

Class TN 805 Book P4A6

· ·

.

•

. .

•

€.,

.

Commonwealth of Pennsylvania.

REPORT OF COMMISSION

APPOINTED TO INVESTIGATE THE

WASTE OF COAL MINING,

WITH THE

VIEW TO THE UTILIZING OF THE WASTE.

ORIGINAL COMMISSION.

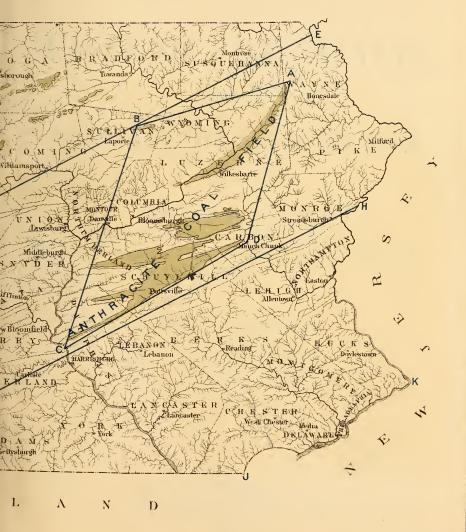
J. A. PRICE, SCRANTON, PA. Died August 2, 1892. PETER W. SHEAFER, POTTSVILLE, PA. Died March 26, 1891. ECKLEY B. COXE, DRIFTON, PA.

PRESENT COMMISSION.

ECKLEY B. COXE, DRIFTON, PA. HEBER S. THOMPSON, POTTSVILLE, PA. WILLIAM GRIFFITH, SCRANTON, PA.

MAY, 1893.

PHILADELPHIA: ALLEN, LANE & SCOTT'S PRINTING HOUSE, 229-233 South Fifth Street. 1893.



FriesBien & Co.Lith.

ANIA

sylvania Anthracite Coal Field" EFGH.THIRD=FIG.EFIJKH.

O R K

With the Compliments of

Eckley B. Coxe,

Irifton, Ha.

. n and a second the of the second second and the second

Commonwealth of Pennsylvania.

REPORT OF COMMISSION

APPOINTED TO INVESTIGATE THE

WASTE OF COAL MINING,

WITH THE

VIEW TO THE UTILIZING OF THE WASTE.

ORIGINAL COMMISSION.

J. A. PRICE, SCRANTON, PA. Died August 2, 1892. PETER W. SHEAFER, POTTSVILLE, PA. Died March 26, 1891. ECKLEY B. COXE, DRIFTON, PA.

PRESENT COMMISSION.

ECKLEY B. COXE, DRIFTON, PA. HEBER S. THOMPSON, POTTSVILLE, PA. WILLIAM GRIFFITH, SCRANTON, PA.

MAY, 1893.

PHILADELPHIA: ALLEN, LANE & SCOTT'S PRINTING HOUSE, 229-233 South Fifth Street. 1893.

5-31000

CONTENTS.

Letter of Transmittal	PAGE
Report of Commission	
Outline of Report	
What is Coal Waste?	
Causes of Waste: Geological	. 7
Waste by Mining of the Available Coal left in the Ground	. 12
Unavoidable Waste by Mining	. 12
Avoidable Waste by Mining	
Waste due to Preparation	. 14
Results of Experiments in Burning Small Anthracites	. 21
Commercial Causes of Waste	. 24
Sizes of Small Anthracites	. 25
Uses of Small Anthracites and Culm	. 27
For Domestic Purposes	
For Generating Steam and for Manufacturing Purposes	. 28
For Locomotives	
In Gas Producers	
For the Manufacturing of Coke	
Mixed with Bituminous Coal	
Mixed with Waste from Oil Stills	. 36
For the Manufacturing of Artificial Fuel	. 37
As Pulverized Fuel	
For Making Paint	
Remarks on Burning Small Anthracite	
Grate Bars	
Importance of Analysis of the Small Anthracites and of their Puri	
Importance of Analysis of the Small Antifractices and of their Furth	. 45
Utilization of Culm Banks	. 40
Test of Slate Bank at Drifton, Pa	• 48
Notes on Test	
Burning of Part of Slate Banks as Fuel	
Final Remarks	. 54

APPENDIX A-1.

Estimate of Original Geological Anthracite Coal-Field.				
Skeleton Map of Pennsylvania showing Coal formation				56
Estimate of existing Coal-Field before Mining began .				59
General Remarks				59
Northern Coal-Field				
Eastern Middle Coal-Field				76
Western Middle Coal-Field				84
Southern Coal-Field				
Recapitulation				
Estimates of Coal won			. 1	22
Northern Coal-Field				
Keystone Colliery				
Nottingham Colliery			. 1	23
Lance Colliery			. 1	24
Vicinity of Wilkes-Barre				
-				

(iii)

	PAGE
Sugar Notch No. 9 Colliery	. 125
Hollenback No. 2 Colliery	. 125
By Pennsylvania Coal Company	. 126
Parrish Colliery	126
Susquehanna No. 3 Colliery	128
Raub Washery	120
Reynolds Washery	120
Western Middle Coal-Field	120
The stell middle Coal-Field, ,	. 150
Hammond Colliery	. 130
Girard Colliery	. 133
Kehley's Run Colliery	
Locust Run Colliery	. 138
Stanton Colliery	. 139
Gilberton Colliery	. 139
Cambridge Colliery	. 139
Stanton Washery	
Southern Coal-Field	. 141
Panther Creek Basin	141
	. 1.41
Pottaville Sheft Collieur	149
Pottsville Shaft Colliery	140
Mine Hill Gap Colliery	. 142
Phœnix Park No. 3 Colliery	. 143
West Brookside Colliery	. 144
Estimate of Quantity of Coal Exhausted to date	. 147
Estimate of Available Coal not yet Mined	. 149
Estimate of Contents of Culm Banks	. 151
Table showing Shipments by Regions	
Diagram showing Shipments by Regions	. 154
Outline Map of the Anthracite Coal-Fields.	
General Columnar Sections of the Anthracite Coal Measures.	
Appendix A-2.—Estimate of Production of Coal in the several	Dis-
tricts of the Northern Anthracite Coal Basi	
Pennsylvania.	u 01
·	
BExperience with Small Coal on Locomotives.	
C-1.—Patents for Devices for Utilizing or Burning Culn	1.
C-2.—List of Patents relating to Artificial Fuels.	
D-1.—References to Official Reports.	
D-2.— " Transactions of Engineering Societ	ies.
D–3.— " Private Reports.	
D-4.— " Technical Journals.	
D-5.— " Text-books, Treatises, &c.	
D-6.— " Circulars from Patentees and M	anu-
faciurers.	
E-1.—Inclined Grates: Reciprocating.	
E-2.— " " Rocking.	
E-2 Hocking. E-3 "Stationary.	
LI-0 Stationary.	
E-4.—Horizontal Grates: Reciprocating.	
L-J Nocking.	
Lo. Stationary.	
E-7.—Mechanical Feeding Arrangements : Fuel and A	.ir.
E–8.—Traveling Chain Grates.	
0 0	
E–8.—Traveling Chain Grates.	
E-8.—Traveling Chain Grates. E-9.—Circular Grates : Horizontal, Outward, and Inward	

PHILADELPHIA, PA., May 20th, 1893.

Hon. Robert E. Pattison, Executive Chamber, Harrisburg, Pa. DEAR SIR:—The Commission appointed under

AN ACT

To create a commission to investigate the waste of coal mining, with a view to the utilizing of said waste, and making an appropriation for the expense thereof.

SECTION 1. Be it enacted, &c., That the Governor be and he is hereby authorized to appoint three competent persons to investigate the waste occasioned by the mining and preparing of coal in this Commonwealth, with especial reference to the reduction and utilization of said waste or culm. Said commission shall serve without compensation, but the actual expense of the investigation shall be paid by the Commonwealth, and to provide for the same the sum of \$2500, or so much thereof as may be necessary, is hereby appropriated out of any money in the treasury not otherwise appropriated.

Approved the seventh day of May, A. D. 1889,

have the honor to submit their report.

The Commission sends herewith for the use of the Executive and Legislature, one thousand copies of the report which they have had printed, as they found that several of the persons furnishing information would do so only upon the condition that they could see the proof before the report was made public, and much of the other matter had to be revised by a number of people.

The amount expended by the Commission, including the lithographing of the maps and the printing of the one thousand copies of the report, is about \$1900.00, or less than the amount of the appropriation. Should the Legislature desire a larger edition it can easily be made, as the type will be kept standing and the stones will be preserved until after the Legislature adjourns.

Yours respectfully,

ECKLEY B. COXE, HEBER S. THOMPSON, WILLIAM GRIFFITH,

Commissioners.

REPORT

OF

COAL WASTE COMMISSION.

THE Act creating the Commission was approved on May 7th, 1889, but the Commissioners were not appointed until February 19th, 1890. As originally constituted, the Commission consisted of J. A. Price, of Scranton, chairman; Peter W. Sheafer, of Pottsville, and Eckley B. Coxe, of Drifton.

On account of the business engagements of the different members, the distances they lived from each other, and the ill health of Mr. Sheafer, the Commission was not able to organize until May 21st, 1890, when they met in Mauch Chunk.

After carefully considering the subject, they decided upon a line of investigation which, with a few unimportant exceptions, is practically that set forth in the following report.

As the members of the Commission were all engaged in active business, and lived at some distance from each other, the work was divided into three parts, each member taking up those branches with which he was most familiar, with the understanding that they were to meet from time to time for consultation.

This method of procedure worked well, and matters were progressing very satisfactorily when the Commission had the great misfortune to lose Mr. P. W. Sheafer, who died on March 26th, 1891. He had taken great interest in his part of the work, and, notwithstanding his ill health, had already laid out his plans and gotten together a great deal of very interesting and valuable matter relating to the statistics of the coal trade, to the amount of coal in the culm and dirt banks, and to the size of the latter, at certain collieries, compared with the amount of coal already mined and shipped. Unfortunately, his sudden death left the data in such a condition that only a small amount of it could be utilized, although what he had done was placed by his family at the disposal of the Commission. Mr. Sheafer had been connected with the anthracite coal business for almost half a century, and was a leading authority on all matters connected in any way with the statistics of anthracite. He had for years been specially interested in the question of the utilization of the dirt banks, and in all improvements in mining tending to diminish the loss of coal.

On October 20th, 1891, Mr. Heber S. Thompson, of Pottsville, was appointed to take the place of Mr. Sheafer, and the Commission reorganized and divided up the work anew.

On August 2d, 1892, the Commission again lost one of its members by the death of Mr. J. A. Price, who was one of the first in the Commonwealth to realize fully the importance of utilizing the great accumulations of anthracite culm existing in the coal-fields. For many years he had been a persistent advocate of its value, and did much to bring it into use in many of the industries of the State, particularly in the neighborhood of the city of Scranton. He had studied the subject with a great deal of care, had made many experiments, and was familiar with all its branches. [D-3, No. 3; D-4, No. 26; D-4, No. 30.] By his untimely death the Commission again lost the result of a great deal of valuable work, as many of the papers he left were not in shape to be utilized by others. He was so familiar with the subject that he had not, when his unlooked-for death occurred, written out the results of the greater part of the work that he was engaged in.

On September 22d, 1892, Mr. William Griffith, of Scranton, was appointed to fill the vacancy, and as he had assisted Mr. Price in some of his experiments, and knew him well, he was able to afford valuable aid to the Commission in compiling its report. After the Commission had organized and carefully examined the question submitted to it, the following conclusions were arrived at :—

First.—That the most important work to be done was to determine the causes of *waste* in its broadest sense, and, after stating them, to give briefly such suggestions as it could as to the lines in which effort should be made to diminish or avoid it.

Second.—That while it is important that attention should as far as possible be called to all the methods, apparatuses, furnaces, &c. (patent or otherwise), by which the smaller, and until recently valueless, sizes of anthracite can be and are gradually being utilized; yet a minute description of any apparatus, or a comparison of rival systems, would be out of place and beyond the powers of the Commission with the limited time and money at its disposal.

Third.—That while the body of the report should be as untechnical as possible, it should give the general results briefly but comprehensively.

Fourth.—That a series of appendixes should be prepared in which information of a more or less technical character, but of value to those wishing to make a closer and more detailed study of any part of the subject, would be given. They are as follows :—

APPENDIX A.

Estimate of the territory probably covered originally by the Pennsylvania anthracite coal-field.

Estimate of the amount of coal in the existing field before mining began.

Estimate of coal actually won at certain collieries.

Amount of coal worked up to January 1st, 1893.

Table of shipments up to January 1st, 1893.

The above were prepared by Mr. A. DW. Smith, of the Pennsylvania Geological Survey.

Diagram showing shipments by regions, by Howell T. Fisher.

Tabular estimate showing the approximate quantity of coal, with past and probable future production, in the several districts of the Northern anthracite coal basin of Pennsylvania, by Mr. William Griffith, a member of the Commission.

APPENDIX B.

Table showing the experience on locomotives with small anthracite of all railroads using the same, and giving such details as to the locomotives, the coal and its use, as could be obtained.

APPENDIX C.

A list as complete as possible of all patents that have any application to the subject, with the exception of patents on ordinary stoves, which are very numerous, and involve so many details that it is almost impossible to decide accurately which of them have reference to the subject.

APPENDIX D.

A list of such literature on the subjects discussed, mostly American, as the Commission thought would be of value to those wishing to investigate more fully any question treated here.

This literature is arranged as follows :— References to Official Reports.

- " " Transactions of Engineering Societies.
- " " Private Reports.

••

- " " Technical Journals.
 - " Text-Books or Treatises.
 - " Circulars from Patentees and Manufacturers.

APPENDIX E.

A list of grates, stokers, and furnaces, classified as follows:—

Inclined grates: Reciprocating, rocking, and stationary. Horizontal grates: Reciprocating, rocking, and stationary. Mechanical feeding arrangements: Fuel and air.

Traveling grates.

Circular grates: Horizontal, inclined, and underfeeding. Rotary grates and grate-bars.

Domestic or stove grates. (A selection of those that seemed of interest.)

These articles are numbered consecutively in each table, and when a reference is made to any of them in the text, the number only will be used. Thus instead of referring to an article by giving the whole title, author's name, name of periodical, volume, &c., we simply give, for example, D-2, No. 3.

WHAT IS COAL WASTE?

The Commission has taken these words in their most comprehensive sense and has discussed the subject with the view of determining, as nearly as possible, what portion of the coal originally deposited has been, or will be, lost to the community, and the causes to which this loss is due, with such suggestions as they were able to make with the view of diminishing the waste in the future.

CAUSES OF WASTE.

Geological.—A very small percentage of the coal originally deposited now remains in the coal-fields, by far the larger portion having been carried away by the erosion following the uplifting of the strata by which the present anthracite coal basins were formed, as is more fully set forth in the report of Mr. Smith. Of the coal that remains, quite an appreciable percentage is rendered practically useless by the distortion to which it has been subjected when upturned; for where the dips are steep or overturned a large amount of coal has been twisted, crushed, and sometimes intimately mixed with the slates that occur either above, below, or in the vein, thus destroying or diminishing its value. The coal in those portions of the veins (or beds) which lie close to the surface is often more or less depreciated in quality by the action of the atmosphere, and the close proximity of rivers, creeks, and buried valleys may practically destroy the value of much coal of good quality.

At the request of the Commission, Mr. A. D.W. Smith, of the Geological Survey, has prepared a very careful paper, giving, as far as could be obtained, information upon the following points:—

First.—Probable percentage of the coal originally deposited in Eastern Pennsylvania, which was left in the ground when the mining of anthracite first began.

Second.—Estimate of the amount of coal actually contained in each of the four basins when the mining began. A number of very valuable reports, showing percentage of coal obtained in working certain areas of certain veins and the amount of coal probably contained in some of the dirt banks [D-2, No. 14; D-3, No. 4; D-3, No. 5.]. Consideration and estimation of the percentage of coal actually contained in the ground which has been and can be shipped to market or used at the collieries.

Third.—Statistics of the anthracite coal trade up to January 1st, 1893, with a diagram showing the total anthracite shipments and the proportional output of the Schuylkill, Lehigh, and Wyoming regions.

It is not necessary to refer to the details more at length, as they will be found to be thoroughly explained in the report itself.

The Commission, in submitting the report of Mr. Smith, would call attention to the following facts :—

It does not pretend to be absolutely correct. The data for making a correct report do not exist, and will not probably exist for many years. The report is a very careful compilation of the facts now known, and is based on an immense amount of work done partly by the Geological Survey and partly by mining companies, individual operators, and mining engineers.

The estimate of the amount of coal originally in the ground is approximately correct, assuming that the veins

will maintain the characteristics which they have near the surface or where they have been worked or opened.

A large portion of the data has been obtained from sections of veins taken from actual mining operations or from explorations, nearly 6000 in number, of which 2500 were in detail, and as the natural tendency is to work the better veins or portions of veins in preference to those less valuable, it is possible and probable that the sections on the whole may represent a somewhat better state of affairs than actually exists on the average. It is impossible to determine how much better the ground actually worked is than the average of what is left, and this fact may have a very important bearing in reducing the actual amount of good coal still unworked.

When we come to consider the amount of coal that can be obtained, the calculations become much more uncertain, for the following reasons: The percentage of coal to be obtained from any vein increases, first, with the smallness of the vein down to a certain point; that is to say, a vein 6 or 8 feet thick will yield a much larger percentage of coal than a vein 20 feet thick, and a vein of 20 feet a much larger than a vein of 40 feet, other things being equal. The nearer the vein is to being horizontal the greater will be the yield of coal; that is to say, a vein on a pitch of 5 degrees will yield more than a vein on, a pitch of 30 degrees, and a vein on a pitch of 30 degrees more than a vein on a pitch of 50 degrees; first, because the amount of pillars required to sustain the horizontal roof, including gangway pillars, chain pillars, &c., is less in a horizontal vein; secondly, the pillars can be maintained of a more regular size, and cars can be run in and taken out of the breast so that the gangways can be further from each other, involving less chain pillar [D-1, No. 9], and the pillars in the gangway need not be so large; thirdly, pillars need only be maintained at long distance to retain the water; and, fourthly, when the cars are loaded in flat breasts the coal can be taken out cleaner and not so much left in the gob, and the mining and blasting can be carried out more systematically.

The amount of coal increases with the solidity of the roof. Where the roof is not good the pillars must be made larger, and a large quantity of coal is left in consequence of the roof falling and burying coal under it or cutting off available coal behind it.

The percentage of coal gotten from the vein depends also upon its purity. If the coal is in a single bed, say 6 feet thick, it will yield more than a vein of 8 or 9 feet thick containing the same amount of coal, but having slate through it. If the slate is distributed in the vein in large beds, which part from the coal, it will yield more coal than if the slate is distributed in many layers or attached to the coal or burned in, as the miners say. Should the 2 or 3 feet of refuse be distributed uniformly throughout the vein in the form of small, thin layers attached strongly to the coal the whole vein may be unworkable, as the cost of preparing it in the breaker may render it valueless commercially. This is an important factor in determining the quantity and value of the smaller sizes obtainable from a vein.

The amount of coal we may get from a given vein depends also upon its relation to the veins above or below it. If the vein stands alone with no other vein near it, it may, if the conditions are favorable, be worked very clean, while if there should be a number of other veins below it which have been worked, and the intervening strata is not of a very strong character, the vein, particularly if it is a small one, may be made unworkable by the caving in of the lower veins, or if worked at all may yield but a small percentage of the coal contained in it.

When working deep basins where the pitches are steep and where there are a number of veins, a large amount of coal may be lost in this way. It is possible also that in some of the basins the infiltration of water, due to overlying workings where considerable breaking up of the strata has occurred, may be so great that it would take all the coal that you could get from the vein to pump out the water. The existence of large creeks and rivers such as the Susquehanna, which covers a large portion of the Wilkes-Barre region, may also diminish the quantity of coal that can be taken from the veins.

The great buried valley referred to by Mr. Smith presents some very serious problems. It is also possible that in some of the deep basins there may be at the bottom more or less twisting of the strata, &c. In fact, the miner may at any time find a vein in fault and unworkable when he enters new ground.

In regard to the specific gravity of the coal, we are of the opinion that, while individual specimens selected for the purpose of determining the specific gravity may have given the figures used in Mr. Smith's report and taken from the reports of Mr. McCreath, of the Geological Survey, yet a number of experiments made lately by Mr. E. B. Coxe in his laboratory leads him to the conclusion that the average specific gravity of the pure coal in all the regions is probably less than those used in the tables. This is important, as a variation of 1 per cent. in the specific gravity would reduce the total number of tons of coal in the ground 195,000,000.

Mr. Coxe's determinations were made by obtaining samples from a large number of tons of prepared coal as it came from the breaker, selecting them by the method usually adopted for sampling ores, that is, by quartering down.

For the above reasons the Commission is of the opinion, in which Mr. Smith concurs, that the amount of coal that will be obtained finally may fall short, and in some localities far short, of the estimates given in this report.

The Commission also reprint, with the consent of the author, from the May, 1892, number of the *Colliery Engineer*, of Scranton, Pa., at the end of Mr. Smith's report, a tabular estimate showing the approximate quantity, past and future production of coal in the several districts of the Northern anthracite coal basin of Pennsylvania. This was prepared on April 20th, 1892, by Mr. William Griffith, now one of the Commission, but before he was appointed. This estimate was prepared from other data and upon a plan different from that adopted by Mr. Smith, neither gentleman being influenced by the other's figures in reaching his result.

Mr. Smith's figures are . Mr. Griffith's figures are							
							639,572,224 tons.

A difference of about 12 per cent.

At the foot of Mr. Griffith's table will be found a clear statement of the method adopted by him in preparing it.

In reaching these results Mr. Griffith, in estimating, used 1.5 as the specific gravity, while Mr. Smith used 1.55. Mr. Griffith estimated the percentage of waste to be $23\frac{4}{10}$, while Mr. Smith estimated it at $18\frac{2}{10}$. These two differences account for a part of the variation in the estimates.

Waste by the Mining of the Available Coal left in the Ground.—This may be considered under two heads:—

First.—That which is absolutely necessary and cannot be avoided.

Second.—That which may be diminished or done away with by better methods of mining.

Unavoidable Waste by Mining.—It is evident that, except in very special cases, it is not possible to remove all the coal. A certain amount must be left in order to maintain the slopes, shafts, gangways, air-ways, &c., and in some cases to support the surface, as, for instance, under railroads, streets, houses, streams of water, &c. A thorough study of each area to be worked will enable the mining engineer to reduce this, but it will never be possible to take out all the coal, except by stripping. In thin veins, where the long-wall system [D-4, Nos. 33, 34, 35] of working is used, a very large percentage of the coal can be taken out, and where the method of gobbing up is used, as is very commonly the case in France (méthode par remblais), a very large percentage of the coal can be obtained. The possibility of adopting the latter method, however, depends very largely

on the rate of wages paid in the district and the price of coal. The nature of the roof or of the floor of the vein may often be an insuperable obstacle to getting out all the coal. The proximity of the veins to each other is also a difficulty. In strata where there is a good deal of water it may be necessary to sacrifice coal in order to prevent the water from reaching the lower levels, and thereby causing too great an expense for pumping, including, as it may do, a great consumption of coal, so that it may be better mining to leave larger pillars. Where the pitch of the veins is great, it is often necessary near the bottom of the basins to leave considerable coal to prevent the whole superincumbent strata from crushing in the mine. In other words, to keep the mine safe and in such a condition that maximum quantity of coal can be worked economically out of the openings, a certain part of the coal must always be sacrificed. Where the mine generates large quantities of fire-damp, it may be necessary for safety to leave large pillars between the air courses, and it may not be possible to rob as closely as it would be were the mines free from gas.

It is one of the best evidences of engineering skill when the coal that must be sacrificed is determined and deliberately set apart for that purpose at the time the colliery is opened out, or very soon thereafter.

Avoidable Waste by Mining.—When any given territory is to be worked a much larger percentage of coal can be gotten out if the conditions in which the coal occurs are carefully studied, and a general system of working decided upon and thoroughly carried out from the beginning. One of the most important points is to leave large pillars more than sufficient to sustain the workings and to take no more coal than is commercially necessary until the boundary of the colliery is reached, and then to rob back carefully in sections, so that whatever caving-in occurs is back of the main body of the coal still to be worked. The gangways and other openings should be driven through the faults wherever it is necessary to properly open up the workings, and the coal should be mined regularly instead of taking only the better coal first, and leaving the inferior for future operations. One of the great causes of loss of coal is the tendency to leave too small pillars which are not sufficient to sustain the pressure or crushing, thus closing off much coal that could otherwise be gotten out. In order to avoid leaving in the ground much coal that is fit for market, the breakers should be prepared to take anything the mine may send to them, and the miners should not be required to leave coal inside because it contains more slate than the breaker is able to handle without cutting down its capacity. In many cases where veins contain bands of slate they are either not worked or only those portions of the veins which are pure are taken out; that is to say, in many cases a vein containing 10 feet of coal, interstratified with slate, will not yield more than a vein of clean coal 4 or 5 feet thick.

Waste Due to Preparation.—As is well known, anthracite coal is not sold in the same way as bitumincus. The latter is generally sold "run of mine;" that is to say, the large, small, and dust are usually shipped together just as the coal comes from the mine, and, at the most, only 2 or 3 sizes are made. This cannot be done with anthracite, as in order to have a good economical combustion the pieces used in a fire should be as far as possible of about the same size. The sizes are known in the market, beginning with largest, as lump, steamboat, broken, egg, stove, chestnut, pea, buckwheat, No. 2 buckwheat or rice, and No. 3 buckwheat. Screenings made at shipping points are sold as "pea and dust," and there has already developed a large trade in what is known as culm, which is made at the mines, and includes some of the finer coals mixed with the dust.

As a general thing, much more lump, steamboat, broken, and egg are produced naturally than can be sold, and less stove and chestnut. This involves the breaking up by mechanical means of the surplus of the larger sizes. Pea, buckwheat, and the finer sizes must be sold as they are made, and it is impossible to diminish the quantity below a certain amount, dependent upon the quantity of coal broken and the method used for breaking it. These smaller sizes must therefore be sold at what they will bring, stocked, or thrown upon the dirt banks.

It is possible to make a certain quantity of any size of coal that is desired, but consumers who wish, for their own convenience, to use special sizes of which the production is limited, must pay not only the actual cost of making them, but also the loss of coal caused by the breakage. This breaking down of the coal is one of the great causes of waste. When pieces of coal coming from the mine are of such peculiar shapes that they cannot be burned with economy or convenience they must be broken into smaller sizes. In many mines large quantities of flat or abnormally long pieces occur which consumers will not take. A still larger portion of the coal must be broken, because it has attached to it pieces of slate or bone which renders it unfit for market. By breaking it down the objectionable parts can be removed in the preparation and a large amount of good marketable coal obtained.

Breaking up, of course, causes much loss, as the percentage of the smaller sizes, which are of much less value, and the percentage of dust, which is of no value at present, are greatly increased. Great attention should be given to the breaking of the coal. It seems to be pretty well demonstrated that less waste is caused when the coal is broken down by degrees, that is, when lump is broken to steamboat, steamboat to broken, broken to egg, &c., than when an effort is made to break down lump or steamboat directly into stove and chestnut. Careful study should in all cases be made of the way in which the particular coal breaks, and we should try to adapt the machinery to the nature of the coal. The ordinary method of breaking is by what is known as rolls. Great improvements have of late years been made in their construction. They were formerly merely cast-iron cylinders, with more or less rude cast-iron teeth upon them, but

now they are constructed with much greater care. They are made of cast-iron cylinders carefully turned, with caststeel teeth inserted in them very accurately, and great attention is paid to the form, construction, tempering, sharpening, and insertion of the teeth. They are so arranged that whenever a tooth becomes dull or breaks it can be taken out. Some use fluted cast-iron cylinders [D-2, No. 27]; that is to say, cylinders in which the teeth are continuous from one end to the other, the coal being broken very much as a man breaks a piece of chalk or a slate pencil with his two hands.

At Bernice, where the coal is very brittle, it is broken by means of chisels inserted in a head, which has an up and down motion very much like the hammer part of the steamhammer, the coal passing under it. [D-1, No. 3.] A modification of the Blake rock breaker has been used, and also a breaker constructed very much like a coffee-mill; that is, there is a funnel-shaped cavity with teeth on it in which a cone covered with teeth moves. The shaft of this cone at the lower end is in a step, or ball and socket joint, while the upper end describes a circle, so that the axis of the shaft of the cone describes a conical surface.

At every colliery careful experiments should be made to determine whether the coal breaks with little or much waste. For example, the waste in breaking a ton of broken coal from one colliery may be two or three times as much as in breaking a ton from another colliery. Where this waste is much above the average, greater efforts should be made to sell the large sizes even at a lower price; or where several collieries belong to one company the orders for large coal should be given to the colliery making most waste in breaking.

Another great cause of waste is the screening. If the screens are overcrowded the pieces of coal abraid each other in passing through the screen. This may be diminished by making the screens shorter, taking the larger sizes out at the end, and dropping the smaller soon after the coal enters the screen. By putting two sizes of jackets upon the screen so as to make two sizes in each screen, and placing several screens under one another, each taking coal from the preceding one, waste of this kind may be diminished. In a number of collieries gyrating screens [D-2, No. 27]are used, in which the coal does not remain for any length of time upon the screen, and it is almost impossible for one lump to ride upon another.

In the construction of breakers the waste can be very appreciably diminished by arranging the chutes in such a way that the coal does not rush down them, and that there are no drops in the chutes or into the pockets. This also applies to the running of the coal into the screens. The coal should be allowed to enter the screens as gently as possible.

A certain amount of waste is made in loading cars which is very difficult to avoid, as the cars are at present of so many different sizes. If you have arranged to load a high car economically, there is waste in loading a low one, and if you arrange to load a low car economically you cannot load the high cars at all.

What has been said about the loading of the cars applies with great force to the unloading of the coal at the shipping points and loading it into vessels there. There is undoubtedly a great waste in this way. Attention is being called to this point, and better methods of loading and unloading are being adopted, although there is a wide field for invention and improvement here.

The demand for certain sizes of coal varies with the season, and there are times when more coal is produced than can be marketed, at other times more coal is burned than is mined; this is especially the case in the West, to which it is shipped largely by water, and where the coal is needed principally in the winter. In consequence of this condition of affairs large amounts of coal must be stocked in the dull season and picked up afterwards. Enormous storage plants have been erected all over the country, and much waste is occasioned by the handling of the coal in them, particularly with the older and more primitive plants. The loss on large sizes shipped by the lakes to Chicago, Milwaukee, Duluth, &c., and reshipped in cars there, amounts to from 5 to 11 per cent.; that is, there is that much pea, buckwheat, and dust made in handling the coal after it leaves the mines. Stocking coal should therefore be avoided as much as possible, and every mechanical device to reduce the breakage should be employed.

A large portion of the coal coming from the mine is either what we may call slate-coal or bony coal. By slatecoal is meant coal which has pieces of slate of greater or less size attached to it, which can be separated by breaking the coal into smaller pieces and subjecting it to preparation. Bony coal is coal in which the impurities are so intermingled with the coal that it is impossible to break the coal in such small pieces as to separate the impurities. Sometimes bony coal is merely coal with such a high percentage of ash as to interfere seriously with its burning. Until a comparatively recent date slate-coal and bony coal were practically wasted. They were either left in the mines by not working the veins containing any large quantity of them, or by not loading anything that was of this character. Of course this involved leaving behind much good coal, as it was very difficult for the miner with his poor light to separate them from the good coal. If brought out they were generally thrown on the dirt bank, except such portions as were sent to the consumer against his will.

To such a great extent was this carried on that many of the old coal banks are being worked with profit yielding as high as 75 per cent. of good coal. Already some of the collieries are putting a portion of their old dirt banks through the breakers with the fresh mined coal, where they have better facilities for cleaning it.

The above remarks apply, but with not so great force, to what is known as slippy [or crushed] coal.

In many collieries the coal thus lost was a very large percentage of what was actually won. We are not now discussing coal that was thrown away because it was too small. We are only referring to coal wasted because it was not marketable in the shape it came from the mines, and the breaker was not in condition to prepare it economically. It was considered that the coal that might be obtained would cost more than it would bring if an effort was made to save it.

The great difficulty was the want of proper facilities for preparation. The breakers as then constructed could not Much of the machinery now clean the coal properly. used in preparing anthracite, although to a certain extent known abroad, was not in use here. Reference has already been made to the improvements in rolls. The range of coal which it was possible to prepare has been much increased, and the cost of preparation diminished, by the adoption of apparatuses for separating the coal from slate by mechanical means. Among the most important of these are what are known as jigs [D-2, No. 27], of which there are several types used for the larger coals, and the Feldspar jigs, which are used for the smaller coals; the automatic slate pickers [D-2, No. 27], which enable the operator to remove a larger quantity of slate from the coal at a comparatively small cost when it is done on a large scale. The great advantage of these types of apparatus is, that the cost of preparation does not depend to so large an extent upon the amount of slate in the coal as it does where it is picked out by hand. In other words, coal containing more slate can be brought to a marketable condition with less expense.

When we come to the smaller sizes, bony coal is not so detrimental as it is in the large sizes. The bony coal, when ignited in large pieces, becomes coated with ashes and does not burn on the inside, leaving large masses of partially consumed material which goes out and eventually deadens the fire.

There have also been great improvements in the construction of the screens which are now made of much larger capacity, allowing a much better classification of coal. A great improvement in the screening of small sizes is the substitution of punched steel, copper, or bronze plates for wire screens and cast-iron screens. The openings are generally made circular and maintain their original dimensions better. The coal produced is of a more uniform size, and the jackets do not wear out as soon.

This saving of the impure coal is a matter of great importance. It tends to diminish the cost of production, because by utilizing the impure coal you increase the product of a mine without increasing either the cost of the plant, the driving of gangways, pumping, opening breasts, and the major part of the general expenses, and in addition the labor of the miner necessary to produce a ton of coal is decreased, as he does not have to spend his time separating the pure coal from the slate coal, and much good coal which in the old method was left with the refuse will be brought to the breaker. Of course it involves a much larger investment in building the breaker, which must be supplied with a large quantity of more or less costly machinery, every additional machine increasing materially the cost of the breaker.

Where the quantity of impure coal is large the labor account on the breaker, notwithstanding the saving due to machinery, is greater. It is probable, however, that in many cases the saving inside will at least make up for the additional cost outside. When this method of saving coal is adopted the yield per acre is very much greater. By far the most important saving of waste, however, that has been accomplished is due to the better utilization of the smaller sizes.

They were first used at the mines for making steam, and little if any care was paid to their preparation, but as the market for them began to increase more attention was given to it. It is very important that they should be properly sized; that is to say, that each kind of small coal should be as nearly as possible of uniform size. Pea coal should contain but little buckwheat, buckwheat should contain but little No. 2 buckwheat or rice, &c. This cannot be done absolutely, but the more perfect the sizing the more satisfactory will be the burning of the coal. These small coals vary very much in purity. If they are made exclusively by breaking up larger lumps of pure coal they will be a very desirable fuel; but if they are made from the dirty or crushed coal coming from the mine, particularly where the breasts are steep and much small slate is mixed with it, they may contain a very large quantity of impurities.

The coal must then be carefully jigged, otherwise the amount of clinker, ash, and refuse will be so great as to materially interfere with its use and value.

It is very important that the chemical composition of the coals should be studied; that is, they should be analyzed from time to time so as to determine the amount of ash and slate contained in them.

Bony coal when broken up does not do as much damage to the smaller coals as it does to the larger, although the purer the coal the better the results obtained will be.

A number of experiments were made in the testing laboratory of Coxe Bros. & Co., by Mr. John R. Wagner, in burning small coals, from which the following conclusions were arrived at :---

A series of careful experiments were made with a forced draught, obtained in one case by a fan and in the other by a steam jet, which showed :—

First.—That the ashes produced by a steam jet were never as low in carbon as those produced by the fan; that is, an appreciably larger per cent. of the carbon was utilized by the fan-blast. This appears to be due to the fact that when the carbon in the ash over the grate is reduced to a certain point the steam dampens it somewhat, and it ceases to burn sooner than it does when dry air only is blown through it.

Second.—That with the fan-blast the rate of combustion per square foot per hour is greater than with the steam jet.

Third.—It was found that where a bed of coal was ignited and burned out, the percentage of carbon in the ash is much less than where coal is successively added to the burning mass. In practice it is not generally possible to allow the bed to burn out sufficiently before adding the cold, unignited coal; the result is a damping down of the fire, which causes the ash to cease burning sooner than it would do if there were no reduction of temperature and checking of the draught due to the adding of the coal.

Fourth.—There seems to be no doubt that the introduction of steam into the ash-pit decreases very materially the tendency of the coal to clinker on the grate in comparison with the fan-blast or natural draught. It also changes the color, volume, and character of the flame and increases the distance that the flame extends beyond the bridge-wall. In many cases it is not practical, or at least it is very difficult, to burn the smaller sizes of coal without the steam jet on account of the clinkering. This effect of steam on clinkering is probably due to the fact that the steam, to a certain extent, moistens the ash close to the grate and prevents the ash from reaching there as high a temperature as it would with dry air. It is also probable that the decomposition of the steam into carbonic oxide and hydrogen, which takes place to a certain extent, and which, of course, is accompanied by a reduction of temperature, tends to prevent clinkering. The decomposition of the steam, accompanied by the formation of carbonic oxide and hydrogen, will probably account for the difference in the flame referred to. [D-2, No. 5.]

Fifth.—A careful study of the burning of culm, that is, the burning of small coals with more or less dust in them, in these and other experiments, seemed to show that in almost all cases it is accompanied by a very high percentage of carbon in the ash, which analysis showed, in some cases, reached 58 per cent. Unless special precautions are taken to prevent it, a large portion of the fine coal runs down through the grate. When the culm gets red hot it acts almost like dry sand and works its way into the ash-pit, thus increasing largely the percentage of carbon. Where coal has to be transported any distance, the value of the culm at the mines being very small, it is probable, from the investigations made, that it would be cheaper to remove the dust and transport only the larger coal.

Sixth.—It has been found that the percentage of iron pyrites, which occurs to a greater or less extent in all coals, increases very rapidly with the smallness of the coal. This is due to the fact that the iron pyrites occur generally in thin layers or incrustations on the coal. These thin layers are broken off and pulverized in the preparation and handling of the coal, and are therefore found to a much greater extent in the very small coal. It is, of course, well known that the presence of iron pyrites in fuel is very undesirable, as it generates sulphurous acid and has a tendency to destroy the grates or other iron work around the boilers, besides in many cases increasing the tendency to clinker.

Seventh.—That while the fan-blast produces the best ash and gives a more perfect rate of combustion, yet in many cases it is more advantageous to use the steam-blower on account of the clinkering, which may cause very serious trouble. In certain localities, particularly in cities, the noise of the steam-blower is sometimes a disadvantage.

Eighth.—While it is not positively demonstrated, it is thought that the question of mixing small coals from different veins or different localities is a matter of importance. It would appear that sometimes two coals, each of which, when burned separately, give reasonably satisfactory results, when mixed together clinker and give trouble, probably because the ash of the combined coals forms a much more fusible silicate than either of the ashes separately.

Ninth.—It would seem that the combustion of the small anthracite is more perfect when the coal remains undisturbed, or as nearly as possible in the condition in which it was put in the fire, instead of being turned over, so that the partially consumed and the unconsumed coal are mixed together.

COMMERCIAL CAUSES OF WASTE.

Up to this point the report has been confined to the consideration of the questions which concerned principally those engaged in the mining of the coal. We now come to the consideration of another series of problems, which are important to the general public, and in which their cooperation is more or less necessary in order to obtain more satisfactory results.

The first point is the effect that the rates of transportation have upon the utilization of the smaller sizes of anthracite.

Until a comparatively recent period the rates paid for all sizes of anthracite were the same, and as the smaller sizes came largely in competition with cheap fuels of all kinds, particularly bituminous coal, the higher rates of transportation charged had a tendency to restrict the market, in consequence of which all the buckwheats, and even some of the pea coal, were in many cases thrown upon the dirt banks.

The lower the relative value of any coal the less expense of transportation it can bear. For example: If two fuels, one worth 25 cents per ton and the other \$2 per ton at the mines, were used at the mines, a saving of \$15 per day would be made if 20 tons of the cheaper fuel would do the work of 10 tons of the more expensive; but if they should be carried to a point where the rate of transportation was \$2 per ton, the 10 tons of the dearer fuel would then cost \$40, while the 20 tons of the cheaper fuel would cost \$45, thus causing a loss of \$5 per day, assuming the cost of firing, &c., to be the same in both cases; therefore, in order to allow the cheaper fuel to compete, a less rate of transportation would have to be charged on it than on the more expensive fuel.

This point has been thoroughly recognized by the transportation companies, and of late years pea coal has been carried at a less rate than the larger sizes, and buckwheat at a less rate than pea, in consequence of which a very great increase in the use of the smaller sizes has been brought about. Of course, this development is not entirely due to the rate of tolls, but also to a better acquaintance of the public with the value of these fuels, and the invention of special furnaces, &c., to utilize them.

In order to make a market for any product it must be worth what it costs the consumer, and in addition must be known by or be made known to him.

It is now proposed to call attention, briefly, to the different methods by which the smaller sizes of anthracite are now utilized, as well as to those others which have been tried with more or less success, or which are in process of trial.

The sizes of coal generally classed under the head of small anthracites are pea, No. 1 buckwheat, No. 2 buckwheat, sometimes called rice, No. 3 buckwheat, and culm. The list below will give a clear idea of the degree of fineness of each, and represents all the different meshes used in the trade as far as the Commission could obtain data in regard to them.

Pea coal is made :---

Through $\frac{7}{8}$ inch square and over $\frac{5}{8}$ inch square; Through $\frac{7}{8}$ square and over $\frac{1}{2}$ square; Or through $\frac{1}{16}$ round punched and over $\frac{9}{16}$ round punched; Or through $\frac{3}{4}$ square wire and over $\frac{1}{2}$ square wire; Through $\frac{3}{4}$ square wire and over $\frac{3}{8}$ square wire; Or through $\frac{3}{4}$ square punched and over $\frac{1}{2}$ square punched; Or through $\frac{3}{4}$ square cast and over $\frac{1}{2}$ square cast; Or through $\frac{3}{4}$ to $\frac{5}{8}$ square wire and over $\frac{1}{2}$ square cast; Or through $\frac{3}{4}$ to $\frac{5}{8}$ square wire and over $\frac{1}{2}$ round punched plate; Or through $\frac{3}{4}$ round punched and over $\frac{1}{2}$ round punched; Or through $\frac{3}{4}$ square wire and over $\frac{3}{8}$ square wire; Or through $\frac{3}{4}$ and over $\frac{7}{16}$; Through $\frac{5}{8}$ and over $\frac{1}{2}$ round and square; Through $\frac{9}{16}$ and over $\frac{1}{2}$ round punched.

Buckwheat No. 1 is made :---

Through $\frac{5}{2}$ square and over $\frac{3}{6}$ square; Through $\frac{5}{2}$ square and over $\frac{1}{4}$ square; Through $\frac{9}{16}$ round punched and over $\frac{5}{16}$ round punched;

Or through $\frac{1}{2}$ square wire and over $\frac{3}{8}$ square wire;

Or through $\frac{1}{2}$ square and round wire and punched and over $\frac{5}{16}$ round punched plate;

Or through $\frac{9}{16}$ round punched and over $\frac{3}{8}$ round punched;

Or through $\frac{1}{2}$ square wire and over $\frac{1}{4}$ square wire;

Or through $\frac{1}{2}$ square cast and over $\frac{1}{4}$ square cast;

Or through $\frac{1}{2}$ square punched and over $\frac{1}{4}$ square punched;

Or through $\frac{1}{2}$ square wire and over $\frac{5}{16}$ round punched.

Or through $\frac{1}{2}$ square punched and square wire and over $\frac{1}{4}$ by $1\frac{1}{4}$ punched, and $\frac{1}{4}$ round punched and $\frac{1}{4}$ square wire;

Or through $\frac{1}{2}$ square wire and over $\frac{3}{8}$ square wire.

Or through $\frac{1}{2}$ square wire and square punched and over $\frac{1}{4}$ square wire and square punched;

Or through $\frac{1}{2}$ round punched and over $\frac{1}{4}$ round punched;

Or through $\frac{3}{8}$ square wire and over $\frac{1}{4}$ square wire ;

Through $\frac{3}{8}$ round punched and over $\frac{3}{16}$ round punched;

Or through $\frac{1}{2}$ and $\frac{3}{8}$ punched plate and over $\frac{1}{4}$ and $\frac{3}{16}$ punched plate;

Or through $\frac{7}{16}$ square and over $\frac{3}{8}$ round;

Through $\frac{5}{16}$ round punched and over $\frac{3}{16}$ round punched.

Buckwheat No. 2 is made :---

Through $\frac{3}{8}$ square and over $\frac{3}{16}$ round;

Through $\frac{3}{8}$ round punched and over $\frac{5}{16}$ round punched;

Through $\frac{3}{8}$ round and over $\frac{1}{4}$ round;

Through $\frac{3}{8}$ round punched and over $\frac{3}{16}$ round punched (manganese bronze);

Through $\frac{5}{16}$ round punched and over $\frac{1}{8}$ round punched;

Through $\frac{1}{4}$ square wire and over $\frac{1}{8}$ by $1\frac{1}{2}$ punched;

Through $\frac{1}{4}$ square wire and over $\frac{1}{8}$ by $1\frac{1}{4}$ punched;

Through $\frac{1}{4}$ square wire and over $\frac{1}{8}$ square wire;

Through $\frac{1}{4}$ square wire and punched and over $\frac{1}{8}$ square wire and round punched;

Through $\frac{1}{4}$ square and round punched and wire and $\frac{3}{8}$ round punched, and over $\frac{1}{8}$ round punched;

Through $\frac{1}{4}$ square wire and over $\frac{3}{32}$ square wire;

Through $\frac{1}{4}$ square cast and over $\frac{1}{8}$ square cast;

Through $\frac{1}{4}$ square cast and over $\frac{1}{8}$ round punched;

Through $\frac{1}{4}$ square cast and over $\frac{3}{32}$ round punched;

Through $\frac{1}{4}$ square punched and over $\frac{3}{16}$ round punched;

Through $\frac{1}{4}$ square and over $\frac{1}{8}$ square;

Through $\frac{1}{4}$ round and over $\frac{3}{16}$ by $1\frac{1}{2}$ punched.

Buckwheat No. 3 is made :----

Through $\frac{5}{16}$ round punched and over $\frac{1}{4}$ round punched;

Through $\frac{3}{16}$ round punched and over $\frac{3}{32}$ and $\frac{1}{16}$ round punched (both manganese bronze);

Through $\frac{1}{8}$ square cast and over $\frac{3}{32}$ round;

Through $\frac{1}{8}$ square and over $\frac{3}{32}$ square;

Through $\frac{1}{8}$ and over $\frac{1}{16}$.

Culm or waste is made :---

Through ³/₈ square wire; Through $\frac{5}{16}$ round punched; Through $\frac{1}{4}$ by $1\frac{1}{4}$, $\frac{1}{4}$ square wire and $\frac{1}{4}$ round punched; Through ¹/₄ oblong; Through 1 square wire; Through $\frac{1}{4}$ square; Through 1 round punched; Through $\frac{3}{16}$ by $1\frac{1}{4}$ punched; Through $\frac{3}{16}$ round punched plate (manganese bronze); Through { square wire; Through $\frac{1}{8}$ by $1\frac{1}{4}$ punched; Through $\frac{1}{8}$ round punched; Through $\frac{3}{32}$ square wire; Through $\frac{3}{32}$ round punched; Through $\frac{1}{16}$ round punched (manganese bronze); Through $\frac{1}{16}$ round.

The small anthracites are used :---

1. For Domestic Purposes.—Pea coal is used successfully for heaters or furnaces, sometimes alone, and sometimes with large coal to reduce the intensity of the fire. Many people put pea coal on their furnaces at night, which keeps up a moderate fire, burning slowly and economically at a time when only a gentle heat is wanted. Pea coal is also used in ranges and stoves for cooking with excellent results and economy, when those using it understand how to handle it. Those accustomed to its use are perfectly satisfied with it. It is also an excellent fuel for low-down grates, where an intense heat is not desired. It is one of the best fuels for base burners when they are properly constructed.

It is probable that before many years most of the pea coal will be used for domestic purposes, and that it will take rank with stove and chestnut as a domestic size.

Buckwheat coal is used in large and growing quantities in towns for generating steam, which is supplied to private houses for heating and other purposes. The boilers are generally located near the railroad, and the steam is carried in pipes laid in the street just as gas pipes are. This is also done in large private houses and institutions. The smaller buckwheats might also be used for this purpose. Any institution or private person heating a building with steam or hot water can use these sizes.

2. Use for Generating Steam and for Manufacturing Purposes. In this section we will only consider those cases where the coal is used as it is shipped from the breaker; the question of mixing it with other combustibles will be considered further on.

For many years pea coal has been used on a large scale for making steam on land and water. It is a favorite fuel for steamboats where cleanliness is desired. It is easy to handle, and can be burned on almost any kind of grate, or at least on grates that are much more simple than those required for the still smaller sizes. It can also be burned with natural draught, as the pieces are large enough to allow the air to pass freely through the interstices between them when the bed of coal is thick enough to make a good fire. Where the item of expense is not of the first importance, it is one of the best fuels in the world for manufacturing purposes and for steam vessels, and it is also used to a moderate extent for forging. It is sold through Pennsylvania, New Jersey, New York, Connecticut, Massachusetts, Maine, New Hampshire, Vermont, and Rhode Island, but is not much used in the South and West. It is used also for burning lime. It is seldom if ever used mixed with bituminous coal. It is probable that, as the demand for pea coal increases for domestic purposes, it will gradually be replaced as a manufacturing fuel by buckwheat coal.

Buckwheat coal is largely used for making steam. It is gradually taking the place of pea coal for that purpose. It is used for burning lime, and has a promising future for use in gas producers.

No. 2 buckwheat is just beginning to be used, principally for steam, either alone or mixed with bituminous coal and sometimes with sawdust and shavings. It has a large future in plants properly constructed for generating steam, especially for electric light and electric railway plants, as it is cheap, clean, and makes no smoke. No. 3 buckwheat is used for steam, and it and dust are used by brick-makers to mix with the clay. Its use for generating steam offers a promising field to investigators.

3. For Locomotives.—One of the most important uses of small anthracite is as a locomotive fuel. [D-2, No. 1 and No. 13.] The following-named railroads use it to a considerable extent, with entirely satisfactory results in most cases, and effect a great saving in cost of fuel thereby, viz.: Philadelphia and Reading, Central Railroad of New Jersey, Delaware, Lackawanna and Western, Delaware and Hudson Canal Company, Erie and Wyoming Valley (Pennsylvania Coal Company), New York, Ontario and Western, and Delaware, Susquehanna and Schuylkill. The general tendency seems to be towards an increase in the number of locomotives burning small anthracite. Buckwheat is the size generally used on freight trains and pea on passenger trains.

The accompanying table (Appendix B) shows the results of the experience of the principal roads using the small sizes of anthracite as locomotive fuel. The data contained therein have been given by those in authority on the different roads, and their names will be found in the table. It was the aim of the Commission, in compiling this table, to give such locomotive dimensions as have a direct bearing on the burning of the fuel, as well as some comparative data as to the use and value of different kinds of locomotive fuels; and, also, information relating to the properties and preparation of the smaller sizes of anthracite coal used.

There seems to be no question as to the value of small anthracite on all but very fast trains. The sharp exhaust of the steam, when a locomotive is running at a very high speed, has a tendency to "turn up" the fire of small-sized anthracite, and also to draw a considerable amount of the smaller pieces out through the stack, which, in addition to being unpleasant to the passengers on the trains, is a loss of fuel. It is probable, as Mr. Paxson states (in the table), that by using compound locomotives, the exhaust nozzles of which are larger, the exhaust consequently less sharp and the amount of steam required to run less than on simple locomotives, small anthracite may be used as fuel on even the fastest trains. In this connection attention is called to the statement in the Philadelphia and Reading (Main Line and Williamsport Divisions) column of the table that all locomotives built in future shall have fire-boxes suited for burning small anthracite, and also to the test of compound engine No. 229, on passenger service, in the Central Railroad of New Jersey column.

To burn small anthracite on locomotives a much larger grate surface is required than on those burning large anthracite or bituminous, as well as a special form of grate bar. Somewhat more skill is required in their use, as light and judicious firing is necessary with the small anthracite.

A strong argument in favor of small anthracite as locomotive fuel is, that a number of railroads now using such fuel are replacing the old fire-boxes for burning larger sized fuels by others suited for burning small sizes of anthracite in engines taken into their shops for general overhauling and repairs.

The Commission would therefore call attention to the value of small anthracite as locomotive fuel, particularly in cities and for suburban passenger traffic, where a not too expensive but smokeless fuel is desirable. For such use it will undoubtedly prove valuable, even at a considerable distance from market.

4. Use in Gas Producers.—After a period of trial which at first was not successful, pea coal, No. 1 buckwheat, and to a certain extent No. 2 buckwheat, are now being used successfully in gas producers for a great number of purposes, as is seen by the accompanying table. The two producers which are used at present are known as the Taylor and the Swindell. The improvement in the preparation of the buckwheat coals due to more perfect sizing and jigging, by means of which latter the percentage of ash is reduced, opens a field for these fuels, which is constantly growing and promises to be very extensive. The following table shows the vast range of uses to which the gas obtained is applicable :—

Sizes of Anthracite.	Number of Producers.	Kind of Producer used.	Kind of Work,
Buckwheat, Nos. 1 & 2 Buckwheat,)	2	Taylor.	{ Firing biscuit and decorating kilns in pottery in Trenton, N. J. { Firing bone-black char-kilns in
Nos. 1 & 2 Buckwheat,	6		l sugar refinery, Brooklyn, N.Y.
No. 1 }	2		Burning lime in Texas, Md.
Pea coal	1		{ Drying steel ladles and converter bottoms, Steelton, Pa.
Buckwheat, Nos. 1 & 2	6	66	Tempering and annealing steel at South Bethlehem, Pa.
Buckwheat, }	13	"	Drying and roasting in soda-ash manufactory at Syracuse, N.Y.
Buckwheat, }	2	"	Roasting magnetic and sulphur- ous ore at Emaus, Pa.
Buckwheat, }	2		Roasting magnetic and sulphur- ous ore at Midvale, N. J.
Buckwheat, }	1	66	Running Otto gas-engine in Philadelphia, Pa.
$\left. \begin{array}{c} \text{Buckwheat,} \\ \text{No. 1} & . \end{array} \right\}$	11	٤٢	Firing spelter furnaces and re- volving furnaces for deoxidiz- ing zinc ore at South Bethle- hem, Pa.
Pea & buck- wheat, No.	2		Firing copper heating and an- nealing furnace at Ansonia, Conn.
Buckwheat, }	2	65	Drying moulds and cores in pipe foundry at Florence, N. J.
$\left. \begin{array}{c} \text{Buckwheat,} \\ \text{No. 1} \\ \end{array} \right\}$	1	66	Manufacture of Portland cement and sulphuric acid from gypsum at Buffalo, N. Y.
Buckwheat, }	6	Swindell.	{ Heating furnaces for heating muck bar at Oxford, N. J.

Partial List of Uses of the small sizes of Anthracite with Gas Producers.

5. The Manufacturing of Coke.—A number of efforts have been made to utilize the anthracite dust by mixing it either with highly bituminous coal (such as gas-coal) or bitumen, and then coking it. The Pennsylvania Second Geological Survey made a number of valuable experiments which are described at length in their reports. [D-1, No. 1 and No. 2.]

The late J. A. Price (originally chairman of the Commission) made a series of experiments at the gas-works in Carbondale, with the view of determining the possibility of making a coke by mixing anthracite culm with bituminous slack.

The following table shows the numbers of the experiments, weight of the bituminous, weight of anthracite, &c., as well as the analysis of the product obtained. The coke thus obtained gave the following results :—

Experiments in the Manufacture of Conglomerate Coke, made by William Griffith and Mr. Moon at Carbondale, May 20th, 1892.	PEMAPICS				Coke loose and very friable. Much fine culm dust, absorbed much water.	Coke quite strong, but friable, hard to get out of retort.	Coke quite firm, not thoroughly coked in the centre, friable.	Coke quite strong, and not so friable as previous test.	
lliam G	2	Drawn Wet.		~	.913 195 lbs. wet.	5.25 Red 11.15 81.63 1.282 176 lbs. wet.	.810 172 lbs. wet.	.735 182 lbs. wet.	Δ
$\stackrel{y}{_{92.}}$	Sul-	phur.	908.	1.088	.913	1.282	.810	.735	Orator
tade b th, 18	Conhor	Carbou. phur.	80.73	79.64	79.59	81.63	79.90	82.09	de Tab
oke, m xy 20	Ash.	Pr.cent.	Red 11.67 80.73	6.01 Red 12.16 79.64 1.088	Light 12.10 79.59 Red	11.15	Light 12.40 79.90	$\begin{array}{c c} 4.02 \\ \text{Hed} \\ \text{Red} \end{array} \left 11.77 \\ 82.09 \\ \end{array} \right $	a & Co
rate O ile, M		Color.	Red	Red	Light Red	Red	Light Red	Light Red	va Bro
of Conglomerate Coke, made by at Carbondale, May 20th, 1892.	Volatile	Matter. Color. Pr.cent.	5.59		6.74	5.25		4.02	Analyzeis mada in Cova Bros & Co's Lahoratory
f Con ut Can	Moist-		2.00	2.19	1.57	1.95	1.55	2.12	o modo
ure o	Time	Coked.	$4\frac{3}{4}$ hours.	5 hours.	$8\frac{1}{2}$ hours.	$8\frac{3}{4}$ hours.	$10\frac{1}{2}$ hours.	$10\frac{3}{4}$ hours.	nolwai
the Manufact	10	Character.	Coarse Coarse	Screened fine 5 Screened fine hours.	Fine \ldots 8_2^1 Screened fine hours.	Coarse \ldots $8\frac{8}{4}$ Coarse \ldots hours.	Fine	Fine \ldots $10\frac{3}{4}$ Screened fine hours.	
Experiments in	Weight of Bituminous	Slack and Anthracite Culm.	Bit. slack—100 lbs. Coarse \ldots hours. Anth. culm—100 lbs.	Bit. slack—100 lbs Anth. culm—100 lbs.	Bit. slack—80 lbs Anth. culm—120 lbs.	Bit. slack-100 lbs Anth. culm-100 lbs.	Bit. slack—100 lbs. Fine \dots $10\frac{1}{2}$ Buth. culm—100 lbs.	Bit. slack—120 lbs Anth. culm—80 lbs .	
	No.	of Test.	A	A		61	00	4	

Analysis made in Coxe Bros. & Co.'s Laboratory.

33

When making coke in retorts from pure bituminous coal, the coke breaks into prisms and is not difficult to get out. When, however, the coke is made of a mixture of anthracite and bituminous as described here, the mass does not break up and is difficult to remove from the retorts. To do this without difficulty it would be necessary to have the retort much wider at the opening than at the other end.

In considering the above table it is necessary to note that the empty box in which the coke was weighed was 11 pounds heavier after than before the tests, having absorbed 11 pounds of water.

In each case the coke formed in one large firm mass which was very hard to break and get out of the retort, and the retort was, it was thought, smaller at the front end than at the back.

The bituminous slack used was furnished by the Hendricks Manufacturing Company from their stock of blacksmith coal, and was purchased from Berwind, White & Co. It was probably from the "Crown Freeport" seam of Jefferson County, Pa.

The anthracite was from the screenings of the local retail coal chutes and was probably mined by the D. & H. C. Co. in the vicinity.

In making the tests the coal was first weighed, and then carefully mixed by hand and charged into the gas retort, the gas plant at Carbondale being of the old style for manufacturing illuminating gas from bituminous coal. The coke was cooled after being drawn from the retorts by drenching with water, of which it absorbed quite a quantity, as is shown by the weight of the wet coke.

Mr. J. W. Pittinos also experimented in the same line and obtained a patent for the process (patent No. 279,796).

While it seems to be demonstrated that reasonably good coke can be manufactured as above described, yet the commercial conditions are such that there does not appear, except in special cases, any large field for the use of the culm and dust in this way. (See remarks in "MM" of the Geological Survey of Pennsylvania.) It might be done with profit at points where gas-works are located when a supply of cheap culm could be obtained, although it would probably require more retorts to produce the same number of cubic feet of gas per day.

6. Mixed with Bituminous Coal.-A large amount of culm and buckwheat is now being used throughout New York State and in some other localites by mixing it with a certain percentage of bituminous coal. It is very common in the large cities to buy the "pea and dust" made by screening the domestic sizes in the retail yards and use it in this way. Large quantities of culm are shipped from the Northern fields into New York State for a similar purpose. It is somewhat difficult to get exact data on this subject. One of the most satisfactory examples that the Commission has been able to obtain is a case in New York City, where ordinary yard "pea and dust" is burned for heating a large building. Ten parts of the "pea and dust" is mixed with one part of the bituminous coal, care being taken to break the lumps of bituminous and to mix the material thoroughly before firing. This combination of coals produces no smoke from a chimney 100 feet high, except occasionally a slight puff. In this case natural draught only is used. The application of small coal in this way depends upon the relative cost of "pea and dust" and bituminous coal, and it is probable that a large amount can be thus utilized.

Another test was made at the New York steam-heating plant on Cortlandt Street, the report of which, while not giving full details, contains information of value. Twentyfive hundred tons of culm which passed through $\frac{1}{4}$ -inch mesh was shipped by the Old Forge Coal Company, of Pittston, Pa., to Perth Amboy, where it was mixed with 400 tons of bituminous slack from the Clearfield region, by loading boats with alternate layers of about 100 tons of anthracite culm and 20 tons of bituminous, as evenly as possible, until the boat was filled. This was unloaded in New York by steam scoop and deposited in a large hopper on the dock, from which it ran into carts which took it to the basement of the steam company's station. It was dumped into the cellar and carried to the top of the building by conveyors, from which it ran through chutes to the several floors. In this way the two coals were pretty well mixed. It was burned under Babcock & Wilcox boilers, provided with McClave grates and Argand steam blowers. The coal was fed by hand with a shovel. The result was satisfactory as far as the production of steam was concerned, but there was an increased quantity of ash produced, and more of the mixture was required to produce the same results than with buckwheat coal. The steam company considered that it was worth about 35 cents per ton less than buckwheat coal.

The bituminous slack caused the mass to ignite quickly and burn freely, so that it was not necessary to use as strong a draught as when culm alone is fired. The caking of the bituminous coal cemented together to a certain extent the culm and diminished the quantity that went through the bars. The experiment was made about 1891. It seems that the freight on the culm was too great to make it a success in competition with buckwheat coal at its present price, although, as just stated, there seemed to be no trouble in burning the coal and producing the steam.

7. Mixing with Waste from Oil Stills.-In some of the oil refineries No. 2 or 3 Buckwheat is used, mixed with the refuse or residuum of the works, called "coke," which is obtained by cleaning the stills after the oil has been run off. This material has about the consistency of cold molasses, and needs something to granulate it so that it can be handled readily. The fuel thus prepared is used principally under the stills from which the refuse is obtained. These fine anthracite coals furnish a most excellent means of utilizing this waste product in the refineries, the result being a combination of combustibles admirably adapted for the purposes for which it is used. The field, of course, is limited, depending upon the amount of refuse obtained from the stills. It is very important that the coal should be sized well so as not to contain any more dust than possible, as it then acts better in granulating the liquid which is obtained from the stills so that it can be fired conveniently. When placed upon the fire, the refuse burns quickly, making an intense heat, and when it is burned off leaves the coal in a highly ignited condition.

8. Utilization of Culm for the Manufacture of Artificial Fuel. For the last 30 or 40 years a large amount of the culm of the semi-bituminous and anthracite coals has been utilized in Europe in the form of what is known as compressed fuel. The slack, after being mixed with some binding material, such as lime, clay, cement, tar, pitch, bitumen, starch, or other glutinous material, is compressed into rectangular or spherical forms, and then burned as large coal of the same size would be.

Some idea of the variety of the mixtures and kind of binding material used, &c., may be obtained by referring to list of patents relating to artificial fuels given in Appendix "C-2."

These fuels are made of different sizes and shapes, the favored size for domestic purposes being that of a hen or goose egg. Large quantities of this material are made with profit in Europe, and many attempts have been made to utilize culm in this way in the United States. The four factors upon which success or failure depend are the cost of the culm at the factory, the cost of the binding material, the cost of the labor, and the price at which it can be sold. Where culm can be obtained at a low figure close to market, and where the price of the larger coals is materially increased by the cost of transportation from the mines, there is good prospect of a profitable business; but where the price of the compressed fuel, after being manufactured, is increased by the cost of transportation, success is not so probable.

About the year 1876 the manufacture of compressed fuel was begun by the Delaware and Hudson Canal Company at Rondout, New York, from 92 per cent. of culm and 8 per cent. of pitch. The plant was sold to the Anthracite Fuel Company in 1876, after which the making of brick was continued several years, but was discontinued in 1880. This fuel was made by mixing 92 per cent. of culm and 8 per cent. of gas-coal pitch in a pug mill with superheated steam, which was pressed into bricks of 9 inches by $4\frac{1}{2}$ inches by from 3 to 6 inches, under a pressure of about 250 pounds per square inch. It was used on locomotives on the Delaware and Hudson Canal Company's Railroad and the local railroads. The coal was washed culm from loading pockets at Honesdale, discharged into the canal, and then elevated out and shipped to Rondout in boats.

It was found that the small particles of coal dust impinging on the tube sheet, &c., in the boiler, in consequence of the forced draught, would cut out the ends of the boiler tubes, and sleeves had to be placed in the ends of the tubes to prevent this.

These bricks would not disintegrate in the fire, and could be heated red hot throughout in a blacksmith's fire, then plunged into cold water until black and cold, then reheated and recooled, &c., without disintegrating.

The fall in the price of coal about that time and increased price of the gas-coal pitch, due to the greater value of coal-tar for chemical purposes, were probably the controlling causes of the stoppage of this plant.

In 1890 a plant was erected at Mahanoy City, Schuylkill County, Pa., by the Anthracite Pressed Fuel Company for the same purpose, which continued in operation during 1890, 1891, and 1892. The following facts have been furnished to the Commission:—

It was made	of	pι	ire	e c	eoa	1 (fii	ne)) d	ire	ect	t fi	101	n 1	th	e c	ol	lie	ery	' r	ol	ls,		92	per cent.
							esi																		
minous co	bal	ir	np	001	rte	d	fre	om	I	En	gla	an	d)											8	per cent.
Cost, culm,	de	eli	ve	re	d		•										c						\$0	30	per ton.
Cost, pitch					•	•	•	•		•													1	00	per ton.
Cost, labor							•																	50	per ton.
Cost, culm, Cost, pitch Cost, labor	de	eli	ve	re	d			•	•		•	•	•				•		•				\$0 1	30 00 50	per ton. per ton.

Tried on locomotive engines and burnt well. Did not disintegrate. Made steam as readily as with anthracite coal. Suspended operations temporarily in 1892 owing to high price of English pitch, as that made in America did not suit.

When the fuel is to be used for manufacturing purposes, it is a serious question whether it will not be better to spend the money on an apparatus to burn the culm as it is, rather than to spend it to put the culm in shape to be burnt in an ordinary furnace. The money spent on the culm is gone when the culm is burned, while that spent on a furnace continues to be of value in utilizing the culm as long as the apparatus remains in operation.

The manufacture of compressed fuel for domestic purposes seems to have been more successful. That most generally used is known commercially as eggettes. They are manufactured from anthracite screenings or bituminous slack, with 3 to 6 per cent. imported bitumen, in plants erected by the "FuelPatents Company," of Philadelphia, Pa.

There are now in operation the following:-

The plant at Gayton, near Richmond, Va., which manufactures the culm of the Gayton semi-anthracite into eggettes. They are sold in the city of Richmond. The original capacity of the plant has been doubled.

The plant at Milwaukee, Wis., which manufactures eggettes of the anthracite screenings made in the shipments of anthracite coal from and to lake ports.

The plant at Huntingdon, Ark. [D-4, No. 55], (capacity 200 tons per day), which makes eggettes out of the bituminous slack from the mines of the Kansas and Texas Coal Company.

A new plant for which machinery has been ordered is in course of construction at Chicago, the capacity to be 8 tons per hour from hard and soft coal.

Recently a company has been organized to erect one at Denver, Col.

This method of utilization seems to be most successful in cities where the coal can be sold well, and where there is no freight to pay to destination.

An article has appeared [D-4, No. 57], claiming very successful results from a similar fuel, made by mixing

Pennsylvania anthracite culm with a compound the nature of which is not given. The method of manufacture is very similar to that which was employed at Mahanoy City and Rondout.

9. As Pulverized Fuel.—During the last 36 years a large amount of experimenting has been done with a view of utilizing culm by burning it as an impalpable powder, very much as gas would be burned. The plan adopted is to pulverize the coal and blow it into the furnace with the proper quantity of air. In some cases the powdered coal is heated before being blown into the furnace, and sometimes the heat is communicated to the coal in the furnace itself. [D-4, No. 58.]

The first effort in this direction seems to have been made about 1857 by Mr. John Bourne, of England. Messrs. Whelpley & Storer about 1870 began to experiment upon this process. In 1876 Mr. Isherwood, Chief Engineer of the United States Navy, made a number of experiments with this process which are described in his report to the Government. [D-1, No. 11.]

Mr. Charles E. Emery made a test of the Whelpley & Storer system at the Chickering Piano Factory in Boston about 15 years ago. The operation of the process was satisfactory, but the economy was not sufficient to justify changing from the old method of burning ordinary coal. From his experiments it seems that the process was successful technically, but that the commercial question would depend largely upon the price of the coal. The more expensive the coal used the more economical would be the process.

About 1873 Mr. F. R. Crampton described his experiments in burning powdered fuel. [D-2, No. 11; D-5, No. 2 and No. 5.]

Mr. Richard N. R. Phelps has also been experimenting extensively in the same line, but as yet there is no official statement as to the results he has obtained.

While the data available is not sufficient to justify the Commission in expressing a definite opinion as to the value of this method of utilizing the dust, yet, from the facts before them, they feel justified in hoping that in certain lines the utilization of coal in this way may possibly lead to important results. There are no plants at present in operation in which the powdered fuel is used commercially and successfully. A number of rumors reached the Commission that one or another of the pulverized fuel processes were in actual, practical, commercial operation, but none of them on being followed up could be verified. It would be very satisfactory to find that the fine coal could be employed in this way, as it seems probable that before long everything but the actual dust will be utilized. One difficulty in the way is the cost of reducing the finer culm to an impalpable powder. It seems, from all the information that has been obtained, that the more finely pulverized the coal is, the more certain will be the success of the process. It is easy to get roughly pulverized coal, but to reduce it to an impalpable powder is not by any means a simple or cheap operation.

As far as the Commission can gather from the reports which they have examined, the fine coal was in all cases obtained by pulverizing practically pure lumps of coal. The dust obtained from the culm bank would contain not only an appreciable amount of slate, but also quite a large amount of iron pyrites and other impurities which might interfere somewhat with the process.

Messrs. William H. Richardson and J. J. Bordman, of New York, have been introducing a process for burning coal in a pulverized state under the patents of J. J. Bordman. The tests, as far as the Commission know of them, were made with bituminous coal, with results that seem to have given satisfaction, but the Commission know of no tests made with anthracite culm by this process, although the owners of it claim it to be equally applicable to anthracite.

10. Use for Making Paint.—Recently the black dirt or blossom, which is coal that has been weathered on the outcrops of the purer veins near the surface, has been mined and used for making black paint. Where pure, that is, free from earthy matter and completely disintegrated, it is very valuable for this purpose.

In the study that it has made of the question, the Commission have been very much impressed with the importance of the consumers of coal being made thoroughly familiar with the value of the smaller anthracites and the proper methods of utilizing them economically. Great waste is made in consequence of the want of this knowledge. They have come into use largely in consequence of their cheapness, and enterprising manufacturers and steam users have in many cases simply substituted the smaller fuel for the larger, using exactly the same kind of furnace, and, in many cases, the same kind of gratebar that they did for the larger coals. One of the points which may be considered to be established is that neither the furnace nor the grate-bar most suitable for large coal is by any means the best for the smaller coals, nor is a furnace and grate specially adapted to bituminous coal a proper one for the small anthracite coals. The furnace should be made to suit the fuel, and the grate-bar for small coal should be so constructed that sufficient openings are left for the passage of the air; while the running of the coal through the grate-bars into the ash-pit is as far as possible prevented.

It has also been found that in most cases the smaller coals can only be burned with a forced draught. This may be accomplished by a suction in the chimney or by the air being blown into the ash-pit by a steam jet or by a fan or equivalent apparatus. It is thought, judging from the latest observations, that a combination of a suction in the stack and a blowing of air into the ash-pit will probably give the best results; if the blowing is sufficiently strong to force the air simply through the bed of coal, and the suction sufficiently powerful to carry the gases with the proper velocity under the boilers so that the temperature of the escaping gases is the lowest consistent with economy, the most satisfactory results will probably be obtained. There then will be no forcing of the hot gases out through the doors or orifices that may exist in the furnace walls.

It may also be stated that the finer coals should be burned with as thin a bed as possible, consistent with steady consumption, and that the fire should not be disturbed any more than is absolutely necessary. The grate surface should increase with the fineness of the coal; that is, the finer the coal the less pounds of fuel per hour can be burned economically on a square foot of grate. The temperature of the gases given off by a fire of small coal is lower than that of those given off by a fire of larger coal, so that for small coal the heating surface of a boiler of a given horse-power should be greater.

A great variety of grate-bars are used. They may be divided into three types, *i. e.* :—

First.—Those in which the grate is absolutely fixed, of which the old-fashioned grate-bar—one alongside of the other—and a cast-iron plate with holes in it, are types. There are many forms of grate-bars in use of this character, the tendency being to make the part exposed to the fire in small sections so as to allow for expansion without destroying or burning the bar.

Second.—Those of which the McClave and Howe bars are types, and which are movable, but in which the motion is only employed for discharging the ash through the bars; and,

Third.—Those of which the Wilkinson, Murphy, Brightman, and Roney are types, and which are movable, the motion being used not only for discharging the ash into the pit, but more particularly for feeding the fuel forward towards a certain point where the ash is discharged.

A table giving a classified list of the various grates, furnaces, &c., as far as they have come to the attention of the Commission, is given in Appendix E.

Mr. E. B. Coxe, a member of this Commission, has been experimenting for some time upon the question of the burning of small coals, and should the result justify him in so doing he will read before one of the engineering societies a paper upon that subject, and another paper upon the construction of furnaces to burn small anthracite economically.

In these two papers certain of the matters that have been partially discussed here will be treated more at length, and the results of the experiments which are now being made, and which are not completed, will be given.

The Commission would again call attention to the importance of reducing by careful preparation the percentage of slate and refuse in the small coals as low as it can be done economically, particularly if they are to be transported any distance, as there seems to be strong evidence that the percentage of slate and ash in small anthracites is the controlling factor in fixing their commercial value, indicating, as it does practically, the amount of fixed carbon contained in them, for there is not a very great difference in the amount of moisture and volatile matter contained in the various anthracites.

The more the subject is studied the more evident it becomes that the smaller coals should be analyzed from time to time, not only by the producer but by the consumer. It is not necessary to make repeated ultimate analyses once the general constitution of a coal is known, that is, the relative percentages of moisture, volatile matter, fixed carbon, and ash, only ash determinations need be made. It may be necessary occasionally to do so in order to be sure that no change has taken place in the character of the vein or veins worked.

It is thought by some that the fixed carbon is the only one of the component parts of the coal which gives in the furnace the number of calories which theory would indicate. The hydrogen and hydro-carbons do not seem to be utilized in the production of heat to the same extent as, theoretically, they should be [D-5, No. 9, page 100, end of first paragraph], so that the fixed carbon has really, if this view be true, more importance in determining the heat value of a coal than the other combustible material. In fact, it is claimed by some that the heat developed by the fixed carbon in anthracite is greater than the amount of heat that would be developed by the burning of the same amount of fixed carbon of charcoal. [D 5, No. 7, page 81, bottom of page.]

The Commission does not in any way indorse these suggestions, but refers to them only for the purpose of drawing attention to the question and eliciting further light on the subject which has so great importance in fixing the true value of the small anthracites, as they may be considered to practically consist of fixed carbon and ash. In this connection attention would be specially called to chapter V., page 60, volume 3, of the Annual Report of the Geological Survey of Arkansas of 1888, in which considerable attention is given to the question of the burning of coal.

One of the most important questions which occupied the attention of the Commission was the value of the old culm and slate banks which have been accumulating for many years in the anthracite coal region, as well as the prospective value of those which are now being made. The old banks may be divided into three classes, viz.:—

First.—Those banks containing only culm; that is, coal too small to be sold at the time the bank was made.

Second.—Rock and slate banks, consisting exclusively of rock and slate.

Third.—The ordinary slate banks, consisting of various sizes of slate, coal, bony coal, and slate-coal mixed.

Unfortunately, in most cases all these substances have been dumped together. Where they have not it will be much easier to utilize the culm in the culm banks and the coal in the slate banks. The rock banks containing no coal are useless.

Not only has the value of the banks been much reduced by mixing the slate coal and rock with the small coal, but not infrequently ashes, old lumber, manure and other refuse have been dumped with them, thereby still further lessening their prospect of being reworked. Often, either from spontaneous combustion, accident, or maliciousness, fire has been started in the banks, and they have either been practically consumed or so damaged as to destroy their value.

In some cases, where the banks have been unfavorably situated, a large amount of coal has been lost by weathering and washing away. In many cases, where the wet method of preparation is used, a large portion, if not practically all, of the culm has been washed down the streams and forever lost.

It seems to the Commission that, in view of the future value of the banks, precaution should be taken to stock separately, as far as possible, all the different kinds of refuse, to avoid the mixture of any foreign substance, such as ashes, with the culm or slate banks, and to protect, as far as possible, the banks from fire and washing away. While it is impossible to prevent the decomposition of coal by the action of the air, this can be diminished very materially by making the banks as high and wide as possible, so as to expose the minimum amount of surface for a given quantity of culm to the action of the air.

In the Wyoming region, in the neighborhood of Plvmouth, and in the Schuylkill region, in the neighborhood of Shenandoah City, a large amount of the finer culm [which is mixed with water and run into the mines], has been and is being utilized for the purpose of filling up the already partially worked-out mines, either for the purpose of allowing a larger proportion of the coal to be worked, or for supporting the superincumbent strata. [D-4, No. 28.] In Shenandoah City a large portion the town, which was threatened with destruction in consequence of the caving in of the mines, has been rendered secure by filling up the old workings in this way. In many cases it packs so solidly that pillars, which would otherwise be lost, can be worked out, the roof being largely supported on the culm run in. Of course the coal in the culm is lost, and this might be saved by using other material of no value, such as sand, &c.

A large amount of the slate, rock, and culm has been and is still being used for grading railroads and common roads, filling up cave holes, &c., but as the value of the culm increases its use for this purpose will probably decrease.

The coal washed down the streams is not entirely lost. In some places where pools or dams occur the coal deposits and is dredged out and used or sold.

At Northumberland, Pa., this is done on a large scale in the dam in the Susquehanna River. In winter holes are cut in the ice over the places where the coal has deposited and it is dredged out by hand, loaded on sleds and hauled away. In warmer weather a steam dredge is used for the same purpose.

In order to determine the amount of waste made in a breaker provided with the modern appliances for saving the small coal a test was made at Drifton, Pa., of the refuse sent from the iron breaker [D-2, No. 27], from 4 o'clock P. M., September 20th, until 9 o'clock A. M., September 24th, 1892.

It was desired to determine the general character of the material going to the bank and to see whether it contained enough carbon to burn, if dumped, without any further preparation, into a cupola-like furnace with forced draught. To do so successfully it would probably be necessary to remove all dust and No. 3 buckwheat, so as not to choke the draught. Hence the column in the accompanying table headed "For Burning at Mines." Test of State Bank at Iron Breaker, Drifton. Average of Run from September 20th to 24th inclusive.

COAL SENT TO MARKET DURING PERIOD OF TEST.	TO MA. 10D 0F	RKET TEST.			PHYSICAL COMPOSITION.			сн	CHEMICAL COMPOSITION	COMPOS	ITION	
			Siz	Sizes. Per Cent		Fuel Value of Bank	Bank.		əldi ı			.yii
Sizes	Tous	Per			COAL AND SLATE IN BANK IN THE	Commercial.	ts 2n	.91015	sudus tter,	·ųs	• α οq	verd
		Cent.	With Dust,	With- out Dust.	VARIOUS SIZES,	Bank Bank with without Dust. Dust.	inruß 107 BuiM	ioM				oñio9q8
· · · dum	662	9.83	:	•	• • • • • • • • • • • • • • • • • • • •	•						•
					$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.652 1.081	•	•		•		••••
Steamer	294	4.36	7.96	13.21	· · ·		•	· ·	· ·	· ·		•
					$ \frac{1}{10}$ coal 10.84 Slate	· · ·	£-8.	• •	•	• •		•
					oal						-	1
Broken	1086	16.10	7.94	13.17	$\frac{1}{5}$ coal 3.12	068. 586.0	•	•	•	•		
						· · ·	1.078	 	· · ·			• •
					$\frac{1}{61}$ coal 2.82	• • • •	•		• • •			1
				!	(Dum and 2011) 2011		• 1	•		•	- - -	
						2.735 4.536	· · · ·	•••	· ·	· ·	•••	• •
Egg	1081	16.01	13.78	22.85	$\left\{ \frac{1}{2} \text{ coal} \dots \right\}$	• • • •	3 170	•	• • •		• •	•
					• • • •	•		•	•		• •	•

.

49

From the first column under "Fuel Value" (commercial) it is evident that the larger sizes contain so little carbon that it would be advisable to remove everything above stove coal, thus diminishing the bulk 30 per cent., with a loss of only 5 per cent. of carbon, and it is doubtful if much of this carbon from these large lumps could be utilized, as only their surface would be oxidized.

After removing, in addition, the No. 3 buck wheat and dust (equal to 43 per cent.), there would remain 27.25 per cent. of the total bank, having a coal value of 39 per cent. This with a forced draught might be burnt. The table shows that if the Nos. 2 and 3 buck wheats and the dust, amounting to 47 per cent. of the total bank, and having a fuel value of 75 per cent. of good coal, were burnt, say, with a mechanical stoker, there might be a chance of utilizing them in that way.

The dust from the settling-tanks is 39.46 per cent. of the total bank, or (if we allow 4.5 per cent. to come with the slate from the jigs) 35 per cent. This could be dumped separately and would then give us other percentages. Hence the columns headed "Without Dust."

From the table we find that the refuse consisted of 48.01 per cent. of coal and 51.99 per cent. of absolute slate; that the material that would not pass through a round hole $\frac{3}{32}$ of an inch in diameter contained 18.416 per cent. of coal and that which would pass through 29.595 per cent. of coal (making the 48.01), if we assume, as the analysis seemed to show, that the dust was about 75 per cent. pure coal. The 18.416 per cent. included not only the pure coal, but the $\frac{3}{4}$ coal, $\frac{1}{2}$ coal, and $\frac{1}{4}$ coal, reducing them to their equivalent value of pure coal, but much of this latter is not at present marketable. The actual marketable coal thrown away was—

Egg														0.539 per cent. of bank.
Stove														0.770 per cent. of bank.
Chestnut														3.155 per cent. of bank.
Total large sizes														4.464 per cent. of bank.
Pea														1.178 per cent. of bank.
Buckwheat	•	•	•	•	•		÷.	•	•	•		•	Ē	1.200 per cent. of bank.
No 2 buckwheat	•	•	•	•			•	•	•	•	•	•	•	2.314 per cent. of bank.
No 3 buckwheat	•	•	•	`	•	•			•	•	•	•	•	2,683 per cent. of bank."
10.5 buckwheat	•			•	1	•	1	•	•		•	•	•	2,000 per cent. or bank.
														7.375 per cent. of bank.

Total of all sizes 11.839 of bank, which is 2.48 per cent. of breaker output and 2.01 per cent. of everything hoisted. (Compare pages 130 to 145 and page 151 of Appendix A.) The coal (48.01 per cent.) mixed with the refuse is 9.88 per cent. of breaker output and 8 per cent. of run of mine hoisted, and the actual slate is 11.12 per cent. of breaker output and 9 of run of mine hoisted.

What was actually sent to the bank is 21 per cent. of breaker output and 17 per cent. of run of mine. The dust, which is 39.46 per cent. of the bank, is 8.28 per cent. of breaker output and 6.70 per cent. of run of mines.

Notes on Test.

- Sampling.—The original sample consisted of 13 cars (37.06 tons), which were dumped in a pile from Tuesday, 4 o'clock P. M., till Saturday, 9 o'clock A. M. (September 20th to 24th, 1892, inclusive), 1 car being taken out of every 15 from the total that was hauled to the slate bank during that time. A smaller sample, which amounted to about 15 tons, was taken (by cutting 3 grooves from bottom to the top and 3 lengthwise.) This was further reduced to $2\frac{1}{2}$ tons, which was sized and separated in the laboratory.
- Steamer.-Steamer was the largest size of coal or slate found, and was all very flat.
 - The $\frac{3}{4}$ coal from this would make chestnut and all below, if crushed. The $\frac{1}{2}$ coal was slate and coal closely interstratified. About half of this would do for crushing to chestnut and all below.
 - The $\frac{2}{10}$ coal not suitable for crushing.

The pure slate is solid, heavy slate, very flat.

Broken.-Broken not quite as flat as steamer.

- The $\frac{3}{4}$ coal suitable for chestnut and all below, if crushed.
- The $\frac{1}{2}$ coal suitable for pea and all below, if crushed.
- The ¹/₃ coal not suitable for crushing, but still having this fuel value.
- The ¹/₄ coal not suitable for crushing, but still having this fuel value.
- The pure slate, good, heavy slate, but not so flat as steamboat slate.
- Egg.—Pure coal from egg mostly flat and thin. Bone more or less cubical.
 - The $\frac{3}{4}$ coal suitable for chestnut and all below, if crushed.
 - The $\frac{1}{2}$ coal suitable for pea and all below, if crushed.
 - The ¹/₄ coal not suitable for crushing; friable and interstratified.
 - The pure slate flat and long.

Stove.—Pure coal is all first class.

- ³/₄ coal. Coal approaching what is known as iron gray included in this. Much of this could go to market.
- $\frac{1}{2}$ coal contains much real iron gray; would do for buckwheats.
- $\frac{1}{4}$ coal rather flat. Nothing to be gained by crushing.
- Pure slate (90 per cent. slate), very thin and heavy.

Chestnut.—Pure coal first class.

- ³/₄ coal. All this would be passed as coal in opinion of Coal Inspector. (Three-quarter coal is that which has a slight layer of slate on it or approaches iron gray. All of it fairly cubical.)
- $\frac{1}{2}$ coal contains bone, and real iron gray. By crushing it would make buckwheat, as it is not flat.
- $\frac{1}{4}$ coal. Nothing gained by crushing. Mostly very flat.

Pure slate (90 per cent. slate), flat.

Pea and Buckwheats.—Separated by zinc chloride solution of 1.70 specific gravity, all that floated being considered coal by Coal Inspector. Not much bone in slate that sank.

According to rules for inspection in force at the time of sampling the allowable per cent. of slate and bone was:—

In broken .					$1\frac{1}{2}$	\mathbf{per}	cent .	of slate and	bone.		
In egg					. 1	\mathbf{per}	cent.	of slate and	2 per	cent.	bone.
In stove				2	$.3\frac{1}{2}$	\mathbf{per}	cent.	of slate and	bone.		
In chestnut	; .	•			. $4\frac{1}{2}$	\mathbf{per}	cent.	of slate and	bone.		

The Commission desires to call the attention of the people of the Commonwealth to the great importance of the enormous quantity of culm, bony coal, and slate coal now on the surface in the dirt banks, and which is being rapidly increased. At the present time less of the finer coals is thrown away, but it is only a few years since practically everything below pea coal was considered refuse.

This coal is a very valuable fuel for several reasons. In the first place, it will not, under ordinary circumstances, take fire, and therefore can be stocked cheaply. It is a smokeless fuel and makes a very clean fire, which is a great advantage in many manufacturing industries. It can be purchased for a very low price at the mines. It is the opinion of the Commission that not only is the culm available, but that a very large percentage of the slate banks, if roughly sized, could be used with economy and profit for making steam; provided they are burnt where they exist and do not have to bear much expense of transportation. The capacity of any fuel to bear transportation decreases very rapidly as the percentage of ash increases.

In many places in Europe coal which is no purer than the average of many slate banks is used at or near the collieries for making steam. With the improvements now being made in furnaces, grates, &c., for burning fine coal, it is probable that all, except, possibly, the actual dust, will eventually be sent to market, and that the local consumption for steam will be supplied by the inferior or slaty coal which is not suitable for shipment.

The firm of Coxe Bros. & Co. have already begun to investigate the subject with a view of erecting a furnace for the purpose of determining how high the percentage of ash in bony and slate-coal must be in order to prevent its burning in large quantities in a properly constructed furnace. Observations made upon slate banks which have been on fire lead to the conclusion that coal containing much more slate and other impurities than is generally supposed to be sufficient to render it incombustible, will burn under proper conditions on a large scale. Little or nothing has been done in this field, but the Commission thinks it wise to call the attention of those interested to the possibility of obtaining valuable commercial results in this direction. It is of great importance to the prosperity of the interior of the State that the attention of those who are engaged in such industries as require either heat or steam at a low price be called to the great advantages offered by the anthracite coal regions and their immediate vicinity for such enterprises. With the culm, bony coal, slate coal, &c., obtainable at low prices, with a good climate, healthy surroundings, good water, and unequaled railroad facilities, giving direct communication with the Mississippi River, the Great Lakes, and the seaboard, it is doubtful whether any part of the country offers greater advantages for profitable investments of this kind. The inferior coal should not be taken to the point of consumption, but the point of consumption should be brought to it.

The great industrial establishments that have been built up around Scranton by the use of cheap fuel indicate what is possible in this line. The coal regions, employing as they do only men and boys, offer great advantages to those industries which can employ female labor, of which there is a surplus there.

The Commissioners wish it to be understood that this report is and can be only a preliminary examination of the question. They realize fully how far from complete it is in every branch of the subject that has been considered; but the time and means at their disposal prevented it from being otherwise. They hope that it will call the attention of the engineering profession, of the manufacturer, of the producer, and the consumer of coal, and of all those interested in the welfare of the State and our great industries, to the lines in which effort should be made to utilize that which, now called waste, is really a storehouse of energy and a source of wealth. It offers a better field to the energetic, active, and enterprising young men of the country than many of the gold and silver mining districts of the world.

One of the most important and suggestive parts of this report is the estimates of coal in the ground, coal mined, coal lost, &c., contained in Mr. Smith's report (Appendix A)-The Commission do not consider it wise to condense what he has written, but respectfully urge all those who may read this publication to study the figures he has given with attention; they will well repay the labor expended on them.

In conclusion, the Commission wishes to thank the coal mining and railroad companies, the private operators, and those engaged in the practical management of the works, for the enormous amount of very valuable information which has been generously furnished to it. Without the active co-operation of these gentlemen it would have been impossible to have obtained much of the more valuable material contained in this report.

ECKLEY B. COXE, HEBER S. THOMPSON, WILLIAM GRIFFITH, Commissioners.

APPENDIX A-1.

BY A. D.W. SMITH, PHILADELPHIA.

ESTIMATE OF THE ORIGINAL GEOLOGICAL AN-THRACITE COAL-FIELD OF PENNSYLVANIA.

Our knowledge of the extent of the original anthracite coal-field and the number and the thickness of its coalbeds is quite too insufficient to make any estimate possible other than a very broad generalization.

Professor J. P. Lesley in the third volume of his Final Report Pennsylvania Geological Survey will give in full the argument for the hypothesis that the carboniferous coalfield covered the whole State of Pennsylvania, and many of the neighboring States as well.

Accepting this hypothesis, we are still confronted with the question as to what portion of this great coal-field was changed into an anthracite coal and how much remained bituminous. That the anthracitic condition was produced by, or closely connected with, the great uplifting and folding of the strata which took place at the close of the Carboniferous period is not questioned.

The disturbed area is well defined, but how much of the coal of the beds which covers this area was changed to anthracite we do not know; that it all was not changed would seem to be shown by the Broad Top coal-field in Huntingdon County, although in the midst of the disturbed region the coal-beds are semi-bituminous.

Of the vast anthracite coal-fields originally existing there remains preserved from erosion only some 480 square miles, separated into different fields and basins by the underlying rocks. In many of the basins none but the lowest coal-beds have been preserved.

That the anthracite field extended far to the east is shown by the small patches of anthracite in Rhode Island which have been preserved from erosion. This would seem to fix the Delaware River (the State line) as the eastern limit of the Pennsylvania field.

The northern limit is approximately fixed by the Bernice coal basin in Sullivan County, where the coal is an anthracite, while in the Barclay basin, some 15 miles northwest, the coal is semi-bituminous.

The Allegheny Mountains, the eastern limit of the existing bituminous field, prohibits a further western extension, while the Broad Top field in Huntingdon County would seem to limit the extension of the field in a southwesterly direction.

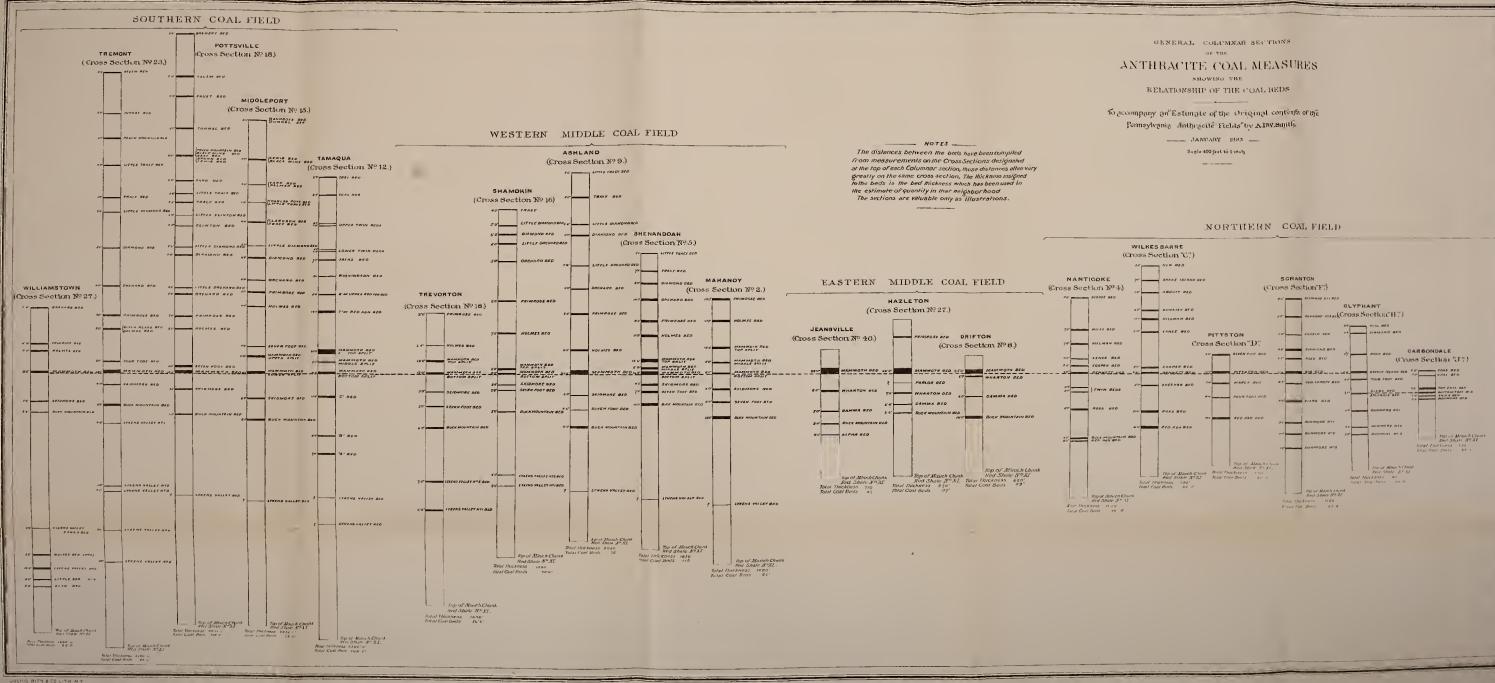
In the large area in the southeastern part of the State, comprised in Northampton, Lehigh, Berks, Lancaster, York, Adams, Chester, Montgomery, Bucks, Philadelphia, and Delaware Counties, erosion has carried away every trace of any coal-beds that may have existed there, and many thousands of feet of the underlying strata as well. Accepting, however, the hypothesis that "the carboniferous coal-fields originally covered the whole State, and that the anthracite condition was caused by or was attendant upon the uplifting and folding of the coal-beds and surrounding strata," as Southeastern Pennsylvania was the scene of greatest disturbance, it would seem reasonable to suppose that any bituminous coal-beds deposited here, were changed to anthracite, or, owing to the great pressure and disturbance, possibly to a graphite.

We would have then in the south and southeast the boundaries of the State as the extreme limit of the original Pennsylvania anthracite fields.

As to the number and the thickness of the coal-beds contained in the original geological coal-field, our only definite knowledge is to be gained by a study of the beds still remaining.

The accompanying sheet of columnar sections illustrates the number and thickness of the existing beds throughout the field.

Probably the highest workable coal-bed is the Brewery


ES

ofthe

L FIELD

ON 'ion"F") NYTHANT WE BED OLYPHANT CLYPHANT

•

bed found in the Southern coal-field some 1900 feet above the Mammoth bed.

The number of coal-beds and the thickness of each that perhaps once existed above the Brewery bed we do not know.

A columnar section in the neighborhood of Pottsville would show some 20 workable coal-beds between (and including) the Brewery and Buck Mountain beds, with an estimated total average thickness of 108 feet, some 72 per cent. or 78 feet of which is estimated to be workable coal.

At Tamaqua a fewer number of beds show 109 feet or 78feet of coal.

At Shamokin the section from the Tracy bed (the sixth below the Brewery) down shows 70 feet, 77 per cent. or 54 feet of coal.

At Shenandoah from the Little Tracy down the section shows 113 feet or 87 feet of coal.

In the Eastern Middle field all but one or two of the beds above the Mammoth have been carried away by erosion.

In the Northern field probably the highest existing workable bed is the New bed, only some 600 feet above the Bennett or Mammoth.

At Wilkes-Barre the section shows some 11 workable beds with a thickness of 85 feet, 81.8 per cent. or 69 feet estimated as workable coal.

A consideration of these columnar sections would indicate that the original coal-field had in the neighborhood of the existing fields an average thickness of probably not less than 75 feet of coal in workable beds. If we estimate 1900 tons per foot acre, 1 acre 75 feet thick would contain 152,-500 tons, say 150,000 tons, and 1 square mile 640 times this, or 96,000,000 tons.

In order that we may have some general idea of the relation between the existing and the original anthracite field, the following propositions might be assumed :—

First.—That lines drawn, inclosing all the existing field, would include the original field.

There is probably no reason to suppose but that the original field was of much greater extent. These boundaries are, however, used as the smallest possible area for the field.

A line drawn from the northeast end of the Northern field to Bernice, to Dauphin, to Mauch Chunk, to point of beginning (Fig. A, B, C, D, see map, page 56), the resulting polygon would inclose all the existing Pennsylvania anthracite fields, and have an area of about 3300 square miles, and a contents, estimating 96,000,000 tons per square mile, of 306,600,000,000 tons. If we assume this to have been the contents of the original field, the contents of the existing field, 19,500,000,000 tons, is about 6 per cent. of this.

Second.—That the original field is included between two parallel lines having the same general direction as the trend of the measures, the northern line just including the Bernice basin and the southern line along the Blue Ridge, extending from the State line at the Delaware, and bounded on the west by a line drawn at right angles about half way between Dauphin and the Broad Top coal-field (Fig. E, F, G, H), the area inclosed would contain roughly some 9000 square miles, and would have had a contents, estimating 96,000,000 tons per square mile, of 846,000,000,000 tons, of which the now existing fields contain about 2 per cent.

Third.—That the original anthracite field covered all of Southeastern Pennsylvania, and is inclosed within the area included within the State boundaries on the east and south, with the same north boundary as in the second proposition, and on the west by a north and south line, passing to the east of the Broad Top field (Fig. E, F, I, J, K, H). . Roughly estimated, this area would contain about 17,000 square miles; estimating 96,000,000 tons per square mile, the contents would be 1,632,000,000 tons, of which the now existing field contains a little more than 1 per cent.

RESULTS.

The preceding estimates would show that the existing Pennsylvania anthracite fields, before mining commenced, contained not more than 6 per cent., probably about 2 per cent., and possibly only 1 per cent. of the coal deposited in workable beds in the original geological coal-field before erosion.

ESTIMATE OF EXISTING ANTHRACITE COAL-FIELD BEFORE COAL MINING BEGAN.

The anthracite coal-fields of Pennsylvania are found within some 3300 square miles, about 484 square miles of which contain workable coal-beds. The field is comprised in a number of separate basins, and has been divided geographically into Northern, Eastern Middle, Western Middle, and Southern fields.

The recently completed mine sheets of the Geological Survey map (on a scale of 800 feet to 1 inch) the whole area covered by workable coal-beds, showing the mine workings in each bed, the outcrop of the principal beds, and the limit of the workable beds, as well as the surface features and elevations; in connection with these sheets there are published a series of cross-sections, across each basin or field, showing the actual or probable position of each coal-bed underground on the vertical plane cut by the cross-section; also, a series of columnar sections, showing the thickness of the coal-beds and intervening strata at right angles to the dip as cut in the shafts, tunnels, rock slopes, and bore-holes throughout the field.

The estimate of contents is based upon these mine, crosssection, and columnar section sheets published by the Geological Survey; upon the reports of the first Geological Survey, published in 1858; upon some 2500 bed sections obtained in part from the note-books of the Geological Survey, and in part from the officers of the operating companies; and general information from various sources.

In the estimate only the coal in workable beds is considered. In the Northern field, where the measures are comparatively flat, 2.5 feet of coal is taken as the minimum, while in the other fields, where the beds are usually found dipping at high angles, 2 feet is used. In all four of the coal-fields, but more especially in the Western Middle and Southern, there are, in addition to the beds which have been named and identified from place to place, other coal-beds, usually called "leaders," which frequently, and some of the persistent ones usually, exceed the requirements of workable thickness and quality; as some of these leaders are workable, I have to a small extent considered them in making up the average thickness of the adjacent beds.

The Method.

Some three methods have been used. The principal one employed, and by which the bulk of the estimate has been made, is as follows:—

First.—(a.) The coal-fields have been divided into a number of small areas, the cross-section lines usually being the dividing lines and determining the number and size of these areas.

(b.) The area in acres underlaid by the lowest workable bed as defined on the published sheets has been carefully determined, as follows: The mine sheets are blocked in 2000' squares, the number of squares wholly underlaid by the lowest workable bed were counted and the acres computed; then the irregular area which was left, was measured by the planimeter and acreage computed, the sum being the total acreage for area. The correctness of the computation was checked by repeating the measurements, the mean of the results being taken as the correct one; and later by a comparison of the totals for each field with the measurement of the field made on a reduced map, scale 1 mile to 1 inch.

(c.) The ratio of the per cent. of coal to that of refuse in the beds in each field is obtained by taking all the bed sections that have been collected from any one field, and first determining the per cent. of coal in each bed section, eliminating all refuse, including bony coal, then taking the average of all the sections, the result obtained is used as the factor for that field. (d.) The published cross-sections were next considered, and the probable average thickness of the coal on each section, were it all contained in one horizontal bed, having the length of the surface underlaid by the lowest workable bed (as shown on section), was determined; the details of how these average thicknesses were obtained is best described with the first cross-section considered. See page 62.

(e.) The contents of the areas is now obtained by multiplying the *mean* of the average thickness of coal on the bounding sections by the number of acres in the area, by the number of tons in one acre of coal one foot thick, described in detail table A, page 75.

Second.—In the Eastern Middle field, which comprises a number of small unconnected basins, it seemed best to calculate the area and estimate the contents of each bed separately; this was made easy here by the publication on the mine sheets of the outcrops of nearly all the workable beds. This method was also used in the areas between the several ends of fields and the nearest cross-section.

Third.—The estimate of the contents of the Panther Creek basin, Southern coal-field mine sheets I., II., and III., is copied from the estimate made under the direction of the late Charles A. Ashburner, by a method devised by him and described in full in Report AA, chapter V.

The surface and bed areas for Western Middle sheets I., II., III., and IV., were also computed under Mr. Ashburner's direction. Professor Lesley has kindly allowed me to make use of these computations for this estimate.

Specific Gravity.

The number of tons in an acre of coal one foot thick is determined by the weight of a cubic foot of coal; this varies in different benches of the same bed, in different parts of a field, and in different fields. To speak with certainty as to the probable average weight of a cubic foot of coal from any one or all of the fields would require a number of determinations in quantity of the coal from the different beds and from many parts of the field. In this estimate I have usually taken, as the best authority available, the laboratory determinings of Mr. A. S. McCreath, the chemist of the Geological Survey. It should be noted that the results thus obtained are higher than those in general use, giving a larger yield per acre, and consequently a greater estimate of contents for the fields.

The specific gravity which has been used is noted with the estimate of each field.

ESTIMATE OF THE ORIGINAL CONTENTS NORTH-ERN COAL-FIELD, INCLUDING THE BERNICE COAL BASIN.

The coal of the Northern field is found in one great basin 55 miles long and from 2 to 6 miles wide, with perhaps a dozen more little patches of coal lying close to but not now connected with the main basin. The dips are usually very gentle, though occasionally reaching 40 or 50 degrees in the southwestern end of the field.

The estimate of contents has been made from the crosssections (*First* Method), but in the areas between either end of the basin and the nearest section the contents of each bed was estimated separately.

The following discussion of the first cross-section used, No. K, will apply to all that follow. See page 63.

Column a gives the name of each workable bed found on the section.

Column b gives the probable average thickness of the bed; this average is supposed to apply to the area inclosed within lines drawn half-way between the adjoining section on either side, and is assigned, after a careful consideration of the bed sections and bed thicknesses shown by shaft, tunnel, and bore-hole sections within this territory, in connection with the geological structure.

Column c gives the probable average thickness of coal in each bed and is obtained in the Northern field by taking 81.8 per cent. of the thickness assigned to the bed.

Eight hundred and ninety-one bed sections well distributed throughout this field, eliminating all refuse, including bony coal in the refuse, give as an average 81.8 per cent. coal, 18.2 per cent. refuse.

Column d gives the total length of each bed, measured on the section; where the dips are gentle this length is but little greater than the length of surface underlaid by the bed, but where the dips are steep the difference is very decided, and is an important consideration in the estimate.

Column dc gives the length of each bed if lengthened out into a bed with the coal but one foot thick, and is obtained by multiplying column d by column c.

The sum of column dc divided by the surface length underlaid by the lowest workable coal-bed, measured on section, gives the probable thickness of the coal, imagining it to be all in one horizontal bed with a length equal to the surface length of the lowest workable bed.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheet 23.

N. C. F., cross-section sheets 8 and 9.

N. C. F., columnar section sheets 16.

a. Name of Bed.	b. Average thickness of bed.	<i>c</i> . Aver. thick- ness of coal, 81.8 per cent.	d. Length of bed.	dc. Length of bed. Coal 1 foot thick.
Shaft	Feet. 6.5 4.8	Feet. 5.32 3.92	Feet. 4,700 10,450	Feet. 25,004 40,964
Total coal reduced to units of one foot in thickness Surface length underlaid by lowest workable bed				65,968 10,340 6.38

CROSS-SECTION NO. K.

REMARKS.

On the south side of the basin there is a bed between the Shaft and Clifford beds from 2 to 6 feet thick; this is not included in the estimate, as it is counterbalanced (more or less) by the fact that on the north side of the basin there is an area of somewhat uncertain extent where no coal below the Shaft bed is found of workable thickness.

Geological Survey of Pennsylvania.

N. C. F., mine sheets 21 and 22.

N. C. F., cross-section sheets 8 and 9.

N. C. F., columnar section sheets 15 and 16.

CROSS-SECTION NO. J.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
"Top" coal	Feet.	Feet.	Feet.	Feet.
	7.3	6.0	5,640	33,840
	6.2	5.1	6,300	32,130
	3.8	3.1	3,350	10,385
	3.5	2.9	4,600	13,340
Total coal reduced to units	89,695			
Surface underlaid by lowes	8,180			
Average thickness of coal p	10.96			

Remarks.

The Third coal-bed, which is shown on the section as a split of the "Bottom" coal, and the Dunmore bed have not been found at their northern outcrop, and I have estimated these beds as workable for about one-half of their natural length on line of section.

The "Top" and "Bottom" coal-beds are extensively worked in this vicinity.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 19 and 20.

N. C. F., cross-section sheets 8 and 9.

N. C. F., columnar section sheet 15.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Grassy Island New County Archbald Dunmore beds	Feet. 9.0 3.0 9.5 2.8	Feet. 7.36 2.45 7.77 2.28	Feet. 2,140 6,040 11,580 4,860	Feet. 15,750 14,798 89,977 11,129
Total coal reduced to units Surface underlaid by lowes Average thickness of coal p	t workable	bed		$131,654 \\ 14,130 \\ 9.32$

CROSS-SECTION NO. I.

Remarks.

The Dunmore beds are not worked in vicinity of this section, but have been shafted in one or two places on the north dip. I have estimated that there is a workable bed for about one-third of the sectional length.

Grassy Island bed worked at Glenwood shaft.

New County bed not worked.

Archbald principal bed of district and extensively worked; same bed as the "Top" and "Bottom" coal of Carbondale district.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 17 and 18.

N. C. F., cross-section sheets 6, 7, and 8.

N. C. F., columnar section sheet 14.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Small coal	Feet. 3.0 3.8 5.6 8.8 4.0 7.3 4.0 2.2	Feet. 2.45 3.11 4.58 7.20 3.27 5.97 3.27 1.80	Feet. 3,050 5,050 10,260 11,600 13,470 14,740 17,130 19,170	Feet. 7,472 15,705 46,990 83,520 44,047 87,998 56,015 34,506
Dunmore No. 3 Total coal reduced to units Surface length underlaid by Average thickness of coal p	$\begin{array}{r} 34,300\\ 42,476\\ \hline \\ 418,729\\ 20,300\\ 20.65\\ \end{array}$			

CROSS-SECTION NO. H.

REMARKS.

All the beds shown by this section have been worked at one or more places in the vicinity, excepting the "small coal" and the Rock bed, the thicknesses assigned to these were determined by the shaft and bore-hole records.

The Grassy Island bed is the one now most extensively worked.

Geological Survey of Pennsylvania.

- N. C. F., mine sheets 15 and 16.
- N. C. F., cross-section sheets 6, 7, and 8.
- N. C. F., columnar section sheets 9, 10, 11, and 12.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Brisbin or Olyphant No. 1,	Feet. S.O	Feet. 6.54	Feet. 3,300	Feet. 21,582
Richmond or Olyphant }	5.5	4.50	4,580	20,610
Coal bed "Church Slope,"	3.9	3.20	6,600	21,120
Diamond bed	9.7	7.93	12,420	98,490
Rock bed	6.1	5.00	9,340	46,700
Big bed	11.5	9.40	15,200	142,880
Clark bed	6.5	5.32	18,700	99,484
Dunmore No. 1	3.5	2.86	21,340	61,032
Dunmore No. 2	4.0	3.27	22,730	74,327
Dunmore No. 3	3.0	2.45	24,630	60,343
Total coal reduced to units Surface length underlaid by	646,568 24,250			
Average thickness of coal p	er foot of	surface		26.66

CROSS-SECTION NO. G.

Remarks.

All the beds shown by this section have been worked to a greater or less degree in the neighborhood.

The Dunmore, Big, and Clark are the principal beds and have been worked most extensively.

The Dunmore beds are here at their best, and are mined to a large extent in the neighborhood of Dunmore.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 13 and 14.

N. C. F., cross-section sheets 6, 7, and 8.

N. C. F., columnar section sheets 10, 11, and 12.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Olyphant No. 2	5.3	4.34	3,900	16,926
"Church Slope"	4.0	3.27	6,350	20,765
Diamond	9.2	7.53	10,400	78,312
Rock	7.0	5.73	11,100	63,603
Big	12.5	10.23	12,050	123,272
New County	8.5	6.95	12,300	85,485
Clark	8.5	6.95	14,500	100,775
*Dunmore No. 1 (No. 4) .	3.2	2.62	4,410	11,554
Dunmore No. 2 (No. 5)	4.4	3.60	19,200	69,120
Total coal reduced to units	of one foot	in thicknes	s	569,812
Surface length underlaid by				
Average thickness of coal				00.00

CROSS-SECTION NO. J	đ,	1
---------------------	----	---

*It is doubtful if Dunmore No. 1 (No. 4 bed) is workable for more than a portion of its extent (say one-fourth), and I have estimated accordingly.

Remarks.

All of the beds are worked and several of them extensively; the Dunmore beds are especially well developed on south side of the basin, but have not been worked on the north.

Reference :---

Geological Survey of Pennsylvania. N. C. F., mine sheets 11 and 12. N. C. F., cross-section sheets 6, 7, and 8. N. C. F., columnar section sheets 7, 8, 9, and 10.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Marcy (New County) Clark Red Ash	Feet. 7.5 6.0 11.5	Feet. 6.14 4.90 9.40	Feet. 8,000 12,350 17,200	Feet. 49,120 60,515 161,680
Total coal reduced to units Surface length underlaid by Average thickness of coal p	y lowest wo	rkable bed	s	271,315 17,050 15.91

CROSS-SECTION NO. E.

Remarks.

All these beds are worked, but the Clark less than the others. The Red Ash bed is regarded as the equivalent of the Dunmore beds.

Geological Survey of Pennsylvania.

N. C. F., mine sheets 9 and 10.

N. C. F., cross-section sheets 6, 7, and 8.

N. C. F., columnar section sheets 6, 7, and 8.

Name of Bed	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Seven Foot or Checker Pittston Marcy Fourth Red Ash	$7.8 \\ 4.8$	Feet. 5.32 8.67 6.38 3.93 8.59	Feet. 12,530 16,000 18,400 8,000 24,240	Feet. 66,660 138,720 117,392 31,440 208,222
Total coal reduced to units Surface length underlaid by Average thickness of coal p	lowest w	orkable bed	5 	23,680

CROSS-SECTION NO. D.

Remarks.

All the beds are worked except the Fourth bed. I have estimated about one-half of its extent to be workable.

The Pittston bed, regarded as the equivalent of the Baltimore bed, is the principal bed of the district, and has been very extensively mined.

The buried river valley, with a depth of 50 to 200 feet of wash, has cut out several of the upper coal-beds. Mining beneath it is very hazardous.

References :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 7 and 8.

N. C. F., cross-section sheets 2a, 2b, and 2c.

N. C. F., columnar section sheets 1, 3, 4, and 5.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed, Coal 1 foot thick.
New	Feet. 3.7 7.4 5.3 6.4 10.0 5.8 8.9 8.5 5.0 10.0 14.0	Feet. 3.03 6.05 4.34 5.24 8.18 4.74 7.28 6.95 4.09 8.18 11.45	Feet. 810 1,630 2,740 4,200 11,390 11,750 20,120 22,170 16,200 29,480 30,850	Feet. 2,454 9,862 11,892 22,008 93,170 55,695 146,474 154,082 66,258 241,146 353,233
Total coal reduced to units Surface length underlaid by Average thickness of coal j	$\begin{array}{r}1,\!156,\!274\\30,\!400\\38.03\end{array}$			

CROSS-SECTION NO. C.

Remarks.

The Checker bed is the only one which has not been worked, and I have regarded it as workable for only a part of its probable extent.

The Ross and Red Ash beds are in some places found in two splits, and in some instances the splits are worked separately.

The Cooper and Bennett beds when found together are called the Baltimore bed. This is the principal bed of the region.

The buried river valley, with a depth of 50 to 200 feet of wash, has cut out several of the upper coals. Mining beneath it is very hazardous.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 5 and 6.

N. C. F., cross-section sheets 2a, 2b, and 2c.

N. C. F., columnar section sheets 1 to 5.

Name of Bed.	Average thickness of bed.	Aver.thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
New or Auble	3.7	3.00	6,090	18,270
Snake Island	5.0	4.09	6,200	25,358
Seven Foot, Hutchison	5.5	4.50	10,000	45,000
Kidney, Bowkley, Lance	5.3	4.34	16,290	70,699
Hillman	9.2	7.53	17,865	134,523
Lodgement	4.0	3.27	5,000	16,350
Five Foot, Old Bennett .	6.5	5.32	18,770	99,856
Lance, Five Foot	6.0	4.91	9,210	45,221
Cooper	8.0	6.54	21,200	138,648
Bennett	9.5	7.77	22,800	177,156
Checker	4.5	3.68	10,000	36,800
Ross	9.0	7.36	24,300	178,848
Red Ash	18.0	14.72	25,700	378,304
Total coal reduced to units	of one foot	in thicknes	s	1,365,033
Surface length underlaid by	y lowest wo	rkable bed .		24,550
Average thickness of coal				55.60

CROSS-SECTION NO. B.

REMARKS.

The Seven Foot, Snake Island, and New or Auble beds are not worked, but are cut by South Wilkesbarre shaft.

The Cooper and Bennett beds are together on the south side of the basin in vicinity of Wilkesbarre, and form the Baltimore bed.

The Red Ash bed is frequently in two splits, which are sometimes worked separately.

The buried river valley, with a depth of 50 to 200 feet of wash, has cut out several of the upper coals. Mining beneath it is very hazardous.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheets 3 and 4.

N. C. F., cross-section sheets 2a, 2b, and 2c.

N. C. F., columnar section sheets 1 to 5.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
George	4.6	3.76	4,090	15,378
Mills	7.0	5.73	4,920	28,192
Hillman Slope	7.0	5.73	6,610	37,875
Lance or Four Foot	4.0	3.27	6,650	21,745
Cooper	6.5	5.32	9.050	48,146
Bennett	7.8	6.38	9,910	63,226
Twin	5.0	4.09	12,410	50,757
Ross	8.0	6.55	14.500	94,975
Buck Mountain (Red Ash),	10.0	8.18	16,000	130,880
Total coal reduced to units Surface length underlaid by Average thickness of coal p	y lowest wo	rkable bed	5 .	14,900

CROSS-SECTION NO. A.

Remarks.

The Mills, Hillman, Bennett, and Buck Mountain are the principal beds.

What is here called the Buck Mountain is probably identical with the upper split of the Red Ash.

Reference :---

Geological Survey of Pennsylvania.

N. C. F., mine sheet 2.

N. C. F., cross-section sheet 1.

N. C. F., columnar section sheet 5.

Name of Bed.	Average thickness of bed.	Aver, thick- ness of coal, 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
•	Feet.	Feet.	Feet.	Feet.
Mills	6.6	5.40	600	3,240
Hillman	8.5	6.95	2,550	17,723
Cooper	6.0	4.90	4,420	21,658
Bennett or Forge	6.5	5.32	5,540	29,473
Twin	4.0	3.27	7.140	23,348
Ross	12.0	9.82	10,350	101,637
Buck Mountain	7.5	6.14	10,200	62,628
Total coal reduced to units	8	259,707		
Surface length underlaid by				8,900
Average thickness of coal p				29.18

CROSS-SECTION No. 4.

Remarks.

The Buck Mountain, Ross, Forge, and Cooper beds are worked. The Ross is the principal bed. Geological Survey of Pennsylvania.

N. C. F., mine sheet 2.

N. C. F., cross-section sheet 1.

N. C. F., columnar section sheet 5.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal 81.8 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Forge or Bennett Church Ross	Feet. 10,675 15,565 23,940 55,556			
Total coal reduced to units Surface length underlaid by Average thickness of coal p	$\begin{array}{r} 105,736 \\ 6,490 \\ 16.29 \end{array}$			

CROSS-SECTION No. 3.

Remarks.

The Buck Mountain (Red Ash) is the principal bed in thickness as well as extent, and is quite extensively worked from Dupont drift, and also mined at the Hasselman drift.

Reference :---

Geological Survey of Pennsylvania. N. C. F., mine sheets 23 and 24.

Area No. 1.

From Northeast End of Coal-Field to Cross-Section No. K.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.		Probable orig- inal contents in tons.
Shaft	Feet. 6.71 4.90	Feet. 5.5 4.0	$140.7 \\ 1071.4$	1,454,838 8,056,928
Probable original contents	9,511,766			

REMARKS.

The basin is quite flat here, and I have regarded the bed area to be the same as the surface area.

Geological Survey of Pennsylvania. N. C. F., mine sheets 1 and 2.

Area No. 14.

From Cross-Section No. 3 to Southwest End of Coal-Field.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 81.8 per cent.	Surface area in acres.	Bed area in acres.	Probable orig- inal contents in tons.
Church Ross Red Ash	Feet. 5.0 6.5 8.7	Feet. 4.09 5.32 7.12	$175.00 \\ 560.00 \\ 937.64$	$190.00 \\ 600.00 \\ 1012.65$	1,460,948 6,000,960 13,554,928
Probable origin	21,016,836				

Reference :---

Pennsylvania Geological Survey. Annual Report 1885, chapter XI., and Map in Atlas to Report.

AREA NO. 15.

Bernice Coal Basin, Sullivan County, Pa.

The shipments from this basin have, since 1884, been included in the Northern coal-field or Wyoming region tonnage, and for that reason the estimate of the original contents of this area is included with the Northern field.

Two coal-beds are found in this basin. The upper bed "B" is mined. "Bed 'A' gives no promise of a workable bed."

The area underlaid by bed B, as shown approximately on the map of the basin contained in Atlas to Annual Report, 1885, is 1950 acres; the dips are gentle, and bed and surface areas may be regarded as the same. The sections of bed B, published in the Annual Report, 1885, would show the coal to vary between 8 and 9 feet in thickness. Taking 8.5 feet as the average for the basin would give 31,161,000 tons as the probable original contents.

Probable original contents of area No. 15 . . . 31,161,000

Table A which follows shows the estimate of contents for the whole field. The following explanation of the table is now in place :—

EXPLANATION OF TABLE A.

The field has been divided by the cross-section lines into 14 separate divisions and numbered 1 to 14 from northeast to southwest. (See map.)

Column No. 1 gives the number assigned to each area.

An area is always understood to mean the area of the lowest workable coal-bed between the cross-sections bounding it.

Column No. 2 gives the letter or number of the crosssections bounding the areas.

Column No. 3 gives the probable average thickness of the coal at each cross-section, imagining the coal to be all contained in one bed having the extent of the lowest workable bed. The method and data for arriving at these averages are given in detail in the preceding pages.

Column No. 4 gives the mean of the probable average thickness of coal at the cross-sections bounding each area, and is taken as the probable average thickness of coal within the included area.

Column No. 5 gives the number of acres of the lowest workable coal-bed in each area, measured on the published mine sheets 800' to 1'' of the Pennsylvania Geological Survey.

Column No. 6 gives the estimated contents of each area in long tons, and is got by multiplying column No. 4 by column No. 5 by 1880, which is taken as the number of tons per acre per foot in thickness of coal in this field.

Several determinations by McCreath, Pennsylvania Geological Report, 1885, page 314, would show the average specific gravity of the Baltimore bed in the vicinity of Wilkes-Barre to be 1.578. This is, perhaps, too high an average for all the beds of the entire field, so, lacking more definite information, I have used 1.55 or 96.6 pounds to the cubic foot, or 1880 tons per acre per foot thickness of coal in the following estimate :---

TABLE A.

Estimate of Total Original Contents Northern Coal-Field.

1.	2.	3.	4.	5.	6.
	Between	Probable aver-	Probable aver-	Surface area	Probable origi-
Area No.	cross-sec-	age thickness of coal at cross-		lowest workable	nal contents in
	tions.	sections.	coal for areas.	bed in acres.	tons.
		sections.			
		Feet.	Feet.		
*1	Κ			1,071.4	9,511,766
2	∫ K	6.38	8.67	5,927.8	96,620,768
4	{ J	10.96 5	0.07	0,021.0	30,020,708
	(J	10.96	1014	F 099 0	110.005.050
3	ŤŤ	9.32	10.14	5,822.0	110,985,950
	ÎÎ	9.32			
4	I H	20.65	14.98	10,845.5	305,537,256
		,			
5	f H	20.65 }	23.65	10,180.8	452,658,729
••••	l G	26.66 5	-0100		
6	∫ G	26.66	28.25	9,892.1	525,369,431
0) F	29.83	20.21	5,052.1	020,009,401
	(F	29.83			0.10 501 500
7	ÎÊ	15.91	22.87	5.644.8	242,701,562
	(E	15.91			
8			19.83	$13,\!483.5$	502,670,273
	J D	23.75		,	
9	∫ D	23.75	30.89	13,667.3	793,703,846
<i>J</i>) C	38.03)	00.00	10,001.0	100,100,010
10	í C	38.03	40.00	19 490 0	1 100 110 400
10) B	55.60	46.82	13,429.8	1,182,112,483
	Î B	55.60			
11	A	32.97	44.28	11,587.7	964,634,309
	·				
12	ξ A	32.97	31.08	6,593.9	385,284,214
	<u></u>	29.18 🖇		-,	
13	$\int 4$	29.18	22.74	1,717.2	73,412,361
10	$\begin{pmatrix} 3 \end{pmatrix}$	16.29	44.1 t	1,111.4	70,412,001
*14	3			1,012.6	21,016,836
15	Bernice b	asin	8.5	1,950.0	31,161,000
10	Dermee D		0.0	1,000.0	01,101,000
Totals .				$112,\!826.4$	5,697,380,784

* Area No. 1 from northeast end of field to cross-section K, and area No. 14 from cross-section 3 to southwest end of field, the contents of each bed has been estimated separately, given in detail pages 72 and 73.

Total surface area lowest workable coal-bed, 112,826.4 acres, or 176.29 square miles.

Estimated total original contents Northern ceal-field, 5,697,380,784 tons.

ESTIMATE OF THE ORIGINAL CONTENTS EASTERN MIDDLE COAL-FIELD.

The Eastern Middle field is comprised in some 20 coal basins, usually separated one from the other by anticlinal ridges of Pottsville conglomerate, whose resistance to erosion has preserved these patches of softer coal measures in the synclinal hollows. The total area underlaid by the lowest workable bed in this field is a little less than 33 square miles.

In estimating the quantity of coal it was thought best to take the natural divisions made by the principal basins, and to make a separate estimate of the amount of coal in each bed; this was made easier, as the number of beds are less than in the other fields, and as the outcrops of most of them are given on the mine sheets. But little explanation will be needed of the following tables :—

Column No. 1 (see page 77) gives name of bed.

Column No. 2 probable average thickness of the beds. These thicknesses have been assigned, after a careful consideration of the bed sections and bed thicknesses shown by shaft, tunnel, or bore-hole sections within the basin, in connection with the geological structure.

Column No. 3 shows the probable average thickness of coal in each bed in this field. It is taken as 77 per cent. of the bed thickness.

Column No. 4 shows the surface acreage of each bed usually measured by planimeter on the mine sheets, but a star (*) above the acreage indicates that it has been estimated.

Column No. 5 gives the probable bed area of each coal-bed. The ratio of surface area to bed area was approximately obtained from the published sections across the basins; the beds not infrequently pitch 40 or 50 degrees, making the increased area an important factor in the estimate.

Column No. 6 gives the probable original contents of each bed, and is obtained by multiplying the bed acres by the average thickness of coal in the bed by the number of tons per foot acre (1960 used in this field).

Eight determinations by McCreath, Pennsylvania Geological Survey, Annual Report, 1885, page 314, of coal from the Mammoth and Wharton beds give an average specific gravity of 1.614. As these samples were taken from different points in the field, it gives perhaps a fair average, so I have used 1.614 or 100.85 pounds to a cubic foot, or 1960 tons per acre to each foot in thickness of coal.

Reference :---

Geological Survey of Pennsylvania.E. M. C. F., mine sheets 3 and 4.E. M. C. F., cross-section sheet 4.E. M. C. F., columnar section sheet 4.

AREA NO. 16.

1. Name of Bed.	2. Average thickness of bed.	3 Average thickness of coal, 77 per cent.	4 Surface area, acres.	5. Bed area in acres.	6. Probable origi- nal contents in tons.
Wharton	$\begin{array}{r} 887,409 \\ 1,229,410 \\ 21,189,168 \end{array}$				
Probable original conter	23,305,987				

Pond Creek and Buck Mountain Basins.

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 1 and 5.

E. M. C. F., cross-section sheets 1, 2, and 4.

E. M. C. F., columnar section sheets 1 and 4.

AREA NO. 17.

Cross Creek and Woodside Basins.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable origi- nal contents in tons.
Mammoth	Feet. 14 6 4 14	Feet. 10.78 4.62 3.08 10.78	*130 *300 *800 1600	$169 \\ 360 \\ 960 \\ 1760$	3,570,767 3,259,872 5,795,328 37,186,688
Probable original conter	49,812,655				

Reference :---

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 1, 2, and 5.

E. M. C. F., cross-section sheets 1, 2, and 4.

E. M. C. F., columnar section sheet 2.

AREA NO. 18.

Big Black Creek Basin

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable origi- nal contents in tons.
Mammoth		Feet. 20.79 2.70 11.55	910 1370 3236	$1037 \\ 1561 \\ 1830$	$\begin{array}{r} 42,\!256,\!090\\8,\!260,\!812\\41,\!427,\!540\end{array}$
Probable original conter	91,944,442				

The Wharton bed is only worked near west end of basin. I estimate that, including with it the Gamma bed sometimes of a workable thickness, that a thickness of 3.5 feet might be counted upon for whole area underlaid by the Wharton.

The Buck Mountain is perhaps not a workable bed in the western half of the basin, so I have estimated on about one-half of its total area, giving it a liberal thickness of 15 feet.

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 1 and 2.

E. M. C. F., cross-section sheet 2.

E. M. C. F., columnar section sheet 1.

AREA No. 19.

Little Black Creek Basin	Little	Black	Creek	Basin
--------------------------	--------	-------	-------	-------

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface areas, acres.	Bed area in acres.	Probable origi- nal contents in tons.
Mammoth Buck Mountain	Feet. 40 3	Feet. 30.80 2.31	$2.80 \\ 9.66$	$364 \\ 1256$	21,973,952 5,686,665
Probable original conten	27,660,617				

Diamond drill borings show two or three small and irregular beds below the Mammoth; these are not positively identified. I have estimated that the combined thickness below the Mammoth equivalent to a 3-foot bed with the area given the Buck Mountain bed on the mine sheets.

Reference :---

Geological Survey of Pennsylvania.

E. M. C. F., mine sheet 11.

E. M. C. F., cross-section sheet 6.

E. M. C. F., columnar section sheet 6.

AREA NO. 20.

(East) Black Creek and Stony Creek Basins.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
Mammoth	Feet. 12 8 3	Feet. 9.24 6.16 2.31	$172 \\ 279 \\ 482$	$198 \\ 320 \\ 554$	3,585,859 3,863,552 2,508,290
Creek Basin)	?	?	90 ?		
Probable original conter	9,957,701				

No coal-beds have been opened in the Stony Creek basin. Some 90 acres are shown on the mine sheets as possibly underlaid by the Buck Mountain bed. No estimate of quantity for this area is made.

Geological Survey of Pennsylvania.E. M. C. F., mine sheets 11, 13, and 14a.E. M. C. F., cross-section sheet 6.

E. M. C. F., columnar section sheets 6 and 7.

Area No. 21.

(West) Black Creek Basin.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
Mammoth	Feet. 9.0 7.5 2.5 7.0	Feet. 6.93 5.77 1.93 5.39	$86 \\ 294 \\ 350 \\ 1061$	$95 \\ 412 \\ 472 \\ 1379$	1,290,366 4,659,390 1,785,481 14,568,307
Probable original conter	22,303,544				

Reference :---

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 13, 14, and 14*a*.

E. M. C. F., cross-section sheet 6.

E. M. C. F., columnar section sheet 7.

AREA NO. 22.

Roberts' Run and McCauley Basins.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
Mammoth	Feet. 11.0 4.5 2.5 11.5	Feet. 8.47 3.46 1.93 8.85	$109 \\ 130 \\ *215 \\ 323$	$153 \\ 182 \\ 312 \\ 458$	2,539,983 1,234,251 1,180,233 7,944,468
Probable original conten	12,898,935				

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 1, 2, 5, and 11.

E. M. C. F., cross-section sheets 1, 3, 4, and 5.

E. M. C. F., columnar section sheets 3 and 6.

Area No. 23.

Hazleton Basin.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
	Feet.	Feet.			
Primrose	5.0	3.85	*617	728	5,493,488
Mammoth	25.0	19.25	1830	2159	81,459,070
${}^{\text{Parlor}}_{\text{Wharton}}$ \cdots	7.9	5.39	3925	3925	41,465,270
Gamma	2.5	1.93	*3700	4070	15,395,996
Buck Mountain	2.5	1.93	4948	5789	21,898,629
Probable original conter	165,712,453				

†Parlor bed, only a small area of workable thickness, and is included with the Wharton bed in the estimate.

Reference :---

Geological Survey of Pennsylvania.E. M. C. F., mine sheets 7, 8, and 10.E. M. C. F., cross-section sheets 4 and 5.E. M. C. F., columnar section sheets 4, 5, and 6.

Area No. 24.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
Mammoth	Feet. 28 8 5 3 	Feet. 21.56 6.16 3.85 2.31 2.31	$1337 \\ 2273 \\ *3379 \\ 4270 \\ 1200 \\ *200$	$ \begin{array}{r} 1738 \\ 2841 \\ 4122 \\ 5124 \\ \\ 240 \end{array} $	73,443,70834,301,09731,104,61223,199,422?1,086,624
Probable original conter	163,135,463				

Beaver Meadow and Dreck Creek Basins.

The probable area of Buck Mountain bed, in the Dreck Creek basin (1200 acres), is shown in table, but no beds in this basin have yet been found of a workable thickness and quality.

The Alpha bed is worked in the neighborhood of Beaver Brook. The estimate of the area workable is necessarily a rough approximation.

Reference :---

Geological Survey of Pennsylvania.

E. M. C. F., mine sheets 10, 11, 12, and 13.

E. M. C. F., cross-section sheet 5.

E. M. C. F., columnar section sheet 5.

Area No. 25.

Green Mountain Basins Nos. 1 to 5.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable orig- inal contents in tons.
Wharton	Feet. 4.0 5.0 9.5	Feet. 3.08 3.85 7.32	*88 *236 900	$103 \\ 284 \\ 1184$	621,790 2,143,064 16,987,084
Probable original conter	19,751,938				

Reference :---

Geological Survey of Pennsylvania. E. M. C. F., mine sheets 8a and 9.

AREA NO. 26.

Silver Brook Basins.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area, acres.	Bed area in acres.	Probable origi- nal contents in tons.
Mammoth	Feet. 20.0+ 5.0 6.5 ats of are	$3.85 \\ 5.00$	*37 *400 930	$48 \\ 480 \\ 1116$	$\begin{array}{r} 1,448,832\\ 3,622,080\\ 10,936,800\\ \hline 16,007,712 \end{array}$

The estimate of all the basins brought forward in table B shows the total area and contents of the field.

TABLE B.

Estimate of Total Original Contents Eastern Middle Coal-Field.

Area No.	Name of Basin.	Surface area lowest workable bed in acres.	Probable orig- inal contents in tons.
$ \begin{array}{r} 16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\end{array} $	Pond Creek and Buck MountainCross Creek and WoodsideBig Black CreekLittle Black Creek(East) Black Creek and Stony Creek(West) Black Creek and Stony CreekRoberts' Run and McCauleyHazletonBeaver Meadow and Dreck CreekGreen Mountain, Nos. 1 to 5Silver Brook Basins	$\begin{array}{c} 939\\ 1,600\\ 3,236\\ 966\\ 572\\ 1,061\\ 323\\ 4,948\\ 5,470\\ 900\\ 930\\ \end{array}$	$\begin{array}{c} 23,305,987\\ 49,812,655\\ 91,944,442\\ 27,660,617\\ 9,957,701\\ 22,303,544\\ 12,898,935\\ 165,712,453\\ 165,712,453\\ 163,135,463\\ 19,751,938\\ 16,007,712 \end{array}$
	Totals	20,945	602,491,447

Total surface area lowest workable coal-bed, 20,945 acres, or 32.72 square miles.

Estimated total original contents Eastern Middle coalfield, 602,491,447 tons.

ESTIMATE OF THE ORIGINAL CONTENTS OF THE WESTERN MIDDLE COAL-FIELD.

The Western Middle field is some 37 miles long with a maximum width of about 5 miles, and contains about 94 square miles underlaid by the lowest workable coal-bed. It is one continuous field, with the floor much corrugated by anticlinal and synclinal rolls. The beds are found at all angles from flat to a few areas with overturned dips. Speaking generally of the field, the dip may be said to average 30 to 40 degrees, and the bed areas show a very appreciable increase over the surface areas.

As before stated, in the eastern half of the field areas 27 to 30 (see pages 91–94) I have estimated the contents of each bed separately, as the bed areas had already been computed by the Geological Survey and kindly placed at my disposal by Professor Lesley.

The western half of the field comprised on mine sheets 5 to 8 and 5a to 7a has been estimated from the cross-sections. In discussing these cross-sections, commencing with the most eastern on mine sheet 5, section No. 12, the discussion of cross-section K, Northern field (page 62), applies equally in this field, except that column c is obtained by taking 77 per cent. of the bed thickness.

Eleven hundred and forty-four bed sections, well distributed throughout the field, eliminating all refuse, including bony coal in the refuse, give an average for the field 77 per cent. coal, 23 per cent. refuse.

The beds of the Lykens Valley group are important in the western part of the field, but grow thinner to the east. Just where the Lykens Valley ceases to be a workable bed is not determined. It is quite possible that future explorations may develop workable areas of the coal to the extreme eastern end of the field. I have first taken it into account in this estimate on mine sheet 3, giving it there an average thickness of 2.5 feet.

Geological Survey of Pennsylvania.W. M. C. F., mine sheets 5 and 5a.W. M. C. F., cross-section sheets 5, 6, and 7.W. M. C. F., columnar section sheets 2 and 3.

CROSS-	Section]	No. 12.
--------	-----------	---------

a. Name of Bed.	b. Average thickness of bed.	c. Aver. thick- ness of coal, 77 per cent.	d. Length of bed.	dc. Length of bed. Coal 1 foot thick.			
	Feet.	Feet.	Feet.	Feet.			
Tracy, No. XVI.	5.0	3.85	700	2,695			
Little Diamond, No. XV.	2.5	1.93	1,450	2,799			
Diamond, No. XIV.	6.0	4.62	2,000	9,240			
Big Orchard, No. XII	6.0	4.62	3,100	14,322			
Primrose, No. XI.	7.0	5.39	5,650	30,454			
Holmes, No. X.	6.0	4.62	9,250	42,735			
Mammoth, Nos. VIII. and IX.,	18.0	13.86	17,100	237,006			
Skidmore, No. VII	4.0	3.08	18,200	56,056			
Seven Foot, No. VI.	?	?	'				
Buck Mountain, No. V	6.0	4.62	19,800	91,476			
Lykens Valley, No. II }	6.0	4.62	22,200	102,504			
Total coal reduced to units of Surface length underlaid by lo	589,347						
kens Valley)	17,600						
Probable average thickness of	coal per fo	ot of surfac	e	33.49			

Reference:—

Geological Survey of Pennsylvania.
W. M. C. F., mine sheets 5 and 5a.
W. M. C. F., cross-section sheets 5, 6, and 7.
W. M. C. F., columnar section sheet 2.

CROSS-SECTION No. 13.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Orchard, No. XII	6	4.62	1,050	4,851
Primrose, No. XI.	6	4.62	5,800	26,796
Holmes, No. X	6	4.62	12,600	58,212
Mammoth Top split, No. IX.,	8	6.16	15,800	97,328
Mammoth Bot. split, No.VIII.,	7	5.39	16,235	87,507
Skidmore, No. VII	4	3.08	20,650	63,602
Seven Foot, No. VI	3	2.31	3,600	8,316
Buck Mountain, No. V	6	4.62	24,425	112,844
Lykens Valley, No. II } Lykens Valley, No. I }	6	4.62	26,775	123,701
Total coal reduced to units of	583,157			
Surface underlaid by lowest Valley)	24,000			
Average thickness of coal per	foot of sur	face		24.29

Geological Survey of Pennsylvania.W. M. C. F., mine sheets 6 and 6a.W. M. C. F., cross-section sheets 5, 6, and 7.W. M. C. F., columnar section sheets 1 and 2.

CROSS-SECTION No. 14.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Little Orchard, No. XIII	6.0	4.62	1,800	8,316
Orchard, No. XII.	4.0	3.08	3,200	9,856
Primrose, No. XI.	6.0	4.62	3,825	17,672
Holmes, No. X	4.0	3.08	8,500	26,180
Mammoth Top split, No. IX.,	6.0	4.62	13,215	61,053
Mammoth Bot. split, No. VIII.	8.0	6.16	15,735	96,928
Skidmore, No. VII.	2.5	1.93	14,300	27,599
Seven Foot, No. VI	2.5	1.93	20,100	38,793
Buck Mountain, No. V.	6.0	4.62	22,500	103,950
Lykens Valley, No. II.	6.0	4.62	26.940	124,463
Totol coal reduced to units of a Surface length underlaid by	514,810			
Valley)		24,000		
Average thickness of coal per	foot of surfa	ace		21.45

Geological Survey of Pennsylvania.W. M. C. F., mine sheets 6 and 6a.W. M. C. F., cross-section sheets 5 and 6.W. M. C. F., columnar section sheets 1 and 2.

CROSS-SECTION N	0.1	.5.
-----------------	-----	-----

Name of Bed	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Tracy, No. XVI	Feet. 4.0 5.0 6.0 5.0 7.0 7.0 7.0 8.0 3.0 2.5 5.0 6.0	$\begin{array}{c} \text{Feet.} \\ 3.08 \\ 3.85 \\ 4.62 \\ 3.85 \\ 3.85 \\ 5.39 \\ 5.39 \\ 5.39 \\ 6.16 \\ 2.31 \\ 1.93 \\ 3.85 \\ 4.62 \end{array}$	$\begin{array}{c} \text{Feet.}\\ 1,100\\ 2,100\\ 3,050\\ 4,130\\ 5.200\\ 8,936\\ 11,320\\ 17,120\\ 17,120\\ 17,320\\ 17,400\\ 17,450\\ 17,785\\ 21,550\end{array}$	$\begin{array}{c} \text{Feet.}\\ 3,388\\ 8,085\\ 14,091\\ 15,901\\ 20,020\\ 48,160\\ 61,015\\ 92,277\\ 106,691\\ 40,194\\ 33,679\\ 68,472\\ 99,561 \end{array}$
Total coal reduced to units of Surface length underlaid by Valley)	$ \begin{array}{r} 611,534\\ 16,200\\ 37.75 \end{array} $			

Geological Survey of Pennsylvania.W. M. C. F., cross-section sheets 7 and 8.W. M. C. F., mine sheets 7 and 7a.W. M. C. F., columnar section sheet 1.

CROSS-SECTION No. 16.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Tracy, No. XVI. Little Diamond, No. XV. Diamond, No. XIV. Little Orchard, No. XII. Orchard, No. XII. Primrose, No. XI. Holmes, No. XI. Mammoth Top split, No. IX. Mammoth Top split, No. IX. Mammoth Bot. split, No. VIII. Skidmore, No. VII. Seven Foot, No. VI. Buck Mountain, No. V. Lykens Valley, No. I.	$\begin{array}{c} \text{Feet.} \\ 4.0 \\ 5.0 \\ 6.0 \\ 5.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ 8.0 \\ 8.0 \\ 3.0 \\ 2.0 \\ 5.5 \\ 6.0 \end{array}$	$\begin{array}{c} \text{Feet.} \\ 3.08 \\ 3.85 \\ 4.62 \\ 3.85 \\ 3.85 \\ 4.62 \\ 5.39 \\ 6.16 \\ 6.16 \\ 2.31 \\ 1.93 \\ 3.85 \\ 4.62 \end{array}$	Feet. 1,225 2,070 3,630 4,720 5,580 9,125 11,100 13,900 14,335 15,000 15,100 15,670 16,315	$\begin{array}{c} \text{Feet.}\\ 3,773\\7,970\\16,771\\18,172\\21,483\\42,158\\59,829\\85,624\\88,304\\34,650\\29,143\\60,330\\75,375\end{array}$
Total coal reduced to units of a Surface length underlaid by I Valley)	543,502 14,500 37.49			

Geological Survey of Pennsylvania.W. M. C. F., mine sheets 7 and 7a.W. M. C. F., cross-section sheets 7 and 8.W. M. C. F., columnar section sheet 1.

CROSS-SECTION No. 17.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Diamond, No. XIV.	3	2.31	1,325	3,061
Little Orchard, No. XIII	3	2.31	4,300	9,933
Orchard, No. XII.	õ	3.85	5,150	19,828
Primrose, No. XI.	ō	3.85	8,000	30,800
Holmes, No. X.	8	6.13	9,550	58,828
Mammoth Top split, No. IX.	9	6.93	10,200	70,686
Mammoth Bot. split, No. VIII.	12	9.24	10.300	95,172
Skidmore, No. VII		2.31	10,650	24.602
Seven Foot, No. VI.	3	2.31	11,550	26,681
Buck Mountain No V	6	4.62	13,140	60,707
Lykens Valley, No. II } Lykens Valley, No. I }	8	6.16	14,000	86,240
Total coal reduced to units of Surface length underlaid by	486,538			
Vallov)	12,200			
Valley)	foot of surf	ace		39.88

Geological Survey of Pennsylvania.

W. M. C. F., mine sheet 8.

W. M. C. F., cross-section sheet 8.

W. M. C. F., columnar section sheet 1.

CROSS-SECTION No. 18.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 77 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Primrose, No. XI.	3.0	2.31	610	1,409
Holmes, No. X.	2.5	1.93	2,230	4,304
Mammoth Top split, No. IX.	12.0	9.24	3,345	30,908
Mammoth Bot. split, No. VIII.	12.0	9.24	3,685	34,049
Skidmore, No. VII	3.0	2.31	4,570	10,557
Seven Foot, No. VI	5.0	3.85	5,310	20,444
Buck Mountain, No. V	6.0	4.62	6,100	28,182
Lykens Valley, No. II.	7.0	5.39	7,040	37,946
Lykens Valley, No. I	6.0	4.62	7,500	34,650
Total coal reduced to units of Surface length underlaid by	202,449			
kens Valley)	6,100			
Average thickness of coal per			••••	33.19

Reference :--

Geological Survey of Pennsylvania.

W. M. C. F., mine sheet 1.

W. M. C. F., cross-section sheet 1.

W. M. C. F., columnar section sheet 7.

Area No. 27.

Mine Sheet No. 1 and Extreme Eastern End of Basin.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area in acres.	Bed area in acres.	Probable origi- nal contents in tons.
Primrose	Feet. 10 10 4 6 6 6 13 ?	Feet. 7.70 7.70 7.70 3.08 4.62 4.62 4.62 10.01 ?	$\begin{array}{c} 2.9\\ 305.9\\ 809.0\\ 879.5\\ 1,309.1\\ 1,724.1\\ 2,195.6\\ 3,121.3\\ 5,591.3\end{array}$	$\begin{array}{r} 3.68\\ 378.40\\ 981.21\\ 1,085.53\\ 1,582.00\\ 2,082.07\\ 2,627.80\\ 3,638.50\\ 6,393.90\end{array}$	55,539 5,710,813 14,808,421 6,553,127 14,225,326 18,853,560 23,795,255 71,385,915
Probable original conten	155,487,956				

Geological Survey of Pennsylvania.

W. M. C. F., mine sheets 2 and 2a.

W. M. C. F., cross-section sheets 1 and 2.

W. M. C. F., columnar section sheets 6 and 7.

Area No. 28.

Mine Sheet No. 2 and 2a.

Name of Bed.	Average thickness of bed.	Average thickness of coal, 77 per cent.	Surface area in acres.	Bed area in acres.	Probable orig- inal contents in tons.
	Feet.	Feet.			
Little Tracy	5.0	3.85	129.3	199.8	1,507,691
Big Tracy	7.0	5.39	316.9	450.2	4,756,093
Big Diamond	8.0	6.16	561.4	772.7	9,329,271
Little Orchard	3.0	2.31	17.9	26.3	119,076
Orchard	10.0	7.70	958.8	1,296.5	19,566,778
Primrose	9.0	6.93	1,690.1	2,256.2	30,645,513
Holmes	11.0	8.47	2,597.3	3,428.0	56,908,914
Mammoth Top	15.6	12.01	3,704.1	4,791.0	112,778,224
Mammoth Middle	8.0	6.16	7,755.4	5,982,1	72,225,483
Mammoth Bottom	16.6	12.78	4,537.4	5,860.0	146,785,968
Skidmore	6.0	4.62	4,821.2	6,335.8	57,371,936
Seven Foot	7.0	5.39	5,052.9	6,646.4	70,215,228
Buck Mountain	10.0	7.70	5,412.4	7,143.0	107,802,156
Lykens Valley	?	?	7,115.4	9,462.2	
Probable total original c	690,012,331				

Geological Survey of Pennsylvania.
W. M. C. F., mine sheets 3 and 3α.
W. M. C. F., cross-section sheet 2.
W. M. C. F., columnar section sheets 4 and 5.

Area No. 29.

Mine Sheet No. 3 and 3a.

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable origi- nal contents in tons.
	Feet.	Feet.			
Little Tracy	3.0	2.31	4.4	6.9	31,240
Tracy	7.0	5.39	230.4	341.5	3,607,743
Little Diamond	3.0	2.31	528.3	819.3	3,709,463
Diamond	6.0	4.62	868.5	1,378.6	12,483,499
Little Orchard	4.0	3.08	1,060.9	1,709.0	10,316,891
Orchard	6.0	4.62	1,426.2	2,293.8	20,770,818
Primrose	5.0	3.85	1,738.8	2,767.3	20,882,236
Holmes	9.0	6.93	2,156.8	3,413.5	46,364,888
Mammoth	30.0	23.1	3,095.4	4,921.6	222,830,362
Skidmore	4.0	3.08	3,733.9	5,651.5	34,116,975
Seven Foot	4.0	3.08	4,287.4	6,455.7	38,971,770
Buck Mountain	13.5	10.4	5,094.7	7,586.8	154,649,331
Lykens Valley	2.5	1.93	$7,\!414.2$	10,797.0	40,842,892
Probable total original o	609,577,908				

93

Geological Survey of Pennsylvania.
W. M. C. F., mine sheets 4 and 4a.
W. M. C. F., cross-section sheet 3.
W. M. C. F., columnar section sheets 3 and 4.

Area No. 30.

Mine Sheet No. 4 and 4a.

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable origi- nal contents in tons.
	Feet.	Feet.			
Little Tracy	2.5	1.93	235.5	450.3	1,703,395
Tracy	5.0	3.85	370.0	707.2	5,336,531
Little Diamond	2.5	1.93	591.5	1,130.6	4,276,834
Diamond	6.0	4.62	873.5	1,650.6	14,946,513
Little Orchard	2.5	1.93	$1,\!176.4$	1,883.5	7,124,904
Orchard	4.0	3.08	1,624.5	2,867.5	17,310,524
Primrose	8.0	6.16	2,224.7	3,785.2	45,700,987
Holmes	6.0	4.62	2,780.8	4,625.6	41,885,729
Mammoth	23.0	17.71	4,331.3	6,800.0	236,038,880
Skidmore	3.0	2.31	5,042.7	7,784.5	35,245,102
Seven Foot	2.5	1.93	5,694.4	8,652.3	32,729,920
Buck Mountain	11.0	8.47	6,399.1	9,586.9	159,154,044
Lykens Valley		3.08	8,108.5	12,003.9	72,465,144
Probable total original of	673,918 507				

Reference :--

Geological Survey of Pennsylvania.W. M. C. F., mine sheet 8.W. M. C. F., cross-section sheet 8.W. M. C. F., columnar section sheet 1.

AREA NO. 37.

From Section No. 18 to West End of Field.

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable origi- nal contents in tons.
	Feet.	Feet.			
Primrose	3.0	2.31	12	14.4	65,197
Holmes	2.5	1.93	40	48.0	181,574
Mammoth Top	12.0	9.24	265	318.0	5,759,107
Mammoth Bottom	12.0	9.24	319	382.8	6,932,661
Skidmore	3.0	2.31	571	685.2	3,102,312
Seven Foot	5.0	3.85	757	908.4	6,854,786
Buck Mountain	6.0	4.62	884	1,060.8	9,605,756
Lykens Valley, No. 11.	7.0	5.39	1,293	1,554.6	16,423,416
Lykens Valley, No. I	6.0	4.62	1,372	1,646.4	14,908,481
Probable original conter	nts of are	a No. 37			63,833,290

Table C which follows shows the estimate of contents for the whole field. The explanation of table A, Northern field, page , applies equally well here, excepting the reference to the specific gravity, as in this table I have used 1960 tons per foot acre.

Ten specimens from the Primrose, Mammoth, Seven Foot, and Buck Mountain beds, determined by McCreath, Pennsylvania Geological Survey, Annual Report, 1885, page 314, give an average of 1.658, but as the Lykens Valley beds are less dense than the beds higher in the measure, I have thought best to use 1960 tons per acre for each foot in thickness of coal (or specific gravity 1.614) in the following estimate :—

 TABLE C.

 Estimate of Total Original Contents Western Middle Coal-Field.

1. Area No.	2. Between cross-sections.	3. Probable aver- age thickness of coal at cross- sections.	4. Probable aver- age thickness of coal for areas.	5. Surface area lowest workable bed in acres.	6. Probable origi- nal contents in tons.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} (\mathrm{M},\mathrm{S},\mathrm{I},\mathrm{)} \\ (\mathrm{M},\mathrm{S},2\&2a,\mathrm{)} \\ (\mathrm{M},\mathrm{S},3\&3a,\mathrm{)} \\ (\mathrm{M},\mathrm{S},4\&4a,\mathrm{)} \\ & \dagger (12) \\ & 13 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 16 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Feet. 28.89 22.87 29.60 37.62 38.69 36.54	$5,591.3 \\7,115.4 \\7,414.2 \\8,108.5 \\7,464.0 \\7,562.0 \\5,929.0 \\1,759.0 \\4,141.0 \\3,734.0 \\1,372.0$	$\begin{array}{c} 155,487,956\\690,012,331\\609,577,908\\673,918,507\\422,644,522\\333,968,162\\343,976,864\\129,700,217\\314,021,968\\267,423,106\\63,833,290\end{array}$
Totals,				60,190.4	4,009,564,831

*For areas 27, 28, 29, 30, and 37 the contents of each bed has been estimated separately, given in detail on pages $\ .$

 \dagger Area 31 covers the territory between the west line of sheets 4 and 4a and cross-section No. 13, but cross-section No. 12, which falls within this area, is used in determining the average thickness.

Total surface area lowest workable coal-bed, 60,190.4 acres, or 94.04 square miles.

Estimated total original contents Western Middle coalfield, 4,009,564,831 tons.

ESTIMATE OF THE ORIGINAL CONTENTS OF THE SOUTHERN COAL-FIELD.

The Southern field, the largest of all, the lowest workable bed covering an area of about 180 square miles, extends from the Lehigh at Mauch Chunk to the Susquehanna, above Daùphin, some 70 miles, with a prong branching to the north, just west of Tremont, extending some 16 miles west to Lykens; maximum width of the field at Pottsville about 8 miles.

The force of the great thrust or upthrow which changed all the anthracite strata from horizontal to a wavy and folded condition was most severe in this field. The southern barrier, the strata of the Sharp Mountain, with its conglomerates and included and overlying coal-beds, stands perpendicular (and often overturned to inverted dips of 50 or 60 degrees) for the whole length of the field. This great upturning of the strata in the Sharp Mountain and in the succeeding waves to the north, has produced basins of great depth, and preserved from erosion a greater number of coal-beds and greater thickness of strata than in the other fields.

The crushing and faulting of the coal in portions of the coal-beds which have been sharply uptilted or overturned; the number of the coal-beds; the depth of the basins; the comparatively small areas developed by mining operations which, generally speaking, have been confined to the rim of the basin; and the fact that no very exact records of the earlier developments in this field have been preserved; all combine to render it difficult to make a close estimate of its contents.

In the following estimate these difficulties have been borne in mind, though, of course, only the development of the facts by future mining operations will overcome them. The probable loss from the first cause, the crushing and faulting of the coal-beds, is perhaps no more than has been generally supposed; the beds having steep or overturned dips are the ones usually most affected. A thorough study of all the published cross-sections in this field indicate that about 13 per cent. of the original coal of the field has been uplifted, until it now has a dip of 70 degrees or more.

In addition to the published columnar sections and bedsections kindly furnished me by the operating companies, much valuable information was obtained from various old maps of some of the earlier operations, from the reports of the First Survey, from the operators and mining engineers, and from personal observations.

The estimate of the contents of the field is based upon the cross-sections, excepting on sheets 1, 2, 3, where I have copied the estimate of the Geological Survey. (Report AA, pages 138, 139, and 140.)

The discussion of cross-section K, Northern field, page , applies in this field, except that column c is obtained by taking 72 per cent. of the bed thicknesses.

Two hundred and seventy-five bed-sections, pretty well distributed throughout the field, eliminating all refuse, including bony coal in the refuse, give as an average for the field 72 per cent. coal, 28 per cent. refuse.

The Lykens Valley group, sometimes showing six workable beds in the western part of the field, is not found east of Tamaqua; above Tamaqua, in the Locust Mountain, this group is represented by two small beds (thickness not known), one of which has been worked to a small extent. I have made no estimate of the thickness of these beds until section 20, through Forestville, is reached. It seems quite possible that some areas of Lykens Valley coal may prove workable between Tamaqua and section 20, but the developments are now quite too few to speak with certainty. This bed was, however, at one time worked to a small extent at the Altamont No. 1 colliery, near Frackville.

It should be noted that from cross-section 12 at Tamaqua to cross section 20 that the average thicknesses on the crosssections, and the areas underlaid by workable coal, are based on the Buck Mountain bed; on section 20 and westward the estimate is based on the Lykens Valley bed. It seemed best to use the Buck Mountain bed in the first area, as the outcrop of the Lykens Valley is there not well defined, and consequently the area covered by it uncertain.

The total area of the lowest workable bed for the field is based on the Lykens Valley bed, as defined on the published mine sheets.

Reference :--

Geological Survey of Pennsylvania.

S. C. F., mine sheets 3 and 4.

S. C. F., cross-section sheet 3.

S. C. F., columnar section sheet 3.

CROSS-SECTION No. 12.

a. Name of Bed.	b. Average thickness of bed.	C. Aver. thick- ness of coal, 72 per cent.	d. Length of bed.	dc. Length of bed. Coal 1 foot thick.
Coal Jock	Feet. 4 5 3 4 11 2 6 8 8 8 5 ?	Feet. 2.88 3.60 2.16 2.88 7.92 14.40 4.32 5.76 5.76 5.76 5.76 3.60 ?	Feet. 3,000 6,500 7,100 7,700 8,400 9,000 9,050 9,200 9,700 10,500 11,000	Feet. 8,640 23,400 15,336 22,176 666,528 129,600 39,096 52,992 55,872 60,480 39,600
Total coal reduced to units of Surface length underlaid by Average thickness of coal p	$513,720 \\ 7,000 \\ 73 39$			

Reference :—

Geological Survey of Pennsylvania.

S. C. F., mine sheet 4.

S. C. F., cross-section sheet 4.

S. C. F., columnar section sheet 4.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.		
	Feet.	Feet.	Feet.	Feet.		
Little Tracy	2.5	1.80	600	1,080		
Tracy	3.5	2.52	1,350	3,402		
Diamond	4.0	2.88	2,180	6,278		
Orchard	6.0	4.32	3,650	15,768		
Primrose	6.0	4.32	5,450	23,544		
Holmes	8.0	5.76	6,250	36,000		
Mammoth Top split)	18.0	12.96	7,120	92,275		
Mammoth Middle split	10.0	14.00	1,120	04,410		
Mammoth Bottom split .	6.0	4.32	7,280	31,450		
Skidmore	4.0	2.88	7,400	-21,312		
Buck Mountain	8.0	5.76	8,100	46,656		
Lykens Valley	?	?				
Total coal reduced to units of one foot in thickness						
Surface length underlaid by	y Buck Moi	untain bed.		5,880		
Average thickness of coal p	per foot of s	urface		47.23		

CROSS-SECTION No. 13.

Remarks.

The beds above the Orchard bed have not been worked in this vicinity, but are cut in the Reevesdale tunnel.

On the north side of the section the Mammoth bed is found (and in places worked) in three splits, while to the south along Sharp Mountain but two splits are recognized.

Geological Survey of Pennsylvania.

S. C. F., mine sheets 4 and 5.

S. C. F., cross-section sheet 4.

S. C. F., columnar section sheet 4.

CROSS-SECTION No. 14.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Little Diamond Diamond Orchard	Feet. 3 6 7 8 8 8 4 8 ?	Feet. 2.16 4.32 5.04 5.04 5.76 5.76 5.76 2.88 5.76 2.88 5.76 2.88	Feet. 1,400 3,600 5,350 7,700 7,840 8,130 8,500 8,750 8,750	Feet. 3,024 15,552 26,964 38,808 45,158 46,829 48,960 25,200 25,200
Total coal reduced to units Surface length underlaid by Average thickness of coal p	303,199 7,500 40.43			

100

Geological Survey of Pennsylvania.

- S. C. F., mine sheets 5 and 9.
- S. C. F., cross-section sheets 5, 6, and 7.
- S. C. F., columnar section sheets 4 and 11.

Name of Bed.	A verage thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet	Feet.	Feet.	Feet.
Sandrock	2.5	1.80	$2,\!480$	4,464
Lewis	4.0	2.88	4,250	12,240
Palmer	2.5	1.80	4,750	8,550
Charles Pott	2.5	1.80	5,400	9,720
Clarkson	4.0	2.88	7,100	20,448
Little Diamond	2.0	1.44	9,650	13,896
Diamond	6.0	4.32	11,350	49,032
Orchard	4.0	2.88	12,400	35,712
Primrose	5.0	3.60	12,600	45,360
Holmes	4.0	2.88	12,900	37,152
Seven Foot	3.5	2.52	14,700	37,044
Mammoth Top split	11.0	7.92	15,600	123,552
Mammoth Bottom split .	10.0	7.20	16,600	119,520
Skidmore	6.0	4.32	$17,\!450$	75,384
Buck Mountain	8.0	5.76	18,350	105,696
Lykens Valley	?	?		
The tail and the second day and the	007 550			
Total coal reduced to units	697,770			
Surface length underlaid by				14,400
Average thickness of coal p	er loot of s	urface		48.45

CROSS-SECTION No. 15.

Remarks.

The published section No. 15 extends only south to the most northern outcrop of the Palmer bed. I have, however, constructed this section all the way across the field to the red shale outcrop on the south flank of Sharp Mountain, and the bed lengths given above are measured on this extended section.

Geological Survey of Pennsylvania.

S. C. F., mine sheets 6 and 10.

S. C. F., cross-section sheets 5, 6, 7, and 8.

S. C. F., columnar section sheets 5 and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed Coal 1 foot thick.
Sandrock	8.0 ?	$\begin{array}{c} \text{Feet.} \\ 2.16 \\ 3.24 \\ 2.16 \\ 2.52 \\ 3.60 \\ 1.44 \\ 4.32 \\ ? \\ 2.52 \\ 5.04 \\ 2.88 \\ 5.76 \\ 7.92 \\ 7.92 \\ 5.04 \\ 5.76 \\ ? \end{array}$	Feet. 4,000 5,400 7,750 8,300 9,350 11,050 11,050 11,800 13,500 14,850 16,250 17,250 18,100 18,400 18,800 21,800 30,900	Feet. 8,640 17,496 16,740 20,916 33,660 15,480 47,736 ? 34,020 74,844 46,800 99,360 143,352 145,728 94,752 125,568
Total coal reduced to units of one foot in thickness Surface length underlaid by Buck Mountain bed Average thickness of coal per foot of surface				

CROSS-SECTION No. 16.

Geological Survey of Pennsylvania.

- S. C. F., mine sheets 7, 10, 11, and 14a.
- S. C. F., cross section sheets 5, 6, 7 and, 8.
- S. C. F., columnar section sheets 5 and 9.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Salem	3.0	2.16	2,100	4,536
Sandrock	3.0	2.16	5,200	11,232
Lewis	5.5	3.96	8,300	32,868
Yard	3.0	2.16	10,500	22,680
Little Tracy	3.0	2,16	11,850	25,596
Tracy	4.5	3.24	12,900	41,796
Little Clinton	2.0	1.44	8,200	11,808
Clinton	3.0	2.16	9,000	19,440
Little Diamond	2.5	1.80	17,550	31,590
Diamond	7.0	5.04	18,050	90,972
Little Orchard	3.0	2.16	18,750	40,500
Orchard	6.0	4.32	18,800	81,216
Primrose	8.0	5.76	20,000	115,200
Holmes	4.5	3.24	21,000	68,040
Seven Foot	10.0	7.20	22,150	159,480
Mammoth Middle split } Mammoth Bottom split }	18.0	12.96	24,400	316,224
Skidmore	4.5	3.24	27,700	89,748
Buck Mountain	6.0	4.32	28,600	123,552
Lykens Valley.	?	?	34,000	
Total coal reduced to units of one foot in thickness Surface length underlaid by Buck Mountain bed Average thickness of coal per foot of surface				

CROSS-SECTION NO. 17.

Remarks.

All the above beds have been opened along or in the neighborhood of this section.

Geological Survey of Pennsylvania.

S. C. F., mine sheets 7, 11, and 14.

S. C. F., cross-section sheets 9, 10, 11, and 12.

S. C. F., columnar section sheets 5, 6, 7, 8, 9, and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.	
	Feet.	Feet.	Feet.	Feet.	
Brewery	2.5	1.80	1,540	2,772	
Salem	6.0	4.32	6,700	28,944	
Faust	4.0	2.88	9,000	25,920	
Tunnel	5.0	3.60	13,400	48,240	
Peach Mountain	6.0	4.32	16,900	73,008	
Yard	5.0	3.60	18,900	68,040	
Little Tracy	3.0	2.16	19,300	41,688	
Tracy	4.5	3.24	19,800	64,152	
Little Diamond	2.5	1.80	18,700	33,660	
Diamond	6.0	4.32	18,950	81,864	
Little Orchard	3.0	2.16	20,350	43,956	
Orchard	5.0	3.60	20,500	73,800	
Primrose	7.0	5.04	21,750	109,620	
Holmes	- 4.0	2.88	24,000	69,120	
Seven Foot	10.0	7.20	25,250	181,800	
Mammoth	18.0	12.96	26,700	346,032	
Skidmore	4.0	2.88	27,700	79,776	
Buck Mountain	4.0	2.88	29,000	83,520	
Lykens Valley	?	?	41,200		
Total coal reduced to units of one foot in thickness					
Surface underlaid by Buck					
Average thickness of coal					

CROSS-SECTION NO. 18.

Reference : -

Geological Survey of Pennsylvania.

S. C. F., mine sheets 7, 8, 11, and 14.

S. C. F., cross-section sheets 9, 10, 11, and 12.

S. C. F., columnar section sheets 6, 7, 8, 9, and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Salem	3.0	2.16	7,900	17.064
Rabbit Hole	2.5	1.80	9,800	17,640
Tunnel	5.0	3.60	15,300	55,080
Peach Mountain	7.0	5.04	17,900	90,216
Little Tracy	3.0	2.16	20,000	43,200
Tracy.	4.5	3.24	21,100	68,364
Little Diamond	3.0	2.16	21,900	47,304
Diamond	7.0	5.04	$22,\!200$	111,888
Little Orchard	2.5	1.80	22,500	40,500
Orchard	6.0	4.32	22,800	98,496
Primrose	10.0	7.20	23,000	165,600
Holmes	6.0	4.32	$25,\!300$	109,296
Mammoth Top split	10.0	7.20	27,000	194,400
Mammoth Middle split	4.0	2.88	27,500	79,200
Mammoth Bottom split	12.0	8.64	30,100	260,064
Skidmore	6.0	4.32	31,900	137,808
Buck Mountain	4.0	2.88	33,940	97,747
Upper Lykens Valley		?		
Lower Lykens Valley	?	?	41,400	• • • • •
Total coal reduced to units	1,633,867			
Surface length underlaid by	Buck Mo	untain bed .		24,800
Average thickness of coal				65.88

CROSS-SECTION NO. 19.

Geological Survey of Pennsylvania.

S. C. F., mine sheets 8, 12, and 15.

S. C. F., cross-section sheets 9, 10, 11, and 12.

S. C. F., columnar section sheets 6, 9, and 10.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Salem Tunnel	Feet. 3.0 4.0	Feet. 2.16 2.88	Feet. 6,700 12,300	Feet. 14,472 35,424
Mine	$5.0 \\ 3.0 \\ 4.5$	$3.60 \\ 2.16 \\ 3.24$	$14,900 \\ 16,400 \\ 16,800$	$53,640 \\ 35,424 \\ 54,432$
Little Diamond Diamond	$2.5 \\ 7.0 \\ 2.5 \\ 4.0$	$ \begin{array}{r} 1.80 \\ 5.04 \\ 1.80 \\ 2.88 \end{array} $	$ 18,100 \\ 19,900 \\ 21,000 \\ 21,600 $	32,580 100,296 37,800 62,208
Primrose	10.0 8.0 11.0	$7.20 \\ 5.76 \\ 7.92$	22,080 24,200 25,730	$\begin{array}{c} 158,\!976 \\ 139,\!392 \\ 203,\!782 \end{array}$
Mammoth Middle split Mammoth Bottom split Skidmore	$4.0 \\ 8.0 \\ 6.0 \\ 4.0$	$2.88 \\ 5.76 \\ 4.32 \\ 2.88$	27,100 30,800 32,300 36,000	$78,048 \\ 177,408 \\ 139,536 \\ 103,680$
Lykens Valley beds Total coal reduced to units Surface length underlaid b	$\begin{array}{r} 121,824 \\ \hline 1,548,922 \\ 26,900 \end{array}$			
Average thickness of coal p Surface length underlaid b Average thickness of coal				

CROSS-SECTION NO. 20.

Geological Survey of Pennsylvania.

S. C. F., mine sheets 8a, 12, 13, and 15.

S. C. F., cross-section sheets 13, 14, 15, and 16.

S. C. F., columnar section sheets 8, 9, and 10.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Salem	2.5	1.80	6,300	11,340
Tunnel	4.0	2.88	9,800	28,224
Peach Mountain	5.0	3.60	16,700	60,120
Little Tracy	4.0	2.88	18,100	52,128
Tracy	4.0	2.88	17,800	51,264
Little Diamond	2.5	1.80	17,900	32,220
Diamond	5.0	3.60	18,500	66,600
Little Orchard	2.5	1.80	19,000	34,200
Orchard	4.0	2.88	19,500	56,160
Primrose	10.0	7.20	20,100	144,720
Black Heath	8.0	5.76	22,800	131,328
Rough	5.0	3.60	21,600	77,760
Mammoth Top split	10.0	7.20	24,700	177,840
Mammoth Bottom split .	10.0	7.20	25,000	180,000
Skidmore	3.0	2.16	25,900	55,944
Buck Mountain	6.0	4.32	34,600	149,472
Lykens Valley beds	8.0	5.76	42,000	241,920
Total coal reduced to units Surface length underlaid k	1,551,240			
Valley)	32,600			
Average thickness of coal p	er foot of	surface		47.58
in onige unexpress of coar p	01 1000 01 /	surface		T1.00

CROSS-SECTION No. 21.

.

Reference :---

Geological Survey of Pennsylvania.

S. C. F., mine sheets 8a, 13, and 16.

S. C. F., cross-section sheets 13, 14, and 15.

S. C. F., columnar section sheets 10 and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Salem	2.5	1.80	4,600	8,280
Tunnel	4.0	2.88	8,000	23,040
Peach Mountain	6.0	4.32	10,400	44,928
Little Tracy	4.0	2.88	13,800	39,744
Tracy	4.0	2.88	15,300	44,064
Little Diamond	2.5	1.80	8,100	$14,\!580$
Diamond	5.0	3.60	17,500	63,000
Orchard	4.0	2.88	17,700	50,976
Primrose	8.0	5.76	17,900	103,104
Black Heath	8.0	5.76	18,200	104,832
Mammoth Top and Bottom	16.0	11,52	20,000	230,400
Skidmore	3.0	2.16	19,700	42,552
Buck Mountain'	9.0	6.48	23,300	150,984
Lykens Valley No. 1	2.0	1.44	24,900	35,856
Lykens Valley No. 2	2.0	1.44	30,200	43,488
Lykens Valley No.3	2.0	1.44	30,800	44,352
Lykens Valley No. 4	2.0	1.44	31,800	45,792
Lykens Valley Nos. 5 and 6,	3.0	2.16	32,500	70,200
Total coal reduced to units	1,160,172			
Surface length underlaid b				
Valley)				24,000
Average thickness of coal p	er foot of	surface		48.34

CROSS-SECTION NO. 22.

4

Geological Survey of Pennsylvania.

S. C. F., mine sheets 8a, 13, and 16.

S. C. F., cross-section sheets 16, 17, and 18.

S. C. F., columnar section sheets 10 and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Salem	2.5	1.80	2,400	4,320
Tunnel	3.0	2.16	3,200	6,912
Peach Mountain	6.0	4.32	9,000	38,880
Little Tracy	4.0	2.88	11,800	33,984
Tracy	4.0	2.88	14,000	40,320
Little Diamond	2.5	1.80	16,000	28,800
Diamond	5.0	3.60	18,700	67,320
Orchard	4.0	2.88	18,100	52,128
Primrose	8.0	5.76	18,200	104,832
Black Heath	8.0	5.76	18,400	105,984
Four Foot	4.0	2.88	18,900	54,432
Mammoth Top and Bot-			-,	,
tom splits	18.0	12.96	19,300	250,128
Skidmore	4.0	2.88	19,600	56,448
Buck Mountain	8.0	5.76	20,000	115.200
Lykens Valley No. 1.	2.5	1.80	20,400	36,720
Lykens Valley No.2.	$\frac{2.0}{3.0}$	2.16	23,900	51,624
Lykens Valley No. 3.	2.5	1.80	24,600	44,280
Lykens Valley No. 4	2.5	1.80	26,700	48,060
Lykens Valley No. 5.	3.0	2.16	28,100	60,696
Lykens vancy no	0.0	2.10	20,100	00,000
Total coal reduced to units	1,201,068			
Surface length underlaid b				
$Valley) \dots \dots \dots \dots$				18,900
Average thickness of coal p	per foot of s	surface		63.55

CROSS-SECTION NO. 23.

١

110

Reference :

Geological Survey of Pennsylvania.

- S. C. F., mine sheets 17 and 21.
- S. C. F., cross section sheets 16, 17, and 18.
- S. C. F., columnar section sheets 7, 10, and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.	
Little Diamond Diamond	Feet. 6 4 6 8 8 4 18 4 4 4 4 4 3 2 3	Feet, 4.32 2.88 2.88 4.32 5.76 5.76 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.8	Feet. 1,350 2,300 3,950 9,500 11,500 12,800 6,720 16,300 17,200 18,200 20,600 23,600 13,900 25,800 27,600	Feet. 5,832 6,624 11,376 41,040 66,240 73,728 19,354 211,248 49,536 52,416 59,328 67,968 30,024 37,152 59,616 791,482	
Total coal reduced to units of one foot in thickness Surface length underlaid by lowest workable bed (Lykens Valley)					

CROSS-SECTION No. 24.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 17.

S. C. F., cross-section sheet 19.

S. C. F., columnar section sheets 10 and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
Coal	$\begin{array}{c} \text{Feet.} \\ 6.0 \\ 4.0 \\ 3.0 \\ 6.0 \\ 7.0 \\ 8.0 \\ 4.0 \\ 10.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ 2.5 \\ 3.0 \end{array}$	Feet. 4.32 2.88 2.16 4.32 5.04 5.76 2.88 7.20 3.60 3.60 2.16 2.16 2.16 1.80 2.16	Feet. 1,200 2,100 3,400 4,400 6,200 7,100 8,100 8,200 8,600 9,100 9,900 11,000 11,600 12,000	Feet. 5,184 6,048 7,344 19,008 31,248 40,896 23,328 59,040 29,880 30,960 19,656 21,384 23,760 20,880
LykensValleyNos. 5 and 6, Total coal reduced to units Surface length underlaid h Valley) Average thickness of coal p	$ \begin{array}{r} 25,920 \\ \hline 364,536 \\ 9,000 \\ 40.50 \\ \end{array} $			

CROSS-SECTION No. 25.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 18.

S. C. F., cross-section sheet 19.

S. C. F., columnar section sheets 10 and 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.			
	Feet.	Feet.	Feet.	Feet.			
Diamond	8.0	5.76	700	4,032			
Little Orchard	2.5	1.80	1,500	2,700			
Orchard	6.0	4.32	2,000	8,640			
Primrose	6.0	4.32	$2,\!400$	10,368			
Holmes	8.0	5.76	$2,\!600$	14,976			
Four Foot	4.0	2.88	3,200	9,216			
Mammoth Top split	4.0	2.88	3,300	9,504			
Mammoth Bottom split	6.0	4.32	3,400	14,688			
Skidmore	2.0	1.44	3,700	5,328			
Buck Mountain	6.0	4.32	5,600	24,192			
Lykens Valley No. 1	2.0	1.44	7,800	11,232			
Lykens Valley Nos. 2 and 3,	4.0	2.88	11,000	31,680			
Lykens Valley No.4	3.0	2.16	11,700	25,272			
Lykens Valley Nos. 5 and 6,	10.0	7.20	11,800	84,960			
Total coal reduced to units	256,788						
				8,800			
Surface underlaid by lowest workable bed (Lykens Valley). 8,800 Average thickness of coal per foot of surface							

CROSS-SECTION NO. 26.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 19.

S. C. F., cross-section sheet 20.

S. C. F., columnar section sheet 7.

CROSS-SECTION NO. 27.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.		
	F+et.	Feet.	Feet.	Feet.		
Orchard	2.5	1.80	2,700	4,860		
Primrose	4.0	2.88	3,600	10,368		
Holmes	6.0	4.32	3,800	16,416		
Mammoth	8.0	5.76	4,300	24,768		
Skidmore	3.5	2.52	5,200	13,104		
Buck Mountain	2.5	1.80	5,500	9,900		
Lykens Valley Nos. 2 and 3,	2.5	1.80	9,000	16,200		
Whites	3.5	2.52	9,500	23,940		
Lykens Valley No. 5.	10.0	7.20	9,700	69,840		
Little	3.0	2.16	9,800	21,168		
Zero	2.5	1.80	3,000	5,400		
Total coal reduced to units of one foot in thickness						
Surface length underlaid b				7,300		
Average thickness of coal p				00 50		

Reference :---

Geological Survey of Pennsylvania.

S. C. F., mine sheet 20.

S. C. F., cross-section sheet 20.

S. C. F., columnar section sheet 7.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed. Coal 1 foot thick.
	Feet.	Feet.	Feet.	Feet.
Orehard	4.0	2.88	500	1,440
Primrose	3.0	2.16	1,000	2.160
Holmes	3.0	2.16	1,500	3,240
Mammoth	3.0	2.16	2,500	5,400
Skidmore	3.0	2.16	2,900	6,264
LykensValley Nos. 2 and 3,	2.5	1.80	7,100	12,780
Whites	3.5	2.52	7,300	18,396
Lykens Valley No.5		6.48	7,400	47,952
Little	3.0	2.16	7,500	16,200
Total coal reduced to units Surface underlaid by lowes Average thickness of coal p	5,250			

CROSS-SECTION NO. 28.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 22.

S. C. F., cross-section sheet 21.

S. C. F., columnar section sheet 11.

Name of Bed.	Average thickness of bed.	Aver. thick- ness of coal, 72 per cent.	Length of bed.	Length of bed Coal 1 foot thick.
Primrose	Feet. 4 10 3 4 15	Feet. 2.88 2.88 7.20 2.16 2.88 10.80	Feet. 2,800 3,300 4,300 4,800 5,200 8,300	Feet. 8,064 9,504 30,960 10,368 14,976 89,640
Total coal reduced to units Surface length underlaid l Valley)	$\begin{array}{r} 163,\!512\\ 4,\!650\\ 35.16\end{array}$			

CROSS-SECTION No. 29.

Remarks.

The identity of the beds on the two sides of the Schuylkill and Dauphin basin is very uncertain, nor is it certain that any of the beds here have been correctly identified with those to the east at section 24, excepting the Lykens Valley beds Nos. 4, 5, and 6, which have been worked west from Lincoln and Kalmia collieries to this section line; therefore the estimate of the number and thickness of the coal-beds along this section line is an approximate one.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 1.

S. C. F., columnar section sheet 1.

S. C. F., cross-section sheet 1.

AREA NO. 38.

On Mine Sheet No. 1.

(Copied from Geological Survey of Pennsylvania, Report of Progress AA, page 138.)

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable origi- nal contents in tons.
	Feet.	Feet.			
G or Upper Red Ash .	5.0	2.5	59	103	510,982
For Red Ash	13.0	9.0	314	549	9,762,385
Five-Foot	4.5	3.0	404	706	4,182,931
E or Top split)					, , , , , , , , , , , , , , , , , , , ,
Middle Mammoth	29.0	23.0	495	863	39,189,964
D or Bottom split .)	-010	-0.0	100	000	00,200,002
C	4.5	3.0	638	1,113	6,591,266
B	15.0	10.0	781	1,362	26,902,857
	3.0	1.0	781		
A	5.0	1.0	181	1,362	2,690,262
Lykens Valley					
Probable original conter	89,830,647				
					1

The Lykens Valley beds are not considered in this table, as nothing is certainly known of their extent or thickness.

100

Geological Survey of Pennsylvania.

S. C. F., mine sheet 2.

S. C. F., cross-section sheet 2.

S. C. F., columnar section sheet 2.

Area No. 39.

On Mine Sheet No. 2.

(Copied from Geological Survey of Pennsylvania, Report of Progress AA, page 139.)

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable origi- inal contents in tons.
Second Twin Jock	Feet. ? ? 7 3 6 9	Feet. ? ? 3 1 3 5	84 322 703 1,083 1,544 2,288	$132 \\ 502 \\ 1,096 \\ 1,689 \\ 2,408 \\ 3,511$	6,495,400 3,335,499 14,267,400 35,243,776
For Top split Middle Mammoth D or Bottom split B A	55 5 8 5	27 3 2 2	2,817 3,070 3,322 3,322	4,406 4,801 5,196 5,196	234,933,419 28,443,556 20,522,343 10.262,100
Probable original cont	353,503,493				

Thicknesses of coal-beds above the Jock bed unknown.

Geological Survey of Pennsylvania.

S. C. F., mine sheet 3.

S. C. F., cross-section sheet 3.

S. C. F., columnar section sheet 3.

Area No. 40.

On Mine Sheet No 3.

(Copied from Geological Survey of Pennsylvania, Report of Progress AA, page 140.)

Name of Bed.	Average thickness of bed.	Average thickness of coal.	Surface area in acres.	Bed area in acres.	Probable orig- inal contents in tons.
Third Upper Red Ash. Second Upper Red Ash. First Upper Red Ash. Second Twin Jock Washington G or Upper Red Ash . F or Red Ash Five-Foot	Feet. 		15391893397921,2451,7962,3473,039	23 62 299 537 1,251 1,967 2,839 3,707 4,803	11,658,090 5,604,832 21,969,781 85,373,325
$\left. \begin{array}{c} \text{E or Top split } \dots \\ \text{Middle Mammoth } \dots \\ \text{D or Bottom split } \dots \\ \text{C} \dots \dots \dots \\ \text{B} \dots \dots \dots \\ \text{A} \dots \dots \dots \\ \text{A} \dots \dots \dots \\ \end{array} \right\}$	43 11 6 7	$\begin{array}{c} 27\\ 8\\ 2\\ 4\end{array}$	3,532 3,729 3,926 3,926 3,926	5,391 5,901 6,210 6,210	298,246,725 93,221,738 24,529,500 49,059,000
Probable original conten	589,662,991				

Thicknesses of coal-beds above the Jock bed unknown.

Reference :---

Geological Survey of Pennsylvania. S. C. F., mine sheet 20.

Area No. 57.

From Cross-Section No. 28 to End of Wiconisco Basin.

Name of Bed.	A verage thickness of bed.	Average thickness of coal 77 per cent.	Surface area in acres.	Bed area in acres.	Probable orig- inal contents in tons.
Mammoth Skidmore Lykens Valley (2 and 3), Whites (4) Lykens Valley (5) Little (6)	Feet. 3.0 ? 2.5 3.5 9.0 3.0	Feet. 2.16 ? 1.80 2.52 6.48 2.16	$104.9 \\ ? \\ 1,028.5 \\ 1 064.3 \\ 1,101.9 \\ 1,144.5$	$131.1 \\ ? \\ 1,285.6 \\ 1,330.3 \\ 1,377.4 \\ 1,430.4$	514,814 4,206,997 6,094,583 16,226,653 5,617,009
Probable total original c		32,660,056			

- S. C. F., mine sheets 22, 23, 24, 25, 26, and 27.
- S. C. F., columnar section sheet 8.
- S. C. F., cross-section sheet 21.

Area No. 59.

Schuylkill and Dauphin Basin.

(Between section 29 and the west end of the basin.)

The Schuylkill and Dauphin basin extends west of section 29, as a long, narrow, deep trough, some 23 miles, ending about one mile east of the Susquehanna River, and just north of the village of Dauphin, having for its southern barrier the crest of Sharp Mountain, and for its northern that of Fourth Mountain. The width of the basin at section 29 is about one mile, tapering to a point at the western end.

With the exception of a few trial shaftings no work has been done in this area since 1860. Previous to this some 2 or 3 collieries had been opened and some shipments of coal made.

The report of the first Geological Survey, speaking of this basin, says: "The Dauphin coal basin is now (1868) entirely deserted by coal miners. For several years little or no coal has been shipped from it. So unreliable do the seams prove and so great is the outlay required that, recollecting that former experiments have failed, no disposition is manifested at present to develop its resources."

Owing to the irregularity of the beds, which is plainly shown by the maps of the collieries which were opened, the comparatively small extent of the developments made, and the meagre and somewhat uncertain knowledge we have of them, any estimate of the amount of coal in the area must necessarily be a very general one.

The second Geological Survey made a very thorough examination of this basin, and while connected with that work I became acquainted with the surface exposures and with the few maps and the old data relating to this basin.

The surface underlaid by coal is 8,170. acres.

Owing to the very steep dips on both sides of the basin the bed acreage is perhaps one and one-half times the surface acreage, or 12,255.2 acres.

The probable average thickness of coal at section 29 is estimated to be 35.16 feet. From the section westward the basin slowly diminishes in width and in depth, the coal beds gradually spooning out until the lowest bed comes today near Dauphin. Were we to use 15 feet as a rough approximation of the average thickness of workable coal for this area its contents would be 334,199,304 tons.

Estimated original contents of area No. 59, 334,199,304 tons.

Table D which follows shows the estimate of contents for the whole field.

The explanation of Table A, Northern field, page 75, applies equally well here, excepting as to specific gravity.

The only determinations of specific gravity that we have by McCreath in this field are in the Panther Creek basin, east of Tamaqua, which there give as an average 1.6307, and Mr. Ashburner used this in his estimate. (Areas 38, 39, and 40.)

Determinations by others would show that to the west the coals are less dense, and those of the Lykens Valley group decidedly so.

I am indebted to Mr. J. R. Hoffman, of the Philadelphia and Reading Coal and Iron Company, for a number of specific gravity determinations of coals from the western part of the field. The average of the Lykens Valley coals is 1.44. I have thought best to use, as in the Western Middle field, 1.614 or 1960 tons per foot acre for areas 41 to 49 inclusive, and 1.50 or 1818 tons per foot acre for the balance of the field (areas 50 to 59 inclusive). The Lykens Valley group first attains prominence in the neighborhood of area 50.

120

TABLE D.

Estimate of Total Original Contents Southern Coal-Field.

1.	2.	3.	4.	Current	5.	6.
	Between	Probable aver-	Prohable average	SURFACE 1	AREA ACRES	Probable origi-
Area No.	cross-sec- tions.	age thickness of coal at cross- sections.		Buck Mountain	Lowest workable	nal contents in tons.
				bed.	bed.	
200		Feet.	Feet.			
*38 . *39 .	(M. S. I.) (M. S. II.)		• • • •	• • •	781.0	89,830,647
*40 .	(M. S. III.)	• • • • • •		• • • •	3,322.0 3,926.0	353,503,493 589,662,991
	$\begin{pmatrix} 11.5.111. \end{pmatrix}$	73.39			· ·	
41 .	13	47.23	60.31	†1,773.1	2,115.4	209,593,895
10	j 13	47.23	43.83	11 007 -	0.000 1	1 10 0 - 0 00
42 .	14	40.43	43.85	†1,637.5	2,099.1	140,672,385
43.	∫ 14	40.43 J	44.44	†5,317.3	7,570.7	463,149,591
. 01	15	48.45 ∫	11.11	10,011.0	1,010.1	100,110,001
44 .	§ 15	48.45	51.43	†4,864.7	8,755.1	490,375,381
	16	54.41		, -,	-,	10.0,010,001
45.	$\begin{cases} 16 \\ 17 \end{cases}$	$\left. \begin{array}{c} 54.41 \\ 59.01 \end{array} \right\}$	56.71	<i>†6,285.1</i>	8,597.7	698,598,921
	1 17	59.01				
46 .	1 18	65.29	62.15	†4,025.7	5,688.7	490,386,619
4-	1 18	65.29	05 50	10.001.0	10 10 0	0.0 - 0.0 47 -
47 .	1 19	65.88	65.59	<i>†6,901.9</i>	10,467.6	887,283,417
48 .	j 19	ך 65.88	61.71	†5,287.1	6,993.3	639,483,204
40 .	1 20	†57.54	01.71	10,201.1	0,990.0	039,403,204
49 .	f 20	46.58	47.08		10,802.7	996,838,587
10 .	<u>)</u> 21	47.58	11.00		10,002.1	000,000,001
50 .	1 21	47.58	47.96		7,396.9	695,320,435
	$\begin{array}{c} 22 \\ 22 \end{array}$	48.34 j 48.34 j			í.	
51.	$\begin{cases} \frac{22}{23} \end{cases}$	63.55	5595		4,420.8	449,670,956
~ ~	23	63.55	X 2 2 2			
52 .	24	40.90	52.23	• • • •	6,173.0	586,151,906
53 .	1 24	40.90	40.70		2,536.0	187,645,234
99 .	25	40.50	40.70		2,330.0	187,040,204
54 .	\$ 25	40.50	34.84		2,996.2	189,776,671
	26	29.18	01.01		2,000.2	100,110,011
55 .	$\begin{cases} 26\\ 97 \end{cases}$	$\begin{array}{c} 29.18\\ 29.59 \end{array}$	29.39		3,542.8	189,295,418
	$\begin{array}{c} 27\\ 5 27\end{array}$	29.59			i i	
56 .	$\begin{cases} 27 \\ 28 \end{cases}$	29.59 21.68	25.64		$3,\!546.4$	165,310,187
57 .	28	_1.00)			1,144.5	32,660,056
	f 24	40.90	20.02			· · ·
58.	29	35.16 \$	38.03	• • • •	4,614.3	319,025,965
59.	29		• • • •		8,170.1	334,199,304
Totals,					115,946.2	9,198,435,263

* Areas 33, 39, 40, and 57, the contents of each bed has been estimated separately, given in detail on pages 115, 116 and 117. † Areas 41 to 48, the estimate of contents is based on the surface area of the Buck Mountain bed.

Total surface area lowest workable coal-bed, 115,946.2 acres, or 181.16 square miles.

Estimated total original contents Southern coal-field, 9,198,435,263 tons.

RECAPITULATION.

Estimated total original contents and area of Pennsylvania anthracite coal-fields.

	Area lowest workable coal-bed, square miles.	Probable original contents in tons.
Northern Eastern Middle Western Middle Southern	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Totals	484.21, say 484	19,507,872,325, say 19,500,000,000

Totals by Fields.

Estimated total area lowest workable coal-bed, 484 square miles.

Estimated total original contents Pennsylvania anthracite coal-fields, 19,500,000,000 tons.

The trade has made the following divisions of the anthracite fields, viz.:--

1.	Wyoming region			. Northern field and Bernice basin.			
2.	Lehigh region			. Eastern Middle field and Southern field east			
of Tamaqua.							
3.	Schuylkill region			. Western Middle field and Southern field west			
	of Tamaqua.						

TOTALS BY REGIONS.

	Area lowest workable coal-bed, square miles.	Probable original contents in tons.
Wyoming	$\begin{array}{rrrr} 176.29, \mathrm{say} 176 \\ 45.25 & \hspace{-0.45mm} 45 \\ 262.67 & \hspace{-0.45mm} 263 \end{array}$	5,697,380,784, say 5,700,000,000 1,635,488,578, "1,600,000,000 12,175,002,963, "12,200,000,000
Totals	484.21, say 484	19,507,872,325, say 19,500,000,000

Estimated total area lowest workable coal-bed, 484 square miles.

Estimated total original contents Pennsylvania anthracite coal regions, 19,500,000,000 tons.

A COLLECTION OF DATA SHOWING THE PER CENT. OF COAL ACTUALLY WON AT SOME OF THE COLLIERIES THROUGHOUT THE AN-THRACITE REGION.

In order to obtain some base for an estimate of the amount of coal which has been exhausted by mining, the Commission authorized the collection of the available data, showing the per cent. of coal which had been won, from worked out areas, at different collieries throughout the region. In this connection I wish to acknowledge my indebtedness for the data following to :--

- W. A. May, General Superintendent Hillside Coal and Iron Company.
- M. Barnard, of the Hillside Coal and Iron Company.
- E. H. Lawall, General Superintendent Lehigh and Wilkes-Barre Coal Company.
- William J. Richards, Chief Engineer Lehigh and Wilkes-Barre Coal Company.
- J. H. Bowden, Chief Engineer Susquehanna Coal Company.
- John R. Law, Mining Engineer Pennsylvania Coal Company.
- H. H. Ashley, Superintendent Parrish Coal Company.
- C. R. Marcy, Superintendent Raub Coal Company.
- C. H. Reynolds, Superintendent Chauncy Coal Company.
- H. S. Thompson, Engineer Girard Estate.
- Executors of the Estate of P. W. Sheafer.
- A. W. Sheafer, E. M.
- R. C. Luther, General Superintendent Philadelphia and Reading Coal and Iron Company.
- J. R. Hoffman, Division Engineer Philadelphia and Reading Coal and Iron Company.
- G. S. Clemens, Division Engineer Philadelphia and Reading Coal and Iron Company.

N. C. F.

(1.)

KEYSTONE COLLIERY.

Hillside Coal and Iron Company, Operators.

Mining operations from 1882 to 1890 :--

Area worked, 119.5 acres.

Archbald bed, average thickness 7.6 feet, average thickness of coal (20 sections), 7.116 feet.

Surface of little or no value, 100 + feet of cover over bed. Pillars yet to be robbed and gob to be worked over.

Production, 769,383 tons, including all sizes except culm.

Average yield per foot acre, 904 tons, or 48 per cent.

Specific gravity taken at 1.55.

Coal actually won from this area, including buckwheat, 48 per cent.

Mr. May, the superintendent of this company, says they usually count on winning 1000 tons to the foot acre in this neighborhood. Should the pillars and gob bring the yield to this, and it seems quite probable that they will equal or even exceed it, the area mined would then show a yield of 53.2 per cent.

Estimate of coal won, including what can probably be got from pillars and gob, 53.2 per cent.

N. C. F.

(2.)

NOTTINGHAM COLLIERY.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area worked, 522.5 acres.

Red ash bed, about 22 feet thick, with 13 feet of coal.

Surface valuable; workings 200 to 400 feet below surface. Dip, 15 to 20 degrees.

Worked out, pillars robbed.

Coal won per foot acre, exclusive of buckwheat, 709.1 tons, or 37.7 per cent.

· Coal won per foot acre, estimating buckwheat at 10 per cent., 780 tons, or 41.5 per cent.

Estimate of coal won, including buckwheat, 41.5 per cent.

N. C. F.

(3.)

NOTTINGHAM COLLIERY.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area worked, 138.1 acres.

Ross bed, 7 feet thick, with 6 feet of coal.

Workings near the outcrop, and it was not necessary to keep the surface up.

Dip, 15 to 25 degrees.

Worked out and pillars robbed.

Coal won per foot acre, exclusive of buckwheat, 919 tons, or 48.9 per cent,

Coal won per foot acre, adding 10 per cent. for buckwheat, 1000 tons, or 53.2 per cent.

Estimate of coal won, including buckwheat, 53.2 per cent.

N. C. F.

(4.)

HILLMAN BED, IN VICINITY OF WILKES-BARRE.

Area worked, 7.25 acres.

Hillman bed, 7 to 8 feet thick, with 6 feet of coal.

Surface kept up. Worked out, pillars robbed.

Coal won per foot acre, exclusive of buckwheat, 800 tons, or 42.5 per cent.

Coal won per foot acre, adding 10 per cent. for buckwheat, 880 tons, or 46.8 per cent.

Estimate of coal won, including buckwheat, 46.8 per cent.

N. C. F.

(5.)

LANCE COLLIERY.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area developed, 88 acres; fault area, 5 acres.

Area worked, 83 acres; estimate based on area worked. Bennett bed, 9 feet thick, 7 feet of coal.

Surface valuable. Dip, 15 to 20 degrees. Worked out and pillars robbed.

Coal won per foot acre, exclusive of buckwheat, 828.6 tons, or 44.1 per cent.

Coal won per foot acre, adding 10 per cent. for buckwheat, 911 tons, or 48.5 per cent.

Estimate of coal won, including buckwheat, 48.5 per cent.

N. C. F.

(6.)

SUGAR NOTCH, BREAKER NO. 9.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area worked, 74 acres.

Kidney bed, 7 to 8 feet thick, with 6 feet of coal.

Dip, 30 to 40 degrees. Worked out and pillars robbed. Coal won per foot acre, exclusive of buckwheat, 762 tons, or 40.5 per cent.

Coal won per foot acre, adding 10 per cent. for buckwheat, 838 tons, or 44.6 per cent.

Estimate of coal won, including buckwheat, 44.6 per cent.

N. C. F.

(7.)

HOLLENBACK NO. 2.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area worked, 160 acres.

Baltimore bed, 16 feet thick, 13 feet coal.

Workings under city of Wilkes-Barre; necessary to keep surface up.

Dip, 10 to 15 degrees. Worked out and pillars robbed.

Coal won per foot acre, exclusive of buckwheat, 525 tons, or 27.9 per cent.

Coal won per foot acre, adding 10 per cent. for buckwheat, 577.5, or 30.7 per cent.

Estimate of coal won, including buckwheat, 30.7 per cent.

N. C. F.

(8.)

HOLLENBACK No. 2.

Lehigh and Wilkes-Barre Coal Company, Operators.

Area worked, 75 acres.

Hillman bed, about 12 feet thick, with 9 to 10 feet of coal.

Workings under city of Wilkes-Barre; necessary to keep surface up.

Dip, 10 to 15 degrees. Worked out and pillars robbed. Coal won per foot acre, exclusive of buckwheat, 625 tons, or 33.2 per cent.

Coal won, adding 10 per cent. for buckwheat, 687.5 tons, or 36.6 per cent.

Estimate of coal won, including buckwheat, 36.6 per cent.

N. C. F.

(9.)

PENNSYLVANIA COAL COMPANY.

Mr. John R. Law, mining engineer for the Pennsylvania Coal Company, estimates that his company is winning 800 tons per acre above pea coal and 1000 tons per acre, all sizes, including pea and buckwheat, or about 53.2 per cent.

In deep workings or where the workings are under towns or the river, making it necessary to leave a large portion or all of the pillar coal in, the per cent. won is much less.

The beds worked by this company are in a general way from 3 to 14 feet thick.

Their breaker loss he estimates at from 17 to 25 per cent.

Estimate of coal won, including buckwheat, 53.2 per cent. and less.

N. C. F.

(10.)

PARRISH COLLIERY.

Parrish Coal Company, Operators.

Mining operations 1882 to 1892 :--

Area of bed, 152 acres, of which 140 acres have been mined out.

Ross or Seven Foot bed, average thickness, 7 feet; average thickness of coal, 5 feet 7 inches.

> Top:-1' 6'' coal. 0' 6" bone. 0' 9'' coal. 0' 3" sulphur. 0' 8" coal. 0' 8" bone. 2' 8'' coal. 7' 0". Total, 5' 7" coal, 1' 5" refuse.

Typical Section of Bed.

Roof fairly good, dips gentle, conditions favorable for thorough working.

Bed thoroughly mined and robbed whenever it could be done with safety and economy.

Production :												Tons.
Prepared coal												808,702.00
Pea												103,787.08
Buckwheat												34,787.10
Total .	•											947,277.00

This is the amount of coal sold and does not include buckwheat used for steam.

Average yield *coal sold* per foot acre, 1213 tons, or 64.5 per cent.

The report of the mine inspector for 1890 shows the production for that year at this colliery to exceed the shipment by about 2 per cent.; adding 2 per cent. to the total coal sold gives for total production 966,213 tons.

Average yield per foot acre, 1237 tons, or 65.8 per cent.

BREAKER WASTE.

On September 6th, 7th, and 8th, 1892, the colliery produced, in mine cars, 3539 tons 2 cwt. and 53 lbs. of coal, prepared as follows:—

Broken 342.13 Egg 357.09 Stove 696.03 Chestnut 701.18
Pea
Buck (used for steam)
Dirt or culm
Slate and rock
3,539. 2.53
Coal prepared (as shown above)
Lost in fine coal and coal-dirt

Breaker waste, 18.8 per cent. of production.

RECAPITULATION.

Probable original contents of area worked out (140 acres; average thickness of coal, 5 feet 7 inches), 1,468,656 tons.

Total production 966,213 tons, or 65.8 per cent. Total coal and coal-dirt sent to culm bank, 181,648 tons, or 12.4 per cent. Total coal and coal-dirt in pillars and gob, 320,795 tons, or 21.8 per cent.

1,468,656 tons, or 100.0 per cent.

Specific gravity taken as 1.55, or 1880 tons per foot acre.

N. C. F.

(11.)

Colliery No. 3.

· Susquehanna Coal Company.

Mr. J. H. Bowden, chief engineer, has recently made a thorough examination and report relative to the coal won at this colliery, showing the following general results:---

Mining operations from January 1st, 1873, to January 1st, 1892:

Area worked over, 233.8 acres; above water level, 89.5 acres; below water, 144.3 acres.

Red Ash bed: Thickness, 15 to 19 feet; thickness worked, 13 to 17 feet; average thickness for area, 16.10 feet; average thickness worked, 14.57 feet.

The bed is quite free from faults, the mining fairly regular, and the pillars have been robbed as per statement below.

Coal produced from mining over :--Prepared 1,753,401 142,267 1,895,668 tons. The pillars were robbed excepting in 137.2 acres (below water level), where the bottom bench was but partly mined out, owing to heavy slate partings and faults in seam, when workings caved and balance of coal was lost. Coal produced from robbing :--118,725 11,217 Pea 129,942 tons.

Total production of area in pea and prepared sizes . 2,025,610 tons.

Actual coal won in pea and prepared sizes, 595 tons per foot acre, or 31.6 per cent.

ESTIMATING PEA COAL FOR WHOLE PERIOD OF MINING.

Pea coal was not made during the early years of this colliery. Had it been produced at the average yield of the past 10 years (1881–91), viz., 11.7 per cent. of the total, or 13.2 per cent. of coal above pea size, the yield of pea coal from the mining over of these properties would have been 232,448 tons, or the total production, all sizes except buck-wheat, 2,115,791 tons.

Estimate of coal won, all sizes except buckwheat, if pea coal had been made for whole period, 621 per foot acre, or 33 per cent.

ESTIMATING BUCKWHEAT COAL FOR WHOLE PERIOD OF MINING.

Buckwheat coal is now made at this colliery. Allowing 10 per cent. for this size, had it been produced for whole period, the total product would have been 2,327,370 tons.

Estimate of coal won, including buckwheat, 683 tons per foot acre, or 36.3 per cent.

N. C. F.

(12.)

RAUB WASHERY.

Raub Coal Company.

This company are washing and preparing the coal from the old dirt bank of the Waddel Colliery, Mill Hollow, Pa.

They find that about 50 per cent. of the bank can be won in marketable coal, with the sizes in about the following proportions:—

Chestnut											10 per cent.
Pea											20 per cent.
Buckwheat No. 1											35 per cent.
Buckwheat No. 2											
											100 per cent.

N. C. F.

(13.)

REYNOLDS WASHERY.

Chauncy Coal Company.

This company are washing and preparing the coal from the old dirt bank of Reynolds Colliery, Plymouth, Pa. They find that about 70 per cent. of the bank can be won in marketable coal. An average taken from the books for five months show sizes in the following proportions:—

Chestnut										$10\frac{1}{2}$	\mathbf{per}	cent.
Pea										22	\mathbf{per}	cent.
Buckwheat No. 1										$37\frac{1}{2}$	\mathbf{per}	cent.
Buckwheat No. 2										30	\mathbf{per}	cent.
										100	per	cent.
											Lon.	

This is one of the oldest banks in the field, and the proportion of coal very large.

W. M. C. F.

(14.)

HAMMOND COLLIERY.

Philadelphia and Reading Coal and Iron Company, Operators.

Estimate of the per cent. of coal won from the commencement of mining, 1863, to December 1st, 1891, made from the mine maps and information furnished by Heber S. Thompson, engineer Girard estate :--

N. (D.)	Average	Average	Average	Area W	orked.	Probable original con-	
Name of Bed.	dip.	thickness of bed.	thickness of coal.	Surface acres.	Bed acres.	tents in tons.	
Holmes	Degrees. 42	Feet. 13.6	Feet. 10.0	42.9	57.7	1,154,000	
Mammoth Top	40	13.0	10.8	41.5	54.2	1,156,628	
Mammoth Bottom	35	25.0	18.0	107.4	131.1	4,719,600	
Buck Mountain	15	11.6	8.4	306.2	317.0	5,283,122	
Probable total origi	nal con	tents of	area			12,313,350	

Shipments, 1863 to December 1st, 1891, 4,288,157 tons.

The consumption of coal at this colliery to produce steam for the past three years has averaged 12.6 per cent. of the shipments. This has, no doubt, increased somewhat with the increased depth of the workings. Estimating that the average consumption at the colliery since the commencement of mining, 1863, has been 9 per cent. of the shipments, would make the total production to December 1st, 1891, 4,674,091 tons, or 38 per cent. of the original contents. Estimate of coal actually won, shipments and colliery consumption, 4,674,091 tons, or 38 per cent.

The first buckwheat coal was shipped about 1878. The total shipments up to this time had been 1,649,706 tons. Were we to allow 10 per cent. of this, or 164,971 tons, for the buckwheat, had it been made during the whole time, the total production would have been 4,839,062 tons, or 39.3 per cent. of the original contents.

Estimate of coal won, if buckwheat had been made from commencement of mining, 39.3 per cent.

The areas as given here have been mined over and the pillars robbed. The coal remaining in the pillars yet to be robbed, in the comparatively small portion of the mine now in active operation, has been considered in the above estimate.

The thickness of the beds and coal as given are taken as the probable average thickness for the whole area exploited, including any faulty or crushed areas encountered.

Specific gravity has been taken as 1.65, or 2000 tons per acre per foot in thickness.

Ten specific gravity determinations by McCreath of coal in this neighborhood average 1.658.

From the following measurements and estimate made by Mr. Thompson, of the Hammond Colliery culm bank, his report of which follows in detail, I would draw the following inferences (see pages 133-135):—

Mr. Thompson estimates that the Hammond Colliery has produced since the commencement of mining to August 1st, 1892, 2,057,833 tons of culm.

Shipments between Dec. 1st, 1891, and August 1st, 1892, 115,550 tons.

Estimating the culm produced between December 1st, 1891, and August 1st, 1892, as 30 per cent. of the shipments, the production of culm in that time would have been 34,665 tons.

Hence the culm produced up to time of our estimate, December 1st, 1891, was 2,023,168 tons.

Mr. Thompson analyzes the culm bank as follows :---

Were we to subdivide the dirt, calling 25 per cent. powdered coal and coal too small to market, and 10 per cent. refuse, the table would then show :—

 Coal and coal-dirt
 67 per cent.

 Refuse
 33 per cent.

 100 per cent.

Taking 67 per cent. of the culm produced as coal and coal-dirt would give us 1,355,523 tons.

The following general distribution of the coal lost and won at this colliery can then be made :---

Estimated original coal contents of area exploited . . . 12,313,350 tons.

Total production of coal, shipment and colliery consumption 38 per cent. Total coal and coal-dirt sent to culm bank 11 per cent.	Tons. 4,674,091 1,355,523
Total coal and coal-dirt left in mine 51 per cent. 	$ \begin{array}{r} 6,283,736 \\ \hline 12,313,350 \end{array} $

Mr. Thompson estimates that there are 720,242 tons of coal now (August 1st, 1892) in the Hammond culm bank, which can be won by rescreening say 715,000 tons, December 1st, 1891. If this were added to the production up to that time, it would make a total of 5,389,091 tons, or 43.8 per cent. of the original contents.

Estimate of coal won, including coal to be won by rescreening culm banks, 43.8 per cent., or 5,389,091 tons.

COPY OF MR. HEBER S. THOMPSON'S REPORT ON THE HAMMOND COLLIERY CULM BANK.

Measurement of banks and tests of weight of material and proportions of coal, slate, and refuse made in August, 1892:-

Total contents of Hammond Colliery culm banks, 1,972,-090 cubic yards (not including rock banks, 550,922 cubic yards).

Coal, culm, and refuse used in filling excavated spaces in the mines, and carried away by the action of the elements, estimated to be 20 per cent., 394,418 cubic yards.

Total coal, culm, and refuse of dirt banks, 2,366,508 cubic yards.

Weight of culm banks per cubic yard, 1,941.75 lbs. 1.15 cubic yards contain one ton.

Weight of culm banks, 2,057,833 tons.

Coal in culm banks, 42 per cent. of contents (864,290 tons), of which 19.94 per cent. is large coal (172,339 tons) and 80.06 per cent. is small coal, or such as will pass through a $\frac{5}{8}$ -inch and over a $\frac{3}{16}$ -inch screen mesh (691,951 tons).

The total shipment of coal from the Hammond Colliery lease from 1863, the first year of its operation, to August 1st, 1892, is 4,403,707 tons. The coal thrown in its dirt banks has been therefore equivalent to 19.62 per cent. of its shipment to market (3.91 per cent. large and 15.71 per cent. small).

The coal in the Hammond dirt banks, on the ground now, is 42 per cent. of 1,972,090 cubic yards (720,242 tons), of which the large coal, which will not go through a $\frac{5}{8}$ -inch screen mesh, is 143,616 tons, and the small coal, which will go through a $\frac{5}{8}$ -inch and will pass over a $\frac{3}{16}$ -inch screen mesh, is 576,626 tons.

The total shipment of coal from all the collieries on the Girard estate from their opening to January 1st, 1892, has been 26,953,328 tons.

Taking the proportion of coal thrown aside as refuse by the other collieries to be the same as that thrown aside by Hammond Colliery, then the coal in the dirt banks on the Girard estate, or washed down by the elements and carried away by the streams, is 5,288,243 tons. It is probable that the proportion of the refuse banks washed away is greater at all the other collieries on the Girard estate than at Hammond Colliery.

Tests of Hammond Colliery Culm Banks by Mr. John B. Granger, Mine Inspector of the Girard Estate, August 15th, 1892.

First sample of bank, dumped in 1872:-	-
Weight of a cubic foot	
Containing, of dirt	
slate	
large coal 5.0 lbs small coal	
	33.5 lbs.
	71 lbs.
Second sample of bank, dumped in 1877	
Weight of a cubic foot	71.5 lbs.
Containing, of dirt	
slate	
large coal 5.25 lbs	
\dots small coal \dots \dots 28.00 lbs	33.25 lbs.
	— 71.5 lbs.
Third sample of bank, from old Connor	breaker. which
Third sample of bank, from old Connor prepared only Buck Mountain bed coal, at	
prepared only Buck Mountain bed coal, at	out 1885 :
* '	oout 1885 :— 70 lbs.
prepared only Buck Mountain bed coal, at Weight of a cubic foot	oout 1885 :— 70 lbs. . 19.75 lbs.
prepared only Buck Mountain bed coal, at Weight of a cubic foot	oout 1885 :— 70 lbs. . 19.75 lbs. . 15.75 lbs.
prepared only Buck Mountain bed coal, at Weight of a cubic foot	oout 1885 :— 70 lbs. 19.75 lbs. 15.75 lbs.
prepared only Buck Mountain bed coal, at Weight of a cubic foot	oout 1885 :— 70 lbs. . 19.75 lbs. . 15.75 lbs.
prepared only Buck Mountain bed coal, at Weight of a cubic foot	bout 1885 :
prepared only Buck Mountain bed coal, at Weight of a cubic foot	bout 1885 :
prepared only Buck Mountain bed coal, at Weight of a cubic foot	bout 1885 :— 19.75 lbs. 15.75 lbs. 34.50 lbs. 8:- 70 lbs. 70 lbs. 70 lbs. 70 lbs. 70 lbs.
prepared only Buck Mountain bed coal, all Weight of a cubic foot Containing, of dirt slate large coal 9.5 lbs small coal Fourth sample of bank, deposited in 188 Weight of a cubic foot Containing, of dirt slate	bout $1885 :$ 70 lbs. 19.75 lbs. 15.75 lbs. 34.50 lbs. 8: 20.75 lbs. 10.75 lbs. 70 lbs. 20.75 lbs. 17.50 lbs.
prepared only Buck Mountain bed coal, all Weight of a cubic foot Containing, of dirt slate large coal small coal Fourth sample of bank, deposited in 188 Weight of a cubic foot Containing, of dirt slate State Suggest of a cubic foot State State	bout $1885 :$ 70 lbs. 19.75 lbs. 15.75 lbs. 34.50 lbs. 8 : 20.75 lbs. 17.50 lbs. 17.50 lbs.
prepared only Buck Mountain bed coal, all Weight of a cubic foot Containing, of dirt slate large coal 9.5 lbs small coal Fourth sample of bank, deposited in 188 Weight of a cubic foot Containing, of dirt slate	bout $1885 :$ 70 lbs. 19.75 lbs. 15.75 lbs. 34.50 lbs. 8 : 20.75 lbs. 17.50 lbs. 17.50 lbs.
prepared only Buck Mountain bed coal, all Weight of a cubic foot Containing, of dirt slate large coal small coal Fourth sample of bank, deposited in 188 Weight of a cubic foot Containing, of dirt slate State Suggest of a cubic foot State State	bout 1885 :— 19.75 lbs. 15.75 lbs. 34.50 lbs. 34.50 lbs. 70 lbs. 8 :— 20.75 lbs. 17.50 lbs.

Fifth sample of bank, deposited in 1891:-Weight of a cubic foot 80 lbs. slate 36.75 lbs. large coal 5.00 lbs. small coal 13.75 lbs. 18.75 lbs. 80 lbs. Sixth sample of bank, from old McMichael breaker, deposited about 1866 :---. 68.5 lbs. Containing, of dirt 29.5 lbs. 9.5 lbs. large coal 2.0 lbs. small coal 27.5 lbs. 29.5 lbs. 68.5 lbs.

 Average weight of culm bank per cubic foot
 71.9166 lbs.

 Average weight of culm bank per cubic yard
 1,941.75 lbs.

 Containing, of dirt
 35 per cent.

 slate
 23 per cent.

 large coal
 8.38 per cent.

 small coal
 33.62 per cent.

 42 per cent.
 100 per cent.

"Quantity and percentage of large and small sizes of coal shipped from the Girard Estate at different periods for 20 years, from 1871 to 1891 inclusive.

	1	9		S		T	'hom	pson,	M	lini	ng	En	gineer.	
--	---	---	--	---	--	---	------	-------	---	------	----	----	---------	--

	Larger th Chestnu	an t.	Chestnu	ıt.	Pea.		Buckwheat.		
	Tons. Cwt.	Per cent.	Tons. Cwt.	Per cent.	Tons. Cwt.	Per cent.	Tons. Cwt.	Per cent.	
1891 1886 1881 1876 1871	$\begin{array}{c} 899,604.15\\759,604.06\\1,073,869.12\\614,404.12\\519,284.05\end{array}$	62.64 68.94 75.62 76.19 83.62	$\begin{array}{c} 227,717.08\\ 131,408.10\\ 159,687.04\\ 117,063.05\\ 76,229.08 \end{array}$	$15.86 \\ 11.92 \\ 11.25 \\ 14.51 \\ 12.27$	$170,992.02 \\ 149,381.10 \\ 158,711.03 \\ 74,992.03 \\ 25,503.05$	$11.91 \\ 13.56 \\ 11.18 \\ 9.30 \\ 4.11$	137,622.14 61,501.08 27,722.17	9.59 5.58 1.95	

NOTE.-Pea coal first appears returned separately April, 1867 (Girard Colliery of J. J. Conner).

Buckwheat coal first appears returned separately August, 1878 (Hammond Colliery of Philadelphia and Reading Coal and Iron Company)."

W. M. C. F. (15.)

GIRARD COLLIERY.

Philadelphia and Reading Coal and Iron Company, Operators.

Estimate of the per cent. of coal won from the commencement of mining, 1864 to March 1st, 1892, made from the mine maps and information furnished by Heber S. Thompson, Engineer Girard Estate.

		Average	Average		Worked.	Probable original	
Name of Bed.	Average dip.	thickn's of bed.	thickness of coal.	Surface acres.	Bed acres.	contents in tons.	
Mammoth Buck Mountain . Probable total orig	$\begin{cases} Degrees. \\ 68 N. \\ 57 S. \\ 57 S. \\ 57 S. \end{cases}$	Feet. 31 14 nts of a	Feet. 22.6 9.0 rea	$\begin{cases} 40.8 \\ 50.0 \\ 6.7 \end{cases}$	$108.9 \\ 91.8 \\ 12.3$	9,031,500 221,400 9,252,900	

Shipments, 1864 to March 1st, 1892, 1,627,491 tons.

The consumption of coal to produce steam at this colliery for the past three years has averaged 31 per cent. of the shipments. This, of course, has increased with the increased depth of the workings. Estimating that 20 per cent. has been the average colliery consumption since mining commenced (1864) would make the total production to March 1st, 1892, 1,952,989 tons, or 21.1 per cent. of the original contents.

Estimate of coal won, shipments and colliery consumption, 1,952,989 tons, or 21.1 per cent.

The first buckwheat coal was shipped about 1878. The total shipments up to this time had been 732,797 tons. Were we to allow 10 per cent. of this, or 73,280 tons, for buckwheat, had it been made during the whole time, the total production would be 2,026,269 tons, or 21.9 per cent. of the original contents.

Estimate of coal won if buckwheat had been made from commencement of mining, 21.9 per cent.

The areas as given have been mined over and the pillars robbed. The coal remaining in the pillars yet to be robbed in the comparatively small portion of the mine 137

The thickness of the beds and coal as given are taken as the probable average thickness of the whole area exploited, including any faulty or crushed areas that may have been encountered.

The mining operations in the Mammoth at this colliery are now in the bottom of the narrow and deep basin. The gangways are in the underlying Skidmore bed, tunnels being driven at short intervals to the basin of the Mammoth.

The estimate of the total coal in the area worked by this bed includes that in the wedge at the axis of the basin, a large per cent. of which cannot be mined.

Specific gravity is taken as 1.65, or 2000 tons per acre per foot in thickness.

Ten specific gravity determinations by McCreath of coal in this neighborhood average 1.658.

W. M. C. F.

(16.)

KEHLEY'S RUN COLLIERY.

Thomas Coal Company, Operators.

Estimate of the per cent. of coal won, made from the mine maps and information furnished by Heber S. Thompson, Engineer Girard Estate. This estimate embraces the time between the commencement of mining, 1865 to January 1st, 1892.

		Average	Average	Area V	Probable		
Name of Bed.	Average dip.	thickn's of bed.	thickness of coal.	Surface acres.	Bed acres.	original contents in tons.	
	Degrees.	Feet.	Feet.				
Mammoth	35	45.0	30.0	65.3	79.7	4,782,000	
Skidmore	35	7.0	3.10	21.0	25.6	196.275	
Seven Foot	35	7.0	5.8	53.9	65.8	745,777	
Buck Mountain .	35	10.2	7.0	58.7	71.7	1,003,800	
Probable total or						0 = 0 = 0 = 0	

Shipments, 1865 to January 1st, 1892, 2,266,339 tons.

The consumption of coal at this colliery to produce steam for the past three years has averaged 6.39 per cent. of the shipments. This has no doubt increased somewhat with the increased depth of the workings. Estimating that the average consumption at the colliery since the commencement of mining, 1865, has been 5 per cent. of the shipments would make the total production to January 1st, 1892, 2,379,656 tons, or 35.4 per cent. of the original contents.

Estimate of coal actually won, shipments and colliery consumption, 2,379,656 tons, or 35.4 per cent.

The first buckwheat coal was shipped about 1878. The total shipments up to that time had been 895,604 tons. Were we to allow 10 per cent. of this, or 89,560 tons, for buckwheat, had it been made during the whole time, the total production to January 1st, 1892, would be 2,469,216 tons, or 36.7 per cent. of the original contents.

Estimate of coal won if buckwheat had been made from commencement of mining, 36.7 per cent.

The areas given have been mined over and the pillars robbed. The coal remaining in the pillars yet to be robbed in the comparatively small portion of the mine now in active operation has been considered in the above estimates.

The thickness of the beds and coal as given are taken as the probable average thickness for the whole area exploited, including any faulty or crushed areas encountered.

Specific gravity is taken as 1.65, or 2000 tons per acre per foot in thickness.

Ten specific gravity determinations by McCreath of coal in this neighborhood average 1.658.

W. M. C. F.

(17.)

LOCUST RUN COLLIERY.

Mr. Franklin Platt, in Report A-2, Coal Waste (1879), Pennsylvania Geological Survey (page 38), publishes an estimate by Mr. E. M. Riley, of Ashland, of the coal won at the *Locust Run Colliery*. The Mammoth bed was worked with a thickness of 13 feet 6 inches to 25 feet 6 inches, the dip ranging from 15 to 60 degrees. The results show:—

139

W. M. C. F.

(18.)

STANTON COLLIERY.

Information furnished by Mr. A. W. Sheafer.

Mining operations 1868 to 1880:-
Area worked (measured on dip), 87.07 acres.
Mammoth bed, 35 feet thick, 25 feet coal used in estimate.
Pillars to be worked over.
Dip, 60 to 70 degrees.
stimated original contents of area

Estimated original	. C	m	Le.	110	sc	л	aı	ea		•	•	•	•	•	•		•	•	•	5,790,095 tons.
Production																				678,067 tons.
Coal actually won		•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	17 per cent.

W. M. C. F. (19.)

GILBERTON COLLIERY

Information furnished by Mr. A. W. Sheafer.

Mining operations 1863 to 1880:-

Area worked (measured on dip), 107 acres.

Mammoth bed, 35 feet thick, 25 feet coal used in estimate. Dip, 45 to 60 degrees.

Estimated of	rigina	ıl	co	n	te	nts	5 0	f	ar	ea										4,664,264 tons.
Production																				1,117,525 tons.
Coal actually	won	L	•	•	•	•	•		•	•	•	•	·		•	•	•		•	24 per cent.

W. M. C. F.

Coal actually won

Es Sh

(20.)

CAMBRIDGE COLLIERY.

Information furnished by Mr. A. W. Sheafer.

Mining operations	to 1	188	30 :				
Holmes bed, 6 feet clean	coa	1.					
Pillars well robbed.							
Dip, 12 to 20 degrees.							
stimated original contents of ar	ea.						202,000 tons.
hipments							106,000 tons.

. 52 per cent.

W. M. C. F.

The following estimates, prepared under the direction of Mr. P. W. Sheafer, have been kindly furnished by the executors of his estate.

(21.)

"Estimate of contents of culm bank at Gilberton, Schuylkill County, Pa., prepared under the direction of P. W. Sheafer, engineer and geologist:—

Lawrence Colliery.

Total shipment to January 1st, 1890							<i>.</i>		. 1	1,852,000 tons.
Estimated contents of culm banks .										978,000 tons.
Estimated amount to be won by resc	ree	eni	in	g l	ba	nk	\mathbf{s}			450,000 tons.

Stanton Colliery.

Total shipment to January 1st, 1890									1,163,000 tons.
Estimated contents of culm banks .									860,000 tons.
Estimated amount to be won by rescr	ee	eni	ing	g k	ວລາ	nk	s		500,000 tons.

Draper Colliery.

Total shipment to January 1st, 1890			. 2,194,000 tons.
Estimated contents of culm banks .			. 1,000,000 tons.
Estimated amount to be won by resc	reening banks	•	. 500,000 tons.

Gilberton Colliery.

Total shipment to January 1st, 1890		. 1,750,000 tons.
Estimated contents of culm bank,		. 1,000,000 tons.
Estimated amount to be won by rescreening banks		. 500,000 tons.
25 milie fact of have a greater and ton		

35 cubic feet of bank equals one ton.

W. M. C. F.

(22.)

Rescreening Stanton Culm Bank.

		1889.	Tons.	
Stove			. 5,202.15	20.59 per cent.
				16.74 per cent.
				14.24 per cent.
				48.42 per cent.
			25,262.40	
		1890.	· ·	
			Tons.	
Stove			. 8,929.06	14.21 per cent.
Nut			12,782.04	20.35 per cent.
Pea			9,763.06	15.55 per cent.
Buckwheat			31,333.04	49.89 per cent.
Fanala) non cont of	hank"	62,808.00	

Equals 60 per cent. of bank."

(23.)

Panther Creek Basin.

Mr. Charles A. Ashburner, Report AA, page 176, Pennsylvania Geological Survey, estimates that from the commencement of mining to January 1st, 1883, the average percentages at all the collieries in this basin as follows :----

Coal left in mines, unfinished breasts and for roof supports, 41 per cent. Waste coal sent directly from mines and breakers to banks, 32 per cent. Fuel coal sent to market and consumed locally 27 per cent.

100 per cent.

And the average percentages for two years from January 1st, 1881, to January 1st, 1883 :---

Coal left in mines, unfinished breasts and for roof supports, 30 per cent. Waste coal sent directly from mines and breakers to banks, 24 per cent. Fuel coalsent to market and consumed locally 46 per cent.

100 per cent.

S. C. F.

(24.)

EAGLE HILL COLLIERY.

Philadelphia and Reading Coal and Iron Company, Operators.

Special survey and examination to determine efficiency of mining method.

Mining operations from 1881 to 1885:-

Selected area of 17.5 acres, including fault area of 1.14 acres which produced no coal.

Mammoth bed, thickness about 20 feet, and Seven Foot bed (Top split of Mammoth), thickness about 7 feet 6 inches.

Dip about 35 degrees.

Estimating that 50 per cent of coal in pillars can be got, gives total result as follows :---

Prepared coal											41.1 per cent.
Sent to dirt bank											26.6 per cent.
Lost in pillar											18.4 per cent.
Lost in gob	•				•						13.9 per cent.

100.0 per cent.

S. C. F.

Buckwheat was prepared for the last two years. Had this coal been saved for the whole period, estimating it at 10 per cent. of the product, the statement would be about as follows:—

Prepared coal																			43.5	\mathbf{per}	cent.
Sent to dirt ba	nk	ζ.																	24.2]	per	cent.
Lost in pillar																			18.4	\mathbf{per}	cent.
Lost in gob .												¢							13.9	per	cent.
																		•	100.0	per	cent.
Estimate of co	al	w	or	ı, i	in	elu	ıdi	ng	g]	bu	ck	w	he	eat		 			43.5	\mathbf{per}	cent.

S. C. F.

(25.)

POTTSVILLE SHAFT COLLIERY.

Philadelphia and Reading Coal and Iron Company, Operators.

Special survey and examination to determine efficiency of mining method.

Selected area of about 4.5 acres.

Seven Foot bed (Top split of Mammoth), average thickness about 7 feet, with 5 feet of coal.

Roof strong, coal good.

Dip, 35 to 40 degrees.

Estimating the coal yet to be robbed from pillars gives total results as follows :---

Prepared coal .												52 per cent.
Sent to dirt bank												28 per cent.
Lost in mine												20 per cent.
												100 per cent.
												<u> </u>
Estimate of coal	wo	n										52 per cent.

S. C. F.

(26.)

MINE HILL GAP COLLIERY.

Philadelphia and Reading Coal and Iron Company, Operators.

This colliery, from 1873 to 1884 inclusive, yielded to market from the contents of coal in the ground, embraced within the area exploited during the years named, 29.2 per cent., not including the coal consumed under the boilers for steam generation, which was mainly slate picker and a little pea. The beds worked were :---

The beds worked were :
Crosby
If we roughly estimate the coal consumed under boilers as 9 per cent. of the shipments, we would then have :
Coal sent to market. 29.2 per cent. Coal consumed for steam 2.5 per cent. Lost in mine and sent to dirt bank 68.3 per cent.
100.0 per cent.Estimate of coal won \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 31.7 per cent.
S. C. F. (27.)
Phœnix Park No. 3 Colliery.
Philadelphia and Reading Coal and Iron Company, Operators.
Special survey and examination to determine efficiency of mining method made in 1885.
Mining operations January 1st, 1881 to 1885:— Area exploited, 63 acres.
Fault area, from which no coal was obtained, 22.68 acres. Area of good coal, on which estimate is based, 40.32 acres.
Diamond bed, average thickness about 6 feet. Dip, 10 to 20 degrees.
Estimating that 65 per cent. of the pillars left can be
got, gives total results as follows : Prepared coal (not including buckwheat)
Sent to dirt bank
100.0 per cent.
Estimating buckwheat coal at 10 per cent. of the product,
had that coal been saved, the statement would be about as follows :
Prepared coal (including buckwheat) 61.0 per cent.
Sent to dirt bank
Lost in mine \ldots 17.5 per cent. 100.0 per cent.
Estimate of coal won including buckwheat 610 per cent

Estimate of coal won, including buckwheat 61.0 per cent.

S. C. F.

(28.)

West Brookside Colliery.

Philadelphia and Reading Coal and Iron Company, Operators.

A special and very thorough survey and examination was made at this colliery, having in view the determination of the results obtained from the system of mining employed. The mining operations cover a period from 1869 to 1889, during which time the colliery was operated by individuals as well as by the Philadelphia and Reading Coal and Iron Company.

Area exploited, 665.5 acres; of this 36.6 acres were faulty and are not included in the estimate.

Area considered, 628.9 acres.

The bed mined is Lykens Valley No. 5, thickness quite variable but with a probable average of 10 feet, 70 per cent., or 7 feet of which is good coal.

Average dip, 10 to 15 degrees.

Estimating the quantity of coal which could still be mined and robbed from pillars in this area gives the following results :—

0								Tons.	Per cent.
Shipments					•			3,746,120	54.1
Local sales								9,051	.2
Colliery consumption .								90,124	1.3
Total prepared coal .								3,845,295	55.5
Sent to dirt bank		÷						1,873,060	27.0
Lost in pillars and gob	•							1.205,219	17.5
Total			•					6,923,574	100.0

Previous to 1883 all buckwheat coal was sent to the dirt bank. Buckwheat coal now forms about 10 per cent. of the production. Had this coal been saved between 1869 and 1883, the statement would be about as follows:—

Prepared coal (if buckwheat included)					59.5 per cent.					
Sent to dirt bank				L.	23.0 per cent.					
Loss in pillars and gob					17.5 per cent.					
Total		• •			100.0 per cent.					
Estimate of coal won, including buckwheat					59.5 per cent.					
, c										

The conditions at this mine are very favorable; the roof is excellent.

Mr. Franklin Platt, in A-2, page 120, reports the breaker record for 8 months in 1879 (?), as follows :---

"The total product was 322,173 tons, of which 68.8 per cent. went into the cars for shipment to market, and 31.2 per cent. went on to the dirt heap.

"The percentages of waste by months ran thus: 32, 31, 31, 32, 31, 32, 33, 30, averaging 31.2 per cent., as above.

"This average may be somewhat too low, but it is not much away from the actual facts.

"For the bed is nearly flat; it is clean coal; there is but little wasted in the mines, and the coal is not brittle and does not splinter up into buckwheat and dust. The actual breaker waste at the Lykens Valley collieries for breaking and screening is probably not over 21 per cent."

S. C. F.

(29.)

West Brookside Colliery.

Philadelphia and Reading Coul and Iron Company, Operators.

Special survey and examination to determine efficiency of mining method in 1885.

Selected area of acres.

Fair average condition of bed, roof strong, coal good.

Lykens Valley No. 5 bed, general thickness 10 feet, with 7 feet coal.

Dip, 10 to 15 degrees.

Estimating coal yet to be robbed from pillars gives total results as follows :---

Prepared coal (including buckwheat)								
Sent to dirt bank								
Lost in pillars								
Total								
Estimate of coal won (including buckwheat) 62.5 per cent.								

S. C. F.

(30.)

West Brookside Colliery.

Philadelphia and Reading Coal and Iron Company, Operators.

Special survey and examination to determine efficiency of mining method made in 1885.

Selected area of acres.

Fair average condition of bed, roof strong, coal good.

Lykens Valley No. 5 bed, general thickness 10 feet, with 7 feet of coal.

Dip, 10 to 15 degrees.

Estimating the coal yet to be robbed from pillars gives total results as follows :---

Prepared coal (including buckw	heat)	57.1 per cent.
Sent to dirt bank		
Lost in pillars		12.1 per cent.
Total		100.0 per cent.
Estimate of coal won (including	hualrwhaat)	571 non cont

THE PROBABLE AVERAGE PER CENT. OF COAL WON FROM THE COMMENCEMENT OF MINING, ABOUT 1820 TO JANUARY 1st, 1893.

The per cent. of coal won has been influenced by the thickness of the bed, the dip or pitch, the character of the roof, the depth of the working, the character of the coal, the necessity for keeping up the surface, as well as the personal management of the collieries.

An average of the 27 instances collected would show the coal actually won in those cases to be 41.5 per cent. of the original contents of the areas worked over.

In the Southern field 6 of the examples given are of selected areas and undoubtedly show too high an average for the field, though the estimate at the Brookside Colliery covering 628.9 acres, showing coal won as 51.5 per cent., probably represents that particular colliery.

If we omit these 6 estimates the remaining 21 give an average of 38.5 per cent.

At some of the collieries taken, buckwheat coal has been prepared during the whole time covered by the estimate, at others for only a portion of the time, and at some it is not included. An average on the basis that buckwheat had been prepared for the whole time in each instance would show for the 27 collieries some 44 per cent. won, and for the 21, 41 per cent.

It is to be doubted whether we can rely upon the averages thus obtained as representing what has been won for the whole region since the commencement of mining; and again, there are losses whose extents is not wholly covered by these estimates: (1.) The damage to upper coal-beds by the breaking and settling of the strata when the lower beds are worked first, especially if an upper bed is only a few feet above the one worked. (2.) The coal that it is necessary in many cases to leave always unmined along the outcrop to prevent the surface wash from entering the mine, particularly under the old river bed of the Susquehanna. (3.) A small amount destroyed by mine fires. (4.) The coal intentionally left in large pillars for particular purposes, and the mining of only part of the bed. The coal thus left may or may not be recovered.

A careful consideration of the subject and a study of the data obtained and its probable value as relating to the past output, leads to the conclusion that since the commencement of mining the coal won does not exceed 35, and possibly not more than 30 per cent. of the coal originally contained in the areas mined over, that this will probably be increased to 40 per cent. by the utilization of the coal contained in the culm banks, and by a reworking of part of the territory mined over.

It is estimated that the production, including coal sold and consumed at the collieries, has exceeded the shipments by about 10 per cent.

The table compiled by Mr. P. W. Sheafer for the years 1820 to 1868, and since 1868 by Mr. John H. Jones, show the shipments to January 1st, 1893, to have been :—

	Shipments. Tons.	Production, adding 10 per cent., say. Tons.
Wyoming region	147,652,656	$\begin{array}{c} 421,\!000,\!000\\ 162,\!500,\!000\\ 318,\!500,\!000 \end{array}$
Total	820,362,995	902,000,000

Basing our estimate on that for every ton produced $1\frac{1}{2}$ additional tons are lost, the following table would show the probable amount of coal still contained in the ground :—

Region.	Estimated original contents. Tons.	Amount used up 2½ times production. Tons.	Estimated contents remaining. Tons.		
Wyoming	5,700,000,000 1,600,000,000 12,200,000,000	$\begin{array}{r} 1,052,500,000\\ 406,250,000\\ 796,250,000\end{array}$	4,647,500,000 1,193,750,000 11,403,750,000		
Total	19,500,000,000	2,255,000,000	17,245,000,000		

THE FUTURE SUPPLY.

The estimate just made shows 17,245,000,000 tons of marketable coal still in the ground; what per cent. of this will be won the future alone can determine.

It is to be doubted whether the total coal won when the field shall be abandoned will exceed 40 per cent. of the total contents. An estimate on that basis would show the available marketable coal still now in the ground to be as follows:—

Wyoming region												1,859,000,000 tons.
Lehigh region .												477,500,000 tons.
Schuylkill region .			•		•			•	•	•	•	4,561,500,000 tons.
In all												6,898,000,000 tons.

The amount of coal won at the modern colliery due to improvements in mining methods, the appliances for handling the coal, and in the utilization of the small sizes, shows a decided advance over the earlier years of mining; a still further advance will undoubtedly be made in these directions, and the mining of the small beds, where a larger per cent. can be won, will all tend to increase the total. Future estimates for a long time will in all probability show an advance in the total per cent. won.

But it should not be forgotten that the difficulties, the dangers, and the cost of mining are and will continue to increase, due to the increasing depth at which the coal must be mined and the increased amount of water which must be pumped.

The coal first mined was by drifts or tunnels at water level, and a natural outlet for both coal and water was secured; as the coal above water level became exhausted, slopes were sunk in the beds, or where the beds were nearly horizontal shallow shafts were sunk to them; these slopes and shafts have gradually increased in depth, until now at a number of the collieries mining is carried on at a depth of 1000 or 1100 feet below the outlet. Depth of Mining.—That this depth must greatly increase before the exhaustion of the fields the following data, based on the published cross-sections, show :—

In the Northern field the deepest part of the basin is between Wilkes Barre and Nanticoke, and it is to this neighborhood that we must look for the future supply in this field; here the Baltimore bed attains a depth in the basin of 1500 or 1600 feet and the Red Ash of 1700 or 1800 feet.

In the Eastern Middle field the difficulty is not so great, as but little of the coal is more than 1000 feet below the surface.

In the Western Middle field the Mammoth attains a maximum depth of about 2000 feet, with the underlying beds still deeper; over considerable areas of the field the Mammoth is below 1200 or 1500 feet.

In the Southern field, which is estimated to now contain about one-half of all the anthracite remaining in the ground, a careful estimate, based on the cross-sections, shows that one-half the contents of the field is to be found at a depth of more than 1100 feet, and that the lowest workable bed (the Lykens Valley) attains a maximum depth of more than 4000 feet.

Pumping.-The increased pumping due to letting in of the surface water and tapping of the underground watercourses, by breaking and settling of the strata over the areas mined, increases with the extent of the working, and as the strata becomes honeycombed with workings will be a more and more serious obstacle, especially when the pumping will not only include the area under operation, but perhaps miles of older workings; and again, the difficulty in holding the water on the upper lifts will make it necessary to raise the bulk of it from the lowest point in the mine. Some of the collieries are already using from 15 to 25 per cent. of their production under the boilers. In the Schuylkill and Lehigh regions, where the beds are steeply inclined, the strata is easily accessible to the surface water.

In the deep basins where the coal-beds are numerous (some 20 in parts of the Southern field), if the principal beds are mined first and pillars robbed out, the breaking and settling of the strata will undoubtedly seriously damage the beds above and interfere with the economical working of them.

THE QUANTITY OF COAL AND COAL-DIRT IN CULM BANKS.

Just what proportion of coal taken from the mines is now contained in the culm banks it is impossible, without a survey of all the banks in the region, to determine.

At the Parrish Colliery, Northern coal-field, which may be taken as a good example of a modern colliery, and where all the small sizes are saved, the estimate would show that a quantity of coal equal to 19 per cent. of the total production goes to the dirt bank.

"In 1890 and 1891 the Clear Spring Coal Company produced 342,523 tons of coal; and 66,532 tons of culm (including all the buckwheat coal) went to the culm pile, *i. e.*, the culm was about 19.7 per cent. of the total production."

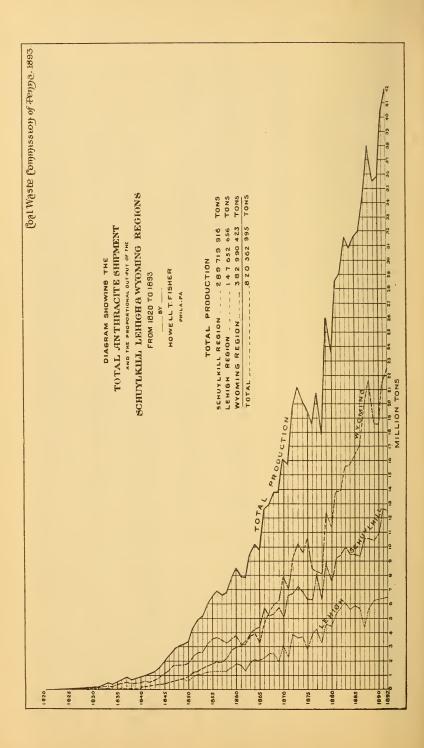
At the Hammond, Western Middle field, the estimate, covering a period of 29 years, shows that a quantity of coal equal to 29 per cent. of the production has gone to the dirt banks.

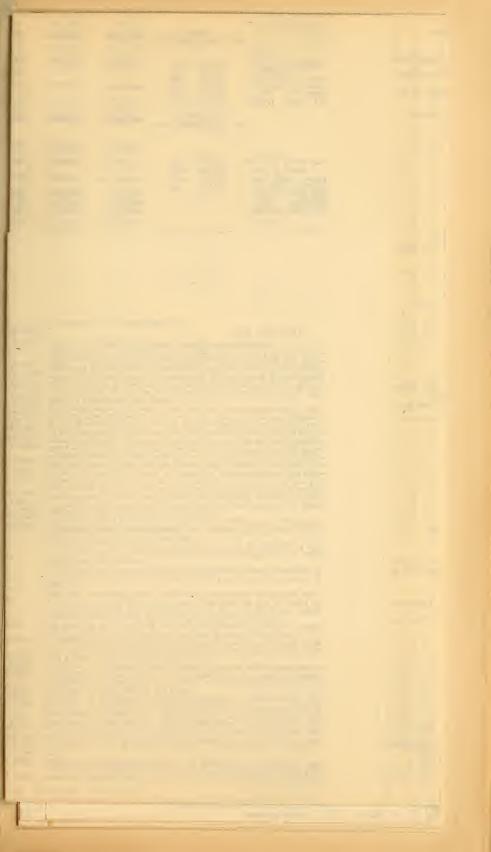
The estimate of the dirt banks on the Gilbert estate would show the contents of the bank at the Lawrence Colliery to equal 53 per cent. of the shipments, the Stanton Colliery 74 per cent., the Draper Colliery 46 per cent., and the Gilberton Colliery 57 per cent. These collieries are some of the oldest in the anthracite region.

Mr. Ashburner's estimates of the Panther Creek basin show that from the commencement of mining, 1820 to 1883, 20 per cent. more coal had gone to the dirt banks than had been marketed, but for two years, 1881 to 1883, the amount of coal sent to dirt bank equaled 52 per cent. of the production.

The Estimates.—At Eagle Hill Colliery (Southern coalfield), 1881 to 1883, shows the coal sent to dirt bank to equal about 60 per cent. of the production.

At Phœnix Park No. 3 Colliery (Southern coal-field), 1881 to 1885, 47 per cent. went to dirt bank.


At Brookside Colliery, 1869 to 1889, the coal sent to the dirt bank equaled about 49 per cent. of the total product.


Taking into consideration that the per cent. of coal now sent to the dirt bank is much less than formerly, and the annual production greatly increased, it perhaps would not be unfair to estimate that since the commencement of mining the *coal and coal-dirt* sent to the culm banks has been 35 per cent. of the total production, say 315,700,000 tons.

Annual Shipments from the Schuylkill, Lehigh, and Wyoming Regions from 1820 to 1892.

Schu	uylkill Regio		Lehigh Reg	ion.	Wyoming R	egion.	Total.		
Years.	Tonnage.	Per Cent.	Tonnage.	Per Cent.	Tonnage.	Per Cent.	Tons.		
			265				9.65		
1820		· · ·	$\frac{365}{1,073}$	• • •		· · ·	$365 \\ 1,073$		
1821 1822	1,480	39.79	2,240	60.21			3,720		
1823	1,128	16.23	5,823	83.77			6,951		
1824	1,567	14.10	9,541	85.90	!		11,108		
1825	6,500	18.60	28,393	81.40			34,893		
1826	16,767	34.90	31,280	65.10		• • •	48,047		
1827	$31,360 \\ 47,284$	$49.44 \\ 61.00$	$32,074 \\ 30,232$	$50.56 \\ 39.00$		· · · ·	$^{63,434}_{77,516}$		
1828	79,973	71.35	25,110	22.40	7,000	6.25	112,083		
1830	89,984	51.50	41,750	23.90	43,000	24.60	174,734		
1831	81,854	46.29	40,966	23.17	54,000	30.54	176,820		
1832	209,271	57.61	70,000	$ \begin{array}{c c} 19.27 \\ 25.22 \end{array} $	84,000	23.12	363,271		
1833	252,971	51.87	$123,001 \\ 106,244$	23.22 28.21	$ \begin{array}{r} 111,777 \\ 43,700 \end{array} $	$22.91 \\ 11.60$	487,749		
1834 · · · · · · · · · · · · · · · · · · ·	226,692 339,508	$\begin{array}{c} 60.19\\ 60.54 \end{array}$	131,250	23.41	90,000	16.05	376,636 560,758		
1836	432,045	63.16	148,211	21.66	103,861	15.18	684,117		
1837	530,152	60.98	223,902	25.75	115,387	13.27	869,441		
1838	446,875	60.49	213,615	28.92	78,207	10.59	738,697		
1839	475,077	58.05	221,025	27.01	122,300	14.94	818,402		
1840	490,596 624,466	$56.75 \\ 65.07$	$225,313 \\ 143,037$	26.07 14.90	148,470 192,270	$17.18 \\ 20.03$	864,379 959,773		
$1841 \cdot \cdot 1842 \cdot \cdot 1842 \cdot \cdot \cdot$	583,273	52.62	272,540	24.59	252,599	22.79	1,108,412		
1843	710,200	56.21	267,793	21.19	285,605	22.60	1,263,598		
1844	887,937	54.45	267,793 377,002	23.12	365,911	22.43	1,630,850		
1845	1,131,724	56.22	429,453	21.33	451,836	22.45	2,013,013		
1846	1,308,500 1,685,725	$55.82 \\ 57.79$	517,116 633,507	$22.07 \\ 21.98$	518,389 583,067	$22.11 \\ 20.23$	2,344,005 2,882,309		
1847 1848	1,665,735 1,733,721	56.12	670,321	21.70	685,196	20.10 22.18	3,089,238		
1849	1,728,500	53.30	781,556	24.10	732,910	22.60	3,242,966		
1850	1,840,620	54.80	690,456	20.56	827,823	24.64	3,358,899		
1851	2,328,525	52.34	964,224	21.68	1,156,167	25.98	4,448,916		
1852.	2,636,835	$52.81 \\ 51.30$	1,072,136 1,054,309	$\begin{array}{c} 21.47\\ 20.29 \end{array}$	1,284,500 1,475,732	$25.72 \\ 28.41$	4,993,471 5,195,151		
1853 1854	2,665,110 3,191,670	53.14	1,207,186	20.13	1,603,478	26.73	6,002,334		
1854.	3,552,943	53.77	1,284,113	19.43	1,771,511	26.80	6,608,567		
1856	3,603,029	52.91	1,351,970	19.52	1,972,581	28.47	6,927,580		
1857	3,373,797	50.77	1,318,541	$19.84 \\ 20.18$	1,952,603	29.39	6,644,941		
1858 1859	3,273,245 3,448,708	$47.86 \\ 44.16$	1,380,030 1,628,311	20.18	2,186,094 2,731,236	$31.96 \\ 34.98$	6,839,369 7,808,255		
1859 1860	3,749,632	44.04	1,821,674	21.40	2,941,817	34.56	8,513,123		
1861	3,160,747	39.74	1,738,377	21.85	3,055,140	38.41	7,954,264		
1862	3,372,583	42.86	1,351,054	17.17	3,145,770	39.97	7,869,407		
1863	3,911,683	$ \begin{array}{c c} 40.90 \\ 40.89 \end{array} $	1,894,713 2,054,669	$\begin{array}{c} 19.80\\ 20.19 \end{array}$	3,759,610 3,960,836	$39.30 \\ 38.92$	9,566,006		
$1^{8}64$ 1865	$\begin{array}{r} 4,161,970 \\ 4,356,959 \end{array}$	45.14	2,040,913	21.14	3,254,519	33.72	10,177,475 9,652,391		
1866	5,787,902	45.56	2,179,364	17.15	4,736,616	37.29	12,703,882		
1867	5,161,671	39.74	2,502,054	19.27	5,325,000	40.99	12,988,725		
1868	5,330,737	38.62	2,502,582	18.13	5,968,146	43.25	13,801,465		
1869 1870	5,775,138 4,968,157	$ \begin{array}{c} 41.66 \\ 30.70 \end{array} $	1,949,673 3,239,374	$14.06 \\ 20.02$	6,141,369 7,974,660	$ 44.28 \\ 49.28 $	13,866,180 16,182,191		
1871	6,552,772	41.74	2,235,707	14.24	6,911,242	44.02	15,669,721		
1872	6,694,890	34.03	3,873,339	19.70	9,101,549	46.27	19,669,778		
1873	7,212,601	33.97	3,705,596	17.46	10,309,755	48.57	21,227,952		
1874	6,866,877 6,281,712	34.09 31.87	3,773,836 2,834,605	$18.73 \\ 14.38$	9,504,408 10,596,155	47.18	20,145,121		
1875 1876	6,231,712 6,221,934	$31.87 \\ 33.63$	2,834,605 3,854,919	20.84	10,596,155 8,424,158	$53.75 \\ 45.53$	19,712,472 18,501,011		
1877	8,195,042	39.35	4,332,760	20.80	8,300,377	39.85	20,828,179		
1878	6,282,226	35.68	3,237,449	18.40	8.085.587	45.92	17,605,262		
1879	8,960,829	34.28	4,595,567	17.58	12,586,293	48.14	26,142,689		
1880 1881	7,554,742 9,253,958	$32.23 \\ 32.46$	$\begin{array}{c c} 4,463,221 \\ 5,294,676 \end{array}$	19.05 18.58	11,419,279 13,951,383	$48.72 \\ 48.96$	23,437,242 28,500,017		
1881	9,459,288	32.48	5,689,437	19.54	13,971,371	47.98	29,120,096		
1883	10,074,726	31.69	6,113,809 5,562,226	19.23	15,604,492	49.08	31,793,027		
1884	9,478,314	30.85	5,562,226	18.11	*15,677,753	51.04	30,718,293		
1885	9,488,426	30.00	5,898,634	18.65	*16,236,470	51.35	31,623,530		
1886 1887	9,381,407 10,609,028	$ \begin{array}{c} 29.19 \\ 30.63 \end{array} $	5,723,129 4,347,061	$17.81 \\ 12.55$	*17,031,826 *19,684,929	53.00	32,136,362		
1888	10,654,116		5,639,236	14.78	*21,852,365	57.29	38,145,717		
1889	10,474,364	29.58	6,285,421	17.75	*18,647,925	52.67	35,407,710		
1890		30.31	6,329,658	17.65	*18,657,694		35,855,173		
1891 1892	$12,741,258 \\ 12,626,784$		6,381,838	15.78 15.40	*21,325,239 *22,815,480		40,448,335 41,893,340		
	12,020,101	00.11	0,101,070			01.10	1,000,000		

*Includes Loyalsock field.

APPENDIX A-2.

Tabular Estimate, Showing the Approximate Quantity, Past and Future, Production of Coal in the Several Districts of the Northern Anthracite Coal Basin of Pennsylvania.

By WM. GRIFFITH, Engineer and Geologist, Scranton, Pa.

[Republiched from The Colliery Engineer.] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16												10			
Districts.	Names of the Cool-Beda	. Descriptive Remarks,	thickness of bods.	te workable area of	e quivility of solid coal to phace before any wus pre cent. of contreba- s defuncted for reduc, econl. dec. leaves (400 econl.	88	arca for hed I foot	nate number of tons pro- lo January 1st, 1892- as per foot thickness of acre.	c quantity of coal including output or at at 20 per cent. of a)165.2 tons per foot	n worked areas kc)-408,9 tons	area from which has been at neit-	uantity of solid in the unworked ons per foot per	three production areas, based upon old per foot per ent prices, min- &c. including, dith scame re	for prat five years utage of total pro- ach district.	proximate time required to recent rates of peoducion. recent rates of peoducion. invalidate percentage of the initiality coefficient postessed by each initiality.
			Average th	Approximate bed in acres	Approximate q originally in pulmed. 25.4 of ull bells of fourte, thin of the pounds of	Approximul ings to J sercs.	Equivalent thick.	Approvimate duced to J 826 tons pe bed per acr	Approximate wisted (in wayled coal production)- per acre.	Approximate Approximate (pittars, gob, per foot per i	Approximate are no cont ton the unworked	Approximate 4 coal in place arcas-1460 to acre.	Approximate a for unworked the present yi acre and pre- ing methola, however, the minuble.	Production and percei	Approximate exheme th present rate Approximate minable co district.
Forest Crity and Carbonitale District. From exireme northeastern out o hasin to Powderly Slope, two mile southwest of Carbondule Station, D	Top coal	Known as Slope Bed at Forest Cliy. Principal beds of district.	6.85 , 6.63	6,7110 6,800	64,253,000 63,117,600	2,010	13,770 13,688	11,874,026 11,411,488	2,274,805	ā ₁ 629,167 5,595,654	4,690	44,97ú,400 42,418,600	10ns per sere. 28,913,400 27,269,100	1887— 886,845	1,200,000 tons per year. About 10 years. 3!≤ ≤ of fulure pro- duction.
southwest of Carbondale Station, D & H, R, R	Boltom/Coal or Shaft Bed Clufford Bed, Danmore, or Third Bed	Only workable over portions of area with an outcrop.	4.01	7,490	42,992,600	155	634	523,684	104,736	249,119	4,510 7,835	42,162,200	27 ,065,700	1887— 886,845 1888—1,024,823 1889— 872,181 1899—1,016,220 1891—1,009,818	duction,
Production, 1891, 1,009,818 tons.		Totals	17.58	20,990	170,363,200	4,895	28,052	23,869,198	4,673,833	11,434,000	16,895	129,497,200	83,248,200	Past production 6 d	of
Jermyn District. From Carbondule District lo % milo southwest of Jermyn Skatlon, D. & H. R. R.	Diamond	Not worked. Not worked. Good.	5.0 5.8 9.0	10 70 700	70,000 568,400 8,820,000	90	810	669,060	133,812	331,128	10 10 610	70,000 568,400 7,486,000	11,000 365,400 4,941,000	1887— 739.201	1,400,000 ions per year, excluding New County Ded,
л. к. к.	New County	Not worked.) Frincipal bed of district. Vvry thin and sometimes abseut.	3.0 8,7 2,0	2,500 3,910 2,000	10,500,000 81,027,200 5,600,000	1,680	14,616	12,072,816	2,414,563	5,975,020	2,500 1,360	10,590,000 10,164,800	6,750,000 10,645,800	1885- 897,935	Now County bed, Now County bed, 14 years; Includ- ing New County bed, 19 years. $1_{2_{N}}^{2} \le 0^{-}$ future pro- duction.
Production, 1891, 1,381,817 tous.		Totals	33.5	8,320	62,585,600	1,770	15,426	12,741,876	2,548,375	6,306,148	2,000 	5,600,000 	3,600,000 26,350,200	Past production 3 3	
Archbahl Diabriel.	New Contrily Bed Archbald	Small ares, thin and divided. Principal bed of district.	8.0	3,100	34,710,000	1,410	11,160	0,113,760	1,942,752	4,807,455	1.630	18,246,000	11,736,000	1857— 470,538 1858— 505,175	550,000 tons per year. Archbald lod only, 21 years; including thiu bada Si years
From Jermyn District to Winton Sia- tion, D. & H. H. R. Includes S. V. White and Eaton Collicries.	Immore or Red Ash	Very thin over large part of the area within the outcrop.	3,0	3,300	13,860,000	1			4.000		3,300	13,850,000	8,910,000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Juchaling this beds, Si years. .00% s of produc- lion.
Production, 1891, 540,961 tons.		Totals	11.0	6,400	48,580,000		11,760	9,713,760	(,942,752	4,801,488	4,930	32,116,004	- 20,646,000	Pust production 2 4 a whole.	of
 Perkville, Oiyphani, and Priceville Dis- triet. From Archibald District to Dickson Station, D. & H. R. R. 	Con Bod	Very clean. Thits, not workethle at present Thin, not worked. Thin, not worked.	8.0 7.5 2.5 1 3.0	335 350 1,890 2,000	3,752,000 3,615,000 6,300,000 8,400,000 13,123,000		2,600 1,687	2,147,690 1,393,462	429,520 278,692	1,062,880 789,645	10 125 1,800 2,000	112,800 1,311,800 6,300,000 8,400,000	72,000 843,300 1,050,000 5,400,000	Past production 4 4 o	At 1,400,000 tons per nnuun, excluding the thin heds, 75 years; including the thin beils, 140
Station, 15 N II, N, A,	Hoek Grassy Island New County	Often contains illviding stratum of rock. Principal bed of district.		2 800 3 100 4 500 6 500	25,900,000 56,700,000 32,760,000	25 1,650 1	87 14,850 8	71,862 12,266,100 2,973	14,872 2,453,220 594	:15,560 6,070,680 1,471	2,000 2,715 3,700 2,850 6,499	112,000 1,311,800 6,300,000 8,400,000 13,632,800 25,900,000 35,910,000 32,754,400	8,776,800 16,650,000 23,085,000 21,055,000	whole.	the thiu beds, 140 years. Sfs 5 of filling pro- duction.
•	Clark	or she parting. Usually divided, rock parted, and not much worked al present. Only one bed workable ni present.	1,0 4,0	7,700 9,600 10,000	75,460,000 53,706,000 28,000,000 37,450,000	170 130	1,190 520	982,940 429,520	196,588 85,904	486,472 212,576	7,530 9,470 10,000 ;	73,794,000	47,139,000 34,092,000 18,000,000	1887— 816,039 1858—1,135,825	
	Danmore, No. 3	_	2,5	10,000 10,700	37,450,000	·				·	10,700	53,032,000 28,000,000 31,450,000	24,075,000	1889	
Producilon, 1881, 1,891,599 tons.		Totals	51,6	50,985	345,977,000	2,526	20,937	17,294,457	11,458,890	8,659,184	57,459	816,517,000	203,539,500		
From Pricevillo District to ½ mile northeast of Moosle Stallen, D, & H. R, R. I. Includer Pancoust and Sib- ley Collicrics.	Brisbin	This cover.	8.9 5.0 3.5 9.4	10 1,380 5,000 7,700	498,400 16,600,000 24,500,000 101,332,000	320 30 2 500	1,600 105	1,321,000 86,730	264,200 17,346	651,^80 42,924 11,432,500 3 610,521 3 610,521	40 2,060 4,970 4,810	498,400 14,420,000 24,353,600 63,299,660 67,164,860 78,213,800	tous per acre. 284,000 8,240,000 13,916,000 36,171,200	Past production 3t ≤ o whole.	(6,300,000) tons per annum, excluding f two thta heds, 53 years; including two ibln beds, 61
ley Collieries.	Rock Blg New County	Principal bed of district. Large area divideil, and thin. Often in two parts, separated by rock. Large urea not workable.	6.4 11.7 6.9 7.3	7,700 7,760 9,200 9,330 15,180	69,629,600 156,696,000 90,127,800 155,139,600	30 2,890 1,880 4,425 1,150 2,700	27,966 8,832 51,772 10,935 19,710	$\begin{array}{r} 23,099,916\\ 7,295,232\\ 42,763,672\\ 6,554,310\\ 16,280,460 \end{array}$	264,206 17,346 4,619,983 1,459,046 8,652,734 1,310,862 3,256,092	3,213,756	6,380 4,175 8,180 12,480	57,164,800 78,213,800 79,018,800 127,545,600	32,665,600 44,693,600 45,153,600 72,883,200		 Itvo thin heds, 61 years. 16 ≤ of future pro- duction.
	Dummore, No. 2		4,8	10,000 19,700	56,000,000 132,384,000	800 1,960	9,408	2,643,200 7,771,008	1,554,201	8,051,448 1,308,160 3,845,990	9,200 17,740	/1,520,000	29,440,000 68,121,600	1×87—5,871,260 1885—6,629,634 1889—5,643,260 1890—5,960,379	
Production, 1891, 0,103,390 tons.	Diffutiore, No. 3 . ,	Totals	3,9 71,8	12,000	65,520,000 862,327,400	645	2,496 . 438,024	2,061,696	412,349	1,020,364	11,355 81,990	61,997,600 677,244,400	35,427,260 386,096,0,0 -	1891—6,193,390	
Fillaton District.	' Hillman	·	7.2	800 2,400		5	36	29,736	5,917	14,717		× 01/1 600	4,570,200 6,720,000 28,440,000 38,259,200		At 4,000,000 tons per
From Scranton District to 15 mile northeast of Phansville Station, h. V. R. B. Includes Keystone Col- Hery,	Plitsing or 11 ft.	Principal bed of district. Sometimes divided by rock.	$6.8 \\ 11.2 \\ 7.0$	2,400 6,348 8,080 12,700	124,400,000	1,120 8,810 1,300	7,616 42,672 9,100	6,290,816 35,247,972 7,516,600	1,238,163 7,949,414 1,603,520	3,113,420 17,444,313 3,720,080	195 2,400 8,228 4,210 11,400	11,760,000 49,770,000 66,9%3,600 114,720,000	70,840,000	whole,	year, excluding thin bod, 81 years; including thin bed, 81 years, [14 s] of future pro-
	4 ft, or Fourth Bed Pourdernall or Red Ash .	Known also as Checker Bed. Often earries considerable refuse. Generally divided by thick rock part- ing.	5.4 10.1	8,000 19,800	60,480,090 . 270,972,000	20 1,100	108 17,170	89,208 14,182,420	17,841 2,836,48 t	-14,150 · 7,019,998	7,980 18,100	60,328,800 235,934,000	34,473,600 146,248 000	1888-2,838,653 1889-2,337,976 1890-2,963,473 1891-3,777,802	duction.
Production, 1891, 3,777,802 tons.		'Totais	51.2	58,128	671,833,160 ·	7,955	77,026	63,355,852	12,671,169	81,355,776	50,173	564,450,000	829,560,000 Phetor 700		•
Wilkes faure and Phymouth District. From Pittston District io § mile northeast of Warrier Run Station, L. Y. R. A. Includes Avaidale and Matter Colliertes.	Auhle or New Sanke Island or K Bed Abhott, 7 R., or Buickin- sth		3,7 7.4	500 4,000	2,590,000 41,400,000	1 10	74 ⁴	3,304 6,112	661 [†] 1,222	1,635 3,625	490 :4990		1,192 200 20,668,200		 Ai 7,500,000 ious per yéñ; excluding ihiu heds, 127 vents; hielnding thin beds, 134 yents, 42 ≤ of future pro- duction
Maffel Colliertes.	Sth Tkin Coal Bed Laner, Kidney, or Bowk- ley Hillman	Only limited area.	5.2 1.9 6,3	9,200 5,000 11,000 13,800	66,976,000 20,500,000 97,026,000 11(3,200,000	250 600	1,300	1,073,800 3,024,000	214,760 601,800	531,410 1,545,264 4,864,720	8,950 3,000 10,400 12,610	65,156,000 20,300,000 01,729,000 176,540,000	31,578,000 10,150,009 45,864,000 88,270,000	Past µroduction 32 ≤ of whole,	ihin beds, 134 years, 42 ≤ of fature pro- duction.
	G, ur Uld Benneft	Workable for small area only.	10.0 4.3 5.9 5.8	4,000 15,300 19,800	14,080,000 126,378,000 160,776,000	1,190 40 275	11,90 0 236 1,595	9,829,400 194,936 1,317,470	1,065,880 38,987 263,491	4,864,720 96,176 652,036	12,610 1,000 15,260 19,525	21,050,000 21,050,000 126,047,600 158,540,000	12,040,000 63,023,500 79,271,500	12-7-7 901 007	
	Definent	These two beds often upile and form the Baltimore. Principal bed of district.	9,1 8,5	21,500 22,000	273,910,000 261,80(\000	5,160 5,180	46,956 41,036	38,185,656 36,973,786	7,757,t31 7,274,747	19,195,612 18,011,916	16,840 16,820	208,171,600 200,158,000	104,085,800 100,079,000	1887-07,301,877 18888,177,987 18896,764001 18906,610,451 18917,812,687	
	Red Ash	Workable for limited area. Often spils or divided into Upper and Lower Ross. URen spill or allyided into 'Top and Hotten Red Val	-1.5 10,0 14.0	12,000 25,000 26,172	75,600,000 350,000,000 524,731,200	1,020	10,404 26,931	8,593,704 22,245,006	1,718,741 4,439,001	4,253,155 11,003,892	12,000 24,950 24,932	75,600,000 835,720,000 486,707,200	37,800,000 167,860,000 243,853,600	con themest	
Production, 1894, 7,312,687 Inus.		Notion Red Ash. Totals	97.6		2,218,761,200	 15,666		121,447,121	24,959,424	60,154,671			1,006,836,100		
Nughrole and Moningun District. From Wilkes-Barry and Phynoidi	- George		6,6 6,7 6,2 2,5	2,400 4,000 5,100 5,500	21,176,000 37,520,000 45,136,010	180	1,116	921,816	184,363	456,220	2,400 4,000 5,020 5,500	22,116,000 87,520,000 43,608,800 19,250,000 30,600,000	t1,088,000 18,760,000 21,799,100	Past production about 65 of whole.	At 2,300,000 tons per year, excluding thin hels 121
From Wilkes-Barre and Plymouth District to southwest end of bash, Includes thanney and Warrior Run Collieries.	G Lame or 4 ft. Cooper Bennett or Farge		2.5 4.0 7.3 7.9 6.6	6,000 7,500 8380	10,250,000 33,600,000 76,650,000 \$8,480,000	554					5,500 6,000 7,500 7,150 11,450	19,250,000 33,600,000 76,650,000 106,475,200 80,875,200	11,088,000 18,760,000 21,799,100 9,625,000 16,800,000 18,807,000 40,437,600	$\begin{array}{c} 18872,240,304 \\ 1888 - 2,976,971 \\ 18892,370,610 \\ 18902,476,412 \end{array}$	year, excluding thin heds 121 years; including thin bels, 138 years, 14 s of falaro pro-
	Ross	Erequivally divided into Paper and Lourer Rost, efficient split into Upper and Lower Red Ask. Principal hed of district.	6.6	12,100	111,801,000 244,860,000	620 1,600	4,345 4,224 21,120	3,588,979 3,487,024 17,445,129	717,794 697,805 3,489,024	1,776,236 1,726,771 8,633,856	11,450	8/0,875,200 215,292,000	40,437,600 107,646,000	1890-2,076,412 1891-2,111,918	diction,
Preduction, 1891, 2,111,018 tons.		Totals	G1.0	63,950 	GT9,476,000	2,950	34,8113	25, 114 ,930	5,088,986	12,593,083	61,000	635,037,200	317,618,600		At 21,000,000 fons per year the whole basts will
Tuinl production, 23,620,083 tons,		Granil lotal	_1	505,935	5,057,808,560	53,032	467,287	383,244,421	76,648,478	180,739,986	4.52,903	4,105,013,200	2,371,191,600		be exhaosted in about 99 years.

EXPLANATION OF TABULAR ESTIMATE,

and are resource-equipment to the extractly basic the early districtly and are accounted with information in their relative solutions in the excellent of the infit thinks the solution in the relative solution in the average the knows of the individual cost basic basis of a solution in the average the knows of the individual cost basis in early district, and basis are not solution in the individual cost basis in early district, and basis are not solution in the individual cost basis in the individual cost of the solution in the individual cost basis in the individual cost average the knows of the individual cost in the individual the solution of the individual cost in the individual the solution of the local is a solution in the individual the solution of the local is a solution in the individual the solution individual the present and the solution is well as a solution of the individual cost in the individual the solution of the local is a solution of the investree line individual the solution is and the solution is the individual the solution is a solution of the investree line in and was the individual distributed here solution in the individual the individual the local for any solution in the solution is the resolution in the individual individual the solution individual individual the solution rate is the hele. Ching No. Assolution the solution is a solution individual the solution individual individual to solution relative in the hele.

of the measurements shall, being and other between the har bed-ing bed-man No. Accountages the approximate superfield area of work-one has a lab bod, and was obtained from the published maps of oxigated here, while every correctly show the out reparts oxigated here, while every correctly the beautroparts areas contrasted and one other bed that is the next workford here. forcest h locallit

 $c_{\rm phones}$ (which do not not write bed that is the most worked in Theoretic space of all the ather beds were shortless approximately and these maps by the antiher from his personal knowledge of the observed in the start of the published removeries and human restores. The area of each high was like computed for more from the start of the start of the start of the observed in the start of the start near from the start in the start of the start of the start of the scatter is the start in the start of the start of the start of the scatter is the start of the start of the start of the start of the scatter is the start of the start in the start of the start of the start of the start of the start in the start of the start is real of the start in the start of the s

EVELANTION OF TARGEAR STRATESimilar to compare the constraint of the constrai

8.						to the effect of the conditions under which the coal is rotated upon
i. –		No. of hed m		Total thickness of	Description of a de-	the yield per acre, we have thought best to use a larger factor, i.e.,
G		sections.	ntal thickness of beds.	refuse.	Per cent of refuse,	900 ions for the yield per acro for areas north of Scranton, where
0						the conditions are more favorable for running in the future.
	10.00					For the Scranton and Fit'shim districts 500 ions per more is used,
U	Wilken-Barre and Flymouth Matrict	\$1	593.01 feet.	115.1 feel.	19.4 per cent	and for the lower end of the hash 700 tons, as this is about all
tψ –	Puttshin District	28	236.91 "	43,3 0		that can be obtained under the present conditions, methods of aclu-
d –	Scranton District	33	322.72	57.5	17.8 "	ine, de.
в						From the footings of Columns 13 and 14 we see that the result of
sd.						the estimate is that something over half the solid coal remaining in
5	Tetal	122	1.152.64 fret.	21.59 feet.	18.7 per cont.	the ground can be mined.
re						t'olumn 15 shows the production of the several districts for each
iy –						year for the past five years, muchber with the percentage of the
La la	101 4					total output that each has produced.
	The above would seem to show that the refuse	material to the	e improvements, little	e trouble from gas, &c.,	more lons per arre can	Colutur 16 shows approximately the probable life of each district
	average coal-bed will amount to 18.7 per repl. of	f the contents o	f be won than in the	Wlikes Barre region, w	there the beds are deep	of present rate of production, also the percentage of total quantity of
i D				either much improved o	r covered by drep gravel	coal in the field that each district possesses.
wit .	The frequent occurrence of troubles, such as th	in and poor coal		water, that will fired	the mine If the roof is	The greatest portion of the mining in the past has been at those
Line .				leing stronger pillars,	better ventilation, and	points where the coal was thickest, best, and most accessible, where
	silow ance in shiftion to those referred to under the	lumn d. An arki	more careful minit	g in every way.		the mining could be done at the greatest profit to the operator, and
1			 Column titis inte 	uded to show the appro	almate quantily of clean	those parts where the lasts were thinner have been left for the
1	Therefore, taking specific gravity of anthractic	coal at 1.5, th	e coal wasted in mlu	the and preparing the	coal for market fite	future, and hence the items in Column 4, which represent the aver-
30	weight of good coal in ground per foot thickness	of bed per acr	e slate, hone, and oth	er refuse being folly ac	counted for always under	age thickness of beds for the whole district, may be less than the
of			head of Column 6.)			at erage thickness of same beds for area worked to any particular dis-
ľů.	Weight of solid coal per foot thick per acre		1n 1890 and '91 1h	e t'lear Spring Coal Co	mpany produced 312,523	trict, while, at the same time, they may be more than average of the
	Induct 15.7 per cent. for refine		 tops of coal and 6. 	ST tops of culm (inch	iding all the buck whent	unworked areas. In this case the quisatity of coal we have credited
dv –	Deduct about 47 per cent, for faults, troubles, Ac.	12 Lo Rs.				to the unworked areas would overrine, because the lads would not be
hψ	the state of the s	(46	of the solal medue	tion. This seems to ag	ree lairly wer will the	as thick as estimated. In view of this, therefore, the estimate may
nd.	7	25 LONA, 423 -	experiments made i	or the Lehigh and Wilks	The Barre Could Company as	be somewhat excessive. On the other hand future developments
for			patilished in Report	A of the Geological S	survey of Penasylvania.	may prove more and belter coal than has been anytcipated in por-
121	Good coal is ground per foot thickness of b	al nor	page 56, where the	average percentage of w	aste for old style rolts is	itons of these unworked areas. In adultion to this the experience and methods of mining that
and -	Acre a contract the second	1 400 4000	* aumin 10 be 15.7 pc	r cent, of quantity chan	nged into the breaker, or	have prevailed in the past and upon which our estimate is based).
	The low store of other sectors in the			coal shipped. And on	page 123 another exters-	which have been in say the least, very wasteful, may be very much
10	The long ton of 2240 pounds is used throughout	this cuitmate.	nume shows the cut	a to be 21.1 per cent. of	shipments. The average	improved in the future, so that larger ytelds per acre will eventually
mr.	Column No 7. The items in this column were	found in manne	duction.	abows the cults to be !	20.3 per cent of the pro-	w obtained from the numbed areas, and the worked and aban-
dn.					and the second taken in	doned parts of the region may be partially remined and thus in-
cui				mare the buckwheat an	d bird's-eye are taken out	crease the quantity of at adable coat above our estimate.
				nico reduced; this is no	w being done to a large	
pd	ar cas mined over since the state of publication of	the man.		Ting is also made by u	sing the more improved	WM. GRIFFITH.
			manuery. On the	other hand, all of the p	es cost and much of the	SCRANTON, P.S., April 20th, 1892.

· ~

*

APPENDIX B.

Results of Use of Small Anthracite Coals on Locomotives.

.

					Results	s of Use of Sma	all Anthracite Coals	on Locomotives.						
	Philadelphia and Reading Railrood Company. (Main Line and Williamsport Divisions.)	Philadelphia and Reading Kailroad Company. (Eastern and Northern Divisions.)	(Central Railroad of New Jersey.		1	ckawanna and Weslern Rai Buffaio Division.)		Delaware and Hudson Canal Company.	Ericand Wyondog Va	lley Railroad. (Pennsylraula Coal Company.)) New York, Ontario and Western Ral	Hwny.	Delaware, Susqueltanna and Schuylkill Railroad.
Divisions on which small anthracite is used as fuel on }	Atl	Beaver Meadow, Mahanoy, and Wyoming	All											
Names of parties giving information as to loco-{ motives.	L. B. Paxson, Superintendent Motive Power and (Rolling Equipment	(A Mitchell Superintendent Maters Democraed Hall)		rimendent Mutive Power: L. C. Brast		All			Pennsylvania	All		. Aŭ		All.
As to coal	{R. C. in ther, General Superintendent P. and R. C. and I. Co. 382	W. A. hattirop, General Superintendent L. V. Coal Co.	(Diada or burranou	* * * * * * * * * * *	(David S. Brown, Mas	sier Mechanic D. L. and W.		C. E. Retlew, Master Mechanic D. and H. C. Co	D. E. Barton, Master M	echanle E. and W. V. R. R	George W. West, Superintendent Mutive Pe	ower	A., J. Beliz, Maslor Mechanic.
Number of locomotives burning large anthracile Small anthracite	351	470	129	·····		W. H. Storrs, Assist: 114	aut General Coal Agent D. I	2. and W	William Bowers, Superintendent Coal Dept. D. & H. C. Co , 73			Dickson & Edily, General Sales Agents		Eckley B. Coxe, Coxe Bros, & Co.
Bitumiuous	{ About 25 or 30 on some lately-acquired New England } roads	73,	69	****************		94		••••••	73	27		6		2. 10.
Class of work done by locomotives burning small anthracite, and number engaged in each class }	28 sulurhan passenger 28 I Freight and coal	68 coal	Coal and freight			15 passeuger			None	None	••••••••••••••	. 79		3.
Dimensions, &c., of locomotives for burning small)	(Wooten fire how on all bett	6 passenger	1 pa-senger (compound)			2 switching 77 coal and freight			19 freight and coal	{ 24 freight and ceal . 8 passenger .		. Consolidation for freight and cont		9 coal. 1 passenger.
anthracite	4 and 6 wheel, coupled, for shifting.					1								
Type of locomotive	1-59 Consolidation. Standard passenger.	Consolidation and 10-wheel	Ordinary consol- Idation. Heavy c	consolidation. Heavy	8-wheel passenger Vanelain	Mogul.	Conselidation,		f15 Wooten fire-box moguls	1	1			
Diameter of boiler	60 in. { Water-bars, with cast-iron (stolled) grate-hars later- }	Consolidation, 58 in.; 10-wheel, 56 in.	57 in61 in.	69 in. 65 in.	compannd. 57 in.	54 in.	58 in.	8-wheel passenger. 54 in.	14 ordinary wide fire-hox moguls	1 Consolidation.	23 Moguls. 3, 8-wheel passenger.		gin.	Wide fire-box consolidation Wide fire-box mogul.
Type of grate	realing the distributistic of grate-hars inter-	{ Water bars, with cast-iron (slafted) grate-hars inter- vening; some rocker bars (slafting grates)	mater-mars, while cas r-rion (sre				- iron (slotled) grate-bars in		52 in	60 in. Waterbars, with cast- h	52 In. 53 in.	60 In. 56 . Water-bars, with cust-from (slotted) grate-	ln. bars Interven's	Wuter-lors, with east-iron (slotted) grate-bars inter-
Width of air opening in grate-bars Number and size of flues	$\begin{array}{c} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 256, 2 & 10, \times 12 & \text{ft}, 6 & \text{in}, \end{array} \qquad \begin{array}{c} 0 & 0 & 0 \\ 1 & 0 & 10 \\ 385, 1 & 0 & 10 \\ 1$	63 Sq. ft. 3% In. 200, 2 in.	62 sq. ft. 76 3% iu. 76 355, 2 lu. x 12 ft. 5 in. 304, 2 in	6 sq. ft. % ln. % ln.	68 sq. ft. %in.	56 sq. ft.	80 sq. ft.	80 sq. ft.	68 sq. ft	84 sq. ft.	691 4 sq. ft. 68 sq. ft.	80 sq. ft. 7114	8q. ft.	63 sq. ft. 61 sq. ft. 34 hr. 32 in.
Heating surface	1846 80. 11. 1355 sq. ft.	Almort 1800 sq. ft.	1758 sq. ft. 206	66 sq. ft. 1790 sq. ft.	339, 13⁄(in. x 9 ft. ½ in. 1474 sq. ft.	 193 2 in. x 12 ft. 1344 sq. ft. 	228-236, 2 in. x 12 ft. 1558 sq. ft.	210-220,2 in. x 10 ft. 10 in. 1350 sq ft.	156, 2 in. x 11 fr. 1074 sq. ft.	18 10	183, 2 in, x 9 ft. 3 lu. 341, 1) 4 h. x 9 ft. 2 1 h		1, x 11 ft.	193, 2 ¹ 4 hi, x 13 ft. 73/ ln. 213, 2 in. x 11 ft. 1 in.
Special construction of fire-hox	Wootlen Woollen	No condustion chamber		1., single. 414 in., single. Jootten. Wootten.	ő in., single. Waotten.	3 ¹ / ₁ iu., double. f 4 ⁸ plain wide.	2t plain wide.	1350 sq ft. (ln. 3½ in., and 3½ in ,double. 4 plaiu wide. 11 Wootten.	3½-in, double 15 Wootten, 4 modified wide	3%in., dauble.	31 (in., doulde. 31, in., doulde.	St in double, St in a		Double, 31n. No combustion chamber.
Special dranght appliances	None None Firelight and often	Extension smoke-box, flat screen and diaphragm $~$.		None. None.	None.	3 Weotten. Noue.	5 Wootlen, None,	11 Wootten. ∫ None.	None	Woottea. None.	Woolten. Woolten. None, None.		me. i	None. Nene.
Advantages of burning large authracity coal on locu-)	(Beller results flum with any other fuel for fast)	Duration of fire greater than with small authravite, and requires tess nitention; also stand sharper		red pressure with less labor and less ski	Uful firing	(There are no advan)	ing the fire is kept cleaner .	ou our road. The fine an- }	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		light and frequently.
motives		(ldast				{ thracite engines w	ill do better work	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••		• • • • • • • • • • • • • • • • • • • •		None.
	Large cost of fuel	Noi so easily handled, and more expensive	Large così of fuel	• • • • • • • • • • • • • • • • • • • •		Great cost of fuel			Great cost of fuel	Great cost of fitel		Great cost of fuel. Caunot get fire-box of su- heixeen frames to supply steam to large cy being put on becomatives	utilelent area }	High cost of firel.
Advantages of hurning small anthracite coal on loco- motives	Saving of 70 per cent. in fuci bill	{ Cheapness, and nearly as much work obtained by }	Cheap fuel			allows larger exhau	ust nozzle, and there is, conse	concutly, less back pressure >	{ Cheap fuct. Better results than with large anthracite. } Larger grate surface allows larger exhaust uozzles. }	Cheun fuel		e netng put an locomatives)	Laux cost of fuel.
Disadrantages of so doing	(Cannot get satisfactory results with it on simple)		Dealer and the two			(when running fast	•••••••••••••••	· · · · · · · · · · · · · · · · · · ·	and there is, cousequently, less back pressure }	oneupraer				
	congines haulting trains of exceedingly high speed. Sharpchlast turns up the fire	Requires closer altention	Regulres constant, skillful atte	ennon		No disadvanlage who	atever		••••••		•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •		None.
Advantages of burning bituminons coal on locomotives,		Easter handled and more flame	Cheaper ihan large anthracite	e		Use no hituminous co	cal, except on Buffalo Divisi	ion				Cheaper than inconnihuacite		None. The 3 blinnthinus-barning locomotives were hought second-hund, when the road was very short
Disadvantages of so doing		Disagreeable smoke and dust, and not so lasting as }	Leakage in fines and flue-shee	els										(of power.
Quantity of fucl consumed in doing a certain amouni } of work with large authracite		antbrædte	No official lesis											High cost of And.
Small anthracile	23 per cent, more than with large anthracite	7 tous	4 n			Same amount as large	e aufhraelle. No test		{ Same as large authracite ; difference, if any, in favor of }	•••••		(Estimate : 50 per cent, more fael than with 1	large anthra- }	
Bituminous		Not tested-no trial							{ small authracite. No lest			elte. (This is jurily due to sluty condition of A bout 50 per ceut. less than with small nulli- is also partly due to slaty condition of an	melte, (Phis) i	
How do locomotives lurning small authracite compare with those burning large anthracite?	Get equaliy good results except on fast runs	{ Under the same conditions the odds are in favor of }	Do the work as well with che			Betler thou large and	luracile on any class of work	• · · · · · · · · · · · · · · ·	Get equality good results in train service	Equally good results		Much cheaper for furt		Do the work as well with much cheaper fuel.
Bituminous?		No trial unde	• • • • • • • • • • • • • • • • • •		• • • • • • • • • • • •		• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	[Largo anthracite. Have had considerable fromble with]		• • • • • • • • • • • • • • • • • • • •	Chenper for fuel		u 10 0
Disposition of company in matter of building new lo- comotives, i. e., whether for burning large or small }	≺ shall have fire-boxes for burning small anthra->	They are in favor of small coal generally	All freight and coal engines t	for small anthracite		Small anthracite			faulty construction. Crown-sheet loe "flat." On this	Small anthracito		Small unthracilo for all traffic		Small anthracilo.
anthracité or bituminous coal									account tendency of road is, for the present, at least, towards locomotives for burning large anthracite					
	From Baldwin Locomotive Works, Philadelphia, Additional cost of building locomotives for hurning unthracito coal as compared will cost of building													
Does a locomolive for burning small anthraelte cosl more than one for large anthraeite or hituminous?}	/ locomolives for burning bituminous coal :	Same	About the same			About same			\$300 more	No difference		About \$500 mers		
more than one for large an contents of interminoterry	For small " (Wooiten lire-box), \$500 plus royalty													
	" (modified wide fire-box), \$100)													
<pre>ls cost of repairs greater on locomotive for burning -swall anthracite than on one for large anthracite or</pre>	About the same	No	Prohably greater in the long	run. Estimate about 10 per cent		No difference			On account of trouble they have had with crown sheets on their wide fire-box engines, such engines are con- siderably more expensive for repairs than narrow	No difference		No difference		
Special points in construction, applying particularly	Larger graie surface and exhaust nozzie	Larger gralo surface and exhaust nozzle	Larger grate surface and exb:				and exhaust nozzle		fire-box engines	Larger graio surfaco a	nd exhaust nozzle	iarger grate surface and exhimit nozzlo.		Larger grato surface and exhaust neszle.
to becomotives for burning small authravite { Size of coal used on locomotives for burning small {	Buckwheat; nover tried unything smaller	Pea and luckwheat	Pea or buckwheat of good qu			Blick wheat on coal a	and freight	is with buckwheat on pas	Pea or buckwheat	Buckwheat and bird's	eye mixed: one part of huckwheat to two }	I Buckwhent for all irafile. Use per when i	they cannot)	Pea and huckwhoal.
anthracite						(senger engines	sh-Sauaro perforations		1		· · · · · · · · · · · · · · · · · · ·	{ get buckwheat		
Type of screea used in preparation of same		Revolving	Revolving; wire mesh			< Revolving < Cast from Punched	plates-Round perforations			Rovolving peniagon		Revolving wire mesh (principally) and pan	- 1	Gyrating (Coxe).
Whether round or square perforations in screen jackels, Size of perforations for—	Mostly square; some round		Square			the second se	••••••			Round		Square, round, and oval		Ronal panched.
Pea		$ \begin{array}{c} \{ \begin{array}{cccc} \text{Through} & \underbrace{3}_{4} \text{ in}, \Box_{i} \text{ th} \text{ in}, x & \underbrace{3}_{4} \text{ in}, \bigcirc, & \text{Over } \{ \text{ in}, \Box_{i} \} \\ 1 \text{ in}, x & \underbrace{3}_{4} \text{ in}, \bigcirc & \text{in}, \bigcirc, & \text{Over } \{ \text{ in}, \Box_{i} \} \\ \text{Through} & \{ \text{ in}, \Box_{i} \text{ 1} \text{ in}, x & \underbrace{1}_{4} \text{ in}, \bigcirc, & \text{Over } \{ \text{ in}, \Box_{i} \} \\ \end{array} \right) $		()ver ½ in. □		Through 34 in. []; 18]; 1 [°] ₆ in. O	Through ¾ in. □. Over ¼ in. □; % in. O			$ \begin{cases} In. O \\ Through \frac{1}{3} In. \Box; \frac{1}{3} In. x \frac{1}{3} In. O. \\ \frac{1}{3} x \frac{1}{3} In. O \end{cases} $	ver 1/1 In. D;	Through % In. O mid over 3 in. O
Buckwheal	Through 1/2 in. D, 1/3 in. O Over 1/8 in. D, 3/4 in. O.	$\{1_{4}^{1} I_{u_{1}} I_{4}^{1} I_{u_{1}} X_{4}^{1} I_{u_{1}} \cdots X_{4}^{1} I_{u_{1}} \odot \cdots \odot \odot \odot \odot \odot O_{u_{1}}^{1} \}$	" ½ in. □.	······································	· · · · · · · · · · · · · · ·	" ½ In. □; 船	g nu. (). "½ (n. [1, 18 m. O	" $\frac{1}{2}$ in. \Box ; % in. \bigcirc . Over $\frac{1}{2}$ in. \bigcirc .	Through Jaln. []. O	er ₂₈ m. O			To m. O Min. O hundled.
Rice					••••••••					Through 3/ In. O. O	When "wel"			
Bird's eye	Cableal		Mostly enbical	·····		Cuhical			Generally cubical	Generally cubical	$\{1, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	Generally flat		Wet.
prepared wet or dry?	Wet	" chielly dry; Lehigh wet; " wet. " " not; " yes; " yes. " white; " white; " red.	Dry in Wyoming region; wet	t in Lebigh		No			DryNo	No		Dry and wet Generally not. (Algged at one colliery) White		Yes. Yes. Redilsh gray.
" red or white ash?	White	" medium : " heavy : " light	Heavy and light			Medium			Generally light	Medium		Generally free		Heavy, Hard burblag.
" free or hard hurning?	Very litlio	Not a great deal	To some exicut.			Little			Not much	Little		Generally light Light Generally flat		Not unch. Generally subled with some flat
Issiste of cubical or flat fracture?	Titulat	Flat	Heavy			Light			Light	Light		tienerally light		Heavy. Caxe Bros. & Co.'s collerios.
Where is coal from?	{ collieríes	Lehigh Valley Coal Company	Lenigh and Wilkesbarre Coal	company	Bas seal 2	Delaware, Lackawall	Pea a	nd buckwheat No. 1	Delaware and Hudson Canal Company Pen and backwbeat	r consyrvante Coar Co	apau,	1	Pea coal.)	Pea coal. No.1 buckwheat.
Analysis of coal (sample taken al random from tender).	Moisture		Moisture		Pen roal.	Moisture		nixture, buckwheat. 1.30 1.45	Molsiuro			Nolshure	1.27	Molature
		••••••	Ash			Ash		8,22 12.70	Ash 8.70			Ash	15,12	Asin
	(Carbon 71.56)					(Carbon		84.68 79.60 er eeut	Curbon			lin a state of the base set		(Use use cont when by analysis it is shown to have 12.6
Actual class of another applied to the second	{ Large No. 1 backwheat, with ash as high as 22 µer } .	·····	Size, pen, and about 20 per cen	nt. Duckwheat. Average size pea coal, w	the ash, 14.4 per cent	Large No. 1 buck whe	eat, with ash, 12.7 per cent.	•••••	{ coal, with ash, 8.7 per cent			(cent	•••••	to 15 per cent. ash, but can use buckwheat when the self is not higher than 12 per cent.
	(Mr. Paxson says that much hetter results can be ob- tained with small authracite on compound than		passenger engine No. 229 (V passenger train service March	Vauclain compound Woolten fire-box) () (7(h, 18th, 19th, 24th, 25th, 28th, and 22 ang on L. & S. Division – It was succe kwheat coal can be burned in Wootten	oth, 1892, rinuing be-				three months. As long as coil was of good nuality they got satisfactory results. Collieries got "pushed"					
	on simple engines. Larger nozale is used on com- pounds and they are requestive easier on tire.		That fair quality pea and huck	kwheat cual can be burned in Wootten	fire-boxes on passen-				for this size of coal; too much fine stull was the resull, and they could not keep up steam with it on ibeir					
General remarks	Thinks that luck wheat coal can probably be burni on componial locomotives hauling fast trains; or,		ger service.						locomotives.					
	at any rate, pea coal. At the present time they generally barn egg coal on their fast passenger		Trip. Daie. Mileage		Size of Number of									
	and fast freight trains		1892.	per run. per une. mile.	coal. train.									
			1 Mar. 17, 18, & 19 237 2 Mar. 24 & 25	9 45 .0284 .0071	Pen 4 "				1					
			3 Mar. 28 & 29 328	î 65 .0233 .0058 1	Buckwiteai 4									<u></u>
	· · ·													

APPENDIX C-1. Devices for Utilizing or Burning Culm.	Description.	Pulverizing fuel. Feeding boiler furnace. Apparatus for feeding fuel to furnace. Furnace for burning pulverized fuel. Furnace for burning pulverized fuel. Fueling pulverized fuel to furnace. There is a fuel furnace. Feeding pulverized fuel furnace with fuel. Apparatus for feeding pulverized fuel in furnace. Improvement in appliance for feeding furnace. Apparatus for feeding pulverized fuel in furnace. Feeding pulverized fuel to furnace. Improvement in steam boiler furnaces. Feeding pulverized fuel to furnace. Preceding pulverized fuel into furnace. Preceding pulverized fuel into furnace. There is a furnace for feeding pulverized fuel. Process and appliance for huming pulverized fuel. Process of nitroducing pulverized fuel. Process of nitroducing and other furnaces. Process of nitroducing and other furnaces. Process of nitring pulverized fuel. Means for feeding pulverized fuel. Means for feeding pulverized fuel. Means for feeding pulverized fuel. Means for feeding and consuming fue fuel. Process of nitring and consuming fue fuel.
APPEN1 Devices for Utilizin	Name of Patentee.	 E. Schmitz J. P. Wigal S. Kennedy Wheply & Storer T. J. Leigh G. McCormick Wheply & Storer G. McCormick Wheply & Storer G. McCormick T. R. Crampton a. " a. " a. " b. G. McCormick c. Smith J. G. McAuley G. McAuley G. McAuley J. G. McAuley J. Leede J. Leede J. Leede J. Leede
	Date.	Jan. 23, 1855 May 8, 1860 May 12, 1866 May 12, 1868 May 12, 1868 May 12, 1868 May 12, 1868 May 13, 1870 Feb. 7, 1871 June 20, 1871 June 20, 1871 June 20, 1871 May 7, 1871 June 20, 1871 May 4, 1880 May 4, 1880 May 4, 1880 May 4, 1880 May 19, 1881 June 23, 1881 May 22, 1881 Sep. 20, 1881 Sep. 20, 1881 June 22, 1883 May 22, 1884 May 22, 1884
	No. Patent.	$\begin{array}{c} 12,286\\ 28,226\\ 59,695\\ 77,822\\ 77,822\\ 77,822\\ 77,822\\ 77,822\\ 77,822\\ 77,822\\ 100,067\\ 100,667\\ 100,665\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 111,616\\ 123,804\\ 122,626\\ 123,801\\ 122,626\\ 123,801\\ 122,626\\ 123,802\\ 224,737\\ 224,778\\ 224,738\\ 224,7570\\ 224,778\\ 224,778\\ 226,1364\\ 226,1364\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,1366\\ 222,176\\ 226,136\\ 226,126\\ 226$

Feeding fine fuel.	Furnace for burning cum. Reading fuel to holders	Feeding coal to furnace.	Process of burning culm or pulverized coal.	Hollow grate-bar.	Grate-bars.	Grate for steam boiler furnaces.	Furnace grate.	Grate.	Combined steam and air blower for boiler furnaces.	Mechanism for burning fine fuel.	Grate for burning coal dust.	Grate for burning hard stock coal.	Furnace.	Furnace grate.	Culm-bar.	14	Stationary grate for furnace.	Steam boiler or other furnaces.	Furnaves.	Grate-bars.		Coal sifter.	[Improved drying and baking apparatus for preparing fuel	trom coal waste.	Improvement in process of using anthracite coal dust as	Manufacture of only	Apparatus for reducing and nulverizing fuel	Process of burning coal and hydrocarbon fuel	Apparatus for burning culm or pulverized coal.	Apparatus for burning culm.	Fûrnace.	11	Coal-dust feeder.	Rotary pulverizing machine.	Pulverizing machine.	Method of supplying furnace with carbonaceous fuel.	Pulverized fuel feeder.	Fuel-feeding apparatus.	Device for feeding boiler furnace.	Grate for burning hard coal slack.	Furnace.	Method of burning coal slack.
• • •	•	· · ·	•	• • • •		· · ·	· · ·	• • •	• • •	• • •			· · ·	• • •	•		•			· ·	· ·						• •	· ·		• • •	• • • •			• • •		•		• • • •	•		•	• • •
W. Westlake	S. W. Valentine	R. W. O. Rehmenklan	A. Mason	W. S. Greggs	W. Farris	J. E. Wookri	J. A. Prige	Wm. McClave	••••••	W. A. Barnes	T. Bujac	S. J. Miles	••••••	A. Wilkinson	S. M. Hess		Wm. McClave	Wm. R. Roney		J. Ashcroft	S. W. Evans	W. E. Brown	J. M. Mitchell		A. Berney	J. M. Kellev	Hamilton Ruddick	A. Mason			V. W. Blanchard			John J. Bordman			J. G. McAuley		5		G. W. Wood	W. A. Koneman
Sept. 29, 1885		" 29, 1885	June 25, 1889						May 19, 1885		July 27, 1886		Feb. 16, 1892	Ang. 9, 1892	Dec. 8, 1885	June 8, 1886	Dec. 4, 1888	5°	" 20, 1889		May 27, 1890	Jan. 31, 1865	July 20, 1869		Apr. 15, 1873	Dec. 16. 1885		June 25, 1889	July 9, 1889								Dec. $2, 1890$		Feb. 24, 1891	June 23, 1891	M 1 1000	
327,210 221,721	332,975	333,337														343.370		-		423,465	428,595	46,070	92,737	-	137,820	332,613		-		-	413,916	413,922	414,322	416,252				441,689	444,659	454,430		660'004

.

APPENDIX C-2.

List of Patents relating to Artificial Fuels. Mechanical Mixtures, formed into Briquettes, &c., containing Coal Waste.

Description.	Name of Patentee.	No. of Patent.	Date.
Coal waste, Combined with clay and water	Joseph Lyon . Joseph Lyon . Levi T. Cheever Jacob H. Hubbard . Villiam B.udd . William Halsted . Dominic E. Courtaret . Binsson Pierre . Milliam Footner . S. D. Hovey . Villiam Footner . B. Charles Korff . S. D. Hovey . William Footner . B. P. Penny . Martin Kloesewski . Martin Kae . Ma	$\begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & $	July 31, 1837. Feb. 20, 1849. Mar. 6, 1860. Dec. 1, 1863. Dec. 1, 1863. Dec. 1, 1863. June 14, 1864. Jun. 17, 1865. July 4, 1865. July 4, 1865. July 4, 1865. July 4, 1865. July 4, 1865. July 2, 1872. Feb. 7, 1871. Mar. 12, 1872. Feb. 7, 1871. Mar. 12, 1872. Mar. 4, 1873. May 27, 1873. May 27, 1873. May 27, 1873.

 May 5, 1874. May 19, 1874. May 26, 1874. June 23, 1874. Sept. 29, 1874. Sept. 29, 1874. Pec. 15, 1874. Feb. 23, 1875. April 20, 1875. April 4, 1876. Oct. 3, 1876. May 15, 1877. Feb. 11, 1879. June 17, 1880. June 17, 1881. Dec. 21, 1885. Dec. 21, 1885. Dec. 21, 1885. Dec. 21, 1885. Dec. 15, 1885. Dec. 15, 1885. Dec. 13, 1887. 	Feb. 21, 1888. Oct. 16, 1888.
$\begin{array}{c} 150,537\\ 151,424\\ 151,395\\ 155,559\\ 155,559\\ 155,559\\ 155,559\\ 166,201\\ 167,914\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,744\\ 175,746\\ 190,729\\ 229,159\\ 229,159\\ 229,159\\ 230,729\\ 2319,679\\ 300,587\\ 300,$	378,249 391,179
 S. H. Daddow H. Mauthe H. Mauthe G. C. F. Otto Isadore McCormack S. J. Whiting and J. K. Blyler. D. F. Packer Blyler. D. F. Packer Blyler. D. F. Packer Blyler. J. Budres Enders Blyler. J. Budres Blyler. S. J. Budres Blyler. S. J. Budres Blyler. Blyler. J. Budres Blyler. S. J. Packer F. Packer W. C. A. Roettger W. C. A. Roettger W. C. A. Roettger F. F. Muck Otto Hasel J. M. Child J. M. Connse W. G. Siffken J. M. Conper. A. Beneau R. M. Breinig William Grifith Carl Van Gulpon P. Weller and Christian P. Wilhelm and Christian P. Willenm and Christian Y. H. Corey W. H. Corey W	E. Hennesser
Combined with lime, dried peat, &c	charcoal, sugar, &c.
Combined with a second	31 33

•

uec
Ψ
2
_ _
• H
+
- 8
0
(T)
Y
- <u>'</u> .
N
C-2.
Ċ
\mathbf{U}
M
M
Z
N
EN.
PEN.
PEN
a
APPEN.

Description. Name of Patentee.
osin, clay, and water
osin, sawdust, and pine needles
wheat flour, &c
water, tar, or pitch
pulverized charcoal, carbonate of soda, nitric acid, &. rve flour, &c. charcoal, starch, saltpetre, and brown sund-tone sodium. &c.
sand, lime-dust, and asphaltum rosin, sawdust, and black or teroxide of manganese, powdered charcoal saturated with solution of acc- tate of lead. lime, and ovnsum
ashes and sawdust saturated with petroleum and coated with resin or its equivalent
waste of distilleries and starch factories
cannonne, park of encary pues, coort, pludinent, rus- sian chesk, bark from brazos trees, and zevietesa, geyserite jelly and petroleum

References to Official Reports. (Utilization of Anthracite Waste.)

APPENDIX D-1.

	- U -
Place and Date.	Ilarrisburg, 1876. " 1879. LittleRock, Ark, 1888. New York, 1889. " 1886. Harrisburg, 1888. " 1886. " 1886. " 1881. " 1881. " 1881. " 1881. " 1881. " 1881. " 1884. " 18
Publishers.	Bd. of Com. of the Survey u. u. u. u. m. u. Press Printing Company LittleRock, Ark, 1 F. E. Sawand New York, 1889. F. E. Sawand Scranton, 1889. m. Scranton, 1889. m. 1386. Board of Commission u. u. u. u. u. Banjamin C. Jones & Co Mashington, 1889. Gov. Printing Office u. Gales & Seaton u. 1544
Page.	86 3382 88 88 88 88 88 88 475 108 1174 174
Report.	Penna. Second Geological Survey, Report, L, P. 86 Bd. of Com. of the Survey. "
Author.	F. Platt
Subject.	Method used in Wales for coking anthracite slack coal F. Flatt. On the utilization of anthracife slack coal with al J. G. Branner The attract of bitanous coal ack J. G. Branner The attraction of coal dust or slack J. G. Branner Preparation and utilization of small size of unthracife J. G. Branner Scranton Board of Trade-Report on value of culm J. G. Branner or anthracite wate Scranton poard of Trade-Report on value of culm On anthracite Committee Stratuon Board of Trade-Report on powdered and P. M. Chance Market in mining and preparing anthracite Mandacturers' Maste in mining and preparing anthracite Mandacturers' Market in mining and preparing and inpute F. Platt. Mandacturers' Mandacturers' Market in mining and heater Mandacturers' <
Serial No.	10 10 20 20 20 20 10

APPENDIX D-2.

References to Engineering Societies. (Utilization of Anthracite Waste.)

Year.	1876-7 1876-7 1876-7 18911 18911 18911 18911 1872-7 1872-3 18802 1880-1 1880-1 1871-3 18902 18902 18912 1871-3 18912 18912 18912 18912 18922 18923 1871-3 1871-3 18924 18924 1871-3 1871	1892
Date.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26
Month.	June Feb. Oot. June May Aug. Feb. Sept. Jan.	Jan.
No.		:
Page.	$\begin{array}{c} 4\\ 46.5\\ 613\\ 625\\ 628\\ 628\\ 628\\ 628\\ 628\\ 628\\ 628\\ 628$	•
Vol.	22 22 22 22 22 22 22 22 22 22	•
Journal or Transaction of Society.	American Institute of Mining Engineers	Academy of Natural Sciences of Philadelphia
Author.		I. J. Wistar
Subject.	 Arr. Wooten's method of burning coal dust in stationary and locomodive bolices. The area of anthracife waste. The preparation and utilization of small sizes of anthracite. The use of the McClave grate and Argand steam blower, utilizing annall sizes of anthracite waste by graiteation in producers. (The use of the McClave grate and Argand steam blower, utilizing annall sizes of anthracite or bituminous stack in boiler and similar (Waste) in minibig and preparation. (Di the manufacture of anthracite orbituminous stack in boiler and similar (Waste) in minibig and preparation. (Di the manufacture of anthracite cost fremsylvania: Waste) in minibig and preparation. (Di the manufacture of anthracite orbit furnaces and its application to heating and proving furnaces and its application of producers. (Di the combustion of provedered fuel in revolving furnaces and its application of prediminary and profitability furnaces. (Di the combustion of application to statistical fuel in revolving furnaces and its application of application of the successful and very duagerous besides. (Di the combustion of approach bolics. (Di the combustion of application of pransylvania and their exhaustion the authracite cost fields of fenny values of stationary and locomolive bolics. (Di the vasting of cost at the mines and in mining for a cost in the vaste of cost a grate and properation—00 percent. (Di the vasting of cost at the mines and in mining for a cost a grate and in mining for a cost a grate in cost mining and preparation—00 percent. (Di the vaste of cost a grate and properation—00 percent. (Di the vaste of cost at the mines and in mining for a cost a grate state of cost and the above state and a mining for a cost a grate of cost at the mines. (Di the vaste of cost at the mines and in mining for a cost a grate of cost at the mines and indication of cost at the mines and in mine for a	{ tion of North American coal
Serial No.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	39

APPENDIX D-3.

References to Private Reports. (Utilization of Anthracite Waste.)

Serial No.	Subject.	Author.	Printer.	Place.	Year.	Volume or Page.
	Artificial fuel and press for use in its manufacture . W. H. Cory	W. H. Cory H. M. Morrison J. A. Price	W. H. Cory Engineers' Club, Phila. Press Philadelphia, Pa	Philadelphia, Pa	1882 1885 1892	Extract from vol. 3, page 178
	d their }		Lane S. Hart		1881	Am. Asso. Adv. of Science, 18
	Brief description of the arthracite coal-fields of Pennsylvania—waste in mining and preparation, C. A. Ashburner utilization, &c., pages 25 and 26	C. A. Ashburner	Engineers' Club, Phila. Press Philadelphia, Pa 1384 Extract from vol. 4, page 177.	Philadelphia, Pa.	1884	Extract from vol. 4, page 17

References to Technical Journals. (Utilization of Anthracite Waste.)

APPENDIX D-4.

No. Subject.		Author.	Name of Journal.	Volume.	Page.	No.	Month.	Day. Year.
Coal and coke bridgette manufacture		Patent Fuel Company	Praetical Engineer,	9	808		October	28
The MeAuley process of burning pulveriz	erized fuel	J. G. McAuley	Iron Age	₹ 1 3	816 216	•	Pebruary .	£ 8
The champion briggette (or eggette) (nel	la	Editorial	Black Diamond	38	270	• •		2)
Another mode of making briquettes		Editorial	Industrial World	x	H	11	March	17
Ueber die Anwendung von pulverförmigen Brennmaterial	nigen Brennmaterial	B F. Isherwood	BergZtg.	•	429	•	A world a second	. 16
Presskohlen aus Steinkohlen-staub		E. Jenkner	OestZeitschrift.	40	980	•	August	12
Kohlonwäsche und krisuettes-f. hrite für die Türkische Regierung	nriquenes—proc ss and macu. We die Türktsche Regierung	P. Surauver	Uhland's Technik	9	260		May	19
The manufacture of briguettes as carried	led on in France	G. G Andre	Colliery Guardian .	57	337	•	March	oo i
17 4		Editorial	Industrial World .	36	29	6		с ^у
Patent pitch process of briquetting .			Colliery Manager .	oo w	76		April V Tridy	59
Tettre's renerings antagen fur Koaksstau	taube	Southeate Engineering Co	The Environment	73	158		1 ebruary	19
Prionette-maining and uriquered pianteror the Outoman government Reionette-making machingery at the Paris Exhibition	aris Exhibition	M N Fononemberg	Envineering	47	588		May	24
Pulverized fuel and the cyclone pulverizer. MeAuley's process	izer. MeAnley's process	H. H. Suplee	Mechanics	10	32	•	P'ebruary .	••••
Perret's furnace for dust-fuel		Bryan Donkin	Engineering	40	401	•	October	23
Machinery for the treatment of coal slac	slack	Editorial	The Iron Age	32	21	Б 	August	00 1 C
The Bietrix briquette-making machine .			Railroad Gazette	12	455	•	•••• • • • •	0T
Fuel made of eoal culm—J. E. Denton's	on's test of heating power of		Coal Trade Journal,	30	237	•	May	6
The Phene fuel moores	(**	Seranton Truth		•	•	March	30
Stevenson's annuratus for burning coal-du	·-3	· · ·	The Engineer	43	335	•	,	18
Arrangement for supplying and burning		R. W. O. Rehmenklau	Official Gazette	33	1,563	•	December .	29
Ueber den Heizwerth und die Fabrikation	ion der Braunkohlen-briquettes	Editorial	Uhland's Technik,	9	99	•	November,	077
Meldrum's system of forced draught, appl	upplicable to dust fuel	Meldrum Bros	Practical Engineer,	9 0	454	•	June	Т
The utilization of anthracity coal-dirt (Col. Price on the Gas Theory)	Col. Price on the Gas Theory) .	Editorial	Colliery Engineer .	50	64 40	•	veptientuer.	•
Powdered anthracite as a fuel (extract Scranton Board of Trade)	t Scranton Board of Trade)	Col. J. A. Price	• "	n 0	$^{4.2}_{107}$	•	December .	• • • •
Swaste in mining-running culm into mines	o mines to support roof and ?	P W Sharfar	. 11 11	6	135		January .	
Rome remarks on wasted coal	· · · · · · · · · · · · · · · · · · ·	W. J. May	" Guardian,	65	253	•	February .	10
		Col I A Price	Coal Trade Journal.	93	683		Sontamber	7,4

1890 1890 1890 1890 1891	1888 1888 1888 1888 1888	1892 1892 1892 1892 1892	1892 1892 1892	1891 1893 1892	1892	1887 1887	1893	1893 1893	189.4 1893
10.	24 24 24 24	112 113 20	27 28 28	18 3 10	•	· · ·	24	21.	54 8
September, " January . August	July March October	August	$\{ July : $	November, January .	3	· · · ·	February . May	February . January .	Febiuary .
· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • •	: :	· · ·	· · · ·	· · ·	· · · · ·
37 32, 57, and 82 137 1, 30, 49, 73, and 98	699 12 312 312	910 931 497 40	47 and 366 628	570 54 814	222 563 604 640	700, 772, 920 60, 120, 601, 818 331	158 494	34 29 and 30 1995	131 168 91
1 991133	50 50 50 7 7 7 7	$ \begin{array}{c} 64\\ 9\\ 31\\ 9 \end{array} $	31 31	30 59 59	12 53	5 2 5	41	9 10 4	225 75
Colliery Engineer.	u u u u u u u u u u u u u u u u u u u	Colliery Guardian . Black Diamond Coal Trade Journal,	33 33	" " "	Collicry Engineer / "Guardian	11 11 12 12 12 12 12 12 12 12 12 12 12 1	Fron Front and Mining Tournel	Colliery Manager Black Diamond Sc. American Sup-	(piement) Dingt. Journal The Engineer Coal Trade Journal
Editorial	Editorial	Walter J. May	23 	"	William Griffith	2 2 2	Editorial	Donkin, Boby, Colquhoun . Editorial	Stevenson
(The use of cross-sections in the development and working of col- licriss-avoiding waste in mining. Modified Longwall, as afteeding econony Anthracite uning and the Longwall wining The principles and practice of Longwall mining Briquettes - blast-furnace and other uses	Pulrevized fuel—the greatest economy Briquettes Compressed fuel—Moril & Messenger's patent briquette machine.	Coal clearly and ligging—waste and its remeiles. Coal clearly and ligging—waste and its remeiles. The culm pile washery at Honeybrook.	Working the culm dumps at Winton and Plymouth	I the new wasnery at the other on enum-nump-percentage of coal in bank	[Tabular estimate, showing the approximate quantify, past and future-production of coal in the Northern coal-field of Penna,		A new coal brick	Discussion on forced draught with Meldrum & Perret's furnace . Artificial fuel –Huntingdon plant of the Fuel Patents Company Coal-dust fuel	Dampfkessel mit Feuerung für staubformiges Brennmaterial
32 33 35 36	37 38 39 40	41 42 42 45 45 45 45 45 45 45 45 45 45 45 45 45	45 46	47 48 49	50	51	52 53	54 55 56	57 58 59

APPENDIX D-5.

References to Text-books, Treatises, &c. (Utilization of Anthracite Waste.)

	Subject.	Author.	References to Books-Title.	Publishers.	Date.
Coal-dust, ret's fui	(Coal-dust, coke-dust, breeze, and similar refuse fuels—Test of Per-)	W. S. Hutton	{ Practical Engineer's Hand-}	Crosby, Lockwood & Co	Iondon, 1887.
owdered	Н	D. K. Clark	The Steam Engine, volume	Blackie & Son	1891.
Doal-dust	Coal-dust fuel, United States Government experiments by Stevenson,	William M. Bar	The Combustion of Coal, {	Yohn Brothers	Indianapolis, Ind., 1879.
Furnace 1	Furnace with a thick layer of ash, on which inferior fuel may be }	J. Percy	Percy, MetallurgyFuels,	John Murray	\ldots Iondon, 1875.
A method could b	A method of coking by which the slack from a non-coking coal pould be utilized		Percy, Metallurgy-Fuels, Dage 309		" 1875.
The coal e	The coal question, by Green, Miall, Thorpe, Rucker, and Marshall	Thorpe	Coal—Its History and Uses, I name 292	MaeMillan & Co.	" 1878.
FREATISE "Fuel a	TREATISES ON FUEL ARE:	Schwackhofer		Charles Griffin & Co.	London, 1884.
evno?"	"Fuct	D. K. Clark	· · · · · · · · · · · · · · · · · · ·	D. Van Nostrand Company	New York, 1879. 1889.
" The C	"The Combustion of Coal and Prevention of Smoke"	C. W. Williams		John Weale, London	1854. London, 1875.
" Fuels,	"Fuels, Evaporation, and Combustion"	G. L. Fowler		{ American Kailway Publishing }	1887.
" Chem	" Chemical Technology," volume 1, Fuel	{ Groves & Thorp } { Mills & Rowan }		P. Blakiston, Son & Co., 1012 (Walnut Streeet, Philadelphia,)	Philadelphia, 1889.
" Coal]	" Coal Economy"	F. C. Danvers	{ Utilization of Slack Coal, }	W. H. Allen & Co	London, 1872.
" Coal	" Coal Economy"	T. S. Prideaux	Utilization of Inferior Fuel, name 15	John Weale	" 1853.
" Expe	" Experimental Researches in Steam Engineering"	B. F. Isherwood		{ Wm. Hamilton, Hall of Frank-}	Philadelphia, 1863 & 1865
" Notes " Resea	"Notes on Anthracite Iron and Evaporative Power of Anthracite" "Researches on American and Foreign Coals"	W. R. Johnson	· · · · · · · · · · · · · · · · · · ·	Little & Brown	Boston, 1841. Philadelphia, 1850.

APPENDIX D-6.

Patentees and Manufacturers' Circulars.

Subject Treated and Article Manufactured.	Fuel Patents Company 220 S. Third St., Philadelphia, Pa. Eggettes from anthracite and bituminous waste H. M. Morrison (200 S. Third St., Philadelphia, Patent fuel atomizer Eggettes from anthracite and bituminous waste H. M. Morrison (201 St.) Patent fuel atomizer Patent fuel atomizer George A. Purbeck (71 Tribune Building, New York, Coal gas from anthracite waste Patent fuel atomizer Fuel Patents Company of Philadelphia (3ayton, Va. Disgette plant, report by J. E. Denton
Place and Address.	220 S. Third St., Philadelphia, Pa. 220 S. Third St., Philadelphia, Pa. (Gasgow and St.) 71 Tribune Building, New York. Gayton, Ya.
Name of Patentee or Pirm.	Fuel Patents Company
Serial No.	H 67 00 44 10

APPENDIX E-1.

References to Inclined Grates-Reciprocating.

Patenteee or Author.	Name of Manufacturer or Address of Author.	Periodical or Book. Title.	k. Vol.	No.	Page.
GQD	Pittsburgh, Pa	Official Gazette	$\frac{54}{31}$	· · · · · ·	1,733 432 981
ñ Ħ Ā	Babcock & Wilcox Company, New York. Havanna, Cuba Detroit, Mich.	· · · · · · · · · · · · · · · · · · ·	22 23 33 28 23 33	· · · · ·	$^{1,023}_{24}$
Rage Co	io	". Iron Age	$62 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ 61 \\ $	· · · · ·	$198 \\ 1,614 \\ 14 \\ 1,413 \\ 835 \\ 835 \\ 835$
Par	· · · · · · · · · · · · · · · · · · ·	"	56 66 66	 	$1,113 \\ 86 \\ 454$
· · ·	[· · · · · · · · · · · · · · · · · · ·	Bull.de l'Ecole des Mines, Paris	$\left\{ \begin{array}{c} \mathrm{Apr}\\ 1892\\ 95 \end{array} \right\}$		79
Ka Bei	" " Kansas City, Mo	Driland's Technik Official Gazette D. K. Clark's Steam Engine	99994-	· · · · · ·	1,212 284 333 333 333
Ka	Kansas City, Mo	Official Gazette	53	· ·	000 1,087

167

-

APPENDIX E-2.

References to Inclined Grates-Rocking.

		Periodical or Book	ok.		
Patentee or Author.	Address of Manufacturer.	Name.	Vol.	No.	Page.
Roney, Wm. R	{Westinghouse, Church, Kerr & Co., } Official Gazette	Official Gazette	48	•	1,019
	Westinghouse, Church, Kerr & Co., Pittsburgh, Pa		48	•	1,020
· · · · · · · · · · · · · · · · · · ·	Westinghouse, Church, Kerr & Co., Pittsburch, Pa		59	•	662
Roney, Wm. R., and Arnold, J. T.		••••••	59	•	779
Koney, Wm. K	Koney, Wm. R Westinghouse, Church, Kerr & Co. Pittsburgh, Pa	Engineers' Club of Phila	6	•	147
Kasolovsky, J.	· · · · · · · · · · · · · · · · · · ·		28	•	562
Wood, Geo. W.	Wood, Geo. W Philadelphin, Pa Official Gazette	Official Gazette	56 20	• • •	950
Backus, A., Jr.	Detroit. Mich.		9 9 9	· ·	985
Hall, J. J	Hall's Áutomatic Feed Boiler Furnace Company, Chicago, III.		26		976

APPENDIX E-3.

References to Inclined Grates-Stationary (mostly what are termed Halbgasfeverungen in German).

Dotortoo or Anthor	Name of Manufacturer or Address of Author	Periodical or Book.	ok.		
T about to contrart.	TO THE TAXABLE TO COLORAD TO TAXABLE TO ATTAIN	Title.	Vol.	No.	Page.
	Clauding Obio	Official Comotto	47		060
Campbell, H. H	Clevelanu, Ulilo	nullata Uazerue	36	• • •	220
Wilson, O.	Cleveland, Ohio	, , , , , , , , , , , , , , , , , , ,	38	· ·	218
Ramsay, J.	England	N. E. Inst. of Mining Engrs	19	•	63
De Stréns, E.	Rome, Italy	Official Gazette	57	•	638
Schomberg, M., and Söhne	Berlin-Moabit, Germany	Uhland's Technik	9	•	284
Reich, C.	Hanover, Germany	Dingler's Journal	287	•	84
6. ⁶ 6		Chemiker Zeitung	16	• • •	925
Schulze, H	Bernburg, " $\cdots \cdots$	· · · · · · · · · · · · · · · · · · ·	16	• • •	1,075
De Strens, E	Rome, Italy	Dingler's Journal	287	• • •	84 47 24 24
Gartman, C. H. L.	Altona, D. R. P. \ldots	•	287	•	× 5
Mannesmann, R	D. R. P	•	797	• • •	04 1
Schomberg, M., and Söhne	Berlin-Moabit, Germany	Official Gazette	09	•	316
··· · · · · · · · · · · · · · · · · ·		Maschinen Constructeur	25	•	13
	••••••	Uhland's Technik	9	•	487
57 57 57 57		Dingler's Journal	287	•	106
Kudlicz, J.	Prag-Bubna	Maschinen Constructeur	25	•	180
Reich, Ć	Hanover, Germany	Uhland's Technik	9	•	487
Bartels, C.	Oschersleben	Dingler's Journal	287	•	107
					1

APPENDIX E-4.

References to Horizontal Grates-Reciprocating.

	Page.	$\begin{smallmatrix} & 1 \\ & 1 \\ & 5 \\ & $
	N0.	
k.	Vol.	600 600 600 600 600 600 600 600
Periodical or Book	Title.	Official Gazette
which be according to a statement of without	NAME OF MANUACOMET OF ANDRESS OF AUCOOF.	New York, N. Y. Liverpool, Bngland Cleveland, Ohio Boston, Mass. Malden, Mass. Malden, Mass. I.iverpool, England St. Louis, Mo. Chicago, III. Boston, Mass. Troy, N. Y. Broughton Bridge, Manchester Manchester, England London, England London, England London, England Cleveland, Ohio Brookline, Mass. New York. Philadelphia, Pa. Philadelphia, Pa.
	ratence of Autuor.	Reilly, O

$\begin{array}{c} 1,051\\ 1,291\\ 1,114\\ 1,114\\ 1,114\\ 156\\ 719\\ 719\\ 719\\ 520\\ 510\\ 510\end{array}$	$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	$107 \\ 575$
		- · · · ·
$\begin{array}{c} 447\\ 472\\ 233\\ 240\\ 233\\ 366\\ 336\\ 336\\ 336\\ 336\\ 336\\ 336$	$^{+1}$	$^{41}_{19}$
Official Gazette	D. K. Clark's Steam Engine Rowan's Chemical Technology N. E. Institute Mining Engrs. Maschinen Constructeur Official Gazette " " " " " " " " " " " " " " " " " " "	Power and Steam
Liverpool, England New York, N. Y. Forest Gate, Co. of Essex, England Wilkes-Barre, Pa. London, England Augusta, Me. Mansfield, Ohio Chicago, Ill. Warwick, Mass. Taunton, Mass. Taunton, Mass.	^a ^a ^a ^b	Wavey Street, New LOFK
Henderson, T. Buzzini, S. J. Galley, J. G. Turner, R. Boutcher, E. Dolliver, P. C. Weaver, H. M. Gulickson, G. Felton, A. C. Montgomery, J. F. Vicars, J. and T.	""""""""""""""""""""""""""""""""""""""	Weaver, H. M.

APPENDIX E-5.

References to Horizontal Grates-Rocking.

•

Patentee or Author	Name of Manufactures or Address of Author	Periodical or Buok.	Buok.		
A GOULDUO UN AMIGLIOI.	TOTAL TO SECTION TO TATALAND TATAL	Title.	Vol.	N0.	Page.
Bannister, L.	Philadelphia, Pa	Official Gazette	. 26		208
Jones, J. C	Chicago, Ill.		. 26		296
Price, J. A.	Scranton, Pa		. 26		561
Peslin, F. C. \ldots	Van Dyne, Wis.	, , , , , , , , , , , , , , , , , , ,	. 39		539
Ochrle, E., and Perkins, J. R.	Omaha, Neb	, , , , , , , , , , , , , , , , , , ,	. 39	•	1,032
Rockett, T. T	Philadelphia, Pa.	· · · · · · · · · · · · · · · · · · ·	. 48	•	775
Joy, T. C.	Thusville, Pa.	· · · · · · · · · · · · · · · · · · ·	. 23	•	2,269
Ward, W. J.	Puttsburgh, Pa.	• • •	. 20	•	667
Dennings, W. C.	New Brunswick, N. J.		20	•	1,323
Trockett, I. I.	L'huadelphia, Pa.	•	- 22 	•	1,622
Walker, G. W.	Malden, Mass.	• • •	. 20	•	689
Fish, J. K.	Grand Rapids, Mich	• • • • •	. 20	•	1,058
Walker, G. W.	Malden, Mass		. 20	•	1,150
Ogden, W. J.	Baltimore, Md.	• • • •	. 50	•	1,014
Achieved F. D.	Kochester, N. Y.	· · · · · · · · · · · · · · · · · · ·	20	•	1,316
AShCrout, J	New York, N. Y.	•	20	•	1,469
Thomas, J. F.	Detroit, Mich.	• • • • •	. 50	•	1,693
Bowers, W.	Carbondale, Pa	• • • • • • • • • • • • • • • • • • • •	. 22	•	1 370
Taylor, F. E., and Palmer, H. R.	Alleghenv. Pa.		22		071
Shriver, F.	Grand Rapids, Mich.		56	•	1 109
Rockett, T. T.	Philadelphia, Pa			· ·	1.052
Settle, J.	Bolton, Co. of Lancaster, England	••••	. 41	•	431
WILKWOOD, T.	New York, N. Y.	• • • •	. 45	•	929
	St. Louis, Mo.	· · · · · · · · · · · · · · · · · · ·	. 45	•	1,176
Alf Valve Furnace Bar Company,	Neville Koad, Upton Park, Forest Gate E.	The Engineer	. 74	•	459
Hill C D W	Ullicago, Ill.	Ullicial Gazette	. 47	•	871
Prine I A	WIIIIIIalluc, CONII		- 23	•	1,659
Kirkwood, T.	Chicago Ill		22 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•	1,704
• • • • • • • • • • • •		•	07		1 +04 /

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	47 1,018 47 1,018 23 660 23 660
Official Gazette	
Philadelphia, Pa. Allegheny, Pa. Chicago, III. Auburn, N. Y. Chicago, III. Chicago, III. Mexico, Mex. New York, N. Y. New York, N. Y. American Grate Bar Co., Phila, Pa. Philadelphia, Pa. St. Louis, Mo. Chicago, III. 230 La Salle Sureet, Chicago, III. Son La Salle Sureet, Chicago, III. Son La Salle Sureet, Chicago, III. Philadelphia, N. Y. Alberty, N. Y. Albany, N. Y. Auburn, N. Y. Auburn, N. Y. New Brunswick, N. J. Stranton, Pa. Stranton, Pa. Stranton, Pa. Stranton, Pa.	St. Louis, Mo
Kitson, G. L., and Reagan, J. Knox, J. H. Koox, J. H. Morton, A. C. Woodcock, L. M. Whelan, R. Whelan, R. Whelan, R. Nonstone, F. W. Forney, M. N. Forney, M. N. Forney, M. N. Forney, G. S. Hull, A. J. Strong, G. S. Hull, A. J. Strong, G. S. Banister, L. Kitson, G. L. Reagan, J. Martin, C. Strong, G. S. Banister, L. Kitson, G. L. Reagan, J. Martin, C. Strong, G. S. Bones, R. Burke, J. V. Burke, J. V. White, C. P. White, C. P. White, C. P. White, C. P. White, C. P. White, C. P. Woodcock, L. M. Kross, J. L. I. Koos, J. L. I. Kross, J. L. J. Kross, J. Kross, J. L. J. Kross, J. Kross, J.	Boileau, B

APPENDIX E-5.—Continued.

	Page.	$\begin{array}{c} 192\\ 1,386\\ 1,477\\ 1,386\\ 1,477\\ 385\\ 385\\ 385\\ 461\\ 719\\ 719\\ 719\\ 835\\ 835\\ 835\\ 835\\ 835\\ 835\\ 835\\ 835$	ß
	No.	· · · · · · · · · · · · · · · · · · ·	10
ok.	Vol.	644446888888888811122121221213888888888888888	60
Periodical or Book	Title.	Official Gazette	Industrial World
	Name of Manuacturer of Address of Autoor.	Reading, Pa. Creston, Iowa Geneva, N. Y. San Francisco, Cal. New Brunswick, N. J. New Brunswick, N. J. Troy, N. Y. Conneil Bluffs, Iowa (J. L. Case Thrashing Machine Co., I. Racine, Wis. Mansfield, Ohio Philadelphia, Pa. Clicago, III. Utica, N. Y. Munich, Bavaria Detroit, Mich. Scranton, Pa. Cricago, III. Michigan City, Ind. Philadelphia, Pa. Westfield, Mass. Philadelphia, Pa. Philadelphia, Pa. Philadelphia, Pa. Philadelphia, Pa. Philadelphia, Pa. Philadelphia, Pa. Philadelphia, Pa.	230 LA Salle Street, Unicago, 111.
	Patentee or Author.	La Rue, S. H. Eckerson, C. W. Dunning, W. B. Williams, B. W. Kelly, W. E. Mahoney, M. Bannister, O. C. Walrath, J. Warath, J. Warath, J. Bannister, D. C. Bannister, L. Bannister, L. Kirkwood, T. Kirkwood, T. Kohlhofer, A. Haycox, E. Fahrig, F. E. Culver, F. E. Culver, F. E. Culver, F. E. Culver, F. E. Culver, F. E. Culver, L. Fahrig, F. E. Culver, L. Fisher, S. D. Willianson, H. C. Passnore, L. Mershou, G. B.	Burke, J. V.

APPENDIX E-6. References to Horizontal Grates—Stationary.

	Page.	$\begin{array}{c} 251\\ 251\\ 1,578\\ 380\\ 330\\ 330\\ 330\\ 330\\ 330\\ 330\\ 33$
	Pa	
	N0.	••••••••••••••
ok.	Vol.	······································
Periodical or Book	Title.	Fed. Inst. Mining Engineers . Official Gazette
Name of Manufacturer or Address of Author	INTERVIEW IN CONTRACT TO TOTAL AND AND AND A TO OTHER	Seranton, Pa. Holyoke, Mass. St. Joseph, Mo. New York, N. Y. Newport, Ky. Providence, R. I. Providence, R. I. Providence, R. I. Paris, France Bagland. Paris, France England. Paris, France England. Paris, France are are Reading, Paris, N. J. New Brunswick, N. J. New Brunswick, N. J. St. Louis, Mo. St. Louis, Mo. St. Louis, Mo. Jersey City, Dakota are are are are are are are are are are
Patantee or Author		Boby, Wm McClave, Wm Sears, T. H Herbert, M. E. Adams, H Hoffmann, G Van Duzen, E. W. Miller, H. T Forrest, W. W. Perret, M. Holliday, J. Bonkin, B Getchell, C. E. Fjetcher, A. C. Kelly, W. E Monky J. M. C. Mongromery, J. Donkin, B Getchell, C. B. Botcher, A. C. Kelly, W. E Mongromery, J. Dickinson, I. N. Dickinson, I. N. Dickinson, G. W. Tolhurst, A Moldrum Bros. Sahler, C. A. Meldrum Bite, C. Unholtz, P. Unholtz, P. Unholtz, P.

APPENDIX E-7.

References to Mechanical Feeding Arrangements-Fucl and Air.

Defendence ou Arthou	Wanno of Monufactures of Addance of Authon	Periodical or Book	ok.		
Lauchtee of Auchor.	NAME OF MANAGAMET OF MARIESS OF AUDOL	Title.	Vol.	No.	Page.
Gordon, E. J.	{ Gordon Hollow Blast Grate Company, }	Official Gazette	57		1,586
Bielenberg, J.	Chemnitz, Germany		$52 \\ 94$	•	1,649
Whittaker, Wm.	Burnley, County of Lancaster, England Zurich Switzerland	· · · · · · · · · · · · · · · · · · ·	1 6 1 4	 	1,310 1,416
Fraser, W., and Chapman, J. G.	Birkenhead Cleveland, Ohio	Dingler's Journal	287 62	· · ·	$107 \\ 198$
Alves, J	Duncdin, New Zealand	" Iron Age	19		$561 \\ 74$
Cohen, L. P., and Herrmann, E.	Paris, France	Official Gazette	26	• •	1,113
Schulze, H.	Bernburg, Germany D. R. P.	Chemiker Zeitung	$16 \\ 287 \\$	· · ·	1,075
Sennett.	Duor Bulino	Macabinon Constructoru	287	•	105
Bartels, C	Liag-Dublia	Dingler's Journal	287 287	• • •	107
Payen, M.	Grenelle	Rowan's Chemical Technology	2	· · · ·	515
Smith, D	· · · · · · · · · · · · · · · · · · ·	55 55		· · · ·	523 523
Proctor, J		y) y)		•••	533 534
Henderson, T	Liverpool, England	D. K. Clark's Steam Engine		· · ·	$341 \\ 342$
Bennis Sons	· · · · · · ·	· 33 33	, -	• • •	343 244
Hall & Whittaker	Chicago, Ill.	N. E. Institute Mining Engrs. Official Gazette	18	· · ·	52 49

317 552 1 8	98 786 154	127 794	923	214 86	509	429	135 24	179	615	1.454	140	765	1,000	1.317	(949)	641	647 649	650	651	1,071	1,640	318	230	497
 4. 00	· · ·	· ·	· · ·	· · · ·	•	•	• •		•	• •	• •	•	•	• •		•	•		· ·	•	•	•••	•	 • •
41 60 38 12	27 60	10	62	6 37	9	55	54 6	74	51	48	49	54	54	545	56	49	49 40	40	49	59	59	45	44	45
· · · · · · · · · · · · · · · · · · ·	· - · · · ·	ucn	· · ·	ch. Ing.		•	•	· · ·		•••••			• • • • •	• •	· · ·		• • • •	• • • •	· · ·	• • • •		· · · · · · · · · · · · · · · · · · ·	• • • •	•
Official Gazette . "Industrial World Power	Engineering News Official Gazette	Maschinen Constructeur Official Gazatta		Uhland's Technik ZtschtVer. Deutsch. Ing	Practical Engineer	Engineering	Uhland's Technik Engingering	The Engineer	Iron Age	Official Gazette	"	. ,,	. "	·);	. ,,	• "	· "	· "	· "	· »	· "	,		
Cedar Rapids, Iowa.	Poston, Mass.	Giasgow, scottand	Greenville, Mich.	London, England	Manchester, England	Gateshead-on-Tyne, Durham, England	Acomination Teneaster Enalend		Chicago, Ill.	Accrimaton Co. of Lancaster England		Minneapolis, Minn.	Philadelphia, Pa.	Manchester England	Philadelphia, Pa.	Joseph A. Davis, New York	· · · · · · · · · · · · · · · · · · ·			Hiram, Ohio	Ashton, England	Allegheny, Pa., and Cleveland, Ohio		Fast Saginaw, Mich.
Tinkham, G. F Butman, T. R	Complete Combustion Co	Uhland, W. H.	Gordon, E. J.	New Conveyor Company	The Gaseous and Liquid Fuel	Joicey, W. B.	Lishman	Sennett.	Gillespie, W. C. D.	Carrio-reuerung	Davis, J. H.	Ward, J. B.	Wood, Geo. W.	Meldrun, J. J. & T. F.	Wood, Geo. W.	Blanchard, V. W.	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Colton, Geo. H.	Williamson, R. H.	Cochran, L. Y., & Lindsay, W. J.	22 . 22 . 22 . 22	Allington, W. E.

APPENDIX E-7.-Continued.

	modia of a month of a model of a second	Periodical or Book.	ok.		
Patentee or Author.	Name of Manufacturer of Autress of Autuor.	Title.	Vol.	N0.	Page.
Warne. A.	Buffalo, N. Y.	Official Gazette	44	•	971
Dennis, G. P.	Chester, Pa.		50	•	1,074
Bell, Sir I. L.	England	N. E. Inst. of Mng. Mech. Engrs.	2 <u>1</u> 0	•	010
Fales, E.	St. Louis, Mo.	Umeral Gazette	28	•	584
Hanna, E. A Rohmenblan R W O	Unicago, III.	· · · · · · · · · · · · · · · · · · ·		• • • •	1,563
Russmann, C.	Hamburg, Germany		22	, , ,	2,215
Hodgkinson, J.	Salford, County of Manchester, England,	· · · · · · · · · · · · · · · · · · ·	80 F	•	1,275
Hawley, M. C.	St. Louis, Mo	•	5 3	•	1 700
Tinkham, G. F.	nany Cedar Ranids, Towa	•	44	• •	1,302
Hawley, M. C.	St. Louis, Mo.	Engineers' Club of Phila.	6	•	147
Sloper, B.	New York, N. Y.	Official Gazette	29	•	177
Cochran, L. Y., & Lindsay, W. J.	Allegheny, Pa., and Cleveland, Ohio .	•••••	40	•	201
Benton, R. O	Chicago, Ill.		94 96	•	1,401
Barnes, W. A	New York, N. Y.		31 31	• •	363
Simmons, A. J.	Indianapolis, Ind.	· · · · · · · · · · · · · · · · · · ·	21	•	13
Van Duzen. E. W.	Newport, Ky.		21	•	1,861
McMillan, J., & Robertson, W. A.	Glasgow, County of Lanark, Scotland .		25	•	874
St. Clair, W. M.	Philadelphia, Pa	· · · · · · · · · · · · · · · · · · ·	270	•	1,2/8
Fahrig, F. E.	Scranton, Pa.	• • • • • • • • • • • •	90 87	•	125
Kosiche, H	Guoifonhogon Dungeia Gamany		37	•	651
McMillan C			26	• •	1,033
Sennett		Dingler's Journal	287	• • •	105
Langfield & Sharpless	Manchester		287	•	107
Hargreaves, J.	Farnworth, Lancaster	Engineering	54	•	120
Perret, M.	Paris, France \ldots	Institution Civil Engineers .	92	• • •	336
Donkin, B.	Bermondsey, England	Fed. Inst. Mining Engineers .	4	:	154
				_	

APPENDIX E-8.

References to Traveling Chain Grates.

	Page.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	N0.	$\cdots \cdots $
k.	Vol.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Periodical or Book.	Title.	Official Gazette
Name of Manufacturer or Address of Anthor		Kansas City, Mo. Bay City, Mieh. Allegheny City, Pa. Brooklyn, N. Y. England
Patantae or Author		Crowe, P. L. Craney, T. Swindell, W. Pratt, N. W. Bodmer, J. G. " " " Townsends, J. Juckes, J. Shoemaker, R. J. Coulson, W. " " " Loughran, S. J. Vilkinson, T., & Gilendenning, J. Playford, G., and Swaine, G. R., Duncan, J. M. Holt, C. H.

APPENDIX E-9.

References to Circular Grates-Horizontal, Outward and Inward, including Underfeeding.

	No. Page.	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Vol.	85555555555555555555555555555555555555	$ \begin{array}{c} 1 \\ 44 \\ 62 \\ 339 \\ 53 \\ 57 \\ $
Periodical or Book.	Title.	Official Gazette	D. K. Clark's Steam Engine . Official Gazette
set of the	Name of Manufacturer or Address of Author.	St. Louis, Mo. Hiram, Olio . Bayland . New York . Brooklyn, N. Y. Brooklyn, N. Y. St. Louis, Mo. St. Louis, Mo. Bay City, Mich . Detroit, Mich . Worcester, Mass. Moline, III Philadelphia, Pa. Foliladelphia, Pa. Foliladelphia, Pa. Foliladelphia, Pa. Foliladelphia, Pa. Foliladelphia, Pa. Foliladelphia, Pa. Moline, N. Y.	England . Milwaukee, Wis. Philadelphia, Pa. Jersey City, N. J. Des Moines, Iowa
	Patentee or Author.	Rohan, P. Colton, G. H. Williamson, R. H. Smith, H. Frisbie, M. Smith, H. Smith, H. Smith, H. Smith, H. Smith, H. Smith, H. Prate, M. Prate, N. Waternan, J. H. Harthan, P. Horter, S. Vaternan, J. H. Harthan, P. Mererson, O. Reymolds, J. Merarland, E, and Passmore, L. Reymolds, J. Merarland, E, and Passmore, L. Richardson, D. S. Maton, S. W. Alston, S. W. Haslan, W. Goodenow, M. L., & Owens, W. J.	Brunton, W. Philpps, W. Kitson, A. Morrin, T. F. Brown, T.

APPENDIX E-10.

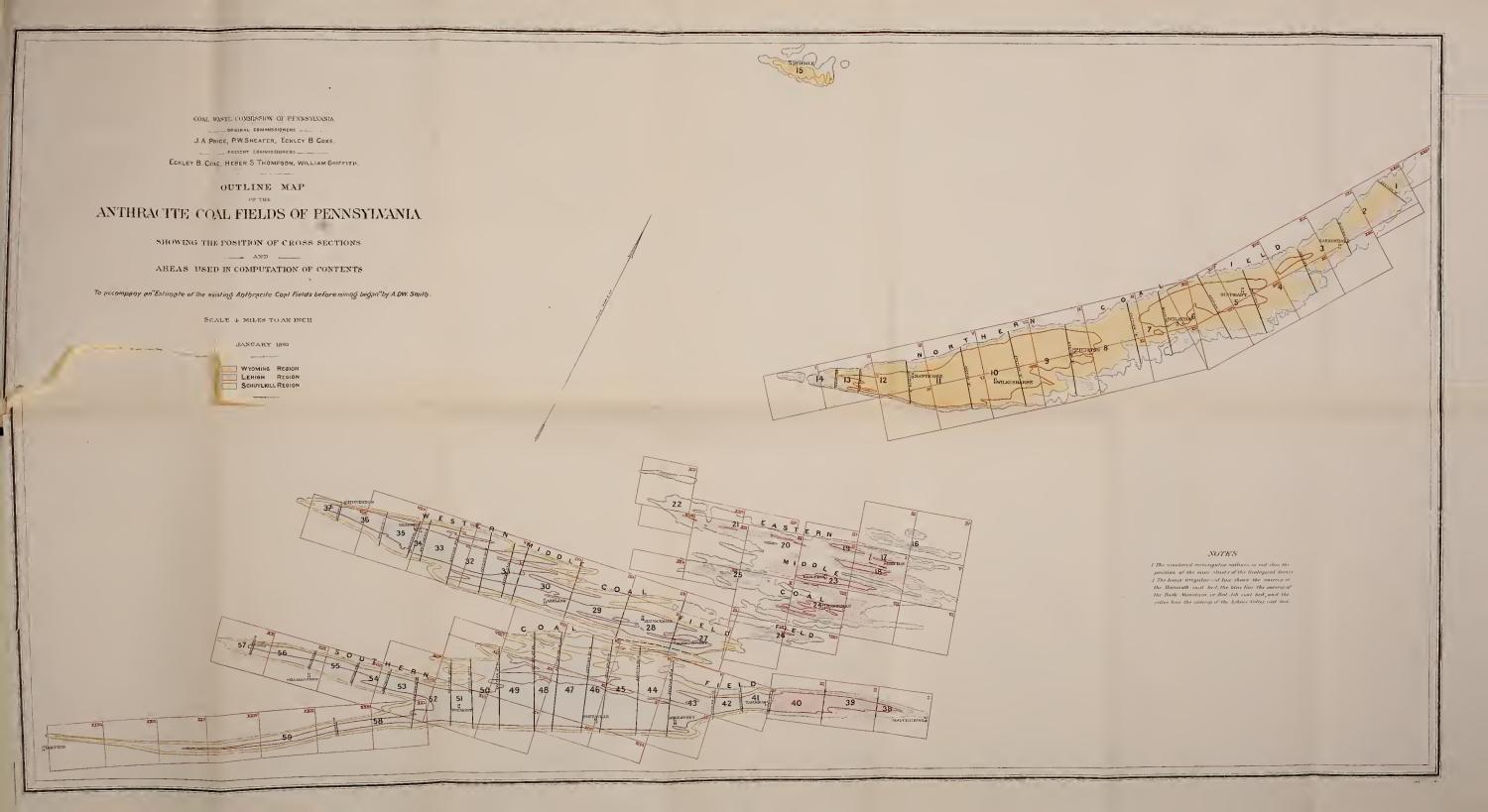
References to Rotary Grates and Grate-Bars.

Duffy, J	Muma of Monufortunan on Adduace of Authon	reriodical or book.	0K.		
	- Automation of Autress of Automotic	Title.	Vol.	N0.	Page.
	III.	Official Gazette	??	•	484
Frice, J. A.	n, Pa.		33		1,127
Rafferty, P Ovid, N.	l.Ý	• • • • • • •	38		1,003
Beisheim, J.	ter, N. Y.		54		1,687
$\operatorname{Re}(\mathrm{F},\mathrm{M},\ldots,\ldots,\mathrm{F})$	d, Me	•••••	57 54	• • •	462
	011, 111		77 07		009 273
pson, I. J., Jr Unic	ee, Mtass.	• • • • • • • • • • • • • • • • • • • •	# 6 7 0	• • •	01001
Spicer, W. A L'TOVIGE	ldence, K. L		ç ç	• • •	46 46
	uuter, tu t		465	• •	1.093
f C.			34		1,296
Burrell, J. Bristol.	County of Somerset, England .		31		649
Richardson. D. S. Brooklyn	vn. N. Ý.	• • • • • • • • • • • • • • • • • • • •	31	•	1,322
McClave. W. and Price. J. A Scranton	n, Pa.	•••••	21		86
H., and Dunhar, J. C., F	. Me		21	• • •	1,171
er, E Berlin, o	Germany	••••••	27	•	947
\ldots \ldots \ldots \ldots	is, Mo	•••••	59 59		85 85 7
gdon, S. H West	Pittston, Pa.	•	27.0		1,297
$Palmer, C. F. \ldots Utica, N. Y.$	N. Y	•	02		364
Price, J. A.	$n, Pa. \ldots \dots \dots$	• • • • • • • • • • • • •	80		577
ey, J. B E	/n, N. Y.	* * * * *	80		299
ton, S. H $ V $	Vest Pittston, Pa	•	37		627
1, W	Jnited States Army	•	37	• • •	1,263
Fischer, W. G.	Jincinnati, Ohio	• • • • •	SSI	•	155

APPENDIX E-10.-Continued.

Patentee or Author.	Name of Manufacturer or Address of Anthor	Periodical or Book.	Book.		
		Title.	Vol.	No.	Page.
Price, J. E., and Wright, D. E.	Scranton, Pa.	Official Gazette	. 26		561
Born, H.	Cleveland, Ohio	•••••	. 39	•	1,092
Wilkwood, T.	Chicago, III.		45	•	54
Wakenam, J., & Cummingnam, J., Wodell. J.	Loronto, Untario, Canada	· · · · · · 33	46 73	•	300
Owens, W. J.	Utica, N. Y.			•••	914
Phipps, W.	Milwaukee, Wis.		. 44	•	189
Walker, \mathbf{G} , \mathbf{W} , \ldots , \ldots , \ldots	Malden, Mass.	· · · · · · · · · · · · · · · · · · ·	20	•	1 1 5 0
Rown H	Manaland Abia		- 20	•	1,100
Bosturials II II	Cieveland, Unio	• • • • •	. 50	•	846
Asheroff, I	Auburn, N. Y.		. 41	•	151
Münning, C. and Fritzsche, H.	Leinzio Germany	Dinglar's Journal	00 .	•	1,409
Rohweder, H.	Newmunster, Holstein		287	•	107
Cory, D. U.	•	Official Gazette	. 52	· ·	622
Doten, C. W.	Boston Mass	••••••	. 19		492
Mershon, G. B.	Philadelphia, Pa.		. 22		228
Bowers, W.	Carbondale, Pa.		22	· ·	370
Shriver, F.	Grand Rapids, Mich.		. 22		1,109
Dwells, W. J.	Utica, N. Y.		. 53	•	1,871
Sutcliffe, H.	Dakland. Cal.		. 41	•	1 796
Paga W H	J.W. H. Page Wood Type Company,)		F .	• • •	
+ 480) W. H	[Norwich, Conn	•	52	•	745
			_	_	


11 10


1

APPENDIX E-11. References to Domestic or Stove Grates.

ю, W.W. S N.N.N. S N.N.N.N. S N.N.N. S N.N.N.N. S N.N.N.N.N. S N.N.N.N.N.N.N.S N.N.N.N.N.N.S N.N.N.N.	Patentee or Author.	Name of Manufacturer or Address of Author	Periodical or Book.	ok.		
 J.F.H., & De Lano, W.W. San Francisco, Cal. J. D. Moline, III. J. D. Norwy York, N. Y. J. D. Servich, Mich. J. D. Servich, M. Y. J. Servich, M. S. J. D. Servich, S. S. J. D. Servich, S. S. J. J. S. J. M. S. J. M. S. J. J. S. J. M. S. M. M. S.<th></th><th></th><th>Title.</th><th>Vol.</th><th>N0.</th><th>Page.</th>			Title.	Vol.	N0.	Page.
n, J. H. Define III Define IIII Define IIIII Define IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	De Guerre, F.H., & De Lano, W.W.	San Francisco, Cal.	Official Gazette	38		444
 ¹⁰ O. ¹¹ Moline, P. ¹¹ Serretion, Serreti	Waterman, J. H.	Detroit, Mich.		54		472
 M. T. Scantoly, P. Y. Y. Y. Y. N. Y. Y.	Pederson, O.	Moline, Ill.	ίč • • • • • • •	56		463
G. New York, N. Y. Mew York, N. Y. Mew York, N. Y. T. T. Philadelphia, Pa. Mew York, N. Y. T. T. Evress Gate, Ourty of Essex, England, Mer York, N. Y. T. T. Evress City, Mo. Mer York, N. Y. T. Evress City, Mo. Mer York, N. Y. Mer York, N. Y. T. Evress City, Mo. Mer York, N. Y. Mer York, N. Y. P. L. Philadelphia, Pa. Mer York, N. Y. Mer York, N. Y. R. Raington, D. C. Mer York, N. Y. Mer York, N. Y. R. Raington, D. C. Mer York, N. Y. Mer York, N. Y. J. St. Louis, Mo. Mer York, N. Y. Mer York, N. Y. J. St. Louis, Mo. Mer York, N. Y. Mer York, N. Y. J. St. Louis, Mo. Mer York, N. Y. Mer York, N. Y. J. St. Louis, Mo. Mer York, N. Y. Mer York, N. Y. J. Mer York, N. Y. Mer York, N. Y. Mer York, N. Y. J. Mer York, N. Y. Mer York, N. Y. Mer York, N. Y. J. Mer York, N. Y. Mer York, N. Y.	Price, J. A.	Scranton, Pa.		59	•	1,679
G. Forest Gate, County of Bssex, England, 23 T. T. Philadelphila, Pa. 40 T. T. Exams City, Mo. 23 T. Luverne, Pa. 23 T. Luverne, Pa. 23 T. Luverne, Pa. 23 T. Luverne, Pa. 23 R. St. Louis, Mo. 23 R. Philadelphila, Pa. 23 R. St. Louis, Mo. 23 R. St. Louis, Mo. 23 R. St. Louis, Mo. 24 R. St. Louis, Mo. 24 R. St. Louis, Mo. 25 R. St. Louis, Mo.	Buzzini, S. J.	•		47	•	1,291
J. Philadelphia, Fa. Philadelphia, Pa. Philadel	Galley, J. G.	nty of]	, , , , , , , , , , , , , , , , , , ,	23	•	199
 ⁵ and Sajous, C. E. ⁷ L. <l< td=""><td>Keynolds, J.</td><td>Philadelphia, Pa.</td><td></td><td>40</td><td>•</td><td>262</td></l<>	Keynolds, J.	Philadelphia, Pa.		40	•	262
 J. T. Kanasa City, Mo. L. Lizzene, Pa. L. Lizzene, Pa. Pitisburgh, Pa. J. K. Washington, D. C. Bay Orty, Mich. J. K. Kominghan, J. Provide, Sanda. J. K. Komingham, J. Provide, Co., Buffalo, N. Y. Pitisburgh, Pa. Pitisburgh, Pa.	S., and Sa			36	•	1.286
T. Intraeme, Fa. Interme, Fa. Intermediation fa. <td>Hare, C. C</td> <td>Kansas City, Mo</td> <td></td> <td>21</td> <td></td> <td>1.219</td>	Hare, C. C	Kansas City, Mo		21		1.219
I. Pittsburgh, Pa. 23 1 C. Pittsburgh, Pa. 33 1 C. Philadelphia, Pa. 33 33 R. Philadelphia, Pa. 45 T. Rashington, D. C. 33 R. Washington, D. C. 45 R. Washington, D. C. 45 R. Washington, D. C. 45 R. St. Louis, Mo. 45 R. St. Louis, Mo. 45 R. St. Louis, Mo. 45 R. Stard, Kam. 45 R. Stard, Kam. 45 R. Stard, Kam. 45 R. New York, NY 44 O. Philadelphia, Pa. 45 R. Philadelphia, Pa. 45 R. C. Philadelphia, Pa. A. Auburn, N. Y. 45 A. Philadelphia, Pa. 44 M. Auburn, N. Y. 44 M. Moodland, Cal. 45 J. Philadelphia, Pa. 44 <	Snyder, J. T	Luzerne, Pa.	57	9.7		1 183
I. T. St. Touis, Mo. St. Touis, Mo. St. Touis, Mo. C. Philadelphia, Pa. St. Touis, Mo. St. Touis, Mo. R. R. Radebria, Pa. St. Touis, Mo. R. Radebria, Pa. St. Touis, Mo. St. Bay City, Mich. St. Touis, Mich. St. St. R. S. Louis, Mich. St. Touis, Mich. St. St. Rard, Kam. Naburan, St. Sternal, Ran. St. New York, N.Y. Sternal, Ran. St. St. H. H. Auhum, N.Y. Sternal, Ran. St. Girard, Kam. New York, N.Y. St. St. J. H. Auhum, N.Y. Sternal, Ran. St. G. B. Thusville, Pa. St. St. A. Antorn, N.Y. St. St. A. Antorn, N.Y. St. St. J. H. Philadelphia, Pa. St. St. A. Antorn, N.Y. St. St. G. B. Philadelphia, Pa. St. St. M. St. Philadelphia, Pa.	Graff, T. J.	Pittsburgh, Pa.	, (j	30	• •	664
C. C. Philadelphia, Pa. P.		St. Louis, Mo.		68	• • •	1 222
C. Rochester, N. Y. Washingon, D. C. Rochester, M. Y. Rochester, N. Y. Rochester, R. Rochester, N. Y. Rochester, R. Rochester,	Earl. S. D.	Philadelphia Pa		00		202
T.T. Philadechnia, Pa. R. Washington, D.C. R. S. Washington, D.C. R. S. Shington, N.Y. R. S. Shington, N.Y. R. S. Shington, N.Y. Anburn, N. Y. Shington, N.Y. Anburn, N. Y. Shington, N.Y. Anburn, N. Y. Shingdelphia, Pa. G. B. Anburn, N.Y. Anburn, N. Y. Shingdelphia, Pa. Anburn, N. Y. Shingdelphia, Pa. G. B. Anburn, N.Y. A. Noodland, Canada. Shingdelphia, Pa. A. Noodland, Canada. Shingdelphia, Pa. J. Philadelphia, Pa. M. Noodland, Canada. Shingdelphia, Pa. J. Philadelphia, Pa. S. Sitternal States of Co., New York Shingdelphia, Pa. J. Philadelphia, Pa.	Rarry I C	Rochastor N V		0 V 0 V	• • •	000
R. Washington, J. a. 45 R. S. Bay Ofty, Mich. 48 R. S. Bay Ofty, Mich. 48 R. S. Bay Ofty, Mich. 48 Bay Ofty, Mich. 57 48 T. D. Finladelphia, Pa. 55 Bay Ofty, Mich. 55 44 T. D. Finladelphia, Pa. 55 Bay Ofty, Mich. 56 57 J. H. H. Auburn, N. Y. 55 New York, N. Y. 56 50 J. R. Philadelphia, Pa. 56 Oftermati, O. 56 57 J. R. Philadelphia, Pa. 52 A. Woodland, Cal. 55 J. S. Philadelphia, Pa. 55 J. N. Woodland, Cal. 55 J. S. Philadelphia, Pa. 55 J. W. Boynton Furnace Co. New York 55 J. W. San Furnishory, Rom. 55 J. W. San Furnishory, Rom. 55 M. Obb Storge Machine, Co., Burlia, San	Roolzatt Tr Tr	Dhilodolubio Do		0 1		100
R. S. Washington, D. C. Washington, D. C. R. S. Bay City, Mich. Bay City, Mich. R. S. Bay City, Mich. Bay City, Mich. Philadelphia, Pa. Finladelphia, Pa. Finladelphia, Pa. J. Bay City, Mich. Bay City, Mich. Finladelphia, Pa. J. Bay City, Mich. Finladelphia, Pa. Finladelphia, Pa. J. Bay City, Mich. Sewitt & Co., Buffalo, N. Y. Finladelphia, Pa. O. C. C. Contennatio, O. Finladelphia, Pa. J. R. Auburn, N. Y. Finladelphia, Pa. Finladelphia, Pa. O. C. Contennatio, O. Finladelphia, Pa. Finladelphia, Pa. J. R. Philadelphia, Pa. Finladelphia, Pa. Finladelphia, Pa. J. R. Philadelphia, Pa. Finladelphia, Pa. Finladelphia, Fa. J. H. Philadelphia, Pa. Finladelphia, Pa. Finladelphia, Fa. J. H. Philadelphia, Pa. Finladelphia, Fa. Finladelphia, Fa. J. H. Philadelphia, Pa. Finladelphia, Fa. Finladelphia, Fa. J. H. Philadelphia, Pa. Finladelphia, Fa. Finladelphia, Fa.	Cohone & D	runauerpuna, ra.	· · · · · · · · · · · · · · · · · · ·	48	• • •	G77
B.S. St. Jouds, Mich. 48 R.D. Blay City, Mich. 88 T.D. Philadelphia, Pa. 88 T. Sherman S. Jewitt & Co., Buffalo, N.Y. 88 H. H. Sherman S. Jewitt & Co., Buffalo, N.Y. 95 T. Sherman S. Jewitt & Co., Buffalo, N.Y. 96 T. Sherman S. Jewitt & Co., Buffalo, N.Y. 96 T. Auburn, N.Y. 97 C. Christmath, Pa. 96 J.R. Ahlughhai, Pa. 95 Allegheny, Pa. 96 A. South of the Co., New York 96 J. R. Philadelphia, Pa. A. S. Philadelphia, Pa. A. South of the Co., New York 96 J. Poroto, Ontario, Canada J. Poroto, Ontario, Canada J. Wo Boynton Furnace Co., New York J. Wo Boynton Furnace Co., New York J. Philadelphia, Pa. J.<	DCnarl, D. K	Washington, D. C.	• • • • •	45	•	577
K. D. Bay Otty, Mich. 38 42 J. Philadelphia, Pa. 42 42 J. New York, N. Y. 50 41 J. New York, N. Y. 50 41 H. H. New York, N. Y. 50 41 J. Sherman S. Jewitt & Co., Buffalo, N. Y. 50 41 Gi and J. R. Auburn, N. Y. 50 41 G. G. Diladelphia, Pa. 50 41 G. B. Titusville, Pa. 50 23 A. Milegheny, Pa. 64 23 A. Noodland, Cal. 53 23 J. Philadelphia, Pa. 53 23 J. Pooldand, Cal. 53 23 V.A. Materbury, Conn. 53 23	U'Neere, J.	St. Louis, Mo.		43	•	499
V. D. Philadelphia, Pa. 42 J. Girard, Kan. 52 J. New York, N. Y. 57 H. H. Sherman S. Jewitt & Co., Buffalo, N. Y. 57 H. H. Auburn, N. Y. 50 D. Sherman S. Jewitt & Co., Buffalo, N. Y. 50 H. H. Auburn, N. Y. 51 C Philadelphia, Pa. 52 J. R. Auburn, N. Y. 52 J. R. Philadelphia, Pa. 52 A. Mleghena, Pa. 52 J. R. Philadelphia, Pa. 52 J. R. Philadelphia, Pa. 52 J. R. Philadelphia, Pa. 52 J. Woodland, Cal. 52 J. Woodland, Cal. 52 J. Woodland, Cal. 53 J. Woodland, Cal. 54 J. Woodland, Cal. 54 J. Woodland, Ohio 54<	Watson, R. S.	Bay City, Mich.		38	•	780
J. Girard, Kam. 57 1 J. New York, N. Y. 57 1 H. H. Sherman S. Jewitt & Co., Buffalo, N. Y. 57 1 C. Sherman S. Jewitt & Co., Buffalo, N. Y. 57 1 J. R. Auburn, N. Y. 22 1 Cheimati, O. Auburn, N. Y. 22 1 Giroinnati, O. Cheimati, O. 23 23 A. Woodland, Cal. 23 23 A. Woodland, Cal. 23 23 J. Woodland, Cal. 23 23 J. Woodland, Cal. 23 23 J. Philadelphia, Pa. 23 23 V. Woodland, Cal. 24	Cronin, W. D. \ldots	Philadelphia, Pa.		42	•	620
J. New York, N.Y. 57 51 J. Sherman, S. Jewitt & Co., Buffalo, N.Y. 50 51 H. H. Sherman, S. Jewitt & Co., Buffalo, N.Y. 50 51 O. Philadelphia, Pa. 22 11 O. Sherman, N.Y. 22 11 O. Dineimati, O. 22 11 O. Sincinuati, O. 23 23 A. Noodland, Oal. 23 23 J. Woodland, Oal. 23 23 J. Woodland, Oal. 23 23 J. Philadelphia, Pa. 24 44 V.A. Waterbury, Conn. 23 23	$Tontz, J. \ldots \dots$	Girard, Kan.		52		1.832
J. Sherman S. Jewitt & Co., Buffalo, N. Y. 50 50 H. H. Auburn, N. Y. 81 41 C. Auburn, N. Y. 84 41 J. R. Anburn, N. Y. 84 41 G. B. Chroimati, O. 91 41 G. B. Titusville, Pa. 92 11 G. B. Titusville, Pa. 92 11 Titusville, Pa. 93 93 93 J. Woodland, Cal. 93 93 J. Woodland, Cal. 94 96 93 J. Woodland, Cal. 96 93 93 J. Uroouto, Outanio, Canada 96 94 J. Dipitadelphia, Pa. 96 93 J. Dipitadelphia, Pa. 96 94 V.A. Waterbury, Conn. 94 11 V.A. Malden, Mass. 94 94 V.A. Malden, Mass. 94 94 V.A. Malden, Mass. 94 94 M. Cobb Stove & MachineCo.Taunton.Mass. 94 11<	Fiske, S	New York, N.Y.		57		1,803
H. H. Auburn, N. Y. 41 C Philadelphia, Pa. 22 J. R. Allegheny, Pa. 22 J. R. Allegheny, Pa. 22 G. B. Philadelphia, Pa. 22 A. Allegheny, Pa. 22 A. Allegheny, Pa. 23 A. Philadelphia, Pa. 23 J. Titusville, Pa. 23 J. Toronto, Ontario, Canada 23 J. Toronto, Ontario, Canada 23 J. Philadelphia, Pa. 23 J. Powodland, Cal. 24 S. Powodland, Ohio 22 M. <td>Gravés, J. J.</td> <td>& Co.</td> <td></td> <td>20</td> <td>•</td> <td>115</td>	Gravés, J. J.	& Co.		20	•	115
C. Philadelphia, Pa. 22 J. R. Allegheny, Pa. 22 G. B. Cincinnati, O. 22 G. B. Philadelphia, Pa. 22 A. Cunningham, J. Totonto, Ontario, Canada J. Woodland, Cal. 22 J. Woodland, Cal. 22 J. Woodland, Cal. 22 J. Philadelphia, Pa. 23 J. Woodland, Cal. 23 J. Philadelphia, Pa. 23 J. Philadelphia, Pa. 23 J. Philadelphia, Pa. 23 J. W. A. W. Y. P. 20 Votes and Ohio 20 J. W. A. Waterbury, Conn. 22 J. W. Malden, Mass. 22 J. W. M.	Bostwick, H. H.	Auburn N. Y.		41		151
J. R. Cincinnati, O. 22 G. B. Philadelphia, Pa. 23 G. B. Philadelphia, Pa. 23 A. Philadelphia, Pa. 23 A. Woodland, Cal. 23 J. J. Woodland, Cal. 23 23 J. Woodland, Cal. 24 26 J. Woodland, Pa. 24 46 J. Woodland, Ohio 23 44 S. Printsburgh, Pa. 24 44 V. A. Waterbury, Conn. 22 A. W. Malden, Mass. 22 A. W. San Francisco. Cal. 22 A. W. San Francisco. Cal. 22 A. H. 23 44 V. A. Waterbury, Conn. 22 A. H. 23 44	Kohler. J. C.	Philadelphia Pa.		41	- - -	TOT
J. R. Allegheny, Pa. 11 G. B. Titusville, Pa. 23 A. Titusville, Pa. 23 D. J. Woodland, Cal. 23 J. W. Woodland, Cal. 23 J. Woulds, D. Woodland, Cal. 23 J. Woulds, N.Y. 23 J. W. Boynton Furnace Co., New York 23 J. Wuttightan, J. Toronto, Ontario, Canada 23 J. Wuttightan, J. Woulds, NY. 23 J. Wuttightan, Pa. 23 J. Wuttightan, Pa. 24 Waterbury, Conn. 24 W.A. Waterbury, Conn. 22 A. W. Malden, Mass. 22 A. W. Sander, Mass. 22	Van. I	Cincinnati O		100	•	1116
G. B. Philadelphia, Pa. 23 1, A. Titusville, Pa. 23 2, A. Titusville, Pa. 23 2, J. Titusville, Pa. 23 2, J. Titusville, Pa. 23 2, J. Toronto, Ontario, Canada 23 2, J. Toronto, Ontario, Canada 23 2, J. Toronto, Ontario, Canada 26 2, J. Polynton Furnace Co., New York 26 46 J. Philadelphia, Pa. 26 25 J. Pittsburgh, Pa. 27 44 S. Pittsburgh, Pa. 29 44 N. Materbury, Conn. 22 49 M. Malden, Mass. 22 22 A. Coob Stove & MachineCo., Taunton, Mass. 22 1,	Murphy, J. R.	Allachany Pa		4 C 7 F	• •	1 065
A. Titusville, Plat, 1.4. A. Titusville, Plat, 1.4. A. Woodland, Cal. J. Woodland, Cal. J. Woodland, Cal. J. Woodland, Cal. J. Boynton Furnace Co., New York J. Diladelphia, Pa. J. Philadelphia, Pa. V. A. Philadelphia, Pa. V. A. Waterbury, Conn. Malden, Mass. Malden, Mass. A. Cobb Stove & MachineCo., Taunton, Mass.	Marshon G R	Dhilddalahia Da		50	•	1,000
A. Wuturswitte, Fa. n, J., & Cunningham, J. Wootdon, Cal. J. Toronto, Ontario, Canada J. Boynton Furnace Co., New York J. Utica, N. Y. J. Philadelphia, Pa. S. Philadelphia, Pa. V. A. Waterburgh, Pa. W. Waterburgh, Conn. A. Waterburgh, Conn. A. Bass. A. Bass.		Tuttadetputa, I a		67 O	•	1,043
 ^A, & Cunningham, J. Poronto, Ontario, Canada ^J, & Cunningham, J. Proronto, Ontario, Canada ^J, ^W, ^A ^A, ^W, ^A ^A ^A<td>TV NOTE DA</td><td>TILUSVIILE, FA.</td><td>•••••</td><td>23</td><td>•</td><td>2,269</td>	TV NOTE DA	TILUSVIILE, FA.	•••••	23	•	2,269
1, 9., & Cummingnam, J. Toronto, Ontarro, Canada 46 3 1. 53 1. 1. 53 1. 1. 53 1. 1. 53 1. 1. 53 1. 1. 44 1. 1. 44 1. 1. 44 1. 1. 44 1. 1. 44 1. 1. 44 1. 1. 44 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. 1. 49 1. <td< td=""><td>T P. //</td><td>a, Cal.</td><td>• • • • •</td><td>22</td><td>* , ,</td><td>2,381</td></td<>	T P. //	a, Cal.	• • • • •	22	* , ,	2,381
J. Boynton Furnace Co., New York 53 J. Utica, N. Y. 53 J. Utica, N. Y. 53 J. Utica, N. Y. 53 S. Philadelphia, Pa. 53 V. A. Pitisburgh, Pa. 6 V. A. Waterbury, Conn. 6 Malden, Mass. 6 94 J. F. H. Cobb Stove & Machine Co., Taunton, Mass. 6	J., & Cumming	Untario,	· · · · · · · · · · · · · · · · · · ·	46	•	300
J. Ultica, N. Y. 53 53 J. Philadelphia, Pa. 64 44 S. Pittsburgh, Pa. 6 44 V. A. Waterbury, Conn. 6 44 V. A. Waterbury, Conn. 6 44 Malden, Mass. 6 99 1, J. H. Cobb Slove & Machine Cal. 44 1,	Wodell, J	Furnace Co., New Y	• • • • • • •	53	•	479
J. Pluiladelphia, Pa. #4 9 S. Pluisburgh, Pa. #4 9 N. Cleveland, Ohio #4 19 V. A. Waterbury, Conn. # 49 19 N. A. Malden, Mass. # 49 11 N. A. Malden, Mass. # 49 11 J. F. H. Sam Framcisco, Cal. # 41 11, J. F. H. Cobb Stove & Machine Co., Taunton, Mass. # 41 11,	Owen, W.J.	Utica, N. Y.		53	•	914
S. Pittsburgh, Pa. 44 9 V.A. Cleveland, Ohio " 44 1 Waterbury, Conn. " 49 1 N.A. Malden, Mass. " 22 1 N. A. San Francisco, Cal. " 22 1 J. P. H. Cobb Stove & MachineCo., Taunton, Mass. " 41 1,0	(Javin, S. J.	Philadelphia, Pa.		44	•	910
V. A. Cleveland, Ohio	Bissell, F. S	Pittsburgh, Pa.		44	•	972
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wicke, W.	Cleveland, Ohio		44	•	1.278
h. W.Malden, Mass.223. F. H.San Francisco, Cal.414162	Church, W. A.	Waterbury, Conn.	57 J	49		1,199
J. F. H. San Francisco, Cal	Walker, G. W.	Malden. Mass.	59 59	22	• •	106
I Cobb Stove & Machine Co., Taunton, Mass	De Guerre, F. H.	San Francisco. Cal.		41	•	1.050
	Cobb, J.M.	Cobb Stove & Machine Co., Taunton, Mass.	55	69	•	175

AUG 6 1907

M. E. M.

1.5 () () ()

AND REPORTED AND REPORT

A REAL PROPERTY AND A REAL

THE R D L

LE N '08

•

.

.

. .

ł

.

