820 
85 10-8 120-60 13-235 1-392 • 3537 1-7921 
86 10-8 25-86 12 - 221 17-469 •9878 •8908 
87 10-9 34 - 74 13-131 11-852 •8908 •7223 
88 10-9 5 - 58 13-006 5-137 •6808 • 3592 
89 10-9 100-00 13-405 1-967 • 4406 1-9423 

90 21 * 2 28-38 12-037 13-481 •9416 •7774 
91 21-2 34-62 12-864 10-701 •8841 •6771 
92 21-2 39-58 12-444 7-942 •8815 •5476 
93 21-2 51-27 12-668 5-280 •7068 •3703 
94 21-2 70-00 13-094 3-228 •5859 •1567 
95 21 -2 114-90 12-797 1-265 • 3609 T-7498 
96 21 -2 32-82 12-894 11-882 •9803 •7227 

97 30-4 26-81 13-250 16-206 1-0090 •8573 
98 30-4 24-66 11-960 16-145 1-0009 •8556 
99 30-4 28-93 12-679 13-536 •9569 •7791 

100 30-4 28-49 12-851 14-138 • 9693 •7979 
]01 30-4 31-75 12-639 11-472 •9151 •7072 
102 30-4 45-64 12-908 6-326 •7665 •4487 
103 30 • 4 61-05 12-870 3-743 •6390 •2208 
104 30-4 83 - 60 12-580 2-122 ' •4926 1 • 9743 
105 30-4 127-70 12-968 1-082 •3218 1-6818 
106 30-4 25-11 11-995 15-725 •9942 •8442 
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Table II.—continued. 

5U 

( 

Number of 
experiment. 

Temperature, 
“ C. 

Time, 
seconds. 

Total weight 
of Avater 

discharged, 
pounds. 

Difference of 
head in 

centimetres of 
mercury. 

log r, 
V ill feet per 

second. 
h: in feet of 

Avater. 

! 107 35-0 23-05 11-898 17-415 1 - 0285 -8888 j 108 35-0 22-52 11-611 17-397 1-0277 -8884 109 35 ■ 0 27-90 11-854 12-703 -9440 -7518 110 35-0 42-00 13-0.34 7-213 -8075 -5060 111 35-0 54 - 95 12-508 4-231 -6725 -2743 112 34 ■ 9 73-40 12-527 2-541 - 5475 -0529 113 34-9 26-10 13-370 17-220 1-0252 -8839 

114 40-4 23-57 12-311 17-482 1-0343 -8905 115 39-6 25-60 10-905 11-792 - 9458 -7195 116 39-2 40-50 11-869 6-526 - 7834 -4624 11 / 38 ■ 8 56 - 55 12-214 3-770 - 6508 -2241 118 38 • 5 77-14 12-308 2 - 228 -5191 1-9957 119 38-0 24-67 12-802 17-550 1-0313 -8920 

120 50-5 24-76 12-531 15-820 1-0226 -8470 121 50-5 67-20 12-771 2-933 -5972 •1151 122 50-0 27-18 12-245 12-708 -9721 -7519 123 50-0 56-48 11-870 3-340 -6410 -1716 124 50-0 32-40 12-928 10-44)2 -9194 -6686 125 49-8 78-40 12-346 2-147 -5178 1-9796 

The slopes of the lines for the cliftereiit temperatures ai-e shown in the accompanying 

table, and their mean value is n= lYSl. 

Temperature, ° C. 4-0 10-8 21 -2 30-4 35-0 39-0 50-0 

11. 1-722 1-733 1-740 1-734 1-738 1-737 1-715 

The dilferent values obtained are no doidjt due to temperature errors, and this view 

is confiimed vdien it is seen that tlxe variations Irom the mean value are greater the 

fill ther the temperature of the water is from the temperature of the laboratory. 

As there seems no reason to sujipose that the value of n varies with the temperature, 

the logarithmic homologues have been dravm at a mean inclination of tan~i 1731 in 

determining the critical velocity. The corrections to be applied for differences of 

temperature are now miicli smaller, and for the mean value of n = 1731 is found to 

be -0076 for a difference of 1° from a temperature of 10° C., and ’0047 for the same 

difference at 50° C. The observations for each series of runs in Table II. have been 

plotted to a mean temperature like those for stream-line motion, the temperatures 

corresponding to the interpolated homologues for stream-line motion described aliove. 

I 2 
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Critical Velocity. 

It has been pointed out in an earlier section that no attempt was made to deteimine 

the velocity at which stream-line motion broke down, but that the intersections of 

the two sets of lines above and below critical velocity were used to determine the 

minimimi critical velocity. This method of procedure amounts to the deteimination 

of the curve of intersection of two families of straight lines, whose positions aie 

experimentally determined, and it is clear that if the points of intersection lie ujDon 

some straight line in the logarithmic plot, the variation of the critical velocity must 

follow tlie viscosity of the water linearly, while, if they do not, the law cannot be a 

linear one. 

Fig. 4 shows the observations for stream-line flow, and the lines representing eddy 

motion are drawn thereon, and are produced to meet the interpolated lines for 

Critical Velocity. 

RfET PET? SECOND. 

Fig. 6. 

stream-line flow (shown dotted); the points of meeting are found to lie very 

apjiroximately upon the straight line AB. 

It is therefore apparent that these intersections vary as the viscosity, and they 

afford a verification of the formula. 

This is brought out clearly by fig. G, in which the velocities so found are plotted 

directly with resjiect to temperature. As will he seen, less weight is given to tlie 
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observations in the neighbourhood of 30°, for the experimental results on stream¬ 

line motion are probably less accurate, as was pointed out in a previous section. The 

law of variation is found to be approximately 

v-^ a: I + 0-03368T + -0001561^ 

which agrees very closely with the variation in the viscosity of water, viz., 

^-1 oc I + 0-03368T + •000221Tb 

It may therefore be concluded that for small pipes, over the range of temperature 

examined, the critical velocity of water varies directly as the viscosity. 

In conclusion the authors desire to thank Professor Bovey for placing the 

hydraulic laboratory of McGill University at their disposal, and also L)r. Barnes, 

who gave much assistance during tiie progress of the work. 

25 MAA1903 



I 

ir T! 
> 

yj' 

Iff 

I 

I 

N 

t. 

I 

I 

I 
f 



Sold bt Hakkison and Sons, St. Martin’s Lanb. 

Demy 8vo, pp. 427. Price 125, 6d. ; 

■ : • ■ BECOR© OP THE ROYAL SOGI]^.' ' 
Second Edition. 1901. 

Containing an Acconnt of the Foundation, History, Ac., of the Society, with a Chronological List and 

Alphabetical Index of the Fellows from the Foundation. 

Demy 8vo, pp. 265. Price 5s. 

THE YEAR-BOOK OF THE ROYAL SOOIiETY, 1903. 
Principal contentsList of Fellows, Committees, &c.; Statutes and Regulations; Business of the 

Society during 1902, including Anniversary Meeting with President’s Address, Council’s Report, 

and Treasurer’s Accounts ; Arrangements for 1903; Obituary Notices of Fellows deceased. 

PHILOSOPHICAL TRANSACTIONS. 
Series A. Containing Papers of a Mathematical or Physical Character. 

VoL. 199 (1902), Price £1 65. 

VoL. 200 (1903), Price £2 3s., with 39 Plates. 

Series B. Containing Papers of a Biological Character. 

VoL. 194 (1901), Price £3, with 49 Plates. 

VoL, 195 (1902), Price £1 7s. 6d., with 16 Plates, 

Published by Clay and Sons, Aye Maria Lane. 

CATALOGUE OF SCIENTIFIC PAPERS, 
COMPILED BY THE ROYAL SOCIETY. 

The volumes on sale as follows i—Vols. 1-6 (1800-63), cloth (vol. 1 in half-morocco) £4 net; half¬ 

morocco, £5 5s. net. Vols. 7, 8 (1864—73), cloth, £1 lls. Gd, net; half-morocco, £2 Ss. net. Single 

vols., cloth, 20s.; half-morocco, 28s. net. Yols. 9, 10 (1874—83), cloth, £1 5s. net; half-morocco, 

£1 12s. net. Vol. 11 (1874-83), cloth, £1 5s. net; half-morocco, £1 12s. net. Vol. 12 (Supple¬ 

mentary, 1800-1883), cloth, £l 5s. net; half-morocco, £1 12s. net. 

A reduction of price to Fellows of the Royal Seciety. 

Published by Kegan Paul, Trench, Trubnek and Co. 

A few copies at the reduced price of £1, Is. (published at £3). 

Royal 4to, pp. iv.—936, cloth. With 51 Lithographic and Photographic Plates. 

A MONOGRAPH OF THE HORNY SPONGES. 
By r. VON LENDENPELD. 

A further reduction of price to Fellows of the Royal Society,; 

Published by Kegan Paul, Trench, Trubnek and Co. 

In 1 vol., 4to. Pp. 600, With 6 Chromolithographs of the remarkable Sunsets of 1883 and 

40 Slaps and Diagrams. 

THE EllUPTION OF KRAKATOA AND SUBSEQUENT PHENOJMENA. 
Report of the Krakatoa Committee of the Royal Society. 

Edited by G. J. SYMONS, F.R.S. 

Price 30s. To Fellows of the Royal Society and Royal Meteorological Society, 20s, 

Published by Kegan Paul, Trench, Trubner, and Co, 
Royal 4to, pp. xiv.—326, cloth. Price 21s, 

OBSERVATIONS OF THE INTERNATIONAL POLAR EXPEDITIONS. 
1882-1883. 

FORT RAE. 

With 32 Lithographic Folding Plates. 

A reduction of price to Fellows of the Royal Society. 

Continental Agents for the publications of the Royal Society, Messrs. FriedlXnder and Son, Berlin. 



Sold by Dulau and Co., 37, Soho Square, W. 

RECENT PAPERS IN THE ‘PHILOSOPHICAL TRANSACTIONS,' 
1902-1903. 

A. 324. 

A. 325. 

A. 326. 

A. 327. 

A. 328. 

A. 329. 

A. 330. 

A. 331. 

A. 332. 

B. 207. 

B. 208. 

B. 209. 

B. 210. 

B. 211. 

B. 212. 

B. 213. 

Series A.—Mathematical and Physiccd. 

On Some Definite Integrals, and a New Method of Eeducing a Function of Spherical Co¬ 

ordinates to a Series of Spherical Harmonics. By AP.THUR ScHUSTER, F.E.S. Price 2^. 

Effects of Strain on the Crystalline Structure of Lead. By J. C. W. Humfrey, B.Sc. (Viet.), 

1851 Exhibition Eesearch Scholar (University College, Liverpool), St. John’s College, 

Cambridge. Price 2s. 

The Fracture of Metals under Eepeated Alternations of Stress. By J. A. Ewing, LL.D., 

F. E.S., Professor of ^lechanism and Applied Mechanics in the University of Cambridge, and 

J. C. W. Humfrey, B.A., St. John’s College, Cambridge, 1851 Exhibition Eesearch Scholar. 

University College, Liverpool. Price Is. 6cf. 

The Stability of the Pear-Shaped Figure of Equilibrium of a Eotating Mass of Liquid. By 

G. H. Darwin, F.E.S., Plumian Professor and Fellow of Trinity College, in the University of 

Cambridge. Price 3s. 

On the Movements of the Flame in the Explosion of Gases. By Harold B. Dixon, M.A., 

F.E.S., Professor of Chemistry in the Owens College, Manchester. Price 8s. 6r/. 

Eeport on the Eruptions of the Soufriere, in St. Vincent, in 1902, and on a Visit to Montagne 

Pel(ie, in Martinique.—Part 1. By Tempest Anderson, M.D., B.Sc., F.G.S., and John 

S. FlEtt, M.A., D.Sc., F.E.S.E. Price 15s. M. 

Title, Contents, Index, &c., Vol. 200. Price 6f/. 

Experimental Eesearches on Drawn Steel. By J. Eeginald AsHtvORTH, M-Sc. (Viet.). 

Price 3s. 

The Specific Heats of Metals and the Eelation of Specific Heat to Atomic Weight.—Part 11. 

By W. A. Tilden, D.Sc., F.E.S., Professor of Chemistry in the Eoyal College of Science, 

London. Price Is. 

Series R.—Biological, 

Thermal Adjustment and Eespiratory Exchange in Monotremes and Marsupials.—A Study in 

the Development of Homoeothermism. By C. J. Martin, M.B., D.Sc., Acting Professor of 

Physiology in the University of Melbourne. Price 2s. 

The Pharmacology of Pseudaconitine and Japaconitine considered in Eelation to that of 

Aconitine. By J. Theodore Cash, M.D., F.E.S., Eegius Professor of Materia Medica in 

the University of Aberdeen, and Wyndham E. Dunstan, M.A., F.E.S., Director of the 

Scientific and Technical Department of the Imperial Institute. Price 3s. 

The Pharmacology of Pyraconitine and Methyl-Benzaconine considered in Eelation to their 

Chemical Constitution. By J. Theodore Cash, M.D., F.E.S., Eegius Professor of Materia 

Medica in the University of Aberdeen, and Wyndham E. Dunstan, M.A., F.E.S., Director 

of the Scientific and Technical Department of the Imperial Institute. Price Is. 

The Structure and Development of the Stem in the Pteridophyta and Gymnosperms. By 

Edward C. Jeffrey, Ph.D. (Harvard). Price 3s. 

On the Structure of the Gills of the Lamellibranchia. By W. G. Eidewood, D.Sc., F.L.S., 

Lecturer on Biology at the Medical School of St. Mary’s Hospital, London. I’rice 9s. 6(7. 

The Development of Echinus Esculentus, together with some Points in the Development of 

E. Miliaris and E. Acutus. By E. W. MacBride, M.A., D.Sc. (Lond.), sometime Fellow of 

St. John’s College, Cambridge; Stratheona Professor of Zoology in the McGill University, 

Montreal. Price 8s. 6(7. 

Title, Contents, Index, &c., Vol. 195. Price 6(7. 

Cloth cases for binding the ‘ Philosophical Transactions ’ can be obtained of Harrison and Sons, 

St. Martin’s Lane. Price Is. 6(7. 



PHILOSOPHICAL TRANSACTIONS 
OF THE 

EOYAL SOCIETY OE LONDON 

Seeies a, VOL. 201, pp. 63-155. 

ON AN APPROXIMATE SOLUTION FOR THE BENDING OP A 
BEAM OE RECTANGULAR CROSS-SECTION UNDER 

ANY SYSTEM OE LOAD 
WITH 

SPECIAL REFERENCE TO POINTS OF CONCENTRATED OR DISCONTINUOUS 

LOADING 

BY 
» 

L. N. G. FILON, BA. (Cantab.), M.A., B.Sc. (Lond.), 

king’s college, CAMBEIDGE, fellow of UNIVEESITY college, LONDON, AND 1851 

EXHIBITION SCIENCE EESEAECH SCHOLAE. 

LONDON: 

PUBLISHED FOE THE EOYAL SOCIETY 

BY DULAU AND CO., 37, SOHO SQUAKE, W. 

CONTINENTAL AGENTS, MESSES. FRIEDLANDEE AND SON, BERLIN. 

1903. 

A 334. 
Price Five Shillings. 

3.4.03 





INDEX SLIP. 

PiLO'N’, L. N. G.—On an Approximate Solution for the Bending of a Beam 
of Eectangular Cross-Section under any System of Load, with Special 
Eeferenee to Points of Concentrated or Discontinuous Loading. 

Phil. Trans., A, toI. 201, 190.3, pp. 63-1.55 

Beam, Eectangular—Two-Dimensional Solution for Bending of. 
Eilon, L. N. G. Phii. Trans., A, vol. 201, 1903, pp. 63-155. 

Loads, Concentrated—Effect on Beams of. 
I'lLOx, L. N. G. Phil. Trans., A, toI. 201, 1903, pp. 63-155 

Plane Strain—Solutions in Arbitrary Functions and in Series. 
FILO^', L. JT. G. Phil. Trans., A, vol. 201, 1903, pp. 63-155. 

Surface-Shear—Action of. 
Filon, L. N. G. Phil. Trans., A, vol. 201, 1903, pp. 63-155. 



.qiJ8 zaazT 

ifrKsJI s\ 'io goriiHsil Oili ■(o'f noiiwfo^ gdiifftrzoiqqA nc nO—.-0 .71 .J (SroilT 
IfiiusqS dim (JjuoJ 'to rtiotsvS yuii Tofca// aoiJDo8-aeoiO iftliJgaBlosfl! io 

•gnifj/iC J ?.T/o//f!itr[036iQ to fisimJasorroO to siniol od eoas'TOioJI 
GOI-Sf) .qq ,8001 ,I0S .for ,A ..smiX .liriX 

.to guibxisX lol /loiiwIoB IcfloiansrniQ’-ov/T—'xarugrtclooH ,ccfj293! 
.c.Cr-Sf) .qq ,8001 ,102 .for ,A ..enfiiT .fhW .-0 .7- .J ..zoJiX 

,lo amfiaff no iooliSr—Badfi-rinabtioD ,abfioJ 
ScX-f:^ .q<i ,f;:00.r J02 .for ,A ,.arfC'iT .lirIX ,-0 .71 .J .y.ojiX 

.eai'fiS rii l3it/s arioidonuX 7TO'idicfTA iii anoidjufoS—nieidg scoIX 
.551-80 .qti ,8001 ,f02 .[ot ,A ..aajS'jT .liifX .-0 .J .yojri 

.to noidoA—icorfS-ooxsiiHS 
.551-80 .qq ,8001 ,102 .fov .L ,.safi-rX .liflX .tO .7 .1 ,yonX 



[ 63 ] 

IV. On an Aj^j^roximate Solution for the Bending of a Beam'of Rectangidar 

Cross-Section under any System of Load, luith Special Reference to Points of 

Concentrated or Discontinuous Loading. 

By L. N. G. Filon, B.A. [Cantab.), M.A., B.Sc. [Land.), King's College, Cambridge, 

Felloiv of University College, London, and 1851 Exhibition Science 

Research Scholar. 

Communicated by C. Cheee, F.R.S. 

Eeceived June 12,—Read June 19, 1902. 

Index and Table op Contents. 

Part I.—Establishment and General Soi.ution of the Equations op the Proei.em 
Discussed. 

Page 
§ 1. General sketch of the problem proposed.. . 65 

§ 2. Object of the investigation. 66 

§ 3. Establishment of the equations..67 

§ 4. General solution of the equations in arbitrary functions.69 

§ 5. Solution involving hyperbolic and circular functions.71 

§ 6. Determination of the arbitrary constants from the stress conditions over the faces y = ±h. 72 

§ 7. Expressions for the displacements and stresses.74 

§ 8. Conditions at the two ends x = ± a.77 

§ 9. Part of the solutions corresponding to the terms ao, /So, Co, do.78 

Part 11.—Discussion of the General Solution when the Forces on the Beam are 
Purely Normal and are Symmetrical about x = 0. 

§ 10. Expressions for the stresses and displacements.. . 79 

§11. Approximate values to which the expressions of § 10 lead when “ 6 ” is made very small . 80 

§12. Analysis of the approximate expressions for the displacements. Shearing deflection , . 82 

§ 13. Value of the deflection when h is not small and the beam is doubly supported.84 

§14. The doubly-supported beam under central load. Expressions for the strains and stresses 

when we remove the supports to the two extremities.86 

§ 15. Definite integrals to which the expressions of the last section tend when we make 

very large . 

VOL. cci.—A 334. 

. 88 

3.4.03 



64 ME. L. N. C4. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A 

Page 

§ 16. Consideration of the stresses in the neighbourhood of the point where the concentrated 

load is applied. 90 

§17. Expansion in integral powers about the point of discontinuous loading.93 

§18. Coiwergency of the series of the last section. 94 

§19. Transformed expressions for the displacements. 96 

§ 20. Expansions about other points. Expansion about the origin.98 

§ 21. Expansions about the point (0,-6).101 

§ 22. Effect of distributing the concentrated load over a small area instead of a line .... 103 

§ 23. Case of a beam under two equal and opposite loads, or resting upon a rigid smooth plane. 106 

§ 24. New form of expansion for the pressure on the rigid plane.108 

§25. Justification of the procedure employed in the last section.112 

§ 26. Deductions as to the rapidity with which the local disturbances die out as we leave the 

neighbourhood of the load ... .114 

Part III.—Solution for a Beam under Asymmetricaj^ Normal Forces : Special Case of 

T\vo Opposite Concentrated Loads not in the same Vertical Straight Line. 

§27. Expressions for the displacements and stresses in series.117 

§ 28. Integral expressions ■when a is made infinite.119 

§29. Series in powers of r.122 

§ 30. Distortion of the axis of the. beam.124 

§ 31. Distortion of the cross-section x = 0 and shear in that cross-section.125 

§ 32. Practical importance of this problem.128 

Part IV.—Solution for a Beam whose Upper and Lower Boundaries are Acted 

UPON BY Shearing Stress only. 

§ 33. Expressions for the displacements and stresses in series and integrals.129 

§ 34. Expressions for the displacements and stresses in series of powers of the radius vector 

from a point.134 

§ 35. Distortion of the beam.136 

§ 36. Case where the shear is spread over an area instead of over a line.139 

§ 37. Application of solutions of § 33 to the case of tension produced by shearing stress applied 

to the edges.142 

§ 38. Correction to be applied in this case to the stretch along the edges as we approach the 

points of application of the load.143 

IArt V.—Solutions in Finite Terms; Special Application to the Case of a Beam 

Carrying a Uniform Load. 

§ 39. Solutions in finite terms.145 

§40. Case of 71 = 4.147 

§41. Determination of the constants for a beam uniformly loaded. ... 148 

§ 42. Remarks on the above solution.150 

§43. Historical summary; remarks and criticism.151 

§ 44. Recapitulation of results and conclusion.-. ... 154 



BEAM OF RECTANGULAR CROSS-SECTION UNDER ANY SYSTEM OF LOAD. 
65 

PART I. 

Establishment and General Solution of the Equations op the 

Problem Discussed. 

^ 1. GcubtOjI SJcctcJi oj' the Pvohlem pToposed. 

'Ihe consideration pf the stresses and strains which occur in a rectangular 

parallelepiped of elastic material subjected to given surface forces over its six faces 

leads to one of the most general, as it is one of the oldest, problems in the Theory of 

Elasticity. Lame, in his ‘ Lecons sur I’Elasticite des Corps solides,’ published in 1852, 

describes it as ‘Ge plus difficile peut-etre de la theorie mathematique de lelasticitd.” 

In spite of repeated attempts, however, the problem remains still unsolved. 

In its complete form it may be stated as follows :_ 

Let the origin be taken at the centre of the parallelepiped and the axes Oa;, Oy, 0^ 

parallel to its edges. Let the lengths of these edges be 2a, 26, 2c. Let u, v, w 

denote the displacements of any point {x, y, z) parallel to the three axes,’ and, 

following the notation of Todhunter and Pearson’s ‘ History of Elasticity,’ let 7t 

denote the stress, parallel to c, across an elementary area perpendicular to t, then we 
have the six stresses 

dii / dv 
+ 

dw\ 
dx 

yz — \dz ¥/ 
dv /div 

+ 
dv\ 

dy 
zx = C [d^ 

dw (du 
+ 

dv\ 
dz 

xy = 1^ 1 \dy Ixj 

where S 

xx = XS + 2/1 

yy = \8 -b 2/1 

zz = XS 2/1 

die dv div 
dy Th ’ ^ elastic constants of Lame. 

(1)> 

dx ' d>/ ' dz 

Also u, V, IV must satisfy, inside the material, the following differential equations. 

/ V , \ ciS _ 
(X + jx) — 4- fJiV'^u = 0 

(X + /i) -f /aVG; =: 0 

+ C) = 0 

(2), 

where 
d^ 

d^ + 
d^ 

df~ “*“■ dz^ ’ foi’ce acting on the matter inside 

the block. It is required to find the values of n, v, lo at each point, subject to the 

condition that the stress across the outer faces x ±a, y = ± b, z — ±c shall be 

arbitrarily given at each point—regard being had, of course, to the conditions of rigid 
equilibrium of the block. ^ 

VOL. CCI.-A. K 
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Since Lame’s time the problem has been attacked by a large number of 

mathematicians, among them de Saint-Venant, Clebsch, Boussinesq, and more 

recently M. Mathieu, M. Bibiere and Mr. J. H. Michele. Although they have 

not l)een able so far to obtain the solution of the problem as stated quite generally 

above, they have nevertheless made great progress with various particular cases, 

more especially those in udiich some of the dimensions of the block are large 

compared with the rest. 

Fuller references to their work and to the results obtained by them are given in 

the historical summary at the end of this paper. 

§ 2. Object of the Investigcition, 

The object of the present investigation is to obtain the solution for the rectangular 

parallelojiiped under an arbitrary system,of surface loading in two cases, when the 

problem reduces to one of two dimensions, namely :— 

(a) When two of the faces z — oi the bar are constrained to remain plane and 

the stress applied to the other faces is independent of 2. In this case iv = 0, w and 

V are functions of x and y only. If the breadth 2c of the beam be sufficiently large, 

we may relinquish the constraint along the sides altogether, and we have thus the 

case of a thick plate bent in a plane perpendicular to its own plane. When the plate 

is made indefinitely thick we have two-dimensional strain in an infinite elastic solid 

with a plane boundary. 

(b) When we make the assumption that xz and yz vanish at the boundaries : = c, 

while 22 is actually zero throughout. That this will be very near the truth if c is 

very small is quite evident, so that in any case this condition will hold for a flat beam 

or girder whose height is large com^iared vutli its breadth."^ 

But it seems not improbable that it may continue to hold approximately up to 

a fairly large value of c; we may remember that de Saint-Yen ant, in his solution 

for flexure, assumes both 22 and yy to be zero, in the case where his beam is unstressed 

except at the ends, and his solution is sufficient to satisfy all conditions. Obviously 

vertical pressures and tensions across the faces y = ffi must introduce important 

stresses yy, so that that part of de Saint-Yen ant’s hypothesis, in the generalised 

^u’oblem, must go. Still it appears reasonable to suppose, on the whole, that, even 

for a beam where c and 6 are of the same order, we may, as a first approximation, 

retain’the hypothesis 22 = 0. Of course, eventually, as c increases a stress 22 must 

appear until when c is very large we reach the limiting case of problem (a) when 

this stress is sufficient to ensure the vanishing of the displacement u\ 

If, however, c be not too large, so that we can suppose 22 sensibly zero througliout, 

* September 13, 1902. I have, since writing the above, verified that a solution for rectangular beam.s 

does exist, which fulfils rigidly these conditions. It is, in fact, identical with part of Clebsch’s solution 

for a thick plate. 
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then the mean values TJ, V taken across the breadth of the beam of the displace¬ 

ments u, V in the plane xy are found to satisfy two dilferential equations of the same 

form as the equations of elasticity wdien the displacements are independent of 2 

and IV = 0, with this change, that the elastic constant k is replaced by another 

constant /V. The mean stresses in the plane of xy are found by differentiation from 

U and^ V by similar formula to those giving S, in terms of u, v for two- 

dimensional strain. 

Now the distribution of such mean stresses inside the beam is independent of the 

ratio \ :ix. This has been shown by Mr. J. H. Michell (‘London Mathematical 

Society s Proceedings, vol. 31, pp. 100-124). It liad been previously pointed out by 

Stokes (‘ Phil. Mag.,’ Ser. V., vol. 32, p. 503). The equations being of the same form 

in problems (a) and (b), there follows this curious result, that the distribution of stress 

inside the beam, consequent upon a given distribution of stress upon the upper and 

lovmr faces (this latter distribution being uniform wdth regard to the breadth of the 

beam) is the same when this breadth is very small and when it is very large. 

§ 3. EstahJishrnent of the Equations. 

The centre of the rectangular beam being the origin, let its axis, which is supposed 

horizontal, be taken as axis of x. The axis of y will be vertical and the axis of 2; 

horizontal. The bounding surfaces of the beam are x = ^ a, y z = ^ c. 

Using the notation explained in § 1, equations (2) may be written 

dxx dxy dxz 

dx dy dz 
= 0 • . . (3), 

do:y dyy dyz 

dx dy ' dz 
= 0 (4), 

dxz , dx/z . dzz 
7 ' + .7 ■ + = 0 

dx dy dz (5). 

Integrate eqmtions (3) and (4) with regard to 2 from - c to + c. Then, noting 

that are both zero, owing to the surface conditions at the side of 

the beam, and also that integration with regard to 2 and differentiation with regard 

to X and y are independent, we find 

= 0, 

= 0. 

d C + c^ d r *-J-C -V 

dx I 1 

+
 

^
 ;
 

' 
t-

 

xy dz 

d 

dx 

~r+c^—^ 

xy dz +
 

I I 

1
-
-

 

'r+c^ 
j yydz 

^xxdz — 2cP, I yy dz = 2cQ, | xy dz= 2cS, then P, Q, S yy 

K 2 

Now* if we write 
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are the mean values of the two tractions and of the shear in the plane xy—taken, for 

any values of x, y, across the breadth of the beam. These will in future he referred 

to as the mean stresses and often, for shortness, as the stresses. 

We obtain, therefore, the equations 

r7P , dS 
7 "^ 7 — (U ay ^ ■ . . (6). 

Now consider equations (1), namelj’ 

XX = \ 

(IQ 

d r + ^ (0- 

yu \ 

[dn dv\ dll div 

^ A'-' ■ ■ ■ ■ • • • (8), 

fdu , dy\ dv dw 

(*+ + ■ • • ■ 
. . . (9), 

/du . dv\ , ^ \ dio 

• ■ ■ ■ 
. . . (10), 

'—' fdu dv\ 

- 0 [dg + ,u). 
. . . (11). 

If we integrate (8), (9), and (11) with regard to 2 from — c to + c, we have 

Q = \ 
clc (ly 

cW fw+c — W-Q 

_ /dU cll\ 

(12), 

(13). 

(I’l). 

1 1 
where U = udz, V = vdz are the mean displacements in the plane of 

-C J Ic J _c 

xy taken across tlie Ijreadth of the beam for any point [x, y). They will be referred 

to as tbe mean displacements. Besides these there is a variable {u'+c — u'_c)!'2c 

which has to be eliminated somehow. 

One way of doing this is by integrating (lO) in the same way. We obtain 

1 to. VJ 

Now if, as explained in the last section, 22 may be treated as small, so that its 

mean value across the breadth of the beam may be neglected, we have 

_x _ /du w\ 

X + 2^ \di.' cly / 

Substituting for {u\c — w_Qj/'2c, the equations for P and Q become 
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where V = 2X/r/(\ + 2/x). Putting these into (6) and (7), we have 

A' 4- I _L + ixV~JJ = 0 

(V J_ „) IfiE . 

(15) , 

(16) , 

(17) , 

(18) . 

(15), (16), (17), and (18) are precisely of the same form as the stress-strain relations 

and the body equations of equilibrium for two-dimensional elastic strain, with the 

exception that X' is written for X. They will in fact be found to be identical with 

the equations satisfied liy the displacements of an elastic plate under thrust in its 

owm plane, as obviously they should be, since, when the beam is made indefinitely 

thin, the mean displacements U, V coincide with the actual displacements u, v. 

§ 4. General Soitition of the Equations in Arhitranj Functions. 

If we 
dY 

write —- 
dx 

. . d d 
and 

d 
“h ^ ~r — 0 41 - -J , dy dr] dx 

find 

^ + m = t X — iij — 77, where i = 1, so that 

■ d d - . 
multiply (18) by ^ and add to (17), we 

“ t + 
Multiply (18) by i and subtract from (17) 

2 (y fx) fxV' (U — lY) = 0. 

But = 4 and if T = U + tV, W = U - iV, then 

Hence 

YU ^ 

dx dy 

<f 
(U + iV) + (U - V) 

d^ + dy • 
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From these, by simple integration, 

(V + 3p-) + (V + p) = (f)' (^)'] 

cJri ~~ J 

}> where (f)' (i), x iv) arbitrary functions. 

whence 

or 

= 4, F) -X'(»)5 + 4 2.-) 

= I(^ - 4, 

T = [•#> (0 - A' (>))] + i, [4>(0 + fx' e)] + r (>)) 

w = hf (f) + X 0)] - [’)f (^) - X ('^)] + G (?) 

where F (77), G (^) are again arbitraiy functions. 

Hence U and V can be found almost immediately. Writing 

r(>))-4^^t72;A(’)) = F>(0. ■ 

(19) . 

(20) , 

we have 

u=(f) + X (01 + ^ (f) - (’>» + i T. (»)+G.(f)) . (21), 

^ = 8if^Sx(i)-^(f)S-i,G£y(x'(.)+f(f))+hG,(f)-F,(.)J .(22), 4:^ X “}~ 

from which we obtain easily 

p = 4'VVhvV'^' (P + x'm + in w (?) - x" m + mG'. (?) + (^), 

Q = ^ J Af / C\ I + (?) + x'(>))5 - 2(V4 2^)‘>W''(P - x"(’;)) - f^G',)?) - /.F, (,), 4 (X + 2/x) 

X' + yLt ■ / , ^ 

® <?)+x''(A+i ,;:ffg (f (?) - x'(’i))+/-oG'i (?) - F/(,)j, 

and these last may be put into the simpler form 

I"" = bj: + o/w'tlx2/;7b7,){i>iO + xiv)> +/^ biCli (f) + F^ (>7)} . (23), X' + 2ixdx ' 2 (X' + 2/j.)'^ dx dy dx 
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= (i i - 20t) 2^ zSy) f F) + X (’?)]- £ { G. (f) + B (>))]. (24), 

S = ! - + x(’/)S+M;f;{G,(f) + F,(,)( . (25), dy 

which have the advantage of not containing imaginaries if (/> (^) + ^ (-q), (^) + (rj) 

are real. 

§ 5. Solution involving Hyperholic and Circular Functions. 

Assume now for the arbitrary functions the following typical forms 

(^) = A sin cos -j- E cos + iF sin ?n^, 

x{l) = A sin mg — iB cos mg + E cos mg — I'F sin mg, 

(^) = C sin m^ + t’D cos m^ + G cos m^ -f" sin m^, 

El (1?) = C sin mg — tD cos mg + G cos mg — tH sin mg, 
so that 

<^ (^) + X {g) = 2 sin mx (A cosh my + B sinh my) 

+ 2 cos mx (E cosh my —• F sinh my), 

(f) (i) ~ X (■’?) — cos mx (A sinh my + B cosh my) 

— 2i sin mx (E sinh my — F cosh my). 

Gi (^) + [g) =. 2 sin mx (C cosh my + D sinh my) 

+ 2 cos mx (G cosh my — H sinh my), 

Gi (1^) — F]^ (jj) — 2i cos mx (C sinh my + D cosh my) 

— 2i sin mx (G sinh my — H cosh my). 

Whence from (23), (24), (25) we get after some reductions 

(3A' + C') cosh my + (3B' + D') sin my 

+ 2my (A' sinh my + B' cosh my) 

— (3E' + G') cosh my + (3F' + H') sinh my 

+ '2my ( — E' sinh my + F' cosh my) 

P = cos mx 

+ sin mx < 

Q = cos mx 
(A' — C') cosh my + (B' — T>') sinh my | 

— '2my [A! sinh my + B' cosh my) 

-p sin.ma; 
r (E' — G') cosh my 4- (F' — H') sinh my 

— 'Imy ( — E' sinh my + F' cosh my) 

(26). 

(27), 
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S = sin mx 
(A' + C') sinh my + (B' + D') cosh my 

+ ‘Imy (A' cosh my + B' sinh my) 

r (E' + G') sinh my ~ (H' + F') cosh my '| 
+ cos mx < . > 

-j- 2my (E' cosh my — F' sinh my) 
• (^8)> 

\’fhere A' = ~ ^ B' = — B E' = -- FF+b F' = ™ F1±jA b 
2 V + 2/a ’ 2 V + 2/a ’ 2 V + 2/a ’ 2 V + 2/a ’ 

C' = 'lymC, D' = 2fjLmD, G' = 2/AmG, H' = 2/awH, and the expressions for the 

mean displacements come out to be 

1 r V + 3/a 
El = sin mx 

Mfl (_ A. "f" /A 
- (A' cosh ??2^ + B' sinh my)-\-^' cosh my + D'sinh my 

-h cos mx 

+ ^ - y (A' sinh my -f- B^ cosh my) 
1^ 

I ^7“^^ (E^ cosh m y — F' sinh my) + G' cosh my — sinh my j 
V 

+ ■ (E' sinh my — F' cosh my) 
(29). 

V= cos mx 2 — (A'sinhmy + B'coshmy)— C'sinhTiiy — D'cosh97iy| 

+ sin mx 

V 
— ■ (A' cosh my + B' sinh my) 

^ni I A'F- (“E^sinh7^^y-hF'coshmy)AG'8inh7?^y —H'cosh?7iy I 

+ F ^B' cosh my — F' sinh my) 
- ^ * 

(30). 

§ 6. Determination of the Arhitrary Constants from the Stress Conditions over the 

Faces y = di 

We shall sujopose that the mean stresses Q and S are given arbitrarily over 

the top and bottom surfaces y = Aii>- Expanding these in Fourier series, we 

have, say : 

[Q]y=+J = “o + COS mx + Sy,, sin mx 

[Ql/=-j = /3o + cos mx + SS„ sin mx 

[S]^=,+i Co + FG cos 7)ix + S/<-„ sin mx 

= ^0 "F cos mx + sin 7nx 

where a„, y„, S„, C», k,,, v„ are known constants, and m = niTja where n is any 

positive integer. 

Now, if we take expressions (27) and (28) and equate them, for y = d: &, to the 
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expressions (31), we obtain eight typical equations for the constants which, when 

combined in pairs, may be written in the simpler form: 

(A' - C') cosh mb - 2mh A' sinh mb = ] 

(32) 
(A' + C') sinh mb + 2mb AJ cosh ml> = ' 

2 

(B — 1^0 sinh ml) — 2ml) cosh mh 

(B' -j- D') cosh mh -f- 2mb B' sinh mb 

(E' — G') cosh mb — 2mb E' slidi mb = 

(E' + G') sinh ml) + 2mb E' cosh mb 

_ /3«. 
— 2 

_ K^n + V„ 

~ ^ 2 

_ 7« + 
2 

_ G - e,, 

(F' — H') sinh mb — 2mb F' cosh mb = 

G + S)i (F' + fl') cosh mb + 2mb F' sinh mb = — 
2 

These equations solve in j^airs. We find easily 

+ /3h sinh mh . k„ — p,, cosh mh A' = 
2 sinh 2)jih + 2mh + 

sinh 2vih + 2mh 

Q' — _ +_/5« sinh mh + 2mh cosh mh ^ /c„ - v„ cosh mh - 2mh sinli mh 

2 sinh 2mh + 2ml 2 sinh 2nih + 2inh 

cosh vih 

sinh 2mh — 2)nh + + Vn sinli mh 

2 sinh 2mh — 2mh 

p)' — ■_^ cosh mh + 2mh sinh mh + p,, sinh mh — 2mh cosli mh 

2 &mh2mh-2mh 2 ~ ~ sinhAwF-2mG~' 

E'= - 7« + G sinh mb 

sinh 2mh + 2mh + G - Oa cosh mh 

sinh 2mh + 2mh 

Q/ _ 7« + G sinh mh + 2mh cosli mh G_TL^ ~ sinh mh 

2 sinh 2mh + 2mh 2 sinh 2mh + 2mh 

F' = 

H'= - 

7n — cosh mh G + On _ sinh mh 

2 sinli 2mh — 2ml> 2 sinli 2inh — 2mh 

~ G cosh mh + 2mh sinh mh G + sinh mh — 2mh cosh m.h 

sinh 2mh — 2mh sinh 2mh — 2mh 

where in the above n corresponds to a positive integer. 

The ca.se viiere it = 0 has to be investigated separately 
VOL. GCI,—A. I 

(33)> 

(34), 

(35), 

(.36), 

(37) , 

(38) , 

(3!>), 

(40) , 

(41) , 

(42) , 

(43) , 
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§ 7. Expressions foi' the Displacements and Stresses. 

Substituting the values of the constants found above into the equations (26)—(30), 

we obtain for the mean displacements U, V and for the mean stresses, P, Q, S the 

following values, in so far as we merely consider the terms corresponding to n = a 

positive integer ;— 

U = 

(u„ + 
1 1 

sinli mb — — mb cosh mb 
fj, fi 

+ (P;l — V,i) ^ + — ] cosh mb-^ mb sinh mb 
M + /U. fx 

2m (sinh 2mb + 2mb) 
= co.sh rny sin mx 

+ S 
1 

(«„ — I3„) ^ —-— co.sh mb-— mb sinh mb 

1' 1 
1 - + 

1 ^ 
1 sinh mb —^ 7nb co.sh 

+ fX F / ’ i 
2m (sinli 2mb — 2mb) 

sinh?ny sin?nx 

+ S 
1 

+ 

IXn + /3« sinh mb 
+ 

Kn — Vn cosh 7nl) 

2fx sinh 2mh + 2m& 2/X sinh 2)iih + 2mh 

^il ^71 cosh mh 
+ 

/C« + Vn sinh 7nh 

2ix sinh 2'mb — 2mh 2/X sinh 2mb — 2mb 

y sinh my sin mx 

y cosh my sin mx 

+ 

— (7« + S„) ^ sinli mh-^ mh cosh mb 

+ (Xn — 

A + /i 

I 1 - Hcosh mh-^ mb sinh mb 
\\' fX fX J _ fX _ 

2m (sinh 2mb + 2mb) 
cosh my cos mx 

+ 

— (7-- — ^ — cosh mb-'^ mb sinh mb 
-f- yU 

+ (^,i + ^n) 
1 1 \ I 

-I-) sinh mb-mb cosh mb 
fx fx / A*"_ 

2m (sinh 2mb — 2mb) 
— sinh my cos mx 

^ , (7« + sinh , (Cl — 0h) cosh mb , . , ^ 1 —V ^ --L --—- [ u smh mu cos mx 
I I O.. OlilZi _L O.. 7. t I 'jjb sinh 2)ah F 2mb ' 2/x sinh 2mh + 2mb 

* r -{y,i-^n) 

■^T L 

cosh mb 

sinh 2mb — 2mb + (Cl + ^n) sinh mh 
2fx sinh 2mb,— 2mh 

y cosh 77iy cos mx (44). 
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(«« + /3„)- [/ 1 1\ 
\ U- + - 
1_ \ A + /4 N 

'mh 

V = s - 

+ (iCii — I’n) I cosh ml) + — sink mlX 
_ [ A + /A ^ ix J 

/3/i) 

+ 

- 2 
1 

2vi (siiih 2mh + 2vih) 

1 l'\ 1 7 -1 7 1 /- + cosh »?& + - - sinh mh I 
X + fx fi! fx J 

+ {x^,i + -ainh ~ cosh rah 
__[ A + //. jx 

— sinh my cos mx 

2m (sinli 2?h5 — 2mb) 

«« + sinh9i?& ic,i — v„ cosh H(/7 

+ 
2fx si]ih 2m& + 2mh ^ 2fx sinh 2mh + 2ml 

V I ~ cosh mh + K,i + v,i sinh nib 

1 [ 2/4 sinh 2mb — 2mb ^ 2/t sinh 2mb — 2mh 

cosh my cos mx 

y cosh my cos m.x 

y sinh my cos mx 

+ 2 
1 

(Xi + ^u) 1 s' ’ ’ • , + ~ mh -I-cosh mh 
A + /4 /4 / fx 

^ rcosh mb mh . , 
~ \Qii — —- + —sinli mh 
_ L A + //. jx^_ 

2m (sinh 2mh + 2mh) ' 
sinh my sin mx 

[X fX 

+ 2 =- 

1 1\ U 7 , • 1 7 + - ) cosh mh + -- sinh mh 

, rsinhm?> mh , , 
“f" " f * ~X~ - COSil '}7'th 

[ X T /4 fx 

2m (sinh 2mb — 2mh) 

— 0,1 cosh m l) _|_ s' J _ I 

“i* 1 2/4 sinh 2mh + 2mh 2/4 sinh 2mh + 2mh 

+ 2 - 
7« ~ cos)I mh ^ + d„ sinli mh 

1 [ 2/4 sinh 2mh — 2mh 2/4 sinh 2mb — 2mh 

cosh my sinli mx 

y cosh my siii mx 

y sinh my sin mx 

I 0 

(45). 

p _ •<? 4- /3,() (sinh mh — mh cosh mh) + (a:„ — v,^ (2 cosh mh — mh sinh mh) 

7 sinl. 2mh + 2»,S 

I ^ (cosh mh — mh sinh mh) + {k„ + v,i) (2 sinh vih — mh cosh mh) . , 
■^7 ' sinh 2mh - 2mh '”2/ COS mX 

+ 

sinh 2mh — 2mh 

^ («» F 13,i) sinh mh + {k„ — v,,) cosh mh 

sinh 2mh 4 2mh 
my sinh my cos mx 

I ^ (^— ;S„)_2osh mh + {k,, + v,i) sinh mh 

r. siiihimi-imh .‘"-y^'j 
I y (7<t 4- ^>0 (sinh mh — mh cosli mh) — (^„ — 6,i) (2 cosh mh — mh sinh mh) , 

"^7 sinli 2m5 +7>m5 

L 2 
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I V (cosh mb - mh sink viJ)) - + 0„) (2 sinh mh - rnh cosh nih) 

7 sinli ‘2)nh — 2mb 

, ^ + S„) sinh mh — — Ou) cosh mh . , 
+ X ——. ^ ^ , o"7~'- 

+ 

sink 2mb + 2mh 

{j„ — s„) cosh i//h — (^,I + sinh ?/ih 

sinh 2//lb — 2mb 
my cosh my sin rnx (46). 

+ /3„) (sinh mh + mb cosh mb) + (/c,; — Vn) mb sinh 
(^ = X 

^ 1 sinh 2mb + 2mb 
cos mx 

, 7 (cosh mb + mb sinh rub) + (/c,, + mb cosh mb . , 

7 sinh 2'mb — 2mb ' 
COS m.x 

7 (a., + /3„) sinh ))\b + {k„ — v„)coslmnb 

7 sinli 2mb + 2mb ^ 

X (a„ — jSn) cosh mb + (k,, + Vn) sinli -mb , 
X^-^—■ , , ,--rx-cosh my 
1 sinh 2mb — 2mb 

cos mx 

cos mx 

, X (y,t + Sk) (smh mb + vib cosh mb) — (7i — 0,^) mb smh mb -. 
4- X -■ , , ,—-cosh my siii mx 

1 smh 2mb + 2mb 

. X (7« — S/i) (cosh mb + mb sinh mb) — (U + d,)) '^n-b cosh mb . , 
4- X- -^ ,—h—4---sinli my sin mx 

1 Siiili -Inib — 2i'}iib 

X (7« + s,,) sinh vib — — 0.„) cosh mb . , 
— X'-^^;- mu Sinh my sin mx 

1 smh 2mb + 2'mb ^ 

_ V 

1 

(7« — ^4 cosh mh — + 6„) sinh mb 

sinh 2mb — 2'mb 
my cosh my sin mx (47). 

S - X 
(«« + /3ii) 'mb cosh mb + (/c,^ — v,2 (cosh -jiib — mb smh mb) . , 
-^,-7-4-^ sinh )ny sin mx 

I smh 2mb + 2'mb ^ 

, X ~ (^« ~ /5/0 uib siiili 'mb + (/C;, -t- i'„) (smh vib — mb cosh mb) . 
4- X ---r-;— -—;- Cosh mu sin mx 

1 iimh2mb—2mb 

X («« + /3„) sinh vib A («:„ — v,,) cosh mb , 
4- X-r-;——;—;---mU COSll UlV Sill 'lUX 

1 smh 2mb + 2mb ^ 

X («« — /3») cosh 'mb + (/c„ + v^,) sinh 'mb . , 
4- X-t-ta—7-soih in?/ sin mx 

1 smh 2'mb — 2mb ' 

+ 

+ 

7 (7« + ^«) cosh mb + — P„) (cosh vib — 'inb sinh 'Vib) . 

1 sinh 2mb + 2mb 

7 (7» ~ ^«) ‘‘ub sinh 'inb + (7, + 6,^) (sinh vib — mb cosli mh) 

7 sinh 2mb — 2mb 

sinli my cos mx 

cosli my cos mx 

, X — (7« T ^0 sinh mb + (7, — 0„) cosh mb 
+ X-XhiTUTThiUhXT- cosh my cos mx 

+ 

sinli 2rub + 2mb 

7 “ (7« — cosli mb + (7, + Oih) sinh mb 

7 sinh 2mb — 2mb 
'my sinh my cos mx . (-18). 



BEAM OF EECTANGULAE CEOSS-SECTION UNDEE ANY SYSTEM OF LOAD. 77 

§ 8. Conditiovs at the Tivo Ends x = E «• 

It IS, howGVGi, iiupossiblG to satisfy fully tliG conditions ovGr tliG two Gnds 

X = E Ihcse would roquirc that P and S should havG givGii valuGS over these 

ends. If, however, a is so large that, at a long distance from the ends, the effect 

of any self-equihhrating system of stress over these same ends may he neglected, 

then we need only consider toted terminal conditions at x = ^ a. 

These conditions will involve 

(i.) The total tension T = P c/y across either end, 
-h 

rb 
(ii.) The total shear S = S c^y across either end. 

(iii.) The bending moment M = 
rb 

Pi/ dy across either end. 
-b 

I now propose to calculate the quantities T, S and M for that part of the 

solution which has been given in the last section. 

I find, after reduction, 

(T),. = (T)_„ = s"K-.„).(49). 

CO.S ma 

m (50). 

(M)^„ = - (M)_„= V — l^n) I V ^ / I \ 
COS ma + A —'(/C;, + v,,) cos ma 

VI 
(51). 

Now we can always adjust M and T so as to he zero, for the solutions for a 

uniform tension and a uniform bending moment, viz.:— 

u 

V 

Tx 

2bE 

2bE + 

olSilxy 

We 

3M 

2¥E 
mr 

(52) 

(where y = 2V(^ + y) K is Young’s Modulus), produce no stress across the 

faces y = i 6, and therefore such solutions can always he arbitrarily superimposed. 

I hey coi'respond to stresses which are transmitted from the ends ; and we shall find 

that it is necessary, in various cases, to add such solutions in order to satisfy the 

end conditions, which are not necessarily satisfied by the series merely involving 

circular functions. 
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§ 9. Part of the Solutions Corresponding to the Terinr a,,, Co, ^o- 

Ill the first place it is obvious, liaving regard to the conditions of rigid equilibrium, 

that if the ends a; = d: « a-i’e free from stress, then ag must = /Bq. If ^ /3g Ave 

must have a shear over the two ends in order to balance the excess of the pressure 

on the one side over the pressure on the other side, and this will require special 

investigation. The solution arising from such conditions is discussed in §§ 39—40. 

For the present let us confine ourselves to olq = /3g. This corresponds to a uniform 

traction along the axis y and introduces the following additional terms :— 

E ’ 

P = 0, Q = ao> 

V — “"ll- 

^ r 
S = 0 j 

(53). 

Now turning to the terms in and 6q, it is easy to verify that the additional 

terms 

TT — (X + 2/x) \ 3X + 4;U, , y \ 

16yu, (pJ + fjb) 

'7/ 
h 

and therefore 

Q = 0, P = - 
r,, - 

2h 
s = Cl) fo 

2h y 

(54), 

satisfy the conditions that 8 shall have constant values over the tAvo boundaries 

y = dszh, these values being equal in magnitude and ojiposite in sign. The effect of 

these shears is balanced by the pressure and tension (Co — ^o) over the tAvo ends, 

and the conditions of rigid equilibrium are satisfied. 

Finally, if Ave have equal shears over the boundaries, the sign being the same (so 

that the external impressed forces act in opposite directions), the solution 

^ . . . . (oo) 

P = 0, Q = (1, S = i (i„ + 0„) 

Avill satisfy all conditions over the boundaries ^ = dz ‘^nd Avill introduce over the 

boundaries .t = d= « a system of shear necessary to maintain rigid equilibrium. 

Adding together the solutions (54) and (55), Ave find that the conditions Q = 0 

over y = p- h, S = Co ^^er y = -^ h, S = 9q over y = — b are all satisfied. 

This completes the solution of the problem proposed, with the exception of the case 

ag ;8g, Avhich can be reduced to the problem of a beam uniformly loaded along the 

top and free along the bottom, the load being taken by shears oA’er the ends. 
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PART 11. 

Discussion of the General Solution when the Forces on the Beam are 

Purely Normal and are Symmetrical about x = 0. 

§ 10. Expressio^is for the Stresses and Displacements, 

If the foices aie purely normal, and if the solution is to he even in cr, then the 

y, 8, f 6, K, V terms disappear. 

Fuithei, Y^e have the additional condition that, over the ends x — d:: n, T — 0, 

S 0, M 0, by introducing suitable terms of the form (52) \ve can satisfy this 

last condition, and we finally obtain 

TT _ - 

+ s 

+ S 

2m 7 

cos ma 

vd 

+ AO \p' + 
2ra 

siiih ml) ml) cosh mh 

sinli 2mh + 2mh cosh my sin mx 

2m 

I ^ (“« + /3,i) y sinh mh sinli my sin rm 
I ^ o 1 2y, 

sinli 2riih — 2mh 

' sinli my sir 

sinli 2ml) + 2mh 

— sinh my sin mx 

3I1 mh coi 

sinh 2inh — 2mh 

I ^ (“« ~ dn) y cosh mh cosh my sin mx 
“r ^ '- 2/1, 

Y = «o.y , - 
E 21m 

o / -tr — rjip 
^ p X («„ - A) 

/ 1 1 

COS ma 

7)1- 

+ s 
1 

'«« + A(\ lU'+ /i ■ 

, / 

J 7' 1 

'«« — /3„\ 1 [\E + y 
2m j 

+ B 

1 

+ 

sinh 2mh + 2)nh 

1 \ . . 1 

n 
cosh mh + — 7nb sinh mh 

n 
sinh 2mb — 2mh 

^ fr. 

sinh my cos mx 

cosh my cos mx 

_ y /y cosh my cos mx _ - m,, - ^A y cosh 'mh sinh my cos mx 

X 2J sinh 2mh + 2mh 7 I 2/^ ) sinh 2mh - 2))ih 
J 

(5G), 

where B is an arbitrary constant to be determined from some condition of fixing. It 

merely corresponds to a total vertical displacement of the beam. 

V = '-yi V / /D \ cos ma. , ” 
- f («« - A,) ^,,2 + ^ 

m- 
, ^ ^ sinh 'mb — 7nh cosh mh , 

+ "si„h imh + 2»,S ^ 

_L V / Q \ cC'‘’h mh — mb sinh mh . 
+ 7 - P'd ^ Yhil72»i/;^L.r' my cos mx sinh 2'mb — 2i«& 

inh 7)ih sinh 7)iy ( 

sinh 2m5 + 2'mh 

>(57), 

4- Y ((^ 4_ P ) ‘^yyfyfpdpinhm)^ -P Y / 4 i cosh cosh cos 
t ' cn T» 1*« O/i-v^ 7-> 1 ~ r )l J • 1 "i 7 -V 7 

1 sluli 2mh — 2riih 
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, Z / , \ siiih mh + rnh cosh mh , 

“0 + r “inh -Mi+'-Mb 

— S (a„ + 
onj/ siiih mh sinh viy cos ??u 

sinh 2mh + ‘2mb 

" , cosh + 7?/&smhw& . , 
4- s {a, - IB,) ^ '^^■v 

— t {a„ — (B,) 
1 

S = — X (a„ -I- 

sinh '2mh — '2mh 

my cosh mh cosh my cos m-r 

sinh 2mh — 2mh 

vib cosh mh sinh my sin nw: 

Y (57). 

sinh 2mh + 2mh 
— t {a„ — IB,) 

^ . 7»7/sinh ??i& cosh my sin wa; ^ , . 

+ T smh2,;,(,+ 2,»f-+ r 

mh sinli mh cosh my sin mo: 

sinli 2'mh — 2mb 

my cosh mh sinh my sin mx 

sinh 2mh — 2mh 

§11. Approximate Values to which the Expressions o/‘§ 10 lead tvhen “is made 

very small. 

Tf7> is very small compared with a, so tliat, even for certain fairly Ingh values of m, 

mh is still small, we may expand the coefficients in (56) and (57) in powers of m,h, 

and also we may expand cosh my and sinh my in powers of my. Tliis is the method 

which has been employed by Pochh^kmmer (‘Crelle’s Journal,’ vol. 81). I have 

shown in a previous paper (“ On the Elastic Equilibrium of Circular Cylinders under 

Certain Practical Systems of Load,” ‘Phil. Trans.,’ A, vol. 198, pp. 147-233), that 

such an ajjproximation was valid provided that the original series and each of the 

approximate series obtained from the various terms in the expansion of the coefficients 

of cos mx, sin mx (wliich expansion is supposed carried out only to a limited number 

of terms) are absolutely and uniformly convergent for the region considered. 

Assuming that the values of a„, are such as to ensure that these conditions are 

satisfied, let us see what happens when, in the expressions for the displacements 

U and V, we neglect all terms of order greater than — 1 in m. 

We find 

U = 
2&«E7 rn 1 A, + ^ 

^ \ "f iB], 
sm 70 X 

8m 

+ 
V jX' + /i- 

1 f'l + 1 ,,^2^2 
/ n. I / m~r\ 

yll -h ) sin mx t^ 

pn^h^ ( 1 + 
0 / .0 

m7^ 7^/- 

, «« - Ai 1 2 2 _ 
+ X - -7-y sm mx 

2n onAr'' 
fnrm I 1 + 

V a 
1 
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= _o) 
2PE 7 

cos ma X' ” «„ + . 

m- 8ju (X' + yu,) 1 7H 
Sin mx 

I /_1 , 1 \ 3y ® «« - /S„ . 
"r U, ^ i-^ ;— sin 7nx 

+ 4/i 

■A' i- /X yu, / 8b^ 1 m 

3y f 3X' + 4/x f _ 7X' 4 

8b [ 6fi (X' + /i) lOii (X' 10^ (X' + /u.) f 1 ?«- 
sin ?>?x . (58). 

26'^E 2 m-' 1 2/a 4m2Z)3 

I ^ /3);) \X + /A yti , 

T 2 HI 

" 1 +iVi+^V-’»’‘= 
‘i ! li / , my\ 

1 + “ ' - COS mx 
11 1- 

5 

__3 ,r- — 7?//- * COS ma ,„/ 1 INloo^—/9 
2i*E 2 ■' 7 ^') + 3- + jJ -J- S cos mx 

. ^ J 13X' + IC^ \' /] « (5,_ _ 

^ 81: 110^ (V + ^) - LV (X' + m) a J T “.(59). 

CO 

Now S (a„ — /3,,) COS niac = L, where L is the difference of stress on the toji and 

bottom, in other words, the transverse load per unit length of the beam. 

a« — /3„ . 
Sin mx 

1 711 

where S is the total shear at any section. 

a» — /?« 

^ = f l^dx = f Ijilx = — 8, 
• 0 J a 

V ~ 
I 711^ S -'—cos mx - % cos 77ia — + | Sc/x - - M, 

where M is the bending moment at any section. 

Integrating again ; "to 

® Ctfi *“ yS 
^ ills ■— X z-o— cos 77ia 1 'H J ^11-' 

V AT 
Mc/iC 

V «« - /3« s «« - /?«, 
^ -...i A -:— 1 ■Hi* 1 m‘ , cos wa; - ^ S cos wa 

1 

rx / 
J M M.dx) dx. 

Also if Q is the transverse tensile stress at any section Q = ^ 

* «« + /3„ . 

? 2« 
Sin mx ( Qc/ic. 

Jo 

Substituting from the above values into the expressions (58) and (59) for U and V, 

we find, remembering that — ji 

VOL, CCI.—*A. 

v + /A ' /i “ E V — — + 2/r), 

M 



82 MR. L. N. G. FILON ON AN APPROXIMATE SOLUTION FOR BENDING A 

u = - 
2&3E 

3.(/ q 
86 ^ 

[ 3X’ + 4//. if 

]_ Qjx (X + fx) Ir 

3M 1 \ 13X' + 

86 1 [ 10^ (X' + fx) 

+ 4/ii 

\0jJb + fx) 
+ V 

f Q^dx 
Jo 

X' 

2/x (X' + fx) h~ 

(60), 

J 

dropping a constant in V. 

The stresses P, Q, S might be directly deduced from the equations (60) by 

differentiation. But here we require to he extremely careful, for, y and x being of 

different orders of magnitude, differentiation with regard to y will not give a term of 

the same order as differentiation with regard to x. The criterion to he used in this 

case is this ; The series L = — dS/dx is of order 0 in m, and is therefore among the 

terms which we have agreed to neglect. Similarly for the series Q. In consequence, 

every time L and Q appear owing to differentiation, they should be neglected if we 

keep the same order of approximation for the stresses as for the displacements. It 

will then be found that some terms disappear whose effect is felt in the displacements, 

as it were, by accumulation. 

Keeping this rule in mind, we obtain easily 

p _ SMy -1 
^ “ 25^ j 

Q = o 

s = IS - ,f) 

(61). 

Now these are the stresses we should have obtained had we treated that part of the 

bar as free, but subject to a bending moment M and a total shear S, transmitted 

from a distant terminal. Hence we see that, to a first approximation the stress at 

each point of a bar, whatever the manner of its transverse loading, depends only upon 

the total bending moment at the section and upon the total shear at the section, and 

will be given in terms of these by the same formulae which are valid for a free bar 

subjected to a given couple and shear at its extremities. Similar conclusions follow 

from the formulae found by Professor Pochhammer in the paper quoted previously. 

§ 12. Analysis of the Apjrroximate Expressions for the Disp)lacenients. 

Shearing Deflection. 

Now if we look at the values (60) we see easily that they are composed of three 

parts. 

(i.) The parts —i U and -;p — [ [ Mt/x” of A". 
2o E Jq Lo’E JqJq 

These are what we may call the “ Euler-Bernoulli ” terms. They correspond to a 
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strain in which cross-sections originally plane remain plane, and the curvature of the 

elastic line is at all points j)roportional to the bending moment. 

(n.) The part dx of U. This corresponds to the lateral contraction of the 

material under tensions Q, and is the same as if each strip of thickness clx and height 

26 were independently stretched. 

(iii.) The terms — ^ S 
[ o\' 4/x y" 

]_ 6/z (X 4- /^) h" 

+ 4/^ ] 

10/A (X /a) J 
of U and 

^ J 13Xf -f- 16/a ^ X' ?/2-i 

86 [ 10/A (X^ -j- /a) 2/a (X^ /a) ^ 

These correspond to a distortion of the cross-sections and to a parabolic distribution 

of shear. 

In the particular case, where the load reduces to a central isolated weio-ht W and 

the two symmetrical support reactions, the additional terms (iii.) in V are of the 

form (omitting the constant) 

g 'Wx [ loX' + 16/a] 

^~yLb [20 (V-f /a)J 
4- 4 r 8 

7jW (J — x) ?/" 

E63 
for > 0 

and 
g W.r fl3X' + 16/a] 

^ /a6 [20 (V -f /a)] + ^ E63 for X <. 0, 

2Z being the distance between the suj^ports. 

It might have been supposed that this particular problem would have been 

capable of solution by breaking up the beam in the middle and treating it as two 

inverted cantilevers, to each of which we could apjjly de Saint-Venant’s solution. 

This, I believe, is often done by engineers. 

Now such an attempt is, in strictness, bound to fail, because de Saint-Venant’s 

solution implies distortion of the cross-section at the fixed end, whereas in the 

present problem the central cross-section of the beam must necessarily remain 

plane, from symmetry. 

Moreover, we are left in doubt as to the condition of fixing to be adopted. Are 

we to suppose, with de Saint-Venant, the central element of the terminal cross- 

section to remain vertical, or, with Professor Love (‘Theory of Elasticity,’ vol. 1, 

pp. 179-180), the elastic line to he horizontal at the built-in end ? In the case of a 

cantilever the difference is quite immaterial, as it merely amounts to a rigid body 

displacement. But here w'e must remember the cantilevers are only fictitiously 

severed, and the above difference corresponds to an actual sharp bend of the beam 

in the middle. 

It is interesting to compare the true solution with those obtained in this way. 

M 2 
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IP we assume de Saint-Vex ant’s fixing condition, we find, for the additional 

terms in V corresponding to (iii.)> 

•s 
ixb A 1 

W (/ - s;) if 

YJj^ 
for a: > 0, and 

8 ..7. > 

W (I + x) ^ 
7] -— for X < 0. 

The terms are therefore identical in this and in the true solution, but the first 

term which represents the additional defiection of the central axis of the beam, and 

which is sometimes spoken of as the shearing deflection, is less than in the true 

solution, being (13V + 16/r)/20 (X + p-), that is (42X + 32p)/(60X + 40p) of that 

given by the double cantilever solution. This fraction comes to be 74 for uni-con¬ 

stant isotropy. 

If we assume what I have called Love’s flxing condition, the shearing deflection 

disappears entirely. 

The true solution shows us, therefore, that it is permissible in this case to use the 

double cantilever as an artifice to obtain the solution, 2^rovided we adopt, at the 

section of fictitious severance, a fixing condition intermediate between those of Love 

and DE Saint-Venant, but nearer to the latter. In other words, a central isolated 

load does actually introduce a sharp bend. 

§ 13. Value of the Deflection when h is not small and the Beam is Doubly 

Sup2')orted. 

Suppose the beam rests on two knife-edge supports A, B (fig. i.) at a distance 2l 

apart, and a weight W is borne by another knife-edge which presses on the upper 

part of the beam at C. 

, s,l 

SJC 
A 

ZCL ^_ 

\ 

w' 

L 

' 

Fig. i. 

Then we have ao = — {n O), /3q — ct-Q, fn — 
Oj 

nirl 
- cos —. 
a a 

The central deflection of the elastic line (what de Saint-Venant calls “la 

lleche de flexion”) is then given by _/’= V,r=?j,=o ~ '^^=oy=o i substituting for a’s- 

;ind yS's in (5G), we find 
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/ = 4&'5E 7 
cos UTT W 

a 
COS 

nirl 
— 1 

a 

+ 
; w 

7 a 

nirl , \ 1 
COS -— 1 

a 
X' fj. 

, 1\ , mh 
i— cosh mh -j-siiih mh 

I 
m. 

Now the first term can be evaluated. It is 

sink 2mh — 2mh 

3 \Y 

nirl V , 
cos--^--l). (G2). 

16 ah'^ E' 
We have therefore 

_ 3Wd 7 

— IG'EWWT^^iTr 

I nirh 1 /' nmh iiirh . nirh 
wT \ ^' t cosh “I f cosh “j siiih 
VV \A 4- a a \ a a a 

/ 2nirh ‘Imrh \ 
sinh--- 

(0 a / 

' n7rr\^ 
1 — COS — . 

a / 

Now let ns remove the ends to infinity, that is, make a very large. This will 

transform the N above into a definite integral. It is easily seen that the term under 

the S remains finite and continuous when n is made zero ; we may therefore take 

our limits from 0 to co. We then obtain, putting mrhla — v, irhla = du : 

/ = 

1 \ ii, 
-VI-. I ^ , 4“ cosh +— siiih xo \v \ A. +yu. fji / pu 

sinh 2u — 2u 
4 u 
—cosh u + — siiili u , 
Tj //. ! 

'o -tt 
COS 

'?d\~ (lic 

or writing I/2h — 

2\Y 

TT 
1^ ul Y^' dn 

sinh 2u — 2il 2h) u 

2XY ( I \‘t 

“ TT \2^ 

4id cosh u sinh u 

E 

sinh 2ii — 2ii \ ^ ^0 
(63). 

Now (sin wXq)’- is always < 1, so that 

2W / / X-i 
y < -w TT 2h 

4 sinh nh 
,, %(? cosh ii +- 

fj, 

sinh 2u — 2ii 
dll, 

and f tends to become ecpial to the right-hand side of the last written inecjuality 

if Ij'Zh becomes small, that is, if we make our supports close up. 
?d sinh % dll, , . 

—-- when calculated by quadratures 
rp, . , 1 f cosh u die , f 
I he integrals . , ^ and 

° Jo sinh 2ii — 2u j 0 sinh 2u 

come out to be equal to 7'22 and 24*82 respectively. 

We have therefore / < 
2W / I /28'9 

2h 
24-8 

E ^ . . . (64). 

Now if J-Q be the Euler-Bernoulli deflection, that is, the deflection calculated in 

the usual way by taking the curvature proportional to the bending moment and 

fixing, so that the elastic line is horizontal at the origin, 

YiP 
fo = (65). 

Comparing (64) and (65) we see that the true deflection will certainly be less than 
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the Euler-Bernoulli deflection if I 

poses of numerical calculation we suppose uni-constant 

or, /< ’069 6, if for pur- 

isotropy and therefore 

E = 5/x/2. 

So that if I be less than about a^th of the height of the beam, the correction to 

be ajDplied to the Euler-Bernoulli deflection becomes negative. The critical point 

where, as we shorten the span, the correction passes from additive to subtractive 

corresponds to I slightly, but only very slightly, greater than ‘069 6, as in the 

neighbourhood of this value Xq is quite sufficiently small to make (sin iiXq/wXq)"^ = 1, 

a fair approximation for all the most important part of the range of integration 

of the integral in (63). 

We see therefore that when we have a beam loaded in this way, with a section 

of symmetry constrained to remain plane, the deflection at the centre, for all spans 

greater than ^^-th of the height, is larger than the one indicated by the Euler- 

Bernoulli theory. In the limit when the span is made very large, this additive 

correction is found to be of the same form as that given by de Saixt-T exaxt for 

a cantilever under special conditions of end fixing, but the coefficient is different, 

the correction being just under fths of de Saint-Venaxt’s value. For spans smaller 

than height the correction is negative. 

§ 14. The, Douhly-supported Beam under Central Load. Expressions for the Strains 

and Stresses lohen we remove the Sup)ports to the Two Extremities. 

Going back to the general expressions for U, V, P, Q, S given in § 10, if we have 

a beam as in § 13, but we make the two supports coincide with x = i a, Ave have 

— R — ~ “o — Po — 
W w 

-(- 1)“-. 

with the folloAving values for the displacements and stresses :— 

>/ ® W siiih 'Inirhla 
u = 

jjb 1 a sinh ■inirhla -|- 4:7'i7rhja 

V W co.sh(2/i- -|- V)iTljja 

/j, a Q siuh (4?i + 2)7rb(a — (4/i -1- 2)7rhla 

1 

sin 2mrx/a, sinh 'Imri/fa 

sin [2)1 fl- 1) TTxja cosh (2u -f 1) ny/i a 

AV 

cosh {2n-\-l)’7Thyi 

1 l)7rt , ,, 7 
-^^— smli (2)1 + 1) iTO, 

A 
!(l 

a 

rx 0 (2?i.-l-l)7r sinh(4?i -|- 2)7rbla — {+n -f 2)7Tbla 

1 

sin(2?i-l-l)7r.r/a sinh (2?i-l-1) Try/a 

W - __ V 
, ^ , sinli 2n7rb/a — — Cldf cosh 2)i'7rbja 

a W + /X ‘ fx a ' 

a 1 2mr 

3W«. 

sinh +)i'irbja 4- -InTrbja 

1 vlYx 

sin 'ImTxja cosh ^mryja 
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v = ^s 
sinh 27i7r&/(X 

+ 

fjM 7 sinh4?i7r6/«' + AzmThja 

yW ” cosh (2» + 1) irhla 

ybci 0 (4» + 2) irhla — (4?i + 2) -irlja 

/ 

( 

COS ^mrxja cosh ^mryja 

cos (2n + 1) 7r.T?/a sinh (2w. + 1) 77«//a 

/I 1 \ . . . ,, 1 2?z7r& 
\ A 7-,-f- - ) sinh 2mrhla ^- 

W “ a \y + /jL fjbj ' fM a 
cosh 2n7rhja- 

a 1 2mr 

a 

sinh ^tmrhja + ■inirhla 

^ -h cosh 2n + iTrhja 
\ + fj. /jb/ 

1 2ra+ lirh . . X , 
H-sinh 2%+ l7r?>/a 

a ' 

COS 2mrxja sinh ^mryja 

a 7 (2% +1) TT sinh (4?i + 2) irhja. — (4% +2) TThja 

1 W,7 r3\ V _ Wy , -O 
7 {2n + 1)3 Ec 

cos (2?t-l-l) TTxja cosh (2^^+l) Try/a 

.(67), 

where B is a constant depending on the origin from which the displacement is to be 

measured. 

p _ _ y 
- (271 + 1)3 

” 2W sinh 2mThja — {2mrhla) cosh 2nTrbla 

1 « sinh Anirhla + 4%7r6/a 
cos 2mTxla cosh ^mryja 

” 2W (2mry I a) sinh 2nrrhla 

1 a sinh 4?i7r/)/« + 4r)7r/>/« 
COS 2inrxla sinh ^mryla 

* 2'W cosh 277-+1 rrhia — {2n+lirhja) sinh 2n+l'nhla ''—^ ^ 
: 7^ smh(4» + 2)^S/«-(4»+2)^!,/«-3«+ Ux/a smh 2«+ !,.<//« 

* 2W (271+iTry/a) cosh 2ft+iVS/tt 

7 a sinh (471 + 2) irhja — (477 + 2) irhja 
cos 271+1 TTic/a cosh 277-1-l7r7//a . . . (68). 

^ W ^ 2W sinh 2nirhla + {2nirhja) cosh 2nirhja 
^ - t +-^ ''OS 2niTxla cosh 2niryla 

+ 

2a. 1 a sinh 4:nirhja + 4:nirhja 

2W (2niryja) sinh 2nirhja 

a sinh Anirhja + -imrhji 
COS 2mrxla sinh ^mryja 

_ "S' 
0 a 

2W cosh 277 + i7r&/a. + {2n+lirhja) sinh 277+l7r5/7i 

sinh \n-\-2irhja — \n-\-2irhja 
COS 272+ liTxIa sinh 2n+ l7r7//a 

+ S 
0 ct 

2'W (277+ liryja) cosh 277+ lirhj^ a 

sinh 477 + 2irhja — \n-{-2irhja 
COS 277+ iTTxja cosh 277+ liryja (G9). 
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_ ® 2W ('Inirhja) co^Xi'linrhla . ^ i o / 
S = -^—rr sm 2n7rx a sinh ‘imry/a 

1 a sinh ■imrhja + 4:n7rbla 

“ 2W (2«7ry/«) sinh ^nirl a . , , , 
^ — . , ' -;—-i— sin ^UTTX a cosh 2n77^/rt 

1 a sinh ‘^mrnja + 4:mrhja 

-P 
” 2W (2?i + i7r?V«) sinh 2;i+ Xirlija 

° ^ sinh 4?z.+27r?>/a — 47i + 27r?//c 

2W (2h. + Itt/z/a) cosli 2/14- I'rrhja 

sin 2w+ iTrxja cosh 2/1 + 177^/ a 

a> 
•< 
*0 « sinh 4/1 + 27r?//A — 4?i+ 2TThjn 

sin 2?i + i7ra;/a sinh 2n-\-\7ryla (70). 

in 

) 15. Dejinite Integrals to which the expressions of the last Section tend when we 

niahe “a” very large. 

If we make a very large, the S’s in the preceding expressions will become integrals 

the limit. It will be found, however, that certain terms in the last found values 

of U, V, P, Q, S b ecome Infinite when 0 is substituted for hja. In these cases the 

sum may not be directly transformed into an integral. The reason why this occurs 

is that, if Oj be made infinite, an infinite bending moment is introduced at the 

centre of the beam. It is this moment which produces the parts ot the displacements 

and stresses that become infinite when a is infinite. If, however, we apply at the 

two ends pure couples — we get lid of this infinite moment, and we have only 

the terms due to the local efiect, which produces only finite stresses at a finite 

distance from the origin. 

Thus, if in U we add —- v 3 _ 
.Trt" 

0 o to the second 2 and -- 2 f ry— prr-.— 
a 0 A + yA Ir (2/1 + l)-7r' 

to the third 2, these 2’s remain finite even when we make a = co, We have, 

however, to introduce negative terms to ha:lance those that have been added. 

TT'f, we see that the part of llememhering that ( y—- + 
^ \A + yu- n 

1 \ 4 ” 1 
and 2 7—^ 

/ Ij 0 (2/1 + li¬ 

the series in U which becomes infinite, is 
xifhVa 

TJh 
, w hich, added to the other infinite 

term in the last line of (fif), gives for the infinite part of U : 

IT - _ 
^0- 4 ■ 

Similarly with V. The terms which have to he added to the second and fourth 2’s 

to make them finite in the limit are 

ri- 

fd W® 

a I (2/1 + [_\a' + fx, fj. 

y 

0//AV “ 

"vT ^ (2/1+’ 

l\/_ . (2/i+l)V=t- 
+ .7 ) ( 1 + To -nr-) + — 

a (2/1 + ® ' fA' + /x. 77 

1 (2/l+l)-7rW 

a- 

7)' 
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1 espectively. ihe first sum m the second of these expressions does not contain the 

variables, and therefore may be supposed taken from the constant B. The otlier 

terms, addea to the first term of the last line of (67), will give for the infinite 

part of V 
V„=f||(x-=-w"-). 

Proceeding to deal in the same way with the stresses, we find that to ensure 

finiteness in the limit we must add : 

(o) to tlie third and fourth series in P ; ^ ^ 0cicll CRS0 , 
a 0 46^ + 1)V" ’ 

{h) to the third and fourth series in Q ; S 
«- 

a 7 46'^ (2/i + l)V~ 

respectively ; the infinite part of P is then 

P 

and — 
ft- % 

ft 7 4/Y(2ft+l)V~ 

„ Wft 
--iry 0 — 4 ^3 

Q and S having no infinite parts. 

If we leave out of account the parts Uq, Vy, Pg, which belong to a couple Wa/2 and 

Avhich can be destroyed by introducing an equal and oj^posite couple, we find that, 

when cc is made infinite, the displacements and stresses tend to the following limiting 
values : 

TT _ 1 'Vy P Sillll . lljl. . «// 

~ ' - ~ Sin — smh : du /ft lirh J 0 silili 2ft + 2'ft 

cosh ft. 

h 

XIX 
•7 7 I 1-1 h-sm — cosh fx irrh J 0 \siuli 2ft — 2ft h h 

3,r \ 
du 

, cosh ft — — ft sinli u ^ 
^ + fx fX 1 . MX . lUl 

-sill - smh — 
siiili 2ft — 2« ft h h 

b,ry 
-j- jJL 

du 

r 1 • 1 1 I ^ snia u — — cosli u < A- -f yft 

silili 2ft + 277 

1 . MX , in/ J 
— sin - cosh -I- du 
u 0 h 

sinli M uv . uy 
' d 7 I “ . —-- COS — cosh -y du 

fx Zvl) J 0 smh 2?7 + 2m h h 

fx 27rb 
cosh 7t MX Ml/ 0 7/1 , 

y7T cos - smh — - Y, y du 
siiili 2ft — 277 h h 4&ft^J 

(71). 

y;-+ — ) silili ft ^-ft cosh ft I 
A- + fX ' fJi J 1 

1 

MX . . au J 

COS--smh; du 
77. h h 

uy 

] cosh ft + — ft silili 77. 

siiih 2 It — 277 

\A,' + y'fxj 77/ + U 

1 VU: , 777/ 
— COS -p cosh ~ 
It h h 

' .. ,.2 8 
/X / u 

+ an ai'bitrary constant B' 

^\x' + /x /x) Irid 
•du 

N VOL. CCI.—A. 
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P = - 
AV sinli — t( cosh u •. 7 

-COS — cosh c(u 
ttIi Jo siiih 2tc + 2tc 0 0 

V. siiili n, «.'■ W?/ r V. SI 

irW- J 0 >smh 2 

A\ 

7rfe 

0 

r /.oo 

- cos siiili 
n. + 2/( 0 0 

cosh a — a siuh u U '- . , uy 
— cos y smli 

r” [ cosh u — ii SI 

Jot siiih 2/(-— 
3 y 
^ hte 

_ AVv/ r 

Trlfi Jo 

K cosh u lu: 
COS - cosh / — 

sinh 2ii — 2u h h 4zr 

AV r siiih H + to cosh k o.f , uij , 
--cos cosli f du 

irh Jo siuh 2/' + 2;^. l> 0 

t( sinh ti. u.r . . uy 
COS ; Slllll - 7 du 

siuh 2ic 2a h 0 

w. r 
^ -rrl/ Jo 

AA'’ r"” [ cosh u + a sinh u 

nrh Jo [ 
-ITT «C< AA // 1 

+ Trlr 

siuh 2 to — 2to 

to cosh to 

COS — sinh ~r — 
0 0 

oiJL 

tu: , tty o 

. ■—-, COS -r cosh --0, 
siuh 2a — 2to h h ■Jta- 

hto- 

dot 

H = sill ' r siiiP 
h 0 

a.i: T vy 

«// 
du 

AV r a cosh to 

Trh Jo siuh 2a + 2 

'Wt/ to siiiu ((' . i'-'- I ‘>,7 7 
_ -A -- sm * cosh 7 dot 

Trlr J 0 siuh 2;( + 2;i h h 

AV a siuh to . -a-x , ay , 
+ ■ , ,-^ Sill 7- cosh -7 du 

tt/^ Jo siuh 2/', — h 0 

A\h/ r* to cosh a . ax . , ay , 
— " -— sill 7 Slllll 7- du 

7r/r. Jo siuh 2m — 2(6 b b 

1 

du 

d u 

J 

(72). 

§ IG. Consideration of the Stresses in the Neighbourhood of 

Concentrated' Load is Applied. 

the Point ivhere the 

The integrals in the expressions (7 i) and (72) are finite, one-valued and continuous 

at every point (cc, y) inside the heain, such that y is numerically less than b by a 

finite (piantity. For in tliis case, for large values of u, the integrand is comparable 

with where lyj stands for the numerical value of y. If, however, i^; = b, 

or the point in (piestion lies on the edges of the beam, the integrals are no longei 

necessarily convergent. In this case the expressions (71) and (/2) haAe to be 

transformed. 

Let us start with the stresses P, Q, S, as in their case the transformation is 

somewhat simpler. Further, let us consider instead of P and Q the somewhat more 

compactly expressed quantities 
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T) , ^ 2Y’' f” sinh u ux , uy , 
r H- — r ■ , ^-— cos -7 cosh dv. 

7r/> J 0 siiih 2?< + 2?? 1) 

r 

Trh J, 

0 sinh 2?< + 2?? 

cosh u m 

irh Jo [sinh 2n — 2?6 

tiK . , uy oy 
cos Sinh --- - dii 

- O = \ 
7rh Jo 

1 1 '>'v -1 -1 '?o/ V cosh u cosh - — •- smli u sinh 

sinh 2n + 2u 

VAj 

~h 

1) vx , 
-- cos -- dv 

b 

u sinh ?/ sinh ~ cosh n cosh 

sinh 2\i — 2ii 

h i(x , 
— COS — + -^sJL 

^ hv} 

y (73)- 

dv 

P — Q and S give the lines of principal stress and the principal stress-difference, 

P + Q gives the compression at the jDoint considered. 

If in the values (73) and in S we write y = b — u' m that rve are referring our 

co-ordinates x, y' to the point C (fig. i.) wliere the concentrated load is applied, as 

origin, we find, on re-arranging the terms. 

PJ_0- 2fVr-r nx c + m =-r- e '' Gc>s---dic 
Tfb J 0 u 

_ _ f 
irh ]( 

I ri + 2a + . 

J 0 t ^ sinh 2i6 — 

u 

sinli 2u — 2u sinh 2u -f 2« 

vx vy' o I 
cos —- cosh — tv; !■ dv 

0 h air 

’Al, 

1 -f- 2ii — c“-“‘ 

sinh 2» -f 2%i 

vx . VAf l> ?/■ 

I T - 4„1 T dv. 

vy' ^ 2Wy'r - _ 
t — = —dr '' cos - du 

irb'' J 0 

ux 

~h 

— f 
irh j 

V V. 

0 L — 2ii sinh 2u -f 2v 

/ .00 , - r. 2u + e--^ 1 -f 2v - 

vx vy' c! , , 
COS 7 cosh — r , 1 d'U 

h h 4?d 

^Yi/ r r.i n 

~l:r Jot 2" [si irJr 

2\Yy' 

s = 

2'' V r 

“ Jo 

fYi/' 

sinh 2u — 2?i sinh 2u -4 2v 

vx vx 

vx vy .! , 
cos -7 cosh - i- dn 

li b avi- 

irW 

_sin]i 2?i — 2u sinli 2u -f 2u 

vy' 

'iix , ^ iiy , 
cos T smh -7' dAi. 

b b 

— ~ ~ 'lOX 
'tie '' sin — dv 

0 b 

+ d f mb 
f u u 

Jo sinli 2v - - 2v sinh 2u 4- 2%i 

UX 
sin sinh -f- dv 

b b 

_ W r_v 
L 2 

1 + 2i( -j- c--“ 1 -I- 2?t — 

ttY Jo 2 Lsinli 2?i — 2u sinh 2u + 2?( 

. vx . , vy , 
sm ■ 7 smh -Y- dv 

h h 

70~ U“ 

_sinli 2u — 2u sinh 2u -f 2ii 

N 2 

l(X 
sin ‘ 7 cosh -7- du. 

b b 
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The leading integrals in each case can be evaluated. 

If we write x = r' sin y' — r' cos (j)', so that r' is the distance of the point 

considered from the ])oint of application of the concentrated load and (f)' is the angle 

which ')•' makes with the vertical, then : 

h cos </)' ux X) vy' 

e '' cos -7- d u = 
0 '' 'I" 

poo v.y ux , cos 2(/)' 
ue '' cos XT du = 

10 r 

ux 

and we have 

foo vi/ 

ue '' sin '7 du = 
0 

Ir sin 2(f)' 

2^Y 
P -f Q = — ' y cos (f)' — 

HW 

irr 

V“ 

- COS \ cosh -7- — 77^7 [du 
nt/ 

ttI) } a sinld 2io — -iir 16//- 

u 
.,,2 I _ 1 i 

" « UX , Ud ?, y' il-h . , njj »') 7 7 

siulr 2//. - 4/d T ~ Toid I ' 

8W «“ 

irh Jo siuld 2%i — 4?6- 

ux , Ulj 
COS — cosh y- 

3 

16/d 
du 

ux -( 
h 

uy o 

1) 16 //- 

c/ W//' . , 4tVf=“ ^d . nx . , uy' , 
b —7 Sin 2(f> + -, ’o sin -- sinh du 

irr - ' TTO Jo Sinn- 2n — 4/t~ 0 0 

4W// 

, ' u~ u u 
/ i -t y + o - o e 

2 o 8 . lit: . uy , 
70 1 —•• I o .0-y;—sm -7 smh du 

170- Jo Sinn-2?/— 4?f~ h h 

4’\Y//' r” . ux . uy' j 
+ —hr .y v.-,-ry sm — cosh : du 

ttP joSinld2// — 4/d 

(74). 

(75). 

(76). 

The expressions for the stresses therefore consist of two parts, namely, the 

integrated paiTs 

(77), 

S7 = 

and the parts still in the form of integrals, v'hich we may call Po, Q.^, So. 

w \Yy' 2AA" .)-y'\ 
- 7 cos 

•nr 
+ ,0 COS ir r ^ 

2(f)' = 
IT 

AV AAG/' 2^Y 
—, COS 
irr 

cji' - .,7 COS irr ~ 
2f = 

IT 
1 

—^ sin 2fh 
nr - 

rr; 
IT 

/o 
y/" 
^.'4 ) 
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P1, Qi, Si agree with the exj^ressions found by Flamant (‘ Comptes Pveridus,’ 

vol. 114, pp. 1465-1468) and confirmed by Boussinesq (‘Comptes Ptendus,’ vol. 114,, 

pp. 1510-1516) for the stresses in an infinite solid due to a line of load W per unit 

length, in which case the problem is reduced to two dimensions. They correspond, 

therefore, to the stresses that would he induced in the beam by tlie concentrated 

load if the height '2h were made infinite. 

The stresses Po, Q^,, Sg are regular functions of x and y throughout the beam. 

They nowhere become discontinuous or infinite, and they tend to zero as b is made 

large. They represent the correction that we have to apply to Flamant’s and 

Boussinesq’s result as a consequence of the finite height of the l^eam. 

Boussixesq, in the paper quoted above, has made an attempt to obtain such a 

correction, by finding the stresses given ])y (77) over the lower edge of the Ijeam, 

superimposing an equal and ojiposite system to annul these, and calculating the 

strains due to this last system as if the top boundary of the heam were removed to 

infinity. This corrective system, as lie calls it, will now introduce extra stresses over 

the toj) of tlie lieam. To get rid of tliese a corrective system of tlie second order is 

superimposed, and we may go on indefinitely in this way. Tlie complexity of the 

expressions increases enormously for each system we add, and, on finding the 

approximation so slowly convergent that the terms of the second order were 

practically as important as those of the first, Boussinesq threw up the method in 

despair, and fell back upon an empirical assumjition, given by Sir George Stokes in 

a supplement to a paper by Car us Wilson (‘Pliil. Mag.,’ Series V.. vol. 32, 

pp. 500-503), namely, that the stress system introduced liy the finiteness of the 

height of the beam was such as to annul the stresses due to (77) at the lower 

lioundary, and varied linearly along the vertical, giving zero stress over tiie upper 

houndary. The functions Pg, Qg, So of the present article solve the problem exactly. 

I 17. Expansion in Integral Powers about the Point of Discontinuous Loading. 

In the integrals for Po, Qo, So we may expand the quantities x 1 
' RiuJ h sinlij /; 

series as follows :— 

(i h J {■2v)'. 

^ "U' (ur'f+H\\p{2v + 1) f 
Sin r- cosh ; - = 

b h {2v + 1) 

ax . u 
cos — cosh , 

b b 

H' _ ! ur'f'' cos 2v(j)' N 
o' \ h 

u:v a//' Z / 
COS — smh -y = A 

b h 0 

,'\2v+\ (3Qg 2v-rll' 

h 1 {2vPl)\ 

(78), 

u \ "T J-y ; 

being an integer. Now when these values are substituted in (77) and similar 
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formulae, we may distribute the integral sign among the terms of the series, provided 

that lioth the original and the resulting series are absolutely and uniformly 

convergent. This is easily seen to hold good for the series (78), and it will he shown 

later, in § 18, to he true of the resulting series, providing the points considered he 

inside a certain circle of convergence. 

Assuming for the moment this result, we obtain from (77) 

P., = 
4W / r' ,, (‘(.s 2p(j)' 4■^Y ^ ^ ^ / P cos v(f)' 

irh 0 \ I h {2v) . irh Q ^ 

cos V(f)' 

H. 

Q. = f(T) vr (.0 

1 . (79). 

rrh 

mx2vc}>' 4MY-,/ 
I/fj v: 

where 
9 \ 

~ )o (sinld 2h - hd “ I^) 

H, = 
* /id + iid + c~'^” 

0 siiili- 2n — 4?d 

.2i/ + 3 

IGid 
du 

r” u~''+^ II _ j 
J 0 sinlr 2u — 4id 

rn., = I 
- /„2r + .s ^ i^p. + 2 

a 

+ c"'^" 

sinld 2?/ — 4?f“ 
du 

(80). 

(^ > 0). 

§ 18. Convergeney of the Series of the last Section. 

Til order to justify the distrilnition of the integral sign over the separate terms of 

tlie series (78), we have to show that the series (79) are absolutely and uniformly 

convergent. 

Now the series are absolutely and uniformly convergent provided that the series 

. 
N ( — ) —is alisolutely and uniformly convergent. The convergeney ratio of this 

1) ! v\ 

1 r H 
latter series = L V -^ • 

h J1 V I ?'=00 

Now, in order to find the a]iprnximate value of IT,, wlien v is large, let us consider 

the integral 

T _ u 
” Josinld 2u- ■ " 

write u = av 

I _ _ — rf + l 

" ~ Jo silild 2((r - 4«V ~ Jo 1 + 

4»2 

4r'‘ c. d V 
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Now let u be chosen so large that for all values ol v ^ w, where oj is uunierically 

less than unity, 
(2 + IGrt-v”) — (j-nav ^ 

where e is a small, finite, assigned quantity. 

We then find 

L = « fl+i 2v’‘ do 

0 siuh- 2av — 4-a^o 

1 

" f ) 

rX. ^ .CO 

where U,, lies between 4i;'' dv and - 4G' dc, 
1 + 6 j,.. 

Now 

j" yii 4«i; y 

n; e ! /* — iuoj 
= —_(1 4.^ A. . I 

(4«F + 1 \ ^ 1 : ^ 2! ^ • "T 

(4«.ft))'*\ 

“TfT / 

n! e ■“4«w 

(4«y + i 

^JiL_ f 
(4«)« + i \ 

(4awy‘ + i , (4«a)F + 2 _ 

(« + iT; + LT+T + • ■ • t« “ 

-4ac. 
1 

“b ... to CO 

Next 

Thei'efore 

(H + 1)! 

sinh^ 2ar — 4rt'r~ > 

r*" 2o'‘ do 1'“^ 0'^-* 

Jo sinli^ 2ff» — 4aV Jo ® (d ^ ^ ^ 

(81). 

CO 
n — 3 

^ cd{n - 3) 

Now, (o being > 1, this tends to zero when n is large. Further, by making n 

sulficiently large, the second teimi in (81) is negligible compared with the first. 

We then find that the most important terms in I„ lie between —J— and 
1 + € 4” 4” ■ 

Hence when n is large we may neglect I„_2, &c., compared wdth l„. 

Now 

Ho,. = l2^ + 2; 

where 
il2,.+ l   f2i. + 3 “h 2^2i/ + 2 “h 8^2k + 1) 

f 2d‘'+i(i-c-4'0 , r 
2.+1 = - ■ .2 ^du < —-5 du < . 

Jo Kinli 2i4 — 4r/ Jo siiilfi2h — 4r/ 

rherefore H._,„+i = if we neglect all but the most important teniis. Therefore 

in the limit H„ = H+.,. 

Convergency ratio = L 
/•' X 1 1 I' + O 

l> J r + 1 

= L 
1 + ^6 y i/ + 3 r' \ + 0'e 

1 \ uTTT) ~ 4J d + de ’ 

1 + e'6 

II —cc 
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where 6, 0' are proper fractions. If we take e small enough, the convergency ratio 

tends to ■ r . 
4/> 

The series we are dealing with are therefore absolutely and uniformly convergent 

inside a circle whose centre is the point where the concentrated load is applied and 

whose radius is twice the heiglit of the beam. 

The transformation used in the previous section Avas therefore justifiable for this 

region and the expressions (79) are real arithmetical equivalents of the stresses Pg, Qo, Sj, 

Avhich have to l)e superimposed ujDon Flamant and Boussinesq’s solutions for an 

infinite solid when we take into account the height of the beam. The values of the 

first few coefficients, calculated approximately by quadratures, AA’ere found to be as 

folloAvs : Hq = — '2417, Hj = — 'OSOS, Ho = + ’2271, Hg = + ‘3370. 

§ 19. Transformed Expressions for the Displacements. 

If Ave take the expressions (71) fur U and V, we may treat them exactly as Ave 

treated the expressions for P, Q, S. We then obtain, after some rather lengthy 

reductions, U = Uj + Uo, V = W, Avhere 

Ui=- 
1 W// 7 / 

fJL, 'IttI) 

'■iiL . ax 
e ^ sin ' - 

, W 1 r 1 . ux , 
au — - -7- - e sm -- an 

27r X' P yT. Jo /A h 

1 W?/ . W 1 ,, 
— , sm (b —-(p 
fji Ittv ” 27r X + /u. ” 

1 wy r 
2-771) Jo A 

e '' cos du — 
I 1> 

1 y' ,, , W , 1 

yu 2-77 r ^ 277 \\ + y. 

C ux 

w / j_1- — n 
277 \X' + yU, fj. j Jo '!■<' 

>(83). 

I r 

fh 
B, 

du -p Bj 

.^00 I 

Uo = 
1 2XV ̂1/ + 'y +i-\- ^ 

r -77!) Jo!_ siiih^ 2w — 4?d 

'UtC 1 Ulf 
-r cosh ^ 
h u 

3j: 
du 

u~ _i_ r__ 
U 77h ]q siiih” 2u 

. ux . , uy , 
—7-7 sm — sinh -y du 
■ iu- 1) h 

■y +AU’.__s 
\X' + yu, P / •' 0 sill Id 

2W 1 r 
~ ' ■■ Jo 

77 

77 + u 

w + 4 P ^uD 

siiild 2u — 

. rx . ail' X 
— sm — cosh f- — -pQ -7- 

2u — All? h h u-h 

. ux . uy' xf 
sm — sinh - — 7% ~ 

h h u-h 

du 

du 

(83). 
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V., = - 

+ 

-\y r /_ 
n-h Jo \sinlU 

-F y If- + g 
I 
J 0 

+ 

1 2^Y// 

/u. Trh 

fJb Trh 

2W/ 1 

TT \A' + fJU 

2\V 

77 

COS ■“ cosh -7- 
0 1) 

*■) O 

'Sv? 
--) dll 

8^ 
sinlF 2;{< — 

. , 70/ 
COS 7 sinh - 

0 0 
^IL 

^ hii^ 
da 

+ -)f siuIF2« — 4«~ 

70J ;/// 
cos , cosh 

b h 

16?F 

ii 
smh=2«-4,^ cos|‘sml, 

20/63 

an' 

o y - ,u ^ 
0276"^ &3 "1“ da 

3 y 
1 &?63 

cZ?6 -)- Bo 

(83). 

X + yU, 

where /8, Bj^, B^ are arbitrary constants. 

The expressions Ui, 'V j agree Avith those found by Boussinesq in the paper referred 

to above (‘Comptes Bendus/ vol. 114, pp. 15U0-151G) Ibr tlie displace]nents when h 

is made infinite. We see that U is indeterminate and V infinite at the point where 

the concentrated load acts. 

^01 couise such infinite and indeterminate dis])lacements could not occur in nature. 

\\ ith any real material, if it Avere possilMe to a]/proximate to a true knife-edge, the 

infinite stress under the knife-edge Avould at once either cause the material to break, 

or else—and this is Avhat must almost always occur in practice—reduce the parts in 

the immediate neighbourhood of the knife-edge to a jdastic condition, so that in this 

region the equations of elasticity Avoiild no longer apply. 

Hence for practical applications Ave liaAm to exclude the actual line of application 

of the load, r = 0, and a very thin cylinder surrounding it. If Ave do this, then all 

our results will be valid for points Avhose distance from the knife-edge is at all large 

compared Avith the radius of this thin cylinder. A notable point about the results 

(82) IS that Ui is indei/endent of r' and depends only upon the angular co-ordinate 

of the point considered with regard to tlie knife-edge as origin. "Hence all points 

lying on a plane thinugh tliis knife-edge receive the same horizontal displacement 

Ihe parts Bo, ^y, of the displacements are finite, one-valued, and continuous 

througljoiit the l/eam and oA^er tlie edges. 'J'hey can l/e, like tlie stresses lb, Q.„ 

expanded in senes of poweis of r, Avhicli are absolutely and uniformly comergent 
Avithin a circle of radius 46. 

These expansions are easily seen to be the folloAvin*^'' : 

Uo=- 

+ 

Vo = - 

ixirb 

2W 

00 
'sill V(j>' 

■ V : 77 yA ~t /6 yU. 

sin(2t/-H) (j)' 

(2r-f 1) ! 
H,„ 

1 V 
TT A, -f- yU. j 

i/\ 2v sin 2v<p' 

r “ 2(.-l 

2W//', 

IJ.TTh 0 

2W 

TT A'' -1- /i 0 

VOL. CCI.—A. 

0 VV ^ ^ '' vl 77 UWya^yt^, 

H, + 
1 ^ f 2i/-H1 
-V / _ cos(2y -f 1)^' 

(2i. + ) ! 

00 / cos 2v(j)' 

'(2a)r 

(84), 

*-2y 

o 
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’where JI_i is an arbitrary constant, and the other H’s have the same meanhig as 

before. 

Idiese eijuations represent tlie effect of the finite height of the Ijeani upon the 

displacements. If in them Ave put y' = 0, </>' = 7r/2, Ave Irave the alteration in the 

displacements oA’er the upper surface due to the finite thickness. This giA^es us, 

retaining only the leading terms, 

2W / 1 
(V.,) , = 0 =-U' : - 
^ 77 \A. + /U- yU,/ 

] \ H, _ 4W 

■1 ’ Ir 
, ( 0598) ,2 , 

(U.),-=o = 
2A\ 1 

TT \V + ya + y. ) h 

ttE 

1'93365\ 

7rE5 

■47SW 
giA’ing ; a d(»A\n\A’ard curvature at the point of discontinuous hjad etjund to 

a horizontal stretch 
1^34W 

7rE5 
The effect of the fiinte thickness appears therefore to 

he to stiffen the heani and to decrease its curvature under the load. 

§ 20. Expansions about Other Points, Expansion about the Origin. 

The exi)resslons (71) and (72) are capable of being expanded in many other Avays. 

Considering only expansions in poAvers of the radius A'ector from a giA eu point, a\ e 

may write in U, V, P, Q, S : x’ = X + p sin 6, y — E p cos B, and aa e shall 

obtain an expansion AA'hich is \arlid for all points Avhicli are contained betAxeen 

7/ = + 6, and A\ hich lie inside a circle Avith centre (X, \) passing through the 

point (0, + b). The coefficients of p" cos rid, p" sin nd, &c., AA'ill be integrals 

containing X, Y. 

The only expansions Avorth considering are those about the origin and those about 

file point (0, — b), AA'hich is vertically beloAv the load. 

The expansions about the origin are deduced immediately from (71) and (7_). 

They are 

U 
_ ^ Yb/ ^ /py siiip-p -p, _ IP ^ I P’ 

fX 'lTTh~^\hl v\ 277 1 \llj v\ ' + jX 

V = 
1 Y'// P /rV' cos 

CT 

fx 'lirh 0 

P = 

- V 2 
V . 

AV X / r 
V 

'izh 

-77 1 

(.'US 

V . 

r p cos i'(f) J 1 

A' 4- u V ■■ ) 

(85), 

w-w.)-) 

Q = 
AV X /y. Y cosvc}, Wy^/pVeo^ 

AA" X 
s = 

irh 1 \ I 

r V sin vcj) AA"v S / r 5" sin „ 
X (T ) ::. ■ r+i 

V 1 775'- 1 \ b 

(8G), 

V . J 
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where y ■= r cos (fy, x = r sin (fy, 

u cosh u 

sinh 2t/ — 2u 4?t- 
dti, 

TTt _ r” cosh-?«■ 7 / ^ 
! 0 sinh 2u — 2u 

sinh It 
0 sinh 2u + 2u 

G-. = f .i 
2v + 1 cosh u 

Jo sinh 2it + 2)f. 
(In {v ^ 0), 

?r‘' sinh u 

sinh 2u — 2u 
dll {v > 0), 

G(i = a constant to be adjusted from the fixing conditions. The series in (85) and 

(86) are al)soliitely and uniformly convergent inside a circle centre the origin and 

radius 5. 

The first few coefficients are given by 

Fo = •527 Gi = -918 

Fi- •438 G. = 2-818 

F, = 1-740 G. = 5-750 
II C7

> 7-224 Gj, = 24-824, 

where the integrals have been obtained a])proximatelv by (juadratnres. 

Retaining in the expressions (85), (86) only the most im23ortant terms, we find 

for the disjilacements of points on the .'C-axis : 
AY V /1 

2it h \ fjL, 
•918 

which is positive witli x. 

We have therefore a liorizontal stretch equal to 1 ^44 

+ /X •527 ), 

^08' 

For uni-constant isotropy E = 5/x/2, aiid the stretch is - 
2&E 

AY /1-503' 

TT 
, or about one 

half the stretch due to the load W acting horizontally along the length of the l;)eam, 

so as to produce a tension W/26. 

Q- -1 1 A- . ''F a;2 1 /4iq , Cb\ i • . 
cnmiiariy _ Ltq + — — --this gives a curvature upwards 

Lit 

. , AY /1-75?. , 2-818\ . 
equal to ^ l to tlie curvature that would be produced liy a pure 

1 AA77 /' E \ 
couple ^ (h753 + - 2-818j, or (putting E = 5p,/2) by a couple Wb X (’5622). 

The stresses at points along tlie .r-axls are 

o 2 
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P 
= — irh 

'{F„ - G.) - I i (F^ - Gs) 

Trh 
•391 - - 2-005 

u~ 

_ AV 

= ~ ~ irh 
1-444 - f. 3745 

we have therefore at the origin a horizontal tension and vertical pressure. These 

vanish when x = ± -1955 and x = ± •386/> respectively, assuming that for these 

values of x tlie first two terms are a sufficient approximation, which is certainly true 

_ -195^^ only roughly true for a- = •386/>, as it amounts to neglecting 

terms of order about y compared with I‘44. It will, however, be sufficient foi a 

roimli estimate. 

The actual stresses at the origin are :— 

p _ . ('249), or about y of the tension due to W acting along the horizontal, 
'2h ^ ' 

Q _ _ ^ (-920), or about iV'hs of the pressure due to W acting along the 

horizontal. 
If we had used the expressions Pj, which hold for an Infinite solid, we should 

2AV At" 
find; at the origin, P = 0, Q = — = — — (U273). • 

If we correct tlie last hy Stokes’ empirical rule, we have to add — y [0 + (stre.ss 

at liottom of beam as given liy the formula for an Infinite solid)]. 

This will o-ive 0=—'’-=—— (-955). The error in the vertical stre.ss, 
^ 27rC 2a 

calculated from this amended formula, is therefore only (-035) W/2/>, or only about 

37 per cent. 
With regard to tlie correction for the horizontal tension, Boussinesq finds, for a 

span 21 and depth 2h, 

P = 
AV 

2h 

Sjf 3 Q/ - h) j 
- + 21^ 

i _ 2A _p 
TT ITU 

where y' is measured from the point (0, h) as l^efore. 

The terms {y' — h) I correspond to the liending moment wliicli we have 

removed. 

We have left therefore P = 
AV |~4 _ 2/ 
2h 

'4 

TT irli 
, so that, at the origin, when y' =■ h, 

p — = — (‘filS), and this gives a tension whlcli is greater than the actual one 
2li TT 2h ^ ’ 

liy only (•009) W/25, 
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§ 21. Expansions ahout the Point (0, — h). 

It appears of some interest to give the values of the displacements and stresses 

about the point (0, — 6), that is, the point of the lower l)onndary of the Ijeam whieli 

is vertically under the load. 

The integral expressions (71), (72), (73) transform as follows, if we write 

y = y 

u 

-lx 

1 AY//" p J 2)1 cosli 2ii + sink 2a . V ' 

2'irh J 0 1 

+ 
1 AY//" 

sink- 2a — 4«- 

2u sink 2a 

sm cosh ^ f '--j (In 
0 I) *' ‘ A/r- J 

. v-v. .•,)()! 7 
0 7 1 -TOO i o -y- du Ijb IttI) j 0 sinli- 2u — 4))- h h 

1 1 

Jtt \x + ft fjb 

2 sink 2a . ■)i:c , v)i" „ x ’ 
, 0 .o-sin - cosh -A 

sink- 2a — 4:a ' h b ^ ha- 
du 

1 AA^ 

27T a' -k /a 

2 cosk 2;^ + ?; ^ sink 27; . )ix . iiii" c, .r)/' 
- sm V smh ~ — -f- - 

sink- 2)' — A)i~ h /r/r 
(ht, 

V=: - 

4- 

1 AY//" r” r 2a sinii 2a v,x . ?///" k , 

V 27r/7 J 0 1 sinid 2a - 4/4 ~ h ‘ h ~ 4?d ^ 

1 AAO/" r'" f 2/'cosk 2/7 + sinli 2/^ ux . idi" ?/" , 

2^1,1” I""’’' 

AA" 

■'> 0 

1 1 ^ 12 cosk 2/7 + 77 1 sink 2/7 vx Vif 
.7 w/, +~ i--T-.- cos. cosh-'-- 
-TT \\ + jj, + / .' 0 L Sink- 2/6 —1/7- h b 

i'> .) 

4//1 

o ./y.i 
. , // - 

8/7.3 

AY / 1 , , ... \ f 2 sinli 2/7 a.r . 77//" 3 ?/" i , 
d--r— u, '■ i -TV cos -sink V I n77 

277 ' X + /Li/Jo [sink-2// —1//- b b 4/'- // 

d n 

P + Q = “ 'I 
2/7 sink 2/7. 2Aa; 

irb j 01 sinli3 2/7 

vx 

lid T 

77// ' 

b 4//3 
du 

2AA^ p"' 12/7 cosk 2/7. + sink 2/7 ax . , ////" 3 ;/"] 

'X ]. 1'"/m,= 2« - """ / 'X - '1, \ 

P - (/ X r 
4//' 

cos - cosh — - ^ 7 
4/73 

d)t 

2AAV''I” 27/4 sinli 2/7 )tx . , 77?/" , 

-bX J . /iulP 2„ _ 4»= T /; 
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‘lu sinli 'iu 
. ,, ^ , , sin sinh ' - du 

0 Rinlr 2it — 4:11- h h 

v.y 

2;rsiuli2;6 . ur. wf , 
r-—-— Sin -- cosh - - du 

0 sinh- 2u — 4u- o h 

W' [” _ 
irlr J 0 si 

MO/' p 2u cosh 2m + sinli 2« ^ ^ '"V 

~^lJ J sinlF 2n — An- 

• liiO • 1 '*7 7 

8in — sinh riu . 
1) ii 

Tliese integrals remain convergent when we put y" = 0, but they are not convergent 

ill their present form for y" = '2h. 

If we expand now in powers of where x = sin (j)", y^ — i‘ cos ^ , we obtain 

the follovhno- series, which can easily lie sliown to be uniformly and absolutely 

convero'ent inside a circle of radius 2l> : 

sill v(f)' 

irh 

TT \X + jxl 1 \ TT yU. 0 (2l^+l)! 

Y ^ _ I -W' t(-iY 
U tt/i 7 ^ 

Hsr), 

+ 1 

2AY l_y 

TT r! " 

2W - /ry-'’ px' 
IT jX 0 (2v)\ 

? = V y 1 FT' J- V /L!Y'' TV 

TM //' ^ / N,, /y \' 7/^ ^4‘ TT' 
irlr 7 ^ ■ V : 

Q 
- mi2v4l(j) 

'rrh 7 

4AV 7 /7 _V 
^2i' + 1)! 

H.2„.2+—^ S(-l) 11,... 

• (8S). 

S 

where 

_ 4W 7 /pV" 
+ 1 ttV T^ ' \h] v' ttI) 1 \ h J (2i') ! 

117 = arbitrary constant depending upon tbe fixing conditions. 

ir ’du 

IGr" 
du 
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f" sink 2ii 
du iv > 0) 

h;„ = 
» 0 

Jo sink-2;6 — 4?'® 

D'“" cosk 'la + sink 2// 

siiilA -la - -^a? 
dll {y > I). 

The values of the first few odd TT’s are all we shall retjuire. 

ll\ =z - -049, H'g = + -537, H'- = + 1-951. 

We then find, for points along the bottom edge, y” = 0, if)" = 77/2, 

T1 lev are 

Q = 0, S 0 

^Y 

ttI) 
•^4y-|2!^-537) + ;;rj;(l-951)-l-.. 

M 4: 

fhis gives therefore a horizontal pressure at the point (O, — h) equal to (‘250), 

and this pressui'e increases at a fairly rapid rate as we move away from the axis of y. 

The stress P, obtained from Boussinesq’s calculation on Stokes’ hypothesis, 

fives for the same point P = — ^ ('657). This value is con¬ 

siderably too high. We gather that Stokes’ hypothesis ceases to give valid results 

for the points in the loAver half of the beam. 

§ 22. Effect of Diatribiitiny the Concentrated Load over a sinad Area instead, 

of a Line. 

In all the above work we have supposed tlie load W concentrated upon a line 

perpendicular to the plane of the strain. This has led us to expressions Avhich make 

the stresses, and one displacement, infinite at the line where the load is applied, 

and the other displacement indeterminate. In practice, hov^ever, owing to the 

elasticity and plasticity of the materials both of the lieam and of the knife-edge, 

contact along a geometrical line is impossible, and the load always distributes itself 

over an area, small but finite. 

In the present section we shall therefore consider the effect of a uniform distrilju- 

lion of load W per unit area (W was formerly load per unit length), extending on 

either side of cc = 0, = h for a distance a. 

Every line element Wc/|^of this load at distance ^ from the middle will produce 

a system of stresses and displacements Pd^, 'd)d^, P^d^, Ydf, sucli as. we have 

just been investigating, except that for x we must write (x ~ ^). 

The stresses and displacements due to the total load are therefore P (x — ^) d^, 
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denoting that x — ^ k substituted for x in P, 

X — X, we liave 

Similarly for Q, &c. ; or A\'riting 

P' = 

S' = 

1' P {x') dx 
* x~cd 

U' = 

rx+it' 

Q {x') dx' 
A.-a' 

A^' = 

{x) dx' 
J .. -a' 

P', Q', S', U^5 V' referring to the stresses and disjdacements due to the nnilorm 

layer. 

We can obtain in this way, at once, as many different forms for P , Q , S^, U , A 

as we had for P, Q, S, U, V. 'fhe series for the latter integrate at once, for they 

are com])osed of terms of the form const. X r" cos or r" sin nc/j, or yr" cos iifjj or 

ijr" sin nrj), where r = ^x^ y", tan (f) = xjij. We have then 

f r" sin mb dx = —-^ cos n-{-1 </> 
J a + i 

>’"cos n(f)dx = ;; sin n + 1 (f). 
11 + 1 

Tlie only Ciise wliere this fails is wheii u = ~ f, and m this case it is easy to sir. iW 

fliaf 1 ' ^ dx = (j), 
sill (f) 

dx = loir r. 

Terms of the form (/> and log r also occur. They can be infegrated as follows 

^(f) dx = X(f) — y log r, 

jlog r dx = X log X — 

If we a}»})ly these formnhe, and if we call 1)^ and (fig. ii.) the points (— a', + h) 

and (+ a\ -j- b), i.e., the extremities of the layer of stress, and if )'i, denote the 

distances of any point from Dj^, J)^ respectively, and if (f)i, (f)^ he the angles M'hich 

Cl, iv make with the vertical, we find, if we start with the expressions for U, It, Q, S 

in the form (77), (7D), (Hif), (84), 
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{{a' x) (f)i — (x — a') (f)., — ij log {ri/r.,)] 

Ti COS V 1. (pi — COS + i <p2 

TV 1 W rj W 1 

fi 27r'^ ^ r., 27r X + fj. 

. 2W7/ ” . ^ 

/ATT 1 

■2vr»f_i 
TT ^ X' + 

+ 1)! 

1 \ ” 
+ - SH, 

0 

COS 2t/ + 2 01 — COS 2u + 2 cp-. 

2Wd 1 - --■'+1 
TT 

TT A -|- yU. X 

rr ■' cos 2z/ + 1 cos 2u + 1 cp., 

1)! " 

1 w. w /I . 1 ' 
+ 

277 \X' + g fji 

(81)). 

-j- — 

2^yh ( 1 
..1v + ^++ 

sin 2i/ +"l <Pi — /fsin 0, 

/;-='++ ^)! 

2Wi) 1 " / 
+ - , - S 

77 X + yU. 0 

sill 2i/ + 2 (pi — sin + 2 (po 

(2v + 2) ! 
Ho 

w w 
^ ~ ^ (*^1 ~ ^2) + (sill 2(pi — sill 2(/)o) 

_ ” .jj sin 2v + 1 (pi — sin 2z^ + 1 (p^ 
-w -0.0,, 0“ i~i-- 

ft"’'-*-' (2z/ + 1) ! TT 0 

4W 

7!’ 0 
V /_ 1 V TT sin v + 1 (pi — sin v + 1 (p-, 

/ t' 1 V+\ / I"l\t 0 {v + 1) ! 

I 4Wy ^ , . (j-j sin + 1 <^i — sin v + 1 0o) 

^ 776 ^.+1 6^+>Ti)T ^ 

w w 
— ~ _ (<^i ~ *^2) — .) ■ (sill 2(Pi — sill 2(po) 

77 

4W . 2i/ + 2 
_L V TT 2v + 2 (pi — sin 2v + 2 (p-, 

//-"+- (2z. + 2)! 

_ ^Ll(_ 
Trb 0 

/_ 1 /'i^sin V + 1 (pi — sin v + 1 <^o 
\ '/ -n^+i ^ - 7-*'+r7 tat;- 

b (z^ + 1)! 

W 
(cos 2(^1 — cos '2(p.^ 

(DO), 

4W ” ?’r'*'^^s 2v +1 (pi — cos 2zz -f 1 ^., 

(2zz + 1) ! ' 

>."+1 ^ ^ 

- - 2 Ho 
TT 1 

1/' 

VOL. CCI.—A. 

v COS V P pi — ?’o^^ cos V -\- 1 p2 

ir\v + 1)! ^ ' 
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'I'lu' oxprosslous (80) ami (00) show us that in this case the stresses ami the 

aisplaeements are ohtainecl as the cliiVereuce of two functions taken with the 

('Ntremities of the layer as orioius. 'fhe series are everywhere uniformly ami 

ahsolutely eonvergent inside the common part t'f two circles ot radius 4h described 

about each of these extremities as centre. It follows that if these series are to he 

valid anywhere, the length of the layer must m>t exceed 8/>. Ami if they are to he 

valid round each extremity the length of the layer must be less than ib. If these 

conditions he not tultilleil, then we have to fall hack on the results (/4), (/a), (/b), 

ami (8;A for \\ Q, S, U, Integrating these we obtain formula' valid over the 

whole beam, and these again may he expanded in powers about any point we please, 

as has been previinisly shown. The results are rather long and do not seem to 

present siitlicient interest to justity the writing out ot them at length. 

Assuming -<r' < 4/>. so that the expressions (8i>) and (80) are valid over a. region 

enclosing the laver of application of the load, we see that here no displacement is 

either intinite or discontinuous. hor in the limit, both ((/' + .!•) log )\ and // log r, 

are /.ero when .r = — a\ tf = 0 ; and in like manner (.r — «') log r., and // log r.. are 

zero V hen .r — , y = 0. 

' 
M’ 

' 

-— ^ 

Fla Tic (>f SUTTlTTlCtrU i/ = o. 
- — 

■ 

B 
.w 

Fig. iii. 

The shear 8' is continuous. 

’fhe stresses T', Q' however are discoutiuuous at the extremities ot the layer. Ibis 

indeed is obvious in the case of Q', since it is one of the data of the problem. But it 

is curious to note that B' is discontinuous at those points by precisely the same 

auuniiit as Q'. 

^ '28. Cv'sv(*bn ln\im unJcr Ttro Equal and Loa<ls, or hinting uqh'ui a Ingid 

Smooth Plano. 

If we take the solution we have obtained, turn it upside down, as it were, and 

superpose it tv' itself, we v'btaiu the solution ot the prv'bleiu v't an intiniteK kuig beam 



gripped between two knife-edges exactiy opposite each other (fig. iii.). ’’I'lie solution 

is obtained from tlje previous one by cljanging the signs of y, \ and S, find then 

adding the new U, V, ]-*, Q, S to tlie old. 

I do not propose tr» write down fully the solution ; it is easily obtainefl ifi va)-ious 

forms by using the several expansions wbicb have already been given f'or tlje. beam 

under a single concentrated load only. The parts of the stresses and displacements 

which become infinite at the points of loading are of exactly the same form as in the 

previous case. 

Let us, however, consider the stresses. We easily find the following expressions: 

2W \ sink //. — v, cosli n lU' , /'// , \ 
— , . , cos , cosh ; (lu . 

irh Jo .SUih 2,u + h' h h 

H.r . Il'lj 
,1 , • 1 o , «'T'h —flu. 

TTh Jo h Slllh -t- Zn h h 

e = -^Tf nrh J, 

2 W f'® %y sink v, 

Trh Jo h sink 2« -t- 

2W sink M-J-% cosk w v.x , mi 
. —--— COS--cosh da 

’TTO Jo Sink 2«-t-2i<. 0 h 

+ - 
ivl? Jo sink 2a + 

2W f H cosk a 

a sink« a./' . //// , 
--— COS — sinh da. 
2 a -I- 2 a h h 

. v:i: . vy 
, , . , sm —.smh ,, d/a 

TTh Jo sink 2a -f 2a h h 

V 'a sink 
, - sin' cosh 

tt//' Jo .Sink 2a + 2a h h 

. . (hi). 

The last written equation shows that S = 0 over the plane y = 0. Further, from 

considerations of symmetry V = 0 over this plane. Hence we may, if we choose, 

leave the lower jjaid of the beam out of account altogether, and consider it as 

replaced by an infinite smooth rigid plane, against which the beam is pressed by a 

single weight, W. It then becomes of considerable interest to find out how this 

weight W distributes itself, after transmission through the beam, over this rigid 

plane. 

'I'he pressure — Q on the plane corre.sponding t<^i y = 0 is given by 

. ^ , 2W r^' sink u -f « co.sk n, v.r 
'd = + ■'V - , . ^ cos , d/a. 

irh Jo .Sink 2'/' -H 2'a h 
(02). 

Tt is easy to show that this pres.sure tends to zero when x is large. 

Integr-ating by pards with regard to u, we liave 

2W 

TT.y; Jo 

d /.sink c -k u co.sfi v' . >/./■ . 
T —wt;—rk— j ~r d/a \ sink Za Za j h 

The integr-al on the right-hand .side is obviomsly not infinite, however krge :x may 

be. Hence Q tends to zero as x: tends to infinity. 

p 2 
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We might repeat this process any finite number of times. It will be found that 

siiih u + 1 cosh 1. even function of u, the integrated terms will in all cases 
sinh 2;^ + 2». 

2AV^' 
Vf anish at Ijoth limits, and v^e obtain Q = X an integral which is not infinite when 

TTcU 

X is large. Therefore we see that Q diminishes faster than any finite inverse power 

of X, however high. This seems to suggest an exponential law. 

24. New Form o f Expansion for the Pressure on the Rigid Plane. 

Consider tlie integral 

We have 

1 1 

sinh 2» + 2h sinh '2v sinh~ 2u 

-r sinli u + n cosh n , 
I = . , ^ „ cos uz dv. 

Jo smh 2a A 2// 

J_ /_ iv-i J_ (_ ly 
' sinh" 2it ' ' oinli” sinh” 2n (sinh 2« + 2«) ’ 

Sul)stitute in 1, we find 

1 — J() “h J1 + • • • “h J/ "T • • • J/i-i “h Ip/j 

wliere 

j. = (- ly 

ih = (-1)" 

(2«)'- 
(sinh u + u cosh it) cos uz du, 

cos uz du. 

Jo sinh’"''^ 2tt 

r” {2it)“ (sinli » + « cosh ?;) 

Jo sinli” 2u sinh 2h + 2u 

Now 

r / \ -.o v?''(sinh u + « cosh 'H) , 
-h = - ly- 2-''+' -—TT^ COS uz du 

‘ \ / I ph-+-[>u (] _ g-tey+l (1 - c-^'<y 

Let us assume that in tliis we may expand (l — in ascending powers of 

(‘ This will he justified later. 

— V 

whence 
(1 — s = 0 r! 

J, = (-!)'• 2-'- If % 
.'o s=0 

(s + 1) . . . (s + r) 

r! 
[e — g (4.5+2<-+3)i!| du 

+ (- l)-2=' f u V • • • (-^ +_0 j-g (4s + 2i-+l)0 _j_ ^ (43+2/-+B)1!| QQg ^^2 du. 
s=0 I' • 

The cases r even and r odd have to be treated separately. Consider first r even 

and = 2^, and let K,. and L,. denote the first and second integrals in the last written 

expression for J,.. Then owing to the vanishing factor we may take the S in K,. as 

going back to 6' = — t, or, putting s' = *’ -f- t, 
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K.,, = 2« a-^ t 
* 0 s'=0 

But 

(20! 
(4«' + l)i(. - g (4s' + 3)«| gQg 

4s' - + 4 = (4./ + 1) — {U — 3) 

and similarly 

Now let ciq, 

4s' — 4 = (4s'+ l)-5 

4s' = (4s' + 1) - 1 

4s' + 4 = (4s'+ l) + 3 

4s' + 4t = (4s'+ l) + (4(-l), 

4s' — 4^ + 4 = (4s'+3)-(4<-l) 

4s' - 4 = (4s' + 3) - 7 

4s' = (4s + 3) - 3 

4s' + 4 = (4s' + 3) + 1 

46-' + 4^ = (45 + 3) + (4^ - 3). 

a.,t be the coefficients in the product of degree 2t 

{x + (4< - 1)} [.r + {U - 5)} . . . [x - (4t - 3)}, 

when it is expanded out, so that this product is 

rtoX“‘ + foa:-'"' + . . . + as/. 

Then 
: X (4f - 1)} _ (4f - 5)} . . .[rr + (4^ - 3)| 

= a^x-^ — a,x-‘ ^ . 4- a.,/. 

K.>( may then he written 

's Cfo {{4s' + If _ (4,s' -f 3f 
s' = 0 

+ a, {(4s' + If-' + (4s' + 3f-' 
s=0 

+ T Oo {(4.v' + I)'-*-- c-™' - (4s' + 3f 

0 (W' 

»' = 0 

+ . . 
S = » 

+ s as/_: {(4s' + 1) + (4s' + 3) 6-^^'+-’*“} 
s'=0 

■>'= x> 

+ S as/ {6-“*'+'“ - 
8' = 0 

COS (lu. 
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Now if, as we have assumed, our expansion of (l — was justifiable, we may 

stop at the term, leaving a remainder less than an assigned quantity, jDrovided v 

])e taken larue enouuh. It will be shown in the next article that this is the case. 

We may then, in the above, write for the upper limit of s' a number v, large but 

finite. The series now consisting of a finite number of terms, we may distribute the 

d-‘ 
integral sign, and further, we can replace by ( —since obviously each of the 

integrals of the type e“'‘" cos iiz chi when A' > 0 allows of being differentiated under 
'■ -0 

the integral siffii. This ffives us, v^hen the several integrals are evaluated, 

[ (As- + _ (W + 3)2ni I 

“ (201 1(40 + 1)2 + (4+ + 3)^ + 

: [ (As- + 1)2^ (4A + 3)2^ | 

.Co 1 (4.5-' + 1)2 + ,r2 (4.f + 3)2 + r2 J 

+. 

[ (4s-' + If (4.S- + 3)2 1 

.Co U4f + 1)- + .^2 (4s + 3)2 + z^\ 

v" _(•ff+ 3) 1 
..Co L(4s' + 1)“ + + •■’’)-+ ^xl 

Now writing in the above 

(4k + 1)-^ = {(4k + IF - -A (4k + 3F = {(4k + 3F + 

and remembering that destroys any power of 2 < 2(, we find 

(^0 (— lys'-' + «2 (— + . . . 

4.4 + 1 4.s' + 3 

_ (-1)^/2^ 

(20! 

.Jio l(4k + 1)2 + k (44 + 3)2 + s2 

+ («i (— 1)'^'' + (— + . . 

1 
— a.2(_i2-) S o I I I \ J I *)\2 Co U4k + 1)2 + k ' (4k + 3)2 + k 

But, from Chrystal’s ‘ Algebra,’ vol. 2, p. 338, 

TT 
tanli 

TT Z _ * 
-V ~ 

4.-: - k=0 

TT 
sech 

TT.C *' — V 
4 - s'=0 

(44 + 1)2 + k ■ (4,' + 3)2 + , 

4.4 + 1 4s' + 3 
(4.4 + 1)2 + ^2 (4+ + 3)2 ^ ,2 

If, therefore, in our expression for K._,j we now allow v to increase indefinitely, we 

ol Rain 

K.,. =: 
TT (—)' r 4- 
4 (20! [dz-^ . 

77 •'! 77 
xjj.,, (,s) sech F + (2) tanh . 

TT.C 
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w here 

— ^0 ( 1)''5;"* -|- ct-j (— l)^ ^ z"^ “ -j- . . . a.2( 

_ 1, 
- »> 

(— l2 + 4^ — 1) (v/“ 1.? + 4^ — 5) . . . (— l i — 4^ — 3) 

_+(- \/- l2 + 4^-l)(-12-4-4^-5) . . . ( ^-iz- 4t — 3) 

(— \y z-^ ^4- . . . — aot_ 

2 

■(y— l2 4- 4^ - l){^/- IZ 4t -i>) . . . (y- Iz - 4(!-3) j 

v""” 1^+4^ — 1) ( — 124-4J —5) . , . — ^ — iz — 4t -\- 3) j 

II we treat in a precisely similar way the second integral L.^„ we find 

4 (201 dz^ 

TT.v 

= T ^YTi (^2t (z) tanh — yo, (2) sech ) • 

(loming now to the case where r = odd = 2^4- 1, we work out K.j+i and L.,,+i Ijy 

similar method. We consider in this case the product of degree 2^ 4- 1, 

{x 4- 4^ — 1) (.X 4- 4^ — 5) . . . {x — U — 3) {x — 

wliich we denote by 

60*“'+^ 4- hyX-^ 4- b2X-^-^ 4- ... 4- h.t+i. 

After reductions of the same type as those used for Ko,, we rind 

a 

K2( + i - 
(- ly (F+i 

(2^ + 1) ! dz- ;2t+l 

(60(- 1)^2-'+^ 4- b.i- 1)^-12“^-* 4- . . . 

I / J 4.S + 1 4.s' + 3 
■''"'AAo t(4Y + 1)3 + ,-d ~ (4Y + ,3)3 + 

+ (*.(-l)‘r‘«+6,(-l)--'r-+ . . . 

1 .9'=^ r 
+ ht+i^) S j 

s'=o L -.■3 ~t” rjc-' =oL(4«' + 1)3 + 23 ' (4++ 3)3 + + 

4^34+1 - 
(-1)' 

{2t + 1)1 d23«+2 
('a(- 

j^y+1 _ 

r 
^^‘^45.1(4, .,4 + Y +1)3 + 23 ' (4Y + 3)3 + ,+ 

+ {b,{- l)‘r' 4- . . . 

I 7 f v'" i 4'i’^ + 1 

+ ^2( + l) ^ 
4Y + 

= 0 L(4Y + 1/ + 23 (4Y + 3)3 + 23 

whence writing 
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1 

+ h,{- ly-* 2-'-' + . . . + zhu 

(\/ — l2 4" — l) (\/ — l2 + — o) . . . 

(\/ — Iz — At — 3)(\/ — Iz — 4? + l) 

4- (v/^ITlz — 4^—1) iV — Iz — 4i — 5) . . . 

[\/ — \z At — 3)(v/ — l2 4"'i^~l"l)_ 

?il(— l)‘2'^ 4- ^3{~ 1)‘"‘2"*““ 4“ • • • + '^2(+l 

(x/ — Iz4"'^^ — Oi'/ — i2 4"-i^ — 5) • • • 

(y _ - 4i-3) (v/ - 12 - 4^4-1) 

— (\/— 12 ~ 4^^1) is/ — \z — At —b) .. . 

(x/ — l2 4" 4^ — 3) (x/ — 1^ 4~ + 1)_ 

_ i 
- ‘?1 

we obtain 

-Ki2! + 1 - /. 
(_iy 77- 

{2t + 1)! 4 

(-ly TT 

TTZ 

‘7 ^21+1 i'z) st;ch 4- X-2(+i (~) 

- ^2t+i {z) tanh 4- X2(-fi (2) sech ^ 
^2i+i — (2^ + 1)! 4 dz-^+- 

aud since J, = K, 4- L,, we find that the required integral 

_ ^ y-i-iy 

A tZo (20! 

I xfjot (2) sech y 4- X2t (2) tanh 
TTZ 

Y 

4- 
jL 
Yz 

TF V 77 
ifj2t{z) tanh “ — X2« (2) sech 7 

77Z 

0 J 

i=ii 
+ ^ 

(_iy d-‘+i . 

A tZ {"At + ij! 

I '/'•«+1 (2) sech 4- X2J+1 (2) tanh - 

d 

TTZ 

‘7 

dz '2£ + l (2) tanh .y — X2£-n (2) sech 
TTZ 

4~ il.2,j+-, 

§ 25. Justijication of the Procedure employed, in the last Section. 

We have to show that, in the case of the integral 

Jn = 
J( 

(2£6)“ 

10 sinh'*’''^ 226 
(sinh u 4“ u cosh u) cos uz du 

(sinh u 4- u cosh u) cos uz du 
)o(l - 

we were justitied in expanding (1 — ascending powers ol e 
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Now 
pn-¥r 1 

+X+,.. + a;«'- + — 

Difierentiate n times with regard to x. 

1 
= 1 + (n + l)x + . . . d- 

r(r + 1) — 1) 1 (D / x’’-'''’’ \ 

n I 
-j- 

n ! dx”' \ 1 — X (1 - 

The remainder is therefore 

1 d'^ 

n\ dif (1 — a;) ~ (1 — ‘ ‘ 

I 0^ + r — 1). , . + /• — s 4- 1) x’‘+>-^ ('ll + ■;■)...(/■ + 1) z’- 
s! (1 — + • • • + , 1 — a; 

This holds for all values of x however near to 1. Putting x = e~^“ omd substi¬ 

tuting in J„, we find J„ = 1st r terms of the series -{- a remainder term consisting 

of the sum of (/i -{- 1) integrals of the form 

9 r (lf±-iTj) g-(o« + n-n + 3)« (^^OMsinh ^6+»coslm0 
► 0 S ; (1 — 

„ ’ !■ r. j 1,1 1 , (a + r) (n + r — 1)... (n + r — s 1) , . 
s ranging from 0 to ii, and the product ^-lieing 

replaced by unity for s — 0, 

Now sinh u is always < u cosh u ; hence the general integral in tlie remainder 

(the factor multiplying cos vz in the integrand being positive througliout) is less 

than 

(n + T)(n + r - 1). . .(n + r - .s + 1) , , , ,, , , , , ,, , / 4« \« + i-^ , 
- {iuy t + cosh W (-yr^-J cln, 

v'O 

i.e., than 

1 - e- 

p (n + _ 1) ^ + , _ , + 1) ' du. 

i-'o s! ^ ' \siiili2a/ 

TVI 
ow < 1 always, and cosh ic < c!\ The general remainder term is therefore 

less than 

r (n + r) (71 + r ~1). . .(n + r - s + 1) 

Jo s! 
(4w)" + 

^ ] ('1^ x) (n r 1). . . (?i + 7’ — .S' + 1) p . ^ 
< 4 --,- , _, --tor s ran sms: irom 1 to n. 

/ ,s 
n + r~ - 1 

C* i=> 

For 6' = 0 the remainder term < 4 
s 1 \ 

Tlius for every value of s the 
n + ■?' — ' — 

4; 

VOL. cor. — A. 
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value of the corresponding term in the remainder is seen to become very small of the 

order ijr when r is made very large, n remaining finite. The value of the whole 

remainder is therefore also small of the order Ijr. Consequently this remainder 

tends to zero as we make r large, and the series is therefore a true arithmetical 

equivalent of J„. 

We have still to show that a similar result holds for the expansion found for I, 

namely, that the integral we have called Il„ tends to the limit zero when n is 

indefinitely increased. This we can do as follows :—■ 

IC = (-1)" 

is numerically less than 

siiih rtj + cosh u , 
~ cos uz du 

Jo sinh” 2?^ sinh 2zt + 2u 

(2?d'‘ siuh u + 'll. cosh u 

sinh" '2u sinh 2u + 2u. 
da. 

and it is easy to show that both {2«.)Vsinh" 2u and (sinh u + a coshy6)/(sinh 2u + 2u) 

continually decrease as u increases. 

Hence, if we split up j into + j , the first part is less tnan [oj X value of the 
0 ♦ 0 *-'10 

integrand vdien u — 0], i.e., <i a>/2. The second part is also less than 

{2(oY sinh u + u cosh u 

(sinh" 2m) Jo, sinh 2u + 2u 
du. 

Denoting the last integral, which is finite, by M, we have < y + 

numerically. 

But 
(2m)" 

sinh" 2 M 
< 

(2m)" 

A + i 

< mA" 
< 

1 , ' 1 + 
9, nco~ 

Therefore < y + 
:m 

1 + 
2vor 

Now if M be chosen equal to rr\ R,, < i quantity which tends to 

zero when n tends to infinity. R,, itself therefore tends to zero for all values of 2, so 

that the series (93) may be extended to infinity. 

§ 26. Deductions as to the Rapidity with tvhich the Local Disturhanees die out as we 

leave the neighbourhood of the Load. 

If we look at (93) and perform the differentiations, then, remembering that f) 

is of degree (2^ — 1) in 2, (2) and y^ioj (2) are of degree 2t in 2, and ^21 + 1 f) is of 

degree (2( + 1) i^^ only terms occurring in I will be of the form (algebraic 

polynomial in 2) X (sech y- or sech-y , or their differential coefficients j. Now 
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sechand all its differential coefficients will be-of order when z is lar^e. 

Similarly sech® — and its differential coefficients will be of order when 2; is large. 

We see, therefore, that the first 11 terms of the series for I will be of the form 

(algebraic polynomial of degree n in z) e~2 to the first approximation when z is large. 

Further we have obtained an expression for the remainder which is small 

independently of z, for any given large value of n. We see therefore that, n being 

assigned, we may make z as large as we j^lease and I will eventually tend to zero, 

gm/2 t)00oming large more rapidly than any polynomial of finite degree, if z be large 

enough. 

Now z = xlh. We see therefore that, if h be small, the pressure, after a certain 

value of X, decreases with extreme rapidity as we get away from the neighbourhood 

rw 
r A r \ / / 

t 
/ 
1 

1 / / :3 
/ —"O 

/ 
i -i. ■> /- 

—e 
C > 

bu^ 3S 01 ■ a yb. 

Fig. iv. 

of the concentrated load, because, 2 being then large, even for moderate values of x 

the influence of the exponential term will be predominant. On the other hand, if h 

becomes fiuite, or even large, the algebraic polynomial factor will become predominant, 

and the decrease as we go away from the point of loading will become much less 

rapid. The expansion (93) gives us a link, as it were, between the case of a very 

thin beam, where the local efiects die out according to a negative exponential of the 

distance along the axis, and that of an infinite solid, where they decrease as an 

inverse power of the distance from the point of loading. 

A diagram is given in fig. iv. showing the variation of the pressure Q along the 

Q 2 
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base of the elastic block where it rests on the rigid plane. The ordinates represent 

the ratio of Q to 'ZW/nh—that is, the integral which has been called I. The abscissae 

represent the quantities oc/h. The diagram has been plotted from the following values 

of I, which have l)een calculated :— 

xjh. I. 

0 1-4444 

■frjQ •7412 

i -/3 •112.J 

I 
1 ^ - -0300 

i 27r/3 - -0252 

77 - -0030 
! 

For a value of -x/h equal to F35 about the pressure vanishes, and is re2)laced Ijy a 

tension. This is a very remarkable residt, as it shows that an elastic block, acted 

upon by a concentrated load along a line of its upper surface transverse to its length, 

cannot have its whole base in contact with a smooth rigid plane on AAdiich it rests : at 

a certain distance from the load the body of the beam is lifted off the plane. 

It would therefore appear as though the problem treated of above were impossible 

to realise in practice. But obviously we may superimpose any uniform pressure on 

the top of the beam, sufficient to make the total pressure at every point below 

positive. This ma.y be done, in some cases, by the weight of the beam itself, 

if the weight W be not too large. 

Further, the tensions required to keep the lower surface of the block horizontal 

are, as we may see from fig. iv., very small. If we leave them out of account, 

we do not sensibly disturb the distribution of the large pressure under the load, so 

that fig. iv. still gives us an approximation if we omit the negative part of the curve 

altogether. 

This gives a maximum pressure just below the load equal to (W/h) X '920, 

or rather less than the 23ressure due to the load W distributed uniformly over the 

vertical cross-section of the block. This pressure diminishes rapidly as we go away 

from this joomt, being very small at a distance from it equal to a,bout 1‘35 of the 

height of the block. 

We cannot tell exactly, in the actual case, where the pressure will be first 

absolutely nil. We can form a rough estimate, hov/ever, of the dimensions of the 

area in contact by taking the area over which, in the solution obtained, the stress is 

always a pressure. This area extends to a distance of 1’35 X height of block, on 
either side of the vertical through tlie load. 
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Sdiiib rougli Gxp8iiiiiBiits on a block of india-rubbGr lying on a woocIgii tabl© liavG 

confiiniBcl the lesult that the block is lifted, out of contact with the table away from 

the load, and that the area of contact is of the above order. 

PART HI. 

Solution for a Beam Under Asymmetrical Normal Forces; Special Case 

OF Two Opposite Concentrated Loads not in the same Vertical 

Straight Line. 

§ 2/. Expressions for the Displacements and Stresses in Series. 

Let us now proceed to consider what the general solution becomes in the case of a 

beam subject to normal forces which are now no longer restricted to lie symmetrical. 

In this case coefficients y and S come in, as well as a, /3; k, p, 0 being all zero. 

Considei particularly a lieam (fig. v.) sulject to a downwards concentrated 

load W, acting upon its upper surface at a; = /, and an upwards concentrated 

load W, acting upon its lower surface at a; = — 1. 

Such a system by itself is not in equilibrium. But the solution will introduce 

two shears over the ends, equal to 2 (y„ - Z,) by equation (50). 

In the case taken above a, = ^ W/2a, == A, = --cos -S, 
a ' ' " 

_ __ W . 
— sin ml, where m — n^rrla, n being an integer. Hence the shears over the 

I jiTT a ~ U ’ these will satisfy the conditions of rigid 

equilibrium. 

V/e then find the following expressions for the stresses and displacements in series : 
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V = 

CO 

x 
1 w 

1 711 a 

CO 1 W 

1 At a 

CO 

V 1 

1 771 a 

OO 

V 
1 YY 

w 
1 At a 

TfWx 

2aE 

CO 

V 1 W 

1 m a 

CD 1 W 

1 At a 

CO 

V 1 W 

1 771 a 

CO 

2 
1 W 

1 At a 

cos ml I 
^ sinh mh-^ mi cosh mi\ 

sinh 2mi + 2mh 

' *1 - II sinh mij sm m.r 
i 

- cosh mh-mi sinh mb 
/A__ 

sinh 2mh — 2mh 

- y cosh my cos mx 

A- cosh my sin mx 

sinh my cos mx 

cos ml iAx' + a^ At 

) (94). 

1 \ 1 ] 
sinh mi -mi cosh mi ^ 

fj. I 

sinh 2mi + 2mi 

y cosh my cos mx 

sinh my cos mx 

sm ml ihAutii 

1 \ 1 . 
+ — I cosh mh H-mi sinh mb 

/A / At 

sinh 2iah — 2'nih 

y sinh my sin mx 

cosh my sin mx 

\Yy 

2aE 
+ Acc. 

J 

P = - 

Q 

2W 

a 

2W 

a 

2W 

a 

2\V 

a 

\X 

' 2a ' 

COS 

2 COS 

, sinh mb — mb cosh mi •, 
ml-■ , , ,-— COS mx cosh my 

sinh 2mh + 2mi 

, my sinh mh . ^ 
ml -—, , cos mx sinh my 

2 sin 

2 sin 

a 

ml 

sinh 2riih + 2mi 

cosh mh — mi sinh mi 
sin mx sinh my 

sinh 2mh — 2mi 

, my cosh mh . . 
WAA . ,' ,-sm mx cosh my. 

sinh 2mh — 2mb 

“ , sinh mh + mi cosh mb , 
2 COS ml-- ^ ,--r-— cos mx cosli my 

1 sinh 2mh + 2mb 

+ 

a 

a 

2W 

a 

, my sinh mi . , 
ml - ^ , cos mx sinh my 

2AV ^ 
_|_ > OOR fitjt, 

1 sinh 2inh + 2mi 

2 sin 
1 

CO 

2 sin 

, cosh mi + mb sinh mi . . , 
ml-— ^—;— sm mx siiili my 

sinh 2mh — 2mb 

my cosh vii 

sinh 27nh — 2mb 

^ 7ny cosh mh . , 
ml . y ^ ^ , sm mx cosh my. 

(95). 
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^ 2W ^ mh cosh mb . . , 
^ ^ cos mi —■ -—- sin mx sinh mi/ 

a 1 sinh 2mh + 2vib 

2W ” my sinh mb 
-i COS ml —-- sin mx cosh my 

(0 1 sinh zmb + 2mb 

2W * . mb sinh mb 
— N sin ml — —---—r cos 'mx cosh mi/ 

a 1 sinh 2mb — 2mh ^ 

2W ® . mil cosh mb 
H-S sin ml ■ , „ ,--— 

a 1 sinh 2mb — 2mh 
cos mx sinh my 

(90), 

where A in the above is an arbitrary constant representing a rigid body rotation. If 

the conditions of fixing are that the two extremities of the horizontal axis are to 

remain at the same vertical height after strain, A is zero. 

If, on the other hand, we fix the beam in such a way that the sliears Wlja over 

the ends are each allowed to produce, at the extremities of the axis, the deflection 

which they would produce if the bar were clamped at its middle and the deflection 

were calculated on the Euler-Bernoulli theory, then we find Aa = Tbit; 
2E&3 ■ 

appears to be the more natural method of fixing. We shall, therefore, in what 

follows, suppose A to have this value. 

§ 28. Integral Expressio^is ivhen a is made Infinite. 

When we increase the length of the bar indefinitely, it is easy to show that, if we 

take the last given value of A, the displacements remain finite at a finite distance 

and the stresses remain finite throughout—excepting, of course, at the points where 

the concentrated loads act. 

We then obtain, as in § 15, 

U= - 
TTr 1 1 I / I Slllll U Vj cosll Ih I , 
VV I 1 X ^ n. vl uy . v.r , 

, “ \ • , o—TTl-- / COS — cosh sm - du IT Jo r \ sinh 2e + hr / h b h 

id . , iry . ux W?/ r” siuli e 
—7 - , -7— COS — smh sm —da 
yuirb Jo smh 2iu -f '2u h b b 

f ( 1 u 
1 77-cosh It — - sinh ii 1 , 

1 \X-f/i, /x 
vr Jo 

W 

sinh 2u — 2u 

j . (11- . wii ux / 1 
sm —smh Wcos— — 

X'hyjIvHr 

cosh u . vl uy ux 3 l \ , 
- -sm-coshycosy-—- sinh 2u. — 2n 

(97) 

'Ay > da 
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V = - 
W 

r 1 1 \ Vj 

T i I —-1—) shill u + cosh M- 
^ VV + /A /i/ 

’TT J Q U 

+ 

I 

sinli u 

sinh 2u + '2u 

ul . , uy ux j 
COS — sinh -i- cos — ciu 
loo 

v.l T uy nx , 
, , ^ cos — cosh — cos — cnt 

/i,7r5Josinh 2u + 2u I o '> 

-— + — ) cosh li + — sinli u 
\\' + IJL_yj__ 

sinh 2?'. — 2u 

W 

vr J 0 ! V' 

. vl v.y . v.x 
sillcosh A- sin v 

h lb 

^ (97). 

+ y, y ) 4/6^ j 

+ 
Wv/ cosh?f. . id . , uy . 11.x , 

-r sin ^ smh — sin —du 
yirl J 0 sinh 2?<. — 2u I I ^ 

P = 
2M1 

irl J 
sinh u — 10 cosh lo vd ux , v.y , 

cos — cosh — du 
sinh 2it + 2io 

cos 
I 

u sinh 10 id lox . , uy , 
-I -cos — cos 7- sinh — du 
•nlr Jo sinh 2 it + 2 it lb b 

2W cosh 10 — u sinh 10 . id . ux . , uy , 
-— Sin -- sill — sinh — du 

0 sinh 2 it —2 it b b b 

2 w r 

irb j, 

u cosh it . ul . ux , uy , 
. . , ^ sni — sin 7 cosh 7- du, 

ttIu Jo sinh 2it — 2to b b b 

0 = 
2M^ 

ttI j 

r 
'' Jo sinhi 

sinh it + it cosh u 

0 sinh 2it + 2it 

10 sinh it 

7tt ux , uy 7 
cos — cos — cosh 7- du 

b b b 

ul ux . , uy , 
COS 7- cos 7- sinh -f- du 

2it + 2it b b b 

2W f cosh it + 10 sinh 10 . ul . ux . , uy , 
- '-sin — sin -7 sinh -y- du 

lo sinh 2it —2it b b b 

+ 

TtI j 

2\Yy 10 cosh ?t .id . ux . utj 
7- Sin — sin 7- cosh 7- du, O,, ^7 h h 

s 

Trlr Jo sinh 2it — 2it 

10 cosh it 2M^ r_ 

ttI Jo sinh 2it + 2it 

b b 

uy id . ux . , ■«!/ 7 
COS 7 Sill -7 sinh ~ du 

b b b 

24¥i/ 1'"’ 7t sinh it ul , UK , uy 7 
, cos 7 sill 7- cosh J- du 

ttI- Jo sinh 2it + 2to b b b 

2AV . id ux . uy 7 
, . , , , Sin 7 cos 7- cosh 7- du 

irb Jo sinh2it —2it b b b 

10 sinh u 

li 2 it — 

u cosh to 1 
ttIu Jo sinh 2it 

. ul ux . , uy 7 
Sin 7 cos 7- sinh '■ du 

2to h b b 

lx ! 
! du 

i (98). 

Now, as before, these expressions may he expanded in powers of r about the 

origin. In tliis case they will he found to have a radius of convergence .^/P-1-6". 

Or they may be expanded about either point of concentrated loading, when they 

will liave a radius of convergence 2^Id + Ir, or they may he split up as follows : 
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W rite 

cosh u _ (1 _ 4,, + 

2 (sinh 2u + 2v') 

— e " + 6 “- 
2 (sinh 2u — 270 

= g-'' J_ ( - 1 - 477. + 
2 (sinli 2?/' + 2?/) 

= e-n . g-. 1- 1 + 4^/ + ^-3-0 

2 (sinh 2?«. — 2?7) 

and consider separately the parts of the integrals dne to the first and second terms 

of the right-liand sides of the above equations. 

We finfl, after some reductions, on writing 6 — // = iy\ y'^ (x — 1)' = rp, 

y — y'^ y ~ 4-. + ly = r/, {x 4- l)ly" = tan (^o, {x — 1)1 y' = tan 

sinh 211 + 2u 

cosh u 

sinli 2ii — 2ii 

sinh u 

sinh 2i( + 2u 

sinh u 

sin1i 2?/ 2u 

F = - 
M^ cos 0, 

TT/'i 

Q=~ 
M'’ cos 

TT/-, 

Q wp 
sin 20J = ■ 0 

TT/y 

TJ’ro TTi 
+ --(P COS 2<j^)i + - cos 203 + P, 

\ 

TTK-, 

Wy' 
irr^ TT?' 

-^2 COS 20J — COS 200 + Qo 
irr^~ (»«). 

where 

MY 

TT^'o^ sin 200 + So 

J 

) _ I (1 + 5« — 4?<“ — (1 — v) c 2") e " 77^ uo: , 7/?/ , 
" COS ~ cos — cosh Y dll 

0 I) 0 nil sinh 2u + 2u 

M j (1 + 5i/ — + (1 — 70 r-^")c " . vl . v:c . , vij , 

2» - 2„ - T 1, 7, irh 

+ M ,y I 7/(1 '4 4// — e '") e '' ?// ?///’ . vy . 

4 cos cos — sinh ' cD/. 
0 h h Jo sinh 2// + 2//. 

ivlr . 
p(l + 4// + e “'0 e " . g/ . gg 

, “Vni;2«~2“ S'll ,, sm y cosh - c/a, 

1 (1 + 3// + 47/” — (1 + 11) c ^'0 
jr]) sinh 2// + 2u 

ly v.x uy - 
cos cos -- cosh du 

h /> h 

— r"" A + 47/- + (1 + n) e~~”) />-" . It! 

(100), 

■nh J sinh 2// — 2ii Sin - - sin Y sinh ~ da 
h h h 

id ML/ Y // (1 + 4g, _ e-27q g-„ 

vr/h Jo sinhYiYTY I t 

1(X 

+ f 
tt/F Jo 

VOL. CCL—A, 

"7/ f” « (1 + 4«+<•-») . ul . nx . „„ . 
siiili TVTT/ s'n ^ sin J cosh (hi, 

R J 
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W r n (1 - 4/6 + c-~'‘) c-“ V-l . y-j: • , V-V 7^, 
ft = — —^--cos , sm — smh - du 
''-^•'1 7 1 .-.^,..1-. O7. I Oi/ /-. n f) 

+ 

ttI Jo 

Av r 
irh J 0 

-1 -I r ,■* CO 

^v// 
ttM Jo 

sinh 2u + 2w 

1 4- 4» + c-2«) e~" . vl ux , vy j 
2 T-1— sin - cos — cosh 4 du 

sinh 2ii — '2u '> '' 

(1 + 4)6 - e-“'0 c-’' id . ux , vy , 
^ - - ---cos -r Sin 4- cosh — du 

sinh 2a + 2/' h n // 

(1 + 4a + c-^") C-" . vl vx . 1 vy 7^^ 
4_ ' 1 — --- sm : cos — smh ~ du 

' ttM Jn sinh 'Iv — '2a h h h 

AV// ) - ic 

'0 

. (100). 

Po, Q., S.7 are finite and continuous all over the beam. They may be exj^anded in 

powers of r about the origin, the series iDeing convergent inside a circle of radius 

y/i (36)y so that the points of concentrated loading are included. The parts of 

P, Q, S which become infinite at the points where the load acts are of the same 

form as if the lieam were an infinite plate. 

§29. Series in Powers of r. 

We may here quote the expressions for Po, Qa, So in powers of r. They are 

Po = 
_ w ” j r cos 2v(f) I" 7(> (1 + 5u - 4a~ - (1 -'v)e -») c ” 

ttI/ (2v) sinh 2 a + 2 a 

uJ 

AAr X ! y yr f-iii 2z7(^ [■“ vP (1 + .5a - 4?d + (1 - »)f "'0^ " 
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0 

V\ il * / r sin 2v + i(j) p zr‘'+-(l + 4?a + e ~") c rl 
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AV ” / r' P cos 2v4> p v~'’ (1 + 3a + 4a- — (1 + a) c ~") c ul 
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AV ^ sin i 2a<|> 1 ” a-^>'(l + 3a + 4/d + (1 + //) e--") c--" y/ 
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AV// / /• cos 2^^^ (/) p a-'^+-(l + 4// - c"-") V” ul 

irlr n \ h (2a + 1) ! Jo shill 2a + 2/(- 
COS - du 

0 

AV//^ / 9’ \~‘ + ^ sin 2a + l (p p //“'''"(I + 4// + c ~'')c " • 
+ -- t[— 

Trh" 0 ^ (2a + 1): sinh 2v — 2a 
sm -7 du, 

b 
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AY r sill 2i>(}) r"° (1 — + i; ~“) c 

2v)!'I 

— ^ 1/ \ I, 

(2i/) (sinli 2i/ + 2i>) 

nl 
cos du 

h 

+ 
AY - co^2^0 r (1 _ 4^, _ c-2«) Q-n _ ^,i 
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uJ 
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0 

sink 2u + 2tt 

(1 + 4c 

sink 2u 
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0 

u ttY 0 7v (Sc + 1)! Jo 

where r- = x" + ij^, x — y tan ff). 

U, Y^ may be broken up in like manner and the parts Uo, wliich remain finite 

and continuous everywhere can be expanded in the same way. 

We sliall rec[uire also the series for U, Y", P, Q, S in powers of r, deduced directly 

from the expressions (98). They are 

AA k / 1 1 ,. . , i’ v3t'+l ypj Oc+l (j) 
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' r sin (2c + Vjcp 
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wliere 
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^2^+1 

<-''2. 
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^2i-+l - 
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0, I, 2, 

0, 1, 2, 

l'” 1 cosh ti sin ul’l ' , 1 

Jo 1 siiih 'All — 'All 4«“7j 
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. (102). 

§ 30. Distortion of the Axis of the Beam. 

If in file expression for V we write ^ = 0 Ave obtain the equation of tlie distorted 

E)rni of the axis 

. ...... .. . 

/>/ (27^+1): 7roLx+/7. /i-j n ! 

To the tirst approximation it is a semi-cnbical pandiola 

This bolds if x be small compared with h. If further Ave have I small compared AA'ith 

h, so that the tAvo concentrated loads are applied in near pai'allel lines {e.g., as in the 

case of material pressed betAA^een the edges of a pair of scissors), then Ave ha\'e, to the 

first approximation, 

U id coali n dll 

air Jo dull ‘Ai — 'Alld 
^ / ii cosh ii 3 \ ; 

f^-i = 7 • 1 .7 ^ “ I ^ ^ /i Jo ■ siiili All — All 4/(.“/ 

= [ (see p. ‘jy). 
V- 

I d 
u _ A I 1(1 
'-u — ^■'.2 0 /,8 '-^1’ 

/ d 

= jfh- ii j', ^G- 

Tlie terms of order F'/h^ may be dropped in the coefficient of the latter 

quantity lieiiig already small, and A\'e have finally 

Lii 1 u I n 
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or putting E = 5g/2 to simplify the aritlimetic 

2-80 — 4-9G ' • 
Tr 

The slope of the strained form of tlie axis at the origin is therefore a maximum 

when 2-80 — 4-96 X v, = 0, or lib = •434. 

For such a value of l/b the approximation will not be quite valid. fStill, it will be 

sufficient, even then, to give a rough idea of the values of the coefficients. 

Assuming the formula given for V to hold for this value of l/b, we see that this 

greatest slope is — (•810). 

Now if the part of the beam between x- = ffi / Avere subjected to a uniform shear 

'W/2b giving the same total shear across the section, then, if the sections x = ffi / 

were kept vertical, we should have V = — X 1-25, if E = 5u/2. This 
2 b ji hi) 

gives a slope nearly 3/2 of the preceding one. 

W.rl 

EU 

§ 31. Difitortiou of the Cross-section x = 0, and Shear in that C^'oss-section. 

II we Avork out in the same Avay the value of U for x = 0 we find 

•TT 0 l' x + n j (2r + 1). n 
1 - 4. 1 S 

Cv)\ 

If I be very small and yjb sufficiently small for 5th and higlier poAvers to be 

neglected, this gives, assuming E = 5p,/2 to simplify the arithmetic. 

U ^ 
ttYII (4 11 — 2-5 G^) + (I Ey — lA 

^.e., 
r = 

wy 

7rK/r 
- 5-292 + '^(-492) 

We see, therefore, that the '}/ term is practically negligible, or, for a very large 

range of y, the mid-section remains sensibly plane. 

For the shear in this cross-section, Ave have 

^ S (jC\^ i . ; /), 
'rrl 0 -‘'V & / (2r) irh ^ / I 

tv+'l ;|^ 

(2r -f ]) : 
or 

® ~ “ b A (\f) - Slj - A A (m 
ttIj 52 V\ 2 } 

!S is therefore a numerical minimum at the centre if 7“ — > 0 
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N ow for the small values of Ijb 

8, = (//6)G,- 

But since = 24'824, Fg = 7‘224, 

increases from the centre outwards. 

when l/h is small So > 28^, and the shear 

This is shown hy the full curve (a) in hg. vi. 

(d)- C = oo. 

Fig. vi. 

Sin 
TT/'i 

W//" 
sin 

TTiV 

2</)o will be Near the edges y = :t: b, ii I iie small, the terms 

the most important. FEeiice the shear is a. minimum at the centre, increases to a 

high maximum corresponding to a distance trom the edge ec[ual to I approximately, 

and decreases down again to zero. The full curve in tig. vi. has been drawn 

for / = 6/1U. 

As we increase I, these maxima at the sides become smaller and smaller and move 

towards the centre. At the same time the shear at the centre increases. 

When l/b is made indefinitely large it is easily seen that Sq and tend to the 

finite limit Stt/S whereas So and all the others tend to zero. 

Hence, for some value of l/b we must havm S^ — 2Sj. 
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It we calculate the values of So and for Ijb = tt/G, tt/S, 7r/2, we find 

lib. Si. S2. 

tt/G 1-9862 3*9475 

^/3 1-2585 - 3235 

v/2 — --0591 

From these values and from the known behaviour of these functions near Ijb = 0 

and Ijb = co we can draw a rough diagTam illustrating their variations. Fig. vii. 

Fig. vii, 

gives the curves of Sq, 2S|, and So as we increase J. It will he seen from the figure 

that So and 2Si Intersect when //fi = -52 nearly. 

Hence, when the arm of the couple is about half the height of the beam the shear 

is stationary at the centre, a horizontal straight line havino’ contact of the third 

Older With the curve. Curve (c), fig. vi., shows the distribution of shear, roughly 
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sketched, for this case. It is easy to see that the centre corresponds to a maximum 

rZ A ' 
irl 4 : s :. 

2\Y S3' 
fu’ the shear, for the next higher terms in the expansion of S are — — ~ 

We have therefore a numerical maximum if S4. < iSg, and a rough numerical 

calculation enables us to verify that this is tlie case. 

The shear is therefore greatest at the centre, l)ut decreases extremely slovdy and 

remains constant over nearly half the section. 

Another case of interest presents itself v'hen the shear at the centre is exactly 

equal to its mean value over the section. 

Tins occurs when Sq = -7854 = 7r/4. 

If we write So = (^A>) A — ,1 (//6)Wt,. = 2-818 //h - 4-138 we find that this 

roughly corresponds to l;h = -32. 

Measured on the diagram for S^ on fig. vii. the value of Ijh corresponding to 

Sq = 7r/4 would lie afiout -3.5. Tliis latter value is probably the more correct, as for 

values of//& > -3 the abo^-e ap})roximation for Sq is hardly sufficient. 

In this case it is found that 8^/2 — S^ = -4 roughly. The shear is therefore 

a minimum at the centre. It increases as we proceed outwards, but not very rapidly, 

and decreases down to zero at tlie edges. The curve is shown as {h) on fig. vi. The 

total area of the curve reckoned from a horizontal tangent at the middle point as 

liase is zero, fie., there is as much above as lielow. 

Finally, curve [d) on fig. vi. shows the disti'iliution of shear when the arm of the 

couple is indefinitely increased. This is the parabola 

It is striking how very early tins limiting distribution is reached. Fig. vii. already 

shows that the coefficients of the series reacli their limiting values with great 

rapidity. For an arm of tlie couple equal to twice the lieight of the lieam, the 

parabolic distribution of shear, corresponding to a long cantilever, will, at the mid¬ 

section, be practically undisturl)ed. 

§ 32. Practicrd Imporfanec offline Problem. 

The problem which has been investigated in tin’s part of the paper is one of 

considerable importance in practice. Tlie only way in which we can apply a shearing- 

force to materials is liy means of two ojiposite asymmeti'ically situated pressures, 

such as we have dealt Avith in this case. The case of material cut through by 

scissors, whicli is frequently rpioted as an example of the application of shearing- 

stress, really corresponds to a stress-distrilnition of this kind. Similarly, a rivet 

which fastens together tAvo plates is sulijected to stress-systems of this type 

AvheneA’er the comjiound plate undergoes strain in its OAvn plane. In nearly eA’ery 
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modem engineering structure, such as railway bridges, &c., cases of this kind are of 

constant occurrence, and the strength of the structure depends, to a very great 

extent, upon the strength of the individual rivets. It becomes tlierefore a problem 

of the very greatest practical importance to know how the distribution of shear 

inside such a rivet varies with the dimensions of the rivet and Avith the thickness of 

the plates. At present our knowledge of the subject is purely empirical; and 

although the results of the present paper apply only to a rivet of rectangular 

section, and even then are only an approximation, yet they should furnish some 

indications AAduch may he of value in other cases. 

Anothei point which is illustrated by these results is the manner in which 

DE SaintA'enant’s solutions are modified, when we gradually bring the terminal 

systems of load closer together. We see tliat tlie modifications introduced are 

practically insensible at distances from the section where tlie load is applied Avhich 

are greater tlian the height of the beam. This is of inpiortance, as it tells us witliiu 

wliich limits, in any experiment, Ave may assume tlie state of a beam to be given by 

one of tlie “uniform” solutions AAfiilch only depend ipion the total terminal conditions 

and Avhich are transmitted AAuthout change of type. 

PAET IV. 

Solution foe a Beam who>se upper and lower Boundaries are acted upon 

EY Sheaeinu Stress only. 

§ 33. Expressions Jor the Dispdacements and Stresses in Series and Integrals. 

Let us noAA^ consider a beam acted upon liy sliearing stress alone, oAnr tlie 

boundaries y = A h. Then, in the general solution of I 7, = y,, = = 0. 

If fuither AA"e suppose the shear to reduce to a single concentrated force L at one 

point (0, h) we have ^ L = k„ = 0 = 0, = v,. 

Putting in these values into (44), (45), (46), (47), (48), (54), and (55) aau obtain 

IT — _ . 3V + 2;^ LV . 1 L// , . 
' ' + VlLy X m m: + t: aJj p ah n, 8a 

_j_ V A “t /i 
,1 = 1 ici'ni 

4—\ CO,si I nth — i rnh sinh mh 
P'/_ n 
.siiih 2ml) + 2)nh cosh my cos mx 

-T 1 / H-) sinh ml) — — mh eosli mh 
4_ W lA + _/^/_ /^ ■ . 1 

^ .A 2am ■ ^ siihi 2))ih - 2)))h my cos mx 

L 1 //co.shmUsiuh5«?/ - 1 v sinh mA cosli m?/ 
cos mx + N--^-■’ pos mx. 

i,=i 2a fjb .sinh 2mh — 2))ih ’’ ’ 

+ V - 
n=i 2a jx sinh2/»i + 2mh 

YOL. CCI,—A, 

(103) 
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v = 
1 1 

, ^ ^ -cosh ml + — ml) sinh ml 

--^-'-■' _ X —^ ^ ^^---siiih my sin mx 
16/l(,(M + /i) (d) ,^i-i2ccm sinh 2ml + 2inh 

\j A “i“ ^ 
^ sinh mh + — ml cosh ml 

sinh 2ml — 2ml 
cosh my sin mx 

X Ely cosh ml cosh my . 
-P X ■ ■-;-^ ' sin mx 

, 3c yu. Sinh 2ml + 2ml 

X L 1 y sinh w//sinli 1/0/ . . a ■ rt 
+ X - ■ , ^ ,-—n + A.X- + C, 

‘ ,,^1 2a jji sinh 2vil — 2ml 

V = 
].-• L 4 CDsli left — 2//i//sinli///// , 

— X -. ^ r ,-;r'; — cosh wi/siii mix 
4cA ,,,^1 2a sinh 2ml + 2ml 

X Iv 4 sinh »?/> — 2»hi cosh 7/i/^ , , 
— X ----'in'll sin mx 

,=] 2c sinh 2)nl) — 2mI 

=” L 2///y cosh w6 sinli 7/iy . X L 2icy sinh////> cosh/c y . 
N* --^^ sin ),}x — ^-^-^'-Ri 

5,3,1 2a sinh 2ml + 2ml 5,=i 2c sinh 2ml — 2mI 
smmx, 

Q 
L 2/«&sinh OT?) cosh »iy . X h 2//i5 cosh v/hi sinh »o/ . 

— X-sin mx — X -. , ^ ^—7—'- sin mx 
5,=i 2c sinh 2ml + 2ml 5, = i 2« sinh 2ml — 2ml 

“ L 2m?/cosh7?i&sinli?Hy . , X L 2i»c/sinh i/i?/cosh 7/0/ 
+ X -'.A, ^ 7.0 7 ’ + X -Sin mx. 

5,=i 2a sinh 2ml + 2ml ,,=i 2c sinh 2ml — 2ml 

s = 
Lc L X E 27cy cosli 7h77 cosh 7//7/ 

- + 4- X --■ , ^ cos mx 
4-ah ' 4c 5,=i 2a sinh 2ml + 2ml 

X E 2 m y sinh ml sinli m y 
4- X - —•. - cos mx 
‘5,=! 2c smh 2ml — 2rnl 

” 1. cosli y/Ey — 7h A sinli 7c/y . , 
-1- X -;-;-— sinli my cos mx 

‘ ,,^1 a sinh 2/H?y + 2ml 

X h sinh ml — ml cosli ml , 
4- X -■ , ^ ;— cosh mij cos mx 

,,^i c sinh 2ml — 2ml 

> (103). 

where rn = inr/a, and A, B, C are arliitrary constants to lie determined from the 

fixing- conditions. 

Now if the fixing conditions are 

(I.) That the displacement of the origin Is to be 7.ero ; 

(ii.) That the extremities of the axis are to remain on the .same horizontal line, tlien 

C 

B 

= 0. 

_ X 
n=i 2am 

--— + —) co.sh ml) — — ml sinli ml 
E\A'4-/X yU,/ fl 

sinli 2rnl + 2ral 

A = 0 ; 
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but il we iJiit ill tJiese values and then proceed to make a inlinite, certain | 

the expressions for U and V do not give finite integrals in the limit. 

Ihis is due to tlie tact tliat the conditions of rigid ecpnlihriiim reipiire 

L6;2a at the two ends (fig, viii,). 

arts of 

shea.rs 

Lb 

Fig. viii. 

ihese shears Ijbj'la will produce a deflection due to bending alone, which, 

calculated from the Eulej-Beriioulli formula, conies to 

+ VT \ [^ A/ "h 

(for a; > 0), 

and when a is made very large, tliis gives 

y _ Eil ^ 1 I ^ 
32 ^ A' + 

(104) 

for the bending deflection produced by the end shears at large distances a;, wliich, 

liowever, are still finite compared witli a. If, therefore, we allow the beam to bend 

fieely under these end loads, in sucli a Avay that each of tliese produces its projiei’ 

hendmg deflection and no more, tlie constant A must be adjusted so tliat, for large 

values of a;, V tends to the value (104). 

This implies that A must have an infinite part, Avhich will exactly cancel the 

infinite part of V. It is easily found that the value 

A 
+ jji 

where A' is finite, will introduce terms in both U and V which will make these 

quantities remain finite in the limit when a is infinite. 

A e then find, ])utting in for B the value found and proceeding to the limit, 

s 2 
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U = 

. ' + ^ ) cosh >1 — — siiili (' 
' A ~|"/X 

+ •; 

-77 Jo 7' _ sink 'In + '2,11 

X / 

1 (x' + /X /X 

^coshycos ^ ~ y) 

^ + — ) sink u — ' cosk n 
Af- 

IT Jq H sink 2i(. — '2>i- 

. , I"! 1 ■’// 7 
siiili -cos ^ ” ' v , o.a 

h h A + ytx -ivo _l 

+ o 
L// 1 coslu? 

+ 

= 

27rZ^ jo sink '2u + 2ii. 

L// r* 3 r sink u 

a . , VH Ur 

—sinli , cos ^ a u 
1)0 

27rh J 0 A*- 

ti;/ yy 
—;-— cosh -7- cos -7 — , "o 

sink '2)1 — 2)1- 0 0 
du — X'lj, 

1 , 1 . , I 
-cosk a H— )' sink a : 

3 A + /X /X 

\(105). 

277 J 0 )' sink ‘2u + 2)i 

_ I - ^ 1 j A' + /X 

L// r“ 1 cosk ))j 

277?> Jo A*- *si 

L, f 

“ -'tt/- J 

> . , I'n . "y 7 
sum - sm - du 

1 h 0 

' ^ sink /'+ — /' cosk » ) 
/ 1 "H • c,.-; 

-^ -cosh , sm — 
0 sink '2ii — 2)( o 0 

cosh ' f sin ' du 
0 b 

/- "a 
a' + /X fxj 

du 

0 /X sink 2)X + 2u 

L// r“ 1 sink /f. . , )'!! . , 
-r-^—;-T smii 7 — (/?/ + xV n 

277/' jo A'’ ■” J 

Xow, whoii ill \' AVC put y = <k we Imvc left 

^ — sink /'+—/' cosli n ) 
^ yin "- 

277 tki 1 " sink 2/' — 2/' b 

h 

A + /X /X ' 
du + xVA. 

L 
^ ^ - sink IX + - XX cosk xx ) 
t \A' + xx u 

277J0 L " 

L 

+ 27rJo 

sink 2xx — 2XX 

1 ^ XX.'- /x — sin XX,-- /' 
4- XX” _\A' + /X /X; 

Consider the first of these integrals, and let 

, , sink XX + - XX cosk xx, 
_ 1 \ ^ A A*- U 

A’o others, 

1 \ 3 1 .9 1 

/x/Txx” 40xx i 7t A' +u 

9 1 . XX.' 1 
sm ,. y du. 

' U ~ A' + 

) f s>>‘ 

/(■») = 11 sink2xx — 2xx 

1\ 3 1 ,9 1 ' 
^A' + /X A^) 4xx” 40xx \ix A' + /x 

Then /’(a) and its differential coefficients are finite and continuous for all values 

of n, and vani.sh for = 00. /(a) itself = 0, vhen n = 0 and the integral 

I ; /'('/)] iy finite, denoting the ahs<j]ute ^'alne of /'(a). It is tlien 
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Bcisy to S06 tliat I — j / (w) siii chi tends to zero cis ^ tends to intniity. F* 

integTating by parts 

I — y COS 11^ fill) -f- ^ COS a I f {it) dll 

1 
= - cos if ffu) du. 

J8iit cos if f 
• AT 

^ I \ < a finite quantity M; lienee I <- 
•o' . ^ ^ 

and therefore tends to zero as ^ tends to infinity. 

Hence, when a; is large, V reduces to tlie second integral. The h 

evaluated, and it conies to 
can 1 le 

■i T 3 '2-*^ 

1 O 

+ -a: - 
L /9 

A' + yU. yU, Ir 160 \/U, 

for a: > 0 and 

1 , \\x^ , F /9 1 \ 
~ U' 4- “I-)t^ “1“ irn ' ~ ;- •)_ A + 1 IGO'/i X + yU,/ 

1 he lirst terms correspond to tlie bending due to the shears at the ends. 

We should therefore try to make k!x — 
L /9 

of X. 
160 \yU. X' + fl/ 

= 0 for all large' values o 

Ibis is obviously impossible. But iVx being eventually the most inqiortant term, 

the condition is approximately fulfilled by taking A'.— 0, This determines U and 

\. We see that the effect of tlie i.solated shear L is to defect the central line of the 

lieam through the distance g x ) away from its line of action. 

Putting A'= 0 in equations (105) they give us U and V. Integral expressions 

for the stresses are obtained in like manner. They are 

P = - 
1. 2 cosh u — a siiih n , in) . 
7 --cosh ; sm — du 

ttCJo siiih + 2a h h 

L p 2 siiih u — a cosh e 

7rl/J(, siiili 2a — 2a 

L p //.// cosh u 

irh J 0 5 sill 

E f"” a// si nil a 

• 1 "H • / sinli — sm , dv 
0 h 

. T aa . ax , 
, siiih : sill --da. 

w + 2 a h 1) 

g// _ 
ttAJo h siiih 2// 

cosh /sin A (/a. 

(lOli) 
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(.) 
irh 

L 

, , L f* 7/ sblll // - Vlj . Ii.r , 
(».)=:-7 . -. cosh Sill — (Of 

irlj Jn Sllili 2u + '111- h 

+ 

'0 siiih 2;/ + 2ii 

a cosh a 

irh Jo 2ii — 'In 

L// r“ ‘u cosh n . . iiij . U-j: , 

Jo siiih 2ii + 2ii h h 

siiih — Sin - dll 
h h 

sinh -u L // p u s 

7r?7"Jy siuli 2^6 

Lp p" a eosli a 

h// 

— cosh ~ sill dll, 
111 it 0 

S = , I . ” cosh ' f cos ' " dll 
'irlr Jo smh 2u 2ii h 

+ 

+ 

ii sink ii 

irlr Jo sink 2v, — 'In 

h p cosk ii — n sink n 

nrh J 0 

smli - COS - dll 
h h 

sink '2a + 2u 

■ 1 >'!! 1 sinh , cos — 1O.7 
h I) 

. L f* sink It — « cosk y( , a if ux 

+ rtj„ si,.h 2„ - 2« ' 1, “"T 

I 

(106). 

34. E.qinssioiir'i for the Disi>lacements and Stresae.s in Series of Poiuers oj the 

Rudkis Vector from a Point. 

'J’he exj)i‘essions given aliove for U, V, P, Q, S may be ti'ansformed exactly as in 

.10, 17, and ive obtain expansions about the point (0, h) A\ here the shear is applied. 

Kx’entnally, r', (f)' liaving the same meaning as on p. 02, ive find : 

Ui= - 
L I 1 

27r ' x' + yU, ^ /x J 
+ - ) log ( 7 ) — ^ , cos (j)' 

IX / ^ V) I 27rix r ^ 

IT + IX ' /X 

TT \ IX ' (1 ' tl 

, /x r<is(2i7 + 2) P 

^ + r A (2i7+ 2); 

/■' cos (277 + 1 ) {^' jj 

^(277 + 1 )’ 

(ir,.-, - n,,) 

-f - )i.„+p' - i sr 11.,.), 
TTll IX 0 ' II / (2i7) . Till IX 0 \ll j \2v + 1 ) . n 0 

Lp h // . .7 
- sill (jj 

(107), 

27r (\' + ix) 2'ivix /■' 

2h / 1 . 1 \ ® fr'p^^ sin (277 -(■ !)()>' ,, 

TT W + II IX ' 0 \t> / (2v + 1)! 

+ 2L , 1 \ V / 2v(j)' 

77 ' X' + ixj ) {'2v) ! 
/pr — H ) 

(2771! 

pdf S' (11=,:, - ir.) + s d ffkf 11. 
irii/x I, ii {2i' + 1 ) ^ 777777. I II {xi'} . 
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2L sill </)' L y' . jj _ -2(h' 
TT r ' tt r - ^ 

_SL- yY-*' sm(2^ + l)j,- 

irh t 't I (2v + 1) ! ^ ~ 

4L ® /r' y^ sin 2v^' 4L?/' ^ Aj.'Y>'+i 

TT?; T v7 / (2z.)! + 7753^ f ( 7/ 

_ V (TT TT N 

7rlr1^\h V"2„+i -tio,.; 

sin(2z^ + l)(f)' 

(2r + i): - 

Q = _ 14 sin 2f + it s (4 f H, 
TT r'2 ^ ^ 7r5 7 \ a / (2z0 : 

_ / 7' 7’'^' siu72^1_) 4L//' - /7 ^2.' sin 'Ivc^' 
7r/r 7 IA y (2i; + 1) ! + -n-Jr 7 H / (2/0! 

^ _ L cos_(f>' _ L //^ cos 20' _ 4L ^ cos (2// + 1) </>' 

tt r' ' TT r'^ 7rA7'7/ (2// +~l)! V^2"+i “ 

4L// - cos 2vcj>' tt \ 1 v 4os (2// +!)</)' 
■' l"2nTi - 4I2O + ^,4 K ^ ^ YoTrrTAV -^2,, 7rA2 7\ Ay (2/.)! ^ -‘'+1 —“'-'i ' 7rA2 7\ Ay (2/. + 1)! 

where the H’s are given by equations (80) and are the same as before; and 

D = 
u — ^ i — i/A ■*" e 

sinh® 2u — 4//^ ' 4:to 
1 cosh 10 

+ 11, 
sinh u 

4/a Jo 4(sinli2//4-2/7 

16/0 4r sinh 2// + 2)i 

du. 

du 

The leading terms in U, V, P, Q, S which precede tlie S’s form what is left of tliis 

solution when h is made infinite. They give therefore the displacements and stresses 

due to a shear acting at an edge of an infinite plate. 

They will be found to agree with the expressions olitained l^y Bottssixesq (‘Conqites 

Piendus,’ vol. 114, pp. 1465-1468) for an infinite solid, the strain being two- 

dimensional ; provided that \ be clianged into 

At the point of loading itself the stresses are infinite and the displacements infinite 
or Indeterminate. 

The series in the expressions (107) are easily seen to liave a radius of con¬ 

vergence 46. 

Ihe series for the shear reveals a very curious plienomenon. The terms due to 

the infinite plate may lie written 
IT d'- 

They give therefore a positive sliear 

throughout, and zero shear on tlie axis of y. But wlien the otlier terms are taken 

into account, the sliear at points on the axis of ?/ is 

8 = 
4L 

ttA 
?/ 
[j (H, -H„)- yH, + 7|(H,-TL) 

4L 
ttA 

•3638 ?/ 
A 

_p -07^^ Of> 

/3 
?/p 
Iv 
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which gives a negative sheai’ oil the axis of y, as soon as we get away from the point 

of loading. 

It follows that there must be, on either side of the cross-section through the load, 

a locus of points of zero shear. 

It is easy to find the approximate form of this locus in the neighbourhood of the 

])olnt of loadlug. lletainiiig only the leading terms in the X’s in the expression for 

the shear, we find that S = 0 when 

= ^1^X2 (H, - H„), 
’ * Tf/y h TT r 

or 
h.. 

4(H,-H„)r" = .T«/A <■'-T 74, _ „ = 
_\/ JT] J ly 

These are tw<^ circles passing througli tlie point of loading and having their centres 

Iving on the up])er edge of tlm beam, at a distance from the point of loading ecpial 

to —yj = These give a kind of wedge-shaped area, similar to that 
4 v/ HI — 

Fig. ix. 

oncl(*sed l)y the cusp of a caustic curve, inside winch the shear is negative. This cusp 

is shown in fig. ix. 

Foi‘ liigher values y'/h tliis apjn'oximation will no longer hold, and the curve will 

deviate from the circle. 

^ ?)5. Distortiort of the Beam. 

An interesting feature of a stress-system of this type is the distortion suttei'ed by 

lines parallel to the axis of the beam. 

We have ah-eady seen that at a certain distance the axis itself suffered a bodily shift, 

being dejwessed in front of the acting load and raised behind it. 
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The .series for V in tlie neiglibonrliood of the load sIioavs a similar plienomeiioii, 

points to the right of x = 0 being depressed hy , and points to the left raised 

by the same amount. 

(V),.=o = - 
L 2L / 1 

.*■>0 

, 1 '\ V / (— 1)" 
4 (A' + /i) TT U' + ^ fj, / '^[h ) (2u + 1) I 

Ho being negative and Ho being positive, as Ave go aAvay from the load, the effect 

of the series is to decrease tliis effect, the level of the points in front of and 

behind the load tending to equalize itself. If Ave Avork out the series for V in the 

neighbourhood of tlie origin and of the point (0, — b), Ave find (V) in the neighbonr- 
hood of orio’in o 

_ _ il V / il Y I Zi \ , L// ^ / r Y dll 
1 fo/ r! X' + /j, /Li J 27r?'/i h / vl 

Avhere the F’s and G’s have the values given on p. tfo, except that now 

r — Cf siiih•'* , 
~ J. Uhii, 2« - 

fSimilarly (V) in neighbourhood of point (0, — h) 

2L/ 1 

TT \ A A /U. jx 
4. -L] V /Zf ^in(2u + l)r . 
^ (2Z. + 1)! 

1 \ b J (2v) 

_ ^ /Z sin(2i/ + 1)</)" 
irlfi ‘^\h j (2v + 1) ! 

2L//" * YZi'" + 
irlfi I \ i / (2fo ' 

+ 1) 

HL., -J/ + 1 ) 

AAheie the H s luiAm tlie value giAmn on page 1U2. 

From tliese expressions Ave obtain the following values for the transverse dis¬ 

placements of points on the lines y = 0, y = _h :_ 

L » /A’\“‘'+i (— ly / 1 1 Y — — __ 
® 2-77‘l\hl (2i'+ 1)! ' A'+ ^ 

V_;, = - ZfvYZf"''' (- -L)" 
TT 

d-F;,^,.|_, ) 
A / 

f' 
+ (a' + ;.+ 

So that, approximately, putting in the values of the constants, 
YOL. CCI.—A. 

T 
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-•;’.75 ( -■ + ) 
V,, = - 

] j L 4" — ) If 
+ G'8‘5) + ',,('oyi;)- 

T, 
^'o — 1 “ j (’10®) + j,i ('591 ) — 

= (■'25) + 5<“8)-;(-0«) + 

where in the above uui-coiistant isutro])y has been assumed to simplify the calcula¬ 

tions, so that X' = l/r, E = -|/r. 

The distortion, calculated from these formulm, is represented on fig. x. for a range 

of X between i ‘bh. Curve (a) shows the distorted form of the upper edge, {h) that 

_ 

\ _ 

6l 

\ 
\ \ 

\ \ C 
\ 

i 
' 

i 
o

f 

__ _ — — 

b — — — — 

... / 
, CO 
• ® 

c 
““•/ 1 

o 
; ^>4 

1 
\ 

oL 

— \ 

_ 

-5 -4 -J -2 -/ O •/ 2 3 -4 -5 
Vd.i,ues of cc/b. 

(oL)— aUsCorCed form of fhe Line y=t. 
(b)- " " " " " y = o. 
(C)- " " . y=-b. 

Fig. X. 

of the axis, (c) that of the lower edge. AVith regard to («) the limiting case, in 

which Y is actually discontinuous, does not occur in ])ractice. In order to get a 

real case, we have to take a horizontal line Avhose y' is very small Avithout being 

actually zero. The discontinuity is then replaced by a A'ery rapid Amriation, as 

shoAvn by tlie dotted line. 

The curves shoAv that the depression produced in front of the load diminishes 

rapidly as Ave go aAvay from the upper edge, and is eAmn changed to a rise at the 

bottom of the beam. In every case, as AA'e go aAvay from the mid-section, the 

distorted lines rise to the right and fall to the left. 
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§ 36, Case ivhere the Shear is spread over an Area instead of a Line. 

As in § 22, we may consider the effect of distributing the concentrated shear over 

an area, instead of over a line. This is all the more imj)ortant because, although 

we can, in practice, approximate to a line-distribution of pressure by means of a 

knife-edge, we cannot in the same way approximate to a line distrilmtion of sliear— 

shear being usually transmitted by means of projecting collars, wliich have a certain 

thickness. It is true that a thin notch miglit l^e cut into the material and an edo-e 

inserted in it which might be pulled sideways. But the cutting of such a notcli 

would seriously weaken the material, l)esides altering the coiiditions so much as to 

render our solution inapplicable. 

If we suppose our shear spread over a length 2cd of the upper edge, and if we 

adhere to tlie notation on p. 104, we find easily, L now denoting shearing force per 

unit area :— 

U= - ^ ^ j log — {x — a') lo. 2tt + 
p- 
^ h 

2(d + y' {4'i — i*-:) 

_ (A A \ 2L/; « 

7r(M + /^)7 

sin (2v + 2) sin (2p + 2) <^3 

(2v + 2)! //"+'“ 

I ^ p^/_L^U-''^^shi(2^-(-3)(^i-?A''+bsin(2z/ + 3)(/).3 
TT \\' + /J, /X f h 

2L?/” sin (2v + 1) sin (2p + 1) 

TTfX 0 ]p+i i^2v + 1) ! 
H.., 

2L//' - sin f2z. + 2)ch,- sin (2. + 2) </>„ ^ . 
+ 'TTfx -o-(2v + 2) !-=(H,,,i-H3„) 

L 1_ _ 

27r + /X 

2U 

OOf - )■ — & .. ( 9 

+ -:| ,i-+Pr'“ 
TT X -(- yU- jJL i Q 

{;x + o') cj), ~ {X - a) - y 

rf+-cos {2v + 2)</)i - 7V.+2 cos {2v + 2)0. 

4/' 
log ' 

TTu ^ r. 

//-"+- (2i' -f 2) ! 
H 2.- 

2L/z —v ,y2,/+i cos {2v + 1) 0^ — ?y*'+* cos (2i^ + 1) 0. 

+ 

7r(A'-f/Li)7 (2r + 1)! 

2L//'« 9y‘'+2 cos {2p + 2) 0^ —7y‘'+'“ cos (2p + 2) 0. 

- H„_,) 

TTfX 0 {2v + 2) \ 

2L|f“ r-,-‘'+i cos (2i' + l)0j —cos (2j'-fl)0. 

're IX 1 

T 2 

/;-•'+! (2i^ + 1)! 
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P = - 
2L , r, L//' /cos S. cos cf).,' 
-log - — ■ -'-- 

TT Tcy TT '1 '2 - 

SL - cos (2r + 2)4>,- cos (2v + 2) 4>, 

4L * rj-''+^ cos (2v + 1) cos (2v + 1) -rq- 

-(2PTT)T TT 0 

4L,/ ^ ,.^2-^+2 cos (2i. + 2) - ?-22''+- cos (2c A 21 0, 

0 /,2..+2 (2,, + 2) ; ^ V + S 

4Ly'« rj-‘'+’ cos (2c + 1) cos (2c + 1) </):, . _ ];:[ ) 

//-■■+>(2c+'!)! ^ 

^ L?/' /coS(^i cos(f)o\ 4L* 9y‘'+^ cos(2c + 1) — ?y‘'+'cos (2c + 1) tt 

^ ^ TT ^ rf/ ~ TT 7 + +'1): ■" 

I 4L//' “ ^1“''+“ cos (2c + 2) 01 — r3-‘'+- cos (2c + 2) 0^ .p- 

^7^ 7 /F‘'+2 (2c + 2) ! 

4L7/ * 7y.. + l (,Q3 (2c+ 1) 01 —cos (2c+ 1) 00 

irh 0 P'+i (2c + 1) 
(H,..i-TL.,). 

S = 
L , , , Ly' /sin 0, sin 0o'' 

l9i “ 9c) “ xr\ “ \ /I TT TT r-i 7’2 / 

4L - ri2''+2 sin (2c + 2) 0i - ^3-*'+- sin (2c + 2) 0o 
— - X 

TT T j2.,+2 (2c y 2) ! 

4L7/' * ^1“''+’ sin r2c+ 1) 0i—(2c+ 1) 00 

- IP.) 

_ V 
irli "0 

Z,2..+ i (2c + 1)! 
- H.,.) 

, 4L7/' - 5V"+2 sin (2c + 2) 01 - /v"+2 sin (2c + 2) 0., 

+ Trf- (2c a 2): --^=' 

The same remarks which were made on p. 106 as to the validity of such expressions 

apply here. Assuming that 2a' < Ah, we may apply these to obtain the state of 

things near the layer of shear and at its extremities. 

Clearly the only terms where discontinnities In U, V, P, Q, S, or their differential 

coefficients, may be introduced are their leading terms. Let ns therefore study 

these. 

It is easily seen that (a; -{-a') log ^i and {x — a ) log r.^ are finite, continuous, and one- 

valned throughout, tending to 0 at the points (T- 0). Their differential coefficients 

with regard to y' are likewise everywhere finite, but are indeterminate at (d- 0). 

They introduce, however, no discontinuity If we proceed along y = 0. 

Similarly y' log I’l and y' log are everywhere continuous, finite, and one-valued, 

and their dififerentlal coefficieuts with regard to give no discontinuity if we keep 

to y' =; 0, 
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y' — ^2} is everywhere continuous. Its differential coefficient with regard 

to y is indeterminate at (ffi a!, 0); if we proceed along y' = 0 it increases hy tt as we 

pass the point (— a', 0) and decreases hy tt as we pass tlie point (+ a', 0). The 

same holds with regard to {x + - {x - a') ^ and its differential coefficient 

with regard to x. 

Hence, as far as U and are concerned, tliey are lioth finite, continuous, and one¬ 

valued tliroughout the beam. are everywhere finite, Imt are indeterminate 

at {± o/, 0). As we proceed along ?/' = 0, decreases abruptlv liy ^ - -p — 
dy ^ •' 2 \ Y+ ^ ^ 

as we pass (— o/, 0) and iiicreases again by tlie same amount as we pass (+ 0). 

Similarly ^ decreases Iw -- 
dx ^ 2 X' + /i as we pass (— a\ 0), and increases hy the same 

amount as we pass (+ a', 0). The first of these results means an alnaipt change in 

the angle at which the distorted cross-sections meet the horizontal, and tlie second 

shows that the distorted form of the upper edge of the beam receives a sudden 

inflection downwards as v^e enter the layer of shear, and is again suddenly inflected 

upwards as we emerge from it. 

It has lieen shovm in a paper hy the author “ On the Equilibrium of Circular 

Cylinders under Certain Practical Systems of Load” Phil. Trans.,’ A, vol. 198, 

pp. 14/-233), that a jirecisely similar occurrence takes place in a circular cylinder 

subjected to a uniform ring of shear, over a certain length of its curved surface. The 

law that shear depresses the parts of the surface towards which it acts appears to 

be a general one. 

Passing on now' to consider the stresses P, Q, S, we find that Q and S remain 

everywhere finite, liut are indeterminate at the points (ffi a', 0). If ive keep to 

2/'= 0, Q is continuously zero and S changes hy L at (ffi a', 0),. as it should. 

But P not only contains a part which becomes indeterminate at (ffi a'^ 0), it also 
2L r 

contains a term — ~ log -- wliich becomes Infinite at those points. 

This is a result for ■which we had no analogue in the case of a uniform layer of 

pressure. In that problem the stresses were everywhere finite. We now see that any 

finite discontinuity in the shear introduces an Infinite pressure or tension P in tlie 

neighbourhood of this discontinuity. This result, again, has been found to hold 

good for circular cylinders. It may he laid down as an absolute rule that for an 

engineering structure to be safe, there should never occur any discontinuity in the 

shearing stress across any surface inside the material or on its boundary. It is true 

that in most cases the stress will he relieved liy plastic flow' and the variation of the 

shear will become continuous, though rapid. But such points, especially tlie point 

from ivhich the shear starts acting (— o', 0), where tlie infinite stress is a tension. 
■will remain points of weakness and danger, 
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§ 37, Apiylicafion of Solutions of § 33 to the Case of Tension Proclueed hy Shearing 

Stress Applied to the Edges. 

In practice test-pieces for tension are nsnally strained by pressure , applied to 

projecting collars, tlie latter transmitting this pressure to the body of the material in 

tlie shape of shear. In no case can we a})ply tension directly to the ends of a bar. 

It is therefore important to knoAv hou' far tlie eftect of the method of application of 

the total pull disturbs the usual solution for a uniform tension. 

bet us then consider the effect of liaAung two concentrated shears L, one as before 

acting at the point (0, h), and another e(^[ual and parallel to the first acting at the 

point (0, — h). By superimposing on one anotlier two solutions of the type 

olMained in § 33, we get the solution recpiired. It will he found that this solution 

gives a tension L/26 over the left-hand extremity of the beam and a pressure L/26 

over the right-liand end. 

If Ave require to liave no tension over the right-hand end, and a uniform 

tension L/6 at the left-iiand end, to balance the shears, Ave haA^e to introduce the 

uniform tension solution P = L/2/>, Q = 0, S — 0, U = L.r/2/>E, ^ = rjhyl'2l)Fj; 

AA^e eventualK' find 

U = - 
X' -K 2/x ;ix' + 2ii Cf 

+ + 
In 

]Gyu.(X' -\- (m) dh IG/x (X' + fx) ah ‘2t 

Y = 

» L 
"h — — 

1 rn a 

X' 

—) cosli vih — — sinh mh 
'K ^ fi / 

siiili + 2riih 

+ 
L 

-(cosh my cos mx — 1) 

())})/ cosh rnh) . , 
smh my cos mx 

L 

I vijxa sinh 2mh -f 2mh 

eosli rah _ hr,// Lr;,v *__ 

S/x{X' + /j) ah ** 2//E *1 rrifia sinh 2mh -f 2mti 
my cosh my sin mx 

_ V 

ran 

L X^ -j- fx 
cosh rati H-mh sinli rnh 

A sinh mif sin mx 

T. 

sinh 2mti + '2mh 

L 4 cosh rah — 2mh sinh mh 
s'_■ 

2ah ‘ ^ ~i u 

2L cosh 7/1A 

T’ = (« - ■^) - 

Q = 

a sinh 2ath -f 2mh 

2mh sinli mti 

s = 

_ s' 

* L s 
d a sinh 2mh -f 2mh 

>; 2L cosh ///// 

1 a sinli 2mh -f 2mh 

I,// « 2L cosh mh 
4. V __ - 

2ah i a sinh 2)/>h -f- 2)ah 

+ 

sinh 2mh + 2mh 

my sinh my sin mx 

cosh my sin mx 

my sinh my sin mx 

my cosli my cos mx 

cosh my sin mx 

+ N ■- 
1 a 

2L (cosli mh — vih sinh mh) 

sinh 2mh -(- 2mh 
sinh my cos mx. 
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If a be made to tend towards infinity, we get the expressions : 

/ 1 

U = ^ 
2&E ^ TT Jo 10 

1 'A'' + fjb 

cosh II 

— I cosh u — — u siiili i( 
/r / j HU ur 
•A o“~V o ■ - cosh -- cos , sinh 2h. + 2u ' 1, ], 

da 

ttIj ]a /X sinh 2i(. + 2v 

1 

■ , ?h/ oi.r 
sinh - - cos , da 

0 0 

1 
, . , cosh 1C 4—^ }i sinh u 

Y _ E7;y/ _ b j " 1 V + fJL IX 

2hE TT Jo 1C sinh 2ic 2u 
sinli , sin - da 

L// p 1 cosh V. 

nrlj ]q IX sinli 2u + 2ic 

1 »// • j 
cosh - sin , du 

0 0 

T) _ E 2L 2 cosh w—H sinli a a . ii.>- 
■c — -; -T^rw—yw-cosli ^ sill ' da 

2b ttoJo sinh 2« + 2i6 I h 

2L?/ i'” wcosliK . mi . h.j: 
-70 • , o—tat Sinh A sin , c/u 

ttA Jo sinh 2i< + 2« h h 

Q. = - 
2L a sinh u lljl . H.r 

7 1 • 1 o , cosh , sin — du irb Jo sinh 2i( + 2a h h 

2Li/ 1” , i/coslm^- . U1J . ux , 
A—7" • 1 o—rA7“ siidi sin — die ttO-Jo sinh 2/7 + 2(7 h h 

rj -^W'/ 1 '-■UfiH !' , ail il,r 

^ — A-'’ o—TTr cosh - cos V da TT/n Jo snih 27/ + 277 h h 

2L// p 77 cosh 77 

'irlr j 0 s 

+ i J J 2L cosh 77 — 77 sinh a . mi a.r 
‘ • 1 , J, siiili ^ cos — da 

0 sinh 2ic + 2ic h 1 

(iU8). 

§ 38. Correction to he Applied in this Case to the Stretch alony the Edges as loe 

apgjroach the Points of Application of the Load. 

One of tbe must interesting ^joints about a problem of this kind is to find out at 

what distance from the region of loading the stretch parallel to the axis takes tlie 

vahm it should have on the uniform tension hypothesis. In practice all measurements 

of \ouugs modulus for bars are made by observing the stretch between two points 

marked on the outer surface of tlie liar. It is of importance to know tlie error 

introduced as we bring these points closer to the places where the stress is applied. 

Let us therefore see how the stretch dU/dx varies as we go away from the points 

of application of the load, keeping upon either edge of the beam. If v^e differentiate 

the expression (108) for U with regard to x and then write ij — h ~ y' and transform 

the expression as in § 10, we get easily 
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.)■// • ,I\j _ L _ 2L - 

il' 'IhVi ttVj f'" TT/i 1’'^ Ltt//Jo siiih 2;( + 2i' 

l\, l'“ 1 — 2/' + C "" , /'//' . y 
cosli —- sm , a a 

h h 

H . . H If . XI.r. 

, 7 I ' • , , siiih : sni , dll 
(X + fL)7rl>J(, siiih 2(1 + 2/', 0 

Lif r® 1 - 2(/ + €--«■ . , vif . ar y 
« — 7 siiHi Usiii , dll. 

27r/L(.//-Jo siiili 2// + 2?', // h 

J/ ' 0*5 ! 

1 "■ 1 "// • I 
■ --r, Cush - sill -dll 

TTijJr Jo siiili 2ii. + 2i' b h 

Putting in this y' = 0, 

ih: 

2L 1 

//' = 0 2/;E ttE 

Now the last integral may be written 

J®/1 — 2n + 

Jo \ siuh 2'U + 2u 

2\. r® 1 - 2/' + . n- . 
- 1 sin d (1. 
ttIiE Jo si nil 2ii + 2ii h 

, _'U 1 \ . V..r , 
2a 

+ ^ if X is positive, 

and if x is negative, then — -tt/I must be written instead of + 77-/4. Ji is any 

positive constant. 

Now' the function 
1 _ 2)^-1- r~-" 1 

is such that /(O) =y'(x ) = 0, f (co ) = 0 and [ j/' (ti) \ da is linite. It follows 
J U 

f oo _ 

f {u) sin y da tends 
u ^ 0 

to zero as x increases. 

Hence, if x be positively increasing ( -) tends to U, and if x be negatively 
\ d'' ; _y'=U 

increasing 
iW 

tends to L/'IiE, as it should. 
d.c '^'=11 

The values of the integral, calculated for various values of the ratio x/b, ha^■e 

;'iven the following values for (, as compared with its value for a uniform 
\lLr I 

tension L U. 
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xjh 
/,(U'| / L \ 

[ml 

- - •997 

— 2/7/3 •982 

-■ui-2 
1 • 985 

- T7-/'d 1-084 

- W6 1 • 652 

+ TT-'G - ■ 652 

+ 77 3 - -084 

+ 77 2 •015 

+ 2/7/3 •018 

+ - 
1 1 

•003 

its limiting value with very great We see therelore that the stretch reaches 

rapidity. At a distance from the point of application of the load equal to about U 

times the greatest breadth 26 of the bar the error in the stretch is only 3/1000. In 

fact the stretch begins to get near its limiting value at a much earlier stage than 

this, the error being less than 10 per cent, at a distance from the load of about half 

the greatest breadth. 

W^e find therefore that in this case also the distrihutton ol the load becomes 

practically indifferent as soon as we come to distances from the load which are of the 

same order of magnitude as the greatest dimension of the cross-section. As a 

practical rule, when accurate measurements are to be taken, it will be advisable 

to keep always a length varying from 1 to U times this greatest dimension between 

the points wheie the stress-system is applied and those at which measurements 
are taken. 

PAliT V. 

Solutions in Finite Terms : Special Application to the Case of a Beam 

Carrying a Uniform Load. 

§ 39. Solutions in Finite Terms. 

If in (21)-(25) of pp. 70, 71 we write 

X ^ wnf (A' - *®") j 
. . . (109) 

VOL. CCI.—A. u 
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Gi (f) = (C„ + ;t)„) t 

we obtain the following homogeneous solutions in x, y. 

y . (109), 

Ur= 

V = 

X ofjb 

Sfjb (X + fx) 

+ :V 
Sfjb (X + fi) 

Ol/V 
— — (A„'iv_i - + -- (C„w„ + D„t'„) 

4/x 

ny 

P = A 
m 

a I 4 

(A,/y„ (A„?.f;,_i A B„'y„_j) ^ {(u,iVn — JI);i'?/-„) 

«(??. —1) \ -J3 /:hi —1) 
:5; yVn-2) H" B„( ^ v„_i -f -— 2/w«_2 

+ n ^, (110), 

A I (''- ~ 1) \ I -D — 1) Q — -^n ( ”1" y^7i—2 j ”l~ ( A "^n—l iy y^n~~2 

n (C„M„_i + D„t’„_i) 

o A I n(n, — l) \ (n n (n — 1) 
h = K\ — - -yUn-2) + B,, “ Un-l-^-yVn--l 4 

— n (U,— ]J,ytn-i) 

where u„, i’„ are the tAAn') homogeneous solutions of 3-*^ + ^ = 0, thus, 
uX' ay" 

U,, = X“ — ^ 
n (n — 1) 

' y' + 

nx" ' y — 
n (n — 1) (n — 2) 

1.2.^ 
x” ^ y^ + 

and = 1, = 0, u_i = 0, v_^ = 0. 

We may add any number of such 2)olynoniial solutions. If Ave take n of them, 

beginning AAnth n = 1, and in the expressions (110) wnlte ^ = di we find (Q)+4, 
(Q)_i, (8)4,4 and (S)_4 each equal to algebraic polynomials in x of degree {n — l). 

A B 
Also, since A^, B,, I), come in only in the form I — Cj, y + D^, they are 

ecpuAadent to only tivo constants. We have therefore (4?i — 2) constants free. 

Noaa^ these are not enough to make Q and S coincide AA’ith any tAA’o giA^en 

})olynomials on the upper and loAver faces of the beam. Obviously, hoAA’OA'er, the term 

containing both in Q and S is independent of y and therefore cannot satisfy a 

perfectly general condition. If aa-c make this term disappear by Avriting C„ = A„/4, 

= — B„/4, AA^e haA’e iioaa' only 4n — 4 free constants left, but our polynomials 
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being’ now of the (n 2)“^ degree, we should have enough constants to he ahle to 

identify Q and S with any two, given polynomials on either face of the beam. 

As a mattei of fact this is not so ; for there are solutions, namely, those for: 

(i.) a uniform longitudinal tension, (ii.) a pure bending couple, (iii.) bending with 

constant shear, which make Q and S zero over both faces and yet do not annul all 

the 4n — 4 free constants. There must therefore be relations between the 4n — 4 

equations giving the constants. They are not all independent and, consequently, 

not every system of surface stress expressible in polynomials corresponds to a 

solution of this type. 

40. Case of n = i. 

Let us see what surface conditions can be satisfied liy the solutions of the fourth 
order. 

In this case, remembering = — B4/4, 

Q = (t - C.) + (t - X + (- - 2D,) y 

+ (it* ~ ** + (~ IBs — 6D3) xy + (IA, + 3C3) tf 

+ 12A^.x/- -h (- 3B, - l2Df)xhj -h (5B^ + 4.Df)y^ 

^ + '^1) + ( 2^ + + ^ - 203)2/ 

+ + (_ IA3 _ 6C,)xy -h (- A/B3 - 3Do)2/3 

+ (- 9A^ - 12Cf)xhj - 12B^xy^~ + (7A^, -f- iC^)y\ 

and 

+ 9 

U = I ^0 + + Ao {x- — /) 4 A3 {x^ — Sx7j^) 4 A^. {x^^ — 6xy 4 y^) 

Sf, (y + ^) I 4 Bi2/ 4 ^B.xy 4 B3 (3xV - y^) 4 B, {4x^y - 4xy’^) 

4 _11 Bi2/ 4 2B3X2/ 4 3B3 {x^y — 2/3) 4 4B^ {xhj — 3x2/3) 
1 — 2A,2/^ — GA^xy^ — 4A^. (3x^y- — y'^) 

L 1^0 + Cix 4 C2 (x2 - 2/") + C3 (x3 — 3x2/3) 4 (x^ — 6xY 4 7/) 
V 1 4 l)yj 4 2J).2xy 4 D3 (3x32/—2/3) 4 {4:X^y — 4x1/3) 

y = |“®0-BiX-B3(x3-2/3)-B3(x3-3x2/3)-BJx'^-6x3y34y4) 

8fi{x’ + ^) I 4Ai2,'42A3xy4A3(3x3y-2/3)4A,(4x3y-4x2/3) 

_ -L + 2,A^xy 4 3A3 {x^y — y^) 4 4A^ {x^y — 3x1/3) 
4/^ 1 4 ‘2.B.yf 4 6B3X2/3 4 4B^ {3xY — y‘^) 

_p i_ j ^^0 + + D3 (x3 - 2/3) 4 D3 (x3 - 3X1/3) P)^ ^^4 _ Q^2y2 _p ^1 

2/. [ - Oil/ - 2C>y - C3 (3x3i/ _ 2/3) _ 0, (4x3;i/ - 4xy^) 

u 2 
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P = ^ + Cl) + (-■ + 20,)+ y 
oB., 

4- 2D< 

+ + 30,) + .T,/ (J-iB, + GD.) + / (- - 3Cy 

+ a- (3A, + 4C,) + xy/ (loB, + 121),) + xf (- 2lA, - 120^) 

+ ?/'^ (— — 41) 

and we notice that, in virtue of the relation B^, = — 4D^ the coefficient of x-y in Q 

goes ont. Hence the coefficient of x~ is the same for-Q^^ and Q_i. This alone 

shows that the solution is not the most general that can he got, given that the 

stresses on the np])er and lower surfaces are (|nadratic functions of x. 

§ 41. Determination o f the Constants for a Beam Umfio-mly Loaded. 

Here we have, over tlie upper surface y = -{- h : Q = constant = q say ; 

over y = — b : Q = 0 ; and over 2/ = i : S = 0. 

The last two conditions imply 

Bi + 41), + V ('- _ 31)^) = (,.(Ill), 

+ 2L); - 12B,GS = 0.(112). 

-- 20, + Gy-A., + 4C,) = 0.(113). 

--IA3-CC, = 0.(114). 

2S‘ + 3D3 = 0.(115). 

-9A, -12c, = 0.(IIG). 
(IIG) and 

40, = A,.  (117), 
give at once 

A, = 0, C,=-().(118). 

The conditions for Q give 

; - Ci-('h + 3D3)5 + ;.-)^“+.3C3) + P(5B, + 4D,) = 7 . (119). 

; - c, + (h + 2ir+ I'Cf + sc) - ''MSB. + 4D,) = 0 . (120). 

-183-0113 = 0.(121). 

T - 20. + 5ni2A,) = 0.(122). 

SM-303=0.  (123). 
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-3B^-12D^ = 0. . 

(124) is identically satisfied since 

Also (122), (118), (113) imj^ly 

A., = Co = 0 . . 
(119), (120), (112) lead to 

B. + 4a = -| j 

(124). 

. (125). 

B, = - 

Also (123), (114) imj^ly 
A, - 4Cj = 2q j 

-^3 — = 0 . 

(121), (115) are identical. Together with (111) they give 

^3 = ~ j2/,2 (®i + 

(126). 

(127). 

(128). 

Equations (118), (124), (Dio), (126), (127), (128) contain the solution we require. 

If ve substitute the values of tlie constants in the expressions for the displacements 

and stresses, we find, after some reductions : 

U = const. + X |Ai I + + 2x7/ 
^ 1 1 8fM(y + f,) ^ 2/j.j ^ E ^ E 

4^3 I E ^ \e ^ i 

2^^ h~\ E 

1 

2a 

V = const. — y <! A, —^ ^-1- / 0 ox 

X* 
+ ("f + ^‘) IW 1 E - 

P = (n' + C.) + 2B,2/-'|' + |'(| + D, 

_ 3 I 
4 ^,s -f 2/^2 > 

Q = 

s = 

1 I '"’’P _ 

2 4// 4}r ’ 

7+D,)(i-S 
qx a ^ 11 _ on 

^hV U 
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In the above terms in A^, correspond to a uniform tension along x, the terms 

to a rigid l)ody rotation, the terms B^to a solution for a pure bending couple, and the 

/I) 
terms ( ^ + I>ij to a solution for bending under a uniform shear. These various 

constants can be adjusted according to the conditions at the ends a; = i 

If, for instance, the total pressure over the ends and the total bending moment are 

to lie zero, the load '2qa lieing balanced by the shear at these ends, \ve have 

:iAi 
-j- C] — 0, 

■? + T), = 0, 
4 

and we then have 

Q 
%// 
45 

B, = + 
qa~ 

17^ + f 
'1 
I 

3 I I 3 
4 i- 2lf ^ 53 

gi7 
4/d 

V = -(|, 
a" I ^ \ g / o ‘■’N I 

+ eG-w-) + 1653 
A 6aV , 4 
^ -v^ + y 

1 

E 

^ (129). 

-/ 

This is the solution for a beam uniformly loaded on the top over a length '2a and 

held up by shears over its terminal cross-sections. In this way the case which 

occurred in the general solution, and of which the consideration was postponed in ^ 9, 

namely Wq =p /S^, is seen to lead to a fairly simple solution in finite terms. 

§ 42. Remarks on the above Solution. 

The above values (129) for U, V, P, Q, S in the case of a beam carrying a uniform 

load, lead to the following remarks :— 

(1) There is no “Neutral Axis” properly so-called; i.e., although the tension 

vanishes for y = 0, t is not strictly pro|)ortional to y, a cubic term being introduced. 

But if [a^ — laige, which is the case for any beam whose length is large 

compared with its height, the proportional efiect of the terms introduced will 

be small. 
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(2) The stress Q is not zero ; that is, de Saint-Venant’s assumi3tion, that there is 

no stress across fibres parallel to the axis of the beam, does not hold. Indeed, it was 

obvious from the beginning that it would not, seeing that tliere is a stress Q at tlie 

upper surface, by hypothesis. 

(3) The distribution of shear at each cross-section is parabolic, and is given in terms 

of the mean shear by the same formula which liolds when the shear is uniform. 

/(PY\ „ (fd — x") Q)q 

^ ~ 5ES' (-t) r7r2 / LIX /y = 0 

3 
4 

The curvature is therefore no longer exactly proportional to the bending moment, 

but contains an additional constant term. A similar result has been obtained by 

Piofessoi Karl Pearson and the author for beams of elliptic cross-section under 

their own weight (‘ Quarterly Journal of Mathematics,’ vol. 31, p. 90). It has 

since been shown to hold for beams of all forms of section by Mr. J. H. Michele 

(‘ Quarterly Journal of Mathematics,’ vol. 32). 

§ 43. Historical Summary : Remarks and Criticism. 

It may be of interest to give in this place a short sketch of the previous works on 

the subject, in so far as they are at present known to me. 

Lame, in his Lecons sur lElasticite (p. 156 seq.^, discusses the general problem 

of the lectangular block, with the single restriction, that the surface stresses are 

purely normal and are even functions of the co-ordinates. He fails to determine his 

constants, except in the particular case w^here the cubical dilatation throughout the 

block happens to be previously known. As this condition is never satisfied in any 

actual problem, the solution is of comparatively little use. 

De Sai.nt-Venant, in a classical memoir (‘ Memoii-es des Savants Etrangers de 

I’Academie des Sciences de Paris,’ vol. 14), has given solutions for the rectangular 

parallelepiped under torsion and flexure. These solutions correspond to tlie case of 

terminal stress-systems which are transmitted through an otherwise unstressed 
long bar. 

Numerous attempts have been made to solve the problem of the rectangular elastic 

solid by removing one or more faces to infinity, and thus simplifying the surface 
conditions. 

M. Emile Mathieu, in his treatise, ‘ Theorie de lElasticite des Corps Bolides,’ 

Pans, 1890 (see also ‘ Comptes Rendus,’ voL 90, pp. 1272-1274), has given a solution 

of the problem when it can be reduced to two dimensions. His problem is therefore 

practically the same as that of this paper, excejit that he has considered only what I 

have called case (A) on p. 66, and also, that the length a is not taken to be large and 

the distribution of stress over the faces x= a is given. The solution is, however, 

so complex in form, and the determination of the constants, by means of long and 
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exceedingly troublesome seiies, so laborious, that the results defy all attemjjts at 

interpretation. 

Dr. Chree (‘ Roy. Soc. Proc.,’ vol. 44, and ‘Roy. 8oc. Archives’; also ‘Quarterly 

Journal ot Mathematics,’ vol. 22) has considered at length the solutions of the 

equations of elasticity in integral powers of x, y, z, and has applied them to the beam 

problem. Among other results he has obtained expressions for the teians independent 

of s of a foim similar to (110) of this paper. Incidentally, he verities a number of 

DE Saint-Venant’s results ; but no further application is, I think, made of the two- 

dimensional terms. 

Quite recently, Mr. J. H. Michele lias investigated the theory of long beams under 

uniform load (‘ Quarterly Journal of Mathematics,’ vol. 32, pp. 28 et seq.). The object ' 

appears to be to extend he Saint-Venant’s researches to uniformly loaded beams. 

Mr. Michell deduces several interesting results applicable to beams in general and 

to the rectangular beam in particidar, but, so far as I can see, he makes no claim to 

having obtained explicitly the complete solution in any case. 

Ihe surface conditions, however, may be thinned down still fui'ther by removing 

four faces to infinity, leaving only an infinite })late of finite thickness. The problem 

in this form has been formally solved by Lame and Clafeyron (“Sur Tequilibre 

interieur des solides honiogenes ” ; ‘ Memoires des Savants Etrangers de I’Academie 

des Sciences de Paris,’ vol. 4, pjj. 548-552). Their solution, obtained in the form of 

quadruple integrals, satisfies tlie surface stress conditions over the two infinite faces. 

The objections to this solution are two-fold. In the first place it is difficult of inter¬ 

pretation, and the integrals do not enable us to obtain a clear notion of the separate 

effects of the various forces applied to the jDlate. In the second place this solution 

takes no heed of the conditions at the other four limiting faces of the plate which, we 

should always remember, although they have been removed to a very large distance 

away, have not physically disappeared. Given total tensions, shears and couples, 

applied to the f()ur narrow faces of the plate, will j^roduce stresses that will be 

transmitted through the plate, exactly as in the case of a bent or twisted bar, and 

will produce a finite effect at points of the plate infinitely distant from the edges, 

even though the large plane surfaces should be absolutely free ffoin stress. 

In order therefore that Lame and Clafeyron’s forniulse may correspond to a 

physical reality, we must superimpose on their solution another of this transmissional 

such that the total shears and total couples due to the sum of the two solutions 

are all zero round the contour of the plate. Now the problem of the thick elastic 

rectangular plate, under given total shears and couples round its contour, but other¬ 

wise free from stress (which is the analogue foi‘ plates of the ordinary tensional and 

flexural solutions for bars), is another of the unsolved problems of the theory of 

elasticity and, until it is solved. Lame and Clafeyrhn’s solution, unless it happens 

of itself to satisfy the conditions of no total force at the edge—which vlll only be 

true ill special cases—fails. 
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More recently the same problem has been attacked by M. C. Eibiere in a thesis 

(‘‘Sur divers Cas de la Flexion des Prismes Rectangles,” Bordeaux, 1889 ; see also 

‘ Comptes Rendus,’ vol. 126, pp. 402-404 and 1190-1192) in which he gives a solution 

in a series of circular and hyperbolic functions. He takes his plate of finite dimen¬ 

sions and built-in (encastree) at the edge. By this term he understands that the 

edge is constrained to remain plane and vertical, and is subject to no shearing-stress. 

For other terminal conditions the solution, as M. Ribiere states himself, is insufiicient. 

I find that, if the edges of the plate be removed to infinity, his solutions degenerate 

into Lame and Clapeyrox’s integrals, of which they therefore give the true 
meaning. 

M. Ribiere, in the same thesis, has also investigated the two-dimensional case, 

which has been treated of in the present paper. ^ I am indebted to M. Ribiere for 

very kindly communicating to me his thesis, with which I became acquainted after 

my woiF had been completed. His solutions are of the form (26) (27) (28), and he 

determines his coefficients, as far as I can see, by the method used here, but does 

not transform his expressions further. Like Lame and ChapeyroxX, he restricts his 

applied surface stresses to be normal and investigates only two sjcecial cases. 

M. Ribiere takes, as I have done, m = mr/a. This, by the v^ay, is not absolutely 

necessaiy. Another set of solutions might be obtained by taking m = (2u +1) 7r/2a. 

When a is made very large, as is the case in every one of the problems treated here, 

either set of solutions will lead to the same final form, provided the total terminal 

conditions are attended to. M. Ribiere, on the contrary, in order to be able to 

evaluate his series, which become far more manageable when 6/a is large, treats 

chiefly of cases of thick beams of very short span. Now in this case it is no longer 

permissible to consider merely the total conditions over the ends x= ±a, and to 

treat the actual distribution over these ends as unimportant. M. PtiBiERE gets over 

this difficulty by supposing his beam to be encastre, as defined above. The same 

mathematical condition of fixing is assumed by Professor Pochhammer (‘ Crelle’s 

Journal,’ vol. 81) when treating in a similar fashion of the beam of circular cross 
section. 

It seems doubtful whether anything of this kind does really occur at an actual 

built-m end of a beam. Certainly Pochhammer and Ribiere’s conditions do not 

agree with the view taken by be Saint-Venant, who, in his calculation of the 

deflection for a cantilever, has assumed that the elastic line is not horizontal at the 

built-m end. In this case, however. Love has pointed out that the elastic line may 

have any small slope at the budt-in end, provided we superimpose a suitable rigid 

body displacement. But both he and be Saint-Venant agree to make the ^d 

* Since writing the above, I find that Professor Lamb (‘Proc. Loud. Math. Soc.,’ vol. 21, p. 70, paper 

read December, 1889) has worked out the same problem in the form of a series of circular and hyperbolic 

functions, but he has left his results in this form, without interpreting them further, and I cannot discover 
that he has considered end-conditions. 

VOL. CCI.-A. X 



154 MR. L. N. G. FILOX ON AN APPROXIMATE SOLUTION FOR BENDING A 

sections distorted. As a matter of fact, what really happens at a built-in end is 

quite unknown. Under these conditions any solution which makes U = 0, cWldx = Q 

over the ends must be restricted to the case of an infinite continuous beam resting 

upon a series of equidistant supports, each at the same vertical height; the load 

carried by the beam being exactly rej)eated over each span. A rail under its own 

weight and carried on sleepers is an approximate example. In this case Pochhaw^ier 

and Eibiere’s solutions are exact, and it is then legitimate to make the span as small 

as we please. 

In practice such conditions will but rarely occur, because, as is well known, any 

slight difference in the height of the supports, or in the manner in which the beam 

bears upon them, will upset the symmetry altogether. 

The ultimate stej^ in the process of thinning down the boundary conditions is taken 

when one of the two boundaries of the infinite jolate is itself removed to infinity, 

leaving only one plane bounding an otherwise unlimited solid. 

This problem also has been solved by Lame and Clapeyeox {loc. cit.) in terms of 

quadruple integrals. In this case the limiting conditions at infinity cease to be 

important, because, in a solid infinite in three dimensions, finite stresses are not 

transmitted undiminished from infinity, as in a rod or lamina. The solutions, in 

fact, will lead to stresses that become zero at infinity. This has been shown by 

Boussinesq Ajjplications des Potentiels a I’Etude de lEquilibre et du Mouvement 

des Solides Elastiques,’ Paris, Gauthier-Villaes, 1885), who has interpreted Laaie 

and Clapeyron’s results, and obtained by a new method simple expressions for the 

stresses in an infinite solid, due to arbitrary surface forces applied to a bounding 

plane. The same results have lieen obtained by Professor Cerruti (“ Bicerche 

intorno all’ Equilibrio de Corpi Elastic! Isotropi,” ‘ Reale Accademia dei Lincei,’ 

vol. 13, 1881-2) in a different way. 

Boussinesq, on p. 280, suggests a possible ajiplication of his method to the case 

of two parallel planes, but he makes no attemjit to follow it up. 

In two papers in the ‘ Comptes Bendus’ (vol. 94, pp. 1510-1516, and vol. 95, 

pp. 5-11) he has considered the case when the problem of the infinite plane may 

be treated as two-dimensional, and there he has tried to extend his method to two 

parallel planes, but had to fall back upon an assumption mathematically unjustifiable. 

§ 44. Recapitulation of Results and Conclusion. 

Looking back upon the results obtained, we see that the general solution given 

has enabled us to deal with all the most important statical problems connected Avith 

the elastic equilibrium of a long beam, of finite height, in so far as the approximation 

involved in treating them two-dimensionally is valid ; and it will be A^alid, if the 

horizontal dimension of the cross-section be either Amry small or A^ery great. 

Incidentally the question of the effect of concentrated loads, whether in the form 
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of pressure or of shear, has been discussed. In the case of a beam doubly supported 

and carrying a concentrated load in the middle, a convergent series lias been 

obtained, giving the exact correction which the finite height of the beam makes it 

necessary to apply to Boussinesq’s results for an infinite elastic solid. 

The results of this part of the paper have been tested by experiments on glass 

beams, of which it is hoped to eventually publish an account, and they have been 

found to agree, on the whole, with observation. 

The effects of pressing a block of elastic material which rests on a rigid plane, and 

the manner in which such pressure is transmitted to the plane have also been 

investigated. It has been found that the pressure on the plane is limited to a 

restricted area, outside which the elastic block ceases to be in contact with the plane. 

The effects of shearing stress have next been considered, in particular the 

distortion which it produces in lines parallel to the axis of the beam. As in the case 

of the circular cylinder and in that of the infinite solid bounded by a plane, shear is 

found to depress those parts of the material towards which it acts. 

It is also found that a discontinuity in the shear applied to the surface—although 

the shear remains finite—involves one of the other stresses becoming infinite, and so 

is a source of weakness and danger. 

The behaviour of a beam under two concentrated loads, acting in opposite senses 

upon opposite faces of the beam, has been studied. The manner in which the shear 

across the section varies as these loads are made to approach each other has been 

exhibited by various diagrams. They show how rapidly the effects of the particular 

distribution of any total terminal load die out as we go away from the end. At 

a distance of the order of the height of the beam, they already begin to be 

negligible. 

At a lesser distance than this, however, such effects may become exceedingly 

important. The case of rivets is instanced, and it is suggested that the results 

obtained here may give some information which shall be useful in this connection. 

Finally a solution in finite terms is obtained for a beam which carries a uniform 

load. It is shown that the assumptions of the usual theory of flexure are in this 

case no longer true, but are approximately true only if the height be very small 

compared with the span. The correction to the curvature, as calculated from the 

usual formula, is found to be a constant. 

AVith regald to the numerical work, the arithmetic has been checked wherever 

possible, and it is believed that no serious error has crept in. The values of the 

integrals, however, have been obtained by the use of quadrature formulae, and these 

may not have given a satisfactory approximation in all cases. The three first decimal 

places, nevertheless, should be correct. As the numerical work was undertaken 

chiefly to illustrate fairly large variations and to represent them by diagrams, this 

accuracy appears sufficient. 
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Introduction. 

§ 1. In a former paper"^" I have considered the effect of gravitation as a factor tending 

towards instability, in the case of a spherical nebula of gas. The object of the jiresent 

paper is to investigate the analogous problem in the case of a spherical planet, the 

planet being supposed composed of solid or fluid matter. The main question at issue 

is the following. 

§ 2. So long as gravitation is neglected there can be no doubt as to the stability of 

an elastic solid; any displacement increases the potential energy, and an unstressed 

configuration of equilibrium is therefore necessarily stable. But when gravitation is 

taken into account, the gravitational energy may be either increased or decreased by 

a displacement from equilibrium, and if a displacement can be found which effects a 

decrease in the gravitational potential energy of amount sufficient to outweigh the 

increase in the potential of the elastic forces, then the equilibrium configuration will 

be unstable. 

Now, in § 2 of the previous paper already referred to, it was shown that for any 

spherical body displacements can be found such that there is a decrease in the 

gravitational potential. This is sufficient to prove that a spherical configuration of 

equilibrium may be unstable. 

In the terminology of PoiNCAREf it appears that on any “linear series” of 

spherical configurations there may be “ jioints of bifurcation.” 

We must, therefore, attempt to settle the position of these points of bifurcation. 

In particular, it will be of interest to examine whether a sphere of the size and 

material of the earth may be regarded as being anywhere in the neighbourhood of a 

point of bifurcation. 

* “ The Stability of a Spherical Nebula,” ‘ Phil. Trans.,’ A, vol. 199, p. 1. 

t ‘ Acta. Math.,’ vol. 7, p. 259. 

VOL. cci.—A 335. 4.4.03 
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Pi'eliminarij A'ppi'oximo.tion. 

§ 3. A rough and very simj^le calculation will give an approximate answer to this 

latter question. 

Let Cl be the radius of a sphere, which will ultimately be taken to be the earth, 

M its mass, and the mean density given by M = ^vp^a^. 

Let us use the elastic constants X, and let Xo be the mean value of X. Since 

the sphere is supposed to be spherically symmetrical, X, p, and p will be functions of 

the single co-ordinate r, the distance from the centre. Imagine X/X^, p/Xq, and p/p^ 

each expressed as functions of r/a, and let c^, Co, , . . be the coefficients which occur 

in these functions, these coefficients being mere numbers and independent of the 

system of units in which X, p, and a are measured. 

Imagine a linear series of equilibrium configurations obtained by varving any one 

of the quantities X^, p^, or ci, while keejDing the remaining two quantities and the 

coefficients c^, c^, . . . constants. The points of bifurcation on this series will occur 

when the varying parameter becomes equal to some definite function of the remaining 

quantities and of y, the gravitational constant. 

Hence, however the linear series are arrived at, the points of bifurcation will be 

given by an equation of the form 

fiyr- K Po^ 0^. Cn.c'o. . . .) = 0.(1). 

Now the coefficients c^, Cg, . . . are mere numbers, and the only way in which y, 

Pof and a can be combined so as to give a mere number is through the term 

ypo'«7^o- Hence equation (1) can be expressed in the form 

e have seen that the spherical configuration must be unstable for some values of 

y, po> and X (c.p., it is always unstable for yp^~a^l\ = oo ), hence equation (2) must 

have at least one real root between yp^^ci^jX^y = 0 and yp^^a^|\Q = oo, Let the lowest 

root he 

ypo^^lK = ^.(3), 

where (fi is a function of Cj, Cg, . . , ; then a .spherical configuration is stable so long as 

yp^hi~l\^ < and becomes unstable as soon as yp/aV^o > 

I he coefficients c^, Cg, . . . will, on the average, he comparable with unity, because 

X, p are 1‘eferred to their mean values ; they are as likely (speaking somewhat loosel}") 

to be above as to be below unity. Hence cf) itself will be comparable with unity, and 

* The notation is that of Love’s ‘ Theory of Elasticity.’ The m, n of Thomson and Tait are given 

A -f /n = M /i = H. 
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it is not at present possible to say whether it is more likely to be greater or less 

than unity. 

§ 4. Now, in the case of the earth (Thomson and Ta.it, § 838), we have 

a = 640 X 10® centims,, = 5‘5, 

and the value of y in C.G.S. units is known to he 

y = 648 X 10-1®. 

This gives for yp^o? the value 

=8 X lOii, 

whence it appears that for a sphere of the size and mass of the earth the spherical 

configuration will be unstable unless \ has a value comparable with 8 X lOH. 

Now for steel {cf. Thomson and Tait, p. 435) the values of the elastic constants in 

absolute units are n = p. = 7'7 X lO^, m = \ p = 16'0 X lOH, whence 

\ = 8‘3 X lOii. We therefore see that the critical values of the elastic constants in 

the case of the earth are comparable with those of steel. 

The foregoing calculation is, of course, very rough, but it shows that the critical 

values for the earth are at least in the neighbourhood of what must be supposed to be 

the actual values, so that we are driven to attempting a more accurate determination 

of these values. If the view of the jiresent paper is sound, this approximate ecpiality 

is more than a mere coincidence ; we shall see that it could have been predicted frum 

our hypotheses of planetary evolution. 

We now attempt a rigorous mathematical investigation of certain problems which 

have a bearing upon the astronomical questions in hand. Those readers whose 

interest lies in the application of the results rather than in the processes by which 

they are obtained may be recommended to turn at once to § 22. 

The Stability of a Gravitating Elastic Solid. 

The Equations of Small Vibrations. 

§ 5. We shall begin by discussing the principal vibrations and the frequency 

equation of a spherically symmetrical solid. The case of a non-gravitating sphere 

has been fully discussed by Professor Lamb,* but the inclusion of the gravitational 

terms, as will be seen later, brings about a considerable complication in the analysis. 

The case of a gravitating but incompressible sphere has been considered liy 

Bromwich,t but this has no bearing on the present problem, in which the whole 

“On the Vibrations of an Elastic Sphere,” ‘Proc. Lond. Math. Soc.,’ vol. 13, p. 189. 

t “On the Influence of Gravity on Elastic Waves, Vc.,” ‘Proc. Lond. Math. Soc.,’ vol. 30, p. 98. 
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interest turns upon the compressibility. The solution which follows is, in its main 

points, very similar to that of Professor Lamb, so that I have not thought it 

necessary to give the steps of the argument in great detail. 

From the symmetry of the solid it follows that the elastic constants \, fi, and the 

density p, will be functions of the single co-ordinate r, the distance from the centre. 

Taking the centre as origin, we shall use rectangular co-ordinates, x, y, z, and shall 

suppose the solid to execute a small vibration, such that the displacement of the 

element initially at x, y, z has components, ^,77, The component of displacement 

along the radius will be denoted by u and the cubical dilatation by A, so that 

u = -{^x-\-rjy tz), A=+‘is + y. 
dx ^ dy ^ dz 

§ 6. After displacement the density at x, y, z is 

or, since p is a function of r only, 

dp 

Hence tlie gravitational potential at x, y, z is changed by displacement from Y 

into V ~ E, where E is the potential of the following distribution of matter :— 

(i.) A volume distribution of density 

+ .(A 

(ii.) A surface distriljution of which the surface density is 

(Po - Pi) (5), 

this being taken over every surface at which the density changes abruptly, the change 

being from p^ to p^ in crossing the surface in the direction of r increasing. In 

particular this will occur at the outer surface of the solid, the value of p^ in this case 

being zero.* 

§ 7. The potential at rr, y, z after displacement being Y — E, tliat at x -f- ty + rj, 

z t, will be 

.a\ 0\ 0V 

0.'/ dz 

03Y 

07 + 

-E-^ 
0E 
A- 

0E _ 0E _ 
d y ^ 0 f “ • • * 

*■ In the investigations on gravitating spheres given in Thomson and Tait’s ‘ Natural Philosophy,’ the 

course of procedure is tantamount to neglecting the volume distribution (4), and regarding E as the 

potential of a surface distrilmtion (5) alone. For this reason the result obtained differs from that of the 

present paper. 
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Hence the force at x -r y r], z i in the direction of x increasing, found by 

differentiating the foregoing expression with respect to is, neglecting squares of the 

displacements. 

cV , , 0-V , BE 
ad + ^ aha,// + ^ a^ar a.- (0). 

Let us suppose that, in addition to its own gravitation, tlie sj)here is acted upon 

by an external field of force of potential Vy, and let us, in the usual notation, denote 

the six stresses by P, Q, R, S, T, U. Then the equations of motion of the element 

at :c + ^, y + p, 2 + ^ in the displaced configuration are three of the form 

ap , ar , aT , /aw , .ffw , a^v , ^ffw 0e\ , , 
^a^^a.+ a^/+a; + /^(ad + ^aA+^aray + ^a.a.“^j- • 

in which W = A" -|- A^y, and all the terms such as ^ 
aw anv 

, ^ , , . . . are evaluated at 
IX a.';" 

X, y, 2, but p, P, Q ... are calculated in the displaced configuration at + f, y + y, 

s + C. 
§ 8. Now the only case in vdiich we have any accurate knowledge as to the values 

of P, Q, R, S, T, U is when the whole strain is small, i.e., when AV is small. In the 

case of the earth, A^ is not, in this sense, small.^ The only way in which we '^an 

proceed with any certainty is, therefore, by taking A^y = — A", or W = 0. That is 

to say, we must artificially annul gravitation in the equilibrium configuration, so that 

this equilibrium configuration may be completely unstressed, and each element of 

matter be in its normal state. In this case it seems justifiable to suppose both the 

density and rigidity to be constant throughout tlie sphere, and, indeed, it is only 

with the help of this simplification that the equations become at all manageable. 

The vibrations of this system will be of two kinds. First there are “spherical” 

vibrations in which the displacement is purely radial at every point, so that the solid 

remains spherically symmetrical after displacement, and, secondly, there is the larger 

class of vibrations in which the di.splacement is not of tins simple type, so that the 

displaced configuration is not one of spherical symmetry. 

We hope, by discussing the vibrations of this system, to obtain some Insiglit into 

the corresponding vibrations of a natural non-homogeneous solid, say the earth. Now 

it is extremely doubtful whether the spherical vibrations of our artificial system have 

much in common with those of the natural system, but it will be seen later that this 

is of no importance. AVe shall not be in any way concerned with tliese vibrations. 

What we shall require is a knowledge of the imsymmetrlcal vibrations, and this, it is 

hoped, can be obtained with fair accuracy from a consideration of the corresponding 

vibrations in the artificial case. There must be some uncertainty even in the case of 

unsymmetrical vibrations, and, unfortunately, this seems to be inevitable; our 

* Lovr, ‘ Elasticity,’ L, p. 220. 

YOL. CCI.—A. Y 
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artificial case appears to be the only case in which the equations can be solved by 

ordinary analysis. 

We now replace P, Q, R, S, T, U by their ordinarily assumed values, and ecjuation 

(7), putting W = 0, takes the form 

P fjf. — (^ + d) 0.. + 
0E 

• • (8), 

and there are two similar equations for 77, 

The P rinci'paJ Vihratiom and Frequencij Eqvritions. 

9. Difterentlate these three equations of motion with respect to x, y, z and add; 
then 

p ^ = (X + 2p) V^A - pV^E.(9). 

Now, from the definition of E, we have, in the case in which p is constant, 

= — 47rpA.(10), 

and hence equation (9) becomes 

P = (k + 2p,) WA + Jvrp^A.(11). 

If we suppose A proportional to cos ]>f, this equation assumes the form 
(V^ fi- «:“) A = 0, where 

_ p(p“ + Jtt/j) 

X -|- 2y£X (12). 

There is, therefore, a particular solution of (11) of the form 

A = r“^J„^.j(«:r)S«(d, (f)) cos pt.(13), 

vheie cf)) is a surface harmonic of order n, and the general solution found bv 

summation of solutions of this type is 

A =--^'“-J;, + j(/cr) (^?, (^) (A cos 7V + B sin .... (14), 

wheie the summation extends over all possible harmonics, and over alb values of k. 

It V ill appeal later that each term in this solution can be made to satisfy the 

boiindaiy conditions, and, therefore, that each term represents a normal vibration. 

The vibrations may, therefore, be classified into vibrations of order 0, 1, 2, &c., the 

order being that of the harmonic which occurs in the expression for A. The vibrations 

of order n = 0 are the spherical vihrations already referred to. 
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We shall assume this provisionally, in order to avoid the continual repetition of 

double summation, and now proceed to evaluate rj, ^ and to form the boundary 

equations for the simple vibration given by equation (13). 

§ 10. From equation (8) it appears that the displacement f is given by 

^ ^ af“. 

The solution is 

+ .(1^)’ 

where is any solution of 

p^p(f> + = — (A. + p.) A 4* pE.(li")) 

and is the most general solution of 

+ ,xV’f„ = 0.(18), 

It can easily he verified tliat a solution of equation (17) is 

.•> 

jr 

\ + 2p 

P 
A (1!)). 

There will he solutions for rj, (, similar to (16), hut the three solutions for rj, 'Q 

must he such that 

y + ';’' + 'f=A.(20). 
ih'. cljj dz 

The left-hand member of (20) is, from (16), 

+ f + 1 -1^1 , 
dy dz 

and from (lO) and (17), tlence (20) is satisfied if 

I I 

^d.c dy dz 
- 0 . (21). 

§ 11. Write u for — £+ -f- as before, and ((q for -f '^ 

we shall verify that the solutions for u and u^^ are 

u — aS„, ((q - 

in which «, are functions of r, as yet unknown. 

Assuming these solutions, the value of E, calculated as explained in § 6, is 

•pi _ "iTrpS^j J 1 

2» + 1 [r 
J«+i {xr) dr -f r (/cr) dr + ^ 

Then 

(22), 

(23), 

Y 2 

where denotes («),.=„. 
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We can calculate the value of the integrals which occur in this expression, and the 

sum of the first two terms inside the curledjjrackets is found to be 

2,1 + 1 ^ 

Hence we may write (I U) in the form 

w here 

(G = Ch’ (xr) -f- [k<.() 

_ A + 2/i, ^ 47rp 1 

irp jrK^ K~ 

(•24), 

D = - 
Airp 

a -n + k 

(2,1 + 1)2)-K 

e now have, from equation (16), 

■iirp d d 

^ ~ dx + d7 (2/( + 1) p~ dx 1 + fo 

and hence 

f/r ^" + (2;i+ l)y^ 

(25). 

(26). 

§ 1-j. llieie aie thiee boundary-conditions to be satisfied, expressing tliat the 

normal pressure and the two tangential tractions shall vanish at every point of the 

fiee surface. As LawB“' shows, these may he represented by three symmetrical 

equations, to be satisfied at the surface v cy, each of the tvpe 

^ ('’'0 + d (= 0. 

hiil/stituting for ^ and u I'rom (25) and (26) this becomes 

d XA.r -p jx 
h/ / dddi ' d d 
.faC' .,r 

iirp (2n — 2) d 
+ ^ ,0, (2,1 A 1) 2-r dx a" 1 

’r"a S 
+ /Y- 

dx 

dx 'dr ~ 
— 0 (27). 

§ 13. Write 

d 

dx 

so that the right-hand members are solid harmonics of deo-rees ii - 1 and -(n A- -H • 
then ^ - V -r -A- 

* L.VJli:, lor. rit. aide, j). 191. 
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xS„ 
r 

2«T 1 

d 

diz 

1 

‘In + 1 

d 

Jr ■/) 0) 

From these identities it is clear that if the terms in (27) which do not depend on 

or Uq are expanded in spherical harmonics, they will contain no harmonics other 

than oj and y. We therefore see that the form of rnay be assumed to be 

= + .(^8), 

where and arc functions of r. The value of Uq is 

= 1)©)S,.(29), 
whence 

= 1)<Q.(30). 

§ 14. Substituting for in (27) and eipiating the coefficients of w and y, we obtain 

the two following e(piations which must lie satisfied at r = a :— 

V ?'VT„ + J (Ar) 1 

2/i + 1 /X 2/t T I 

d 
j,— («+ 0 / y1l + 2 

dr dr 

d d 

+ 
47r/5(2a - 2) fr' 

(2a + l)ffi Vy 

-i-i 

r, 4- — ^_,.-0 + i) T /,.»+2 

““ + 2a + 1 ' 

d 

J '■.^('•”A) + r'')“-5a = o (31). 

and a second equation of a similar kind, of which the first line can he obtained from 

the first line of the above by writing — [n -f 1) for n, and the second line is 

I / n \ 

■J.,1 + 1 (/)■ ' ' ' d, 

llie expression winch xiccurs in cui'led Ijrackets in (31) can lie transf irmed into 

d 
"’v .ffl)i 

while the correspxmding expression in (32) is seen to he 

d i \ d 

+1 
(33), 

from ihe value of (fi, given by eipiation (24), 

d 

dr 
(..i.qjT) ^ Cb/ '-ffi,_.(«r) + {2,1 + l) L)rM,_,(/<o), 

£(r-”^)= - CKr-^-^)J,„jKr). 



166 MR. J. H. JEAXS OX THE VIBRATIOXS AXD 

Hence expression (33) becomes 

2 [CWJ„_.(Kr) - + (2u + l)(n - 1) Dr’’-’J„_jKa)], 

of which the value at r = a is 

^^i = 2aiC/c-J,,_,(/ca) + 2[{2u + l)(n - l)Da'^-^ - na-K^K\.].,_,{Ka). 

Phis IS the value at t = a of the term which occurs in curled brackets in 

equation (31). The value of the similar term in (32), namely expression (34), is seen 
to he 

do — 2«-C/c‘J„+^ (/c«) — ‘2 (n-j- 1) (/ca) 
Write 

2:1 — [ko) . . . 

r = A + ^ («,) . , , 
fJb -r- \ / 

then eijuatmus (31) and (32) become, at r = rq 

a + «, + a—A. (,-v. + (2« + 1) (<■ 
(Ir 

,1 <m 
d + (^' ^Vq,) — (2u q- 1) ( r j = U 

Now Ave have, from equation (26), 

(35). 

(361, 

(67), 

P)=0 . (38), 

• . . . (39). 

Write 
dr L, 

I I r ^ -i- AR-+ (aoh =« {'In + 1) p- 

drrpn _ /d(2/i 3-'1 ) 

{In + 1 ) p~ _ {'hi + l)yr — 47rpii. 

then this last ci^uatioii becomes 

Now, at r — «, 

a„ = C' rxc 
i/Q'i 

or 

II, 'I 
ih .('■'"A) = ('‘+2)a„_« 

fh 

a 
dr 

and equations (38) and (39) become 

;t,y I - 2)r / ^ 
a + —, (a„ + ^ 1 

r \ ■ dr 

da, 
V — {yi 1) + a — (2n + 1 

m which r must be put equal to a. 

dr 
dp 
dr 

- P ) = 0 . (40), 

• • (61), 



STABILITY OF A GRAVITATING PLANET. 1157 

15. Now is known to be a solution of equation (18), and hence, from equation 

(28), we may assume 

(hr), © = {hr), 

h^=]^p/l^. 

It follows that at r = a we may write 

where 
(42). 

wliere 
J 

« - = B®, 

A = a -- log {<1 (ha)) . 

B = a log (crhJ„+3 {ha)) . 

Hence, from (30), we have at r = «, 

da., 
a 

dr 
" = r,Ap - (n + 1) B® 

(43) . 

(44) . 

(45) . 

Lastly, we have from (28) 

L = 1I>-^"''|,(>-"S.) + Q>-" ’£('■-'""”8.). 

In order that (21) may he satisfied, we must have 

^(P,-’*+-) (n + 1).= 0 

dr H/' 
(46). 

Substituting for and (1^, we find that this is satisfied for all values of r it 

«fo+(” + 1)®0 = «.(40. 

® - ep.(48), 

.(43). 

fie., if we have, at r = o, 

where 
^ _ r._ J„ + 3 {hn) 

V + 1 'I«_i {Iifi) 

Equations (40) and (41) now assume the forms 

^+4vp(2n-2)r^ 

p~ fir 

4:71 p (2n — 2) r _g 1) + (^3 _ 1) + (,,3 q_ 3„ q_ 2) 

+ (3)? + l) A-(n+ l)Bd = 0 . . (50), 

F + P[u —«^ + (w2+2n)6' + ??.A —(3/? + 2)B(9] = 0 . . . (51), 

in which r must be put equal to a. 

The general frequency equation may be found at once by tlie elimination ot p, the 

values of and B being given by equations (36) and (37). 
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Points of Bifurcation. 

IG. The interest of the question lies in the position of the points of bifurcation ; 

to find these we must put if ■= 0 in tlie frequency equation. The reason why it was 

not j)ossible to put jr = 0 at an earlier stage will l)e understood hv those who have 

read the former paper “ On the Stability of a Spherical Nebula.” In the present 

instance it is, perhaps, sufficient to say that putting p~ = 0 at an earlier stage would 

have led to an entirely misleading result. Upon putting jf = 0 in equations (50) 

and (51) we find that the two Ijrackets multiplying vanish, and we therefore see 

tluit must he treated as an infinite quantity of the order of l/p-. 

Expanding these brackets as far as jf, and then putting p- = 0, we find that the 

two equations l^ecome 

- Wfh - 0 

wliere 
(52), 

a’j = (?!I + 
T-n-g (2/i. — 2) c 

V- dr 
X. = V, 

_ (/? — 1) (2/; + Ifi per I 2(2)1- — 1) 3/i + 1 

' ‘ ‘P'^p M + 1) (2)1 + “ 2{,i + 1)] 

y-z = 
per n 

2(2)1+ ])(2a + 3) 

The equation giving points of bifurcation is, of course, 

. (53), 

+ ‘Uffi = 0.(54) 

ihe values of and x.^ are found, after some simplification, to lie 

(« — 1) (2)1 + 1) d ^ (ku) -f- 20 (/cu ) — na (/<«) 

2(n - 1) (2a +1) 

n 

+ 
■)IK 

{kC() 

del 

. . . (55), 

U — ^ + 1 fa) + 2u-0/f'J„+5 fa) — 2 (n -f l) {kci) . . (50). 

Now, it lias already 1jcen seen tliat 0 —-- (p. 104). If we substitute this value 
K- 

loi (.•, V1 ite X lor ko, and sliiq)]ify equations (55) end (50)) as far as possible, we have 

J, ,, ( A -f J / X 2{)i - 1)(3« + 2) 
‘ + ;-r J.+i. (U---J.+Ua.’) • (5/), 

X a~^ _ N + , 2 (a + 2) 
XP - ^ -- - J„^,(.r). . (58), 
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while the value of ih and may be written in the form 

Vi 
+ 20/d + 21n + 7 

(2?i + 1) (2a + 2) (2a + 3) 

2 («, - 1) ( 2 a + T)^ 

L[X 
■ (59). 

pft” a 

^ 7” + 1) + 3) 
(GO). 

The equation giving points of bifurcation can now be found by substituting these 

values in equation (54). 

§ 17. This equation will have roots corresponding to the different integral values ol 

n, n = 0, I, 2 . . . ; these determine points of bifurcation such that the critical 

vibrations are of orders = 0, 1, 2 . . . respectively. 

Of these the points of bifurcation of zero order are of no importance. The reason 

is exactly similar to that given in the case of a splierical nebula (§28 of the paper 

already quoted),* namely, that a point of bifurcation of order n = 0 does not indicate 

a departure from the spherical shape. We therefore will only discuss values of n 

different from zero. 

Case uf y 0. 

§ 18. Before discussing the general 

to consider the simple case of y = 0. 

and (58) 

form assumed by equation (54), it will be well 

Putting /X = 0, we obtain from ecpuitions (57) 

\ fji. 
H+h {^)- 

Pteferring to equations (52) and (53) v'e see that the equation givnig jx.tiiits of 

bifurcation is 

= «.(«1)- 

The hjw'est roots of \ arious (orders other than zer(j are 

'l l 1, 2, 3, 4, 5, 

a; = 4‘4'J, 57G, G'98, 8-18, 9-37, &c., 

the roots continually increasing Avith ii. Thus the first point of bifurcation is given 

by X = 4‘49, and the critical vibration is of order n = 1. 

Case of IX Different from Zero. 

§ 19. The general equation in which p, is not put equal to zero is much more 

complicated than equation (61), which has just been considered. If we write ii,t for 

J„ + i (^)/J«-4 (^)’ equation giving points of bifurcation of order 

n is of the form 

= an algebraic function of x and of (X -f- 

VOL. OCX.—A. Z 
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lo obtain approximate iiimierical solutions, my jMan has been to draw graphs of 

the functions and in tliis way obtain a graphical solution of the equations for 

dilierent values ol p. Tliere is no difficulty in drawing graplis of the functions ; 

tliese are trigonometrical functions, and we have 

— ~ — cot .r, 

wliile the successive ilh are connected hv the relation 

■hi + 1 1 

To save space 1 have suppressed all details of this somewhat tedious part of the 

work, file results lor u = 1, 2, 3 are given in tlie following table :— 

Lowest Values of x. 

P = o. P = U. /7. = A. 

71= 1 4-49 4-2 4-0 
n = 2 5-76 5-6 5-4 
ti='S 6-98 6-8 6-7 

lor large values of n it will he found that equation (54) reduces approximatelv to 

aq = 0, and hence that for any value of p tlie lowest value of x is slightly less than 

the corresponding value in the case in which p = 0. 

The First Point of Bifurcation. 

^20. It therefore appears that the first point of bifurcation may he safely assumed 

to he of order n - 1. The value of a; for which it occurs y\i\\ liave some value 

hffiween 4*0 and 4-49, according to the value of p/X. Now =: kg, and the value of 

K IS Airp /(X “1 Hence the first point of liifurcation is ajiproxnnately given by 

■iirp-a- _ = IG‘00, Avheii p = X, 

X + i> |4-493 = 20-lG, Avhen p r= 0. 

In equation (3) we sup|)osed this point of bifurcation to he given by 

ypycT/X^ = <f)- 

In oni present analysis Ave have already taken y = 1 ; if AA'e take (X -f 2p) to he 

Identical Avith our former X^, AVe see that the actual Audues of (X ai’e rom''hlA" 

ij) = DGU, Avhen p = 0, if = 1-27, Avhen p = X.=^^ 

* It Avill be fuuud that the first iioiiit of Mfurcatioii is given, Avitli great aeeuraev, by the single 

equation + = 1-6 for all value.? of /x between 0 and A. This is of interest,^ls shoAving the 

relative importance of A and /. in maintaining stability. As might be foreseen, the importance of /r 

relatnxdy to A increases as n increases, and for n = co, the factor A + -'/x must be replaced by A + 2/-. 
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We have now found a closer approximation to the value of (j) than that which was 

given in § 3, and have obtained the additional information that instability first enters 

through a vibration of order n = 1, It must, however, be borne in mind that these 

results are only true of the special and somewhat artificial case specified in § 8. 

Comparison with the Case of a Spherical Nehula. 

§ 21. It will Ije seen that the general ai'gument of § 3 will apply to the case of a 

gaseous planet or nehula if X l)e taken to mean the pressure in the gas. In this case, 

however, the laws of distribution of density and pressure are not independent. If 

the gas is in conductive equilibrium throughout, tire planet or nebida must be 

supposed to extend to Infinity, and for these conditions the criterion of stability 

was worked out in the former paper already referred to. Calling the elasticity 

of the gas k, the first point of bifurcation was found to l)e reached wlien the function 

Lv attains a certain finite value. Now Lf- p vanislies in comparison with p^, 

the mean density, so tliat writing a for the radius of the nebula, and X,, for the mean 

pressure (X,j = xpf, we have, at this first point of bifurcation 

27TpQklf\Q = CO . 

Comparing this with the general result obtained in § 3, we see that in this extreme 

case the value of (f) becomes infinite. This result is only of Importance to the present 

investigation as showing the tendency of a concentration of density about the centre. 

It seems to show that as the density becomes more concentrated about the centre, 

the value of cf) may be expected to Increase. XYe are therefore led to expect that in 

general <f) will have a value rather greater than that found for it upon the assumption 

of homogeneity of density. 

liECAPITULATION AND DISCUSSION OF RESULTS. 

§ 22. It will he well to recapitulate our results before attempting to draw any 

deductions from them. 

We consider a spherically .symmetrical mass of solid, liquid, or ga.seous matter. 

We denote the radius of this by a, the mean density by Pq, and the mean value of X 

by Xq, where X denotes an elastic constant or the pressure of the fluid, according as 

the matter is solid or fluid. We have seen that the stability of this dynamical .system 

depends upon the value of the function ypQa^l\, a pure number. When y = 0 (nc., 

when we deal with artificial matter which is totally devoid of gravitation) there can 

he no doubt that the system is stable. We have seen that a point of liifurcation 

occurs when the number ypu'«V^o ^ certain value f It has not been proved in 

the present paper that an exchange of stabilities accompanies this point of liifurcation, 

7, 2 
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but it will be seen that, with slight alterations, the proof of the exchange of stabilities 

for the spherical nebula, which was given in § 28 of the earlier paper, can be made to 

apply to the present case. Admitting this, it appears that the spherical system 

which is at present under discussion will be stable so long as yp^a~j\ is less than (/>, 

and becomes unstable so soon as exceeds </>. 

§ 23. The next question is as to the exact value of </>, and as to the vibration through 

which instalality enters at the point of l)ifurcation. To the first part of the question 

we have not l^een able to olitain a very definite answer. This matters the less, since 

the numerical data which would have to be used in making any applications of our 

i-esults are not themselves very definite. On the whole, the uncertainty in the value 

of (f) is not much greater tlian the uncertainty in tlie value of the numerical data (or, 

wliat comes to tlie same tiling for our present purpose, the uncertainty in our 

knowledge of the law of compressil)illty and distriliution of density in tiie planets of 

our system). 

Tlie general argument of § 3 showed that (f) must, except in extreme cases, l)e 

comparable witii unity. We then examined an artificial case : a planet in which the 

density and elasticity were constant tlirougliout—this system being made mechanicallv 

possilde by introducing an external field of force, of amount just sufficient to annul 

gravitation in the equililnium configuration. For this system was, of course, 

taken equal to p, tlie uniform density, and was taken to be equal to X + 2p, in tlie 

notation of LovE, or ni + n in the notation of Thomson and Tait. The value of (f, 

depends, of course, on the ratio p,/X or n/m. For /i/X = 0 we found (^ = IT); for 

p X = 1 ive found = r27 ; for intermediate value of p/X we saw that the value of (j) 

was intermediate between these two values. 

'fhe iilauets to ivhicli we wish to apply our results do not possess uniform density : 

it IS almost certain that in every case the mean density is much greater than the 

surface density. The general argument of § 3 shows that there is still a point of 

bifurcation corresponding to a value of ^ which is comparable with unity, but affords 

no evidence as to the change which a concentration of density ivill effect in the value 

of We therefore examined a case in which there is an infinite concentration of 

density—the case of a spherical nebula extending to infinity—and found that in tliis 

extreme case tlie value of becomes infinite. It therefore seems probable that a 

concentration of density is attended by an increase in the value of </>. As a working 

hypothesis ive shall assume for the planets of the solar system the uniform value 

<t> — 2. It must be left to the reader to form a judgment as to the amount of error 

involved ill this assumption, Imt it will, perhaps, be admitted that results dependiiig 

U])on it will at least be right as regards order of magnitude. It will lie seen laten 

that considerable variation in the value of cf> is possible liefore the astronomical 

evidence which we are going to bring forward is seriously invalidated. 

§ 24. As reprds the nature of the vibration through which instability of the 

epheiical conflguiation enteis, we are able to come to a more definite conclusion. In 
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each of the cases referred to in the last section this vibration is found to l)e one of 

order n. = 1, i.a., one in which the displacement at every point is proportional to the 

first harmonic. This is the result which we should naturally expect -just as we 

expect a mass of liquid to become unstable through long surface waves sooner than 

through short ones. We shall, tlierefore, suppose it to lie true of the planets in 

general. It is conceivable that planets could be artificially consrracted for which this 

assumption would not he true, but, at present, since we have not a complete 

knowledge of the structure of the planets and are therefore compelled to make some 

assumptions, it seems as if the assumption just made is far and away the best to talvO 

as a working hypothesis. 

Application to the Nebulap>. Hypothesis, 

Theoretical Conclusions. 

§ 25. In the former paper, already referred to, the suggestion has been put forward 

that the instability of a nebula, sun or planet, which, upon the nebular hypothesis, is 

supposed ultimately to result in the ejection of a satellite, may be largely lirought 

about by a gravitational tendency to instability of the kind we have been investi¬ 

gating. Let us, for the moment, take an extreme hypothesis, and imagine that tliis 

agency is the preponderating agency, and that the rotational tendency to Instahillty 

may be disregarded in comparison. 

Upon this hypothesis let us consider the case of an approximately spherical planet 

or sun which is known to have thrown off a satellite. Before the ejection of this 

satellite commenced, the primary mass would have an approximately spherical foim, 

for which Pq~cc^I\^ would be below the critical value <f). Wlien this critical value is 

reached, a divergence from the spherical form occurs, and a series of new processes 

begins. We are not now concerned with the details of tliese processes, but they 

must be supposed ultimately to result in the ejection of a satellite. It must be 

noticed that we are not supposing the primary to be devoid of rotation—for this 

would be inconsistent with the ejection of a satellite—but are supposing the rotation 

to be so small that the rotational tendency to instability is small in comparison with 

the gravitational. 

If we suppose one or more satellites to have lieen ejected, and the primary to liave 

regained an approximately spherical form, the new value of PQ~a'’l\ must be less 

than fjj. Now every satellite of which we have any knowledge, in our own system 

at any rate, is small in comparison with the primary. A legitimate inference seems 

to he that the ejection of a satellite is only a small part of the life-history of tlie 

primary. We shall not, however, need to make any assumption so definite as tliis, 

hut shall suppose only that the values of Pq, a, Xq for the primary after ejection are 
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nearly equal (t.p., equal, except for a multiplying factor of, say, 14 or 1^) to the 

values of the same quantities before the process of ejection commenced. 

All this may he summed up, with sufficient accuracy for the present investigation, 

in the statement that when the ejection of a satellite is taking place the value of 

must he nearly equal to rf). 

CoiicITested hij the Soleir Si/sfenh 

§20. I'o a certain extent the solar system su|)plles material for testing this 

conclusion. Let p,-,. « denote the present mean density and radius of any memher of 

tlie system which is known to have thrown off a satellite, and let be the mean 

value of X, whetlier this denotes a pressure or an elastic constant, then we may 
write 

o n /\ 

At the tune at whicli the satellite was ejected the same ec[uation ought to hold 

with 6 nearly ecpial to unity. Unfortunately we liave no knowledge as to tlie 

changes wliich will have taken place in p^, a, X,, since the ejection of the last satellite. 

XVe shall, for a rough approximation, neglect these changes altogether, take ^ = 1, 

</) = 2, and examine to vdiat extent the equation 

py«VXo = 2 (62) 

Imlds for the solar system as it now stands. 

It will lie rememliered that there are three sources of error in this equation:_ 

(i.) We are neglecting tlie effect of rotation in bringing about the ejection of a 
satellite. 

(li.) We are neglecting the changes which have taken place since the ejection of 
the last satellite. 

(m.) We are using an arbitrarily chosen value for </., and applying this to every 

])lanet, wlnle we know, from the difference in the physical constitutions of the planets, 

that the value of <j) must be difterent for each. 

These three sources of error would each be serious if we were attempting to get 

accurate results, but as our calculations are necessarily only of the roughest kind, v-e 
may be content to neglect them. 

§ 27. In the accompanying table the masses and radii of the sun, and of those 

planets wh.cli possess satellites, are given in the first two columns; the value of 

nass/(iadius) is given in the third. The units are so chosen that the earth is 

measured by unity in each of these columns. Venus is included for the sake of 

comparison, although the existence of a satellite is extremely doubtful. 
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Observed. 
Calculated upon the hyjjotliesis 

of the present paper 
fo = 2). 

(1) 

Mass. 

(2) 

Iladius. 

fo) 

Mass 

(I) 
Coefficient Aq. 

Unit = 10^^ absolute 
= 10'^ grammes weight per 

sq. centim. 
(Radius)- 

Run. 315,000 109 2G 2700 
Venus .... 0-8 1-0 0-9 3-2 
Ivirth .... 1-0 1-0 1-0 4-0 
Rlars .... 0-1 0-5 0-4 •6 
Jupiter .... 300-0 11-0 2-5 25-0 
Siituni .... 90-0 9-0 1-1 5-0 
Uranus .... 14-0 4-0 0-9 3-2 
Neptune . . . 16-0 4-4 0-8 2-6 

If our IiyjDotheses give a fair account of the facts the iiumljers in tliis tliird C(.)luuiu 

u'ill Ije proportional to Assuming for ^ the uniform value </> = 2, v^e can 

calculate the actual values of and these are given in the fourtli column. 

§ 28. Knowing nothing about the variation in Xq, we shall he content as a 

preliminary hypothesis to suppose it to liave the same value for each planet. 

Combining this with the hypotheses already formulated, we notice that \/Ao^ ought to 

have the same value for each planet, as therefore ought also the function 

mass/(radius)^, which is tabulated in column (3). 

It will he seen at once that there is a certain amount of uniformity about ll)c 

numbers in this column, but it requires some consideration to determine how mncL 

significance is to be attached to this uniformity. 

Now, apart from any hypothesis as to how the solar system originated or reached 

its present configuration—Lc., regarding the solar system as a fortuitous collectio]i ol 

bodies of varying sizes—should expect the mean density to be greatest in the 

greatest planets. We should, therefore, expect the quantity (mass)/(radius)'" to be 

more variable than the I'adius. In other words, we shoidd, d priori, expect less 

uniformity in the third column than in the second. Judged by this criterion, tlie 

uniformity of the numbeis in the third column would he very significant. Further, 

the variation in these numbers is of the kind we should expect. For Instance, it is 

known that the density of Jupiter is very much greater iieai* tlie centre than near the 

surface; we should accordingly expect a large value of (/>, and therefore a large entry 

in the third column. The same argument would apply to tlie Sun, but the physical 

constitution of the Sun is probably so difierent from that of the planets that there 

could be no surprise at the Sun figuring as an exceptional case. Another excejitiou 

is that of Mars. Part of the discrejiancy might, perluqis, be attributed to the 
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sniallness of the planet, hut the figure in the fourth column -would seem to suggest 

tluit rotational instability must have played a large part in tlie creation of the 

Martian satellites. 

If, on the other hand, we begin by regarding the planets not as a fortuitous 

collection of bodies, but as a series of satellites all ejected from the same primary, the 

case is different. For here we should expect the smaller planets to have cooled more 

than the heavier ones, and therefore to be at a lower temperature. Against this 

must he set the fact that the heavier planets will jDrobably have the greatest 

concentration of density about the centre, and the greatest mean- pressure. The first 

consideration tends to increase the value which we should expect for the mean 

density of the smallei' planets as compared with that of the greater ones; the second 

consideration tends in the opposite direction. We can hardly profess to estimate the 

I'elative weights of these two considerations with any approach to accuracy; perhaps 

it is best to revert to the argument given in the last paragraph, while bearing in 

mind that the approximate equality of our numbers may become considerably less 

significant as soon as the question of relative temperature is taken into account. 

§ 29. We now consider the evidence afibixled by the absolute value of our figures. 

After allowing for the exceptional cases, it a^Dpears that the value of Xq for the earth 

and for most of the planets is about 4 X lO^h In other words, if we suppose these 

planets suddenly to resume the molten state, while retaining their present mass and 

radius, the spherical form will be stable or unstable according as the mean value of 

\ 2jjL is greater or less than 4 X lO^f In the molten state we may take fx = 0, 

aud the value X = 4 X corresponds to a value equal to about half of that of 

steel, for which X = 8'3 X lldf If, however, we attempt to trace the history of a 

}danet backwaixl in time, we cannot suppose the mass and radius kept constant: the 

mass may be constant, but the radius will increase. Ujider these conditions we find 

that the critical value of X,, will be inversely proportional to the fourth power of the 

radius, and will, therefore, be somewhat less than the value X = 4 X lO^h It would 

be extremely difficult to form a reliable estimate of what this corrected value for X 

ought to I)e, and equally difficult to estimate A\'hat would l)e the actual value of X for 

molten material similar to that of Avhich our planets must have been composed Allien 

in the urjlten state. Our argument is that the two A'alues of X are at least of the 

same order (_)f magnitude, and probably equal, except for inaccuracies in our calcu¬ 

lations. 

Comparison oj the Ixotational and CI'avdtational Ilypotlicses. 

§ 30. We may conclude this j^art of our Avork l)y comparing tA\o extreme 

hypotheses: the first referiiug the phenomena of planetaiy eAmlution solely to 

rotational, and the second solely to graAntational instability. 

Given the approximate values of X and p for a planet, and the fact that this 
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planet has thrown off a satellite, the former hypothesis leads to a certain inference as 

to the angular momentum of the system ; the latter to an inference as to the radius 

of the primary. The former hypothesis leads to no inference at all as to the size of 

planets which are to be expected—they are as likely to be of tlie size of billiard balls 

as of the size of the planets of our system—while the latter leads to no inference as 

to the angular momentum of the system, but presupposes it to be small. The 

contention of the present paper is that the inferences which are drawn from the 

former hypothesis are not borne out by observations on the planets of our system, 

while those which are drawn from the latter are borne out as closely as could be 

expected. The true hypothesis must of necessity lie somewhere between the two 

extremes which we are comparing, and our evidence seems to show that it is much 

nearer to the latter (gravitational) than to the former (rotational).'^' 

Stresses and Vibrations in the Earth. 

^31. It has already been seen that in dealing wdth a gravitating sj)here of the size 

of the earth it is necessary to take into account terms which are omitted by Lord 

Kelvin and others—the terms which introduce into our equations the gravitational 

tendency to instability. 

It is of some Importance to kno\v wdiether the existing solution for the vibrations 

and displacements of the earth would be altei'ed to an appreciable extent by the 

inclusion of these terms. The general frequency-e<piation which is given on ]). 1G7 is 

too complicated foi’ manipulation, and is, moreover, ojien to the objection that it does 

not represent tlie facts of the case ; for, inside the earth, the strains caused by 

permanent gravitation cannot legitimately be treated as small.t 

§ 32. Considerations of a general nature aauII, however, give us some insight into 

the question. In an imaginary earth, in w'hich X, p, are infinitely great, the 

gravitational terms will be of no importance in comparison wdtli tliose representing 

the elastic stresses. The true solution will, tlierefore, become identical with the 

classical solution in which the gravitational terms are neglected. Jor smaller values 

of X, jj. tlie error wall become appreciable, and it X, p. continue to decrease this error 

will become infinite as soon as the first point of bifurcation is reached ; for at a point 

of bifurcation the application of an infinitesinially small external force will produce a> 

finite displacement in the solid. For intermediate values of X, p the error wall be 

small if X, p are great compared wath the critical values of X, p at the point ol 

bifurcation, and great if X, p are near to these critical values. 

* In addition to the inference as to the size of the planets, the hypothesis of gravitational instability 

leads to a further inference as to the distances of the fixed stars. This has been discussed in my former 

paper, “On the Stability of a Spherical Nebula” IS), and here also the results seem to agree with 

observation as closely as could reasonably be expected. 

t CiiREE, ‘ Camb. Phil. Soc. Proc.,’ vol. II, or Love, ‘ Elasticity,’ vol. 1, 220. 
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§ 33. The most reliable evidence as to the actual values of /jl is to be obtained 

from the pheuomeuca of earthquake propagation."^ From the “time curves” given in 

the British Association Report presented at the 1902 meeting, there seems to be 

little doubt that the so-called “large-waves” are propagated merely through a thin 

crust on the earth’s surface, while the “ preliminaiy tremor” is propagated in a 

sensibly straight line tlirough the earth itself The average velocity of propagation 

is found to be about 97 kiloms. per second, and this is independent of the length of 

the path. The inference is that (X-f 2p,)/|0 is nearly constant throughout the earth’s 

interior, and that its value is about (97 X 10’)- or 9 A X lO^b If we suppose the 

mean value of p to he 5‘5, tins gives for the mean value ol X + 2/x, 

\ + 2ijl= 517 X Bbb 

Now, the critical mean value of X -j- 2p, which corresponds to tlie first point of 

l)ifurcation has already l)een seen to be about 4 X 10^^. It would, therefore, appear 

tliat the error introduced in the classical solution for the displacements and stresses is 

appreciable, although not great—it is j.'robably comparable with tlie error to which 

attenti(->n lias already been attracted by CTiREE.f 

Figuke" uf the Eaktii. 

TheoiX'ticaJ Conclusions. 

§ 34. From the evidence of the last section it will be .seen that there is an over- 

Avliehuing probability that the ^■aIues of the elastic constants ot the earth are such 

that a state of spherical symmetry would be one of stable equilibrium. 

Whether or not .the earth is at present in a state of .spherical .symmetry is a 

difierent (jue.stion; various indications and, in particular, the inequality in the 

distril)ution of land l)etween the two liemi.spheres of the globe .suggest that it is 

not so. 

Now, even if the material of the eaith is at the present moment ot .sutficient 

strength to maintain a spherical configuration in sj)ite of the gravitational tendency 

to instability, it does not seem proba.ble that it has alvaiys been so. Looking back¬ 

wards in time we mirst come to a stage in wliicli the material ot the earth was pTa.stic, 

and, further back .still, fiuid. At this time the value of X Avould be much smaller 

than its pre.sent value, and, as already pointed out in § 29, would probably be about 

etpud to the critical value for the })lanet at that period of its exi.stence. There woidd, 

therefore, seem to be a .sufficient reason for con.sidering the possibility that the earth, 

at the moment at Avhich consolidation set in, was not in a .state of spherical symmetry. 

Let us examine some of the consequences of tliis conjecture. 

* Ri-ofessor 51ilne has kindly assisted me in this question, 

t Loc. dt. ante. 
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It is easy to see that enormous stresses would be set up in the interior of the earth 

after consolidation. An equilihrium configuration depends in general upon the 

compressibility of the material, and a configuration Avhich was one of equilibrium for 

the compressibility which obtained at the moment of solidification would not remain 

so after the incompressibility and rigidity of the material had increased by cooling. 

If we supjDOse the earth to cool in an unsymmetrical configuration the stresses set up 

will soon become very great. In fact, Professor Darwin has shown that the stresses 

which would he produced by the weights of our continents in an earth initially 

homogeneous {i.e., by an irregularity of less than a thousandth part of the radius) 

would be so great that the material would be near the breaking point.'" 

We must therefore suppose that as the earth cools and the elastic constants change 

there will be a series of I'uptures resulting from the stresses set up in the inteiior. 

The configuration will become approximately spherical (spheroidal if rotation is taken 

into account) as so(m as the point of bifurcation is passed. 

The fact that the ultimate configuration is reached oidy as the result of a long 

succession of ruptures puts the whole question outside the range of exact mathe¬ 

matical treatment. We can, however, see that the final configuration (disregarding 

rotation) will prohalfiy not be cpiite spherical, hut will retain traces of tlie initial 

unsymmetrical configuratioi i. 

§ 35. Before we can attem})t to decide whether or ]iot the earth shows traces of a, 

process suclr as that just described, it will be necessary to form some idea of the 

unsymmetrical configuration witli wliich the process must liave begun. We cannot 

accurately calculate the “ linear series” of unsymmetrical configurations except in the 

immediate neighbourhood of tlie point of liifurcation. Near to this point the 

configuration is spherical except for terms proportional to the first harmonic. The 

free surface will, therefore, be strictly spherical, and it will, of course, be an equl- 

potential. but its centre will not coincide with the centres of other surfaces of equal 

potential. If we suppose a fluid mass of tliis kind to solidify, and then to shriidv by 

cooling, the shrinking being accompanied by a series of ruptures of the kind already 

explained, we can easily imagine that the free surface would retain an approximately 

spherical form, but that when the final state is reached this surface would not be 

quite an equipotential, and the centre of gravity would not quite coincide with the 

centre of figure. If water is placed on the surface of a planet of this kind, it will 

form a circular sea, of which the centre will be on the axis of harmonics, while the 

dry land will form a spherical cap. 

Evidence from the 1)istrihution of Seas and Land: 

§ 36. Now this is not observed on the earth, and it could not be expected, since we 

have ignored all the agencies which have contriliuted to the figure of the earth, 

* ‘Phil. Trans.,’ vol. 173, 1882, p. 187. 

2 A 2 
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except the one with wliich this paper is specially concerned. The question is not 

whether we observe the state just described, hut whether we can detect any approach 

to this state, and this, I believe, can he done. Professor Darwin writes* :— 

“ It is well known that tlie earth niav he divided into two hemispheres, one of 

which consists almost entirely of land and the other of sea. If the south of England 

he taken as the pole of a hemisphere, it will be found that almost the whole of the 

land, excepting Australia, lies in that hemisphere, whilst the antipodal hemisphere 

consists almost entirely of sea. This proves that the centre of gravity of the earth’s 

mass is more remote from England than the centre of figure of the solid globe. A 

deformation of this kind is expressed hy a surface harmonic of the first order.” 

§ 37. We can carry our calculations a step further. The divergence from the 

initial configuration is only represented hy a first harmonic so long as squares of this 

divergence may he neglected. If these squares are taken into account, we must 

Fig. 1. 

include a term proportional to the second liarmonic as well as tluit proportional to 

tlie first. This ]jrocess of successive ajiproximation might he continued to anv extent, 

so that a complete series of unsymmetrical configuintions might he calculated in the 

manner explained in my former paper, t We may, however, he content to stop at 

the second harmonic The free surface will now he of the form 

G. H. Dauwix, ‘ Phil. Tuxns.,’ vol. 173, 1882, jj. 230. 

t ‘Phil, Truns.,’ A, vol. 199, p. 41. 
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r = ^0 + «iPi + . 

and we therefore examine whether any traces of the second liarmonic term can be 

found in the earth’s surface. Now, if we take a., positive in ecpiation (63), the 

equation is that of the pear-shaped curve which was found on p. 46 of this earlier 

paper. This differs from the spherical shape mainly in possessing a protuberance— 

the stalk end of the pear—of which the centre is on the axis of harmonics. Traces 

of this protuberance may, I think, perhaps be found in the Australian continent, the 

arraTio’ement beino- that shown in fig. 1. It is true that the centre ol Australia does 

not coincide with tlie antipodes (A England, luit the discrepancy becomes less wlien 

we take into account the enormous region of ocean shallows which lies to the east of 

Australia. 

['^'The discrepancy can be further reduced by taking the lotation of the earth into 

account. When the rotation of the eartli was greater than at present the ellipticity 

of the earth’s surface would be greater, and the transition from this to the present 

ellipticitv would take place through a series of ruptures similar to those already 

described. The rotation (assumed small) of the pear can lie alloaved for by adding a 

term — /3Ph to the right-hand side of equation (63), this representing a second 

harmonic deformation having the axis of rotation for axis of harmonics. 

The present rotation of the earth can similarly be represented by a term — 

where /S' < /3. Tlie equation to the present surface of tlie sea may accordingly be 

taken to be 

7- = a'o - /3Th, 

and hence the height above the pre.sent sea-level of the surface of the primmval 

rotating pear, if restored, would he 

("o ~k ~ (/3 ^ P 2' 

It will be found tliat the effect of the rotational term (^ — /S') P'o is to move the 

theoretically predicted Australia nearer to the ecpiator of tlie earth, and to change its 

shape from a spherical cap to a .sphero-conic.J 

Again, we should expect the higliest land to be on the axis of harmonics, and, 

therefore, in or near England. Here, again, the agreement of facts with theory 

might be closer if we could suppose the continent, wliich geology shows to have 

existed at one time in mid-Atlantic, to be restored to its former position. But the 

agreement of facts with theory can only lie expected to be of the roughest kind, and 

we must always bear in mind that our theory does not lead us to expect tliat the 

present figure of the earth will be pear-shaped, but only that it will resemble a pear 

disfigured by a long series of ruptures. 

* Added .Januaiy .3, 1903. I am indebted to the referee for suggesting this addition. 
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Evidence from the Distrihution of EarthquaJce Centres. 

§ 38. Tt call ])e seen that the earthquake regions of the world have a reference, as 

regards theii- distriliution on the earth's surface, to this pear-.shaped figure, and this, 

again, must he considered as evidence. 

Let us first examine the facts. Milne divides the eartlupiake-areas of the globe 

into twelve distinct regions, and a map of these is given in the ‘ British Association 

Beport’ for 1902."' These regions are given in the following table. The first figure 

denotes the numhei- of large earthquakes which have occurred in these regions in the 

three yeais 1899-1901. The earthquakes from the three regions printed in italics 

wei-e small in comparison with the others. In the last column is given the 

approximate latitude of the centre of each region, referred to Cfreenwich as pole (the 

latitude of rireenwicli being taken to he + 90°). 

1 ABLE of Earth(|uake Begions. 

A 25 Alaskan + 10 (4 17 -Mauritian + 10 

B 14 Coi'flillerean (J H d ) •V./A AfJaniic + 1 o 

C 16 Antillean + 25 I .> 
T} A'.//'. „ + 6M 

D 12 Andean 0 J -V. + 70 

E 29 Japanese - 5 K 14 Asiatic + 45 

F 41 Javan -25 B 0 Antarctic [small] 

Now, it will be at once noticed that for most of these regions the latitude is small. 

If we weight the regions according to the corresponding number of earthquakes, 

giving half-weight to the small earthquakes in regions H, I, J, we find as the mean 

of the numei ical values of the latitude about 20°, whereas if the regions were 

distributed at random we slioiild expect the mean latitude to be (^tt — l) radians, or 

about 33°. We therefore see that the eartlupiake regions tend to lie near the 

equator of our pear. Tlie evidence can be put in a more striking way as follows :_ 

Exactly half of tlie surface of the globe is of a latitude less than 30°. The half for 

vhich the latitude is less tlian 30 , measiirefl fi'om CTreenwich as pole, was responsible 

for 150 earthquakes; the remaining half vms responsible only for 42, of which 28 

were the small earthquakes from regions H, I, J. There is, tlierefore, no doubt that 

the princfctl earthf|uakes tend to emanate from points near to the equator of the 

supposed pear. 

Now, if we look back to fiu. i, 

quakes occur where the “slope” 

is the same as that to which 

we see tliat this is equivalent to saying that earth- 

in the figure of the earth is steepest. This conclusion 

the British Association Committee were led from a 

p. 4. Brit. A.'^soc., / 2tid Report, Belfast, 1902, “ Seismological Investigations,” 
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consideration of the actual figure of the earth, and it is that which might naturally 

he expected. The theory put forward in this paper may, perhaps, suggest a reason 

why these regions should lie approximately on a great circle of the earth, and why 

this great circle should approximately divide the earth into two hemispheres of sea 

and land. 

Summary and Conclusion. 

§ 39. In conclusion it may he well to summarise those parts of the ])aper which 

refer to the hgure of the earth. 

We saw that at the moment of solidification the earth might he either spherical 

(except in so far as it was deformed l)y its rotation) or pear-shaped. Our theoretical 

calculations and our knowledge of the constants of the earth at the time of solidi¬ 

fication were not sufficientlv accurate to enahle us to decide wlucli of the two 

alternatives is the iiun-e pro})ahle. Tlie sliape of the eartli, whether spherical or pear- 

shaped, could not he maintained long against tlie enormous strains wliicli would be 

set up in the earth as the pr(.)cess of cooling |n-oceeded, and this sliape would gradually 

give place to an approximately splierlcal shape, the change in shape being produced 

by a long succession of ruptures. Tl^e suggestion of tliis jiaper is that the eartli, in 

spite of this series of ruptures, still shows traces of a, pear-shaped conhguration. 

Such a conhguration would possess a single axis of symmetry, and this, it is suggested, 

is an axis which meets tlie earth’s surface someAvliere in the neighbourhood of 

England (or, possibly, some hundreds of miles to the S.W. of England). Starting 

from England we have in the hrst place a hemisphere wliicli is practically all land ; 

this would he the blunt end of our jiear. Bounding this hemisphere we have a great 

circle of which England is the pole, and it is over this circle that earthquakes and 

volcanoes are of most freciuent occunence. If we suppose our pear contracting to a 

spherical shape we notice that it would prolialily he in the neighliouihood of its 

equator that the change in curvature and the relative displacements would he 

greatest, and lienee we should expect to find earthquakes and volcanoes in greatest 

numliers near to tliis circle. Passing still furtlier from England we come to a great 

region of deep seas—the Pacific Ocean, tlie South Atlantic Ocean, and the Indian 

Ocean : these may mark the place where tlie “waist” of the pear occurred. Lastly 

we come, almost at the antipodes of England, to the Australian continent and tlie 

shallow seas wiiich lie to the east of it; these may he the remains of tlie stalk-end of 

the jiear. 

§ 40. It may, I am afraid, he thought that the hypotheses upon whicli the paper is 

based are too speculative and the results, consequently, too uncertain. In defence it 

may be said that the object of the paper is not so much to establish new doctrines as 

to point out possibilities, and that these possibilities seem to be of such a kind tliat it 

may be useful to keep them in mind in discussing questions connected with the figure 
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and structure of the earth, as well as the more general questions of planetary 

evolution. 

In conclusion I have to express my indebtedness to Professor G. H. Darwix and 

Professor A. E H. Love for advice and assistance which I have received from them. 

^ OTE.~Added Fehruary -lOth, 1903. While the above paper was in the press, 

Iiofessor W. J. Sollas read a paper before the Geological Society in which the 

Figure of the Earth was discussed from a geological standpoint. Professor Sollas 

had arrived, from an examination of the geological features of the earth, at a 

conclusion^ very similar to that to which I had been led from theoretical 

considerations : he had detected an axis of symmetry, other than the axis of rotation, 

m the earth’s figure, and expressed the opinion that “the pear-shaped form, now that 

it was pointed out, became obvious to mere inspection ; it was a geographical fact, 

and not a speculation.” 

1 he axis of Professor Sollas’ pear does not, however, coincide with that which I 

tentatively put forward m the above jiaper, and the object of this note is to accept 

the alteration suggested by his paper. The conclusion reached in his paper is that 

the axis of symmetry of the pear-shaped figure passes through a point of latitude 

and longitude about G° N. by 30° E. Thus Africa-the continent whose mean height 

aliove sea-level is greatest—must lie taken to be the centre of the “Land 

Hemisphere ” in fig. 1 ,>f my paper, wliile the protuberance which formed the stalk 

of the pear ^ IS submerged in the Pacific Ocean, which now forms the “Water 

Hemisphere. ^ Almost the only remaining evidence of the existence of this 

jiiotubeiance is the fact tliat the axis of the pear coincides with the earth’s greatest 

diameter. The great circle of earthquake-centres suggested in § 38 of my paper is 

to be leplaced by the line of Pacific folding ; this approximately forms a small circle 

(of radius about 80°) wliich almost coincides with the proposed great-circle in the 

noithein hemisplieie. Furtlier details of Professor tSoLLAs' view will he found in his 

paper (“'The Figure of fl,e Eartli,” ‘ (piart. Journ. Gcol. Soc.,’ vol. lix.. Part Lp. 

The fact tl.at Africa is .surroumled by a belt of seas, and this again by a belt of 

and Ijefore the Pacihc is reached, points jierhaps to a bodily subsidence of the blunt 

eiK of tlie pear, the circle of fracture having possibly been the line of Pacific foldin':. 

'Sucli a fracture would, of course, disiilace tlie ceiitre of gravity of the pear, and 

probably this would account not only for the feature just mentioned, hut also for the 

non-appearance of tlie protuberance. It will be noticed that the smallness of the 

latitude of the extremities of the axis (6°) agrees well with tlie theory of iilanetarv 

evolution put forward in 25-30 of the present paper ] 
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VI. 0)1 the Fonnation of Definite FiffiD-es by the Dejjositioii of Dust 

By W. J. llussELL, Fh.D., F.li.S. 

Received Jaimary 29,—Read February 19, 1903. 

When trying’ soni6 expcriniBiits which had an object other than that described in the 

following communication, it was noticed that a fine powder when allowed to settle 

on a slightly warmed plate produced figures which were remarkably clear and 

definite. So striking and peculiar were these figures, and so simple were the 

conditions of their formation, that a careful study of them was undertaken. These 

figures are so clear and sharp that it is easy to obtain exact photographic records of 

them, an important point, for, at present, it does not seem possible to offer a simple 

explanation of the complicated relationships which exist between the external 

conditions and the figures formed. Sensitive as these figures are to outside 

influences, the forms they assume are very characteristic of different conditions, are 

perfectly constant, and are easily produced. 

The general method of obtaining these figures is as follows ; The plate on which 

the figure is to be deposited is best supported on three pins about l-g- to 2 inches 

hiuh, and the dust most convenient to use is that made by burning magnesium 

ribbon. It is kindled and allowed to burn in a receiver. A circular glass dish with 

straight sides, about 4 inches high and 9 inches in diameter, is a convenient form 

of vessel to use; and if the vessel be large enough (there should be about 2 inches 

lietween the plate and the inside of the receiver); the shape and the material 

of this dust containing vessel is not of much consequence. After the magnesium has 

burnt out, this receiver is allowed to stand for a minute or so, and it is then placed 

over the plate on its stand and allowed to remain there for six to seven minutes. 

On removing,' it a clear and definite figure will be found to have formed on the plate.^ 

If the plate has been a square one, then a cross consisting of four rays, each starting 

from a corner and meeting, but not necessarily joining, in the centre, is produced. 

If the corners be varnished or covered by a small piece of tinfoil (fig. 1) the cross is 

still formed. 

* A photograph of the figure was obtained by placing the plate on a varnished black backgiound, 

illuminating it by an arc lamp, so that the beam of light fell upon it at an angle of about 30 degrees, and 

the camera was placed directly in front of the plate. Process plates were used, and the exposure was fiom 

two to two and a-half minutes. 

VOL. cci.—A 336. 2 b 
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II tlie plate Fe tiiaiigular in fuim, tlien three rays are I’orined, again each starting 

troin an angle (fig. 2), and il the plate Ije an octagon, then a star with eight rays is 

produced (fig. 3). An angle in a plate always tends to give rise to a ray. This is 

often very fine at the ])ofnt, and tliickens consideraldy afterwards. If a flat circular 

plate is used, then no deposit takes place, hut if it is concave, a uniform dept»sit over 

tlie whole of it occurs, and if it )je convex, then little or no deposit is formed, if anv, 

it is in the form of a star. When an oblong rectangular plate is used, then the rays 

similar to those formed on a scpiare plate are produced, Imt they do not meet, but 

are, as it were, drawn asmuler, and remain at each end of the plates, being however 

often connected by a. thin .straiglit line (fig. 4). 

In all cases, tlie angles of the jdate determine the figure formed on it. With 

regard tf) othe)’ general ])oints connected with the formation of these figures. The 

nature of the dust used is not a matter of impoi'tance, it may be composed of organic 

or inorganic matter; the spores of a fungus, or magnesia, or the dust from ashes 
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or fumes of ammonium chloride. In fact, the necessary condition is tliat the 

dust be very fine, then always the same figure is formed. Tlje pr(.)duct iormed 

by burning magnesium is, however, the best form of dust to use. It is easily 

obtained, and has a silvery whiteness in appearance, which gives distinctness to the 

figures. With regard to the plate on which the figure is to form, its composition, 

like that of the dust, is of no importance; the shape determines the figure, not its 

constitution. Glass, for several reasons, is the best material for the plate, but copper, 

zinc, silver, antimony or other metal may be used, or ebonite, celluloid, black india- 

rubber, cardboard, &c., in fact, the receiving surface is not necessarily a solid 

substance; mercury in a square vessel will have deposited on it a figure similar to 

that on a piece of glass of the same size and shape, and, still more, the surface of the 

glass plate may be coated with oil, gum, copal-varnish, &c., and the cross will form 

as if they were not present. Obviously, with regard to the visibility of the figures 

formed, the nature of the plate is of considerable importance ; on some substances the 

figures are more easily seen than on others. In the following experiments glass 

plates have been used, except when mention is made to the contrary. 

Passing from the materials used to the active agent in producing the figures, 

namely heat, it should be stated that there are many different ways of applying it, 

and different results are produced. The simplest way is to pass the plate two or three 

times over the flame of a small Bunsen or spirit lamp. If it be a glass plate, a good 

indication of sufiicient heating is when the condensed moisture disappears it is of 

little importance whether the heated side or the other one is uppermost then the 

plate is enveloped in the dust atmosphere by placing the receiver, filled with dust, 

over it, and leaving it there for the six or seven minutes. To obtain a figure in its 

simplest form and as dense and clear as possible, it is necessary that the plate lie 

equally warmed all over; a convenient way of doing this is to lay the plate on one or 

copper, heated to about 20° C., for about half a minute, or an ordinary air or watei' 

liath will answer the same purpose. As long as the j^late and the surrounding dust 

atmosphere have approximately the same temperature, the deposit formed is nearly 

uniform; there is only a slight appearance of any figure, but as soon as any rise ot 

temperature occurs, then a figure begins to appear. At first the indications are very 

slight, and occur only round the edge of the plate; but as the temperature is raised, 

the figure spreads over the whole of it. A figure may also be developed by having 

the plate at a lower temperature than that of the surrounding atmosphere, provided 

that the plate is not below 17° C., but the figures produced in this way are sliglit and 

imperfect and disappear altogether when the plate is 6° below th-"'t of the atmosphere. 

In order to determine roughly the temperatures of the plate and its surrounding 

atmosphere, a receiver, of the same shape and size as the glass one, was made of 

asbestos cloth and covered with cardboard ; in the top of it a hole was made, and a 

delicate thermometer introduced. A few of the results obtained will show the 

nature of the alterations produced by differences of temperature lietween plate and 

2 B 2 
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surrounding atmosphere. When filling the receiver with the magnesia smoke, it 

should be turned round over the burning magnesium, so as to render the whole of the 

inside of as uniform a temperature as possible, and before placing the receiver over 

the plate, after the combustion is over, it should be allowed to stand for about a 

minute, so that aiiv coarse particles may settle. First, with regard to cases in which 

the plate is lower in tempeivature than the surrounding atmosphere. If the jdate he at 
a temperatuie of 19 C., and the maximum temperature of the dust atmos])here be 
24°, then a iiearly uniform deposit is produced, but at tlie corners of the plate there 
is a short line of deposit, and along the sides there is somewhat less deposit (fig. 5). 
If the jilate be Avarmer, 20‘G°, and the atmos])hei'e 24°, then the above characters are 

still further developed and a bag-shaped deposit is formed (hg. 6), and this is 

characteristic of AA'hat takes place Avhen the plate is beloAA’ the temperatuie of the 
atmosphere, but sufficiently Avarm to act. When the plate is slightly Avarmer than 
the dust atmosphere, 1-8° for instance, then again a figure is produced similar in 
character to the last one, but a further deA'elopment of it (fig. 7). If the plate he 
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made warmer and warmer, and the surrounding atmosphere kept nearly at the same 

temperature, then the figure gradually alters and becomes more perfect. If the 

difference of temperature between plate and atmosphere be about 5 , there is only a 

small amount of deposit on the central part of the plate, and the four rays are well 

developed. When the difference of temperature is about 12°, then a good clear cross is 

formed, its only imperfection being a slight fuzz in the centre (fig. 8). At a difference 

of temperature of 100° or 120°, the same figure, a cross, is formed, ljut tlie amount of 

dust deposited is less than at lower temperatures. Hence, whether the difference of 

temperature between plates and atmosphere be very considerable or very slight, the 

same effect is produced. A thick piece of glass held in the hand for 30 seconds and 

then placed in the dust atmosphere will have a figure deposited upon it, hut the 

amount of deposit will be small and the figure faint. The figures form best between 

certain limits of temperature, and when there is a marked difference hetveen tlie 

plate and the surrounding atmosphere. They are very sensitive to change of 

temperature ; in fact, to get a perfect cross or other figure, both plate and atmosphere 

must each be uniformly heated. If, in addition to uniformly heating a plate, a 

warmed body he placed below it and kept there during the time that the dust is 

depositing, there is a considerable increase in the amount of deposit and a modification 

of the figure formed; for instance, if a copper cylinder, 12 millims. in diameter and 

14 millims. high, heated to 55°, be placed 30 millims. below the centre of a square 

plate, then the figure shown in fig. 9 is produced. If a piece of glass be only warmed 

by holding it in the hand, and is then placed immediately below the plate, but not 

touching it, a marked and peculiar effect on the cross is produced, as seen in fig. 10. 

If this heating below the plate be increased, either by raising the temperature of the 

small copper cylinder, or by using taller cylinders, so as to bring the source of heat 

nearer to the plate, the amount of deposit is increased, and ultimately tlie figure of 
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the cross disappears, and there is uniform deposit over the whole of the plate. On 

still further increasing the heat below the plate the reverse action sets in, and the 

amount of deposit decreases. These changes will he described in detail later on. 

Some expeiiments made with a Bunsen lamp show how these figures are affected hv 

I'adiant heat, and the singular efiects which it produces. The flame of an ordinarv 

Bunsen burner was })laced on a level witli the plate and allowed to burn while the 

de])Osit was being formed. When the flame was at a distance of 12 inches from the 

centre of the plate, the cross was distorted, as shown in fig. 11, the heat having 

ti-avelled not only tlie 12 inches to the plate, but also passed through the glass of the 

receiver containing the fumes. In the next experiment the lamp was removed to a 

distance of L(! inches, then less distortion took place. At a distance of 21 inches the 

eflect produced was still visible (fig. 12), and even with the lamp at 26 inches the 

I'ij'. J1. Fig. li’. 

two rays nearest to it ai-e slightly thickened and distorted (fig. 13), but at 30 inches 

no eflect was produced. Another experiment of a little more definite character was 

tried. A small copper cylinder, 95 millims. in diameter and 100 millims. high, was 

filled with boiling water and placed at a distance of 12 inches from the centre of the 

jflate outside the tume vessel; tlie cross was afl’ected as before, the nearest rays were 

shortened and bulged out. A small candle burning at a distance of 8 inches from the 

plate is also sufficient to distort the figure which is being produced ipjon it. 

It has already been shown that by increasing the heat lielow a plate the amount 

of dejiosit is increased; Init if this heating be carried on to still higher temperatures, 

the phenomena are reversed, and less and less de])osit occurs. If the copper cylinder 

used in the former experiment be heated to 200°, and be placed below the centre of 

the plate, no dejiosit forms immediately above it. The same effect is more readilv 

produced, and at a lower temperature, if the plate is in absolute contact with the 

warmed cop|te]' cylinder, and it may be mentioned here, that the only way of 



where there is no deposit should Ije in the shajje ot a cross. If the copper cylinder 

he heated as before and the plate not heated, bnt placed f>n it at an ordinary 

temperature, then there is an open space, square in general form—possibly the former 

cross filled up—formed, and in the centre there always aj^pears a very small whke 
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obtaining the cross on the square glass entirely free from all fuzz at the centre, is by 

using as a source of heat a metal plate, and placing on it another thin piece <»f metal 

about 1 inch in diameter, and allowing the centre of the glass plate to rest upon it. 

If the copper cylinder under the plate be heated to about 150 C., and the plate 

rests upon it, no deposit occurs immediately above it, and this open space assumes 

the form of a cross (fig. H)- That dust does not deposit on a sufficiently heated 

surface has long been known ; but it is interesting that in this case the portion 
O V., , 

Fig. IG. 
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cross, and over tlie rest of the plate, except at the corners, there is an even deposit 

of dust (fig. 15). 

Other curious results are juoduced if the cojDper cylinder, heated to about 130°, be 

placed on the upper side of the heated plate, instead of the under one. Then a cross 

is formed, but it is very much broadened out, and a deposit of dust has formed round 

tlie base of the cylinder (fig. 16). If the plate be not heated, but the hot cylinder 

put upon it, then a modified effect, shown in fig. 17, is produced, and lastly, again 

reversing the heating, putting a cold cylinder on a heated plate, the cross is well 

formed, and a curious deposit, square in shape, is found round the base of the 

cylinder (fig. 18). All these forms are readily and constantly produced when the 

centre of the plate is heated or cooled as above desciibed. It will now be obvious 

why three wires form the liest kind of support for the plates on which a .symmetrical 

figure is to be formed. If a large solid support be required, a cork is probably better 

tlmn anything else, hut a cork heated to 100° (J. caused, wlien supporting a square 

plate, a uniform deposit to take place over very nearly the whole surface. 

Ihere is still another condition which affects the formation of these ffo-ures, and 

that to a very considerable extent : it is whether the plate on which the deposit is 

forming be horizontal or not. If not horizontal, the figure always has a tendencv, 

as it were, to slide down the plate. The smoothness of the glass is not essential to 

this effect, for if a cop])er plate be painted over with lampblack and a little shellac 

in alcohol, which gives it a rough surface, identical figures are formed. Fig. 19 sliows 

the deposit formed if the })late is placed on a slope of only 2 degrees, but if the slope 

be increased to 5 degrees, then the deposit assumes the form shown in hg. 20, and if the 

slope be 15 degrees, then the deposit has the form shown in fig. 21. These three figures 

show in an interesting Avay the great effect which the slope of the plate produces. 

Ihere is another way by winch the formation of these figures uiay be controlled and 
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altered to a remarkable extent, and which shonld throw light on the mode of their 

formation. It is hy the proximity to the plate of other bodies. For instance, if a 

piece of glass or metal as long as the plate and 10 millims. wide be fixed against it 

so as to project aliove it, then an even deposit forms under its shadow. If lioles are 

cut in this screen, no deposit takes place on tlie glass in front of the holes. Fig. 22 

shows what happened when a scpiare glass had a piece of metal with holes cut in it 

pressed against it. In Iroiit of each opening in the screen there is a cleai space on 

the plate. Another curious, but very complicated efiect is produced hy cutting a 

re-entering angle out of a square of copper. It is difficult to follow how tlie deposit 

can form in the way shown in fig. 22a. 

Bearing on this same point is the fact that If a w^armed plate be placed on the 

floor of the vessel in which it is exposed to the dust, instead of being raised above 
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it, no figure, only an even deposit is formed. Now, if in place of a screen extending 

the whole length of the plate a small one he set up, a piece of glass 5 millims. wide, 

for instance, the same kind of action occurs, the plate immediately behind the screen 

is ])rotected, and there a deposit of dust fhrms, of a curious rounded shape (fig. 24]. 

Fig. Fig. 24. 

A still nari'ower obstruction may be used. The efiect produced by a pin fixed against 

the plate is shoAvn in fig. 24, and fig. 25 shows tlie effect of a fine human hair. In 

neither of these cases does the deposit commence at the ol)struction, but a little wav 

from it. A piece of thin wire acts exactly in the same way as a hair. Experiments 

were then made to ascertain what effects altering the position of the pin would have 

on the figure ])roduced, and it was found, that as long as the pin is in contact 

witli the plate, its height above it does not affect the deposit formed. In all these 
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cases, a considerable amount of deposit was formed, commencing at an appreciable 

distance from the pin. The pin was tlien lowered, so that the edge was immediately 

below the plate ; when it was 2 millims. helow, it produced a considerable amount 

of deposit j when 4 nnlhms. below, the amount was much diminished, and when 

8 millims., only a trace of deposit was formed. Tt was found tliat as the pin 

Fig. 28. Fig. 29. 

receded, so did the deposit recede from the edge ot the plate, hecoming at the same 

time smaller in amount. 

Fig. 27 shows the deposit formed when the pin was 3 millims. away, and still at the 

level of the plate. Fig. 28 is the figure formed when the pin was 6 millims. from the 

2 C 2 
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plate, and lig. 29 Is the effect produced Avheii 8 millims. away ; but when the pin was 

10 uulliius. away, uo effect was produced. If the pin does not touch the plate, as it 

did ill the foriiier case, its height again does not affect the deposit formed. If the 

pill he placed at a lower level than the plate, and at different distances from it, it is 

still able to produce a deposit on the plate, as was proved by trying it at a constant 

distance of ll, millim. below the level of the jffate, and at distances of 2, 4, 6, 8, and 

10 millims. from the plate. At 2 millims. a consideralile amount of deposit was 

formed, and the amount gradually diminishes and recedes from the edge of the plate 

as the distance increases. At 2 millims. from the plate, the deposit is nearly up to 

the edge. At 4 millims. it commences at 18 millims. from the edge, at 6 millims. 

at 27 millims., at 8 millims. at 30 millims., and at 10 millims. there is no deposit 
formed. 

It the pin be placed at a still greater depth below the level of the jjlate, it is still 

able to 2>i'oduce a deposit on the jilate, the deposit, of course, becoming less as the 

Fig- 39a. Fig. 30. 

depth increases. At 4 millims. below the level oi the plate, and 2 millims. away 

from it, a small de2)osit is formed (fig. 29a), and even when it is 6 millims. beloAv, a 

visible deposit is formed at the centre of the jffate. The amount of de^Josit produced 

l)y a pin on the same level as that of the plate, may be equalled, but apparently is 

nevei exceeded. It has already been shown that no deposit takes place on warming 

and exposing to dust a circular jilate, hut it a pin be placed at different distances 

from it, and either above or below it, deposits are j^roduced similar to those formed on 
any other shaped plate. 

It is certainly remarkable tliat a ^lin so far from the jilate and so much below it 

should he able in so definite a way to aflect what is taking jilace iqion it. 

there still remained another way in Avhich the jiin could he iiresented to the |ilate, 

namely, by holding it above the jilate. If a pin 50 millims. long he held 6 millims. 

above and 3 millims. beyond a plate it produces no effect on the figure, but if the pin 

be sinijily lowered, so that it is only 4 millims. above the [date, then a slight deposit 
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at the centre is formed, and when the pin was only 2 millims. above the plate and 

still 3 millims. from it, increase in the deposit occurred. In all these cases with the 

pin supported from above much less deposit was formed than when the pin was 

pointing upwards. 

If the pill he bent at a right angle, it produces on the plate a deposit similar in 

form and amount to tliat produced by a vertical pin at the same distance from the 

plate. 

This action of any neighbouring body on the dust deposit is shown by any rough 

edge which the plate itself may have. If, for instance, a glass plate be used and it 

has been cut in the usual way, in addition to the figure which is dependent on the 

shape, there will he certain lines of deposit darting out in different directions ; these 

are produced by small splinters of glass attached to the edge. Fig. 30 shows this on 

an oblong glass and fig. 31 on a circular glass. If the edges of tlie plate he carefully 

ground, then these lines of deposit cease to be formed. Fig. 32 shows a square glass, 

two of whose edges were left rough and the other two were ground. 

There are many curious alterations in the forms of the figures produced by placing 

on the plate obstructions to the flow of these lines of dust. For instance, taking 

again a square plate, if a strip of glass 1 millim. high and 1 millim. wide be placed 

across one corner of the plate and then the cross be developed, it has no effect, the 

cross forms as if no obstruction were there, but if the strip be 7 millims. high, then a 

marked effect is produced. In front of the strip the ray retains its usual form, hut 

on the other side and round the centre there is a great widening-out of tlie ray and a 

slight banking-up of the dust against the sides of the glass strip. This effect ol the 

obstruction strip is shown in fig. 33. If the strip be even 20 millims. high it acts in 

the same kind of way. If a strip 5 millims. high and 30 millims. long be placed 

parallel with the edge of the plate, and nearly at the centre, the cross is altered in a 

remarkable way, shown in fig. 34. 
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Tlie lollowiiiLT tio'uies show the effect which other forms of obstruction have on 

these dust tigures. A glass ring 4 millims. thick and 0'75 millim. high was placed 

at the centre of a square plate, and juoduced no alteration of the cross (tig. 35). 

Then a ihig U5 milliin. liigh was used, and it produced but little effect (fig. 3G); 

i)ut when a ring 3 millims. high was used, then the central part within the ring 

Ijecame to a considerable extent thickened, and much deposit was formed (fig. 37), 

and when the ring was 5 millims. high an even deposit was formed inside the ring, 

but the rays of the cross outside were not affected (fig. 38). The effect of offering 

Fig. .35. Fig. 36. 

obstructions of different kinds to the ffow of these dust currents was further tested 

by supporting from above, instead ol from below, a strip ot glass longer than the 

square plate on which the deposit was to be formed. When this is hung against 

the side of the plate, a dense deposit takes place all along this edge, but when the 

screen extends about lU millims. on both sides beyond the })late, the deposit stops at 
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4 mlllims. from the edge of the plate at both ends, and is conical in form. If the 

strip had been of the same length as the plate, the deposit would liave reached, as 

shown in former experiments, very nearly the whole length of the plate. If the 

hanging screen 1)e raised 2 millims. above tlie plate, then in place of a long line of 

deposit there is a line of clear space some 7 mlllims. wide, and at the ends are delicate 

curved lines extending to the corners of tlie plate, and beyond this open space there 

is the conical deposit as in tlie former case (fig. 39). In raising the screen so that it 

was 4 millims. aliove tlie plate, the depth of the clear space increased and Was now 

12 millims. from the edge. When the screen was 6 millims. above the plate, the 

clear space became strongly curved, and at the top of the curve was 20 millims. from 

the edge of the plate, and when 10 millims. above the plate the normal rays of the 

cross were well developed, and a well defined but slightly distorted cross was formed. 
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so that the hanging screen at this height exercises but little influence on the figure 

formed below it. The same hanging screen was now allowed to rest on the j^late, 

but at a distance of 15 millims. from the edge, and a pin was placed against the edge 

of tlie plate. Fig. 40 shows well the different actions Avhich came into plav, that of 

the pin, of the corners of the plate, of the screen, and of the broken corner producing 

a forked ray. The hanging screen was now raised to 3 millims. above the plate, the 

cuiTent now passed under it, and gave the curious picture (fig. 41) with di.stinct side 

wings. 

Another way of offering obstruction to these dust currents was to jjlace above the 

plate on which the deposit is to take place, other plates at different height.s, and of 

varying sizes, some larger and .some smaller than the ])late which is to receive the 

figure. First taking the case of placing a plate larger than the one on which the 

deposit is to form above it, the large one was 7-i- Inches by 4| inches and the smaller 

was 3 inches square. The upper part was supported on vulcanite pillars, so far from 

FiA ii'. Fig. 43. 

the plate as not to influence the figures foinied. It was found that when the 

distance between the.se plates was 1 millim. no deposit took place; but when this 

di.stance was 5 millims. a deposit did take place, covering mo.st of the curved outline, 

and passing into each of the corners, but le.ss deposit occurred in the middle of 

the figure (fig. 42), and was apparently an early stage of the cross. If the distance 

between the two plates be 10 millims., the amount of even deposit is less, and when 

the distance is increased to 15 millims. a considerable chano-e has occurred, and fio-. 43 

is formed, the cross still further developed, and when the distance between the plates 

is 20 millims., then a perfect cross forms. 

If the upper plate, in place of being larger, is of the same size as the lower one. 

different results take place. Plates 3^ inches scjuare were used, and the upper one 

was suspended above the lower one. When the distance between the plates was 

1 millim., again no dust entered, but when it as 2 millims. there was a small amount 

of deposit at each of the corners, and when 3 millims. a considerable increase of deposit 
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occurred, but it was still limited to the corners (fig. 44). When the distance between 

the plates was 4 millims., a further inroad of dust took place, and when 5 millims., the 

centre is the only part without deposit, but from the entrance of the dust being 

principally at the corners, a rough cross, formed by absence of dust, and pointing to 

the centre, is distinguishable (fig. 44a), and at 7 millims. there is an even deposit. 

In the next set of experiments the covering glass, in place of being as large as tlie 

lower glass, was only a strip 14 millims. wide and 190 millims. long, and 1^ millim. 

thick. It was supported on vulcanite pillars which did not influence the depositions 

Fig. 45 Fig. 46. 

of the dust. When this strip was 1 millim. above the plate no dep3slt took place ; 

when 2 millims. above the plate a small' amount occurred, and this was at a distance 

of 7 millims. from the edge of the pla'^e, and of a curved form, of course, under the 

strip (fig. 45). The strip was now raised to a height of 3 millims., and the amount of 

deposit not only increased, but receded further from the edge of the plate, and wa-i 
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now 12 millims. from it. On still fui'ther increasing the distance between the strip 

and the plate, the amount of deposit goes on increasing and travels nearer the centre. 

When raised to 4 millims. above the plate the deposits have met in the centre, and 

when the height between the plates is 7 millims., then the deposit is 15 millims. from 

the edge, and when 10 millims. above the lower plate the deposit is 18 millims. from 

tlie edge, and is central to the large cross (hg. 46). At a distance of 15 millims. the 

strip no longer produces any effect, the ordinary large cross forms. 

In order to ascertain whether any figure coidd be formed by a dusty atmospliere 

^\■hen in motion, magnesium was burnt in an asbestos tube, while a current of air was 

being drawn through it. The asbestos tube Avas attached to a glass tube, 32 millims. 

in diameter, and in this tube pieces of glass 

of different lengths were introduced for 

tlie figures to form on. It was found that 

a peculiar and characteristic figure was 

always produced. It consists of a multi¬ 

tude of dust streams which unite into a 

single stream, as shown in fig. 47. If the 

tube be wider, the same picture is formed liy increasing the amount of air drawn through 

the tube. It may also be stated that if the dust atmosphere be violently disturbed by 

means of a stirrer, while the dust is settling on the plate, it produces no alteration of 

tlie figure wdiich is forming witliout the stirrer comes very close to the plate. 

Tins figure, formed in the tube, is probal)ly of a somewhat different character froui 

the previous ones, for it forms quite as readily when the plate is not warmed as it 

does when it is warmed. 

When the dust is obtained by ljurning 

magnesium, the magnesia formed undergoes 

some curious changes. The figure when first 

formed lies loosely on the plate, the slightest 

friction will remove it. If, however, it lie left 

■exposed to the air, it loses its silvery whiteness 

nnd becomes more and more attached to the 

glass, so that after about a week or fortnight 

tlie figure may be lightly rubbed without its 

being removed. Again, the magnesia itself 

undergoes a change of foiin immediately after 

its production. If the dust be collected at 

■once, that is, while the magnesium is still 

burning, and be examined under a microscope, 

it will be seen that it is made up of small separate irregular-shaped particles about 

<n005 millim. long (fig. 48) ; but if the dust be collected after the combustion is 

■over, and it has stood for one or two minutes, then its form is different, for ft now 

Fia;. 48. 
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■consists of particles strung together and having a distinctly fibrous structure (fig. 49). 

It is in this form that the dust exists when forming pictures. It has already been 

stated that magnesia dust, if allowed to deposit on mercury, forms the ordinary 

cross; on the contrary, if it be allowed to deposit on water at about 1 / , oi on a 

mixture ot water with a little alcolrol or glycerine, then the deposit which forms on 

the surface breaks up, as the dust sinks, into a figure having a cellular form (fig. 49a). 

As before stated, other powders than magnesia act in the same way. For instance, 

a figure, corresponding exactly with those described as jiroduced by the action ot a 

pin, and magnesia, is also produced witli fine fungus spores, dust from ashes, or 

ammonium chloride. 

It is interesting to note that if the warmed glass be rubbed with a piece of flannel, 

and then exposed to the dust, in place of a fine even deposit a very strongly fibrous 
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uiu' tonus (tio-. 50). Even small specks ot‘ dust in tins tibroiis form act verv strongly 

ill the same Avay as the ])in or rough edge of a glass in inducing deposits to take 

place. It the plate he charged with negative electricity, then a deposit much finer 

in character is ])roduced (tig. 51). 

It is remarkable that these tigures depositeil by a dust-laden atmosjihere, 

should he so shar[) in outline and definite in form. They originate, no doubt, 

in the currents set up by the warming of the plate, but that these feeble 

currents should so completely and jiersistently ju'event the deposition of dust at 

certain places, and determine its precijhtation at others, was hardly to be anticipated. 

Especially may reference be made to the singular action of the ])iu both near and at 

a distance trom the i)late, and the ajiparently complicated wav in which obstructions 

act in altering the form ot the deposits. The formation of the tigures taking place 

as readily on copjier or other metals, as on glass or ebonite, indicates that the 

|)henomena are not purely electrical. 

It is hoped that by the fore^going records and descriptions of these singular tigures, 

jiliysicists may be enabled to e.vplain their formation. 

I wish to record that this investigation was carried out in the I )avy-Faraday 

Laboratory at the lloyal Institution, also that my best thanks are due to my 

assistant, Mr. Olaf BiiOCK, for the important aid which he has given me. 
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Vn. The Spectrum of y Cygni. 

By Sir Normax Lockyer, K.C.B., F.R.S., and F. E. Baxaxdall, A.R.C.Sc. 

Keceived December 3,—Read December 11, 1902. 

[Plate 1.] 

In a paper on “ The Chemical Classification of the Stars,” communicated to tlie Koyal 

Society on May 4, 1899,"'^ one of us indicated that it was then possible to classify the 

stars according to their chemistry. In the case of type stars of some of the groups 

lists have been given! of the wave-lengths and probable origins of the lines on which 

the classification is based. The type stars thus dealt with represent the groups of 

higher temperature, viz., a Cygni (Cygnian), Rigel (Rigelian), ^ Tauri (Taurian), 

Bellatrix (Crucian), e Orionis (Alnitamian), and Sirius (Sirian), 

The spectrum of stars of the Polarian type—representing a temperature stage next 

lower than that of a Cygni,—-is, so far as the relative intensities of the metallic lines 

are concerned, closely allied to that of the chromo,sphere. It is also interesting as the 

connecting link between the specti'um of the Aldebarian stars, in which the arc lines 

of the metallic elements predominate, and that of a Cygni, chiefly composed of the 

enhanced lines of some of the metals. It has hence been thought important to make 

a careful reduction of the spectrum of a star of this group. Of the existing 

photographs of Polarian type spectra at Kensington, that of y Cygni is the best 

for the purpose of reduction, and for this reason ]ias been selected. 

Method, of Reduction. 

The wave-lengths have been determined by measuring the relative positions of the 

lines on the plate with a micrometer, and subsequent use of Hartmann’s interpolation 

formula. In selecting the lines to be used as bases for the reduction, only sharply- 

defined lines with well-authenticated origins, and of the simple nature of which there 

* ‘Roy Soc. Proc.,’ vol. 65, p. 186. 
t ‘ Catalogue of 470 Brighter Stars,’ published by the Solar I’hysics Committee. 

VOL. cci.—A 337. 19.6.03 



206 SIR XORMAN LOCKYER AND MR. F. E. BAXANDALL 

is little doubt, were taken; lines which were suspected, however slightly, of havino; a 

double or complex origin were rejected. A list of the lines used is here given ;_ 

A. Origin. A. Origin. 

3900-68 p Ti 4501-45 p Ti 
4012-54 p Ti 4584-02 p Fe 
4215-70 p Sr i 4657-38 pTi 
4415-29 Fe 1 

1 
1 

4780-20 p Ti 

Tlie result of a previous reduction of the spectrum of a Cygni, already published, 

serves as a valuable check on the accuracy of the reduced wave-lengths, as there are 

many lines common to the two spectra, and there can he no doubt as to the identity 

of most of the stronger a Cygni lines with enhanced lines of some of the metals, as 

has been shown in a jDrevious paper. ^ 

In the table at the end of the paper the y Cygni lines are compared with those 

reduced at Kensington from tlie spectrum of a Cygni and that of the chromosphere, 

and also with those recorded by PickerixgI in the spectrum of 8 Canis Majoris. The 

latter star is selected by Pickerixg as typical of Grouji XIIIc. in his classification, in 

which group he also includes y Cygni. In the case of the chromosphere, in order to 

keep the table within moderate limits, only those lines which agree with y Cygni 

lines have been inserted, but of the chromosjiheric lines omitted none are prominent 

except those of helium. 

Comparison of y Cygni and Chromospiliere. 

Iteference to the table will show that the metallic and protometallic lines have, 

speaking broadly, about the same relative intensities in the spectra of y Cygni and 

the chromosphere. It would thus appear that the temperature and electrical 

conditions prevailing in the chromospheric vapours which furnish the metallic lines 

are nearly identical with those appertaining to the absorbing atmosphere of y Cvgni. 

To arrive at any conclusion as to which of the two light sources in question represents 

the liigher temperature, it is necessary to study in detail the comparative intensities 

of well-known lines. For this purpose, two sets of lines have been considered : (1) the 

strongest unenhanced lines of the metals represented; (2) the most marked enhanced 

lines of the metals. In the following table a comparison is given of the intensities of 

the strongest lines of iron, manganese, chromium, cobalt, barium, calcium, aluminium, 

and titanium, as they occur in y Cygni and the chromosphere, 

* ‘Roy. Soc. Proc.,’ vol. G4, p. 321. 

t ‘Annals Harv. Coll. Obs.,’ vol. 28, Part I., p. 7y. 
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Comparative Intensities of the Strongest Metallic Lines in y Cygni and the 

Chromosphere. 

Strongest arc 
lines. 

A. 

Intensity. 

Strongest arc 
lines. 

A. 
Origin. 

Intensity. 

Origin. 
y Cygni. 

Ma.\. = 10. 

Chromo¬ 
sphere. 

Max. = 10. 

y Cygni. 
Max. = 10. 

Chromo¬ 
sphere. 

Max. = 10. 

r 401.5-98 Ee 8 7 4528-80 Fe 4 3 
1 4063-76 Fe 8 6-7 4030 - 92 Mn 5 5 
U071-91 Fe 5 6 4033-22 Mn 4 3-4 

4132-24 Fe 5-6 3 3995-46 Co 5 3-4 
4144-04 Fe 8 5-6 4226-90 Ca 8 7 
4202-20 Fe 5 3 3989-91 Ti 4 2-3 
4260-64 Fe 6 4 3998-79 Ti 5 4 

. 4271-33 Fe 6 \ 1 Pi 3944-16 A1 3-4 5 
4271-93 Fe 6 J 

ht—D 
3961-67 A1 5-6 6 

r4383-72 Fe 4-5 5 4554-21 Ba 5-6 7-8 
\ 4404-93 Fe 3-4 4 4254-51 Cr 4 6 
[.4415-29 Fe 5-6 4 4274-96 Cr 4 5 

These intensities cannot he accepted as absolute, but as the same limits (1 to 10) 

are used in the two spectra, it may be conceded that the intensities are roughly 

comparable. It will be noticed that in tlie majority of cases the lines appear to 

be somewhat weaker in the chromosphere than in y Cygni. Notable exceptions, 

however, to this are the lines of aluminium, chromium, and barium. 

In the next table, the intensities of the more prominent enhanced lines of iron, 

magnesium, chromium, titanium, and strontium are similarly compared. 

Comparative Intensities of Enhanced Lines in y Cygni and the Chromosphere. 

Enhanced lines. 
A. 

Origin. 

Intensity. 

Enhanced lines. 
A. Origin. 

Intensity. i 
j 

y Cygni. 
Max. = 10. 

Chromo¬ 
sphere. 

Max. = 10. 

y Cygni. 
Max. = 10. 

1 

Chromo¬ 
sphere. 

Max. = 10. 

4233-33 ]) Fe 7-8 6-7 4399-94 p Ti ,5-6 5-6 
74.508-46 Fe 4 5 4443-98 p Ti 9 7 

4515-51 p Fe 4 4 4450-65 p Ti 4 5 

^ i 4520 - 40 p Fe 3 3 4468 - 66 p Ti 6 6 
4522-69 p Fe 4 4 4501-45 p Ti 6 7 
4549-64 p Fe 8 7-8 4534-14 p Ti 6 7-8 
4584-02 y Fe 8 7 4549-81 p Ti 8 7-8 ! 
3900-68 p Ti 4-5 4 4563-94 p Ti 4-5 7-8 ! 
3913-61 p Ti 4 6 4572-16 p Ti 6-7 7 
4012-54 pTi 5 5-6 4558 - 83 p Cr 3 3-4 ; 
4161-68 p Ti 6-7 3 4588-38 p Cr 3 3 
4163-82 p Ti 5-6 4 4077-89 p Sr 8 10 
4300-21 p Ti 6 5 4215-70 p Sr 9 10 
4321-20 p Ti 8 5 4481-30 p Mg 5-6 — 

4338-08 p Ti 9 5 
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Here we find that of the 29 lines included 12 have a gi’eater intensity in y Cygni, 

11 in the chromosphere, while 6 have been estimated as having ecjiial uitensities in 

the two spectra, thus showing a very evenly-balanced state of affairs. 

Taking the two comparisons together, it would appear that the evidence points to 

the unenhanced lines being, upon the whole, somewhat weakened in the chromo¬ 

sphere at the expense of the enhanced lines. This result tends to show that if anv 

distinction is to lie made between the temperature conditions of the two light sources 

in question, the chromosphere must be placed on a slightly higher level. 

Ihe most marked difference between the spectrum of y Cygni and that of the 

chromosphere occurs in the case of the helium lines. There is no evidence of their 

presence in the former spectrum, while in the latter the stronger helium lines are 

quite conspicuous. We do not, however, know much about the relative positions of 

the helium vapour and the metallic vapours in the chromosphere, and it is quite 

possible that the temperature conditions of the two are vastly different. Another 

notable diffeience between the two sjiectra is in regard to the well-known enhanced 

line of magnesium, X 4481-3. This is fairly prominent in y Cj-gni, but appears to be 

entirely lacking in the chromospheric spectrum. As the enhanced lines of other 

elements are well developed in the chromospheric spectrum, this is a very curious 

1 esult, and difficult to account for, especially as the line in question is well marked in 

iioth y Cygni and a Cygni, iietween which the chromosphere must apparently be 

placed from temperature considerations. 

In the transition from stars resembling the Sun, through y Cygni (Polarian), the 

chromosphere, to a Cygni (Cygnian), the gradual strengthening or weakening of well- 

known groupings of metallic lines can be traced. There cannot be any doubt about 

the authenticity m the spectra of y Cygni and the chromosphere of such groups and 

pairs of metallic lines as the aluminium pair {XX 3944-16, 3961-67), manganese triplet 

(AX 4030-88, 4033-22, 4034-64), iron trqilets (XX 4045-98, 4063-76, 4071-91) and 

(XX 4383-72, 4404-93, 4415-29), chromium triplet (XX 4254-51, 4274-96, 4289-89), and 

the enhanced iron quartette (XX 4508-46, 4515-51, 4520-40, 4522-69). 

Moreover, reference to the Kensington publications of eclipse results,^^ in addition 

to those of Frost,! Evershed,;!; Mitchell,§ and Humpheeys|| will show that there is 

a general consensus of opinion that the chromospheric lines have, upon the whole, 

metallic origins. This is entirely at variance with the conclusion arrived at by 

Professor Dewar, and embodied in his Presidential Address to the British Asso¬ 

ciation, 1902, that the chromospheric lines are to lie accounted for by the lines of 

ki}-pton, xenon, and those of the most volatile atmospheric gases. In tliis connection, 

* ‘Phil. Trans.,’ A, vol. 197, jx 208. 

t ‘ Astrophysical Journal,’ vol. 12, p. 307. 

f ‘ Phil. Trans.,’ A, vol. 197, p. 381. 

§ ‘ Astrophysical Journal,’ vol. 15, jj. 97. 

‘Astrophysical Journal,’ vol. 15, p. 313. 
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he says,'"' “ In the ‘ Astrophysical Journal’ for June last is a list of 339 lines in the 

spectrum of the corona, photographed by Humphreys. Of these, no fewer 

than 209 do not differ from lines we have measured in the most volatile gases of the 

atmosphere, or of krypton, or xenon, by more than one unit of wave-length on 

Angstrom’s scale, a quantity within the limit of probable error.” 

It may be here pointed out that Humphreys’ list of 339 lines referred to the 

spectrum of the solar chromosphere, and not to that of the corona. The latitude 

allowed (one tenth-metre) in comparing the wave-lengths of the lines in the solar and 

terrestrial spectra is far greater than can be accepted in modern exact work, and as 

the average error of Humphreys’ wave-lengths is probably less than 0’2 tenth-metre, 

it is obvious that, until Professor Dewar can give the wave-lengths of his lines to a 

greater accuracy than that of the ]iearest tenth-metre, little weight can be attached 

to the results of his comparison. His conclusion, moreover, appears to have been 

based merely on apparent similarity of wave-lengths, without taking into account the 

relative intensities of the lines in the sjDectra compared, or of the correspondence of 

conspicuous groupings of lines, which would certainly tend to clear matters. 

The extreme limits of Humphreys’ 339 eclipse lines are, roughly speaking, 2000 

tenth-metres apart, which gives an average interval of 6 tenth-metres. In Professor 

Dewar’s three lists of gaseous lines there occur between the same limits 564 lines, 

with an average interval of 4 tenth-metres. If we assume, then, that the lines of 

each set are evenly distributed over the region involved, there will be certain to be a 

large number of lines in the two sets which agree in position within the limits of error 

allowed (one tenth-metre). 

Many lines have gaseous origins assigned to them which have been hitherto 

universally acknowledged by the various workers in the subject to be representatives 

of well-known metallic lines, and groups of lines previously given as due to some 

particular metal are sjJit up by Professor Dewar’s analysis, some members being 

ascribed to krypton, others to xenon, &c., wliile other members remain clear of his 

gaseous lines. The following table contains several groups of chromospheric lines, 

which are all included in both PIumphreys’ listf and that given in the Kensington 

eclipse publication,! and whicli have been ascribed to the same metals in the two 

records. In the comparison column, Liveing and Dewar’s gaseous lines are given 

which agree within one tenth-metre (this Ijeing the difference accepted by Professor 

Dewar in his analytical comparison) with tlie cliromospheric lines. 

‘Nature,’ vol. 66, p. 475. 

t ‘Astrophysical Journal,’ vol. 15, p. 318. 

I ‘Phil. Trans.,’ A, vol. 197, p. 208. 

VOL. COT.-A. 2 E 
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Comparison ol Groups of Chromosplieric Lines belonging to Various Metals M’ith 

Liveing and Dewar’s Gaseous Lines. 

Chromosphere 
(Humphreys). 

X. 

Origin. Atmospheric Gases 
(Liveixg and Dewar). 

Humphreys. Kensington. Most volatile. Xenon. Krypton. 

f3829-5 Mg Mg 3830 3829 
3832-5 Mg Mg — _ — 

[3838-4 Mg Mg — — — 

/ 3944-0 A1 A1 3944-0 
13961-6 A1 AI — — — 

14046-0 Fe Fe 4047 4045 
4063 - 7 Fe Fe _ _ 

L4071-9 Fe Fe — — — 

14077-9 Sr p Sr 
14215-7 Sr p Sr — 4215 — 

14254-5 Cr Cr 
4274-9 Cr Cr _ _ _ 

1 [4289-9 Cr Cr 4290 — — 

14383-6 Fe Fe 
4404-9 Fe Fe _ _ _ 

[4415-2 Fe Fe 4415 — — 

14508-5 Fe ? p Fe 4508 
J 4515-5 — p Fe _ - _ 
S 

4520-7 Fe ^ p Fe _ ■ ■ ■ . 

[4522-9 Ti p Fe 4523 — — 

From this comjiarison it would appear that Professoi' Dewar claims for xenon, one 

member of tlie magnesium trijilet (W 3829‘5-3838’4), one component of the aluminium 

double (XX 3944‘0, 3961‘6) and one member of the strontium pair (XX4077‘9, 4215‘7); 

for krypton one member of the iron triplet (XX 4046"0-4071‘9); and for the most 

volatile gases, one member of tlie magnesinm ti'iplet, one of each of two iron triplets, 

one of a chromium trijilet, and two members of the enhanced iron t|uartette 

(XX 4508‘5-4522‘9). It is, of course, quite possible that some of these gaseous lines 

may account for the coronal lines ; but that the chromospheric lines ai'e, in the main, 

produced by metallic vajjoui’s, there can be no doubt. 

Comparison of y Cygni and a Cygni. 

It will be seen that there is a much greatei' number of lines in the spectrum of 

y Cygni than in that of a Cygni. The lines occnrring solely in y CVgni Avhich have 

been traced to any terrestrial origin are found to be attributable to the ordinary 
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metallic arc lines, as distinguished from the enhanced lines. These, which occur so 

prominently in a Cygni, are, with certain excerptions, present also in y Cygni, so that 

the latter spectrum practically consists of the a Cygni spectrum (with modifications 

of the intensities of the enhanced lines of various metals) with the ordinary arc lines 

added, and the two sets are of about equal importance. This is a condition of affairs 

intermediate to that of the Aldeharian stars—in which the ordinary lines are well- 

developed and the proto-metallic lines weak or missing—and a Cygni, where the 

enhanced lines are very prominent, to the nearly total exclusion of the metallic arc 

lines. 

The only line of any prominence which occurs solely in a Cygni is the silicium line 

\4131H This is one component of the silicium double which is so conspicuous in tlie 

spectra of a Cygni, Rigel, Sirius, &c. There is certainly a line in y Cygai apparently 

coincident with the other component A. 4128‘1, hut in the absence of its companion it 

must he concluded that the y Cygni line in question has probably an origin entirely 

distinct from silicium. The silicium double mentioned is also absent from the 

chromospheric spectrum, which closely resembles that of y Cygni. 

In a paper “ On the Order of Appearance of Chemical Substances at different 

Stellar Temperatures,”^ it was pointed out that the enhanced lines of the various 

metals attained a maximum intensity at varying levels of the stellar temperature 

sequence. The present detailed investigation of the y Cygni spectrum confirms this 

result, the enhanced lines of strontium, scandium, and titanium being at their 

strongest in y Cygni and much stronger than in a Cygni, while in the latter spectrum 

the enhanced lines of iron, chromium, and magnesium, attain their maximum 

intensity, being more prominent than in y Cygni. 

Of the better known arc lines of some of tlie metals whicli are prominent in 

y Cygni, but-very weak or lacking in a C!ygni, the following may Ije mentioned : the 

iron triplets (\X 4045-98, 4063-76, 4071-91) and (XX 4383-72, 4404-93, 4415-29); the 

manganese quartette (XX 4030-92, 4033-22, 4034-64, 4035-80) ; the chromium triplet 

(XX 4254-51, 4274-96, 4289-89); the aluminium pair (XX 3944-16, 3961-67); tlie 

calcium line, X 4226-90 ; and the barium line, X 4554-21. 

General Conclusions. 

The investigation of the photograjDhic spectrum of y Cygni in its relation to otlnn- 

spectra has led to the following conclusions :— 

]. The majority of the lines are due to metallic vapours, the enhanced lines and 

the arc lines being of about equal prominence. 

2. The temperature conditions are thus intermediate between those of Aldebaran 

* ‘ Roy. Soc. Proc.,’ vol. 64, p. 396, 

2 E 2 
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(arc lines prominent, enhanced lines weak or absent) and those of a Cygni (enhanced 

lines prominent, arc lines weak or absent), 

3. The enhanced lines of scandium, strontium, and titanium are better develoj)ed 

than in a Cygni, l^ut those of iron, chromium, and magnesium are less conspicuous 

than in a Cygni. 

4. The relative intensities of the metallic and proto-metallic lines are about the 

same as in the spectrum of the solar chromosphere, which, if anything, represents a 

slightly higher temperature. 

Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Canis Majoris, the Chromosphere, and a Cygni. 

7 Cygni 5 Canis majoris Chromospbere a Cyg ni 
(Kensington). (llai’Tard). (Kensington). (Kensington). 

Tnten- 
A of 

probable 

Inten- Inten- Inten- 
Remarks. 

A. 
sity. 
Max. 

Probable 
origin. 

A. 
sity. 
Max. 

A. 
sity. 
Max. 

A. 
sitj. 
Max. 

= 10. = 220. = 10. = 10. 

3872 -9 5 Fe 3872 -64 3872 -7 7 3872 -6 4 3872 -4 3 
T6 -0 3 Fe 76 -19 — — 76-1 1-2 — — 
78 -8 7 Fe 78-72 78 *5 5 78-7 3 78-7 4 
80 -6 1-2 — — — — 80 -8 2 80-5 1-2 
82 -4 3 — — — — 82 -5 2 82 -2 2 
83 '5 1 ? C S3 -55 83 -2 3? 83 -4 4 — — 

85 -1 2 Fe 
r 84 -81 
1 85 -29 

— — — — 84-5 1-2 
? double. 

86 -9 3-4 Fe 87 -20 — — 87 -2 2-3 86 -3 2 
89 -1 5 H 89 -15 89 -1 11 ? 89 -1 8 89-1 10 
91 -1 1 Fe 90 -99 — — 91 -4 2 — — 
9] -9 2-3 Fe 92 -07 — — 92 -2 2 — — 

93 -6 1-2 Fe 93-54 — — 94 -0 2 — — ? double. 
96 -1 4-5 Fe 95 -80 — — 95 -7 3 95 -8 2 i fine double. 

98-0 8-4 
r Fe 

1 y 
98 -03 
98 -15 } - 

— 98 -0 2 98 -1 1-2 

99 -4 3 pY 99 -30 99-9 2 99 -2 2 — — 
3900 -7 4-5 p Ti 3900 -68 3900 -7 7 .3900 -7 4 3900 -7 5-G 

03 -2 4-5 Fe 03 -09 03-1 3 03 -1 2-3 03 -4 2 

03 -8 2 Fe 04 -05 — — — — — — ' 

05 -6 4 Si p Cr 05 -66 — — 05 -3 2 05 '7 4 

06-7 4 Fe 
f 06 -63 
1 06 -89 

1 00 -6 4 06 -8 o 06-7 2 ' 

08 1 2-3 Cr 08 -90 — — 08 -4 1 09-0 1 ' 

09 -8 2-3 Fe 
/ 09 -80 
t 09 -98 i - — 09 -6 <1 — 

11 -0 3 Fe V 10 -98 — — — 11 -5 1 
12 -4 ? Ni 12 -45 — — — — — — , 

13 -6 4 pT^ 13 -61 13-6 3 13-6 6 13-6 4-5 

14 -5 4 J Fe j 14 -43 1 - _ 14 -5 o 
L Ti \ 14 ’4y J 

16 -1 4 Cr 15 -95 — 16-2 3 16 -4 <1 
16-7 4 Fe 16-88 

r 18 -46 1 
— — -- — 

18 -7 4-5 Fe 1 18 -56 
[ 18 -79 i - 

— 18 -6 3 IS-8 <1 ? double. 

20-7 4 Fe 20 -44 — 20 -4 3 20-4 1 ? double. 
22 -9 3-4 Fe 23 -05 — — 23 -1 3 23 -1 <1 
26 -2 3 Fe 26 -09 — — 25 -9 2 26 -2 1 Broad line. 

r 28 -2 1 1 Probably masked 
— — — — — — — — 1 30-4 2-3 I in 7 Cygui by 

L 32-1 1 J broad K line. 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Canis Majoris, the Chromosphere, and a Cygni—continued. 

(1 

Inten- 

A.. 
fity. 
Max. 
= 10. 

3933 -8 10 

41 -0 2-3 
42 5 3 
44 T 3-4 

45 -2 6 

47 -9 1 

48 -9 2-3 

50 T 4 
51 -3 4 

52 -7 1 
to 

r 
53 -3 J 

55 "5 1 

5G ’6 6 

58 -4 4-5 
60 -0 1 
61 -7 5-6 
63 -3 2 

68 -6 
70 -2 

}io 

73-8 4 

74 -9 4 

76-8 3-4 

77 -9 2-3 
78 -6 2 

79-7 3 

81 -9 7 

84 -0 3-4 

86 -2 3 
87-3 3 
88 -6 3 

89 -9 4 

91 -1 3-4 
92 T 1-2 

7 Cyg”i 

Probable 
origin. 

Ca 

Fe 
Fe 
A1 

P Y 
Fe 
Fe 

? Ti 
Ti 
Fe 
Fe 
Fe 
Fe 
Fe 
Mn 
Co 

Fe Cr 
Fe 

Co Ti 
Fe 
Fe 
Ti 

A1 
Fe 

Ca 
H 

Ni Zr 
Fe 

Cay; Y 
Co Fe 

Fe 
Cr 
Fe 

y; Cr Co 
Fe 
Ti 
Cr 
Fe 
Fe 

? Mn 

Ti 
Fe 

Cr Zr 

S Canis majoris Cliromospbere a Cygni 
(Harvard). (Kensington). (Kensington). 

K of 
probable 

Inten- Inten- Inten- 
Remarks. 

A. 
sity. 
Max. 

A. 
sity. 
Max. 

A. 
sity. 
Max. 

ori giu. = 220. = 10. = 10. 

3933 -83 3933 -8 220 3933 -8 10 3933 -8 10 
r 36 -0 

J 37 -3 
1 33 -6 

L 39 -3 

3 
1 
3 

Pos.sibly masked 1 
. in 7 Cygni Ijy 

3 
broad K line. 

1 
1 41 -03 _ _ — — 41 -8 <1 

42 -59 — — 41 -9 1-2 42 -6 <1 

1 44 T6 44 -1 r 44 -2 5 44 -2 <1 

r 14-94 — 
r ^ 1 45-03 — 

3 i 45 -26 45 -2 L 45 -2 2 45 -2 
_ — — — 47 -2 1 

47-92 — — — — — 
48 -82 
4S -93 

1 49 -0 3 48 -6 2-3 — 

50 -10 — — 50 -3 2-3 — 

51 -31 
52 -75 ‘1 

1 

— 51 -8 1 
fBroad hazy line, 

52 -85 1 probably in. 

53 -04 I- 53 -0 4 52 -3 3-4 52 -1 1-2 eluding all the 

53 -12 j solar lines 

53 -30 j given. 

55- 48 
56- 48 1 

— 

56 ‘6 

““ 54 -4 

56-6 

<1 

1 
f Probably com- 

56 -60 
56-82 

> 56 -6 2 4 \ pound line. 

58 -36 58 -4 2 58 -2 4 59 -0 L 

61 -67 61 -6 3 61-7 6 61 -6 2 

63 -25 — — 63 -3 1 “■ 
fPossibly masked 

_ — — 64-9 1 J in 7 Cygni by 

— 
_ — — 66 -4 1 "i broad II line of 

I calcium. 

68-63 68 -6 |iso r 68-6 10 68 -6 10 

70-18 70-2 t 70-2 10 70 -2 10 
("Possibly masked 

71-4 1 J in 7 Cygni by 
d broad H line of 

(_ calcium. 

73 -70 
73 -80 1 - 

— 73 -5 2 74 -0 3-4 

73 -86 
74 -90 

i 
_ — — — — 

76 -77 
76-84 
77 -89 

1 76-8 2 76-7 1 — — 
1 

_ 77 -8 2 77 -3 1 
— — 78-1 fr — — 

79 -66 
79 -78 } - — 79 -3 1 79-6 3 

Very bi’oad line. 81 -92 82 -0 6 82 -0 6 82 -0 2-3 

84 -06 
84-11 } - -- 83-8 1 ~ 

86-32 — 86 -3 1-2 — — 

87 -24 87 -0 3 — — — — 

_ — — 88 -3 1 — — 

89 -91 
90 -01 } - — 89 -9 2-3 — — 

91 -33 91 -6 2 91 -3 3 — — 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, comjDared vith 

those of S Canis Majoris, the Chromosj)here, and a Cjgm—continued. 

7 Cygni 5 Canis majoris Chromosphere a Cygni 
(ivensingtou). j (Harvard). (Kensington). (Kensington). 

t Inten- 1 
1 A of 

probable 
origin. 

1 
1 Inten- 1 Inten Inten- Eemarks. 

A. 1 sity. 
Max. 

,=10. 

1 Probable 
j origin. A. 

t 

sity. 
Max. 

= 220. 

A. sity. 
Max. 
= 10. 

A. sity. 
Max. 
= 10. 

3993 -7 _ —— 
1 

3993 -7 <1 95 '5 1 0 Co 1 3995 -46 3995 -5 i 3 3995 -2 ’ 3-4. 95-7 <1 

97 -3 0 
1 

Fe r 97-11 
11 97 "55 1 97 -6 

b 

r 97-7 1 3 
i 

97-3 1 

98 -9 Ti 98 -79 98 -8 1 98 -8 
1 

4 
i 

i-ono -1 3 — 1 - — 4000 -4 1-2 4000 -0 i 1 
01 -8 3-4 Fe i 4001 -81 — j _ — _ j _ 
03 -0 3 i - 4003 -0 ! 3 03 -3 1 02 -7 3-4 
04 -0 2 Ce Fe Ti 03 -91 — — — — — 
— — — — — — 04 -9 <1 

05 •4 8 Fe 05 -41 05 -3 4 05 -4 5 05 -5 2-3 
06 -8 1 -- — 06 -8 1-2 _ 
09 -9 2-3 Fe 09 -86 09 -4 1 09 -5 2-3 09 -4 1 
12 '5 5 J) Ti 12 -54 12 -6 3 12 -5 5-6 12 -5 4 1 
] 1 -4 2 Fe 14 -42 

14 1 14-8 3-4 Fe 14-68 14 -7 3 
J- 14 -o 3 <1 

15 '8 2 — — — — _ 15 *7 2-3 

17 -2 r Un 17 -24 1 
17 -5 17-2 1 Fe 17-31 1 - 

2 <1 

r-H 
GO 3-4 :Mn r 18 -23 

1 18 -27 
1 18 -4 2 18 -5 1 — — 

20 -6 1-2 J 
1 Fe 

20 -55 
20 -64 } ~ — 20 -6 <1 — — 1 

22 -0 3-4 Fe 22 -02 22 -0 9 21 -6 3 — 
23 -2 3-4 ! — — — -- 23 -1 1 23-6 1-2 j 

24 -8 
i 

7 
r Ti 
1 Fe 

24-73 i 
24-88 1 24 -8 0 24 -7 3 24 -6 3 

1 
1 

25 -7 1 — — — — 25 -2 1 
1 

28-5 4 I pTi 28-50 , 28 -5 2 28 -5 2-3 28 -5 3 
29 -8 2 ! Fe 29-80 , _ _ 
30-8 , 5 Mn SO-92 30 -8 5 30 -9 5 30-9 1 ' 
33-2 4 Mn 33 -22 33 -2 2 33 -2 3-4 33-2 2-3 
34-6 3 Mn 34 -64 34-6 1 34 -6 3-4 34-0 <1 

2 
r Mn 35 -80 

} 35-8 35 -9 3o *0 1 
t p y 35 80 1 1 35 -8 2 1 

37-3 ! 1 i — — 37 -2 1 37 -7 1 — _ 
— 

- i 
— — — — — — 38 -3 1-2 

40-8 ‘ 2-3 • Fe 40-79 40 -8 2 40 -8 4 40 -4 <1 
r Close double,com- , 

41 -5 

43-0 

5 I Mn 41 -53 i 
1 

— — — i — 41 -9 <1 
•< ponents merging 
|_ into each other. 

1-2 ? La 43-05 — — 43-4 1 — _ 

44 -4 1 1 / Fe 
1 Fe 

44-06 
44-77 ' } - 

~ 44 -4 1 44 -4 1-2 
f Probably close 
I double. 

46-0 ! 8 i Fe 45 -98 45-9 4 45-9 1 7 ■16-0 ^ 3-4 
47-5 1 Fe 47-46 — _ — 1 

48-9 4 ! / p Fe 
L JMn CT 

48 -82 
48 -91 1 48 -9 1 49-0 3 ' 48-9 3 

50-6 i 2 i — — 50 -8 1 51 -0 1 j _ _ 1 

52-5 ! 2 ! Fe r 52-45, 
1 52 -65 1 52-6 1 — 52-3 ' 9 

54-0 ■i-5 
r i;Ti 

1 p y 
j 53-98 53-8 2 53-8 3 53-9 3 

55 ‘2 2 r p Ti 
\ p Fe 

55 -19 
55 -63 } - ‘ 

— 55 -6 2 

1 
— 

56 -2 2 — — _ — 1 _ _ 
57 '6 

1 ! r Fe 57 -50 — 57 -4 1 1-2 57 -6 1 1 
to 

h 
1 Co Fe 58 -37 — — 58-2 1 1-2 _ _ y? Double. 1 

58 -8 j L Fe Cr 58-92 59 -0 1 59-2 ! 1-2 - _ J ! 
61 -3 2 .? Ni 61-24 — — 61-2 1-2 1 - 1 — 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of 8 Canis Majoris, the Chromosphere, and a Cygni—continued. 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Oaiiis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni 5 Cauis majoris Chromosphere 
(Jvensingbon). (llaryard). (Kensington). 

Inten- 
A of 

probable 

i Inten- Inten- 

A. sity. 
Mas. 

Probable 
origin. A. 

sity. 
Mas. 

A. 
sity. 
Mas. 

= 10. origin. 
1 = 220. = 10. 

1134 -8 3-4 Fe 4134 -84 413 t-8 8 4134 -8 3 

36-9 5 / Fe 
1 Fe 

36-68 
37 -16 1 -- 

— — — 

} 37-4 3 37 -0 3 
3 7 -9 5 Fe 37 -81 J - _ _ _ 
40 -1 3 . Fe 40 -09 _ 40 -1 1 

42 -3 3 / Fe 
1 Cr 

42 -03 
42 -33 } - 

— 42 -3 1 

43 -8 8 f Fe 
1 Fe 

43 -57 
44 -04 1 43 -9 5 43 -8 5-6 

4-! ■ 0 2-3 Fe 46 -23 — 46 -0 1 

■ill '7 3 / Mn 
1 Fe 

47 '65 
47 -84 } - 

— 47 -5 1 

49 -4 5-6 Fe 49 -53 49 -5 0 49 -4 3-4 
50 - I 1 — — _ _ _ 
52 -3 3 Fe 52 -34 — — 52-1 2 

r 5 4-07 1 
54 ’5 5 Pc 54-67 

[ 54-98 
1 51-9 2 5 1 -8 2-3 

56 7 6 — — 56 -7 2 56 -5 3 

57 "9 1 Fe 57 '05 — — 57 -8 1 

59 -2 3 f Fe 
t Un 

r 58 -96 
1 59 -35 } - 

— 58-9 1 

60 "5 3 _ 

61 7 6-7 7' '-Ti 61 -68 61-7 3 61-7 3 

63 ’8 5 6 p Ti 63 -82 63 -9 2 63 -8 4 
65 '5 3 4 Fe 65 -55 — — 

— 

1 

67 '6 3-4 — — 1 67 -5 1 67 -5 

1 

2-3 

1 

71 -2 1-2 / Fe 
1 P Ti 

71 -07 
71-21 1 } ” 

— — — 

72 -1 3-4 p Ti 72-07 — 72-1 3-4 

73 ’6 4-5 r p Fe 
1 P Ti 

73 -52 
73 -70 

72 *0 
73 '6 Il3 73 -5 4-0 

75 *4 1 _ _ — 
77 7 4 P Y 77 -75 77 -8 3 77 5 
79 -0 5 pi Fe 78-95 79 -5 4 79 -0 4-5 
81 -9 4-5 Fe 81 -92 82 -0 1 81 -9 3 
84-5 5 P Ti 84-40 ' 85 -0 2 84-6 2-3 
87 -2 f Fe 87 -20 

1 87 -6 87-6 87 -8 I*" 1 Fe 87-94 1 4 4-5 

90 7 1 — - 1 _ _ _ 

91 7 5 J Fe 
1 Fe 

91 -59 
91 -84 1 91 -8 3 91-7 3-4. 

93-4 1 — _ _ _ 
95 '5 4 Fe 95 -49 — — 95 "5 1 

a Cvgni 
(Kensington). 

double. 

4138 -4 1 

43 -9 

46 -0 

49 7 

61 7 
63 -0 
63 -3 

67 -6 

72 -0 

73 -5 

77 -8 
79 -0 
81 -8 
85 -0 

88 -0 

92-0 

1-2 

2 

<1 

1-2 
<1 
3-1 

69-8 <1 

2-3 

6 7 

2-3 
6-7 
<1 
<1 

? double. 

'Bi’oad, probably 
compounded of 
tlie tli:ee solar- 
Fe lines. 

'Probably identi¬ 
cal witb un¬ 
known solar 
line 4156 '47. 

'Un = strong solar 
line, to wbicli 
Rowland as¬ 
signs no origin 

f Probably identi¬ 
cal with strong 

I solar line 
1 4167 '44, to 

I which Kow- 
I LAND assigns 
I no origin. 

Probably close 
double. 

? double. 

Close double. 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of 8 Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni S Canis majoris Chromosphere a Cyg ni 
(Kensington). (Harvard). (Kensington). (Kensington). 

Inten- 
A of 

probable 
origin. 

Inten- Inten- Inten- Remarks. 

A. sity. 
Max. 
= 10. 

Probable 
origin. 

A. 
sity. 
Max. 

= 220. 

A. 
sity. 
Max. 
= 10. 

A, 
sity. 
Max. 
= 10. 

4196 -4 4 Fe 4196 -37 4196 -8 3 4196 -4 2-3 __ _ 
f Fe 98 -49 1 

98 -9 7 1 Fe 98-80 [ 98-5 4 98 -8 4 4198 -5 1 
1 Fe 99 -27 J 

4201 -1 1 Fe 4201 -09 ■- — — — 
02 -2 5 Fe 02 -20 4202 -2 3 4202 -2 3 4202 -3 1 

03-9 1 r ? Fe 
1 ? La 

04-10 
04-16 

— — — — — — 

05 -0 5-6 
r pY 

1 
04 -89 
05 -24 05 -3 3 05-1 3 05 -2 1 

06-9 3 Fe 
/ 06 -86 
L 07 -29 

1 06-9 2 07-1 1 — — 

09-2 4-5 ? Zr 09-14 08 -8 2 09 -6 2-3 — — 
10 -5 3 Fe 10-49 10 -5 2 10-9 1 10-8 <1 1 

12 0 3 ? Zr 12-05 12 -1 1 12 -4 1 — — 
! 

13-7 2 Fe 13 -81 — — — -- — — 
]5-7 9 p Sr 15-70 15 -7 5 15 -7 10 15 -7 2 

17-2 3 — — 17 -6 1 17-0 <1 — — 
19 -5 3-4 Fe 19 -52 19 -6 1 19-4 2 — — 
20 -4 3 Fe 20 -51 — — — — — — 
22 -4 5-6 Fe 22 -38 22 -4 1 22 -4 3 22 -2 <1 
24 -2 
25-2 

3 
3 

Fe 24 -34 
1 24-7 1 { 

— — 
24-9 1 

26 -9 8 Ca 26 -90 27 -0 5 26 -9 7 27 -2 1 

29 -8 3 / Fe 
1 Fe 

29 -68 
29 -93 } - 

— 29 -4 <1 — — 

— — _ _ _ — — 30 -7 1 
32 -2 1-2 _ _ _ — — — 32 -1 <1 
33 -3 7-8 p Fe 33 -33 33 -6 3 33 -3 6-7 33 -3 8 
36-1 5-6 Fe 36-11 36 -0 2 35 -9 4 35-7 1 
— — _ _ _ — — — 37 -6 <1 
39-0 5 Fe 38 -97 — — 38 -0 1-2 39 -2 <1 

40-1 3 f Mn 
1 Fe 

39 -89 
40 -04 

1 40-0 3 40 -3 1 40 -6 <1 • 

42-6 5 p Cr 42 -62 42 -5 1 42 -8 2-3 42 -6 3-4 
45 '5 2 Fe 45 -42 — — 45 -0 1-2 45 -0 1 
47 -0 ■ 7 Sc 47 -00 47 -3 4 47 -0 7 47 -2 3 
50-3 
50-9 

4 
4 

Fe 
Fe 

50 -29 
50 -95 51 -0 2 } 50 -4 4-5 { 51 -0 1 

1 

52 -5 2-3 ? Co 52 -47 53 -0 ? — — 53 -1 2 Possibly double. \ 
54 '5 4 Cr 54 -51 54 -5 2 54 -5 6 54 -5 1-2 j 
56-2 3 _ _ — — 55 -6 1-2 — — i 

58 ’4 6 Fe 58 -48 58 -7 2 58-2 2 58 -6 3 ! 

60-6 6 Fe 60 -64 60 -5 2 60-6 4 60 -7 <1 1 
62 -1 3 p Cr — 62 -2 1 61 -6 1-2 62 -2 3 
64-2 1 Fe 64 -37 — — 64-6 1-2 64 -4 <1 j 

65 -1 1 Fe 64 -90 _ — 65 -5 <1 — — i 
67 -3 2 _ _ ___ — 67 -7 2-3 67-5 <1 
69 -5 2-3 _ 70 -0 1 69 -8 1 69 -8 1-2 
71-2 
71-9 

6 
6 

Fe 
Fe 

71 -33 
71 -93 

} 71-7 4 71-6 4-5 71 -7 1 

73-5 3 r Fe 
1 Zr 

73 -48 
73-64 

1 73-8 1 73 -8 1 73 -6 3 

75 1 4 Cr 74-96 75 -0 3 75 -0 5 75 -0 <1 
75-6 4 _ _ 75 -0 3 — — 75 -8 2 

— _ _ __ _ __ _ — 76 -3 1 
77-6 2 _ _ _ — — — 1 Faint close 
78-4 2 Fe 78 -39 78 -4 1 — — 78-4 2 / double. 
80 -4 2 80 -5 1 80 -2 1-2 - 1 — 1 Faint close 
81-0 2 — — — — — J double. 

VOL. CCI.—A. 2 F 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared vdth 

those of S Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni 5 Canis ma-joris Chromosphere a Cygni 
(Kensington). (Haryard), (Kensington). (Kensington). 

Inten- 
X of 

probable 

Inten- Inten- Inten- Eemarks. 

X. 
sity. 
Max. 

Probable 
origin. 

A. 
sity. 
Max. 

A. 
sity- 
Max. 

A. 
sity. 
Max. 

= 10. = 220. = 10. = 10. 

4232 -8 5 
r Fe 
1 Ca 

4282 -57 
83 T7 

1 4282-9 1 4283 -0 2-3 4282 -8 1 

84 -4 2 84-4 1 — — 84-4 2 
— — -- -- — — — 86 -8 <1 ' 

88-0 3-4 ? Ti 88 -04 88 -1 f> 87 -6 1 88 -3 2 [ 

90-1 9 
r Cr 
1 P Cl 

89 -89 
90 -38 89 -8 4 90 -2 6-7 90 -4 4 i 

92 -2 1-2 — — — — — 92 -4 1 1 

94 -2 6 r P Ti 
L F( 

94 -20 
94 -30 

j- 94-3 2 94 -2 94 -2 4 

96 -7 5 p Fe 96-74 97 -1 2 96 -7 2-3 96-7 4 
99 -4 4 Ti Fe 99 -41 — — — — — 

4300 -2 6 p Ti 4300 -21 4300 -2 5 4300 -2 5 4300-2 5 
— — — — — — — — 02 -1 2 

03 -3 G }} Fe 03 -34 02 -6 5 03 -0 4 03 -3 5 
05 -8 5-6 — 05 -8 1 05 -8 1-2 06 -0 1 1 
— — — — _ — _ _ 07-6 1 1 

f Ca 07 -91 1 
08 -1 5 1 Fe 08 -08 y 08-0 2 08-1 5 08 -1 4 

L P Ti 08-10 J j 
09-6 5 Fe 09 -54 09-5 2 — 09 -7 1 1 
11-3 1 — — — — — 10 -9 1 1 

13 -0 5 13 Tl 13 -03 — 13 -0 2 13-1 2-3 1 

14-3 7-8 Sc 14 -25 14 -3 2 14 -0 2 — — 

15*1 7-8 
r pTi 
1 Fe 

15 -13 
15 -26 

} 15-2 5 15 -1 4 -5 15 -1 4 ' 

17 -0 3-4 p Ti 16 -96 17-0 1 — — 17 -2 1 
— — 17 -6 1 — — — — ■ 

18-8 3-4 Ca 18 -82 — — 18-3 2 
19 -9 

21-2 21 *2 

*4 

8 

1 

1 
1 

20-91 
21 -20 

1 21 -0 3 21 -2 5 2-3 

26 *0 9 Fe 25 -94 26-0 5 25 -8 6 26 -0 3-4 
J Apparently elose 
I double. 

27-3 2 Fe 27 -27 — — — — — : 

30-6 7 p Ti 
r 30 -50 
t 30 -87 

30 -9 2 30 -6 2-3 30 -7 2 ' 

34-0 4-5 ? La 33 -93 — — 33 -9 3 — — 

38-1 9 23 Ti 38 -08 37 -6 10 38 -1 5 38 -1 4 
40-6 10 ir 40 -63 40-7 11 40-7 10 40 -7 10 Hy. 

44'3 4-5 
r p) Mn 
1 iiTi 

44-19 
44 -45 1 44 -7 1 44-3 3 44 -3 2 

46-8 1 Fe 46 -72 _ _ 
1 47 -4 <1 

_ _ 
48-0 1 Fe 48 -00 — — — — 

— — — — — _ _ _ 49 -1 1-2 

51 -9 7 
r Fe Cr 
1 Mg 

51 -93 
52 -08 

1 52-0 5 51 -9 6 51 -9 7 

55 -2 3-4 Ca 55 -26 55 -3 1 55 -0 1-2 54 -9 1 
58 -7 3 Fe 58 -67 -- — 1 f 57 -8 2 
— — pY 58 -88 — — [ 59-2 3-4 — — 

59-8 3 Cr 59-78 59 -9 3 J L 60-0 1 
62-3 1-2 p Ni 62 -40 — — 62 -0 1 62 -4 1-2 
64-6 1 — — — — 64-1 1 64 -0 1 
— — — — — — — — 65 -4 <1 

67-8 4 
/ Fe 
1 TTi 

67-75 
67 -84 

1 67-9 1 67 -8 2-3 67 -9 1-2 

— — — — — — 68-7 ? — — 

C9'9 3 Fe 69 -94 70 -0 1 70-2 2-3 69 -9 2 
71-7 2-3 71 *5 1 — — 71 -7 1 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Ojgai 

1 

5 Canis majoris Cliromospbere a Cygni 

(Kensington). (Harvard). (Kensington). (Kensington). 

Inten- A of 
probable 

Inten- Inten- Inten- 
Eemarks. 

sity. 
Max. 

Probable 
oricrin. 

A. 
sity. 
Max. 

A. 
sity. 
Max. 

A. 
sity. 
Max. 

1 
= 10. 

origin. = 220. = 10. = 10. 

4374 -7 8 
r Sc 

1 

4374-63 
1 i^Ti 74*90 : 

i 
4374 -7 

}» 

f 4374-9 7 4374 -9 - 2 

76 -1 2 Fe 76-11 76-1 1 - — — — 

79 -4 3 Y 79-40 79 -4 1 79 -7 2 78 -9 <1 
_ — — — — 80 -4 1 

83 -7 4-5 Fe 83 -72 83 -7 8 83 -7 5 83 -7 2 

85 -3 5-6 p Fe 85 -55 85 -2 4 85 -5 3 85 -5 5-6 

87-0 1 ? Ti 87 -01 — — — — — — 

88 -6 1 Fe 88 -57 — — 88-1 1-2 88 -1 1 

91 -2 4 / 91 -12 1 90-5 9 91 -2 2-3 91 -0 2-3 
1 y Ti 91 -19 

93 -6 94-1 2 ? Ti 94 -22 — — — — 1 

95 -2 6 
i U' 

95 -20 
95 -41 

1 95 -3 95 -2 7 95 -2 5 

98 -2 3 ? Yt 98-18 — — — — 98 -0 1 

4400-2 5-6 
r pTi 
t Sc 

99 -94 
4400 -55 

1 4400-2 7 99 -9 5-6 99 -9 3 
/ Probably close 
\ double. 

01 -0 2 _ — — -- — — — — 

03 -3 1 - ■ - _ — — — 4402 -8 1 

04-9 3-4 Fe 04 -93 05-0 2 4404 -9 4 04 -9 1-2 

r ^ 08 -31 1 
08 -4 3 i Fe 08 -58 y 08-5 2 08 -1 3 — — 

1 V 08 -68 1 
09 -3 4 ? Fe 09 -29 — — — — — — 

11-3 3 p Ti 11 -20 11-5 2 11 -2 1-2 11 -2 1 

13-6 1 __ _ — — — — 13 -5 1 

15 -3 5-6 Fe 15 -29 15 -3 4 15 -3 4 15 -3 <1 
— _ _ — — 17 -0 5 

17-9 6-7 p Ti 17 -88 17 -9 6 17 -9 4-5 17 -9 
19 -5 

2-3 
<1 

20-7 1-2 _ — — — — — 

22 -7 3-4 Fe Y 22 -74 22 -8 3 22 -7 3 22 -0 1 

25 -6 1 Ca 25 -61 — — 25 -6 1 — — 

27 -4 3-4 
J Ti 
t Fe 

27 -27 
27 -48 

1 27 -4 3 27 -4 3 — — 

- - — — — — 28 -7 <1 

30 -6 3 Fe 30 -78 30 -8 2 30-1 2-3 — — 

33 -4 1-2 Fe 33 -39 — — — — — — 
- ^_ — — 34 -4 1 

35 *5 4-5 Ca 
/ 35-13 
\ 35-85 

1 35-2 2 35-5 4-5 — — 
f Probably close 
( double. 

38 -5 1 Fe 38 -51 — -- — — — 

41 -8 1-2 V 41 -88 — 1 41 -8 1-2 41-8 1 

42-5 4-5 Fe 42-51 42 -5 

h 

— ■“ 

44 -0 9 p Ti 43-98 44-0 44-0 7 41-0 4-5 

47 -5 3 Fe 
r 47 -30 
1 47 -80 

1 47-7 1 47 -0 1 47-8 1 

50 -7 4 p Ti 50 -65 50-6 3 50 -6 5 50 -6 2-3 

55 -0 4-5 r Ca 
\ Fe 

54 -95 
55 -30 

1 55 -0 1 2 55 -0 5 55 -3 2 

59 -3 2-3 Fe 59 -30 60 -0 1 59 -9 1-2 — — 

62 -0 5 Fe 
r 61 -82 
\ 62 -17 

1 62-0 1 2 62 -3 3 61 -8 1-2 

64 -8 3 p Ti 64 -62 64-8 1 64 "6 2-3 64-5 1 

66 -7 2 Fe 66 -73 — 1 _ 00 -5 <1 — — 

68 -7 6 p Ti 68 -66 69 -5 3 68 -7 6 68 -7 4 

70 -7 3 ? Ki Zr 70 -65 71 -0 2 1 
2 F 2 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni 
(Kensington). 

5 Canis majoris 
(Harvard). 

Chromosphere 
(Kensington). 

A. 

Inten¬ 
sity. 
Max. 
= 10. 

4473 
76 
80 
81 
82 

85 
88 
89 
91 
94 
97 
99 

4501 
07 
08 
12 
15 
18 
20 
22 
25 
28 
29 

31 

34 

36-0 

40 
41 

44 

48 

49 

52 
54 

56 

58 
61 
63 

65 

68 

72 
74 
76 

0 
2 
3 
3 
3 

2 

6 
4 
6 
7 
6 
6 
5 
0 
5 
9 
5 
2 

4 
8 
3 
8 
5 I 

2 I 

2- 3 
3 
2 

5-6 
1-2 

1 
4 
4 
3 

3- 4 
3-4 

1 
6 
1 
4 
1 
4 
2 
3 
4 
2 
4 

80-6 

6 

2- 3 

3 
4 

4 

1-2 

8 

2 
5-6 

5- 6 

3 
1 

4-5 

3 

3 

6- 7 
1 
3 

3- 4 

Probable 
origin. 

Fe 
Fe 
Fe 

P Mg 
Fe 

Ti 
2} Fe 
p Fe 
Fe 

pTi 

p Fe 
Ti 
Fe 

Ti 
p Fe 
2) Fe 

Ti 
Fe 

? Fe 
Co 
Fe 

p) Ti 

Ti 

p> Fe 
Cr 
Ti 
Fe 

p Fe 
pTi 
? Ti 
Ba 

yj Fe 
Fe 

p Cr 

p Ti 
Cr 

Co Fe 
Fe 

p Ti 
Fe 

2) Fe 

V 
Fe Ni 

16 
74 -90 
76 -51 

80 -59 
80-76 

A of 
j probable 
I oi-igin. 

4472 -88 
76 -19 
80 -31 
81 -30 

88 -49 
89 -35 
91 -57 
94-74 

4501 -45 

08 -46 
12-91 
15-51 
18 -20 
20 -40 
22 -69 
27-49 
28 -80 
29 -85 
31 -12 
31 -33 

34 -14 
35 -74 
36 -09 
36 -22 

41 -40 
41-79 
44 -86 
48 -02 
49 -64 
49-81 
52 -63 
54 -21 

56 -06 
56 -31 
58 -83 

63 -94 
65 -69 
65 -84 
68-94 

'79, 

A. 

41 -6 

41-9 

49-7 

54-2 

56-0 

58 -9 

64 -0 

} - 

72 -2 

76 -5 

SO -0 

Inten- 
sity. 
Max. 

= 220. 

4473 -0 
76 -2 

82 -0 

89 -6 
91 -6 
94-8 
97-0 

4501 -5 

08 -5 

15-4 

23 -0 
22 -9 

28 -8 

31 -2 

34-2 

1 

4 

3 

1 

A. 

Inten- 
1 sity. 
' Max. 

= 10. 

a Cygni 
(Kensington). 

4476 -2 
80 -6 

82 -3 

89 -3 

91 -6 
94-3 
96 -8 

4501 -5 

08-5 
12-3 
15 -5 
18-3 
20 -4 
22 -7 

28 -8 

31 -0 

40 -0 
41 -7 

44-8 

54 -2 

56-1 

58 -8 
61 -3 
63 -9 

66 -3 

3 
1-2 

2-3 
2 

o 
1 
4 
1 
3 
4 

34- 1 ' 7-8 

35- 9 2 

1-2 
3 

49-7 , 7-S 

3-4 

3-4 
<1 
7-8 

1 

72-2 ^ 7 

76 -5 3 

80-0 , 2 

A. 

Inten¬ 
sity. 
Max. 
= 10. 

4471 -6 

73 -1 

81-3 

84 -0 
86 -6 

89 -0 

91 -6 

4501 -5 

08 -5 
12 -3 
15 -5 
18 -2 
20 -4 
22-7 
25 -5 

29 -6 

32 -2 
34-1 

38 -8 

41 -4 

45 -0 

47 -2 

49 -8 

52-8 

55 -3 
56-1 

58-S 
61 -6 
63 -9 

66 -0 

68 -0 
70 -6 
72 -2 
74-9 
76 -5 
77 -2 

80-3 

83-0 

Remarks. 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of S Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni S Canis majoris Chromosphere a Cygni 
(Kensington). (Harvard). (Kensington). (Kensington). 

Inten- 
A of 

probable 
origin. 

Inten- Inten- Inten- 
Remarks. 

A. 
sitv. 
Max. 
= 10. 

Probable 
origin. 

A. 
sity. 

Max. 
= 220. 

A. 
sity. 

Max. 
= 10. 

A. 
sity. 

Max. 
= 10. 

4584 -0 8 p Fe 4584 -02 4584 -0 5 4584 -0 7 4584 -0 7 
— — — -- 86 -1 1 __ — 86 -0 <1 
88 -4 3 p Cr 88 -38 — — 88 -4 3 88 -4 4 
90 -2 2-3 p Ti 90 T3 — — 90-1 3 90 -2 1-2 

92 -5 3-4 r p Cr 
1 Fe 

92 -25 
92-84 

1 92-8 1 92 -5 3 92-5 2-3 

94-1 1 ? V 94 -30 — -- — — __ — 
95 -6 1 Fe 95 -54 95 -9 2 95-1 2 — -- 
— — — -- --- — — 96 -6 1-2 
98 -1 1 ? Fe 98 -30 — — — — — — 

4600 -7 4 -- — — — 4600 -8 3 — — 
03 -2 2 Fe 4603 -13 — — 03 -0 2 -- 
05 -2 1 Ni 05 -17 — — 05 -5 2 — — 
13-9 2-3 — — 4613 -5 1 13 -3 2 — 

16 -9 3-4 p Cr 16 -80 16 -9 1 — — 4616 -8 2 ? double. 

19 -2 4 
f Fey> Cr 
1 Fe 

18- 97 
19- 47 

1 19-2 4 19 -0 3-4 19-1 3 

20 -2 3-4 — — -- — — — 21 -1 2 
— — — — — — — — 23-5 <1 
— — — — — — — — 24-9 1 
26-2 2 Cr 26 -36 25 -8 1 — — 26 -6 1 
29 -5 6 p Fe Ti Co 29 -52 29 -9 4 29 -5 5-6 29 -6 5-6 
32 -8 1-2 — -- -- 32 -8 1-2 32 -6 1 
34 -2 2-3 p Cr .34 -25 34 -8 1 34-3 1-2 34-3 3 
— — — — — — — — 35 -6 2 

42 -6 1 — — — — 42 -8 1 
38 -9 1 

Band probably 

46 -3 
to 

49-0 

f Cr 
\ Fe 
[ Ni 

46 -35 
47 -62 
48 *84 

46 -3 

48 -9 

1 

1 

46 -3 

48 -4 

4-5 

2 
— — . 

consisting of 
the thi-ee well- 
marked solar 
lines whose AA 
are given. 

52 -5 3 Cr 52 -34 — — 51 -8 3-4 — .— 
55 -3 2 — — — 55-4 2 — — 

57 -4 4)-5 p Ti 57 -38 57 -0 4 57 -4 3-4 57 -4 2 
60 -6 1 — — — — — — 60 -8 <1 
63 -6 2-3 — — 63 -7 2 61 -5 2 63 -8 2 
— — — — — — — — 66 -5 <1 

67 -4 8 
r ? Fe 
1 ? Ti 

67 -63 
67 -77 

1 68-0 3 67 -6 3-4 67 -2 2-3 

*Thai,en’s spark 
70-4 7 Sc 70 -4* 70 -0 3 70-8 3-4 70-5 2 ] A corrected to 

Rowland. 
73-5 1 Fe 73 -35 — — 74 -0 1 73 -5 <1 
75 -6 1-2 ? Ti 75 -29 — 76 -0 1 — — 

78-1 3 ? Cd 78 -35 79 -0 1 — — — — 

82 -5 3-4 pY 82 -60 82 -2 1. 82 -5 2-3 — — 

86 -0 1 — — — — _ _ _ 

89-2 1 — — — — _ _ _ _ 

91 -6 1-2 
f Ti 
1 Fe 

91 -52 
91 -61 91-6 1 91 -6 3 

— — 

99-6 4-5 — — 98-8 2 99-5 2-3 _ _ 

4703 -4 4-5 Mg 4703 -18 4703 -1 2 4703 -2 3-4 — — 

08 -6 5 — — 09 -0 3 r 07-8 
1 09-6 

2-3 
2-3 } - 

— Broad and hazy. 

15 -0 3 — — 14 -5 1 _ _ 

17 -8 1-2 — — — — 18 -5 1 _ _ 

19 -6 3 — — 20 -5 1 — _ _ _ 

28 -3 3 — — 27 -6 1 27 -7 2 — — 
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Wave-lengths, Intensities, and Probable Origins of y Cygni Lines, compared with 

those of 8 Canis Majoris, the Chromosphere, and a Cygni—continued. 

7 Cygni 
(Kensington). 

5 Canis majoris 
(Harvard). 

Chromosphere 
(Kensington). 

a Cygni 
(Kensington). 

1 
A. 

Inten¬ 
sity. 
Max. 
= 10. 

Probable 
origin. 

A of 
probable 

origin. 
A, 

Inten- 
.sity. 

Max. 
= 220. 

A. 

Inten¬ 
sity. 

Max. 
= 10. 

A. 

Inten¬ 
sity. 
Max. 
= 10. 

Remarks. 

4731 -3 4 _ 4731-7 1 4731 -4 3-4 4731 -7 3 -4 
34-1 2-3 ? Fe 4733 -78 — _ 33 -8 1 — _ 

37 -6 4 _ 
— 37 -0 1 37 -0 3 — — 

40-9 1 — — — — 40-5 2 — — ‘ 
44 -9 1 — — — _ 45 -5 1 — _ 

i 48-6 1-2 — — — _ 48-0 1 — _ 1 
52-2 2 — — — _ — — _ _ 

— — — 54 -2 1 — — — — i 

55 -3 3 — — — — — — — 
J Broad, probably 
t double. 

64 -2 7 Ti Ni 64-11 64 -1 8 — — — _ 

67 -8 1 — _ — _ 67 -0 2 — _ 

71-2 2 — — 71 -8 1 — — — _ 

80 -2 3-4 p Ti 80 -20 80-1 1 79 -9 3-4 80-1 2 
83-1 2-3 — — — — 83-1 2 — — 

86-7 2-3 -- 86 -8 1 86-7 2-3 — _ 

98 -7 2-3 — — 98-7 2 98 -7 2 — — 

4805 -2 3 p Ti 4805 -25 4805 -2 3 4805 -2 5 4805 -2 2 
11 -0 3 •- — — — 11 -0 3 — — 

24 -3 7 Fe p Cr 24 -33 24 -0 5 24 -3 6 24 -3 4 
40 -4 2 — -- — — 40-4 2-3 — — 

48 -4 3-4 p Cr 48 -44 48-4 3 48 -5 3 48-4 3-4 
55 '4 5 -- — 55 -7 3 55 -0 2-3 — — 

61 -5 8 H 61 -49 — — 61 -5 10 61 -5 10 Hg. 
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VIIL Quaternions and Projective Geometry. 

By Professor Charles Jasper Joly, Royal Astronomer of Ireland. 

Communicated by Sir Robert Ball, F.R.S. 

Eeeeived November 27,—Read December 11, 1902. 

Introduction. 

A. QUATERNION q adequately represents a point Q to which a determinate weight is 
attributed, and, conversely, when the point and its weight are given, the quaternion 
is defined without ambiguity. This is evident from the identity 

(A). 

in which is regarded as a weight placed at the extremity of the vector 

(B), 

drawn from any assumed origin o. It is sometimes convenient to employ capitals Q 

concurrently with italics cq to represent the same jioint, it being understood that 

(C). 

Thus Q represents the point Q affected with a unit weight. The point o may be 
called the scalar point, for we have 

(D). 

In order to develop the method, it becomes necessary to employ certain special 
symbols. With one exception these are found in Art. 365 of ‘Hamilton’s Elements 
of Quaternions,’ though in quite a different connection. We write 

(a, h) = 6Sa — aS5, [a, 6] = V. YaYb 

and in particular for points of unit weight, these become 

(a, b) = B — A, [a, b] = V.VaVb = V.Va . (b — a) . . . (F). 

Thus (ab) is the product of the weights into the vector connecting the points, 
and [a6] is the product of the weights into the moment of the vector connecting the 
points with respect to the scalar point. The two functions (a5) and [a6] completely 
define the line ab. 

VOL. COL—A 338. 20.6.03 
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Again Hamilton writes 

[a, b,c] = {a,h,c)- [6,c]Sa - [c,a]S6 - [a, 6]Sc; (a, b,c) = 8[a,6, c] = SYaV&Vc . (G); 

or if we replace a, 6, c by (1 + a)Sa, (1 + /3)S6, (I + y)Sc, where a, j3 and y are the 

vectors from the scalar point to three points a, b and c, we have 

[a,B,c] = SaySy - V(^y+ ya + ay8); (a, B, c) = Sa/3y . . . (H). 

Hence it appears that [a, b, c] is the symbol of the plane a, b, c; for 

— V \_a, b, c] (a, b, c)"^ is the reciprocal of the vector perpendicular from the scalar 

point on that plane. Also (a, b, c) is the sextupled volume of the tetrahedron oabc. 

Again, Hamilton writes for four quaternions 

(abed) = S . a\hcd^.(I) ; 

and in terms of the vectors this is seen to be the products of the weights into the 

sextupled volume of the pyramid (abcd). 

Other notations may ol course he employed for these five combinatorial functions 

of two, three, or four quaternions or points, but Hamilton’s use of the brackets seems 

to 1)6 quite satisfactory. 

In the same article Hamilton gives two most useful identities connecting any five 

quaternions. These are 

and 
a (bode) + b{cdea) + c{deab) + d{eabc) + e(abcd) = 0. 

e{abcd) = [bcd]Sae — [accf\Sbe + [a6c^]Sce — [a6c]Sde 

(J) , 

(K) , 

which enable us to express any point in terms of any four given points, or in terms 

of any four given planes. 

The equation of a plane may be written in the form 

= 0.(L) ; 

and thus I, any quaternion whatever, may he regarded as the symbol of a plane as 

well as of a point. 

Gn the whole, it seems most convenient to take as the auxiliary quadric the sphere 

of unit radius 

.(M), 

wliose centre is the scalar point. With this convention the plane SIq = 0 is the 

polar of the point I with respect to the auxiliary quadric ; or the plane is the 

reciprocal of the point 1. Thus the principle of duality occupies a prominent 

position. 

The formulae of reci2)rocation 

{[abc] ; [abd]) = [ab] {abed); [ [abc] ; [a?)d] ] = — (ab) (abed). . . (N) 

connecting any four quaternions are worthy of notice, and are easily proved by 
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replacing the quaternions by 1 + «, I + 1 + 7, and 1 + S respectively. In 

complicated relations it may be safer to separate the c|uaternions as in these formulae 

by semi-colons, but generally the commas or semi-colons may be omitted without 

causing any ambiguity. 

These new interpretations are not in the least inconsistent with any principle of 

the calculus of quaternions. We are still at liberty to regard a quaternion as the 

separable sum of a vector and a scalar, or as the ratio or product of two vectors, or 

as an operator, as well as a symbol of a point or of a plane. 

In particular, in addition to Hamilton’s definition of a vector as a right line of 

o-iven direction and of given magnitude, and in addition to his subsequent interpre- 

tations of a vector as the ratio or product of two mutually rectangular vectors, or as 

a versor, we may now consider a vector as denoting the point at infinity in its 

direction, or the plane through the centre of reciprocation. For the vector OQ of 

equation (B) becomes infinitely long if Sq = 0, and the plane Slq = 0 passes through 

the scalar point if S? = 0. We may also observe that the difference of two unit 

points A — B is the vector from one point b to the other a, and this again is in 

agreement with the opening sections of the “ Lectures.” 

Additional illustrations and examples may he found in a paper on “ The Interpre¬ 

tation of a Quaternion as a Point-symbol,” ‘Trans. Pvoy. Irish Acad.,’ vol. 32, 

pp. 1-16. 

The only other symbols peculiar to this method are the symbols for quaternion 

arrays. The five functions (ah), [ah'], (abc), and {ahcd) are particular cases of 

arrays, being, in fact, arrays of one row. In general the array of m rows and n 

a, a, «3 . a,-. 

6^ 63 63 

(0) 

I Pi Ih P3 • • • P U J 

may be defined as a function of mn quaternion constituents, which vanishes if, and 

only if, the groups of the constituents composing the rows were connected by linear 

relations with the same set of scalar multipliers. In other words, the array vanishes 

if gcalars q, Q . . . t„ can he found to satisfy the m equations 

"b d“ • • • "h = 0, 

F ■ • • tiF; = o. 

hPi “h QPs F • • • "h 

The expansion of arrays is considered in a paper on 

Boy. Irish Acad.,’ vol. 32, pp. 17-30. 

VOL. ccr.—A. 2 G 

“ Quaternion Arrays,” ‘ Trans. 



226 PEOFESSOR C. J. JOEY ON QUATERNIONS AND PROJECTIVE GEOMETRY. 

SECTION I. 

Fundamental Geometrical Properties of a Linear Quaternion Function. 

Art. 

1. Definition of a linear quaternion function. 

2. The general linear transformation effected by a linear function. 

3. Specification of a function by four quaternions or five points and their deriveds. 

4. The transformation of planes effected by the inverse of the conjugate function 

5. Geometrical interpretation of Hamilton’s method of inversion 

6. Geometrical illustration of the relations connecting Hamilton’s auxiliary functions 

7. Ihe united points of a linear transformation. 

8. Relations connecting the united points of a function / with those of its conjugate /' 

9. Introduction of the functions /o = I (/+/'), f, = h{J-f'). 

10. Sf//oy = 0 and fiqf,p = Q represent the general quadric surface and the general linear 
complex. 

11. The pole of a iJane to the quadric is/o-^G and the point of concourse of lines 
of the complex in the plane . 

12. The united points of/^ form a quadrilateral on the sphere of recijirocation .... 
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I. Tlie quaternion equation 

f{p + 9)=fp+fq.(1), 

may be regarded as a definition of the nature of a linear quaternion function f, the 

quaternions p and q lieing perfectly arbitrary. As a corollary, if x is any scalar, 

f{xp) =xfp.(2), 

and on resolving fq in terms of any four arbitrary quaternions a^, a.2, %, a^,, we 

must have an expression of the form 

fq = af>h^q + af>h2q + af)h^q + af>hpi.(3), 

because tlie coefficients of the four quaternions a must be scalar and distriliutive 

functions of q. Sixteen constants enter into the comjiosition of the function f, lieing 

four for each of the quaternions h. 

2. When a quaternion is regarded as the symbol of a point, the operation of the 

function y’jiroduces a linear transformation of the most general kind. 

Tlie equations 

f{xa -b yh) = xfa + yfh ; f{xa -f- yh + zc) — xfa + yfh + zfc . . (4), 

show that the right line n, h is converted into the right line fa, fb, and the plane 

containing three points a, h, c into the containing their correspondents, fa,fh 
and fc. 

The homographic character of the transformation is also clearly exhibited. 
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3. In order to specify a function of this kind it is necessary to know the quater¬ 

nions a', V, c, d' into which any set of four unconnected quaternions, a, h, c, d, are 

converted. Thus, from the identical relation 

q{ahcd)a{bcdq)h{cdqa)c{d(2ah)d{qabc) = 0 . . . (5), 

connecting one arbitrary quaternion with the four given quaternions, is deduced the 

equation 

fq{c(bcd) + a'{bcdq) + b'{cdqa) -j- c'{dqab) + d'{qabc) = 0 . . . (G), 

which determines the result of operating by f on q. 

When we are merely concerned with the geometrical transformation of points, the 

absolute magnitudes^' of the representative quaternions cease to be of importance, 

and the function 

fq = a:A'(BCDq) + yB'(cDqA) + 2c'(DqAB) + !(W(qABc).... (7), 

which involves four arbitrary scalars, converts the four points A, b, C, d into four 

others, a', b', c', 'd. Given a fifth point e and its correspondent e', the four scalars 

are determinate to a common factor, and subject to a scalar multiplier, the function 

which produces the transformation is 

/■ // \ (bWdV) , // \ (Gd'eW) I // \ (dTWbT fq = A'(BCD5) . + B (cDJA) . ' + C (d.JAB) . 

(e'aVc') 

+ ^ ■ (ilio. • (8)- 

It is only necessary to replace q Ijy e in order to verify this result. 

4. A linear quaternion function, f, being regarded as effecting a transformation oj 

points, the inverse of its conjugate f'~^ produces the correspionding tangential trans¬ 

formation. 

For any two quaternions, 'p and q, 

^pq = ^p)f-^f = S/'-ip/ = ^p(f if q' = fp p^— f'-^p . . . (9). 

Hence any plane '^pq — 0, in which the quaternion cq represents the current point, 

transforms into the plane ^p/[' = 0, and the proposition is proved. 

Thus, when symbols of points (q) are transformed by the operation of j, syml^ols of 

planes (p), or of points reciprocal to the planes, are transformed by the operation 

5. Hamilton’s Ijeautiful method of inversion of a linear quaternion function 

receives a geometrical interpretation from the results of the last article. 

* Ill accordance with the notation proposed (‘ Trans. Roy. Irish Acad.,’ vol. 32, p. 2), capital letters 

are used in this article concurrently with small letters to denote the same jioints, but the weights for the 

capital symbols are unity; thus q = qS(/ = (1 + OQ) Hq. 

2 G 2 
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The symbol of the plane containing three points a, h, c, may be written in the 

form 

2) = [a,h,c].(10); 

and on transformation this becomes 

njy, =-- [fajbjc] = F' [ahc] = F'p =-- F'f'p^.(n), 

where n is a certain scalar and rvhere F' is an auxiliary function. 

In fact, the first equation sums up the last article ; in the second a new lunction 

F' is introduced, and in the fourth equation (9) is utilized. 

Since is quite arbitrary (11) may be replaced by the symbolical equations 

n = F'f ; F' = nf-^; f = rr^F'-'^ ; n = f'F' . . . . (12), 

an arbitrary quaternion being understood as the subject of the operations. 

Moreover, because 

n^pq = ^pF'fq = ^Fpfq:=^qfFp.(13), 

where j? and q are arbitrary quaternions and where F is the conjugate of F\ it 

appears that 

u =/i^; F = nf-^; f= n'^F-^; n = Ff.(14). 

And for any three arbitrary quaternions 

F[ahc] = [f'af'bf'c'].(15) 

as appears from symmetry, or, anew geometrically, Ijy considering a point as the 

intersection of three planes. 

Operating on the last equation Ity Sf'd we find, since 7i =fF —f'F’, 

n{abcd) = ifnf'bf'cf'd) ={fafbfcfd).(16). 

I he fact that («/;cd) is a combinatorial function of o, b, c and d proves that ii is an 

invariant, or that it is quite independent of any particular set of quaternions, or, b, c, d. 

This invariance is, however, established by the form of the equations (12) and (14). 

6. Keplacing / by// =J—t, where t is an arbitrary scalar, Hamilton denotes by 

/q and ii/ the auxiliary function and the invariant which bear the same relations to 

Jt that F and n bear to f. 

By (15) and (IG), Ft and iq are of the forms 

Ft = F-tG + dII-d‘.(17), 

where G and II are new auxiliary functions ; and 

lit = n — til + thi" — dll!” + .(18), 

where rd, ii!' and ii'” are new invariants. 
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He then equates the coefficients of the arbitrary scalar t in the symbolical equation 

n,=f]F, = F,j].. . (19), 

and obtains the symbolical equations 

n = Fj\ n' = F-{- Gj\ n" = 6^ + Hf, F" = H+f m, 
which will be found to be of great importance in the 

geometrical theory. 

In virtue of (19), all these functions are commutative, 

in order of operation. 

These equations establish certain colliiieations which 

are illustrated in the annexed figure. 

From the relations (20) Hamilton deduces 

H = n'" ~f; G = F' - F"f-\- p ; F = F - 

and the symbolic quartic satisfied by / 

fi _ n"'P + 71"P - Ff+ n = 0 or (/ - p (/- p (/ - t,) (/- p = 0 . (22), 

if h, P P roots of the quartic 

ti _ n'" F + 7i"F - Ft + n = 0.(23), 

or the latent roots of the function f. 

It appears by (12) and (14) that exactly similar equations are valid for the con¬ 

jugate function /', it being only necessary to replace F, G and H liy their conjugates 

F\ G' and H', as the invariants n, F, r/'and n"'' are the same in both cases. 

7. The united points of the transformation are represented Ijy the quaternions 

qi, ^3 and which satisfy the equations 

PFi — Ph ; Ph = kF.; Ph = kF'PP .’ 

and they are determined by operating oir an arbitrary quaternion liy the function 

obtained by omitting one factor of the second form of (22). In like mannei by 

omitting two or three factors of the same quartic, the equations of the lines joining 

two, and of the planes through three, of the united points are obtained by operating 

on a variable quaternion. Thus 

9 = if- k) if- ip and q = (/- pr.(25) 

are respectively the ecpiation of the line through the points q^ and of the plane 

through the points q^, q^, q^. These results are obvious when the aiffiitrarily variable 

point is referred to the united points as points of reference, or when we write 

r = x^q^-^ -\-x^q^-\- x^q^.(26). 
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8. The united-points of a function cmd of its conjugate form reciprocal tetraliedra 

u'ith respect to the unit sgyhere = 0. 

For when the roots are all unequal 

if q\ q'.2, q's ^'4. the united j^oints of the conjugate. Thus the jDoiuts q^ and 

q'2 are conjugate with respect to the sphere. 

Since the plane Sq\q = 0 contains tire points cq^, q^, q^, the weights may he chosen 

so that 

iMsgJ A ^ \MMA n' = (oq\ . 

and these relations imply"^ 

S^i^'i = Sg.3(7'3 = = ^qgqj = 1 

and from symmetry 

(29); 

a — [7g*/3*i' +] . _ _[7VzVZji1_ ,, — [747 7/'gl _ r7'i7V/U /..a\ 
(7'i7W*)’ {7'.7'87'47'i)’ * (7'37Vi'i7A ~ (yViViVi's)' ' '' 

To these relations may be added the quaternion identities 

+ 222^3 + • . . . (31), 

qfqj + qf>9.'-i + Al'z + 24^2^4 = 1 = q'fqi + qf>T2 + + 2^4^24 • (3-), 
udiich are probably more elegant than important. The second shows that the centre 

of the sphere is the centre of mass of the weights Sq^Sq^, Sp^Sf/o, SpgS^'g, Sf/^^S^'^ 

placed at the vertices of either of the tetrahedra, and that the sum of their weights 

is unity. 

From these identities we deduce the vector equations 

(2i2^) + (222^2) + (232^3) + (2424) — 0 — + [222^2] + [232^3] + [242 4] (33), 

which express that equilibrating forces can be placed along the hnes joining 

corresponding vertices, or that any line which meets three of these lines meets the 

fourth, or that the lines are generators of a cpiadric.t 

* Writing ^i = Wi (1 + a.i), (1 + a'i), equations (29) give Wiw'i (1+Saia'i) = 1. Hence the 

jiroduct of the weights v:iw\ is the reciprocal of the product of the perpendiculars from the centre of the 

sjjhere and from the point qi (or 2i) on the opposite face of the tetrahedron q\qdio,qi (or q\(liiz'ld- 

Observe that only the jiroducts wiw\ have l^een assigned, not v:\ and ta'i separately. 

t In the notation of the last note (33) becomes Et/yqw'i (a'l — ap = Xit'iw'iYaia'i = 0. The equilibrating 

forces are proportional to the distances between the vertices divided by the products of perpendiculars 

mentioned in the note cited. 
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It is also possible to obtain relations connecting pairs of the points ((N), p. 224), 

= + ; (^1^3) = 
( V 37 !•) 

(7374)__ . 

(7i737s74) ’ 

from which we learn that 

_ [73y_ 
{71737374) 

- ^ = (71737374) (7'i7V/37'4) 

(34 

(35); 

and we are at liberty to write separately on further selection of the weights (for tlie 

products of the weights alone have been assigned), 

(71737374) = (7'i7'37'37'4) = \/ - f.(36), 

with corresponding simplifications in the formulm. 

When the function is self-conjugate, the tetrahedron of united points is self- 

reciprocal to the unit sphere. 

9. Introducing two new linear functions defined by the equations 

/ = /o-|-/;./=yo-/. or Va=.f+f’ \f, =/-/' (37), 

it is obvious that for any two quaternions, ]) and p, 

or symbolically 

(38) , 

(39) , 

and^Q is self-conjugate, and/) is the negative of its conjugate. 

10. The equation 
S9/„<? = 0. (40) 

is the general equation of a quadric surface, and 

Sr7/,p = 0.(41) 

is that of a linear complex, p and q being both variable points. 

In fact (40) is the most general scalar quadriitic function homogeneous in q, and 

the surface represented meets the arbitrary line q — a th in the points deter¬ 

mined liy the roots of the quadratic 

Sa/gCi + 2^Su/q6 + t^Shfol) = 0.(42). 

In like manner (41) is the most general scalar function linear in two quaternions 

and combinatorial with respect to both, for by (38) 

S7//7 = 0.(43) 

whatever quaternion q may he. It is therefore immaterial if we replace q and p in 

(41) by any other points on their line, provided the two points are not coincident, and 
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the e(|uatio]i tlierefore imposes a single linear restriction on the line and represents 

a linear complex. 

In terms of vectors, putting q = I + p, p = 1 + cr, and using the expression 

given in the ‘ Elements’ (Art. 364, XII.) for a linear quaternion function, we have 

fq = 6 + 6 + Se’p + (jip, fq = a e Sep + fp'p ; 

fi/J = ^’u + A + + </>oP> f/l = G - ’ 
where 

Co = c, 2eo = e + e, 2q = e — e'; = (^o + Vp, <j)' = (f)Q — Yp, 

and tlie equations of the quadric and linear complex assume well-known forms 

-f 2Seop + Sp(/)op = 0, Sq(CT — p) + SpVptiT = 0 . . . (45). 

11. The equation of tlie polar plane of a point a with respect to the quadric 

(compare (42)) is 
Bqf,a = 0.(46), 

and /ort is the pole of this plane with respect to tlie unit sphere. 

Thus /o^ is the symbol of the polar plane of the point a,. 

With respect to the quadric the pole of the plane 

Sqh = 0 is 2^ = fo (47), 

and the reciprocal of the ([uadric has for its equation 

= 0. 

The lines of the complex through a given point a lie in the plane 

Sqfa = 0 

while the point of concourse of the lines in the plane 

Sqh = 0 is 2^ = 
and 

(48). 

(«). 

(50) , 

(51) 

is the equation of the reciprocal of the complex. 

12. The nature of the united points of the function is easily ascertained. 

Since the function is the negative of its conjugate, its symholic quartic (22) 

must be of the form 

And if 
// + + Y = or (// - 6i2) (// - s/) = 0 . . (52). 

fPh = SiPi, f 2Y = -SjP'i./Ps = s,Pz,fp'o = - s.^p'z • • . (53), 

it follows in the first place (43) that the united points all lie on the unit sphere, and 

in the second by (27) that 
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• = ^P'lPz = Sp'ip'g = 0 ...... . (54). 

Hence in this order PiP^l^'iP'z is a quadrilateral situated on the unit sphere. 

These results may be verified for the vector form (44). 'Actually solving 

/{I + ot) = s (I + m) = e^— Sem + Yvt^, 

we see that s = — = Spe^, and therefore 

(6- —— S~'^Srje^, or (s^ — rj^)r^ = {s + r]) (e^ — S’^Spe^), 

so that operating by Se^ the result is tlie qnartic in s 

+ .s^(e/ — p2) _ (Spq)2 =0.(55) ; 

and fora real function two roots of this qnartic are always real and two are imaginary. 

Two of the united points are consequently real (Art. 7) and two are imaginary. 

SECTION II. 

The Classification of Linear Quaternion Functions. 

Art. 

13. Table of types and auxiliary formulte. 

14. Standard forms. 

15. Solution of the equation fq=p for functions of the first class. 

16. Case of functions of the second class. 

17. Functions of the third class. 

18. Functions of the fourth class. 

19. Self-conjugate functions. 

20. The classes of self-conjugate functions. 

21. If a function converts a tetrahedron into its reciprocal, it is self-conjugative . . 

22. Geometrical meaning of adding a scalar to a function. 

13. Linear quaternion functions may be classified according to the nature of the 

united points :— 

I. The first class consists of those functions which have no line or plane locus of 

united points, and it is divisible into sub-class :— 

I^, the four united points distinct. 

I3, two united points coincident. 

I3, three united points coincident. 

I4,, all four coincident. 

I5, two distinct pairs of coincident united points. 
VOL. CCI.-A. 2 H 
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II. The second class consists of functions having a line locus of united points, 

with the following sub-classes ;— 

II^, the two remaining united points distinct. 

IIo, the two remaining united points coincident. 

II3, one of the remaining united points on the line locus. 
11.. , the two remaining points coincident and on the line locus. 

III. The third class consists of functions having a plane locus of united points, and 

there are two sub-classes :— 

IIIj, the remaining united jDoint is not in the plane. 

111., the remaining united point is in the plane. 

IV. The functions of the fourth class have two line loci of united points. 

It is to be noticed that any peculiarity in a function is exactly reproduced in 

its conjugate. This will appear clearly from the following discussion, but the 

proposition is virtually proved in the concluding remarks of Art. 6, 

To assist in the examination of the different cases, it is convenient to repeat 

Hamilton’s relations (20) and (21), and in addition to obtain the symbolic cjuartics 

for the function 11, G, and F. These quartics are deducilile from the relations (20) or 

(21) without much trouble. The group of formulm is thus :— 

Ff=n, FFOf^n', G-\-Hf=n\ H+f=n’'; 

H = F" -f G = n" - F'fFf \ F = n' - n"f+ rF'P - P ; 

fi _ + n'[p — A/+ n = 0.(56). 

IF - + {u" + 3A"2) IP + {n - H 

+ — n7i"' -|- — 0. 

G^ - 2n"G^ + {2n + FiP + n"^) G- - {2nn" - + 7P + iFFu'") G 

F' — nn'n" -h n'~n" = 0. 

F^ - + n'F'F'^ - nhi"'F+ P = 0. 

14. For the sake of brevity in discussing the various classes, one root of the scalar 

quartic is supposed to be reduced to zero by rejilacing the function by one of the four 

functions f— Q,/— Q, f— fs,/— hi. of Art. 6 ; and wlienever there is a multiple 

root, it is the multiple root which is reduced to zero. 

I. One qur.iternio^i, “ o,” is reduced to zero hy the operation of the function. 

Ttememljering that the conjugate also reduces a quaternion a' to zero, it follows if 

/n = 0,/V=0.(57) 

that the locus of the transformed points, p> = fep is a fixed plane. 

Spa' =0.(58), 
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because = 0. Every plane through the point a is reduced to a line ; every line 

through the j^oint becomes a point; the scalar n is zero ; the function F reduces 

every point to a and destroys every point in the fixed plane (58). 

The qnadrinomial (3) must reduce to a trinomial, for/cannot destroy a quaternion 

unless there is a relation between rq, cq, or else between bo, /q, h^. The 

type of functions of this kind is 

fq = + agSc/gq + cigSc/q ; « = a' = [aiU/q] . . (59). 

II. The function destroys two distinct points. 

If 
fa = 0,fb = 0 ; f'o! = 0, f’b' = 0.(60) 

the line a,-6 is destroyed. The locus of the transformed points is the line of inter¬ 

section of the planes 
Spa' = 0, Sp)b' = 0.(61). 

Every plane and every line through the line a, h is reduced to a point. The 

function is reducible to the binomial type 

fq — af)a\q -f a.fta’yq ; a th = \a\a\r'\ a' + t'b' = [a^ap*] .... (62), 

when r and r'are quite arbitrary, and it is evident (15) that the function F vanishes 

identically. 

III. The function destroys three non-collinectr points. 

/a = 0,/b = 0, yc = 0 ; fa' = 0,f'b' = 0,f'c = 0 . . . . (63) ; 

and every point is reduced to a fixed point, the intersection of the planes 

S^ja' = 0, Spb' = 0, S2:>c'= 0, or p = [a'bV] .... (64). 

Hence the function is a monomial, 

fq = [a'b'c'] S [cibcfi = afa'^q.(65), 

and the function G vanishes identically. 

IV. The function destroys two distinct points, a and b, and alters the iceights of two 

others, c and d, in the same ratio, but otherwise leaves these points unchanged. 

The type is 

fq . {abed) = tfabqd) + tgd{abcq).(66). 

15. In order to illustrate the nature of the solution of the equation 

f<l=T.(67) 

in the different cases, we employ Hamilton’s relations (56), which give the solution 

on substitution. 

2 H 2 
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Ij. One latent root is zero. In this case 

n = 0, Fp = 0 ; n'q = Gp + Fq = (Yy? + xa.(68), 

because F reduces every quaternion to the fixed quaternion a multiplied by a scalar x. 
Here X is arbitrary, provided the condition Fp = 0 is satisfied ; the point Gp lies in 
the fixed jjlane (58) ; and q may be any j)oint on the line joining this point to a. or 
in other words, this line is the solution of the equation (67). 

If the condition Fp = 0 is not satisfied, the scalar x must be infinite, so that in 
the limit f {Gp + xa) may have a component at the point a, which escapes 
destruction by F. The solution is simply the point a attected with an infinite 
weight. 

Wheji n — 0, it appears from Hamilton’s relations that F satisfies the depressed 
equation 

F {F - n') = 0 ..(69), 

and the interjiretation is, F reduces an arbitrary quaternion to « ; F — F destroys a. 
lo. Two latent roots are zero. Here 

n = n' = 0, Fp) = 0 ; Gp + Fq — Q ; n"q = Hp + Gq . . (70), 

and q must lie allowed the full extent of arliitrariness consistent with the conditions. 
Observing that the relations (56) now give 

pG = 0, GP = Q.(71) 

it appears that the double operation of f destroys the result of operating on any 
quaternion by G^ and that G destroys Hence, 

Geq = xa + ya, where fd = a^ f'^d =0.(12). 

The scalar x is determinate for 

fGq = Gp = xa.. (73), 

lint y is arbitrary, and the solution is any point on the line, y variable, 

n”q = Hp + xd + . ..(7I)- 

As before, if Fp) is not zero, the solution is a multiplied liy an infinite scalar. 
The character of tlie function G has now conqiletely changed. It now destroys 

a line {f ^q), and because Gf ~ — 0, or Gf '^H^ — 0, and also n' = 0, the symbolic 
equations of G and F are both degraded, and are 

G{G-n"f = Q, i7^=0.(75). 

I3. The solution in this case is 

n = n' ■= n” = 0 ; Fp — 0, Gp + Fq =0, Hp Gq — 0 \ n"'q = + Hq . (76). 
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The symbolic equations now give 

F- = 0, G'^ = 0, Hp = 0, G=~Hf, F=np . . . (77). 

and 
Hq = xcG + yci + za where foT = d, fd = a, fa = 0 . . (78). 

The solution thus takes the more explicit form, 

n"'q = p era" + yd + za ; FIp = xd + = — xa, Fp = 0 . ('79), 

and z alone is arbitrary. 

If the last condition is not fulfilled, z is infinite. 

Again, where F" = 0, the solution is any point on the line, w variable, 

g = + ; p = xa"+ya'+zrt ; fp = yd-\-ya •, f ~p=-xa\ = 0 . (80). 

The symbolical equations satisfied hj F, G, II and /are now 

/A = 0, G^=0, H^ = 0, f^ = 0.(81)_ 

Although the forms of the equations for F and G are identical, the nature of these 

functions are widely different; G reduces an arbitrary point to the line xa + ya, 

which is destroyed by a further application of the same function ; I reduces an 

arbitrary point at once to the point wa^ which is destroyed by a successive operation. 

The type of a function of this class 1^. is 

/_/(aaa"a"') = a {ctqd^d''^) + d [adqd^') + d' (adFq) . . . (82), 

in which a, a, a" and cf" are arbitrary quaternions. 

The function, 

f{q) . {adhb'') = a {aqhl^) + tf {adqh") + (6 + tjl) {aa hq). . . (83) 

belongs to the sub-class I5. 

16. I/. A function of the second class destroys two points, a and />, and in virtue 

of the distributive property it destroys the line a, b. 

Since the locus of fq is a line (61), the function F vanishes identically (15), and 

likewise the invariant n' as well as n. 

Hamilton’s relations become, 

n = n' = 0 = 0, Gj = 0 ; Ilj -fi = F\ H F f — • • (^'^) 

and the symbolic equations for f and G degrade into 

F = P - -f F'J= 0 ; G {G - n") = 0 .... (85). 

The function G — n'^ destroys the line a, 5, which is consequently the locus of Gq. 

For the solution of the equation fq =p, the relations (84) give 
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n"(i = Hp Gq-, Gp = 0.(86); 

and since Gq may be any point on the line a, h, the locus of q is the plane [ify, a, li]. 

If Gp ~ 0 is not satisfied, the solution is an arbitrary point on the line a, h 

afiected with an infinite weight. 

113. If i f ■= 0, the solution is 

n'"q = p + Hq ; lip Gq= 0, Gp ~ 0.(87), 
and 

= 0, HP = 0, Ilf= -G.(88), 
whence 

Hq = xd + ya + zh, Hp — xa if d =fa.... (89). 

114. If further, 71'" = 0, the solution is 

q = xd'' + yd + za + wh, p — xd + ya, fp = xa, f~p — 0. , (90); 

and the general function of this type is 

fq {abdd') = a (ahqd') -fi d [ahdq).(91), 

and the function G of is of this sub-class. 

17. nil- The third class is that in which f destroys three points a, h, c, which are 

not situated on a common line 

Here 

n = n' = n" = 0; F = G = Hf= 0 ; rf' f + H, P - n'J= 0 . (92), 

and the solution is 

n"'q = p + -f ^6 + where Hp = 0.(93)- 

III2. If d" = 0, 

q = xd fi- + 2:6 + 'Wc where p) = xa, fd = a . . . (94). 

The type of the function is 

f{q) . (abed) = a (abeq).(95), 

to which the function F of I4 belongs. 

18. IV. The fourth class is that in which two lines ab and cd are destroyed. 

n = d = 0, F=0, Gf= 0, Hf+ G = if = H +/= n"' . (96) 

and the symbolic equations are 

/(/-K') = 0; G{G-if) = 0.(97). 
The function 

fid) • i<^bcd) = tpabqd) + tqd [abeq).(98) 

is of this type. _/ destroys the line a, b and reduces an arbitrary jJoint to c, d; 

J — destroys c, d and reduces an arbitrary point to ab. 
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19. As the theory of the self-conjugate linear vector function clilfers in various 

details from that of the self-conjugate c[uaternion function, it is necessary to devote 

a few remarks to the latter. 

The four united points of a self-conjugate function form a tetrahedron self¬ 

conjugate to the unit sphere, for in this case the two tetrahedra of Art. 8 coincide. 

If two united points coincide, they must coincide with a point on the spliere, and the 

scalar quartic has a pair of equal I’oots. But in the case of a real self-conjugate 

vector function when two latent roots are equal, the function has an infinite number 

of axes in a certain plane, and not a single axis resulting from the coalescence of a 

pair ; and the reason is simply that a real vector cannot l:)e perpendicular to itself, 

while each axis of a self-conjugate vector function must be perpendicular to two 

others. For a quaternion function, on the other hand, a real point may he its own 

conjugate with respect to the unit sphere, and there may be in this case 

coincidence of united points without a locus of united points and consequent 

degradation of the symbolic quartic. 

Again, the roots and axes of a self-conjugate vector function must he real, because two 

conjugate imaginary vectors, a + \/ —1 a — — 1 yS, cannot be at right angles 

to one another, since the condition is — 0, while a“ + is essentially 

negative. But two united points of a real self-conjugate quaternion function may lie 

conjugate imaginaries, the condition 

S (a -f y - Ih) {a — v/ - l/>) = -f- S?)® = 0 . . . (99), 

merely showing that the real points a and h are situated one inside and one outside 

the unit sphere. 

20. On account of the importance of the self-conjugate function, it may not he 

superfluous to illustrate cases of coalesced united points. 

Writing for the general self-conjugate function, 

/(I-h p) = e + € + Sep + cpp ; S (1 + p)/(I -f p) = e-f 2Sep + Spfl>p .(100), 

the latent quartic is 

—f" (e + mf') + [em' + m — e®)— t [em -j- in + Se (fl> — m") e) 

-f m (e ~ Secfl-i g) == q.(101). 

The quadric surface S^/q = 0 has its centre at the extremity of the vector — flwQ, 

or say at the point c. 

One root is zero if 
e — Sefl)-^ 6 = 0 .(102), 

and the quadric is a cone with its vertex at the point c. A second root is zero if 

m = — Se (fl> — m" + e = — ?uSe<I)“^e, or if T<I)“h =1 . . (103); 

that is, if the vertex is on the unit sphere. 
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A third root is zero if 

m = Se (1 — or if Se (i — m"^~^ -f e = //;Se<E>~3e = 0 . (104), 

and this simply requires cl)“'e to he parallel to a generator of the cone, and 

perpendicidar to tlie vector to its vertex. This generator tonclres tlie spliere. 

1 lie condition that the fonrtli root may vanish reduces to 

mT$-A=0.(105), 

and requires m = 0 for a real function, and in this case the cone breaks into a pair 

of planes, and the symbolic cjuartic degrades. 

xidmitting that T(p~”e — 0 (for an imaginary function), it appears that the 

generator —<p A -f* is common to the quadric and the sphere when four 

roots are zero. 

1 he preceding analysis establishes the fact that a real self-conjugate function may 

belong to the classes, Ij, I„, I3, but not to Ij,. 

A real self-conjugate function cannot belong to if its two united points are 

real, for certain of tlie conditions of self-conjugation of the tetrahedron in the 

limit require Sad = Sa/i — SA = 0, or the line a, h must be a generator of the 

sphere ; and matters are not changed when we assume a and h to he conjugate 

imaginaries. We conclude therefore that no self-conjugate function belongs to I^. 

Since self-conjugate functions of the type 11^ exist, a fortiori they will exist for 

the less restricted types IIj, IIo, II3. 

Self-conjugate functions may belong to the types ITI^, III.i. and to type IV, the 

lines being now conjugate with respect to the sphere (compare the following Article). 

21. If a function converts any tetrahedron into its reciprocal, it is self-conjiigate. 

Here if 

fa = X [bedf fh = y [acd], fc — z [ahdf fd = iv [ahe] . . (106), 

tlie function producing the transformation is 

fq {abed) — x \bcdi] [qbed) — y [aedf {qaed) + z [a6c/] (qabd) 

— IV [cd)ci] (qabc) . . . (107), 
which is manifestly self-conjugate. 

Ihis includes as a particular case the deduction from Art. 8. 

Tlie following theorems may be stated here .■— 

If a function has a scalar for a principal solution, its conjugate has three vector 

principal solutions. 

If a function has a line or a plane locus of united points, it has a vector or 

a linear system of vector principal solutions. 

The nature of the function f, which is the negative of its conjugate, has been 

sufficiently considered in Art. 12. 
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22. It may be as well to show the geometrical meaning of changing from a 

function f to another f — as in Art. 14. 

Writing 

P' = if- ^o) Q = V - hP P =fl.; 

it is obvious that p' is some point on the line pq. To determine the point, let 

p', P and Q be the points p>', p and q with unit weights, then 

p/ _ V — tf,q _ fq — _ pS/q — t,,q 
Sp — t^^Sq S/q — Iq S/q — 

and we have the ratio of segments 

p^ _ Q — p' _ S/q 
P P P — P' tQ 

(109); 

(110), 

or its ratio is directly proportional to the perpendicular from the point Q on the 

plane S/q = 0, which is projected to infinity by the transformation.''^ 

Hence it is eas}" to form a geometrical conception of the nature of a transformation 

by reducing it to some simpler type, as in Art. 14 ; the point P for instance may 

always be supposed to lie in a fixed plane, while in the case of functions of the 

classes II and III it may lie supposed to lie on a fixed line or to l^e a fixed point. 

SECTION III. 

Scalar Invariants. 

Art. 

23. The extent of the invariance. 

24. The sum of the latent roots is zero. 

25. The sum of fractional powers of the roots is zero. 

26. Tetrahedron inscribed to one cpiadric and circirmscribed to another 

27. The sum of the prodircts of the rood's zero. 

28. The sum of the roots and the sum of their reciprocals zero . . . 

29. Twelve-term invariants. 

23. From the results of Arts. 5 and 6, it appears that 

((/- t)a, (/- t) h, (/- t) c, if- t) d) = {ahcd) (n - n't + ~ n'"P + P) (111) 

is identically true, no matter what the value of t may be or Avhat quaternions 

C6, b, c, and d. may represent. In this sense the four scalars n, n', n", and n'" are 

invariants, and every relation connecting them implies some peculiarity in the 

geometrical transformation produced f. 

* In vectors, if q = 1 + p, the ratio is d + Se'p). = to~^xTe if x is the length of the perpendicular. 
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But there is a wider sense in which these four scalars are invariants, 

are the fourth invariants of any two functions /j and /o, the relation 

If 721 and 72o 

({/l//j-(/i/j)«. (/l#2 (/■./.) ^ (fJA -Lfdf, - tfj,) d) 
= [ahcd) {n — n't + n"d — n’"d‘ + d) (112) 

is evidently true or may be verified at once by repeated application of (16). Thus 

any relation implying a peculiarity of the function / and depending on its four 

invariants, implies also a corresponding peculiarity in the mutual relations of the 

functions and /^/o, that is, of any two functions Fj and Fo decomposible in the 

manner indicated. In particular, if in (112) /o is replaced by f{-^, it is evident that 

the invariants of f\ff\ ^ are identical with those of f. And, moreover, the functions 

may be replaced by their conjugates without altering the invariants. 

We now propose to examine the meaning of a few invariants, bearing in mind the 

remarks of this article, and remembering also that the invariants are more general 

than those of quadrics, for the function /is not supposed to be self-conjugate. 

24. For brevity, replacing/a by a', we have 

n'’'{ahcd) = {a'hcd){ah'cd){cibc'd){ahcd') . . . . (113). 

Ifn'" vanishes, it is 2^ossihle to determine an infinite numher of tetrahedra a, h, c, d, 

so that the corners of a derived tetrahedron shall lie on the faces of the origincd. 

For taking any three points a, h, c, and their deriveds a', //, c', three idanes are 

found 

{a'hcd) = 0, {cd)'cd) = 0, {ahc'd) = 0.(114), 

whose common point d enjoys the property of having its derived in the plane 

of a, h, anrl c if, and only if, n'" = 0. 

Conversely, if this is true for any tetrahedron and its derived, the invariant n'" 

vanishes, and the property is true for mi infinite numlier of tetraliedra. 

Interchanging tlie words corner and face, we have the corresponding inteiqiretation 

of the vanishing of n'. 

More generally, wlien n'" vanishes, an infinite numlier of tetrahedra exists, so that 

the pairs derived from them by the operations of the functions fijfl and //, are 

related in the manner described. 

Analogous extensions will be understood in the sequel. 

25. Again, suppose that the sum of the squares of the roots of n/ = 0 is zero, or that 

n'"'^ — 2n" = 0.(115). 

In this case, tetrahedra may be found related to their correspondents in such a 

manner that the deriveds of these correspondents have their corners on the faces of 

the originals. 
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Of greater interest, however, is the case in which the sum of the square roots of 

the roots of tit — 0 is zero, or when 

— in")^ — 64n.(116). 

Here the n"' invariant of one of the square roots of tlie function (compare Art. 36) 

vanishes, so that by the operation of this square root it is possible, from a suitably 

selected tetrahedron (one of an infinite number), to derive a second, and from that 

again a third, so that the second has its corners on the faces of the first, while its 

faces contain the corners of the third. But directly by the operation ofy’( = /“•/“) 

the third tetrahedron is transformed from the first, and these are so related that it 

is possible to inscribe to the first a tetrahedron circumscribed to the third. 

Similarly, we can interpret invariants arising from relations such as 

++ +.(117), 

where m is the ratio of two integers, and where Q, and are the latent 

roots of f. 

26. Before passing on to invariants of a rather different type, we shall consider the 

relation connecting two quadric surfaces when an infinite number of tetrahedra can 

be inscribed to one and circumscribed to another. 

Let the equations of the quadrics be 

S^^F^^ = 0, Sf/Fo^/ = 0.(11^) > 

let the tetrahedron (ahcd) be inscribed to the first, and let its faces toucli the second 

at the points V, c', cV; let the function f derive the tetrad of points of contact 

from the corresponding vertices. Then there are four equations of inscription to the 

fii'st quadric 

S«Fu<^ = 0, ShFih = 0, ScFjC = 0, SdF^cZ =0 . . . (119); 

twelve equations of conjugation of the points a', h, &c., to the second quadiic 

Sa'Foh = SIj'Fm = 0 or S«/'Fj6 = SaFj/^ = 0 . . . (120); 

and four equations of contact such as 

Sa'F/d =0 or Saf'Fofa = 0 . 

The equations of conjugation require the function Fo/ to be self-conjugate, so that 

.(121), 

and the conditions of contact may therefore be re23laced by four equations such as 

SaFo/^ =0.(122). 

2 I 2 
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An infinite number of tetrahedra may consequently be respectively inscribed and 

circumscribed to the quadrics 

SpFo/~(/ = 0, SpFop = 0.(1^3), 

when the condition (121) is satisfied and when the n"' of f vanishes; and if this is 

likewise possible for the given quadrics, we must have 

FJ’2 = F„ or /^ = F,-^F„ or /= (F.-^FJ^^ . . . (124). 

The sum of the square roots of the latent roots of the function F2''^F^ must 

consequently vanish, or the invarianh^^ (US) of this function is zero. 

It has l)een proved incidentally in this article if a tetrahedron circumscribed to 

S^/Fop = 0 is self-conjugate to SpFg^' = 0, that the invariant n"' of the function 

Fj^^Fg is zero ; and if the tetrahedron is self-conjugate to S^Fgp = 0 and inscribed 

to Sr/Fpy = 0, that the same invariant of the function Fg^^F^ is zero. Here 

F3 = Fo/ 
It must be carefully observed that irr dealirrg with quadrics the extent of the 

irrvariance (Art. 23) is lirrrited. If F^ arrd Fg are self-corrjrrgate, the functions yjF^y’o 

and t iFo/o rnrrst be self-corrjrrgate before theorerrrs carr be exterrded fronr the quadrics 

deterirrirred 1ry the simpler to those deterirrirred by the more complex fuuctiorrs. 

27. The irr variant vJ' vanishes if 

{a'Ucd) + {a'hc'd) + {a^hcd') + {aVdd) + {aVcd') + {ahc'd') = 0 . (125). 

To save verbiage irr the interpretatiorr, the edges ah arrd c'd' may be called the 

opposite edges of a tetrahedrorr arrd its derived. If each edge of (abed) irrtersects the 

opposite edge of [a'b'dd'), the irrvariarrt will manifestly varrish, for every term will 

be zero. 

To display the natrrre of the corrditiorrs requisite for deternrirring a tetrahedron 

possessirrg this pr'operty, when n" = 0, let a arrd h be assrrmed fixed, and then five of 

the terms nray be writterr irr forrrrs 

Scfpl =0 {11= 1, 2, 3, 4 or 6).(126), 

where is orre of five lirrear qrraterrriorr furretiorrs. Three equatioirs give 

<^ = Udhfzd,_f\d~].(127), 

and sirbstitrrtiorr irr the forrrth arrd fifth require the point d to be orr the curve of the 

quartic srrrfaces 

(128), 

* This condition iippcars to iinswcr in every particnhir the condition (compare ‘ Elements of 

Quaternions,’ New Ed., vol. ii., p. 377) that a triangle can he inscribed to one conic and circumscribed to 

another (see, however, Salmon’s ‘Three Dimensions,’ Note to Art. 207). 
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which is complementary to the sextic curve (compare Art. 64), 

(129). 

Selectiug any point d on this complementary curve of the tenth order, c is 

determined by (127), and the sixtli condition must be satisfied. 

Hence it appears that any two vertics may be assumed at random, and a plane 

locus for the third. Ten points d lie in this plane, and ten tetrahedra satisfy the 

conditions. 

Generally, also, if the sum of the j^roducts of the square roots of the latent roots 

of the function vanishes, an infinite number of tetrahedra may be found related to 

their correspondents, so that corresponding edges a, h ; a', 6', are intersected by 

opposite edges of intermediate tetrahedra. (Compare Art. 25.) 

28. The case in which the two invariants n' and n'" vanish simultaneously is of con¬ 

siderable importance in the theory of the linear function. These conditions are 

always satisfied for the functions 2/^ —f~ f \ and also for functions of a more 

general ty]3e; in fact, for functions whose squares satisfy a depressed equation 

U'J + ri'T- + = 0, or (/^ - ,s^^) {P - 6-'^) = 0 (1.30). 

It appears from Art. 24 that two systems of tetrahedra exist, one set having their 

correspondents inscribed to them, the other set being inscribed to their corre¬ 

spondents. We shall prove that one system of tetrahedra exists ivhich are at once 

inscribed and circumscribed to their correspondents. 

Let (h and be the united points of f for the roots i s, and q\ and for the 

roots dt si Take any line whatever 

q = xipiif'IUP2)vf.2) (x*, ?/variable) . . . . (131), 

intersecting the lines qyq^ and q\q'^. The function f converts this line into the 

line 
p = xs{q^ — uq^) -f yd{q\ — vq'„}.(132), 

which intersects the connectors of the united points in the harmonic conjugates ol 

the points of intersection of the original line. Repeating the operation, the line p) is 

restored to q. 

In other words, when n' and n" vanish, the transformation interchanges lines ivJuch 

cut harmonically the connectors of the united points; or it transforms a certain con- 

genency of lines into itself 

Take any tetrahedron having opposite edges, ab and cd, on two conjugate lines of 

this congenency ; the corresponding tetrahedron has the two edges c'd' and a'U 

respectively on those two lines, and either tetrahedron may be said to be at one and 

the same time inscribed and circumscribed to the other. 
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If the line «, h intersects the connectors in the points and q'j, and if ol, h' inter¬ 

sects them in Qo, (compare (131), (132)), we may write 

« = Qi + hd'i; ^ = Q] + ^oQ'i ; c' = sQi + s'tgQ'i ; d' — sq^ + ; 

a' = sq, -f s't^q'o; V = + s'Uq\^; c = q.t^q'.; d = q, -f t^q',; 

and the anharmonics of the ranges ahc'd' and a'h'cd are 

(ah){c'd') _ ss'jt^ — G)(fg — ^4) . {a'l/){cd) _ — t^) 

{he') {d'a) — s't^){s't^ — st^) ’ {b'c){da') ~~ {s't, — st^){st_^ — s\)' 

For a pair of quadrics (118) a quadrilateral on one determines a self-conjugate 

tetrahedron with respect to the other if n and u" of the function vanish. 

Moreover, in this case the quadrics 

S^/Fpj' = 0, S^FgFj^ ^Fof/ = 0 

intersect in a common quadrilateral. 

29. It may be worth while drawing attention to a sinqjle rule for obtaining in a 

convenient form certain scalar invariants of linear functions. These invariants are 

the coefficients of powers and products of x^, x^, &c., in the latent quartic of the 

function 

^1/1 + ^3/3 + • • • + ^11/71. 

and the rule is to distinguish hy accents or suffixes the symbols in {abed) just as if 

this exj^ression had been differentiated. For instance, there is the twelve-term 

invariant 

n^z{abcd) = '^{a-Jj^cd) 

where stands for /pq and a„ for f^a. 

It would appear that when a twelve-term invariant vanishes, every term will 

vanish provided the tetrahedron {abed) is suitably inscribed to a definite curve. 

Suppose eleven terms vanish. Let three be solved for a, and substitution in the 

remaining eight leaves eight equations in 6, c and d. From three of these find b, 

and five are left in c and d; and on elimination of c, two equations in d remain, 

which represent a definite curve. From symmetry the remaining three vertices 

trace out a curve or curves. These curves are covariant with the functions. 
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SECTION IV. 

The Relations of a Pair of Qltadrtcs, Sr/F^r/ which depend 

ON THE Nature of the Fltnction F^^'F^ 

Art. 

30. The self-conjugate tetrahedron. 

31. Coincidence of two of its vertices. 

32. Coincidence of three vertices. 

33. The tetrahedron becomes a point. 

34. The function r2“^Fi has a locus of united points. 

35. Scheme of the nature of intersection of the quadrics according to the type of the 

function F2~^Fi... 
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30. We shall briefly consider the relations of a pair of quadrics which depend on 

the peculiarities of the function F^''^^, where 

SgF^p = 0, SgFoq = 0.(133) 

are the equations of the two quadrics. 

If the polar plane of the point a is the same with respect to the two quadrics, 

F^n = .(134), 

where h is a scalar, because (Art. 11) the symbols of the polar planes are Fpt and 

FgU. Here is a latent root of the function Fo”Wj and a is a united point. 

If?) is a second united point answering to the latent root A, we have, on account of 

the self-conjugate character of the functions Fi and Fo, 

qS/jFort = S/)Fp( = SuF/) = t.SaYob = 0.(135), 

provided tlie latent roots are distinct. Thus the polar plane of n contains the points 

h, a, and d; and the tetrahedron is self-conjugate to both quadrics. The function 

Fi“^F3 belongs to the general type I^, in which all the united jioints are distinct 

(Art. 13). 

31. Let two united points a and h approach coincidence. The relation (135) 

remains true up to the limit, and ultimately 

ScH\a = 0, SaF3a = 0.. (136); 

and the coalesced point is situated on the curve of intersection of the surface. By 

(134) the symbols of the tangent planes to the two surfaces are identical, and the 

two surfaces touch. 

If then F3“W^ belongs to the type L, the surfaces touch, and conversely; and if 

the quadrics touch in two distinct points the type of the function is I5, and the 

intersection is a line and a cubic. 
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Let c and d be the remaining united points. By (135) the line c, d lies in the 

common tangent plane; so in order to determine the generators of the two quadrics 

in the plane, it is only necessary to determine the points in which the quadrics meet 

the line c, d. For the first and second quadrics, the equations determining tlie 

points c + xd are respectively (134) 

tgScFoC + .r'QSdFod = 0 ScF^c + x^Sc/Foc/= 0 ; . . . (137). 

The quadrics consequently have distinct generators unless Q = Q, and unless the 

points c and d are distinct. 

For quadiics having a pair of common co-planar generators, F^'T^ is of the type 

TIo, and conversely. 

32. In the next place, let tliree roots q be equal, so that a is the union of three 

united points of /= Fo~^Fj. The point a of Art. 15 (78) is now in the common 

tangent plane, because it bas been derived by the operation of f — q from another 

point In fact we have 

(Fi-qF2)«" = Foa, (Fg-qFo)rt'= F.3n .... (138); 

and from the first of these it is obvious that S«Fo«' = 0 (= q“^S«F^a'), while the 

second may be written in the form 

Fi (a + xd) = (q + x) 
xt^ 

h + 
a 

X 
(139). 

This equation shows that the polar plane of the point a -j- xd with respect to the 

* * * * 

first quadric is identical with the polar plane of a-\-^ with respect to the 
q fi- aj 

second; and because d lies in the tangent plane, in the limit where x becomes 

infinitesimally small, tlie two points l)ecome identical to the first order of x, and the 

common polar plane becomes a consecutive tangent plane to both qiiadrics. The 

(piadrics have, therefore, stationary contact, and their function Fo“^Fg is of the 

class I3. 

The generators in tlie?^tangent plane are now found by expressing that xd + d is 

on one of the quadrics; the equations may be written in the form 

.x~qSrt FoA + 2.rqSAF3d + qSdF.d = 0 ; x~^dF,d + 2.rSr7Foc/ + SdFod = 0 . (140), 

where the equation for the first quadric has been reduced by the aid of (138), in 

order that it may be compared with that for the second quadric. The generators are 

common if, and only if, q = q, and the function is tlien of the type II^^. 
33. When the four united points coincide, the point a" as well as d lies in the 

common tangent plane, a" having been derived, as d was in the last article, from a 

third point a". From the three equations 
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cr = - ^^F.) a" = F,a'; (F^ - ^.F^) a = F.a . (141), 

we see that, in addition to the conditions that the points should lie in the tangent 

plane, we have 

Sa" (F^ — fjFo)^ = 0 ; Sa'FgO.' = 0, and Sa'F^a =0 . . (142), 

as appears from operating on the third by Sa" and using this result in operating on 

the second by Sa', and finally operating on the third by Set'. The line a + xa is 

consequently a generator of both quadrics, and the function belongs to the class 

The remaining generators, determined by the point in which a + ya" meets the 

surfaces again, are deducible from the equations 

qSa Fy:F + yt,Sd'F,a" + ySd'F.d = 0 ; SefF^a" + ySd'F.a" = 0 . (143). 

If these remaining generators are common to both quadrics we must have 

Scf'Focf = 0, and then they coincide of necessity with the other generator, and the 

quadrics become a pair of cones touching along a generator. 

34. Suppose the function to have a line locus of united points, so that 

Fi« = t^F^a ; F^h = t^F^h.(144); 

it immediately follows that one quadric meets the line a, b in two points common to 

the other, and the quadrics touch at these two points. Suljstituting in the equations 

of the quadrics 

q z= xa 4- yb + 2 (c + tal).(145), 

the equations become, 

qS (xa + yb) Fo {xa + yb) + z' (qScFoC + ?(,^qSc/Fnd) = 0 

S (a;« + ^6) Fg (x?^ 4 y6) + 2^ (ScFgC 4 trSc/Fy/) = 0 .... (146), 

and for a constant value of ii, these represent the sections by an arbitrary plane 

through the line a, b. These sections are identical if 

(q — q) ScFgC 4 iF (q - q) St/F// =0.(147), 

and as this is a quadratic in u, the quadrics have two plane sections common. The 

function f is of the type II. The case of coincidence of the points c, d has occurred 

in Art. 31, one of the conics breaking up (type IF). 

If q — q, while c is not situated on ab, the quadrics have two coincident jDlane 

sections, or ring-contact. The type of the function is IIIj. 

If q = but c not coincident with d, the function is of the class lY., and the 

quadrics intersect in common points on the line c, d. Let ab meet the quadrics in 

4, b' and cd in c'd', then it is very easy to see that 4, c', V, d' is a quadrilateral 

common to both surfaces. 

VOL. CCI.—A. 2 K 
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When c coincides with a point a on the line, let d be the jDoint for which (Art. 15) 

(F^ — QFo)« = F.a.(148), 

then SaF^a = 0, and S6Fo« = 0, and the line ab touches the two quadrics at a. The 

conics in the common plane sections touch (type II,,). 

If, further, d coincides with the point a (type IT^), the point Faff is derived by the 

ojieration of Fj — QF.j from some other point a" (Art. 32), and therefore 

SaFoA = 0 ; S6Focf = 0 ; and SaF^a' = 0 ; S6Fpf = 0 . . (149). 

Hence it appears that the line d + xh meets the two quadrics in the same two points, 

and the lines from a to these points are common generators. The intersection of the 

quadrics consists, therefore, of a pair of lines and a conic passing through their 

common point (type II^). 

Finally, it remains to notice the case of a plane locus of united points with the 

fourth point in the plane (HL). It may be proved that in this case the coincident 

plane sections consist of a pair of lines along which the quadrics touch. 

35. Summing ujj, tlie intersection of two quadrics according to the types of the 

function F^^T^, is 

I^, a twisted quartic with two appa,rent double jDoints ; 

I3, a twisted quartic with three apparent double points ; 

I3, a twisted quartic with two apparent and one real double point; 

Ij., a right line and a cubic touching it ; 

I5, a right line and a cid^ic ; 

II^, two conics; 

IL, a pair of lines and a conic ; 

Ilsf two conics in contact; 

II^, a pair of lines and a conic through their intersection ; 

IIIj, the surfaces touch along a conic ; 

IIL, the surfaces touch along two generators ; 

lA^, the intersection is a quadrilateral. 

SECTION V. 

The Square Root of a Linear Quaternion Function. 

Ai’t. Page 

36. The sixteen square roots of the general function.250 

37. Case of a function with loci of united points. 251 

38. Various useful formulse.252 

39 A square root of the conjugate is the conjugate of a square root.252 

36. When the same eftect is produced b}" the twice-repeated operation of one linear 

quaternion function and by the single operation of another, the foiauer may be said 

to be a square root of the latter. 
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Tait first extracted the square root of a linear vector function, and pointed out the 

great utility of the concejjtion. We now proceed to examine some of the properties 

of a square root of a quaternion function, and to illustrate tlmir bearing on certain 

geometrical investigations. 

llie united points of a seiuare root are also united fooints of the 'primitive function. 

If 
f^a = t^a, then fa — tpa , . ..(150). 

The converse does not hold, for it may hajD^^en that loci of united points exist for the 

primitive and not for the square root. For example, if 

f^Oj — b, f-h = tpa ; then fa = tpi, fh := tf> . . . . (151), 

and though every point on the line ah is, a united point for the primitive, this is not 

generally true lor its square roots. (Compare Art. 13.) 

When there is no locus of united points, the square roots have the same four united 

points as the primitive, and their latent roots are sets of the square roots 

i if i Ch i if i .(1^2) 

of the latent roots of the primitive. Thus in the general case a function has sixteen 

square roots. 

37. When the primitive has a line locus of united p)oints [a, b), any tivo points on 

the line may be assumed as united points of the square 'root. 

By the last article it may. be seen that the square root must have united points 

on the line. Assume these to be a + xh, a + y/>, then 

/I (a f-xb) — ± qi(a + xb) ; p {a yf = ± id (« W V^) • • (1^3), 

and the square root satisfies the condition that its twice repeated operation is 

equivalent to the operation of f. If the signs are alike and x and y distinct, the 

square root has a locus of united points; otherwise it has not. 

If a square root has coalesced points, so has the p)rimitive. 

If 
Pa = thi + a; f^-ct = lla.; then fd = td + 2^k^; fa = tct. . (154), 

and therefore the repeated operation of jf — t is required to destroy a ; and the 

primitive has a coalesced united point. 

The square root of a f unction having a plane locus of united points possesses at least 

Oj line locus of united points. 

The only escape is the assumption that the square root has a united point coalesced 

from three points, and this lias just lieen shown to involve a coalesced jioint for the 

primitive, contrary to hypothesis. 

When the pjrimitive has coalesced points but no loci of united qjoints, the number of 

square roots is limited. 

This follows from (154). 

2 K 2 
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38. Except in the case in luliich the primitive has loci of united points, the square 

roots are all commutative with one another and with the primitive, for they j^ossess a 

common system of united points.* 

Moreover, for a definite square root, 

(/+ (/+ yf = ((/+ x) {/+ y)f.(155), 

with liberty to change the order of the factors. This follows most easily by operating- 

on the united points. 

In general also, for any two functions and f.^, and a definite square root, 

because 
. . . . 

(y?/Ai-T =/i%/r* =/y/y/r‘ • 

and in particular a relation which is occasionally useful is 

(/rVs + = /r' (/r%/r* +«) A* • • 

(156) , 

(157) ; 

(158) . 

39. It is evident from the foregoing that the square roots of a function and of its 

conjugate are conjugate when they have the same latent roots. 

Thus we may write 

(/'-)'=P.(159), 

to signify that the conjugate of a square root is the corresponding square root of the 

conjugate function. 

In particular, taking the conjugate of (158), 

+ o' + tff- (160). 

SECTION VI. 

The SQ[rARE Hoot of a Function in e,elation to the Geometry of 

Quadrics. 

Page 

40. The quaternion equation of generalized confocals, q= d{{f+x) {f+y) {f+z)\e . . . 252 

41. The general case of quadrics inscril)ed to a common developable.253 

42. The quaternion equation (/= + ii^tersection of any two quadrics. . 254 

40. The transformation 

.(HH) 

Converts the quadric '^eqfq — 0 into the unit sphere Sp" = 0,/’ being a self-conjugate 

function. 

Compare ‘ Elements of (Quaternions,’ New Ed., vol. ii., A|)pendix, p. 364. 
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This suggests a quaternion equation such as 

q = {/q- xf (/ + yf (/ + zf e = / {(/ + ,r) {f + y) [f z)] e . (162), 

where e is some constant quaternion, as equivalent to the equation of a system of 

generalized confocals 
^2' (/+ q = 0.(163). 

On substitution in the scalar from the quaternion equation the result is 

Se(/+?/)(/+2)e = 0.(164), 

and y and z disappear, provided e is chosen to be one of the eight points satisfying 

= Se/e = ^ef^e =0.(165). 

Thus e is one of the intersections of three known quadrics. 

It is not necessary to dwell on Hamilton’s theory of the umbilicar generatrices, as 

the subject will be resumed in an extended form."^' Accordingly it is sufficient to 

mark that the equation of such a generator is 

= (/ + y) if + = + if + - ■ (166), 

where y is varialile; and the form of this equation shows that when x varies the 

generator sweeps out the developable of which the cusjiidal edge is the curve 

^ = (/+^)*e.(167). 

41. More generally, starting from any two quadrics, 

= 6.(ihs); 

the equation of the system of quadrics inscribed to their common circumscribing 

developable (compare Art. 11) is 

% (/r^ + y = ^.(16i>)- 

This by the principles of Art. 38 may be replaced by 

ififrVy + = 0.(176); 

and on comparison with (163) and (162) it is manifestly equivalent to the quaternion 

equation 

or, by an application of (158), to 

2 = (/ry; + »=)‘(/rA+</)M/r’/. + U*« .... (m), 
* Compare Arts. 41 and 71. 
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where c = A, V. By (155) it is seen that the quaternion e of this formula satisfies 

the three equations 

Sr/hi = h, = 0, (1^3). 

and is therefore one of the intersections of three quadrics. 

42. Tn particnlar the equation of the curve of intersection of tlie original quadrics 

(1G8) is 
q = {/rYi + where Sq/ja = Safla = BqQ= o . . (174), 

as may he proved by direct transformation from the genei'al residt (172), or perhaps 

more shortly hy assuming the form q = (./’+ and determining f, or by verifica¬ 

tion. remembering (158). 

Hence the et[nation 

(.47)"^ + = fi.(175) 

determines the eight ])oints of intersection of the three quadrics 

Sq/hy = 0, SqYq = 0. 

SECTION VII. 

The Family of Curves q = {f-\- t)’‘'a and their Deyelofables. 

Art. " Pasre 
O 

43. Some memliers of the family.254 

44. The tangent line and the developable.254 

45. The oscnlating plane.255 

46. The intersections of the curve with the osculating plane.256 

43. Instead of v'riting dovni and discussing the equations of the circumscribing 

developable and of its cuspidal edge of the quadrics (139), which are in fact of the 

same form as (163) and (167), except that f = f~Y-2 is self-conjugate, we shall 

devote a fe^v i-emarks to the fimiily of cui'ves 

A = (/+4"«.(176) 

and their developables, m being a scalar, a a constant quaternion, t a scalar variable, 

and/an arbitrary linear quaternion function. This family includes the right line, the 

conic, the twisted culiic, the quartic intersection of two quadrics, the quartic which is 

not the intersection of two quadrics, and the cuspidal edge of the developable 

circumscribed to trvo quadrics ; the corresponding values of m being vi — 1, 2, —1 

or 3, 4 and f. 

44. The equation of a tangent to the curve (173) is 

(/+/(./■+.('^’7), 
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when the scalar parameter s alone varies. When s and t both vary the equation is 

that of the developable of the tangent lines. 

If for suitable weights of the united points pj, pg, we write 

^ — 5^1 + 5'2 + 7.8 + ^1-.(^^8), 

the equation of the developable becomes 

p = E (h + s) (h + .(W9). 

When — 1 is positive, the result of putting t — — is 

q = {u + s) (^2 - q)'" ^q, + (q + s) (q - q)"' % + (q, + 5) (q -q)»^ \ . . (180); 

and this represents a certain number of right lines in the united plane [cq^, pg, pj, the 

number being determined by the nature of m, being as we know 4 when the develop¬ 

able is circumscribed to a pair of quadrics, or when m = f. 

The remaining part of the intersection in the united plane is obtained by putting 5 

equal to — q, and its equation is 

<l = (h- h) (h + + ih - h) (h + + (h - <i) (*. + ■ • (181); 

or more simply 

7 = (/+ 0“”^’ where = (q — q) ry, + (q — q) q^ + (q — q) q^. . (182). 

The plane curve is likewise included in the family (176), and for m = | it is a 

quartic (174), or rather a conic counted twice. 

x. 
U — t± u 

{h - hY 
3 "8 ~ 'U I -r 2 'U ^3 _L 

^ “ ('3 - 0= + * 

2 h, ~J3__0 (183), 

as we see from (181) on putting q = x^q^ + a^373 + ^474- 

In case m — 1 is negative it is necessary first to multiply (179) by the product 

n (q -f i)^““ before putting — t equal to a latent root. Then, on making t = — 

we find only the point q^, which shows there are no right lines in the plane [fhqzq^, 

and which indicates multiplicity of the curve at the united points. 

45. Just as the equation of the tangent line was obtained in the last article from 

that of the curve, the equation of the osculating plane may be written in the form 

7 = (/+ w.) (/+ «) (/+ .(184); 

where t is sujDposed to remain constant, while s and u vary together. It is easy to 

verify that this plane contains two consecutive tangents to the curve. 

The reciprocal of the plane is the point (compare Art. 5) 

p = (/' + > a = [«,/(,/%] . . (185); 
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and consequently the cuspidal edges of the reciprocals of curves of the family (176) 

belong to a similar family obtained by altering a into a and f into its conjugate. 

Also the sum of the exponents m for a curve and the cuspidal edge of its reciprocal 

is equal to 2. 

The develojoahle formed by tlie tangents to the new cuspidal edge is 

1> = if' + .(186); 

and it may he worth while to verify directly that lines of this reciprocal developable 

are reciprocal to the corresponding lines of (179). Also lines in a united plane 

reciprocate into lines through a united point of the conjugate function ; so that we 

can assert that the number of lines of the developable of a curve whose exponent 

is in which lie in a united plane is the number of lines of the developable of a curve 

whose exponent is 2 — m which pass through a united point. 

46. The points (s) in which an osculating plane (184) at (t) cuts the curve again 

are found by combining this equation with (176) and putting 

Spp = 0 = S(/+ if' + = Scf (/+ tf-- (/+ y-a . . (187). 

In this, when we use the expression (178) for n and when we observe (185) that 

a' = [afaf-a] = “ ^3) (^3 “ fi) (^ “ hO • • • • (188), 

equation (187) becomes 

" 0^(^2 ^3) ih ~h) {h ~ h) — ^ .... (189). 

Tlie points at which the plane meets the curve four times are determined by 

S(l)-(h + tf{U - -ty){t^-U) = 0.(190). 

SECTION VIII. 

The Dissection oe a Linear Function. 

Art. 

47. /’= Ff/ -when F = F', = 1. 

48. Condition for tFe reduction/=FR when R = r ( ) . 

49. Reduction of (j to GR when G“= 1. 

50. Reduction of an arbitrary function/= FGR. 

51. Reduction of a function to a product of self-conjugate functions . . 

47. In addition to the decomposition of a function into its self-conjugate and 

non-conjugate parts by addition and subtraction, there is another very useful 

resolution Iw multiplication and division analogous to Tait’s resolution of a linear 

Page 

. 256 

. 2.57 
. 258 

. 258 

. 258 
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vector function into a function representing a pure strain following or followed by 

a rotation. 

Multiply any function into its conjugate, and write 

ff = (191), 

where F is the self-conjugate function whose double operation is equivalent to the 

operation of the self-conjugate function jj'' (Art. 36). 

Introducing a new linear function g and its conjugate g’ defined by the relations 

/=% / = or p=:F-y,p'=/F-i 

it appears that this function is the inverse of its conjugate, for 

(192), 

g'g^\-gg>.(I93) 

is a consequence of tlie equations of definition. 

The geometrical property of this new function is, that j^oints conjugate to the unit 

sphere remain conjugate after transformation. 

For if 

=: 0, then ^gpgq — ^pg'gq =1 0.(194). 

In particular the unit sphere is converted into itself by the transformation. 

This transformation is orthogonal, points and planes being transformed by the 

same function (Art. 4). 

48. On counting the constants, it appears that an arbitrary function f cannot be 

reduced to the product of a self-conjugate function and a conical rotator 

R=r( )?'-!, Pd = = r"i( ) r.(195), 

there being sixteen constants in /, ten in F, and three in R, 

In order to determine tlie conditions, observe that by the last aidlcle 

V'^=ff if /= FR, and RR'= 1.(196). 

Now I say that if a scalar remains a scalar after the operation of R, the function 

is a conical rotator. For then 

SR'/) = SpR (1) = 0.(197), 

and therefore Rp or Rp remains a vector whatever vector p may be; and, moreover, 

the angle between any two vectors is unaltered by the transformation.* 

Thus the condition required is simply 

/(I) = F (1), where T- = ff.(198); 

and when the reduction is possible it is generally determinate. 

* Compare the Appendix to the New Edition of Hamilton’s ‘ Elements,’ vol. ii., p. 366. 

VOL. CCI.—A. 2 L 
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49. A function which w the inverse of its conjugate is in general reducible in an 

infinite variety oj ways to the ‘pi'oduct of a self-conjugate function and a rotator. 

Because gg' — 1 in the notation of Art. 47, the conditions (198) that g should he 

reducible are 

^(l) = G(l), where G'= 1, G = G'.(199), 
for simplicity writing 

l+.9(*) = «’ 1-P'(1) = 6. . . . . . . (200); 

it is evident from the last equation that 

Ga = a, Gh = ~ b, Scdj = 0.(-01) I 

so a and b are united points of G, and conjugate with respect to the unit sphere. 

Take any point c in the polar plane of b, and any point d in the polar line of ac ; 

and assume 
Gc = c, Gd = — d.(202); 

then the function determined by the four relations (201) and (202) is self-conjugate, 

and its symbolic equation is G' — 1 = 0. By the construction it follows that 

S«6 = S6c = Sad = Sch = 0 .(203), 

and the function is consequently self-conjugate. 

We have now determined a self-conjugate function, one of an infinite number, 

which satisfies (199), and the 23roposition is jjroved. 

The rotator corresponding to G is of course 

lX = G~^g = Gg.(204). 

50. The results of recent articles establish the possibility of reducing an arbitrary 

function to the form 

f=FGU.(205); 

where F, G, and R satisfy the equations 

T^=ffi, F-fi{l) = G{l), G2=l, R = GF-V'. . . (206); 

and by analogous 23i'ocesses the function may also he reduced to other forms such as 

G^F^Rj, but on these we need not delay. 

51. An arbitrary function may be reduced to a quotient or i^roduct of two self¬ 

conjugate functions. 

Assuming 

/= Fr^Fi.(207), 

it a23pears that the united points of (com2)are Art. 30) satisfy the equations 

Fj« = ^jFoU ; F-f = t jFd)-, FjC = ^gF^c; Fjh = ^4Foc/ . . (208); 
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but oil the supposition that and Fo are self-conjugate, it follows (135) that these 

united points form a tetrahedron self-conjugate to the two quadrics SqFp^ = 0, 

SqFcq = 0. Take therefore any quadric to which this tetrahedron is self-conjugate ; 

F^ is determined and Fj follows from (207). 

Otherwise the function 

F. (q) . (ahcd) = xa (qhcd) + yU {aqcd) -f zc' {ahqd) + wd' {ahcq) . (209) 

is self-conjugate (Art. 21) when [ad/c'd') is the tetrahedron reciprocal to {abed) ; and 

on comparison with (208) the function F^ may be written down. The four scalars 

X, y, z, w are arbitrary, as might have been expected, since each self-conjugate 

function involves ten constants, while f involves sixteen. 

If two functions can be simultaneously reduced to the forms 

y; = F-iF„ ./o^F-iF^ (210), 

the united points 

quadric, or 

In this case the 

of and /j must form tetrahedra self-conjugate to a common 

F«, — [biC^d{], &c. Fa.o = .(211)- 

eight united points are so related that any quadric 

SqFgq = 0 (212) 

which passes through seven, passes also through the eightli. 

The condition that the point should be on the quadric may lie written (211) 

Sf/iFgF-i = 0, or (F-iFgCq, c„ d,) = 0 . . . (213), 

and if tq, and d^ are likewise on the quadric, it follows (Art. 24) that the first 

invariant of the function F'^Fg vanishes. Hence if the points a.,, b.,, c.^ are also on 

the quadric, the remaining point d^ must lie on the quadric too."^' Thus one of the 

united points is fixed with respect to the others, and the functions J\ and /o must 

satisfy three conditions, which reduce the number of their constants to 29, and this 

is precisely the number involved in the two quotients F“T^, 

* Compare Appendix to the New Edition of the ‘ Elements of Quaternions,’ vol. ii., p. 364. 
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SECTION IX. 

Tue Determixatiox of Linear Transformations which satisfy Certain 

Conditions. 

Arfc. 

52. Transformations converting one given quadric into another. 

53. The transformations of a quadric and a linear complex into themselves. 

51. The conditions that it may be possible to transform simultaneously a given cpiadric 

and a linear complex into another given quadric and a linear complex. 

55. Transformations converting one conic into another given conic. 

5G. The condition for the simultaneous transformation of two conics into others 

57. One twisted cubic may be converted into another with arbitrary correspondence of the 

points. 

58. The condition for the conversion of one unicursal quartic into another. 
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52. The results of Art. 47 afford a simple solution of such problems as to find a 

transformation ivlncli shall convert one quadric into another. 

Symbolically this problem amounts to solving the equation 

Fi=.rF„/.(214) 

which connects two known self-conjugate functions Fj and Fo with an unknown 

function / and its conjugate. 

I he first quadric is reduced to the unit sphere by the transformation 

l/i- = so that SqFir2 = Sqp.(215). 

The unit sphere is converted into itself by the transformation (Art. 47) 

= f/'in so that ^qf —Sqf it qq' = 1.(216); 

and finally the sphere is converted into the second quadric by the transformation 

so that Sqy = SqgFpyg.(‘-^17). 

Thus the transformation 

/= FA“f/Fi% qq' = 1.(218) 

converts the first quadric into the second; and evidently this is the most general 

transformation fulfilling the conditions. 

53. To convert an arhitrary function “/” ^nto itself observe that the transforma¬ 

tion must belong to the group (compare (218)), 

F =/o ; where / = /o +/, qf I.(216), 

v hich converts the self-conjugate part /g of the function into itself. 
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The problem therefore reduces to the determination of g from the equation 
(compare (214)) 

// =/o¥/o“^-//-/u~W.(220). 

The form of this equation suggests the new function 

///=/o"t/’//u^ ///+/'// = 0. 

and the equation (220) reduces to 

./// = Cl' Ufa • 

(321); 

(233); 

and the problem reduces to the determination of a function g commutative witlj tlie 
known function 

The function g must possess the same'i'' united points as ; or g must be of the 
form (compare (221)) 

g = x + + ?(’/;; ; g' .r _ ~ . , (223). 

Actually multiplying these expressions we find (219) 

pp' = 1 = [x + - (y/; + u;/;;i)i.(224); 

and as this equation must be equivalent to the latent quartic of the function 
it must vanish when for are substituted its latent roots. Now (Art. 23) the 
latent roots ofare identical with those of/), and the latent roots of the latter 

function (Art. 12) are of tlie form di dz \/ — Substituting and reducing, 
we find in terms of the two invariants nj' and of J], two equations 

1 = X' + (2y?r — 2^ nl'w~), 

0 = '2xz — y" + nj' {2giv — 2® + ngv'^'' . (225) 

connecting the four scalars x, y, z and iv. Hence, reverting to the original functions, 
the transformation 

F = .r + y/u 7;/o + -fo'Vi\fo + 77/o • . (226) 

converts the function / into itself; in other words, it converts the quadric and the 
linear complex 

S7//i = 0 .(227) 
into themselves. 

54. Passing on to the general case, let us consider the relations which must be 
satisfied when one function f can be converted into anotlier F ; or the conditions 
that a quadric and a complex can be simultaneously converted into another given 
quadric and another given complex. 

* Compare Art. 38, and the Appendix to Hamilton’s ‘Elements,’ vol. ii., p. 364. 
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The first quadric is converted into the second by the transformation (218) 

Fo~V/o*) ^his converts the first complex into 

s^).F„Vo r/,Vo (228); 

and, on comparison with the second complex, it appear that we must have 

F(,-SF,Fo-* = f/Zo-y/o'y- or R = .... (229). 

where we have introduced two new symlDols for greater convenience. 

Equation (229) requires the functions and to have the same latent roots 

(Art. 23) ; or again, Fq“^F^ and i^^ust have the same latent roots, and this is 

the sufficient condition, for it appears, on substituting a united point of F^^ in (229), 

that the function g' must convert the united points of F^^ into those of ; and it 

is always possible to find a function g capable of doing this, because (Art. 12) the 

united points of the two functions are quadrilaterals upon the unit sphere, and a 

function g' always converts this sphere into itself 

I’hus, given two quadrics and two linear complexes, it is possible to transform 

simultaneously one (juadric into the other and one complex into the other whenever the 

latent roots oj the functions fd~f, and Fq“^F^ are proportional. 

55. To find a transformation ivhich shall convert one conic into another. 

The essentials of the problem are contained in the equation 

f{at^ 2ht c) = IV + 2b's + o') . (230). 

In order that the rightdiand number may be a quadratic function of q it is necessary 

to have 

.(^31); 
vt V 

w = {vt + A) h = 

so tliat on equating powers (fiA we obtain, in the usual notation for binary quantics. 

fa = {a'b'c'Xuvf; fb = {a'b'c'fuvXu'd) ; fc = {a'b'c'Xu'v'f .... (232). 

i hese relations are not sufficient to determine the function ; we may arbitrarily assume 

two quaternions d and d! and write/A = d' (Art. 3). The function thus determined 

involves eleven arbitrary constants, the four u, u', v, v' which regulate the corre¬ 

spondence of point to point on the conics, and the seven (eight less one) involved in the 

two quaternions d and df, for multiplying these by a common factor is without effect. 

56. In order to transform simultcmeously two given conics into two other conics, 

a single relation must exist connecting the conics. 

Affixing numeral suffixes, 1, 2, to the various symbols in (232), we obtain the 

system of six equations which tlie functicai /’must satisfy. Any six quaternions are 

connected by two relations, and the equations 
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-f 2 Soyiz) + (^'1^11 + %^12) ^1 

-f- ~|~ 2 -1“ ^’0^22) ^2 "1“ (^1^21 '^2^22) ^'2 ^ • (233) 

'-''' 2 ^ 12) “1“ ^ {^\y\i “1" ^^2^/12) “1“ (*' 11 “t“2^ 12)^ 1 

+ “1” ^'-2 ^'22)^^'2 H“ 2 ('^’^?/^21 “t“ '^'21/'22) ^^'2 “t“ “1“ *‘^^^22) ^ 2 ~ ^ ’ 

ill which 5i, So, s\, s'o are arbitrary, but the other scalars given may be taken as 

determining the two pairs of relations connecting the two sets of six quaternions. 

When the left-hand members of the equations analogous to (232) are multiiilied by 

-f s^a-jg, &c., and added, the sum is zero; and the sum of the right-hand members 

is (with an obvious abbreviation) 

{ (^‘l^<^ll + ^•2a^J2, ^’1^11 + «2?/l2^ ^l^l 1 + + ^I^i^’lIwV'l)^'l + I?«'lV'] fc'l } 

“b {(^i^'2] “b ^2^22’ '^1^21 ~b ^2?/22’ '^1%1 ~b '^2~22X^2^2)'^^ 2 2^ 2) ^2 ~b 

Xwb'w'o T^'2] — ^.(234), 

or, for simplicity, 

(s^Xji -f- -S2X12) + 2 (s^Y]^]^ + S2YJ3) l> I + (si^Z^j + s 2212) c ] 

“b (s^Xoj + S2X02) “b 2 (S]^Y2]^ + SgYoo) 6b. -b (^i + 5220.2) cb= 0 . . (235) 

where X^^ is a quadratic in iq and Y^^ Z^^ its successive polars to u\v\. This rela¬ 

tion connecting the six quaternions must be equivalent to the second equation (233), 

so we may equate corresponding coefficients of quaternions, when we shall obtain six 

equations linear in Sj, Sg, s\, s'Let 6‘b and 5 3 be eliminated from them. The result 

is the system of determinants 

^ii'®i“bX]o6‘2 YyS2"bYio53 7j^yS-^-\-Zii^s^ Xo^^^d-Xo.o.So Yo^s^-bYg.oSg Zo^Si+Zggsq 

y i\ ^11 ^21 y 21 

y 12 ^12 ^22 y 22 

X 
11 

X 12 

21 

2' ^ 22 

= 0.(236), 

which is equivalent to four equations. But 6q and S3 are arbitrary; consequently this 

system of determinants breaks u]i into two independent systems, equivalent to eight 

equations among the eight scalars u, v. The eight scalars enter homogeneously into 

the equations, and may be eliminated, leaving a single coiidition connecting the four 

conics, in order that it may be possible to find a transformation which shall convert 

two of them into the remaining two. 

57. A twisted cubic may he transformed into another twisted cubic ivith arbitrary 

correspondence of the points. 

The equation of transformation of one arbitrary twisted cubic into another is 

(compare Art. 43) 
f{abcd'ft, 1)^ = {a'b'c'd'Jut -f- u, vt + v')^.(237). 

Hence equating coefficients of t, four equations are obtained which serve to deter- 
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mine f for arbitrary values of u, i\ u\ v' (Art. 3). These four scalars may be selected 

in any way we please. 

58. A single condition connects two quartics of the second class'*' when it is possible 

to transform one into the other. 

The equation of transformation is 

fiahedeft, 1)^ = {a'Vdd'c'Jiit -f- if vt + vf.(238), 

and five equations of condition may be'written down analogous to (232). 

Let the relations connecting the sets of five quaternions be 

x^a + Axf + Gxp + 4xpl + aqe = 0, ypi' + igf' + 6y.c' + 4ij./l' + yp' = 0 . (239); 

then, as in Art. 56 (234), we obtain the equation 

XoA + 4Xi?/ + GX,c + 4X31/' + X/ = 0 .(240), 
where 

Xy = {xQxp‘.;,x.,x.,Xvvy.(241), 

and where Xj, Xo, X3, and X^ are its successive polars to u'v\ 

On comparison of (240) and (239) the equality of ratios 

5) ^ X , ^ X^ ^ X3 ^ X, 

2/0 Vi y-2 2/3 2/r. 

is seen to be necessary. This is equivalent to four quartic equations in the homo¬ 

geneous variables n, v, u, v, and the resultant of these four equations equated to 

zero is the single condition in question. 

SECTION X. 

COYAPJAXCE OF FUNCTIONS. 

59. The eight types of covariance. .. 054 

60. Special cases in which the types coalesce.. 

61. Second general method of obtaining covariant functions.266 

62. The Hamiltonian invariants and the method of arrays.266 

59. The subject of covariance naturally arises in connection with the various 

transformations lately considered, but as the principles laid down in the note on 

Invariants of Linear "V ector functions printed in the Ajipendix to the new edition of 

Hamilton s Elements apply with but slight modification to the more general case of 

quaternion functions, it does not seem desirable to go into any great detail. 

A quartic of the second class is the partial intersection of a cubic and quadric surface, and only one 
quadric can be drawn through it. 
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We projDOse to obtain functions from given functions J\, /g, &c., which fall 

into certain classes connected by invariantal relations. We denote two arbitrary 

functions by the Koman capitals X, Y, and we consider the transformations 

effected by multiplying a given function by X and into Y. 

This transformation changes the series of functions 

... A, /i. /,,■■■ /lAA.. • • .(243) 
into the series 

X./VY, x/,Y. xy^Y,... X/JVVW. ■ • • x/i./yy^/rVA . (24 4); 

and we shall speak of this as the (XY) class. 
I nP QPTIPQ 

/r‘. ff\ ff\ ■ ■ ■ ■ ■ ■ /rA/r'/i/r* • • • (245) 
becomes 

Y-/r‘x-', y->/3->x->. ... Y-y.-'/OAX-’, ... 

Y-'/ry/s-VtA-'X-*.(240), 

and this is the (Y"\ X~^) class. 

The S3ries 

fiff\ fJi', — /i/r'A/r’.(247) 

is the (XX“^) class, transforming into the series 

x/,y-'x-', xyy-'x->,...x/,y-y,/r‘x-'. . . . (248); 

and finally the series 

/r'A /r'A ■ • ■ /rA/r'A.(249) 

forms the (Y“'Y) class, as it transforms into 

Y-'/r‘AY, Y-'/r'yY,... Y->/rAA-'AY . . . (250). 

Inverse functions of the (XY) class belong to the (Y“^X”^) class, and conversely; 

inverse functions of the classes (XXor (Y“ W) belong to their own class, and so 

also do products and cjuotients of functions of these classes. The product of an 

(XY) function into a (Y“^X"^) function is an (XX~^) function, and so on. 

In like manner there are four classes for the conjugate functions, as appears on 

taking the conjugates of a typical function. The annexed scheme exhibits the eight 

classes, the conjugates being printed under their correspondents : — 

(XY), (Y-iX-i) (XX-i), (Y-iY) 

(Y'X') (X'-W'-i) (X'-iX') (Y'Y'-i).(251). 

60. When we deal with quadrics or complexes, or when the condition is imposed 

that self-conjugate functions remain self-conjugate, the classes of the conjugate type 

VOL. CCT.-A. 2 M 
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coincide with those originally found, hut in a dilferent order. In this case Y is the 

conjugate of X, and the scheme (251) becomes 

(XX') (X'-iX-i) (XX-i) (X'-^X') 

(XX') (X'-^X-^) (X'-^X') (X X-i) .... (252). 

In this case the conjugate of a transformed function is the transformed function of 

the conjugate. 

Again, in the general case, when,Y = X~i, the types of the upper row (251) 

merge in the single type (XX“^), and the conjugates in the type (X'^^X'). 

Finally, all types unite in the single class (XX') when X is the inverse of its 

conjugate (Art. 47). 

GI. Covariant functions may he derived by the following general process, as well 

as by multiplication and division. For arbitrary scalars, Q, &c., 

nt{ttf)-\ahc\ = {ttfa, ttfb, ttf'c] = F,,^[_ahc-] . . . (253), 

where Uf is the fourth invariant of %tf, and where 

Fn^Whc\ = t[f\a,f'J),f^c'\.(254), 

the summation in this last equation referring to permutation of the suffixes. 

These functions belong to the (Y~^X~^) class, because 

= . . . (255), 

Ux and 7?y being the fourth invariants of X and Y. 

In like manner functions of the (XT) class are obtainable in the form 

/i23[«?>c] = S[Ai'rt,FV5,A3'c] ; .Fi'[rt5c] = [/a,/i6,/ic] . . . (256). 

G2. Although rather foreign to the subject of this paper, it may be as well to indicate 

the nature of the Hamiltonian quaternion invariants of a system of functions. It 

was stated in a paper on Quaternion Arrays* that these invariants are included in 

the quotient 

^ fi(^' /a ' 

/2« U 

> -h- (ahccl) . (257), 

fJ) ffi fud 

a h c d 

formed by dividing a four-column ai'ray by {abed), each row of the array consisting of 

the residts of operation by a single function on four a.i’bitrary quaternions. Briefly, 

* ‘ Trans. Roy. Insh Acad.,’ vol. 32, p. 30. 
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a quaternion array may be defined as a function which vanishes if, and only if, the 

constituents of every row can be linearly connected by the same set of scalar multi¬ 

pliers, It is multiplied by a scalar if every constituent in a column is multiplied by 

that scalar; and the sign of the array is changed if contiguous columns are trans¬ 

posed. 

These laws are precisely the laws which govern the function {abed), which is in 

fact a one-row array, so that if in (257) we replace any one of the four quaternions 

by any quaternion xa yh zo ivd, the quotient remains unchanged. The 

quotient is therefore an invariant in the Hamiltonian sense i it remains unchanged 

when the four quaternions a, b, c, d are operated on by the function Y. 

If we regard the lowest row as consisting of the results of operating by the 

special linear function unity on a, b, c and d, and if we replace by X/jY, 

X/2Y, . . . X/,Y and unity in the last row by XY; to a factor, n^7iy^, the quotient 

becomes the corresponding quotient for the system of functions 

xy;xr\ xy^x^-^... xy;x-h 

SECTION XL 

The Numerical Characteristics of Certain Curves and Assemblages 

OF Points. 

Pag, 
63. The number of points represented by {Qi, Q,2} = 0, Q;^ being a quaternion function of 

of order . 267 

64. The order and rank of the curve [Q1Q0Q3] ^0.267 

65. The order and rank of the curve ((QiQ2Q3Q4Q5)) = 0.269 

66. The number of points represented by (((QiQjQ3Q4QoQ,i))) = 0.270 

67. Conditions for the vanishing of the system [[Q1Q.2Q3Q4]] = 0.270 

03. In order to facilitate future investigations, we shall determine the numerical 

chaiactenstics of certain curves and systems of points which frecpiently occur. 

Using the symbol Q„ to denote a homogeneous ([uaternion function of y of the order 

M„, it appears from Salmon’s chapter on the “ Order of Restricted Systems of 

Equations ” in his ‘ Modern Higher Algebra,’ that 

{Q1Q3} — b, or -j- = 0 .(258) 

represents a system of points whose number is 

My + MyM^ + M^M^s + Mo3.(259). 

64. In like manner the chapter cited enables us to write down the order of the 

curve represented by 

[QiQaQs] = b, or -f = 0 .... (260) ; 

2 M 2 
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but as it is clesiral>le to determine also its rank and the number of its apparent double 

points, we shall adopt a different method. 

The cpiaternions a and h being arbitrary, the identity 

Qi + Qa (Qs^^Qi) + Qs + «(^-^QiQA) + ^ (QiQcQa^O = o • (-gi), 

shows that the two surfaces 

(aQiQ,Q,) = 0, OQ,Q.Q3) = 0 .(262) 

intersect in the curve (2GO), and also in a complementary curve common to the three 

Sl-II*fRC0S 

(a&Q3Q3) = 0, (aiQ3Q,) = 0, (cAQ.Q.) = 0 .... (263); 

for when (262) is satisfied, the identity shows that either (260) or (263) must be 

satisfied. 

Let m denote the order of the curve (260) ; then the order of the complementary is 

(Ml + Mo + Mg)'^ — m = rrJ.(-6t), 

the orders of the two surfaces (262) being M^ + M^ -}- Mg. 
Again, considering the intersection of the second and third surfaces (263), it follows 

from the identity that they intersect in the complementary curve and in the new 

curve 
[Qff?>] = 0 .(265); 

and because the orders of the surfaces are Mj + Mg and M^ + Mo, the order of 

this new curve is connected with m' by the relation 

(Ml + Mo) (Ml + Mg) - m' = .(266). 

Again, writing down tl)e identity 

a (hcqCl^) + I (c^iQio) + c ('iQpff^) + q (Qi«^t^) + Qi {ahcq) = 0 . (267), 

in which q is the variable cpiaternion, wliile o, h and c are constants, it appears 

exactly as before that the surfiices 

(o7>f/Qi) = 0, (a5cQi) = 0 .(268), 

of orders Mi + 1 and Mi, intersect in the curve (265) and in a complementary curve 

which is obviously the comjdete intersection of the surfaces 

[ahcq) = 0, (n6cQi) = 0 .(269); 

that is, a |ilane and a surface of order Mi. 

Now the relations* 

* 8almox’s ‘Geometiy of Three Dimengions,’ Arts. 345, 346. 
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2(/i —A') = (?n1), r - r'= {m — m') {ixv — 2) . (270) 

connect the niimher of apparent double points (A) and the rank (?•) of a curve with 

those of its complementary in the intersection of two surfaces of orders p. and v. But 

we know the characteristics of the plane curve (269) to be 

m; = Ml, r/ = Ml (Ml - 1), A/ = 0.(271); 

and hence we find the characteristics of its complementary (t’65), 

= Ml^ = 2Mi2 (Ml - 1), 2A = Mp (Mi - 1)’ . . (272); 

and these in turn give the characteristics for the curve rn\ 

= r'=^,{t,~2) + S,; 2h'= ^, {t, - t, + 1) - . (273), 

and, finally, for the original curve (260) we have 

.ju — V 3 _ ■>>* . A. — OV 3 _ qv V _J_V _ o/V2 _ V\. 
Ill: — _1 ^2 ) '-1 U -^3 “'3/ ’ 

2A = (^i^ - No)' - (2Ni3 - 3NiNo + N3) + (Ni® - No) . (274), 

where Ni, No and N3 are the sum, the sum of the products in pairs, and the product of 

the three quantities Mi, Mo and M3. 

As examples, for the twisted cubic 

[/!'//:'/«] = 0 .(275), 

Mj = Mo = 1, Mg = 0, and Ni = 2, No = 1, -3 = 0, so that in = 3, r = 4, A = 1. 

For the curve 

[MMfS = 0.(276), 

Ni = 3, No = 3, Ng = 1 ; and m = 6, 7’ = 16, A = 7. 

These numbers admit of course of simple verification.'^ 

65. In like manner proceeding one step further we calculate the characteristics of 

the curve common to the five surfaces obtained by equating to zero the coefficients in 

the identity 

Qi(Q3Q3QiQ ) + Q3(Q3Q‘iQoQi) + Q3(QtQ3QiQ2) + Qi(Q5Q3Q3Q3) + Q5(QiQ3Q3Qt) 
= 0 . . (277) 

to he 
in = NMiMo, V = NMiNMiMg + NMiMoMg - 2NM1M0 . . . (278); 

this curve being the complementary of (260) for the fourth and fifth surfaces. 

The curve common to the five surfaces may be conveniently designated by the 

equation in double brackets 

* The expression for the rank of a carve, ‘ Modern Higher Algebra,’ Art. 284, seems to require 
modification. 
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((Q1Q2Q.3Q1.Q5)) — 0.(279) 

which is intended to denote that every set of four of the included ([uaternions is 

linearly connected. 

66. For the numher of points common to the surfaces whose equations are 

obtained by deleting two of the (juaternions included in triple brackets 

(((Q1Q2Q3Q4Q5Q6))) = 0.(280), 

Salmon’s formula (‘ Modern Higher Algebra’) gives 

N =  (281). 

67. To complete the scheme, we may regard the equation 

[[QiQaQ3QJ] =0.(282), 

as requiring the four quaternions Qi, Qg, Qg, to be collinear; or the four curves 

(260), obtained by omitting one quaternion, to have common points. If these points 

exist they satisfy the equation (compare (279)) 

((^QiQaQsQQ) = 0 .(283), 

or lie on the complementary common to the five surfaces. 

A curve meets its complementary (‘ Geometry of Three Dimensions,’ Art. 346) in 

t = m{ix + V — 2) — r.(284) 

points, and in particular for the curve [Q1Q2Q3] and the two surfaces (wQiQ.^Qg) = 0, 

(Q1Q2Q3Q1) = 0, we find the number to be (compare (274)) 

(285). 

These points are generally variable with the arbitrary quaternion «. 

Again, the surface 

(aQiQaQg) (6Q1Q3QJ + ^(aQiQjQJ (^QiQsQs) = 0 . . . . (286) 

inteisects (Q1Q.2Q3Q4,) = 0 in [Q1Q2Q3] = 0, [QiQoQJ = 0, and in the complementary 

corresponding to b. When we seek the intersection of the curve [Q1Q2Q3] = 0 with 

its complex complementary on this surface, the number of points is found to he 

2G + + MpMg -f~ -j- and these can all be accounted for by (285) and 
(259). 

We can also in this manner determine the points common to the two complemen- 

taiies(283) answering to a and b to be SM^M^Mg, employing the characteristics (278), 
and putting Mg = 0. 
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68. We devote this section to the study of the geometrical relations connecting 

a function / with its conjugate /', its self-conjugate part and its non-conjugate 

part (Art. 9), and to the relations connecting a pair of arbitrary functions 

and /g. 

The quadric 

^qfq = Sqf'q = Sqf^q.(287) 

is the locus of a point which is conjugate with respect to the unit sphere to its 

correspondent in each of the transformations due to/, /' and 

The linear complex 

= 0, or Spfq = 8qfq), or Spfq = Sqfp .... (288), 

may be written in the form (compare p. 223). 

Spq'S/q = Sqp'S/p, (pSp = p, p'S/p =/p).(289), 

which expresses that the product of the perpendiculars from q', the derived of one 

point Q, and from the centre of reciprocation on the polar plane of another point P 

with respect to the unit sphere, multiplied by the perpendicular (S/q) from q on the 

plane which is projected to infinity by the transformation, is equal to the correspond¬ 

ing product of three perpendiculars found by interchanging p and Q. This property 

is also true when f is replaced by its conjugate f'. 
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The equation of the complex may also be regarded as representing the assemblage 

of lines converted by Q into conjugate lines with respect to the unit sphere. 

G9. In order to determine the four lines common to the quadric and the linear 

complex, observe that the point of contact (/o“Vt) of a 23lane Shq = 0 with the 

quadric must also be the point of concourse (//“V;) of the lines of the complex in that 

jjlane, in order that the plane may contain lines common to the two assemblages. 

Therefore the points e in which the joairs of common lines intersect satisfy the 

equations 

e or h =/]c = uf^^e.(290). 

Thus four points e are determined, the united points of the function /o“Vj. 

It ajjpears, as in Aif. 12, that the latent roots of this function are eciual and 

ojjjiosite, and that the united points form a quadrdateral on the quadric. 

Otherwise, the invariants of and of are identical (Art. 23), and these 

funetions satisfy the same symbolic quartic ; and because their conjugates, 

and likewise satisfy the same quartic, it nmst be of the form 

{fo~vy + + n = o, or - u,^) - ui) = o . (291). 

Hence the lines in question are determined on solution of a quadratic equation. 

When these four points cq, e.,, cb are taken as points of reference,* so that 

„ „ + V<^\ I zrq + ?rcb _ + y'e\ + 
' I / / 

AO c 3 (292) 

the equations of the quadric and conqdex may by the aid of (290) (compare again 

Art. 12) be reduced to tlie forms 

xy + zw = 0 tq {xi/ — x'lj) + u, [zw' — z'tc) =: 0 . . . . (293). 

70. The locus of j^oints whose correspondents are in 2)erspective with a fixed 

point a is the twisted cubic 

fq + tq - a or [fq, p, n] = 0 .(294), 

and the locus of lines which pass through a fixed point a and connect a point and its 

correspondent is the cone 

fq + tq = xfa + ya or {fqqfaa) — 0.(295). 

* Observe that these four points c are the only points for which 

h E J'<1 E /o2 E //i> 

the signs = being iised to denote equality when the quaternions are multiplied l)y a suitable factor. For 

vector functions 

= ^'p = hP 
only when p = e, ■where « is the spin-vector. 
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The com 

equation"' 

plex of lines connecting points and their 

(fPPM) = 0 

correspondents has for its 

. (29G); 

and the locus of points whose connectors to correspondents intersect a fixed line ah is ' 

the quadric surface 

{fqqah) = 0 .(297). 

The reciprocal of the complex (29G) is the complex of the conjugate 

{fPPfPl) = ^.(298); 

for the line is reciprocal to the line 'qj, fp if "^pfp' - ^pf'q' ~ 0, 

which requires p', q', fp, fq' to be coplanar. 

the formulse ot this article comprise many theorems witli respect to the normals 

of confocal quadrics. It may also be observed that the complex (29G) i.s unchanged 

when /is replaced by (/+ x) (/+ yf. 

71. An arourary quadric has eight generators which connect a qooint and its 

correspondent in cm arhitrary transformation. This is the extension of IIautltox’s 

celebrated theory of the umbilical generators. (Compare Art. 40.) 

The conditions that the line q = fa -f- sa should be a generator of the arbitrary 

quadric surface 

SqFq = 0 .(299) 
are 

S«Fa = 0, Su(/T + F/)« = 0, Sc/'F/a = 0 . . . . (300); 

so that we can determine eight points a as the intersections of three known quadrics, 

and the lines joining these points to their correspondents are tlie common generators 

of the complex and the quadric. 

Four of these lines are generators of one system of the quadric and four of the 

other system. 

Four of the lines must belong to one system of generators. Let these be 

determined by the points a^, «o, a.,, rq. The condition that the line ptq should 

meet the line a^fa^ is 

(m/Q) = 0 or S (j)f/) [oj/oJ + S M (rq/rq) = 0 . . (301); 

and because any line vdiich meets three of these four lines likewise meets the fourth, 

we must have for proper selection of the weights 

(^b/b) + (fQ>o) + (a3/a3)-h(ajbj = 0, = 0 (302). 

where 

* When we refers and q to the united points of/, the equation of this complex takes the forms 

“ (b’b + GO) (f' - y'z) {xw' - z'w) = 0, E {t., - 4) {q - q) qjzx'iv + y'z’xw) = 0, 

p-=xa + yh + zc + wd, q = x’a-\- y'b + Fc + w'd. 

A \ector equation may also he employed, for if we put^i-l + a, q^p + p, the equation of the complex 
may be replaced by 

(/+/) p-M(/+s)(l+a), or p==r(V (/+q'‘i(l + a)-aS(/+/L’(1+a)), 

when we eliminate s by separating the scalar and vector parts after inversion of/+/. 

\ OL. CCI.—A. 2 N 
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Hence the eight points common to three of the quadrics 

== 0 {n=l,2, 3, or 4).(303) 

are likewise common to the fourth. But four of these points are the united points of 

the function f, while the remaining four determine (297) four lines of the complex 

(296) which meet the four generators. These four lines are common to the quadric 

and the complex, and make up with the other four the complete system of eight lines. 

In accordance with (302) we may write for the two sets of four lines* 

+ {chfih) + = 0. 
{n\fa\}-\-{a'„Ja\2}-\-{a’^fa'^}-\-\a\fa'^] = Q .... (304), 

and it maybe remarked that a direct interpretation of (302) is that four equilibrating 

forces can be placed along the lines of either set, for the first equation (302) expressed 

that the resultant of four forces vanishes, and the second requmes their moment with 

resj)ect to the centre of reciprocation to he zerof (see (33), p. 230). 

7 2. The locus of the united points of all fanctions of the system 

-^y'f + ^') M*/+ ?//'+2=).(305) 
is the curve 

= 0 . . . . _.(306); 

and this curve (276) is a sextic whose rank is 16, and the number of whose apparent 

double jDoints is 7. 

If q is a united point of a function (305) and t the corresponding latent root, we 

obviously have 
{x — tx^)fq -h (?/ — ti/)f'q + (z — tz') q = 0 . . . . (307), 

whence (306) follows immediately. 

The sextic curve is evidently the locus of united points of the conjugates 

{x f-\- V/’+ 2) of functions xf yf + 2, but it is not the locus of united points of 

conjugates of functions of the general type (305). 

In the following articles we shall consider some part of the theory of two arbitrary 

functions and as it is partially applical^le to the subject under discussion. 

73. The loci of the united points of all functions of the two systems 

«A + y'fz + Wi H- yfi + 2) and (.</■/ + y'f.' + z')-^ (.rfi/ + yfj + z) (308) 

are respectively the sextic curves 

Lfyifm'] = 0. = o.(309)- 

These two curves unite in the special case of/q = ./’/. The first is the locus of the 

united points of the system xf-^ + y/ij fi- z, and the second is the corresponding locus 

for the conjugate system. 

* Iti the notation of arrays 2 { 'Pn<ln} = 0 implies 2 {pnQn) = - [T’™?'!] = 6- 
t If an = AnSiin, fiin — BiiSfan, A,i = 1 + a.„, B,i= 1 +/S,,, the equations (302) become 

2 ilSn-a-n) Sa„S/fl,i = 0; 2Va„/?„Sa„S/«n = 0. 
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The locus of the united lolanes of the system xf\ -\- yf2-\- z is the reciprocal of the 

conjugate sextic. 

By the conjugate sextic we mean the second curve (309), and the proposition is 

obvious when we reflect that a united plane of a function is the reciprocal of the 

corresponding united point of its conjugate (Art. 8). 

2he united plane of a function of the system xj'^ ySz'f ^ caUs the sextic in three 

united points and in three other collinear points. 

The equation of a united plane of the function xf-^ + yf^^ + s is SAp = 0, where al is 

a united point of the conjugate. Writing the equation of the sextic in the form 

+ y'M -\-z'q = 0.. . (310), 

and expressing that p lies in the plane, the result is 

S'i + y'ff^') — 0, or Sp {{x' — sx) fja\ + jif — sy)ff/) — 0 

where s is arbitrary, because xf'a' + yfja' + za' ■= ta'. 

Hence either x' = x, f =: y, and p is a united point of the function, or else 

(311)> 

Sp«' = Sp// a' = Sp/oV =0.(312); 

and the three remaining points are collinear. 

In particular for the functions f fj /q, /, the polar plane with respect to the 

quadric and the plane of rays of the complex, corresj^onding to the reciprocal of a 

united jjlane of the function f, intersect in that united plane ; and their common line 

is a three-point chord of the sextic (306). 

74. Knowing the rank and number of apparent double points of the sextic, its 

characteristics are 

7- = 16, m =G,n= 30, a= 4:8, ^=0, x= 96, y = 72,g = 355, h=7 (313), 

as may be verified by the formula j^rinted in Arts. 326—7 of Salmon’s ‘ Geometry of 

Three Dimensions.’ Also the deficiency of the curve is D = 3. 

These numbers apply reciprocally to the developable of the last article generated 

by the united planes. Thus the order of its cuspidal curve is 30, and six united 

planes pass through an arbitrary point, while sixteen pass through a line. 

Thiough a united jiomt the six united planes consist of the three jilanes which are 

united planes of the function possessing the united point, and three other planes 

intersecting in a common line (compare (312)) which is the reciprocal of a three-point 

chord of the second sextic. 

75. The tripjle chords of the sextic generate a surface of the eighth order. 

The three-point chords of a curve generate a surface of order (‘ Three Dunensioiis,’ 
Art. 471) 

^ {m — 2) (6/i + m — nd) ........ (314), 

and this reduces to 8 in the present case. 

The characteristics of the cone, whose vertex is a point on the sextic and which 

contains the sextic, are deducible from the data of Art. 330 of the ‘ Geometry of Three 

2 N 2 
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Dimensions.’ The cone has h — m 2 double edges, and consequently three trijDle 

chords pass through an arbitrary point on the sextic. The sextic is thus a triple 

curve on the regulus of triple chords, and the surface has no other multiple line. 

76. There is yet another quadratic complex of importance in the study of a pah’ of 

functions. A point a is transformed into ocf^a + yf\a by the operation of + yf„, 

and as x and y vary, the locus of the transformed point is a line v’hich we shall call 

the satellite of a. 

The satellites generate the complex 

= 0.(315), 

and the form of this equation should be compared with (296) and (298). There is 

also the complex of conjugate satellites obtained by replacing and /o by their 

conjugates, but when the functions are self-conjugate, or when one is the conjugate 

of the other, the two complexes combine into one. For the functions /’and /’' this is 

= ^.(316). 
'T'he four fa, fa, f^a, frt form a harmonic range on the satellite of the point a. 

There are also harmonic properties connecting pencils of planes Sq/h = 0, Sp/'a = 0, 

Sp/’yi = 0, Sq /’« = 0 ; and it may be verified that these four jdanes intersect in a 

satellite for the inverse functions. This we shall prove for the general case. 

The reciprocal of the complex of satellites is the conqjlex of the conjugate satellites 

for the inverse functions. 

If p and q are any two points on the reciprocal of the satellite of a, 

Sy/ja = '^pfct = 0, = 0.(311), 

and on taking conjugates we see that the four points ffp, fp, f'q, fjq are 

co-nlanar, so that 
(//A/a'p/iV/Di) = 0.(318). 

The locus of points wdiose satellites meet the line ab is the quadric surface 

(compare (297)) 

= 0.(319). 

77. The satellite of a point which describes a line (j- = a fi- th constructs one system 

of generators of the quadric 

= (./i + ff) {ct -f th).(320), 

but the regulus degrades into a system of lines enveloping a conic whenever 

(/i«/At/lW'^) = 0.(321), 

that is, whenever the line belongs to the reciprocal of the complex of conjugate 

satellites (318). 

The conic is co-planar with the line when the further conditions 

{alfafb) = 0, (abfaff) = 0 .(322), 

are satisfied (compare (296), (298)). 
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But when e aiG givGu, as liGro, a seriGS of taiigGiits to a conic lionioffraphic with 

a series of points on a line in its plane, in three cases a tangent passes through its 

corresponding point; and evidently when a point lies on its satellite, it also lies on 

the sextic = 0 ; so the line under discussion is a triple chord of the sextic. 

It seems worth while noticing (compare Art. 66) the remarkahle equation 

(((«> ^/hh/A/Vd/o^))) = 0 .(323) 

of the cisfiernhlage of triple chords oj the sextic, for this equation is equivalent to (321) 

and (322). 

78. Again, in an arbitrary plane = it is generally possible to find one point p 

whose satellite lies in the jilane. The conditions are 

^lp = 0, S/Aj;=0, so p = [l,f:i, ffi]. . . (324); 

and the point is determinate unless the reciprocal of the plane lies on the conjugate 

sextic (Art. 73), or, in other words, unless the plane is a united jilane for some 

function of the system. In this case (compare (312)) there exists a line locus for 

points p whose satellites lie in the plane. 

This is precisely the case of the last article, so when the envelope of satellites is a 

conic co-planar with the line, the plane is a united plane. 

79. For an arbitrary plane, the locus of points whose deriveds by -|- xf\ remain 

in the plane is the line of intersection of (y\ + xf„) q = 0 or (// + ocf') l={) 

with the given ^ilane S/q = 0. All these lines pass through the point p, which may 

be called the focus of the jdane. 

Assuming an arbitrary point p to be a focus, the plane of which it is the focus is 

(compare (324)) the reciprocal of the point 

^ .(325). 

The relation between a focus and the reciprocal of the plane is of the same nature 

as the correspondence discussed in Section XIX. (conqmre (526) with (324)). 

The points whose satellites pass throug'h a given point a lie on a twisted cubic 

= 0, 

and the locus of points whose satellites lie in a plane is a right line. The satellite 

of a point q and the plane ^Iq = 0 pierces the plane in the point 

A -MWil.(326), 

and from this quadratic transformation connecting the points q and q^, it follows 

that q (or q) describes a conic when (or q) describes a right line. In the former 

case the conics joass through the focus of the plane. Thus again an arbitrary line 

qq' meets the satellites of two points on the line (compare (320)). 

It would take too long to explain the various geometrical relations in the plane 
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SZ5' = 0, but subjects such as that just mentioned may be readily investigated by 

writing 
O 

q ■= xa yh zc, q' — x'a -f- y'h 

where a^h and c are any three points in the plane. Then the array 

{qq'\ =\[hc]-\-ix {ca\-\-v {ah] if \=yz'—y'z, y=zx'—zx, v=xy'—x y . (327) 

and 

^ + y [JiC, fta\ + V [fta, fth\ . . . (328), 

ft = fi -h tf 

Hence (compare (301) and (296)) the line qq' joins a jioint to its correspondent in 

the transformation produced by ft 'i? 

^^^(hcfthftc)+ tyv {(caftafih) + (ahftcfta)} = {) . . . . (329). 

This etjuation may be regarded as the tangential et|uation of a conic involvmg a 

parameter t quadratically. For six values of t the equation represents a pair of 

points—one point of each pair being one of the six points in which the plane meets 

the ciiticai sextic, and the second point being the intersection of the plane with the 

line into which the plane is transformed by the function (ft — s) which destroys the 

aforesaid point (compare i\.rt. 14, I). 

In a united plane, the theory is simpler. Let «, b, c be the united points in the 

plane, united points of yj. Then (327) and (328) become 

[yq ] = X [bo] + y [ca] + v {ah}, 

(/i + t/s)'/] tzC-\-tfy:}-\-ix\tye-\-tfoC, ty:t-\-tfy:i} 

. + + tfy:i, t.Jj + tf.h] . (330); 
and we get the conics 

{bcfj)fyi)^tyv [{caf^afgj)^(abf,cfyi)'\\~a (h-t^) yv {abcfyt) = 0 . (331). 

In this case the system of conics is inscribed to a common quadrilateral. 

The conic enveloped by the satellites is 

or 

SX% (bc^obfoc) + tyv [G (abfyefyi) + (cq/^a/oZi)] = 0.(332). 

80. More particularly for the functions in a united plane of /’ the united 

points a, b, c form a triangle (I) in perspective with the triangle (II) of the traces 

of tlie united planes of the conjugate ; for these planes are 

S(2« = 0, 8176=0, 87^ = 0.(333); 

and the centre of perspective is given by 

S^aSlc = S(^6Sc« = SqcSitb (334); 
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while corresponding sides intersect in the jDoints 

6Sca — cSah, cSah — aShc, aSbc ~ hSca .... (335). 

The point of concourse of lines of the linear complex in the plane [a6c], or, 

ih t.^)oSbc + (^3 — t^)bSca + — ycS«6 .... (331;), 

since this point is the intersection of the planes 

Sqf/t = 0, Sqf]b = 0, Sqf^c =0.(337). 

for which the united points are points of concourse. This point lies on the axis 

of perspective (335), and the ecpiation of that axis may be written in the form 

<l=^{f~t)fr^[abc-].(338). 

The three lines of the complex which pass through the united points intersect the 

sides of the triangle (I) in a triangle (III) in perspective with (I), and through the 

vertices of this third triangle pass the polars of the united points with respect to 

the quadric SqfQq = 0, and the traces of these planes form a triangle (IV) likewise 

in perspective with (I). 

SECTION XIII. 

The System of Quadrics Sg q = 0, AND SOME Questions relating to 

Poles and Polars. 

81. General properties of the system.. 279 

82. The intersection of two quadrics of the system, and the analogies for confocal and 

coney die systems. 280 

83. The poles of tangent planes to two quadrics with respect to a third . ..280 

84. The condition that three c|uadrics may Ite polar cpiadrics of a cubic surface .... 281 

81. In this section we shall notice some properties of the system of quadrics 

= ^.(3d9). 

The self-conjugate function fin this homograjihic system may be supposed reduced 

to the type noticed in Art. 28, for by a linear transformation the symbolic quartic 

may be reduced in three ways to the form 

+ .(340). 

The system (339) is its own reciprocal, and it includes confocal and concyclic 
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systems. If a is the pole of the plane = 0 with resj^ect to one of the quadrics, 

a and h are connected hy the equation 

I = a, or (/+ t)h = (/+ .s)o, /+ t 7 or a = ~ 0 

J+s 
(341). 

Given b, the locus of a is a twisted cubic if alone varies, a right line if s is con¬ 

stant, and a quadric 

[afa Ifb) = 0 .(342) 

when s and t are both variable. (Compare Art. 70.) 

The points of contact of the plane with quadrics of the system are found by adding 

the condition = 0, when we find three points, one point or a conic locus. 

A generalized normal joins a point to the reciprocal of its tangent plane, thus for 

u variable, 

<1 
J + ^ 

when Sa4+-a = 0 y+1 
(343) 

is the genertilized normal at the j^oint a ; or deleting the condition and allowing 

t and u to vary, we have the equation of the assemblage of normals through the point 

a, and wlien a itself varies, we see that (342) represents the complex of normals to 

the system. 

82. In general, two quadrics h G hitersect in a curve through wliich no 

third quadric of the system can pass, but wlien q = 4, an infinite number of the 

quadrics intersect in the curve. This follows from the consideration that 

Bq . ^]){f fi- y{ f -{- ■yj)_(/ + q) _ 

(/ + h) (/ + ^2) 
^7 = 0 (344) 

is the general equation of a quadric through the curve ; and a factor will not cancel 

unless q = q. 

If q is any point on the curve of intersection, the poles of the tangent jjlanes at 

that point with respect to some third quadric of the system will be conjugate to that 

quadric if 

Bq (/+ ■4) if + --^a) (/ + q) _ A 

(/ + h) (./ + G) (/+ %) ^ 
(345). 

In order that this may be the case for every point on the curve, the factor f ^5 

must cancel. Ihus wm must have s.^ equal s^, s.i or q. But further, on comparison 

with (344), it appears that the third quadric must coincide with one of the others, or 

else that q = q and = .s,,. 

I his theory embraces the law^s of confocals, their orthogonal section, and the pro¬ 

perty that the pole of the tangent plane to one, at a point of intersection with a 

second, taken with respect to the second, lies in its tangent plane at the point. 

83. More generally, given any three quadrics 
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= 0, ^qf,q = 0, Bqf^q = 0 , (346) ; 

take the polar planes of a point q with respect to the first and second, and the poles 

of these planes Math respect to the reciprocal of the third; these poles are conjugate 

to that reciprocal provided the point lies iqDon the quadric 

= 0.(347). 

If the quadrics have a common self-conjugate tetrahedron with the cjuadric of 

recq3rocation, the three functions have the same united points, and are consequently 

commutative; and the three surfaces (347) obtainable for different selections of the 

quadrics (346) are identical. 

84. Before leaving this subject, it may be of interest to show how the invariant 

condition that three quadrics should be polar quadrics of a cubic presents itself 

We have, if the quadrics are polars of the cubic F(qqq) = 0, 

= F {aqq), ^qj\q = F {hqq), ^qf^q = F {cqq) 

if a, h, c are the poles. Hence 

SqfJj = Sqfoa ; Sqf.C = Sqf^b ; Sqf/t = Sqf^C 

and on identifying the planes 

J\b =f.a; f.c =f^h; J\a=f^c . . . 
80 that 

«=y'rV'i/3‘'A/r'/3«. 

(348), 

(349); 

(350) ; 

(351) ; 

and the function V1/3 V2/1 have one latent root equal to unity. 

SECTION XIV. 

Peoperties of the General Surface. 

Art. Page 

85. The principle of reciprocity, Q = Sj;(7 = P.281 

86. The self-conjugate function / defined by cG = (?« - 1) / (dq).282 

87. The reciprocal relation= 1, \yhere 012= (ft - 1) (dji).282 

88. The relations of recfiirocity, - Sdyd2 = Sj)d“2 = S2d2/i.283 

89. The reciprocal of an asymptotic tangent is an asymptotic tangent to the reciprocal. . 283 

90. Generalized normals and centres of curvatui’e.283 

91. The osculating quadric and its confocals.284 

92. The quadratic equation of the principal curvatures.285 

93. Generalized geodesics.285 

85. If Q is a homogeneous and scalar function of a variable f|uaternion q of order 

m, the equation 

Q = 0 (352) 

VOL. CCI.—A. 2 o 
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represents a surface. We shall write generally for any differential 

dQ = ?nSp dg-.(353), 

where is a homogeneous quaternion function of q and of the order m—1. Since p 

is a determinate function of q, q may be regarded as a function of p; and using 

Euler’s theorem for homogeneous functions we have 

Q z= ^pq = P.(354) 

where P is the function of p into which Q transforms. 

86. Again, we shall write generally for the differential of the quaternion p regarded 

as a function of q, 
dp = (?n — l)f dq.(355) 

whei'e fdq is a linear function of dq, involving q homogeneously in the order m — 2. 

This function is self-conjugate, for taking two successive and independent differen¬ 

tials of Q, 
d' dQ = 7?iSp d' dq -p m {m — 1) S . f d'q . dq 

= dd'Q = m'^p dd'r^' + {m — l) B . fdq . d'q.(356); 

and because the differentials are independent, 

d'dq = dd'q, and therefore Sdqfd'q = Sd'qfdq .... (357), 

consequently the function/is self-conjugate, for dq and d'q are quite arbitrary. 

87. Differentiating (354) we find on comparison Avith (353) 

dP = uSqdp, where (u — 1) (m — 1) = 1 . . . . (358), 

and it is easy to verify that n is the order in Avhich p is involved in P. Also 

Introducing a new linear function g, we Write 

dq = [71 — l)q dp.(359), 

and, as in the last article, g is self-conjugate and immlvesp in the order 7i — 2 in its 

constitution. 

Thus for any differential by (355) and (359) 

dp = (?n — l)/’dq = (m — 1) (r — l)/.q dp =fg dp . . . (360); 

or symbolically 

1 =./i/ = f7/.(361)’ 

and one function ])roduces on an arbitrary quaternion the same effect as the inverse 

of the other. In particular, employing Euler’s theorem in (355) and (359) Ave have 

P =f9. = 9~\ ’ 9 = 9P =f~^P.(362)- 
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88. When dg', instead of being perfectly arbitrary, satisfies 

dQ = 0 or Sy> dg = 0, where Q = 0 .(363), 

dq rej^resents some jDoint in the tangent plane at q to the surface Q = 0. The j)oint 

p is the reciprocal of the tangent plane with respect to the unit sphere =’ 0; and 

the surface P = 0 is the reciprocal of the given surface. The relations of reciprocity 

are clearly exhibited by the equations (compare (354)) 

Sy» dq = 0, Sq dp = 0, dP = 0 if Q = 0, clQ = 0 . . . (364) ; 

— S dqjdq = Sp d’-q = Sq d^p, d^P 0 if also cPQ = 0 . . (365). 

89. For the asymptotic lines, in addition to (364) and (365), the new relation 

0 = S dy> d(^ = Sp d^q = Sq d^qy.(366) ; 

and thus for arbitrary scalars x and y 

S (p + ^dp) (q + P dq) = 0 .(367), 

or the reciprocal of an asymj^totic tangent is the asymptotic tangent to the reciprocal 

surface at the corresponding point. Hence also, if corresponding tangents are 

reciprocal they touch asymptotic lines. 

The tangents to the asymptotic lines of the original surface are also represented .by 

the equations 
Srjr = 0, Spr = 0 .(368) ; 

and those of the reciprocal surface by 

S?'qr = 0, Sq?- = 0.(369); 

r being allowed to vary arbitrarily, but p and q being kept constant. These lines 

are, in fact, the generators of the reciprocal quadrics 

Srfr = 0 or Srg~h’ = 0, and Srgi‘ = 0 or Srf~h' = 0 . (370), 

(compare (362)) which lie in the corresponding tangent planes. 

90. The generalized normal to a surface at any point is the line joining that point 

to the pole of the tangent plane with respect to the quadric of reciprocation. But 

as there is j^ractically no additional labour involved in the following discussion when 

the auxiliary quadric is arbitrarily selected, we assume it to be 

Sqhq = 0 . ..(371) ; 

and then the equation of the normal at q to the surface Q = 0 is 

r = q tli~^p..(372). 

2 o 2 
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If c Is a centre of generalized curvature, or a point at which consecutive normals 

Intersect, we liave for intersecting normals 

^ dc = dr/ + dy; + ]b~^p d^ = cdi«. . . (373), 

where An is some small scalar, and dc = cAu, because on the hypothesis that 

consecutive normals intersect in c, c and dc represent the same point and differ onlv 

in weight. On elimination of c, (373) becomes 

dry + yA'i dy) + v (ry-j- tlr^p) + ?(vy = 0, {tv = Af — t Au, v + w — — d?r) . (374); 

and as this may be written 

{lA-th 1/) (dry + z.vy) + ?cty = 0, or dry + rr/+ u-(1 + ^//,-(d)-hy = 0 . (375), 

we find, on operating by S/9 or S/y, the equation 

Sy/(1 + = 0 .(376). 

On inversion of the function this ])ecomes a quadratic in t whose roots determine 

the two centres of curvature. 

91. This equation may be thrown into the more suggestive form'^ 

(/"^ + = 0 .(377), 

which shows that the roots t are the parameters of two of the quadrics of the 

singly infinite system Sr (/-i + r = 0, which pass through the point ry. The 

third quadric of the system through that point is of course Sr/r = 0, which corre¬ 

sponds to ^ = 0. The quadric t = co is the auxiliary (371). 

The two centres of curvature (373) are (q and G being the roots of (377)) 

^^1 = (/"^ + Co = (/-i -f tJr^)2) .... (378); 

and the form of these equations shows that the points are the poles of the tangent 

plane S;y9 = 0 with respect to the two quadrics q and to. 

Ihe equation of the tangent to a line of curvature, r = q xAq may by (375) be 

thrown into tlie form 

-q + yf M/ ^ + t]r^)~^q = y (1 -P y) _ (/“I 4. //i,-i)-ly . (379)^ 

wliere t = or q, and the form of this equation shows that the tangents are the 

generalized normals to the quadrics and to. 

The first form of (379) shows that the tangent t^ touches the quadric to, for 

%(/~^ + q/^“i)-y-i(/-i-f q/i-i)-hy= 0 .... (380), 

as appears on replacing tlie middle function by 

* Because (] = ((/-! ++ 
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(^3 h)J ^—^3(7 ^ ~ ^ (y ^ y . . . . (381); 

and, moreover, the lines of curvature form a conjugate rescan 011 the surface, for 

(380) gives 

Sr Jr, = 0 if =/-i (/-i + tjij-j r, =/-i (/"i + UrJ^q . (582), 

(compare (379)), 

The other usual properties analogous to those for confocals may be easily obtained, 

but it must suffice to state that the centres of curvature for the (piadric are 

q, = {f~^StJ-JJ . (383). 

92. lo leduce the equation (377) to a rpiadratic, let the syndjolic nuartic of 

A-i/be 

{h-jy-WJ]rJf + W'{hr\fy~W{}rJ)-^^ = o . . (384); 

then on multiplying by and dividing by 1 + the result is 

+ t{{lrJ)-W'']~l = -^,{lJrth-J)-K . . . (385). 

Observing that the coefficient of on the left is — N fj or — N f-^h, the 

equation (376) becomes 

+ mq/{(h~\ff - N'" (/i->/) + N"( q 

- tSfq {h-J- N'"] q + Sqfq = 0 . . . . (386) ; 

and this immediately reduces to 

iTOq/^^ + 6S7r(/(,-y/r-i~N''7.-i)p +87.74-1^3^0 . . . (387), 

when we replace yi/ by j), and discard the extraneous factor t. 

If n and are the fourth invariants of/" and /(, N = ; and it is easy to see 

that n is the result of substituting q in the equation of the Hessian of the surface 

if Q is an integral as well as a homogeneous function of q. Thus one root is infinite in 

either of two cases, if the point is on the Hessian, and if it is on the auxiliary quadric ; 

in either case the centre of curvature is the pole of tlie tangent plane with respect 

to the auxiliary. A root is zero if Sph~^p = 0, and in this case the tangent plane 

touches the auxiliary, and a centre of curvature is the point q itself These special 

cases depend on two distinct conditions, the relation of the auxiliary quadric to the 

surface, and the relation of the Hessian to the surface, 

93. A curve is a generalized geodesic when consecutive tangents are coplanar 

with the pole of the tangent plane with respect to the auxiliary quadric; or, 

symbolically, 
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{q, dy, d~q, h ^p) = 0, or xq y dq z d^-q + ivh '^p> = 0 . . (388) 

is the equation of a geodesic. 

Operate with Sdji;, S/ny, S/nIp and by (364), (365), 

z^pd~q + iv^plr^p = 0 ; ySd^^ dq + zSdp d-p + iv^diplr^p = 0 ; 

x^qhq+y^qh dq+z^qh dhq = d ) x^qh dq+y^dqh dq-\-z^dqli d'q = Q . (389). 

Introducing the function /' and eliminating the scalars xyziv, we find 

^dph~^p _ _y'^dqf dq eSd^'/’d^g' 

^ph~^p z^dqj" dq 

_ _ Sdp/dnj' . ^qhq^dqh d^q — ^qli dq^qh d~q /qQo\. 

'^dq fdq '^qhq^dqh dq ~ [^qh dqY ' ' ' 

and this, when the surface is a quadric so that f is constant, immediately integrates, 

and gives 

S2:)h~''^2^Sdqf dq = u {SqhqSdqhdq — (Sqhdq)-) .... (391), 

where is the constant of integration. 

SECTION XV. 

The Analogue of Hamilton’s Operator V. 
Art. 

94. The operator D. If dQ = Spch, then j; = DQ. Symbolical equation of definition 

involving four arbitrary differentials. 

95. The form of the operator in special cases. 

96. Examples of the efiect of the ojjerator and analogues of Laplace’s equation 

97. Method of forming polars and analogy to Aronhold’s notation. 

Page 

286 

287 

287 

288 

94. In applications of quaternions to jirojective geometry an operator analogous to 

Hamilton s V is occasionally useful. I define it by the equation (compare Art. 85) 

DQ=p when dQ = Sj^dy.(392). 

To render this operator available for use, take any four independent differentials of 

q and write down the identity 

j/i (diy d'p d'^^ d'”q) = [d'(/ d''q d'"q~\ S^ dc^ — [di/ d"(2 d'''q~\ d'ly 

+ [dij d'q d'"q~\ Sp d''q — [dg d'l^ d'^j-] Sp d%7 . (393), 

which suggests the symljolical equation 

D = ^ [dy d”q d"'q'] d 
(d(2 d'lj' d"q d"'q) 

where the summation refers to the four symbols d. 

(394), 
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95. Otherwise, if the quaternion variable q is a function of four j^arameters, x, y, 

z, iv, we may replace the arbitrary differentials in terms of the deriveds of q with 

respect to these parameters, and then (394) becomes 

where 
07 07 

7.- = 
07 

0z ’ qw = 
07 

dw 

In particular, if these four deriveds satisfy the six equations 

= 87,7^ = ^qAlw = ^qyqto = 87,7,„ = 0 

it easily appears that the symbolic equation (395) reduces to 

D = ^ 4- ^ d- - d- 
87,2 0X ^ 87/ 0^ ^ 87,2 02 ^ 87/ 0?C ■ 

(395) , 

(396) . 

(397) , 

(398) . 

More particularly if 7 is referred to the vertices of a tetrahedron self-conjugate to 

the unit sphere, so that 

q = ax hy cz clw, and if 8a® = 85® = 8c® = 8(:/® = 1 . (399) 

for suitable selection of tlie weights of these four points, tlie operator takes its 

simjjlest form 

^ = a - -\-b -{-c -{-d .(400), 
ox oy oz dw 

while 

8L,= = ( g; 1 + ^0'0 
+ hfo + 

0 " 

0 a’, 
.(401). 

If, on the other hand, 

the operator reduces to 

7 — i ~1“ “ix “h yy “b kz.(402), 

D = ^ - V 
dt 

(403). 

96. It may be useful to collect a few formulse which may serve as examples of the 

application of the operator. We therefore give the following ; 

D7 = 4 ; DK7 = - 2 = KD7 ; 1)87 = I = 8D7 ; DV7 = 3 = VD7 ; 

D8a7 = a; D8.7® 2q ; DT7® = 2K7 ; D7® = 4 (7 + 87); D (V7)® = 2Yq ; 

DT(,/ + a) = KU(</ + «); = (,/■+/')</. 

To these we may add 

D®T (7 -f a)® - 4 = TD®8 (7 + a)®; TD®T (7 + a)® = 8 = D®8 (7 -f a)® ; 

TD®. T7" = hKI ). K7T7"-® n (4T7"-® -b (n - 2) 7X7X7"-“*) = n (w + 2) T7"-®. 

And again 

I)®(8.7®)" = 2nD.7(8.7®)"-i = 8n (8.7®)"-* + 4n, (n - I) 7® (8.7®)"-®; 



288 PROFESSOR C. J. JOLY ON QUATERNIONS AND PROJECTIVE GEOMETRY. 

and on taking the scalar of both sides 

S.D2.(S.^-)" = 4n(n+ l)(S.^/)"-h 

From these results follow certain analogues of Laplace’s equation 

TD'Tr/”2 = 0, TDh/(D).T(r/ + «)-”“ = 0 .... (404); 

and 
S.D-(S.r/)--i = 0, S.Dh/(D).(S.((/ + a)-)-i = 0 . . . (405). 

Moreover, the general expression for the operator in terms of arbitrary differentials 

a, h, c, d of q enables us to write down a number of invariants and identities. For 

instance, operating on fq, we find 

l).f<l.{ahcd) = [bcd]fa — [acd]fh -\-[ahd]fc — [cdjc]fd . . (406). 

Other examples relating to integration will be found in a paper in ‘ Proc. Ptoy. Irish 

Acad.,’ vol. 24, Sect. A, pp. G-20. 

97. So far as projective geometry is concerned, the use we make of the operator I) 

is to form successive polars of a point with respect to a surface and to show that it 

leads directly to AnoNHOLrfs notation. 

The polar of a point r with respect to a surface Q = 0 of order m is 

(SrD)".Q = 0 .(407). 

If n = m, the operator simply multiplies Q by a numerical factor and changes the 

quaternion involved from q to r. Thus we may write the equation of the surface in 

the form 
(SrI))'"Q = 0, or (Srn)“ = 0 .(408), 

where a is a symljolic quaternion devoid of meaning unless it enters into a term 

homogeneous in o. to the order m. This is equivalent to Aron wold’s method. 

.SECTION XVI. 

The Bilinear Quaternion Function. 
Art. Page 

98. Definition of the l.ilinear function /(/j.y).289 

99. The permutate of a bilinear function f, iP'l) = f i'lp) > and permutable functions 

^{PQ) = -hf{P^j) + hfAPd. 289 

100. Combinatorial bilinear functions C (/)._/) = b/(p'y) ~ p/, (p!/).289 

101. The first and second conjugates of a bilinear function.289 

102. Successive conjugates and permutates. The six fundamental functions.289 

103. The ^Mnvariants and the (/invariants.290 

104. The first and second Jacobian surfaces I — J 0 = 0; the 7/ Jacobian corre¬ 

spondence, / {pq) = 0.290 

105. The second and third Jacobian correspondences,/'(;p) = 0 and/" Qu") = 0 . . . . 291 

106. The third Jacobian surface K (r) = 0. The 7A'and the KI Jacobian correspondences 291 
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98. We shall now explain a method which promises to be of considerable value in 

the application of quaternions to projective geometry, 

A. bi-linear quaternion function J (pq) is a tunction of tAvo quaternions (p and (j) 

linear and distributive Avith respect to both. It may be reduced to the form 

/(PT) = . . . . (409), 

Avhere cq, cq,, cq, cq are any four quaternions and Avhere /j, /Ij, andare four linear 

quaternion functions. The bilinear function involves sixty-four constants, sixteen for 

each of the fmr functions. 

99. Writing generally for all quaternions and q 

f{pl)=fA<lP).(110), 

we may call the iieAv bilinear function /) the qjermulate of the function /. When a 

function is unaltered liy transposition of the (piaternions, it may be called a pvr- 

mulable function. Thus 

iP'l) = Lf{P<l) + y] (pq).(Ill) 

is a permutable function, the pernmtable part of/'or/). A permutable function 

involves forty constants, the functions of (409) being then self¬ 

conjugate, 

100. When a bilinear function changes sign Avith transposition of its quaternions, 

it may be called a comhinatorial function. Thus 

^ {P<j) = - i// {P<l).(412) 

is combinatorial. It vanishes for = <j, and, regarded geometrically, it relates not to 

a pair of points, but to tbe line joining the points. 

A bilinear function is thns reducible to tlie form 

J (P7) = (at) + ^ {pu); ,/) ( at) = P ( at) ~ ^ (at) • • (ns); 

and is uniquely resoluble into its permutable and combinatorial parts. 

101. Writing generally for any three ([uaternlons, p, q, and /•, 

Sf/’( at) = ^pf y) = yy {pa.(m), 

we shall call the neAA' functions (yiq), (^>q) the first and second conjugates 

j{pq). In i-dci jfipq) is the conjugate Avhen the first quaternion qi alone varies, and 

J" iP'l) 11^6 conjugate Avhen the second Auiries. 

102. As the accents employed to denote the permutate and the first and second 

conjugates are not commutative in order of applicatimi, it is safer to use brackets in 

the rare cases in Avhich double accents are necessary. Thus 

/(at) = (./7(at) = (./'T(at) = (.4 (at) . ■ • . (415), 
2 p VOL. cor. A. 
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because the first conjugate of the first conjugate of f{'pq) is simply the function/(p^) 

itself 

When the successive accents are difierent, the laws connecting the various functions 

are deducible from the relations (compare (414)) 

(’’V) = {/Thp) = (/'). {<P') 

= iP') = S'/ if')^ M = Sp (/■")' {(jr) 

= Sr/, (qp) = Sq (/)' (rp) = Sp (/)" (qr) (^16). 
in which q>, q and r are perfectly arbitrary. 

These relatiojis show that 

i/TiP-l) = (/"),(W) = (/)' (P'j) =f"('U>): 

and thus any multiply accented function may be reduced to one or other of six 

fundamental functions, the function and its two conpigates and the permutates of 

these three functions. 

103. Exactly as in Arts. 5 and 6, the equations 

(/(«'i) - ; /(c'i) - to ; f{dq) - td) 

= (/' {oiq) — ta ; f (bq) — th ; /' {cq) - tc ; f [dq] - td) (418), 

(/(pa) - ta; f{i>h) — th ; /(pc) — tc; /(pd) - td) 

= {r{po<) - tn; riph) - th ; /" (pc) - /c ; ^ {pd) - td) (419) 

are identities for all quaternions q, a, h, c and d, and for every value of the scalar t. 

The first is obtained on the supposition that f{pq) is a function of and the second 

on tlie supposition tliat it is a function of q. Dividing each member of the identities 

l)y [ahcd), we obtain the Inquadratics 

Jid) - tJ'iq) + thd"{q) - tJ'"{q) + d, 

Hp) - tV (p) + tH" (p) - tP" (p) + d.(420); 

and J (q), J' (7), J” (7), J"' (7), of the fourth, third, second and first order respectively 

in 7, are the Invariants of f{q>q) considered as a iunction of p. Equating these 

biquadratics to zero, we obtain the equations whose roots are the latent roots of 

f{Pd) ^ function of 7.) and as a function of 7. 

It is evident from (418) and (419) that tliese relations are equivalent when the 

function Is permutahle, and then I[q] = '^(7), &c. 

104. The quartic surfaces 

(4-1) 
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we shall call respectively the first and second Jacohians. Whenever a pair of 

cpiaternions satisfies the equation 

= h.(422), 

the point p must lie on the surface /(p) = 0 and q must lie on J{q) = 0 ; for f{pr), 

a linear function of r, has then one zero latent root, and f{rq) has also a zero 
latent root. 

On reference to (409), it appears that (422) is equivalent to 

S_p/j^ = = ^pfpi = Sp/py = 0 .(423); 

and m the particular case when the function is permutable, the four linear functions 

are self-conjugate, and the equations assert that the polar planes of one point (p) 

intersect in the other {q). In this case the surfaces (421) coincide witli one another 

and with the Jacobian of the four quadrics; and although it does not appear that in 

general the surfaces are the Jacohians of four quadrics, we have retained the name as 

being convenient and suggestive. 

Two points related as in (422) will be called Jacobian correspondents, or more 

particularly IJ Jacobian correspondents. 

105. When a function has a zero latent root, so has its conjugate. Consequently, 

whenever p and q are Jacobian correspondents, or whenever (422) is satisfied, it must 

be possible to find two other jioints r' and i-", so that 

f{Pq) = 0, = (424). 

There are thus two new types of Jacoliian correspondence; and the argument of 

Art. 102 shows that there can he no more, for the conditions (422) and (424) may he 
re-written in the form 

{fl{qP) = 0, {f"l(P'2>) = 0 .... (425), 

vithout alteiing the signification of the ecjuations, and we have now exhausted the 

six fundamental functions of the article cited. 

106. The points “ ” and “ 
he upon the third Jacobian K{r). 

oj the second and third Jacobian correspiondences 

A latent root of/'(I 'q) considered as a function of q (424) is zero, and therefore r' 
satisfies the equation 

(/'(»•'«)-/'(>-'0,/'(i-'c),,/-'(i'V)) = ((,/'7'(r'a), = 0 . (426), 

in tlie .second mimber of wliicli the function of q has been replaced hy its conjugate. 

But (417) the second number is equivalent to 

if" {<rr), f" {br), f" (cr), f" {dr)) = 0 .(427), 

and consequently r", whicli satisfies (427), satisfies also (426), or r'and r" lie upon the 
same quartic surface. 

2 P 2 
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As in Art. 103, we deduce the identity 

{/'(ra) — la ; J''{rl>) — (h ; f' {re) — tc ; f'{rd) — td) 

= {/" (ar) — ta ; f" {hr) — th ; f" {cr) — tc ; f" {dr) — td) = 0 . (428'); 

and tlie result of dividing by {abed) may 1)e written in the form 

K (r) - fK' (r) + d/r (r) - dli"' (r) + A.(429). 

and the latent quartic of /'(rq) or(qr) (functions of q) is obtained Iqv equating tliis 

to zeiv). 

The scheme of tlie .Tacohians is now complete, the six fundamental functions of 

Art. 102 having l)een enqdfwed. 

The points r'q of (424) may he said to he dK Jacobian correspondents, and p and 

r" are IK correspondents. 

AVlien f {]></) is pei nmtative, the JI\ and IK types unite and I coincides with 

w hen f{p<i) is self-conjugate witli respect to p, K coincides with /, and the JK and 

Id correspondences coalesce. 

It readily appears from (410) that wdien the function is doubly self-conjugate it is 

also permutaUe, and when it is permutable and self-conjugate to one element it is 

likewdse self-conjugate to the other. In this case tlie three .lacobians coincide with 

the Hessian of the cubic surfixee 

= ^.(^30). 

SETHI ON XYll. 

Thu Foru-SvsTEM of Ltneau FrycTruxs. 
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line point by point. The twenty singular functions of a four-system.290 

115. The sextic surface described by 7) when 7 lies in a jdane.29G 

IIG. The double curve of the sextic .surface ..296 

117. The triple point on the surface.2ftT 
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Art. Pac'e 
, O 

118. The tliree tangent planes at tliis point.297 

119. Analogies with a Steinkr’s quartic.298 

120. The lines in the y space which transform into plane cnhies in the p space.299 

121. Ihnes in the p space transform into twisted sextics which touch the critical curve in 

ten points.299 

122. The locus of dacobian correspondents of points on the critical curve is of the tenth 

order, and every Jacobian quartic contains ten lines..‘300 

12.9. The relations coimecting the orders of a surface, the complementary surface, and the 

surface in the p space into which lioth transform..300 

121-. The coiTcsponding orders for curves.301 

12.7. The curve of intersection of two scxtie sui faces.302 

126. Connectors of pairs of united iioints form a complex of the foui-th order.302 

127. The locus of the united points of functions having a zero root.302 

128. The loci of united points corresponding to double and ti'iple latent roots .... 303 

129. The united points corresponding to quadruple latent roots, and their nunibei' . . . 303 

130. The locus of united points of functions whose latent quarties are perfect s(|uarcs . . 301 

107. Wlienone of tlie (Riateriiioiis in a bilinear function is regarded as a ((uaternion 

parameter, the function represents a triply-infinite system of linear rpiaternion 

functions, or four-system of linear functions, to borrow a convenient phrase from 

Sir Robert Ball’s ‘ Theory of Screws.’ 

Thus 

f{pq) z= xj{iqq) + X.Jfpyj) + xjfpyi) + xjfpyi), 

wdmre p = x^p^xppx.pp-\-xpp^, . . (431) 

is a linear comlnuatiou of four given linear functions /{pj/), the rpiaternlons />„ being 

supposed given while the scalars x„ are variable. 

It is frerpiently of advantage to use the notation 

./■(y^v) =fM = fAp).(432), 

when the bilinear function is regarded as a function of q or as a function of p. 

108. An arlnfrary point is a united point of a definite fund ion of tin' four-system, 

provided it does not he on a criticed curve o f the tenth order. 

If <1 is assumed to be a united point of a function determined by p, 

{.f{pAdl\-h, or f{pq) = t,/, or f{p) = l,/ . . . (433); 

and the solution of the equation in its tliird foiTu is 

2>J{q) = tFfq), or 2> = Ffq), t = J(q) .... (434), 

where is Hamilton’s auxiliary function corresponding to and where J{</) is 

the fourth invariant of f (Art. (103)). 

Hiis solution is definite (Art. 15), provided q does not lie upon the critical curve 

F^ (q) = 0 (435). 
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To exhillit tlie nature of this curve, observe that 

0 = S . F„ {q)[p,]X2lh] = fph, fpp-^ ■ 

for all quaternions [ [V\Pd^^. in the notation of Art. G5. 

(4:30) 

((7> fipiq), fiipq), fip^q): fippi))) = o.(4.37), 

whenever (435) is satisfied. But we have seen that (437) represents a curve ot 

oi'der m = TO and rank 7' = 40 (278), which is common to all the quartic surfaces 

obtained by deleting one quaternion within tlie double brackets (436). 

The solution may be ex])ressed in a more explicit form by means of the identity 

'l(f(lh9),f{lh9),f(lvA/(rvj)) = i±f{lVl){q,/{/hq)^f{lVl\f{lh'l)) ■ (438). 

SO that we may write (434) in the form 

P (p) P-2psPi) = ^ ±Pi {q, fipp]), fipF/), f{PFl)) ; ^ (?) . (439). 

T09. When the qxjmt lies on the critical cw've it is generally a united point 

of every function of a determinate tivo-systeni. 

In this case the solution of (433) is (Art. 15) 

pJ' {q)=tGfq)-\- Ff2'>).(440); 

P = + /(iV/) = 0, t^Jfq) .... (44 T). 

Tluis^ may be any point on the line joining the point G,j{<i) io p>Q — the Jacobian 

correspondent of q; and consecpiently a determinate two-system exists, everv 

function of which has q for a united point (compare Art. 123). 

n o. Similarly for the conjugate four-system/''(^>/-), a point r is a united point 

of a definite function, unle.ss it happens to lie upon the conjugate critical curve 

F:{r)=0.(442), 

where Ip is the auxiliary function of ( p) = f'f p?*), Imt we must ol)serve that f^ 

is not the conjugate of fg. 

Now the reciprocal of a united jioint of( pr) (the conjugate to r of /’(ju’)) is a 

united plane of the original four-system. And thus an arbitrary plane is the united 

])lane of some definite function, hut if the plane belongs to the developahlc surface 

(442) it is a common united plane of a definite two-system of functions determined by 

P = ''rf (r) -f xqf, f” fpfr) = 0 .(443). 

I en of these singular planes pass through an arbitrary point; tlie order of 

the flevelopahle surface is r = 40; and the order of the cuspidal curve^'^ is 

n — 3 (r — 71%) + — 90. 

‘ Tliree Dimensions,’ Art. 327. 
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111. It is obvious from this theory that the united points of functions of this 

system compose definite tetrads, so that one point of a tetrad being given the 

remaining three are generally determinate. 

In fact (434) is a quartic transformation connecting united points q ■with the 

auxiliary points q), so that one point p corresponds to one point q, while four points q 

correspond to one point jx For a given point p), these four points are by (434) the 

intersections of the quartic surfaces, for arbitrary quateiiiions /, 

^i(v) = (t) /.X 
s/ii> S4p s/gp S4p.V f 

But these surfaces have a common curve (435); and three surfaces having a 

common curve intersect in 

(xvp — m (/X + r + p — 2) + r.(145) 

points not on the common curve, and this number is 4 when p = = p = i, 

m = 10, r = 40, as in the present case. 

112. The locus of points “ p ” determining functions, each of which has a united 

point on a given line, is a unicursal twisted (quartic. 

When we replace q by p + X(f in the second form of (434), we niay write 

P = ■==^ .(446), 

and the form of the equation establishes the proposition. 

In like manner we have 

t = (QhWg^Ia;, 1)^ = 4.(447). 

113. P'or every intersection of the line with the criticcd curve, the (quartic breaks uqr 

If X IS the value of the scalar x for a point on the critical curve, and tj,, both 

vanish, or 

^ = {p^dhPiPzPiJ.^', ^)\ U ^ (Vi¥34l^^''> 1)^'• • • • (448). 

We may employ these equations to eliminate p,^ and 4 from (446) and (447); and 

discarding the factor x — x', w’e find 

P = {p'i}P\Pip'‘6X^^f^ (449). 

The locus of p is now a twisted cubic, and the discarded factoi’ corresponds to a line 

of the nature of those of Art. 1U9. 

When the line (qq meets the critical curve twice, the locus is a conic and a pair of 

lines. If the line is a triple chord, the locus is one line of a new tvpe and three lines 

of the type already mentioned. Finally, for a quadruple chord, the c|uartic reduces 

to a point and four lines, as we shall see immediately. 

But first we notice that the arguments of Art. 110 apply, so that we may write 

down the equation of tlie quartic curve whose jioints determine functions, each of 
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T^-hich has a united plane through a given line. If the line lies in one or more of the 

planes of the developable (442), the quartic degrades in the manner explained. 

1 14. (Jtlierwise we may say tliat (446) and (447) determine a .system of functions 

J wliicli destroys tlie line q + xq' point by point. Or counting unitv as 

one function, it may be said that a tive-.system is inquired to destroy a line point by 

point. Hownver, when the line intersects the critical curve once, twice, or thrice, it 

can be destroyed seriatim liy a fbur-, three-, or two-system of functions. For example, 

in tlie case ot triple intersection we may wnate 

-f y, = t^x -f ty; d +Fn '1-^ + y) — (^u‘^ + b) + 7) = 0 (450); 

and, going one step further, in the case of a quadruple chord 

/(Fo, + 7) = b (7'^' +7).(451). 

Ihus a quadrujile chord of the critical curve is a line locus of united points of 

a determinate function. And because the number of <piadriiple chords of a curve is 

(‘ Three Itimensions,’ Art. 274) 

d" — 71in' -j- 78/n- — 48ni/i -j- I'S'Ih -f- 12/i') , . (452), 

or 20 for m == 10, ]i = 25, we learn that twenty functions of the four-system have line 

loci of united points—(quadruple chords of the critical curve. 

The formula (314) gives 80 as the order of the surface of triple chords. 

115. IVie locus of a point which determiius a function having a united point in a 

given plane is a sextic surface. 

The functions fy, and A), lieiiig Hamilton’s auxiliary functions for/),(f/) = t\q^q), 

the relations 

IIj, {(q) = t'q ; (‘4 {q) = fq ; Fp (7) = t"’q.(453) 

are satisfied, provided (q is a united jioint of / {pq), t', t" and t'” being suitable scalars. 

If 7 lies in a given plane, these eipiations, with that of the given plane, afford the 

relations 

sy = 0, S7i/;(/) = o, = S7f;(0 = o . . (454), 

linear in (j and of orders 0, L, 2 and 3 \\\q>. Fxpressing that <q is a common point, 

we have the etpiation of the sextic surface 

(/, ii;{if g;{1), zv(0) = o.(455). 

116. Ihe sextic surface has a double curve oj the seventh ondcr answering to qiairs 

oj'united qioints in the qjlane. 

If the first, second and third of equations (454) regarded as planes in q intersect m 

a common line, the fourth plane wall also pass through that line. The condition for 

a common line is 

ul -f vllp (I) d" ivGjf ij) = U (456), 
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where u, v and tv are certain scalars. Operating on this by/’/, we have l)y Art. G 

” (u) ~ ^ ^ il') — i']!} f = 0 . . (457), 

remembering (Art. 103) tliat I" {[>), !'{[>) and /(/>) are the invariants of _/)/. 

But this relation gives Fp {1) linearly in terms of /, 11/(1), (^/(I), and therefore, as 

asserted, the fourth plane will also pass through the common line. 

Hence it appears that (45G), or its equivalent 

[I, Il/il), G;{i)] = 0.(458), 

represents a double curve on the sextic (455) ; for if^> is any point on this curve, not 

only will (455) be satisfied, but the equation of the tangent jdane at that point will 

also vanish, since every set of three quaternions included in the brackets of (455) is 

then linearly connected. The order of this curve is 7, by Art. 64. 

Moreover, (45G) expresses that a united line of the function f/ passes through the 

point I, or, reciprocally, that a united line of the function/), lies in the plane S/p = 0. 

117. 1 he point determining the /'^'■nction for irhich the plane is a imited plane 

IS a triple j^oint on the sextic. 

If is this point, and if Q, Q, G are the roots of the function f(pgj) answering 

to the united points in the plane, it follows from the fundamental properties of the 

auxiliary functions that 

(/) = NQ . /, Cp„ (/) NAG . (/) = tdd, . / (459) 

and consequently the tangent plane and the polar quadric of the point p)^ to tlie 

surface (455) vanish identically. Hie j^oint is therefore a triple point. 

118. It may be noticed that in terms of «, h, c, any three jioints in the plane, 

the triple point is 

Bo = [/(/«)^ ./’'(/M, file)].(4G0); 

also in terms of these tliree points, if I = \ahc\, 

n;{l) = S [/(pa), h, c,], G/il) = S\a,f(j>h), f(p-)l 

(0 = Uirf^fi piffi pc)].(461). 

Consequently if q = xa f f -e, we may rejilace the system of equations 
(454) by 

a-A' + y Y -f = 0, xX, + y 3", + = b, -rAb + y lb + = (). (4G2), 

where 

A' = Sa///(/) = (a.Jipa), h, c) ; 

(1) = (ei, J (pa), t (ph), c) fi- {a, f( pa), h, f(pc)) ; 

AY = S«/4' (/) = (a, /(jKt), fipb), f(pc)).(463); 

and 1, 3 0, 3^3 and Z, Z.,, Zg may be written down from .symmetrv. 

VOL. CCL—A. 2 Q 
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Moreover, wlieii we s})ecially select the points a, h, c as the united jioints of the. 

function fijJi/j), and when we form successive polars of with respect to JT, Ah and 

Ag, we find (Art. 97) in terms of the latent roots t.^, tg corresponding to a, h and c, 

S/>ol).A=0, S27oD . Ah = (h + tg) A, {H/jqDY . (464), 
1 because 

= h («»/(l>«), h, /(pc)) + h {a, /{ pa), /(ph), c).(465), 

and similarly in the other cases. «/ 

Thus the equation of the sextic may be wnhtten in the form 

A Y Z 

Ag Fg F, = 0 (466), 

Ah Y, Zg 

(467). 

= 0 (468); 

= 0 . (469) 

and the third polar of the point Pq is 

ih h) ih h) (h ^o) A I Z = 0 . 

Thus the tangent cone at the triple point breaks up into three planes. 

In the same notation the double curve is represented by 

A T Z 

I Ih Zo 

and forming the polars, the point 2^0 is seen to l^e triple and 

A Y Z 

(h “h ^3)A, (h + h)^ ’ (h “k 

represents the system of tangents at the triple points—the lines of intersection 

of the planes A, Y and Z. 

We may add that the equation of the cone, vertex yq, standing on the curve is 

{t,-t,)XYZ,+ {t,-t,)XYZ, + {p-tYXYZ, = 0 . . . (470). 

119. This surface resembles a Steiner’s quartic in many particulars, but it is a 

degraded case of the general surface 

P = {^!P)^.(471), 

where {xyz)‘^ is the general quaternion function of three homogeneous scalar 

parameters oc, y, z. The general surface is of the 16th order. The Steiner quartic 

may be written 2> — a general cpiaternion quadratic function of x, y, :. 

Surfaces of this type arise from the general transformation 

P =f{<P Y ■ ■ ■ <l). 

of tlm 7/fli order, being the transformations of planes. 

(472) 
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The twisted quartics of Art. 112 correspond to the conics on the Steiner qnartic. 

The sextic surface contains ten lines corresponding to the ten points in which the 

plane intersects the critical curve of the tenth order, for to every point on that 

curve corresponds a two-system of functions or a line in the space (Art. 109). 

Again, the sextic contains an infinite number of twisted cubics corresjionding to the 

lines in the plane which pass through one of these ten points (Art. 113); and it 

likewise contains 45 conics answering to the connectors of these points. More 

generally (Art. 113) a conic through five of these points transforms into a twisted 

cubic, and similarly for other cases. 

120. When we express that the twisted cubic (449) is plane, the condition 

= h.(473) 

is of the tenth order in q' and of the sixth in q, which latter point we may suppose 

to be on the critical curve. This condition will then represent a cone of the tenth 

order of the lines through the point q which transform into plane curves in the 

2^ space. But this cone must consist in part of the cone of the ninth order containing 

the critical curve. The remaining part is a plane, and every line in this plane 

through q transforms into a plane ciilhc. 

In paiticular, an arbiti’ary plane cuts the critical curve m ten points and intersects 

ten planes of the type just mentioned in lines which transform into plane cubics on 

the sextic surface. Here again is a jioint of similarity with the Steiner qnartic, for 

the plane containing one of these cubics cuts the sextic again in another cubic. 

121. Corresponding to a plane [_2\2'>22^^ in the p space there is a Jacobian quartic 

filMl /(M)) = b.(474) 

111 the q space, the locus of united points of functions of the three-system determined 

by points in the plane. All these quartics intersect in the critical curve (437). 

In like manner to a line in the p space corresponds the twisted sextic curve 

= ....... (475), 

the locus of united points of a two-system. 

The locus of Jacobian correspondents of points in the plane is the sextic curve 

[/(m). filM), = ^.(476). 

Now any one of these sextics is the residual of the critical curve in the intersection 

of a pair of Jacobian quartics, and a curve meets its residual in t points, where 

r 4-^ = m(p + — 2).(477). 

In particular lor r — 40, m =10, p. v ~ we liave f = 20 ; and so there are 

2 Q 2 
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twenty iuterssctions, but I propose to show that these in reality correspond to ten 

contacts. 

Take, for example, the curve (476), and let be a point of intersection and take 

j>^ to be the Jacobian correspondent of (/., so that/’(/>!, = 0. Then the tangent to 

the curve at 7, is 

[/(Ui'/)> /(/V/i)> /Ovu)] = 0.(478). 

But this tangent lies in the tangent planes at the same point to the .system of 

cpiartics (./'(Bi7)>/(iVf)’/(BiT) + ^'7) = where u is arbitrary, and as these 

quartlcs contain the critical curve, the sextics touch this curve where they meet it. 

122. Hence, t/te locus of the Jacohiaii correspondents o f points on the ciutical curve 

is a curve of the tenth degree ; for in the plane [pip-:pf] there are ten points which 

are Jacobian correspondents of points on the critical curve. 

The Jacohian quartic of tJie plane \_P\qrp)-f\ contains ten lines. 

The tangent plane to the Jacolnan cpiartic at a point on the critical curve, corre¬ 

sponding to one of the ten points just mentioned, intersects the plane of Art. 120 in 

a line wJiich transforms into a plane cubic on the sextlc surface into which the 

tangent plane to the*quartlc transforms. But the quartic transforms into a tangent 

plane to this sextic, and therefore contains the cubic, consequently the quartic 

contains the line. 

12-3. We shall now consider the orders of the surfaces and curves into which given 

surflices and curves are transformed hy the relation connecting and q (434). 

With an arbitrary surface Q = 0 in the q space is associated a complementary 

Q' =: 0, so that the points of the two surfaces compo.se tetrads of united points of 

functions of the four-system. These two surfaces, of orders ni and in' respectively, 

transform into a common surface of order n. 

An arl)ltrary line in the p space cuts the surface (a) in n points, and to these 

corre.spond 4/i points in the q .space situated on a sextic curve (475). This curve cuts 

the surface Q in 6ni points, and the.se are generally united points of 6ni distinct 

functions, hecause the surface Q arbitrary. Hence n = Gin. 

Again, the sextic cuts the surface Q' in 6/?J points, but the.se tall into triads of 

united points complementary to the Gni points. Hence n = ^ Gad; and we have the 

complete formula 
n = Gni = '2ni'. 

iMore generally, if the surface Q is wholl}^ composed of sets of v united points, 

6ni Gin' 

There is a ca.se of exception fur a Jacobian quartic {q, /{jGq), J / (iVi)) = ^ 

which transforms into a plane and not a. surface of the sixth degree as (480) vould 

gi\e for I — ni = 4. But here the sextic curve cuts the quartic in 4 points and 
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touches it ill 10 points on the critical curve (Art. 121), and the four points correspond 

to the intersection of the line Avith the plane in the p space, while to the ten points 

correspond lines of the type mentioned in Art. 109. We learn, therefore, that an 

arbitrary right line in the p space intersects ten of these lines, and that they compose 

a critical surface of the tenth order. This is otheiavise justified from the considera¬ 

tion that an arbitrary cpiartic transformation converts a plane into a surface of the 

sixteenth oidei , and the fact that a plane transforms into a sextic shows that a 

critical surface of the tenth order has been discarded. 

The equation of the complementary of the Jacobian J (p) = 0 Avill be found in 

Art. 127. 

124. In like manner, taking an arbitrary curve in the q space of order M, let its 

complementary be of order and let both transform into a curve of order N. The 

curve, being arbitrary, Avill not intersect the critical curve, and the 4M points in Avhlcli 

it cats the quaitic, tiansfoimed from an arliitrary plane m the p> space, will correspond 

point for point to the N points in Avhich the transformed curve cuts tlie iilane Tims 

N = 4M. 

Consider further tlie intersections of the curve and its complementary with an 

arbitrary surface (/a) and its complementary {in'). The ciii Am meets the complementary 

of the surface in Mni points, and the complementary of the curve meets the surface 

in M m jioints. In general, each point of one set corresjionds to one point of the 

other set, and the tAAm sets compose pairs of united points. Thus Mud = M'a?, or 

M = 3M by (479); and accordingly AA^e liaA^e the complete formula 

N = 4M = :‘“'.(481). 

The Avhole set of jioints of intersection of the curve and surface and their com- 

plementaries is arranged as folloAvs The Mm points unite Avith 3Mia of the Wm' 

points in M/n tetrads. The M/rd points and the Wrn unite Avith 2 (M/?d + Mbn) of 

the MW points to form tetrads, and thus by (481) and (479) all the M'nd points are 

exhausted , and theie am but 4M/// (=: Mm -j- MudMbu) tetrad.s. But the curve 

(N) intersects the surface (//) in Nn = 4M X 6/n points, and consequently there 

remain over 20 Mm points, Avhich are critical points on the transformed curve and 

surface. These points evidently must lie on tiie critical surface of Art. 123. 

When a curve is Avholly composed of pairs of united points, the order of the 

transformed curve is N = 2M, and from symmetry the order of the complementary is 

M' = M. 

An arbitrary surface and its complementary do not intersect in a curve Avholly 

composed of jiairs of united points, though of course the curve of intersection Avill 

contain all the pairs of united points aaTiicIi he on the surface. It does not seem to 

be easy to a.ssign any general relation connecting the order of a curve of this nature 

Avith that of its transformed curve. I'lius 7 is tlie order of the curve transformed 

from the cubic intersection of a plane Avith its complementarA' (Art. 116). 
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125. We may account for the curve of intersection of the pair of sextics derived 

from two arbitrary planes in the following manner. 

Call the two planes P and P', and their complementary cuhics C and O'. The 

complementary of the line (PP') forms part of the intersection of the cuhics 0 and O', 

and this curve is a cubic (481). There remains, therefore, a .sextic as part of the 

intersection of C and O'. The complementary of the cubic curve (PC') is a curve of 

the ninth order, part being the cubic (P'C), and the remaining part the residual sextic 

on C and O'. This sextic is wholly composed of pairs of united jJoints. The line and 

its complementary cubic transform into a common quartic. The cubic (PC'), the 

cubic (P'C) and the residual sextic transform into a common curve of order 

3X4 = 2x6 = 12 (compare the last article). Thus we can only account for a 

curve of order 16 ( = 4 + 12), and the sextics consequently intersect in a singular 

curve of order 20. 

126. The complex of lines joining pairs of united points is of the fourth order. 

It o and h are any two points on a line joining united points, 

f{p, a) = .xa + gh, f{p, h) = to, + ivh.(482), 

where p determines the function. The theory of quaternion arrays allows us to 

write the condition that these two equations should be simultaneously satisfied in 

the form"^ 

r /(<^1«) /(eo«) f[ega) f{epi) a h () 0^ 

^ 0 . . (483) 
L,/'(^i^^) f{ef) fief) 0 0 a hj 

where e^, cq, Cg, are arbitrary quaternions ; and by the rules of expansion of arrays, 

this equation is equivalent to 

^ ± ifieif, fie.pi), o, />) (fief), f{ef), o, 6) = 0 . . . (484), 

wheie the signs follow the rules of determinants. As this is of the fourth order in 

a and h, and also combinatorial with respect to both, it represents a complex of the 
fourth order. 

127. By (433) and (434) we have 

f{pcj) = qJ {q), p = Ffq).(485); 

and throughout this article we shall suppose p expressed as a quartic function of q. 

One loot of the latent quartic of j i 'pq) is thus equal to J iq), so that when we 

substitute in the equation of that quartic (Art. 103 (420)), we have identically 

d {qf - ./ {gf 1"' ( y,) + ./(,y)y P'fp) _ ./ (^) I' q_ ^ 0 . (486). 

The equations of the various assemblages of chords of Art. 113 may also be discussed by the aid of 
arra3^s. 
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Ihe diiect inteipietation ot this identity is that the traiistomiatioii converts the 

Jacohian I{p) = 0 into two surfaces, one beino- the Jacobian J (q) = () and the other 

the surface of the twelfth order 

J {qY J {qY 1"' { })) -\- J Yi) I" Yp) — 1' { p) — h (487). 

This surface is the locus of three of the united points of functions wdiich have a 

zero latent root, the fourth united point lying on the Jacobian J Yq) = 0. 

The ciitical curve is triple upon this surface, and the surface meets the Jacobian 

again in a residual curve of tlie eighteeiitli order, wliicli is the locus of united points 

corresp)onding to a doidde zero root. 

128. Making the substitution s = t - J Y/) in the latent quartic of the function 

f{p, q) the equation reduces to 

-1'"{p)) + 6-3(6./YiY — sr"{qj) JYi) + r'{p)) 

+ — 3/'" (p) J{qf + 21” {pj) J(q) — F (p)) = 0 . (488). 

A second root of the original quartic is equal to J Yq) if 

AJYiY ~ {p) '^YlY + 2/"(y>)'/{i/) — I' {p) = h . . . (489), 

and this is the locus of united points winch correspond to double latent roots. This 

surface is of the twelfth order, the critical curve is a triple curve upon it, and it 

meets the Jacobian in the same curves as (487). 

The locus of united points corresponding to triple latent roots is the curve of 

intersection of this surface with the surface of the eighth order 

QJYif - 'iF”{j>)JYj) + 7"(jo) = 0 .(490). 

But the critical curve is doulJe on this surface, and accordingly it counts six times 

in the intersection, so that the locus of triqde united pioints is a curve of order 

36 (= 8 X 12 - 6 X 10). 

129. Further, quadruple united points are the points common to the surfaces (489), 
(490), and 

UYl) - I"'Yp) = ^.(491), 

which do not lie upon the common critical curve. 

In order to calculate the numljer of these quadruple points it is necessary to find 

the numbei of points common to the critical curve and the curve locus of triple 

points. Now 24 (= 4 X 3 X 2) functions have triple zero roots, this being the 

number of points common to the surfaces lYp) = 0, F i^p) ^ 0, F' Yp) = 0 in the p 

space, and the curve locus of triple points being of the 36*'’' order meets JYl) — h in 

144 points. Subtracting 24, there remain 120 points on the critical curve. 

Ihe triple curve therefore intersects (491) in 24 quadruple united points, and in 
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120 points on the critical curve; and thus tLcentij-four functions of the system have 

four equal latent roots and four coalesced united points. 

130. Again, suppose that two roots of (488) are zero and that the remaining two 

arc equal. In this case 

8J(7)^-4j(q)r'(^>) + 4r(p)-r"(^>)' = o . . . (492); 

and this equation, combined with (489), gives a curve locus of order 36 (= 8 X 12 

— 2 X 3 X 10), wliicli is the locus of v.nited points of functions ivhose roots are equal 

in j)airs. 

We have now outlined the general theory of the four-system, hut in a later section 

some supplementary remarks will be made on this subject. 

SFX!TION XV111. 

The Quadratic Transformatiox of Puixts in Space. 

Ihe Second Example of the Use of the Bilinear Function. 

Art. Page 

131. The quadratic transformation 7; =/q/7). The cctads of points .304 

132. A line transforms generally into a conic, but into a line if it is a connector of points 

of an octad, or (what is equivalent) of Jacobian correspondents / (7)7) = 0. 

Harmonic properties.305 

133. The limiting points into which Jacobian correspondents transform.305 

134. The arrangement of connectors and Jacobian corresjjondeuts in a plane.306 

135. The points of an octad and the twenty-eight connectors.306 

136. A plane transforms into a Stefner’s quartic.307 

137. Geometrical relations. The conics of ring-contact.307 

138. The focal pcn'nts on a ray of the congruency of connectors.308 

139. The orders of complementary loci and of the loci into which they transform . . . 309 

140. The complementary of the Jacobian is the focal surface of the congruenc}' of 

connectors.310 

111. The focal surface of the transformed connectors is the transformed Jacobian and the 

reciprocal of a symmetrical Jacobian.310 

142. The nnmorical characteristics of the two congruencies.• . . 311 

131. Tlie general (piadratic transformation in space is represented bv the equation 

p=f{q,jf).(493), 

in which it i.s olndously permissible to regard tlie bilinear function as pernmtahle, or 

the four linear functions (409) as self-conjugate. The transformation involves 40 

constants. 
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To a plane in the j) space corresponds a quadric, or 

S/i; = 0, S//’(^ry) = 0 ........ (494) 

transfoiin one into the other j and thus to one point 2^ corresjDond eight jDoints _ 

the intei sections of three quadrics—and to one point q corresponds in general one 
point 

We use the word octcid to denote the group of eight points corresponding to ^1. 

132. The right line q = a -{■ tb transforms into the conic 

—/(««) +2(/’(a5) + (65).(495)^ 

and /{aa) and f{hh) are two points on the conic, while f iah) is tlie iiole of their 
chord. 

The condition for the cohinearity of these three points is 

[/('^«)> f{ah), f{hh)-] = 0 .(496); 

and tins equation may he replaced by 

/(«o^) + (x + y)f{al>) + xyf (66) = 0, or f{a + x6, a + yh) = 0 . (497); 

and this expresses tliat the original line joins Jacobian correspondents. Tlais lines 

joining Jacobian corresjoondents transform into lines. 

In this case (Art. 104) of the permutable function, if 

/{rr') = 0 =f{rJ).(493), 

the points r and r' are conjugate to every quadric of the system (494). 

We may replace (498) by 

J {>' =b r ± tr') =f{rr) + t'ff'd).(499)^ 

ov jwints harmonically conjugate to a jxdr of Jacobian corresjmndcnts transform into 
a single q)<^int. 

Thus we may speak of the rays of the assemblage of lines represented liy (49G) as 

connectors, (1) of a pair of Jacobian correspondents, (2) of a pair of points of an octad, 

(3) of an infinite number of pairs of points of octads. 

It is evident that when two points of an octad coincide 

Jacobian; and that every point on the Jacobian is the union of 
octad. 

, they unite on the 

a pair of points of an 

133. The Jacobian correspondents transform into limiting jooints, sejmrating the 

points derived from reed from those derived, from imaginary points. 

The points on tlie transformed connector 

P — f sf f r). . . 

2 R VOL. CCI.—A. 
(500) 
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are transformed from the points r ^ \/5 r'; these latter are real if s is positive : 

otherwise they are imaginary. 

To discriminate between the outer and the inner region on the line (500), observe 

that the vectors from the centre of reciprocation to the limiting points are 

^ V/-(rr) _ V/(rV) 
^ S/(r,-)' P S/(,-V) (501); 

and that the vector to the point is 

_ V/’ [rr) + sYfjr'r) ^ p^f {rr) + sp^ f {rV) 

S/(rr) + 6'S/(r'/) S/(7t) + sS/(rV) ’ ' ' 

The point p lies on the inner region if S/(rr) and s^f{r'r') are of like sign; and 

the inner region corresponds to real points if the points r and r' are either both 

inside or both outside the quadric 

s/ [qq] = 0.(503). 

This quadric is the locus of points projected to infinity; it may of course be 

imaginaiy, so that S/ (rr) and S/ (r'r') are essentially one-signed if r and r are real. 

In this case the region is always inner. If the quadric is real, the points r and r' 

(if real) cannot both he inside, for they are conjugate to it. The nature of the 

intersection of a line with this quadric controls the nature of the conic into which 

it is transformed. 

134. The locus of the Jacobian correspondents of points in a plane is a sextic 

curve, and for the peimutable function this sextic cuts an ailiitrary plane in points 

which correspond in pairs. There are therefore three connectors in a plane. 

Ihe vertices oj the triangle of connectors belong to the same octacl; for if pi is one 

vertex and po and pg the points, one on each of the connectors through p,, which 

(Art. 132) belong to the same octad as pj, then r/o and pg lielong to a common octad, 

and their line is a connector—the third connector in the plane. 

We may suppose the weights of the points p. and pg chosen so that the 

Jacobian correspondents are 

q-2 ± q-i, P's dz Pn Pi db po.(504), 

the vertices of the triangle being (Art. 132) harmonically conjugate to these points 
in pairs. 

135. Let the eight quaternions which represent points of an octad have their 

weights chosen so thaU^ 

ho -/(piPi) =/(p3p,0 = =/(psPs).(505), 

It follcjws from Art. 132, that this convention is the same as that made at the end of the last article. 
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and let the twenty-eight points f be denoted by 

7h3=/(^ii<Z3), p^^=f{q^q^).(506). 

It may be remarked that these relations lead to 

±2y - =/(qi ± a/ - lq.2, qi ± \/ -’1^2) • • • (507); 

so that the points (506), although real, if the points of the octad are real, have been 

ti-ansformed from imaginary points, and consequently do not lie in the same region 

(Art. 133) as the point 

The Jacobian correspondents transform into ±^12, &c. 

136. A plane transforms into a Steiner’s quartic. 

In the notation of the last article, the plane 

2' — hS'i “t“ h*h.(508) 

transforms into the surface 

P — Po ih' + + ‘^PiAPz + '^p-iihh + ■ • ■ (509) ; 

and if we write the identity connecting the five quaternions in the form 

P = PqW + p.pc + p.p! +703^.(510), 

comparison with (509) gives 

‘Zxyziv — yV + -f- .t-//®.(511) 

on elimination of the ^larameters t. This is the scalar equation of the surface (509), 

and the existence of the three intersecting double lines (y, ^ ; z, x\ and x, y), which 

characterize a Steiner’s quartic, is manifest. 

Evidently the three connectors transform into the double lines; and the points 

y>o i 7130 7^0 ii^i3 separate (Art. 133) the lines into regions intersected by 

a pair of real and a pair of imaginary sheets of the surface.'^ 

137, The nature of the surface into which a ])lane transforms may be established 

from purely geometrical considerations. A tangent plane to the surface transforms 

back into a quadric touching the plane, that is, cutting it in a pair of lines. These 

lines transform back into conics in the tangent plane and on the surface. One point of 

intersection of these conics corresponds to the point of intersection of the lines. 

The other three points must result from the union of pairs of points of octads, and 

therefore the lines must cut the sides of the triangle in points harmonically conjugate 

to the Jacobian correspondents. The .conics consecjuently intersect the lines into 

which the three connectors transform, and these three lines must be double. In terms 

It is easy to verify this by determining the greatest and least value of E4 + for real values of 

<2 and 4. Compare (509). 

2 R 2 



308 PEOFESSOR C. J. JOEY ON QUATERNIONS AND PROJECTIVE GEOMETRY. 

of the parameters, the ecjuations of a pair of lines transforming into conics in a 

common plane must be 

“1" '^0^3 “t" W3Q — 0, + h + h = 0 . 
Wi 

• (512); 

this is a consequence of the harmonic section. Two lines thus related may be said to 

be conjugate, and there exist four self-conjugate lines 

h db dz i's — .(513), 

any one of which transforms into a conic having ring-contact with the quartic. The 

planes of these four conics transform back into cones, touching the plane along the 

self-conjugate lines. The self-conjugate lines join triads of non-corresponding 

Jacobian points, such as q,, -|- q^^ q.^ — q^. 

It is easy to see that the four conics are inscribed to the faces of a tetrahedron, 

and that each touches the other three. Consider, for example, the conics transformed 

from the sides of the triangle, q.. q^, q.^ -j- q^ -b q^. The equation of one conic is 

P =fiP2 + (Z3 + ^ {<h + 'Zi), q.2 + 'Z.s + i (Ys + "Zi)) 
— 2 {Po + P-:s) + 2^ {pq +zq3 +Zbi +1^13) + 2^' {po d"i^3i) • • (51-1) 5 

and this shows that the conic passes through a limiting point on eacli of two of the 

double lines; and as the pole of the chord is symmetrical with respect to the suffixes, 

it is likewise the pole of corresponding chords for the conics into which the other 

sides of the triangle transform. 

It is not difficult to prove that every line in the plane through one of the six 

Jacobian points transforms into a conic having a fixed tangent. The tano-ent for 
00 O 

the point q^ -f q^ is 

— ik d‘ih3 + ^ (Zbs+ibi).(515). 

138. Let a connector meet the Jacobian in the jioints a, a', h and c, a and a' being 

correspondents so that / (aa') = 0 ; let ?/ and c' be the correspondents of h and c; and 

consider the jioints of an octad in the plane The two connectors aa' and hh' 

in this plane intersect in the point h, and as h is its own harmonic conjugate with 

respect to 6 and two sides of the triangle of Art. 134 unite in the line aa'. Let 

be the harmonic conjugate of b with respect to a and a', then is a vertex of the 

infinitely slender triangle, the remaining two being the point h counted twice. 

(Compare Arts. 132 and 134.) 

The point being the intersection of tiie connector aa/ with a consecutive 

connector, is a focal p)oint on the ray aa' of the congruency (49G) ; and similarly 

the harmonic conjugate of c to a and a', is the second focal point ; and hy 

Hamiltox s theory the ray touches the focal surface at these two points.* 

* This theorem of the construction of the focal j^ioints is an extension of Mr. Russell’s theorem for the 

congruency of lines joining corresponding points on the Hessian of a cubic siu'face. R. Russell, 

“Geometry of Surface.s derived from Cubics,” ‘ Proc. Roy. Irish Acad.,’ vol. 5, p. 461. 
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In this case the plane transforms into the surface 

P —/(h& + + t^iy, tjh + f-.hj + Q//) 

= + 2QQ/(/>//) + . (516), 

and if we take (as we may) f{bh) =:f{hJ)^), the scalar equation of the surface takes 

the form 

4x2fw = 4xh' + y\ where iv = _p y _ OQQ, 2 = SQQ (517). 

On comjDarison with (oil) we see that two of the lines of the Steiner’s quartic have 

united; for a? = 0 we have the line x, y counted four times. 

139. By a process similar to that of Arts. 123 and 124, but much simpler, we can 

determine the order {in') of the complementary of a surface of order m, and the 

order {n') of the surface into which both transform. The formula is 

4u?. 

V 

4m' 
(518), 

where v is the number of points of octads of which the surface is wholly composed.'^'' 

And this formula is proved without trouble, remembering that a line in the }) space 

transforms into a twisted quartic—tlie intersection of two quadric surfaces. 

In like maimerf for a curve (M), its complementary (iVT) and its transformed (N), 

_ 2M' 

V 8 — V 
(519). 

Thus the complementary of a connector is a twisted cubic the complementary of a 

plane is a surface of the seventh order, which cuts the plane in tlie triangle of 

connectors and in a quartic—probably the four lines of Art. 137. 

The formulm of this article are not directly applicable to tlie Jacobian, which is a 

ciitical suiface of the transformation. The twisted quartic into which a line in the 

p space transforms, cuts the Jacobian in 16 points and does not in general touch it. 

For if it did the twisted quartic would liave a double point. Consequently, the 

Jacobian transforms into a surface of the sixteenth order. Every point on the 

* For the general tran.sformation of order ji, the relation is 

t For a transformation of order ji, 

1 For example, 

ji-ni ^ jx-ni 

V - V 
■■11. 

/xM_ /xM' 
[M^-V = N. 

2 = ^ r ^'’^lere qr, = E p = E 
1 n '1/n I •' II I Ihi 

is the equation of the twisted cuhic through si.x: points qi, q-i. . . q^■„ and it is not difficult to veiify that 

this curve and the line + Qs transform into a common line p + ^Fts if the eight points form an octad. 
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Jacol^ian is the union of a pair of points of an octad (Art. 132), and therefore the 

complementary surface is composed of hexads of points of octads, and its order is 

conserpiently 24, or six times that of the Jacobian, because the quartic cuts it in a 

hexad for every point of intersection with the Jacobian. 

140. The comj^lemc'tLtary of the Jacobian is the focal surface of the congruency of 

connectors.''^ 

When two points of a set transforming into a common point approach coincidence, 

they close in on tlie Jacobian, and simultaneously the remaining points of the set 

reach the complementary surface. Through any one of these remaining points two 

consecutive connectors pass ; and therefore, by Hamilton’s beautiful theory, the 

I’emaining points are focal gyoints on the rays connecting them to the coincident 

jioints. 

Every ray touches the focal surface in two points—the two focal points on the rav; 

and for a quadratic transformation it cuts that surface in twenty other points. These 

ticenty g)oints are harmonically conjugate in jjairs to the Jacohian correspondents. 

For (Art. 132) the harmonic conjugate of any one of the points belongs to the same 

octad as that point; but tbe fecal surface is complementary and is wholly composed 

or hexads of points of octads, and therefore the harmonic conjugate is also on the 

focal surface. ■ 

141. The focal surface of the transformed connectors is the transformed Jacohian. 

On transformation the harmonic conjugates on a connector unite. In the notation 

of Art. 138, the point h and the focal point unite in a focal point of the trans¬ 

formed connector, for through pass two consecutive connectors which transform 

into consecutive connectors through ffff Similarly the points c and c^ transform 

into the second focal jroint and the transformed Jacobian is consequently the focal 

surface. The twenty points of the last article transform into ten points. The 

Jacobian correspondents a and a' transform into limiting points (Art. 133). Thus we 

have accounted for the sixteen jioints in which the transformed connector meets its 

focal surface. 

2he class of the transformed Jacohian is n' = 4. In the p space draw a plane 

through an arbitrary line to touch the surface. This plane contains a jiair of 

consecutive transformed connectors, and on passing back to the g space it becomes a 

quadric containing consecutive intersecting connectors. This quadric is therefore 

a cone. The system of planes through the arbitrary line transforms into a system of 

quadiics through a twisted quartic, and four of these quadrics are cones. To these 

four cones correspond four tangent jilanes to the focal surface through the arbitrary 

line. Flence we may write down the equation of the reciprocal of the transformed 

Jacobian. The condition that the quadric S(/’(qq) = 0 should be a conef is 

* This theorem is true for the connectors of a set of points to a coincident pair of the set for all 
transformations. 

t If .f im) = then /' {Iq) = 2 AjSfoi. 



PROFESSOR C. J. JOEY ON QUATERNIONS AND PROJECTIVE GEOMETRY. 311 

.(520), 

where r is the vertex, for the tangent plane S//‘((/r) ^qf [Ir) = 0 must vanisli 

identically. Hence the fourth invariant of f' (Ir) must vanish, or 

(/'(H /'(^^0) = h.(521), 

and this is the equation of the reciprocal of the surface. 

Thus the transformed Jacobian is the reciprocal of a Jacobian surface, but one of 

less generality than those previously considered. We may replace (520) by four 

equations 

S//(m) 0, S//(r6) = 0, S(/'(rc) = 0, S//(rR) = 0 . . (522); 

and because / is a permutable function, on replacing r by xa + ijh + 20 + ivd and 

eliminating x, y, 2 and w, we obtain the symmetrical determinant 

S//(a«), S(/Xa5), S//(ac), ^If {ad) 

S//(od), S//(W;), S//(6c), S//(/x/) 

S//(ac-), Slf{bc), S//(cc), Slf{cd) 

S{f{ad), SIf{hd), SIf{cd), BIf{dc/) 

But (‘Three Dimensions,’ Art. 528) a surface, whose equation is a symmetrical 

determinant with constituents linear in the variables, has ten double points. This 

accounts for the class of tlie surface being 16 instead of 36 (= 4(4 — 1)^). 

In the case in which the function is self-conjugate as well as permutable, that is 

when p, q and r may be transposed in '^'pf{cp ) in any manner, we have the theory of 

the corresponding points on the Hessian of the general cubic surface 

and Mr. Hussell’s paper may be referred to for various exanqjles. 

142. The characteristics of the two congruencies are found thus. The order of the 

congruency of connectors is obviously /x = 7, as seven connectoi'S can be drawn from 

an arbitrary point to the remaining points of the octad to which the point belongs. 

The class is = 3, for three connectors lie in a plane. The order of the focal surface 

(Alt. 139) is M = 24. Its class is N = lA This follows from the relation (‘ Three 

Dimensions,’ Art. 510) 
M — N = 2 (/X — j^).(524) ; 

or independently by Mr. Hussell’s elegant methocB'' which is applicable in this more 

general case. 

For the transformed congruency, the order is y' = 28 (Art. 135), the order of the 

focal surface is M' =16, and its class is N' = 4 (Arts. 139, 141); and therefore (524) 

the class of the congruency is F = 22. 

= 0 . . . (523). 

* ‘ Proc. Roy. Iiish. Acad.,’ vol. 5, p. 473. 
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Consequently twenty-two connectors are generators of a quadric S//(qq) = 0 ; and 

in particular the polar quadric of a jioint with respect to a cubic surface contains 

22 generators joining corresponding points on the Hessian. 

SECTION XIX. 

IIo^iOGEAriiY OF Points in Space. 

The Third Example of the Use of the Bilinear Fauction. 

Art. Easrc 
O 

143. The relation / = r establishes a one-to-one correspondence between the points p 

and ([ when r is fixed.312 

144. The homograph of a line is a twisted cubic. A line breahs off for e'\'ery intersection 

with a critical twisted sextic/q (/•) = 0.312 

145. The homograph of a plane is a cubic surface intersecting the Jacobian I (p) = 0 in a 

critical sextic Fp (r) = 0 and a residual curve Fp' (l) = 0.313 

146. The lines on the cubic surface. The schemes of the double-sixes and triple tangent. 

planes.. 

147. Points on a critical sextic and their line homographs.314 

148. The complex of connectors of points with their homographs, and the congruency of 

bi-connectors. .... 31.5 

149. The congruency of Jacobian connectors for the general bilinear function.316 

143. Writiug generally 

f{pq)=^r or \f{pq),r]= 0 .(525), 

and regarding 7‘ as a constant quaternion, a one-to-one relation is established 

between the points and q, so that one may be said to be the homograph of the 
other. 

This is equivalent to three relations of the form 

Sjjfq = 0, SqpUq = 0, Syi/gq = 0.(52G); 

and accordingly the bilinear function is not utilized to its full extent, but it seems 
to be the most convenient instrument for investigading the subject. 

114. AVe have generally in the notation of Arts. 107, 108, 

ql ( p) = /J (r), pj(q) = [r).(527), 

and thus the critical curves of tbe transformation are 

id, (;') = 0 and Ffr) — 0 .(528) 

respectively ; or (compare (437)) 

{{>'’f{p<-^)>f{F^->),f{pf,f{Fd))) = 0 and (f, f fq), f{bq), f (cq), f{dq])) = 0 . (529)- 
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These curves are sextics, and because (528) may he replaced hy 

[/" (f" f” (p'h)] = 0, [/' (rp2), f ( tmi), f (rgc/)] = 0 . (530), 

vdiere [rp-p’g] = 0, they may be described as the locus of Jacobian correspondents 

of points in the plane reciprocal to the point r (424), 

As in Art. 109, when a point {q) is on the critical curve, its homograph is a line 

11.]' [q) - iG,^ (r) -f- FJp), Fj {r) = 0.(531), 

and not a point; and as in Art. 112 the homograph of a line + xq is a twisted 

cubic 

V = {PoPiV-GhJs^^f.(532); 

and a line of the type (531) breaks off the cubic for every intersection with tlie 

critical cui've. 

llius, when the line is a chord of the critical curve, its liomograph is also a line, 

so that 

{f{p + ^ r] = 0 .(533). 

Symmetry shows that p -|- xp must be a chord of the second critical curve. 

7/ the homograph of a line is plane, it is at most a conic. For the condition 

of planarity (compare Art. 120) 

{PoPiPiP-i) = ^.(534) 

is of the sixth order in q and in q', and this equation represents a complex of the 

sixth order. But this complex can include nothing except intersectors of the 

critical sextic, for the cone of intersectors from the arbitrary point q is of the sixth 

order. 

The I’uled surface of triple chords has been noticed in Art. 75. 

145. The homograph of a plane 

S/q=0 is S/F^,(7-) = 0 

a general cubic surface through the critical curve. 

This cubic surface also passes through tlie sextic 

(535), 

.(53G), 

and it intersects the Jacobian I {p) — 0 in this sextic and in the critical curve. 

The equation of the Jacobian may be written in the forms 

(0 F, (0 = sy; k: (o = Hp) = o.(537), 

and for I and r, both variable, the curves Tq, (?■) = 0, FJ (1) = 0 generate tlie Jacobian 

in a manner analogous to the double generation of a quadric. Since the rank of the 

sextic is r = 16 (Art. 64), the two curves intersect in 14 points (477). 

VOL. cci.—A. 2 s 
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146. It may be of interest to show how we can fully account for the lines on the 

cubic surface (535). Let the six points in which the critical curve (r) = 0 cuts 

the plane S/(/ = 0 be denoted by the symbols 1, 2, 3, 4, .5, 6 ; and let (12), (23), &c., 

denote the fifteen connectors of these points. Further let [1], [2], ... [6] denote 

the six conics that can he drawn through all hut one of the six points. 

The curves and points represented hy these 27 symbols transform into the lines on 

the cubic. By (531) and (533) we account for the lines and the points. In general 

a unicursal curve transforms into a curve of thrice the order, but for every inter¬ 

section with the critical curve a line breaks off. Thus the six conics likewise 

transform into lines. 

Any jDair of these loci, which intersect in a point which is not critical, continue to 

intersect after transformation, and this consideration enables us to write dovm the 

full scheme of double-sixes on the cubic surface. These fall into three types :— 

/I 2 3 4 5 6 

• l[l] [2] [3] [4] [5] [6] 

,. / 1 2 3 (5b) (64) (•15)\ 

• 1(23) (31) (12) [4] [5] [6];- 

ttt /I [1] (23) (24) (25) (26)\ 

• (2 [2] (13) (14) (15) (16)/ 

In these schemes, every line represented by a symbol in one row intersects eveiy 

line in the other row, except that denoted by the symbol in the same column. There 

are thus 36 doulde-sixes ; one of the first type, twenty of the second, fifteen of 

the third. 

The schemes are easily oljtained ])y taking two ntm-intersecting lines, say 1 and [l], 

when we have 

1 intersects (12), (13), (14), (15), (16), [2], [3], [4], [5], [6], 

[J] „ (12), (13), (14), (15), (16), 2, 3, 4, 5, 6, 

and, discarding the common lines, the double-six is found. In like manner the 

45 triple tangent planes belong to one or other of the types 

(1,[2], (12)) or ((12), (34), (56)). 

147. One or two relations respecting a point on a critical curve and its line 

homograph may be mentioned. Since the line (531) has a point for its homogi'aph, it 

must 1)6 a tri|Ie cliord of the sextic fi’, (r) = 0. It meets this sextic in three points, 

'P\, p2i Psj intersects the Jacobian in a fourth point pQ or (p). To the three 

points p^, p2, P3 correspond the three triple chords of the q sextic which pass 

through q; and the homograph of every plane through the line pi, jo.i. pg is a cubic 
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having ^ as a doublG point and containing th© three triple chords which pass 

through q. 

The ciihic homogiaph ot any plane contains the critical sextic which counts thrice 

in its intersection with the octic surface of triple chords, and the remainder of the 

intersection consists of the six line-homographs of the critical points in the plane. 

The homogiaph of the surface of chords of the^i sextic, winch meet the line 

is the cone whose vertex is q and which contains the q sextic. 

The homograph of one sextic is the surface of triple chords of the other. 

One choi d can he diawn to meet two non-intersecting" triple chords in points not on 

the sextic. Its homograph is the line joining the homographs of these chords. 

The locus of the points Fq (_p)j the Jacohian correspondents of points on the critical 

curve, is a curve of the fourteenth order. For the octic surface intersects the Jacohian 

m the second critical curve counted thrice, and in a residual curve of order 14. 

148. Connectors of points with their homographs compose the complex of the 
sixth order 

Lf(PP), fipv), f{qp), r) /(qp), f{qq),r) 

= ifipi>)> fipq). f{qq), >■) i/ii'p), f{qi>), .f{qq), >•) ■ (538), 

as appears on elimination of .r, y, z and ir from 

f{xp + yq, zy> + V)q) = r.(539). 

Oi in other words, this is the assemblage of lines which meet their twisted cubic 

homographs. 

The condition that two pairs of homographs should be on the same line is 

{{f{pp\ fipq), f{qq), r)) = o.(540), 

for if two sets of values of x, y, z, tv satisfy (539), the five quaternions included in 

(540) must be co-planar. Now (540) imposes two conditions on the line qtq, and 

therefore represents a congruency of lines; and from the conditions implied in (540) 

we can select but two combinatorial functions witli respect to p and q. These are 

Ui2P^)’f{pq)>f{qp),f{qq)) = o, {f{pp)^,f\pq) -\-f{qp),f{qq), r) = o . (541); 

and the congruency is therefore common to two complexes of the fourth and third 

orders respectively. But these complexes contain the congruency 

[/(2f), fipq) +f{qp)> f{qq)] = 0.(542), 

and this is foreign to the question, being, in fact, the congruency (496) of Art. 132 of 

connectors for tiie permutable function J{pq) + J {qp)- When this is rejected, there 

remains the congruency of connectors of two pairs of homogi'aplis, and its order and 

2 s 2 
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class are /r = 5 ( = 4 X 3 — 7), = 9 ( = 4 X 3 — 3), for the conoTuency (542) has 

l)een shown to be of the seventh order and third cla.ss. 

Equations (541) being supposed satisfied, they are equivalent to 

+ u,f{p>i) + u',f{qp) + vj{qq) = 0, 

'^\f{PP)-\-'^'-Af{pq)+f{qp))-rVoJ{qq) = r. . . . (543); 

and multiplying tlie first by t and adding it to the second, we find that t must satisfy 

tlie quadratic 

(m + O(.)(m + 0do) = (ri + 0q)(i’3 + 0./3) .... (544), 

if tlie sum can be reduced to the form (539). The roots of this equation lead to the 

determination of the two pairs of homographs. 

The bi-connectors of homographs which pass through a point are double edges of 

the cone of connectors of homographs, and those which lie in a plane are bi-tangents 

to the curve enveloped by the connectors. This appears from tlie forms of the 

ecpiations (538) and (540). 

149. The congruency of connectors of Jacobian corre.spondents is intimatelv 

connected with the theory of the last article. 

We have already considered the case in which the function is permutahle, hut 

matters now are much more complicated. 

The congruency may be expressed liy 

f{ pp) + pfipq) + pf{qi>) + '^pf{qq) = o.(545), 

and It is obvious that it is included in the quartic complex, the first of (541), and it 

is easy to verity that it is also included in the sextic complex (538) and that no 

matter v'Jiat quaternion “ r ’ rnaij he. Replacing uv by iv in (545) and substituting in 

the equations of these two complexes we find that either w = uv, or else the lines must 

belong to tlie congruency (540). In other words, the congruency of this article is 

conqilementary to the congruency of the last as regards the two complexes. But the 

rays of the former congruency count double as edges of cones or a,s tanofents in 

])lanes. Hence tlie order and class of the congruency under discussion are 

p = 14( = 4 X G - 2 X 5), z/ = G ( = 4 X G - 2 X 9). 

Ihese numbers are exactly double the corresponding numbers for the permutahle 

function, and as regards the class there is no difficulty in seeing how this arises. In 

general there are two sextic loci of Jacobian correspondents of the points in a plane 

(528), and the connectors in the plane join the six points of one to the corresponding 

six ])olnts ol the other. For the })ermutahle function the two loci coalesce, and the 

numlier of connectors is halved. 

Again, we may say that the lines of this new congruency through a point are Jixed 

edges of the cone (538), and tlie lines in a plane fixed tangents to a sextic curve, 
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because they are independent of r; the lines of the former cono-mencv are double 

edges and double tangents. 

We proceed to determine the class of the fociil surface. The equations 

{pqah) = 0, = Q.(546) 

require a ray to intersect the fixed line a, h. Eliminating p, the equation of the 

locus of q is 

/(TT) + T/= 0, or [/(qf/),/(ap),/(6q)] . . (547); 

and this (274) is a curve of order = H and rank v— 48. But this curve is a 

complex curve consisting of the line ah and a residual which intersects it in four 

points on the Jacobian. The order and rank of the residual are m— 10, r = 40, 

the rank being diminished by twice the number of intersections. The number (r) of 

tangent planes through ah to this curve miuus twice the number of intersections 

gives the number of planes tlirough ah containing consecutive rays. Thus the class 

of the focal surface is N = 32, and its order (524) is M = 48. Every one of these 

numbers is double the corresponding numlier obtained in Art. 142 for the perniutable 

function. 

For the sake of completeness we wisli to show the nature of the assemblage of 

lines common to the complex (538) and the second complex (541), as we have already 

completely considered the lines common to the remaining two pairs. Evidently the 

congruency of hi-connectors belongs to these two complexes and is counted twice 

among their common lines. 1 here remains an assemblage of lines of order 

p = ‘i X G 2x 5 = 8, and of class p = '3 X G — 2 X h = 0. It is easy to prove by 

the method of this article tliat these lines join an arbitrary point to the eiglit 

correspondents of r in the quadratic transformation /(j>i>) = r. 

SECTION XX. 

The Method of Arrays, 

Applications to n-Sijstems of Linear Functions. 
Art. 

150. The expansion of arrays and the determination of the scalar coefficients. 

151. Conditions that a function of an «-system should convert m quaternions into m others 

152. Conditions for the conversion of m points into m others. 

153. Conversion of lines and planes into others. 

154. Relations connecting points with their transformeds when conditions must he satisfied. 

The three types. 

155. The critical systems for functions of an w-system. The four types. 

156. Conditions that a line may he destroyed hy a single function of an «-systcm . . . 

15/. Conditions that a line may he destroyed point hy point hy an included ra-system . 

158. The various methods of destroying a plane. The destruction of a hyperboloid 

generator hy generator . 
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150. We shall illustrate the method of quaterniou arrays* hy a few examples on 

systems of linear functions. These functions may be supposed to be of the most 

general kind, functions of a point in sjaace of p, dimensions, but we pay particular 

attention to the case of three dimensions. 

An array of n rows and m columns vanishes if, and only if, the constituents in the 

rows are connected by tlie same set of scalar coefficients Xo . . . x^. Thus 

a 2 Ci-o 

h.y h,. 

/j 4 4 

Vi Ih V-i 

r, 7-3 

when 

a„ 

jV 

= 0 (548), 

tx,a, = 0, tx,bs =0, . . . tx,r, = 0. 

It is proved in the memoir that the expansion of the array is of the forint 

(549). 

^ ± {bJ)J),hs) . . . (/4„-_3, hn'-2, hn'-^, kn) 

^ Vin'+\ + - ■ ■ V“' 1 
' . . . i 

I, 

^4n'4-2 • • ^ , 

(550) ; 

and we take definitely m = Vn'-\-n”, where = 0, 1, 2 or 3. The number of 

equivalent scalar conditions is 4m — n 1 for the vanishing of a quateinion array, 

and (/r + 1) m — 77 + 1 for an array of jioints in p. dimensions. 

The scalars x^, &c., are determined 'when (548) is satisfied by the system of 

arrays of m — 1 columns and n inws, of which tliis array 

is a type. 

f X^a^ + X.Xi:„, «g, 

I + xj)^, + 

I 

.apq + x,ro, 7-3 

• • «;« 1 

h.! 
. (551) 

^ ‘Trans. Roy. Irish Acad.,’ \nl. 32, jip. 17-30. 

T Every row must lie represented in the expansion, and it may he gathered from the Memoir how to , 

expand if one row involves only four constituents. In this case the general method fails. 
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It all the minor arrays formed by omitting one column of (548) vanish, we take any 

two of these minors, and forming second minors coi'responding to (551) we obtain two 

sets of relations (549), and so on in general. 

151. In order to find the conditions that a linear function of an ii-system should 

convert m given 'iceighted points rtj, . . . into m others, . . . b„„ we write down 

the array in m rov^s and a + 1 columns, 

1 /d'-\ bM\ ■ • Uh Id 1 
1 / I'C ■ 
\ 

■ /AC ! 
1 

1 
r 
1 • J 

1 / 
1 • 

1 
C. J 

= 0 . (552), 

whose vanishing requires 

.(553). 

Ihe vanishing of this array requires 4?u — n scalar equations to he satisfied. If 

then n =■ 4ai, the array vanishes without restriction, and a single condition must Ije 

satisfied for the vanishing of the arrays, such as (551), 

I 1 

! ‘^‘1/1% ■!" • ■ .Ajq ! 
= 0, &c. . . (554), 

I d- h,,, j 

and these determine the coefficients x without ambiguity. 

Thus from a given 4j?i-system can he found one function wliicli shall convert in 

given weighted points into other given weighted points. (Compare Art. 3.) 

152. When the weights are disregarded, the equations of.condition are 

%xj,a^=-. Sxjla. = g^b.2, . . . txJ/A„ = yJ,,, . . . (555); 

and these furnish the array 

{ fi"i /Yh • • • />! />! 0 U . . 0 1 

! /otto . . . f,a-, 0 b., 0 . . 0 j 

..0. . . . (556), 

I 0 . U 0 . .b,„} 

of -f- n columns and m rows. Its vanishing requires 3//i - h + 1 conditions to be 

satisfied, and the vanishing of the minor arrays such as (551) requires a single 

condition if n = 3?a fi- 1, and these definitely determine the function. Thus from 

a (Sml)-system can be found one function which converts 7ii points to m others 

when the weights are neglected. In particular, a linear transformation can he found 

(out of the whole sixteen-system) to convert five points into five others (Art. 3). 
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153. When lines are to be converted into lines, the conditions are 

yi^-'i + y't^>t : — + . . . • (557), 

and tlie array 

r./pb f'/h ■ ■ ./Aft h\ ft 0 . . .00 ft ft ] 

! ./f' 1 ./d' 1 • • yydi ft 0 l\ . . . ft 0 ft ft 1 

^1 
./Aft^ ft 

. 1 
r • (558) 

j ./f-ft" y^ft" • • ft ft () . . . l>n h',, ft ft j 

l /irt'/" .. 0 0 ft ft . . . ft ft h,„ V,„ J 

of n “h 2 m columns and of 2 m row’s must vanisli. The number of conditions is 

Gift — n + 1. Thus a function of a seven-system and of a thirteen-system 

respectively converts one and two lines into one and two others. 

In like manner, when planes are to be converted into planes, the array is of 

11 + oni columns and of rows, and recpiires 9»i — -T 1 conditions for its 

vanishing. 

In general for space of p dimensions a function of an n-system is completely 

defined if 
11 — fX (^^1 0)11^ -|- &C.) d~ 1 — jU.j\I 1 . . . . (559), 

which converts 1n^ given points, rn., lines, m. planes, &c., into other given points, 

lines and planes, &c. 

154. We sliall now suppose that the array (556) does not vanish without conditions 

restricting the generality of the points. Let all the points except ii„i and he given. 

It is sufiicient to consider the cases in wdiich the number of conditions does not 

exceed three. 

By the expansion (55ft) we have, if fftn — -j- I = n, so that v conditions must be 

satisfied, or if n = 3??i — v I = 3 [m — 1) + (4 — a), 

2 ± (/l («j),/:2('b)’/3(«l). (.f’4.(^L)>/5(«-)’/G ('k)> • • • 

(./sw-j — ^ —])> S3'"-3 1) ^5«_j) 

^ <.y3'«—i ('-ft")’y3'"—1 (^6")' • • y's'"—"+1 (^ft")’ — o • . • (56o). 

For it is obviou.sly no use retaining any term (/] (<"^1),/i: (fft), ^3 («'i), y’4 («i)), in 

wdilch a h does not enter, as the minor array of this term has a column of zeros and 

vanishes. 

We thus have three types of conditions for n = 1, 2 or 3, and these are of the 

forms, the functions F being linear. 

1. (FiO,„, Fn4„„ Fgre,,, />„) = 0 ; 

II. [FjO,,,, Iba,„, = ft ; 

III. {Fpe,,, h,„] =0.(5G1). 
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In tyjDa T, if is given, h„i lies in a plane; and cim lies on a general cubic surface 
if h„, is given. 

In type II, if a„, is given, h,„ may be any point on a line ; and if is given, 

may be any point on a twisted cubic. 

In the third case, and either point is determined it the other is given. 

There is no difficulty in applying this method to the case of Art. 153. We must, 

however, include the case of four conditions being recpiisite. The last line must 

belong to a complex, a congruency, a ruled surface, or be one of a definite number 
of lines. 

155. We shall now consider the critical cases when eveiy first minor of (552) 
vanishes. 

The minor obtained by omitting the last column expands into 

- ± (/i(t<^i),/o(«i),/3(^h)j/r(«])) • • • [/n«-3 (n,„). . . (5G2). 
Here, as in the last article, we have the types 

I- (Fpf-,;;, FoCO;;, FgCt,,;, 0 

II. FgU,,,, FgU J = 0 ; 

III. [F^a,,, FoCgJ =0 ; 

IV. F«,;, = 0. 

corresponding to n — 4to, n - 4m + 1, n = 4m + 2, and n — 4m + 3. 

Now, fiom the nature of arrays, though it does not appear directly from the form 

of the expansion, these conditions are all combinatorial functions of the m points a. 

I. In the first place, for the type I we have for m = 1 the Jacobian of a four- 

system. Next, for n = m — 2 we have a one-conditioned assemlilage of lines of 

the fourth order, or a complex of the fourth order. These are the lines which can be 

destroyed by single functions of the system. For n = 12, m = 3, (562) represents a 

one-conditioned assemblage of planes, and these planes envelope a surface of the 

fourth class, and eacli can be destroyed by a corresponding definite function of the 
system. 

For n= 16, m = 4, the same ecjiiation represents a constant multiplied by the 

volume of tlie tetrahedron (■''h'^GUs^) to the fourth j^ower. 

II. Again, for n = 4m — 1, and more particularly for m = 1, we have the critical 

sextic 

L/i«/2A/3^^] = 0.(564), 

of three functions ; and for seven functions a congruency of lines common to a set of 

quartic complexes ; while for eleven functions we have a two-conditioned assemblage 

of planes, or a developable of planes enveloping certain surfaces of the fourth class. 

III. For 71 = 4 HI 2 there is first the system of united points of for a pair 

of functions, or = 0. Secondly, a ruled surface of lines destroyed by 

functions of a six-system ; and thirdly, a determinate number of jDlanes destroyed by 

2 T VOL. CCI.—A. 
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functions of a ten-system. For a fourteen-system it requires an invariant relation 

to vanish. 

IV. This case requires a single function to destroy a point ; it gives the lines 

destroyed by functions of a five-system (of these there are 20, compare Art. 114); 

and it imposes a condition on a nine-system of functions, so that some function of the 

system may be capable of destroying a plane. For a thirteen-system an invariant 

relation must vanish if a critical case arises for non-coplanar points. 

I calculate the order of the Kummer surface of the quartic complex for the eight- 

system to be 72, and the order and class of the congruency of the double lines to be 

24. The lines of this congruency would seem to be capable of being destroyed by 

two-systems of functions selected from the eight-system. 

156. More particularly, if the line ah can be destroyed by a single function of an 

n-system, 
tx^f\a = 0, = 0 .(565); 

and the array 

/i« /s« ■ 

• • • /«& -J 
(566) 

must vanish. The number of conditions is now 9 — n, so that from a nine-system 

one function can be found to destroy an arbitrary line. For n = 8, we have the 

complex 
S ± ifiaf.af^af^a) = 0 .(567). 

If the plane a, h, c can be destroyed by a single function 

' J\a f„a...f,,a' 

fi^ - ■ ■ fnh !> = 0 . . 

/a /sC . . . f,fi 

(568), 

and this requires 13 — n conditions. For n = 12 we have the surface enveloped by 

the plane (compare the last article) 

S ± (/i«yw>/#) (/5^/0^/7^/s^) (/gc/ioc/nC’/iaC) = 0 (569). 

157. When a line can be destroyed point by point by functions of a two-system 

selected from an ?i-system, 

S{x^-\-ty^)f^{a-\-th) = 0, or Sxj\a = 0, Sxj\h+Syj\a = 0, tijj\b = 0 (570); 

and the array 
f^a . . . f„a 0 0 ... 0 

■ • • f>P ./i« ./> . • • |> = 0 . . (571) 

0 0 ... 0 f,h . . . J 

must vanish, or 13 — 2)i conditions must he satisfied when the line is arbitrary. The 
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fundions must satisfy 9 - 2» conditions, as the line may be made to satisfy four. 

For a four-system one condition must be satisfied for the existence of a line of this 

nature, but for a five-system (compare Art. 114) a ruled surface of such lines exists, 

triple chords of a curve of the tenth order. 

If the line can be destroyed by functions of a three-system we have (compare 
Art. 114) ^ 

S (.T^ -f {a tl)) = Q.(572), 

and the resulting array is of 4 rows and 3n columns, and vanishes if 13 — 3n 

wnditions are satisfied. Finally, if the line is destroyed seriatim by functions of an 

included four-system, 21 — 4'n conditions must be satisfied. 

We may state that the number of conditions required to determine an N-system 
included in an ^r-system is 

N [n N) _ N' (n — (N fi- N' = w).(573). 

158. As regards the destruction of planes, a plane may be destroyed en Hoc, as 

in (568), 01 line by line, or point by point. In the second case, 

% (xj -}- syT^f-^ (rt -}- 

or t (Xj + sy^)j-^ [a + sc) = 0, S (x. -f sy^) {b sd) = 0 . . (574), 

with the condition [abed) = 0. 

Thus the array is 

/i« 

/f 

0 

/l& 

/2« 

/2C 

0 

Ad 

0 0 

fnC 

0 

fnd 

0 

0 

/l« 

/f 

0 

/i&. 

Ad- 

. . 0 

■ • /«« 

• Ac 

. 0 

-A^ 

. Ad 

^ = 0 (575) 

of 6 rovs and 2n columns, requiring 25 —2n conditions when we disregard [abcd) = (). 

This IS the case m which a function can destroy a hyperboloid* generator by 

generator. The same number of conditions must be satisfied even when the four 
points are supposed co-planar. 

Finally, the case m winch the points are destroyed seriatim gives an array of 3l^ 

columns and 6 rows, requiring 25 - 3n conditions for its vanishing. 

From these articles we can clearly trace the way in which a Jacobian of four 

uncDons may degiade, one of the most interesting being where it breaks up into 

a pair of quadrics, one of which is destroyed generator by generator by a two- 
system. 

_ * In the paper on the interpretation of a quaternion as a point symbol, the equation q = a + th + sc + std 
IS considered. It represents a ruled quadric and exhibits the dual generation. 

2 T 2 
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SECTION XXL 

The Extensiox of the Metiioi) to Hyper-Space. 
Art. 

159. The equation of a flat in terras of parameters..304 

160. The combinatorial equation of a flat...304 

161. The reciprocal of a flat.305 

162. The symbol of a flat.. 

163. The symbol of the reciprocal flat.326 

159. Exactly as in quaternions we may regard the sum of a scalar and a line 

vector in space of n dimensions as the symbol of a weighted point. 

If 

g = S^ + = !^l 
+ ~ '^5' i (57G); 

q is the symbol of the point Q to which a weight S(/ is attributed. 

The point represented by a sum of point symbols is the centre of mass of the 

^velghted points, and the veeight attributable to that jDoint is the sum of the weights. 

The equation 

q = a-\-th.(577), 

in which t is a variable scalar, is the equation of the line ah. 

I he most general homographic divisions on two lines ah and cd are repre¬ 

sented by 

q = a-\-th, q~ c-^ td.(57«), 

in which the weights Sn, 85, Sc, M have been suitably selected. 

The equation 

q = t.^a.^ . ..(579) 

represents the plane of tlie points cq, cq, cq; and more generally 

q = qcq + qrq + &c. . . . + CYC«.(580) 

is the equation of the (m — l)-flat containing the m points cq, a.-, . . . a,„. 

I believe it is more convenient to call generally a plane space of m dimensions an 

m-flat, and to retain the ‘plane for its ordinaiy signification—a two-flat. 

100. In accordance with Hamilton’s notation (‘Elements,’ Art. 365) Ave propose 

to Avrite 

[n/qcq . . . o J = \p^.L'cqL cq . . . V(h„-“Xfl;;V,„_^.V(qVtq . . . Vn,„Scq 

or briefly 

[o]vi = \ „ [a]„ -b ^ [n],„. 

as the sjunbol of the (?n l)-flat containing the m points rq, n.-, . . . a„,. 

(581) ; 

(582) ; 
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In order to justify this projDOsal, we oliserve that the array [<x^(Xo . . . changes 

sign whenever two contiguous elements are transposed. It consecpiently vanishes 

whenever one element is a scalar multiple of another, or whenever any group of 

elements is linearly connected hy scalar coefficients 5 and it does not vanish under 

any other conditions. It is ecjuivalent to the most general one-row array that can 

be formed from the w symbols o, because, according to the principles laid down on 

the subject of quaternion arrays, the general one-row array must be of the form 

{opQ. . . a4 = xY„,.Ya,Ya,. . . Vo, + ijS ± Y,„_,.Ya,Ya,. . . Vo,,Sai . (583); 

and the separable parts and of \ci\ni- afford all the information contained in 

the general array with indeterminate scalars x and y. 

The equation of the flat containing m points a may be written in the form 

. o J = 0 .(584), 
as this implies (580) 

q — Qcq -{- tyio . ff- 

in which Q, Q. . . t„i are variable scalars. 

161. Returning to the relation (582) 

\jY\n — Y„i \ct\ni “b 

it IS evident that is equal to the product of a scalar and a set of m — 1 

mutually rectangular unit vectors is - - - im, iu the (m — l)-flat containing the m 

points a^, 0.2 - . . a„,. It is also apparent that Y„, [«],„ is the product of a set of m 

mutually rectangular unit vectors in the w-flat containing the origin and the jjoints 

a multiplied by a scalar. We may take this product of m vector units to be 

iy^s • • • im- Thus we have 

[«]« = (Vh — --‘im .(585), 

where t.Q + qf, = 0, — 1, and where x and y are certain scalars. (Comjiare 

Cliffoed’s ‘Mathematical Papers,’ p. 398.) 

From this we find the symbol of a definite point 

A„ — 1 I \/Y\m _ 1 Xl.ls - - ■ 
yhUis - - - I 

rr __ X - 
• — Id— h 

Vh y 
. (586); 

and we verify at once that this point is a conjugate of all the points a with respect 
to the quadric 

= 0.(587), 

because for any one of these points we have 

S.,A,„ = Sc. (1 + 4.EI) = Sc. + ^4-4- = Sc. - Sc. = 0 . (588), 

as appears on reference to the equation (581). 
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In other words, is the reciprocal in the wi-flat which contains the origin and 

the points a of the (m — l)-flat which contains the points a. 

For examjde, in three dimensions, 

^2 1 + 
YfCiSai — Vo^So.-, 

(589) 

is the point in the j^lane o^^ao which is reciprocal to the line a^a-^. 

162. A comparison of the ecjuations (581) and (585) shows that the m points 

+ Vh^ h - ■ ■ im.(590) 

(of which ?g . . . i,n are at infinity) may be taken as defining the [m — l)-flat 

containing the points a. 

Hence, conversely, if [ci]^ is any function satisfying the equations of condition 

Mm — ; (591), 

it is the symbol of an (m — l)-flat. In fact, we can reduce this function to the form 

(585) and the j^roposition is evident by (590). 

163. The symbol of the fat reciprocal to [o]„, with respect to the auxiliary 

quadric (587), S. q® = 0, in an n-space is 

[a]m G (592), 

where Xl is the qiuoduct of'' n” mutually rectangular vector units in the n-space, or 

In fact, from (585) we obtain 

(593). 

[Ctfa = ( —)™ ^{iji, — x)ip,^+fra+2 ■ . . ffzhh • • • 

= + Xh)in-,^%^+2 . • . in = M»+l-™ (594); 

and n I — m defining points of this new {n — ?7?)-flat are (590) 

y a■^I, ... In.(595). 

But all these points are conjugates, with resjDect to the auxiliary quadric, of the 

m points (590) ; and therefore the flat is the reciprocal of the flat Mm- 

More symbolically, we have the relations 

Y„ [a]„. n = Y„_,„. [a],, n ; Y,„_, [«],„. O = - AJ . [a],„ G . (596), 

and in particular for three dimensions we deduce the relations 

[rA] = - {a'l/) ; {ab) = [o7/] . 

connecting a line and its reciprocal (compare p. 224). 

(597), 
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For odd spaces, if 

n — iu + 1 = m or m = ^ -j- 1), 

the flat and its reciprocal, [a\, and are of the same order. This is the case 

for a line in three dimensions, and vve recover from the general formuhe 

[ah'] = — (a'b') ; (ah) = [(I'b'] , 

relations which I have elsewhere given connecting the symbols of recporocal lines. 

We are now prepared with all the necessary machinery for the geometry of flats 

and of their reciprocals. 
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IX. The Dlfierential Invariants of a Surface, and their Geometric 

Significance. 

By A. E. Foesyth, M.A., Sc.D., F.R.S., Sadkrian Professor of Pure Mathematics 

%n the University of Cambridge. 

Received February 14,—Read March 5, 1903. 

The present memoir is devoted to the consideration of the differential invariants of 

a surface; and these are defined as the functions of the fundamental magnitudes of 

the surface and of quantities connected with curves upon the surface which remain 

unchanged m value through all changes of the variables of position on the surface. 

Ihe idea of differential parameters for relations of space appears to have been 

introduced^ by Lame ; it is to Beltrami^ that the earliest investigations of the 

corresponding quantities in the theory of surfaces are due, as well as many detailed 
results, t 

It IS natural to expect that these differential invariants would belong to the 

general class of differential invariants which constitute Lie’s important generalisation 

0 tie original theory of invariants and covariants of homogeneous forms. This 

association has been effected]: for some classes of differential invariants by Professor 

ZoRAwsKi, and lie has obtained the explicit expression of several of tlie individual 

functions. 

Professor .^orawskTs method is used in tlie present memoir. In applyiim it a 

considerable simplification proves to lie possible ; for it appears that, at a cmfain 

stage^ 111 the solution of the partial differential equations cliaracteristic of the 

invariance, the eipiations which then remain unsolved can be transformed so that tliey 

become the partial differential equations of the system of concomitants of a set of 

simultaneous binary forms. The known results of the latter theory can therefore lie 

used to complete the solution of the partial differential equations, and the result gives 

the algebraic aggregate of the differential invariants. 

This memoir consists of Lvo parts. In the first, the investigation just indicated is 

carried out; and the explicit expressions of the members of an aggregate, algebraically 

^ In Ins memoir, “Sulla teorica geiierale del parametri differenziali,” ‘Mem. Acc. Bologna,’ 2nd Series, 

vol. 8 (1869), pp. 549-590, Beltrami gives a sketch of the early history of the sul.ject. 

T An account of the theory, developed on the basis of Beltrami’s researches, is given by Dareoux 

iheorie g^n^rale des surfaces,’ vol. 3, pp. 193-217 ; he also gives references to Bonnet and Laguerre ’ 
+ In a memoir hereafter quoted (§ 1). 

VOL. cci.—A 339. 2 u 
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complete up to a certain order, are obtained. In the second part, the geometric 
significance of the different invariants is the goal; in attaining it, some modifications 
are made in the aggregate, but they leave it algebraically complete. 

The investigation reveals new relations among the intrinsic geometric properties 
of a curve upon a surface. To the order considered, four such relations exist; and 

their explicit expressions have been constructed. 

PAKT I. 

Construction of the Invariants. 

1. In an interesting memoir'^ pulDlished in the ‘ Acta Mathematica,’ Professor 
ZoRAWSKi has developed a method, outlined by LiE,t and has applied it to the 
determination of certain properties of functions which appertain to a surface and are 

invariantive, alike under any transformation of the two independent variables and 
under any deformation of the surface that involves neither tearing nor stretching. 
In particular, he obtains the number of these functions of any order which are 
algebraically independent of one another; he also obtains expressions for several 

functions of the lowest orders belonging to recognised types. 
The method, and much of Professor Zorawski’s analysis, can be applied to obtain 

the more extensive class of all the differential functions which, appertaining to a 
surface and to any set of curves upon the surface, are invariantive under any trans¬ 
formation of the two independent varialdes. The process, which involves the solu¬ 
tion of complete Jacoliian systems of the first order and the first degree, only gives 
the invariantive functions which are algebraically independent of one another ; it is 
not adapted to the construction of the asyzygetic aggregate. Moreover, only some 
of these functions are ijivariantlve when the surface is deformed without tearing or 
stretching; they can l:)e selected liy inspection, on using the fundamental theorem 

connected with the theory of the deformation of surfaces. 
As far as possible, the notation adopted by Professor 2orawski is used. The 

analysis, preliminary to the construction of the differential equations which are 

characteristic of the invariance, is set out l)riefly; it is needed to make the process 
intelligible. There is some difference from Professor ^orawski’s analysis, mainly 
(l)ut not entirely) l)ecause a beginning is made from the consideration of relative 

invariants and not of aljsolute Invariants. 
2. The independent variables of position on the surface are taken to be x and y. 

A function jf of these varlaliles and of the derivatives of any number of functions 

* “ LTeber Bieguiigsiiivamiiten : eine Aniveiidung der Lie’schen Gruppentheorie,” ‘ Acta Math.,’vol. 16 

(1892-93), pp. 1-64. 

t ‘Math. Anil.,’ vol. 24 (1884), pp. 574, 575. 
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which involve the invariables is said to be a relative invariant when, if the same 

function F of new independent variables X and Y and of corresponding new deriva¬ 

tives of the transformed functions be constructed, the relation 

is satisfied, where 
/= OAF 

ax 0Y _ 0X a Y 
dx dy dij dx 

The invariants actually considered are rational, so that p, is an integer. The 

invariant is said to be absolute where p = 0. 

Now it is known, by Lie’s theory, that the property of invariance will be estab¬ 

lished if it is possessed for the most general infinitesimal transformation of x and y ; 

accordingly, we shall take 

X = X -jr i(x , y) dt, Y y rj {x , 7j) dt, 

where f and y are arbitrary integral functions of x and y. Derivatives with 

to x and y are required ; we write 

U mil — 

regard 

for all values of m and n. Thus, as only the first power of dt is retained, we have 

H — 1 -f -f 1701) 

The possible Arguments in the Invariants. 

3. Next, we have to consider the possible arguments of a differential invariant 

of a surface. Broadly speaking, these may belong to one or other of three classes :— 

(i) the fundamental magnitudes associated with the surface, and their derivatives 

of any order with respect to x and y ; 

(ii) functions ^ (x, y), i/; (x, y), . . . and their derivatives of any order with 

respect to x and y ; 

(iii) the variables x and y, and the derivatives of y of any order with regard 

to X. 

We consider them briefly in turn. 

4. Firstly, as regards the fundamental magnitudes : by a known theorem, a surface 

is defined uniquely (save only as to position and orientation) by the three magnitudes 

of the first order, usually denoted by E, F, G, and the tliree magnitudes of the secontl 

order, denoted by L, M, N. (If only E, F, G be given, the surface is defined as 

above, subject also to any deformation that does not involve tearing or stretching.) 

2 u 2 
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Ihese six quantities can occur in the invaiiantive function required, as 'svell as their 

derivatives of any order with res2)ect to x and y. 

But there is a difficulty as regards the derivatives of L, M, N ; for tliere are two 

relations, commonly known as the Mainaedi-Codazzi equations, which express 

aL _ aM^ m _ aN 
dy dx dy dx 

in terms of L, M, N, E, F, G, and the first derivatives of E, F, G. To avoid this 

difficulty, it is convenient to introduce the four fundamental magnitudes of the third 

01 del, denoted by P, Q, B, S ; the six first derivatives of L, M, N can he expressed 

in temis of P, Q, B, S linearly, together with additive combinations of L, M, N and 

of the first derivatives of E, F, G. 

The second derivatives of L, M, N will thus he expressible in terms of the first 

deiivatives of P, Q, B, S, together with the ajipropriate additive comhinations Ifee 

from those derivatives. But again there is a difficulty as regards these; for there 

are three relations, which exjiress 

aQ_ap^ as _ aB 
dx dy dx dy ’ dx dy 

in terms of P, Q, B, S, L, M, N, E, F, G, and the first derivatives of E, F, G. To 

avoid this new difficulty, it is convenient to introduce the five fundamental 

magnitudes of the fourth order, denoted hy a, /B, y, S, e; the first derivatives of 

P, Q, Pt, S (and therefore the second derivatives of L, M, N) can be expressed 

linearly in terms of a, y, S, e, together with additive combinations of P, Q, B, S, 

L, M, N, E, F, G, and the first derivatives of E, F, G. 

And so on, for the derivatives ot successive orders of L, M, N ; we avoid the 

difficulty of linear relations among them by the introduction of the successive 

fundamental magnitudes. The analytical definition* of these magnitudes can he 

taken in the form 

where p is the I'adiiis of curvature of the normal section of the surface throiiP'h the 

See a paper by the author, ‘Messenger of Mathematics,’ vol. 32 (1903), pp. 68 d acq.; see also 
§31, pod. 
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taiigent-liiie defined by dx : dy, and tlie arc derivatives are efiected along the geodesic 

tangent."^ 

Accordingly, the quantities of the class under consideration that may occur are 

E, F, G and their derivatives up to any order, together with the fundamental 

magnitudes of any order above the first, but without any derivatives of these 

fundamental magnitudes, t 

5. Secondly, as regards functions (f) {x, y), xfj (a’, y), . . . and their derivatives : we 

do not retain the functions themselves, but only their derivatives, for the following 

reason. The invariantive property is usually some intrinsic geometric property 

connected with a curve on the surface represented by = constant or zero, 

xjj = constant or zero, and the like. Accordingly, we retain only derivatives of these 

functions up to any order; the equations ol transformation will show the connection 

of the order of these derivatives with the order of the derivatives of E, F, G retained. 

6. Thirdly, as regards x, y, and the derivatives of y with respect to x up to any 

order : it is clear that x and y will not occur explicitly, for their presence cannot 

contribute any element to the factor 12 ; it is also clear that they will not occur 

explicitly, for the further reason that their increments involve ^ and y but not 

derivatives of f or y, whereas all other increments involve derivatives of £ or y, but 

neither ^ nor y themselves. Further, after the retention of quantities of the second 

class, we shall not retain y. For let the value of y' belong to a curve x// =0 on the 

surface, so that 

We know that 
'/'iO + // ^01 ~ d- 

EG - F3 ~ 

where I is an absolute invariant; if then we have a difierential invariant involvinir 
O 

y, we turn it into one involving and xpQ-^, by writing 

?/ = - ; 
Vtji 

while if we have one involving and we turn it into one involving y', by 

writing 

^ ^10 ^ [t EG-F^ 
I y’ I E + + G^'^j • 

It would therefore be unnecessary to retain y', when we retain first derivatives 

01 any number of functions in an earlier class. 

Similarly, it can be shown to be unnecessary to retain y'', when we retain second 

derivatives of any number of functions in an earlier class ; and so for other 

derivatives of y with respect to x. 

* See § 31, post. 

t It will appear that the iutrocluctioii of these magnitudes not merely avoids the difficulty as regards 

the derivatives of L, 21, N, but also secures a substantial simplification of the expressions of the (htlereutial 

invariants. 
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Hence we retain none of the third class of 230ssible magnitudes. But after the 

reasons adduced, we should only be justified in dropping y' from the set of magni¬ 

tudes when it was otherwise required, if we associated the first derivatives of the 

appropriate function i// with the functions already retained; or in dropping y'\ if ve 

associated the second derivatives of with the functions ah’eady retained; and so 

for the other derivatives of y. (An example occurs later in § 24.) 

Note.—In calculations subsidiary to the determination of the geometric 

significance, it is found necessary to use the relations involving the derivatives 

ot L, M, N, P, Q, Pv, S ; it may therefore be convenient to give their explicit 

expressions.^' They are :— 

where 

P = L,o - 2 (Lr + Ma) 

II tp
 

o 1 2 (Lr -f Ma') • 

1 o
 

II (LP -h Ma') - (Mr + Na) 

E = Moi - (Lr" H- Ma") - (MP -1- Na') 

- 2 (MP -f- Na') 

S =Noi - 2 (Mr" + Na") 

2VH = GEj,-F(2F,,-Eo,)1 

2W =:GE,,-FG,, I, 

2V2P' = G(2Foi-Gio)-FGoJ 

2V^A = E (2F,o - Eoi) - FE,o ■] 

2V2a' EG,o - FEo, 

2VW^ = EG,,-F(2Fo,-GJ^ 

a = Pj, - 3 (Pr-f qa) 

/3 = P„J _ 3 (PP + Qa') - f (FL - EM) 

= Qio- (Pr'-fQA') -2(Qr-fPA) +^^2(FL-EM) 

y = Qoi - (Pr" -f Qa") - 2 (Qr' + Pa') - i (GL - EN) 

= Kio - 2 (Qr' + PvA') - (Er -f Sa) +1 (GL - EN) 

S = - 2 (Qr" + Ea") - (EP + Sa') - i (GM - FN) 

= Sjo - 3 (EP -f Sa') + I (gm - FN) 

e = Soi - 3 (Er" -f Sa") 

where = LN — M^. 

They are quoted from the author’s paper, mentioned in ^ -1. 
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Increments of the Arguments. 

7. We now require the increments of the various arguments, corresponding to tlie 

increments of x and y. We denote l)y E', F', . . . the same functions of X and Y as 

E, F, . . . are of x and y; thus, if c/E be the increment of E, we have 

E' = E + dE ; 

and so for the other magnitudes. 

Since the relation 

E dx^ + 2F dx dy + G d^f = E' dX:^ + 2F' dX dY + G' dY'^ 

holds for all values of dx and dy, we have 

E = E' f + 2F' + G' 
■hx / ax ox 

= E' (1 + 2^jq dt) + dt, 

p ^ p,, 0X ax p,, /ax aY ax aY\ aY aY 
ax dy vax dy dy dx j dx dij 

= E'^oi + F' (1 + dt + 17131^ dt) + G't^iq dt. 

G = E' f + 2F'^-^ — + G' 

= 2F'^q3 dt + G'(l + 2rjQ^ dt). 

We thus have 

- dX = (2E'^3o + 2F'.73o) 

Now, the differences between E and E', F and F', are small quantities of tlie order 

dt; hence, when we are retaining only small quantities of the order dt on the riglit 

hand side, we can replace E', F', G' Ijy E, F, G respectively; and we find 

~ gf — 2E^1I3 + 2F773,j 

~ = F^o3 + F^ju + - • 

- + 2G,„, 
J 

Similarly, the relation 

L dx^ + 2M dx dy + N dif = - = L' dX^ + 2M' dX dY + N' dY'^ 
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holds for all values of dx aud dy ; so tliat the laws of transformation for L, M, N 

ai'e the same as for E, F, G. Hence 

r/L 

d! 

r/M 

lU If) I 
2i\r77^„ 

-+ M-)7oi + ^Vio r 

c/N 

df 
= 2Me 01 + 2N77 01 

Usinu the relation 

(P, Q, K, SXdx, dyf = d.^ 
d /F' 

in the same way, we find 

__ (/P 

dt 

dO. 

ds \p 

3Pfif. 

= (P', Q', P/, S'XdX, dYf 

d-3Qr? 10 

— ^7^’ — + 2Q^]n + Q’?oi +2Pi.77j^q 

dPv, 
df 

dS 

df 

— 2QX11 + 2Pi77m + Sy 10 

voi + 381701 

Plsinu' the relation 

(a. 13, y, S, ejdx. d,/)* = . A T) = (,', y, </Y)' 

similarly, we find 

da 

(If 
+ 4a^]0 + d/3r7|Q 

= «Gii + 3/S^oi + ^’7(11 + 3). 77 

+ 2yf,n + 2717,11 + 25 

= 57&1 + 5f,„ + 3S77„i + €17 

10 

^10 

10 

(h 

df = ^K 01 + ■le77 01 

And so for the increments of the other fundamental magnitudes. 

8. The increments of the derivatives of E, F, G are required; they can he 

obtained liy the following method, differing from that which is adopted by Professor 

ZoRAWSKi. Let X and y become x + h and 3/ + A’ respectively, and let the con¬ 

sequent new values of X and Y be X + H, Y + K; then 
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H = (X + H) — H = (ir y)} dt — h -{■ A. dt, 

where 
lyi-l-s 

A — S- p /- 
— -< — Sri , , 

,■=0 s=0 r ; 5 ! 

and S' implies that r and .s may not be zero together. 

Similarly 
K==/.: + Bf/G 

where 
jjhs 

V, — V V' Ji ^ 
r=0.y=U 7 : S , 

with the same signification for S' as before ; and thus, for all values of p and g, 

we have 
=z hPh + {pliP-^hk 4- qhPki-^B) dt. 

Now, as the relation 

E = E' (I fi- 2^10 + 2F'')7^q dt 

holds for all values of x and y, it follows that 

E {x + It, y fi- /t) = E (X + H, Y -|- K) {1 + 2^i^o “b 7/ "E ^0 

+ 2F (X 4 H, Y + K) rj^Q {x + h, y 4- k) dt. 

IIj 
Let both sides be expanded in powers of h and k ; then —= coefficient of h"‘k'^ 

rn I n ! 
in the expansion of 

V V E' 4'^ , [hPl'^ + IphP-^k^iK + ijhPh-^'^) dt} 
_p=0rx=0 2^ ■ q ■ ' 

1 + 2 2 S f ,,,, ~ dt 
----- ?• ! 6* 1 r=0 s=0 

4- 2 
Fb 
44 {hPt(2)hP~dc'^iA-\- qhPB-^B) dt] 

Lj‘=oq=oplqi 

X X ^ . A"'' _ dt 
? =0 .<J=rO 

-t Vr+l.s • ' , 
-II ? ! ,s ! 

Remembering that the first power of dt alone is to be retained, we find this 

coefficient to be 

TT' 
_ mn 

mini 

4 SS' (to —r+ 

+ 222-, 

[m — r 1)! (rt — 6-)! r ! s ! 

I 

{m — r)! (w — s)! r ! s 

+ (m -r)l{n- s 4- I)! r! ,y t ~ ^ Vrs'E^'ra-r,n-s+i dt 

+ (m - r)! (w - s)! r ! a ! dr+i,s'P'tn-r,.-. dt; 

the first summation SS' does not occur if )■ = m 4- I, the second summation SS' does 

VOL. CGI.—A. 2 X 
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not occur if s = 

Writ i no; o 

we have 

n + I, and in neither of them may r and s vanish together. 

m! /u\ n! m 
r {in — r)! -z'! ’ j {^n — s)! .s 1 

dt r=03=0 =o\r \s m— y-^ 1, s 

^ ^ W- M c / V,-+l,.sJ-' n-3 j—0 3=0 \ ' / W / 

V X' M u E' 5+1 

. o V y PM r, E' 
»'=0 s=0 \ ' / ! 

Proceeding similarly from the expressions for F and G, we find 

cZF 

dt 
^ V /^^M i ^ E' " b)-, s + l-*-* J/i —I', •/!—S 

';'=OS = 0 \ r / \ s 

+ V V' p'^M /'^M t p 
I “< —< \^,\„ bi-s-^ m — r+l,H—s 

r=0s=Q \' / V’ / 

/ni\ hr 

)'=0 s=0 \ ^ / j 

4- V VM "" W 'M „ Y' 
I \ j \ „ I Vcs-*- '/ii-!"; 'rt-S + 1 

+ S 2 (’")(’;) (f„.,„ +>7,, 
)-=0 s = 0 \ ' , ' ‘ 

and 

, hn\rn\ p, 
+ “* " i )■ / \ o / ^'■+r si'i—i', 'i--' ’ .■ = 0s = 0 \ ' / 

— 2 V V 
r=0 s=0 \ r / \.s 

^ .E' bp-, s+l-*- ,1-s 

I r'i'd 
~r -J — ^ 

,' = 0 s = 0 ■r / \.9 ^ i', S + I //i — '/•, /i — 3 

'/=os=o 'D’/ 
+ s 

'/=( 

'Hi 

+ :£ E 

”, /»i\ /n' 1/ 
111—)■+1, n —s 

Note.—As we now have the first increment of tlie quantities E„,„, F^n;,, G„i„, and as 

the second increments are not required, the quantities E', F', G' on the right-hand 

sides can he rejdaced by E, F, G, witliout affecting the values of the first increments. 
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9. Ill particular, we have 

clE 

dt 

dE, 

MO _ q 
+ Vio (Eqi + 2F10) + 2ryo|jF 

''ni — 2fioEoi + ^oiEio + + >?o]Eui + ^i^joEoi + 2i?nF 

— ^^ioEoq + o^ooE^q -f 24oE 

dt 

f/E., 
' dt ^ 3?20-I^10 

+ 2i?io (Eji + F20) + >730 (Eq] + iFjo) + 2F7730 

rZEi 

dt 

(' ’ 

■'ll  — S^iqEh + ^oiEoo + 2^ooE,ji + + 2|^2iE 

+ ’?io (Eo3 + 2Fji) + '>?()iEn + 21720F01 + (E,ji + 2Fiij) + 2%^F 

^0? 
dt 

“ — 2?i(jEo3 + 2^oiEn + 4^iiEq3 + ^usEio + 2^i2E 

+ 2i7oiEu3 + 2i7ioFoo + 47;nF,ji + r^o.Eoi + 2r7ioF 

- — 2^ioFio + ^uiEio + ^3oE + fiiE 

+ ’^lo (Eol + Gjo) + i?oiFio + + ^iiE 

- = f.oFoi + 4, (E„, + F,„) + f„F + f„,E 

+ '710^^01 + 27701F01 + 'i?iiCt + i^ooF 
]-C' 

- = S^.oFeo + ^oiE3o + 34,Fio + 2^nEjo + ^3iE + ^^oF 

+ >7oiF3o + ^Vio^n + ”>710^^20 + ^2o(2G]o + Fyi) + 2t)^^E^q + 773„G + y].yE 

~ = 2fioFji + ^oi(Eii + F2o) + ^o(jFQ^ + ^3i(E(ji + 2FiJ + fy2Eio+4iF + ^ioE 

+ 2i?oiFn + ^io(Fo2+ Gt] i) + 1730^01 + ’7ii(2Foi + Gio)+ 1700F10+ %iG + 7713F 

- - = fioF„. + fo. (E„, + 2F„) + 2f„F„, + f„, (2E„, + F,„) + f,,,F + f^jE 

? 1 
( ’ 

dt 

dG- 

dt 

dG< 

+ '5^oiFo2 + ’710^02 + 2i7iiGqj^ + ^rjQ.EQ^ + t^^oG + 7]q^E 

■ = + 2^oiFio + 2^"iiF + ’7iu^Ri + “^Voi^io + 2r7iiG 

' = ^ui (^Do + 2F01) + 2|^q2F + 3>7oiG^,^ + 2-)7,joG 
dt 

dC' 

- ""a = 2fi„Gj„ + 2f„F,„ + + 4f„F.„ + 2ft,F 

f/Gi 

+ 2i7oi^Eo + 2r7i(,Gii + 17.,oGoi + irj-^iG^f^ + 27;oiG 

~ — ^10^11 + ^01 (CGq + 2F11) + (2F^,^ + Gjo) + 2|’ooF^y + 2^ioF 

+ 3i7oiGii + ^710^^0 + 3t7iiGoi + 27703^10 + ^i^G 

- = 2ft, (F,. + G„) + ft, (G,„ + 4F„,) + 2ft3F 

H“ I^OiFtiio ~1“ ^^03^^01 “h 2170:51^ 
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10. We require expressions for the increments of the derivatives of functions such 

as (f) {x, y), ?/), , . . ; for this purpose, we proceed as l)efore. We have 

+ h, y + k) = f (X + H, Y + K) ; 

and therefore 

coefficient o^ h"k" in expansion of ^ (X + H, Y + K ) 
m! n! 

V q P '• 

t s {h‘’h‘ + ( 'ph'-'lfik + dt] 

where U is the coefficient ]f"k" in 

that is, in 

p <12'>-q- 

V V s' V 

V 'i V s 'P''- <l 

wliere in the summation r and s’ do not vanish together and, if either or q be zero, 

the corresponding term ceases to occur. 

Writing 

we have 

df 
V V' 

,■={) s = 0 ^ 
h ^ « + 1 — "h ^ m — r, )i + I — .pt s ) i 

which gives the required increments for derivatives of a function (f). Similarly of 

course for the Increments of the derivatives of all functions similar to <p. 

Note.—Just as in the expressions for the increments of the various derivatives of 

E, h, G, we can replace, in the expressions for the increments of the various 

derivatives of a function (f), the various quantities on the right-hand sides by 

without affecting the values of the first increments. As before, second increments 

are not needed for our purpose. 

II. Ill particular, we liave 
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— + <f>uiVio 

— = ^loioi + 4>inVoi 

dt — 2^00^10 + ^in6.o + 2^ii17io + 4^Q\'n-y^ 

— = <^11^10 + <^20^01 + 4>in^n + </>o2’?io + ^ii^oi + 4>()\V\\ I' ^ 

^^4*02 _ 
dt 

dl 

#21 
dt 

dt 

d<pQ.^ 

dt 

— 2'^ll^01 + ^10^02 + 2(^02^01 + <^01^02 

= ^4^3o4iq + 3^20^20 + (f^in^so + 3</>ci’?io + '^^4^nV2o + '/'oi^so 

= ^4^2i4lO + ^.30^01 H“ ^Il4o + 2<i!>20^ii 4- <^10^21 

+ 2(^i.3'>7io + 4^2\Vo\ + 4>o2V2() + '^'f^nVn + (ko\V2i 

= <^12^10 + '^2\^(n + 2<^n^ii + (f>2(4a2 + 4^v4v2 

+ ^kzVV) + 2</>13^01 + 2<^02^11 + 4^uV02 H- 4>o\Vu 

= 3<^12^01 + Hu4o2 + 4^w4o3 + 3(^03^01 + 3</>02^02 + </>01^03 

12. A comparison of the expressions of the increments of the derivatives of E, F, C4 

on the one hand, and those of the derivatives of a typical function (f) on tlie other, 

leads to one immediate inference as to the arguments that enter into the composition 

of a differential invariant. Suppose that such an Invariaiit is rerpiired to involve 

derivatives of a function (j) up to order M in x and y combined ; the increments of 

these derivatives involve (among others) the fpiantlties 

^MO) ^-MU • • • 1 ^O.M ; ym; • • • > 

The invariantive property requires that the terms involving these quantities must (if 

they do not balance one another) he balanced by other terms involving these same 

quantities ; and therefore derivatives of E, F, G uj) to order M — 1 in x and y 

combined must occur. And conversely. 

In particular, if derivatives of (f> of the third order occur in an invariantive 

function, it must contain derivatives of E, F, G of the second order. 

The Ditferentiul Equations Defirtiiuj the Invariants. 

13. The invariantive property is used, exactly as in Professor Zoeawski’s applica¬ 

tion of Lie’s method, to obtain partial differential equations of the first order 

satisfied bv any invariantive function. We proceed from an equation such as 

f = -^"7; 
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yve substitute, in each of the arguments such as k', where 

dll 

at 

the proper value of oljtained above for the vaiious aiguments ; we also write 

u' = u -{■ dt 

— 1 + (^10 + '>?oi) dt; 

and then, according to Lie’s theory, we equate the coefficient of dt on the two sides. 

Tlie functions £ and t] are arbitrary; and therefore, in this new equation, the 

coefficients of the various derivatives of ^ and n] on the two sides are equal. We 

thus obtain a number of partial differential equations of the first order satisfied by/! 

'1 lie construction of the form of f depends upon the manij^ulation of the equations. 

14. The whole process will be sufficiently illustrated in its details if we construct 

the algebraically independent aggregate of differential invariants which involve 

derivatives of two'^' functions ^ and up to the third order inclusive. In order to 

take full account of the increments of such derivatives, it is desirable and necessary 

to retain derivatives of E, F, G up to the second order and, in place of the 

derivatives of L, M, N of that order, to retain the fundamental magnitudes of the 

second, the third, and the fourth orders. Thus the invariantive function involves 

some or all of the quantities 

TT TT 17 77 17 17 

F, F^JI, F.o, Fji, F^J.; 

G, Gjy, Gyp Goq, Gjj, GqoJ 

L, M, N ; 

p, Q, Pv, s ; 

y, S, e; 

^10; ^21! ^1-2’ ^03 5 

'Aio> V'on ’/'20> 'Ain ’Ao2> 'Aso 'A2n 'Aj2’ 'Ao3- 

Denoting any one of these arguments by k, the invariantive projierty gives 

_ .. . ) = n-y (.. . , u,. . ), 
that IS, 

7 ( • • • > dt, . . ) = 11 + (^^0 + ’Iio) dt]->^f{ . . . , u, . . ), 

and tlierefore 

: a« 'dt + ’'■"V 

* The form of tlie results indicates the fonn of the results when more than two functions occur. Morc- 
OA’er, if more than two functioirs of the type of </> and \L lie considered, they are connected hy an identical 
relation. 
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Substituting for the respective values for the respective arguments, and equiting 

the coefficients of the various derivatives of ^ and r), we have tlie requisite partial 

differential equations. They are ;— 

af= 2E + F + 2L + M 4- 3P 4- 4- K 
OF ^ 0F ^ aL ^ aM ^ ap + ^ 0Q + ap 

4- Ir, J- _L O I S 
+ '‘"0, + ®^3/3 + ’>'fiy + ^S8 

’*■ 0l{, 3E.,„ + 3E,, 3%, aiT '01 0F io aF 11 

F., -i-D ^.L 
+ 3Fr.+si + al; + aF 11 ^Fo, 

4- G 
^ ao 10 

+ opj ^/_ _i_ (;| 

+ '/'lo A + 2i^j„ A + <^„ A .f A 24>,i a _|. ^ A 
oipio 3<p.,„ 3<^n 0<^3(| 3<^,1 

, , 3/ , , 3f , . 3/ 

Vll 
+ 3^30-^+ 2.1.;, 

dl//30 a»//oi dl//i.3 
(I.), 

u/‘ = F + 2G + M4- 4- O 4- ‘^Tl 4- 3S 
aG aM aN ao ap as 

4- F ^- 
^ “^aFo, 

4- F _J_ OF ^./ 
^”aF,, “^^^''^'aF,: 

~1_ F _!_ OF -1- F -1- OF _J_ -TF 
^ '''aFjo aFni aF,o aF^^ aF 10 

+ 2Gio + SG^JI p(- + 2G.0 v/f- + aGji + 4Go.2 ./f- ¥ e/ ¥ 
'aG 10 aG, 01 aG OO aG 11 aG 03 

^4 ¥ I A ¥ , .J, ¥ ,, A ¥’ J_ o, ¥ 
+ "Poi y, h 9]1 Wa I" ^9o3 p”'r' + ^.n Gi-\- -9i3 —i“ ¥03 

drj&oi ^TOi ^Til ^T03 

I , a/’ . , , 01 I , a/" . ,,, a/" . o; a/ 
+ '/'oi p'.y + '/'ll v',- + ^¥2 w',~ + lii Ar "F '^'^03 a‘,^ • 

cpoi <^Pii dii/.i dxjj^., di//03 

which come from the coefficients of 17,respectively; 

• (F), 
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I + 

4- R -4- F -I- ‘-"F 
■*" '"'0E„i "*3E„ ■'■ " "" aE(,,, 

+ aK, + all + 3f7„ + all + all 01 SF,o 

¥ 

11 0? 

sf + 2F.,,if +(G,„+-2F,„) +2F,, Y +(G,,„+2F„)4^' +(2F,,+2Cx„),-;1: 
OVt,,, Ovjqi FOtoq oOtip 'll '20 

-L J. _L _1_ 9^ J- ^ J- 9^ J_ ■F ^ “F -F ^9]] 4T ' + 930 Y; + -921 ';nX' + ^ 
dcpo] *^9o2 ^921 ^912 ^9o3 

, , 3/’ r , 9F , , 3/ , , 3/- , ,, , a/’ , , a/' _ .. X 
+ ^10 ;xA-1- '^20 K ,-1- -'/'li oA-1“ 'Aso a;-F -^^21 oi-F '^^12 '^ ',- — 0 . . (I3), 

di//|„ di//ii di//|,x dv//.x| d9i. o9o3 

Ie + I' + It' + N I + 3Q % + 2-RI + s 1; 

+ (Foi+’^Ft,j)^^ +-2Foi^^- +(^F|i + 2Foo)^^- +(Eoo+2Fii)^|f- +2Fy^,^-|f 
10 aE 01 aE, 20 aE n 3E||2 

i/l 2A + (2F„ + G,„) + (F,,, + G„) //- + G,Jf 
20 aF 11 

+ (Foi + F^io)^^+ ^^^aF- 

I r< 3/ I 3y I p 3/ 
"T '-^01 “r *■''-^11 ^/~^ \ 

CljrjQ OLto() ^'^11 

I / 3/‘ , , a/' . , 9/’ 1 o / 3/' , a/ , a/’ 
~F 9oi oA- + -9i 1 + 9oi YY' + '^921 + -9i2 + 9o3 ;^4r 

d(pio ^920 *^9ii ^930 ^9:i *^9ii 

I / 3/' I , a/‘ I , 3/‘ I .3, a/-* I , a/-’ , , a/ _ 
~F ^01 sA—F y;—F V^o2 —F ^^-21 —F ^1-2 oA—F '/'03 ^7- — ^ 

3910 3i//.o d9n dxjj.^Q ov/zoi dv//i2 

F, 
02 

(I.)> 

which come from the coefficients of respectively ; 

9]i’ _3/_ I 2;p'' 3/ . _a/^ 

aE,„ ^ aE.,„ ^ aE no 

9/ 
aF 

+ F ^4I, + 3Fi,j —[- F„i 
10 

20 

i/ 
aF 

+ G 

20 

9/‘ 
a’G, 

11 

¥ 
aF 11 

20 

o- ^ iF j_ -A 3/ , , a/ , , df ,0, a/‘ , a/' 
■F aT' “F '^'320 + ^10 o‘, + 34,0 —-h 

3920 ^9so <^921 ^920 31//3U 
= 0 . . (II,), 
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2E A' _|- 3E . 
oJioi 

+ ¥ 
aE,; aE... 02 

_3/ + + F S + 2E.„ + (E„, + 3F.„) g- + 2F 5)1 
aF 10 aF 01 aF 20 aF 01 

11 3G 

+ el” + ^ + «.") 5/? 
10 acF 20 ac4 11 

+ ^10 H- -<^20 + -011 + 010 Jr + -020 JA + -»^ll J— = 0 a0 11 

E 

^021 

.i/ 
SEo, 

^012 ai/; 11 300 ¥i-2 

¥L 
aFpj 

01 aG 11 aGoo 

■E 010 Jr—h 020 Jr—1" 3011 + 010 JA + 02(1 -J^ + 3011 
3002 3012 300,3 3002 3012 3003 

-SL_L /Tr _j_ ,iv \ 3y . of 3E —1- (Eoi + 4Fio) 
10 

3/ 

aE 

+ G^ + (2Gio + Foi)^^ + G 

20 

¥ 

+ at 

10 aFo *^01 
20 

11 

AL 
aF 11 

4- G ¥L 
+ aG. 20 

+ *1, 5' + Hn + -k, M' + *,1 if + ■•<Pn if + - 30. 20 

2F 
aE 

3030 ' 300 1 ' 300,1 

01 ai' + aE,, 

'aF.,.^^aE; ' "‘'^aF. 

¥ 
aG.,, 

dxbn, 300 
= 0 

21 

+ 1’ + G rA + 2F,„ if + (OP, + G,„) ¥ on ¥ 
10 

¥ 
aG 10 

20 

+ + 4Gio + 3Gni 

aFii aE 02 

11 

¥ 
3011 

+ 001 + -011 ^ + -002 JJ + 001 Afr + 3011 o“r~ + 3002 ^ i/1 

3012 3011 
.3/ 

3021 

_3/:, _ 
3012 

E, '01 
„3yl 
aE 02 

4- F ^00 4- F -¥ 4_ 3F 3/ 
aFoi ^^i^aFi 1+ 3Fo: 

+ 2G + 2G,„ 5Ji + 5G„, i/- 
gVJai ClVjrn CIja? 01 aG 11 02 

VOL. ccr.-A. 

(ty, 

(113), 

(n,), 

(IIs), 

(IIs), 
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which come from the coefficients of ^n> ^02> '>7o3 respectively ; and 

it + ^ it + a'Jo + afo = °. 

as;; + ® aF,, + ^ a'i(; +-r +-^.0 3^^^ • ■ ■ (hl). 

+ + + + + = » ■ ■ • (ny. 

® a4 + dG,: + a^« ■*■’'''« aiy " .^ 

'^a|; + ®a|, + '^‘»a^ + ^«|£ = «.(UU 

a4 + *'1^;; +alj, +^ ■ • • (™e'. 

"^4^o; + ^aw + ®3y- + 2Gg^^ + ^„.A_ + ^„-|- = o . . . (iiy, 

^ it + it + afe = °. 

which come from the coefficients of ^gQ, tj^,, 77,33 respectively. 

15. Consider the set of equations (III3) to (Illg); all tlie Poissox-Jacobi 

conditions of coexistence are satisfied so that, in so far as the third derivatives of 

and xfj and the second derivatives ot E, F, G are concerned, the set niay be regarded 

as a complete Jacobtax' system. The total number of variables occurring in the 

derivatives of f is 

4, for the derivatives of (f) of the third order, 

+ .xjj. 

.E, F, G of the second order, 

= 17 in all; hence as the total number of equations is 8, there will be nine algebraic¬ 

ally independent solutions involving these 17 quantities. When we integrate the 

set of equations in the usual manner, we find a set of nine solutions, apparently in 

their simplest form when given by 
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rq — 2V'<^3q (2Foq - Eyy)!- - 

?,q = 2V^^oi ~ 

iq = 2Y'(p^., — GiP’ Ey.,? 

iq = 2V2(/,y3 - Cry^jl’ (2Fy3 - 

iq = 2V^i/;3o - (2F2y — En)p — Eoycr 

Vo = 2VVoi - CFiP “ Eno- 

iq = 2W>3. - Giip — EoW 

i\ = 2'V'i/;Qg ^0-2P (2Fyn - G,,)a 

^ — ^03 ~ -f- 

where V“ = EG — F^, and 

E(^oi - r(/.io = Ei/zoi - Ft/z^y = pi 

^4*10 ~ ^4*0'i — f El//y, = O- j 

Any functional combination of these nine (quantities will satisfy the set of eight 

equations which have been considered, as will also any functional combination of the 

derivatives of (f) and xff of orders lower than 3, of the derivatives of E, F, G of 

orders lower than 2, and of L, M, N, P, Q, R, S, a, y, S, e. We therefore have 

to find the functional combinations which will satisfy the remaining- equations. 

16. For this purpose, we make iq, u,, u,, iq, iq, v,, v,, v„ d; E, E^y, Ey^; 

F, bio? Fyy; G, Gyy, Gq^ ; (f)yQ, the variables ; 

and rve transform the set of e(piatlons (1T|). . . (Ily), so that the derivatives of / are 

taken witli regard to these varialiles. Denoting J' with the new variable byy’ for a 

moment, we have 

I v ^^6/ I V j_ h/' 
Of 0»: ^ - 0,,^ 0^^ + 0^ 0^^ ’ 

for all the quantities ^ in the original equations ; the magnitude 0//0^ is zero if f be 

not one of the new variables. 

The result of tlie transformation is to reqilace the set of equations (TTj). . . (Tly) 
by tlie set 

2E + F ¥ . j , , vf 0/’ 
3E,o ^ aF,y + -f- ^10 + (Gio- 2b ,y) 

¥ 
+ (-^01 - GFiy)r - 5E,y.S'] + q^[2WVji - Cf.yr 

J- (jU a 
2E„,.] 

+ + (2E„, - G¥„)f, ~ 5E,„<r] + ^ - G,„p - 2E„,cr] = 0 . (II,)', 

2 Y 2 

¥ rr.-xrs. 
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2F-|f +gJ^- +4. 
dRio SJ'io d(j). 

5/ I , df dr 
'01 i + V'oi -- 

20 dip 20 dd 

~ 4Fio)-'--] + ~£-[2V=^(^o2 — Go]/’ — 2Foi^j] 

-F -£^[6Y-rp,, - iG,,p - (Eo, + 4Fio)<^] “ Go,p - 2F01O-] = 0 (n,)'. 

•)E 4-E--^ + F-2/1_l .>;^^ -F,/, 4- 
BE,,, ■ "aFi,, 

— F r I 3/ 
‘-'JO' ^ 

Of'., du^ 

in aG 
].U 

10 4/ 

^9n 

¥ 

' dxb. ''111 de 

■'#'iN — — 3E|,,s] + gj' [4V-^jj — (Gk, + 2F(„) r — 4fl,,s] 

+ (G,„-2F„,)s®-^ 
dll, 

Sl\ 3)1~ “^F.IIP — 3E|ocrJ + [4V-i;<„ — (Gjo + 2F(„)p — 4E(,j<t] 

+ (G|„-2F,„)<Ty = (i . (n.r, 
c/’, ^ ~ ' 

gF’ Af _J_ F I r; ¥ I or ¥' \ A \ I I on S/’ 

aE, + aF; + aG^, + a^; + a^ 10 - 01 *■10 'll 

+ (E„, - 2F.„)). |i + |£ [4V^,^,„ - 4G,„r - (E,, + 2F.,) „•] 

+ H - 3G„,,- - 4F,„s] - G„,. 4 

+ (E,), ^Fo)Pg£ + ■” (Eol + 2F,(,) O'] 

3l 
dv + H - 3Go,/> - 4F„,cr] - G„,o-= (I . (II,)', 

aF,. ^^^acx, 01 GGTqj d(p„o — E 
ai/zij, 

+ II +-‘Fi) »• - 

on — 3F,„p — Ei(,(r] + |£ [6V*,^„ — (G,,, + 4Fo,) p — 

4Eois] 

' ^^01^] = ^ • (II3) > 

^ 3F„, + afn aL 

+ ~ 2Gi(3?’ —- Eg^s] + [6 V'(^g3 — 
3 ^4- 

-1- |£ [2VV„ - 2G.„p - E„,o-] + |£ [eV^fc - 

a^ 

5Goir + (2G10 

^Gqip + (2G^o 

6Foi)5] 

6F01) cr] = 0 . (IIJ. 
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17. A special case of these six equations is discussed'"' by Professor ^orawski in 

his memoir already quoted, viz., that in which there occurs a single function 6 with 

its derivatives up to the second order inclusive, and there are no derivatives ot 

E, F, G of order higher than the first; and he obtains three independent solutions. 

These are 

(I — 2\'^oo + (E|,i — 

h = - 

r = — 

) 
I 

^Ol'’ + 

Manifestly, a, h, c are independent solutions of the e(|nations in the jjresent case ; 

also, other three independent solutions are given by 

+ (Eoi — 2F]|j) p — 

1/ = - G,„p - 
(• = + (G||| 

Ei,-,cr 

Koi- :■ 

All these six solutions are inde})endent of 6: tq, vq, ; r,. r.,, r.,, r,. 

The JAtTiBi-PoissoiM' conditions of coexistence of the six equations are satisfied 

either identically or in \irtue of the eight equations (lllj) to (Hlg), which are 

definitely satisfied; so that, taking account of the variables that occur in the 

derivatives of /, the set of six equations is a conqilete system. The number of these 

variables is 

(J, from the first derlvati\'es of E, F, G, 

+ 6, . . . second . . . . (fj, \jj, 

+ 1, being 0, 

+ 8, lieing ?i,, v^, rq, Vo, v^, 

= 21 in all; hence the total number of algebraically Independent solutions of the 

complete system of six equations is 15. Of these, we already possess six in 

a, h, c, a', b', c', so that other nine are required. 

The form of the equations suggests that there will be four solutions of the type 

Un + aP„ + bQii + + kS„ , 
four of the tvpe 

+ «'Pb +//Q'. + e'Rh + Sh, 
and one of the type 

^ + T,,; 

which, when obtained, will be the necessary nine. 

18. One mode of obtaining these solutions is as follows :—We use the values of 

a, h, c, a', h', c' to eliminate from /’ the second derivatives of and of xfj; the effect is 

* Loc. cit., § 2(5. 
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to modify the form of the equations (IIj'. . . (IIq/ by removing from them all the 

terms that involve those derivatives. The substituted derivatives with respect to 

a, h, c, a', h', c' do not occur~a result only to be expected, because these quantities 

are simultaneous solutions of all the six equations. Consequentlv, in any differential 

operations, the quantities a, h, c, a’, c' behave like constants. 

In order that 
/ zz: rq -j- -p ])Q^ _j_ ^ 

where Pj, Q^, Pq, are functions of and of the first derivatives of E, F, G, 

but are indei)endent of the quantities w and v, 6, a, h, c, h', c', may satisfy 

we must have 

- S A.= -3. 2E 4- F 
0Fqo ^ c)F,o- 

2E L+F,L)Q, = 0, 

2E + A. 0. 

2eA +f^|;)S_ = E„,. + 2E„9. 
0E, no 10' 

In order that the same quantity may satisfy we must have 

' + Cl P^ = 0 , 
SEio oFio/ 

2F + G 
0E ^ 

-< 0 

10 0F 10' 

V -i 0 2F - + G 

Qi — 2 

Ri = 0, 

' - 3F + V - 2F.„) s. 

Similarly, tlie equation (lE)^ re(pures 

. 0 

EA +2F V)« = 0, 
0F 01 

and the equation (ITc)' requires 

F + -G ^ ' ) 0 = 0 
or,„ c’Gni 01 '-'-^01 

for © = Pj, Q^, Pj,j Sj. The equation (lE)^ requires 

^ +fA +OF 3 'u,= 
-'(II '-'-^10 ^^01 ^'^^10 

SF + 4 + 4 + -f' 44) =« cdio cdq„ 0G,o/ 

lor <h = Pj, Qi, R^, and 
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and the equation (II5)' requires 

for fR = Pj, 
01 10 dF 

+ 
01 

Qi, Pt^, and 

We thus have 24 equations giving the derivatives of the four quantities 

Pn Qe P'n with respect to E^q, Eqj, Fjq, Egi, G^q, Guj. Each of the four quantities 

is then given by effecting the quadrature 

The results are 

0 
00 

0E <^^10 + ■ 
10 

. + 

2WP, = 3 ( - E,,G - EoiF + 2F,oF) , 

2W’Q, = 3 (E,oF + E„iE - 2V,,E), 

2V2R, = 0, 

2WS, = {EGio(2Fio - Eoi) + F(EoU - 2Eo,F,o - E,oG,o) + GE.oEoi} r 

+ (P (Eoi" ~ 4Eo^Fjq 4- 4Fiy) + 2FEiq(Eoi — 2Fi,3) + ^^10") 

The solution in question remains a solution when it is multiplied by 2^^"^; denotino- 

this product by k, we have 

K = 2Vbq + a2)y + hq^ -f c)\ + rc^ -f- sj^. " 

Similarly we obtain 

X' = 2V-h^^ + cqj.2 + J>q., + cr., + rc^ + .s/', , 

fx' = 2Vb^3 + ap)3 + l>q^ + cr^ + re. + sf.^ 

F = 2\+ €12^4, + hq^ + cr.j. + re^, + . 
where 

Pi — 3 ~ F (Eqj 2F;^o) GE^q} 

i, = 3SE(Eo,-2F,„) + FEi„i j 

r, = 0 , 

c, = - EG,„(E„, - 2F,„) + F(E„,» - 2E„,F,„ - E,„G„) + GEi„E„, 

A = E (Eoi - 2F,(,)= + 2FE,„ (E,„ - 2F,„) + GE„ ^ i 

/b — 2FGjq — 2GEg^ 

q, = - 2EG10 + F (Eoi + 2F,o) - GE,, 

7q = E (Eoi - 2F,o) + FE,o 

Co = EGk/ - 2FEoiG,o + GEoU 

_/o = C|, aliove 
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P?j 

''01 

J'i = 

FGqi — G (2Foi — G-io) 

-FX4„i + F(2Foi + GjG-2GE 

- 2EG,, + 2FE,, 

EGjqGqj + 1 ( EjjjGq^ GEqj (2F| 

e.2, above 
01 - Gio) 

Pa. = 0 

r, = 

e, = 

h = 

3 jFG„ -G(2Fo,-Gio)j 

3 ^ — EGoi + F (2Foj — G^o) \ 

EGo;^ - 2FGoi (2Foi - Gio) + G (2Foi - G^o)^ 

63, above 

Other four solutions are S’iven bv 

K = 1\ 4- + P^\ + cr/’i ^ 

— ^ 'To + «'|io + />'(/o + e'ro + pTo + cr/o I 

/x" — P\ \’g + a!+ h'fp 4- cVg 4- peg 4- cr/g j 

v" — 2Vb4 + 4- pe,^ 4- cr/l ' 

and there is a last solution i^iveii bv 

V = E {(Eqi — 2h Gm 4- Gj,-|~} 

■E ^ '(^loGoi E|-)j (2hQ3 4“ Gjq) 4“ 2F^g (2Fqj — G^q)] 

4“ G {Eqj- E^q (2Fq^ Gjq)]- 

— 2V-'(E(,o — 2Fj^ 4" Goq). 

C'onsetjiiently, it IoIIoavs that evei'y snnnltaneous solution ot the fourteen ec|uations 

made up of the eight (Illi) • • • (Hlg) and of the six (IIi) . . . (llg), is a functional 

combination of the fifteen quantities 

o, />, c, a\ //, r', 

k', y, p\ v, k \ X", p", v’\ 

V, 

and ot the quantities derivatives with regard to wdiich have not occurred in those 

fourteen equations, viz., E, F, G, L, M, N, P, Q, K, S, a, A y, S, e, <f>,„ <^^1, i/^io, 4n 

making 34 aiguments in all AVhat now is required is the algebraically independent 

functional combinations of these 34 arguments satisfying the 

remaining four differential equations (I,)... (I,). 
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U). As regards these equations, we replace (Ij) and (I^) by two ecpiatlons composed 

f their sum and their difterence. The former Is 

¥ ¥ M n ¥ k/ = 2(e54 + fh4 + g^) + 2(l^^ + mU + nU 
0E ' ' SF ■ 0G 

?./ n I T? 

3/ 
01 

4GS/+«?a , a.c 
0a 0/8 ■ ('y 

+ ^Is + I, + K, + F'" K; + «■» K„ + «"' I 10 '-■''01 '-'*^10 '-‘^01 

-P 4 ( F -I- F 4- F -I- F ^ ^ -1- F 4- F + ■+1 ;^-rw -r y-cT + Go-: Sp H" T „ - + to: >^A - 
oT^.^o clt.n cUa-’ <^'t.,o dt|, cTaa 

+ ^^-20 si- + (^11 + Gtoj 

i; j_ J \ I ^’f \ t 

t’9io t'9oi ci/ijo oi//oi 

0G,o 11 

AL\ 
^^^dCrJ 

■^10 

^4>20 
-I- O / ^ Al' I ^ _J_ A _L 1 _L 1 
+ - ( 9i0 + 911 ^ + "fo:+ '/':o ^G;.- + ’/hi N.1~ + ’Ao: , 

0(^11 ' '^'^'^0(^03 ‘ '^'~'’^-20 

4-oIa C/’iA -L A S/j-A 3/ 
+ ■" /'30 A, - + 9:i + <f>i-2 yd- + <^03 ydy- 

1)930 d</)33 d9o3 

'-Vll 

, , 3/’ , , 0/’ , 0/" . , 0/'^ 

+ '/'oo + V':! ^r,.' + 'Ai: ^i- + ’/'03 , 

The latter is 
?'A:i ' ' '^'''''’S'Aun. 

= 2/1] — G 4- L _N -'M 4- hP 4- O — P o»j S./ 
0E 0G + 0L 0N / + '^^0? + 0Q 011 ~ 0S 

4- 4a 4- ‘^>8 — •a'S — 4e 
^ ^0/8 0S " ca 0e 

0, 
+ + Kn "^4/ 4- F30 ypW 01 

dE]o eEox 0130 f^Fo] 

OJ1,AO (41,33 ~ dtjo ■ cToa 

+ 9io 5Q-9oi ' + ’Aio — '/'oi Ad ' 
f’9io hi//oi 

-1 0/ op ^ / 

" 3Cto, 
■^10 -,A 

oGjo 

— ‘^G -OTii —^ — 4G -'./'"I '^'-^03 dCT33 
3/ 

c-Go: 

' ^ j 'rui 'd / 
O9]0 d(/)03 

^ ~ ‘Ao: G-- + 4:o 
0r^O3 ' 

+ NJ~ + <A:i a^;A “ ^12 —- 
^9:i 

'Ao: 

13 :1J, — ^'Ao3 

iz: 
01^Q.'1 , 

i/ 
^‘Ao3 

-Lit/ h/^i, 0/ , 0/ 0/ 
+ ^'Aso Ad— + ’A:! -lAi: a-;-34o3 a • 

ClAoo 04.33 01//] o 04o.o 

{!,)• 

(F). 

\'OL. CCT. 
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Of these four equations (I,)', (O)', (I3), (IJ, the first will be found to be satisfied 

for the various forms of f tliat satisfy the other three, Ijy the appropriate 

determination of the constant y. to be associated with each such form. Also, (I,,)' 

is the condition to be satisfied in order that (I3) and (Ij.) may possess common 

solutions. To obtain these common solutions, we proceed as follows. 

Let the equations (Ig) and (Ij) be written 

V,./'.:. 0, V,/= 0. 

Then by actual substitution we obtain the results 

Also 

Vyt = 0, VjCt = 2h 

V,h = a, VI) = c X 

<1
 

A
 II LX/
 

= 0 1 
J 

Vyd 0, Vwd = 21/ 1 
V,1I = a\ VM = c! i ( 

V,c' = 21/, V.c' = 0 J 

V,V = 0, V.W = 0. 

Vi/c' = 0, 

V^X' = K, 

vy = 2V - V7’, 

3/r' - V5, 

V./c' = 3X' - Vr, 

V„X' == 2/a' - V5, 

Vo/x' =3 e', 

— 0, 
Vp- = 0, Vp- = — 5, 

and therefore 

Vi,s = — r. 

Vik' 0, 

Vi (V - iVr) = zc', 

Vi (/x' - iVs) = 2 (X' - iVr), 

V/=z 3 (/x'— iV.s), 
We write 

k' = /•, X' - iV7- = /, 

V^s = 0; 

Vo/c' = 3 (X' - - i^r) 

- iV7-) = 2(g'- - W*) 

V,(/- iv.) 

= 0. 

/ - \Vs = m. v' = n\ ► 

and then these equations give 

= 0, VI- = 3/ ] 

V/ = h, VI = 2m [ 

Vpu = 2/, V.m = n | 

V J = 3z», Vo7^ =0 J 



OF A SURFACE, AND THEIR GEOMETRIC SIGNIFICANCE. 355 

Similarly, we write 

k" = k', r 
aad we find 

= l\ jj." — ’yVct = rn', V " ~ i i' 

V,k' =(}, 

V,I' =k', 

Vjwfi 2l', 

V,7d = Sm\ 

V,k' = Si' 

VJ' = 2 m' ! 
- I 

V.^m' = n' I 
~ I 

V.m' = U I 
These quantities k, I, m, n, k', I', in', n' replace k', v', fx", v"; moreover, 

V is a simultaneous solution of the equations. What we require are the functional 

combinations of the quantities 

a, h, c, a', ly, c', 

k, I, in, n, k', I', m', n', 

E, F, G, L, M, N, P, Q, R, S, a, /3, y, 8, c, 

making 33 arguments in all. 

For this purpose, we transfoi’in the equations, so that these 33 arguments may 

become the independent valuables. The process would be laborious but not 

intrinsically difficult, were it not that the effect of the operators Vj and Vo upon the 

various arguments has already been obtained ; and the results are 

aG ' ^ 0F 

^ aN ^ an 

+ 31! ® ' + 2Q If, + V y 
CD ah oQ 

¥ , 3/ ¥' , 3/ 

I a/’ of 

_L ■'>]/ _i_ a' 
^ " ae' ^ " a// 

+-imy + n ^ iM 
an cin at 

+ ^\o 

+ ’Aio 

At 

At = 0 (I3)', 

2 z 2 
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ap] ap^ 

+ ^/5| + .,|+2a|f+e| ca 

+ ih f + <• % 
ca ch 

cm 

4- •>/.' ^ _L ^ 
ca 

+ 3/' ^ -f- ■>-' 
^ A- r A: 

/w 4' + u 
ct c?7; 

+ ^hi o 

a/‘ 
'"<^10 

+ VAi 
^rio 

= (» 
(I.)', 

<^9oi f'Pio 

pA i> q/‘ ..^a/‘ —^ 11, —— — * + 3P + (1 V _ II _ ...y 
cL cQ apl rS 

+ 3ky^ + l%-on^-ilnK 
ck dl dm CH 

\ OJJ \ V ^t ! cf -. , c f 
+ 3T' + ^ a? - “ aA-' - aP 

+ ^^i^ + ^^|-2s|-4.A ca 0 . f'T 
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-j. ¥ 
W = 10 d(f) 01 

¥ 
10 d(f), 10 a ; I roi ^rr 

01 ci/zio 01 

+ 0F op + rAx 

^ a’ 

0L 
¥ 

aM 

+ 3 ( P-^- 
V ap 

+ Q^ 
' ^ ^ aQ 

+ iq'| + s 

+ ^' i ¥ + lS54 + y^^+8 ¥ 
\ ea ep 'Y CO 

+ h| ¥ + >> 2 + c '■t+ s/ 
/ \ ea eh ( (• ea 

+ 8V| 

¥ 
f / ( r / 

+ 11 (i % + I £f + -HI 1^- + n y- 
\ etc t i ( III ell 

¥_ ¥ 

+ 11 (k' J- I' _j_ LL _j_ st 

\ ek el eni c/c (li)' 

Association with Binariants. 

20. The expression of these equations at once associates tlie solution with known 

results in tlie theory of the concomitants of a system of simultaneous binary forms. 

The equations (L)', (Ij.)', (L)" are tlie flifferential equations of the invariants of the 

system of binary foiins 
I' «/ 

('A 10^ l'/'io> '^olI^:=)^ 

(E,F, 01=.)^ (L, M,NX#)^ {a,h,(^Y, {a',h\e'M\ 

(P, Q, R, SX#)3, {k, I, m, nX#)A (F, m\ n'X*f, 

(a, y, 8, €X=:^=)b 

or, what is the same thing, they are the differential equations of the invariants and 

covariants of the system of binary forms 

^^1 = ('/'10> 

w. = (E, F, GX</>I,1, - 

''4 = NX4n — 

w", = {a, h, tX<Aon — ^io)% 

w'", = [a', h', c'X<f>oo — 'Aio)'T 

u’-i = (-P> Q, SX<^on “ </>io)b 

3 ~ (^') '‘'X^OO 

w"z = {iX I', to', rdX</>on — </'io)^ 

= (a, /3, y, 8, eX<^on “ 
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We therefhre require an algebraically complete aggregate of this set of invariants and 
covariants. 

It IS to be noticed tliat the argument V does not appear in the equations (I.,)". (I,)'. 

(Ij.) ; so that it is a solution of the equations, and it must be associated with the 

required algebraically complete aggregate of concomitants of the binary forms. 

The three equations (L)", (I3)', (IJ constitute a complete Jacobian system, and the 

number of arguments which occur is 33; hence the algebraicaUy complete aggregate 

of solutions contains 30 Solutions, which thus give the algebraically complete aggregate 

of concomitants of the system of binary forms. 

This aggregate is known=^ to be (or to be equivalent to) the following 

the linear quantic, vtq ; 

tlie quadratic itq, and its Hessian (discriminant) EG — F~; 

• • • • .LN - MG 

to'".,, 

. n c — ; 

. a'c' - lj'~ 

the cubic w.^, its Hessian, and either its discriminant or its cubicovariant; 

the cubic ir'g, its Hessian, and either its discriminant or its cubicovariant; 

the cubic u' g, its Hessian, and either its discriminant or its cubicovariant; 

the quartic its Hessian, its quadrinvariant. and its cubinvariant; 

together with the Jacobians of any one of the forms 10, say tv.,, with all the rest of the 

forms. This makes up the I'equisite total of 30. 

1 he asyzygetic aggregate is, of course, vastly more extensive; but for the jiresent 

purpose it is only an algebraically independent aggregate that is wanted. Many 

modifications in the latter are possible : what is necessary to secure is that anv 

modification does not interfere with the algebraical completeness of the aggregate. 

For instance, consider the set composed of 

where 
V,, EG — Fy w".,, ac — h^, J (to.., to".,}, 

4J (an, wG) = dw., dw"., can cto".. 

10 

in the asyzygetic system, there is an intermediate invariant Ec — '2Fh + Go ; we 
have 

J3 = w.,w"., (Ec - 2F0 + Go) - w,~ (ac - G) - w"F (EG - F-), 

and therefore, in the algebraical aggregate, Ec - 2Fb + Ga can be included when 

any other (such as ac — b~) is excluded. Such a change would be desirable if 

differential invariants, linear in the C|uantities o, b, c, were required. 

See a memoir by the author, ‘American Journal of Mathematics,’ vol. 12 (1890), §§ 17, 22, 30. 
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21. Accordingly, we can take as an algebraically complete aggregate, containing 

the 31 necessary members, the set which follows :— 

(i.) V, 

(ii.) 

(iii.) J (?ri, nr,) = — Fi/;io) f/)oi — — Cfi/zio) 

(iv.) w., 

(v.) H (h'o) = eg - 

(vi.) wA, 

(vii.) J {w.,, id.2) = (EM — EL) — (EN — GL) + (FN — GM) 

(viii.) H (wA) = LN - or I (an, = EN - 2FM + GL, 

(ix.) a A, 

(x.) J (?(n, aA) = {Eh — Frt) + ..., 

(xi.) H (icA) = ac — /r, or f (?fn, a/'.,) = Ec — 2Fh + Ga, 

(xii.) id",, 

(xiii.) J (un, a/",) == (E// - FA) ^01^ + ■ • 

(xiv.) H {id",) = a!d - h'\ or I {io.„ w"d) = Ed - 2F// + GA, 

(XV.) W3, 

(xvi.) F[ (^Cg) = (PR - Q3) 

(xvii.) dJ {iv^) = (P-S — 3PQR + 2Q®) + • • , or A {in^), 

(xviii.) J {iv.„ an) = (EQ — FP) An'" + • • •, 

(xix.) Ag, 

(xx.) H (a/g) = {km - P) + . . ., 

(xxi.) (R {idn) = {k-n — Slclm + -Jd) A)i® + • • •, or A (''ab), 

(xxii.) J {w,, Ag) = (E/ — F^■) An^ + • • •, 

(xxiii.) id'g, 

(xxiv. ) H(rAg)z=(P7A-A)(/>or + ..., 

(xxv.) <t> (io"g) = {k'~n' — SJc'l'm' + 2A) (^01'" + • • •> or A (a/'g), 

(xxvi.) I {iv.„ w"s) = {El' - FP) An® + • • •, 

(xxvii.) 7^4, 

(xxviii.) H (7^2) = {ay - /3') Ajf + • • 

(xxix.) I {w.,} = ae — 4j3S + 3y~, 

(xxx.) J (a;^) = aye + 2/8yS — aS^ — j3'^e — y'b 

(xxxi.) J {iv.„ W.J — {E/3 — Fa) (fyQ^^ + ... 

22. It is still necessary to satisfy equation (Ii)^b This will be effected as follows ; 
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when _/ involves and it must be iiomogeneous in them, sav of degree ; 

when / involves i/ij,, and it must be liomogeneous in them, sav of degree m.; 

when / involves K, F, G, it must be homogeneous in them, sav of degree m..; 

likewise for L, M, N, say of degree ; likewise for P, Q, P, S, say of degree nu: 

for a, 13, y, 8, e, say of degree ; for o, h, c, say of degree m~; for a', h', c’, say of 

degree ; for k, I, m, n, say of degree for //, 1', m\ n', say of degree and 

for V, of degree ; provided the value of p, the index of the invariant, is given liy 

•2jx = »?, -f m., + 2 (w„ + r,ii) + .Si??, -j- 4m,; 

+ Hm- -(- Hm, d- 11 (m^ -)- -f- 8m 
11- 

e Avhrile svstem. as follows ; 

Index = 1, 

Index = 

Index = 

Index = 

Index = 

Index = 

Index = 

2, J(^r2, W.2), 11(4/',,). iv'2. H(a’b) and I (an, v:'.-,) 

2, J (ir.,, U''2). w.; 

4, V, I (a-., ';Fb), I(?m, w"V), H {?e3), J {w., 

5, J (m., w".), J (i'J., w'".), d ; 

G, H(mG), H(^r'G), (^r.) and A (w,), H(ir,). J(a 

, W.), 214, I (224) ; 

k); 

m no 

Index = 8, J (i(\ J (ir.,, ?r'V); 

Index = 12, H (mb), H (iF'g); 

Index =18, di(m''p,), ‘h(a-'b); 

Index = 22, A (irb), A(m-"g). 

F 

28. All these are relative invariants, that is to say, when the same function 

of now variables is formed as the function f is of the old variables, then 

irF =/; 

wliere p is the index ofg’, and H = In order to have the absolute invariants. 

it IS sufhcient to divide each of them liy a proper power of any one of them. F’or 

this jmrpose, Ave choose 

= H = EG - F-; 

AAe can legaid \ as of index unity, and therefore it aa'111 be sufficient to diA'lde the 

1 elatiA e iiiAariants by a poAA^er of A eipial to its index. AVe therefore haA^e the set 

of 80 absolute invariants, glA’en bA’ 
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’ ys ’ yis 
I («t) J vu) 

TI16S6 thiity difFcrGiitial invariants constitntG the filg€Jjvciicfill}j coiivplete acjQveQeite 

m terms of ivhich all invariants, involving (i.) some or all of the derivatives of the 

finidamental magnitudes E, F, G, L, M, N, up to the second order inclusive, as well 

as the magnitudes themselves, (ii.) the magnitudes P, Q, R, S, a, /3, y, 8, e, (iii.) and 

the derivatives of two functions (f> and xfj up to the third order inclusive, can he 

expressed alr/ehraically. But it is to be noted that this inference is concerned solely 

with the partial differential equations, and it assumes that the various quantities 

E, F, G, L, M, N, and their derivatives are independent of one another; if any 

relations should subsist, owing to the intrinsic nature of the magnitudes, then the 

niimher of invariants in the above complete aggregate will be diminished by the 

number of relations. 

Now one such relation is known; it is the relation commonly associated with 

Gauss’s name, and it expresses LN — AP in terms of E, F, G, and their derivatives 

lip to the second order inclusive. But LN — AI® is H in the foregoing set; and, 

as will he seen later (§ 35) in the course of the geometrical interpretation, we have 

V = 411 (m.) H (nL), 

so that the nnmher must he diminished hy unity. Accordingly, the algehraically 

complete aggregate of differential invariants, involving the magnitudes vp to the 

specif ed order of derivation, contains 29 memhers; in terms of these memhers, every 

other invariant, involving the same magnitudes up to the specif ed order of derivation, 

can he expressed edgehraiealhj. 

24. As an illustration of the remark in § G, we can obtain Minding’s ex})ression for 

the geodesic curvature, quoted* hy Professor Zorawski as an invariant. Let i/) = 0 

he the equation of the curve, then 

^10 + ^oiV' — 0 , 

so that 
= 0 , 

VOL. CCI.—A. 
* Lor. cit., p. 6.3. 

3 A 
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Now is an invariant, as also is hence 

is an invariant, say U, so that 

V — 2F(^oi^io + 

— 2F(^oi(/)io + G(f>wf 
[{2V^^oq + (Eq;^ 2Fjq) r Ej^q.s} 

2 {2Y~(f)i^ ^10^' ~ Eoi'?} <^01^10 

+ {2V~(^o3 — GoP’ + (Gio — 2Foi) s}(f)^Q^] 

V (E 4- 2Fi/ + ^ + (2GF01 ErG^o FGqi);^'-^ 

' +(2GE„ + 2FF..-3FG,„-EG„)2/^ 

— {2EG,|) + 2FF,„ — 3FEq, — GEjo)?/' 

- (2EF„ - EE„, - FE,„)] 
O 
77 5 

P 

according to Minding’s expression for the geodesic curvature ; or the geodesic 

curvature of the curve <^ = 0 is the invariant 

1 o 
~ ^ v7/ 

25. It is possible to make further inferences from the results. Thus we can settle 

the algebraically complete aggregate of invariants up to the order of derivatives 

retained, when those invariants are required wliich involve derivatives of E, F, G, and 

only one function, say (j). They manifestly constitute the aggregate, complete up to 

tlie order specified, of all the functions that remain invariant when the surface is 

deformed in any way without tearing or stretching, account being taken of a particular 

curve (j) = 0, and the invariance persisting through all changes of the independent 

variables of the surface. This aggregate, algebraically complete up to the order 

specified, consists of the nine members 

Wo, V 
’ yr ’ 

w", l{wo,w^o) J {h'o, w"o) 

y5 

yy ’ 
H 

yi2 ’ ys ’ and yzi ’ 

the first five of which were given by Professor Zorawski, who considered the specific 

aggregate only up to one order lower. 
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26. If we lequire the aggregate of invariants of this class involving derivatives of 

E, F, G up to order n — 1 and derivatives of ^ np to order n, the number of 

members in that algebraically complete aggregate can be obtained. The total numher 
of members is 

o 
n-; 

it IS composed of i (w — I) {n — 2) quantities which do not involve the derivatives of 

(f), these quantities being called Gaussian invariants of deformation, and their number 

haGiig- been determined'* by Zorawski ; and of in (r. + 3) - I quantities, each of 

which involves derivatives of f To make up the latter aggregate of in (n + 3) - 1 

quantities, we need (m addition to the binary forms already used) otlier binary forms 

of orders 4,5,..., n ; among these, the binary form of order m (for all values of m) 

has and — <f)^Q for its variables, and its coefficients are linear in the derivatives of 

(f) up to order m inclusive; and the members, that would occur in the simplest 

expression of the aggregate through the existence of the binary form of order m, 

would be the quotients (by proper powers of V) of the binary form itself, of the 

m — I (Hermite’s) associated covariants, and of the Jacobian of w, and the Iniiary 

form, making m + I in all. Thus the total numberf up to order n is 

1 d" 3 + 4 “b . . + R 

. . ~ “k J) — Ij 
the number in question. 

27. If we require the aggregate of differential invariants, which involve derivatives 

of E, F, G, L, M, N up to order n — I and derivatives of a single function up to 

order r, the number in that algebraically complete aggregate can lie obtained as 

follows. We can replace the derivatives of L, M, N of the specified orders Ijy the 

introduction of the fundamental magnitudes of orders 3, 4., n I defined as 

the coefficients in the various powers of and in the complete expression of the 

quantities 

^Ll\\ (l \ 
ds\pr ds^\pf'' 

where p is the radius of curvature of the normal section through the tangent defined 

fs’ arc-differentiation of is taken along the geodesic 

tangent|. 

When n = 2, the system of bmariants is composed of three quadratic forms with 

theii three disci iminants, a cubic form with its set of two associated covariants, and 

* In his memoir, § 13. 

^ T It will be noted that VV-^ in the aggregate in § 22 is a Gaussian invariant of deformation, and so is 
included among the (ft - 1) {n - 2) quantities which do not involve 

I For the significance of this remark, see § 31, post. 

3 A 2 
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ihe Jac(>l)ian of one of tlie quadratic forms Avith the other two quadratic forms and 

with the cubic form, being 12 in all. To include the next higher order given bA' 

n — 3, Ave need a cubic form with its set of tAvo associated covariants, a quartic form 

Avith its set of three associated covariants, and the Jacobian of each of the forms 

Avith the originally selected quadratic form, being 9 in all. And so on in succession : 

tlie total number of binariants is 

12+ {(9 +11+ 13+ . +(2n + 3)} 

= IV + 4;n 

With these must be associated the \{n — 1) {n — 2) quantities that do not iiiAmlve 

the derivatives of (/>, these being the Gaussian invariants of deformation ; hence the 

total number is 
+ |n + 1. 

But these are relative invariants ; each of them must be divided by the appropriate 

power of V so that, as one of them is and the quotient is unity, thus making the 

function no longer an iiiAmrlant of the surface, the number of absolute invariants is 

+ f/i 

= In (3n + 5). 

28. Lastly, if Ave require the aggregate of differential invariants Avhlch iiiA-olve 

deriA-atives of E, F, G, L, M, N up to order n — I, and derivatiA*es of tAvo functions 

(f), if/ iq) to order n, the number can be obtained in a similar manner. As in § 27, 

Ave replace the derivatives of L, M, N of the specified orders by the fundamental 

magnitudes of orders 3, 4, . . . , + 1. The algebraically complete aggregate of 

relative invariants of the surface uj) to the orders specified is composed of tAvo 

portions. The first includes the | (n — 1) (n — 2) quantities Avhich do not invoLmthe 

derivatives of (j) and if/, these being the Gaussian iiiAmriants of deformation, as before. 

The second is the algebraically complete aggregate of the system of concomitants of 

a set of binary forms, each divided by a 2)roper jJOAver of V in order to give rise to 

an absolute invariant of the surface. This set of binary forms contains 

1 ciuantic of order 1, 

4 (juantics . . 2, 

3 . . . 

1 quantic . 

n, 

n + 1, 

being 3a in all. With them must be coiqJed (c<) their (Hermite’s) associated 

coAmriants, the number of Avhich is 

1 . 0 + 4 . 1 + 3 {2 + 3 +. + (a - 1)] + 1 . 7i 



OF A SURFACE, AND THEIR GEOMETRIC SIGNIFICANCE. 3G5 

— fn-' — -|- 1 ; and (h) tlie Jacobian of any one of the qualities with each of the 

rest, being 3/i — I in all. Tims the tale of the concomitants of the binary forms 

= hi + (fri" — + I) + Sn — 1 

= f + ~^7l. 

But these are relative invariants ; each of them must he divided by the aiDproprlate 

power of \, so that, as one of them is V", and the quotient is unity, thus making 

the function no longer an invariant of the surface, the number of absolute Invariants 

from this source is — 1. Thus tlie required aggregate of invariants of 

the kind specified up to order n is, in all, equal to 

^ — 1) {n — 2) + — 1 

= 2yr -h 4». 

29. But all these numbers are subject to diminution by as many units as there are 

algebraically independent relations among the invariants, which do not occur merely 

through algebraical forms, hut arise through intrinsic relations associated with the 

general theory of surfaces. One such relation, being Gauss’s equation, has already 

(§ 23) been mentioned ; so that the number 2n® + An would certainly be diminished 

by unity. It might happen that certain other combinations of the fundamental 

magnitudes of the various orders could be expressed in terms of E, F, G and their 

derivatives, the combinations being invariants of the set of binary forms, and the 

exjiressions in terms of E, F, G, and their derivatives being invariants of deformation. 

Each such relation would diminish the number 2n^ fi- by a single unit. 

So far as I am aware. Gauss’s equation is the only relation of the type indicated 

which has already been established ; but there is reason (§ 5G) for surmising that 

other relations of that type do actually subsist. 

PART II. 

Geometric Significaxce of the Invariants. 

30. The algebraically complete aggregate of the invariants of a given surface and 

of any two curves drawn upon it has been proved to be determinable by the develop¬ 

ment of Lie’s method, as used by Professor 2orawski for the invariants of deformation, 

dhe actual determination of the members of those affoueffates, which belone; to the 

lowest oi'ders, has been made. Each such invariant has a geometric significance. 
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and the significance of some of them is known ; we proceed to consider this aspect of 

the invariants. 

In dealing with binariants, several methods are possible. There is the symbolical 

method. There is tlie method dependent upon the use of canonical forms for the 

various functions ; the complete expression of each binariant must be used through 

each operation ; in the present instance, the canonical form would arise by taking ^ 

and xp as the independent variables on the surface.* There is the method that 

depends upon the characteristic property of binariants, by which the leading term alone, 

being sufficient to determine tlie l)inariant uniquely, is used to replace the binariant. 

The last of these methods will be used. 

31. We denote by an arc of the curve (f) = 0, so that d/ds implies differentiation 

along the curve ; and we denote by d/dn differentiation in a direction on the surface 

perpendicular to the curve. Where no confusion will arise, we shall use x', x", m 

place of' 
dx d^x 

ds ’ ds^' 
. . . ; and so with quantities other than x. 

In constructing the fundamental quantities of order higher than the second, a 

normal section through the tangent to (p is drawn; successive derivatives of the 

curvature of this section at the point are constructed, and the values of the second 

derivatives of x and y are tliose connected with the geodesic property at the point.! 

Accordingly, it is effectively the geodesic tangent to (p that is drawn ; we shall denote 

by t an arc of this geodesic, so that d/dt inij)lies differentiation along the geodesic. 

As the curve and the geodesic touch one another, we have 

dll _ du 

ds ~ dt ’ 

when the quantities relate to tangential properties only; but 

du du 

ds dt 

is not zero when the quantities relate to contact of higher orders. Thus 

dx dx dy  dy 

ds dt ’ ds ~ dt ’ 
but 

d / 1 

ds \ p 

d^l 1 

dt f / ’ 

1 . 
wliere , is the circular curvature of the geodesic tangent, is not zero 

p 0 0 5 

* This method is used by Daeboux, ‘ Theorie g^n^rale des Surfaces,’ vol. 3, p. 203. 
t See the paper quoted in § 4. 
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The Independent Magnitudes connected with the Curve. 

32. Various magnitudes connected with the curve (j) = 0 are required; we take 

i = its circular curvature, 
P 

i = its curvature of torsion, 
T 

= the circular curvature 'j 

^ I of the geodesic tangent, 

= the curvature of torsion J 
T 

= its geodesic curvature, 
P 

It =z the radius of the osculating sphere, 

CT the angle ])etween the normal to the surface and the principal normal 

of (f) = 0, and 

B = , 
dn 

where dn is the normal distance at tlie point of ^ = 0 from the curve (f> + d(f) = 0. 

Further, we write 

II ^ + 2Mx'y' + Nt/'q 

Fx + Fy, Fx' + Gt/' 
V 1 Lx' + My, Mx' + N.y' ’ 

N = ^ Ex' + Ft/', 77ix''^ + 2in'x'y' + rn'y'^ + Ex" + F//" 
V Fx' -j- Gy, nx'-^ + 2/fix'//' + + F./' + G//" 

with the customary notation for rn, rn', rn", n, n\ n" ; then A = 0 gives tlie asymptotic 

lines, W = 0 gives tlie lines of curvature, N = 0 gives geodesic lines. Moreover, 

W3 = AH - A" - K, 

where H and K are the mean curvature and the specific curvature of the surface at 

the point, viz., 

H = ^ ^ , K = ^ , 
Pi P-2 PiP-2 

Pi and being the principal radii of curvature. We have the relations'^ 

* See Stahl und Kommerell, ‘Die Gnmdformeln der allgemeinen Fliichentheorie,’ § 14, for some 

of them. 
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1 cos uT . 
r = = A, 

P P 

1 sin CT 

P P 

I c/trr ITT 

T = <fe - ’ 

I = - W, 
r 

i (y) = (P’ Q- P- 2/')’. 

f/fii p’) ~ y’ y')*; 

111 tli0 Icist t^^o ccjuntioiis X and y ar© used in jilac© of clxldt and dyjClt^ 

tliey are equal respectively. The relation 
to 

at once gives 

and we also have 

= ah - - K 

J 

Pi 

I 

r r' - p'-^ + p-^ 

' = ' + f-i ' /o ’ 
P P P 

so that 7, p, and 11 are expressible in terms of p, p", t and of their derivatives. 

’)( 
' 1 

- 1 ') . 

p' 1 ' ' P' P2' ’ 

. d" 

dp> 
ds 

/ dp 
X 

33. As regards -f ( ■ 

and therefore 

The Values of 
■ ds ds dn dn 

x') and (= ;?/'), we have 

4>\iv' + 4>i)\y' = 0, 

+ 2F.rV' + Gy'-^ = 1 ; 

4*0 r = V — — ^ u — 
v/ a'n 

which 

Niext, differentiating along a direction in the surface that is perpendicular to the 
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tangent to (f), we take tlie direction determined by clx/chi and di//chi as beino- 

perpendicular to the direction determined by x' and y'; hence 

Moreover 

and therefore 

(In ~ ~Y y ^'I’m + 

Ih = V (E4l - 

the quantities in the brackets in the last expressions being the quantities r and s of 

§ 15. 

Identijication of the Simplest Invariants, 

34. Using these results, w^e can at once obtain the interpretation of several of the 

invariants. We have 

and therefore 

B = ~ ^ 
dn 

f dx . j d'l/ 

\/ 
~ V^’ 

Again, 

-p2 

A = (L. M, NI,r, 2/Y 

= i (n M, 

— . 
5 

v\. 

and therefore by tlie relations in § 32, we I 

Also 

w'. B- 

- p' • 

W = ^{(EiM-FL)a3'^+.. .} 

_ J {up w'o). 
Vu’., 

VOL. cci. — A. 3 g 
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and therefore, by the relations in § 32, we have 

The result of § 24 gives 

HEuJIA 
V3 

w 
t 

T 

I) = _ i , 

and therefore, also by the relations in § 32, we have 

Also 

so that 

and 

so that 

35. Certain invariants occur as belonging to the surface, independent of all curves 

such as (f) = 0, Of these, the most important is VV“^; its value is given by 

V 4 

But, as is well known, we also have 

4K. 

so that we have 

LN - _ 1 _ 

EG — PjPo 

V = 4V^H (?Co). 

Ihis is a relation among the ditierential invariants, and it is due to the intrinsic 

nature ot the quantities E, F, G, L, M, N ; accordingly, the number of algebraically 

independent invariants up to the present order must (§ 23) be diminished by unit}’", 

on account of the preceding relation. 

It was noted, in § 21, that H and I(?Co, w'o) are alternatives in a complete 
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system, when H (h^), w'o, J {vj.2, w'.^) are retained; as a matter of fact, the 

relation 

w'o) = I {ui2, w'2) Wow'2 — H («3) w'o' — H {w'o)uY 

subsists. Now the signiticance of I [iVo, iv'^) is known : we have 

I {iVo, iv'o) _ 1 , 1 

Pi P2 

Accordingly, we substitute the values that have been obtained, and we find 

'2 ' - + M - 1 
^'\pl piJ p^ plpi 

1 _ I 

Pi p' 

again the well-known relation giving the torsion of a geodesic at any point, 

torsion vanishes when the geodesic is a tangent to a line of curvature. 

' - ' ) / h 
P Pi/ 

This 

Interpretation of the Remaining Invariants Associated with Wo, w'o, up 

36. We require the derivatives of iVo, w'o, w"o with respect to the arc; for this 

puipose we shall use the property already quoted (§ 30)—that a binariant is uniquely 

determined by its leading term which, in the present instance, is the term involving 

the highest power of Writing generally 

u -f h(f 
we have 

ds ~ ~ + <kiiy') + • . . 

, + +/od/') + . . . , 
so til at 

( !') / 
gg ~ (^./V*ii ^9^20) + • • • 

+ ^ofVio + • • • 

= Y2 - //«) ^01 + • • • !■ 

+4^ [{/(EGio-FEoi)+^ (EEoi-2EFio+rEio)+Vyio} • • ]• 

Firstly, let J, g, h _ E, F, G, so that u becomes ; then, on reduction, we find 

/ _ J {w^, IV g) . w^ (/-ppi ORR _L PR \ 
^ 2 ds V~ ■ ^ 10 + GEjo) (p^^2 + • • 

3 B 2 

'} 

• )■ 9 
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and consequently 

v/ an 
i _ J (»’o, 

ds \yv 
Secondly, let /, r/, h = L, M, N, so that u becomes iv'. ; then, on reduction, we 

find 

= v:-i + ^,3- ■ ( au, u-'h) — n-'hJ (wu, ich)} 

+ [(EG,o - 2FF,o + GE,o) <^01 + . . . 
and consequently 

= ys + (^G> ^^"2) - 

Thirdly, let /, g, h = a, h, c, so that it becomes w'\, ; then, on reduction, we hud 

= J v’ + wt * - 2FF,„ + GE„) <Aoi + . . . ) S. 

and consequently 

The hrst of these gives 
^ ■ VV “ ^ ye' 

J {w., w”d) _ 2go f/B 

ye ds' 

and the third of them, taking account of the value of ir'k which has already been 

obtained, gives 

y? ds \p'' 

The second of them can also be used to identify J (an, id'.2), because all the other 

quantities occurring in the relation have been identihed ; the value is 

J (?r,, ?F'o) _ p , d /B- . 1 d / 1 = B,'y{-)-BvE"(y)- 
P ' 

dt P P ^ 

Substituting the earlier value on the left-hand side, we have (after a slight 

reduction) 

d (1 

dt[p' 

d / 1 

ds // /’ 

P T 

being an illustration of the remark in § 31, and showing that in general the rate 

ol cliange of the curvature of a normal section is not the same along the curve (f) — 0 

and the geodesic, both of which touch that section. The result can also be written 

in the form 
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with the earlier significance for A, D, W, and T is given by 

T = (P, Q, R, Six', yj ; 
and another form is 

(Js X w.^/ V~a’A 

37. We require derivatives of some of the binary quadratics with respect to an 

arc in the surface normal to the curve = 0 ; for this purpose, we proceed as in § 36. 

We take 

and we have 
=f4>in — 2r7<^oi^io + H 10 ’ 

cht 
— 2y</»on^ii (~ F^oi + •••) + ^03 (E(?5>oi + •••)} 

“ { — F^oi + •••) + <^11 (^<^01 + •••)} 

+ 4*Ql^{fl0 ("~ + • •) +/oi (E</>01 + ••)]+•' 

and so, after some transformation and reduction, we find 

= '/'oi' -1"'') - »(E*- - F“)i + • • • 

+ <!.„,= {,/'E (EG„, + FG,„ - 2FF„) - (/F + ^E) (EG,„ - FE,„) 

+ (— + 2EF10 — FEio) + (— Fy^o + E/oi)} +. 

Firstly, let f, (j, h = E, F, G, so that u becomes aq. The coefficient of the first term 

in the earlier aggregate is 

= EA - 2EF6 + F\^ 

= E (Ec — 2F6 + Gu) — Vkq 

and therefore that aggregate is 

= aql (aq, a/b) - Vha'b. 

The coefficient of the first term in the later aggregate is 

E - F (EGio - 2FFio + GE^o) + E (EGoi - 2FFoi + GEoO 

and therefore that aggregate is 

Consequently 

VViOj fb = ^ <'"2’ '"'y “ In ' 

(vS) = »"=) - v^«v. 

and therefore 
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Inserting the values of the invariants that are already known, we have 

B . 2B — = ^ B-‘ 
(In 

and therefore 

I (rfo, w"o) 
y4 

V* p 

</B _ B > 

dn o"!' 

Secondly, let y, g, h _ L, M, N, so that u becomes zch. Proceeding in the same way 
we find ’ 

(ys') = + V-J {ivp, Wo) - J j 

Inserting the values of those invariants whicli have already been obtained, we have 
(after a little reduction) 

J ^ g3 d /' M _ 2B2 dB 
yi dn \p' T ds 

Hardly, let/, g, h _ a, />, c, so that u becomes w"o. Proceeding in the same wav 
as for Wo, we find 

(I (V//^ \ 
dn ( V^') "" '"2^1 - |^cyV + IJ (,e„ u^g). 

Now we have retained I {wo, tvdo) in our aggregate, in place of H (?e"o), so that the 

latter must lie removed from the foregoing expression : as the relation ' 

, J~(tCo, w'\^ = Wow''.^! [iVo, 2v"o) — iryH (le'h) — a/'.PV~ 
holds, we have 

'dn \Y^) ~ «’"o) — w’"yV~ — P (wo, w"o). 

Inserting the values of those invariants which have already been obtained, and 
reducing the equation, we ultimately have 

nyA) = _4B3y(B) + 8Bqff+yBav. 

it may lie noted, in passing, that the above equation, which gives the relation 

letween I (wq, w"o) and H (w'h), leads to the expression for H {zv"o) in the form 

H {w"o) _ B t/B 
yo ~ _// ,7A ~ dn 

38. Again, it is known that 

dB 

Kd,J' 

y, SH ^ (JP - 2FQ + EU,^ aK ^ pp I 

jf = GQ - 2FB + ES, = nQ - 2ME + LS 

I . 
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and therefore 

= (GP - 2PQ + ER)^„, + (GQ - 2FR + ES)(- <!>,„) 

= «l> 

say, where is a covariant of the system with index easily seen to be equal to 3. 

Now it is easy to verify that 

(EQ - FP)^ = (GP - 2FQ + ER) EP - (EG - F^) P^ _ (PR _ Q3) e^, 

and therefore that 

W3) = w.2iv.;^a^ — — ?ro~H {ni^. 

Consequently is expressible in terms of the members of the system ; when the 

expression is substituted al)ove, the result enables us to ol)tain the value of 

H (/Cg) But it is simpler to modify the original system of concomitants in § 21 : 

we can replace H (^Cg) in that aggregate by a]_, and the modified aggregate still is 

complete. For the significance of iq, we have 

til _ 

v» = ® * • 

Further, we have 

yvw = (GP - 2FQ + EPv) (- F,^„, + 04,,,,} 

fi“ (^^Q — 2PR -|- ES) (E(^,^i — 

— ^2j 

say, where is a covariant of the system with index easily seen to be 4. It is easy 

to verify that 

E3 (P2S - 3PQR 4- 2Q3) - EP3 ^E^S - 3EFR + (EG + 2F2) Q - FGP'- 

= - 3EP (EQ - FP) (GP ~ 2EQ + ER) + 2 (EQ - FP)^ + (EQ - FP), 

and therefore 

^^^(^(iCg) — w.2W^\ + {w^, w^) — w^) — 2V2«q2J (wg, w^) = 0. 

Consequently tq is expressible in terms of members of the system; when the 

expression is substituted above, the result enables us to obtain the value of <F (nq) V'®. 

But, as in the last case, it is simpler to modify the original system of concomitants in 

§ 21 : we can replace ("?%) m that aggregate by aj, and the modified aggregate still 

is complete. For the significance of a2, we have 

^3 _ E 

V" dn ' 
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An Agrjregatc for the Loiresf Order.=t of Derivatives. 

39. It may be remarked (and it is easy to verify the statement) that, if we desire 

an algebraically comjdete aggregate of invariants, involving derivatives of (f) alone up 

to order 2 at tlie utmost, and derivatives of E, F, G up to order 1, and the fundamental 

magnitudes of the first three orders and no other quantities, such an aggregate is 

composed of 

a:.-, ivf 
pi V3 ■ ye 

H(y/'g) I (u’.i, ?r'b) 
^-4 ’ yu yi. 

H(u>3) 
y3’ y4 ye or 

yc y4’ ys ’ 

and 
J (?Co, 

Every other invailant of the surface involving only the same quantities that occur 

in these invariants can be expressed algebraically in terms of the members of this 

aggregate. The geometrical significance of each of the members has been obtained ; 

if, therefore, the geometrical significance of any additional invariant is known, the 

algebraic equation expressing the invariant in terms of the retained anoTeo'ate will 

express a property of the surface and the curve. Such additional invariants are 

f/Iv 
provided by and ; they should accordingly lead to properties of the surface 

and the curve. 

40, We have 
Two iTen' lielations. 

.. d K 
7/.; = '^'>1 + + LS) (- 'kv.) ■ 

But 

and 

(LQ - MP)' = (N? - 2MQ + LPt) LP - (LN - 1\P) P- - 1;^ (PP - Q2), 

LQ - MP = A {L (KQ - FP) - P (EJ[ - FL)}; 

hence, taking account i)f the iclatlon among the leading terms of the various 

concomitants, we have 

gu (».„ - »vJ («.„ ./,)}= ^ .IK _ 

ils 
'/] I «,)-»■,01 («-3). 
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Consequently 

1J2 iw., us) + wJ^R (us)] - J {tv., IV,) J {tv., w'.) 

+ --K-{P{iv., w'.) + w.m {tv'.)] 
W.~tv. ' ' ' 

IV O 
o 

^~^{tv.tv,a^ — V~us^)-T ] us)J {tv., tv'.) 
iv/tv, ^ ~ ' ~ 

U'., 
H-/-r Uv.U'’.l {w., w'„) ~ , 

tr.hv. ' - ~ - ~ 

(/K . 
so that J- is expressed in terms of the members of the retained aggregate. Sul)- 

stituting the values of the invariants in the equation and dividing out by V®B after 

substitution, we find 

e/K _ I dH _ /o _ 2 . (/ A \ 2 d /I 

ds p' ds ~ ' p'' dt' o'] r' dn ' P 

4 c/P, 

pi 'Brads' 

a pro])erty Avhicli can be changed also into other forms, hy using the relation in 

§ 36, which expresses in terms of j- [\) and otlier magnitudes. Efiecting 

this change, and substituting for ^> c(^)’ values in terms of 

derivatives of p^, p., p, we can express the relation in the form 

d 
ds Px pt \p P-2/A 

I L _ 2\ I (/ /'I \1 _ 4 dB 
r V Pi p. p' p" d'ud p'j ] BP" ds 

and tlierefore 
1 dr 

d" ds 
1 + >i 

' ' ff ^ 1 
Pi P: P P dn p 

2 dB 

Br' ds ’ 

or, what is the same thing. 

4('C = ,i+ ‘ 1 ^dn 
ds \t ' Pi P2 P p' 'P 

2 dB 
BP ds 

dB 

“d,^(p') + (^ p'jp'' PBd.A 

Proceeding to construct the otlier invariant that was suggested in § 39, we have 

y „,,,vU^ = (NP - 2MQ + Lll) (- F4,„, + G4.,„) 

+ (NQ - 2MR + LS) (E.^,„ - 

Let u denote the leading coefficient on the right-hand side, so that 

u = SEL - R (2EM 4- FL) + Q (EN -P 2FM) - PEN ; 

VOL. cor.—A. 3 c 
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and let a,, denote tlie leading coefficients of a,, a., respectivelv. so that 

«, = GP - 2FO + EH, 

a, = E-S - 3EFH + (EG + 2F-) Q - FGP. 

Then it is not difficult to establish the identitv 

E/^ = La. - 2 (EM - FL) + (EN - 2FM + GL) (EQ - FP) 

- ('EG - F-) {L (EQ - FP> - P (EM - FL) 

Noting that all the quantities on the right-hand side are leading coefficients of 

covariants, we change the identity into a relation among covariants ; and the result, 

on division throughout by in.., is 

= — a. ~ J (umG) a,+ ~I (aW.) d (amr..) i/n ir. ■ /r. -/ i v _ . v . 

?r.v 

so that r/K/da is expressed in terms of the members of the retained ao-oreo-ate 

Substituting the values of the invariants in the equation and dividing out hv V'‘B 

after substitution, we find 

= (H — ^ ^ ^ ^ 1 4- ^ ' ~ 
<^1n p' (In \ p/dn^.p'J F dt Vp'J BpV' ds r ds BF ds ' 

Effecting tbe same transfoi'ination as lief'^in. liy taking 

we find 

d /I 
drGF 

d 

du \ 
( K 'U ' 1 = ̂ f f- 

p p~! dn \ ' B-I 

d l\ \ 2 ( IB dH , IT (IB 
dG •^p'J p'B ds “ (Is + B (Is 

d 

ds 1 + 
pd +' 

' •' \ 
H - L 

' P 

1 

B 

i/B 

(Is 
dll 

ds • 

Identification of the remaining Invaidants obtained in § 23, n'ith some 

Modifications of the Spsteni. 

41. We proceed now to the identification of the invariants of the next hioffier order 

of derivatives ; these involve derivatives of F of the third order, derivatives ol xjj of 

the tliird order, and tlie fundamental magnitudes of the fourth order. The method 

used is similar to that adopted in the ])receding sections ; we form derivatives, with 
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regard to .s and to u, of the invariants already interpreted, identify tlie new forms by 

means of some member of the complete aggregate, and tlms we obtain the interpreta¬ 

tion of that member. Accordingly, we sliall usually state the results without the 

calculations, the laborious character of winch is greatly lightened by using the leadino" 
terms of the covai-iants oidy. 

We have 

rA 

iV i I 

a;.. 
{n>J (at., aA) — a Ad (ao, v\,)}. 

Inserting the cables of the invariants winch occur in this equation, and using the 
relation 

obtained in S 33. we have O 

P •' J P3 2P,= 1 
’O/x A rh\p'l + p’V( 

, 0-0.^ ,'/ / I B‘ (/ /1 

and this easilv leads to the relation 

d- d- A - 2 <I / Bd\ 3 d 1 
dr- p') ds- ' A ■ 

P & d, \p'vl p" du' P 

= 2A(-L') + -iFp I , 
^ ' p T P 

3 ' 

P 
H 

P 

/I 
on using the expression for obtained in ^ 40. The fact that the value of 

A/I\ A/1 

<h-\p'! <iAp\ 

is different from zei'o is another illustration of the remark in § 36. 

We also have 

^ ,h, (v-'f) ~ ^ aJ 

+ a.A) - ^ J (hu, w",) J (aq, 

when we substitute for the respective invariants and rerluce, we obtain an expression 
for J (a'.,, aq) in the form 

J ('"-dfil /1 I 9 / 1 3 K , 3 i/B r d /1 

P"t'J ^ / ' B <Is [drdp'J Br' ds J’ 
2 dB 

3 o 2 



PROFESSOR A. R. FORSYTH OX THE DIFFERENTIAL INVARIANTS ;!80 

I (/B 
and tlie expression can l)e further modified hj substituting the value of ^ given 

in § 40. 

42. As the quantity H, the measure of the mean curvature of the surface at the 

point, has occurred in the invariants in and a.i, and as the (luantities - and 
(Is an an as 

are not ecpial to one anotlier, we constiaict the quantities 

(/ /’a'\ 
dad A-’/’ d,s'\V^'' dnKV^I' 

It will a])pear tliat. hy means of the seconrl and the third of these, ve can obtain the 

(dH ^ d-H 
(Is (In (In (Is 

AVe liave 

'' 'L ) = d !(Er - 2F;8 + Ga) + ...} 

value of 

(Is' A y 

+ F {3 ("A 
\ 

Let 

then as 

+ [a,J {iv,. n-A) - ina'A}. 

fq = (Ey-2F^ + Ga)<^or+^-- ; 

(E^ _ Fa)2 = K« (Ey - 2E;8 + Ga) - {ay - ^-) E' - (EG - F-) «n 

we have 
J- (an, tCj.) = n’., — iryH (aq) - Y~n' f. 

Heiice the invariant f), is expressible in terms of the members of the system; when 

the expression is substituted al)Ove, the result enaldes \is to obtain the value of 

H( a-’^) A" But it is simpler to modify tlie original system of concomitants in ^ 21 ; 

we can rejjlace EL (?aq) in the aggregate by hi, and the modified aggregate is still 

complete. 'J'he index of f)i is manifestly 4. 

When the various values are sul)stituted, we find 

G ^ _ iKiH _ d 
yr 1 (h~ P 

I dHl 

p" cin y 

43. AA'A have 

,) := y3 [{E (G/3 - 2Ey + ES) - F (Ga - 2F^ + Ey)' 6,~ + . . .] 

I 
4- ^ [; aql (a'.,, ir".,) ■— A^hr'h' iq ~ J (au, aG,) ii,] 

H(aG) 
y8 J (/(v,, a’h)- 
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Let 

1), = (E (G^ - 2Fy + ES) - F (G« - 2F;8 + Ey)' + . . . ; 

then as 

E^ (a'^d — Sa/3y + 2^’^) — Ea~ ■) E~S — .SEFy + (EG -|- 2B'') j8 — FGa [■ 

= — 3Ea (E/3 — Fa) (Ga — 2F/? -F Ey) 4" - — Fa) ”’ -F 2 VG- (E,8 — Fa), 

we liave 

(a’4 — (an, iv^^) — 2J'^ (/'n, ay) — 2VhG'J (ayvay) = 0. 

Consequently G is expressil)le in terms of members of the S3^stem and of (ay) ; and 

<1> [w^ is expressilde in terms of a’.^, H (ay), I (rt^j.), J (ay). When the various 

expressions are sidostituted, we can modify the system of concomitants in § 21 ; v’e 

replace an}^ one of tliem, say 1 (ay), by h,, and tbe modified aggregate is still 

complete. The expression for (ylj then gives the significance of ly,, tlie index of 

which is 5 ; wheji the values of tlie invariants already interpreted are substituted, 

we find 

_ T5’ i _ K , t dBdHl 

W Idad.s’ F"^Bds’(/ar 

Similarlv, we liave 

v-^ 

FI (a/ 

Y+ or., 

and thus we obtain another expressifar for F,V ^ in the form 

F, _ r (/m _ K 1 dHl 
[(ls<h r' p" ils ]■ 

Comparlim tlie two values tlius obtained for h„ we at once have an exiiression for 

dm dm . , 
07.fc - '’y 

(FH _ (FH ^ _ 1 1 FB FH 

dsdn duds p" Fi' B ds die 

yn 

introduce a covariant fy of index 6, defined as 

h,= |FF(Gy-2Fd+Ee)-2EF(G^-2Fy+E8) + FMGa~2F/3+Ey)( .^oF+ • • • ; 

this covariant is expressible in terms of ay, H (ay), I (ay), J ('J'^), J (a.y, ay) and, as 

To simplify tbe system we 44. We proceed in tlie same way witli 
Fa, 
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H (w^) and I (iv^) have already Ijeen replaced by f)i and we replace J (w^) by Jg, 

leaving the modified aggregate still complete. Then we have 

d / 
oyc 

1 

—- V / ( .T 

which, after substitution of the known invariants and srmie reduction, leads to an 

expression for hg in tlie form 

T ̂6 
P 

1 dB(/Hl 

B ds ds }'• 

giving also the value of as an invariant. 

45. The expressions for 

. d-H 

did 
c/fH dm d-H dm 

ds~’ dsdn' duds' du 
r, can he obtained in another wav: 

it will be sufficiently illustrated by constructing tlie first of tliem. From the 

0H 0H 
expressions for V- —, V' - — in 38, we find the following bv differentiation : 

ox cy ' " - 

- h : E (EN - 2F^r + GL) - 2V-l;; 

= Gol- 2F,8 + Ey + PGr + f) (Ga - 2Fn + U (Ef - 2Fa) + ESa, 

LN - I\F 
V-FT — T \ riji 

V- 
{F (EN - 2FM + GL) - 2VLM1 

= G^ — 2Fy + ES + PGr' + Q (Ga' - 2Fr') + B (Er' - 2Fa') + ESa'. 

1 LN - M- < 
[G (EN - 2FM + GL) - 2Y-N ' 01 - yi 

= Gy — 2F8 + Ee + PGr" + (} (Ga" - 2Fr") + B (Er" - 2Fa") + ESa", 

where {§3) 

2V-T == GE 10 F(2F„-E„) 1 2Y^A E (2Fio - Eoi) - FE 10 

2YG" = GE,i - FG,, r 2Y^A' = EG,o - FE,, I 

2YH"' = G (2F,, - G,,) - FG,„ J 

Knowing the values of x' and i/, we form 

2Y^A" = EGo,-F(2F„-G,oy 

dx' dx' du' du' T 1 

, - , , , , d-. and then we have 
dx (hj (fx dy 
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The actual values are found to lie 

(* S 

- i H (K„4,„f - 2F„A,.'#-,o + Gv.<i>vr) 

+ i ■/'"' A’ (E„,</.„!= - ■2Y„<I>,,<I>„ + GM), 
^ ^ .1 

—3( — <f>oi^-2() + — </>io¥(ie) 
(IS- iC.A 

+ i feU' (E,rf„r - 2F,„c^„,/,,„ -L 

(E,„<)!>,/ - + (i„y<t,yr)- 
?r,v 

where r and s on the ri^ht-hand aides liave the values o-iven in 5 15. Now o o • 

V= ''T = + 2Taii,T'^' + var,,,;/'- + V=H„,F' + Ym„,y" ■ 

when we substitute the values of the various (juantities and reduce, we have 

'' ^ p" (In 
_ 1 l)i ^ r K I Id 

(h~ B- ^ ^ P 

the same value as before (§ 42). 

Again, we know"^ that 
(lx 

(It 
fly / 
a, ="' 

df = tj" + 2r'.T'i/ + 
(It-' 

(It 
■i = Ax'- + 2A'xb/' + 

Hence, as 

rim 

(If 

rPx 
= iL„r= + 2H, ,*y + + h,„ + h, H)1 

rPy 

we 6nd, after substitution. 

Consequently wx have 

r/'H _ I III -L 1K (H 
(it 

rUH rim 1 r/H 

p" (hi ;/y hih 

* See the paper by the author, quoted in § 4. 
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another illustration of the leinark in § 36. It may similarly he proved that 

r/^K _ r/'^K _ 1 (IK 

(W p"<Jn' 

These are particnlar cases of the theorem, which can similarly be established : If 

n (Jenote (uiji (jiKrntitp, trlnch is cdunecfed irith any point on the surface and the 

(xpression of which is independont of the curve (f) = 0 through the point, then 

ddJ. _ d'n __ I do 

ds~ dd ~ p"dn' 

46. Proceeding’ to the identification of the two invariants Hla-'g) and which 

involve the coefiicients of a-' we constrnct I (iv.,, ir"f) and I (-w„ id'd, and 
as ~ ' dn ' 

we find 

v/ w. ' i = A'C he™ - liF/ + Ok)+ 2V • > 

^''N/!;rTi"'*}=2v4!E(E<.-2K.m + G0-F(Em-2n+G/ai^„,+..^^ 

Let these covariajits be denoted by eg, y. respectively, so that 

ig = {Km — 21/ + G/.’) (^,,1 + . . • 

y = {E (Ea - 2lLa + G/) - F (E/h. - 2F/ + Gfl-)} + . . . 

Then C| can he used to replace H (a/g) in the aggregate as aj replaced H and 

Co can he used to replace ft> {up) in the aggregate as a., replaced <i> (ag), in each case 

without affecting the comjjleteness of the aggregate. The index of ig is 7 ; that of 

Co is 8. Their sionificance is niveii hv ~ O O » 

4/. We have 

v'Ga.o _ HKwIIA 
Kis 

and 

yl,, J J {^K, w") - a’"o I {up idf) + - . 
' tl r, w V V M.Lt 
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V v/^; 
dn L ys 

= y5 J (^^’2’ ^^'2) I («’2, “ ^5 J (w^o, io\) I ?V,) 

V®?f^ ['^^3 J('^^25 2) 2 J (^^2> ’*^^2)}- 

When substitution is made for the various invariants, and the reduction is effected, 

we find 

d (l\ dll 2 \ 1_ __ 2 dBl^ 

pip" Bd~S7' 

dn W 

±ll 
ds ^ \pj pV 

H 
p'J B ds ds 

An 
dt \p' 

H_2\ 1 r/B rfH 

p) B ds ds ’ 

which are relations obtained earlier (§ 40). They show that ~ (K) and ~ ( i) can be 

expressed in terms of the other magnitudes. 

We also have 

ds \ 

d /I 

dn Vi 

V= v/«, IJ J , ,,y I (,,, ^ ^ . Wg 
y3 • 

All the covaiicints tliat occur in this relation are known j wlien we substitute their 

values and reduce tlie resulting expression, we find 

^ L dB __ j_ r/B 
ds dn dn ds B ds dn p" ~ds ' 

This result, and the corresponding result obtained for H in § 43, are special cases of 

the theorem, which can be established by using the invariantive forms : If IL denote 

any quantity, ivliich is connected nnth any point on the surface and the ex'pression of 

which is indeimident* of the curve <^ = 0 through the point, then 

1 dn _ 1 dn 
ds dn dn ds B ds dn p" ds ' 

48. Similarly 

Wo 
d_ 

ds 
J 

y5 = i {hr, I («>„ tv\) - 0v\) S + 4. 

* The value of B is not independent of the curve; but B is one of the fundamental quantities for the 

expression of properties of the curve, and its expression is an irresoluble variable. 

VOL. CCI.—A. 3 D 
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after substitution and reduction, we have 

Also, we have 

\/ 

L — 2K ~ ^ ^ 4- ^ 4- 
B ds 1 ' 

<"/ J J ^r3) 1 _ J (wj, iv^) j K?f;2J «’h) 
c/^V I V4 ( ' A}'4 2 ^tT 

I r 

A 

= 9^ ■! ' -'"''='’1 + — J (“'=> ®"=) J "’3) + ' 

thence a value of J {iv^, iv^) is obtained in the form 

^ A \ _j_ 1 K _ lb® 1 fZ /I \ 2 
BW^ dsdn\n')~^ - d” L'/ 4 p '/ ~ T p ds 

dB [ d /I 

dt \p‘ 

2 /I r/B\2 

B ds 

+ 
B r/.s \dn\p', + f^-o'yn" p/p 

Comparing this value of J {w.,, iv^) with the value that was obtained in § 41, we find 

d:^ /1\ r/2 /I 

ds dn \p'/ dn ds \ p' 

= 1T('T\ + 
4 4,, ' ^rn ' 

1 r/B d l\ _ _ _, K _ 4 /I fZBV 
r' cZ?i I p''] B ds dn \p'J p'' dt \p'l ^ r' r Ib ds j 

1 tZ^/1 _ o 

Lastly, we have 

V /ilT i'lfe’JLs)! _ 1 
~ (Zn 1 J V^' 

IV. 
yr 2 y4 

TC 1 C D f A_- ' V . V'" - [2;r2?r'2'^^~ — I {iv.., ivd) tty} 

_ J (w.2, ^v"d , , 3 T -r . . 
--^6 ‘b + oye J («h> I (^b> 2) 

3 

+ bh, V4 w^)]- jL> tVs\ V 

When we substitute the values of the invariants in this expression and reduce the 

result, we find 

(Z2 /I \ (Zd-I 2 \ 1 (ZH d~ A \ 
did \p 2 / 

ds- 
K II - 

+ 
1 

B 

P 

2 rZ-B 

C dn dt~ P 

_ ('■yBcZH (ZB (Z /I 

y dnds ds ds ds dt 

+ j(H-V,®}- -b as [\ p j ds T d)i J 
70 T> 

It is to be noted, from the results obtained in this section, that ^and , „i- 
ds- dn-\p 

are expressed in terms of the other magnitudes retained ; or, if we choose, we can 

r/~B 
regard the last relation as determining j —, in terms of the other magnitudes 

® dnds ^ 
retained. 

rZ^ /I 
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Invariants involving Derivatives of Two Functions. 

49. Among the aggregate of invariants set out in § 23, there still remain nine 

as yet iminterpretecl; l)ut their expressions involve derivatives of the function i//. 

Five out of these nine involve derivatives of no higher order than those which occur 

in the invariants interpreted in 34—38. In order to obtain their inter]fretatioii, it is 

convenient to associate with them invariants which depend upon i// alone and bear 

the same relation to alone as some of those already interpreted bear to <f) alone ; 

and then the complete aggregate can be simplified by replacing some of the original 

forms by some of the associated forms. 

For this purpose, let 

''uD 

Wo = (E, F, GJi/zoi, — 

J (Wo, W h) = (E/> — Fa') — (EA — Ga') i//oiiAio + (Fc' — Gb') xp^Q~, 

= - (Eb — F(d) (poi^oi — (Eg' — Grt') (<'/)oi’Aio + 

+ 2 (Fg' — Gb') (pirfj,); 

then we establish (and it is easy to verify) the equations 

J~ (u\, 7Co) — aqW.o + Vhcp = 0, 

^CoAi 7V oJ (u'j, "ICo) -|- (iV.T, 7c'"o) — 0, 

- w'",W'", + ufH (?c'",) = 0, 

~ "J j I (^G’ ^F"o) = 2V~7epc'"o, 

A^' - 4J (aq,iF"o) J (Wo, W'G) = {P(wo, w'G) - 4V~H(?o'".,)}. 

The first of these equations shows that Wo can be regarded as known ; it is not an 

independent invariant hut, if we wished, we could replace 7Co by W^o in the complete 

aggregate without affecting the completeness. This change will not be made; we 

shall letain Wg as a quantity convenient for other purposes and alternative to an in 

the aggregate. 

The second and the third equations, combined so as to eliminate A, show that W'"o can 

be regarded as known ; it is not an independent invai iant but, if we wished, we could 

replace w by W' h in the complete aggregate witliout affecting the completeness. 

This change will be made. 

The fourth and the fifth equations, combined so as to eliminate A.,, show that 

J(ffo, A''"o) can be regarded as known; it is not an independent invariant but, 

if we wished, we could replace J (w.^, w'"^ by J (Wo, W'"2) in the complete aggregate 

without affecting the completeness. This change adso will be made. 

3 D 2 
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The five invariants that remained for interpretation were 

J {tv^, J (-zro, 1(147.2, xo'"^ 
V ’ V“ ’ ’ ys ’ y4 - ; 

after the changes that have been made, the five are 

XO^ J (447^, 447.3) J (Ws, W'"o) I [W., 447"b) 
V’ y^ ’ yi ’ ys ’ y4' ■ ’ 

of which the last may also be written I (Wg, V'f The interpretation of the 

first two of these is easily obtained ; for the interpretation of the remaining three, 

which involve derivatives of i/> but not of <^, the results of earlier interpretations 

can be used. 

50. For the purpose of the inteiyretation, we need certain geometric j^roperties 

of the curve xjj ^ 0. Let ds denote an elementary arc along the curve, and dii,' an 

element along the normal to the curve; and let 

A — 
dn'‘ 

Further, let — denote the circular curvature of the geodesic tangent to if/ = 0, 
P 

and ~ the curvature of torsion of that tangent; also, let 4- denote the geodesic 
P ^ 

curvature of xfj = 0. Then Wg, I (Wg, W'L), J (Wg, W"b), stand to xf/= 0 in 

precisely the same relation as ?4’2, xi/'„, I (^t^g, xv"„), J (w.^, xv",) to (j) = 0 ; and therefore 

Wo _ *0 
y2 — ^ > 

W'"o _ _ 2 A3 

V p ^ 

IIWjaJWA) _ 9 /_ _a \ 
Ua p"J’ 

J W^A) _ „ 4/a 
^ ds'- 

Moreover, we have 

^]j/ _ ^10. 

yWg’ ds 

so that, if X be the angle at which <f) = 0 and if/ = 0 intersect, we have 



389 OF A SURFACE, AND THEIR GEOMETRIC SIGNIFICANCE. 

and therefore 

Also 

and therefore 

J IVo) 

Y2 = AB cos X. 

sin X = V 
UIx dy 

\dd ds 

dy dx\ 

ds' ds) 

V'wM: 

= AB sin X. 

We can regard the quotient of the last two invariants as giving the angle X ; and 

we can regard the sum of tlieir squares as defining the magnitude A. Clearly 

J' (a’l, IV,) + = VCX^B'^ 

= iv^Vl,, 

a relation already used ; it may be further used to replace J iv,) by W„. 
51. The general theory shows that all other invariants, which involve deiivatives 

of cf> and xp up to the second order inclusive, derivatives of E, F, G of the first order, 

and the fundamental magnitudes of the first three orders, can be expressed in terms 

of the aggregate already retained, composed of the eleven invariants selected in § 39 

and the five just identified, viz. :— 

u\ 

V 
J (W^, IV,) 

y2 or 
Wo 
V2 

r/// J (W.0, W^A) I (Wo, W%) 

It is not without interest to illustrate the property b}^ one or two simple examples. 

Consider the circular curvature of the geodesic tangeiit to xp = 0 ; after the result 

in § 34, it manifestly will be given by 

W'o ^ A2. 

n' ’ V p ^ 

according to the theory, it ought to l^e expressilfie iii terms of the invariants retained. 

Take 

Vi = L(^oi^()i — M ((/joi'Aio + '^lu'Aoi) + > 

then we have the equations 

= to'.,W', - IV,m (w',), 

tv,V, = iv',J ('iv,, u>,) — ^v,J (iv„ iv',); 
and therefore 

IV,^ {w',Yd', — U?i^H {w',)\ = {w',J {W„ UK,) — IV,J {-w„ 
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When the geometric values of all the invariants are substituted, the preceding 

relation (after mere simplification and division throughout by A~B®V®) becomes 

1 _ sin^ A. /cos X . sin kV 

PP^ PiPi \ P r ' 

a relation whicli can be verified independently by means of Euler’s theorem on the 

curvature of a normal section and of the expression in § 35 for the torsion of the 

geodesic tangent. 

Similarly for the curvature of torsion of the geodesic tangent to li; = 0 ; after the 

result in § 34, it manifestly will he given by 

J (W„ Wh) _ A2 

According to the theory, it also ought to be expressible in terms of the invariants 

retained. Take 

* = 2 (EM - FL) - (EN - GL) + 2 (FN - GM) ; 

then we have tlie equations 

cp- = 4J {w., w'.J J (Wo, W'o) + R.’pW (— — —y, 
\pi pJ 

= 2J (itq, iCo) J (iro, irh) — Ript'oI(R’o, w/o) + 2Y~w^w'„, 

and therefore 

w/14,1 (iv,,!(/,,) J (Wj, wy + ic,=v' (1 - IJI 

= {2J {ivj, «q) J (w,, iv'o) — iv^wj. {iv,, w'„) + 2Vh('p<6’h}p 

which gives an expression m terms of the invariants. When we substitute the values 

of all the invariants and divide out by A~B®V^°, we find 

- - (1 1V • o ^ 1 , , — —-siir X + 
Vi Pi/ rr^ 

cos X 2 sin X 
+ (— + —) sin X 

\pi Fr 

That some results of this kind, connecting p and p^, should exist, can easih* he 

seen. Wlien p^ and p. are given, p' is determined by the inclination of <^ = 0 to a 

hue of curvature ; X being given, we then know the inclination of xp = 0 to that line 

of cuivature, and so is known. Similarly for some result connectino- E and rfi 

As a last illustration of this kind, consider the invariantive expressions for and 
ds' 

m 

dn' Let and fq be the invariants corresponding to iq and a.^, so that 
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bi = (GP — 2FQ + ER) ijjQi + (GQ — 2FR ES) (— ^iq), 

I)o = (GP — 2FQ -|- ER) (— Fi/zq]^ + Gi/z^u) 

+ (GQ ~ 2FPt + ES) (Ei//u^ — ! 
then 

bi _ (/H R — A —^ 
Zc' ’ V' “ (h? ' 

Now we have the equations 

= J (u’l, iv.^ — it'iao 

Hqlq = + J {n\, W.,) in 

which are easily established; substituting in them the values of tlie Invariants that 

occur, we find (on removing a factor AB“V^), the relations 

(/H ^ r/H 

d/ “ <h 

(/H ^ <m 

(In' (Is 

cos X ~ 

sin X + 

r/H 

(In 
sill X 

c/H 

(In 
cos X 

t. 

J 

which are the ordinary differential relations for transference from directions'^' ds and 

dn to ds' and dn', when the subject of operation is a function of position only and 

involves no properties of tangency and no properties of contact of order higher than 

the first. But for a function of position (and, a fortiori, for a function w^liich involves 

properties of contact of the first order or of higher orders), the operators and 

are not interchangeable. Thus, in particular, ^7^ dndfs equal to one 

another, except for special curves ; an expression for their difierence has already been 

obtained. 

52. It still remains to identify the four invariants H {w"f), J (('q, 

which involve the derivatives of both (j) and if/. Instead of proceeding to obtain 

their values, we use the method adopted in § 49 ; we replace them by four equivalent 

invariants involving derivatives of ijj only, and the change does not affect the 

completeness of the aggregate. These four invariants are 

W"3 = (P, m', n'XAn, - ^/bo)^ 

II (W-Q = (k'm' - n if/of + ... 

CR (W'f) = {k'^~n’ - mfrn' + 2P) if/^f + . . ., 

J (W., W"3) = {YJ - FP) if/.f + ... 

* The value of sin A shows that the direction of dn falls within the angle between ds and dn. 
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We then modify this set of four, and replace H (^¥"3) and (^¥"3) by and (5. 
where 

= (Em' - 2F/' + GF) + ... 

@2 = (E (En' - 2Fm' + G^') - F (Em - 2F/ + Gk)] xPoi + ... ; 

and the set W"3, J (Wo, W"3), (J, replace <, H {w",), cp (u^'g), J (ic,, lo",) in the 

aggregate, which remains complete after the change. The set of equations, which 

exhibit the equivalence of the four inserted forms to the four ejected forms, is 

simdar to the corresponding set in § 42 ; it is more complicated because the ground- 

forms w^", W"3 are of tlie third order. 

The geometric significance of the four inserted forms can be obtained from the 

consideration that they stand related to the curve ^ = 0 exactly as ic'g, J (?Co, 1F3) 

Cj, Co to the curve (j) = 0. Adopting the notation of § 51, we thus have 

All otlier properties of the curve 1// = 0 up to the order retained can be expressed iu 

terms ot the invariants of the aggregate; the examples given in § 51 will be a 

sufficient illustration of the remark. 

T/u Aggregate for a Single Curve (f) = 0 up to the Order Retained. 

53. Ihe 29 invariants in the preceding set have a closer affinity to the curve ^ = 0 

than to the curve A = 0, the chief reason being that the first derivatives of (/> were 

made the variables for the binary forms. By taking the first derivatives of i/; for 

these variables an equivalent set of 29 invariants could be obtained, having a closer 

affinity ^ to the curve i// = 0 than to the curve ^ = 0. And it would b^ possible 

to modify each of these two sets, so as to construct a new equivalent set of 29, 

symmetrically related to the two curves. All that is necessary in each modification 

is to secure that the retained aggregate remains algebraically complete. 

Out of tlie set of 29 invariants retained, there are 20 which are not affected 

by the curve i/i = 0 in their expression; and therefore we infer that all the 

differential invariants of a surface and a curve <^ = 0 upon the surface, involving 

derivatives of (f) up to the third order inclusive, involving the magnitudes E, F, G 

and their derivatives up to the second order inclusive, involving also the fundamental 
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magn tildes of the second, the tliird, and the fourth orders, can he exjiressed 

til^ebi aicall\ in terms of an algebraically complete aggregate of 20 members. 

Ibis aggregate is composed of 20 quantities, each divided by an appropriate power 

of A ; the sections quoted give the significance of the respective invariants. These 

quantities are as follows ; 

[§ 34] 

[§35] 

[§ 34] 

[§3(i] 

[§38] 

[§36] 

= (E, F, GX</>oi, - 

iv\. = (L, M, — ^in)'^ 

-1 (ir.,, = 
EM EN FN 1 

- FL -GL -GM ! 
i 

I ich) = EN - 2FM + GL, 

a’", = («, 5, eX<^on 

J (vt^, = 
E6 Ec Fc 

- Fo — Go -G6 

1 (a^, w'h) = Ec — 2Fh + Go, 

- (P, Q, R, 
[§37] j{ir.,w.^) = 

eq 
1 

2ER ES 

-FP -fq + FR 

- GP - 2GQ 

a,= 

EPt E8 

-2FQ - 2FR 

H-GP + gq 

FS 

-GPv 

i‘l,. 

E^S EFS 

- 3EFR - (EG + 2F') R 

+ (EG + 2F‘) Q + 3FGQ 

- FGP -G^P 

X'^on - 

U’ '3 = /, 

3 E a’ol. ccr.—A. 
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[§37] J (u'o, w'g) = 

K46] 

FJ 2Eto Fji 1 

- Fk -FI + Fm Fti 

- Gk -2GI — Gm 

C] = Fm Fun X^01> 

[§ 46] c..= 
Ehi 

— 3EF;/i 

+ (EG + 2F^) I 

- FGk 

^io)> 

[§34] 

[§41] ,]{iv,,w^ 

vj^ = {a, y, S, eX(t>oi, — 4>ioY^ 

[§42] 

[§43] ^-2 ^loY’ 

[§44] E = - 
E^e E-Fe EF-e 

- 4E^F S -4EF2S - (2F3 + 2EFG) S 

+ {E'G + 5EF2)y + (2EFG + 4F3)y + (5F2G + EG')y 

- (2EFG + 2F3) /3 - 4F^’Gy8 - 4FG'/3 

+ F2Ga + FG^a + G3a 

10 
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The various indices of these quantities, being the powers of V by which they must 

be divided to become absolute invariants, are :— 

Index 2, I v/,) ; 

Index 3, J {tv., iv'.), w^, cq ; 

Index 4, w”., I(^(;,, J aq), a., iv^, ; 

Index 5, J {w., ??/h), J (w., iv^), ; 

Index 6, 

Index 7, w'^, tq; 

Index 8, J {w., tv'^), t.. 

54. It will be seen from these forms that all the invariants retained are linear in 

all the quantities L, M. N, P, Q, R, S, a, A y, 8, e, a, b, c, k, I, m, n which occur in 

them. This ijroperty facilitates the expression of any other invariant in terms of the 

various members; thus 

LN — iVP _ (wo, w'o) — J3 {(v., tv',) 

ae — 4;g§ -h 3y~ _ tv^fj^ — 4J (w., tvj f),, + 3iv4h'^ 

- ’ 

and so for others. Moreover, in the invariants which contain a, h, c linearly, the effect 

is that the derivatives of <f> of the second order (being the highest that occurs) are 

contanied linearly ; and in those invariants which contain k, I, m, n linearly, the 

effect is that the derivatives of of the third order (being the highest order’that 

occurs) are contained linearly, as well as those of the second order. 

Moreover, the forms can be used to obtain the value of any given invariant ; 

all that IS necessary for this purpose is to obtain the expression of the invariant in 

terms of the members of the selected aggregate, and to substitute the values of the 

members that occur. Thus, consider the simultaneous invariant 

a, b, c 

U M, N ; 

E, F, G 

when expressed in terms of the members of the aggregate, it is equal to 

w, < J I - J [w.^, w'o) I {w^, tv%)} 

+ “3 ^^^"2 J - ut'2 J (it’s, w".)}, 

3 E 2 
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and the value of the latter expression is 

2V- 
pr _ 1, r/B 1 r/B 

p'J fJs t' dn 

In this way the actual values of a large number of the Invariants belonging to the 

asyzygetic aggregate can be obtained. The asyzygetic aggregate of two cubics is 

known. The asyzygetic aggregate, arising when a quadratic is associated with 

a system asyzygetically conqdete in itself, is also known; so that the asyzygetic 

aggregate belonging to a’b, V'o^, idn can be obtained by the application of 

known theorems. 

Further, the asyzygetic aggregate of a cubic and a quartic is known, so that 

tlie asyzygetic aggregate could l)e obtained f(.)r aq, a'b, aq, aq, and also for 

'aq, tab, ia'g, u\. But, so far as I am aware, the asyzygetic aggregate of either 

two cubics and one quartic, or a cubic and any system asyzygetically complete in 

itself, is not known ; as soon as either is known, the results could be applied to 

obtain the asyzygetic aggregate for iv.2, iv'o, ly'b, w\, aq, that is, the complete 

system of concomitants in terms of which any rational integral invariant can be 

expressed as a rational integral function. 

The Geometrical Magnitudes which are Independent. 

55. As regards the quantities, which have served to assign the geometrical 

significance of the several invariants, some inferences can be drawn from the results 

obtained. Denoting by ;)( the angle between the curve and the line of curvature 

connected with pj, we have 

cos' X _p sill- X , 

Pi Pi 

]_ 

Ti 

I 

cos y Sin y 

1 
-\~ 

P\ P: 
K = 

PiPi 

so that not more than three of the ([uantities --, , H, K are independent. For 
P ^ 

puiqioses of expression, we have retained H. 
P 

B and ~ • 
P 

There are also the quantities 

To the order of derivatives which occur in the invariants that have been 

constructed, the geometric magnitudes, which might be expected to occur in the 

values of the invariants, are as follows :— 
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I (I / I \ , f ^ V , (' 1 
p' ds [p'J (In \ p ! ' dsAp'> ' dsdn\p'/ ' (In(.Is[p'J (hP \ p' 

H, 
(IR f/H cFH dm (PH (PH 

ds dn ’ dP dsdn (bids (hP 

B, 
(IB dB (7'B (PB (PB (PB 

ds (In ds- (Is (hi du ds (hP 

(Is \p 
I ,J / I 

1 
/ 

T 

<1 / 1 

(Jii \ p". 

and the derivatives of But not all of these can he retained as independent magni¬ 

tudes. In § -to it was proved tliat 

' A - - _ ('.H - 
ds ' r'B (Is 

d 
'' 11 II 1 1 (/B 

du ^ l ' ^ \ — ' 
\ p / B (Is 

r/ / 1 \ 

P > 9 ihi P ! 

+ W (—7 ) + --TT' 
(/.'< ' p p T 

f/H 

<h 

1 
S) tliat the first derivatives of and conseipiently also the second (and liigher) 

T 

derivatives, are exjiressihle in terms of the derivatives of the other (piantities 

retained.Again, in §§ 41, 43, 47 it has lieen shown that the (piantities 

(Is (In. 
- V ) 
>\p'^ (In (Is ' p / 

(PH _ (/'E 
ds du (In (Is 

(PB _ (PB ^ 
ds (In (In (Is 

are expressible in terms of the derivatives of the first order; so that it is sufficient to 

(P /1 \ (/'H (/-B , . , (/- / 1 . <PR #B 

(7.1 ' 
retain 

(Is (In 
/’.Vi A' 

' ’ duds’ duds 
Further, in 

dsdn " duds' p duds on (is 

§ 41, it avas proved tliat 

* It is proved in D.vr.aoux’s ‘Theorie gOierale des Surfaces,’ vol. 2, p. 3(10, that the quantity 

d /I 
(U \t / \ p! p 

which occurs in the first of the two equations, is the same for two curves tliat ha\ c the same tangent. 
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B ds^ 
= 2K - 

j^n\ _ cm 
drdXp'j f/.s-3 

-L i_ IA d (i\\ 
B 1 r dnd.s ds ds ^ ds dt \ p')\ 

_^c^r/„_ 2\f/B I dB\ 

B^ ds p'j7js ~ ?A^r 

and the values of ] and 
dt. [p' / 

72p 73 
unnecessary to retain - „ , -~ 

ds' drd 

d~ 
dd o{ ,) have been given in §§ 36, 41 ; hence it is 

I ' 

P ' 
We therefore retain the quantities 

1 A, 1 mill 
p' ' (Is ' \p'J ’ (In' \p'J’ cm Vp / ’ dsdn^ 

^ cm dR dm d-H cm 
’ ds ’ dn ’ d.s-" ’ dsdn’ dir ’ 

^ cm dB dm dm 
ds " dn ’ ds dn ’ dn~ ' 

j cl i±\ A_/i\ 
A’ cls \p'V drAp"'^ 

1 

being 20 in all; their associatioii with tlie 20 algebraically independent differential 

invariants set out in § 53 has already been made. 

56. These lesults would seem to have an important bearing when we proceed to 

the next higher order of derivatives. As is rejected from the aggregate 

of quantities, the quantities ^ and -5^ ^ o ’'vill also be reiected ; also, as -AA 
ds^ dnds~ dnds dsdn 

IS expressible by quantities of lower order, the quantities and - will be 
ds-'dn chidsdn 

rejected ; thus, in this order, the only derivatives of B to be retained are 

c/"B d^B jim 

dsd7ids' dn^ds^ ds chd dn^’ 

four m number. Moreover, these four may reduce to two; for the first may be 
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cm 
equivalent to the rejected while the second and the third may be equivalent 

to one another. Similarly, the only derivatives of to be retained are 
P 

ds^ Iph .p 
.jp ('M 

d dn ds dn \pT clnds~\p'r 

four in number; and these may reduce to two. There are six derivatives of H, viz. : 

dm #H cm dm 
ds^ ds~ dn cln ds^ chd ch ds drr drd 

which may reduce to four; and there are four derivatives of -\j, viz. : 
P 

d“ / 1 \ d~ / 1 \ d' / 1 \ d- /' I \ 

d.s^ [pdl ’ dsdn ^ p"! ’ dnds [pdl ’ 7hd\p") ’ 

which may reduce to three. Hence there are, in all, eighteen new geometrical 

quantities arising through the inclusion of derivatives of the next higher order; aud 

these eighteen quantities may reduce to eleven. 

Now the number of differential invariants, which involve derivatives of cf) ujd to 

order 7i and tlie corresponding quantities of proper order, is {Sn + 5) by § 27 ; 

and this number is certainly subject to diminution by 1 unit, as explained at the 

beginning of § 29, so that it is (3n + 5) — 1. When n = 4, this is 33 ; and we 

know that there are 20 invariants for n = 3; so that 13 new invariants are 

introduced by the differential equations for the new order. It has been indicated 

that there may be only 11 new geometrical quantities available for their expression; 

if so, the inference Avould Ije that there are two algebraic relations among these 13. 

These relations are outside the differential equations; and the only cause from 

which they could arise would be owing’ to the intrinsic significance of the magnitudes. 

As there actually is one* differential invariant of deformation of this order (that is, 

a function involving E, F, G and their derivatives np to the third order, and no 

other quantities), the obvious suggestion is that it would laehave like the invariant 

of the lower order, due to Gauss, and would be exjaressible in terms of invariants in 

the binariant system composed of the fundamental magnitudes ; but this inference is 

only a suggestion, and cannot be regarded as an established result. 

[Note; added, 12 Mccy, 1903. 

After the manuscript of this memoir had been sent to the Royal Society but before 

the memoir itself had been read, I succeeded in definitely establishing the inference 

suggested at the end of §56. The necessary calculations are long and are of the 

* 2orawski, I.C., p. 31. 
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same general character as those in §§ 14-22 ; their aim is to obtain the one solution, 

other than V and V-, of tlie tAventy-eiglit partial differential equations satisfied bv 

differential invariants of deformation, which are of order not higher than three. The 

mode of dealing with such a system of equations has been amply illustrated in Part I. 

of the memoir; accordingly, only the results of the analysis will he given, 

e denote by F, F, F , A, A , Aquantities defined in ^ G ; and aa'c Avrite 

u = p:,, _ + Goo + r'T:,o - (2r' + A") E,, + fe„., 

+ 2A'Th„ - 2A'Goo + 

r = Koo - 2F^, + G,i + T"E,, - 2F'Eoo + 2FF,.o, 

+ A^'Goo - (r + 2A') Gn + AG,,,, 

^ ” 2Fji 4- Go,,, 

these being simultaneous solutions of the eighteen equations, Avhich correspond to the 

vanishing of the derivatives of ^ and rj of order 4 and of order 3 in the various 

arguments (§ 13). Further, Ave Aviite 

P — E''(— 4EoiG^oCtoi + SF^o^HoGoi — 4:Gj|/) 

+ EF(- 4EioGioGoi + 8E,„FoA,i “ 16F,oF„iGjo - leFoyGoi + lOF^oGop 
+ -ll\,iGj,p + ^KoiFoiG]o) 

+ EG(- 2E„EoiG,o 4- f->K,oFioG,o 4- 4E„Fo41o, - 4E,oG,o^ - 4Eo,FjoFoi 

- 2E„44,Go, + SFoiF,,= - 4F,/Go, - ^Kop44o) 

4- t'l — 2EjoEoiG(ii. 4- 4:E^oF(ji^Ho + lOE^ijFioGoi — 4E,oG]o~ — ]2Fio'T4o 
4- 24F,/F„ - GEo,F,Ao - 12EoiF,oFo, ~ 2E,p\-4o) 

4“ f G^SEjoEojFoi “ 4Ejo'Goi + TFjoiEo^Gjo 32E2oFji,Foi 4" l^EojFjoG^o -F SEopFj,,) 

+ G'(8E,FFoi - 4Eo;rG,o - 4EorE,o), 

10*- uy’^lii 

./ = K~(8F,„G„i' - 4E,„G,„’ - 4G,„G,„*^) 

4* EP ( 4E,,,Gui~ ~ il^PjoPoiGin 4^ 8F]oG|i|G„| 4- 4P-imGj|,G,„ -F 1gF4)iFoiG 

4- EG (Gp^oJhiiGoi — 2F_.|oGii,G(:n + 4P4jP'’^,44^ + f*l'’iul''’ui' “ ^FjoFoiC 
- 4EorG,, - 2Eo44^g.o - 4E01F0P - 2Eo,Gur) 

4- F-(10EoiFo4loi - 2EjoG,,Goi + 4EoiFioGoi + 24Fof-F^o “ F2P\oFoiG 

2PvoiG|o~ *1Ko4oiC»^io 4EofGoi — 12Eo4''oi') 

+ FG (— 4E^oEoiGoi — IGEjoFoP 4" SEjoFo^Gjo — IGEoiFjoFoi 4- SEo^FjoG 

+ IGEoF^Foi + 4EopG,o) 

+ G- (8EjoEo,Fo, - 4EjoE,-,44oi - 4P;-,F). 

1)1 

'10 

10 



OF A SURFACE, AND THEIR GEOMETRIC SIGNIFICANCE. 401 

Also, we write 

= 4V% - 4V46' {2A' + 3r) - p, 

X, 4V% - 4V^6»(2r' + 3A") - q. 

Then a first expression for the differential invariant of deformation of the third 

order is found to be 

(EX/ - 2Fkf, + GXf) 

This expression can be modified by means of the relation (§35) 

4V^(LN - M") = V 

= — 2V'^ + E [(Eq! — 2Fio) Goi + Gio^} +G [Eq/ —Eio(2Ffji — G^q)} 

+ F [EioGoi — Eqi (2Foi + Gio) + 2Fio (2Fy^ — Grio)}. 

Dividing both sides by and taking the derivative with regard to x, we find (on 

\ising the relations in § 6, and after reduction) that we have 

Xi = - 8V-^(NP - 2MQ + LR), = - 8V%, 

say. Proceeding similarly from the derivative with regard to y, we have 

X, = - 8V" (NQ - 2MR + LS), = - 8V*b, 

say. It thus appears that the two combinations E, F, G and their derivatives up 

to the third order, represented by X^ and X.,, are expressible in terms of the fundamental 

magnitudes of the second and the third order. Moreover, dropping the numerical 

factor 64, we have an expression for the differential invariant of deformation of the 

third order (say I) in the form 

IV® = Eb' — 2Fab + Ga~. 

By the theory in the preceding memoir, this invariant (which now involves only 

fundamental magnitudes of the first three orders and none of their derivatives) ought 

to he expressible in terms of the members of the system set out in § 53. Writing 

iv\ = (a, bX(/)oi, - 

w'\ = (Eb - Fa, Fh - GaX^on “ 4>io)^ 
we find 

wfw\ = (^2, w'f) + ^^;2^^;'2^l — 2J {iv^, J '^%) — 2Yho\yo^, 

iv^w'\ = wff {w^, wf) J (iv^, wf) + 2V^'tCoJ (w^, w'f) — 2N‘^uf(iv^, wf) 

— 2-1^2^] J {'^2) ^^^3) + w<pv\a.i. 

3 F VOL. CCI.-A. 
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When the geometric values of the several invariants are substituted, we tind 

iv\ = BV3 ^ , 
as 

and therefore 

= BV^ (IK. 

dn ’ 

1 = 

which IS the geometric signijicance of the differential invaiiant of deformation of the 

third order. Its expression appears to involve association with the curve <j) = 0 ; but 

the relations in § ol shew that the association is the same for all curves, so that the 

quantity is a function solely of position on the surface, being the sum of the squares 

of the fiist derivatives of K along any two perpendicular directions along the 

surface.] 

i'KSSENTEB 
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X. On the Laws Governirui Electric Discharr/es in Gases at Low Pressnres. 

By W. R. Care, B.A., Post-graduate Student, University of Toronto. 

Communicated by Professor J. J. Thomson, F.R.S. 

deceived, February 11,—Read, March 5, 1903. 

1. Introduction. 

The researches of recent years have conclusively settled the general connection 

between the spark potential and the jDressure of a gas. It is now well known that as 

the jjressure of a gas diminishes the difference of potential necessary to produce a 

discharge between electrodes in the gas, a fixed distance apart, also diminishes, until, 

at a critical jM'essure, the spark potential reaches a minimum value. It is further 

established that below the critical pressure the potential difference required to 

produce discharge raj^idly increases as the pressure is lowered. 

This connection between the spark potential and the corresponding pressure of 

a gas has been well illustrated in a series of curves drawn by Peace,^' who 

investigated the sj^arking j^otentials betv'een a pair of parallel plates at pressures 

ranging from one-half an atmosj^here down to a little below the critical pressure. 

Among others, Strutt! and Bouty| have carried on the investigation at pressures 

considerably below the critical point, and their results shoAv that, once the critical 

pressure has been passed, the rise in potential difference necessary to produce discharge 

is exceedingly rapid. 

The effect of varying tlie distance between the electrodes was first determined by 

Paschen,§ Avho observed the existence of a simple law connecting the pressure at 

which discharge took place with the corresponding spark potential and the distance 

Ijetween the electrodes. 

Paschen’s results showed that when a given potential difference was applied to 
two spherical electrodes, whose distance apart could be varied, the maximum 
pressure at which discharge occurred varied inversely with the distance between the 
spheres. 

The range of pressures over which he found the law to apply, while considerable, 

did not extend below 2 centims. of mercury, and his results do not in any case indicate 

that the critical pressuie had been readied. It is evident, then, that Pasohen’s 
conclusions are confined to pressures higher than the critical pressures. 

* Peace, ‘Roy. Soc. Proc.,’ vol. 52, p. 99. 

t Strutt, ‘Phil. Trans.,’ A, vol. 193, p. 377. 

t Booty, ‘Compt. Rend.,’ vol. 131 (2), p. 113. 

§ Paschex, ‘Ann, d. Phys.,’ vol. 37, p. 69. 

VOL. CCl.—A 340. 3 F 2 8.7.03 
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Since the statement of tliis law by Paschex, Peace^"" alone seems to have 

published results which could throw any additional light on the conditions holdino- 

lor discharge in a gas- at very low pressures. Peace experimented in air, with 

parallel plates as electrodes, at various distances apart, and found that the value of 

the critical j^ressure increased greatly as the distance between the electrodes was 

lessened, but his results at points below the critical pressure give no evidence of the 

existence of any such law as had been enunciated by Paschex. 

This can be readily seen from the numbers recorded in his paper, a tew of which, 

selected from readings taken below the critical pressure, are given in the following 

table. These results admit of easy comparison, since the potential ditferences in the 

cases chosen are very nearly the same. The product of pressure and spark length 

should be a constant quantity if Paschex’s law held. 

Table of Peace’s Eesults. 

i 

A])plied potential Pressures in Distance between Product of 
j difterence in inillims. electrodes in pressure and 

volts. of mercury. inches. spark length. 

6t9 
660 

'2, ■ 0 

6 
■082 
•005 

• 205 
•030 

670 5 •021 ■105 
731 2-5 •030 •075 

It we compare the tirst and second of these results where the difference in spark 

potentials is only 11 volts, we find the product in the first case nearly seven times that 

in the second. Again, the product coi'respondiiig to the spark potential G60 volts is 

less than one-third that corresponding to 670 volts, a large difterence in the opjiosite 

direction. The same irregularity is exhiliited by the product corresponding to the 

spark potential / 31 volts, and it seems difficult to understand how experimental 

errors could be made to explain such a wide divergence of results. 

At the critical pressure Peace’s results point to the existence of the law, but, as 

stated above, it would appear that as soon as lov'er pressures were approached the 

indications were uniformly against the existence of the relation which Paschex found 

to hold at high pressures. 

Owing to the special precautions taken by Peace to obtain accurate values for the 

spark potentials, it is possible to arrive at but one of two conclusions regarding the 

departure from Paschex s law indicated by Peace’s numbers. Judging by the 

results, either the law ceases to hold when the critical pressure is passed, or else the 

apparatus used by him in his experiments did not admit of an accurate measurement 

of the actual spark lengths corresponding to different spark potentials. 

* Peace, ‘ Roy. Soc. Proe.,’ vol. 52, p. 99. 
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A short discussion ol the uppcirtitiis will rcvctil oiio coiisidcrcibl© delect. The object 

of the investigations of both Paschen and Peace was to determine the electromotive 

intensity requisite to cause discharge in a gas. Idiroughout the range of pressures 

investigated by Paschen the discharge always took place along the shortest distance 

between the spherical electrodes, and the electromotive intensity requisite to break 

down the gas was therefore directly proportional to the spark potentials obtained by 

him. At points below the critical pressure, as Peace’s results indicate, discliarge 

occurs more easily ovei‘ a longer distance than over a shorter one, and if tlie values 

of the electromotive intensities necessary to break down a gas at difterent })ressnres 

lire to be compared, it Is neces.sary to know in each case not only the jiotential 

ditierence applied to the electrodes, but also the path betv'een the electrodes along 

which the initial discharge occurs. 

To insure passage of the discharge over the same length of path Ueace used plane 

parallel plates of very large diameter as electrodes, but while in this way lie obtained 

a uniform field ol considerable extent, and so was able to obtain an accurate measure 

of the electromotive intensity between the electrodes, he failed to make certain that 

the path along Avhich the gas initially broke down wars always confined to the uniform 

part of the field. As mentioned in his paper, there A\'as considerable tendency, at 

loAv pressures, to a brush discharge from tlie edges of the plates, and this indicated a 

detect in his apparatus, which apparently he did not completely eliminate. 

In the present paper an account is given of an investigation on the potentials 

necessary to produce discharge in a gas, with a form of apparatus which insured the 

passage of the discharge in a uniform electric field. 

With this apparatus the discharge potentials liave been determined, for different 

distances betAveen the electrodes, over a range extending considerably above and 

beloAv the critical pi-essure. The results of the investigation not only confirm the 

truth of the kiAv enunciated by Paschen for discharges at high pressures, but also 

demonstrate, beyond doubt, the applicability of the same laAv to the critical pressure 

and to all pressures beloAv it. 

'I'he existence of the same relation has been sought in each of the gases air, 

liydrogen, and carbon dioxide, and the result of the investigation has been the 

establishment Avith equal certainty of the same general kiAv for all pressures, viz., that 

Avith a given potential difference, the field being uniform, fhe product of the ])ressure 

at AAdiich discharge occurs and the distance lietween tlie electrodes is constant. 

II. Description of Apparatus. 

The form of the discharge chamber is shown in fig. 1. 

The electrodes consisted of two plane brass plates a, a, 3'6 centims. in diameter, 

embedded in ebonite, as shown in the figure, the outer faces of the electrodes being 

hush -with the surface of the ebonite. These pieces of ebonite which cai'ileel the 

electrodes serA'ed also to close the glass tube T, T, avIucIi thus constituted a discliarge 
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eiiamber. In order to confine the gas in this chamber to the region where the 

electric field was uniform, a ring of ebonite C, C, Avhich projected over the edges of 

the brass plates, was Inserted. In the construction of the apparatus special 

precautions were taken to Insure that the plugs B, B pressed tightly against the 

ebonite ring. As a result ot this device, tliat portion of the electric field which was 

not uniform was entirely confined to the space occupied by ebonite, so that in this 

u ay it was rendered impossible for a discharge to occur through the gas in any but a 

uniform field. I he thickness of the ebonite ring, which could be made accurate to 

loTFo iifilliiu., determined the distance between the electrodes and consequently the 

lengtli of the discharge. The length of the discharge could be varied at will, 

thej’efore, by inserting rings of difierent thicknesses. 

I he gas Avas admitted and removed from the chamber by glass tubes sealed into 

the ebonite plugs, and these tubes were connected with the air-space by tAA'o A'er\' fine 

cliaimels leading through the eljonite ring. 

Belbre closing the discharge tube, rvliich Avas made air-tight Avith oixlinarv 

commercial soft wax, the inner surface of the ebonite ring AA^as carefully rubbed Avith 

glass ])aper to remove any cc)nducting material from its surface. 

1 he potential difieiences used in these experiments Avere obtained from a series of 

small storage cells, similar to those used in the Eeichsanstalt, Berlin. As these cells 

have a large capacity, their voltage remained constant over long intei'Amls of time, and 

as a consequence it Avas possible to make the readings AA'ith the greatest accuracy. 

The potential difierences AAmre measured by a Weston voltmeter, Avhich Avas carefully 

calibrated by means of a potentiometer furnished AA'ith a standard Weston cadmium 

element. 

Jhioughout the investigation the discharge chamber aa'us connected in series AA'ith 

a drying tube containing phosphoric pentoxide, a glass reserA'oir about 2 litres in 
A'oliime, a McLeod iiressure li'anu'e i> 

^ O o o iA-iiig readings accurate to xioio ^^1' millimetre. 
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and a mercury pump of small capacity. By using this reservoir and the pump of 

small capacity it ^Yas possible to diminish the pressure in the discharge tube by such 

exceedingly small amounts that it was easy to obtain a series of discharge potentials 

over the whole range of pressures investigated without the necessity of admittincr 

fresh gas to the chamber. 

In making measurements, one terminal of the battery was joined to eartli and the 

other terminal was connected througli a. resistance of xylol to one of the electrodes of 

the discharge tube. The other electrode was permanently joined to one pair of 

quadrants of a quadrant electrometer, the second pair of whicli was kept to earth. 

In determining tlie potential difterence necessary to produce discharge at a given 

piessuie, tlie electrometer electri'ide w.as tirst earthed, a^ given pr)tential applied to 

the battery electrode, and the earth connection of the electrometer electrode tlien 
removed. 

If after waiting some minutes no discharge passed, the operation Avas repeated 

with a slightly higher potential applied to the liatteiy electrode. This procedure 

was folloAA^ed until a potential sufficiently high aavus reached to lireak doAvii the gas 

and cause a discharge. The passage of the discharge could be readily noted, as it was 

accompanied by a violent deflection of tlie electrometer needle. 

The AAffil-knoA\-n phenomenon of delay in tlie jiassing of the discharge, Avhich has 

been iiiA’-estigated at length by Warbttrg,- Avas observed througliout the experiments. 

It AAuis especially mai-ked in the neighbourhood of the critical pressure, discharge 

being frequently obtained ten or ei’en fifteen minutes after the requisite Amltage had 
been applied. 

In every case, therefore, as the minimum sparking potential for any pressure was 

atjproached, a considerable time aa^s alloAved to elapse, Avitli a given ajiplied potential 

difference, before any increase Avas made. 

III. Expe)'im(n\ls in Air. 

In the experiments on atinosjilieric air the avIioIo discharge ajiparatus Avas first 

exhausted to a, very low pressure and then re-filled by fresli air, AA'hicli bubbled in 

very sloAvly, first through a Avash-bottle of sulphuric acid and then tlirough a tube 

tightly packed Avith phosjihoric jientoxide. The discharge chamber aaiis then 

exhausted to aliout 20 millims. of mercury and alloAved to staiul at tins jiressiire for a 

jieriod of from eight to tAA-elve hours. 

Dining this time the air Avas abvays in contact Avith phosjihoric jientoxide in the 

drying tube, and AV'as therefore entirely free from moisture Avhen the measurements 
were taken. 

The first measurements Avere made Avith the electrodes millims. apart, and the 

spark potentials were determined over a range of pressures extending from 

51 millims. doAvn to 'ofi millim. of mercury. The spark potentials corresjionding to 

Warburg, ‘ Ann. d. Pbys.,’ vol, 62, p, 385, 
■X- 
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the various pressures are recorded in Columns V. and VI. of Table I., and the results 

are represented graphically in fig. 2a. 

In making these determinations, the precaution was always taken of allowing eight 

or ten minutes to Intervene between consecutive readings, in order to make certain 

that the air was in its normal condition when the discharge occurred. As can be 

seen from the figure, the curve is quite regular and exhibits all the peculiarities 

already noted by Peace,'-^ Strutt,! and Bouty.| The curve, however, is carried much 

higher than those drawn by any of these experimenters, discharges corresponding to 

potential differences of over 1800 volts being recorded. 

The distance between the electrodes was then varied and five difterent sets of 

readings were taken, in air, with the electrodes 1, 2, o, 5, and 10 millims. apart, 

respectively. The complete set of numbers for these different spark lengths is given 

in Table L, and curves showing tlie readings taken over that portion of the range of 

pressure below 5 millims. of mercury are exhibited in fig. 2b. 

It is apparent from the relative positions of these curves in the figure, tliat at 

points at and below the critical jji’cssures, with a given potential difference ajDplied to 

the electrodes, the pressures at wliich discharges occuri-ed regularly decreased as the 

distance between the electrodes was increased. But a critical examination of the 

curves and also a reference to the numbers which they rei3resent show that 

Paschen’s law is rigidly applicable over the Avhole series of discharge potentials 

recorded. 

* Peace, ‘Roy. Soc. Proc.,’ vol. 52, p. Ill, 

t Strutt, ‘Phil. Trans.,’ A, vol. 193, p. 384. 

1 Bouty, ‘Compt. Rend.,’ vol. 131 (2), p. 44G. 
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Table I. —Air. 

Spark length 
= 1 millim. 

Spark length 
= 2 millims. 

1 

Spark length 
= 3 millims. 

Spark length 
= 5 millims. 

Spark length 
= 10 millims. 

Pressures 
f in 
! millims. 

of 
mercury. 

Spark 
potential 

in 
volts. 

Pressures 
in 

millims. 
of 

mercury. 

Spark 
potential 

in 
volts. 

' Pressures 
in 

millims. 
of 

mercury. 

Spark 
potential 

in 
volts. 

Pressures 
in 

millims. 
of 

* mercury. 

Spark 
potential 

in 
volts. 

Pressures 
in 

millims. 
of 

mercury. 

1 

Spark 
potential 

in 
volts. 

150 ' 1510 20 
1 

620 51 1480 7-34 
! 

' 600 7-09 

! 

I 831 
1 120 1265 13-2 527 41-5 1275 4-61 504 4-12 645 

90 1025 8-73 455 31-5 1015 2-95 418 2-39 504 
61 784 5-52 400 21-4 790 1-85 368 1-39 420 
40-8 634 4-11 373 14-1 630 1-57 356 •982 372 

‘ 21-6 489 3-16 355 9-31 526 1-34 349 •805 355 
19-4 477 2-71 351 5-99 452 1-14 352 •679 348 
12-4 417 2-32 357 3-84 405 •982 359 •562 351 
7-77 367 2-02 371 2-51 371 •839 370 •466 359 
6-66 357 1-75 389 2-18 361 •714 388 •384 377 
5-80 352 1-52 419 1-89 356 •607 427 •312 425 
4-98 349 1 -30 460 1-64 358 •517 484 •259 504 
4-27 355 1-13 534 1-42 364 •440 575 •219 605 
3-67 368 •982 654 1-22 375 •375 705 •180 757 

1 3‘15 392 •857 826 1 1-06 397 •321 935 •152 1020 
2-70 429 •750 1042 •928 441 •276 1223 •125 1315 
2-35 481 •643 1312 •804 494 •232 1585 •105 1730 
2-02 558 •549 1695 •710 576 1 •216 1774 — — 

1-74 681 •536 1829 •616 691 _ _ _ 
1-51 855 — 1 •536 863 _ _ - _ 

1-29 1090 — •465 1092 _ _ 

1-12 1463 — 
1 

•411 1395 _ _ _ 

1-05 1826 
1 

— 
— •357 1786 

1 
— — — 
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For example, the pressures at which discharge took place with an applied potential 

ol 1800 volts were, for the ditferent distances between the electrodes, approximately; 

Distance between electrodes 
in millims. 

1 
•7 

3 

5 

10 

Discharge pressures in millims. 
of mercury. 

1-05 

•536 

•351 

•216 

•105 

and it will be seen that the numbers in Column II. are almost exactly in inverse 

proportion to the numbers in Column I. 

Again, with an applied potential of 500 volts (say), the approximate j^ressures at 

which discharge occurred were : 

Distance between electrodes 
in millims. 

1 

2 

3 

5 

10 

Discharge pressures in millims. 
of mercury. 

2-35 

1-30 

•804 

•517 

•259 

where the pressures are in the ratio COO : -55 : -34 : -22 : ’ll, numbers which are 

again very nearly Inversely proportional to the distance between the electrodes. 

Furthei, we notice that the sjjark potential corresponding to the critical pressure 

in all cases was practically the same, 350 volts, and the values of the critical pressures 

for the different spark lengths were, from Table I. ; 

Distance between electrodes 
in millims. 

1 
•) 

3 

5 

10 

Discharge pressures in millims. 
of mercury. 

4-98 

2-71 

C89 

C34 

•679 

and these numbers, while not exactly in the ratio 10:5:3:2:1 are still very close 
to it. 

In finding the values for portions of the curves around the critical pressures the 

lesults given in Table I. show that a small variation in potential difference was 

associated with a relatively very large change in the pressures, so that a very small 
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error in reading the potential diderence would result in a large error in the pressure 

readings. It is interesting to note, however, that even under these unfavourable 

conditions a striking agreement is presented between the results obtained at critical 

pressures and the results demanded by Paschen’s law. 

In order to make the agreement between the numbers demanded by Paschen’s law 

and those obtained in these experiments still more evident, the results recorded in 

Table I. are again given in a slightly different form in Table II., where each potential 

difference is associated with the product of the pressure at which discharge took place 

and the corresponding spark length. Paschen* found that at high pressures these 

products were constant for different distances between the electrodes, as long as the 

applied potential difference was the same. 

The numbers recorded in Table II. show that the same law is rigidly applicable to 

all pressures, both high and low. 

Table II.—Air. 

Spark length 
= 1 millim. 

Spark length 
= 2 milliins. 

, Spark length 
= 3 millims. 

Spark length 
= 5 millims. 

Spark length 
1 =10 millims. 
! 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

1 length. 

! 
Spark 

potential 
in 

volts. 

150 1510 40 620 153 1480 .36-7 600 70-9 831 
120 1265 26-4 527 124-5 1275 23-0 504 41-2 645 
90 1025 17-4 455 94-5 1015 14-7 418 23-9 504 ! 
61 784 11-0 400 64-2 790 9-25 368 1.3-9 420 
40-8 634 8-22 373 42-3 630 7-85 356 9-82 .372 
21-6 489 6-.32 355 27-9 526 6-70 349 8-05 355 
19-4 477 5-42 351 17-9 452 5-70 352 6-79 348 
12-4 417 4-64 357 11-5 405 4-91 359 5 - 62 .351 
7-77 367 4-04 371 7-53 371 4-19 370 4-66 359 
6-66 .357 3 • 50 389 6-54 361 3-57 .388 .3-84 377 
5-80 352 3-04 419 5-67 356 3-0.3 427 .3-12 425 
4-98 349 2-60 460 4-92 .358 2-58 484 2-59 .504 
4-27 355 2-26 534 4-26 364 2-20 575 2-19 605 
3-67 368 1-96 654 3-66 375 1-87 705 1-80 757 
3-15 392 1-71 826 3-18 397 1-60 935 1-52 1020 
2-70 429 1-50 1042 2-78 441 1-38 1223 1-25 1315 
2 • 35 481 1-28 1312 2-41 494 1-16 1585 1-05 17.30 
2-02 558 1-09 1695 2-1.3 576 1-08 1774 _ _ I 
1-74 681 1 -07 1829 1-84 691 — — _ _ j 
1-51 855 — .-- 1-60 863 i — — _ _ j 
1-29 1090 — — 1-39 1092 — _ _ 
1-12 1463 — — 1-23 1395 ! — — _ 1 _ 
1 -05 1826 

1 
— — 1-07 1786 — — — — 

* Paschen, ‘Ann. d. Phys.,’ vol. 37, p. G9. 

3 G 2 
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A like conclusion must be drawn from the curve shown in fig. 3, which graphically 

represents the numbers in Table IT. In plotting this curve the products of spark 

lengths and discharge pressures were taken as abscissse and the sparking potentials 

as ordinates. The regularity of the curve which represents the products for the five 

different electrode distances shows clearly that there can be no doubt regardino’ the 

applicability of Paschen’s law to electric discharges, in air, at pressures at and below 

the critical point as well as at pressures above it. 

IV. Ex'periments in Hydrogen. 

In order to demonstrate, if possible, the generality of the law which has just been 

proven to hold for discharges in air, a series of measurements were made on the spark 

potentials in the gases hydrogen and carbon dioxide. 

In these experiments exactly the same apparatus was used as in the previous 

experiments in air. 

Preparatory to making the measurements in hydrogen the apparatus was first 

exhausted of air to a pressure of 1 millim. of mercury, or less, and then filled with 

hydrogen to atmospheric pressure. It was then exhausted and refilled with hydrogen 

several times to make certain that all air was removed. 

The hydrogen was prepared from zinc and sulphuric acid in a Kipp apparatus, and, 

in order to ensure purity and freedom from moisture, was passed through wash- 

bottles containing potassium permanganate and caustic potash, and through a tube 

tightly packed with phosphoric pentoxide, before being led into the discharge 

chamber. 

Also, just as in the experiments in air, the gas was always allowed to stand for 

several hours, at a pressure of about 20 millims. of mercury, in the pi'esence of 

phosplioric pentoxide liefore any readings were recorded. 
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Table III.—Hydrogen. 

Spark length 
= 1 millim. 

Spark length 
= 2 millims. 

Spark length 
= 3 millims. 

Spark length 
= 5 millims. 

Spark length 
= 10 millims. 

Pressures 
ill Spark Pressures 

Spark Pressures 
in 

millims. 

Spark Pressures 
Spark Pressures 

Spark 

millims. potential 
millims. potential potential 

millims. potential in 
millims. potential 

of 
mercury. 

in 
volts. of 

mercxiry. 

in 
volts. of 

mercury. 

m 
volts. of 

mercury. 

in 
volts. of 

mercury. 

in 
volts. 

21-7 328 23 435 13-6 415 13-6 469 7-58 526 
16-2 300 14-8 360 8-54 356 9-35 415 4-37 427 
11-9 281 IDO 323 5-40 301 6-02 350 2-55 335 
10-3 278 8-08 299 4-66 286 3-80 300 D77 299 
8-94 287 6-95 285 4-02 278 3-28 287 1-46 283 
7-74 306 5-93 279 3-44 282 2-80 281 1 • 22 287 
6-52 335 5‘04 284 2-93 292 2-41 282 DOl 295 
5-57 374 4-30 293 2-52 310 2-05 285 •846 313 
4-73 487 3-72 305 2-15 356 D76 293 •700 343 
4-11 649 3-23 333 D85 440 D51 305 •575 426 
3-.54 905 2-77 399 D59 564 1 -26 345 •470 595 
3-04 1275 2-36 523 1 - .35 780 1 -09 410 •390 8.50 
2-60 1781 2-03 727 1 -16 1054 •928 539 •330 1142 ' 

— — D73 1010 DOO 1382 •808 706 •276 1477 
— — D48 1380 •861 1789 •700 975 •264 1710 
— — D33 1746 — — •600 1373 _ 

; 
— •516 1775 — — 

Ill the experiments with this gas, readings were taken for the same electrode 

distances I, 2, 3, 5 and 10 miUims., and the values of the spark potentials and their 

corresponding pressures are given in Table III. These numbers are also graphically 

set forth in fig. 4. 

We see from this table that the readings corresponding to the spark potential 

1800 volts are : 

Distance between electrodes 
in millims. 

1 

2 

3 

5 

10 

Discharge pressures in millims. 
of mercury. 

2-60 

1-33 

•861 

•516 

•264 

which pressures are in the ratio 9-9 : 5-0 : 3-2 : 2-0 : 1. 

Again, with a spark potential of 500 volts the readings give : 
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Distance lieGveen electrodes 
in millims. 

Discharge pressures in millims. 
of mercury. 

1 

2 

3 

5 

10 

47 

2-4 

17 

•94 

'51 

the pressures being in the ratio 9-3 : 4‘8 : 3‘3 : 1-9 : 1. 

The minimum spark potential in h3ulrogen was about 280 volts, and the critical 

pressures corresponding to the difterent spark lengths were : 

1 )istance bet\veen electrodes 
in millims. 

1 

2 

3 

5 

10 

where the various discharge pressures 

the distance between the electrodes. 

Discharge pressures in millims. 
of merciuy. 

10-3 

5-93 

4-02 

2-80 

1-46 

are once more nearl}^ inversely proportional to 
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Table IV.—Hydrogen. 

Spark length 
= 1 millim. 

Spark length 
= 2 millims. 

Sf)ark length 
= 3 millims. 

Spark length 
= 5 millims. 

Spark length 
= 10 millims. 

1 
Product 

' of 
pressure 

and spark 
length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
jjotential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Sj^ark 
potential 

in 
volts. 

1 

' Product 
of 

pressure 
and spark 

length. 

1 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

: 21-7 328 46 435 40-8 415 68 469 75-3 526 
16-2 300 29-6 360 25-6 356 46-7 415 43-7 427 
11-9 281 22-0 323 16-2 301 30 •! 350 25-5 3.35 
10-3 278 16-1 299 13-9 286 19-0 300 17-7 299 
8-94 287 13-9 285 12-0 278 16-4 287 14-6 283 
7-74 306 11-8 279 10-3 282 14-0 281 12-2 287 
6-52 335 10-0 284 8-79 292 12-0 282 10-1 295 
5-57 374 8-60 293 7-56 310 10-2 285 8-46 313 
4-73 487 7-44 305 6-45 356 8-80 293 7-00 343 
4-11 649 6 ■ 46 333 5-55 440 7-55 305 5-75 426 
3-54 905 5-54 399 4-77 564 6-30 345 4-70 595 
3-04 1275 4-72 523 4-05 780 5-45 410 3-90 850 
2-60 1781 4-06 727 3-48 1054 4-Of 539 3-30 1142 

— 3-46 1010 3-00 1382 4-04 706 2-76 ' 1477 
— — 2-96 1380 2-58 1789 3-50 975 2-64 ' 1710 
— — 2-66 1746 — — 3-00 1373 1 — — 

— 
— 

1 

2-58 1775 1 
1 

— 
— 

V - Hydrogen 

To indicate further that the law i.s applicable at all points, a table of products, 

similar to that recorded for air, was calculated, and is given in Table IV. A single 

curve, fig. 5, represents these five sets of readings, and again the close grouping of 

the different results about this common curve shows that the law is equally applicable 

above and below the critical pressure to all spark potentials. 

It is evident, then, that with hydrogen, just as with air, Paschen’s law is rigidly 

applicable over the whole range of pressures. 
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V. Experiments, in Carbon Dioxide. 

These further experiments were made with a view to corroborate the results 

already obtained in air and hydrogen. The same apparatus as had been used with 

these two gases again served for the experiments in carbon dioxide, and the distance 

between the electrodes was varied as before, so that readings were obtained at the 

five different distances 1, 2, 3, 5, and 10 millims. The carbon dioxide was prejiared 

by treating marble with hydrochloric acid, and was purified and dried by beinu- 

bubbled through a wash-bottle of water and passed through a tube tightly packed 

with phosphoric pentoxide before reaching the discharge apparatus. In each case 

the operation of exhausting the whole discharge apparatus to 1 millim., or less, of 

mercury, and then refilling with carbon dioxide was repeated five or six times, and 

finally the gas was allowed to stand as in both previous cases, in the presence of a 

bulb of phosphoric pentoxide for several hours. 

The complete set of results is given in Table V., and the corresponding curves 

set forth in fig. 6, and if we again compare the discharge pressures and spark 

lengths corresponding to any value of the applied potential, the same law is seen 

to hold here also with even greater rigidity than in the other cases. 

Table V.—Carbon Dioxide. 

Spark 
= 1 m 

Pressures 
in 

millims. 
of 

mercury. 

length 
illim. 

; Spark length 
1 =2 millims. 

' Spark length 
! =3 millims. 

Spark length 
= 5 millims. 

Spark length 
= 10 millims. 

Spark 
potential 

in 
volts. 

Pressures 

i 
millims. 

of 
mercury. 

Spark 
potential 

1 in 
volts. 

1 

' Pressures 

i 
millims. 

of 
1 mercury. 

Spark 
potential 

in 
volts. 

Pressures 
in 

millims. 
of 

mercury. 

Spark 
potential 

in 
volts. 

Pressures 
in 

millims. 
of 

merciu-y. 

Spark 
potential 

in 
volts. 

19-8 516 21 3 802 8-75 674 9 10 790 7^27 993 
12-6 480 13 8 645 5-57 563 5 77 1 674 4^26 790 
9-41 443 8 76 519 3-55 477 3 64 579 2^43 656 
6 • 8ii 425 5 41 464 2-25 427 0 w 33 498 1-44 553 
5-86 421 4 02 439 1-91 420 1 45 438 ■860 473 
5-02 419 3 46 426 1-63 419 1 25 423 ■612 428 
4-31 420 2 95 421 1-41 425 1 07 421 ■510 423 
3-73 427 2 52 419 1-20 432 919 428 ■409 440 
3 ■ l8 443 2 15 420 1-02 449 786 441 ■340 470 
2-73 475 1 84 427 ■875 487 678 464 ■280 506 
2-34 503 1 58 443 ■758 542 572 495 ■239 563 
2-00 559 1 34 473 ■651 599 492 533 ■196 639 
1-72 636 1 16 525 •558 699 419 599 ■162 , 761 
1-47 763 1 980 605 •482 815 360 704 ■134 973 
1-26 916 ‘ 848 702 1 ■420 ‘ 971 310 : 820 ■111 1219 
1-08 1127 ; 728 847 ■362 1162 266 969 •094 1550 

■946 1432 625 1026 ■314 1445 232 1159 ■089 1730 
•817 1801 536 1258 ■274 1756 196 1373 
- 1 — 455 f 1574 — 

_ 1 169 1662 

1 
421 1 

1 

1762 

1 
— — 

■ 

164 1770 — — 
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For 1800 volts the figures are approximately : 

Distance between electrodes 
in niillims. 

1 

2 

3 

5 

10 

Discharge pressures in niillims. 
of mercnry. 

•817 

•421 

•274 

.1(34 

•0892 

where the pressures are almost in the required ratio, being 9^2 : 4-8 : 3-0 : 1-9 : 1. 

For 500 volts tlie numbers are : 

Distance between electrodes 
in niillims. 

1 
2 

3 

5 

10 

Discharge pressures in niillims. 
of mercury. 

2-34 

1*23 

•84 

•57 

•28 

where the pre.ssures are as 8^4 : 4-4 ; 3 : 2 : 1. 

And at the minimum discharge potentials, which are again constant, 420 volts, the 

readings given are : 

Distance between electrodes 
in millims. 

1 

2 

3 

5 

10 

Discharge pressures in niillims. 
of mercui'y. 

5-02 

2-52 

1-G3 

1-07 

•510 

Special attention is directed to these latter results, inasmuch as the exactness of 

the ratio indicated by the pressures is veiy remarkalile. The ratios of the pressures 

are practically 10 : 5 : 3^1 : 2 : L, tlie nearest approximation to the numbers demanded 

by Paschen s law which has been shown by any of the comparisons, and this result 

is all the more convincing in that these figures were olitalned at tlie critical points, 

where, in the other two gases, the results obtained indicated the law in a somewhat 

less marked degree. 

ihough it would appear that further evidence was unnecessary, the table of 

products was again calculated and is given in Table VI, Also the cori'esponding 

curve is shown in fio’. 7. 

3 H VOL, COT,—A, 
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VJ-Car/DonD/ox/de 

(')nce more the regularity of the curve shows that, as in air and hydrogen, so in 
carbon dioxide, Paschen’s law is rigidly applicalde to all spark potentials both above 

and 1)elow the critical pressure. 

Table VI.—Carl)on Dioxide. 

Spark length 
= 1 millim. 

Spark length 
= 2 millims. 

Spark length 
= 3 millims. 

Spark length 
= 5 millims. 

SiDark length 
= 10 millims. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
aud spark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and sjrark 

length. 

Spark 
potential 

in 
volts. 

Product 
of 

pressure 
and spark 

length. 

Sjjark 
potential 

in 
volts. , 

19-8 .51G 42-6 802 26-2 674 45 • 5 790 72-7 993 
12-6 480 27-6 645 16-7 563 28-8 674 42-6 790 
9-41 443 17-5 519 10-6 477 18-2 579 24-3 656 
G-S.3 425 10-8 464 6-75 427 11-6 498 14-4 553 
.5-8G 421 8-04 439 5-73 420 7-25 438 8-60 473 
.5-02 419 G-92 426 4-89 419 6-25 423 6-12 428 
4-31 420 5-90 421 4-23 425 5 •35 421 5-10 423 
3-73 427 5-04 419 3-60 432 4-59 428 4-09 440 
3-18 443 4-.30 420 3-06 449 3-93 441 3-40 470 
2-73 475 3-68 427 2-62 487 3-39 464 2-80 506 
2-34 503 3-lG 443 2-27 542 2-86 495 2-39 563 
2-00 559 2-68 473 1-95 599 2-46 533 1-96 639 
1-72 63G 2-32 525 1-67 699 2-09 599 1-62 761 
1-47 763 1 • 96 605 1-44 815 1-80 704 1-34 973 
1-2G 916 1-69 702 1-26 971 1-55 820 Ml 1219 
1 -08 1127 1-45 847 1-08 1162 1-33 969 •946 1550 

•946 1432 1-25 1026 •942 1445 1-16 1159 •892 1730 
•817 1801 1-07 1258 •822 1756 •98 1373 — — 

— — •910 1574 — — •845 1662 — — 

— — •842 1762 — — •820 1770 
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VI. Sparh Potentials ivith (Jiffcrent Electrodes. 

It has no^v Ijeen shown, using brass electrodes of constant size, that, for discharges 

in a uniform field, in any gas, the values oi the spark potentials are determined 

solely hy the product of the pressure of the gas and the distance between the 

electrodes. From this result it appeared that If the size or material of the electrodes 

did not affect the results, the spark potentials were dependent only n])on the quantity 

of the gas per unit cross section between the electrodes. 

In order to determine this point, the brass electrodes wliicii had been used up to 

this time were replaced in turn by electrodes of iron, zinc and aluminium, of exactly 

the same size. The results of the experiments showed that there was no variation 

in the difierent sets of readings, and it was evident that there was not the slightest 

efiect produced in any case by a change in the material of wliich the electrodes 

were made. 

In order to see if the size of the electrodes afiected the values of the spark 

potentials for the different pressures, provided the discharge took place in a uniform 

field, a reduction was made in the surface of the electrodes exposed to the gas. 

This was done by replacing the ebonite rings C, C, fig. I, which had an inner 

diameter of 3 centims., by others whose inner diameter was but 1 centim. By this 

device the areas of the electrodes exposed to the gas were reduced to about of 

their value in the early experiments, and the condition that the discliarge could 

only take place In a uniform field still held. Using this apj)aratus with air, no 

difterence could be observed in the values of the discharge potentials corresponding 

to the different pressures, and It was therefore certain that the value of the spark 

potential was in no way influenced by the size of the electrodes. 

It is therefore clearly established that the only factors aftecting the spark 

potentials are pressure and the distance between the electrodes, and hence Baschen’s 

3 H 2 
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law is most accurately expressed by saying, “ that, with a given applied potential 

difference, discharge in a uniform field, in any gas, is dependent solelv on the 

constancy of the quantity of matter per unit cross section between the electrodes.” 

VII. Minimum Sjyarh Potentials. 

An interesting result in connection with these exijeriments is the almost constant 

value obtained for the minimum spark j^otential with the diflerent electrode distances 

in each of the gases. 

Peace,'''' in the paper already referred to, was able to point to the probable 

existence of such a condition, but his results were not sufficiently regular to allow 

him to speak with certainty from the evidence at that time in his possession. This 

is seen from the following table of results taken from his paper, which ap])ear to be 

the readings upon which he based his conclusions ;— 

Peace’s Tid^le of Minimum Spark Potentials. 

Spark length in 
millims. 

Minininm discharge 
potential in volts. 

•01 326 
•02.5 330 
•05 333 
•1 354 
. •> 370 
, •> 

O 390 
•5 400 
•7 428 

1 458 
2 475 

While these results are of the same order, it will be noticed that the spark 

potential rapidly increases with the distance l)etween the electrodes, and that the 

smallest value differs from the greatest by nearly 150 volts. 

In the results recorded in the present experiments, however, it cannot be said 

that there is any indication of an increase in spark potential for an increasing spark 

length. 

The minimum spark potentials observed in these experiments, for the three 

different gases, are given in the following table :—- 

I’e.WE, ‘Eoy. Sue. I’roc.,’ vol. 52, pp. 107, 112. 
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Observed Minimum Spark Potential in Volts. 

Spark length in 
millims. Air. Hydrogen. Carbon dioxide. 

1 349 278 419 
2 351 279 419 
3 356 278 419 
5 349 281 421 

10 348 283 423 

wliej'e it will be seen that the values of the minimum spark potentials, for air, over 

this large range of spark lengths vary by only 7 volts. The values for hydrogen, 

over the same large range of spark leiigtlis, vary l)y only 5 volts, and those for 

carbon dioxide Ijy only 4 volts. 

These results, then, seem to establish the fact that the least sjmrk potential 

recphred to break down a gas is entirely independent of the s})ark length. 

It is evident, too, from hgs. 3, 5 and 7, that the constancy of the minimum spark 

potential is a necessary condition to Paschen’s law holding for discharges at 

diherent electrode distances. 

11. J. Strutt,^ in his ])aper “ On the Least Potential Differences recjuired to produce 

Discharge through Gases,” has drawn the conclusion that tlie minimum spark 

potential for discharges in any selected gas is j)robably equal to the cathode fall, in 

the same gas, measured over the whole extent of the negative glow in the vacuum 

tube. Since the cathode fall in any gas has been shown by Warburg! to be a 

constant, over a very large range of pressures, the constancy of the values obtained 

in these experiments for the least spark potential gives strong support to Strutt’s 

conclusion. 

Moreover, the value of the least spark potential found by Strutt in air, using a 

spark length of f millim., was 341 volts. This agrees very well with the numbers 

given above, the difference being only about 8 or 9 volts. For hydrogen, however, 

the agreement between the results is not so good, his values for the least spark 

potential, 302-308 volts, being somewhat higher tlian those found for hydrogen in 

these experiments. 

In this connection it may be pointed out tliat special precautions were taken in 

the neighbourhood of the critical pressure to make certain that the gas was in 

its normal condition when the discharge occurred, and so make sure that the 

s})ark potential obtained was not too small. The procedure followed was to apply a 

low voltage to the electrodes, and then gradually increase it until the discharge 

passed. By this procedure there could he no doubt that the gas was always in its 

* Strutt, ‘Phil. Trans.,’ A, vul. l'J3, p. 393. 

t Waururg, ‘Ainu d. Phys.,’ voL 31, p. 545. 
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normal state, and that therefore no discharge could occur until the correct potential 

difference was reached. 

After discharge did occur the gas was allowed to stand for a considerable time 

before the operation was repeated. 

On account of the ‘'delay” in the discharge, already referred to, special care was 

taken at the critical pressure to see that no voltage applied to the electrodes was 

replaced by a higher one, until a sufficient time had elapsed to make sure that 

discharge would not occur with the lower voltage. 

VIII. Connection between Spark Lengths and Simrk Potentials. 

In the preceding experiments the spark potentials and corresjjonding pressures have 

been found for spark lengths I'anging from 1 to 10 millims. It is evident from Paschex's 

laAv, which has been shown to govern these discharges, that the different curves in 

tigs. 2, 4 or 6 are interdependent, and that if one were given in each figure all the 

others could be deduced. It is clear, too, providing Paschex’s law applies, that curves 

can be deduced for spark lengths not included within these limits. This has been 

done in fig. 8, where curves corresponding to a number of spark lengths, in air, 

ranging from 1 millim. down to 5 micra^^ have been plotted. 

The numbers corresponding to these curves were calculated by Paschex’s law from 

the experimental results obtained with a S23ark length of 1 milhm. The values for 

spark lengths shorter than 5 micra have not been calculated, as there is evidence to 

show that Paschen s law does not ajiply beyond this point. It can be seen that as 

the spark length is gradually decreased a length will be reached finally when the gas 

between the electrodes will consist of but two surface layers. It will then be subject 

to special molecular forces and, in all probability, a departure from the laws governing 

electric discharges in a gas under normal conditions will appear when this limiting 

spark length is reached. 

I his point has been well brought out by EarhartI' in a paper on spark potentials 

for very short distances. Pie has shown, for a series of pressures, that a direct 

proportionality exists between s])ark potential and spark length, down to a spark 

length of about 5 micra. For shorter lengths than this he has shown that, while 

a law of proportionality still holds between spark potentials and spark lengths, the 

spark 23otentials diminish more rajjidly for the same change in the spark length than 

they do in the range of longer distances. 

It is true this critical sj^ark length of 5 micra is of a higher order than most of the 

values found by a number of experimenters for the distance over which molecular 

foices act. I he value of this distance given by Quincke,| deduced from the results 

* 1 micron = -001 millim.; PIarhart, ‘Phil. Mag.,’January, 1901. 

t Earhart, ‘Phil. Mag.,’January, 1901. 

t Quincke, ‘Pogg. Ann.,’ 1809, vol, 137, p. 402. 
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of experiments on capillary phenomena, is about 'Oo micron. Reinold and Rucker* 

found that the range of unstable thickness of a film began somewhere between '096 

and -045 micron. A value of the same order is given l)y Plateau,f who fixes the 

superior limit of the radius of the sphere of molecular action at CIS micron. 

Results of a higher order, however, were obtained by Muller-Erzbach| and 

Kayser.§ The former of these made experiments on the thickness of water and 

carbon bisulphide films, and finally concluded that the radius of the sphere of 

molecular action is at least 1’5 micron. Kayser, experimenting on condensation of 

gases on glass threads, fixed the range of molecular action at from 2 to 3 micra. 

Now the distance between the electrodes when the air film is reduced to the two 

surface layers is equal to the diameter of the sphere of molecular action, and there is 

thus strong experimental evidence from the data given above to support our adopting 

Earhart’s value of 5 micra for the smallest length to Avhich we can legitimately 

apply Paschen’s law. 

The experiments described in this pajjer have been made with a view to finding the 

relation between spark potentials and corresponding pressures for a constant spark 

length in air and other gases, but, as all the results for different spark lengths are 

connected by Paschen’s law, it Is easy to deduce curves, for any gas, expressing the 

relation between potential differences and corresponding spark lengths at selected 

pressures. Such curves, for air, deduced from those exhibited In figs. 2 and 8, have 

been plotted for a series of different pressures and are shown in fig. 9. 

Tt will be seen that these curves present a number of points of special Interest. 

* Reinold and Rucker, ‘Phil. Trans.,’ vol. 177, Part IL, p. 684, 1886. 

t Plateau, ‘Statique des Liquides,’ 1873, vol. 1, p. 210. 

I Wuller-Erzbach, ‘Wied. Ann.,’ vol. 28, p. 696, 1886. 

^ Kayser, ‘Wied. Ann.,’ vol. 14, p. 468, 1881. 
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The curve B, corresponding to a pressure of 1000 millims., which is the critical 
pressure for the spark length of 5 micra, fig. 8, is a straight line and shows that the 
spark lengths are directly proportional to the spark potentials for the whole range of 
spark lengths. It will ])e noticed, too, that at this pressure the minimum spark 
potential, 350 volts, to which special attention has been drawn in this paper, is that 

Fig'. 9. 

potential necessary to lireak down tlie gas for the sliortest spark lengtli to which we 

have considered Paschen’s law is applicable. 

Again, the curve L), which is typical of all the curves for pressures below 
1000 millims. of mercury, expresses tlie relation between spark potentials and spark 
lengths for a pressure of 320 millims. 

It shows tliat the latio of sjiark potential to sparking distance; is constant for all 
spark lengths gieater than 15 or 16 micra. For shorter spark lengths the spark 
potential incieases with decreasing spark lengths until finally the 5-micra line is 
reached at a potential of about 820 volts. 

I he cuive A, wliich is a tyjie of those which can be drawn for pressures above 
1000 millims. of mercury, difiers from B in but one feature. The law of proportionality 

again holds throughout for this pressure down to the shortest spark length, lint it 
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will be seen that a potential difference of abont 365 volts is necessary to produce 

discharge when the spai-k length of 5 inicra is readied. 

Wliile the three types of curves whidi have been described all present different 

characteristics, it will be seen that all are confined to S}iark lengths above 5 micra, 

and to spark potentials greater than 350 volts. 

Earhart has shown that for spark leiigths below 5 inicra the spark potentials 

again decrease as the spark lengths are shortened, until finally the two electrodes 

come together and direct electrical contact is established. Tbroughont this lower 

range of spark lengths his results also show, for a series of pressures, that the spark 

potentials vary directly with the spark lengths. 

These experimental results of Earhart give an indication of the forms the curves 

in fig. 9 would have taken liad the experiments with the apparatus used in this 

investigation been extended to the shorter set of sjiark lengths. Had this been done. 

Fig. 10. 

it is highly probable that the curves in fig. 9, on reaching the 5-micra line, would 

have followed courses such as are indicated liy the dotted straight lines in the 

figure. 

On this view it is of interest to examine the character of the pressure-spark 

potential curves that can be drawn in fig. 8 for spark lengths shorter than 5 micra. 

VOL. coi.—A. 
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It is clear that all these cur^■es will lie beloAv the 5-micra curve for every pressure, 

and since a law ol proportionality applies between spark length and spark jjotential, 

at all ju’essures, it is easy to show that they fall off regularly down to the zero 

jiotential line. Ihe dotted lines a, h, c, </, shown in fig. 8, indicate the relative 

jiositions of these curves. 

In order to make a direct comparison between Earhart’s curves and those Avhich 

Ave have deduced, in fig. 9, by Paschen’s laAv, a series of each is reproduced in fig. 10. 

In this figure, A, B, C, D, and E are draAvn from the numbers giA'en in Earh art’s 

paper and correspond to pressures of 15 centims., 40 centims., 1, 2, and .3 atmospheres, 

respectively, Avhile the dotted curA-es A', B', C', D' and E’ are deduced from fio-. 8 for 

the pressures 15 centims., 40 centims., 1 atmosphere, 1000 millims. and 1200 millims.. 

resiiectiA^ely. 

For tlie higher range of spark lengths it aaoII be seen that Earh art’s Avdues are 

jiiAairiably larger than those deduced for the same pressures in this iiwestigation. 

I'his difference is especially noticeable in connection with the curves B and B', Avhich 

correspond to a pressure of 40 centims. With a spark length of 50 micra, for example, 

Earhart’s spark potential for this pressure is 625 volts, Avhile that indicated by the 

curve B' is but 470 A^olts, a difterence of about 25 per cent. This difference, hoAvcA'er, 

is exceptionally great, and extends OA'er a A'ery limited range of spark lengths. For 

distances greatei' than 1 00 micra, tlie Aailues of the spark potentials do not appear to 

differ by more than 8 oi' 10 per cent. It is evident, too, from Earhart’s diagram, 

that an irregularity exists in regard to his curve for this pressure, as it does not take 

up the position one should expect from his cui’A'es for higher and loAA^er pressures. 

A comparison of the curves corresponding to pressures of 15 centims. and 

1 atmosphere also shoAvs that the aA^ei-age difference betAveen the spark potentials for 

each of these curves, oA^er the higher range of spark lengths, does not exceed 8 per cent. 

This constant difference in the tAvo sets of results in all probability is due, at least in 

part, to the difference in the form of the electrodes used in the tAvo inA'estigations, as 

both Baille^^ and PaschexI give results Avhich shoAv that, for spark lengths of this 

order, the spark potentials obtained AA'itli spherical electrodes are in eA'ery case 

considerably liigher than those olitained Avhen the electrodes are parallel plates. 

When spark lengths slightly greater than 5 micra are reached, Earhart’s curves 
A, B, C, and D become more nearly A'ertical, and indicate that OA'er a considerable 
range of spark lengths the spark potentials remain approximately constant. It Avill 
be seen, too, that the A^ertical portion of the curves becomes shorter and shorter Avith 
increasing pressures, until finally, at 3 atmospheres, curA'e E, it disappears altogether. 

The deduced curA'es A', B, O' also present some characteristic features oA^er the 

same range of spark lengths. They each exhibit a minimum spark potential Avhich is 

reached in each case at approximately the spark lengtli Avhere the constancy of spark 

* Baiij.E, ‘ Annales de Cliimic,’ (5), vol. 25, p. 531, 1SS2. 

t Raschkn, ‘Wied. Ann.,’ vol. 37, p. 79, 1889. 



ELECTIIIC DISCHARGES IN GASES AT LOW PRESSURES. 427 

potentials first appears in the corresponding curves of Earhart. These deduced 

curves then indicate rapidly increasing spark potentials down to the 5-micra line. It 

will be seen, too, that this feature of the curves extends over a range of spark lengths 

which diminishes with increasing pressures and finally disappears, as the curves D' 

and E' show, when a pressure of 1000 millims. is reached. 

It is evident also from fig. 8 that the potential-spark length curves for all pressures 

greater than 1000 millims, (which is the critical pressure for tlie pressure-potential 

curve corresponding to 5 micra) will he similar in form to D' and E'. 

It thus appears that the two sets of curves, though differing widely in form for the 

lower range of pressures, yet present a resemblance as higher pressures are selected 

which becomes more and more marked. This can lie seen very clearlv from fig. 10, 

where each of the curves D' and E' has practically the same form as the curve E 

doAvn to the 5-micra line and shows no indication of not following a course similar 

to E for spark lengths below 5 micra. 

The explanation of the vertical portion of Earhart’s curves seems evident. The 

results are In reality precisely what one should expect to obtain for low pressures 

when electrodes other than ])arallel plates were used. Take, for example, a pressure of 

500 millims,, fig, 8, which Is the critical pressure for a spark length of 10 micra. 

With parallel jfiates as electrodes, it is clear that the spark potential-spark length 

curve wmdd consist of a straight line down to a spark length of 10 micra, at which 

distance the spark potential is 850 volts, the minimum spark })otential for a gas under 

normal conditions. If the distance between the electrodes is still furtlier reduced, 

the resistance offered by the gas increases and a potential difference higher than 

350 volts will be necessary In order to obtain discharge. At a pressure of 500 millims., 

therefore, a spark length of 10 micra is the one which offers least resistance. With 

spherical electrodes, for all spark lengths above 10 micra, the shortest distance 

between the electrodes is that of least resistance, and the discharge will take place 

along this line. But wheu the shortest distance between the spherical surfaces is less 

than 10, but greater than 5 micra, this distance is no longer the one which offei's least 

resistance to the passage of the discharge, and under these circumstances a longer, but 

less difficult path will lie followed. The path which offers least resistance is clearly 

the one wlilch corresponds to the minimum spark potential. It follows, then, that 

while tlie shortest distance between the electrodes is decreased from 10 to 5 micra 

and the gas is kept at a pressure of 500 millims. discharge will always occur with a 

constant spark potential of .350 volts and will follow the jiath which corresj^onds to 

this difference of potential. As Earhart’s experiments were performed with 

electrodes one of whicli was spherical and the other plane, the explanation will, in all 

probability, account for tlie ranges of constant spark potentials, which his results for 

different pressures indicate. 

The explanation which has just been given evidently requires that the constant 

spark potential corresponding to the vertical portions of Earhart’s curves should be 

3 T 2 
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the same, 350 volts, for all pressures. But it will be seen that he obtained, for 

pressures up to two atmospheres, values varying from 325 to 370 volts. This 

discrepancy, however, though marked, is not large and possibly is within the range 

of experimental error. 

The results which Eaehaet obtained for spark lengths shorter than 5 micra cannot 

in any way affect the validity of this explanation, for he has shown without doubt 

that the discharges in this range are governed by a law which does not apply to the 

o'as under ordinarv circumstances. 
O kJ 

TX. Spark Potentials in Different Gases. 

In a paper on the cathode fall of potential in gases, by Capstick,^ an attempt has 

been made to show that the cathode fall in a compound gas is related to the cathode 

falls in the elementaiy gases of wliich it is composed by a simple additive law. 

Experiments were made witli hydrogen, oxygen, nitrogen, ammonia gas, and water 

^'apour. The results, though not conclusive, were yet of sufficient weight to lead 

the author to the observation that the cathode fall is approximately an additive 

quantity and is probably a ])i‘operty of the atom rather tlian the molecule of a gas. 

Owing to the difficulties experienced by Capstick and others in overcoming the 

intermittence of the current in tiie case of compound gases, the effort to extend his 

investigations to compound gases other than those mentioned was abandoned, and the 

(jiiestion up to the present time has remained unsettled. 

As already pointed out in tins papei‘, experimental evidence has been brought 

forward by Steutt to show that the minimum spark potential should be equal to the 

cathode fall measured in the same gas. In view of this conclusion it seemed desirable 

to extend the experiments described in the first part of this paper to include a larger 

number of compound gases, in order to throw light, if possible, on the question raised 

by Capstick. Measurements were tlierefore carried out with the gases oxygen, 

nitrous oxide, hydrogen sul])liide, sul])hur dioxide and acetylene. A constant spark 

length of 3 millims. was used throughout in order that a direct comparison could be 

made between the results olitained with these gases and those already recorded for 

hydrogen and carljon dioxide. The results obtained with all the gases, using this 

spark length, are recorded in Table VIL, and curves corresponding to the readings at 

the critical and lower pressures are sliown in fig. 11. 
All the curves present the general characteristic of a minimum s})ark potential, 

followed, at lower pressures, by rapidly increasing spark potentials. It Avill be seen, 

also, that the critical pressures and the minimum spark potentials vaiy Avith the 

different gases. The cuiwes, too, cut each (fiher in regular order, and at the 

loAvest pressures their relatiA^e arrangement Avith regard to the ordinate axis is 

practically the liiAmrse of that assumed ly them Avith reference to the abscissa axis 

aboAm the critical ])ressures. 

* Capstick, ‘Roy. Soc. Proc.,’ a'oI. 63, p. 356. 
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The values of the minimum spark potentials obtained in these experiments for the 

different gases are given in the following table :— 

Gas. -Minimum spark 
potential iii volts. 

IT, 278 
()., 455 

IloS 414 
c6.> 419 
NAG 418 
SO.. 457 
C.H.. 4G8 

Owing to the special precautions taken by Strutt"^ to obtain an accurate value 

for the minimum spark potential in nitrogen, measurements were not taken witli 

this gas. Adopting Strutt’s value of 251 volts for nitrogen, it will ])e seen that, 

with tlie exception of oxygen, all the minimum s})ark potentials given above obey 

an additive law ; that is, if H', N', O', &c., represent the si^rk potential constant 

corresponding to an atom of the gases H,, No, Oo, &c., respectively, the minimum 

spark potential for any compound gas whose fnanula is H., . . 0-, &c., will be 

equal to xW -h yN' + 'O' + &c. 

If we assume the truth of this law and calculate H', N', O', &c., from the 

minimum spark potentials for Ho, No, HoS, SOo aiid COo we find : 

H' = 139, N'=12G, C' = 98, S'= 13G, O'= IGl, 

* Strutt, ‘Phil. Trans.,’ A, vol. 193, p. 385, 
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and if we use these values to calculate the minimum spark potentials in the remain¬ 

ing gases, Ave obtain : 

Gas. Value found l)y 
experiment. 

Calculated 
value. 

C-IL. 468 474 
N..0 418 412 
oh 455 321 

The ao'reement between the observed and calculated wilues for eacii of tlie u’ases 

N,jO and CnHo is very marked, and is a strong evidence that the additive law holds. 

The only case in which there is any serious difterence lietween the observed and the 

calculated values is that of oxygen. Judging tliat this discrepancy might lie due to 

impurities, three s])ecimens of this gas Avere prepared by independent methods. It 

Avas prepared in turn by electrolysis, by heating potassium permanganate, and by 

heating a mixture of potassium chlorate and manganese dioxide. In every case the 

gas Avas |)urihed by being passed rlirough a mixed concentrated solution of 

potassium iodide and caustic potash and through concentrated sulpliuric acid. It 

Avas also carefully dried in the usual AA-ay. It will be seen from Table VII. that the 

three sets of readings jiractically coincide at every pressure, and, since it is not 

possible that the same impurity could be present in each of these specimens to the 

same degi'ee, it does not seem reasonable that the Irregularity in oxygen could be 

traced to impurities arising from any lack of precaution in the preparation of the 

gases. 

It is Avell known, however, tliat when an electric discliarge Is passed through 

oxygen, a considerable tpiantity of ozone is produced. It is in fact by this method 

that ozone in its purest form can be obtained. It is highly probable, then, tliat 

after the first discharge had passed betAA^een the electrodes, in tlie experiments on 

oxygen, a considerable percentage of ozone was present in the gas, and it may lie that 

the discrepancy noted abiove is due to this cause. The experimental Audue of 

455 volts found for oxygen .seems to bear out tills conclusion, for, ascribing the 

value of 161 volts to the atom of oxygen, we get by addition 483 Amlts as the calcu¬ 

lated Amine of the minimum spark potential for ozone. 4Iie difference between the 

tAvo values is but 28 volts, and assuming that the di.scharge occurs Initially through 

the dissociation of ozone rather than of oxygen, the result Is not in opposition to the 

additive laAv Av-hich has been shoAvn to hold for the other gases. This large influence 

of a small amount of a denser gas Avhen mixed aaIjIi one less dense is In accord with 

the results obtained by previous expeiimenters, for Wauburg'^' and CapstickI in 

their experiments on the cathode fall, and Strutt| in his experiments on the 

* Warburg, ‘ Wied. Ann.,’ vol. 31, p. .545. 

t Cafstick, ‘Roy. Soc. Proc,,’ vol. 63, p. 360. 
j Strutt, ‘Phil. Trans.,’ A, vol. 103, p. 385. 
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iniiiiiniiiu spark ])oteiitial, found tliat a very small pei-centage of oxvgeii increased 

their values for nitrogen by an amount out of all proportion to the ([uantity of the 
denser gas jiresent. 

I he calculated values for the minimum .spark potential in vater vapour and in 

ammonia are 439 volts and 543 volts respectively, and the values found bv Capstick 

for the cathode fall in these gases are respectively 469 and 582 volts. When we 

consider that the values in the one case are calculated from the measurements made 

on one effect, wliile the values in tlie second case are the direct experimental results 

on an entirely different effect, this com])aratively close agreement not only forms a 

corroboration of Strutt’s conclusions, but also lends support to the view that the 

mlnimuin spark j>otential has to do with the atoms rather than the molecules of a 

gas, and is determined, in any special case, by the a])plication of a simple additive law. 

In this connection it may be mentioned that the value found by Strutt"^ foi' tlie 

cathode fall in the monati.anic gas argon, 167 ^■olts, corresponds very closely with 

the constants which we have ascribed to the atoms of the various gases mentioned 

above. His value, 226 volts, for the monatomic gas helium, how’ever, is considerably 

larger than any of the atomic constants we have deduced. 

In performing these ex])eriments, all ordinary precautions Avere taken to ensure the 

purity of the gases. The nitrous oxide was prepared by heating ammonium nitrate 

111 a flask, and the gas Avas collected over Avater, but Avas Avell dried Avith phosphorous 

pentoxide before being passed into the disclnarge tube. The sulphur dioxide was 

prepared from copper and suliihuric acid. In order to purify it the better, the gas 

AA as diied and then licpiefied. It aatis further dried by being passed through a 

phosphoric pentoxide tube before reaching the discharge apparatus. 

Acetylene aatis obtained in the usual AAvay by the action of AA-ater on calcium 

caibide, and Avas carefully dried AAuth sulpliuric acid and phosphoric pentoxide. 

Hydrogen sulphide Avas prepared in a Kipp apparatus from ferric sulphide and 

sulphuric acid. It Avas sloAvly bubbled through Avash-bottles of Avater and then 

carefully dried in the usilal Avay. 

In every case, as in the early part of the experiments, the gas remained in the 

discharge chamber In the pre.sence of phosphoric pentoxide for several hours before 

any readings Avere taken. 

X. Summary of Results. 

1. The laAA’ governing electric discharges between parallel plates, in a uniform field, 

in any gas, foi piessures at and beloAA^ the critical pressures, is that AA'hich Paschex 

found to hold Avith spherical electrodes for higii pressures, viz., tliat, Avith a gHen 

spark jrotential, the pressure at AA^liicli discharge occurs is in\’er.sel\' proportional to 

the distance betAA'een the electrodes. 

* Strutt, ‘Phil. Mag.,’ March, 1900. 
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2. Ihe values of the spark potentials are not influenced at any pressure by the size 

of the electrodes, provided the discharge takes place in a uniform field. 

3. Plates of iron, zinc, aluminium, and brass were in turn used as electrodes, but 

the material out of which the electrodes were made was not found to affect the 

values of the spark potentials at any pressure. 

4. When the discharge was compelled to pass in a uniform field between parallel 

plates the minimum spark potential in any gas was found to l^e a physical constant 

for that gas, being independent of the pressure and of the distance lietween the 
electrodes. 

^ 5. Evidence has been adduced which indicates that Paschen’s law is applicable to 

discharges in a uniform field between parallel plates as long as the distance between 

the electrodes is greater than the diameter of the sphere of molecular action. 

^ 6. The minimum spark potential has been shown to vary with different gases. 

Ihe results obtained with a large number of elementary and compound gases show 

that the minimum spark potential is a property of the atom rather than the 

molecule, and that for any selected gas it may be calculated by the application of a 
simple additive law. 

In conclusion, I desire to thank President Loudon for the kindly interest he has 

always shown m my work by placing at my disposal every facility the laboratory 
afforded. 

To Dr. J. C. McLennan, also, under whose immediate supervision these experi¬ 

ments were carried out, I am deeply indebted for valued assistance. I cannot 

adequately express how much I owe to Ifis encouragement and advice. 
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XI. 0?i the Dependence of the Refnictive Index of Gases on Temperature. 

By George W. Walker, M.A., A.E.C.Sc., Fellow of Trinity College, Cambridge. 

Communicated by Professor J. J. Thomson, F.R.S. 

Received February 26,—Read March 26, 1903. 

The importance of this question was first imjrresseci on me in the course of some 

theoretical investigations on refraction in gases and the closely related property of 

electric susceptibility. 

A comparison of the actual temperature effect on a pi’operty of a body, with a 

theoretical formula professing to explain the property, is a very severe test, and one 

which has proved fatal to many theories. 

According to Gladstone and Dale’s law, of which most theories of refraction are 

particular cases, the refractive power of a gas is proportional to its density ; or, as a 

formula, 
g — 1 = Kp, 

where g is the refractive index, 
p is the density, 

and K a constant depending on the gas, but independent of temperature. If, then, 

the gas closely obeys Boyle’s and Charles’ laws, we must have 

{n — 1) (1 ~h _ {po — 1) (1 d~ ^tp) 

P Po 

where p) is the pressure, t is the temperature, and a the coefficient of expansion of the 

gas at constant pressure. 

If the pressure is kept constant, we must have 

g — la 
1 —h at 

(1). 

Several observers liave attempted to test this point, 

Mascart,^ Lorenz,! Beno1t,| Von Lange§ made observations on the refractive 

* ‘ Aimales de I’Ecole Normale Superieure,’ Series 2, vol. 6, 1877, p. 9. 

t Wiedemann, ‘ Annalen der Physik,’ vol. 11, 1880. 

J ‘ Travaux et Memoires du Bureau International des Poids et Mesures,’ vol. 6 1888. 

§ PoGGENDORFF, ‘ Annalen der Physik,’ vol. 153, p. 488. 

VOL. CCI.-A 341. 3 K 2 14.7.03 
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(Yr 

index of air at different temperatures and made use of the formula (ll to calculate n. 

Their results are briefly as follows: Loeexz and Benoit obtained a value of a equal 

to the ordinary coefficient of expansion for air, Von Lange obtained a value 

considerably less, while Mascart obtained a value considerably greater. Lorenz 

does not indicate what degree of accuracy he obtained, while BenoIt and Von Lange 

do not appear to have obtained as great accuracy as Mascaet. 

Mascaet experimented on a number of gases, and in almost every case obtained a 

value of a appreciably greater than the corresponding coefficient of expansion of the 

gas. This range of temperature was from about 5° C. to 40° C. 

llie disagi'eement between the results of the above-mentioned experimenters in the 

case of air, and the somewhat limited range of temperature used by Mascaet, led me 

to think that a repetition of the experiments on a few gases would be of value. I 

set myself the task of obtaining an accuracv 

of 1 in 500 over a range of temperature from 

10° C. to 90° C., and I think the results 

show that this accuracy has been attained 

and in some cases surpassed. 

The method used was Jamin’s interference 

method, which I shall briefly describe, 

although it is well known (see fig. 1). The 

rays of light from a monochromatic flame 

fall on a thick glass block, whose faces are 

optically plane and parallel, the back face 

being silvered. Two parallel beams of light 

ai'e thus produced and proceed througli the 

two tubes filled witli the gas and reach a 

second block of glass identical with the first. 

The. two Ijeams unite oii emerging from the second glass block and produce 

intfc.i fei ence liands, which may be observed through a telescope. AVhen the jiressure 

in one of the tubes is altered, the bands move across the field of view. As will be 

pioved latei, the number of bands displaced for a given difference of pressure enables 

us to calculate the refractive index of the nas. 

The glass blocks which I used were made by Beinfeldee und Heetel in Munich, 

ihe dimensions were 6X4X3 centims., the faces, 6x3, being optically plane and 

[larallel. One of tlie blocks was placed on an adjustable screw stand, so that the 

necessary adjustments might be made. The other block was placed on a heavy block 

of hard wood. 

Ihe tubes for holding the gas were made of brass, and were about 100 centims. 

long and 1 centini. diameter, and had soldered to them at each end a stuffing hox B 

(see fig. 2). Tlie tidies were soldered to an outer jacket E, which was also made of 

hi ass, and Avas tightly wound on the outside Avith a thick layer of cotton aa ooI. The 

Fig. 1. 
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vertical tubes F at each end of the jacket admitted the introduction of a 

thermometer fitted through a rubber cork. Steam or water entered at G and was 

pumped out at the corresponding hole at the other end of tlie jacket. C is an 

optically plane and parallel plate of glass, 17 millims. diameter, TS millims. thick. 

The four plates were all cut from the same plate of worked glass by Reinpelder unl> 

IJertel. D is a piece of hollow cork to reduce eddies of cold air. 

I experienced very great difficulty in making the joints between the glass plates 

and the brass tubes absolutely air-tight under the varying conditions of temperature 

and pressure. I succeeded finally Ijy using a rubber washer d millim. thick Ijetween 

the glass and tlie brass, and then painting bicycle enamel round the junction. This 

material dries rajjidly and hardens, but still with sufficient elasticity to avoid straining 

of the glass. It is not porous, nor does it melt or even soften at 100° C. It is, 

moreover, soluble in ether, so that the glass plate can be recovered unimpaired. 

Small brass tubes (see fig. 3) passed through the side of the jacket and were 

screwed and soldered, one to each of the long brass tubes. These served to connect 

the tubes with the manometer for recording the pressure. 

These small brass tubes passed through short brass tubes of slightly larger 

diameter, soldered to the jacket, thus allowing play during alteration of temperature. 

The joint was made by a short jjiece of thick rubber tube, wired, and painted over 

with black enamel. 

The steady temperatures required were obtained as follows:—-Tap water was 

drawn through the jacket by means of a water pump. This gave temperatures abouf; 

10° C. Higher temperatures, such as 20° C., or 30° C., were obtained by drawing 

the w^ter through lead spirals of different sizes, immersed in a saucepan of water 

kept boiling. Temperatures from 50° C. to 100° C. were obtained by boiling water 

under reduced pressure in an old mercury bottle, and drawing the steam tlirough the 

jacket by the water pump. 
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Ihe ari’angements for altering the pressure in the tubes of gas and measuring the 

differences are shown in fig. 4. The glass tube D connected the brass tube J/ with 

one limb of the manometer. The branch F led to a tap L, througli which different 

gases could be passed into the apparatus. 

The liranch H led to the second brass tube N, and from II the branch G led to the 

second limlj of the manometei'. The branch E was connected to a glass reservoir A 
of about I litre capacity, the tidie being drawn to a fine ca|3illary just before entering 

the'reservoir. A was connected with a second reservoir by a rubber tube. On 

lowering B, mercury ran from A to B, and thus the pressure could be altered. The 

tap A being shut, a difiei'ence of pressure in the two brass tubes was produced, which 

could be measui'ed on tlie manometer. C is a glass bulb introduced to keep the 

pressure in N more nearly constant than it would otherwise be. The manometer was 

over an inch in diameter in the wide portions, and thus capillary error was avoided. 

A steel scale S was hung between the two limbs and the level of the mercury, read 

by means of a telescope of a cathetometer placed in front of the manometer and about 

150 centims. from it. 

Wherever it was possible, the glass joints were made hy means of a blow-pipe, and 

the only other joints were at the I'eseiwoir A and at the small tubes connected with 

31 and H. These were made with thick rubber tube, wired, and painted with black 

enamel. J he glass taps A and A were fitted with mercury seals. Very great care 

was taken in testing to see that the whole apparatus was absolutely air-tight. 
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As a source of light, I used an ordinary Bunsen burner, placed about 150 centims. 

from the first glass block, and a small piece of bicarbonate of soda was held in tlie 

flame. This gave a brilliant yellow flame for a long time. The position of the 

interference bands was observed in a telescope with a micrometer scale in the 

eye-piece. 

Tlteory of the Measiirempnt. 

Mascart and others have established that for pressures in the vicinity of 

atmospheric pressure the refractive power is proportional to the pressure, or 

p =: I + Kp, 
where /c is a function of the temperature. 

This is only true in cases where Boyle’s law practically bolds. In the case of 

such gases as ammonia, where the deviation from Boyle’s law is aj^preciahle, a 

correction is required. 

Let d he the length of either tube, 

X the wave-length of Na light, 

Pq the initial pressure in the tubes, 

'Pi the final pressure in first tube, 

■p,2 the final pressure in second tube, and 

n the number of bands displaced, then 

_ 71 X X 

{Pi- P^) 

The measurements were made as follows:—Steam or water was allowed to run 

through the jacket for over an hour until the temperature was steady, and no drift 

of the hands was observed when the tap K was open. The Imnds were then adjusted 

so that a band was on the cross wire in the telescope. The two limbs of the 

manometer were read, and also the two thermometers in the jacket, and the 

thermometer hung beside the manometer. The tap K was then shut, the reservoir 

B lowered, and the tap P opened. When about 100 hands had passed, the tap P 

was shut and the position of the band observed, tlie manometer read, and also the 

three thermometers. B was then raised, the tap P opened, and the mercury allowed 

to flow back to A. The tap P was shut when the original position was attained and 

the readings again made. This method provides a test of any possible drift of 

the hands in one direction due to creeping changes of temperature. The proper 

temperature to take is readily seen to he the temperature as recorded when the 

pressure has been reduced, and not the mean of the initial and final temperatures. 

With regard to the accuracy I consider that I was able to estimate millim. on 

the manometer scale. An interference band being a fuzzy thing and not sharp, I 

found it impossible to estimate more than wotli of a band. The hands appeared about 
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5 millims. apart in tlie eye-piece, and the breadth of a band about 1 millim., or bth of 

the distance between t^^o bands. It is therefore useless to have a screw micrometer 

reading to x'ootli of band wlien the eye cannot judge more than -ixyth. In the case 

of air at 10 C., 100 bands corresponds to a difference in level in the limbs of the 

manometer of about 16 centims. We may therefore consider the quantitv 
pressure 

to lie accurate to 1 part in 500. 

Wit!) regaid to tlie thermometers, the}^ weie made hy It. Mittelbach, in Got¬ 

tingen, and divided in half degrees from 0° C. to 100° C. They could easily be read to 

-nyth of a degree, but this accuracy is not necessary. I had one of the thermometers 

standai dised at Kew and compared the others with it under the same conditions as 

in the experiments. The thermometers used in the experiments were placed in a 

bath at constant temperature, the same amount of stem being exposed as in the 

actual experiments, while the standardised thermometer was completely immersed. 

Atmospheric Air. 

The air in the laboratory was used, and dried by means of phosphoric pentoxide. 

The tap L was kept shut so that the same air was in the apparatus throughout the 

exjieriments. 

It would serve little purpose to give all the readings taken; and I shall confine 

myself to a few specimens. Throughout the initial pressure was as nearl)- as possible 

atmospheric j^ressure. 

The thermometers in the jacket were marked 7 and 9, and the thermometer placed 

under tlie scale of the manometer jnarked 6. 

15th November, 1901. 

Readings of thermometers 
in degrees Centigrade. 

Readings 
of manometer in 

centimetres. 
Number 

of 
bands. 

Differences. 

Ratio, 
bands 

pressure' 
9 7 6 Right 

limh. 
Left 
limb. Pressure. Bands. 

10-3 10 13-4 15-60 15-60 
(1) . . 10-3 10 13-5 23-49 7-58 100 15-91 100 6-285 
(2) . . 10-2 9-9 13-5 15-65 15-57 99-4 15-83 99-4 6-279 

10-2 9-9 13-5 15-60 15-60 _ - _ 
(3) . . 10-3 10 13-5 23-48 7-58 100 15-90 100 6-289 1 
(4) . . 10-4 10-1 13-5 15-60 15-60 99-8 15-90 99-8 6-276 

10-4 10-1 13-5 15-60 15-60 _ 
(5) . . 10-4 10-1 13-7 21-88 9-2 79-6 12-68 79-6 6-277 
(G) . . 
_ 

10-4 10-1 13-7 15-81 15-37 76-6 12-24 76-6 6-258 

The correction for each of the thermometers at this temperature was -|- ’4° C, 



REFRACTIVE INDEX OF GASES ON TEMPERATURE. 441 

Diagram I. 

Taking means we get 

Mean temperature Temperature of 
Ratio. of iacket, manometer, 

“ C. ° C. 

From (1) and (2) . 6-282 10-55 13-9 

.. (3) (i) ■ ■ 6-282 10-55 13-9 

„ (5) (6) . . . 6-267 10-65 14-1 

3 L VOL. CCI.-A. 
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19th November, 1901. 

Readings of thermometers 
in degrees Centigrade. 

Readings 
of manometer in 

centimetres. Number 
of 

Differences. 
Ratio, 
bands 

bands. pressm-e 
9 7 6 Right 

limb. 
Left 
limb. Pressure. Bands. 

51-6 52-2 16-5 15'61 15-61 
(1) . . 51-4 52-1 16-5 22-39 8-70 75-2 13-69 75-2 5-493 
(2) . . 51-4 52 16-4 15-Gl 15-58 75-2 13-66 75-2 5 - 505 

51-4 52-1 16-4 15-61 15-61 _ _ 
(3) . . 51-6 52-2 16-3 22-37 8-71 75 13-66 75 5 - 490 
(4) . . 51-9 52-6 16-3 15-61 15-61 75-2 13-66 75-2 5 - 505 

Making the iiecessaiy corrections on thermometer readings we get 

From (1) and (2) 

.. (3) (4) 

Ratio. 
Mean temperature Temperature of 

of jacket. manometer, 
°C. ° C. 

5-499 52-0 16-9 

5-497 52-1 16-7 

25th Novend^er, 1901. 

i 

Readings of thermometers 
in degrees Centigrade. 

Readings 
of manometer in 

centimetres. Number 
of 

Ixands. 

1 1 
Differences. 

Ratio, 
' bands 

9 7 6 Right 
limb. 

Left 
liml). Pressure. 

pressure' 

Bands. 
1 

100 100 12-2 15-60 15-60 
(1) . . 100 100 12-4 23-90 7-13 80-4 16-77 80-4 4-794 
(2) . . 100 100 12-6 15-61 15-57 80 16-73 SO 4-781 

100 100 12-6 15-60 15-60 _ 
(3) . . 100-1 100 13 23-35 7-69 75-2 15-66 75-2 4-803 
(1) • . 100-2 100-2 13 15-54 15-62 75-2 15-74 75-2 4-777 

Mean temperature Temperature 
Ratio. of jacket. manometer, 

° C. ° C. 
From (1) and (2) . 4-787 100-9 12-8 

(3) 55 (-i) • 4-790 100-95 13-4 

i\lean . 4-788 100-9 13-1 
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The next table gives a complete statement of the values of the ratio 
bands 

pressure 
at different temperatures. 

It is convenient to reduce these values to what they would he if the mercury in 
the manometer was at 0° C. and the tubes of the length at 0° C. 

The coefficient of expansion of brass was taken as 'OOOOID. 

The values of the corrected ratio are given in the fifth column. The next columns 
are the values obtained by multiplying the corrected ratio by the factors (l + '00355^), 

(l + ’00360^) and (l + '00365^) respectively, t being the temperature Centigrade. 
The values are calculated to the nearest 5 in the third decimal place. 

Dry Atmospheric Air. 

Date. 
Temperature 

of 
tubes. 

Temperature 
of 

manometer. 
Ratio. 

Corrected 
Multiplied by 

ratio. 
1+ -00355t 1 + -00360/. 1 + -00365/. 

15th Nov. 
° C. 
10-55 

° C. 
13-9 6-282 6 - 295 6-530 6-535 6-540 

15 th 10-65 14-1 6-267 6-280 6-515 6-520 6-525 
22nd 11-0 15-8 6-267 6-285 6-530 6-535 6-540 
22nd 11-05 16-4 6-262 6-280 6 - 525 6-530 6-535 
22nd 11-05 16-9 6-270 6-290 6-535 6-540 6-545 
26 th 2.3 - 9 13-6 6-011 6 - 025 6-540 6-545 6 - 550 
26th 24-3 14-0 5-989 6-000 6-520 6-525 6-530 
19th 48-4 15-9 5-551 5-560 6-515 6-530 6-540 
19th 52-0 16-9 5-499 5-510 6-515 6-530 6-545 
19th 52-1 16-7 5 - 497 5-510 6-515 6-530 6-545 
18th 54-3 14-4 5 - 450 5-460 6-510 6-525 6-540 
18th 53 - 2 14-9 5-482 5-490 6-525 6-540 6-555 
18th 53-0 14-9 5 - 489 5 - 495 6-530 6-545 6-560 
21st 76-5 18-4 5-109 5-120 6-510 6-530 6-550 
21st 76-1 18-1 5-115 5-125 6-510 6-530 6-550 
25th JJ 100-9 13-1 4-788 4-790 6 - 505 6 - 530 6-555 

Mean. 

Greatest variation. 

6-520 

+ -020 
- -015 

6-535 

+ -010 
- -015 

6 - 545 

+ -015 
- -020 

The superiority of the coefficient ‘00360 is clear from the numbers. The results 

are also shown in the diagram on page 441. Moreover, the agreement between the 

results on the 15th and 22nd shows that no measurable alteration in the gas had 

taken place. 

I think the numbers justify one in taking the ratio as 

6-535 ± -005 
1 + ^ (-00360 ± -00003)' 

The length of each tube was 99‘9 centims. between the inner surfaces of the glass 

plates. 

3 L 2 
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PliG WcivG-lGiigth for Na light may b© taken as 5890 X metre. 

1 he standard atmosphere as 7 6 centims. of mercury at 0° C. 

Hence we get for the refractive index of dry atmosjjheric air 

_ ^ , -0002928 db -000000^ 

^ {1 + ^ ( 00360 ± -00003)} 76 ■ 

Carhon Dioxide. 

The gas was made by warming a Indb containing sodium bicarbonate and dryino- 

by means of phosphoric pentoxide. The wliole apparatus was exhausted to under 

1 centum pressure by means of an oil-pump, and then the bulb containing the 

bicarbonate gently warmed until atmosplieric pressure was attained. This process of 

exhausting and refilling was repeated al^out six times, so that the apparatus might 

be considered filled with practically pure CO3. 

Obseiving foi neaily a week at about 10 C., I noticed a gradual diminution in the 

value of tlie refractive index, which was comparatively rapid at first and became very 

slow 111 a few days. The whole change was aliout 1 per cent. 1 consider that this 

was due to gas, proliably air, coming oft tlie walls slowly, and later results seem to 
support this view. 

I refilled with pure COo, and now there ajipeared no change. The results are given 

in the following table. Throughout the initial pressure was maintained as iiearl}’" as 

possible at atmos])]ieric pressure iiy adjusting tiie reservoir B. 

Carbon Dioxide, put in 28t]i February, 1902. 

1 Date. 
Temperature 

of 
Temperature 

of Ratio. Corrected 
Multiplied by 

tubes. manometer. ratio. 
1 + - 00375/. 1+ -00380/. 1 + -00385/. 

5tli March 
° C. 
9-7 

° c, 
15-8 9-G87 9-715 10-070 10-075 10-080 

5th „ 9-65 lG-1 9-G9S 9-725 10-075 10-080 10-085 
5th ,, 9-6 lG-4 9 • G98 9 - 725 10-075 10-080 10-085 
5th ,, 9-65 17-1 9-G98 9-725 10-075 10-080 10-085 
Gth „ GO-7 18-9 8-159 8-175 10-035 lO-OGO 10-085 
7th „ Gl-3 18-1 8-155 8-180 lO-OGO 10-085 10-110 

12 th „ 84-1 17-3 7-G19 7-G30 10-040 10-070 10-100 
12th „ 84-5 17-4 7-509 7-G20 10-040 10-070 10-100 
12 th „ 84-G 17-G 7-G13 7-G25 10-045 10-075 10-105 
14th ,, 77-1 17-7 7-773 7-785 10-035 10-0G5 10-095 
14 th „ 7G-9 17-8 7-740 7 - 755 9 - 990 10-020 10-050 
Uth ,, 18-5 lG-8 9-310 9-335 9-980 9 - 990 10-000 
17th ,, 18-5 17-1 9-307 9-330 9 - 975 9-985 9-995 
17th „ 18-G 17-3 9-280 9-305 9 - 955 9 - 9G5 9 - 975 

1 Mean, excluding 14th and 17th . 10-055 10-075 10-090 1 

Greatest variation . + -020 + -010 + -02 
- -020 - -015 - -01 j 
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The results on 14th and 17th March are quite anomalous and beyond ordinary 

error of observation, and my inference is that more impure gas had come off at the 

highest temperature. I therefore refilled with fresh COg, keeping the tubes at about 

80° C. while filling. 

The following table gives the results obtained on the new gas. 

New Carbon Dioxide, put in 18th March, 1902. 

j 

Date. 
Temperature 

tubes. 

Temperature 
of 

manometer. 
Ratio. Corrected 

ratio. 

Multiplied l)y 

1 + -00375;:. 1+-00380t 1+ -00385t 

1 C. ° C. 
i 9th March 10-5 17-3 9-673 9-700 10-080 10-085 10-090 

1 19th „ 10-5 17-4 9-659 9-685 10-075 10-070 10-075 
20th ,, 74-8 17-3 7-832 7-845 10-045 10-075 10-105 

! 20th „ 74-9 17-4 7-833 7-845 10-045 10-075 10-105 
21st 21-7 16-7 9-259 9-285 10-040 10-050 10-060 
21st 21-7 17-0 9-276 9-300 10-055 10-065 10-075 
24 th „ 31 -55 14-4 8-955 8-975 10-035 10-050 10-065 
24th „ 31-45 14-4 8-984 9-000 10-060 10-075 10-090 

Mean 10-055 10-070 10-085 

Greatest variation . + -025 + -015 + -020 
- -020 - -020 - -025 

No alteration appears to have taken place in the gas during the experiments. The 

results are also in very close agreement witli the results on the former gas. Both 

sets are shown on the curve for CO3. 

We may take the ratio as 
10-070 ± -01 

1 -f t (-00380 ± -00003) 

and the refractive index for CO3 is 

P — f "T 
-0004510 ± -0000005 p 

{1 + t (-00380 ± -00003)1 76‘ 

Hydrogen. 

The gas was prepared from zinc and moderately diluted hydrochloric acid. The 

apparatus was exhausted and filled about seven or eight times at the temperature of 

the room. The gas was dried by phosphoric pentoxide. 

Observations for a week at about 10° C. indicated a gradual increase in the 

refractive index, which I attribute to carbon dioxide comina; off the walls. When 

this effect had ceased, the apparatus was exhausted and kept exhausted for a few 



44G MR. GEORGE W. WALKER OX THE DEPENDENCE OF THE 

hours, while the temperature of the tubes was maintained at about 70° I hoped in this 

way to remove all impure gas from the walls, but it will be seen from the results that 

I was not quite successful. The exhaustion and re-filling Avith new hydrogen was 

repeated aliout four or five times. 
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The results are given in the following table 

Hydrogen put in 21st April, 1902. 

Date. 
Temperature 

of 
tubes. 

Temperature 
of 

manometer. 
Ratio. 

Corrected 
ratio. 

Multiplied by 

1 + -00345i:. 1 + -OOSSOf. 1 + -00355/. 

° C. = G. 
22 nd April 11-7 17-4 3-010 3-019 3-142 3-143 3-144 
22nd „ 11-7 17-6 3-007 3-016 3-138 3-139 3-141 
23rd „ 59-7 18-2 2-583 2-588 3-121 3-129 3-137 
24th ,, 71-0 19-0 2-509 2-515 3-131 3-140 3-149 
25th 83-5 19-8 2-442 2-447 3-156 3-164 3-172 
26th „ 89-7 17-1 2-406 2-409 3-154 3-165 3-176 

28th „ 23-3 16-3 2-913 2-920 3-155 3-158 3-161 
28th „ 22-65 16-3 2-916 2-923 3-152 3-155 3-158 
29th „ 33-0 14-8 2-821 2-827 3-148 3-153 3-158 
29th ,, 32-4 15-4 2-822 2-828 3-145 3-149 3-153 
29th „ 32-3 15 - 4 2-826 2-832 3-147 3-152 3-157 
30th ,, 65-8 15-2 2-556 2-560 3-140 3-149 3-158 
30th ,, 65-5 15-2 2-561 2-565 3-145 3-153 3-161 

1st jMay 10-8 14-5 3-031 3 - 038 3-152 3-153 3-154 
1st „ 10-9 14-6 3-033 3 - 040 3-156 3-157 3-158 
2nd „ 77-5 14-4 2-476 2-479 3-141 3-151 3-161 
3rd „ 84-1 15-3 2-438 2-441 3-148 3-159 3-170 
3rd „ 83-2 15-6 2-442 2-445 3-147 3-157 3-167 
5 th „ 81-7 13-2 2-447 2 - 449 3-139 3-149 3-159 
5 th „ 10-65 13-2 3-042 3-048 3-159 3-161 3-163 

Mean . 3.148 3-154 3-160 

Greatest variation + -oil + -007 + -010 
- -008 - -005 - -007 

The results on the 22nd, 23rd, and 24th April are fairly consistent, but ou raising 

the temperature to over 80° the values are distinctly higher. From the 28th 

onwards the agreement is quite satisfactory. I conclude that some impurity (COo) 

had come off at the higher temperature, and after that the composition remained 

constant. The results from the 2Hth onwards give a ratio 

3T54 ± -003 

1 + t (-00350 ± -00003) ■ 

The value of the ratio at 0° for the original hydrogen may be taken as the mean of 

the first two observations on 22nd April. This gives 3-141, The amount of impurity 

is thus 13 in 3141, or 1 part in 240. This would not alter the value of the 

temperature coefficient to the present order of accuracy. I did not think it worth 

while to put in new hydrogen, as the absolute purity could hardly be relied on by 

this method of preparation. 
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We may take the ratio for the original hydrogen as 

3-141 ± -003 

1 + t (-00350 d: -00003) ’ 

wliich gives for the refractive index 

= 14- '0001407 ± -00000015 £ 
^ [ I -\-t (-00350 d: -00003)} 76 ' 

Ammonia. 

1 he gas was prepai'ed dry liy the following method, for which I am indebted to 

Dr. Scott, of the Davy-Faraday Laboratory. 

A strong solution of ammonia, in a glass flask, was gently warmed, and the gas 

passed first tiirongh a tube containing dry caustic potash and next through a tube 
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containing dry calcium chloride. The calcium chloride absorbs large quantities of 

the gas. One end of the tube was then sealed up and the other attached to the 

apparatus, and the whole exhausted with the oil-pump. On gently warming the 

calcium chloride tube, the ammonia gas was liberated. The former method, of 

exhausting and filling several times while the tubes were kept at about 90° C., was 

adopted; and after the gas had been in the apparatus for a few days, the process 
was repeated. 

More care must be taken in the case of ammonia, since the gas does not strictly 

follow tlie ordinary gaseous law. 

If 'p be tlie pressure and t the temperature, the refractive index may be written 

p = 1 + + ¥). 

(l+«0 

Hence if p^ be the initial pressure in the tidies, 

p>i ,, final ,, ,, one tube. 

Pi )) >) ,, ,, second tube, 

the number of bands displaced 

oc -p^yp + X {pi + p.2)]. 

• • (1 ai) 

According to Mascaet" X for ammonia = '000178 per centimetre of mercury. 

We must, therefore, take care that tlie value of 2^1 + j^i hoes not vary to any 

extent throughout the series of measurements. Tliis point was carefully attended 

to, and the value of {jp +2^1) was equal to 120 centims. throughout, the variation 
not exceeding 2 centims. 

My mam object being the temperature coefficient, and not so much the absolute 

value of /i, I did not make any measurements with another value of 2P + 2^- This 

omission I now regret; but Mascart’s value may be used, as he made experiments 

specially on this point, and had much greater ranges of pressure than my apparatus 

was an-anged for. In his papers I cannot find that he measured the temperature 
coefficient. 

* ‘ Comptes Rendus,’ vol. 86, 1878, p. 321. 

3 M VOL. CCI. — A. 
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Ammonia Gas, put in 13th June, 1902. 

Date. 
Temperature 

of 
tubes. 

Temperature 
of 

manometer. 
Ratio. 

Corrected 
Multiplied by 

ratio. 
1 + -00385^. 1+ - 00390/. 1+ -00395/. 

17th Jane 
"C. 

11-8 
°C. 

15-5 8-139 8-160 8-530 8-535 8-540 
17 th 11-8 15-6 8-140 8-161 8 - 5.30 8-535 8 - 540 
18th 56 ■ 25 18-2 6-997 7-012 8-530 8-550 8-570 
18th 56-0 18-2 7 - 003 7-018 8-530 8-550 8-570 
19th 60-6 20-2 6-887 6-904 8-515 8-535 8-555 
19th if GO-3 20-4 6-904 6-921 8-530 8 - 550 8-570 
20 th 75-5 19-4 6-597 6-610 8-530 8-555 8-580 
20th if 76-4 19-4 6-572 6 - 585 8-525 8-550 8-575 
20th 76-8 19-8 6-562 6-575 8-520 8-545 8-570 
23rcl 90-5 22-3 6-291 6-305 8-500 8-5.30 8-560 
23rd if 90-5 22 - 7 6-283 6-298 8-490 8-520 8-550 
23rd if 90-4 22-8 6-287 6-302 8-495 8-525 8 - 555 
24th if 32-0 23-6 7-580 7-607 8 - 545 8-555 8-565 
24th if 31-95 23-9 7-574 7-602 8-540 8-550 8-560 
24 th if 31-75 24-2 7-575 7-603 8-530 8-545 8-555 
25th 23-75 23-9 7-780 7-810 8-525 8-535 8 - 545 
25th if 23-65 23-8 7-777 7-807 8-515 8-525 8-535 
25th if 23-75 23-8 7-781 7-811 8-525 8-535 8-545 

Mean. 

Greatest variation . . . 

8-523 

+ -022 
- -033 

8-540 

+ -015 
- -020 

8-557 

+ -023 
- -022 

; 
i 

I was unable to make a final observation at 12° C., owing to the fact that one of 

the glass joints had cracked during the night of the 25th June. However, the 

residts of l7th and 25th June are a fairly good test that no change in tlie gas had 

taken place. 

We may take the ratio as 

8-540 ± -010 

1 + ^ (-00390 + -00003) ’ 

Throughout 2^1 + Jh =120 centims. of mercury 

X = -000178 jier centimetre of mercury (Mascart). 

We thus obtain for the refractive index 

_ ^ (-0003743 ± -0000005) (1 + -000l78p) jp 

1 + ?(-00390 ± -00003) 76’ 

2^ Ijeing expressed in centimetres of mercury at 0° C. 

At 0° 0. and 76 centims. pressure 

= 1 + -0003793 ± -0000005. 
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Diagram IV. 

Sulphur Dioxide. 

The gas was obtained from a syphon of the liquefied gas and dried by means of" a 

phosphoric pentoxide bulb inserted in the apparatus. Tlie former process of 

exhausting and refilling at a temperature of about 90° C. was adopted. 

3 M 2 
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As in tlie case of ammonia, the pressure conditions must remain the same 

throughout. 

My first experiments gave a temperature coefficient about -00415; but, after 

having been at a temperature about 90° C., there seemed to have been a considerable 

al)soi'ption of gas, so that I could not obtain the former pressure conditions at lower 

temperatures. I therefore put in new gas and kept a record of the pressures. 

There vras still a gradual absorption of the gas, although not so great as before. 

Whether this was due solely to the walls of the apparatus or to the phosphoric 

pentoxide I am not in a position to say. 

New Sulphur Dioxide, put in 16th August, 1902. 

Date. 
Tempe¬ 

rature of 
tubes. 

Tempe¬ 
rature of 

mano¬ 
meter. 

Ratio. 
Cor¬ 

rected 
ratio. 

Tl +i'2. 
K 

Multijjlied by 

1 (xt 

1-t- -004156 1+ -004166 1+ -004176 
i 

18 th Aug. 
° C. 

80-7 
°c. 

21'2 11-524 11-550 137 10-955 14-625 14-635 14-645 
18 th „ 81-1 21-3 11-507 11-535 137 10-940 14-620 14-630 14-640 
18th „ 81-2 21-4 11-495 11-520 137 10-925 14-605 14-615 14-625 
19th ,, 37-4 00.0 

J-i 13-278 13-320 130 12-665 14-630 14-635 14-640 
19th „ 37-,3 22-4 13-250 13-295 130 12-640 14-595 14-600 14-605 
19 th ,, 37-5 22-5 13-248 13-295 130 12-640 14-605 14-610 14-615 
19th „ 15-0 22 - 7 14-409 14-465 126 13-775 14-6.30 14-635 14-635 
19th „ 14-9 22-7 14-404 14-460 126 13-770 14-620 14-625 14-625 
20th „ 14-15 20-0 14-437 14-485 121 13-820 14-630 14-635 14-635 
20 th „ 14-15 20-2 14-442 14-490 121 13-825 14-635 14-640 14-640 
20th „ 14-20 20-4 14-221 14-270 81 13-825 14-635 14-640 14-640 

Mean . 14-620 14-625 14-630 

Greatest variation + -015 + -015 + -015 
- -025 - -025 - -025 

Die last two ol)servatlons were made in order to obtain the coefficient of increase 

witli ])ressure. 

We have 

(1 + X 121) = 14-490, 
1 -p a?; 

Hence 

K 

1 ^ ,(* +^^80 = I at 

1 ~b 
13-825, X = -000398. 

1 he accuracy attained seems much greater than in the case of the former gases; 

but to Ije safe we take the ratio as 
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(14-625 ± -01) (1 + -000398^) 

1 +7(-00416 ± '00002) 

This gives for the refi’active index 

^ ^ , (-0006553 zb '0000005) (1 -|- -000398/^) p 

~ I -j- ^ (-00416 ± -00002) ' 76 ’ 

At 76 centims. pressure and 0° C. 

= 1 + -0006758 ± -0000005. 
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The following table gives a compaiisoii of the results with those of former 

observers* :— 

Refractive Index for Na Light at 7G centims. Pressure and 0° C. 

Obseiver. Air. Hydrogen. Carbon dioxide. Ammonia. Sul2)hur dioxide. 

Present .... 1-0002928 
+ 3 

1-0001407 
+ 15 

1-0004510 
+ 5 

1-0003793 
+ 5 

1-0006758 ' 
-f 5 

Mascart .... 1-0002927 1-000139 1 - 000454 1-000379 1-0007038 
Lorenz .... — 1-000139 — 1-000373 
KETTEI.ER . . . — 1-000143 1-000449 _ 1-000686 
Dulong .... 1-000294 1-000138 1-000449 1 - 000385 1-000685 

Tlie followdng table gives a comparison of Mascart’s temperature coefficients with 

those obtained in this paper:— 

Air. Hydrogen. Car]:)on 
dioxide. Ammonia. Sulpliur 

dioxide. 

Coefficient of exjjansion . . -00367 -00366 -00371 -00390 
Mascart, refractive index 
coefficient. -00382 -00378 -00406 _ -00460 

Present . -00360 -00350 -00380 -00390 -00416 
±3 i 3 + 3 ± 3 ±2 

1 he values of the temperature coefficient of refractive index obtained are, in every 

case, less than those olitained l)y Mascart. It is somewhat futile to attempt to 

exj)lain the diflerence ; Init perhaps the following points are worthy of attention. In 

my apparatus the tubes were aliout 1 metre long and the two rubber washers 

together about f inillim. thick, while Mascart used tubes about 25 centims. loim 

Jiiiu his riil)])0r washers were probably 1 inillim. thick each. He does not nieiitioii 

the thickness, but Lorenz, who appears to have used an almost identical apparatus, 

used washers 1-^ unllims. thick each. The somewhat irregular behaviour of I'uliber 

under varying conditions of temperature and pressure may have produced errors in 

Mascart s observations, from whicli I consider that mine are entirely free. 

I have already referred to the apparent escape of impuiities from the walls of the 

apjiaratus. Mascart makes no reference to this point, arid gives no indication of 

iiow he tested the constancy of composition of tlie gas during the experiments. It is 

true he analysed the gas chemically after the experiments, but this is hardly accurate 

enough for the point in view. 

* A very useful table of the results of different observers is given b}" Bruiil, ‘ Zeitschrift fiir 
I’hysikalischc Cheniie,’ vol. 7, 1891. 
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The difference between tire temperature coefficient of refraction and tlie coefficient 

of expansion has naturally attracted my attention ; hut I do not propose to discuss 

the matter theoretically in this paper, mainly because I am now taking up experi¬ 

ments on tlie temperature coefficients of the dielectric constants, whicli I hope will 

give me a more complete basis for generalization. 

In conclusion, I wish to express my great obligation to Professor Tnoii.soN for 

having placed the appliances of the laboratory at my disposal, and for his kind interest 

in what has necessarily been a very tedious work. 

PEEL. 
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XII. Solar Eclipse of 1900, May 28.—General Discussion of Spectroscopic 

Results. 

By J. Evershed, F.R.A.S. 

Communicated hy the Joint Permanent Eclipse Committee. 

Received December 17, 1902,—Read January 22, 1903. 

[Plates 2, 3.] 

In the preliminary report of an expedition to the south limit of totality, in Algeria, I 

described in detail the methods adopted and the instruments employed in obtaining 

photographs of the “flash” spectrum in high solar latitudes.* 

The jiresent paper deals with the results obtained from a detailed study and 

measurement of four of the best negatives of the series of sixteen which were secured 

with the principal instrument, a reflecting prismatic camera. 

This instrument was an ordinary reflecting telescope of 188 centims. focus, fitted 

with two prisms of light flint glass at the upper end of the tube near the position 

usually occupied by the small mirror of the Newtonian reflector. The prisms had an 

eflective ajierture of 8 centims. and angles of 60° and 45° respectively; they were set 

approximately at minimum deviation for K, and gave a linear dispersion at the focus 

of the large mirror equal to 93 millims. between F and K. 

Description of the Photographs. 

The plates were exposed near the time of greatest phase of the eclipse, which was 

not quite total at my station. The first plate was exposed at 45 seconds before, and 

the last at 32 seconds after, the computed time of mid-eclipse. Owing to the position 

of my station, near the extreme limit of the zone of total-eclipse, and just outside that 

limit, there appears in all the photographs a considerable amount of continuous 

spectrum due to the uneclipsed photosphere. Notwithstanding this, all the exposures 

which were made within 15 seconds of mid-eclipse yielded good images of the flash 

spectrum, and the sky illumination was sufficiently reduced to allow of the fainter 

* ‘Roy. Soc. Proc.,’ vol. 67, p. 370. 

VOL. CCI.—A 342. 3 N 15.7.03 
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spectrum arcs being impressed during quite half a minute at the time of greatest 

obscuration (see Plate 2). 

In all the images the continuous spectrum extends from X3500 to X5100, and 

throughout this long range the focus appears to he almost perfect, a striking 

testimony to the good qualities of the reflector as comjDared with a lens. 

Some of the stronger arcs show a difiuseness on the violet side, a defect which has 

been traced to a want of homogeneity in the glass at the base of the 60"^ prism. In 

the ultra-violet region this shading becomes scarcely noticeable, and the deflnition 

here is very fine ; this is no doubt owing to the almost complete absorption of the 

ultra-violet rays in traversing the thickest part of the prisms. 

The four negatives selected for special study, and which are reproduced in Plate 2, 

are from the exposures numbered 9, 10, 11, and 13. 

No. 9 was exposed for 2 seconds, beginning 15 seconds before mid-eclipse. The 

flash spectrum is impressed in a rather narrow rift in the continuous spectrum, 

extending from position angle 140° to 148°, and including a region between 70° and 

77° south latitude. The^ bright arcs crossing the rift are exceedingly narrow thread¬ 

like lines, well defined throughout the spectrum, and are therefore well adapted for 

accurate wave-length determinations. Although the arcs are inclined about 30° 

from the normal to the direction of dispersion, this was found in making the measures 

to detract but very little from the accuracy of a setting. 

In the ultra-violet the Fraunhofer lines are particularly well-defined in this image 

right up to the end of the plate on the continuous spectrum, but between and 

they are obliterated by over-exposure.* The stronger dark lines, and many of the 

weaker ones, are continuous with and run into bright lines in the rift, and in several 

instances the density of the silver deposit is the same in the bright line as it is in the 

dark line, giving the impression that the change from dark to bright is entirely one of 

contrast resulting from the withdrawal of the bright background of continuous 

spectrum. Some of the more intense lines, such as those of titanium at XX 3685, 

3759, and 3761, do not become dark lines on the continuous spectrum, but, being 

more intense than the latter, appear bright even upon the bright background. 

This may be accounted for by the great altitude to which the titanium vapour 

extends, not to its being intrinsically brighter than the photosphere at the limb. For 

the continuous spectrum is produced by what is virtually a slit of extreme fineness, 

defined by the limbs of the sun and moon, and subtending an angle of less than 1", 

whilst the titanium spectrum comes from a stratum, or virtual slit, of 7" or 8" in 

angular width. 

No. 10 was exposed also for 2 seconds at about 10 seconds before mid-eclipse. The 

limb of the moon, advancing eastwards, has covered up the lowest strata of the flash in 

the position where the lines are so well developed in No. 9. There is, however, a 

* In the reproductions the Fraunhofer lines are almost invisible except at the extreme ultra-violet end 

in No. 13. 
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good but narrow image of the flash at about position angle 137°, or latitude — 63° to 

— 66° E.; and on the west side also there is a fine thread of faint continuous spectrum 

in latitude — 56° W., upon which the flash lines appear as minute dots, like beads on 

a string. About twelve of these dots may be counted between H and K. 

No. 11 spectrum was exposed during 10 seconds near the time of mid-eclipse. 

Judging by the symmetrical distribution of the bands of continuous spectrum on each 

side of the central line of the image, the middle of the exposure must have been 

timed almost at the moment of greatest phase, which appears to have coincided with 

the computed time of mid-eclipse. 

The continuous spectrum in this negative is reduced to nine or ten narrow bands, 

due to indentations in the moon’s limb, and the flash spectrum appears in the form of 

long arcs crossing the bands and extending over the whole of the south-polar region 

of the sun. Most of the arcs cover 80° degrees of the limb, extending from latitude 

— 75° on the east side to latitude — 28° on the west. The sharpest definition is 

along a band at position angle 212° in latitude — 41° on the west side, and this 

portion of the image was selected for measures of wave-length and estimates of 

intensity. 

The bright lines on this negative are more strongly impressed, and can be traced 

further towards the more refrangible end of the spectrum than in any of the other 

images. Some of the Fraunhofer dark lines can still be traced near the end of the 

image in the ultra-violet, crossing the narrow strips of continuous spectrum. These 

lines therefore do not wholly disappear before the last remnants of continuous 

spectrum vanish, hut they become exceedingly faint, and are easily obliterated by 

over-exposure. 

No. 13 spectrum, exposed for 2 seconds about 14 seconds after mid-phase, shows a 

considerable arc of the photosphere uncovered over the south-west limb, and the 

negative is somewhat fogged from the increasing sky illumination. There is, 

however, a good image of the flash spectrum near the middle line of the image in the 

south-east quadrant. The lines are here very short, the flasii layer being exposed in 

a narrow depression of the moon’s limb, but they are well adapted for measurement. 

Methods of Measurement. 

The photographs numbered 9, 11, and 13 were measured with a micrometer 

microscope, lent to me for this purpose by Major Hills, R.E. This instrument has a 

screw of 1 millim. pitch and about 200 mlllims. in length. The head of the screw 

being divided to 100 parts, readings can be made to ’01 millim., and by estimation to 

'001 millim. 

In practice it was found that '01 millim. was about the limit of accuracy attainable 

with the best defined lines. A preliminary set of measures of the sharpest lines over 

the whole length of spectrum photographed was made, to test the accuracy of the 

screw over long runs, a duplicate series of measures being made over the same 

3 N 2 
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portion of the screw, but with the negative reversed end for end. A comparison of 

the direct and reversed measures revealed systematic differences amounting to as 

much as ’02 millim. in a run of 100 millims. 

Although this error of run would have very little effect on the resulting wave¬ 

lengths, which depend ultimately on short measured distances from known lines, it 

was considered more satisfactory to measure the photographs in three sections of 

about 70 millims. each, selecting a portion of the screw which gave consistent results 

over this range. In order to reduce the accidental errors of setting, and to detect 

blunders, each section was measured twice, one set of measures with the red end to 

the right, and the other with the red end to the left. 

This method involved some extra labour in combining the measures, and in joining- 

up the three sections into one consistent whole by means of the lines which 

overlapped between the sections. However, the definition of some of the images is 

so good that any amount of trouble taken in getting satisfactory measures seemed to 

be justified. 

The relation between wave-length and measured distances at all points in the 

spectrum was determined approximately by graphical methods, using 42 well-known 

lines, including lines of hydrogen, calcium, titanium and iron, &c. A large number 

of the finer lines were then identified with certainty, and in the final reduction the 

broad over-exposed hydrogen and calcium lines were rejected as standards, and about 

65 more suitable lines were selected which are well distributed throughout the 

spectrum, using in the ultra-violet region lines which I considered thoroughly well 

identified in the spectra obtained in 1898.^' 

From the standard lines the position in millimetres of each 50 tenth-metre of wave¬ 

length was computed, taking the mean value given by four or five of the nearest 

standards in each case. A table of differences was then made giving the inter¬ 

mediate values by interpolation and the value in millimetres of one tenth-metre at 

every 25 units. 

The wave-lengths of all the lines, including the standards, were computed from 

this table, using second differences. 

Each of the three spectra measured was reduced independently, using the same 

standard lines, but computing a separate table for each. A direct comparison of the 

three sets of measures showed that they were very nearly identical, and one table 

might have served for all. But there appear small systematic differences, due in part 

the fact that the measures were made at different distances from the centre of the 

arcs, and probably in part also to slight irregular contraction of the photographic 

films in drying. 

It was therefore considered more satisfactory to treat each sjDectrum entirely 

independently, combining in the end the wave-length values obtained to arrive at the 

most probable values measured on all three spectra. 

* ‘ Phil. Trans.,’ A, vol. 197. 
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From the accordance between the two sets of measures for each spectrum the 

accidental errors of the mean positions may be estimated at about ’01 millim. The 

mean error is less than this for the best defined lines, but greater for the broad or 

diffuse lines. This error corresponds to an error in wave-lengtli of T6 tenth-metre at 

. 5000, decreasing to '07 at 4000, and '04 at the end of the spectra at 3500. 

It does not, of course, follow that the wave-lengths in the tables can be relied on 

within these limits, except for isolated lines of which the measures are unaffected by 

any disturbing causes, such as faint companion lines or shadings. But this degree of 

accuracy seems actually to have been attained in a large proportion of the iron and 

titanium and other well-identified lines (see Table I., p. 478). 

The mean values for the hydrogen lines, given separately in Table II., agree very 

closely indeed with the computed values. Thus in nineteen lines, in a total of 

twenty-eight, the differences do not exceed 'UI tenth-metre, and in four lines only the 

differences reach T tenth-metre, three of these being the lines y, S and e, which are 

difficult to bisect on account of their great width. This result will, perhaps, l)est 

indicate the general accuracy of the wave-length work. 

No corrections of any kind have been applied to the results, and it may be well to 

emphasise here the fact that no corrections are needed for apparent displacements 

due to the different altitudes to which the various gases ascend in the chromosphere. 

In making the measures, the settings were made at the position of maximum density 

in the case of the broad over-exposed hydrogen lines, the finer lines being simply 

bisected without reference to the apparent edge of the moon’s limb. 

It is probable that the positions of maximum density of the images of the stronger 

lines correspond to radiations coming from a region within 2" of the photosphere, 

\vhilst in the fainter ultra-violet liydrogen series the mdiations are almost confined 

to the flash spectrum layer, the emission fi'om the upper chromosphere being almost 

insensilfie for these lines. 

Assuming that all the settings were made on arcs radiated from a region within 

2" of the photosphere, this being the approximate limit to which tlie reversing 

layer extends, no ajDpreciable error will be made by bisecting the images; for a 

difference of 1" of arc in the positions of the various gases above the moon’s limb 

would make an apparent shift on the plate at 188 centims. focus of '0091 millim., a 

quantity about equal to the accidental errors of measurement. 

On the other hand, if the settings were made on the inner edge of the arcs, that is, 

at the apparent limb of the moon, a considerable error would be inti'oduced, depending 

on the intensities of lines, which spread inwards as well as outwards as a result of 

irradiation. 

It is particularly noticeable that a large number of the arcs of the flash spectrum in 

these prismatic camera photographs are narrow lines sharply defined on both sides, 

there is no diffuseness on the outer side, as might be expected were the arcs true 

images of the strata producing them. They are in reality, as I have previously 
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pointed out,* diffraction images more or less enlarged by jihotographic diffusion, and 

they appear to be as well adapted for bisection and wave-length determination as are 

the lines given by a slit-spectroscope. 

Exception may, perhaps, be taken in the case of the helium lines and the somewhat 

remarkable line at 4685'7. These do not increase in intensity towards the 

photosphere, and it is possible that they are very weak and even absent from the 

flash layer. A bisectio]i of these arcs may, therefore, represent a point in the 

chromosphere higher than the flash layer. 

No allowance has, however, been made for this, yet the values obtained indicate 

only a small displacement towards the red end, averaging T6 tenth-metre for the 

three lines 4713, 4471, and 4026, when compared with the jDiincipal components of the 

double lines as determined by Hunge and Paschen, and which they are assumed to 

represent. 

But it is noticeable that in these spectra the helium lines become broad and faint 

in the flash layer, although narrow strong lines outside; the measures are, therefore, 

somewhat uncertain, and it is possible that they may be partly affected by the less 

refrangible components of the double lines. In any case they serve to show what a 

small correction is needed, even for the lines of a sulDstance like helium, which is 

characteristic of the upper chromospliere rather than the flash layer. 

Estimates of Intensity. 

On account of the great range of intensity between the weakest and the strongest 
lines, a scale was adopted ranging from 0 to 100. Tins is practically equivalent to 
adopting two orders of intensity, 0 to 10 representing the weak lines, 10 to 100 the 
strong lines, the latter progressing by fives. 

The intensities of all the lines, with the excejjtion of those of hydrogen and H and 
K, were estimated while making the measures, two indejjendent estimates of each line 
Ijeing obtained from the two sets of measures of each spectrum. The mean of the 
two estimates is set down for each spectrum in Table I. 

The hydrogen and calcium lines were estimated separately. From to Hp they 
form a nearly uniformly diminishing series, giving a convenient scale of reference with 
which to compare the strong lines of the flash spectrum. 

At the ends of the spectra, where the density of the image falls oft considerably, the 
estimates are of course very rough and uncertain, and throughout the middle 
portions of the spectra the intensities are not perhaps strictly comjjarable, except over 
a limited range of wave-length. 

* ‘Phil. Trans.,’ A, vol. 197, p. 394. 
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General Discussion of Results. 

The identification of the bright lines in these spectra with the dark lines of the 

Fraunhofer spectrum presents very little difficulty in the case of the strong, or well- 

defined flash lines, and it appears to be generally true that the more reliable the 

values of wave-length obtained in photographs of the flash, the more closely do they 

correspond with Eowland’s values of the dark lines. Thus many of the lines 

measured on small-scale photographs obtained in 1898 show apparent displacements 

considerably greater than the accuracy of the measures seemed to warrant, and which 

rendered many of the identifications doubtful. This is particularly the case in the 

region between 3700 and 3900, where the iron lines especially seemed to be systemati¬ 

cally of smaller wave-length than the corresponding dark lines, whilst the hydrogen 

lines in the same region agreed very closely indeed with their theoretical positions. 

In the present measures, however, in which the scale of the plates is nearly four times 

greater, these displacements are not confirmed, and the same lines are found to agree 

with Eowland’s values within '04 tenth-metre. 

As regards the fainter ill-defined lines and groups there is, of course, considerable 

uncertainty in assigning the particular dark lines of which they are supposed to be 

the reversals, or which lines in a group of dark lines are reversed in the flash. 

It is, however, abundantly clear, from an examination of Table I., that every well- 

defined bright line of the flash (excluding hydrogen and helium lines and the line at 

46857) can be assigned to a dark line of Eowi-and’s table of an intensity exceeding 

2 of his scale. There are no bright lines of even medium strength which occur in 

blank spaces of the solar spectrum where tlie lines are weaker than 0, and only a few 

of the very weakest lines in the table coincide with solar lines vfith an intensity less 

than 2. 

As a corollary to this, it may be stated that in general the greater the intensity of 

a dark line in the solar spectrum, the more probable is its presence as a bright line in 

any given image of the flash, and in the long range of spectrum covered by the 

spectra under discussion, X3500 to X5000, the dark lines of intensities exceeding 7 

are all present as bright lines, except in two or three instances where they are 

obviously obscured by strong hydrogen or calcium lines. 

In the tables of flash-spectrum lines published by Frost and by Mitchell, the 

same general fact is apparent in the large number of identifications made with 

prominent Fraunhofer lines. Professor Frost concludes that “at least 60 per cent, 

(and probably many more) of the stronger dark lines of the solar spectrum are found 

bright in a stratum not exceeding 1" in height above the photosphere.”^ 

It will probably be generally admitted, therefore, that the flash spectrum as 

photographed hitherto is a reversal of the more prominent of the Fraunhofer lines, 

* ‘ Astrophysical Journal,’ vol. XIL, p. 345. 



464 MR. J. EVERSHED ON THE SOLAR ECLIPSE OF 1900, MAY 28. 

and does not include lines (other than those of He and H) which are not present in 

the dark line spectrum. 

The most important point remaining open for discussion is the relation of the 

intensities of the bright lines to those of their dark line equivalents, for on this 

point turns the question whether the flash spectrum layer is in truth the stratum 

which by its absorption gives rise to the Fraunhofer spectrum. 

In discussing the results of the flash spectra obtained in India in 1898,"^ I stated 

certain conclusions leading to the belief that the flash spectrum does, in fact, 

represent the upper more diffused portion of an absorbing stratum which, taken as a 

whole, produces the Fraunhofer lines. The conclusions relating to the relative 

intensities of the lines I now recapitulate in the following three paragraphs :— 

(1) The relative intensities of the lines of any one element in the flash spectrum 

are practically the same as those of the same element in the solar spectrum. 

(2) The relative intensities between groups of lines belonging to different elements 

are widely different in the flash and in the solar spectrum. 

(3) The apparent intensity of the radiation from an element in the lower 

chromosphere is determined by the extent to which that element is diffused above 

the photosphere, and the real relative intensities between the different elements 

cannot be judged in photographs of the flash spectrum. 

The statements in the second and third paragraphs will now probably be generally 

admitted, and do not need further discussion. It remains to determine how fai' the 

statement given in the first paragraph is l:)orne out by the present results, which 

cover a somewhat different range of the spectrum, give more accurate values of the 

wave-lengths, and which give very much more complete and reliable values of the 

intensities of the lines. 

Probalfly this is the most important conclusion deduced from my former results, 

and as it is one which is most open to criticism, I propose to deal with it in some 

detail, and with especial reference to the results obtained by Fowler and Baxaxdall 

under Sir Norman Lockyer. These investigators have found that the relative 

intensities of the lines of an element in the flash approximate to those in the spark 

spectrum, whilst the intensities of the dark lines closely resemble those in the arc 

spectrum ; whence they conclude that the flash spectrum layer is not the seat of the 

Fraunhofer absorption lines.! 

In making comparisons of intensity in the lulght line and dark line spectra of an 

element, a serious difficulty is encountered in the probably compound nature of many 

of the apparently single lines of the flash spectrum. In such cases it is, of course, 

impossible to assign the true value of intensity to the components; even when the 

unequal components of an obviously double line are easily distinguished, it is difficult 

* ‘Phil. Trans.,’ A, vol. 197. 

t See Fowler on the Flash Spectrum, ‘ Observatory,’ April, 1902. Also Sir N. Lockyer and 
Baxandall, ‘ Monthly Notices, R.A.S.,’ vol. LXL, Appendix, 
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to estimate the intensities correctly, the weaker component Ijeing h’al)le to he 

considerably under-estimated. 

Another difficulty occurs when single Fraunhofer lines have a compound origin 

assigned, such as Fe-Ti, &c., the proportion of intensity of each element in the 

“make up” of the dark line being unknown. In such cases the relative proportions 

of intensity in the cori'espondmg hash line may be cpiite dillerent or even revei’sed, 

the i)redommating element being in general the one which ascends to the greatest 

elevation in the chromosphere, not necessarily the one which iiredoininates in the 

dark line. 

In these circumstances it is mij)ossible to make anything like a complete or hnal 

comparison of intensities. The liest that can Ije done is to select for each element 

isolated lines which are least open to the siisjjicion of lieing made up of more than 

one line in the hash spectrum, and also lines of supposed single origin as given in 

Howland’s tables. 

Unfortunately, there are only three elements which have a sufficient niimbei' of 

lines in their spectra to he treated satisfactorily in this way ; they are iron, titanium, 

and chiomium. In the following tables I give the results for these elements, 

selecting 2If) Fe lines of PtOWLANu’s intensity 3 and upwards, 124 Ti lines of 

intensity 1 and upwards, and 157 Or lines of intensity U and over. 

1 hese are reju'esented in the hash spectra by 93 Fe lines, 39 Ti lines, and 25 Cr 

lines respectively. Ilie selection of suitable lines was made entirely from Howland’s 

table, and without reference to the hash sjiectra, so as to avoid liias in the selection. 

ItOWLANDS intensities of the solar lines are given in the hrst column of each table, 

and the number of lines selected iietween XA. 3500 and 5000 in the second column, the 

tliiid and fourth columns give respectively the nuinbers and percentages of the lines 

which are found as bright lines in the hash spectrum, the hfth column giving the 

average intensity of these lines. 

A glance at the hrst and last column of each table will show the general relation 

between the hash intensity and the dai'k-hne intensities for the tlii'ee elements 

consideied. The numbers indicating intensities for tiie briglit and dark lines aie not, 

of couise, directly comparable, since they depend on methofis of judging intensity 

which may differ widely in the two cases. It is a mere coincidence in the case of 

iion that the numliers representing the stronger lines practically correspond in the 

hrst and last columns. 

From the columns of jiercentages the genei'al laile is obvious, that the stronger the 

daik line oi an element, the more probable is its occiiii'ence as a bright line in any 

given image of the hash spectrum. Thus we hnd that of the Ti lines none are 

present in the spectra under discussion corresponding to Howland’s intensity 1, and 

the percentage of dark lines exceeding intensity 1 which are present as bright lines 

iiicieases with each increase of dark-line intensity up to intensity 4 ; of the 12 dark 

lines exceeding intensity 4, all are present in the flash. Similarly with iron, all of 

VOL. CCI.-A. 3 o 
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the 32 lines exceeding Howland's intensity 8 are present in the flash and none 

under his intensity 3. 

This general law of correspondence of intensity between bright lines and dark 

lines is, however, far from being exact in detail even with the selected lines used in 

these comparisons, and the average intensities of the bright lines are in some 

instances made up of rather widely diverging units. 

This is more particularly tlie case witli the weaker dark lines 'of each element, 

which are often of abnormal intensity in the tlasb. In the case of chromium most of 

the flasli lines corres]:)onding with solar lines of intensity 2 and 3 may be considered 

almormally strong, for the average intensities for these lines are greater than the 

average of the lines corresponding with the solar lines of intensity 4. 

The percentage columns show also that many dark lines of medium intensity may 

be absent in the flash, whilst other weaker lines are present. 

It must be remembered that estimates of intensity in the flash spectrum, however 

carefully made, are liable to considerable errors for 'several reasons. The great 

weakening of the spectrum near the ends of the materially affects the 

percentages of the weaker lines as given aljove, and the low dispersion of the plates 

com[)ared with tlmse cm which Howland’s estimates were based introduces other 

sources of discrepancy. Moreover, Howland’s table itself is admittedly a 

“ j)reliminary ” table, in which some of the assignments of origin may be erroneous 

or inconpdete, lines having a single origin assigned being really made up of two or 

more elements. 

Iron Lines in Sun and Flash. 

Including all isolated lines in Howland’s talde assigned to Fe only l)etween X 3500 

and X 5000, exce|)ting those wHich are obscured in the flash by strong hydrogen 

• and calcium lines. 

liowtAXn’s intensity 
in O. 

Number of line.? 
in O. 

Nnmlier of lines 
in flash. 

Percentage of lines 
in flash. 

Average intensity 
ill hash. 

Under 3 Very large number 0 0 
3 and 4 94 12 13 5 
5 „ 6 G6 26 40 o O 
7 „ 8 27 23 85 G 
9 to 14 13 13 100 8 

15 „ 20 14 14 100 17 
25 and over 5 5 100 24 

* Including tliree linos ascribed to Fe only by LoCKYEll at X,\.4179, 4233, and 4515. 
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Abnormal Fe Lines, 

In sun. In Hash. 
If 

Remarks. enhanced. 
Wavedength. Intensity. AVavedength. Intensity. 

: 

Lines strong- in tlasli o 

3558-67 8 3558-9 20 1 

3570-27 20 3570-33 30 
3634-47 3 3634-48 5 1 

3647-99 12 3647-98 15 1 

3856-52 8 3856•47 15 No 
4179-03 3 4179-1 8 Yes 
4233-33 4 4233-3 10 Yes 
4325-94 8 4325•8 15 No 
4401-93 10 4404-8 20 No 
4515-51 3 4515-6 8 Yes 
4584-02 4 4583•9 25 Yes 
4924-11 5 4924-1 25 Yes 
5018-63 4 5018-5 20 Yes 

I iines weak or absent in flash and exceeding intensity Gin O. 

3536-71 7 Absent _ 1 Spectrum very weak here. 
3651-61 7 3651-85 0 1 
3680-07 9 3680-4± 0 ? IIt interferes at 3679-4. 
3684-26 7 3684-29 0 1 Ti line at 3685 • 3 interferes. 
3701-23 8 3701-28 3 

3705-71 9 3705-67 51 No 
J Flash line confitscd with strong 
t line at 3706 • 09. 

3850-12 10 3850-26 2 No 

3878-15 8 Absent 1 — No 
J This line seems to be present on 
t some images not measured. 

4528-80 8 4529-0 1 No 

Titanium Lines in Sun and Flash. 

rncluding all lines in Lowland’s table assigned to Ti only between X 3500 and X 5000, 

exce})ting those which are obscured in the flash by strong hydrogen lines. 

Row'LANd’s intensity 
in 0. 

Number of lines 
in O. 

Number of lines 
in fia.sh. 

Percentage of lines 
in flash. 

Average intensity 
in flash. 

1 38 0 0 
2 28 5 18 10^ 
3 27 9 33 8 
4 19 13 68 16 

, 5 7 7 100 21 
j 6 and 7 2 2 100 37 
j Over 7 

i 
3 3 100 55 

* The average intensity of the five fia.sli lines is increased by two very abnormal lines at AA 3505’06 

and 3520 ••10, omitting these the average would be 4. 

3 O 2 
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Abnormal Ti Lines. 

In sun. In flash. 
If 

enhanced. 

1 

Eemarks. 

tVave-length. Intensity. tVave-length. Intensity. 

Ln les .stron< ̂  in flash 1 
3.50.5 • 06 0 3505-1 20 1 : 

3510-99 5 3511-1 30 % 
3520-10 0 3520-4 20 1 1 

1 

f Perhaps compounded of Ti and a 
3535-55 4 3535 - 75 50 1 < line at 3535-87, intensity 3 ’ 

1 origin. 
3611-47 4 3641-48 40 1 1 

4294-20 2 4294-35 12 Yes 1 

4395-20 3 4395-15 30 Yes 1 

4417-88 3 4417-7 20 Yes 1 

4501 - 45 5 4501-5 30 Yes 

I iines weak or absent in flash and exceeding intensity 3 in O. 

365.3-64 5 3653-67 5 
1 

3753-00 4 3652-72 0 No 
3924-67 4 3924-8 0 No 
3948-82 4 3949-11 4 No 
3981-92 4 3981-3 d 

3982-2 J 
5 iNO 

j 

3989-91 4 3990-12 2 No 
4171-21 4 Absent .— No 1 

4291-11 4 3 Absent — No 1 

-28 / 0 

4306-08 4 4306-0 1 No 
4533-42 4 Al)sent — No 1 Perhaps obscured by strong Ti line 
4534 - 95 4 Alisent — No J at 4534-14. ' 
4981-91 4 Al)se4it — No Spectrum very weak here. 

Chromium Lines in Snn and Flash. 

Including all isolated lines in Rowland’s table assigned to Cr only. 

Rowland’s intensity 
in O. 

Number of lines 
in ©. 

Number of lines 
in flash. 

Percentage of lines 
in flash. 

Average intensity 
in flash. 

0 and 1 109 3 3 0 
2 22 4 18 1 
.3 15 8 46 2 
4 3 3 100 1 
5 O O 2 67 o O 

6 to 8 3 3 100 13 
j 9 and 10 2 2 100 25 
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Abnormal Cr Lines. 

In sun. In flash. 

If 
enhanced. 

j 

i 
i Eeniarks. 

1 

Wave4ength. Intensity. Waveflength. Intensity. 

Li 

1 

nes strong in flash. 

359.3-04 9 3593 - 65 30 1 
4242-54 2 4242-6 1 Yes 
4359-78 3 4358 - 9 to 

) 5^ N(-) r The Cr line is confused with other 
4360-2 J \ lines in flash. 

4539-95 0 4539-8 0 No 
4541-69 2 4541-6 1 No 
4558-S2 3 4558-8 8 Yes 
4588 - .38 3 4588-0 2 Yes 
4GGG-39 3 0 4666-5 5 No 

-G6 J 1 
4708-20 2 4708-1 1 No 

Lines weak or absent in flash intensity exceeding 3 in O. 

4G2G-3G 5 Absent No r Present in Frost’s and Mitchell’s 
\ lists. 

4651-46 4 4651-3 21 No 1 c. 
4G52-34 5 Absent No > bpectruin very weak here. 

1 hese sources of error would all tend to produce discordances in the relative 

intensities between the dark lines of an element and their laight reversals in the 

tlasli, and the question arises whether tlie apparent anomalies which are indicated 

above are to l)e ascribed to sncli imperfections in onr knowledge of tlie spectra, or to 

fundamental differences such as )night he ex])ected were the emission and aljsorption 

spectra ])roduced in separate and distinct layers of tlie sun’s atmosphere, and under 

different conditions of temperature and pressure. 

Under tlie heading “Abnormal lines” I give witli eacli table a list of the lines 

witli intensities in tlie flasli considerably above the average, corresponding with the 

dark line intensity, and a list also of tlie exceptionally weak or alisent lines. 

In these lists the wavedengths and intensities of the solar lines, Irom Eowland, 

are entered in the first two columns, followed by the wave-lengths and intensities 

taken from lable L in columns 3 and 4. The fifth column Indicates whether the line 

IS an “enhanced” line or not, i.e., a line which is relatively brighter in the spark 

than in the arc spectrum of the element as determined by Lockyer. 

It IS at once apparent tliat many of the abnormally bright flash lines are enhanced 

lines, whilst none of the abnormally weak lines are enhanced lines. Tlie lists of 

enhanced lines published by Sir Norman Lockyer do not include the ultra-violet 

region beyond \ 3800, it is uncertain, therefore, whether the flash lines in this reo-ion 
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are enhanced lines or not. If these are omitted, all the titanium lines abnormally 

strong in the flash, and all the iron lines excepting the three at XX 3856-5, 4325-9, and 

4404-8, are enhanced lines. 

If all the enhanced lines in the above-mentioned lists are considered, it is found 

that all the more strongly enhanced lines of iron and titanium coincide vith strong 

lines in the fla.sh (11 Fe lines and 21 Ti lines). But since many of these lines are of 

compound origin in the flash, it is not possible to say whether they are all of ahnormal 

intensity, ej/., 4351-9, 4549-6, 4556-1, 4629-6, and other.s. The (piartette of enhanced 

iron lines at 4508-5, 4515-5, 4520-4 and 4522-7 are all abnormally strong in the flash 

considered as Fe lines ordy, hut according to Bowland three f)f these are of 

com|)onnd origin, one including Ti. Ho^vever, it seems prohalfle that the ahnormal 

inten.sity of tliis gi-on}) is chiefly due to the fact that the lines are enhanced lines. 

'Ihere can he little doul)t from this impiiry that the enhanced lines do play a 

significant part in the flash spectrum, and the ahnormal intensities of these lines are 

not due to errors in the assignment of origin in Howland’s tables or to over-estimates 

of intensity in the flash. 

Of tlie abnormally weak lines a considerable number are probably the re.sult of 

under-estimates due to the close proximity of very strong lines of other elements. 

There remain a few, however, which cannot 1)6 thus explained ; among these 

particular attention may be called to the titaninm lines at XX 3753-00, 3924-67, 

4171-21, and 4306-08, all of intensity 4 in the solar spectrum, and the chromium line 

at X 4626-36. No satisfactory reason can at present he given for the weakness or 

absence of tliese lines in the flash s})ectrum. 

Notwithstanding these instances of disagreement between the intensities of the 

Fraunhofer lines of an element and their flash spectrum equivalents, the general 

agreement between the two spectra rs so sti'iking that it can scarcely he maintained 

that there is a fundamental difference in the conditions under which they are 

produced. The abnormally strong lines in the flash, whicli in so many cases are also 

lines which are enhanced in the spark, would, it is true, indicate that some of the 

radiatim'- cas at all events must he in a condition differing from that in the absorbing 

layer, and this, it must be acknowledged, is of great interest and importance, 

particularly in view of the flrct pointed ont by Fowler, that under some stellar 

conditions, e.g., in a Cygni, these particular lines constitute a separate and much 

simpler spectrum cjuite free from admixture with the ordinary arc lines.* 

But, as I hope to show in what follows, the prominence of these enhanced lines in 

the flash can he simply explained without abandoning the view that the flash region 

is really identical with the ahsorljing layer, and in the great majority of cases the 

flash lines are true reversals of the dark lines. 

In all photographs hitherto obtained at stations near the central line of eclipse, the 

flash spectrum must represent tlie more elevated region of the radiating gases, since 

* ‘ Observator}',’June, 1902. 
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tins portion of the layer remains uncovered by the moon for an appreciable time after 

the sky glare is withdrawn at totality, whilst the lower dense strata immediately in 

contact with the photosphere are instantaneously occulted. 

It might reasonably be assumed, therefore, that tlie intensities of the bright lines 

in the lowest strata differ to some extent from those in the spectra jiliotographed, and 

even more closely approximate to the intensities in the Fraunhofer spectrum. 

But the photographs under discussion portray a graziruj contact, in which the 

motion of the moon was not across hut parallel to the Hash layer. These sjiectra, 

therefore, should more truly rejjresent the radiation from the entire depth of the 

layer, at any rate at points near the apex of the bright arcs, and where the layer is 

sufficiently uncovered, because at such points the very lowest strata would remain 

visible throughout the time the plate was exposed."^ 

A careful comiiarison between the intensities of the lines at jioints near to and far 

from the apex, or centre line of the sjiectra, shows, however, that there are no 

appreciable differences. 

Moreover, the intensities given in Table I., which were estimated at points not far 

from the apex, and where the continuous spectrum of the photosphere was just 

beginning to appear, will be found to he in substantial agreement with the results of 

Lockyeu (1898), Frost (IDOO), and Mitchell (FJOl), all of which were obtained near 

the central line. 

It seems, therefore, that there can be no very striking differences lietween the 

spectra of the higher and lower regions of the flash layer as regards the intensities of 

the lines, unless absorption by the upper regions through which the line of sight passes 

should neutralise such differences. In jiarticular it may be noted that the enhanced 

lines seem to predominate throughout the entire region. 

If it is assumed that the differences between spark and arc spectra are conditioned 

by temperature, the spark being the hotter, it would seem at first sight that the flash 

region must have a higher temperature, and must conseipiently be distinct from the 

absorbing layer, since in the latter the intensities of the lines closely ajijiroximate to 

those in the arc. I think it can be shown, however, that the spark and arc conditions 

may co-cxist at the same altitude aljove the photosphere. 

It IS well known that the outer limit of the chromosphere, as seen in the line of 

hydi'ogen, presents a structure of small filaments like blades of grass coveriim the 

entire surface, and very unlike the diflused, indelinite limit which a true atmospheric 

envelope might be expected to present. 

According to Secciii, “at the base of the chromosphere the hydrogen has the shape 

of small, close filaments which seem to correspond with the granulations of the photo¬ 

sphere.” t 

The terms layer and strata are here used for convenience, but it is nob intended to imply that the 
gases of the chromosphere are in reality stratified, 

t ‘ Popular Astronomy,’ S. Newcomb, p. 275. 
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Tills structure suggests that the chromosjihere is in reality a region of innumerahle 

small eruptions of the same nature as the jets of highly luminous gas which are 

constantly to he seen with the spectroscope in all regions of the sun’s limb. It is 

})i’ohahle, indeed, that these jets, and the larger eruptive prominences, are in reality 

only the more pronounced manifestations of a phenomenon occurring on a smaller 

scale everywhere over the solar surflice. 

The higlily-heated gases composing these eruptions, which may be supposed to 

originate below the photospheric level, would lose heat as they ascended by adiabatic 

exjiansion and by radiation, and at a certain elevation would 2)recl})itate the more 

refractory substances as highly luminous clouds, forming, in fact, the photosjiheric 

granules and the columnar filaments observed in sunspots. But the gaseous streams, 

dejuived of their condensable materials, would continue to ascend above the photo¬ 

sphere, finally becoming diffused in the region of the chromosphere. The expanded 

gases, subsequently subsiding in a relatively cooled condition, would form a strongly 

absorbing atmosphere settling down uniformly and slowly upon the photosphere and 

throimh which the ascending streams would be forced. 

If this really represents roughly the actual state of things, it is clear that the 

temperature conditions repinsented by the electric spark and by the arc may both 

exist at the same altitude above the pliotosphere, the spark condition in the highly- 

heated ascending gases and the arc condition in the cooler descending gases. 

Seen at the sun’s limb, as under the conditions of a total eclipse, the more intense 

spectrum of the ascending gases would be neutralised to a considerable extent by the 

absorption of the cooler gases in which the jets would be immersed, and through 

which for immense distances the line of sight must pass. But just those particular 

rays which are characteristic of the high temperature spectrum would not suffer 

absorption to nearly the same extent, consequently these rays (the enhanced spark 

lines) would stand out conspicuously in a spectrum which in its main features would 

he the emission spectrum of the cooler descending gases, i.e., the reversed Fraunhofer 

spectrum. 

The relatively cool gases would obviously determine the character of the absorption 

spectrum of the disk, and the only effect of the hotter eruptions, supposing them to 

be too small to be individually distinguishable in the spectroscope, would he to 

produce a faint emission line of about the same intensity as the background of 

continuous spectrum, and tending to diminish the intensity and width of all the dark 

lines, particularly the enhanced spark lines. 

In this way, by assuming the presence of innumerable eruptions of hot gas and 

cooler but quietly descending absorbing gases, the abnormal intensity of the 

enhanced lines in the flash can be simply explained without abandoning the view that 

the flash spectrum is really the reversed Fraunhofer spectrum, and that the entire 

depth of the flash region, and, indeed, of the chromosphere itself, is effective in 

producing the absorption lines. 
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That there really exists a circulation of the solar gases in a radial direction is 

strikingly shown in the detailed structure of some of the Fraunhofer lines themselves. 

Deslandres has called attention to certain peculiarities in the structure of tlie lines 

H and K 111 the general liglit of the sun and in particular regions of the solar 
surface.* 

These lines consist of three distinct portions—a broad diffuse absorption sliading, a 

briglit rather wide emission line near tlie centre of the sliading, and a narrow 

absorption line which obliterates all but the edges of the underlying liright line. 

Deslandres finds tliat over undisturbed regions of the disk, and at some distance 

from the limb, the central absorption line is always displaced towards tlie red with 

respect to the underlying emission line, producing a dissymmetry in tlie edges of the 

latter. This he attributes to a vertical circulation of the calcium vapour, the 

ascending gas producing the emission line slightly displaced to the violet, whilst the 

cooler descending gas gives rise to the central absorption line displaced to the red. 

According to Jewell, all the strongly shaded lines exhiliit an emission line, which 

IS veiy nearly obscured by a central strong absorption line usually unsymnietrically 

placed. Traces of an emission line are also visible at the sides of some of the 

narrow unshaded lines. The effect of motion of the hot gas he considers, however, 

to be masked to a certain extent by pressure shift, the displacement of the emission 

line to the violet by reason of the ascending motion being partly neutralised by an 

opposite displacement due to pressure, t 

Some sort of circulation of the solar gases in a radial direction and all over tlie 

surface, such as is demanded liy the theory of “convective equilibrium,” would seem, 

therefore, to be established, the ascending gases rising with sufficient velocity to 

appreciably displace the emission lines when observed on the sun’s disk, whilst the 

more diffused absorbing gases descending with a more uniform motion produce the 

well-defined dark lines very sliglitly displaced to tlie red compared with the same 

lines from a terrestrial source. Obviously such motion of the gases being in a radial 

direction will not aflect the position or definition of the bright lines of the flash 

spectrum as seen at the limb during an eclipse. 

A difficulty has to be faced, however, when we try to account for the apparent 

sorting out of the different elements in the chromosphere, wlilch seems to depend in 

a general way on atomic weight, the lighter elements ascending to greater elevations 
than the heavier.| 

But an eruption in the ordinary sense due to an explosion would give equal 

* ‘ Comptes Rendus,’August, 1894. 

t ‘ Astrophysical Journal,’ vol. III., p. 100, et seq. 

J The exceptional altitudes reached Ijy the elements Ca and Ti do not materially affect this general 

law, which asserts itself by the absence in the chromosphere of nearly all the elements having atomic 

weights exceeding that of Zr (91), Ba and La being, perhaps, the only elements with a higher atomic 

weight that have been identified with tolerable certainty in the flash spectrum. 

VOL. CCI.-A. 3 p 
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velocities to the whole mass of mixed gases, and it is difficult to see why these 

shoiild not he projected to ecpial altitudes in the chromosphere, yet most of the 

metals with atomic weights between 20 and 100 stop short at from l"to 2" elevation, 

whilst the elements H, He, Ca, and Ti ascend to 8'' or 10.^' 

Tlie same lagging hehind of the elements of the lower chromosphere occurs, 

however, in the so-called “metallic” and great eruptive prominences.* In these the 

higher parts usually consist solely of H, He, Ca and probably Ti, the other elements 

only appearing at the base or stem of the prominence, or frequently only in the 

surroundiDg chromosphere. In the more violent eruptions, too, the distortions due 

to motion in the line of sight affect chiefly the hydrogen and calcium lines, the lines 

of other elements present in such out1)ursts being usually undisturbed, or but slightly 

affected, showing that these elements, although apparently mixed up with the 

hydrogen, do not share in the motion. 

Although it may he difficult at present to understand the nature of these great 

eruptions, it would seem reasonable to suppose that the entire chromosphere consists 

of miniature eruptive prominences of the same nature as the greater outbursts, the 

base of the eruptions giving the metallic lines of the flash spectrum and the higher 

parts the lines of H, He, Ca and Ti only. 

This conclusion is strengthened when it is remembered that the strongly enhanced 

lines of iron at 5317, 5269, 5018, and 4924 so prominent in the flash, are always the 

first to appear as bright lines in the metallic eruptions, other iron lines, although 

stronger than the above in the Fraunhofer spectrum, being seldom or never seen 

reversed. This is doubtless owing to the relatively high temperature of the gases in 

these eruptions com2:)ared with the absorbing gases, and in the lower chromosphere 

the enhanced lines indicate a similar state of things, the highly-heated ascending 

jets giving a high temperature emission spectrum more nearly resembling that of the 

spark than of the arc. 

The Flash Spectriini in High Latitudes. 

It is of interest to compare the images at different points on the limb to determine 

wliether the flash spectrum is the same in all latitudes. The limited distribution of 

the metallic })rominences, which, in the writer’s experience, are only to be found in 

the latitudes of spot formation, would perhaps lead one to anticipate some 

modification of the spectrum in high latitudes. 

At the date of the eclipse (May 28th, 19U0) the sun’s south pole was at position 

angle 164° and very nearly coincident witli the limb. Unfortunately, this point, 

and the region within 10° of it on either side, is occupied by the continuous spectrum 

* No spectroscopic distinction can be made between the metallic eruptions and the more quiescent 

forms of prominence, for the latter, when photographed at an eclipse, exhibit the same metallic lines at 

their bases as the former. 
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in all tlie images obtained before mid-eclipse, and in those obtained after that phase 

only the stronger lines are impressed, the moon’s liml) having occulted the stratum 

very rapidly, notwithstanding that the motion was nearly parallel to it. This would 

indicate an extreme sliallowmess of the layer near the pole. 

In the mid-eclipse photograph, No. 11, the continuous spectrum being Imoken up 

into narrow bands, the flash spectrum arcs can be traced right across the polar region 

near the more refrangible end of the plate. In the portion of spectrum between F 

and K the bands coalesce from over-exposure and obscure the bright arcs entirely. 

Ihe highest latitudes in which really good images of the flash S])ectrum occur are 

— 1 0 to — 77° on the east side in No. 9, and — 76° on the west side in No. 13 ; and the 

lowest latitude is in — 36° to — 41° on the west side in No. 11. Intermediate 

between these there are the excellent images in latitude — 56° west and — 64° east 

in^ No. 10. From this material comparisons can be made between the spectra at 

faiily high latitudes and those at mid-latitudes, and as a check on the results the 

east and west limbs at about the same latitudes can be compared. 

All these images are indicated on Plate 2 by arrows at the ends of the spectra, and 

the position of the south pole is similarly showm for each spectrum. In Plate 3 

a limited portion of the spectrum is shown for the three images which were measured. 

These aie on a scale equal to 4'3 times that of the original negatives, and the curved 

arcs have been converted into linear spectra by means of a cylindrical lens during the 

]uocess of enlargement. Great care was taken to avoid the production of spurious 

lines due to defects in the negatives. 

Comparing the two high-latitude spectra shown in the upjier and lower figures of 

Plate 3 with the mid-latitude spectrum placed between them, it is not easy to detect 

differences which can fairly be ascribed to latitude. It may be noticed that the 

titanium line at about A. 3900 and the aluminium line at \ 3944 are both relatively 

weak in the upper spectrum (latitude - 74° East) compared with the middle spectrum 

(latitude - 41° West). But in the lower spectrum, from an equally high latitude on 

the opposite side of the pole, these lines are as strong as in No. 11 spectrum. 

There are many other minor differences in relative intensities betw^een the three 

spectra, as will be a])parent on comparing the three columns of intensities given in 

I able I., but these seem to bear no relation to difference of latitude. 

A special effort was made to discover any modification of intensity in the enhanced 

lines near the pole, and the average intensity of all the more prominent enhanced 

lines of iron and titanium in Nos. 9 and 13 spectra was compared with the average of 

these hues ill No. 11 spectrum, making due allowance for the greater intensity of 

No, 11 spectrum, as a whole, compared with the others. 

Ihe result is shown in the following table ;— 

3 P 2 
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Avj^rage Intensity of the Principal Enhanced Lines of Fe and Ti. 

Ti (23 lines). Fe (14 lines). 

In latitude - 74°/75° (fro™ No. 9 and 13 spectra)*. . . 
,, -41° (from No. 11 spectrum). 

16-3 18-6 
18-4 14-6 

It will be seen from this that while the Ti lines appear to be slightly weaker in 

bigli latitudes than in mid-latitndes, the Fe lines give just the opposite result; so 

that by taking both elements together there is found to be practically no difference 

at all. The small differences indicated for the lines of each element alone, may safely 

be put down to the uncertainties of the original estimates of intensity. 

It is to be inferied, tlierefore, that the enhanced lines are of the same intensity in 

all latitudes, and that the general character of the flash spectrum remains unaltered 

in passing from the equator to the poles. This does not, however, preclude the 

possiljility that the flash stratum is shallower in the ])olar regions than near the 

equator. 

An interesting subject for future inquiry would be as to whether the flash 

spectrum undergoes any modifications such as an increase or decrease of depth of the 

layer or changes in the intensity of the enhanced lines at different epochs in the sun¬ 

spot period. If the chromos|)here is really of an eruptive character one might 

expect, at times of maximum spot activity, when also the metallic eruptions are most 

frequent, that the flash spectrum region would extend to greater altitudes in the 

chromosphere and that the enhanced lines would be relatively brighter than during 

the quiet periods of minimum. 

The evidence so far obtained is, it is true, against any marked changes occurring, 

I have compared the spectrum obtained by Shackleton in 1896 with those herein 

discussed and with others olflained in 1898 and 1901, but without detecting any 

certain changes in the intensities of the lines. The flash appears, in fact, to be of as 

constant and unchanging a character as is the Fraunhofer spectrum, which is only 

what would naturally be expected, seeing that it ap|)ears to be in the main the 

reversal of that spectrum. 

Suiiiinarij of Conclusions. 

In a general way the conclusions arrived at from the discussion of the spectra 

obtained in 1898 are amply confirmed and extended by the present results. 

It is now shown that every strong dark line of the solar spectrum exceeding 

Howland’s intensity 7 is found in these spectra as a bright line; and the great 

* The observed intensities of the high latitude spectra have been multiplied by the factor 1‘81, this 

numl)er representing tlie l atio of intensities between these two spectra taken together and No. 11 spectrum, 

when all the lines between A 39 and A 50 arc compared. 
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majority of the bright lines of the flash spectrum, excluding hydrogen and helium 

lines, coincide with dark lines of intensity not less than 3. 

Most of the bright arcs of the flash spectrum- are well-defined narrow lines 

admitting of considerable accurac}^ in the measures, and the present determinations 

of wave-length indicate that the coincidence of the ])right lines with the dark lines 

is exact within '05 tenth-metre for all the well-defined lines. 

As regards the relative intensities of the lines of any one element in the flash and 

Fraunhofer spectra, my previous results require modification and extension as 

follows :— 

The relative intensities of isolated lines of an element in the flash spectrum are in 

general, hut not exact, agreement with those of the same element in the solar 

spectrum, and those lines which are exceptionally strong in the flash are in most 

cases lines which are enhanced in the spark specti’um of the element. 

All of the more j^rominent enhanced lines of iron and titanium are found to 

coincide with strong lines in the flash, hut owing to the comjjound nature of some of 

the lines, it is not certain that all of these have aljiiormal intensities in the flash. 

There is no evidence of differences in the relative intensities of the lines of an 

element in the higher or lower regions of the flash layer, and the enhanced lines 

appear to predominate throughout the entire depth of the radiating stratum. 

The enhanced lines are equally prominent in the })olar regions and in low latitudes, 

and the flash spectrum generally is now found to be the same in all latitudes and 

shows no essential change after an interval of five years. 

An explanation of the almormal intensities of the enhanced lines in the flash 

spectrum is now ofiered which depends on the assumption of a continuous circulation 

of the solar gases in a radial direction; the highly heated ascending gases giving 

the predominant features to the flash spectrum, wliilst the cooler more diffused gases, 

slowly subsiding, determine the character of the absorption spectrum. 

The final conclusion is that the flash spectrum represents the emission of both 

ascending and descending gases, whilst the Fraunhofer spectrum represents the 

absorption of the descending gases only. 

Tables of Wave-length and Intensity. 

In Table I. the wave-lengths and intensities of the biiglit lines in the three 

measured spectra (Nos. 9, 11, and 13) are entered in the first six columns; the 8th 

and 9th columns give the “adopted” wave-lengths and intensities, be., the most 

probable values deduced from all the measures, and these are compared in the two 

following columns with Rowland’s values of the neai'est absorption lines. The 

origins, mostly from Rowland, are given in the last column. A vertical line 

* The wave-lengths of the helium lines from Runge and Paschen are also given in the renth column. 

They are placed within Ijrackets to distinguish them from the absorption lines. 
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connecting two or more wave-lengths means that a shading extends between them, 

and jn-oljaldy indicates an unresolved group of lines. In many instances the whole 

group presents the appearance of a single wide line or band, and in these cases the 

intensity of the group as a whole is given. 

The intensities of the flash lines are, of course, entirely relative, and the higher 

absolute values obtained for No. 11 spectrum are simply due to the greater intensity 

of this spectrum as a wliole compared with No. 9 or No. 13. But since these higher 

values are probably more reliable than the others, the “adojMed” values are mostlv 

taken from No. 11 spectrum. 

In Talde II. the wave-lengths of the hjulrogen lines in each spectrum are compared 

in the 2nd, 3rd, and 4th columns. The mean values for the three sets of measures are 

entered in tlie 5th column, and these are coinjaared with the theoretical values 

computed from Balmer’s formula, given in the 6th column. The last column gives 

tlie diflerences, observation — calculation. 

-s- 
In the formula X = the constant a(=2741875) is derived from IIowlaxd’s 

measures of the lines a, /3, and y reduced to a vacuum, and the resultino- wave- 

lengths are corrected to air in accordance with a table of Bunge (‘ Astronomy and 

Astrophysics,’ vol. 12, No. 5). 

Table I.—Eclipse Spectra, May 28, 1900. 

Wave-lengths. Inrensitie,s. 

Adopted 
Remarks. 

Wave-length 
Jntcn 

No. 9. No. 11. No. 13. wave- sity. in sun 
sity. Element. 

Latitude Latitude Latitude No. 9. No. 11. No. 13. length. (Rowland). 
-74" E. -41° W. -75° W. 1 

i 

- 3488-90 — 10 — 3488 -9 10 3488-817 4 Mn 

— 91 -31 - - 20 — 91 -3 20 91 -195 5 Ti 
1 

03 -CO _ _ 5 93-7 5 
j" 93 -430 

1 93-834 

1 ) 
1 

Very indistinct (probable 1 1 

— — — — — 
)■ f?roup) best on continuous 

spectrum — , — 94-308 
y 

~ 1 
— 95 -02 — — 5 — 95-0 5 94-815 2 j 

96-39 
J" 96 -224 

\ 96 -348 

0 Co V 
— — 30 — 96-4 30 

o Zr 

97-54 10 
r 97 -668 S Mn 

— — — Best on continuous spectrum . 97 *0 10 
I 97 -982 8 Fe 

3505-12 — — 20 — 3505-1 20 3505 ‘056 — Ti 

— 11-10 — — 30 — Well defined. 11 -1 30 10-985 5 Ti 

- 12-40 — — 0 — 12-4 ± 0 — — — 

— i‘i*na — — 0 — 13-0 ± 0 - — - 1 
— 14 -22 — — 5 — 14-2 5 

^ 13-965 

1 14-138 

7 

3 

Ec ; 

Ni 

— 15-41 — — 5 — 15-4 15 -206 12 Ni 

— 17-49 — — 10 — 17 *0 10 17-446 3 V 

— 20-40 — — 20 — 20-4 20 20 -397 2 Ti 

— 3524-75 — — 10 — Dark line on continuous spec- 3524-7 10 3524 -677 20 Ni 
trum, bright line outside 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lciiiith?. i Intensities. 

Adopted 
wave¬ 

length. 

Wrve-lengrh 
in sun 

(UOWLAND). 
No. 9. 

Latitude 
No. 11. 

Latitude 
No. 13. 

Latitude No. 9. No. 11. No. 13. 

Eem.avks. 
Inten¬ 
sity. 

Inten¬ 
sity. Element. 

-TU E. -4P W. -75° IV. 

f .'1.525 -980 4 I-e 
— 3520-19 — — 5 — 5 J 

1 20-183 6 1-c 

— 31 -01 — — 10 — 1 31 -0 10 30-919 3 ? 

1 Equal pair, best on continuous 
I spectrum j" 31 -982 3 Mn 

— 32*00 — — 10 — J 32-0 10 ■i 32-143 4 Mn 

( 32 -202 3 Mn 

— 33 -93 — — 2 — Very vague. 33-9 -2 — — — 

3535 -05 33 -85 — - 50 — 35-75 50 35-554 4 Ti 

— 41 -09 — — 0 — 41-7 ± 0 — — — 

•- 42 -76 — — 2 - 42-8 ± 2 — — — 

— 45 -39 — — 20 - 45*4 20 45 -330 4 V 

r 48-175 3 Mn I'e 
48 -23 2 — 48-2 2 

00 5 Mn Ni 

— 49-36 — — 10 — 49-4 10 49-151 o 
Xi 

r 52-058 1 Zr 
52 -35 52-19 10 10 J 

1 .52 -253 2 Fe 

— 53 -83 — -■ 0 — 
"j-Visible at centre only . . . 

53 -5 ± 0 53 -024 3 Ni 

— 53-72 — — 0 — J 53-7 ± 0 53-887 5 Fe 

f .50-738 o Zi- 

1 56-830 2 l-’e 
50 -92 50 -93 — — 40 — 40 J 

56-944 4 Fe 

57-030 3 V 

— 58-87 — — 20 — 58 -9 20 58 -072 8 Fe 

— 61 -04 — — 3 — On continuous spectrum only . 01 -0 3 01 -037 4 Co 

f 61 -898 3 Ni 
— 02-07 “* 8 02-1 8 

1 02-043 1 Ee, Ti 

65-80 65-53 3565 -62 — 15 — 15 65 *535 12 Fe 

— 06 -44 06-70 — 15 — 06 *57 15 06-522 10 Ni 

67-98 67-91 07-81 — 20 — 67 -90 20 67 -835 4 ? 

j' 70-183 4 Mn 

70-40 70 -29 70-31 — 30 — Strong absorption line coincides 70 -33 30 -j 70-273 20 Fe 

1 70-415 4 ? 

J" 72-014 6 Ni 
— 72-18 0 0 

1 72 -155 5 Fe 

72-77 72 -76 72-48 5 40 — Perhaps two lines in 13 . . . 72-71 40 72-712 0 Sc, - 

74*11 74-08 74-02 — 8 — 74-07 8 — — — 

76-06 76 *59 76-59 10 50 10 Shaded line in 11; no absurp- 76-61 50 70-527 3 Sc ? 
tion line in 9 

- 78-88 78 -92 — 20 5 78-90 20 78-832 10 Cr 

3581-28 81-27 81-30 _ 35 10 Strong alisorption line in 9 with 81 -28 35 81-349 30 Fe 
weak einissiun line 

r 84-800 6 Fe ! 
84-97 84-78 8 5 84-88 8 

i 84-940 5 Co 

j' 85*310 5 Co 

_ 3585-70 3585 -48 _ 20 5 III defined and shaded; widt?" 3585 -00 20 85-479 7 Fe 
in 13 

1 
1 
1, 3585 -658 O 9 

1 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengths. Intensities. 

Eemarlis. 
.\dopted 

wave¬ 
length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

Inten. 
sity. Element. 

i 

No. 9. 
Latitude 
-74° E. 

1 

No. 11. 
L.atitude 
-41° W. 

No. 13. 
Latitude 
- 75° W. 

No. 9. No. 11. No. 1.3. 

f 3.587-130 8 

1 

Fe ; 

— 3587 -27 — — 7 - 7 87-286 o Ti 

87 -370 7 Co 
1 Group of lines. 

87 *899 5 Fe 

— 88 -04 — — O 
— 88 -04 2 [ 88-084 6 Ni 

r 89-773 5 ? 
89-91 3.589 -97 5 25 5 89-86 25 3,789-71 j 

L 89-908 5 ? 

f 90-609 o ? 
90-74 1 90-70 90-75 20 5 90-73 20 \ 

1 90-651 2 ? 

— 91 *72 — 0 — On continuous spectrum only 91 -72 0 _ _ _ 
in 11 

9-2-19 92 -22 92-10 — 12 0 92-19 12 92-109 o V? 

93-Gl 93*06 93-09 5 30 5 93-05 30 93-636 9 Cr 

r 94-784 6 Fe 
- 94-94 — — 5 — 94-94 5 J 

1 95-017 3 Co 

96 -22 96-19 96 *24 10 25 5 96 *22 25 96-195 4 Ti 

_ 98 -00 97-30 _ 1 0 Narrow line on inner con- 97-93 1 97 -854 8 Ni 
tinuous band in 11 

3600 -92 3600-88 3000-87 15 30 10 3600-89 30 3600-880 3 Y 

02 -04 02-10 02-11 5 25 10 02-09 25 02-060 1 Y 

— 03-38 — — o — Wide line. 03-38 o 03-354 5 Fe 

f 03-832 o ? 
03*92 03-90 03-70 5 8 0 03 -84 8 ] 

L 03-922 3 TI 

00 -49 05 -49 — 4 15 — 05 -49 15 05-479 7 Cr 

— 00-83 — — 5 — 00-83 5 06 -838 c Fe 

08-73 08*99 08-93 — 20 o OS -88 20 09 -008 20 Fe 

09 -56 — — 0 — — 09-50 0 09-467 5d V Ni 

- 10*56 — — 0 — 10-56 0 — — — 

n *27 11 *16 11 -20 5 15 2 11-21 o 11-189 o Y. -Mg? 

f 13-947 4 Sc 
14-11 14-00 13-96 10 00 10 Shaded on V side in 11; very 14*02 60 .J 

long line L 14-019 3 ? 

14-99 14-87 14-80 1 10 1 Narrow line stronger nearer 14-89 10 14 *922 o 9 

centre in 11 
18-59 18-92 18-93 25 5 18-81 25 13-919 20 Fe 

19-64 19-57 19-51 10 1 19-57 10 19-539 8 Ni 

21 -11 21-42 1 — 0 8 — 1. 21-20 8 f 21 -244 3 9 

1 
21 -70 — — 0 

I 

)>Band in 11, ill defined in 13 . — — ( 21 -612 6 Fe 

22*00 2-2 -38 J — 3 3 — J.. . 22-03 3 ( 22-147 6 Fe 

24 *95 24-99 25-07 10 40 5 Good isolated line in 11 . . . 25 -00 40 24 -979 5 Ti, Fe 

— 27*9 - - 0 - 27 -9 0 27 -953 4 Co 

2S -85 28-94 28-75 2 7 0 Stronger at centre in 11 and 28-85 7 28-847 2 Y, Mg? 
absorption line on U side 

30 -876 4 ? 

80-90 30-91 30-91 20 45 10 30 -93 45 ( 30-918 3 0 

( 31-124 2 Ca 

3031 -64 .3631 -.59 3031 -54 5 25 5 25 3631-605 15 Fe 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengths. Intensities. j 

1 Adopted 
1 wave- 
j length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

Inten¬ 
sity. Element. 

1 
1 

No. 9. 
Latitude 
-74'’ E. 

No. 11. 
Latitude 
-41” VV. 

No. 13. 
Latitude 
-75” W. 

No. 9. 

1 

No. 11 No. 13. 

Remarks. 

3633-20 3633 *22 3633-23 4 20 4 I 20 .3633 -277 2 Y 

j 34 -42 34-55 — 2 5 - Diffuse in 9. 34-48 
i 
; 6 (3634-393) __ 

1 
He 

1 
35-57 — — 1 — 35-57 1 35-608 4 Ti, Fe 

‘ — 36 -73 — — 7 — 36-73 7 36-608 4 Cr? 

' — 38 50 — — 2 — 38-50 2 38-442 3 Fe 

j 40-56 — — 1 ' — — 40 56 1 40-535 6 Cr-Fe 

41 -50 41-51 41-42 20 i 40 10 41-48 ; 40 41-473 4 Ti 

1 y Well defined in 13 . . . . ! (■ 42-820 7 Ti 

42-90 42-96 42-93 20 45 
. J 42-93 45 

1 
{ 42*912 2 Sc 

1 
1 42-965 8 ! ? 

— 43-9 — 1 _ 0 
1 

— Exceedingly fine line 11 . . . 43-9 0 — 

, 3 
45-45 45-46 45-36 5 15 5 45-43 15 

1" 45 *429 
■ 

1 45 -475 3 Sc? 

47 -95 47 -98 48-02 4 15 5 Diffuse in 9. 47 -98 15 47-988 12 Fe 
i 
i J" 49-476 3 

49-46 [ 49 -.54 49-51 5 0 49 -50 5 

3 
\ 49 -654 5 Fe, La 

j' 50*178 4 Fe 
50*51 50-41 — — 2 . 50 *46 2 

l, 50 -423 5 Fe 

r 51*614 7 
51 -87 51 -88 51-81 10 18 8 Wide in 13. 51 -85 18 

1 51-940 4 Sc 

53-77 53 -62 53-61 1 5 0 Very diffuse in 11. 53 -67 5 o3*637 5 Ti 

r 55-609 3 Fe 
55 '59 55-87 — 1 5 — Ditto. 55 -73 5 \ 

t L 55 -801 3 V 

57-94 57 -97 — 1 0 0 — 1 57-96 0 58-044 3 Co, Fe, Mn 

59-96 59-85 69*71 ’ 5 12 5 12 59 -901 5 Fe-Ti 

— 61-31 — 1 — 61-31 1 — — H 

62-34 62-34 62-39 ' 8 15 5 62-35 15 62 -378 5 H, Ti 

f 63-541 3 V 
63-49 63 -.58 63 08 0 4 0 63 *55 4 I 

L 63 -.596 ' 3 Fe, H 

64-72 64-73 64-76 3 10 4 64 *74 10 64-760 2 H, Y 

66 -31 66-11 66-33 1 6 i 0 
66 -25 6 — — H 

67-90 1 67-77 67-81 1 8 2 67 -83 8 — _ Ilui 

69-52 69 *58 69 -55 3 10 3 69 *55 10 69 '666 j 4 H-Fe 

71-.50 71 -48 71-61 3 12 3 71 -53 12 — Hx 

73-96 73-82 73-90 3 15 4 73-89 15 — — H4> 

74-85 74 -85 74 -87 1 5 1 74 -85 5 74-865 1 Zr 

76-56 76-42 76 *55 5 18 5 76*51 18 — i — 
1 

Hu 

r 77 -831 3 V 
77 *85 77 *75 77-95 5 15 3 77-85 15 J 

1 1 77-991 3 J 

79-59 79 -45 79-52 8 30 8 Very broad in 11; probably 79 ’52 30 _ Ht 
two lines 

80 -84 — 80-00 0 — 1 80-43 ? 0 80 -069 9 Fe 

82-98 82 -88 82-95 5 20 5 Wide and ill-defined in 9 . . . i 82-94 ■20 — H<r 

84*29 - - 0 — i — 
i 

84-29 0 84 -258 7 Fe 

3685-34 3665-31 3685-42 40 60 30 

i 
3685-36 60 3685-339 10 i Ti 

3 Q VOL. CCI.-A, 
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Table T.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengtlis. Intensitie 

Remarks. 
Adopted 

wave¬ 
length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

Inten 
sicy. 

Element. 
No. 0. 

Latitude 
~74^ E. 

Xo. n. 
Latitude 
-41" W. 

No. 13. 
Latitude 
-7.'>’ W. 

No. 9. No. 11. No. 1.3. 

3686 -97 3686-89 3687-01 8 20 7 Much narrower than a and r . 3686 -96 20 — — Bp 

87-64 — 87 *66 0 — 0 87-65 0 3687 -610 6 Fe 

S8-47 - 88 -62 0 — 0 88-54 0 88 -.553 4 Ni 

— 89 -58 89 -65 — 
O 0 89 -61 2 89-614 6 Fe 

— 90-51 — — 0 — 90-51 0 — — — 

— - 91 -08 
— 

— 0 91-03 0 — - — 

91-75 91-62 91-74 10 25 8 91-70 25 — — Hn- 

f 94-164 4 Fe 
94-24 94-24 94*22 4 10 3 Uii continuous spectrum only . 94-21 10 ■) 

t 94-344 3 Eb ? 

94-96 95-08 95-16 1 3 0 95-07 3 95-194 5 Fe 

— 96-01 — _ 0 — 96-01 0 96 -006 1 Fe, V 

97-34 97-20 97-30 15 30 10 97-28 30 — — Ho 

98 -29 98-30 98 -27 0 4 0 Strong on 4th band of con- 98-29 4 98-303 2 Ti, Zr 

timious spectrum, and at 
centre in H 

— 3700-15 — — 0 — 3700-15 0 — — — 

3701-26 01-29 3701-28 0 3 0 Stronger at centre. 01-28 3 3701 -234 8 Fe 

r 02-170 4 Fe 
02-15 — 02-43 0 — 0 02 -29 0 ) 

L 02-382 2 Co 

04-03 04-01 03-98 20 35 12 04-01 35 — — Hf 

— 05-67 — — 5 — 05 -67 5 05-708 9 Fe 

06-14 06-03 06-10 15 20 5 Diffuse on V side in 9, rather 06-09 20 06-175 6 Ca, Mn 

wide in 13 
07-28 07 -28 0 07-186 5 Fe 

08-02 07-97 1 5 1 
08-03 08 -01 5 08-068 5 Fe 

09-19 09 -43 09-41 1 8 1 Diffuse in 9. 09-34 8 09-389 8 Fe 

10-46 10-44 10-51 10 20 3 Narrow line in 11. 10-47 20 10-431 3 Y 

12-12 12-16 12-12 25 40 15 12-13 40 — — Hi- 

f 13-037 o _ 

12-96 12-99 13-01 3 8 0 Very fine line in 11 .... 12-99 8 ) 

t 13-087 3 Cr 

14-75 15-07 15-02 — — 0 15-04 — — — — 

3 15 15 — — — 

15-71 15-68 15-57 — — 1 15-62 — 15 *615 4 Mu? 

16-39 16-59 16-49 1 4 0 16-49 4 16-591 7 Fe 

20 -08 20-13 20-13 12 25 8 20-11 25 20-084 20 Fe 

21-92 22 -03 22-00 30 45 20 21-98 45 — — Hh 

24-19 r 24-526 6 Fe 
24-65 24 *66 o 5 0 Very diffuse and broad in 11 . 24-61 5 J 

25 -06 L 24-716 1 Ti 

26 -80 27-13 27-47 — — J 27 -30 — — — — 

5 10 Absorption baud coineides in 9 10 — — — 

28 -08 28-01 — — — — 28-04 — — — — 

29-68 30 -01 29-71 I 1 1 0 29 -80 1 29 *952 3 Ti 

31 -53 31-51 31-46 1 1 1 — 31 -.50 1 31-523 3 Fe 

32 -67 — 32*70 2 — 1 32-69 2 32-545 6 Co, Fe 

33-54 33 -26 - 2 5 — In sluide of H A. 33-40 5 3733-469 7i! ? Fe 

3734-48 3734 -58 3734-52 30 45 20 Trace of line on less refrau- 3734-53 45 _ _ HA 

gible side of hydrogen line, 
coinciding -with Fe absorption 
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Table I. Eclipse Spectra, May 28, 1900—continued, 

488 

Wave-lengths. Intensities. i i 1 
j 

Xo. 9. 
1 

Remai-hs. 
Adopted 

Inten¬ 
sity 

VVave-leng’ih 1 
, Inten- 

1 
Xo. 11. No. 13. wave- in sun 1 Element, 

Latitude 1 Latitude Latitude No. 9 No 11. : No. 13. length. (Rowland). 
-74’ E. -41° W. -75’ W. 

' 

: 3737-08 3737 -13 3737-05 15 35 10 Absorption line coincides in 3737 -09 35 
j" 3737 -059 5 

1 
j Mn, Ca 

9; probably 2 lines in 13 ' 1 37 -2.S1 30 Fe 

38 -39 33-41 — 0 3 — 38 -40 
1 

3 38 '466 6 i ? i 
39 -3.3 39-51 1 — 1 1 3 — i. 3 39 -370 3 ' xi : 

— 40-59 — — ‘ ] — i 40-59 1 _ 

41 -76 41-81 41 -69 15 25 5 ' Shaded on V-side in 9. . . . 41 -7.5 25 41-791 4 
1 
1 Ti 

43 *64 43-53 43 *45 5 8 1 Diffuse in 9 ... . 43*54 * 8 
; I' 43 *508 6 j Fe-Ti 

1 i 
1 43-6J6 2 1 ? 

4.-) -SO 45-83 45 *76 15 30 5 , .Absorption line coincides in 9 . 
i 
' 45-80 ^ 30 

f 45-717 8 ' Fe 

L 46058 6 Fe 

48 -24 48-4-2 48-26 5 10 5 ' Diffuse ... 43-31 ! 10 48-408 10 T'e 

— — 49-47 — i _ I 49 *47 1 1 49-631 20 Fe 

60-25 50 *29 50-26 35 50 25 i 
50 -27 i 50 — 

! 
H/c 

51 -C6 51 -71 — 1 3 — Very fine line in 9 .mil 11 . . 51 -68 ■■J _ ' _ i _ 

52 -80 52 -64 — 0 0 — 0 — _ j_! 

53-69 53 -86 — 1 2 — Vei-y fine line in 9. 53-77 2 53*732 6 

1 j 
Fe-Ti 

54 *74 - — 0 — — 54-74 0 _ _ 1 _ 

55 *50 55 *72 — 0 0 — 55-64 0 — — 1 
57 -72 57-84 57-81 5 10 1 Poor definition in 11; ditfuse 57-79 10 57-824 4 

1 • 
Cr-Ti 

on V-side in 9 

59-41 59-40 59-38 40 50 20 59 -40 50 
f 68 -375 15 Fe ] 

! 1 
1 69-447 !•> Ti 

61 44 61 -38 61 -49 40 55 20 61 -44 55 61-464 7 i Ti 

63 -89 63*96 63-91 3 12 3 Diffuse in 9. 63-93 12 63 *945 10 Fe 

— 65 *71 65-59 - 2 0 65 *65 2 65 -689 G Fe 

66-98 67-29 67-34 2 10 3 Very diffu.se in 9. 67-31 10 07 -341 8 Fe 

68-39 63 -38 68-34 2 1 0 Diffu.se ; on continuous spec- 68-37 I 68-385 o C-Cr-Fe-C 
tjuui only in 11 

69*63 - — 1 - 69 63 1 _ _ _ 

70-70 70-78 70-70 45 55 30 70-73 55 _ _ Hi 

74-46 74-47 — 10 15 — 15 ' 74 473 3 Y 

75-71 75 *59 75 -54 — _ 3 1 75-61 
f 75-717 ' 
1 

7 Ni 

— — 2 — ^ Uniform band or wide line 1 
r inll ; 

_ 8 
76-198 2 Ti 

73-52 76-77 76-11 — 0 j 76-61 _ 1 
1 76 -600 ' 3 Fe 

' [ 76-698 1 Mn 

77-40 77 ;69 — — _ 

i 77 -54 
f 77-593 3 Fe 

1 78-203 1 2 Ni — — 1 _ ; 1 J 1 

78 -49 78-73 — — 

1 
78*61 

78-463 3 Fe 

78-652 2 Fe 

79 64 ; 79 *58 — 1 3 _ j 
! 

Interrupted line in 11. . . . j 79-61 [ 3 
f 79-569 4 Fe 

! , t 79-667 j 2 F'e 

80 *52 — — 
“ i — — . 80-52 1 j — 

1 
— — 

82 -43 — — 
° ! 

— _ ! 

1 
82-43 1 j 

0 

_ _ 
83 -40 , 3783-57 3783-46 3 I 8 1 1 

83 -48 8 3783 -674 6 Ni 

3784-03 

i 
— — 0 j 

- 
_ 1 

1 
3784-03 1 0 ! — — 

3 Q 2 
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Table I.—Eclipse Spectra, May 28, 1900—^continued. 

Wave-lengths. Intensitie.s. 

Remarks. 
Adopted 

wave¬ 
length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowlasd). 

Inten¬ 
sity. 

Element. 
Xo. 9. 

Latitude 
-74° E. 

j Xo. 11. 
I Latitude 
; -41° \V. 

Xo. 13. 
Latitude 
-75° W. 

No. 9. Xo. 11. Xo. 13. 

1 378.5-27 3785-79 t 
_ 1 - — — .3785-53 — — — — , 

1 i 1 1 1 5 ! 5 

! sc *45 1 86 -47 j 3786-25 
1 

0 Wide in 13. 86 -39 — - — — 

_ 88 -05 ' _ _ 1 5 — Ab-sorption line at 3787-8 in , 88-05 5 3788 -046 9 Fe 
1 i Xo. 9; strong on continuous 

1 1 specti-um in 13 ! 

88-78 1 88-85 1 88-79 10 12 3 1 88-81 12 88-839 2 Y i 

90-11 90-18 j _ 1 ' 1 — 90-14 1 90-238 5 Fe 

90-82 90-93 — 1 1 — 90*87 1 — — — 

f 92-294 3 Fe Cr-C 
92 -44 92-46 — 1 0 _ Broad in 9. 92-45 1 0 *1 

[ 92-482 1 Xi 

93-72 93 -94 - 0 1 — 93-83 1 93-745 4 Ni 

94-89 95-13 95 -06 1 5 1 95-03 5 95-147 8 Fe 

98-02 98-04 97-95 50 60 35 98-01 60 — — He 

99 -88 99-61 99-60 1 5 1 Probably 2 lines in 9 . . . . 99-70 5 99-693 I. Fe 

3801-51 .3801 -66 .3801 -66 3 4 0 On continuous spectrum only . 3801-61 4 3801-679 OX -C 

03 -00 03-16 03 -32 2 2 0 Ditto, at centre in 11 . . . . 03-16 2 03-141 0 C 

— 04 -91 04-85 — 0 04 -9 0 04 -9:14 2 Fe-Cr-C 

Oo -45 05 -87 — 1 1 — 05 -5 1 05-486 6 Fe 

i Group of perhaps 4 lines in 13 
r 06-357 2 Fe-C 

OG-44 06-35 — 1 1 _ 06 -39 — 
t 06 -865 8 Mn-Fe 

r 07 -293 6 Xi 
i 07-49 07 -96 07 -57 1 _ 0 07 -66 1 

1 L 07 -681 6 V-Fe 

09 -48 09 -38 — 1 0 — Wide in 9. 09-43 0 - — — 
i f 09-894 0 C 

10-00 _ — 0 _ 10-00 0 i j L 10-061 00 C 
r 10-681 0 c 

1 10-69 10-80 10-81 I 0 0 10-77 0 i i 
1 

L 10-761 0 c 
r 12-126 0 c 

12-10 12 -23 _ 1 0 _ 12-16 0 
L 12-205 0 c 
f 13-100 5 Fe 

12-80 _ _ 0 _ _ I 1-2-80 0 
L 13-219 2 Fe 

13-42 13-30 13-18 3 10 1 Enhanced Ti at 3813 -54 (Lock- 13-30 10 _ _ _ j 

ter) j 
14-69 14-81 14-70 2 7 1 14-73 7 14 -698 8 Fe-C 

15-99 15-92 15-90 2 10 2 15-94 10 15-987 15 Fe 

— — 17-76 — — 0 17-76 0 - — — ! 
19-56 19-88 — 0 4 — Diffuse in 11. 19*72 4 (3819-75) — He 

20-63 -20 -62 20-58 3 10 3 -20 -61 10 20-586 25 Fe-C 

r 21-866 IX C i 
21-75 22-02 _ 1 1 _ 21 -89 1 1 1 

1 L 21-981 ^ 1 Fe 

— - 23-88 — — 0 23-88 0 — 
1 

— 

24,:55 24-61 24 -63 1 10 4 -24 -60 ' 10 24-591 6 Fe i 

26-07 26 -05 25 -96 1 10 4 26-03 ' 10 26*027 -20 Fe i 

3827 -97 3827-91 3827-92 o 3 3827-93 i 6 38-27 -980 s Fe 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengtlis. Intensities. ! 

Adopted 
1 wave- 
; length. 

i 
1 

1 

No. 9. 
Latitude 
-74° E. 

No. 11. 
' Latitude 
! -41° W. 

1 

1 No. 13. 
1 Latitude 
1 -7.5° W. 

, No. 9. No. 11 No. 1.3 

1 Remarks. 
j 

i 

Inten¬ 
sity. 

Wave length 
in sun 

(Ro \ land). 

Inten¬ 
sity. 

1 Element. 

3829 -51 1 .3829-53 3829-59 

i 

- 

1 

15 : 6 3829-54 15 

1 

38-29-501 10 Mg 

30-71 1 30-93 30 *85 
1 

1 1 ! 0 1. i 30-83 1 — — 1 

32-51 32 -42 1 32 -45 ^ 12 
1 

25 8 
1 . 1 

j 25 32 -450 15 Mg 1 

1 ~ 
1 
1 

i 
— 

i 

1 A line is distinctly visible, but 
j was not inea.sured, on V 
' side of JIt? 

i 

! j 

34-364 
i 

Fe 

35 *45 35 *51 ; 35*50 50 65 ' 40 i 35 -51 65 1 — — Ht) 

36-87 36-99 
! ° 

1 - i 36-93 1 ! 36-905 1 Zr ?, Ti 

1 38-47 38-39 38-44 t 20 1 30 
1 

1 10 38 -43 30 i 38-435 i 25 Mg 

1 40-88 40 *57 , 40 -90 1 1 1 4 1 40-78 4 40 -580 1 8 Fe 

41 -11 — - i 4 — 41 -11 4 ! 41-195 10 FeMn 

42*18 42-11 - 

1 " 

0 — 42-14 0 42-191 ' 3 Co 1 

1 
1 

) 
r 43-127 ' 3 C 

1 43-25 43 -28 43-14 i 1 3 0 43 -20 i 3 
1 

43 *195 2 Fe-C 

1 
1 

1 
I 1 

i 43-404 * 4 Fe 

— 45-51 45 -56 
i 

I 0 1 1 45-606 8 C-Co i 

46-80 46 -97 — ! 0 1 — 46 -88 1 46-943 5 Fe 

' 47*70 
1 

48-16 — 0 0 — 47 -93 0 — — - 1 

49 -07 48*92 — 0 0 — 49*00 0 49-140 3 La-C 1 

1 49 *84 1 50-15 — 0 2 — Diffuse but well defined in 
outer band in 11 

50-15 1 2 50-118 10 Fe-Ci- 1 

51 -93 1 - — 0 — — 51-9 1 0 — — _ 

j 52-77 — — 0 — — 52-8 j 0 52-714 4 Fe 
CCCC, &-e. 

54 -68 54-71 — 0 1 — . . . . 54 -70 1 1 54-707 2N c 
^ 56-45 56 *55 56 -41 2 15 5 56 -47 15 56 *524 8 Fe 

— 58 -56 58-51 — 1 0 1)1 deliUcd in 9 . . . 58 -53 1 58-442 7 Ni 

59 -99 60-04 59-96 10 25 6 .strong on outer band in 11 . . 60-00 25 60-055 20 Fe-C 

61 -61 

i 

61 -68 61-72 2 2 0 Only visible at centre in 11; ill 
defined in 9 

61 -67 
‘ 

61-681 1 ! 
i 

C ! 
1 

62-70 62 -91 - 0 0 — 62 -80 0 — 
j ! 

63 -50 — — 0 - — 63-50 0 63 *533 3 ! c 
— 65-64 1 — — 2 — 65 -64 2 65 -674 7 i Fe-C * 

71-75 71 -88 j 71-58 1 2 1 71-74 o — 
_ 1 1 

- 1 

- 72-71 ! — — ! 2 ! — 72-71 2 72-639 6 Fe i 

74 *25 
1 

74-14 74-34 - — j — Head of .second cyanogen band 74-24 1 I — — - ' 

78-74 78-80 78-65 6 15 5 A double line on 2 images not 
measured, apparently single 
on others 

78-73 15 78*720 

1 

7N Fe 

79-70 — 
1 

— 1 0 — — 79-70 0 79-716 1 ! c 
83 -61 ! 83-65 83-68 1 

1 

— — - 1 Head of cyanogen band, scarcely 
vi.sible on outer band in 11 

83-65 — 
i 

83 *568 1 — Edge of C 
band 

85-64 ■ — 
_ 1 0 — - 85 -64 0 85 *657 j 4 Fe 

66-47 86 -49 86-39 5 10 4 8G *45 10 1 3886 -434 i 15 1 Fe 

89-24 89 -09 89-12 60 75 ' no 1 89-15 75 
1 

Htr 

3891-17 90 -95 3891-08 : 1 2 0 i On continuous spectrum only 
in 11 

91 -07 2 - — 

— 3892-30 ~ ! — 0 — 3892 -3 0 — - — 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Waye-lengths. | Intensities. 
— Adopted Wave-length 

Element. No. 9. 
Latitude 

Xo. 11. 
Latitude 

No. 13. 
Latitude No. 9. No. 11. No. 13. 

Bemai-k?. wave¬ 
length. 

sity. 
in sun 

(Howland). 
Eity. 

-74’ E. -41’ \V. -75’ 3V. 

3893-31 3893-17 3893 -59 0 0 0 3393 -35 1 0 _ 

1 
I r 3894*105 3 Fe, Cr, V ? 

94 -24 94-49 1 — — — — 94-36 1 0 \ 
t 94-211 8 Cr, CO 

9,9-14 — — 1 — — — — 95*119 3 Co 

95-81 95-91 _ 10 3 In No. 9 perhaps 2 lines, 3895-1 95 *85 10 95 -803 7 Fe 
and 96 *5 

96 -52 — — 1 — — — — — 

98-15 98 -31 98 -09 0 1 0 . . . 98-18 1 98-151 5 V 

99-89 99 -88 99-93 I 3 0 NaiTow line in 11. 99 *92 3 99 *850 8 Fe 

3900 -75 3900-65 3900-63 10 25 8 Poor detinition in 13 . . . . 3900 -68 25 3900-631 5 r;-Fe 

03-17 03-19 03-13 1 7 1 03-16 7 03-090 10 Cr, -Fe, Mo 

05 -62 05 -69 05-74 1 5 1 05 *68 5 05-660 12 Si 

— 06-45 06 -65 — 3 0 06 *55 3 06*628 10 Fe 

07 -24 07 -31 — 1 0 — 07 -27 0 — — — 

08 -48 08-71 — 0 1 — 08-60 1 — — 

r 09 -802 4 Fe 
09-95 09 -98 — 0 0 — 09 -97 0 

1 09-976 5 Fe, V 

— 11-22 — — 0 — 11 -22 0 — — — 

- 12 -.37 — — 1 — 12-37 1 — — — 

13-57 13 *55 13 -.55 10 25 6 13 -56 25 13 -609 5 Ti- 

14*52 14-52 14-67 0 1 1 On continuous spectrum only 
in 11 ; diffuse in all 

14-57 1 14-566 1 •) 

r 16-079 1 Zr 
16-07 16-15 16-17 10 3 2 16-10 3 

1 16 -207 0 Zi*, La 

f 18-464 4 Fe 
18-53 18-53 18-51 1 1 4 Wide in 13. 18-53 1 

1 18-563 4 Fe 

20-28 20-31 20-41 0 S 5 AVide in 13. 8 ■20-410 10 Fe 

_ _ 21 -90 0 21 -9 0 •21 -865 4 Ce, Mn-Zr 

^Narrow lines in 13 .... 
— — 22 -68 — — 1 i 22-7 1 ■22-560 IN V 

23-13 23-13 23-IS 1 3 •23-14 8 23 -054 12 Fe 

— — 24-82 _ — 0 •24 -8 0 24-673 4 Ti 

26 -01 — 26 -28 1 0 0 26-1-23 7 Fe- 

28-19 28-14 28 -08 1 7 5 -28-14 7 28-075 8 Fe 

30-86 30-49 30-41 3 5 5 5 30-450 8 Fe 

33 -98 33-79 33 -94 100 100 100 K. 33 -90 100 33 *825 ICOO C.a 

38 -39 38 -26 38 -49 2 5 2 38-38 5 33 -552 4 C 
* 

40 -29 — — 0 — — 40-3 0 — — — 

44-10 44-14 44*14 2 20 5 44-13 20 44-ICO 15 A1 

45 -22 45 *29 45*29 0 0 1 On continuous spectrum only 45 -27 0 45 *260 3 Fe 

in 11 
r 47-675 4 Fe 

47-65 47 -81 47 *66 0 0 0 Perliaps 2 lines in 13 . . . . 47-70 0 
1 47-918 2 Ti 

j- 48 -82 4 Ti 

49 -01 49-14 49*17 1 4 1 49-11 4 49-039 1 Ca 

[ 49-199 1 La 

39.50 -38 3950-38 3950 *48 1 O 6 3950-497 2 Y 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengths. Intensities. 

Adopted 
i wave- 
j length. 

Inten¬ 
sity. 

i 

1 AVave-length 
1 in sun 
j (Rowland). 

Inten¬ 
sity. 

I 
1 
i Element. : No. 9. 

Latitude 
i -7U E. 

I 
No. 11. 

Latitude 
-LO W. 

! No. 13. 
' Latitude 

-75'* W. 

1 
i No. 9. 
1 

! Xo. 11. 
1 

. No. 13. 

Remarks. 

1 3051 *39 j 3951-31 1 — 0 1 — 1 — . 3951-35 0 3951 -311 5 Fe 1 

52'35 — 3962-42 ' 1 3 ! - ' 52 -38 3 — — 1 

- 53 *31 — i _ 
1 ■ — 1 1 0 .53 -303 3 ' Fe-Gr 

5,5 -06 — — i 0 ■- 0 — — 
- 

I 1 f .56 -476 4 Ce, Co-Ti 

56 *35 56 -82 56 -57 ' 1 5 j 1 Vei-y diffuse in 9. 56 *58 5 
1 
i 56 *603 4 I’e 1 

! 66-819 6 1 Fe 

53-19 58-34 58 -28 1 5 ' 2 58 -27 5 58*355 5 1 Zr, Ti, Ce 

61 -75 61-73 i 61-58 4 20 
1 

1 8 61 -69 20 61-674 20 * A1 

65 -05 — — 0 — — 65-0 0 — — 1 — 

66 -65 — i 1 
1 

— In shade of H. 66 -6? 0 — — — 

68-79 68-38 68-56 80 1 90 90 II. 68 -.58 90 68 -625 700 Ca 

70-33 70-31 70-34 50 70 50 70 -33 70 70-177 5N 1 He 

— 72 -06 i - — 
1 

0 72*1 0 — — 1 — 

73-47 73-77 1 — 0 2 - 73-6 2 73 -702 3 i Ni, Zr 

76 -73 76 -68 ’ 76 -44 0 1 0 76-62 1 - — - 

— 77-95 1 — - 0 — 77-9 0 77 -891 6 Fe 1 

— 81 -32 — — — 81-3 — 81-917 4 
! 

Ti i 

82-19 t 82*26 1 7 0 82-2 7 82-630 o Ti 

82 -68 82-74 82 -92 1 _ 2 Very wide and diffuse on V 82-8 _ 82 -790 3 Mn-Y 
side in 11 j 

— 84-08 
- - — 84-1 1 84-091 7 Or-Fe 

88-76 88-60 - 1 — 88-68 1 88-669 0 La 

90-15 90 -07 90 15 — 2 — 90*12 2 89 -912 4 Ti 1 
1 

91 -23 91-33 91 -28 1 3 1 3 91 -333 3 Cr,Zr 1 

93 *97 91*40 94-91 1 Shadittij' Shading Shading 94 -4 0 — — 
I 

95 -89 95-87 95-73 1 1 3 — 3 95 -899 IN La 

96-66 97-62 1 97-66 Shading 4 I 97 -65 4 97 -64 2 

99 ’22 99*10 1 99-14 3 6 2 Apparent absorption line at 99 • ] 5 6 98-790 ; 4 Ti 
3999 *9 in 9 

4000-44 4000-46 4000-55 0 1 0 strong on band.s of continuous 4000 -43 1 _ _ _ 

1 
Spectrum in 11 

— j 01-73 — 1 — 01 -7 1 4001-814 3 Fe 

05-42 ' 05 *45 05-44 1 7 4 Very diffuse line in 9 . . . . 05 *44 7 05 -408 7 Fe 

— 09 -55 09 -27 — 1 09-41 - — ■— 

12-.52 ' 12 -.52 12-47 6 12 5 12-50 12 12 -.541 4 Ti, Ce 

, 
1 

r 13-798 3 Ti-Fe * 
— 13-76 1 — — 2 - ' 13-7 1 2 1 , 

[ ' 1 13-964 6 Fe j 

14-.54 14-41 1 14-62 0 2 1 14-62 2 14-677 5 F... 1 

— 17 -77 — — o — j Wide and ill-dotined . . . . | 17-8 o 
“ 1 

— 
_ 1 

— 18 56 18-3 — ; — 0 ! 
j 

18-4 0 1 -- 
_ 

— 20-28 — 
_ i 

3 _ j 20 -3 3 
i 

- 

22 -01 j 21 *90 21 -83 1 — 1 21 -91 1 — 

23 -57 ' 23 -49 23-64 1 0 1 ' 1 ■23 -57 I 23-333 3 V, Co 

r 24-73 3 T 
4025-05 4025-03 4025 -09 1 4 1 Perhaps a double line in 11. . 4025-06 4 

1 
1 

1 
L 4025-29 3 Ti 
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Table l.—Eclipse Spectra, May 28, 1900—continued. 

Wave-length s. Intensitie 

Remarks. 
Adopted 

wave¬ 
length. 

Xo. 9. 
Latitude 
-74° E. 

No. 11. 
Latitude 
-41° 5V. 

Xo. 13. 
Latitude 
-7.5° W. 

Xo. 9. Xo. 11. Xo. 13. 

4026 *78 4026-49 4026*61 0 20 1 Very strong outside, weaker at 40*26 *63 
centre in 11 

28*45 28*48 29 *55 1 3 1 28*49 

29*91 - — 0 — — *29*9 

30 -82 .30 *88 .30 *95 1 10 4 Clearest line in complex gi*oup 30*88 
of ill-defined lines in 11 

31 *86 31 -92 — 0 0 — 31 *89 

33 *09 .33*17 33 *26 0 9 3 33*17 

34 '55 34 *.56 34*83 0 8 3 34*64 

.35 *79 3.5*79 .36*0 0 1 0 35*86 

40 *87 41 -00 41 -0 •> 3 1 Diffuse in 9 and 11. 40*96 

42 -95 42 '92 — 1 2 — 42*93 

— 44 *50 — — I — Narrow line in 11. 44*5 

45 *83 45 *94 45 *97 8 15 5 Poor definition in 9 .... 45*91 

48 *68 48*71 48 *90 1 3 1 48*76 

— 53*79 53 -9 0 3 0 63 *9 

54*05 — — 0 — — Centre of faint group in 9 . . — 

— 55 *21 - — 0 — 55 *2 

57 '40 57 *64 57 '7 0 1 0 57 *58 

.58 -97 58*88 — 0 0 — 58*9 

63*72 63 *73 63 ’75 o 13 *1 63-73 

67*13 67 *07 67*32 1 4 1 67 *17 

72*01 71 *91 71 *95 2 10 4 Long, well-defined in 11 . . . 71 *96 

73 *49 73 -59 — 0 1 — 73*5 

— 74*73 — 0 — 74 •" 

77*86 77*95 77*94 45 50 30 77-92 

— 80*13 80*09 - 0 0 80-1 

83*13, 83 *32 83*8 0 1 0 83-2 

85 *28 85 *,36 85*1 0 1 0 85*2 

86*67 86 *85 87 *0 1 5 0 86 -8 

— 88 *90 — — 0 — 88*9 

90 *50 90 *75 — 0 0 — 90*6 

92 *59 92-60 92-9 1 3 0 9*2*7 

4101*96 4102 -02 4102*02 70 80 55 410*2*00 

07*80 07 *80 07 *96 0 0 0 07 *9 

09 *53 09 *50 09*93 2 5 1 DilTused on K side in 9 . . . 09 *6 

— 14-4 — — 0 
- 

14*4 

18*79 18*70 18*98 3 5 2 Poor definition. 18*82 

— — - — — 

21 -41 21 *21 21 *44 2 3 0 Very long and narrow in 11. . 21 *35 

4123-81 4123-24 4123 -20 3 5 1 Diffuse and wide in 11; ditto 4123*4 
in 13 

Inten¬ 
sity. 

Wave-length j 
in sun 

(Rowland). 

20 

3 

0 

10 

0 

9 

8 

1 

3 

1 

15 

3 

3 

0 

1 

13 

4 

10 

1 

0 

50 

0 

1 

5 

0 

0 

3 

80 

0 

5 

0 

(4026 -342) 

4028-497 

29- 796 

30- 918 

31 -865 

33- 224 

34- 644 

35- 883 

40-937 

42-743 

43 -0.54 

45 -975 

48-883 

53-981 

57-499 

57 *668 

58 *915 

69-081 

63 ‘759 

67 139 

71-908 

73 -637 

77"885 

SO-368 

83-095 

85-161 

85 *467 

86 -861 

92*821 

4102*000 

07 *649 

09 *609 

09 *905 

14-606 

18*708 

18*934 

21*477 

4123*384 

10 

o 

8 

6 

4 

1 

0 

0 

30 

6 

3 

3 

3 

*20 

5 

15 

0 

Element. 

40X 

5 

1 

He 

Ti-Ce 

Ee-Zr 

Mil 

La, - 

Mil 

Mil 

Mn 

Cc-Xd-Co 

Cr-Xd 

La 

Ee 

Zi*-Mg-Cr 

Ci*-Fe-Ti 

Ee 

9 

Ee, Cl* 

Mn 

Ee 

Cr-Ee 

Ee 

Cc 

Si* 

Ee, Xd, Cr 

V-Mn 

Ee 

Ee 

La 

V, Ca 

116 

Cc-1 e 
e 

Xd ? 

V 

i 
Ee 

Ee 

Co 

6 C'-Co 

1 I La 
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Table L—Eclipse Spectra, May 28, 1 900 —coiitiimed 
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.72-16 

•’)4 -46 

66 "27 

61 -20 

6;i-;i 

66-12 

67 -20 

69-70 

71 -96 

7.-1 -46 

77 -.77 

78-83 

80 -.51 

81-70 

84 -.58 

86 -65 I 

87-58 I 

91 -51 

94-77 

96 -.-11 

98-38 

98-98 

4200-70 

49 -30 

52-31 

54 -5.-1 

56-43 

61 -39 

63 -81 

65 -84 

67 -.39 

72-04 

73 -59 

-36 

-9 

67-5 

I 

73 -5 

75-55 i 75 *77 ] _ 

77 -54 

79-15 

81 -09 

81-94 

77 *85 

79 -26 

81 -9 

84-7 

87-30 ^ 87-7 

91 -40 

95-17 

96 -72 

98-96 

91 -44 

95 -98 

4 

0 

1 

0 

4 

1 

- I- 

3J 

1 

1 

5 

4 

10 

1 

2 

10 

10 

0 

10 

8 

0 

1 

Wave-lenfftlis. Intensities. 

Xo. 9. 
Latitude 
-74° E. 

Xo. 11. 
Latiriule 
-41 ’ W. 

No. 13. 
Latitude 
-75° W. 

No. 9. 

1 llemarlvs. 

No. 11. , No. 13. ; 

Adopted 
wave¬ 

length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

Inten¬ 
sity. Element; 

1 

i 

— 41-26-17 — — 0 , — , 4120 *2 0 4126-344 4 

-1 

! 

4127-48 27 *90 4128*08 >) 
2 1 . . . 27 -8 2 

J- 27 -767 4 Fe 

L 27-957 4 Ce-I-'e [ 

21 '72 29 *73 30 *08 0 2 1 . 29 *8 2 
■ 

32 -21 32 -3 :!2 -53 1 5 2 1. 32-3 5 32 -235 10 Fe-Co ' 

[' 34 *492 3 Fe ? , 

34 *04 34 ’o3 34-70 0 1 1 i Very poor in 9; diffuse and 
wide in 11 

34 *5 1 
1 

-! 34 -589 
1 

3 Fe ? i 

1 34-846 5 Fe 

37 -41 37 *19 37-77 0 
1 Diffuse in 9 . . . 3 37 '15G 0 Fe j 

— 40 -21 — — 0 — 40-2 0 40-089 ti 

i 

Fo ! 

41 *79 1 — — — - — . 41 *8 2 _ 
43 -57 43-91 i-'> 3 . . . . 43-9 15 1" (4143-919) _ He 1 

41-06 1 — — _ 
— \ 44-038 15 Fe 

40 *02 46 -32 — 0 0 — . 4C-2 0 46-225 3 Fe ' 

— 47-80 — — 0 - 47-8 0 47-836 4 Fe 

40*4 

r)2‘l 

r)4 

Wide line (over 1 tenth-metre) 
in 9 

4201 *08 

Enhanced Fe (Lockyer) . 

Very wide in 11 and 13 

Very diffuse in 13 

2 lines in 11 

77 'On 

79-1 

81-3 

81-8 

84-6 

86-0 

87 -5 

91 -45 

95-0 

nc *5 

93-4 

98-9 

4200 -9 

1 

1 

5 

4 

10 

1 

‘1 

0 

10 

10 

0 

10 

8 

0 

1 

0 

8 

49-360 

49-533 

.52-168 

54-G67 

56-391 

61-369 

03-818 

67 -4.38 

72 -07 

75-806 

77 *698 

77 -772 

79 -025 

81-919 

84-47 

87-204 

87 -409 

91 -595 

95 -492 

96 -372 

98-494 I 

98 -800 ! 

4200-946 

C, Zi- 

Fe 

Fe, La, Ce 

Fe 

Zi- 

Zi- 

Cr-Ti,- 

6 

00 

6 

5 

4 

4 

3 

1 

Ti Fe 

Fe 

? 

Fe 

1 

Fe 

j 

Fe 

La, C 

Fe 

Fe 

Fe 

Fe 

Fe 

Ti 

3 R VOL. c;ca.—a 
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Table I.—Eclipse Spectra, May 28, 1900—continued. 

Wave-lengths. Intensities. 

Remarks. 
A dopted 

wave- 
1 length. 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

Inten¬ 
sity. 

Element. 
' No. 9. 

Latitude 
-74’E. 

No. 11. 
Latitude 
-41° W. 

No. 13. 
Latitude 
-75° W. 

No. 9. 

1 
1 

No. 11. No. 13. 

4'i02-18 4202-15 4-202-17 1 6 1 4202-17 6 4-202-198 8 Fe 

' 04 -SC ' 04-92 05-0 5 , 4 1 0 1 04 -93 4 04-916 o 0 

OG -.59 ' OG-9’ 07-3 1 1 0 06-9 1 06-862 3 Fe 

08-68 08 -92 09-1 1 3 0 08-9 3 09-14 1 Zr 

— 10-40 — - — — 1 10*4 1 10-494 4 Fe 

11 -97 — — 0 1 — 1 12-0 0 12-048 2 Zr 

13-63 — 0 — — 1.3 -G 0 13-812 3 Fe 

l.i-68 15-79 15 *70 25 40 20 Long line in 13. 15-72 40 15-703 5 Sr 

17-53 17-64 _ 0 0 _ Lumps on continuous speciruni 17-6 0 17-7-20 5 La, Fe-Cr 
in 11 

r 19-516 4 Fe 

19-52 19-71 _ 0 0 _ 19-6 0 
L 19-.580 3 

-20 -41 — - 0 20-4 0 ■20 -.509 3 Fe 

1 22-61 -22-43 22 65 4 1 0 Diffuse in 11. I ‘22 *332 5 Fe 

27-13 -26 -96 26 -96 15 30 10 Poor definition in 9 .... 27-0 30 26-904 20 Ca 

1 29-79 — — 0 — — ■29-S 0 — — — 

33 -27 33 -25 33-4 10 10 5 Enhanced Ee (LockyerI. . . .33 -3 10 33 -3-28 4 Fe 

35 '95 35 *99 36-1 3 4 1 36-01 4 36-112 8 Fe 

38 -26 .38 -5 — 0 0 — 38-4 0 — — — 

39 -88 40*44 - 0 0 — 40-1 0 39 -890 3 Fe. Mn 

42 -67 42 -60 — 1 1 — 42-6 1 — — — 

47-05 47 -03 47-1 20 25 8 47 -06 25 46 *996 5 Sc* 

f .50 -287 8 Fe 

50-.32 50 -50 50*6 1 5 1 Diffuse in 9. 50 '5 5 
L .50 -945 8 le 

— 52-36 _ 52-4 1 52-468 0 Co 

54 *45 54 *55 64*4 5 12 12 54*505 s Cr 

58 -29 58 -33 58 *5 o 1 0 (In continuous spectrum only 58 -37 1 — — — 

in 11 
60-31 — 60-7 3 — 2 60-5 5 60-640 10 Fe 

— 61 *61 — 5 — 61 -6 5 61-679 2 Cr 

— . 6-2 -03 62 *2 — 0 0 Very diffuse in 9. 62-1 0 — — — 

64-50 — — 0 — -- Ditto. 64-5 0 — — — 

68-00 67 *65 67-7 1 0 0 67-8 0 — — — 

71 -89 71-81 71 -8 2 8 4 71 -83 s 71 -934 15 Fe 

r 73 -482 3 Fe 

73-55 73 -38 _ 0 0 _ 73-5 0 
L 73-643 Zr 

75 -08 74*95 75-0 h 12 4 75-01 12 74 *953 7 • Cr 

— — 78-1 — — 0 78-1 1 — — 

o
 

00 80-53 80-1 2 1 0 . 80 -3 1 — - — 

82-76 82 -82 82-7 3 1 82-76 1 S-2 -565 • 5 Fe 

84 *42 84 *46 - 0 0 — Shading ends in 9. 84 -44 0 — — - 

88 -22 88-11 87 -9 0 , ; 0 88-1 1 SS-04 o Ti 

90-11 90-04 90-2 12 ' 25 5 90-12 25 S9 *S85 5 Cr 

r 94 -204 o Ti 

94 *22 94 -33 94-5 12 4 Narrow line in 9. 94 *35 12 "I 1 

1 94-301 5 I'O 

4:96 *54 4296 -93 4296 -9 1 1 Diffuse in 9. 4296-8 I 4296-74 3 9 

* One of the strongest lines of Srandium. 
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Table 1.—Eclipse Spectra, May 28, 1900—coiitiiiued. 

51-76 

58-9 

60-7 

62-9 

67-55 

51 -9 

54 -8 i 54-9 

58 -6 

59 -8 

63-9 

67-7 

51-9 

59-1 

69 -7 70 -0 

4371-0 4371-5 

64-1 

67-7 

4370-1 

20 

1 

1 — 

4 Diflusu in 9. Enhatn-ed Fe 
(Lockyer) 

1 Wide in 13. 

1 y Very ill defined lines in 13 and 
very diffuse in 11 

1 J 

Wave-lengths. Intensities. 

Remark.s. 
Adopted 

wave¬ 
length. 

No. D. 
Latitude 
-74° E. 

No. 11. 
Latii.ude 
-41° \V. 

No. 13. 
Latitude 
-75° W. 

No. 9. No. 11. No. 13. 

4299-1 _ _ 1 _ _ 4299-1 

4300-1 4300 -38 4.300-1 7 15 5 4300 *2 

02*2 02 -04 02-8 2 2 3 \ Wide in 13. 02-3 

Well defined group of two or 
1 three lines in 9 

03-5 03-65 — 2 2 — J. 0.3-6 

05-6 - — 0 - — 05-6 

— 06 -03 06-0 — I 1 06-0 

08 -06 08-07 

VJ 
00 
o

 5 15 4 Well defined in 9, . . . (G) 08-1 

09-6 09 -6 09 -9 I 0 1 Very fine line in 11. 09-7 

10-5 - — 4 — — 10*5 

12-9 13-1 12-8 •5 10 2 12*9 

14-3 14*5 14-4 T) 6 •> 14-4 

15-4 15-2 15-4 5 6 2 15-3 

17-3 17-2 — 0 1 — 17-2 

18-9 19-0 — I 4 — 18 -95 

-20-9 -20-7 ‘20-7 10 12 4 Narrow line in 13. ■20 -8 

23-4 — — 1 — — 23 -4 

25*8 25*1) 25-6 8 15 5 Perhaps two lines in 9; wide on ■25 -8 
V side in 11 

30*7 31 0 30-8 1 1 0 Diffuse in 9. 30 -8 

33*86 34-1 33-7 2 1 0 Fine naiTow line in 9 . . . . 33 ‘9 

38-0 _ _ 10 _ _ Difficult to measure in shade of 38-0 
Hv 

40-7 40-2 40-7 so 90 60 40 -5 

44 -2 44-6 44-4 5 8 1 Diffuse in 9. 44*4 

46 *36 — — 0 — 46-4 

— — 47-8 — — 0 47 *8 

51 -9 

54-8 

58-9 

60 -2 

62-9 

64-0 

07-7 

69 -9 

4.371-2 

Inten¬ 
sity. 

Wave-length 
in sun 

(Rowland). 

1 4299*149 

15 4300 -211 

o 02-353 

— 02-460 

— 02-692 

2 02-913 

0 — 

1 06 *078 

15 
j" 07-907 

1 08-081 

0 
- 

4 

10 13-034 

6 14-479 

— 14 *964 

— 15-138 

6 15-262 

4 18-817 

12 ■20 -907 

1 23 -386 

15 25*939 

1 30 -866 

1 33 -925 

10 ? 38-084 

90 40-634 

8 
J' 41*451 

1 44-670 

— 

— 

20 

1 

5 

j" 51-930 

\ .52 -083 

58 *879 

•59 -784 

3 59 *907 

0 — 

0 - 

1 
r 67 -749 

1 67 -839 

0 
[■ 69 *873 

\ 60*941 

0 4371 -144 

Inten¬ 
sity. 

4 

2N 

4 

3 

6 

2N 

8 

2 

IN 

4 

20 N 

5 

5N 

0 

3 

0 

Element. 

Ca, 

Ti 

Fe 

Ca 

Ti 

Ca 

Fe 

Ti 

Ti 

Ti 

Ti 

Fe 

Ca, Mn ? 

Se 

Fe 

Ti, Ni 

La 

Ti 

Ity 

Ti 

Cr 

Cr 

Jig 

Y-Zr 

Cr 

Zr 

Fe 

Ti 

Ti 

Fe 

Zr 

3 R 
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Table I.—-Eclipse Spectra, May 28, 1900—continued. 

Wave-lengths. 

No. 11. No. 13. 
Latitude Latitude 
-11°W. I -75°W. 

I 

No. 9. 
Latitude 
-74“ E. 

4374 -9 

79-65 

83-6 

85-16 

90 -9 

95 -25 

98-1 

4400-4 

04-75 

08-1 

15-5 

17-7 

22-5 

•24-1 

27 -5 

29 -O- 

33-8 

35 4 

44 -2 

j .50 -5 

1 54-8 

59-i 

61 -7 

64-6 

4468-6 

4374-9 

i 79-6 

83-7 

85-3 

I 88-2 

95-1 

98-0 

; 4400-1 

1 04 -9 

j 07-7 

i 09-3 

11-5 

15 -5 

17-6 

' 20-5 

22-7 

35 -4 

41 -6 

44-0 

50 -6 

55-1 

59-4 

61 -8 

61-5 

66 -5 

4468-7 

4374-9 

80-0 

83-7 

85 -5 

91 -4 

95-1 

98-1 

4400 -2 

04-8 

08-6 

11-2 

15 -5 

17-8 

22 -"2 

27-5 

30-1 

35 -1 

] 43 -9 

j 50 -6 

1 

55 -1 

69-3 

61 -6 

64-6 

66-5 

4468-7 

No. 9. 

20 

0 

5 

2 

1 

10 

1 

0 

1 

0 

2 

1 

16 

i 3 

*> 

0 

1 

1 

12 

25 *2 

27-4 

30-2 

Intensities. 

Hemarks. 
Adopted 

wiiv’e- 
Icngth. 

Inten¬ 
sity. 

Wave-length 
in sun. 

(Rowland;. 

Inten- 
siry. 1 

I 

! 

Element. 

No. 11. No. 13. 

r 4374-981 0 Zr 

25 1-2 Best (lefinedoutside in 11; wide 4374 -9 •25 1 

in 13. Enhanced Ti(LocKTEK) I 75-103 2 ’ V, Mn 

2 Diffuse in 11. 79-7 1 79-927 0 Zr 

23 8 83 '7 25 S3 •7-20 15 1 Fe 

)■ Very diffuse in 9. 
1 J 85-3 I 85 -406 ^ ] Ua 

i _ No. 11 only, visible outside to W, 88-2 1 _ — — 

not at line of measures, or on 
continuous spectrum 

f 91 -1-23 Fe 
_ 0 .1 91-1 1 

1 91-192 1 Ti 

r 95 -201 3 Ti 

30 15 95-15 30 

I 
t 95-413 2 V, Zr 

5 . 98-1 5 98-178 1 (Zircon 
not Zr) 

r 4100-343 0 Zr 

-20 5 Wide in No. 9. 4400-2 •20 
t 00 *555 3 Sc 

20 5 04-8 20 04 -9-27 10 Fe 

1 - — 07 -7 0 08 -364 •> V 

2 08-1 2 08-582 3 Fe 

1 
J - — 09-3 1 08-683 2 V 

0 0 
. 

11-4 0 — — — 

20 5 . 15 -5 20 15-293 8 Fe 

— — — 15-72 3 ') 

20 17-7 20 17-884 3 Ti 

0 — 20 -5 0 •20 -686 00 Zr 

1 1 Diffuse in 13. ■22-5 1 2-2-741 3 Fe, Y 

— 24-1 0 •24 -006 2 Fc? 

0 — . -25 -2 0 25 -608 Ca 

4 3 Narrow line in 11. •27 -5 4 27 -48-2 5 Fe 

f 30*070 00 La 

3 •> Diffuse in 11. 30-1 3 
1 30-221 00 La 

33-S ; 0 — ! “ — 

5 5 Diffuse in 11. perhaps another 35-3 5 35 1-29 ! 5 Ca 

line on V side. Diffuse in 13 ' 

0 41 -6 0 41 -881 oN V - 

1 2-'> 12 Diffuse on V side in probably 1 44-0 25 43-976 ; 5 Ti 

a line on V side 

r 50 •48-2 1 1 Zr-Fe 

i 10 1 Diffuse in 9. 1 50‘H 10 1 

L 50-654 2 Ti? 

1 
10 1 55 '0 10 51 *953 5 Ca, Zr 

r 59-109 •> Ni 

0 0 59-3 0 
i, 59-301 3 Fe 

2 5 1 61 -7 2 61-818 4 Fe 

r 64-617 i 2 Ti ? 

1 0 Narrow line in 11. 64 -6 1 ) ' 
t 64-844 2 51n 

1 I 0 06 '5 1 66 *727 5 Fe 

1 
25 
!. 

4463-7 i “ 4468-663 i ^ Ti 



GENERAL DISCUSSION OF SPECTROSCOPIC RESULTS. 493 

Lable I.—Eclipse Spectra, May 28, 1900—coiitiiined. 

1 AVave-lengths. Inten.sities. 1 

No. 9. No. 11. No. 13. Remarks. 
Adopted 

wave- 
Inten¬ 
sity. 

Wave-length 
in sun Inten¬ 

sity. Element. 
Latitude Latitude Latitude No. 9. No. 11. No. 13. length. (Rowland). 
-74= E. -41= AV. -75= IV. 

1 

4471 -G 4471 '65 4471 -9 5 40 12 Faint anil wide in middle, 4471 -7 40 (4471-646) lie 
Ftrong and narrow outside 
in 9 

75 '9 
1 

76 -0 76 -3 3 2 5 76-1 •> 76'185 4 Fc 

79-3 79-4 1 — — — Probable group. 79*4 1 I — — — 

82*5 82-1 82-4 o 3 5 Diffuse in 1.3. 82-4 3 
f 82-338 5 , Fe, - 

L 82-438 3 Fe i 

89 *2 89 *6 89-3 •> 3 10 ! 89-4 j 3 89-351 2 
^ i 

— — — — — — 1 
y Diffuse band or group of lines . - 1 — 89-911 ' -i 1 

— 
1 — — 90-253 3N Mn-Fe 

91 *3 01 -7 91 -5 1 1 10 j 91 -5 1 91 -570 j , •> ? 

93 -9 T 94*3 1 
1 

94-7 1 0 2 Very diffuse in 9. 94*3 1 0 91-738 6 Ft 

96-7 96-9 1 97-3 1 1 5 Ditto. 96-9 I 1 97 -023 3 Cr 

. 4.501-4 4.591 -5 4501 -6 10 30 25 30 4501 -145 5 
1 

Ti, - 

08 -4 
1 

08-4 08-7 3 10 10 Very narrow line in 9 . . . * 08 -o 10 08 ’455 4 Fe ? - 

15-4 15 *6 10-7 3 8 10 Poor definition in 9. . . . * 15 '6 S 15-508 3 ■^ 

18*3 1.8-3 — 0 2 — 18-3 o 18-189 3 Ti 

20-6 ■20 -5 20-6 2 5 5 * 20-6 5 20 -397 3 Ft- ? - 

22-9 ■23 -0 ■23 -0 5 10 10 * 23 -0 10 
j" 22 -802 3 ? i 

t 22-974 2 Ti j 

28 ‘8 28*9 29 -3 0 I 0 29 -U 1 28 *798 8 le 

31 -4 

34 *3 34*3 34-2 

0 — — 31 -4 0 31 -327 

f 34*139 

5 

6 

Fe 

Ti-Co 
12 30 20 34 -3 30 

L 31-95 4 Ti 

36*1 36 -6 — 2 1 - Continuous spectrum only 
No. 11 

36 -3 1 — I 

39 -6 40 *0 — 1 0 — 39 -6 0 39 -946 0 Cr 

41 -1 42-1 — I 1 — 41 -6 1 41 -690 2 Cl- 

i — 44 *2 - — 0 — i _ 

4.5 -0 - — 1 — 
! Very diffuse and wide in 9; 
f probably a group in 11 15-0 0 14-864 3 Ti 

^ — 45 -8 — — 0 — j — — — _ _ 

49 -8 50 -0 49*7 15 30 33 Enlianced Fe at 4549 -64 . . . 49 -8 30 49 *808 6 Ti-Co 

54*4 54-2 54 *2 8 30 30 . SO 54-211 8 Ba 

56-2 .56 -3 56-1 4 8 8 Double Feline ; V line enhanced, 56 2 8 .56-306 4 Fe-Cr 
U line arc (Lockyer) 

5S-7 58 *9 58 *9 •> 
“ 8 5 Enhanced Cr (Lockyer) . . . 58 *8 8 58 "827 3 Cr 

CO -5 

G2-1 

64-1 

— 0 

0 

10 

- 60 *5 0 - — — 

64-1 63-9 ‘■^.5 25 

62*1 

64 *0 

0 

25 63 ‘939 1 4 Ti 

72-2 72-3 72-0 12 30 25 72 *2 30 72-156 I 6 Ti- 

76-7 76*4 76 '5 2 
0 5 On continuous spectrum only 76 -5 0 76 *512 o V 

SO -4 80-1 79 -9 0 0 5 
in 11. Enhanced Fe (Lockyer) 

0 80 *228 3 Cr 

84-1 84-0 83-6 iO 25 25 Enhanced Fe. S3-9 25 84*018 4 Fe- 

S8 -0 88-0 — 0 o — Long line in 11. 88 -0 88-381 3 1 

89 -S 90-1 4589 *3 0 •> 3 Ditto ? double in 13 89-7 o 4,S90-126 3 ■i 

92*2 1592 '6 — 0 0 , _ r 
1 Narrow lines in No. 9, but too !I2 -3 0 

4593*9 
1 1 faint for good measures 

0 ... j 

1 
— 1 4.593 -9 0 — — 

- 

* iSnluincc'cl Ke (Lockyer), 
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Table I.—-Eclipse Specti-a, May 28, 1900—coiitiiined. 

Wave-lengths. Intensities. 

-Vdopted 
wave- 

lenjrth. No. 9. 
Latitude 
-74’E. 

No. 11. 
Latitude 
-4P W. 

No. 13. 
Latitude 
-7.5’ W. 

Xo. 9. No. 11. No. 13. 

Itemarks. 

4600 *4 4600 *.8 4600 *5 1 1 5 4600 *G 

0*2*6 — 02*8 0 — 0 02*7 

13*4 13*2 — 1 0 — 1.3*3 

13*8 16*1 16*2 1 0 16*0 

19*0 19 *2 19*0 1 o 0 Enhanced Cr at 4618*97 
(Lockyer) 

19*1 

*2*2*1 — - 0 - i — *22*1 

25 *5 - 
— 1 

j 
— 25 *5 

29 -2 *29 *3 *28 *5 8 15 25 Line seems displaced to V in 13 *29*1 

3*2*1 — — — — 1. 
■3*2*1 

1 1- Diffuse band in 9. 

33 *6 -33*7 — 1 I — 
I 
j Diffuse in 11. 33 *6 

36 "7 _ — 1 — ’ — 36 *7 

— 37 *7 — -- 0 — 37 *7 

39 *2 — — — — — 39*2 

46*1 45 *7 44*8 3 5 5 DifTuse hand in 9. 45 *5 

— 47*8 i — 47 *8 

.50*9 51*8 51 *1 I 2 1 5 51*3 

55 •! 54 8 — 
•) 2 ' — Perhaps 2 lines in No. 9 . . . 55 *3 

— _ 56 *0 — 5 56 *0 

— 57 *0 — — 2 — .57 *0 

59*8 — — 0 — 59 *8 'f 

— 61 *4 — 0 

3 

61 *4 

6.3*1 63*1 J 1 1 63*1 

66 6 66 *6 66*3 o 5 7 66 *5 

69*3 70*1 69 *2 •7 5 7 69*5 

77 *3 78 *4 1 79*0 1 - 0 >) 
1 78**2 

1 
I 

f ' 
— — 

! On continuous spectrum only 
f in Xo. 11 

81*3 81*9 1 81 *3 J - 0 1 1 81 *5 

1 — 85 *7 6 — Corona ? or upper chromo¬ 
sphere. visible outside only 
on West side 

85 *7 

97*9 98*6 — — 1 - 98**2 

4701 *9 4702*4 4702 *5 0 1 7 1 4702*2 

08*6 07*8 07*6 0 1 5 08*0 

13*6 i 13*2 

! 

13*4 4 15 7 Helium line very Iona: and 
narrow in all three spectra 

13*4 

- 22 *0 — — 0 — 1 22 *0 

*27 *0 
1 

27 *3 — 1 0 - i On continuous spectrum only *27*0 

30 *4 31 *0 30 *9 1 0 3 1 30*8 

4736 1 4736 7 4735*5 1 3 

i i 

0 ' 4736'I 

Inten 
sitv. 

1 

1 

15 

0 

1 

1 

0 

1 

0 

0 ! 

i 
1 i 

1 

I 

1 

15 

0 

0 

0 

4ti *347 

51-461 ! 

56 *644 

57 *330 

i{ 
6C- -337 

66 *655 

69 *504 

7S-347 

79 •0*27 

0 

1 

1 

3X 

6 

47CS-196 

(4T13--252) 

4730*897 1 

Cl* 

Cl* 

Ti 

Ti 

Cr 

Cr 

Cl* 

CJ 

Ke 

Cl* 

He 

Cl* 

'ave-len^^tli 
in sun 

Towland). 

Inten¬ 
sity. 

Element. 

4600 *541 •> Ni ' 

00-932 •J Cr ! 

03 *1*20 6 Fe 

13*386 3 Fe 

13*544 3 Cr, La j 

16 *305 4 Cr 

18*971 4 Ec- 

22 *065 0 Cr 

*22*1*28 1 Cr 

25 *227 5 Fe 

29 *.521 6 Ti-Co 
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Table I.—Eclipse Sjjectra, May 28, 1900—continued. 
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W.ave-len^tlis. Intensities. 

No. 9. 
Latitude 
-in E. 

4791 -9 

No. 11. No. 1.1. 
Latitude Latitude No. 9. No. 11 | No. Li. 
-41° W. -75° M’. I 

97 -3 

4762 -8 

CG-9 

79-9 

83 -0 

86-2 

89 -2 

91 -8 

98-6 

4761 -5 

65-9 

71 -4 

79-0 

'• 10 

J- 

98-6 

4804 -5 4805-1 — 
o 

i 5 

09 -6 — 
j _ i 1 — 

23 *2 23-6 4.S23-5 5 5 

48-8 48 -5 — i 0 
61-5 61 -5 61-7 60 ' 75 

71-5 71 -3 71-8 1 5 

82-1 83-3 H3 -fi o 5 

91-0 91 -0 91 -0 1 5 

4900-1 4900-4 4900 *2 3 5 

1 03-5 04-6 — 2 1 
1 

09*8 11-2 — 5 ■2 
19-2 18-7 ■20 -3 Shading Shadii 

24 -2 -24 1 23 -9 15 30 

34 1 34-2 34-2 10 20 

57 *7 57 -8 57 ’9 ? 15 

— 71-2 — — 1 

— 83-8 82-9 10 

— 91-8 — — 2 

— 99-8 — - 2 
— 5006 -0 - — 5 

.6018-2 18-5 5018-6 15 30 

— .31 -3 - — 5 

— 5040-8 1 — - 15 

70 

7 

0 

20 

Remarks. 

Probably a croup ot lines . . 

Poor definition in 9 

Diffuse in 9 and 11 . . 

Diffuse in 9 

Wide and diffuse in all spectra 
(width = 2 "3 tenth-metres in 
11) ^ 

W ide line.■. . 

Diffuse in 9, very wide in 11 . 

Diffuse shading in 9 and 11, 
ill-defined group in 13 

Enhanced Fe. 

Very wide in 11 , 

Line, or blue edge of group 

Enhanced Fe. 

Adopted 
wave- 

Inten¬ 
sity. 

Wave length 
in sun 

1 

Inten¬ 
sity. 

1 
1 

Klcnient. 
leng-th. (Rowland). 

— — 4761-718 1 3 Mil 

4702 -0 — 62 -567 5 Mn 

5 64-108 4 Ti-Ni 

00-4 — 60-050 3 Mn 

— — 66-621 4 5In 

71 -4 0 — — - 

79-2 1 - - 

82 -5 1 — - 

85-8 I — “ 

88-7 1 - - — 

91-8 I - - — 

98-2 2 — — — 

4804-6 5 — — — 

C9 -6 1 - - - 

23-4 5 4823-697 5 Mn 

48-6 0 — — - 

61 -6 75 Cl '527 30 

71 -5 5 71-512 5 Fe 

77-8 0 — — — 

83-0 5 — — — 

r 90 -948 C Fe 
91 -0 7 J 

L 91 *083 8 
, 

Fe : 

r 4900-095 o Ti La 
4900-2 5 

1 00-301 2 Y7 1 

04 -0 1 — — — 

10-5 2 - , 

19-4 ? 19-174 C I'e j 

■24 1 25 : ‘24-107 5 Fe 1 

^ 34-214'l 
34 -2 20 1 

1 34-277/ 
C lia-Fc •? 

57-8 10 57-785 8 Fe 

71 -2 1 — - ! — 

r 82 -682 4 Fe 
83-3 5 ’ 

1 

J 

1 83-433 3 Fe 

91 -8 2 ! 
1 

— -- 

99*8 2 — - 

fiO 6-0 5 — — 1 — ' 

18-5 ro
 

o
 

.5018-C-'O 4 Fe 

31 *3 1 5 ' 5031-199 3 
9 

5040 -8 15 ' — 1 
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Table II.—Hvdroo'en Lines. 
V o 

Designation. No. 9. No. 11. No. 13. Alean. Computed. O
 

1 o
 

ft 4861-5 4861-5 4861-7 4861-57 4861-.52 + -05 
7 4340•7 4340-2 4340 - 7 4340-53 4340-63 - -10 

4101-96 4102-02 4102-02 4102-00 4101-90* + -lu 
e 3970-33 3970-31 3970-34 3970 - 33 3970-22 + -11 
c 3889-24 3889-09 .3889-12 3889-15 3889-20 - -05 
■'/ .3835-45 3835-51 3835-56 .38.35-51 3835-53 - -02 
e 3798-02 3798-04 3797 - 95 3798-00 3798-04 - -04 
t 3770-70 3770-78 3770-70 3770-73 3770-77 - -04 

I 3750-25 3750-29 .3750-26 3750-27 3750-30 - -03 
A 3734-48 3734-58 3734-52 .3734-53 3734-51 + -02 

I /'- 3721-92 3722-03 3722-00 3721-98 3722-08 - -10 
i r 3712-12 3712-16 3712-12 3712-13 3712-11 + -02 
! i 3704-03 3704-01 3703-98 3704-01 3704-00 + -01 
\ ^ 3697 - 34 3697-20 3697■30 3697-28 3697-29 - -01 
! - 3691-75 3691-62 3691-74 3691-70 3691-70 + -00 

i '' 
3686-97 3686-89 3687-01 3686-96 3686 - 97 - -01 

(T 3682-98 3682-88 3682 - 95 3682-94 3682 - 95 - -01 
T 3679-59 3679-45 3679-52 3679-52 3679-49 + -03 

I 3676-56 3676-42 3676-55 3676-51 3676-50 + -01 
I 4> 3673-96 3673-82 3673-90 3673 - 87 3673-90 - -03 

X 3671-50 3671-48 3671-61 3671-53 3671-48 + -05 
xjy 3669-52 3669-58 3669 - 55 3669 - 55 3669-60 - -05 
h) 3667-90 3667-77 3667-81 3667-83 3667-82 + -01 

Series No. 27 3660-31 3666-11 3666 - 33 3666-25 3666-24 + -01 
28 3664-72 3664-73 3664-76 3664-74 3664-82 - -08 

„ „ 29 3663-49 3663-58 3663-58 3663-55 3663 - 54 + -01 
)) )) 00 3662-34 3662-34 3662-39 3662-36 3662-40 - -04 
>) )) 01 — 3661-31 % - 3661-31 3661-35 - -04 
» >> — — Theoretical limit . 3646-13 — 

* The solar absorption line is at 4102-00 according to Jewei.l. 

17 JUL.1S03 
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Plate measured here- 
South pole- 

Southpole- 

SoutKpole. - 

Plate measured 
here. 

Plate measured 
here 

41 , 412 , 43 , 44 , 4|5 , 40 , 417 , 418 , 419 , 50 

Spectrum N°9. Exposed for 2 seconds,beginning' i5 seconds before mid-eclipse. 

Spectrum N“10. Exposed for a seconds,beginning lo seconds before mid-eclipse. 

Spectrum N? 11. Exposed for lo seconds. Middle of exposure at mid-eclipse. 

Spectrum N“13. Exposed for a seconds, beginning 14 seconds after mid-eclipse. 

. Latitude-74° E. 
- South pole. 

-Lntitude-63°to-66°E. 

-South pole. 

-Latitude-56° W. 

South pole. 

Latitude-4i°W. 

South pole. 
Latitude-76° W. 
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Xill, TIk' Electrical (\mflHCtivihj Trnparfed to a Vacuum luj Hot (ouductors. 

By O. W. Kichaedson, B.A., B.Sc., Felloiv of Trinity Colleye, Cambridge. 

Communicated by Profe ssor J. J. Thomsox, F.R.S. 

deceived Felmiaiy 28,—Eead March 2C, 1903. 

TxTEODUC’TIOX. 

The ex23erimental pai't of the present paper is an investigation of the electrical 

conductivity of the space siuToiinding hot surfaces of platinum, carbon, and sodium 

at low pressures. A preliminary account of some of the experiments on platinum 

was read before the Cambridge Philosophical Society on November 25th, 1901.'" 

The conductivity produced by hot metals has been the subject of a great numbei' 

of researches liy different authors. The phenomena are, however, very complicated ; 

for the quantity and sign of the ionisaticni is found to vary in the most remarkable 

manner with tlie nature, temperature, and previous history of the metal, with the 

nature and pressure of the surrounding gas, and with small changes in the state of 

the metal surface. The present investigation was undertaken with the idea that in 

the negative ionisation at high temperatures the conductivity produced by metals 

took its simplest form. This idea is supported by the observation of Professor 

McClelland,I that the negative current is to a great extent independent of the 

nature of the gas, and is independent of its pressure over a luiige from '04 to 

’004 millini. 

1 he chief problem whicli is here attacked experimentally is the way in which the 

saturation current from the hot metal surface to a neip’hbourino; electrode varies with 

the temperature of the metal The value of the saturation current corresponds to 

the total number of ions which are produced by the surface per second. Incidentally 

it was found necessary to examine, in addition t(3 the aliove, the relation between the 

current and the electromotive force for the conductivity produced by tlie tliree above- 

mentioned conductors at various pressures. 

The theory, by whicli it is proposed to explain the plienomena, is based on the 

* ‘Proc. Gamin’. Pliil. Soc.,’ vol. 11, ]). 28G. 

t ‘Proe. Cambr. Phil. ,Soc.,’ vol. 10, p. 241, and vol. 11, p. 296. 

VOL. cci.—A 343. 20.7.03 
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liyj)<»tliesiH of coiidiictioii in metals Ijy coipnscles wliicli has been elaborated by 

Professors and J. -1. Tiio.MSux.t Acc<jrdiiig to that theory a metal is to be 

regarded as a sponge-like structure of molecules and ccjmparatively large tixed 

positive ions, with small negati\'e ions oi- corpuscles moving freely with great velocity 

throughout the mass. Since the corpuscles do not all leave the metal when they 

strike the surface, it is evident that there must he a surface discontinuity of potential 

wliicli prevents their escape. If now we raise the temperature ot the metal we 

increase the average velocity of the corpuscles, and, provided the energy required to 

take an ion through the surface does not increase with the temperature, many more 

of the i(jus which strike the surface will pass through than before. In this way we 

can calculate the way in which the nnmher ot corpuscles shot oti from unit area ot a 

metal surface varies with the temperature. Idie formula so obtained involves two 

new constants, viz., the number of ions in unit vriimie r)t the metal and the work 

done by an ion in passing thi'ongh the surface. 

It may he permissible to state in anticipation that almost the whole of the 

experimental results are in striking agreement with the theory. In particular the 

theoretical formula makes the saturation current increase enoirnously rapidly with 

the temperature of which it is an exponential lunction. lire experiments show that 

this is actually the case, and the saturation current has been followed over the 

following ranges of values for the three conductors examined : 

For platinum from to 10“'^ ampere per sq. centim. 

,, carlion ,, 1,, 2 ,, ,, ,, 

„ sodium „ 10“^^ „ 2x10“^ ,, total current. 

The corresponding ranges of temperature for platinum and sodium are roughly from 

1000° C. to IG00° C., and from 100° C. to 450° C. respectively. 

Perhaps the most surprising result of the investigation is the relatively enormous 

currents whicli have been obtained. The biggest leak measured was '4 ampere from 

a carbon filament to an electrode placed near it; this corresponded to a current of 

2 amperes per sq. centim. of the carbon surface, the potential on the wire being 

— GO volts. In tliis case the gas pressure was only millim. of mercury, so that 

the ionisation produced by collisions Avas negligible. In all cases care was taken that 

tlie field which was put on the filaments was insufficient either to start a discharge 

oi’ to mainfain one when started. 

The smaller currents wltli sodium were measured by means of a ([uadrant electro¬ 

meter : the largest ('04 ampere) was registered on a Weston ammeter. 

It is evident from these experiments that a metal ii‘ placed in a Amcuum and 

heated to a sufficiently high temperature makes the space around it an extremely 

* ‘Druue’s Ainuileii,’ vol. 1, p. 506. 

t ‘ Ruppoi-ts preseiites an Co.igres Interuatioiial de Rhysiipie,’ Paris, 1000. 
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good conductr»r of electricity. The results show that in the case of an incandescent 

lamp, heated to the highest temperature it will stand, the specific conductivity of the 

surrounding space is comparable with that of the filament. 

In the case of a hot conductor the current across tlie intervening space to the 

electrode will, of course, only go in one direction. The current whefi the hot metal 

is charged positively, and the electrode put to eartli, is vanishingly small in comparison 

with the current wdien the wire is charged negatively. 

I he lemainder of the present paper is divided ipi as f( )llow's i— 

A. —llieoreiicfd [)ivesfigation. 

1. Calculation of the saturation current. 

II. Equilibrium of corpuscles near a hot plane of infinite area. 

B. — Experimental In rei^ligafion. 

I. Experiments with platinum. 

II- ,, carbon. 

Ill- ,, sodium. 

C. —Conclusion. 

A.—-Theoretical Investication. 

I. Cedcvlation of the Satuixttion Current 
♦ 

§ f. The apjilication of the kinetic theory of gases to the equilibrium of the free 

negative electrons or corpuscles inside a metal scarcely needs justification here, since 

it has already been made use of by Professor Drude.^' It may, howmver, he 

permissible to point out some results which show that the similarity lietween a 

coipuscle in a metal and a molecule in a gas under ordinary conditions is very close 

indeed. Professor IhomsonI has showm, from the change of resistance of bismuth in 

a magnetic field, that the mean free path of a corpuscle in that metal has the value 

10 ^ centim. ; while a series of experiments by Mr. Patterson| indicate that for 

lilatinum, gold, tin, silver, copjier, zinc, cadmium, mercury, and carbon the mean free 

path has values wdiich lie between 5-9 X 10~^ and 4T X centim. The mean 

free })ath for a nitrogen molecule in air under standard conditions is 10~^ centim. ; 

so that the mean free path of a corpuscle in bismuth is the same as that of a molecule 

111 air at j^fl^ an atmosphere pressure, whereas for other metals the mean free 

path IS the same as tliat in air at about 10 atmospheres pressure. The free time is, 

* ‘Dp.ude’s Aniialen,’ vol. I, p. .572, &c. 

f ‘Rapports preseiites an Cong-res International de Physique,’ Parts, 1900, vol. 0, p. l;ps. 
t ‘Phil. Mag.’ (6), vol. 3, p. 655. 

3 S 2 
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of course, only about one-hundredth that of an air molecule possessing the same free 

path, owing to the great velocity of agitation (d‘the corpuscles. Nevertheless we are 

(|uite justified in assuming that the time during which the corpuscles are moving 

freely is great compared with that during which they are colliding. In fact this 

assumption follows at once if we are to attach any definite meaning to the ideas of 

free paths and collisions. 

If, in addition to neglecting the number of corpuscles which are colliding at any 

moment in compaiison with those which are not, we assume that the atoms of the 

metal and the positive ions oscillate about fixed centres and are subject to forces of 

restitution which are functions of their displacements only, we oldain at once, by the 

a})plication of the (ordinary analysis of the kinetic theory, the distri])ution of vel()city 

among the corpuscles. This is found to Ije the same as that for an equal number of 

similarly constituted gas molecules. Thus the number of corpuscles (N„Ni,.N„.) which 

have velocity components in three jnutually perpendicular directions between u and 

u -f du, V and v -f dv, and lo and w + dw res})ectively are given by 

and 

N„ = . = N 
/ knv 

1 
) du 

\ 77 , / 

11 

f km 
i 

V 77 , 

. = N ( 
drnv 

f dw 
\ 77 ; 

N,„ = 

where N is the total number of corpuscles considered, m is the mass of a corpuscle, 

a, /3, and y are the impressed velocity components of the corpuscles in the direction 

(^f V, and w respectively, whilst is the average energy of translation of a 

corpuscle, and is equal t(j that of a gas molecule at tlie same temperature as the 

metal considered. The velocities a, y are connected with the components q, r, s of 

the current density according to the relation 

(y, r, s) = n (a, /3, y) e, 

where e is the charge on a corpuscle, and n is tlie number per cub. centim. 

§ 2. If we su])pose the impressed velocities to l)e nil or to be negligilde compared 

with the velocities of agitation, the number of molecules in unit vohnne having 

velocity conqxments between u and n (h(, v and i'dc, and iv and ivdtt' 

bec< >mes 

dr dir.(2), 

\ 77 / 

whilst the number with these velocity components which bit unit area })erpendiculai' 

to u per seco]id is 

U ( ^ (-'2+c+(<■■■') 

V 77 / 
(3). 
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It we sujjpose the surface ot the hot conductor to he perpendicular to the axis of v/,, 

then the total number of corpuscles which hit unit area of the surface per second is 

fT f’ 
'^0^' — X*—GO ' 

We now suppose that there is a discontinuity in the electrostatic potential at the 

surlace of the metal which is great enough to prevent the escape of the corpuscles at 

low temperatures. If the work done by an ion in passing through the suiiace layer 

is (f>, tlien the discontinuity in the potential is (p/e, where e is the charge on an ion. 

We have further, by symmetry, 

1 off) 

e ay 

I a<p 
e dz 

= 0, 

the surface being perpendicular to the axis of x. 

Moreover rmc = — 
c<t> 

dx 
whence Un aJ ^ cl) 

^ Hi 
(4), 

where a,, is the normal component of the velocity of the corpuscle after it has escaped 

Irom the metal. 

It is evident from this that not all the corpuscles which strike the surface of the 

metal esca])e from it, hut only those which have a normal velocity component which 

is > Hence, to get the total number -which pass through the surlace layer, 

Ave have to integrate ex}jression (3) Avith res])ect to du not from 0 to od , but from 

a/" m 
flA to Qo . Thus the number which escape per second from unit area is 

iven by 

N 
Oui:. 

Hi 

pGO 

n 

— X ' 77 ,/ 

. . . (5) 

^^ {km-rr) ^ = . 
^ IniTT 

. . (G), 

since k is connected Avith d, the absolute temperature, by the relation k = 

R being tlie gas constant lor a single corpuscle. The saturation current being equal 

to tlie quantity of electricity carried by the ions Avhich are shot olf from the surface 

in one second, is giAmn liy 

C = Ne8 = lieS a / -- V 27); 
I., lit) 

2?n7r (7), 

Avhere 8 is tlie area of the metal surface and e, as before, the charge on an ion. 

^ 3. Wlien the ions are removed by an external electric held as quickly as they ar 
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set free at tlie surface of the metal, as in the case of the experiments to ])e described 

later, the metal must he continually losing energy owing to the emission of the 

orpuscles. This energy is composed of two parts : the first being represented hv 

the work done liy the c(.)rpuscles in passing through the surface laver, while the 

second is ecpial to tlie energy of translation which they possess when they have 

readied the outside of tlie metal. The sum of tlie two is easily calculated, since it is 

etjua] to the energy of translatioji wliich the corpuscles that have passed througli tlie 

surface layer possessed wliile tliey were inside the metal. We have therefore merely 

to multiply tlie nunilier of corpuscles Avhich strike tlie surface by the energy each 

jxissesses and integrate between limits Avhich embrace all values that pass through 

the surface layer. The total loss of energy per second is therefore 

ui (a'" + v~ d- w~) ue J,; (Jir (8). 

It (1 + /.:<l>) e--‘* 

2 Trhii^k^ ml V 
2we'’’ 
-e 

■nm 
—$ Re 

(9) 

Now the work done in a second by the corpuscles passing through the surface 

layer is obviously = Nff, so that the part oi' the energy lost by the hot metal per 

second which appears in the form of the translational energy of the corpuscles, is 

given by 

Ndi = 
n e —2i-$ 

2 
= n 

2we^\- _ 
-e 
mv 

■}> Re (10). 

This calculation of the inte of emission of energy only applies, of course, to the 

case where the ions are removed by an external field as fast as they are formed. If 

there is no external field and the ions are allowed to remain, we soon arrive at a 

steady state when as jnany corpuscles possessing a given amount of energy enter the 

surface of the metal in a given time as leave it ; so that in this case there is no loss 

of energy due to this cause. 

The following proof of formula (h), which is due to Professor J. J. Thomson, is 

interesting, since it does not involve the methods of the kinetic tlieory of gases. 

Suppose we have a closed space wliich is bounded liy a surtace of hot metal, then the 

corpuscles will be given oft' from the metal until a stead}- state is reached. In this 

steady state as many corpuscles will pass through the bounding surface from the 

vacuum to the metal as from the metal to the vacuum, liut the pressure will not lie 

the same on both sides of the surface owing to the forces which tend to retain the 

corpuscles in the metal. There will thus be a discontinuity in the pressure at the 

surface of separation, and fii being the work done on an ion when taken through the 

surfa.ce, we have 
••n 

p (Iv = <l>. 
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where 1 refers to the metal and 2 to the iieig'hhourmg space, p being the pressure 

and V the volume occupied Ijy a corpuscle at any point. Substituting for p its value 

Rd/y from the gas equation, Ave get 

log Vg — log = <iyild ; 

whence, if he the numl)er of corpuscles ]jer unit Amhnne outside and ??, the number 

per unit volume inside the metal, Ave havm 

Noav the numl;er ol corpuscles shot oli from the surface per second is not equal to the 

number per unit volume of the space, Imt is equal to this multiplied by the a-A^erage 

\mlocity perpendicular to the surface. So that, in the steady state, N = Avhere 

u = du = ; whence N = 
^ tt ■ Jo V 2w7r V 2mTT 

Avhich is the same formula as lias lieen deduced above Avithout postulating the 

existence of a steady state. 

By folloAving up the analogy betAveen the emission of corpuscles and evaporation, 

the preceding formuhe, connecting the corpuscular pressure Avith the tenqierature, can 

be obtained thermodynamically in a manner involving still feAver assumptions. 

IT. The Eijuilihrium of Corpuscles rear a Plane Surface of Hot Metal of 

Infinite Extent. 

§ 4. Both tin’s problem and the coi'responding problem in spheres are of consider- 

alde inqjortance, not only in connection Avith experiments in vacuum tubes, but also 

Avith regard to the behaviour of hot celestial bodies in space. For instance, the 

aurora borealis and allied phenomena indicate that large quantities of ions continually 

reacli the earth from some extraneous source, Avhile certain A^ariations of the earth’s 

magnetic held and other meteorological plienomena seem to be intimately connected 

AAuth eA-ents Avliich take place at the surface of the sun. Tlie jiresent papier does not 

attenqit to soh'e these ipiestions, hut the alioAm facts indicate tliat tlie subject of the 

ionisation produced by hot Ixxlies is not Avithout inq)ortance in regard to meteorology. 

The problem under consideration may Ije specihed in the following terms :—Given 

an irdinlte quantity of hot metal lx)unded on one side by a plane surface of infinite 

extent Avliicli is maintained at a given potential, hnd the charge on unit area of the 

metal surface and the potential at any point in the space outside the metal when the 

steady state has been attained. 

Let us take tlie surface of separation perpendicular to the axis of x, and let 

the suffix 1 refer to points inside the metal, the suffix 2 referring to points in the 
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neighbouring empty space. There is, as we have seen already, a discontinuity in the 

pressure of the corpuscles at the surface of the metal, and by the conservation of 

energy 
■•A 

= .(11), 
• 1 

where w is the work done in taking unit-mass of the corpuscles through the surface 

layer, p is the pressure, and v the volume of unit mass of the corpuscles at any point. 

Similarly, in order to obtain the equations satisfied by the corpuscles outside the 

metal when the equilibrium stage has been reached, we use the principle that the 

work along any path extending from a point a to a point h due to expansion is equal 

to the work done by the electric forces. This gives 

= 0, 

V ]:)eing the electrostatic potential, the charge on a corpuscle, and n the number of 

corpuscles in unit volume, since everytliing is independent of y and Now nc = N^, 

the number of corpuscles in unit mass, whence 

11^ dv 

V dx 
+ 7 " 

(lx 
= 0. 

In additioii to this the electrostatic potential has to satisfy Poissox’s equation, wliich 

takes the form 

fy; = _ , 
dx~ V 

Cq being the numerical value of the negative charge. 

The equation to be satisfied is therefore 

q_ 4^ N, Spy 
dx^ 

0 

^ /dv\~ . , 47rNy~t',|~ 
or -f C = 0, wliere 

dX' V \dx/ rm (LS). 

A first integral of this e([nation is 

d {log v) ^ 2c 

dx \ 

\ i 
\- 

v1 

B beino- an Inteo'ration constant. 
O o 

Now when v is infinite ^^8-- = O, and therefoi'e B = 0, so that 
dx 

\/2c dx = v~- dv. 
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whence 
505 

V = i (\/2c cc ~ A)2, 

A being a second integration constant. 

We have the further conditions : 

V = cc when x = 

V = when x 

which are satisfied if A^ = 

Taking the positive root for (since negative values are inadmissible) and puttin 
v-j^ = Nq/71^ we obtain 

- 12^^ N 

\n. 
AkJ'R.O 

(14). 

This equation gives the concentration (o-i) of tl,e corpuscles at any distance * from 

the plane when the temperature is maintained at 0° absolute. 

Returning to equation (12) we see that integration and substitution for v yield the 
electrostatic potential V in the form 

iwlUB 

If V = V(, for X = 0, the integration constant y is determined 

y = V„ + 2 iA 

SO that V is finally to be obtained from 

+ y- 

as 

0 + 2 log \ , 
71 

v = v„- 
"nIc„ ‘“S' { 1 + 

The electric intensity at any point x is given by 

(15). 

(lY 

dx 

2[27T'Re^ 
No/' 

\i 

1 + 
Rf? I 0 

Q—hi-iRB 

(16). 
X 

and the charge on unit area of the radiating plane by 

cr = _ .1 _ K-Re\i., 
477 \dX/x=o \27rN, 

- iif/Hff 
(17), 

VOL. CCI.—A. 3 T 
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the volume density ^ at any point x being 

1 dW 

Att dx" /277?2;^No 

V ne 

-Kim 

— iu>/R0 

(18). 

It is evident that ^dx = cr, since dY/dx = 0 for x = co. Thus, as we should 
J 0 

expect, the charge on the surface is equal and opposite to the total charge in the 

space outside the metal. 

As a numerical illustration we may calculate the potential at a point distant 

10 centims. from a plane surface of platinum which is put to earth and maintained at 

a tenqDerature of, say, 1500° absolute. Taking the number of molecules in a cubic 

centimetre at 0° and 7G0 millims. as 2 X 10^®, the charge on an ion as 6'5 X 10"^° 

and the value of z/j/R, which has been determined experimentally, to be 4'OS X 10b 

we find the potential at a point 10 centims. from the surface to be 1'5 volts, while at 

a point 1 centim. distant it would be about 1’2 volts. 

The experiments in the sequel were not intended to test this part of the theory, 

but they show, as we should expect, that practically the whole of the current is 

stojoped by a fall of potential of the order of one volt when it tends to drive the 

coriDuscles back to the hot metal. 

It will be seen by inspection of formula (15) that even at the highest temperatures 

we can attain the jDotential diflerences at small distances from the hot surface never 

become very great. For instance, at the temperature of the sun (6000° C.) the 

difference of potential between the surface and a point 1 centim. distant from it 

would be only about sixteen times its value at 1300° C. On the other hand, the 

surface density increases very quickly with the temperature, as will be seen from 

formula (17). In the case of carbon at 6000° C., taking 10"^ as a probable maximum 

value of 71 and 7'8 X 10^ as the value of ir/R, we find that cr has the enormous value 

of 300 electrostatic units, whereas at 1300° C. cr would have been less than this in the 

ratio of 1 to 3 X 10®. 

These numbers are to be taken as purely illustrative. It is not supposed that any 

conductor could 230ssibly exist in a vacuum at 6000° C. 

It will be noticed that the preceding theory of the equilibrium of corpuscles near a 

surface where they are being emitted is quite independent of any hypothesis as to the 

nature of the mechanism by which they are set free. The results are therefore of 

Interest even if the hypothesis, that the negative ions from hot conductors are the 

same as those which carry the current inside the metal, is ultimately found to be 

untrue. 
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B.—Experimental Investigation. 

I. Experiments with Platinum. 

§ 1. Description of the Apparatus. 

The ultimate object of the experiments was to determine the way in which the 

saturation current from a hot platinum wire to a surrounding electrode, both placed 

in a vacuum, varied with the temperature of the wire. For this purpose the type of 

bulb shown in fig. 1 was found to be most convenient. 

The wire to be heated was in the form of a spiral, with its axis passing centrally 

along the length of the tube ; the current through the wire was supplied by means 

of the two thick leads AA^ and The electrode to 

which the current was measured was an aluminium 

cylinder which surrounded the hot part of the wire, 

dhe cylinder was supported by a stout aluinimuin wire 

E, sealed through the side tube D by means of platinum. 

Ihe end E was connected to the electrometer or galvano¬ 

meter which served to measure the current. The side 

tube F connected the bulb with the pump and McLeod 

gauge. 

In the earlier experiments, trouble was experienced 

owing to loose contacts appearing at A^ and when the 

platinum wire had been heated. In the final form of the 

tube this was obviated by making the leads AA^ and BB^ 

of platinum wire 1 niillim. thick, to which the ends of 

the platinum spiral A^B^ were welded electrically. Tliis 

made the platinum quite continuous through the tube. 

Ihe support E of the electrode CC| was insulated out¬ 

side the tube at D by means of sealing wax. Inside the 

tube there was only glass insulation, which, however, is 

very good at low pressures. 1- 

The temperature of the platinum wire was olitained by measuring its resistance. 

The arrangement of apparatus which was used to do this and to measure the current 

from the surface of the wire is indicated in fig. 2. The whole of the apparatus below 

AI Kj IS the part which was used to determine the resistance and was insulated on 

paraffin blocks. It could be charged to any desired potential up to 400 volts by 

means of the battery B^ through the key and water resistance A. The potential 

was measured by the vMt-meter W. In this way any desired potential could be 

maintained on the hot wire F. The cylindrical electrode C was put to earth through 

the galvanometer G^, which thus served to measure the current. In some of the 

3 T 2 
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experiments a Thomson galvanometer, of 4058 ohms resistance, which gave a 

deflection of 1 scale division for 7 X 10“^° amj^ere, was nsed, but this was replaced 

later by a less sensitive D’Arsonval galvanometer. The sensitiveness of the 

galvanometer deflections could he lowered at will by means of the shunt resistances, 

Pt3 and PtQ. 

The resistance of the hot wire was determined by placing it in one arm of a 

Wheatstone’s bridge, the other three arms being the resistances Pt^, Pig, and Pi^. 

The battery Bn, which worked the bridge, also supplied the current necessary to heat 

F. As there was a current of up to I'5 amperes continually running through the 

arm F^, the corresponding arm Pin had to be constructed so as to carry this current 

Earth 

without heating. A German silver rheostat of very thick wire mounted on an iron 

frame and having a resistance of I’Z ohms was found to fulfil the required conditions. 

The arin Pig had a resistance of 1000 ohms, and plugs were taken out of the box 

till a balance was obtained in the galvanometer Go. The maximum current which 

flowed through the arms Pg and Pj. was thus about flowing through P.i 

and F. There was therefore no danger of Pig and P^ being heated by the currents 

used. The adjustable resistance Pij^ served to regulate the heating current. By 

means of the keys, Ko, Kg, the battery could be put on between the two 

resistances Pg and Pi^^ at the one end, and Po and F at the other. In this way the 

currents flowing througli the various arms could be made small, F would not become 

heated, and, by making the proper connections for the galvanometer G.i, the 

resistance of the arm F at the ordinary temperature could be determined. In tlie 

earlier experiments an arrangement was used which enabled the same galvanometer 

to be employed l^oth for the resistance and leakage circuits; but it was found to be 

more convenient to use two galvanometers. 
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§ 2. Variability of the Current. 

As some unsteadiness had been observed in the galvanometer readings for the leak 

duiing the earlier observations, a series of experiments was made in order to examine 

if the current from the wire varied when the conditions were kept as steady as 

possible. ^ When the current was passed through the wire the tube became hot and 

gas was given off from the walls and from the hot wire, so that it was impossible to 

keep the pressure absolutely constant. However, by continuously pumping out the 

gas the pressure was kept practically constant, the limits of variation being very 

small. A constant current was run through the wire so that its temperature and 

resistance were invariable except in so far as they depended on tiie pressure of the 

gas in the apparatus. 

Since the rate of escape of heat from the wire is determined largely by the gas 

pressuie, the temperature of the wire is a function of the pressure. In fact, the 

galvanometer spot was a far more sensitive indicator of the pressure than the McLeod 

gauge. By carefully watching the galvanometer and jDumping accordingly, the 

variations of both pressure and temperature were kejit very small indeed. 

Undei these conditions it was hoped that the rate of leak from the wire Avitli a 

constant voltage Avoiild remain aiDproximately constant. It was found, however, that 

it varied in the most haphazard manner, oscillating irregularly lietween the limits of 

10 and 10 * ampere. The current did not become any steadier with continuous 

heating. Readings taken every three or four minutes for tlie space of three hours 

showed the same continuous irregular periodicity. The irregularities Avere quite 

independent of the potential tliat Avas or had lieen applied to the Avire, and also 

seemed to have no relation to the rate at Avhich gas Avas given ofb There was no 

measurable falling off Avith time. 

It ought, perhaps, to be mentioned that the tube used for tliis experiment seemed 

far more varialile than those used for the temperature experiments, though they AA^ere 

never examined systematically. The platinum wire used for this tube was the purest 
olitainable. 

These results are taken to indicate that the negative ionisation depends to a great 

extent on small clianges in the condition of tlie surface of the hot Avire. We should 

expect this to lie the case on the view that the phenomena are due to tlie escape of 

corpuscles from the metal, since an alteration of 14 per cent, in the work done by an 

ion in going through the surface would multiply the current by 100. 

Fuithei exj^eriinents shoAved that fairly steady readings Avere obtained if the 

heating current was stopped and the tube allowed, as it were, to recover itself 

between each observation. The initial value of the current was almost constant, it 

then began to decrease slowly and afterAvards varied in fhe irregular manner 

described above. Tlie folloAving readings taken with constant voltage^ temperature, 

and piessuie at the times stated, indicate the sort of agreement AA'hich is 
obserA^ed ;—^ 
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Time of observation. Current observed 
(in scale divisions). 

12.18 p.M. 183 
12.34 „ 191 
12.43 „ 201 
12.56 „ 218 

1.15 „ 205 
3.16 „ 208 
3.48 „ 193 

11.5 A.M. (next day) 193 

This mode of observation is jDractically that followed in § 5, where the current is 

observed immediately after the temperature of the wire has been increased by a given 

amount. 

§ 3. Experiments ivith Alternating Currents. 

A mode of observation which is especially well calculated to show the relation 

between the positive and negative ionisation produced by hot j^latinum in a vacuum 

is to heat the wire by putting it on a 200-volt alternating circuit and to observe the 

current to the cylindrical electrode. The ions of both signs are alternately driven 

away from and attracted to the hot wire owing to the alternating field between the 

wire and the cylinder. The cylinder is connected to one quadrant of an electro¬ 

meter, the other quadrant being put to earth. The directioii of the current, which is 

indicated by the direction in which the spot of the electrometer moves, is determined 

by the sign of the ions which reach the cylinder in greatest quantity under the alter¬ 

nating electromotive force. At low temperatures all the ions produced by the wire 

are positive, so that the current is necessarily in the positive direction. At higher 

temperatures negative ions are also produced in gradually increasing quantity, so that 

at one temperature the same number of positive and negative ions reach the cylinder 

in a given time. At this temperature, which may be called the transition tempera¬ 

ture, there is no current from the hot wire to the surrounding electrode under the 

given alternating field. At still higher temperatures, owing to the rapid rate at 

which the negative ionisation increases with the tenq^erature, the current is always 

negative. 

In these experiments the temperature of the wire was not determined, but a rough 

idea of it can be obtained from the resistance. This was determined with the 

apparatus indicated in fig. 2, except that the galvanometer G was replaced by 

a telejohone. Tlie following table gives corresponding values of the leak and the 

resistance of the wire :— 
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Resistance of wire. 
Current from wire to cylinder 

in amperes. 

ohms 
3-20 + 1-38 X 10-12 
3-30 + 3-7 X 10-12 
3-48 + 3-7 X 10-12 
3-78 + 1-6 X 10-12 
4-00 -7-2 X 10-12 
4-22 -7-5 X 10-11 
4-42 -6-8 X 10-10 
4-56 -2-5 xlO-o 

It will be seen from these experiments and those to be described later that the 

negative ionisation increases very rapidly with the temperature, and becomes 

enormous compared with the positive. The transition temperature for platinum at 

low pressures is about 900° C. 

§ 4. The Relation between the Current and the Applied Electromotive Force. 

As the ultimate object of these experiments was to measure the saturation current 

from the wire, it was thought advisable to investigate the relation between the 

current and the j3otential aj)plied. A large number of current-E.M.F. curves for liot 

platinum have been given by Professor McClelland.* As, however, my apparatus, 

though similar, was not quite the same as, and the currents employed were much 

greater than, m the case investigated by Professor McClelland, it was considered 

necessary to make new ex2)erinients on the subject. 

As tlie absolute value of the current was continually varying in the way previously 

described, the current was continually referred to its value with a given potential on 

the wire. This “ standard” potential was — 41 volts. The current with 41 volts on 

the wire was measured both before and after taking a reading with any assigned 

potential: the ratio of this reading to the mean of the readings with 41 volts was 

taken to be what the ratio of the current under the given voltage to the current at 

41 volts would have been if the state of the tube had remained constant. In this 

way the variability of the hot wire could be satisfactorily eliminated. 

In these experiments the value of the saturation current was about 3 X 10~® 

ampere, and was probably about ten thousand times as big as the current used by 

Professor McClelland. In making the observations readings of the current were 

taken for every 6 or 7 volts u|j to 80, and afterwards at intervals of 40 volts up to 

400. The numbers so obtained are jjlotted in the following curve (fig. 3), the value 

of the current with — 41 volts on the wire is fixed arbitrarily as unity. The voltages 

refer to the positive end of the wire. 

The current rises to aljout one-third its final value with ten volts on the wire but 

* ‘Cambr. Phil. Proc.,’ vol. 11, p. 296. 
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does not become saturated till about 160 volts. It will be seen that this curve is 

very similar to the one given by Professor McClelland for the same pressure 

(•1 millim.). The similarity of the two leads to the conclusion that the form of the 

current E.M.F. curve is largely independent of the amount of ionisation produced Ijy 

the wire. In many of the experiments on the variation of the current with the 

temperature the pressure was considerably less than ’1 millim., but we should expect 

that a voltage which would saturate the current at a given pressure would saturate it 

at any lower pressure. At any rate, the experiments to be descriljed later show that 

this is true for the negative ionisation produced by hot carbon. Another set of 

experiments on platinum showed that at ’008 millim. the current was saturated by 

less than 80 volts. 

§ 5. The Relation between the Saturation Current and the Teni'perature of the 

Wire. 

The temperature of the wire was obtained from its resistance, and in order to 

determine this the apparatus indicated in hg. 2 was employed in the manner already 

described. During each observation it was found that the temperature of the wire, 

which was run at constant voltage, fell slightly, owing to the gas given off from the 

walls of the tube and elsewhere. A reading for the resistance was therefore taken 

immediately before and after the reading for the current, and the mean of the two 

resistances was taken to be that which corresponded to the current reading. The 

wire Avas heated for a long time and the tube constantly pumped out previous to 
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niaking the observations, in order to reduce the evolution of gas as far as possible. 

When the tubes were heated at first large cpiantities of gas came off, but after a time 

further heating and jmmping did not seem to eftect much reduction in the rate of 

evolution of gas. Despite constant pumping the pressure always rose slightly in the 

McLeod gauge; the increase was, of course, more marked the higher the temperature 

of the wire. 

To obtain the temperature from the resistance measurements use was made of the 

determinations of the melting points of potassium and sodium sulphates of Messrs. 

Heycock and Neville.'^”^ The wire was set up in air and its resistance determined, 

first at the ordinary temperature and afterwards when the smallest possible grain of 

potassium sulphate placed on it just melted. In this way the resistance for two 

tempeiatnies differing by about 1000° was obtained, and the temjierature corresponding 

to any other resistance reading could be got by interpolation from the ciiiwes given by 

Piofessor Callendae. f To test the method the melting point of sodium sulphate 

was determined and no determination was more than 20° from the true value 

(883 G.). dhis agreement was held to be quite good enough for the purpose. The 

tempeiatine as found from the resistance in this way is the average temperature of 

the wire whereas what is required is the temperature at the surface. A calculation 

showed, however, that the temperature at the centre of the hot wire only differed 

from that at the circumference by 4° C., a quantity which is negligible comj^ared with 

the experimental error. 

In the experiments on platinum a potential of 120 volts was maintained on the 

wile; this was more than enough to saturate the current at practically all the 

piessuies which occurred, it was found afterwards that at pressures greater than 

09 milhm. the current was not saturated by this potential but the deviation from 

the saturation value due to this cause is smaller for the observations taken than the 

error due to unavoidable irregularities. 

The values of the pressures are given in the tables foi‘ comparison, Two numbers 

are inserted in each case in the resistance column, these are the resistances as deter¬ 

mined immediately before and after the value of the saturation current was read. 

The difference between the two numbers is a measure of the rate at which the 

tempeiatine of the wire was changing and, therefore, of the rate at which the pressure 

of the gas in the tube was increasing. 

The following table gives the results which were obtained at temperatures below 

1450° C. 

* ‘Jour. Chem. Soc.,’ vol. 67, p. 160. 

t ‘ Phil. Mag.,’ vol. 48, p. .519. 

3 u VOL. CCI.—A, 
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Pressure of gas in 
millims. of merciuy. 

Resistance of hot wire 
in ohms. 

Current from wire 
to cylinder, 

1 =• ampere x 10“'-*. 

Temperature of wire 
in ° C. 

•023 
8-338 
8 • 335 2-52 1031 

•02.5 
8-438 
8-430 8-28 1058 

•021 
8-642 
8-625 30-6 1105 

1 1 1 

O
 

1 

9
 

8-795 
8-782 100-5 1146 

•024 
8-894 
8-875 188 1170 

•028 
8-969 
8-950 300 

i 
1190 1 

•028 
9-106 
9-088 728 1224 

•032 
9-163 
9-131 858 1243 

•032 
9-263 
9 • 230 1,414 1269 

•037 
9-381 
9-350 2,600 1298 

•044 
9-472 
9 • 445 4,025 1323 

•063 
9 • 603 
9-574 11,320"^ 1354 

•063 
9-925 
9-883 11,740* 1445 

The next table nives aiiotlier series of observations extendiiiii’ over a hipher ranu'e o o o o 

of temperature. Owing to the greater unsteadiness of the tube at the higher 

temperatures the points do not fall quite so accurately on the curve. The current at 

1600° was the liiggest measured and corresponded to U03 X 10“^ ampere per 

sq. centim. of platinum surface. 

* The ciuTeiit Iieciime rather unsteady here. 
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Pressure in millims. 
of mercurj^. 

Resistance of wire 
in ohms. 

Saturation current, 
1 = ampere x 10~”. Temperature in ° C. 

•024 
9-725 
9-718 1-04 1194 

j -044 
1 

10-16 
10-14 13-62 1298 

•091 
10-63 
10-61 116 1419 

•106 
10-79 
10-75 578 1449 

•152 
10-95 
10-91 1370 1490 

•180 
11-13 
11 -07 1730 1533 

•162 
11-35 
11•355 4180 1599 

The 1 elation l^etween the saturation cuiTent and the temperature is shown 

giajDhically in fig. 4. Tlie ordinates give the value of the saturation current, the 

3^u 2 
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abscissae being temperatures in ° C. In the first curve, starting from the left of the 

diagram, each unit of the ordinate represents ampere ; in each succeeding 

curve as we pass to the right the value of the ordinate is successively multiplied 

Ijy ten, so that in the last curve each unit is equal to 10~^ ampere. To obtain the 

saturation current per unit-area the values on the curve have to be multiplied 

by 2-5. 

The curves show that the negative ionisation increases very rapidly with the 

temperature of the wire (in fact the saturation current varies roughly as the- 70th 

power of the absolute temperature). It will be seen that the current never vanishes 

absolutely, ljut only in an asymptotic manner, so that it should be observable at any 

temperature provided sensitive enough instruments are employed. As a matter of 

fact at low temperatures it would of course be masked by other effects, which become 

large by comparison. The curves seem also to tend continuously to an infinite value 

of the saturation current; hut the theory indicates that at higher temperatures the 

current would increase much more slowly with the temperature. This falling off of 

the rate of increase has not yet been observed with aiiy of the conductors which have 

been examined. 

We are now in a position to apply formula (7) to the reduction of tlie experimental 

results. For the sake of convenience we may write for the number of corpuscles shot 

off from unit area of the metal per second 

N = (C/eS) = 

where A = n (R/2mn-)'^ and h = T>/R. The saturation current C is here to he 

measured in electrostatic units. In order to test the formula we may write the 

above equation in the form : 

logic C - logic eS = logic A -f 1 logic 0 - 2-303'^ ’ 

If we put, for convenience, logic G — ^ ^ogjQ 9 — logic ^ = i/ and 9~^ = x, 

we may write our equation 

y = a - h,,XQ, 

so that plotting tlie values of y against those of 9~^ should give a straight line. In 

the accompanying graph the ordinates are the values of logic G — -g- logic 

ahscissre being 9~^ X 10^. The curve got is very approximately indeed a straight 

line; though any variation from strict rectilinearity iniglit he explained by the 

variation with temperature of the coefficient A, that is, if our theory is correct, of n 

the nmnher of corpuscles per cubic centimetre of platinum. We may therefore say 

with certainty that the main features of the phenomenon are to he represented by a 

formula of the type 

Interesting conclusicais are also to 1)e drawn from the actual values of the constants 
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themselves. From the constant A we o1)tain the nmnher n of free corpuscles in a 

' A. A is 

obtained by |)utting corresponding values of 6 and C in the equation 

logic ^ = logio C — logqo 9 — logio ‘788 + 9-523 + (2-24 X 10+) 0“+. 

At 6 (ah.solute) = 1542° this gives A = 1-51 X 10"®. The various constants in the 

logarithmic equation come from the area of the wire, which was -394 sq. centim., and 

the value of the charge on an ion, which was 

taken to be 6 X 10~+® electrostatic unit. 

The value of ?n/Il (m being the mass of, and 

Pt the gas-constant for, one corpuscle) was 

found to be = 1-204 X 10“+f Putting this 

in the expression for n, we find 1-3 X 10^+ 

free negative ions in a cubic centimetre of 

platinum at 1542° absolute. An independent 

value of n lias been obtained by Mr. Patter¬ 

son* from experiments on the change of 

resistance of platinum in a magnetic field. 

This when calculated liy the metliod given by 

Professor Thomsont yields ii = 1-37 X lO". 

The agreement of tlie value found above with 

this is really very good, when one considers 

the numerous sources of error to which the 

measurements are liable, and that an error of 7 per cent, in the absolute temperature, 

among other things, would multiply the value of n by ten. 

It was thought that possibly some regular change in the value of n with the 

temperature might be found if values were calculated for difierent temperatures. It 

was found, however, that n oscillated in an irregular manner between -43 X 10^+ and 

2-0 X 10”+, so that the experiments yielded no evidence of any detectable variation 

of n. This method of olfiaining n is extremely inaccurate, so that tlie agreement 

between tlie above numbers is really better than would be expected. 

The signification of the constant h = 4)/Il which occurs in the exponential factor is 

equally important, since ffi is the work done Ijy an ion in passing through the surface 

layer. We obtain h from the equation 

cubic centimetre of solid platinum, since we have the relati on n = 
ZniTT 

Ii 

h log. cyc' 

where C, C' and 0, 6' are corresjionding currents and absolute temperatures. 

‘ Phil. Mag.’ (G), vol. .3, p. 643. 

t J. J. Thom.sox, ‘ Rapport.s presentes au Congres International de Physique,’ vol. 3, p. 138, Paris, 

1900. 
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Substituting the values of C and C' for d = 1571, O' = 1378 respectively, vre get the 

averao-e value of h from 1378° to 1571° absolute as 4-93 X lOh If rve assume that all 
o 

the work done by the corpuscles in passing through the surface is electrical, we 

can calculate from this the discontinuity in the potential. Since R is equal to 

( X 10■■l^ we have (h = 4*93 X X 10"^“ = eScf), where e is the charge 
1 204/ 1 .^04 

on an ion and B(f) is the discontinuity in the potential at the surface of the metal. 

From this we obtain 

S(f) = D365 X 10“^ electrostatic unit = 4‘1 volts. 

The further discussion of these results will he postponed until the experiments on 

sodium and carbon have been considered. (See additional Note at end of this paper.) 

II. Experiments ivith Carbon. 

§ 1. DescrijJtion of Apparatus. 

In order to detect and examine the negative leak from carbon, the hot wire 

previously employed was replaced by a filament from an ordinary 

incandescent lamp. The thick filaments from small 8 or 12-volt 

lamps were found to be most suitable. In the form of apparatus 

which was used to investigate the relatioin between the negative 

leak and the resistance of the carbon (see fig. 6) the filament was 

allowed to remain inside the lamp. The lamps were opened up by 

snipping off the glass point at the top with a pair of pliers. The 

wide tube A was then fixed on by drawing it out at the end which 

was to be joined and blowing tlie junction out until it was wide 

enouph to allow the aluminium electrode E to be introduced. This 
O 

jDiocess required some care, as the lamps are liable to crack when hot. 

It was found that air leaks due to small cracks in the part of the 

lamp which is covered with plaster of Paris could be effectually 

stojDped by embedding the whole lamp in melted j^araffin wax. The 

tube L, into which the electrode was fixed with sealing-wax, Avas 

joined to a bulb C, Avhich AA'as someAAdiat AAuder than A, into AAdiich it 

AAns inserted, the joints being made air-tight by means of sealing- 

unx. The side tube D led t(A the pump and McLeod gauge. The 

filament F could be charged either positively or negatively, and tlie 

leak from it to the electrode E Avas measured in exactly the same 

Avay as lias already been described in the case of platinum. 

T1 lis form of apjiaratus Avas found to be quite satisfactoiy for 

iiiAmstinatino- the connection lietAveen the current from the carbon on 

tlie one hand and the electromotive force, the I'esistance of the filament, and the 
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ciUTent required to heat it, respectively, on the other. The variation of the 

saturation current with the resistance gives an approximation to its variation with 

the temperature of the filament. It was thought that a better estimate might be 

obtained if the temjierature of the incandescent 

filament were determined by means of a thermo¬ 

couple. With this object a second form of tube was ^ 

set up, which we shall proceed to describe. 

In this case the filament F, together with the 

platinum wires which support it (see fig. 7), was cut 

out ot the original lamp and fastened to two stout 

copper wires G and G^. This was done by placing 

the platinum and copper wires alongside, wrapping 

them round closely with fine copper wire and then 

soldering the whole. The filament was thus sup¬ 

ported on two long copper legs ; the rigidity of the 

structure was ensured by melting on two cross- 

jiieces of blue glass in the jiositions shown in the 

figure. The ends of the copper terminals rested in 

the small tubes, Tg and T^., wliich contained mercury, 

and which were fused in to the end of the large 

tube B. The curi'ent which heated the filament 

entered Ijy platinum wires, which were melted into 

the tubes Tg and T^. The electrode, to which the 

current was measured, was a long narrow aluminium 

cylinder E, which practically surrounded the hot 

filament. Tlie cylinder was supported by a stout 

wire let in through the side-tube A. The tube D 

was connected with the pump and McLeod gauge. 

The thermocouple was of platinum and iridio- 

platinum, the wires being the finest obtainable. 

The pure platinum wire was '0025 centim. in diameter, whilst the 10 per cent, 

iridium alloy had a diameter of ‘0035 centim. The wires were tied together on 

to the filament by means of a slip-knot, so as to make good contact but not to 

increase the diameter of the filament materially. They were then suspended from 

platinum wires let in to the tubes T^ and To, which were inserted in the tube 

LG in exactly the same way as Tg and T^, were fixed in to B. The wires P and P^, 

which were prevented from touching by the cardboard partition H, connected the 

mercury cups d\ and Tg with the rest of the thermocouple circuit. The tubes B and 

C were connected by a sealing-wax joint S just as in the former apparatus. 

In the first experiments with cai'bon the apparatus shown in fig. 2 was used, just 

as for platinum, except that the tube with the incandescent platinum wire (fig. 1) 

Fig. 7. 
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was replaced by tlie tulje shown In fig. 6. In commencing an experiment the 

apparatus was exhausted to ’001 mlllim., so that the gas which was afterwards in the 

tube was all given off from the hot filament and the walls of the tube. The 

observations rvere generally taken so as to keep the tube as cool as possible, but by 

letting It get hot enough pressures up to a millimetre could be legistered on the 

McLeod gauge, even with constant ]:)innping. The first experiments were made to 

determine the way in which the leak varied with the applied electromotive force, 

other conditions being, so far as possible, kept constant. 

galvano- 

§ 2. Relation hetireen the Current and the Applied E.M.F. 

In all cases there was no current which woidd shov^ a deflection in the 

meters used when the filament was charged })ositively. Tlie positive leak from hot 

wires in a vacnnm, though large when measured fjy an electrometer, is always 

negligible compared with tlie currents measnied In these experiments. Some of the 

snl)joined current E.M.F. curves were olffained by using the apparatus in fig. 6, others 

by using that In fig. 7. As we should expect the curves to vary considerably with 

the shape and position of the electrodes, the apparatus from whicli the curves were 

detained will be definitely specified in each case. As an abbreviation for the 

“apparatus shown in fig. G” we shall write “apparatus 6,” and so on. 

The relation between the current and the electromotive force depends largely on 

the pressui'e of the gas in the apparatus. It may also depend on tlie value of the 

maximum current which can be ol^tained, i.e., on the temperature of the wire. At 

very low pressures (Ijelow, say, '02 inilhni.) the cnrrent rises very rapidly with the 

E.M.F. till it reaches a certain value, after which it becomes practically independent 

of the E.M.F. Tliis “ saturation cnrrent” generally increased slightly with the electro- 

mcttlve force, tlie Increase being attrilintable to the extra ions produced by collisions 

with tlie gas molecules. The following curve, given by apparatus 7, shows the 

phenomenon of saturation very clearly. The 

fiow^ of the heating cnrrent was accompanied 

by a P.D. of 3’8 volts between the two ends of 

the filament, so that it is important to state 

wliich end of the filament the voltages refer 

to. There was found to lie no cnrrent wdieii 

the negative end of the filament wms earthed, 

the Avhole of the filament being then positive 

to the snrronnding earthed electrode. The 

values are the means of a considerable number 

of observations. This curve (fig. 8) is for a 

pressure ol '003 millim. ; the voltage given is that of the negative end of the filament. 

From the preceding curve it will be seen that the cnrrent wms practically saturated 

by a potential of about 15 volts. With higher pressures of gas in the apparatus, the 

10 ZD 30 40 50 60 70 80 90 100 llO 120 
Volts on negative end of filament 

Fig. 8. 
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saturating potential might become much greater, as is shown by the following curve, 

taken, also with apparatus 7, at a pressure of '02 millim. In this case the current is 

not saturated till a potential of about 280 volts is reached. Duiliig this experiment 

the temperature of the filament, as indicated 

by the defiection produced by the thermo¬ 

couple, was kept constant. 

The bend in the curve at about 20 volts 

seems to indicate that a sort of saturation 

occurs here. The subsequent increase of 

current would then be exjfiained by the ions 

produced by collisions as the electromotive 

force was increased. On this supposition, 

when we again reach the flat part of the 

curve at 280 volts we must sup230se that 

every collision jDossible at this pressure 23ro- 

duces ions. Similar considerations exjfiain 
Fig. 9. 

120 

the gradual slojDe of the curve in fig. 8 

aftei saturation. O’wing to the peculiar shape of the electrodes it was not jDossible 

to calculate the magnitude of the effects. 

With this curve it is interesting to comiDare one obtained at a slightly lower 

pressure ('013 millim.) with the other form of aj^paratus. In this case the current 

used to heat the filament was kept constant while its resistance decreased in the ratio 

of 1‘025 to 1 during the observations. This does 

not imply that the temperature altered, since 

heating a carbon filament steadily decreases its 

resistance when cooled and measured again at the 

original temj^erature. The absolute value of the 

current is also some twenty times as great as that 

in the preceding curve. It will be seen that in 

this case saturation was reached with about 160 

volts. 

It is evident that in this case the bend at 20 

volts does not a2)pear. This may be due to the 

gi’eater magnitude of the current and smaller 

pi-essure, which makes the Townsend effect less 

frig_ 10. comparison. With still higher joressures the 

current for low voltages is small and increases 

moie lapidly as the voltage is raised than it would if it were proportional to the 

potential difference. The curve then joasses through a singular ]3oiut, the current 

increasing less and less raj^idly with the voltage until the saturation value is reached. 

The current afterwaids remains stationary for some time until it begins to increase 

3 X VOL. CCI.—A. 
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Fig. 11. 

again as the voltage is raised. This increase is doubtless due to new ions produced 

by the collisions of the negative ions, since it is in all respects similar to the effects 

described by Professor Townsend.* All these characteristics are shown l)y the upper 

curve in fig. 11, which was obtained with apj)a- 

ratus 6. In this case the pressure increased from 

•65 to '85 niillim. during the experiment; the 

heating; current was maintained constant and 
<D 

equal to 1'07 amperes. 

When the jDressure of the gas is raised further, 

the current at low voltages becomes still smaller 

than before, the current E.M.F. curve being 

always concave to the axis of current. In this 

case the current never becomes saturated, owing 

to the collision effect coming in before the 

saturating potential is reached. Under these 

circumstances the current increases more and 

more rapidly with the potential as the latter is 

raised. These characteristics are very well shown by the lower curve in fig. 11, 

which was taken with apparatus 6 at a pressure of 2 millims. The filament was 

heated by a constant current. 

It will be noticed that several of these curves are very similar to those obtained 

with hot platinum wires by Professor McClelland.! 

In all these cases it was found that in retracing the observations backwards, the 

curves never quite coincided with those obtained first. These effects, which were of 

the nature of hysteresis, were partly attributable to change in the conditions while 

the observations were being made. Such changes were, for example, increase of 

pressure due to gas given off fi om the walls, change in the temperature of the carbon 

heated-by a constant current owing to the permanent alteration of the resistance of 

a cai’hon filament produced by heating, &c. Even when such disturbances were 

eliminated as far as possible, the curve could never be made to return on its outAvard 

path. The form of the curve was always the same, but the value of the current on 

the return curve was invariably smaller than on the outward one ; in a particular 

case, when the pressure increased from 2‘4 to 2‘6 millims., the current with about 200 

volts was reduced to one-third its value on the return journey. 

After having investigated in some detail the connection between the current and 

the electromotive force when the filament was maintained at a constant temperature, 

the connection between the saturation current and the other conditions was next 

examined. The experiments to be described are therefore concerned Avith the 

relation betAAmen the saturation current and 

* Townsend, ‘Phil. Mag.,’ Feb., 1902. 

t ‘ Camb. Phil. Proc.,’ vol. 11, p. 296. 
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(1) The resistance of the filaments ; 

(2) The currents used to heat the filaments; and 

(3) The temperature of the carbon surface, respectively. 

In what follows a section will be devoted to each of the above headings, 

§ 3. The Relation between the Saturation Current and the Resistance of the Filament. 

This was investigated in the same manner and with the same apparatus (fig. 2) as 

in the case of j^latinum. In all cases the apparatus which has already been described 

and is shown in fig. 6 was employed. The thick German silver resistance II (fig. 2), 

which served as an intermediate standard, had now a resistance of 1-62 ohms. The 

smaller currents were measured with the sensitive Thomson galvanometer. For the 

larger currents a D’Arsonval galvanometer, which gave a deflection of 1 millim. for a 

current of 3'46 X 10 ^ ampere, was employed, ovhng to its greater convenience. As 

the resistance of the filament decreased slightly during the observations, a reading 

was taken both before and after each observation of the leak, the mean of the two 

readings being taken as the value of the resistance which corresponded to the reading 

for the current. Resistance readings were taken over a range of saturation current 

extending from 2-8 X 10“^ to 6 X 10“^ ampere per sq. centimetre of surface. The 

corresponding range of the value of the ratio of the resistance of tlie filament to its 

resistance at 11° C. at the commencement of the experiment was from -610 to -567. 

In other words, while the resistance of the filament only alters in the ratio of 610 to 

567, the negative leak has become twenty thousand times as big as it was at first. 

It is evident, therefore, that, as in the case of platinum, the number of negative ions 

produced at the surface increases with enormous rapidity as the temperature rises. 

It will be shown later that, over a much greater range of temjDerature than this, 

there is no percejotible falling off in the rate at which the current increases. 

The corresponding values which were obtained for the saturation current and the 

resistance of the carbon filament are given in the following table. The resistances 

are expressed as fractions of the resistance which the filament possessed at 10° C. 

before it was heated. 

Saturation current in 
amperes. 

Resistance as a fraction 
of initial resistance. 

3-9 xlO-8 -609 
9-43x10-8 -604 
3-25 X10-7 -600 
8-55 X10-7 -594 

19-04 X10-7 -588 
4-32 X10-« -581 

13-3 xlO-G -571 ‘ 
3-53 X10-5 -560 ! 
7 - 80X10-5 -547 ! 
2-47 X10-^ -528 
3-95 X10-4 -509 
9-05 X10-4 -48 

3x2 
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These numbers when plotted against one another on squared paper yield curves 

very like the current temperature curves for platinum (fig. 4). They have not, 

however, been inserted, since they are much the same as the current-temperature 

curves for carljon (fig. 13, p. 52G), which have been plotted from the same observations. 

Just as in the former experiments, the current was never found to be a function of 

the electromotive force alone, so also here the cooling curves never exactly coincided 

with those obtained as tlie temperature of the filament was raised. This was partly 

due to the permanent change in the resistance of carbon produced by heating.^ It 

was attempted to correct for this by taking, instead of the ratio of the resistance at 

moment to the original resistance at 11° C. l)efore commencing the experiment, the 

ratio to the resistance which the filament would possess if at a tenqDerature of 11° C. 

at that moment. The permanent change in the resistance was assumed to be 

proportional to the rate at which the resistance changed during an exj^eriment, the 

conditions being kept, as far as possible, constant. In this way it was possible to 

obtain by extrapolation the resistance which the filament would j)ossess if allowed to 

cool down to 11° C. at any stage during the experiments. That this process brings 

the two curves more nearly into coincidence will Ije seen at once on comparing the 

numljers in columns I., VI., and VII. of the following table. In this case the 

potential on the filament was — 204 volts, and the heating current was run at 

constant voltage. The results of these corrections are shown in the accompanying 

taifie :— 

1. 11. HI. IV. V. VI. VII. VIII. 

Saturation 
current, 
1 = 10-7 
ampere. 

Heating 
current, 
amperes. 

Initial 
resistance 

proportional 
to 

Amount 
resistance 
decreased 

during 
experiment. 

Corrected 
zero 

resistance 
ir C., 

proportional 
to 

Ratio of 
resistance to 

corrected 
zero 

resistance. 

Ratio of 
resistance to 

original 
zero 

resistance. 

Pressure, 
millim. 

1-7 •59 1755 0 2910 •604 •604 
5-2 •64 1726 0 2910 •594 •594 •003 

20-7 •69 1698 0 2907 •584 •584 _ 
46-5 •735- 1682 1 2901 •580 •578 •008 

118 •78 1664 2 2889 •576 •572 _ 
294 •83 1645 2 2877 •573 •566 •02 
735 •89 1624 2 2865 •567 •559 __ 
310 •87 16.37 2 2853 •574 •563 •035 
145 •84 1646 3 2835 •581 •566 _ 
72 •81 1654 2 2823 •586 •568 •04 
34-6 •79 1665 1 2817 •592 •572 _ 
17-3 •76 1675 1 2811 •596 •576 •035 
8-3 •72 1687 1 2805 •602 •580 •03 

* Le Chatelier, ‘ Journal de Phys ser. 3, vol. 1, p. 185. 
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In order to illustrate the magnitude of these changes, the numbers in columns I. 

and III. have been plotted in the accompanying curve (fig. 12). 

The chief objects of these experiments on the relation between the negative 

current from and the resistance of, a carbon filament, was to determine the 

dependence of the former in the temperature, 

method, has given numbers connecting the 

temperature of a carbon filament with its 

resistance. If we plot a curve from these 

numbers between the temperature of the 

filament and the ratio of its resistance at that 

temperature to its resistance at 15° C., we can 

use this to obtain the temperature of any other 

filament from its resistance. In this case we 

have again to face the uncertainty caused by 

the permanent change in the resistance of the 

filaments when heated. I have attempted to 

correct for this in the same manner as has been described above. Le Chatelier 

states that in his experiments there was a permanent lowering of the resistance of 

the filament amounting to about 10 per cent. This change has been distiibuted 

among the observations in such a way that the observations at the highest tempera¬ 

tures are responsible for the greater part of the alteration. The corrected curve thus 

coincides with the original one up to about 1000° G., after wliich it branches off, the 

divergence between the two becoming gradually greater, until finally at about 2000° 

it ends 10 per cent, higher than the one plotted from Le Chatelier’s numbers. 

The numbers in the table on jj. 523, when treated in this manner, yield the 

following :— 

I. II. III. 
1 

•39 •610 
1 

1250 I 
•943 •606 1265 

3-25 •602 1285 
8-55 •599 1305 

19-04 •595 1325 
43-2 •592 1345 

133-4 •589 1365 i 
353 •586 1380 
780 •582 1400 ; 

2475 •577 1430 
3950 •572 1460 i 
9050 •567 1490 i 

Saturation current, unit being 10“'^ ampere. 

Ratio of resistance to corrected resistance at 11° C. 

Temperature in degrees Centigrade. 

* ‘ Journal de Rhys.,’ loc. cit. 

I. = 

II. = 

III. = 

Le Chatelier,"'" using an optical 

Fig. 12. 
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The numbers in columns I. and III., when plotted against one another, }deld the 

following curves (fig. 13) for the variation of the negative leak from carbon with the 

temperature. The various curves represent successively greater units of current as 

in the case of the curves for platinum (fig. 4). 

The further consideration of these results on the temperature variation of the 

negative leak from carbon will be postponed till § 5. 

§ 4. The Relation between the Negative Leak and the Current used to Lleot the 

Fdaments. 

A series of experiments was made in wdiich the saturation current and the 

corresponding current required to heat the filament were measured; since it was 

thought that these measurements would be of especial interest at temperatures so 

high that they could not be determined, at any rate by the methods used in the 

present paper. In these experiments the portion of the ajjparatus used to measm-e 

the leak was unchanged, while the whole of the arrangement used to measure the 
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resistance was removed. The only part of the heating circuit which remained was 

the hattery of twelve storage cells and the adjustable resistance used to regulate the 

current. The magnitude of the latter was determined by means of a small vertical 

ammeter, reading up to 4 amperes, which was inserted in the circuit. 

The first experiments were made with the apparatus shown in fig. 6, and were 

pushed to very high temperatures. In fact, the maximum cuerent from the 

FILAMENT 'J’O THE ALUMINIUM ELECTRODE REACHED THE ENORMOUS VALUE OF 

1-5 ampIire PER SQUARE CENTIMETRE OF CARBON SURFACE. These experiments Were 

made with a lamp which possessed a small air leak that had been stopped by 

embedding in paraffin in the manner already described. When the greatest currents 

were put on the lamp became hot so that the paraffin melted and the pressure inside 

the apparatus rose to 1 millim. During the course of the experiments the pressure 

was therefore not constant, but increased gradually from '006 millim. to 1 millim. 

The potential on the filament was — 250 volts, and was sufficient to saturate the 

current at all the pressures concerned. The results of these observations are shown 

graphically in the accompanying diagram (fig. 14). The values of the ordinates are 

successively multiplied by ten as we move to the left fi'om one curve to the next. 

Fig. 14. 
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It will be noticed that there is a great similarity between fig. 14 and the curves 

connecting the saturation current with the resistance and temperature respectively. 

I’his is merely due to the rate of variation of the saturation current being so rapid 

that the differences in the alteration of resistance, temperature, and heating current 

becomes insignificant in comparison. 

Since in the last experiments the big currents were always accompanied by a high 

pressure of gas in the a2)paratus, it inight be thought that part of the increased 

current was due to the gas present. To investigate this point a series of experiments 

was made with the apparatus shown in fig. 7, so that the gas pressure could be kept 

down to a very low value. By heating the filament for a short time only and taking 

the observations very (quickly, it was found that the temperature of the bulb and 

electrode could be prevented from rising perceptibly. Under these conditions it was 

found that the amount of gas given off was greatly diminished, the highest pressure 

recorded during the observations being ‘006 millim. A reading of the McLeod gauge 

was taken between each reading of the galvanometer deflection for the saturation 

current. The potential on the filament was — 80 volts, this being more than enough 

to saturate the current [cf. fig. 8). The numbers which were obtained are given in 

the accompanying table : 

Heating cuiTeut, 
amperes. 

Saturation current, 
1 = ampere x 10“**. 

Pressure, millims. 
of Hg. 

1-49 2-1 •002 
1-59 10-5 •002 
1-70 35 •0025 
1-84 143 •0025 
2-0 540 •003 
2-26 2•24X103 •003 
2-43 10-1 xl03 •005 
2-68 42 X103 •005 
2-92 122 X103 •006 
3-45 760 X103 •006 
3-65 1640 X103 •005 

The greatest observed value of the saturation current is not given in the above 

table, since the corresponding reading of the ammeter was not taken. This enabled 

the reading to be taken much more cpiickly, so that the pressure only changed from 

■0022 to "0025 millim. The corresponding saturation current was ’04 ampere; in 

other words, a square centimetre of surface would have given a current of ‘28 ampere 

across a vacuum at 4^oth millim. pressure. 

In the preceding series of experiments the highest possible value of the temperature 

had not been rea.ched, so that further experiments were instituted to determine the 

maximum cui-rent which could be obtained from a square centimetre of a carbon 

fixament when the temperature was pushed to the highest limit, fie., just before the 
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filament melted. The arrangement of the apparatus was altered somewhat, the leak 

being measured by a Weston ammeter instead of a galvanometer as before; in other 

respects the arrangement was unchanged. The pressure was kept very low and a 

potential of about — 60 volts was maintained on the filament, the surrounding 

cylinder being earthed. 

W^ith this apparatus it was found possible to maintain an actual current of 

•4 ampere (corresponding to 2 ampeees per square centimetre of filament surface) at 

a pressure of less than millim. The current could not be made to surpass this 

value since the filament melted on raising it to a slightly higher temperature. The 

fact that such large currents can be produced at such low pressures has an important 

bearing on the theory ol the mechanism by which the corpuscles are produced, which 

will be considered later. 

§ 5. The Relation hetiveen the Saturation Current and the Temperature. 

Fiom the experiments on the variation of the saturation current with the 

resistance we have been able to give numbers which indicate, roughly at any rate, 

the way in which the former depends on the temperature. It was thought that a 

moie leliable estimate might be obtained if the temperature of the filament were 

determined by means of a thermal junction of 2Dlatiniim and iridio-platinum. With 

this object the following exjjeriments were made :— 

The tube employed was that shown in fig. 7, and already described, The filament 

in this tube was in the form of a simj^le U and had the following linear dimensions : 

length = 1-2 centim., diameter = -0376 centim., and total area of surface = -142 sq. 

centim. For these experiments the apparatus shown in fig. 2 had to be altered, the 

portions below AFK. being entirely reconstituted. The apparatus used for measuring 

the saturation current was unchanged, the only alterations being made in the portion 

used to measure the temperature. The thermocouple circuit was completed by 

taking the lead Pj (fig. 7) to the cold junction, which was placed in a test-tube 

immersed in water at 12° C. ; the other wire from the cold junction passed through a 

resistance box to a D’Arsonval galvanometer, and thence through P (fig. 7) to the 

hot junction. The adjustable resistance (fig. 2) still served to regulate the 

current which was used to heat the filament. 

In order to standardise the thermocouple the melting-point of potassinm sulphate 

was again taken as the fixed point. A junction of the same wire as that used during 

the experiments was fixed on to a stout platinum wire, which was clamped horizon¬ 

tally in the hottest jDart of a Bunsen burner. I'he Bunsen was arranged to burn 

vigorously with a bright green inner cone and was carefully protected from draughts. 

Very small portions of the salt were then placed on the stout wire on the side of the 

flame opposite to the thermocouple, and matters were so arranged that when the salt 

just melted it was exactly the same distance from the edge of the flame on the one 

side as the thermocouple on the other. I he reading of the galvanometer was then 
YOL. CCI.—A. 3 Y 
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taken to correspond to the melting-point of the salt. The method was then tested 

by placing a small portion of salt on the thermocouple itself and observing when it 

began to melt. This Avas found to agree with the previous observations. The 

greatest difference between the observations taken was less than 3 per cent. A 

further test Avas supplied by determining the melting-point of sodium sulphate ; the 

value found Avas within 20° of th.it giA^en by Messrs. Heycock and Neville.* This 

agreement Avas considered to be quite good enough for the purpose in hand. The 

thermocouple was finally found to give an electromotive force of 17‘7 milliAmlts Avhen 

its junctions AA^ere at 1067° C. and 12° 0. respectively. 

The platinum temperatures given by the galvanometer readings have been corrected 

to the air thermometer scale by means of the curves given by Professor CALLEXDAE.f 

The thermocouple method possesses one great advantage OA^er the resistance method 

of determining the temperature of hot Avires, in that the observations can be taken 

much more quickl}^ and so tlie Avire has to lie heated for a much shorter time. In 

this way the apparatus need never get hot, and far less gas is given off, so thot the 

readings generally are much steadier. 

The accompanying table represents a series of observations Avith this apparatus. 

The pressure was always less than of a millimetre of mercury, while the 

potential on the wire was — 44 volts, this being more than enough to saturate the 

current. The platinum temjieratures are given under the column headed Pt, the 

numbers under t are the temperatures (degrees Centigrade) reduced to the air 

tliermometer scale. 

Scale-division.? of 
thermocouple. Ft. f. 

Leak, 
1 = 10~® ampere. Pressure. 

1 

uiilliins. 1 
108-5 1122 1110 3-7 

o
 

o
 

110-8 1145 1129 8-2 — 

112-8 1165 1145 25 — 

■ 114-8 1186 1162 39 -001 
117 1209 1180 78 -- 

119 1229 1197 167 -0015 
120-6 1245 1209 295 — 

121 -5 1254 1216 662 — 

119-2 1231 1199 266 •0015 
117-3 1212 1183 110 — 

116-3 1202 1173 79 — 

113 1168 1148 37 — 

110-7 1144 1128 16-5 — 

109 1127 1115 7-5 — 

107 1107 1097 3-7 — 

104-1 1077 1075 1-5 •0016 

It will be noticed here again that the current for a giA’en temjierature is smaller as 

the temperature is being increased than AAdien it is falling. 

* ‘ Chem. Soc. Journal,’ vol. 67, p. 160. 

t ‘ Phil. Mag.,’ A'ol. 48, p. 519. 
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The following table represents a series of observations taken with tlie thermocouple 

apparatus at somewhat higher temperatures. The potential on the filament was here 
= — 87 volts. 

The temperatures given by the thermocouple method are on the average about 

120 lower than those obtained from the resistance for the same current. The 

temperature registered by the couple would be lower than that of the more remote 

paits of the filament for several reasons, the chief one being the conduction of heat 

away locally by the leads of the thermocouple itself It is difiicult to say whether 

we sliould expect this difference to amount to 120° C. 

We aie now in a position to test whether the experimental results are in agreement 

with the theoretical formula for the saturation current, viz. :_ 

C/eS = n aJ 
V 2mTT 

usmg tlie notation employed before. If we take, as in the case of platinum, 

y —i logio^ and Xq = the above equation reduces, as before, to the 
straight line 

y = ^ 1>qXq. 

The following curve (fig. 15) has been plotted in tliis manner from the numbers 

gis^en in the table on p. 525. The ordinates are values of log^^jC — 1 log^Q0. while the 

abscissae are values of X 10^. 

3 Y 2 
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The numbers on 530 and 531 yield the curves in fig. 16, The straight line on the 

right is drawn from the observations on p. 530, and corresponds to lower temperatures 

than the other. The experimental points for this curve are denoted by O. The 

other curve from the observations on p. 531 refers to somewhat higher temperatures. 

The experimental points for this curve are indicated thus ; X. 

All these three curves are fairly close approximations to a straight line ; it is 

therefore quite evident that the observations are represented very closely by 

assigning to the saturation current a formula of the type C/eS = \ 

When we come to the actual values of the constants in the above formula, the 

agreement with the simple theory is not so good as in the case of platinum, though 

possibly this is partly due to the greater difficulty of the experiments. The curves 

in fio’s. 15 and 16 give for the value of h 

11‘9 X 10^, 97 X 10^, and 7‘8 X 10^ respectively. 

In order that the differences of the values of h should be proportional to the contact 

E.M.F. between carbon, platinum, and other metals, h for carbon should be 5'2 X 10'^, 

since its value for j^latinum is 4’9 3 X I Ob The difference between this and the above 

numbers does not appear to be very great, but the effect of a small error in h is 

enormous when we come to calculate from it the value of n, the number of corpuscles 

in a cub. centim. of carbon. 

If we take 7‘8 X 10^ as the best value of h, and C = 2180 at 1515° absolute as 

being the mean of the two series of temjDerature measurements, we find A is of the 

order 10®* and n is of the order 10'®. Now, Mr. Patterson^ finds that at ordinary 

temperatures n = 10^®, The effect of temperature on the resistance of carbon 

indicates that the concentration of the corpuscles would be at least ten times as 

great at 1000° as at 0° C., so that we should expect to find n of the order lO'A As 

a matter of fact, if we take h = 5'’2 X 10* instead of 7‘8 X 10*, we find n = 5 X 10“^ 

instead, of 10-®. 

Pteasons which might make this method of determining n give values which are too 

large, will be considered at some length after the experiments on sodium have been 

described. 

III. Experiments with Sodium. 

§ 1. Nature of Pruhlem. 

Sodium was selected as the next metal to be investigated on account of its strong 

electropositive character. Since this implies a great attraction for positive electricity, 

we should expect its power of retaining the negative corpuscles to l3e much smaller 

than that of the conductors hitherto examined. If the foregoing theory is correct the 

cor])uscles ought to escape from the alkali metals at a much lower temperature than 

* ‘ Phil. Mag.,’ 6, HI., 655. 
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from metals which are low down in the volta series. In fact, assuming (1) that the 

difference in the discontinuity of potential at a platinum vacuum and sodium vacuum 

surface is equal to the contact difference of potential for sodium and platinum (taken 

roughly to be equal to two volts), (2) that the value of the discontinuity (Id volts) 

previously obtained for platinum is correct, (3) that the concentration of the 

corpuscles for sodium is of the same order of magnitude as for copper, and (4) the 

correctness of the present theory, a preliminary calculation showed that currents of 

the order of some 10“® ampere per square centimetre ought to be obtained at as low 

a temperature as 500° C. 

The problem we have to face in tlie case of sodium is not quite the same as in the 

case of non-volatile substances such as carbon and platinum. For in this case the 

metal has an appreciable vapour pressure at the temperature at which the experi¬ 

ments are carried out, and part of the conductivity present is doubtless due to the 

spontaneous ionisation of the metal vaponr. A second inconvenience, which is more 

of a practical nature, is caused by the distillation of the metal from the hotter to the 

colder parts of the tube, causing the state of the latter to continually vary. For the 

same reason some of the sodium condenses on the electrode which is supposed to be 

free from it, so that both electrodes emit negative ions. 

We have seen that in the case of platinum and carbon no current was obtained 

when the hot conductor was positively charged; in other words, the conductivity was 

perfectly unipolar. In the case of sodium, owing to the spontaneous ionisation of the 

vapour and the condensation of the metal on the inserted electrode, we should expect 

to get a current in both directions. In the following experiments the first effect must 

have been small, owing to the low vapour-pressure at the temperatures employed, 

while the effect of the second was made small by using an electrode with a very small 

superficial area (a thin platinum wire). It will be seen that in every case the current 

when the sodium surface was negative was more than twenty times its value when 

the surface was positive. 

The apparatus which was used to detect and measure the negative leak from sodium 

will now be described. 

§ 2. Descrii^ion of A2yparatus. 

After a great number of trials of various forms of glass apparatus, all of which 

came to an untimely end owing to the joints not l)eing able to stand the continued 

heating or otherwise, the metal apparatus shown diagrammatically in fig. 17 was set 

up. The weldless steel tube ABDC was 76 centims. long and 3’2 centims. in 

diameter, and was kept at zero potential by means of the earth wire shown. The 

straight j^latinum wire A^B, was insulated with sealing-wax at each end and could be 

charged positively or negatively to any desired potential. It formed the electrode 

mentioned above. The whole tube was placed in a small combustion furnace, by 

means of which the central portions could be heated to any desired temperature. The 
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temperature was determined by means of a copper-nickel thermocouple, C^Di, attached 

to a hollow semicircular cylinder of brass, E, placed at the middle point of the line 

CD. The brass piece E was cut from a tube which before the operation fitted easily 

into ABCD, so that when the coj^per and nickel wires were tied round it, it fitted 

quite tigditly. The spirals FF^ were made of composition tulniig wound tight round 

ABDC; they served to keep the ends of the tube cool and thus j^revent the sealing- 

wax joints from softening. They were fed with cold water at and emptied at G. 

The side-tube H from DI)i led to the pump and McLeod gauge. 

The manner in which the wires A^B^ and C,I)^ were fixed in at the ends is shown 

more clearly in the enlarged diagram on the left of tlie figure. The shaded j^arts 

represent the distribution of the sealing-wax which wms used to make the joints. 

The ends f fj of the tube ABDC fitted into an annular depression on the brass plate 

aa. The platinum wire Aj^B^ was soldered at each end on to a stout copper wire, bb^, 

which fitted fairly tight in a glass tube passing through the brass tube cc^. The 

whole was fixed in air-tight by means of sealing-wax. One of the leads from the 

thermocouple was iixed in exactly the same way into the brass tube dd^. 

The sodium was originally placed in the form of small cubes on and around E, and 

it was considered that after heatino; for a short time in a vacuum a fairly uniform 

distribution of sodium over the central portions of the steel tube would be obtained. 

This was certainly what happened in the case of tlie glass apparatus which had been 

tried previously and in which the effect could be oljserved. The leak from the hot 

sodium to the platinum wire electrode A^B^ was then measured, according to its 

magnitude, either by an electrometer or by a galvanometer. At the lower 

temperatures where tlje quadrant electrometer was employed, one of the t|uadrants 

was connected to the case of the instrument which was insulated. The other 

quadrant was connected witli a standard condenser and, l^y means of a wire jDassing 

axially on sealing-wax supports along a brass tube, with the electrode A^B^. The 

outside of the brass shielding-cylinder was connected with the case of the electro¬ 

meter. In making an experiment the whole of the electrometer system was charged 

to a given potential, and the time required for the spot to move over a given number 

of scale divisions wns noted. This measured the current from the insulated electrode 
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to the surrounding earthed tube ABDO. By altering the capacity of the 

condenser a suitable rate of movement of the spot of the electrometer could be 

obtained each time. 

In using the galvanometer the arrangement was practically the same as that 

employed before. One end of the battery was put to earth while the other was 

connected through the galvanometer to A^Bj. The battery was capaljle of supplying 

any number of volts up to 420, the potential lieing measured by tlie Weston volt¬ 

meter used previously. A D’Arsonval galvanometer giving 1 millim. deflection for 

2x10 ® ampere, and having a resistance of 500 ohms, was used. 

With the exception of tlie change m the materials of the couple the thermoelectric 

circuit was exactly the same as that employed in the experiments on carbon. To 

reduce the galvanometer readings to temperatures use was made of the recent 

observations of Mr. E. P. Harelson.^" Only one fixed point was determined, viz., 

that of the boiling-point of sulphur. The electromotive force at that temperature 

was found to correspond to 227 microvolts per degree over the whole range, a result 

which agrees very accurately with that given by Mr. Harrison. The relation 

between electromotive force and temperature was not assumed to Ije linear, but 

corresponding values for intermediate points were calculated from Mr. Harrison’s 

curves. From these figures a curve was plotted which gave temperatures in terms 

of galvanometer readings directly. The galvanometer employed gave 1 millim. 

deflection for 1'39 X 10 ^ ampere, and the total resistance of galvanometer and 

thermoelectric circuit with no resistance out of the box was 197 ohms. 

In the various forms of glass apparatus jireviously tried it was found that 

considerable currents were obtained at ordinary temperatures when the sodium was 

charged negatively. This was ultimately found to be due to the photoelectric effect 

produced by the light present in the room, since it disappeared wlien the ex])eriments 

were made in the dark. The steel tube finally used in the experiments had the 

great advantage that it could easily be made absolutely light-tight. In order to 

make sure tliat no light reached the sodium, the glass tubes through which the 

wires were let in at each end of the steel tube were painted over with black enamel. 

The leak wms then tested and found to be small and the same in both directions; so 

that it was all due to imperfections in the insulation. 

§ 3. The Relation between the Current and the Electromotive Force. 

After testing the insulation and pumping down the apparatus exjieriments were 

first made to see how the current varied with the direction of the electromotive force. 

The first measurements showed that, at a temperature of about 300° C., the current 

when the wire was at a potential of -f- 40 volts was 3500 times its value when the 

wire was charged to — 40 volts. The value of the current when the wire was 

positive was 1‘5 X 10 ampere. Later experiments showed, however, tliat the 

* ‘Phil. Mag.,’ (6), vol. 3, p. 177. 
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positive cuiTent was invariably about 30 times as big as the negative. This was 

probably due to sodium having condensed on the wire electrode. For, although the 

wire had a surface per unit-length of less than one-hundredth that of the steel tube, 

the surface ionisation would be far easier to saturate; so that we should expect the 

currents in the tAvo directions under a mven voltae'e to have a ratio considerablv less 

than 100 to 1. The above high value of the ratio obtained initially Avould correspond 

to the stage when no sodium had condensed on the wire. 

In making these experiments the apparatus was first pumped down to a pressure 

of about "1 millim., ljut it was found that on heating the steel tube a considerable 

amount of gas was given off. At first the amount of gas evolved was so great that 

the pressure in the apparatus, the volume of wliich was very considerable, rose to 

several centimetres of mercury. This evolution of gas Avas noticed in CA^erA^ case 

Avhen sodium was heated, but by continued heating it usually became very small. 

In this jjarticular instance, eA^en after heating for several days, on pumping the 

apjiaratus out and heating again it Avas found that the pressure rapidly rose to about 

5 millims. It Avas thought that the gases from the furnace might perhajDS diffuse 

througli the steel tube. To prevent this the latter AAms covered with a layer of 

soluble glass, which Avas carefully dried oii; this seemed to liave the desired effect, 

for it Avas found that afterAvards there was no difficulty in keeping the pressure below 

a millimetre even Avhen the tube Avas heated to 450° C. 

Experiments Avere next made to investigate the Avay in Avhich the current varied 

Avith the potential Avhen tlie wim AjB, AA^as charged positively. It Avas found that 

the current E.M.F. curves Avere markedly 

different from those previously obtained AA-ith 

caiFon and platinum. The current Avas small 

at first and increased much more mpidly Avith 

the voltage than if the tAvo Avere proportional. 

In fact, the general shape of the current E.j\I.F. 

curves Avas much like tliat of the cui’A’es for 

current and tem])erature obtained AAuth carbon 

and platinum. There was no indication of 

saturation at any potential. 

These differences are to be attributed to the 

difference in the experimental conditions and 

especially in the shape of the electrodes. In 

the case of sodium Ave haA-e a larue ionisation 

produced at the inner surface of a Avide tube, 

and it is a Avell known fact that it is difficult to 

saturate the current to a wire inside the tube 

in such a case, owing to the Aveakness of the electric field near the surface. 

The accompanying curve (fig. 18) gives the relation l.)etAveen the current and the 
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electromotive force for voltages in the wire electrode between 0 and + 40. The 

pressure was about 5 millims. The sudden increase in the current between 4 and 

8 volts was obtained every time and did not seem to 

be due to experimental error. 

The current E.M.F. curve from 40 to 240 volts is 

very similar to that in fig. 18, except that it approxi¬ 

mates very closely to a straight line between 160 and 

240 volts. It is given in fig. 19. 

When the voltage was increased above 240 it was 

found that the current rose rapidly to several thousand 

times its previous value. The increased current was 

quite steady at 320 volts, but at 280 volts it seemed 

to be in a very unstable state, since all kinds of 

intermediate readings could be obtained. Above 320 

volts the current increased in a linear manner with 

the voltage. The experimental numbers are given below. 

Volts on wire .... 200 240 280 280 320 360 400 

Currents. 
Amptres x 10~'^ . . . 3-6 5-7 93-6 15.5-4 7750 14350 20250 

These numbers seem to indicate that with potentials greater than 240 volts an 

ordinary vacuum discharge took place at some point or points in the tube ; in the 

following experiments care was therefore taken never to use potentials greater than 

80 volts 

§ 4. Relation hetiveen the- Current wider a given Voltage and the Temperature. 

In the case of sodium, owing to the fact that the current could not be saturated, 

its value under a given electromotive force was measured at different temperatures. 

This comes to practically the same thing as measuring the saturation current, since 

we should expect, ceteris paribus, the current v/ith a given electromotive force always 

to be proportional to the number of ions liberated at the metal surface. In order to 

be sure of not getting a discharge, a potential of about 80 volts between the wire 

A^B^, and the cylinder was always employed. The following table represents a series 

of observations of current and temperature ranging from 217° C. to 427° C. It will 

be seen that the corresponding range of current is from 10~° to 10“^ ampere; in 

other words, raising the temperature of the metal from 217° to 427° increases the 

current to ten million times its original value. The currents below 10“^ ampere 

were measured with the electrometer. In this series of experiments very low values 

of the currents were not measured; in a later series the current was taken nearly 

VOL. CCI.—A. 3 z 
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down to ampere. In that case it was found that the leak increased less rapidly 

with the temperature below than above about 180°, so that presumably the ionisation 

present below 180° is not due to the emission of corpuscles from the metal surface. 

In the series of experiments which gave the numbers in the following table the 

pressure of the gas was about 1 '5 millims. 

Reading of 
thermocouple. 

Tempercature, 
centigrade. 

Current, 
amperes. 

Reading of 
thermocouple. 

Temperature, 
centigrade. 

Current, 
amperes. 

170 
o 

427 1-39 X10-2 139 
o 

334 5■14X10-5 
165 410 8-34 X10-3 136 327 3-06 X10-5 
160 393 8-34 X10-^ 132 317 1-53X10-6 
158 387 3-61X10-^ 129 310 5-56 X10-" 
156 381 1-65 X10-^ 123 296 l-39x 10-' 
152 370 6•34X10-5 122 284 6-25 X10-s 
145 350 l-39x 10-5 102 248 9-72X10-5 
143 345 1-11X10-5 89 217 1-8 xlO-5 
140 337 7-0 xl0-« — — — 

Corresponding values of current and temperature have been plotted on the 

accompanying curve (fig. 20) in order to facilitate comparison with the results 

obtained for carbon and platinum. It will be seen that the general appearance of 

the curves is much the same as before. The unit of current is successively multiplied 

by ten as we pass to the right from one curve to the next. 
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We now come to the application of the theoretical formula 

C/eS .. ^ 
^ 271177 

to the reduction ot these results. This equation may be written as before 
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wheie Xq 6^ ^,6 being the absolute temperature. To test the theory, values of y 

have been jdotted against values of 0-^ X 10^ in the following curve (fig. 21). 

It will be seen that all the points fall very nearly on a straight line except the first 

two. They are all, however, fairly accu¬ 

rately represented by the dotted curve 

shown. As the two lowest points corre¬ 

spond to a low temperature, it is possible 

that some other effect is coming in here 

which would account for their deviation 

from rectilinearity. 

In calculating the value of h [ = <P/1I) we 

may either confine our attention to the 

straight part of curve 4, and neglect the 

two first observations, or we may take the 

average over the whole range of the experi¬ 

ments. The two values differ by about 

24 per cent. ; if we take the mean we find 

h = S'16 X lOf This gives, for the dis¬ 

continuity of potential at the surface, the 
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Fig. 21. 

value 2-63 volts, and would therefore give 1-47 volt as the difference of its values for 

sodium and platinum. 

The above value of the difference, which is approximately equal to the contact 

electromotive force for sodium and platinum, forms a strong confirmation of the 

theory; but when we come to calculate 7i, the number of free corpuscles in a cubic 

centimetre of sodium, the agreement is not so good. In fact, we find from the 

experimental results that for 9 = 628, log^Q C — logio ^ = 2‘G15 ; whence, putting 

in an estimated value of the area of the sodium surface, we get n = 10“® about. The 

value of n has not been determined for sodium by any other method, but we should 

expect it to be not greatly different from that for copper, which is given by 

Mr. Patterson as 3 X lO'f The value given by this method is thus far too great, 

for it is hard to imagine tliat the corpuscles can have a j^i'essure of ten million 

atmospheres. I believe the discrepancy here is greater than can be explained Ijy 

eiTois of experiment, although that was possible in the case of the high values found 
for carbon. 

3 z 2 
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A further series of current measurements was made, using the quadrant electro¬ 

meter, in order to investigate the leak at somewhat lower temperatures. It was also 

thought desirable to measure the currents under a given voltage in each of the two 

possible directions and to see if there was any relation between them. The experi¬ 

ments also served to test whether the current temperature curve, obtained when the 

tube was cooling, followed the same path as that obtained with rising temperature. 

It was scarcely to be expected that the two curves would coincide, even approximately, 

owing to the continual distillation of the sodium from the hotter parts of the tube to 

the cooler. 

The results of the experiments are given in the accompanying table. In making 

the observations readings were generally taken with the wire electrode alternately 

positive and negative, a potential of 84 volts being used. In taking each reading the 

capacity w*as adjusted so as to give a convenient rate of movement of the electrometer 

spot. It was attempted to take corresponding j^ositive and negative readings at as 

near the same temperature as possible, the gas furnace being adjusted after each pair 

of readings had been taken. The pressure in the apparatus varied from "25 to ’4 

miUim. 

Volts on wire = -1-84. Yolts on wire = - 84. Volts on wire = 4-84. Volts on wire = - 84. 

Tempera- Current Tempera- Current Tempera- Current Tempera- Current 
ture 1 = ampere ture 1 = ampere ture 1 = ampere ture 1 = ampere 

Centigrade. X 10-A Centigrade. X 10-12. Centigrade. X 10-12. Centigrade. X 10“i2. 

o 
10 2-4 

o 
10 2 • 2 

o 
306 3-24X101 

o 

92-5 23-4 92 6-65 325 2-12 X103 323 890 
104 31-6 97 6-3 340 3-66 X103 338 1-01X101 
131 247 — — 340 ll-4x 103 340 3-26 X101 
141 318 _ — 311 1-96 X 103 314 7-1X103 
146 352 145 16-4 289 3-66X101 290 228 
183 1210 182 49-6 241 2-7 X103 242 14-6 
202 ■ 2-26 X103 204 76 226 372 228 20-2 
235 5-12 X103 237 161 195 27 197-5 4-4 
270 8-3 X103 272 373 123-5 8-7 — — 
296 3-3x 10^ 296 733 

The meaning of these numbers is best expressed graphically. In fig. 22 the 

logarithm of the current has been plotted against the temperature. The unit of 

current is ampere. Curves 1 and 2 were taken with the wire charged 

positively, 3 and 4 with the wire charged negatively. The observations for curves 1 

and 3 were made simultaneously with the temperature of the tube rising, whereas 

the curves 2 and 4 correspond to the second set of observations with the temperature 

falling. 

The various marks refer to observational points for the different curves as 

follows:—Oto No. 1, * to No. 2, ©to No. 3, and • to No. 4. 
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It will be noticed that the two curves belonging to any one set of observations 

become parallel above about 180° The constant distance apart of the curves, which 

is approximately the same for the two sets of observations when measured along the 

vertical ordinate, has an average value of about 1 '6. This shows that the ratio of the 

currents in opposite directions remains constant and independent of the temperature 

(above 180°) and is equal to about 40 to 1. The point of inflexion at about 280° on 

the up curves probably indicates an accidental change in the sodium surface, since it 

was not repeated on cooling. 

C.—Conclusion. 

§ 1. The Determination of the Number of Ions in a Cubic Centimetre of Metal. 

The preceding results show that the number of negative ions produced by one 

square centimetre of surface of platinum, carbon, and sodium at temperature 6 can be 

represented with fair accuracy by the formula N = = k^n6^e~^'\ where A 

and b are assumed to be deflnite constants for each metal. As an empirical result we 

And A and b have the values given in the following table :— 

Conductor. A. b. 

Platinum. 1026 4-93X101 
Carbon . 103-1 

o
 X
 

00 

9-7 X101 
11-9 xlOi 

Sodium. 1031 3-16 X101 
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The value of A is determined from that of h and so depends very largely on the 

value selected for h. An error of 10 per cent, in h multiplies A by about 100, vdiilst 

if h were determined wrongly to one part in three, A would be multqfiied by 3 X 10'^. 

For this reason only the order of magnitude of A has been given in the table. 

If w^e can assume that A and h are constants independent of the temjDerature, we 

obtain the value of n, the number of free corpuscles per cubic centimetre of the 

conductor, at once from the theory by dividing A by 10^. Treating the values of A 

in this way, we find that the value of n for platinum agrees satisfactorily with that 

obtained by Mr. Patteeson. On the other hand, the values (10’^®) for carbon and 

(10'®) for sodium are greater than the maximum possible value. Moreover, the error 

in each case seems greater than can be accounted for by experimental uncertainties. 

This error is probably due in part to the assumption that A and h are constants, 

whereas it is evident that they must both be functions of the temjDerature. It is 

possible on the preceding theory to say something about the forms of these functions 

which indicate that they both vary with the temperature. 

With regard to the number n of corpuscles j^er cubic centimetre of metal, we 

suppose they are formed by decomposition of the neutral atoms in much the same 

way as in any case of chemical dissociation. If be the number of positive and 

of negative ions per cubic centimetre (Cj, = C^j = C as a rule), being the number 

of undissociated atoms per cubic centimetre, and Cq (= C,,; + C) being the value 

which C,„ would possess if there were no dissociation, then : 

= i (Co - c), 

since the number of re-combinations per second is jiroportional to Cj,Co, wdiilst the 

number of dissociations is proportional to and these two must be equal in the 

steady state. 

Now Van’t has shown that for all re-actions of this tyjie the quantity k 

varies with the temperature according to the equation 

% (log 0 = 

q being the heat evolved when two ions re-combine, whence 

k = 

A must be very large, for when 0 = oo , /j = (A) must be great compared with C^. 

We may write C in the form 

C = ,/(i/P -f kC,) - p-, 

whence we see that when 6 = 0, k = 0, and C = 0 ; when 6 = co , k is large 

compared with C^ and C = Cq. 

We see from the nature of the above function that the value of k would decrease 

* ‘ Lectures on Phys. Chem.,’ vol. 1, p. 111. 
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with enormous rapidity in the neighbourhood of the absolute zero ; so that, although 

the lesistance oi metals decreases steadily with decreasing temperature down to the 

lowest temperatures yet reached, it is cpiite possible that it becomes infinite again at 

the absolute zero. The fact that the resistance of pure metals is proportional to the 

absolute temperature over a wide range, together with the high values of n which 

prevail at ordinary temperatures, seems to indicate that for most metals h has 

practically reached its maximum value, where it varies only slightly with 6. 

Foi this reason we are led to the conclusion that the discrepancies of n are not 

due so much to disturbances produced by its temperature-variation (except, perhaps, 

in the case of carbon) as to the fact that the exponential coefficient 6 is a function of 

0. We have seen that h = cp/R, where is the work done by a corpuscle in escaping 

from the metal, and R is the gas constant for a single corpuscle. Now 

^ 273 X 9-iid = 5 X 10 ^ for platinum, so that is approximately 
equal to 10“^h 

A second approximation to the value of ^ is obtained when we consider the nature 

of the forces which retain the corpuscles inside the metal. These are a sort of 

integrated effect of the attractions of the positive and negative ions scattered about 

in the metal near the corpuscle. The field would thus be much the same as if 

the corpuscles were surrounded by a perfect spherical conductor of molecular 

dimensions. The quantity 4) is therefore of the same order as the energy required to 

remove a corpuscle from inside such a charged sphere, which is Te'VC, where c is the 

charge on an ion and C is the radius of an atom. Taking ^ = 2 X lO'S centim., tliis 
gives cp = 9 X 

If this view is correct it hardly seems likely that the aliove numerical agreement 

is entirely a coincidence—we should expect the value of b to decrease as the 

temperature is raised owing to the greater distance of the atoms apart. We should 

therefore expect h to decrease in much the same way as the linear dimensions of the 

metal increase with the temperature. It is probable, therefore, that h can be 

represented with sufficient accuracy as a function of the temperature of the form 

b = — a.^O. Writing the equation at the beginning of this section in the form 

log C = log Ai -f i log 0 + log n — h/0, 

we see that the first three terms (with the possible exception of log v, which we are 

not considering) vary extremely slowly with 0, if at all, so that we may use as an 
approximation 

log C = ttg - h/0, 

where = log A^ + U log ^ + log If now we put h = fq — o.P, we see that 

~ ~ So that, as we found in the experiments, log C is a linear 

function of 1/0, but the constant A from which n is determined is much larger than 

it ought to be, owing to part of h having become added to it. 
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As a numerical example, we may give to h the value 5 X 10^ — 7^, which 

corresponds to a temperature coefficient of '00014 per degree, and would change the 

value of h by 20 per cent, in a range of 1400°. On calculating out we find that this 

small temperature coefficient would leave h practically unaltered, but would make the 

apparent value of n one thousand times its true value, whilst doubling the coefficient 

would square the error in n, and so on. It is therefore evident that the temperature 

variation of h is quite adequate to explain the large values of n which have been 

found. Moreover, owing to the peculiar nature of the functions, it is impossible to 

arrive at the true values of n by this method. 

The value of A found in these experiments are therefore not irreconcileahle with 

the values of n given by Mr. Patterson, Init the two values of n can be made 

identical by assigning to h a small temperature coefficient. The coefficients necessary 

have been calculated, and, together with corresponding orders of magnitude of A and 

of n, are given in the following table. 

Conductor. Order of A. Order of n. 
Value of h with temperature coefficient 

to give value of n in last cohrmn. 

Platinum. 1026 1021 4'93 X104 
Carbon. 1034 1020 7-8 X 104 (1 --000270)4^ 
Sodium. 1031 1023 3-16 X 104 (1 - '000226>)t 

From the values of h we can calculate the work done by an ion in passing through 

the surface, and hence the discontinuity of potential between the metal and the 

surrounding space. For the case of platinum this has already been done, the value 

obtained being 4T volts. For car])on and sodium, taking into account the 

temperature coefficients given above, we find foi; the discontinuity at 15° C. the 

values 6T and 2-45 volts respectively. It will be noticed that these numbers follow 

the same order as the Volta series, though their differences (at any rate for carbon 

and platinum) are not equal to the corresponding contact electromotive force. 

§ 2. The work clone hij a Corpuscle in passing through the Surface Layer. 

It has been shown on p. 543 that the value of is of the same order of magnitude 

as -j e^jl,, where e is the charge on an ion and t, is the radius of a molecule ; it is 

therefore also of the same order of magnitude as the energy set free when two ions ot 

opposite sign re-combine, and as tlie work required to produce an ion by collision. 

Theoretical considerations, in conjunction with tlie experimental results, render it 

probable that may he represented very approximately as a linear function of the 

* 0 is the absolute temperature. 
t It is noteworthy that this number '00022 is practically equal to the coefficient of cubical expansion of 

sodium ('000204). 
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temperature, whilst the numbers given on p. 544 show that the temperature coefficient 

of is of the same order of magnitude as the coefficient of linear expansion of the 

corresponding solid conductor. 

These facts render it probable that d) is a function of the size and distance apart of 

the molecules of which the conductor consists. If we consider ^ in the formula 

dJ = i as the distance apart of the centres of the molecules in the solid state, it 

will be j)roportional to the cube root of the atomic volume. We should therefore 

expect the work done by a corpuscle in passing through the surface layer of different 

metals to be approximately equal to a constant divided by the cube root of the 

atomic volume. Up to the present d) has been determined only for sodium, platinum 

and carbon, but fortunately these three elements furnish a considerable range of 

atomic volume. As a matter of fact, carbon has the smallest atomic volume of all 

elements, whilst that of sodium is only exceeded by the alkali metals of greater 

atomic weight. 

In the accompanying table values of the atomic volume and the inverse of its cul)e 

root are given in the first two columns. The third contains the surface discontinuity 

in the potential S^, which is proportional to d); whilst the numbers in the last 

column are the ratios of those in the second and third. In the case of carbon there 

is some doubt as to what the value of the atomic volume should be, since the density 

has different values for the different allotroplc forms. Thus for charcoal the density 

is 1’9, for graphite 2'2, and for diamond 3‘5. 

Element. At. vol. (At. vol.) 1 S<^ [volts]. (At. vol.) 

Sodium. 23 •35 2 ■45 ■14 
■ 12 Platinum. 9-3 ■476 4^1 

Carbon charcoal. . I 6-3 q ■55 t 
■66 / 

6^1 ■09 1 
,, diamond 

- 
•; 3-46 ; ■11 / 

It will be seen that the numbers in the last column are not quite constant > l^ut 

they only change by about 40 per cent., whilst the atomic volume changes in the 

ratio of 6 to 1, and the atomic weight varies from 12 to 195. It seems therefore fair 

to conclude that the work done by a corpuscle in passing through the surface layer is, 

to a first approximation, inversely proportional to the cube root of the atomic volume 

of the element. 

§ 3. The Effect of Gas on the Current. 

The negative leak from a hot platinum wire surrounded by air at atmospheric 

pressure is always much smaller under a given voltage than at low pressures, when 

the wiie IS maintained at the same temperature in both cases. In one case, when 

the wire was giving a current of 3 X 10~® ampere at a pressure of ’05 millim., air 

VOL. CCI.—A. 4 A 
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was let into the apparatus and the current again measured under atmospheric 

pressure at the same temperature. It was found that there was no detectable leak 

till a temperature of 60° higher was reached, when one division of the galvanometer 

scale (3 X 10~® ampere) was obtained with the wire at a potential of — 200 volts. 

The small value of the currents at atmospheric pressure is probably due to the 

difficulty of saturating them. 

It was thought conceivable that the ionisation at low pressures might he due to 

the gas molecules hitting the hot wire and becoming ionised thereby. If we assume 

that the maximum current would correspond to each molecule producing one ion, we 

can calculate its value in any given case. If we take the number of molecules in a 

cubic centimetre of gas at 0° C. and 760 millims. to be 2 X 10^^, then the number 

which hit unit area of the wire per second is X 2 X 10^^ approximately, where u 

(the scpiare root of the mean velocity square) may be taken as 5 X 10^' centims. per 

second for air. The number which strike unit area of the wire per second at 

1 millim. pressure is therefore 2’2 X 10'*^, which gives a saturation current of 

14'3 X 10^° electrostatic units, or 47‘3 ampk’es per square centimetre. At a pressure 

•0016 this current would become ’OS ampere per square centimetre. As a matter of 

fact, during the experiments, a current of 2'0 amperes per square centimetre was 

obtained at •0016 millim. pressure. This is twenty-five times the maximum value 

oljtained by supposing each molecule to produce one ion; so that it is highly 

improbable that any considerable part of the conductivity investigated is due to ions 

produced in tliis way. 

Another way of considering this question is to calculate the number of times each 

molecule of air inside the cylindrical electrode must collide with the filament per 

second to produce the ol:)served current, assuming that each collision sets free one 

cor])uscle. In the experiments in question the cylinder had a volume of about 

I cul). centim., so that each molecule present would have to pass backwards and 

forwards between the filament and the cylinder some 10^ times each second. This 

seems to he an impossible feat for an uncharged molecule. 

Both these points of view lead to the conclusion tliat the corpuscles are not 

produced by a dynamical action between the molecules of the surrounding gas and 

the surface of the metal. In fact, all the experimental results seem to point to the 

view that the corpuscles are produced from the metal l)y a process similar to 

evaporation. The effect of the surrounding gas, of impurities in the wire, and of its 

previous history are to Ije regarded as due to alterations in the property of the metal 

wliich corresponds to latent heat in the theoiy of evaporation. 

§ 4. The Edison Effect. 

It will readily be seen that the results which have l)een obtained furnish a 

complete explanation of the phenomenon known as the Edison effect. Edtsox first 

discovered this eftect 1)y connecting an insulated electrode, which was symmetrically 
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placed between the ends of the filament of an incandescent lamp, tlirongh a galvano¬ 

meter to the positive end of the filament. A current was then oliserved which 

amounted in some cases to several milliamp^res, although there was no current when 

the electrode was joined to the negative terminal. Evidently the current was carried 

by corpuscles passing from the negative portions of the hot carbon to the relatively 

positive electrode; and, on this view, we should expect the current to vanish by 

comparison when the electrode was negative with respect to the filament. 

This observation was confirmed and extended Ijy Professor Fleming,* who showed, 

by using cylindrical electrodes which he placed round various parts of the filament, 

that the current only came from the negative end. He also found, in agreement 

with the results of the present paper, that a platinum filament likewise gave an 

eftect. This was in the same direction as, but greater in magnitude than, that given 

by caibon. Finally, the Edison efiect was found to increase rapidly with the 

temperature of the filament, which confirms its identification with the phenomena 
here investigated. 

§ 5. The Energy Emitted. 

It IS of interest to compare the energy lost liy a hot body owing to the emission of 

corpuscles with the energy given off in the form of electro-magnetic radiation. The 

recent measurements of E. KurlbaumI' show that the energy radiated in 1 second 

from 1 sq. centini. of the surface of an absolutely black body at 1° absolute is 

S = 2-12 X 10-4-_, 
centnn. sec. deg.^ 

whilst we have seen that the total rate of loss of energy of a conductor owing to the 

emission of corpuscles at temperature 9 absolute is 

E, = n {1 + <fi/2Kd] 
^ irm 

Since the quantities and n in this formula liave now been determined for carlion 

and platmum, we can calculate E at any temperature for these substances. The first 

term in brackets represents the part of the energy due to the motion of translation of 

the emitted corpuscles, and is less than 5 per cent, of the second term at all 

temperatures at which experiments have been carried out. We may therefore leave 

it out to a first approximation and calculate only the second term, which is equal to 

the work done by the corpuscles in passing through the surface layer. Tliis is 
obviously equal to NT) 

- CoSff, 

* ‘Phil. Mag.’ [.5], vol. 42, ji. 52. 

t ‘ Wied. Ann.,’ vol. 65, p. 759. 

4 A 2 
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where is the discontinuity in the potential, and Cq is the saturation current per 

unit area. 

C^alculating in this way we find that for platinum at d=1900 E=8XI0^ 

ergs/centim. sec. The value of S^ggo i® ^ much larger quantity, viz., 2'75 X 10^ 

ergs/centim. sec. The largest experimental values of E were obtained with carbon. 

Since the greatest value of the saturation current attained was Cg = Do ampere 

= 4'5 X 10° electrostatic units per square centimetre and §(!> = 6 volts, we have the 

rate at which energy is lost by the wire =9 X 10'^ ergs/centim. sec. The 

temperature corresponding to this current was not measured, but was certainly 

greater than 2000° absolute. The energy radiated from an absolutely black body at 

2000° absolute would have been 3'36 X 10° ergs/centim. sec. 

We see then that at all the temperatures at which experiments were made the 

loss of energy due to the escape of the corpuscles is much less than that due to the 

emission of ordinary electromagnetic radiation ; on the other hand, it increases much 

more rapidly with the temperature, so that, in the case of carbon at any rate, it 

would become first equal to, and finally great compared with, the electromagnetic 

radiation, at temperatures not much above 2000° C. It must not be forgotten that 

for this calculation the hot conductor is supposed to be placed in a vacuum and 

surrounded by an electric field which removes the ions ; otherwise all the ions diffuse 

back to the metal and there is no loss of eiiergy due to this cause. 

In all these experiments we are a long way from the region where an appreciable 

fraction of the total number of ions which strike tlie surface of the conductor pass 

through. This is easily seen if we calculate the value of the saturation current per 

unit area on the supposition that every corpuscle which hits the surface escapes. Let 

us take n = 10^^ as a probalde maximum for the number of corpuscles in a cubic 

centimetre of, say, caribou ; then, at 2730° absolute ^nu = 3 X 10'®, so that the 

saturation current would be 18 X UD® electrostatic units or 6X10° amperes per square 

centimetre. As the largest current which has been yet obtained is 2'0 amperes per 

square centimetre, it is evident that we are still a long way from the limit. This 

calculation seems to indicate that the region on the current temperature diagram 

when the current begins to be proportional to the square root of the absolute 

temperature is much higher than any temperature which can be reached in the 

ordinary way. 

The magnitude of the currents which have been obtained with low voltages 

indicate that a vacuum bounded by a hot conductor is, at any rate under certain 

circumstances, an extremely good conductor of electricity. In fact, it seems probable 

that such a vacuum is capable of becoming the best conductor that can possibly be 

obtained. The conductivity of metals is limited by the shortness of the mean free 

path of the ions, whereas the mean free path of a corpuscle in an atmosphere of 

corpuscles is probably very laige. All tliat is necessary, them tore, to produce a big 

current is to supply the ions quickly enough at the hot surface, that is, to raise the 
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temperature of the hot conductor to a sufficient extent. The experiments also seem 

to show that as far as electrical conductivity is concerned, the boundary of a hot 

conductor is an indefinite term; since so many of the corpuscles pass freely to the 

outside of the metal it is evident that at high enough temperatures quite an 

appreciable fraction of the current along a wire must be carried by the ions in the 

surrounding space. 

In conclusion, I wish to thank Professor Thomson for his never-ftiiling advice and 

encouragement during the course of these experiments, which were carried out in the 

Cavendish Laboratory. 

[Note, added June 30, 1903.—Since the present paper was written Mr. H, A. Wilson 

has made some experiments on the conductivity produced Ijy hot platinum at low 

pressures, in which he finds that by carefully treating the wire the current can be 

reduced to about one two hundred thousandth of the value found by the author at 

the same temperature. Mr. Wilson also shows that the current is greatly increased 

by admitting hydrogen into the apparatus, and concludes that the high values found 

in this paper are due to hydrogen absorbed by the wire, which is only given off very 

slowly, if at all, by mere heating. 

These results are not, however, inconsistent with the view that the effects are due 

to electrons shot out of the metal. To obtain the observed facts we have only to 

suppose that the occlusion of hydrogen diminishes the work which a corpuscle has to 

do in escaping from the surface. Mr. Wilson’s own results are in agreement with 

this theory, for he finds that raising the pressure of hydrogen from 0 to 133 millims. 

reduces the value of the work in question in the ratio of 155 to 36. It might be 

thought that on this view the constant A which deteimines the number of ions per 

cub. centim. of platinum should be independent of the pressure of the hydrogen 

outside. The numbers found by Mr. Wilson do not support this supposition, but the 

numerous practical and theoretical difficulties demand that little weight should be 

attached to the difterence. 

It is possible that Mr. Wilson’s process of removing hydrogen from a wire by 

oxidation may, as it were, overshoot the mark by leaving an electrical double layer 

with negatively charged oxygen on the outside. Such a double layer would increase 

the work for the coi'puscles to get out and so would reduce the leak in the manner 

observed.] 
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xn^ On the Forniafion of Definite Fujures Inj the Deposition of Dust. 

By John Aitken, F.R.S. 

Eeceived July 13, 1903. 

Owing to the kindness of Dr. W. J. Russell, F.R.S., I received in June an advance 
copy of his paper on the above sidiject.'^'' After reading this paper it appeared to me 
that all the figures illustrated in it could be exjilanied on well-known principles. I 
shall therefore do what I can to fulfil the hope expressed by Dr. Russell at the end 
of his paper that physicists from his descriptions may be enabled to explain their 
formation. 

The formation of these dust figures appeal’s to be due principally to three causes : 
(1) the convection currents set up by the hot plate; (2) to gi-avitation; and (3) to the 
repelling action of the liot surface. It seems trivial to remind the reader that 
gravitation plays a part in the formation of these figures, but it is to be feared that it 
is from not keeping the efiects of gravitation fully in view that difficulty has been 
experienced in explaining them. It is iirincipally owing to gravitation, or rather to 
an after-effect of gravitation, that no dust is deposited on certain parts of the plate. 
Gravitation acts on the dust under the plate as well as on the dust over it, thus 
causing the film of air flowing along the under surface of the plate to be dust- 
fiee, all the dust having fallen out of it. This dust-free film of air, after flowing 
along the under surface of the plate, turns round the edges and flows over the top 
sill face, presenting its dustless side to the plate, and the air has to travel some 
distance over the top surface before the dust falls througli the dustless film. That is, 
it takes some time for the upper current to undo the work of the under current, and the 
result is no dust falls on the plate till tlie current has flowed some distance from the 

edge. As stated, the third influence at work in the formation of these dust figures is 
O 

the rejielliug action of the hot surface. It is well known that a hot surface tends to 
keep itself free from dust while surrounded by dusty air. The hot surface may in a 
manner be said to repel the dust, the action being probably due to the air next the 
hot body being warmer than the air at a slight distance from it, and the dust 
particles, being more strongly bombarded by the hotter air molecules on the one side 
than by the colder ones on the other, are driven away from the hot surface. The 
energy of this action will probably be the greater the cpiicker the temperature 
gi'adient in the air in a direction at right angles to the hot surface. 

VOL. cci.—A 344. 
* ‘Phil. Trans.,’ series A, vol. 201, pp. 185-204. 
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The above j^rinciples seemed to offer the explanation of the dust figures, but as 

reasoning on physical phenomena should always be put to the test of observation 

when possible, I prepared apparatus to repeat Dr. Russell’s experiments, and made 

arrangements for seeing the directions of the air currents and the condition of the air 

at the under and upper surfaces of the plate. For these experiments it was found 

most convenient to use small plates on which to deposit the dust figures. Metal 

jjlates were used, as they were easily prepared, and they were coated with black 

varnish to show the figures. To prevent any obstruction that might result from the 

use of three ware supports to rest the plate on, only one wire was used fixed in the 

centre of the plate. The plates were about 2’5 centims. square and 2 millims. thick. 

A thick plate is l;est, as it keeps its heat longest and gives time for observations to be 

made under fairly constant conditions. 

The object of using small plates was that the observations could be made with a 

lens of greater magnifying power than was possible with large plates. An ordinary 

glass shade 12 centims. in diameter, made of thin glass, was used for confining the 

dusty air. A thin glass receiver has the advantage of being better made, the glass 

being of more even thickness than the thick glass ones, so enabling a more perfect 

image to be obtained by the lens. For illumination a narrow strip of incandescent 

gas mantle was hung over a Bunsen burner, exposing two thicknesses of the mantle to 

the flame. Ihe Bunsen burner was enclosed in a lantern, the glass condenser of 

which was removed and its place filled with a globular flask of water. This had to 

be adopted, as the heat coming from, and through, the glass lens interfered with the 

formation of the figures. The gas mantle and flask were mounted at the same level 

as the plate, and a small hand lens was used to further concentrate the light, and by 

means of it the light could also be directed to any part of the plate where illumination 

was desired. The air was examined by means of a hand lens of as high a magnifying 

poAver as possible. 

A\hen making observations on the air currents, it was found in some cases to be an 

advantage not to use much dust, only as thick as might be called a haze, because 

Avhen the dust is dense the beam of light illuminates by reflected light the AAdrole 

interior of the receiver and makes observation difficult, Avhereas Avith few dust particles 

the illumination is confined to the part under investigation. In some cases it was 

found hest to reduce the dust to sucli an amount that the indiA'idual particles of 

magnesia could be seen in the narroAv illuminated area. 

Turning noAv to the results of the obserActions made Avith this apparatus, the 
folloAving points may be noted :—Bringing the light to bear on the under surface of 
the hot plate it is seen that there is a dust-free space beloAv the plate, the dust in the 
film of air next the plate having fallen out and been repelled by the hot air aboA’e. 
This dustless film is seen to floAv horizontally along the under surface, turn sliarpl}- round 
the edges of the plate, and Aoaa^ horizontally over the top surface, no dusty air being- 
in contact Avith the plate at any point Avhen the jjlate is first put in and fairly AA'arni 
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Fig. 1 represents the appearance of the plate at this stage. As the temperature of 

the plate falls, the rate of flow slackens and the repulsive action of the heat grows 

less, and at last a certain stage is reached when the current has become so slow that 

the under side of the dusty air comes close to the plate over the area where the 

Fig. I 

Fg 2 

currents meet, and as these currents here turn sharply upwards, there is a small space 

under their meeting point where the air is still and into which the dust collects and 

is seen showering down on the plate, as shown in fig. 2. 

As these air currents rising from beneath all flow round the edges of the plate and 

move horizontally in a direction at right angles to the edges, they thus meet over the 

diagonals of the square; hence the deposition of the dust in Dr. Bussell’s figures on 

the diagonal lines in his fig. 1 and on the lines bisecting the angles of the triangle in 

fig. 2 and the octagon fig. 3."^' In fig. 4, for evident reasons, the currents here meet 

about the same angle as in fig. I, and deposits take place on the lines Ifisecting tiie 

angles, but the stronger currents provided by the longer sides of the oblong plate pre¬ 

vent much deposit taking place where they meet in the centre of the plate. Further, 

m all these four cases, the currents meeting over the diagonals do not turn directly 

upwards, but flow also towards tlie centre of the plate, taking more or less of a horizontal 

moveinent along the diagonals, so tending to give time for the dust to fall. Further, 

when the currents have met and their direction has become partly vertical and partly 

horizontal, the repelling effect of the hot surface nearly ceases, as the temperature 

gradient perpendicular to the hot surface is in the rising current practically nil. The 

reason for the narrowing of the deposits as they approach the centre of the plate would 

appear to be due to the greater velocity of the currents where they meet over the 

centre of the plates caused by the union of all the currents from the different sides. 

* Eefereuce must be made to Dr. Russell’s paper for these dust figures, as they are not reproduced 
here. 

4 B VOL. CCI.—A, 
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The importance of the dustless film from the under side of the plate is evidenced hv 

the fact observed by Dr. Russell that no figure is obtained unless the plate he 

supported above the bottom of the receiver. When we examine bv means of the 

beam of light the surface of a plate laid on the bottom of the receiver, we still find 

the dust-free film of air over the plate when the plate is pretty hot. This dustless 

film is veiy thin at the edges and thickens towards the centre, and a rising current 

can be seen fiowfing over it towards the centre, the rising current having a dustless 

core. This dustless film soon disappears as the temperature of the plate falls, and 

long befoie the jilate is cold dust falls all over it, but no definite figures are formed. 

Turning again to Dr. Russell’s figures, the effect of the velocity of the current is 

well shown m figs. 7 and 8. Fig. 7 was obtained Avith only a slight heating of the 

plate, and fig. 8 by a higher temjAerature. In the former figure the sIoav currents 

pioduced by the slight heating only kept the outside edges free from dust and 

allowed a large deposit to take place over the centre of the plate; while in the latter 

the highei temperature gave a current strong enough to prevent almost any deposit 
at the centre. 

The cause of the extension in the breadth of the arms of the cross in Dr. Russell’s 

fig. 9, Avhich AAms obtained by placing a hot cylinder some distance beloAv the plate, is 

not so evident, hut the probable explanation seems to be the folloAving; When the 

cuiients are due to the hot plate alone the circulation is mostly horizontal from 

centre to edge beloAv and from edge to centre above the plate, and the area AARere 

the cuiients meet is narroAv, but AARen there is a hot body under the plate there will 

be an upAvard current all round it of hot air. This upAvard current Avill preAmnt the 

horizontal movements above described being so markedly horizontal, and Avill cause 

them to turn upAAmrds at an easier curve, so broadening the dead dust-depositing area 

under the up-ciirAung air. 

In fig. 10 the extra deposit is jarohably due to some interference Avith the under 

air current produced by the piece of glass held under the plate. This subject will be 
referred to' later. 

Turning noAv to the effect on tlie figures of flames, &c., placed at a distance from 

the apparatus, as shoAvn in Dr. Russell’s figs. 11, 12, and 13. These alterations in 

the figures appear to he due not to any direct effect of the flames, &c., on the dust or 

on the plate, Imt to the heat radiated by them heating the receiver and so giving 

rise to convection currents at tlie side of the plate. These currents entirely change 

the symmetrical Aoav of tlie air over the plate and cause the centre of the current 

rising oyer it to move to one side, as shoAvn in figs. 11 and 12. When making 

observations Avith the apparatus described in this paper, it Avas not possible to get 

any of the figures quite regular; even the slight amount of heat given off by the 

small incandescent strip of mantle after passing through water interfered with the 

lesults, and air currents could be seen rising in the receiAmr on the side next the 

light. In support of this convection explanation, it may be further stated that the 
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same deformations as shown in figs. II, 12, and 13 can he equally well produced by 

heating the receiver by means of the hand held on it. 

Turning now to the results obtained by Dr. Russell when the plate was rested on 

a hot cylinder of metal, as shown in fig. 14. Here everything is reversed; black 

centre and black diagonal arms where in the other figures it was white, and white to 

the edges of the plate where before it was black. How, it may be asked, stands the 

explanation now; where is the protecting effect of the dustless film from under the 

plate ? For explanation let us turn to experime2it. When the beam of light is 

turned on to this new condition of matters we find the air circulation is all changed. 

The dustless film from under the plate no longer turns round the edge and flows 

horizontally over the upper surface, but the large amount of hot air coming from 

the hot cylinder below the plate causes the dustless film to rise straight up from tlie 

edge, and an induced current of air is seen flowing over the plate from the centre to 

the edge, depositing its dust as it goes. It is only at tlie corners of the plate, where 

the mutual influences of the neighbouring currents and the amount of hot air is less, 

and where the currents approach and bring the dustless film over the plate, that 

there is any protection. 

Both of Dr. Russell’s figures, shown in figs. 9 and 14, were produced by somewhat 

similar conditions. In both cases a hot body was placed beneath the plate, but in 

the case shown in fig. 9 the hot cylinder was placed some distance below the plate 

and only heated to 55° (I; whereas, in the other case, the hot cylinder was at a 

temperature of 150° C., and the plate rested on it. Referring to fig. 9, Dr. Russell 

points out that as the temperature of the body underneath the plate is increased the 

amount of deposit also increases, and idtimately the figure of the cross disappears ; })ut, 

as will be seen from fig. 14, it reappears in a reversed form when the temperature is 

high enough and the plate rests on the hot body, all of which is easily understood by 

what has been said above. 

Figs. 15 and 16 do not call for any sjjecial observation. Fig. 17 is interesting as 

showing the effect when the plate is cold and the currents are produced by an 

influence above the plate. In this case the currents flow over the cold plate 

towards the hot cylinder placed at the centre. As these currents do not come from 

the under side of the plate, they do not have a dustless film. So tlje plate has dust 

deposited all over it, but the figure of the cross can still be seen and is produced l)y 

the currents from the different sides flowing towards the centre, meeting over tlie 

diagonals, and causing the calm depositing areas as in the previous cases, only more 

feebly. In fig. 18 the white deposit round the cold cylinder is caused by the cold 

air flowing down the cylinder and forming a calm dust-depositing area round it. 

The effect of placing the plate in a sloping position is shown in figs. 19, 20 and 21. 

These alterations in the forms of the deposited dust are evidently due to the slope of 

the plate interfering with the flow of the dustless film from underneatli the plate 

and to the change produced by the slojDe on the currents over the upper surface. 

4 B 2 
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Take, for instance, fig. 20. Here most of the air from beneath the j^late flows to the 

higher edge and but little curves round the lower one, while the side streams keep about 

the usual strength. The current, however, round the higher edge being warmer and 

stronger than usual, does not flow to the centre of the plate, which is in a dovmward 

direction, but rises in an easy curve, with the result that over a large area of the plate 

the air is nearly motionless and the dust is free to deposit itself on the plate. In fio-. 21 

no dustless film seems to have come from tlie lower edge owing to the high angle of the 

plate, and all the hot air from the under side has flowed to the higher edge ; where the 

rising current has been so strong it has curved in but little, and as the side currents 

are weak, as most of the hot air has flowed to the upper edge, the greater part of the 

plate is therefore exposed to the dusty air flowing over it from the lower edge. 

The figure shown in fig. 22 seems to be due to the obstruction placed on the plate 

interfering with the regular flow and causing eddies and deposition of dust, while 

the dustless film enters the holes in the obstruction and, as usual, protects the surface 

in front of them over which they flow. 

The curious eftect of cutting a re-entering angle out of the plate, as shown in 

fig. 22a, is very interesting, and shows that the cutting out of that angular piece 

has in some way introduced new conditions which have interfered with the protecting 

action of the dustless film. Keferring this to experimental observation, it is seen at 

once how this peculiar deposit is produced. The beam of light shows that the air 

streaming up through the angular opening does not turn over and flow over the plate 

but rises straight up, owing to the large quantity of hot air drawn to the one point. 

This upward-moving current induces another current over the plate moving towards 

it from the centre, and as this current flows slowly and is composed of dusty air 

without a dustless film, the particles settle out of it and cause the peculiar markino’ 

extending from the centre to the angular opening. 

The next series of figures, from fig. 23 to 29a, produced by the action of a piece 

of glass, a pin, a hair, or other obstruction touching, or even near the edge of, the 

plate, are most curious and unexpected. On putting these conditions to the test of 

observation, it was seen that all these oljstructions cause deposits to form by the 

interference they offer to the stream-lines of air moving over the surface of the plate. 

Where the obsti'uction cuts the stream the current is slaclcened, and more or less 

eddying probably takes place, enabling the dust to settle. What is seen when the 

air is examined with the lens while illuminated by a narrow beam of light is as 

follows:—While the beam of light is moved about on either side of the obstruction 

the air is seen to flow in well-defined stream-lines, the lower surface of the dusty air 

being distinct and clearly defined, but wlien the light shines on the air that has 

passed the obstruction, the upper limit of the dustless air has lost its definition. 

And further, if the beam of light were moved backwards and forwards, fi'om one side 

to the other of the obstruction, it was observed that not only the upper limit of the 

dustless air on each side of the obstruction was well defined, but there was alwavs a 
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greater thickness of clnstless air on each side than opposite the olrstruction. As the 

light travelled backwards and forwards the lower limit of the dust always seemed to 

dip just when the light was opposite the obstruction. As the plate cools, dust begins 

to fall behind the obstruction, while as yet there is a space of dustless air on each side 

of it. While it may be strange that so small an obstruction as a liair should produce 

these deposits, yet it is known that when stream-lines are interfered with, unexpected 

results frequently happen. 

Figs. 30, 31 and 32 call for no special remarks, as these cases are explained in the 

previous paragraph, the deposits being due to the rough edges of the plates interfering 

with the stream-lines. 

Fig. 33 is the same as fig. 23, already explained, only in the former the obstruction 

is placed on one of the diagonals, and not on the side of the square, as in fig. 23. 

It seems unnecessary to consider in detail the other'figures in Dr. Russell’s paper, 

which show the effects of different kinds of obstructions placed on or above the hot 

surface. The manner in which these figures are formed can be easily understood 

with the aid of what has been said. Only a few remarks may be made as to 

figs. 44 and 44a. When we examine by means of a beam of light the conditions 

in these two cases, it is seen that the dust-free film from underneath the plate rises 

and flows upwards past the edge of the top plate. In doing so, it seems to draw 

away with it some of the air from between the plates, witli the result that a very 

slight negative pressure is established in the space between them. The beam of light 

shows that the upward current does not move in a straight line Imt curves inwards, 

drawn in by the lower pressure between the plates. The amount of tliis in-curving is 

least at the middle of the sides of the plate and greatest at the corners, the reason 

for this being that at tlie middle of the sides the air currents are stronger, as they 

contain more hot air than the currents at the corners, with the result that the weak 

currents at the corneis are drawn more out of tlieir course than the stronger currents 

at the sides. As the temperature falls the currents weaken, and at last the currents 

at the corners yield and the air is drawn in there and lirings its dust with it, but 

its velocity being small, only the edges get any protection from the dust-free film 

and the dust settles on the plate before it travels far, giving the patches of dust 

shown in the corners of the plates in figs. 44 and 44a. 

Wliat perhaps surprises one most in the formation of these dust figures is the 

important part the dustless film from the under side of the plate plays in protecting 

the upper surface from deposits of dust; and we have seen that whatever tends to 

destroy this dustless film tends to bring about conditions favourable for the dust 

settling on the plate. 

\_Note hij Dr. PtUSSELL, July 23, 1903.—The interesting observations made by 

Mr. Aitken by means of his exploring beam of light have contributed substantially 

to the elucidation of the dust-figures. It was, of course, clear from the first that the 
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agency was the cuiTents of air creeping over the edge of the plate, the dust being 

deposited where the drift was slowest; hut the sharpness of the patterns and the 

cleanness of the lest of the plate are made more mtelhg’ible by the existence of 

Aitken s deal layer ol drifting air through which the dust from above has to 

fall hefoie leaching the jilate. It will be observed that the explanation recj^uu'es that 

the dust has had time to fall completely out of the layer when it was travelling’ 

iindeineath the plate, but has not had time to fall through it to any extent from 

above wlien the layer was above the plate. The thinning out of the clear layer in 

tlie wake of a pin or hair, owing to eddies or broken motion, as described by 

Mr. Aitken, throws light on the features of the deposit thus produced by revealing 

that it IS denser near the centre of the plate, because the dust has had more time to 

fall through this thinned-out layer of clean drifting air ; yet the persistence of the 

effect when the obstacle is far removed from the edge of the plate remains verv 

remarkable.] 

P9AUG. 1903 
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