

—*"—*•
» v

—

;CM3

NPS52-89-037

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THE COMMAND AND CONTROL
WORKSTATION OF THE FUTURE

Subsurface and Periscope Views

Gordon Kenneth Weeks, Jr.

Charles Edward Phillips, Jr.

June 1989

Thesis Advisor: Michael J. Zvda

Approved for public release; distribution is unlimited

Prepared for:

Naval Ocean Systems Center

Code 402

San Diego, CA 9215

Naval Underwater Systems Center

Combat Control Systems Department

Building 1171/1

Newport, RI 02841

T244H1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. C. Austin Harrison Shull

Superintendent Provost

This report was prepared in conjunction with research conducted for the United States

Naval Underwater Systems Center, Newport, Rhode Island and United States Naval Ocean

Systems Center, San Diego, California. The work was funded by the Naval Postgraduate

School.

Reproduction of all or part of this report is authorized.

This thesis is issued as a technical report with the concurrence of:

UNCLASSTFTED

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
1D RESTRICTIVE MARKINGS

None
2a SECURITY CLASSIFICATION Al.ThoR'Ty

2b DECLASSIFICATION 'DOWNGRADING SCHEDULE

3 DISTRIBUTION, AVAILABILITY OF REPORT

Unlimited Distribution
4 PERFORMING ORGANIZATION REPORT NUMbER(S)

NPS52-89-037

S MONITORING ORGANIZATION REPORT NUMBER(S,

6a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate
School

6d OFFICE SyMBOl
(It applicable)

368

7a NAME O c MONITORING ORGANIZATION

Naval Postgraduate School
6c ADDRESS (Ot>. State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (Oty, State, and ZIP Code)

Monterey, CA 93943-5000
8a NAME O c FUNDING 'SPONSORING

ORGANIZATION

NJELS

5d OFFICE SYMBOL
(if applicable)

17/368

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Direct Funding

8c ADDRESS (City. State, and ZIP Code;

Monterey, CA 93943-5000

10 SOURCE O c FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

v\QPK UNIT
ACCESSION NO

ii title undudesecumy ciass^auon, THE COMMAND ANT) CONTROL WORKSTATION OF THE FUTURE
SUBSURFACE AND PERSICOPE VIEWS (U)

Phillips Jr., Charles, E., CPT, USA
Weeks Jr., Gordon, K. , LT, USCG

12 PERSONAL AjTHOR(S)

13a TYPE O c REPOR"

Master's Thesis
13h T ME COv'EPED
n>OM TO

14 DATE Of RE DORT (rear Month, Day)

June 1989
5 pAGE COUNT

111
i6 supplemental notatio\ The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the Department of the
Defense or the U. S. Government.

17 COSA T
: CODES

FIELD G»OUP S'jB-GRO. p

ife SuB.EC 1 TERMS {Continue on reverse it necessary and identify o> b'oc* number)

High Performance Graphics Workstation, Real-time
3D Graphics, Subsurface View, Periscope View,
3D Terrain Visualization, 3D Icons, CCWF

19 ABSTRACT (Continue on reverse if necessary and identity by block number)

Today's tactical commander needs to assimilate enormous amounts of information
to make reasonable decisions. Graphics displays can be a valuable tool in
conveying such information in a clear and concise manner. Our vehicle for
studying such displays is a project entitled the Command and Control
Workstation of the Future (CCWF). In this study, we focus on the subsurface
and periscope views. Our primary goal is to provide the tactical commander
with an interactive, user-friendly, 3D simulation system to assist in decision
making, planning and training. The secondary goal is to provide information
on real-time three dimensional graphics techniques, with an eye on meaningful
graphics workstation performance measurements for such techniques.

20 Distribution 'AVAiiAbiiTr of abstract

D UNCI ASSISE r>UNLlM:TED D SAME AS "' D DTiC USE";

;•• A3STRAC SECURITv CLASSIFICATION

UNCLASSIFXED
2sa NAME O- RESKjNS'bit iNDiv^DuA.
Micheal J. Zyda

22b TttE DHONE (Inciuae Area Cooe)

(408)646-2305
cil QFHCs SYMB'.

368

DDFORM 1473.^4 r/A- 8i ACi, t>3 t ... -r,., oe jSPG until er^dus'ec

A o""'*" editions a'<? ouso'e'f
SEC '

D ' ,v ClAS^ CiCA T M IN O c T| "AG'

UNCtA^SlFTET)
CVcc l»»t-«0» J«

Approved for public release; distribution is unlimited.

THE COMMAND AND CONTROL WORKSTATION OF THE FUTURE:
SUBSURFACE AND PERISCOPE VIEWS

by

Gordon Kenneth Weeks Jr.

Lieutenant, United States Coast Guard

B.S., United States Coast Guard Academy, 1984

and

Charles Edward Phillips Jr.

Captain, United States Army
B.S., United States Military Academy, 1981

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

n

')0L

ABSTRACT

Today's tactical commander needs to assimilate enormous amounts of

information to make reasonable decisions. Graphics displays can be a valuable tool in

conveying such information in a clear and concise manner. Our vehicle for studying

such displays is a project entitled the Command and Control Workstation of the

Future (CCWF). In this study, we focus on the subsurface and periscope views. Our

primary goal is to provide the tactical commander with an interactive, user-friendly,

3D simulation system to assist in decision making, planning and training. The

secondary goal is to provide information on real-time three dimensional graphics

techniques, with an eye on meaningful graphics workstation performance

measurements for such techniques.

Captain Phillips designed and built the 3D vessel and weapon icons, was

responsible for the layout of the initial 2D and 3D windows, and was a major force in

the current standard file format work by providing vessel models in both formats and

giving realistic operational guidance on its use. Lieutenant Weeks provided the

overall program design including considerations for future expansion. He created and

implemented the 3D operations, 2D operations and networking scheme. His major

focus was in creating the high performance terrain drawing algorithms using standard

DMA terrain databases and ensuring the overall programs ease of modification.

2

in

TABLE OF CONTENTS

I. FOCUS 1

A. THREE DIMENSIONAL DISPLAY 1

B. SUMMARY OF THE CHAPTERS 2

II. REAL-TIME VISUAL SIMULATORS AT NPS 4

A. INTRODUCTION 4

B. COMMANDERS DISPLAY SYSTEM 4

C. SURFACE VIEW SIMULATOR 5

D. SUBSURFACE AND PERISCOPE VIEWS 6

m. REAL-TIME GRAPHICS TECHNIQUES AND HARDWARE 7

A. COLOR 7

B. GOURAUD SHADING 8

C LIGHTING 8

D. OVERLAYS 9

E. DOUBLE BUFFERING 9

F. Z BUFFERING 9

IV. SEA OF JAPAN DATABASES 10

A. SEA OF JAPAN DMA DATABASE 10

V. TWO DIMENSIONAL OPERATIONS 1

1

A. SIXTY NAUTICAL MILE DATABASE SELECTION 1

1

B. VESSEL PLACEMENT 13

C. VESSEL SELECTION 16

D. RETAIN DRIVEN VESSEL 18

IV

E. EFFECTS OF THE 2D OPERATIONS 19

VI. THREE DIMENSIONAL SIMULATOR OPERATIONS 20

A. 3D OPERATION OVERVIEW AND TERM DESCRIPTION 20

1. 3D View Considerations 22

2. Processing Speed 22

B. 3D PROCESSING SCHEDULE 23

C. EVENT QUEUE PROCESSING 23

1. Sending Changes to the Network 26

D. VESSEL AND WEAPON POSITION UPDATING 26

1. Stealth Mode Update 29

E. NETWORK UPDATES 29

F. FIVE NAUTICAL MILE PILOTING GRID 30

G. SIXTY NAUTICAL MILE DATABASE GRID 33

H. VISUAL DEPTH FINDER 33

I. 3D VIEW WINDOW OPERATIONS 36

1. Terrain Drawing Algorithm 38

a. Five Degree Sectors 38

b. Major and Minor Axis 40

c. Sector Drawing Lookup Table 41

d. Major Axis Splits 41

2. Grid Square Drawing Method 41

a. Visible Quadrant and Water Surface Draw 43

b. Terrain Sector Control Routine 45

c. Resolution Boundaries 45

d. Medium and Low Resolution Drawing 48

e. Resolution Boundary Placement 48

f. Resolution Skirt Drawing 50

g. Terrain Grid Squares 50

3. Triangular Mesh Drawing Method 52

a. Mesh and Grid Square Differences 52

4. Encountered Drawing Problems 55

5. 3D Vessel Drawing 55

6. Final 3D Window Operations 56

J. POLYGONS PER FRAME AND FRAMES PER SECOND 56

VII. NETWORKING OPERATIONS 58

A. OVERVIEW 58

B. HELLO MESSAGE 60

C. HI MESSAGE 60

D. VESSEL INITIALIZATION MESSAGE 60

E. WRECK INITIALIZATION MESSAGE 61

F. WEAPONS INITIALIZATION MESSAGE 61

G. DRIVEN VESSEL UPDATE MESSAGE 62

H. MOVE DRIVEN VESSEL TO WRECK LIST MESSAGE 62

I. RESEND MESSAGE 62

J. KILL MESSAGE 63

VIE. THREE DIMENSIONAL VESSEL ICONS 64

A. STANDARD FILE FORMAT 66

B. DIGITIZED IMAGE 69

C. LEGO BUILDING SYSTEM 70

D. GRAPH PLOTTING 71

E. NORMALS AND LIGHTING 73

DC. PERFORMANCE 75

VI

A. MEMORY REQUIREMENTS 75

B. 2D AND 3D OPERATIONS CHARACTERISTICS 76

1. 2D and Normal Calculation Operations 76

2. Terrain and Normal Data Storage Methods 76

3. 3D Operations Characteristics 77

4. Shared Graphics and C Libraries 77

C. TERRAIN DRAWING CONSIDERATIONS 77

D. TERRAIN LIGHTING MODEL 78

1. Comparison of Lighted and Unlighted Versions 81

2. Normal Calculation verse Normal Data Storage 81

E. PERFORMANCE CONCLUSIONS 82

XL CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS 83

A. CONCLUSIONS AND LIMITATIONS 83

1. Terrain Drawing 83

2. Three Dimensional Vessel and Weapon Icons 84

3. Networking 84

B. FUTURE DIRECTIONS 85

1. Air and Surface Views 85

2. Multistation Networking 85

3. 3D Vessel and Weapon Icon Production 86

4. Weapons Profiles 86

5. Ship and Submarine Control Surfaces 87

6. Sensor Packages 87

APPENDDC A SHIP MODEL DIAGRAMS AND PICTURES 88

LIST OF REFERENCES 100

INITIAL DISTRIBUTION LIST 101

vu

ACKNOWLEDGEMENTS

Since this project is the initial work on the subsurface and periscope views of the

Command and Control Workstation of the Future, all code generated by this project is

original with the exceptions noted below. We started with the concept of drawing the

terrain in a way different from any other project here at NPS. Performance tests

would seem to show we are successful.

We would like to thank the following people for their timely help. Captain

Randolph Strong, USA, provided a copy of his low level networking routines which

were modified and used as the low level building blocks for the networking scheme

used within the CCWF Subsurface and Periscope Views [Strong, 1989].

Captain Emil Velez, USA, provided the initial programs that converted 3D

vessels from the standard IRIS format to the new standard file format. Upon his

departure in March, 1989, Captain Phillips became the sole source for converting the

current 3D vessel icons to the standard file format, using up considerable amounts of

time.

Finally, we would like to thank our thesis advisor, Dr. Michael Zyda, for his

guidance, graphics techniques, and the occasional ear that helped a lot of steam get

blown off without hurting anyone.

Vlll

I. FOCUS

Our project is the preliminary work on the Command and Control Workstation of

the Future (CCWF): Subsurface and Periscope Views (S&PV). The view

considerations are much different for an underwater view over a surface view and are

in fact entirely synthetic. While there is normally only a restricted underwater view,

the concepts used in previous projects can be considered when developing the view.

The goal of this project is to produce a visualization tool that provides a three

dimensional perspective of an underwater area of interest. This view is an estimate

of what would be seen from the bridge or periscope of a submarine if the view was not

limited by darkness or underwater visibility. Untying the commander from standard

sonar readings and two dimensional navigational charts should give the commander a

better feel for the operations area. This visualization tool can be a valuable

navigational aid, with actual terrain data being displayed graphically. Previously

unseen terrain features can be used to aid the tactical commander or commanding

officer in best applying his assets. The simulation can further be used to navigate

suggested vessel tracks before actually maneuvering in the area. Many avenues of

approach can be attempted ahead of time helping to establish the most advantageous

route.

A. THREE DIMENSIONAL DISPLAY

The three dimensional display is the most important part of this project. With

proper lighting and shading, the tactical commander can get a strong feel for his

present underwater environment. Along with the 3D terrain, vessels in the vicinity

1

can be portrayed in their current operating environment. Seeing these vessels can be

a valuable aid in making tactical decisions based on the spatial relationships to those

vessels and their associated terrain. When confronted with an enemy vessel, a

commander can make tactical decisions based on what terrain can provide him with

the most cover and concealment and still leave room for possible evasive action.

Assimilating three dimensional data from the traditional two dimensional command

and control system in the heat of battle can easily become error prone resulting in

possible tactical blunders.

The S&PV presents the subsurface commander with iconic 3D exterior hull

silhouettes of surface vessels. These silhouettes show the submarine commander

the enemy formations he is up against allowing him to develop his plan of attack and

any counteractions that may be necessary. The tactical commander is given the

flexibility to select an area of operation, and the type of vessel he wishes to use.

Such capabilities provide valuable training for learning how best to fight a particular

platform. Each vessel type, with its unique operating characteristics, reacts differently

to its current tactical environment. The tactical commander is made familiar with each

vessel's operating characteristics. Moving the commander's viewpoint to different

vessels enables the commander to see what his own vessel looks like from the eyes

of the enemy and learn what can be done to improve his situation.

B. SUMMARY OF THE CHAPTERS

Our work on the subsurface and periscope views for the CCWF is a fairly large

effort. In Chapter 2, we begin by discussing the history of real time visual simulators

at the Naval Postgraduate School (NPS). In Chapter 3, we discuss real time

graphics hardware and techniques. We primarily focus on the Silicon Graphics IRIS

4D/ 70GT and its supporting software packages. Chapter 4 provides an overview of

the S&PV from its DMA databases to networking operations. Chapter 5 is

concerned with the 2D operations within the S&PV. These functions include viewing

and picking a sixty nautical mile square data file, placing vessels within the selected

area and finally picking a vessel to navigate. Chapter 6 focuses on 3D operations

within the S&PV. Network operations are detailed in Chapter 7 while creating the

iconic 3D exterior hull silhouettes is the subject of Chapter 8. Chapter 9 contains

performance evaluation information on the S&PV system. Chapter 10 contains

conclusions, limitations and future directions.

II. REAL -TIME VISUAL SIMULATORS AT NPS

A. INTRODUCTION

The Naval Postgraduate School's Graphics and Video Laboratory has had a long

history in developing real-time 3D visual simulators [Ref. 3,4]. The current version

of the Moving Platform Simulator (MPS) is the fruit of nearly three years of effort and

the summation of two separate systems [Ref 3:pp 4-51. It is currently being

developed in three separate flavors which in the long run will be merged together.

The Command and Control Workstation of the Future (CCWF) project was

initiated to provide the tactical commander with ability to view a scenario from any

one of his platforms. This capability enhances the commander's abilities to maneuver

and if necessary, fight the vessels under his control. He is better able to determine

each vessel's tactical environment by positioning himself on the vessel. The initial

start of the CCWF was with the surface view simulator and Commanders Display

System [Ref 1,4]. We discuss these two systems as they relate to the Subsurface

and Periscope View Simulator (S&PV).

B. COMMANDERS DISPLAY SYSTEM

The Commanders Display System (CDS) was the original part of the Command

and Control Workstation of the Future project [Ref.l: p. 18]. It was to provide the

contact and tactical data for all of the simulator view programs. First, the program's

user selects the platform he desires to see. Then, the area of interest, as seen from

the vessel, is displayed by the appropriate 3D view program. The CDS was written

on the IRIS 2400 Turbo and currently has not been ported to the IRIS 4D/70GT. A

port of the CDS to the newer IRIS machines is a future effort [Ref. l:p. 18].

An important consideration in the CDS was its use of Navy Tactical Display

System (NTDS) fonts to display the various contacts. These fonts were color coded

as to the intention of the contacts and deployed as the contact locater [Ref. l:pp. 18-

24]. The carry over from the real tactical environment to the simulator is important in

the use of our simulators as training tools.

C. SURFACE VIEW SIMULATOR

The surface view simulator was designed to display a visible area of operation

as seen from a surface ship or helicopter [Ref 4:pp. 43-53]. It featured visibility

ranges of up to twenty six nautical miles. It used the same databases as used by the

subsurface and periscope view but never included many features that are currently in

our simulator such as lighting, networking and vessels. It did have the capability of

loading four databases at once to provide for the twenty six mile visibility range [Ref.

4:pp. 43-53].

The surface view simulator used multiple resolution terrain displays. Its high

resolution area was displayed with 100 yard data points. The medium resolution

areas were displayed with 1,200 yard data points and finally, the low resolution data

was done with 12,000 yard data points. The multiple resolutions were used to allow

the simulator to display the 52,000 yard, twenty six nautical mile viewing areas

desired of the project in real-time [Ref. 4:pp. 49-51].

The Surface View Simulator was a first prototype. Work on that system has

been stopped. That system is superseded by the Subsurface and Periscope View

simulator.

D. SUBSURFACE AND PERISCOPE VIEWS

The S&PV is the latest work in the CCWF project. It provides an effective

simulated subsurface view with variable visibility ranges and a limited surface view

to 20,000 yards. The S&PV contains a realistic lighting model and 3D vessel icons

not found in the surface view simulator. It is a very stable simulator that can be

enhanced to include a complete surface and air view without the instability found in

the earlier, pioneering projects.

III. REAL-TIME GRAPHICS TECHNIQUES AND HARDWARE

The Silicon Graphics Inc., IRIS 4D/70GT is a powerful, fairly low cost color

graphics workstation. The IRIS provides a screen resolution of 1280 by 1024 pixels

with 96 bit planes per pixel. These 96 bit planes provide double buffered, alpha

buffered, and z-buffered displays with overlay and underlay capabilities. The IRIS

has a proprietary graphics pipeline which provides hardware and microcode support

for Gouraud shaded polygon fill and lighting in real time. With the rated speed of

40,000 Gouraud shaded, lighted, four sided polygons per second, the IRIS 4D/70GT

provides a good platform on which to base the S&PV simulator [Ref. 2].

A. COLOR

Only recently has it become cost effective to use color in graphics displays.

Color can be used as a very powerful visual cue in depicting various types of

information. In the past, the commander had to rely on the expertise of the operator

to interpret the information on the screen. With color, the commander can more easily

differentiate enemy and friendly units, increasing his ability to make accurate

decisions quickly. Chart data can be displayed using realistic color shading to provide

for efficient maneuver plotting. Vessel icons can be overlaid onto the conning charts

and used to master the tactical environment in which the tactical commander or

commanding officer is currently involved.

B. GOURAUD SHADING

Gouraud shading is provided in hardware by the IRIS 4D/70GT. This shading

technique provides for realistic shading of polygons with graduations of color. While a

less sophisticated fill algorithm would shade the polygon with the last color set,

Gouraud shading linearly shades the polygon between vertex color points. With

Gouraud shading, a four sided polygon can have a different color set at each vertex

and the shading blends the colors into a smoothly shaded polygon. All polygons in the

S&PV simulator are Gouraud shaded [Ref. 5:pp. 289-291].

C. LIGHTING

Another significant feature of the IRIS is its hardware support for efficiently

performing lighting calculations. Proper lighting enhances the realism of objects

within the simulator. Three things are considered when using a lighting model, light

sources, the objects to be lighted and the position of the eye. For a light source, the

color, location and direction of the light source is required. Each object's color and

surface composition is calculated along with the designated eye position in relation to

the object and the light source. The combination of the these factors are used to

create realistic, lighted scenes. Surfaces that are shielded from the light source tend

to be darker and give the illusion of shading. Surfaces that are perpendicular to the

light source are the brightest. The IRIS graphics pipeline calculates the proper color

to depict objects using the angular relationships between the viewer, the object

surface and the light source. Lighting requires extra work and data storage but the

effects are dramatic as seen in the simulator.

D. OVERLAYS

Overlays are used in this project to save drawing time. Of the 96 bits per pixel,

four are used to support overlay or underlay drawing. These bits can be cleared and

drawn without effecting the drawing contained in the RGB, double buffered bits. The

S&PV uses overlays to outline the five nautical mile piloting grid area on the sixty

nautical mile database grid. The drawing time for the database grid is approximately

7 seconds, far too slow for redrawing during the real-time operations. The overlay

planes are cleared and the piloting grid outline is updated as required without

affecting the database grid.

E. DOUBLE BUFFERING

Double buffering is a graphics technique used for animation. Double buffering

allows a drawing to be completed in the back buffer before it is displayed. Animation

speeds are recorded in frames per second. To maintain a useful interactive

simulation, drawing times are maintained at better than three frames per second.

F. Z-BUFFERING

Hidden surface removal using z-buffering is an important attribute of the IRIS.

Hidden surfaces are surfaces that are obscured by other objects closer to the

observer [Ref. 5:pp. 262-264]. The IRIS calculates which surfaces are closer to the

observer on a pixel by pixel basis using the Z-buffer (or depth buffer) [Ref. 2]. This

technique is particularly valuable in terrain drawing, which is the heart of the

simulation.

IV. SEA OF JAPAN DATABASES

The subsurface and periscope views (S&PV) module of the CCWF was

designed to display Defense Mapping Agency Sea of Japan terrain data in real-time.

Along with the terrain, the S&PV displays 3D vessel icons and is capable of

networking between many graphics workstations.

A. SEA OF JAPAN DMA DATABASE

Each of the Sea of Japan databases used in the CCWF covers an area of sixty

square nautical miles. Each database file consists of 1201 by 1201 height values

whose lower left hand corner is the whole degrees file name. For example, the file

31N130E has a lower left hand coordinate of 31 degrees north and 130 degrees east.

Each data point is one hundred yards, three seconds of latitude, apart. From the

starting point, the data points progress north every hundred yards until the north

most point with the current longitude is found. The next point is then the south most

point with the new longitude incremented 100 yards or 3 seconds.

Each height value is given in meters and is represented as a sixteen bit integer.

Since underwater terrain data is classified, or simply not available, we flooded the

databases we had 1,000 feet, 308 meters, to derive our underwater terrain. Original

ocean points are indicated with deep blue which represents the bottom of the

database. No vessels are allowed to progress deeper than this value.

10

V. TWO DIMENSIONAL OPERATIONS

The two dimensional operations within the S&PV are in two parts. The first

step is selecting the desired database grid on which to operate. All currently

available databases can be viewed before the final selection is made. Once the

database has been selected, the terrain vertex normals are calculated.

The second part of the 2D operations is the vessel placement and selection

operations. This part is broken down into three basic steps, vessel placement, vessel

selection and finally, new operations area or new vessel selection. All of the steps in

this phase can be reversed or altered as the needs of the user require.

A. SIXTY NAUTICAL MILE DATABASE SELECTION

After the initial greeting screen, the user is prompted to select a database name.

Once the desired database has been selected, the program portrays the database

upon the screen as seen in Figure 5.1. The program then prompts the user whether or

not he wishes to use the database for the simulation. If the user does not want to

use the database, or simply wants to see what the others look like, the user selects

the "don't use this grid" option. The program then prompts the user with the name of

the databases not currendy visible and the user makes a new selection. This process

continues until the user finally selects the "use this grid" option on the prompted

menu.

Once the database has been selected, the program calculates the terrain vertex

normals. Each of the 1,201 by 1,201 data points has a vertex normal associated with

11

Figure 5.1 CCWF 2D Screen

12

it. The selected grid is redrawn on the screen in the order of the normal calculation for

those points drawn. This process lets the user know the program is working on an

otherwise user invisible operation. Once the normals have been calculated, the

selection grid and the main 2D operations run-time menu is popped up for the user.

B. VESSEL PLACEMENT

The main 2D operations control menu offers the user three options, vessel

placement, vessel selection and retention and placement of the currently driven

vessel. The controlling switch statement is shown in Figure 5.2. Vessel placement

operations allow the user to select one of the five currently available platforms and

place them anywhere on the sixty nautical mile database grid.

Immediately upon selecting the place vessel option, the program queries the user

to select a five nautical mile grid on which to place the vessels. Once this has been

accomplished, the user is queried for the vessel type he wishes to place. The

following vessels are currently available, the Kitty Hawk class aircraft carrier, the

Spruance class guided missile destroyer, the Ohio class ballistic missile submarine,

the Los Angeles class fast attack submarine and the Russian Typhoon class ballistic

missile submarine. Once the vessel type has been selected, the user is queried for

the course, speed and, if a subsurface platform, the depth desired. Once all of the

appropriate data has been selected from the menus, the user is directed to place the

vessel by positioning the mouse on the location and pressing the left mouse button.

Once the vessel has been placed, the user is asked if he desires to place more

platforms on this grid square. The user can place as many vessels on the grid square

as desired. Figure 5.3 shows the vessel creation and placement control routine.

13

while (picked_driven_vsl == FALSE)

{

/* On the initial Pass, the 2D map is already there so draw the grid */

if (initialPass == FALSE)
drawSea2D(MAP2D,FALSE);

else

{

setwindow(MAP2D);

frontbuffer(TRUE);

drawGridandVesselsO;

frontbuffer(FALSE);

initialPass = FALSE;

}

/* Discover what the user would do */

switch(promptmenu(ControlMenu))

{

case 1 : /* Place New Platform */

placePlatformO;

break;

case 2 : /* Select Platform to drive */

picked_driven_vsl = selectDrivePlatform();

break;

case 3 : /* Retain current platform */

picked_driven_vsl = place_retained_vsl();

break;

default

:

break;

} /* end switch */

} /* end while */

Figure 5.2 2D Main Control Routine

14

/* Select grid location */

selectGrid();

/* Loop til all desired vessels are placed */

placeanother = TRUE;
while (placeanother)

{

/* Create new platform */

new_vsl = add_vsl_packet();

/* Select platform type */

selectNewPlatform(new_vsl);

/* Select course, speed and depth */

selectCourseSpeedDepth(new_vsl);

/* Place the vessel */

putContactVsl(new_vsl);

/* Find the users desires */

if (promptmenu(placeMenu) == 2)

placeanother = FALSE;
else

drawSelectGrid(MAP2D,(float)opareaX+50,(float)opareaY+50);

}

Figure 5.3 Vessel Placement Control Routine

15

Vessel courses are currently set for every thirty degrees starting at true north.

Vessel speeds are from zero to five knots, then every five knots up to thirty knots.

Subsurface vessels are allowed from draft depth to 300 meters below with fifty meter

increments. Any increases in the above ranges can be easily accomplished by

changing the appropriate menu creation and interpretation code.

Each vessel's location is displayed on the five nautical mile piloting grid and the

sixty nautical mile database grid using the ACDS fonts taken from the Commander's

Display System as seen in Figure 5.4 [Ref l:pp. 18-24]. These fonts are further

coded with colors appropriate to their supposed intentions. The color list ranges from

blue for friendly forces to red for hostile forces. While the colors used within the

program were set by us, coloring the icons by their intention was first done in the

Commander's Display System [Ref l:pp. 18-24]. Each vessel icon has a blue line

emanating from the center of the icon indicating the selected course for the vessel.

When the user has placed all desired vessels within the selected five nautical

mile grid, the program returns to the main 2D control menu, interpreted by the code in

Figure 5.2. The user can again choose to place more vessels within the sixty nautical

mile database grid by selecting the vessel placement option. There is no restriction

keeping the user from re-selecting the same five nautical mile grid for placing vessels.

C. VESSEL SELECTION

Once the user has placed all desired vessels onto the sixty nautical mile

database grid, the user then normally selects a vessel to drive. This is accomplished

by first picking a five nautical mile grid. The program then prompts the user with

instructions to place the mouse on the desired vessel icon and press the left mouse

16

Figure 5.4 Five Nautical Mile Placement and Selection Grid

17

button. The screen blanks to black when the program has successfully found the

desired vessel and then initializes the 3D screens and operations.

If the user had earlier selected the "restart with a new operation area" 3D run-

time option, the user's vessel at the time of the selection would still be attached to

the user. If the user desires to navigate a different type of vessel or see what the

other vessels might be seeing, this 2D menu option allows for vessel swapping.

Since the user is currently in a selected vessel, the program asks if the user wants to

place his current vessel back with the other vessels or discard it from the simulation.

Once this decision has been made, the program again queries the user for the desired

five nautical mile grid and the desired vessel is selected as before.

D. RETAIN DRIVEN VESSEL

When the user merely wants to move the driven vessel to a new operation area,

the user selects "restart with a new operation area" from the 3D run-time menu.

This option returns the program to the 2D main control menu, Figure 5.2. Selecting

the "retain and drive current platform" menu option allows the user to move his

current vessel to anywhere in the sixty nautical mile database grid. Once selected

the user is prompted to select a five nautical mile grid for final placement upon the

grid. The program then immediately returns to the 3D operations.

If the user selects the retain option without first having selected a vessel to

drive, the program warns the user of his error and returns him to the main 2D control

menu. The same is done in the "select vessel to be driven" menu option if no vessels

were placed.

18

E. EFFECTS OF THE 2D OPERATIONS

While the 2D operations are primarily concerned with creating and placing

vessels and selecting a vessel to drive, the routines in the 2D operations add a

considerable amount of flexibility to the overall program. Using these routines, the

user can change platforms, change area of operations and delete platforms.

Changing platforms is easily done starting at the 3D run time menu. Selecting

the "restart with new operations area" menu item returns the user to the 2D main

control menu. Selecting the "select platform to drive" option allows the user to

replace his current vessel into the vessel contact list and select a new platform to

drive. The user is queried for the five nautical mile grid the desired vessel is in.

Once in the grid, the user selects the vessel desired as in the normal selection

process. If the discarded driven vessel is in the grid selected, the user can reselect

the vessel if desired. This does have the side effect of reloading the weapons on the

vessel.

Changing operations area is the primary reason for the third option on the 2D

main menu, "retain and drive current platform." Using the procedure discussed above,

the user can easily move around the entire sixty nautical mile database grid.

Deleting vessels can be done by selecting the vessel to be deleted as the driven

vessel. Returning to the 2D operations via the restart option, the user then selects

the "select platform to drive" 2D main menu option. Since the user is currently driving

a vessel, the user is then prompted as to the disposition of the vessel currently

driven. To delete the vessel from the database, simply select the "discard the

vessel" menu option.

19

VI. THREE DIMENSIONAL SIMULATOR OPERATIONS

After all currently desired vessels have been placed and the driven vessel's

initial position has been determined, the simulator closes all of the 2D operation

windows and initializes the 3D operations. The overall design of the 3D view, Figure

6.1, is to portray all necessary information to safely pilot and if necessary, fight the

vessel. The selected operation area location is shown on the sixty nautical mile

database grid coinciding with the five nautical mile piloting chart. Both are used as a

navigational aid. A visual depth gauge is used for grounding avoidance. A weapons

panel and a control panel give the current vessel and simulator status. The

centerpiece 3D view presents the user with a simulated visual scene along the

selected view direction. All six of the windows are either redrawn or updated with

each cycle through the simulator.

A. 3D OPERATION OVERVIEW AND TERM DESCRIPTION

The 3D view was the major focus of this real-time simulator. It has gone

through many revisions to get to the current state. The three dimensional underwater

terrain is drawn with two major considerations, unbounded moving view point and

processing speed. Unbounded moving view point releases the user from being tied to

one particular terrain section and allows the viewer to roam the entire database and

beyond. Processing speed is the primary concern for a real-time system. Speed, as

measured in frames per second, is the guideline for performance measurement within

this program.

20

Figure 6.1 S&PV 3D Screen

21

1. 3D View Considerations

The view presented to the user is always centered at the driven vessel's

position and radiated out according to the desired view direction and view angle.

View direction is the direction of view in relation to true north. This direction is set

via a dial on the IRIS button and dial box. Through a menu option, the view direction

can be tied directly to the course the vessel is traveling. The simulated view is then

equivalent to the view from the bridge looking directly forward. The view angle is

changed through a menu option on the main run time menu and can be changed from a

forty five degree normal view to a fifteen degree zoom view. This feature controls the

width of the base of the viewing triangle allowing the perspective command to either

enlarge the visible objects in the zoom view or keep them at their normal perspective

with the forty five degree angle.

A second menu option directly effecting the 3D view is the viewing

distance. Currently, visibility ranges start at 5,000 yards and extend to 20,000 yards

by 2,500 yard increments. The default value of the simulator is 7,500 yards.

2. Processing Speed

Processing speed of the simulator is a constant concern. All expensive

calculations, such as sine and cosine values are stored for reuse. Frames per second,

the speed at which the IRIS updates the view screen, is averaged over ten updates.

Frames per second readings of less than 3 frames per second are considered too slow

for real time use. Scenes below this threshold become very jerky and hard to control

precisely. Since the simulation involves six active windows, a lighting model, ship

22

and submarine models and networking, streamlining code to the graphics display

hardware is given high priority in code generation.

B. 3D PROCESSING SCHEDULE

The overall control of the three dimensional display is directed from the main

program control and display loop, Figure 6.2. One iteration through the loop involves

testing the graphics queue, updating all vessel positions, checking the network and

processing packets as necessary, and finally redrawing and updating all of the

simulation windows. This display and control loop is imbedded within the restart

with a new operation area loop, Figure 6.3.

C. EVENT QUEUE PROCESSING

The graphics queue is the first thing checked within the control and display loop

of Figure 6.2. Items queued allow the program to change the simulation environment.

All entries on the queue are processed before moving to the update of vessel

positions routine. Changes performed by processing the main run-time menu include

tying the course and view, stealthing the submarine, changing the viewing distance

and view angle, restarting with a new operational area, changing current terrain

drawing method, turning off or on the lighting model, initiating or terminating network

operations and ending the submarine simulator. The interaction of these options is

discussed below in their area of influence within the drawing algorithms.

The graphics queue also interprets the IRIS button and dial box used by the

S&PV. The bottom four dials are used to change the vessel's course, speed, depth

and view direction. Figure 6.4 shows which dial relates to which event. The button

23

/* 3-D Simulation Control and Display Loop */

CONTINUE = TRUE;
while(CONTINUE) /* Display Loop */

{

/* While something is on the control queue */

while (qtest())

{

CONTINUE = processQtoken(reStart);

}

/* Send Q changes to the network */

sendchangesO;

/* Update all vessels according to the time expended and their */

/* course and speed. */

updatepositionsO;

/* Check network */

if (Networking)

checkNetwork();

/* Redraw the 3D screens with the new views */

redraw3Dscreens();

/* Check for the grounding incident */

if (CONTINUE)
CONTINUE = bottomKill(reStart);

} /* while CONTINUE */

Figure 6.2 Main Simulation Control and Display Loop

24

/* Restart With New Oparea Loop */

while (*reStart)

{

*reStart = FALSE;

/* Perform the 2D selection and placement operations */

draw2Dcontrol();

/* Initialize 3D map and dials, switches and mouse */

initialize3D();

initialize_evaluator();

/* Perform initial 3D draw routines */

draw3Dcontrol();

/* Set the device control window */

setwindow(CONTROL);

/* Start real time loop processing and timing */

startTimerO;

startFrameMeterO;

/* 3-D Simulation Control and Display Loop */

/* See Figure 6.

1

*/

if (*reStart)

initializeReStart();

} /* while reStart */

Figure 6.3 Restart With New Oparea Loop

25

box is used to fire the four weapons each vessel is allowed to have. We use the right

most four vertical buttons.

1. Sending Changes to the Network

When the networking mode has been selected, changes caused by input

device processing are sent to the network upon completion of the queue processing.

Sending updates from within the queue processing routine resulted in an excessive

number of updates being sent to the network when the dial devices were updated. A

flag within the queue processing file is set if changes were made and the end result is

sent to the network. Figure 6.2 shows the position of the sendchanges() routine.

D. VESSEL AND WEAPON POSITION UPDATING

Updating the vessel and weapons positions requires first calculating the time

expended on the current pass through the program. Each vessel and weapons

position is then updated according to its current course and speed. All vessels and

weapons including the network vessels and weapons are updated within the same

routine. Elapsed time of the last simulation run is calculated by querying the system

function times(), which returns the current number of clock cycles. This value is

subtracted from the value obtained at the last entry through the loop and is then

divided by the clock rate. The simulator time function is initialized within the main

routine's restart loop, as seen in Figure 6.3, so a start value can be obtained. The

actual time calculations are shown in Figure 6.5. Once the time in seconds has been

calculated, it is multiplied by the vessel's or weapon's speed and again by the sine

and cosine of the course to determine a distance in the X and Z plane. This distance

26

mi nininrnm imiiMm i n inn n i|

SPEED

COURSE

VIEW DIRECTION

DEPTH

Li^jumiJLi-HJiiMMJ mui«—iii*i«i>i nwm

i

ni rm irrnmnnniTMntMi iTiiiiiin i««niinrinii»<i nrr'in inr«nniiiii ii«iirin» rin«nni«niTnnn«(rTi«nniinin«rnM<i«nn«n ri»nn>in >nnn«nnn<in i»rrn(ninrn n-n- nnnnm nnffl

Figure 6.4 IRIS Dial Box

27

/* Global variables for time keeping */

long start_time;

struct tms timeinfo;

/* Process the loop time difference */

/* Called by updatepositions() */

/* Calculates the time expended during the last simulation loop and returns */

/* the elapsed seconds. */

float process_time_difference()

struct tms timeinfo; /* System time information */

float elapsedsec; /* Returned time value */

long lastsec; /* End time for simulation run */

long elapsedhz; /* Elapsed machine cycles */

/* startjime, global start time */

lastsec = times(&timeinfo);

elapsedhz = lastsec - start_time;

elapsedsec = (float)(elapsedhz)/(float)HZ;

start_time = lastsec;

return(elapsedsec);

Figure 6.5 Process Time Calculation

28

is added onto the current gridX and gridY fields in the vessel or weapon packet

currently being updated.

1. Stealth Mode Update

Selecting the stealth mode option from the main run menu automatically

keeps the submarine five meters above the bottom. It is useful when navigating

shallow channels, allowing the pilot to concentrate only on the course and speed

dials. While stealthing the submarine aids in navigating the vessel, it does not keep

the vessel from going aground. Grounding a vessel in the stealth mode has the

secondary affect of causing the user to either retire from the simulator or restarting

with a new operation area, since refloating operations in the program are performed

by the stealth routine.

E. NETWORK UPDATES

Networking, if selected, is processed after the vessel update has finished, as per

Figure 6.2. Updates from the network include vessel initialization, course, speed, and

depth changes, weapons firing and network maintenance messages. The current

networking scheme utilizes a UNIX non-blocking broadcast socket. Once energized,

the broadcast socket is kept until the program is exited. The "Turn Network OFF"

flag on the run time menu sends a network KILL message and unloads the network

vessel, wreck and weapon databases. The broadcast socket is not removed since

UNIX does not allow the socket to be re-energized later in the program. Returning to

the 2D placement operations, via the "restart with a new operation area" menu

selection, sends a KILL message to the network. This is necessary since the timing

for the 3D operations is stopped when the program returns to the 2D operations.

29

Updates for the driven vessel's course, speed and depth are sent upon completion of

clearing the program event queue. Networking, as implemented, is discussed in the

chapter 7.

F. FIVE NAUTICAL MILE PILOTING GRID

Once the network update has been completed, all six of the run time simulation

displays are updated as described in the following sections. Figure 6.6 shows the

relative positions of the six windows. The five nautical mile, 10,000 yard, piloting grid

window is drawn first as shown in Figure 6.7. This window portrays the two

dimensional data, color coded for height and depth, as seen from the vessel centered

in the square. The vessel's current course is displayed as a red line of 3,000 yards

length. The length is the same as seen along the depth window discussed later. The

view angle is portrayed as a yellow V whose angle measure is equivalent to the

current view angle selected by the user. This V is centered on the view direction.

Rather than moving the vessel across the terrain, the terrain is scrolled beneath the

vessel giving the user a constant 5,000 yard outward piloting grid.

The piloting grid is drawn using three hundred yard squares starting at a position

5,000 yards south and 5,000 yards west of the vessel. This centers the vessel on the

grid. Three hundred yard grid squares are used to reduce the drawing time of the

grid. A map grid drawn at one hundred yard resolution requires 10,000 polygons

while the three hundred yard resolution requires only 1,089 polygons. While small

land masses may appear and disappear as the driven vessel's position changes, the

overall picture is quite navigable in conjunction with the other windows.

30

1. 2. 3.

4. 5. 6.

3D Operation Windows

1. Five Nautical Mile Piloting Grid

2. Visual Depth Finder

3. Sixty Nautical Mile Database Grid

4. Weapons Panel

5. 3D View Window

6. Control Panel

Figure 6.6 3D Operation Windows

31

redraw3Dscreens()

/* Update the Pilot grid every other redraw */

if (updatePilotMap)

drawContourView();

updatePilotMap = ! updatePilotMap;

/* Update Sixty nautical mile grid */

update_Sea2D();

/* Update the Visual Depth Finder window every other redraw */

if (updateDepth)

drawSideView();

updateDepth = ! updateDepth;

/* Update the maneuver 3-D window */

if (DrawMesh)

drawMeshManeuver();

else

drawManeuverO;

/* Display the polygon total */

writepolysO;

/* Display the Frames per Second Meter Value */

writeFramesPerSecondQ;

Figure 6.7 3D Window Update Schedule

32

Color coding is done according to the same color scale as was used to display

the 2D sixty nautical mile database grid. A compromise was made by not storing the

color at each point within the height array. This would have increased run time

memory requirements by 1.44 megabytes assuming a character based legend was

used. Instead, a binary tree coded if structure, Figure 6.8, was used for determining

the grid color. A check is made to insure the point being colored is higher than the

deepest water threshold. The piloting grid is initially cleared to the deepest water

color and data points at this level are not drawn.

G. SIXTY NAUTICAL MILE DATABASE GRID

The next window to be updated is the sixty nautical mile database grid. This

window portrays the user selected DMA database. The drawing time for this color

height and depth coded window is approximately seven seconds. The window is used

to show the user where his five nautical mile piloting grid is located on the sixty

nautical mile grid. Figure 6.9 shows how the piloting grid location is tracked with a

red outline square drawn in the overlay plane to show the piloting grid's location. The

overlay plane can be cleared and redrawn without effecting the time consuming sixty

nautical mile database grid. Current piloting area tracking can then be done without

expensive, time consuming redraws of the database grid.

H. VISUAL DEPTH FINDER

The visual depth finder window is drawn next. This window displays graphically

the terrain 3,000 yards ahead to 1,000 yards astern of the vessel directly on the

vessel's dead reckoning line. The window is color coded to represent the water

33

/* The algorithm uses a binary tree to determine the color desired. */

if(terrain[i][j]>-301)

{

if (terrain[i][j] >-l)

if(terrain[i][j]>130)

if (terrain[i][j]> 195)

if (terrain[i][j] > 250)

RGBcolor(BROWN);
else

RGBcolor(DARK_GREEN);
else

RGBcolor(NEW_GREEN);
else

if(terrain[i][j]>50)

RGBcolor(LIGHT_GREEN);
else

RGBcolor(TAN);

else

if (terrain[i][j] > -151)

if(terrain[i][j]>-21)

RGBcolor(LIGHT_BLUE);
else

RGBcolor(BLUEl);

else

if(terrain[i](j]>-226)

RGBcolor(BLUE2);

else

RGBcolor(BLUE3);

/* color fill by rectangular system fill */

rectfi(ij,i+3j+3);

poly_count(l);

Figure 6.8 Binary Tree Color Coding

34

/* Update the oparea square on the 2-D overview map */

/* Called by redraw3Dscreens() */

/* This function will track the operation area on the 2D map */

update_Sea2D()

/* Set the Window to the 60 Nautical Mile Grid Window */

setwindow(MAP2D);

/* Go to overlay mode and clear the old grid square */

drawmode(OVERDRAW);

color(CLEAROVERDRAW);
clear();

/* Redraw the Piloting Grid Location */

linewidth(2);

color(REDOVERDRAW);
rect(my_sub.gridX - 50, my_sub.gridY - 50, my_sub.gridX + 50,

my_sub.gridY + 50);

/* Return to Normal Drawing mode */

drawmode(NORMALDRAW);

poly_count(l);

Figure 6.9 Sixty Nautical Mile Grid Update Routine

35

depths seen on both the sixty nautical mile database grid and the five nautical mile

piloting grid. This window is used to help prevent the vessel from running aground.

Note, if the user opts for the stealth mode, the submarine drawn in the depth window

becomes an outline figure. This gives the user a visual cue of the vessel's stealth

mode status.

The depth finder window is drawn as a fixed window of 4,000 yards length.

Terrain heights from 1,000 yards astern to 3,000 yards directly ahead on the course

line are drawn as brown quadrilaterals. The height of each terrain quadrilateral is

determined by the difference between the -308 meter bottom depth and the terrain

height at that point along the 4,000 yard line. Calculations for the course line

traversed in this window are done with the stored course sine and cosine values. The

vessel position is moved astern 1,000 yards by multiplying this value by the sine and

cosine. Once the initial point has been determined, forty increments are done on the

line resulting in the forty polygons shown in the window.

I. 3D VIEW WINDOW OPERATIONS

The next window to be updated is the 3D view window. The terrain is drawn in

one of two user selectable methods. Mesh drawing uses the IRIS triangular mesh

routines giving the most realistic view available from the simulator as seen in Figure

6.10. The terrain is shaded only according to the terrain model's light source

reflection. While giving a very realistic view, it is sometimes hard to pilot on flat

terrain. The grid square method, Figure 6.11, is supplied for such an occasion. It

draws all the terrain as squares of two shades giving a checkerboard appearance.

The terrain is still light shaded but traversal of flat terrain in the grid square terrain

36

Figure 6.10 Triangular Mesh Terrain Drawing Method

Figure 6.11 Grid Square Terrain Drawing Method

37

gives obvious visual clues of vessel motion, often not seen with the mesh terrain.

The user can freely toggle between the two methods by choosing the appropriate

menu item.

Once the appropriate routine has been selected, terrain drawing begins. While

much of the code for the drawing algorithms is shared, there is enough of a difference

to discuss both versions. First, the grid square method. This method was the first

completed and the mesh code is a modified version of this code made to draw the

entire minor axis row with the mesh routines rather than just the individual squares.

1. Terrain Drawing Algorithm

The two terrain drawing algorithms used in the S&PV are based upon the

same terrain drawing principles. The major differences are in the low level execution

of the drawing algorithm. This section discusses the principles involved while the

next two sections discuss the actual terrain drawing algorithms. Figure 6.12 is the

reference figure for this section.

What we wanted to create is a terrain drawing algorithm that filled in only

the area within the viewing angle in the quickest manner available. Our terrain

algorithm applies resolution boundaries to each terrain sector drawn rather than to a

particular quadrant as done in MPS [Ref 3]. This allows us to keep the number of

terrain squares drawn within the viewing angle to the minimum required to draw the

area of interest. The three major principles used in the algorithm are discussed below.

a. Five Degree Sectors

The two terrain drawing methods are first based on drawing the view

angle as a series of consecutive, five degree terrain sectors. The sectors split the

38

End and Start3 ^Sect»r

+ Y Major

ion
/t lew niigic

*Dniwir
Right Bound Siettoi g Direct

/
/ /~7

Ma or Axis

/_
Boundary

=View Direction
Sector Drawing .

Direction

ii

- X Major
+ XMa or

View Anolp
t

I eft Bound V i

^ Vess>elF osition

-YMa or

\
\

Figure 6.12 Sector Drawing Operations

39

viewing horizon into seventy two equally sized areas that are equivalent to a five

degree arc on the viewing circle. The first sector, sector 0, covers from mathematical

to 5 degrees. The sector numbers advance counterclockwise up to sector 71, 355 to

degrees. In this way, a fifteen degree zoom angle is drawn as an area covering

three sectors, the sector containing the view direction and the two adjacent sectors

on either side of the view direction. The default viewing angle of forty five degrees is

drawn with a nine sector area. The sector drawing information is stored within a

lookup table.

Every sector drawn is drawn using resolution boundaries within each

sector. This eliminates areas of expensive high resolution drawing where the

distance from the observer would normally allow medium or low resolution terrain

drawing. The MPS drawing algorithm contains such areas where high resolution

terrain is drawn in medium and low resolution areas [Ref. 3].

b. Major and Minor Axis

The second principle inherent to the terrain drawing algorithm is the

concept of major and minor axis. The major axis is defined in the two dimensional,

mathematical sense as the positive X axis for angles in the range of 315 to 040,

positive Y in the range of 045 to 130, negative X for 135 to 220 and finally negative Y

for the range 225 to 310 as seen in Figure 6.12. The minor axis is merely the

perpendicular axis to the major, again in two dimensions. This quadrant system

buried within the sector system assures proper resolution boundaries are kept within

the sectors. The sectors are drawn in a horizontal row for sectors in either the

positive or negative Y major axis orientation and vertically for the positive or

negative X major axis orientation.

40

c. Sector Drawing Lookup Table

The sector drawing lookup table contains the slope of the right hand

vector of the selected sector. The slope of the left hand vector is the next sector's

right hand vector slope. The slope is calculated as the increase or decrease along the

minor axis of the sector for each unit increase along the major axis. This value is pre-

calculated as either the sine over the cosine or cosine over the sine as appropriate for

the major axis. The table repeats itself numerically every ninety degrees with the

exception of the sign. Storing these calculations insures that the sectors join,

reducing cumulative floating point errors and saving substantial calculation time that

would have been necessary to calculate the sine and cosine at each increment along

the sector boundaries.

d. Major Axis Splits

Originally, the viewing angle was drawn as individual sectors. To

speed up the drawing process, the current version of both terrain drawing algorithms

finds the starting and ending sector values and draws all the terrain between the two

boundaries at once. The only exception to this rule is when the viewing angle splits a

major axis boundary. Figure 6.12 shows a viewing angle drawn in two parts with the

starting sector to the major axis boundary as one terrain drawing call and the major

axis boundary to the ending sector as the second terrain drawing call.

2. Grid Square Drawing Method

Upon entering the grid square routine, function drawManeuver(), the 3D

view window is set as the current output window as shown in Figure 6.13. The

lighting model set up is initiated by switching the viewing mode from MSENGLE to

41

/* Set the 3D Viewing window and turn on the lighting model */

setwindow(MANEUVER);

mmode(MVffiWING);
loadmatrix(unit_matrix);

lmbind(LIGHTO,Sun);

far_clipping_plane = (float)(YENTRffiS * SCALE3D);

/* Set the appropriate perspective */

/* When making changes and you lose everything, the error is usually */

/* here or in the lookat() command */

switch(ViewAngle)

{

case 15 : /* 15 degree zoom angle */

perspective(140,0.8,0. 1 ,far_clipping_plane);

NumberOfSectors = 1;

Arc_Offset = 12.0;

break;

case 45 : /* Default 45 degree view angle. */

default

:

perspective(450,0.8,0. 1 ,far_clipping_plane);

NumberOfSectors = 4;

Arc_Offset = 4.0;

break;

} /* end switch */

Figure 6.13 Lighting Mode and Perspective Command

42

MVIEWING and binding the sun light source. Note, that the lighting model is not

turned on at this time. Next, the far clipping plane is established and the IRIS

perspective command is issued, still in Figure 6.13. Actual parameters to the

command are determined by the current view angle selected. The number of sectors

to the beginning and ending sector, the field of view, and the drawing offset are

determined by the view angle. The eye position, the lookat() command in Figure

6.14, is set according to the position and depth of the driven vessel. The view angle

is always set by the viewing direction and not the current course. This allows three

hundred and sixty degree horizon sweeps on any course, at any position. The start

position of the drawing routine is set back from the actual vessel position a distance

equal to the drawing offset, called "arc_offset" in Figure 6.13. This offset is

necessary to remove the jagged edges produced at the edge of the view area.

a. Visible Quadrant and Water Surface Draw

After moving the drawing start position, the screen buffer and z-buffer

are cleared as shown in Figure 6.14. The screen buffer is cleared either to sky blue or

deep water blue depending on the height of eye of the vessel. Heights of eye above

the surface level get sky blue and below, deep water. Routine drawSurface() is then

called to accomplish two tasks. The first task it completes is determining the visible

quadrant for later vessel and wreck placement. Vessels near the driven vessel but

not in the calculated quadrant are not drawn. The second task it completes is drawing

the water surface. With the lighting model still off, drawSurface() draws in the water

surface grid lines. Since the lighting model shades all lines black, all grid lines had to

be drawn with the lighting model turned off, allowing for the light blue colored lines

drawn. Upon completion of the grid lines, the lighting model is turned on and the

43

/* The lookat is set for the current position of the sub in line with */

/* the point one sin/cos away along the view direction. All values */

/* are scaled according to sub.h description. Currently no twist */

/* angle is used. */

lookat(my_sub.gridX * SCALE3D,
ydepth,

-my_sub.gridY * SCALE3D,
((my_sub.gridX + my_sub.viewXinc) * SCALE3D),
ydepth,

-((my_sub.gridY + my_sub.viewYinc) *SCALE3D),

0);

/* Move the drawing start position back depending on the view angle */

/* to clear up the clipping on the left side of the 3-D picture */

startX = my_sub.gridX - (Arc_Offset * my_sub.viewXinc);

startY = my_sub.gridY - (Arc_Offset * my_sub.viewYinc);

/* Turn on zbuffering for back surface removal and clear the Z-buffer */

/* and the display screen to DARK BLUE if underwater else clear to SKY */

if ((my_sub.depth + my_sub.bridge) >= 0)

RGBcolor(SKY);

else

RGBcolor(DARK_BLUE);
clear();

zbuffer(TRUE);

zclear();

/* draw the ocean surface */

quadrant = drawsurface(mathView);

Figure 6.14 Eye Position, Arc Offset and Surface Call

44

actual water surface is drawn. The surface normal used to draw in the surface

depends on the height of eye of the viewer. Above water, the surface normal points

up, otherwise it points down. Only the surface area bounded by the designated

quadrant is drawn. The surface of the water is drawn as one large polygon that is the

size of the visible quadrant.

b. Terrain Sector Control Routine

After completion of the water surface draw, the terrain drawing begins

with a call to drawTerrainSectors(). This routine calculates the start and end sectors

as seen in Figure 6.15. It also calculates the length of the drawing run along the

view's major axis. The second section of drawTerrainSectors(), Figure 6.16,

determines which drawing quadrant the view direction and angle is in and passes the

starting and ending sectors to the appropriate major axis drawing routine. The start

position in the X and Z planes is passed from the drawManeuver() routine, where the

offset was calculated.

The true view direction, used when piloting a vessel, is converted to

mathematical degrees before the terrain drawing begins. This is necessary since true

north is equivalent to 90 degrees on the mathematical scale and true degrees increase

clockwise while mathematical angles increase in the counterclockwise direction. This

conversion is done in the drawManeuver() routine.

c. Resolution Boundaries

Each terrain sector is drawn with three resolution boundaries as

shown in Figure 6.17. In cases where the drawing distance is less than 7,500 yards,

all three resolution areas are not drawn. The length of each resolution boundary is

45

drawTerrainSectors(view,startX,startY,NumberofSectors)

float view,startX,startY;

short NumberofSectors;

short StartSector, /* The "right" most sector */

short EndSector, /* The "left" most sector */

int run; /* length of the run on the major axis */

/* Calculate the start sector */

StartSector = ((int)view / 5) - NumberofSectors;

/* Check to insure the sectors range from 0-71 */

if (StartSector < 0)

StartSector = StartSector + 72;

/* Calculate the end sector */

EndSector = ((int)view / 5) + NumberofSectors;

/* Check to insure the sectors range from 0-71 */

if (EndSector > 71)

EndSector = EndSector - 72;

/* Calculate the run along the major axis that is required to get the */

/* desired distance. */

run = (int)(Arc_Offset + Draw_Distance);

Figure 6.15 Starting and Ending Sector Calculations

46

/* The math 45 to 130 degree region */

/* The major axis is the 2-D + Y axis(ie overhead view) */

if ((StartSector >= 9) && (StartSector <= 26))

if (EndSector <= 26)

plusYmajor(StartSector,EndSector,startX,startY,run);

else

{

plusYmajor(StartSector,26,startX,startY,run);

minusXmajor(27,EndSector,startX,startY,run);

}

/* 135 to 220 degrees, -X is major axis */

else if((StartSector > 26) && (StartSector <= 44))

if (EndSector <= 44)

minusXmajor(StartSector,EndSector,startX,startY,run);

else

{

minusXmajor(StartSector,44,startX,startY,run);

minusYmajor(45,EndSector,startX,startY,run);

}

/* 225 to 310 degrees, - Y is major axis */

else if ((StartSector > 44) && (StartSector <= 62))

if (EndSector <= 62)

minusYmajor(StartSector,EndSector,startX,startY,run);

else

{

minusYmajor(StartSector,62,startX,startY,run);

plusXmajor(63,EndSector,startX,startY,run);

}

Figure 6.16 First Three Major Sector Drawing Control Routines

47

set by defined constants in the sub.h header file. High resolution draws all data

points within the predetermined for loop bounds. This accounts for all of the one

hundred yard square data points. Note, since four points are usually not planar, each

terrain square is drawn as two triangles with the adjacent edge being the line from

(i,j) to (i+lj+l) in the two dimensional view point for high resolution. The width of

the run between the left and right bounds of the sector at a specific point along the

major axis is determined by use of the lookup table.

d. Medium andLow Resolution Drawing

The medium resolution area is drawn with two hundred yard squares,

where the lower left hand comer is a multiple of two. This is done, again, to ensure

the proper connection of the adjacent sectors and resolution boundaries. A skirt

between the resolution boundaries is necessary to cover the difference in elevation

from the odd center point drawn in the high resolution terrain and the line that

connects the edge to the medium resolution as shown in Figure 6.17. This skirt has

no width in the X and -Z planes since the hole that is created by the resolution

boundaries is only along the vertical Y axis.

The low resolution terrain is drawn in the same manner as the medium

resolution terrain. The start points for the low resolution terrain are all multiples of

four to ensure proper connection to the lower resolution boundaries. A skirt between

the resolution boundaries is also drawn.

e. Resolution Boundary Placement

One of the highest performance cost factors in the terrain algorithm is

the decision where to place the resolution boundaries. While drawing everything as

48

Drawing Start Position Vessel Position View Direction

WHHKBMMm

' $tSS8 SBS? ?**!-.« "SSS ^Sfc^SSSS^SS^SSSSSSS
a.** **«*** >**»* !'*,*i*j vcv ^c^v ^v^vo^ ^^o ^c^1 ^^^^ ^^o
&!*• M»Stf £*-.«• S&80 CtfOVWVcCCWVWWX«?W

vmimwBmMmwMmmmmmmwmmmwm

MMU^wm&w^mmmmmmmmmmmwmwmmmm

n '//s ''//Wj/% (M. 'Z'* '47s Y/y.4& '4fr &:•; ?:;s :?:;?w*ss8 ?:;s ??:•: »:$$?::: 888 5SSSSSSSSJS5S>8sss$ss^sj^^/ ff*. 4 rffj fff. ^fSf *ff* *Sfj SfS* fff rffj.MA :AftA *-,»»• «»»• •.»»•« «»»- *V*.A.'* •-.^•v' ,MA V*J*.A ^^^VO^^ *0^^ ^^^k O^^X.O^^ ^O^^ ^^^^
vv> <vv.. ^>yiVM4WWj r.f,Ws.W6/AT* 5»V«J ««v .??% .v.? m«m v.v »???• rf»V« W.V f«V«! SS<}WW«CS«JW>N*«w

8& S2SS :::: :::: i:§5 ESS 883 SS8B8 SSSS^^^SSSSBSSSSSSSSSS*
<'Y//y/// :*:: >&•; ?*: •>:•:• :::: :*>: *:>: •»:« :::: •>::^^^^^55iS*i*sa*

I;V»»«
tVJ% C*i«? •;;} K»i*i iW. 'iVJ*WJ SWJ "JViS scc» *j>js>^cc jcc< ccc< ^Cfc 5SCSNC<

^•-.•* •J$.*«* Afc>.. «A»*-ft *»•».*»* ***.»*«* »*«*^^I •>»* ^ ^».****$ ^AV %^^^ ^^^^ ^^^^V ^^^^ NA^^ ^A^W ^^^^V ^^^^N
»V»% iVA '•%?•? .-V»" »%V. iV.*< WSA* W«J •*«%8«WVkC^OTO!w{?C^CWW^VC^JwJ

i<&: <•>$?»* :<;:«> »:» ;>; «,.- \\ vc ^S^^S^iS

^bi^^ks?

Figure 6.17 Resolution Boundaries and Drawing Offset

49

high resolution terrain may seem desirable, the computation time and numbers of

polygons drawn is prohibitive. The current resolution bounds were set to give the

best overall quality in the picture with the highest performance as possible. This is

an obvious juggling act and changes to the resolution boundary lengths can easily be

accomplished by changing the defined constants in the sub.h header file.

/. Resolution Skirt Drawing

Drawing of the terrain resolution skirts is accomplished by two

different routines. One routine is used to draw vertical skirts, and the second to draw

horizontal skirts as appropriate to the major axis being drawn. The job of the terrain

resolution skirts is shown in Figure 6.18. Each skirt triangle is drawn using the

bgnpolygon() routines since the triangular terrain patches only have one vertex in

common. These vertical and horizontal skirt routines draw the skirts both for the

medium to high resolution and the low to medium resolution. As with all terrain

drawing routines, vertex normals are used for the lighting model. While this extra

effort is not particularly noticeable in the grid square draw, the effect of using terrain

normals in the mesh draw is considerable as discussed later in the mesh description.

h. Terrain Grid Squares

The terrain squares drawn for the grid square method are drawn as two

adjacent mesh triangles. The same routine handles drawing all three sizes of squares

for the three resolution areas. The IRIS bgntmesh() routines are used instead of the

bgnpolygon() routines. The principle reason for using the mesh routines is speed.

The square drawing routine fills the terrain squares in a checkerboard style. It

alternates between the two defined terrain material definitions by reducing the lower

50

& High/Medium Resolution Terrain Grid

Medium/Low Resolution Terrain Grid

Skirt Fill Area, Y Plane Only

+Y

+X

Lower Resolution

Skirt

Higher Resolution

Figure 6.18 Skirt Drawing in the Vertical Plane

51

left hand corner to its high resolution terrain value and finding whether or not the

square's indices are odd or even. Both triangles making up the square are shaded the

same color by laboratory convention. A triangular checkerboard is quite possible.

3. Triangular Mesh Drawing Method

The triangular mesh drawing routines share all of the same upper level

control structures as the grid square drawing method. No determination of which

shade to color the mesh squares is made since we use the lighting model to do the

shading. The vertex normals used within the drawing routine gives the terrain a

smooth, realistic look. The grid square method is included because it can be very

difficult to sense any motion in the three dimensional picture over flat terrain.

a. Mesh and Grid Square Differences

The first routines where the two drawing methods differ is in the

quadrant drawing routines mentioned above. Since with mesh we want to draw the

entire minor axis row at one time, the minor axis for-loops are placed in the mesh

draw routines as seen in Figures 6.19 and 6.20. While the mesh draw uses the skirt

routines from the grid square method, the square draw of the grid square method was

converted into two routines, one to draw a vertical and the other a horizontal mesh

row. The bgntmesh() routine uses the current input vertex along with the two

previous vertices and creates a mesh triangle. Since the hypotenuse of the triangles

within each mesh square must coincide between the vertical and horizontal meshes,

the vertical mesh routines draws squares in the vertex order of right to left, bottom to

top while the horizontal routine draws from top to bottom, left to right. If the vertex

ordering does not coincide, such that the hypotenuses are not drawn in the same

52

/* High Resolution Run Section taken from the plusYmajor() routine in the */

/* grid square method. Note the twin for loops calling the drawNbyNsquare() */

/* routine. */

/* Hi Resolution Run */

for (j = 0; j <= even_hi_res; j++)

{

for (i = (int)(left - 0.5);

i <= (int)right;

i++)

drawNbyNsquare(l,i,(mt)startY + j);

/* Increment left and right according to there slopes with whole */

/* increments. */

if (EndSector == 26)

left = left - lookup[EndSector + l][SLOPE];

else

left = left + lookup[EndSector + 1] [SLOPE];

right = right + lookup[StartSector][SLOPE];

}

Figure 6.19 Grid Square Drawing Loop

53

/* This code fragment performs the same control and drawing as in figure 6. 16. */

/* Note how the inner for loop of figure 6. 17 has been replaced by the call to */

/* drawHorzMesh(). This allows the entire minor axis draw to be accomplished */

/* in one call fully utilizing the triangular mesh routine's full abilities. */

/* Hi Resolution Run */

for (j = 0; j <= even_hi_res; j++)

{

drawHorzMesh(left - 0.5,right,(int)startY + j,l);

/* Increment left and right according to there slopes with whole */

/* increments. */

if (EndSector == 26)

left = left - lookup[EndSector + l][SLOPE];

else

left = left + lookup[EndSector + 1][SLOPE];

right = right + lookup[StartSector] [SLOPE];

}

Figure 6.20 Mesh Drawing and Control Fragment

54

orientation, z-buffer conflicts creates severe flickering within overdrawn terrain

squares where adjacent sectors overlap.

All resolution boundary operations are kept within the triangular mesh

control routines since this function resides in the major axis computations in the

plusXmajor() related routines. The increase in performance with the mesh routines is

approximately one and a half to two frames per second with the lighting model.

4. Encountered Drawing Problems

The major problems that we have encountered with our data has related to

the shear size of the databases. The height information for the sixty nautical mile

grids requires 2.88 megabytes of storage, while the normals for these points require

nineteen megabytes. Currently our IRIS 4D/70GT's have only eight megabytes of

system memory, with the exception of gravy4 which has sixteen megabytes, of which

approximately half is used by the operating system. Major increases in speed should

be attained with additional memory. Higher processor speeds should also help in the

long run.

5. 3D Vessel Drawing

After the terrain drawing has been completed, all tracked vessels and

wrecks within the calculated visible quadrant are drawn. First all vessels in the

contact list and network contact list are drawn into the five nautical mile piloting grid

as green dots. Since the dots are drawn in front buffer mode and there is a time

difference between initial completion of the overhead view and the time the vessels

are added to the grid, the green vessel position indicators blink, making vessel

55

tracking easier. All wrecks are done the same way with the exception of the color,

which is red.

Once the piloting grid has been updated, vessels, wrecks and weapons in

the visible quadrant are drawn. Each of the above data packets has a unique defined

constant for the type of vessel. This value causes the controlling switch statement to

select the appropriate vessel drawing routine as seen in Figure 6.21. The current

system stack is first pushed onto the system stack. The rotation for the platform's

current course and the translation to its position and depth using IRIS rot() and

translateO commands are accomplished next. Finally the vessel is drawn and the

system stack is popped returning the original system matrix. The process is then

repeated for each item in the visible quadrant.

6. Final 3D Window Operations

Upon completion of the vessel drawings, z-buffering is turned off as well as

the lighting model. The light in the model has to also be turned off or else "restarting

with a new operation area" causes an lmbind runtime error. The viewing mode is

returned to MSINGLE until the 3D drawing is again started. MSINGLE mode is

required for the system popup menus to work.

J. POLYGONS PER FRAME AND FRAMES PER SECOND

The last section of the screen updates places the current polygon count and

frames per second calculation on the control panel window. These values are

averaged and updated every ten times through the display loop. These values are

used in algorithm evaluation and scene complexity calculations.

56

drawVesselProfiles(profile)

short profile; /* Profile from vessel and wreck packets */

{

/* Switch to draw the vessel */

switch(proflle)

{

case LOS_ANGELES : /* Draw a Los Angeles Class sub */

draw_LosAngeles();

break;

case TYPHOON : /* Draw a Typhoon Class Russian Sub */

draw_Typhoon();

break;

case OHIO : /* Draw a Ohio Class Sub */

draw_boomer();

break;

case SPRUANCE : /* Draw a Spruance Class Destroyer */

draw_spruance()

;

break;

case KITTY_HAWK : /* Draw a Kitty Hawk class carrier */

draw_kitty_hawk();

break;

default:

break;

} /* end switch */

}

Figure 6.21 Vessel Draw Switch Statement

57

VII. NETWORKING OPERATIONS

Networking within the S&PV is required for multiple graphics simulators to be

operating simultaneously. Networked workstations share their vessel contact, wreck

and weapons information and allow for target acquisition and persecution for vessels

created on any of the workstations.

A. OVERVIEW

Networking is accomplished over Ethernet with a non-blocking Unix socket with

the associated message overhead. The socket is checked when the networking flag

is energized. Each message received from another host is processed according to the

type of message it is. Each message type has its own length, and therefore a

reception routine for each kind of message. All of the network message, send and

receive, operations are in the file netMessages.c. The network checking routine is in

checkNetwork.c while the low level, socket specific, routines are in the file

networking.c.

The low level networking code used to initialize, send and receive messages

and kill the socket was initially developed by Captain Randy Strong, USA [Strong,

1989]. His code was modified to work only between the graphics workstations in the

Graphics and Video Laboratory. A check to prevent processing of a workstation's

own messages is provided within the low level routines. This is necessary since

Ethernet echoes the messages sent to the sender.

58

while (recv_broadcast_message(packet))

{

switch (packet[0])

{

case HELLO : /* Hello Message */

receiveHello(packet);

break;

case HI

:

/* Hi message */

receiveHi(packet);

break;

case VSL_INIT : /* Vessel Initialization Message */

receiveVslInit(packet);

break;

case WRKJNIT : /* Wreck Initialization Message */

receiveWrklnit(packet);

break;

case VSL_UPDATE : /* Vessel Update Message */

receiveVslUpdate(packet);

break;

case RESEND : /* Resend Vessel message */

receiveResend(packet);

break;

case HOSTKILL : /* Host Going Off the Line Message */

receiveKill(packet);

break;

case WEAP_INTT : /* Weapons Initialization Message */

receiveWeaplnit(packet);

break;

case MOVE_MYSUB : /* Move the Driven Vessel to the Wreck List */

receiveMoveMySubToWreck(packet);

break;

} /* End switch. */

} /* End of while recv_broadcast_meassage() statement. */

Figure 7.1 Check Network Switch Routine

59

The upper level routines handle the creation and decoding of the network

messages. As each message is received, the routine checkNetwork(), Figure 7.1,

selects the proper decoding routine specific to the type of received message. Each

message type described below comes in two types, the sending routine and its

receiving routine. Actual sending and receiving of messages is done in the low level

routines mentioned above.

B. HELLO MESSAGE

The "Hello" message notifies the network that a new workstation is coming on

line. The host name of the new workstation is sent as part of the message. Upon

reception of a "Hello" message, each workstation already on the net sends out a "Hi"

message followed by vessel, wreck and weapons initialization messages.

C. HI MESSAGE

The "Hi" message is sent out from workstations already on the net to the new

workstation just entering. This message tells the new station who is on the net.

Reception of a "Hi" message causes the new workstation to send out its vessel,

wreck and weapons list to the net.

D. VESSEL INITIALIZATION MESSAGE

The vessel initialization message sends all of the necessary information about a

vessel for the vessel to be recreated by the other workstations on the net. Vessels

are uniquely identified with two key fields. The first is their individual vessel packet

identification number that was assigned by the host workstation at the time of the

60

creation of the vessel. The second key field is the name of the host that created the

vessel. This allows all workstations to start with the same identification number

series which removes long initialization processes where machines on the net must

decide where their packet identification numbers must start.

Reception of a vessel initialization message is processed in one of two possible

ways. First, if the vessel is new to the receiving workstation, a new network vessel

packet is created and filled with the appropriate data sent to the machine.

Calculations of the sine and cosine of the network vessels course are done during the

data filling operations. If the vessel already exists, the vessel's position, depth,

course and speed are updated according to the new message's information.

E. WRECK INITIALIZATION MESSAGE

Network wreck initialization is done in the same way as vessel initialization is

done. The major difference in the message is the lack of a speed field which is

obviously zero knots for a wreck. This message along with the move driven vessel to

wreck list message is primarily used to insure consistent displays on all network

machines.

F. WEAPONS INITIALIZATION MESSAGE

Weapons initialization messages are similar to the vessel initialization message

with the exception of two added fields. These fields are the elapsed time on the

weapons run and the maximum run time for the weapon. These fields are necessary

since all of the weapons shot in the CCWF have a fixed time frame they can be active.

61

G. DRIVEN VESSEL UPDATE MESSAGE

This message provides to the network the changing operating parameters of the

vessel being driven on the present host. The updates sent to the net are vessel

course, speed and depth. Reception of an update message is first switched by the

message type, then by the update type. Then the appropriate changes to the network

vessel packet representing the driven vessel are made.

H. MOVE DRIVEN VESSEL TO WRECK LIST MESSAGE

This message is necessary to keep the network informed of changes to a host

machine's driven vessel in ground collision conditions. While collision detection is

done on each machine, changes to the operating parameters of a driven vessel

causing a sudden grounding may be transparent to the network. This message

formally declares a collision to the net, creating a wreck at that position. It then

renumbers the driven vessel's packet identification number and a new vessel

initialization message is sent to the net. Note, this assumes that the user opts for

either the "restart with a new oparea" or "refloat the submarine" options on the

grounding menu. Retiring from the simulator does not create the message as a

network kill message is sent instead.

I. RESEND MESSAGE

A resend message is sent if upon reception of a vessel update message, the

vessel being updated is not in the network vessel database. This message contains

the packet identification number and the name of the host computer. Reception of the

62

resend message causes the host computer of the vessel to resend a vessel

initialization packet, usually being the host's driven vessel.

J. KILL MESSAGE

The kill message is sent when a host has decided to leave the networking mode.

This occurs as the result of one of three cases. They are user selection of the "turn

off network" main menu option, the simulator is moving move back into the 2D

operations mode, or the program is being exited.

Reception of a kill message causes the receiving host to search its network

databases and delete those vessels, wrecks and weapons created by the host going

off line. The kill message does not shut down the socket. A socket can only be

opened once each program run. Only during actual exit operations is the network

socket released.

63

Vffl. THREE DIMENSIONAL VESSEL ICONS

One of the basic values of a simulator is the ability to maneuver vehicles and

equipment without the physical cost factors involved. Training can be accomplished

without the risk of injury or equipment damage. As a training aid, it is necessary to

make a simulator as realistic as possible. Realism increases the training value of the

simulator and makes it a more useful tool for the commander. No simulator will ever

replace real experience but a simulator can better prepare individuals for a wide range

of expected situations. Equipment modeling is essential to good simulations. The

commander who can see the situation as it develops has a marked advantage over his

opponent. Ideally, the commander would like to train with and against the same

equipment he would use in a real situation, so the need for a library of enemy and

friendly equipment is essential.

The S&PV system provides the user with several realistic 3D vessel icons

which add realism to the program. The vessels currently available to the user are the

Spruance class destroyer, the Kitty Hawk class aircraft carrier, the Ohio class

ballistic missile submarine, the Los Angeles class fast attack submarine, and the

Soviet Union's Typhoon class ballistic missile submarine. These are just a few of the

many vessels needed for a complete simulation library. The current vessels are

adequate for providing the user the ability to maneuver vessels and see what other

vessels look like in relation to the three dimensional terrain. More 3D icons of

vessels and weapons are needed.

64

There are several things to consider when modeling vessels and weapons. A

primary consideration is the number and size of the polygons required for each object.

Objects that are complex need a greater number of polygons. A greater number of

polygons increases the time it takes the processor and graphics pipeline to draw the

object. Depending on the speed of the graphics machine and the complexity and

number of objects, the simulation may run too slow to be of any real value.

Another consideration in modeling is the degree of accuracy of the drawing.

While similar to the number of polygons problem, it is a different problem. For

example, there are several different classes of American submarines and their basic

hull shapes and sizes are similar. A 3D icon needs to bring out these differences, yet

not be polygon intensive. The resolution needed in a given situation should also be

considered. Vessels at greater distances from the viewer cannot be seen as well

regardless of the detail of the vessel so there is no need for high detail polygons to be

drawn at great distances. As the vessel moves closer, the more accurate drawings

can be used. Such resolution and vessel dependencies save drawing time at the

farther distances but require that the programmer have resolution boundaries in his

program.

A final consideration is drawing and storing these models in an efficient

manner. Graphics programs in general are memory and processor intensive. This

necessitates the programmer be conscious of efficiency in coding and storage. As

computer graphic capabilities improve, these considerations will have less impact.

However, to take full advantage of the current graphics systems, these

considerations must be implemented.

65

There are currently four initiatives at the Naval Postgraduate School to overcome

some of the above considerations. The first initiative is the development of a

standard file format to store and draw objects. The second is using a 3D digitizer

camera to take pictures of objects and then use the collected data to draw the object.

The third initiative is an attempt to build a 3D icon construction system to put

together objects and create vessel icons. The fourth initiative is the graph paper

technique of drawing the object and plotting the points.

A. STANDARD FILE FORMAT

There are several advantages of using a standard file format for objects rather

than continuously using the drawing code. A standard draw polygon routine for three

polygons using the Silicon Graphics graphics library is found in Figure 8.1. The code

draws three adjacent polygons and includes the polygon surface normals needed for

the lighting model. This code is simple and repetitious. Also notice that arrays are

needed to hold the normal and vertex values for each polygon. These arrays are

accessed during the draw polygon routines. This is not a bad way to handle drawing

routines, but using a standard format is better. Figure 8.2 shows the same three

polygons stored in a standard file format. The standard file format can be read in by

one, fixed routine and displayed with another fixed routine. Having only one drawing

routine allows for easier object modification and repetition of code is eliminated. This

format allows the user flexibility in manipulating point data with its free formatted

data allowing for easy adaptation to other systems.

The standard file format reduces the amount of stored code and the size of the

data structure. The only real disadvantage of the standard file format, is dealing with

66

static float ship_hull[5][3] = { 0.0, 0.0, 0.0,

-0.5, 0.20, -0.11,

-0.5, 0.11, -0.22,

-0.5, -0.11, -0.22,

-0.5, -0.11, -0.11 };

static float ship_polygon_normals[3][3] =
{

draw_ship()

{

bgnpolygon();

n3f(&ship_polygon_normals[0] [0]);

lmbind(MATERIAL, grayTwo);

v3f(&ship_hull[0][0]);

v3f(&ship_hull[l][0]);

v3f(&ship_hull[2][0]);

endpolygon();

bgnpolygon();

n3f(&ship_polygon_normals[1] [0]);

v3f(&ship_hull[0][0]);

v3f(&ship_hull[2][0]);

v3f(&ship_hull[3][0]);

endpolygon();

bgnpolygon();

n3f(&ship_polygon_normals[2][0]);

v3f(&ship_hull[0][0]);

v3f(&ship_hull[3][0]);

v3f(&ship_hull[4][0]);

endpolygon();

}

-0.727607, 0.485071,

-0.707107, 0.000000,

-0.557086, -0.742781,

-0.485071,

-0.707107,

-0.371391 };

Figure 8.1 Polygon Draw Routine

67

/* The order of the Standard Format is: polygon followed by the polygon norma .*/

/* the number of vertices of the polygon, and the position of each vertex. */

/* Each vertex is on a separate line in x, y, z order. */

polygon

-0.727607

3

0.000000

0.485071 -0.485071

0.000000 0.000000

-0.500000 -0.220000 -0.110000

-0.500000 0.110000 -0.220000

polygon

-0.707107

3

0.000000

0.000000 -0.707107

0.000000 0.000000

-0.500000 0.110000 -0.220000

0.500000 -0.110000 -0.220000

polygon

-0.557086

3

0.000000

-0.742781 -0.371392

0.000000 0.000000

-0.500000 0.110000 - 0.220000

-0.500000 0.110000 - 0.110000

Figure 8.2 Polygon Standard Format

68

drawing errors. With the current standard file format every misplaced point must be

corrected at each polygon it occurs in. In the coded format, only the point array value

would have to be changed. To get around this problem, all corrections were made to

the IRIS polygon code then converted to the standard format using a locally written

routine.

Currently, the file format shown exists without the ability to display vessels in

the format within current simulators. Work along this line has progressed to the point

where objects can be drawn and manipulated in three dimensions with lighting using a

standard format. This is useful for examining an object before using the object in a

simulation program. This work will be useful when objects can be built on screen,

then stored in a standard format and the drawing routine that uses the standard

format is incorporated into the simulators. Clearly the standard format is in our future

efforts.

B. DIGITIZED IMAGE

There is also an effort at the Naval Postgraduate School to take 3D digitized

pictures of various ship models and convert the digital data into a standard format for

drawing. This is a complicated process because the digitizing produces thousands of

polygons for each object. The objects currently employed in the submarine simulator

range from 75 to 136 polygons and represent accurate models. The digitized images

would be very accurate and realistic, but drawing time would grind the simulation to a

halt. It is our experience that limiting the polygons for each object to a maximum of

150 polygons gives the necessary detail and does not significantly effect simulator

speed. The polygon count needs to be limited since several objects could be seen

69

within the same screen, significantly slowing down the simulation. A realistic goal is

to limit the number of total 3D icon polygons to one thousand. This number of

polygons enables the user to see seven to ten objects and maintain smooth motion.

Limiting these polygons is complicated but necessary and a method to do this with

3D digitized models will be useful.

C. LEGO® BUILDING SYSTEM

Another way to produce three dimensional objects is to construct the 3D icon on

the screen. It is possible to customize the image and then capture the image into a

standard file format. This is the basic concept of another project at the Naval

Postgraduate School.

Many of the vessels currently in the Navy's inventory have common attributes.

Each class of ship is configured to satisfy a certain mission, with certain major

components of the ships common. The ship building system under current

development will contain a library of common ship parts that can be selected and

connected graphically, like LEGO blocks. For example, several ship classes have

common hulls with different superstructures, so only the superstructures need to

change. The building system will give a choice of what superstructures are available

to construct the ship. The same goes for weapons systems and antenna structures.

Other capabilities of the building system will be the ability to scale models to fit the

coordinate system of different simulators, the ability to view the model with a lighting

model to ensure polygon normals are situated properly, and the ability to construct

new parts of ships as new equipment is developed. This is an important project

because it will save time in icon construction and reduce repetition of effort.

70

D. GRAPH PLOTTING

If the modeling process can be accomplished with the aid of a computer there is

less of a chance of an error and a good chance of saving time. Since the above

techniques are in there embryonic stages, the modeling for the submarine simulator

was accomplished with two dimensional drawings on graph paper. This technique is

time consuming and lends itself to human error. Each point on a model requires a

value for the x, y, and z axis. It is difficult to derive these values from a single two

dimensional drawing. Three views of each model were required to develop adequate

detail and realism. The drawings and photos for each model in the submarine

simulator are provided in Appendix A. The points for each model are annotated on

the drawing and the values of each point are provided on the figures following the

drawings. There are several concepts to keep in mind when drawing models, the key

concepts are modularity and efficient use of polygons to maintain accuracy.

Modularity is a key concept in any program and in modeling is especially

important. When drawing objects, always take one section at a time before moving

on to another section. The same idea is necessary with three dimensional

programming. It is much easier to draw sections of an object separately then translate

the objects together to form a whole object. This makes the object much easier to

modify if there is a change in specifications or if an error was made. Simplicity is the

key. If an object can be broken down into components and each component drawn,

then there is less chance of an error.

Efficient use of polygons with relation to accuracy is another important

consideration when building models. It is very important to make the vessel look

realistic but not to the point of grinding the simulator to a halt. It is not necessary

71

that every detail be considered unless the detail is a distinguishing feature. When

drawing the Ohio Class submarine and the Los Angeles class submarine, the same

hull was used. There are two big structural differences between the Los Angeles and

the Ohio classes. The first being the length, 560 feet for the Ohio class and 360 feet

for the Los Angeles class, and the second being the long flat top of the Ohio class

where the missiles are housed. The length in this case was not the important

distinguishing factor. The vessels would identical unless positioned together so the

relative lengths can be determined. The Ohio was modified slightly to emphasize the

long flat top and then colored differently from the Los Angeles to bring out the

difference. These changes cost six polygons which is not significant. All of the other

sections of the submarines are identical except scaled to match the size of the Los

Angeles. In this case accuracy and polygon count were not compromised.

One of the difficult problems faced in drawing models is the accurate depiction of

curved surfaces. A large concentration of polygons are situated on the bow of the

submarine because it is difficult to simulate smooth curved surfaces without using

many polygons. Small triangles were used to insure the polygons were planar and to

give a smooth look to the bow. Half of the polygons on the bow could have been

eliminated if planar rectangles were used. This extra cost could not be avoided for

realism. Rectangles did not look as good as the triangles. In contrast, the remaining

sections of the hull of the submarine are done with rectangles and form the octagonal

tube of the hull. Unlike the bow, the octagonal tube is quite adequate for the

simulation. There are no three dimensional sphere or tube routines in the graphics

library, therefore these shapes are constructed using three dimensional lines and

polygons. This is an example where the polygon count had to be increased to render

an accurate drawing.

72

The Kitty Hawk class aircraft carrier is an example of how few polygons are

needed when eliminating unnecessary detail and where curved surfaces are not

necessary. The 1000 foot Kitty Hawk uses only 76 polygons where the 360 foot Ohio

class submarine uses 132 polygons. This is possible because the outstanding

features of the Kitty Hawk are its size and its shape. The entire superstructure of

the carrier uses only 15 polygons because it is not the important and distinguishing

feature of the vessel. The Spruance class destroyer uses only 45 polygons for the hull

and another 31 for the superstructure. Again this is because curved surfaces are not

necessary for the Spruance vessel simulation. The Spruance does however have two

large communication and sensing equipment towers which are drawn with the line

drawing routines. Each tower is 18 polygons which sends the Spruance polygon

count to 102 polygons. Unlike the Kitty Hawk, the superstructure of the Spruance is a

distinguishing feature and increased detail to the superstructure is critical to the

model. Added details like gun turrets and sonar domes are features which will

(r)

eventually be added to the Spruance when the LEGO building system is

developed. The Spruance and the Kitty Hawk are examples of eliminating accuracy to

lower the polygon count, yet still maintain a suitable object for simulation.

E. NORMALS AND LIGHTING

A dramatic improvement to any simulator is the incorporation of a lighting

model. Without a lighting model, objects in a three dimensional simulator look like

two dimensional cut outs of objects. A lighting model allows the object to be shaded

relative to a common light source. This adds to the perception of depth. As an object

moves away from the light source, the object gets darker relative to its closer

position. All this adds to the realism of the simulation. In order to take advantage of

73

a lighting model, the normal for each polygon needs to be calculated. The normal is

calculated by finding the unit vector perpendicular to a planar polygon. The normals

are necessary because it is the angular difference between the light source and the

polygon normal that determines the exact color for a particular polygon.

Currently, the polygon normals are included in the polygon drawing routines and

the standard file format. This is accomplished by creating an array of normals for each

polygon drawn in the order they are drawn. Using normals allows each polygon to

actually have a different color with respect to the light source. A better way to use

the polygon normals to produce a lighting effect is to calculate the vertex normals. To

calculate the vertex normals the average of all the polygon normals associated with a

particular vertex is taken. This must be done for each vertex. With vertex normals,

individual polygons become less visible because they are blended with the adjacent

polygons to give a smooth shaded appearance. This not only makes the lighting

model more effective, but also smooths the rough edges of the object to make the ship

models look more realistic. The use of vertex normals has not yet been incorporated

into the three dimensional icons of the simulator.

Currently, modeling is very complicated and lends itself to artistic impression.

With the efforts of creating a standard file format, a LEGO® building system, and a

digitizing system, the accuracy and efficiency of object modeling can be improved.

These systems will have to be able to balance accuracy with efficiency in order to

make the results usable and not rely on advancements in technology to improve the

speed of simulators. These improvements are necessary to increase the quality of

current simulators adding realism and training value, and to take full advantage of

advancing technology.

74

IX. PERFORMANCE

Since this is the preliminary work on the S&PV system, we used the

development process to evaluate various means of data storage, terrain drawing

methods and normal calculations. The highest rated versions are incorporated within

the S&PV system.

In the test results that follow, the following program setups were used. The

course and view angle were tied together. Stealth mode was not energized. The

view angle was left at its default forty five degree view and the drawing distance was

left at its default 7,500 yard range. The polygon count, averaged over ten draws, was

between 1,800 and 2,000 polygons depending on the view angle. Test results given

are for a 000 degrees true course with the polygon count specified. Networking mode

was off. Grid square and mesh terrain drawing methods were toggled as indicated.

No contact vessels were being drawn. Figure 6.1 gives a good feel for the complexity

of the picture.

A. MEMORY REQUIREMENTS

First and foremost, the S&PV system is memory intensive. Its database of

1,201 by 1,201 sixteen bit integers requires 2.88 megabytes of memory storage.

Since it is designed to not limit the user to any one location in the database, all of the

terrain data is kept in memory. To effectively light the terrain, vertex normals are

used for all the terrain points. Each normal is three 32 bit floating point normals,

increasing the memory load to well over twenty one megabytes. Next, the program

75

with all of the graphics library routines included, must also be in memory. The S&PV

is currently over 20,500 lines of C code and the executable file is over 700 kilobytes.

Our system on gravy4, an IRIS 4D/70GT, has sixteen megabytes of system memory

that must be shared with the operating system. While the IRIS is a multi-user, multi-

tasking machine, any activity on gravy4 outside the S&PV has a noticeable

performance degradation on the program. Virtual memory paging is the most probable

cause.

B. 2D AND 3D OPERATIONS CHARACTERISTICS

1. 2D and Normal Calculation Operations

Test runs on the S&PV using the utility gr_osview have shown the S&PV

to have two very different personalities. During surface normal calculations and 2D

placement and selection processes, processor wait time is entirely composed of

memory swap activity. While the surface normals array does not have to be in

memory for 2D placement and selection operations, the entire height array is called

upon on numerous occasions. Separate arrays for the normals and height data was

found to be the fastest method available for all operations.

2. Terrain and Normal Data Storage Methods

Combining the terrain heights and terrain normals arrays into one array of

records resulted in slow, memory intensive, halting displays in the 2D operations. 3D

operations were also slower. Using two arrays has still caused an approximate ten

second delay from the time the 2D overview map is drawn until the first program

76

menu is displayed for the user. After this delay, redrawing the 2D map does not

cause any extra delay.

3. 3D Operations Characteristics

During the 3D operations, the processor wait time is nearly entirely

composed of waiting for the graphics pipeline to unload enough graphics data to

accept more data. Faster processor speeds, both numerically and graphically, would

help the overall performance. Higher processing speeds will not reduce the need for

more memory. The reduction of page swapping brought about by additional memory

should help free up more processor time.

4. Shared Graphics and C Libraries

To reduce the memory requirements of the S&PV, we now compile the

program using the shared C and graphics libraries. This has reduced the executable

file by over 500 kilobytes. While the shared libraries should decrease performance,

with their inherent indirection, our performance measurements noticeably increased

by approximately one frame per second. This again points to the lack of memory for

the system and the poor performance of UNIX when system memory is full.

C. TERRAIN DRAWING CONSIDERATIONS

Terrain drawing on the IRIS is accomplished in two different ways. The grid

square method draws each terrain section as a square according to the resolution

area. Each square is colored in a checkerboard motif. The actual terrain squares are

drawn with the triangular mesh routine. The mesh method utilizes the triangular

mesh routine to draw an entire row at each call. The triangular mesh routines

77

automatically connect an input point to the two previous points, creating a triangle in

the mesh. The mesh method gives the terrain a smooth, realistic look to the terrain.

Further, using the standard set up, the mesh routines draw the same terrain as the

grid square method 3.1 frames per second faster with the average grid square value of

5.3 frames per second and mesh at 8.4 frames per second. Figure 9.1 shows the test

results for four selected ranges and the two viewing angles. Figure 9.2 compares the

advertised speed of 40,000 polygons per second against the speeds attained by the

grid square and mesh methods. The major speed differences occur from the size of

the polygons and the support code for moving the vessels around. The grid square

method is left as a main run-time menu option for use in flat areas where the mesh

method does not give any feeling for vessel motion.

D. TERRAIN LIGHTING MODEL

Lighting on the IRIS helps to increase the realism of three dimensional scenes.

While lighting requires additional computation and memory allocation for the normals,

an infinite light source with an infinite viewer is said, by the sales literature, to be

computationally free. To test the effect of evaluating the lighting model on the overall

performance, a toggle was placed on the run time menu that kept only the lighting

model lmbind() call from being made. All terrain drawing routines were done in

exacdy the same way with the lighting model turned on or off. The picture with the

lighting model off is nothing but an outline of the terrain, colored according to the last

RGBcolor() calls. The frames per second meter showed an increase of one to almost

two frames per second with the lighting model off. The number of polygons being

drawn was constant at 1,800 polygons. While this again could be related to the

78

S&PV Performance Table

Draw Method

View
Angle

View
Distance Polygons

Frames

per Second

Polygons

per Second

Grid Square

Mesh
45

45

5,000

5,000

1,531

1,531

5.8

10.0

8,880

15,310

Grid Square

Mesh
15

15

5,000

5,000

863

863

10.6

16.4

9,148

14,153

Grid Square

Mesh
45

45

7,500

7,500

1,786

1,786

4.9

9.6

8,751

17,146

Grid Square

Mesh
15

15

7,500

7,500

947

947

9.9

15.6

9,375

14,773

Grid Square

Mesh
45

45

15,000

15,000

2,790

2,790

3.3

5.9

9,207

16,461

Grid Square

Mesh
15

15

15,000

15,000

1,333

1,333

7.2

11.3

9,598

15,063

Grid Square

Mesh
45

45

20,000

20,000

3,732

3,732

2.2

4.3

8,210

16,047

Grid Square

Mesh
15

15

20,000

20,000

1,675

1,675

5.3

9.0

8,878

15,075

Figure 9.1 S&PV Performance Figures

79

Comparison of Advertised, Grid Square and Mesh Drawing Speeds

2,000

10 20 30

Frames per Second

40 50

SGI Grid Square Mesh

Figure 9.2 Performance Comparisons

80

memory shortage, it also highlights the computational expense of an effective lighting

model such as used by the IRIS.

1. Comparison of the Lighted and Unlighted Versions

Another hint to the cost of an effective real time lighting model is in the

performance differences found between the unlighted and lighted versions of the

program. Before lighting was introduced to the S&PV, terrain drawing was done by

color shading for distance. The terrain was initially colored a light green and was

distance shaded to a dark brown Performance in this system for a 7,500 meter

distance, 3,400 polygon picture was from 7-8 frames per second. The lighted version

of S&PV in the same location, same distance and mesh draw on, only performs

between 4-4.7 frames per second. Note, this test was done before a change was

made to the control structure of the drawing algorithm speeding up the simulator to

the values expressed in the earlier performance sections. Both versions of the

program mentioned here had the same control structure at the time of the testing.

Extra memory requirements and lighting model calculations make up the difference

between the two program versions.

2. Normal Calculation Versus Normal Data Storage

In the third test, the terrain surface normals were calculated dynamically.

The purpose of this test was to find the speed difference in calculating the normals

against the necessary memory swap time. With the standard settings, the frames

per second speed achieved was 3.2. While slower than the separate array storage

method, it was consistent with the performance of the array of records storage

scheme. This technique may become more practical in a multiple processor

81

environment where one processor handles the graphics pipeline and a second

processor calculates the terrain surface normals.

E. PERFORMANCE CONCLUSIONS

Overall, the current drawing methods and storage scheme used in the program

achieve the highest performance values of all the methods tested. With a multiple

processor upgrade, such as the IRIS GTX, calculating the normals dynamically may

become a viable option. The main performance constraint is still the lack of main

memory. Upgrading the system memory beyond sixteen megabytes should allow

greater performance with the program as it stands. Expanded memory will also allow

for adding additional DMA data files to be brought into the program for use in the

future surface and aerial views of the Command and Control Workstation of the

Future.

82

X. CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

The subsurface and periscope views system has fulfilled all of its initial design

criteria as set out in the proposal starting the work. It is capable of accurately

portraying the DMA Sea of Japan database along with easily recognizable three

dimensional icons of surface and subsurface platforms in real-time. Two versions of

terrain drawing are included in the package, the first for realism and speed, the

second, for piloting on flat terrain. The current version of the S&PV system is an

efficient simulator that can easily be modified to add whatever new features are

desired.

A. CONCLUSIONS AND LIMITATIONS

1. Terrain Drawing

The terrain drawing algorithms within the S&PV system are fast and

efficient. They represent terrain in an accurate, realistic way. While the simulator

can be flown as an aircraft, modifications to the drawing routines should be made to

draw only in low resolution, 400 yards by 400 yards, or in an even lower resolution.

This would allow greater distances to be drawn without the severe performance

penalties for large distances. Converting the drawing routines to run only in low

resolution is a simple matter of setting the high and medium resolution boundaries to

zero when in an aircraft mode.

The second area of concern with long distance drawing is the size of the

database required to draw to the specified distance. Using a standard of visibility of

83

26 nautical miles, up to four database files may have to be loaded. The height data

points would then account for nearly twelve megabytes of memory even before the

terrain vertex normals are calculated. A compressed representation of the terrain

height databases and the terrain vertex normals is necessary to perform the terrain

drawing at this level.

2. Three Dimensional Vessel and Weapon Icons

The 3D vessel and weapon icons used in the S&PV are effective in

portraying the desired platform. Currently only polygon normals are used on the icons

but inclusion of vertex normals will allow for a more realistic, rounded shape to the

icons. Creating the 3D icons is a time consuming task. Drawing tools should be

created to remove the labor intensive aspects of these icons without sacrificing

realism or performance.

While grounding detection has been implemented into the S&PV, collision

detection with vessels and weapons has not. We are currently working on various

9
schemes to efficiently detect collisions with complexity less than 0(n).

3. Networking

Networking between IRIS graphics workstations has been successfully

integrated into the S&PV. Each workstation can generate targets to be viewed by all

of the workstations on the network. There is no link between the S&PV and the

earlier work on the Commander Display System [Ref. 1]. The Commander's Display

System needs to be ported to the 4D series workstations and used as the vessel

creation system to create a realistic, multistation simulation.

84

B. FUTURE DIRECTIONS

Future work on the S&PV should be directed in six basic areas, air and surface

views, multistation networking with the Commander's Display System, 3D vessel

and weapon icon construction, weapon's profiles, ship and submarine control

surfaces, and sensor packages.

1. Air and Surface Views

The CCWF, with this work, has a realistic subsurface and periscope view

ability. The air and surface views must be created. The current code will allow

limited air and surface views, but the real problem lies in the amount of data

necessary to provide terrain drawing out to the horizon, normally 26 nautical miles.

Data structure techniques must be evaluated to determine the best way to store up to

four sixty nautical mile database grids. Further work may also involve using the GTX

upgrades ordered for two of the IRIS GT's. These upgrades provide multiprocessor

support and if the processors can be divided into one working the graphics pipeline

and the second working terrain vertex normal calculations, the database storage

problem may be eliminated.

2. Multistation Networking

The Commander's Display System (CDS) was designed to display in color

the Navy's tactical display system [Ref l:pp 18-24]. The user could then select a

vessel from his display and have the view displayed as appropriate. Currently, this is

not possible. The CDS must be ported to a IRIS 4D system and updated. The

networking within the CDS must be brought in line with the networking scheme used

by the S&PV system.

85

3. 3D Vessel and Weapon Icon Production

Currently the S&PV has five vessel platforms and one weapon platform.

Construction methods to produce these icons in a small percentage of the time

currently taken must be done to allow the S&PV to effectively portray many possible

vessel occurrences. As discussed in the chapter on 3D icons, work is being started in

this area. For the S&PV to use the icons, the production systems should allow for

scaling, in meters or yards, coloring and finally rotation. With the terrain data set up

in one hundred yard squares with height in meters, the icons must be in the same

scale as the terrain.

Coloring and shading is very important in recognition of vessels. The icon

tool should allow the user to import the defined vessel colors from the simulation

program. This will allow the tool to display the icon as it would be seen from the

simulator.

The S&PV assumes all vessels and weapons are oriented to mathematical

zero, 090 true, degrees. The display system is then set to automatically rotate and

display the vessel, wreck or weapon to its course and position. Icons created by the

icon tool must allow the icons to be centered at whatever position is desired.

4. Weapons Profiles

While creating 3D icons for weapons is a fairly easy task, creating the

weapons profiles will require a fairly major effort. Modern weapons contain

intelligence that guides them to their target. While all are initially guided by the

vessel platform they were launched from, many have the ability to deviate from the

86

initial launch programming and seek out its victim. All of this makes the presentation

of dumb weapons obsolete.

Weapon storage within the CCWF allows for inclusion of a path file or

pointer to a guidance routine. This ability allows the CCWF to advance further into a

fully realistic training simulation.

5. Ship and Submarine Control Surfaces

To further add to the realism of the S&PV, vessel driving techniques should

be altered to reflect the vessel's actual operating parameters. Instead of a dial for

changing the course, the dial should change the rudder angle of the ship or submarine.

The depth dial should change the setting on the dive planes of the submarine and the

speed dial should respond as an engine order telegraph. This requires the ability to

derive realistic and unclassified operating parameters for the vessels included in the

S&PV. Maneuvering through channels and around vessel formations would then

become a realistic training scenario.

6. Sensor Packages

Modern vessels are packed with sensing gear. From sonars to ESM gear,

they are the eyes and ears of the modern warship. While adding realism and training

value, this step will assuredly put the CCWF into the classified arena. Regardless,

as much of the sensor packages as can be allowed without having to classify the

S&PV should be added to the program in increase the training and realism level of the

program.

87

Left Side View

Top View

P
Right Side View

Appendix A.l Los Angeles Class Submarine

88

Appendix A.2 Los Angeles Subsurface View

Appendix A.3 Los Angeles Surface View

89

_y =—=^
1

Left Side View

Top View

4=
3<3

Right Side View

Appendix A.2 Ohio Class Submarine

90

Appendix A.5 Ohio Subsurface View

Appendix A.6 Ohio Surface View

91

/
jS. 2^

Left Side View

4= - ^
K<1 B>X Z"

Top View

B ^:
^—*

Right Side View

Appendix A.7 Soviet Typhoon Class Submarine

92

Appendix A.9 Typhoon Surface View

93

I I

L
Z \

Left Side View

LZZ1

Top View With Hull Lines

Right Side View

Appendix A.10 Kitty Hawk Class Aircraft Carrier

94

Appendix A.ll Kitty Hawk

95

Left Side View

Top View

Right Side View

Appendix A.12 Spruance Class Destroyer

96

Appendix A. 13 Spruance

97

Left Side View

Top View

Right Side View

Bottom View

Appendix A.14 Torpedo

98

Appendix A. 15 Twenty-one Inch Torpedo

99

LIST OF REFERENCES

1. Adams, Rodney M., A Software Architecturefor a Commander' s Display System,

M.S. Thesis, Naval Postgraduate School, Monterey, California, April 1987.

2. Akeley, Kurt and Jermoluk, Tom, "High-Performance Polygon Rendering,"

Computer Graphics, SIGGRAPH 1988 Conference Proceedings, v. 22, no. 4,

August 1988.

3. Fichten, Mark A. and Jennings, David H., Meaningful Real-Time Graphics Work-

station Performance Measurements, M.S. Thesis, Naval Postgraduate School,

Monterey, California, December 1988.

4. Harris, Frank E., Preliminary Work on the Command and Control Workstation of

the Future, M.S. Thesis, Naval Postgraduate School, Monterey, California,

June 1988.

5. Hearn, Donald and Baker, M. Pauline, Computer Graphics, Prentice Hall, Inc.,

Englewood cliffs, New Jersey, 1986.

6. Olivera, Hector J. Mariscal, EDJTFONT - An Interactive Font Editing System,

M.S. Thesis, Naval Postgraduate School, Monterey, California, December 1987.

100

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 200

Naval Postgraduate School

Code 52, Department of Computer Science

Monterey, CA 93943-5100

4. CPT Charles E. Phillips 2

555 Creek Road
Poughkeepsie, NY 12601

5. LT Gordon K. Weeks Jr. 2

1039 Sycamore Rd.

Graham, NC 27253

6. John Maynard 1

Naval Ocean Systems Center

Code 402

San Diego, CA 92152

7. Duane Gomez 1

Naval Ocean Systems Center

Code 433

San Diego, CA 92152

8. James R. Louder, 1

Naval Underwater Systems Center

Combat Control Systems Department

Building 1171/1,

'

Newport, RI 02841

101

9. Research Administration, Code 012

Naval Postgraduate School

Monterey, CA 93943-5000

102

.-:;

Keeks

future. ation of t

/^

Thesis
W33295 Weeks
c.l The Command and Con-

trol Workstation of the
Future.

^°?^

