
Nature  |  Vol 585  |  17 September 2020  |  357

Review

Array programming with NumPy

Charles R. Harris1, K. Jarrod Millman2,3,4 ✉, Stéfan J. van der Walt2,4,5 ✉, Ralf Gommers6 ✉,
Pauli Virtanen7,8, David Cournapeau9, Eric Wieser10, Julian Taylor11, Sebastian Berg4,
Nathaniel J. Smith12, Robert Kern13, Matti Picus4, Stephan Hoyer14, Marten H. van Kerkwijk15,
Matthew Brett2,16, Allan Haldane17, Jaime Fernández del Río18, Mark Wiebe19,20,
Pearu Peterson6,21,22, Pierre Gérard-Marchant23,24, Kevin Sheppard25, Tyler Reddy26,
Warren Weckesser4, Hameer Abbasi6, Christoph Gohlke27 & Travis E. Oliphant6

Array programming provides a powerful, compact and expressive syntax for
accessing, manipulating and operating on data in vectors, matrices and
higher-dimensional arrays. NumPy is the primary array programming library for the
Python language. It has an essential role in research analysis pipelines in fields as
diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials
science, engineering, finance and economics. For example, in astronomy, NumPy was
an important part of the software stack used in the discovery of gravitational waves1
and in the first imaging of a black hole2. Here we review how a few fundamental array
concepts lead to a simple and powerful programming paradigm for organizing,
exploring and analysing scientific data. NumPy is the foundation upon which the
scientific Python ecosystem is constructed. It is so pervasive that several projects,
targeting audiences with specialized needs, have developed their own NumPy-like
interfaces and array objects. Owing to its central position in the ecosystem, NumPy
increasingly acts as an interoperability layer between such array computation
libraries and, together with its application programming interface (API), provides a
flexible framework to support the next decade of scientific and industrial analysis.

Two Python array packages existed before NumPy. The Numeric pack-
age was developed in the mid-1990s and provided array objects and
array-aware functions in Python. It was written in C and linked to stand-
ard fast implementations of linear algebra3,4. One of its earliest uses was
to steer C++ applications for inertial confinement fusion research at
Lawrence Livermore National Laboratory5. To handle large astronomi-
cal images coming from the Hubble Space Telescope, a reimplementa-
tion of Numeric, called Numarray, added support for structured arrays,
flexible indexing, memory mapping, byte-order variants, more efficient
memory use, flexible IEEE 754-standard error-handling capabilities, and
better type-casting rules6. Although Numarray was highly compatible
with Numeric, the two packages had enough differences that it divided
the community; however, in 2005 NumPy emerged as a ‘best of both
worlds’ unification7—combining the features of Numarray with the
small-array performance of Numeric and its rich C API.

Now, 15 years later, NumPy underpins almost every Python library
that does scientific or numerical computation8–11, including SciPy12,
Matplotlib13, pandas14, scikit-learn15 and scikit-image16. NumPy is a
community-developed, open-source library, which provides a mul-
tidimensional Python array object along with array-aware functions

that operate on it. Because of its inherent simplicity, the NumPy array
is the de facto exchange format for array data in Python.

NumPy operates on in-memory arrays using the central processing
unit (CPU). To utilize modern, specialized storage and hardware, there
has been a recent proliferation of Python array packages. Unlike with
the Numarray–Numeric divide, it is now much harder for these new
libraries to fracture the user community—given how much work is
already built on top of NumPy. However, to provide the community with
access to new and exploratory technologies, NumPy is transitioning
into a central coordinating mechanism that specifies a well defined
array programming API and dispatches it, as appropriate, to special-
ized array implementations.

NumPy arrays
The NumPy array is a data structure that efficiently stores and accesses
multidimensional arrays17 (also known as tensors), and enables a wide
variety of scientific computation. It consists of a pointer to memory,
along with metadata used to interpret the data stored there, notably
‘data type’, ‘shape’ and ‘strides’ (Fig. 1a).

https://doi.org/10.1038/s41586-020-2649-2

Received: 21 February 2020

Accepted: 17 June 2020

Published online: 16 September 2020

Open access

 Check for updates

1Independent researcher, Logan, UT, USA. 2Brain Imaging Center, University of California, Berkeley, Berkeley, CA, USA. 3Division of Biostatistics, University of California, Berkeley, Berkeley, CA,
USA. 4Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA. 5Applied Mathematics, Stellenbosch University, Stellenbosch, South Africa. 6Quansight, Austin,
TX, USA. 7Department of Physics, University of Jyväskylä, Jyväskylä, Finland. 8Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland. 9Mercari JP, Tokyo, Japan. 10Department of
Engineering, University of Cambridge, Cambridge, UK. 11Independent researcher, Karlsruhe, Germany. 12Independent researcher, Berkeley, CA, USA. 13Enthought, Austin, TX, USA. 14Google
Research, Mountain View, CA, USA. 15Department of Astronomy and Astrophysics, University of Toronto, Toronto, Ontario, Canada. 16School of Psychology, University of Birmingham,
Edgbaston, Birmingham, UK. 17Department of Physics, Temple University, Philadelphia, PA, USA. 18Google, Zurich, Switzerland. 19Department of Physics and Astronomy, The University of
British Columbia, Vancouver, British Columbia, Canada. 20Amazon, Seattle, WA, USA. 21Independent researcher, Saue, Estonia. 22Department of Mechanics and Applied Mathematics, Institute
of Cybernetics at Tallinn Technical University, Tallinn, Estonia. 23Department of Biological and Agricultural Engineering, University of Georgia, Athens, GA, USA. 24France-IX Services, Paris,
France. 25Department of Economics, University of Oxford, Oxford, UK. 26CCS-7, Los Alamos National Laboratory, Los Alamos, NM, USA. 27Laboratory for Fluorescence Dynamics, Biomedical
Engineering Department, University of California, Irvine, Irvine, CA, USA. ✉e-mail: millman@berkeley.edu; stefanv@berkeley.edu; ralf.gommers@gmail.com

https://doi.org/10.1038/s41586-020-2649-2
mailto:millman@berkeley.edu
mailto:stefanv@berkeley.edu
mailto:ralf.gommers@gmail.com

358  |  Nature  |  Vol 585  |  17 September 2020

Review

The data type describes the nature of elements stored in an array.
An array has a single data type, and each element of an array occupies
the same number of bytes in memory. Examples of data types include
real and complex numbers (of lower and higher precision), strings,
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along
each axis, and the number of axes is the dimensionality of the array.
For example, a vector of numbers can be stored as a one-dimensional
array of shape N, whereas colour videos are four-dimensional arrays
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional
array of floating-point numbers with shape (4, 3), where each element
occupies 8 bytes in memory. To move between consecutive columns,
we need to jump forward 8 bytes in memory, and to access the next row,
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy
can store arrays in either C or Fortran memory order, iterating first over
either rows or columns. This allows external libraries written in those
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and ×
for vectorized operations and @ for matrix multiplication), as well
as ‘array-aware functions’; together, these provide an easily readable,
expressive, high-level API for array programming while NumPy deals
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a
subarray returns a ‘view’ on the original array such that data are shared
between the two arrays. This provides a powerful way to operate on
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that
perform vectorized calculations on arrays, including arithmetic,

statistics and trigonometry (Fig. 1d). Vectorization—operating on
entire arrays rather than their individual elements—is essential to array
programming. This means that operations that would take many tens
of lines to express in languages such as C can often be implemented as
a single, clear Python expression. This results in concise code and frees
users to focus on the details of their analysis, while NumPy handles
looping over array elements near-optimally—for example, taking
strides into consideration to best utilize the computer’s fast cache
memory.

When performing a vectorized operation (such as addition) on two
arrays with the same shape, it is clear what should happen. Through
‘broadcasting’ NumPy allows the dimensions to differ, and produces
results that appeal to intuition. A trivial example is the addition of a
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating
a grid of coordinates. In broadcasting, one or both arrays are virtually
duplicated (that is, without copying any data in memory), so that the
shapes of the operands match (Fig. 1d). Broadcasting is also applied
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum,
perform element-by-element ‘reductions’, aggregating results across
one, multiple or all axes of a single array. For example, summing an
n-dimensional array over d axes results in an array of dimension n − d
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping,
concatenating and padding arrays; searching, sorting and counting
data; and reading and writing files. It provides extensive support for
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using
one of several backends such as OpenBLAS18,19 or Intel MKL optimized
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety
of array-aware utility functions forms a productive and powerfully
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[0, 1, 2],
 [3, 4, 5],
 [6, 7, 8],
 [9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
 [-1.5, -1.5, -1.5],
 [1.5, 1.5, 1.5],
 [4.5, 4.5, 4.5]])

a Data structure g Example

x =

0 1 2

3 4 5

6 7 8

9 10 11

data

data type

shape

strides

8-byte integer

(4, 3)

(24, 8)

1 2 3 4 5 6 70 8 9 10 11

8 bytes
per element

3 × 8 = 24 bytes
to jump one
row down

b Indexing (view)

10 1199

x[:,1:] → with slices

1 2

4 5

7 8

00

33

66
x[:,::2]→ with slices

with steps

0 2

3 5

6 8

9 11

0 11 2

3 44 5

6 77 8

9 1010 11
Slices are start:end:step,

any of which can be left blank

d Vectorization

+ →

0 1

3 4

6 7

9 10

1

1

1

1

1

1

1

1

1 2

4 5

7 8

10 11

e Broadcasting

×
3

6

0

9

1 2

→

0 0

3 6

6 12

9 18

f Reduction

0 1

3 4

6 7

9 10

2

5

8

11

3

12

21

30

sum
axis 1

18 22 26

sum
axis 0

66

sum
axis (0,1)

c Indexing (copy)

4 3

7 6

with arrays
with broadcasting→x →

,2

1 1 0
x

,

1 1

2 2

1 0

1 0

x with arraysx[0,1],x[1,2] 1 5→ →0 1 1 2,

x[x > 9] with masks10 11→→ 5 with scalarsx[1,2]

Fig. 1 | The NumPy array incorporates several fundamental array concepts.
a, The NumPy array data structure and its associated metadata fields.
b, Indexing an array with slices and steps. These operations return a ‘view’ of
the original data. c, Indexing an array with masks, scalar coordinates or other
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an
array is indexed with other arrays; this broadcasts the indexing arguments

before performing the lookup. d, Vectorization efficiently applies operations
to groups of elements. e, Broadcasting in the multiplication of two-dimensional
arrays. f, Reduction operations act along one or more axes. In this example,
an array is summed along select axes to produce a vector, or along two axes
consecutively to produce a scalar. g, Example NumPy code, illustrating some of
these concepts.

Nature  |  Vol 585  |  17 September 2020  |  359

Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming
language well suited to standard programming tasks such as cleaning
data, interacting with web resources and parsing text. Adding fast array
operations and linear algebra enables scientists to do all their work
within a single programming language—one that has the advantage of
being famously easy to learn and teach, as witnessed by its adoption
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the
years, the Python language has added new features and special syntax
so that NumPy would have a more succinct and easier-to-read array
notation. However, because it is not part of the standard library, NumPy
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The
scientific Python ecosystem (Fig. 2) builds on top of this foundation to
provide several, widely used technique-specific libraries15,16,22, that in
turn underlie numerous domain-specific projects23–28. NumPy, at the
base of the ecosystem of array-aware libraries, sets documentation
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For
example, the eht-imaging library29, developed by the Event Horizon

Telescope collaboration for radio interferometry imaging, analysis
and simulation, relies on many lower-level components of the scientific
Python ecosystem. In particular, the EHT collaboration used this library
for the first imaging of a black hole. Within eht-imaging, NumPy arrays
are used to store and manipulate numerical data at every step in the
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such
as filtering and image alignment, and scikit-image, an image-processing
library that extends SciPy, provides higher-level functionality such
as edge filters and Hough transforms. The ‘scipy.optimize’ module
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency.
Astropy23,24 handles standard astronomical file formats and computes
time–coordinate transformations. Matplotlib is used to visualize data
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly
inspect, manipulate and visualize their data, and rapidly iterate to refine
programming statements. These statements are then stitched together
into imperative or functional programs, or notebooks containing both
computation and narrative. Scientific computing beyond exploratory
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software
engineering practices to improve collaboration and reduce error30. This
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt
distributed revision control and code review to improve collaboration

cantera
Chemistry

Biopython
Biology

Astropy
Astronomy

simpeg
Geophysics

NLTK
Linguistics

QuantEcon
Economics

SciPy
Algorithms

Matplotlib
Plots

scikit-learn
Machine learning

NetworkX
Network analysis

pandas, statsmodels
Statistics

scikit-image
Image processing

PsychoPykhmer Qiime2 FiPy deepchem

librosaPyWavelets SunPy QuTiP yt

nibabel yellowbrickmne-python scikit-HEP

eht-imagingMDAnalysis iriscesium PyChrono

Foundation

Application-specific

Domain-specific

Technique-specific

Array ProtocolsNumPy API

Python
Language

IPython / Jupyter
Interactive environments

NumPy
Arrays

New array implementations

Fig. 2 | NumPy is the base of the scientific Python ecosystem. Essential libraries and projects that depend on NumPy’s API gain access to new array
implementations that support NumPy’s array protocols (Fig. 3).

360  |  Nature  |  Vol 585  |  17 September 2020

Review

on code, and continuous testing that runs an extensive battery of auto-
mated tests for every proposed change to NumPy. The project also
has comprehensive, high-quality documentation, integrated with the
source code31–33.

This culture of using best practices for producing reliable scientific
software has been adopted by the ecosystem of libraries that build on
NumPy. For example, in a recent award given by the Royal Astronomi-
cal Society to Astropy, they state: “The Astropy Project has provided
hundreds of junior scientists with experience in professional-standard
software development practices including use of version control, unit
testing, code review and issue tracking procedures. This is a vital skill
set for modern researchers that is often missing from formal university
education in physics or astronomy”34. Community members explicitly
work to address this lack of formal education through courses and
workshops35–37.

The recent rapid growth of data science, machine learning and arti-
ficial intelligence has further and dramatically boosted the scientific
use of Python. Examples of its important applications, such as the
eht-imaging library, now exist in almost every discipline in the natu-
ral and social sciences. These tools have become the primary software
environment in many fields. NumPy and its ecosystem are commonly
taught in university courses, boot camps and summer schools, and
are the focus of community conferences and workshops worldwide.
NumPy and its API have become truly ubiquitous.

Array proliferation and interoperability
NumPy provides in-memory, multidimensional, homogeneously typed
(that is, single-pointer and strided) arrays on CPUs. It runs on machines
ranging from embedded devices to the world’s largest supercomputers,
with performance approaching that of compiled languages. For most
its existence, NumPy addressed the vast majority of array computa-
tion use cases.

However, scientific datasets now routinely exceed the memory capac-
ity of a single machine and may be stored on multiple machines or in
the cloud. In addition, the recent need to accelerate deep-learning and
artificial intelligence applications has led to the emergence of special-
ized accelerator hardware, including graphics processing units (GPUs),
tensor processing units (TPUs) and field-programmable gate arrays
(FPGAs). Owing to its in-memory data model, NumPy is currently unable
to directly utilize such storage and specialized hardware. However,
both distributed data and also the parallel execution of GPUs, TPUs
and FPGAs map well to the paradigm of array programming: therefore
leading to a gap between available modern hardware architectures and
the tools necessary to leverage their computational power.

The community’s efforts to fill this gap led to a proliferation of new
array implementations. For example, each deep-learning framework
created its own arrays; the PyTorch38, Tensorflow39, Apache MXNet40
and JAX arrays all have the capability to run on CPUs and GPUs in a
distributed fashion, using lazy evaluation to allow for additional per-
formance optimizations. SciPy and PyData/Sparse both provide sparse
arrays, which typically contain few non-zero values and store only those
in memory for efficiency. In addition, there are projects that build on
NumPy arrays as data containers, and extend its capabilities. Distrib-
uted arrays are made possible that way by Dask, and labelled arrays—
referring to dimensions of an array by name rather than by index for
clarity, compare x[:, 1] versus x.loc[:, 'time']—by xarray41.

Such libraries often mimic the NumPy API, because this lowers the
barrier to entry for newcomers and provides the wider community with
a stable array programming interface. This, in turn, prevents disruptive
schisms such as the divergence between Numeric and Numarray. But
exploring new ways of working with arrays is experimental by nature
and, in fact, several promising libraries (such as Theano and Caffe) have
already ceased development. And each time that a user decides to try a
new technology, they must change import statements and ensure that the
new library implements all the parts of the NumPy API they currently use.

Ideally, operating on specialized arrays using NumPy functions or
semantics would simply work, so that users could write code once,
and would then benefit from switching between NumPy arrays, GPU
arrays, distributed arrays and so forth as appropriate. To support array
operations between external array objects, NumPy therefore added
the capability to act as a central coordination mechanism with a well
specified API (Fig. 2).

To facilitate this interoperability, NumPy provides ‘protocols’ (or
contracts of operation), that allow for specialized arrays to be passed to
NumPy functions (Fig. 3). NumPy, in turn, dispatches operations to the
originating library, as required. Over four hundred of the most popular
NumPy functions are supported. The protocols are implemented by
widely used libraries such as Dask, CuPy, xarray and PyData/Sparse.
Thanks to these developments, users can now, for example, scale their
computation from a single machine to distributed systems using Dask.
The protocols also compose well, allowing users to redeploy NumPy
code at scale on distributed, multi-GPU systems via, for instance, CuPy
arrays embedded in Dask arrays. Using NumPy’s high-level API, users
can leverage highly parallel code execution on multiple systems with
millions of cores, all with minimal code changes42.

These array protocols are now a key feature of NumPy, and are
expected to only increase in importance. The NumPy developers—
many of whom are authors of this Review—iteratively refine and add
protocol designs to improve utility and simplify adoption.

Output
arrays

Input
arrays

NumPy
API

np.stack
np.reshape
np.transpose
np.argmin
np.mean
np.std
np.max
np.cos
np.arctan
np.log
np.cumsum
np.diff

.
.
.

NumPy array protocols

In [1]: import numpy as np

In [2]: import dask.array as da

In [3]: x = da.arange(12)

In [4]: x = np.reshape(x, (4, 3))

In [5]: x
Out[5]: dask.array<..., shape=(4, 3), ...>

In [6]: np.mean(x, axis=0)
Out[6]: dask.array<..., shape=(3,), ...>

In [7]: x = x - np.mean(x, axis=0)

In [8]: x
Out[8]: dask.array<..., shape=(4, 3), ...>

Array
implementation

NumPy

Dask

CuPy

PyData/
Sparse

.
.
.

.
.
.

Dask

NumPy

CuPy

PyData
Sparse

.
.
.

Dask

NumPy

CuPy

PyData
Sparse

Fig. 3 | NumPy’s API and array protocols expose new arrays to the
ecosystem. In this example, NumPy’s ‘mean’ function is called on a Dask array.
The call succeeds by dispatching to the appropriate library implementation (in

this case, Dask) and results in a new Dask array. Compare this code to the
example code in Fig. 1g.

Nature  |  Vol 585  |  17 September 2020  |  361

Discussion
NumPy combines the expressive power of array programming, the
performance of C, and the readability, usability and versatility of Python
in a mature, well tested, well documented and community-developed
library. Libraries in the scientific Python ecosystem provide fast imple-
mentations of most important algorithms. Where extreme optimiza-
tion is warranted, compiled languages can be used, such as Cython43,
Numba44 and Pythran45; these languages extend Python and trans-
parently accelerate bottlenecks. Owing to NumPy’s simple memory
model, it is easy to write low-level, hand-optimized code, usually in C
or Fortran, to manipulate NumPy arrays and pass them back to Python.
Furthermore, using array protocols, it is possible to utilize the full
spectrum of specialized hardware acceleration with minimal changes
to existing code.

NumPy was initially developed by students, faculty and researchers
to provide an advanced, open-source array programming library for
Python, which was free to use and unencumbered by license servers and
software protection dongles. There was a sense of building something
consequential together for the benefit of many others. Participating
in such an endeavour, within a welcoming community of like-minded
individuals, held a powerful attraction for many early contributors.

These user–developers frequently had to write code from scratch
to solve their own or their colleagues’ problems—often in low-level
languages that preceded Python, such as Fortran46 and C. To them,
the advantages of an interactive, high-level array library were evident.
The design of this new tool was informed by other powerful interactive
programming languages for scientific computing such as Basis47–50,
Yorick51, R52 and APL53, as well as commercial languages and environ-
ments such as IDL (Interactive Data Language) and MATLAB.

What began as an attempt to add an array object to Python became
the foundation of a vibrant ecosystem of tools. Now, a large amount of
scientific work depends on NumPy being correct, fast and stable. It is
no longer a small community project, but core scientific infrastructure.

The developer culture has matured: although initial development was
highly informal, NumPy now has a roadmap and a process for propos-
ing and discussing large changes. The project has formal governance
structures and is fiscally sponsored by NumFOCUS, a nonprofit that
promotes open practices in research, data and scientific computing.
Over the past few years, the project attracted its first funded develop-
ment, sponsored by the Moore and Sloan Foundations, and received
an award as part of the Chan Zuckerberg Initiative’s Essentials of Open
Source Software programme. With this funding, the project was (and
is) able to have sustained focus over multiple months to implement
substantial new features and improvements. That said, the develop-
ment of NumPy still depends heavily on contributions made by gradu-
ate students and researchers in their free time (see Supplementary
Methods for more details).

NumPy is no longer merely the foundational array library underlying
the scientific Python ecosystem, but it has become the standard API for
tensor computation and a central coordinating mechanism between
array types and technologies in Python. Work continues to expand on
and improve these interoperability features.

Over the next decade, NumPy developers will face several challenges.
New devices will be developed, and existing specialized hardware will
evolve to meet diminishing returns on Moore’s law. There will be more,
and a wider variety of, data science practitioners, a large proportion of
whom will use NumPy. The scale of scientific data gathering will con-
tinue to increase, with the adoption of devices and instruments such
as light-sheet microscopes and the Large Synoptic Survey Telescope
(LSST)54. New generation languages, interpreters and compilers, such as
Rust55, Julia56 and LLVM57, will create new concepts and data structures,
and determine their viability.

Through the mechanisms described in this Review, NumPy is poised
to embrace such a changing landscape, and to continue playing a

leading part in interactive scientific computation, although to do so
will require sustained funding from government, academia and indus-
try. But, importantly, for NumPy to meet the needs of the next decade
of data science, it will also need a new generation of graduate students
and community contributors to drive it forward.

1.	 Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger.
Phys. Rev. Lett. 116, 061102 (2016).

2.	 Chael, A. et al. High-resolution linear polarimetric imaging for the Event Horizon
Telescope. Astrophys. J. 286, 11 (2016).

3.	 Dubois, P. F., Hinsen, K. & Hugunin, J. Numerical Python. Comput. Phys. 10, 262–267 (1996).
4.	 Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J. & Oliphant, T. E. An Open Source Project:

Numerical Python (Lawrence Livermore National Laboratory, 2001).
5.	 Yang, T.-Y., Furnish, G. & Dubois, P. F. Steering object-oriented scientific computations. In

Proc. TOOLS USA 97. Intl Conf. Technology of Object Oriented Systems and Languages
(eds Ege, R., Singh, M. & Meyer, B.) 112–119 (IEEE, 1997).

6.	 Greenfield, P., Miller, J. T., Hsu, J. & White, R. L. numarray: a new scientific array package
for Python. In PyCon DC 2003 http://citeseerx.ist.psu.edu/viewdoc/download?d
oi=10.1.1.112.9899 (2003).

7.	 Oliphant, T. E. Guide to NumPy 1st edn (Trelgol Publishing, 2006).
8.	 Dubois, P. F. Python: batteries included. Comput. Sci. Eng. 9, 7–9 (2007).
9.	 Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).
10.	 Millman, K. J. & Aivazis, M. Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12

(2011).
11.	 Pérez, F., Granger, B. E. & Hunter, J. D. Python: an ecosystem for scientific computing.

Comput. Sci. Eng. 13, 13–21 (2011).
Explains why the scientific Python ecosystem is a highly productive environment for
research.

12.	 Virtanen, P. et al. SciPy 1.0—fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272 (2020); correction 17, 352 (2020).
Introduces the SciPy library and includes a more detailed history of NumPy and SciPy.

13.	 Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
14.	 McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in

Science Conf. (eds van der Walt, S. & Millman, K. J.) 56–61 (2010).
15.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830 (2011).
16.	 van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).
17.	 van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient

numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).
Discusses the NumPy array data structure with a focus on how it enables efficient
computation.

18.	 Wang, Q., Zhang, X., Zhang, Y. & Yi, Q. AUGEM: automatically generate high performance
dense linear algebra kernels on x86 CPUs. In SC’13: Proc. Intl Conf. High Performance
Computing, Networking, Storage and Analysis 25 (IEEE, 2013).

19.	 Xianyi, Z., Qian, W. & Yunquan, Z. Model-driven level 3 BLAS performance optimization
on Loongson 3A processor. In 2012 IEEE 18th Intl Conf. Parallel and Distributed Systems
684–691 (IEEE, 2012).

20.	 Pérez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput.
Sci. Eng. 9, 21–29 (2007).

21.	 Kluyver, T. et al. Jupyter Notebooks—a publishing format for reproducible computational
workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas
(eds Loizides, F. & Schmidt, B.) 87–90 (IOS Press, 2016).

22.	 Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and
function using NetworkX. In Proc. 7th Python in Science Conf. (eds Varoquaux, G.,
Vaught, T. & Millman, K. J.) 11–15 (2008).

23.	 Astropy Collaboration et al. Astropy: a community Python package for astronomy. Astron.
Astrophys. 558, A33 (2013).

24.	 Price-Whelan, A. M. et al. The Astropy Project: building an open-science project and
status of the v2.0 core package. Astron. J. 156, 123 (2018).

25.	 Cock, P. J. et al. Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

26.	 Millman, K. J. & Brett, M. Analysis of functional magnetic resonance imaging in Python.
Comput. Sci. Eng. 9, 52–55 (2007).

27.	 The SunPy Community et al. SunPy—Python for solar physics. Comput. Sci. Discov. 8,
014009 (2015).

28.	 Hamman, J., Rocklin, M. & Abernathy, R. Pangeo: a big-data ecosystem for scalable Earth
system science. In EGU General Assembly Conf. Abstracts 12146 (2018).

29.	 Chael, A. A. et al. ehtim: imaging, analysis, and simulation software for radio
interferometry. Astrophysics Source Code Library https://ascl.net/1904.004 (2019).

30.	 Millman, K. J. & Pérez, F. Developing open source scientific practice. In Implementing
Reproducible Research (eds Stodden, V., Leisch, F. & Peng, R. D.) 149–183 (CRC Press, 2014).
Describes the software engineering practices embraced by the NumPy and SciPy
communities with a focus on how these practices improve research.

31.	 van der Walt, S. The SciPy Documentation Project (technical overview). In Proc. 7th Python
in Science Conf. (SciPy 2008) (eds Varoquaux, G., Vaught, T. & Millman, K. J.) 27–28 (2008).

32.	 Harrington, J. The SciPy Documentation Project. In Proc. 7th Python in Science
Conference (SciPy 2008) (eds Varoquaux, G., Vaught, T. & Millman, K. J.) 33–35 (2008).

33.	 Harrington, J. & Goldsmith, D. Progress report: NumPy and SciPy documentation in 2009.
In Proc. 8th Python in Science Conf. (SciPy 2009) (eds Varoquaux, G., van der Walt, S. &
Millman, K. J.) 84–87 (2009).

34.	 Royal Astronomical Society Report of the RAS ‘A’ Awards Committee 2020: Astropy
Project: 2020 Group Achievement Award (A) https://ras.ac.uk/sites/default/files/2020-01/
Group%20Award%20-%20Astropy.pdf (2020).

35.	 Wilson, G. Software carpentry: getting scientists to write better code by making them
more productive. Comput. Sci. Eng. 8, 66–69 (2006).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9899
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9899
https://ascl.net/1904.004
https://ras.ac.uk/sites/default/files/2020-01/Group%20Award%20-%20Astropy.pdf
https://ras.ac.uk/sites/default/files/2020-01/Group%20Award%20-%20Astropy.pdf

362  |  Nature  |  Vol 585  |  17 September 2020

Review
36.	 Hannay, J. E. et al. How do scientists develop and use scientific software? In Proc. 2009

ICSE Workshop on Software Engineering for Computational Science and Engineering 1–8
(IEEE, 2009).

37.	 Millman, K. J., Brett, M., Barnowski, R. & Poline, J.-B. Teaching computational
reproducibility for neuroimaging. Front. Neurosci. 12, 727 (2018).

38.	 Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32 (eds Wallach, H. et al.) 8024–8035
(Neural Information Processing Systems, 2019).

39.	 Abadi, M. et al. TensorFlow: a system for large-scale machine learning. In OSDI’16: Proc.
12th USENIX Conf. Operating Systems Design and Implementation (chairs Keeton, K. &
Roscoe, T.) 265–283 (USENIX Association, 2016).

40.	 Chen, T. et al. MXNet: a flexible and efficient machine learning library for heterogeneous
distributed systems. Preprint at http://www.arxiv.org/abs/1512.01274 (2015).

41.	 Hoyer, S. & Hamman, J. xarray: N–D labeled arrays and datasets in Python. J. Open Res.
Softw. 5, 10 (2017).

42.	 Entschev, P. Distributed multi-GPU computing with Dask, CuPy and RAPIDS. In EuroPython
2019 https://ep2019.europython.eu/media/conference/slides/
fX8dJsD-distributed-multi-gpu-computing-with-dask-cupy-and-rapids.pdf (2019).

43.	 Behnel, S. et al. Cython: the best of both worlds. Comput. Sci. Eng. 13, 31–39 (2011).
44.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python JIT compiler. In Proc.

Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15 7:1–7:6 (ACM, 2015).
45.	 Guelton, S. et al. Pythran: enabling static optimization of scientific Python programs.

Comput. Sci. Discov. 8, 014001 (2015).
46.	 Dongarra, J., Golub, G. H., Grosse, E., Moler, C. & Moore, K. Netlib and NA-Net: building a

scientific computing community. IEEE Ann. Hist. Comput. 30, 30–41 (2008).
47.	 Barrett, K. A., Chiu, Y. H., Painter, J. F., Motteler, Z. C. & Dubois, P. F. Basis System, Part I:

Running a Basis Program—A Tutorial for Beginners UCRL-MA-118543, Vol. 1 (Lawrence
Livermore National Laboratory 1995).

48.	 Dubois, P. F. & Motteler, Z. Basis System, Part II: Basis Language Reference Manual
UCRL-MA-118543, Vol. 2 (Lawrence Livermore National Laboratory, 1995).

49.	 Chiu, Y. H. & Dubois, P. F. Basis System, Part III: EZN User Manual UCRL-MA-118543, Vol. 3
(Lawrence Livermore National Laboratory, 1995).

50.	 Chiu, Y. H. & Dubois, P. F. Basis System, Part IV: EZD User Manual UCRL-MA-118543, Vol. 4
(Lawrence Livermore National Laboratory, 1995).

51.	 Munro, D. H. & Dubois, P. F. Using the Yorick interpreted language. Comput. Phys. 9,
609–615 (1995).

52.	 Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph.
Stat. 5, 299–314 (1996).

53.	 Iverson, K. E. A programming language. In Proc. 1962 Spring Joint Computer Conf.
345–351 (1962).

54.	 Jenness, T. et al. LSST data management software development practices and tools. In
Proc. SPIE 10707, Software and Cyberinfrastructure for Astronomy V 1070709 (SPIE and
International Society for Optics and Photonics, 2018).

55.	 Matsakis, N. D. & Klock, F. S. The Rust language. Ada Letters 34, 103–104 (2014).

56.	 Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical
computing. SIAM Rev. 59, 65–98 (2017).

57.	 Lattner, C. & Adve, V. LLVM: a compilation framework for lifelong program analysis and
transformation. In Proc. 2004 Intl Symp. Code Generation and Optimization (CGO’04)
75–88 (IEEE, 2004).

Acknowledgements We thank R. Barnowski, P. Dubois, M. Eickenberg, and P. Greenfield, who
suggested text and provided helpful feedback on the manuscript. K.J.M. and S.J.v.d.W. were
funded in part by the Gordon and Betty Moore Foundation through grant GBMF3834 and by
the Alfred P. Sloan Foundation through grant 2013-10-27 to the University of California,
Berkeley. S.J.v.d.W., S.B., M.P. and W.W. were funded in part by the Gordon and Betty Moore
Foundation through grant GBMF5447 and by the Alfred P. Sloan Foundation through grant
G-2017-9960 to the University of California, Berkeley.

Author contributions K.J.M. and S.J.v.d.W. composed the manuscript with input from
others. S.B., R.G., K.S., W.W., M.B. and T.R. contributed text. All authors contributed
substantial code, documentation and/or expertise to the NumPy project. All authors
reviewed the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41586-020-
2649-2.
Correspondence and requests for materials should be addressed to K.J.M., S.J.v.W. or R.G.
Peer review information Nature thanks Edouard Duchesnay, Alan Edelman and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

http://www.arxiv.org/abs/1512.01274
https://ep2019.europython.eu/media/conference/slides/fX8dJsD-distributed-multi-gpu-computing-with-dask-cupy-and-rapids.pdf
https://ep2019.europython.eu/media/conference/slides/fX8dJsD-distributed-multi-gpu-computing-with-dask-cupy-and-rapids.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Array programming with NumPy

	NumPy arrays

	Scientific Python ecosystem

	Array proliferation and interoperability

	Discussion

	Acknowledgements
	Fig. 1 The NumPy array incorporates several fundamental array concepts.
	Fig. 2 NumPy is the base of the scientific Python ecosystem.
	Fig. 3 NumPy’s API and array protocols expose new arrays to the ecosystem.

