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Array programming provides a powerful, compact and expressive syntax for 
accessing, manipulating and operating on data in vectors, matrices and 
higher-dimensional arrays. NumPy is the primary array programming library for the 
Python language. It has an essential role in research analysis pipelines in fields as 
diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials 
science, engineering, finance and economics. For example, in astronomy, NumPy was 
an important part of the software stack used in the discovery of gravitational waves1 
and in the first imaging of a black hole2. Here we review how a few fundamental array 
concepts lead to a simple and powerful programming paradigm for organizing, 
exploring and analysing scientific data. NumPy is the foundation upon which the 
scientific Python ecosystem is constructed. It is so pervasive that several projects, 
targeting audiences with specialized needs, have developed their own NumPy-like 
interfaces and array objects. Owing to its central position in the ecosystem, NumPy 
increasingly acts as an interoperability layer between such array computation 
libraries and, together with its application programming interface (API), provides a 
flexible framework to support the next decade of scientific and industrial analysis.

Two Python array packages existed before NumPy. The Numeric pack-
age was developed in the mid-1990s and provided array objects and 
array-aware functions in Python. It was written in C and linked to stand-
ard fast implementations of linear algebra3,4. One of its earliest uses was 
to steer C++ applications for inertial confinement fusion research at 
Lawrence Livermore National Laboratory5. To handle large astronomi-
cal images coming from the Hubble Space Telescope, a reimplementa-
tion of Numeric, called Numarray, added support for structured arrays, 
flexible indexing, memory mapping, byte-order variants, more efficient 
memory use, flexible IEEE 754-standard error-handling capabilities, and 
better type-casting rules6. Although Numarray was highly compatible 
with Numeric, the two packages had enough differences that it divided 
the community; however, in 2005 NumPy emerged as a ‘best of both 
worlds’ unification7—combining the features of Numarray with the 
small-array performance of Numeric and its rich C API.

Now, 15 years later, NumPy underpins almost every Python library 
that does scientific or numerical computation8–11, including SciPy12, 
Matplotlib13, pandas14, scikit-learn15 and scikit-image16. NumPy is a 
community-developed, open-source library, which provides a mul-
tidimensional Python array object along with array-aware functions 

that operate on it. Because of its inherent simplicity, the NumPy array 
is the de facto exchange format for array data in Python.

NumPy operates on in-memory arrays using the central processing 
unit (CPU). To utilize modern, specialized storage and hardware, there 
has been a recent proliferation of Python array packages. Unlike with 
the Numarray–Numeric divide, it is now much harder for these new 
libraries to fracture the user community—given how much work is 
already built on top of NumPy. However, to provide the community with 
access to new and exploratory technologies, NumPy is transitioning 
into a central coordinating mechanism that specifies a well defined 
array programming API and dispatches it, as appropriate, to special-
ized array implementations.

NumPy arrays
The NumPy array is a data structure that efficiently stores and accesses 
multidimensional arrays17 (also known as tensors), and enables a wide 
variety of scientific computation. It consists of a pointer to memory, 
along with metadata used to interpret the data stored there, notably 
‘data type’, ‘shape’ and ‘strides’ (Fig. 1a).
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The data type describes the nature of elements stored in an array. 
An array has a single data type, and each element of an array occupies 
the same number of bytes in memory. Examples of data types include 
real and complex numbers (of lower and higher precision), strings, 
timestamps and pointers to Python objects.

The shape of an array determines the number of elements along 
each axis, and the number of axes is the dimensionality of the array. 
For example, a vector of numbers can be stored as a one-dimensional 
array of shape N, whereas colour videos are four-dimensional arrays 
of shape (T, M, N, 3).

Strides are necessary to interpret computer memory, which stores 
elements linearly, as multidimensional arrays. They describe the num-
ber of bytes to move forward in memory to jump from row to row, col-
umn to column, and so forth. Consider, for example, a two-dimensional 
array of floating-point numbers with shape (4, 3), where each element 
occupies 8 bytes in memory. To move between consecutive columns, 
we need to jump forward 8 bytes in memory, and to access the next row, 
3 × 8 = 24 bytes. The strides of that array are therefore (24, 8). NumPy 
can store arrays in either C or Fortran memory order, iterating first over 
either rows or columns. This allows external libraries written in those 
languages to access NumPy array data in memory directly.

Users interact with NumPy arrays using ‘indexing’ (to access sub-
arrays or individual elements), ‘operators’ (for example, +, − and × 
for vectorized operations and @ for matrix multiplication), as well 
as ‘array-aware functions’; together, these provide an easily readable, 
expressive, high-level API for array programming while NumPy deals 
with the underlying mechanics of making operations fast.

Indexing an array returns single elements, subarrays or elements 
that satisfy a specific condition (Fig. 1b). Arrays can even be indexed 
using other arrays (Fig. 1c). Wherever possible, indexing that retrieves a 
subarray returns a ‘view’ on the original array such that data are shared 
between the two arrays. This provides a powerful way to operate on 
subsets of array data while limiting memory usage.

To complement the array syntax, NumPy includes functions that 
perform vectorized calculations on arrays, including arithmetic, 

statistics and trigonometry (Fig. 1d). Vectorization—operating on 
entire arrays rather than their individual elements—is essential to array 
programming. This means that operations that would take many tens 
of lines to express in languages such as C can often be implemented as 
a single, clear Python expression. This results in concise code and frees 
users to focus on the details of their analysis, while NumPy handles  
looping over array elements near-optimally—for example, taking 
strides into consideration to best utilize the computer’s fast cache 
memory.

When performing a vectorized operation (such as addition) on two 
arrays with the same shape, it is clear what should happen. Through 
‘broadcasting’ NumPy allows the dimensions to differ, and produces 
results that appeal to intuition. A trivial example is the addition of a 
scalar value to an array, but broadcasting also generalizes to more com-
plex examples such as scaling each column of an array or generating 
a grid of coordinates. In broadcasting, one or both arrays are virtually 
duplicated (that is, without copying any data in memory), so that the 
shapes of the operands match (Fig. 1d). Broadcasting is also applied 
when an array is indexed using arrays of indices (Fig. 1c).

Other array-aware functions, such as sum, mean and maximum, 
perform element-by-element ‘reductions’, aggregating results across 
one, multiple or all axes of a single array. For example, summing an 
n-dimensional array over d axes results in an array of dimension n − d 
(Fig. 1f).

NumPy also includes array-aware functions for creating, reshaping, 
concatenating and padding arrays; searching, sorting and counting 
data; and reading and writing files. It provides extensive support for 
generating pseudorandom numbers, includes an assortment of prob-
ability distributions, and performs accelerated linear algebra, using 
one of several backends such as OpenBLAS18,19 or Intel MKL optimized 
for the CPUs at hand (see Supplementary Methods for more details).

Altogether, the combination of a simple in-memory array repre-
sentation, a syntax that closely mimics mathematics, and a variety 
of array-aware utility functions forms a productive and powerfully 
expressive array programming language.

In [1]: import numpy as np

In [2]: x = np.arange(12)

In [3]: x = x.reshape(4, 3)

In [4]: x
Out[4]:
array([[ 0,  1,  2],
       [ 3,  4,  5],
       [ 6,  7,  8],
       [ 9, 10, 11]])

In [5]: np.mean(x, axis=0)
Out[5]: array([4.5, 5.5, 6.5])

In [6]: x = x - np.mean(x, axis=0)

In [7]: x
Out[7]:
array([[-4.5, -4.5, -4.5],
       [-1.5, -1.5, -1.5],
       [ 1.5,  1.5,  1.5],
       [ 4.5,  4.5,  4.5]])
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Fig. 1 | The NumPy array incorporates several fundamental array concepts. 
a, The NumPy array data structure and its associated metadata fields.  
b, Indexing an array with slices and steps. These operations return a ‘view’ of 
the original data. c, Indexing an array with masks, scalar coordinates or other 
arrays, so that it returns a ‘copy’ of the original data. In the bottom example, an 
array is indexed with other arrays; this broadcasts the indexing arguments 

before performing the lookup. d, Vectorization efficiently applies operations 
to groups of elements. e, Broadcasting in the multiplication of two-dimensional  
arrays. f, Reduction operations act along one or more axes. In this example,  
an array is summed along select axes to produce a vector, or along two axes 
consecutively to produce a scalar. g, Example NumPy code, illustrating some of 
these concepts.
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Scientific Python ecosystem
Python is an open-source, general-purpose interpreted programming 
language well suited to standard programming tasks such as cleaning 
data, interacting with web resources and parsing text. Adding fast array 
operations and linear algebra enables scientists to do all their work 
within a single programming language—one that has the advantage of 
being famously easy to learn and teach, as witnessed by its adoption 
as a primary learning language in many universities.

Even though NumPy is not part of Python’s standard library, it ben-
efits from a good relationship with the Python developers. Over the 
years, the Python language has added new features and special syntax 
so that NumPy would have a more succinct and easier-to-read array 
notation. However, because it is not part of the standard library, NumPy 
is able to dictate its own release policies and development patterns.

SciPy and Matplotlib are tightly coupled with NumPy in terms of his-
tory, development and use. SciPy provides fundamental algorithms for 
scientific computing, including mathematical, scientific and engineer-
ing routines. Matplotlib generates publication-ready figures and visu-
alizations. The combination of NumPy, SciPy and Matplotlib, together 
with an advanced interactive environment such as IPython20 or Jupy-
ter21, provides a solid foundation for array programming in Python. The 
scientific Python ecosystem (Fig. 2) builds on top of this foundation to 
provide several, widely used technique-specific libraries15,16,22, that in 
turn underlie numerous domain-specific projects23–28. NumPy, at the 
base of the ecosystem of array-aware libraries, sets documentation 
standards, provides array testing infrastructure and adds build sup-
port for Fortran and other compilers.

Many research groups have designed large, complex scientific librar-
ies that add application-specific functionality to the ecosystem. For 
example, the eht-imaging library29, developed by the Event Horizon 

Telescope collaboration for radio interferometry imaging, analysis 
and simulation, relies on many lower-level components of the scientific 
Python ecosystem. In particular, the EHT collaboration used this library 
for the first imaging of a black hole. Within eht-imaging, NumPy arrays 
are used to store and manipulate numerical data at every step in the 
processing chain: from raw data through calibration and image recon-
struction. SciPy supplies tools for general image-processing tasks such 
as filtering and image alignment, and scikit-image, an image-processing 
library that extends SciPy, provides higher-level functionality such 
as edge filters and Hough transforms. The ‘scipy.optimize’ module 
performs mathematical optimization. NetworkX22, a package for com-
plex network analysis, is used to verify image comparison consistency. 
Astropy23,24 handles standard astronomical file formats and computes 
time–coordinate transformations. Matplotlib is used to visualize data 
and to generate the final image of the black hole.

The interactive environment created by the array programming foun-
dation and the surrounding ecosystem of tools—inside of IPython or 
Jupyter—is ideally suited to exploratory data analysis. Users can fluidly 
inspect, manipulate and visualize their data, and rapidly iterate to refine 
programming statements. These statements are then stitched together 
into imperative or functional programs, or notebooks containing both 
computation and narrative. Scientific computing beyond exploratory 
work is often done in a text editor or an integrated development envi-
ronment (IDE) such as Spyder. This rich and productive environment 
has made Python popular for scientific research.

To complement this facility for exploratory work and rapid proto-
typing, NumPy has developed a culture of using time-tested software 
engineering practices to improve collaboration and reduce error30. This 
culture is not only adopted by leaders in the project but also enthusi-
astically taught to newcomers. The NumPy team was early to adopt 
distributed revision control and code review to improve collaboration 
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on code, and continuous testing that runs an extensive battery of auto-
mated tests for every proposed change to NumPy. The project also 
has comprehensive, high-quality documentation, integrated with the 
source code31–33.

This culture of using best practices for producing reliable scientific 
software has been adopted by the ecosystem of libraries that build on 
NumPy. For example, in a recent award given by the Royal Astronomi-
cal Society to Astropy, they state: “The Astropy Project has provided 
hundreds of junior scientists with experience in professional-standard 
software development practices including use of version control, unit 
testing, code review and issue tracking procedures. This is a vital skill 
set for modern researchers that is often missing from formal university 
education in physics or astronomy”34. Community members explicitly 
work to address this lack of formal education through courses and 
workshops35–37.

The recent rapid growth of data science, machine learning and arti-
ficial intelligence has further and dramatically boosted the scientific 
use of Python. Examples of its important applications, such as the 
eht-imaging library, now exist in almost every discipline in the natu-
ral and social sciences. These tools have become the primary software 
environment in many fields. NumPy and its ecosystem are commonly 
taught in university courses, boot camps and summer schools, and 
are the focus of community conferences and workshops worldwide. 
NumPy and its API have become truly ubiquitous.

Array proliferation and interoperability
NumPy provides in-memory, multidimensional, homogeneously typed 
(that is, single-pointer and strided) arrays on CPUs. It runs on machines 
ranging from embedded devices to the world’s largest supercomputers, 
with performance approaching that of compiled languages. For most 
its existence, NumPy addressed the vast majority of array computa-
tion use cases.

However, scientific datasets now routinely exceed the memory capac-
ity of a single machine and may be stored on multiple machines or in 
the cloud. In addition, the recent need to accelerate deep-learning and 
artificial intelligence applications has led to the emergence of special-
ized accelerator hardware, including graphics processing units (GPUs), 
tensor processing units (TPUs) and field-programmable gate arrays 
(FPGAs). Owing to its in-memory data model, NumPy is currently unable 
to directly utilize such storage and specialized hardware. However, 
both distributed data and also the parallel execution of GPUs, TPUs 
and FPGAs map well to the paradigm of array programming: therefore 
leading to a gap between available modern hardware architectures and 
the tools necessary to leverage their computational power.

The community’s efforts to fill this gap led to a proliferation of new 
array implementations. For example, each deep-learning framework 
created its own arrays; the PyTorch38, Tensorflow39, Apache MXNet40 
and JAX arrays all have the capability to run on CPUs and GPUs in a 
distributed fashion, using lazy evaluation to allow for additional per-
formance optimizations. SciPy and PyData/Sparse both provide sparse 
arrays, which typically contain few non-zero values and store only those 
in memory for efficiency. In addition, there are projects that build on 
NumPy arrays as data containers, and extend its capabilities. Distrib-
uted arrays are made possible that way by Dask, and labelled arrays—
referring to dimensions of an array by name rather than by index for 
clarity, compare x[:, 1] versus x.loc[:, 'time']—by xarray41.

Such libraries often mimic the NumPy API, because this lowers the 
barrier to entry for newcomers and provides the wider community with 
a stable array programming interface. This, in turn, prevents disruptive 
schisms such as the divergence between Numeric and Numarray. But 
exploring new ways of working with arrays is experimental by nature 
and, in fact, several promising libraries (such as Theano and Caffe) have 
already ceased development. And each time that a user decides to try a 
new technology, they must change import statements and ensure that the 
new library implements all the parts of the NumPy API they currently use.

Ideally, operating on specialized arrays using NumPy functions or 
semantics would simply work, so that users could write code once, 
and would then benefit from switching between NumPy arrays, GPU 
arrays, distributed arrays and so forth as appropriate. To support array 
operations between external array objects, NumPy therefore added 
the capability to act as a central coordination mechanism with a well 
specified API (Fig. 2).

To facilitate this interoperability, NumPy provides ‘protocols’ (or 
contracts of operation), that allow for specialized arrays to be passed to 
NumPy functions (Fig. 3). NumPy, in turn, dispatches operations to the 
originating library, as required. Over four hundred of the most popular 
NumPy functions are supported. The protocols are implemented by 
widely used libraries such as Dask, CuPy, xarray and PyData/Sparse. 
Thanks to these developments, users can now, for example, scale their 
computation from a single machine to distributed systems using Dask. 
The protocols also compose well, allowing users to redeploy NumPy 
code at scale on distributed, multi-GPU systems via, for instance, CuPy 
arrays embedded in Dask arrays. Using NumPy’s high-level API, users 
can leverage highly parallel code execution on multiple systems with 
millions of cores, all with minimal code changes42.

These array protocols are now a key feature of NumPy, and are 
expected to only increase in importance. The NumPy developers—
many of whom are authors of this Review—iteratively refine and add 
protocol designs to improve utility and simplify adoption.
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In [3]: x = da.arange(12)

In [4]: x = np.reshape(x, (4, 3))

In [5]: x
Out[5]: dask.array<..., shape=(4, 3), ...>

In [6]: np.mean(x, axis=0)
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Discussion
NumPy combines the expressive power of array programming, the 
performance of C, and the readability, usability and versatility of Python 
in a mature, well tested, well documented and community-developed 
library. Libraries in the scientific Python ecosystem provide fast imple-
mentations of most important algorithms. Where extreme optimiza-
tion is warranted, compiled languages can be used, such as Cython43, 
Numba44 and Pythran45; these languages extend Python and trans-
parently accelerate bottlenecks. Owing to NumPy’s simple memory 
model, it is easy to write low-level, hand-optimized code, usually in C 
or Fortran, to manipulate NumPy arrays and pass them back to Python. 
Furthermore, using array protocols, it is possible to utilize the full 
spectrum of specialized hardware acceleration with minimal changes 
to existing code.

NumPy was initially developed by students, faculty and researchers 
to provide an advanced, open-source array programming library for 
Python, which was free to use and unencumbered by license servers and 
software protection dongles. There was a sense of building something 
consequential together for the benefit of many others. Participating 
in such an endeavour, within a welcoming community of like-minded 
individuals, held a powerful attraction for many early contributors.

These user–developers frequently had to write code from scratch 
to solve their own or their colleagues’ problems—often in low-level 
languages that preceded Python, such as Fortran46 and C. To them, 
the advantages of an interactive, high-level array library were evident. 
The design of this new tool was informed by other powerful interactive 
programming languages for scientific computing such as Basis47–50, 
Yorick51, R52 and APL53, as well as commercial languages and environ-
ments such as IDL (Interactive Data Language) and MATLAB.

What began as an attempt to add an array object to Python became 
the foundation of a vibrant ecosystem of tools. Now, a large amount of 
scientific work depends on NumPy being correct, fast and stable. It is 
no longer a small community project, but core scientific infrastructure.

The developer culture has matured: although initial development was 
highly informal, NumPy now has a roadmap and a process for propos-
ing and discussing large changes. The project has formal governance 
structures and is fiscally sponsored by NumFOCUS, a nonprofit that 
promotes open practices in research, data and scientific computing. 
Over the past few years, the project attracted its first funded develop-
ment, sponsored by the Moore and Sloan Foundations, and received 
an award as part of the Chan Zuckerberg Initiative’s Essentials of Open 
Source Software programme. With this funding, the project was (and 
is) able to have sustained focus over multiple months to implement 
substantial new features and improvements. That said, the develop-
ment of NumPy still depends heavily on contributions made by gradu-
ate students and researchers in their free time (see Supplementary 
Methods for more details).

NumPy is no longer merely the foundational array library underlying 
the scientific Python ecosystem, but it has become the standard API for 
tensor computation and a central coordinating mechanism between 
array types and technologies in Python. Work continues to expand on 
and improve these interoperability features.

Over the next decade, NumPy developers will face several challenges. 
New devices will be developed, and existing specialized hardware will 
evolve to meet diminishing returns on Moore’s law. There will be more, 
and a wider variety of, data science practitioners, a large proportion of 
whom will use NumPy. The scale of scientific data gathering will con-
tinue to increase, with the adoption of devices and instruments such 
as light-sheet microscopes and the Large Synoptic Survey Telescope 
(LSST)54. New generation languages, interpreters and compilers, such as 
Rust55, Julia56 and LLVM57, will create new concepts and data structures, 
and determine their viability.

Through the mechanisms described in this Review, NumPy is poised 
to embrace such a changing landscape, and to continue playing a 

leading part in interactive scientific computation, although to do so 
will require sustained funding from government, academia and indus-
try. But, importantly, for NumPy to meet the needs of the next decade 
of data science, it will also need a new generation of graduate students 
and community contributors to drive it forward.
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