UC-NRLF

$$
\begin{equation*}
20 \tag{x}
\end{equation*}
$$

.
?

5

A COURSE IN

MECHANICAL DRAWING.

ву
JOHN S. REID,
Instructor in Mechanical Drawing and Designing,
Sibley College, Cornell University, Ithaca, N. Y.

FIRSTEDITION. FIRST THOUSAND.

NEW YORK.
JOHN WILEY \& SONS.
London : CHAPMAN \& HALL, Limited.
1898.

Copyright, 1898,
By
JOHN S. REID.
75022

PREFACE.

In the course of a large experience as an instructor in drawing and designing, the author of this work has often been called upon to teach the elements of mechanical drawing to students in marine, electrical, railway, and mechanical engineering. Having tried and failed to find a book on the subject that was entirely suitable for his use as a text-book, he has found it necessary to prepare the present work.

This course contains, in the author's judgment, a complete and concise statement, accompanied by examples, of the essential principles of mechanical drawing-all that any young man of ordinary intelligence needs to master, by careful study, the more advanced problems met with in machine construction and design. Such works as the author has tried, although most excellent from certain standpoints, were either incomplete in some of the divisions of the subject or too voluminous and elementary in the treatment of details.

The author does not imagine this work is perfect, but he believes that it comes nearer what is needed in teaching the elements of mechanical drawing in technical schools, high schools, evening drawing schools, and colleges than any work he has examined.

The chapter on Conventions will be appreciated by students

PREFACE.

when called upon to execute working drawings in practical work. The methods described are considered by the author to be those which have met with general approval by the experienced American draftsmen of the present time.

My acknowledgments are due to E. C. Cleaves, professor of drawing, Sibley College, Cornell University, for reading the manuscript and making some valuable suggestions.

The Author.
April r, 1898.

CONTENTS.

INTRODUCTION.

PAGE
The Complete Outfit, Illustrated I
CHAPTER I.
Instruments. 7
Use of Instruments 7
Pencil. 7
Drawing Pen 9
Triangles 11
T Square II
Drawing Board II
Sibley College Scale 12
Scale Guard 12
Compasses 13
Dividers or Spacers. 13
Spring Bows. 14
Irregular Curves 14
Protractor. 14
CHAPTER II.
Geometrical Drawing. 16
CHAPTER III.
Conventions 56
CHAPTER IV.
Lettering and Figuring 64
CHAPTER V.
Orthographic Projection. 74
Shade Lines and Shading 103
Conventions. 104
Shading 106
Isometrical Drawings. 112
Working Drawings. II8

REESE LIBRARY OF THE UNIVERSITY OF CALIFORNIA
 MECHANICAL DRAWING.

INTRODUCTION.

A NEED has been felt by instructors and students, especially in technical courses, for a text-book that would illustrate the fundamental principles of mechanical drawing in such a practical, lucid, direct and progressive way as to enable the instructor to teach, and the student to acquire, the greatest number of the essential principles involved, and the ability to apply them, in a draftsman-like manner, in the shortest space of time.

With this in mind, the present work has been prepared from the experience of the writer, a practical draftsman and teacher for over fifteen years.

THE COMPLETE OUTFIT.

The complete outfit for students in mechanical drawing in Sibley College is as follows:
(i) The Drawing-board for freshman work is $17^{\prime \prime} \times 22^{\prime \prime}$ $\times \frac{5^{\prime \prime}}{8}$, the same as that used for free-hand drawing. The board for sophomore and junior drawing is $20^{\prime \prime} \times 26^{\prime \prime} \times$ not more than $I^{\prime \prime}$ in thickness. The material should be soft pine and constructed as shown by Fig. I.
(2) Paper, quality and size to suit.
(3) Pencils, one 6 H and one 4 H Koh-i-noor or Faber, also one Eagle Pilot No. 2 with rubber tip.
(4) The T-Square for freshman work is furnished by the

Fig. i.
department; a plain pearwood T-square with a fixed head is all that is necessary for sophomore or junior work. Length to suit drawing-board.
(5) Instruments. "The Sibley College Set," shown by Fig. 2, was compiled by the writer, and is recommended as a first-class medium-priced set of instruments. It contains•

Fig. 2.
A Compass, $5 \frac{1^{\prime \prime}}{}{ }^{\prime}$ long, with fixed needle-point, pencil, pen and lengthening bar.

A Spring Bow Pencil, $3^{\prime \prime}$ long.
A " " Pen, 3 " long.
A " " Spacer, 3 " long.
A Drawing-pen, medium length.
A Hair-spring Divider, $5^{\prime \prime}$ long.
A nickel-plated box with leads.
(6) A Triangular Boxwood Scale graduated as

Fig. 3.
follows: $4^{\prime \prime}$ and $2^{\prime \prime}, 3^{\prime \prime}$ and $\mathrm{I}^{\frac{1}{2}}{ }^{\prime \prime}, \mathrm{I}^{\prime \prime}$ and $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}, \frac{3^{\prime \prime}}{4}$ and $\frac{3^{\prime}}{8}, \frac{1}{16}{ }^{\prime \prime}$ and今す".

Fig. 4.

Fig. 5
(7) I Triangle $30^{\circ} \times 60^{\circ}$, celluloid, $10^{\prime \prime}$ long. Fig. 4.
I " 45°,
(8) "Sibley College Set" of Irregular Curves.
(9) Glass-paper Pencil Sharpener.

Fig. 6.
(io) Ink, black waterproof, S.\& H. Fig. $7 \cdot$
(II) " red "، Higgins. Fig. 8.
(12) " blue

Fig. 7.

Fig. 8.
(13) Ink Eraser, Faber's Typewriter.
(i4) Pencil Eraser, Tower's Multiplex Rubber. Fig. 9.
(15) Sponge Rubber or Faber's Kneaded Rubber. Fig. ${ }^{10}$.

Fig. 9.
(16) Tacks, a small box of I oz. tacks.
(17) Water-Colors, $\frac{1}{2}$ pan each of Payne's Gray, Crimson Lake, Prussian Blue, Burnt Sienna, and Gamboge. Windsor \& Newton. Fig. II.

Fig. 10.

Fig. II.
(i8) Tinting Brush, Camel's Hair No. io. Fig. 12.

Fig. 12.
(i9) Tinting Saucer. Fig. i3.
(20) Water Glass. Fig. I4.
(2 i) Arkansas Oil-stone. $2^{\prime \prime} \times \frac{1_{2}^{\prime \prime}}{} \times \frac{\frac{1}{16}^{\prime \prime}}{}$.
(22) Piece of Sheet Celluloid No. 3000, dull on both sides.
(23) Protractor, German silver, about 5 " diam. Fig. I5.
(24) Scale Guard, " " Fig. 16.

Fig. 13.

Fig. 14.
(25) Sheet of Tracing-cloth, $18^{\prime \prime} \times 24^{\prime \prime}$.
(26) Writing-Pen, point, "Gillott" No. 303.

Fig. 15.

Fig. 16.
(27) Piece of Sheet Brass, $4^{\prime \prime} \times 4^{\prime \prime}$.
(28) Needles, two with handles.

The following numbers of "The Complete Outfit" are all that the student will be required to purchase for freshman mechanical drawing (No. 2 Register, '97-'98): 2, 3, 5, 6, 7 , 8, 9, 10, 13, 14, 16, 26.

The remainder of the outfit may be purchased during the sophomore and junior years.

CHAPTER I.

INSTRUMENTS.

IT is a common belief among students that any kind of cheap instrument will do with which to learn mechanical drawing, and not until they have acquired the proper use of the instruments should they spend money in buying a firstclass set. This is one of the greatest mistakes that can be made. Many a student has been discouraged and disgusted because, try as he would, he could not make a good drawing, using a set of instruments with which it would be difficult for even an experienced draftsman to make a creditable showing.

If it is necessary to economize in this direction it is better and easier to get along with a fewer number, and have them of the best, than it is to have an elaborate outfit of questionable quality.

The instruments composing the "Sibley College Set" are made by T. Alteneder \& Sons, and are certainly as good as the best. See Fig. 17.

USE OF INSTRUMENTS.

The Pencil.—Designs of all kinds are usually worked out in pencil first, and if to be finished and kept they are inked in and sometimes colored and shaded; but if the drawing is only to be finished in pencil, then all the lines except construction, center, and dimension lines should be made broad and dark,
so that the drawing will stand out clear and distinct. It will be noticed that this calls for two kinds of pencil-lines, the first a thin, even line made with a hard, fine-grained leadpencil, not less than 6H (either Koh-i-noor or Faber's), and sharpened to a knife-edge in the following manner: The lead should be carefully bared of the wood with a knife for about $\frac{1^{\prime}}{}{ }^{\prime \prime}$, and the wood neatly tapered back from that point; then lay the lead upon the glass-paper sharpener illustrated in the outfit, and carefully rub to and fro until the pencil assumes a long taper from the wood to the point; now turn it over and do the same with the other side, using toward the last a slightly oscillating motion on both sides until the point has assumed a sharp, thin, knife-edge endwise and an elliptical contour the other way.

This point should then be polished on a piece of scrap drawing-paper until the rough burr left by the glass-paper is removed, leaving a smooth, keen, ideal pencil-point for drawing straight lines.

With such a point but little pressure is required in the hands of the draftsman to draw the most desirable line, one that can be easily erased when necessary and inked in to much better advantage than if the line had been made with a blunt point, because, when the pencil-point is blunt the inclination is to press hard upon it when drawing a line. This forms a groove in the paper which makes it very difficult to draw an even inked line.

The second kind of a pencil-line is the broad line, as explained above; it should be drawn with a somewhat softer pencil, say 4 H , and a thicker point.

All lines not necessary to explain the drawing should be
erased before inking or broadening the pencil-lines, so as to make a minimum of erasing and cleaning after the drawing is finished.

When drawing pencil-lines, the pencil should be held in a plane passing through the edge of the T -square perpendicular to the plane of the paper and making an angle with the plane of the paper equal to about 60°.

Lines should always be drawn from left to right. A soft conical-pointed pencil should be used for lettering, figuring, and all free-hand work.

The Drawing-pen.-The best form, in the writer's opinion, is that shown in Fig. 17. The spring on the upper blade

Fig. I7.
spreads the blades sufficiently apart to allow for thorough cleaning and sharpening. The hinged blade is therefore unnecessary. The pen should be held in a plane passing through the edge of the T-square at right angles to the plane of the paper, and making an angle with the plane of the paper ranging from 60° to 90°.

The best of drawing-pens will in time wear dull on the point, and until the student has learned from a competent
teacher how to sharpen his pens it would be better to have them sharpened by the manufacturer.

It is difficult to explain the method of sharpening a draw-ing-pen.

If one blade has worn shorter than the other, the blades should be brought together by means of the thumb-screw, and placing the pen in an upright position draw the point to and fro on the oil-stone in a plane perpendicular to it, raising and lowering the handle of the pen at the same time, to give the proper curve to the point. The Arkansas oil-stones (No. 2 I of "The Complete Outfit") are best for this purpose.

The blades should next be opened slightly, and holding the pen in the right hand in a nearly horizontal position, place the lower blade on the stone and move it quickly to and fro, slightly turning the pen with the fingers and elevating the handle a little at the end of each stroke. Having ground the lower blade a little, turn the pen completely over and grind the upper blade in a similar manner for about the same length of time; then clean the blades and examine the extreme points, and if there are still bright spots to be seen continue the grinding until they entirely disappear, and finish the sharpening by polishing on a piece of smooth leather.

The blades should not be too sharp, or they will cut the paper. The grinding should be continued only as long as the bright spots show on the points of the blades.

When inking, the pen should be held in about the same position as described for holding the pencil. Many draftsmen hold the pen vertically. The position may be varied with good results as the pen wears. Lines made with the pen should only be drawn from left to right.

THE TRIANGLES.

The triangles shown at Fig. 4 (in " The Complete Outfit ") are $\mathrm{IO}^{\prime \prime}$ and $7^{\prime \prime}$ long respectively, and are made of transparent celluloid. The black rubber triangles sometimes used are but very little cheaper (about io cents) and soon become dirty when in use; the rubber is brittle and more easily broken than the celluloid.

Angles of $15^{\circ}, 75^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$, and 90° can readily be drawn with the triangles and T-square. Lines parallel to oblique lines on the drawing can be drawn with the triangles by placing the edge representing the height of one of them so as to coincide with the given line, then place the edge representing the hypotenuse of the other against the corresponding edge of the first, and by sliding the upper on the lower when holding the lower firmly with the left hand any number of lines may be drawn parallel to the given line.

The methods of drawing perpendicular lines and making angles with other lines within the scope of the triangles and T square are so evident that further explanation is unnecessary.

> THE T-SQUARE.

The use of the T-square is very simple, and is accomplished by holding the head firmly with the left hand against the left-hand end of the drawing-board, leaving the right hand free to use the pen or pencil in drawing the required lines.

THE DRAWING-BOARD.

If the left-hand edge of the drawing-board is straight and even and the paper is tacked down square with that edge and
the T-square, then horizontal lines parallel to the upper edge of the paper and perpendicular to the left-hand edge may be drawn with the T -square, and lines perpendicular to these can be made by means of the triangles, or set squares, as they are sometimes called.

THE SIBLEY COLLEGE SCALE.

This scale, illustrated in Fig. 3 (in " The Complete Outfit '"), was arranged to suit the needs of the students in Sibley College. It is triangular and made of boxwood. The six edges are graduated as follows; $\frac{1^{\prime \prime}}{16}$ or full size, $\frac{1^{\prime \prime}}{50}, \frac{3^{\prime \prime}}{4}$ and $\frac{3_{8}^{\prime \prime}}{8}=1 \mathrm{ft}$., $\mathrm{I}^{\prime \prime}$ and $\frac{1^{\prime \prime}}{2}=\mathrm{Ift}$., $3^{\prime \prime}$ and $\mathrm{I}_{\frac{1}{2}}^{\prime \prime}=\mathrm{Ift}$, and $4^{\prime \prime}$ and $2^{\prime \prime}=1 \mathrm{ft}$.

Drawings of very small objects are generally shown en-larged-e.g., if it is determined to make a drawing twice the full size of an object, then where the object measures one inch the drawing would be made $2^{\prime \prime}$, etc.

Larger objects or small machine parts are often drawn full size-i.e., the same size as the object really is-and the drawing is said to be made to the scale of full size.

Large machines and large details are usually made to a reduced scale-e.g., if a drawing is to be made to the scale of $2^{\prime \prime}=1 \mathrm{ft}$., then $2^{\prime \prime}$ measured by the standard rule would be divided into 12 equal parts and each part would represent $I^{\prime \prime}$. See Fig. 8ib.

THE SCALE GUARD.

This instrument is shown in Fig. 16 (in "The Complete Outfit'"). It is employed to prevent the scale from turning, so that the draftsman can use it without having to look for
the particular edge he needs every time he wants to lay off a measurement.

THE COMPASSES.

When about to draw a circle or an arc of a circle, take hold of the compass at the joint with the thumb and two first fingers, guide the needle-point into the center and set the pencil or pen leg to the required radius, then move the thumb and forefinger up to the small handle provided at the top of the instrument, and beginning at the lowest point draw the line clockwise. The weight of the compass will be the only down pressure required.

The sharpening of the lead for the compasses is a very important matter, and cannot be emphasized too much. Before commencing a drawing it pays well to take time to properly sharpen the pencil and the lead for compasses and to keep them always in good condition.

The directions for sharpening the compass leads are the same as has already been given for the sharpening of the straight-line pencil.

THE DIVIDERS OR SPACERS.

This instrument should be held in the same manner as described for the compass. It is very useful in laying off equal distances on straight lines or circles. To divide a given line into any number of equal parts with the dividers, say 12 , it is best to divide the line into three or four parts first, say 4 , and then when one of these parts has been subdivided accurately into three equal parts, it will be a simple matter to step off these latter divisions on the remaining three-fourths
of the given line. Care should be taken not to make holes in the paper with the spacers, as it is difficult to ink over them without blotting.

THE SPRING BOWS.
These instruments are valuable for drawing the small circles and arcs of circles. It is very important that all the small arcs, such as fillets, round corners, etc., should be carefully pencilled in before beginning to ink a drawing. Many good drawings are spoiled because of the bad joints between small arcs and straight lines.

When commencing to ink a drawing, all small arcs and small circles should be inked first, then the larger arcs and circles, and the straight lines last. This is best, because it is much easier to know where to stop the arc line, and to draw the straight line tangent to it, than vice versa.

IRREGULAR CURVES.

The Sibley College Set of Irregular Curves shown in Fig. 5 are useful for drawing irregular curves through points that have already been found by construction, such as ellipses, cycloids, epicyloids, etc., as in the cases of gear-teeth, cam outlines, rotary pump wheels, etc.

When using these curves, that curve should be selected that will coincide with the greatest number of points on the line required.

THE PROTRACTOR.
This instrument is for measuring and constructing angles. It is shown in Fig. I5. It is used as follows when measuring
an angle: Place the lower straight edge on the straight line which forms one of the sides of the angle, with the nick exactly on the point of the angle to be measured. Then the number of degrees contained in the angle may be read from the left, clockwise.

In constructing an angle, place the nick at the point from which it is desired to draw the angle, and on the outer circurnference of the protractor, find the figure corresponding to the number of degrees in the required angle, and mark a point on the paper as close as possible to the figure on the protractor; after removing the protractor, draw a line through this point to the nick, which will give the required angle.

CHAPTER II.

GEOMETRICAL DRAWING.

The following problems are given to serve a double purpose: to teach the use of drawing instruments, and to point out those problems in practical geometry that are most useful in mechanical drawing, and to impress them upon the mind of the student so that he may readily apply them in practice.

The drawing-paper for this work should be divided temporarily, with light pencil-lines, into as many squares and rectangles as may be directed by the instructor, and the drawings made as large as the size of the squares will permit. The average size of the squares should be not less than $4^{\prime \prime}$. When a sheet of drawings is finished these boundary lines may be erased.

It will be noticed in the illustrations of this chapter that all construction lines are made very narrow, and given and required lines quite broad. This is sufficient to distinguish them, and employs less time than would be necessary if the construction lines were made broken, as is often the case.

If time will permit, it is advisable to ink in some of these drawings toward the last. In that event, the given lines may be red, the construction lines blue, and the required lines black.

But even when inked in in black, the broad and narrow
lines would serve the purpose very well without the use of colored inks.

The principal thing to be aimed at in making these drawings is accuracy of construction. All dimensions should be laid off carefully, correctly, and quickly. Straight lines joining arcs should be exactly tangent, so that the joints cannot be noticed. It is the little things like these that make or mar a drawing, and if attended to or neglected they will make or mar the draftsman. The constant endeavor of the student should be to make every drawing he begins more accurate, quicker and better in every way than the preceding one.

A drawing should never be handed in as finished until the student is perfectly sure that he cannot improve it in any way whatever, for the act of handing in a drawing is the same, or should be the same, as saying This is the best that I can do; I cannot improve it; it is a true measure of my ability to make this drawing.

If these suggestions are faithfully followed throughout this course, success awaits any one who earnestly desires it.

Fig. i8. To Bisect a Finite Straight Line.-With A and B in turn as centers, and a radius greater than the half of $A B$, draw arcs intersecting at E and F. Join $E F$ bisecting $A B$ at C.

An arc of a circle may be bisected in the same way.
Fig. ig. To Erect a Perpendicular at the End of the Line.-Assume the point E above the line as center and radius $E B$ describe an arc $C B D$ cutting the line $A B$ in the point C. From C draw a line through E cutting the arc in D. Draw $D B$ the perpendicular.

Fig. 20. The Same Problem: a Second Method.-

With center B and any radius as $B C$ describe an arc $C D E$ with the same radius; measure off the arcs $C D$ and $D E$. With C and D as centers and any convenient radius describe arcs intersecting at $F . \quad F B$ is the required perpendicular.

Fig. is.

Fig. 19.

Fig. 20.

Fig. 2i. To Draw a Perpendicular to a Line from a Point above or below It.-Assume the point C above the line. With center C and any suitable radius cut the line $A B$ in E and F. From E and F describe arcs cutting in D. Draw $C D$ the perpendicular required.

Fig. 22. To Bisect a Given Angle.-With A as center and any convenient radius describe the arc $B C$. With B and C as centers and any convenient radius draw arcs intersecting at D. Join $A D$, then angle $B A D=$ angle $D A C$.

Fig. 22.
Fig. 23. To Draw a Line Parallel to a Given Line $A B$ Through a Given Point C.-From any point on $A B$ as B with radius $B C$ describe an arc cutting $A B$ in A. From A with the same radius describe $\operatorname{arc} B D$. From B with $A C$ as radius cut $\operatorname{arc} B D$ in D. Draw $C D$. Line $C D$ is parallel to $A B$.

Fig. 23.
Fig. 24. From a Point D on the Line $D E$ to set off an Angle equal to the given Angle BAC.-From
A with any convenient radius describe arc $B C$. From D with the same radius describe arc $E F$. With center E and radius $B C$ cut arc $E F$ in F. Join $D F$. Angle $E D F$ is $=$ angle $B A C$.

Fig. ${ }^{4}$.
Fig. 25. To Divide an Angle into two equai Parts, when the Lines do not Extend to a Meeting Point.-Draw the line $C D$ and $C E$ parallel and at equal dis-

Fig. 25.
tances from the lines $A B$ and $F G$. With C as center and any radius draw arcs 1,2 . With I and 2 as centers and any con-
venient radius describe arcs intersecting at H. A line through C and H divides the angle into two equal parts.

Fig. 26. To Construct a Rhomboid having Adjacent Sides equal to two Given Lines $A B$ and $A C$, and an Angle equal to a Given Angle A.-Draw line $D E$ equal to $A B$. Make $D=$ angle A. Make $D F=A C$. From F with line $A B$ as radius and from E with line $A C$ as radius describe arcs cutting in G. Join $F G$ and $E G$.

Fig. 26.
Fig. 27. To Divide the Line $A B$ into any Number of equal Parts, say 15.-Draw a line $C D$ parallel to $A B$, of any convenient length. From C set off along this line the number of equal parts into which the line $A B$ is to be divided. Draw $C A$ and $D B$ and produce them until they intersect at E. Through each one of the points $1,2,3,4$, etc., draw lines to the point E, dividing the line $A B$ into the required number of equal parts.

This problem is useful in dividing a line when the point required is difficult to find accurately-e.g., in Fig. $28 A B$ is the pitch of the spur gear, partly shown, which includes a
space and a tooth and is measured on the pitch circle. In cast gears the space is made larger than the thickness of the tooth, the proportion being about 6 to 5 -i.e., if we divide the pitch into eleven equal parts the space will measure $\frac{6}{11}$

Fig. 27.

FIG 28.
and the tooth $\frac{5}{1 T}$. The $\frac{1}{11}$ which the space is larger than the tooth is called the backlash. Let $A^{\prime} B^{\prime}$ be the pitch chord of the $\operatorname{arc} A B$. Draw $C D$ parallel to $A^{\prime} B^{\prime}$ at any convenient distance and set off on it II equal spaces of any convenient length. Draw $C A^{\prime}$ and $D B^{\prime}$ intersecting at E. From point 5 draw a line to E which will divide $A^{\prime} B^{\prime}$ as required; the one part $\frac{5}{11}$ and the other $\frac{6}{11}$.

Fig. 29. To Divide a Given Line into any Number of Equal Parts: Another Method.-Let $A B$ be the given line. From A draw $A C$ at any angle, and lay off on it the required number of equal spaces of any convenient length. Join $C B$ and through the divisions on $A C$ draw lines parallel to $C B$, dividing $A B$ as required in the points $I^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, etc.

Fig. 30. To Divide a Line $A B$ Proportionally to the Divided Line $C D$. -Draw $A B$ parallel to $C D$ at any
distance from it. Draw lines through $C A$ and $D B$ and produce them till they meet at E. Draw lincs from E through the divisions 1, 2, 3, 4, etc., of line $C D$, cutting line $A B$ in the

Fig. 29.
points $5,6,7,8$, etc. The divisions on $A B$ will have the same proportion to the divisions on $C D$ that the whole line $A B$ has to the whole line $C D$-i.e., the lines will be proportionally divided.

Fig. 30.

Fig. 3 .

Fig. 3i. The Same: Another Method.-Let $B C$, the divided line, make any angle with $B A$, the line to be di-
vided at B. Draw line $C A$ joining the two ends of the lines. Draw lines from $5,6,7,8$, parallel to $C A$, dividing line $A B$ in points $1,2,3,4$, proportional to $B C$.

Fig. 32. To Construct an Equilateral Triangle on a Given Base $A B$.-From the points A and B with $A B$ as radius describe arcs cutting in C. Draw lines $A C$ and $B C$. The triangle $A B C$ is equilateral and equiangular.

Fig. 32.

Fig. 33.

Fig. 33. To Construct an Equilateral Triangle of a Given Altitude, $A B$.-From both ends of $A B$ draw lines perpendicular to it as $C A$ and $D B$. From A with any radius describe a semicircle on $C A$ and with its radius cut off arcs 1, 2. Draw lines from A through 1, 2, and produce them until they cut the base $B D$.

Fig. 34. To Trisect a Right Angle $A B C$.- From the angular point B with any convenient radius describe an arc cutting the sides of the angle in C and A. From C and A with the same radius cut off arcs I and 2. Draw lines $1 B$ and $2 B$, and the right angle will be trisected.

Fig. 35. To Construct any Triangle, its Three Sides $A B$ and C being given.-From one end of the base as A describe an arc with the line B as radius. From the other end with line C as radius describe an arc, cutting the first arc in D. From D draw lines to the ends of line \dot{A}, and a triangle will be constructed having its sides equal to the sides given. To construct any triangle the two shorter sides B and C must together be more than equal to the largest side A.

Fig. 34.

Fig. 36.

Fig. 35.

Fig. 37.

Fig. 36. To Construct a Square, its Base $A B$ being given.-Erect a perpendicular at B. Make $B C$ equal
to $A B$. From A and C with radius $A B$ describe arcs cutting in D. Join $D C$ and $D A$.

Fig. 37. To Construct a Square, given its Diagonal $A B$.-Bisect $A B$ in C. Draw $D F$ perpendicular to $A B$ at C. Make $C D$ and $C F$ each equal to $C A$. Join $A D$, $D B, B F$, and $F A$.

Fig. 38. To Construct a Regular Polygon of any Number of Sides, the Circumscribing Circle being given.-At any point of contact, as C, draw a tangent $A \dot{B}$ to the given circle. From C with any radius describe a semicircle cutting the given circle. Divide the semicircle into as many equal parts as the polygon is required to have sides, as I, 2, 3, 4, 5, 6. Draw lines from C through each division, cutting the circle in points which will give the angles of the polygon.

Fig. 38.

Fig. 39.

X Fig. 39. Another Method.-Draw a diameter $A B$ of the given circle. Divide $A B$ into as many equal parts as the polygon is to have sides, say 5. From A and B with the
line $A B$ as radius describe arcs cutting in C, draw a line from C through the second division of the diameter and produce it cutting the circle in $D . B D$ will be the side of the required polygon. The line C must always be drawn through the second division of the diameter, whatever the number of sides of the polygon.

Fig. 40. To Construct any Regular Polygon with a Given Side $A B$.-Make $B D$ perpendicular and equal to $A B$. With B as center and radius $A B$ describe arc $D A$. Divide arc $D A$ into as many equal parts as there are sides in the required polygon, as $\mathrm{I}, 2,3,4,5$. Draw $B 2$. Bisect line $A B$ and erect a perpendicular at the bisection cutting $B 2$ in C. With C as center and radius $C B$ describe a circle. With $A B$ as a chord step off the remaining sides of the polygon.

Fig. 40.

Fig. 4 I .

Fig. 4i. Another Method.-Extend line $A B$. With center A and any convenient radius describe a semicircle. Divide the semicircle into as many equal parts as there are sides in the required polygon, say 6. Draw lines through every division except the first. With A as center and $A B$ as
radius cut off $A 2$ in C. From C with the same radius cut A_{3} in D. From D, A_{4} in E. From B, A_{5} in F. Join $A C, C D$, $D E, E F$, and $F B$.

Fig. 42. To Construct a Regular Heptagon, the Circumscribing Circle being given.-Draw a radius $A B$. With B as center and $B A$ as radius, cut the circumference in 1, 2 ; it will be bisected by the radius in C. C_{1} or C_{2} is equal to the side of the required heptagon.

Fig. 42.

Fig. 43.

Fig. 43. To Construct a Regular Octagon, the Circumscribing Circle being given.-Draw a diameter $A B$. Bisect the $\operatorname{arcs} A B$ in C and D. Bisect $\operatorname{arcs} C A$ and $C B$ in I and 2. Draw lines from I and 2 through the center of the circle, cutting the circumference in 3 and 4 . Join $A \mathrm{I}$, I $C, C 2,2 B, B 3$, etc.

Fig. 44. To Construct a Pentagon, the Side $A B$ being given.-Produce $A B$. With B as center and $B A$ as radius, describe $\operatorname{arc} A D 2$. With center A and same radius, describe an arc cutting the first arc in D. Bisect $A B$ in E.

Draw line $D E$. Bisect arc $B D$ in F. Draw line $E F$. With center C and radius $E F$ cut off $\operatorname{arc} C_{1}$ and $\mathrm{I}, 2$ on the semicircle. Draw line $B 2$; it will be a second side of the penta-

gon. Bisect it and draw a line perpendicular to it at the bisection. The perpendiculars from the sides $A B$ and $B 2$ will cut in G. With G as center and radius $G A$ describe a circle it will contain the pentagon.

Fig. 45.

Fig. 45. To Construct a Heptagon on a Given Line $A B$.-Extend line $A B$ to C. From B with radius $A B$ describe a semicircle. With center A and same radius describe an arc cutting the semicircle in D. Bisect $A B$ in E. Draw line $D E$. With C as center and $D E$ as radius, cut off arc I on the semicircle. Draw line $B \mathrm{I}$; it is a second side of the heptagon. Bisect it and obtain the center of the circumscribing circle as in the preceding problem.

Fig. 46. To Inscribe an Octagon in a Given SQuare.-Draw diagonals $A D, C B$ intersecting at O. From A, B, C, and D with radius equal to $A O$ describe quadrants cutting the sides of the square in $\mathrm{I}, 2,3,4,5,6,7,8$. Join these points and the octagon will be inscribed.

Fig. 46.

Fig. 47.

Fig. 47. To Construct a Regular Octagon on a Given Line $A B$.-Extend line $A B$ in both directions. Erect perpendiculars at A and B. With centers A and B and radius $A B$ describe the semicircle $C E B$ and $A F 2$. Bisect the quadrants $C E$ and $D F$ in I and 2 , then $A \mathrm{I}$ and $B 2$ will be two more sides of the octagon. At 1 and 2 erect perpendiculars 1, 3 and 2, 4 equal to $A B$. Draw 1-2 and 3-4. Make the
perpendiculars at A and B equal to 1-2 or 3-4-viz., A_{5} and $B 6$. Complete the octagon by drawing 3-5,5-6, and 6-4.

Fig. 48. To Draw a Right Line Equal to Half the Circumference of a Given Circle.-Draw a diameter $A B$. Draw line $A C$ perpendicular to $A B$ and equal to three times the radius of the circle. Draw another perpendicular at B to $A B$. With center B and radius of the circle cut off arc $B D$, bisect it and draw a line from the center of the circle through the bisection, cutting line B in E. Join $E C$. Line $E C$ will be equal to half the circumference of circle A.

Fig. 48.

Fig. 49.

Fig. 49. To Find a Mean Proportional to two Given Right Lines.- Extend the line $A B$ to E making $B E$ equal to $C D$. Bisect $A E$ in F. From F with radius $F A$ describe a semicircle. At B where the two given lines are joined erect a perpendicular to $A E$ cutting the semicircle in G. $B G$ will be a mean proportional to $C D$ and $A B$.

Fig. 50. To Find a Third Proportional (less) to two Given Right Lines $A B$ and $C D$.-Make $E F=$ the given line $A B$. Draw $E G$ making an angle with $E F=D C$. Join $F G$. From E with $E G$ as radius cut $E F$ in H. Draw
H parallel to $F G$, cutting $E G$ in $I . E I$ is the third proportional (less) to the two given lines.

Fig. 50.

Fig. 51.

Fig. 5 i. To Find a Fourth Proportional to three Given Right Lines $A B, C D$, and $E F$.-Make $G H=$ the given line $A B$. Draw $G I=C D$, making any convenient angle to $G H$. Join $H I$. From G lay off $G H=E F$. From K draw a parallel to $H I$ cutting $G I$ in $L . G L$ is the fourth proportional required.

Fig. 52.

Fig. 53.

Fig. 52. To Find the Center of a Given Arc $A B C$. -Draw the chords $A B$ and $C D$ and bisect them. Extend the bisection lines to intersect in D the center required.

Fig. 53. To Draw a Line Tangent to an Arc of a Circle.-(ist.) When the center is not accessible. Let B be the point through which the tangent is to be drawn. From B lay off equal distances as $B E, B F$. Join $E F$ and through B draw $A B C$ parallel to $E F$. (2d.) When the center D is given. Draw $B D$ and through B draw $A B C$ perpendicular to $B D . \quad A B C$ is tangent to the circle at the point B.

Fig. 54. To Draw Tangents to the Circle C from the Point A without It.- Draw $A C$ and bisect it in E. From E with radius $E C$ describe an arc cutting circle C in B and D. Join $C B, C D$. Draw $A B$ and $A D$ tangent to the circle C.

Fig. 54.

Fig. 55.

Fig. 55. To Draw a Tangent between two Cir-Cles.-Join the centers A and B. Draw any radial line from A as $A 2$ and make $\mathrm{I}-2=$ the radius of circle B. From A with radius $A-2$ describe a circle $C 2 D$. From center B
draw tangents $B C$ and $B D$ to circle $C 2 D$ at the points C and D by preceding problem. Join $A C$ and $A D$ and through the points E and F draw parallels $F G$ and $E H$ to $B D$ and $B C$. $F G$ and $E H$ are the tangents required.

Fig. 56. To Draw Tangents to two Given CirCles A and B.-Join A and B. From A with a radius equal to the difference of the radii of the given circles de-

Fig. 56.

Fig. 57.
scribe a circle $G F$. From B draw the tangents $B F$ and $B G$, by Prob. 37. Draw $A F$ and $A G$ extended to E and H. Through E and H draw $E C$ and $H D$ parallel to $B F$ and $B G$ respectively. $E C$ and $D H$ are the tangents required.

Fig. 57. To Draw an Arc of a Circle of Given Radius Tangent to two Straight Lines.- $A B$ and $A C$ are the two straight lines, and r the given radius. At a distance $=r$ draw parallels $\mathrm{I}-2$ and $3-4$ to $A C$ and $A B$, inter-
secting at F. From F draw perpendiculars $F D$ and $F E$. With F as center and $F D$ or $F E$ as radius describe the required arc, which will be tangent to the two straight lines at the points D and E.

Fig. 58. To Draw an Arc of a Circle Tangent to two Straight Lines $B C$ and $C D$ when the Midposition G is given.-Draw $C A$ the bisection of the angle $B C D$ and $E F$ at right angles to it through the given point G. Next bisect either of the angles $F E B$ or $E F D$. The bisection line will intersect the central line $C A$ at A, which will be the center of the arc. From A draw perpendiculars $A \mathrm{I}$ and $A 2$, and with either as a radius and A as center describe an arc which will be tangent to the lines $B C$ and $C D$ at the points I and 2.

Fig. 58.
Fig. 59.
Fig. 59. To Inscribe a Circle within a Triangle $A B C$. - Bisect the angles A and B. The bisectors will meet in D. Draw D I perpendicular to $A B$. Then with center D and radius $=D_{\mathrm{I}}$ describe a circle which will be tangent to the given triangle at the points $\mathrm{I}, 2,3$.

Fig. 6o. To Draw an Arc of a Circle of Given Radius R tangent to two Given Circles A and B.From A and B draw any radial lines as $A 3, B 4$. Outside the circumference of each circle cut off distances $1-3$ and 2-4
each $=$ the given radius R. Then with center A and radius $A-3$, and center B and radius $B-4$ describe arcs intersecting at C. Draw $C A, C B$ cutting the circles at 5 and 6 . With centre C and radius C_{5} or $C 6$ describe an arc which will be tangent at points 5 and 6 .

Fig. 60.
Fig. 6i. To Draw an Arc of a Circle of Given Radius R tangent to two Given Circles A and B

Fig 61.
when the Arc includes the Circles.-Through A and B draw convenient diameters and extend them indefinitely. On
these measure off the distances $1-2$ and 3-4, each equal in length to the given radius R. Then with center A and radius $A 2$, center B and radius $B 4$, describe arcs cutting at C. From C draw C_{5} and $C 6$ through B and A. With center C and radius $C 6$ or C_{5} describe the arc 6 , 5 , which will be tangent to the circles at the points 6 and 5 .

Fig. 62. To Draw an Arc of a Circle of Given Radius R tangent to Two Given Circles A and B when the Arc includes one Circle and excludes the other.-Through A draw any diameter and make $\mathrm{I}-2=R$.

Fig. 62.
From B draw any radius and extend it, making 3-4 $=R$. With center A and radius $A 2$ and center B and radius $B 4$ describe arcs cutting at C. With C as center and radius $=C_{5}$ or $C 6$ describe the arc 5, 6.

Fig. 63. Draw an Arc of a Circle of Given Radius R tangent to a Straight Line $A B$ and a Circle $C D$. -From E, the center of the given circle, draw an arc of a
circle 1,2 concentric with $C D$ at a distance R from it, and also a straight line 3,4 parallel to $A B$ at the same distance R from $A B$. Draw $E O$ intersecting $C D$ at 5 . Draw the perpendicular $O 6$. With center O and radius $O 6$ or O_{5} describe the required arc.

Fig. 63.
Fig. 64. To Describe an Ellipse Approximately by means of three Radil (F. R. Honey's method).-

Fig. 64.
Draw straight lines $R H$ and $H Q$, making any convenient angle at H. With center H and radii equal to the semi-minor and
semi-major axes respectively, describe arcs $L M$ and $N O$. Join $L O$ and draw $M K$ and $N P$ parallel to $L O$. Lay off $L_{\mathrm{I}}=\frac{1}{8}$ of $L N$. Join O_{I} and.draw M_{2} and N_{3} parallel to O_{I}. Take H_{3} for the longest radius $(=T), H_{2}$ for the shortest radius $(=E)$, and one-half the sum of the semi-axes for the third radius ($=S$), and use these radii to describe the ellipse as follows: Let $A B$ and $C D$ be the major and minor axes. Lay off $A_{4}=E$ and $A_{5}=S$. Then lay off $C G=T$ and $C 6=S$. With G as center and $G 6$ as radius draw the arc $6, g$. With center 4 and radius 4,5 , draw arc $5, g$, intersecting $6, g$ at g. Draw the line $G g$ and produce it making $G 8=T$. Draw g, 4 and extend it to 7 making $g, 7=S$. With center G and radius $G C(=T)$ draw the arc $C 8$. With center g and radius $g, 8(=S)$ draw the arc 8,7 . With center 4 and radius 4,7 $(=E)$ draw arc $7 A$. The remaining quadrants can be drawn in the same way.

Fig. 65. To Draw an Ellipse having given the Axes $A B$ and $C D$.-Draw $A B$ and $C D$ at right angles to and bisecting each other at E. With center C and radius $E A$ cut $A B$ in F and F^{\prime} the foci. Divide $E F$ or $E F^{\prime}$ into a number of parts as shown at 1, 2, 3, 4, etc. Then with F and F^{\prime} as cen-

Fig. 65.

Fig. 66.

Fig. 67.
ters and $A \mathrm{I}$ and $B \mathrm{I}$, and $A 2$ and $B 2$, etc., as radii describe arcs intersecting in R, S, etc., until a sufficient number of points
are found to draw the elliptic curve accurately throughout. (No. 5 of the "Sibley College Set" of irregular curves is very useful in drawing this curve.) To draw a tangent to the ellipse at the point G : Extend $F G$ and draw the bisector of the angle $H G F^{\prime} . K G$ is the tangent required.

Fig. 66. Another Method. - Let $A B$ and $A C$ be the semi axes. With A as center and radii $A B$ and $A C$ describe circles. Draw any radii as A_{3} and $A 4$, etc. Make 3 1, 42 , etc., perpendicular to $A B$, and D_{2}, E_{5}, etc., parallel to $A B$. Then I, 2, 5, etc., are points on the curve.

Fig. 67. Another Method.-Place the diameters as before, and construct the rectangle $C D E F$. Divide $A B$ and $D B$ and $B F$ into the same number of equal parts as $\mathrm{I}, 2,3$ and B. Draw from C through points $1,2,3$ on $A B$ and $B D$ lines to meet others drawn from E through points 1, 2, 3 on $A B$ and $F B$ intersecting in points $G H K$. GHK are points on the curve.

Fig. 68. Another Method.-Place the diameters $A B$ and $C D$ as shown in Drawing No. i. Draw any convenient

Fig. 68.
angle $R H Q$, Drawing No. 2. With center H and radii equal to the semi-minor and semi-major axes describe arcs $L M$ and
$N O$. Join $L O$ and draw $M K$ and $N P$ parallel to $L O$. Then from C and D with a distance $=H P$ lay off the points $\mathrm{I}^{\prime} \mathrm{I}^{\prime}$ on the minor axis and from A and B with a distance $=H K$ lay off the points 22^{\prime} on the major axis. With centers $1, \mathrm{I}^{\prime}, 2$ and 2^{\prime} and radii I- D and $2-B$, respectively, draw arcs of circles. On a piece of transparent celluloid T lay off from the point G, $G F$ and $G E=$ the semi-minor and semi-major axes respectively. Place the point F on the major axis and the point E on the minor axis. If the strip of celluloid is now moved over the figure, so that the point E is always in contact with the semi-minor axis and the point F with the semi-major axis, the necessary number of points may be marked through a small hole in the celluloid at G with a sharp conical-pointed pencil, and thus complete the curve of the ellipse between the arcs of circles.

Fig. 69. To Construct a Parabola, the Base CD and the Abscissa $A B$ being given.- Draw $E F$ through A parallel to $C D$ and $C E$ and $D F$ parallel to $A B$. Divide $A E$, $A F, E C$, and $F D$ into the same number of equal parts. Through the points $1,2,3$ on $A F$ and $A E$ draw lines parallel to $A B$, and through A draw lines to the points $\mathrm{I}, 2,3$ on $F D$ and $E C$ intersecting the parallel lines in points $4,5,6$, etc., of the curve.

Fig. 7o. Given the Directrix $B D$ and the Focus C to Draw a Parabola and a Tangent to It at the Point 3.-The parabola is a curve such that every point in the curve is equally distant from the directrix $B D$ and the focus C. The vertix E is equally distant from the directrix and the focus, i.e. $C E$ is $=E B$. Any line parallel to the axis is a diameter. A straight line drawn across the figure at right angles to the
axis is a double ordinate, and either half of it is an ordinate. The distance from C to any point upon the curve, as 2 is always equal to the horizontal distance from that point to the directrix. Thus $C_{1}=1, I^{\prime}, C 2$ to $2,2^{\prime}$, etc. Through C draw $A C F$ at right angles to $B D, A C F$ is the axis of the

Fig. 69.

Fig. 70.
curve. Draw parallels to $B D$ through any points in $A B$, and with center C and radii equal to the horizontal distances of these parallels from $B D$ describe arcs cutting in the points I , $2,3,4$, etc. These are points in the curve. The tangent to the curve at the point 3 may be drawn as follows: Produce $A B$ to F. Make $E F=$ the horizontal distance of ordinate 33 from E. Draw the tangent through $3 F$.

Fig. 7i. To Draw an Hyperbola, having given the Diameter $A B$, the Abscissa $B D$, and Double Ordinate $E F$.-Make F_{4} parallel and equal to $B D$. Divide $D F$ and F_{4} into the same number of equal parts. From B draw lines to the points in $4 F$ and from A draw lines to the points in $D F$. Draw the curve through the points where the lines correspondingly numbered intersect each other.

Fig. 72. To Construct an Oval the Width $A B$ being given. - Bisect $A B$ by the line $C D$ in the point E, and with E as center and radius $E A$ draw a circle cutting $C D$ in

Fig. 7r.

Fig. 72.
F. From A and B draw lines through F. From A and B with radius equal to $A B$ draw arcs cutting the last two lines in G and H. From F with radius $F G$ describe the arc $G H$ to meet the $\operatorname{arcs} A G$ and $B H$, which will complete the oval.

Fig. 73. Given an Ellipse to Find the Axes and Foci.-Draw two parallel chords $A B$ and $C D$. Bisect each of these in E and F. Draw $E F$ touching the ellipse in I and 2. This line divides the ellipse obliquely into equal parts. Bisect 1, 2 in G, which will be the center of the ellipse. From G with any radius draw a circle cutting the ellipse in HIJK. Join these four points and a rectangle will be formed in the ellipse. Lines $L M$ and $N O$, bisecting the sides of the rectangle, will be the diameters or axes of the ellipse. With N or O as centers and radius $=G L$ the semi-major axis, de. scribe arcs cutting the major axis in P and Q the foci.

Fig. 74. To Construct a Sipral of one Revolu-TION.-Describe a circle using the widest limit of the spiral as
a radius. Divide the circle into any number of equal parts as A, B, C, etc. Divide the radius into the same number of equal parts as I to 12. From the center with radius 12, I describe an arc cutting the radial line B in I^{\prime}. From the center continue to draw arcs from points $2,3,4$, etc., cutting the corresponding radii C, D, E, etc. in the points $2^{\prime}, 3^{\prime}, 4^{\prime}$, etc. From 12 trace the Archimedes Spiral of one revolution.

Fig. 73.

Fig. 74.

Fig. 75. To Describe a Spiral of any Number of Revolutions, E.G., 2.-Divide the circle into any number of equal parts as A, B, C, etc., and draw radii. Divide the radius A_{12} into a number of equal parts corresponding with the required number of revolutions and divide these into the same number of equal parts as there are radii, viz., I to 12 . It will be evident that the figure consists of two separate spirals, one from the center of the circle to 12 , and one from 12 to A. Commence as in the last problem, draw. ing arcs from $1,2,3$, etc., to the correspondingly numbered radii, thus obtaining the points marked $\mathrm{I}^{\prime}, 2^{\prime}, 3^{\prime}$, etc. The first revolution completed, proceed in the same manner to find the points $1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}$, etc. Through these points trace the spiral of two revolutions.

Fig. 76. To Construct the Involute of the CirCLE O. - Divide the circle into any number of equal parts and draw radii. Draw tangents at right angles to these radii. On the tangent to radius I lay off a distance equal to one of the parts into which the circle is divided, and on each of

Fig. 75.

Fig. 76.
the tangents set off the number of parts corresponding to the number of the radii. Tangent 12 will then be the circumference of the circle unrolled, and the curve drawn through the extremities of the other tangents will be the involute.

Fig. 77. To Describe an Ionic Volute.-Divide the given height into seven equal parts, and through the point 3 the upper extremity of the third division draw 3,3 perpendicular to $A B$. From any convenient point on 33 as a center, with radius equal to one-half of one of the divisions on $A B$, describe the eye of the volute $N P N M$, shown enlarged at Drawing No. 2. $N N$ corresponds to line 3, 3, Drawing No. I. Make $P M$ perpendicular to $N N$ and inscribe the square $N P N M$, bisect its sides and draw the square II, i2,

I3, I4. Draw the diagonals II, I3 and 12, I4 and divide them as shown in Drawing No. 2. At the intersections of the horizontal with the perpendicular full lines locate the points $\mathrm{I}, 2,3,4$, etc., which will be the centers of the quadrants of the outer curve. The centers for the inner curve will be found at the intersections of the horizontal and per-

Fig. 77.
pendicular broken lines, drawn through the divisions on the diagonals. Then with center I and radius I P draw arc $P N$, and with center 2 and radius $2 N$ draw arc $N M$, with center 3 and radius $3 M$ draw arc $M L$, etc. The inner curve is drawn in a similar way, by using the points on the diagonals indicated by the broken lines as centers.

Fig. 78. To Describe the Cycloid. - $A B$ is the director, $C B$ the generating circle, X a piece of thin transparent celluloid, with one side dull on which to draw the circle C. At any point on the circle C puncture a small hole with a sharp needle, and place the point C tangent to the director $A B$ at the point from which the curve is to be drawn. Hold the celluloid at this point with a needle, and rotate it until
the arc of the circle C intersects the director $A B$. Through the point of intersection stick another needle and rotate X until the circle is again tangent to $A B$, and through the puncture at C with a 4 H pencil, sharpened to a fine conical point, mark the first point on the curve. So proceed until sufficient points have been found to complete the curve.
(Note.-The thin celluloid was first used as a drawing instrument by Professor H. D. Williams, of Sibley College, Cornell University.)

Fig. 79. To Find the Length of a Given Arc of a Circle approximately.-Let $B C$ be the given arc. Draw its chord and produce it to A, making $B A$ equal half the

Fig. 78.

Fig. 79.
chord. With center A and radius $A C$ describe arc $C D$ cutting the tangent line $B D$ at D, and making it equal to the $\operatorname{arc} B C$.

Fig. 80. To Describe the Cycloid by the Old Method.-Divide the director and the generating circle into the same number of equal parts. Through the center a draw $a g$ parallel to $A B$ for the line of centers, and divide it as $A B$ in the points b, c, d, e, f, and g. With centers f, e, d, etc., describe arcs tangent to $A B$, and through the points of division on the generating circle $\mathrm{I}, 2,3$, etc., draw lines parallel to
$A B$ cutting the arcs in the points $\mathrm{I}^{\prime}, 2^{\prime}, 3^{\prime}$, etc. These will be points in the curve.

An approximate curve may be drawn by arcs of circles. Thus, taking f^{\prime} as center and $f^{\prime} g^{\prime}$ as radius, draw arc $g^{\prime} I^{\prime}$.

Fig. 80.

Produce $I^{\prime} f^{\prime}$ and $2^{\prime} e^{\prime}$. until they meet at the center of the second are $2^{\prime} f^{\prime}$, etc.

Fig. 8i. To Describe the Epicycloid and the Hypocycloid.-Divide the generating circle into any number of equal parts, $1,2,3$, etc., and set off these lengths from C on the directing circle $C B$ as $e^{\prime}, d^{\prime}, c^{\prime}$, etc. From A the center of the directing circle draw lines through $e^{\prime}, d^{\prime}, c^{\prime}$, etc., cutting the circles of centers in ε, d, c, etc. From each of these points as centers describe arcs tangent to the directing circle. From center A draw arcs through the points of division on the generating circle, cutting the arcs of the generating circles in their several positions at the points $1^{\prime}, 2^{\prime}, 3^{\prime}$, etc. These will be points in the curve.

Fig. 82. Another Method.-Draw the generating circle on the celluloid and roll it on the outside of the generating circle $B C$ for the Epicycloid, and on the inside for the

Hypocycloid, marking the points in the curve 1, 2, 3, etc., in similar manner to that described for the Cycloid.

Fig. 82.

Fig. 81.

Fig. 83.

Fig. 83. To Draw the Cissoid.-Draw any line $A B$ and $B C$ perpendicular to it. On $B C$ describe a circle. From the extremity C of the diameter draw any number of lines, at any distance apart, passing through the circle and meeting the line $A B$ in $\mathbf{1}^{\prime}, 2^{\prime}, 3^{\prime}$, etc. Take the length from A to 9 and set it off from C on the same line to $9^{\prime \prime}$. Take the distance from 8^{\prime} to 8 and set it off from C on the same line to $8^{\prime \prime}$, etc., for the other divisions, and through $9^{\prime \prime}, 8^{\prime \prime}, 7^{\prime \prime}, 6^{\prime \prime}$, etc., draw the curve.

Fig. 84. To Draw Schiele's Anti-friction Curve. -Let $A B$ be the radius of the shaft and $B \mathrm{I}, 2,3,4$, etc., its axis. Set off the radius $A B$ on the straight edge of a piece of stiff paper or thin celluloid and placing the point B on the division I of the axis, draw through point A the line A r. Then lower the straight edge until the point B coincides with 2 and the point A just touches the last line drawn, and draw $a 2$, and so proceed to find the points a, b, c, etc. Through these points draw the curve.

Fig. 84.

Fig. 85.

Fig. 85. To Describe an Interior Epicycloid.Let the large circle X be the generator and the small circle Y the director. Divide circle Y into any number of equal parts, as $B, H ; I, J$, etc. Draw radial lines and make $H C$, $I D, J E, K F$, etc., each equal to the radius of the generator X. With centers C, D, E, etc., describe arcs tangent at H, I, J, etc. Make H I equal to one of the divisions of the director as $B H$. Make $I 2$ equal to two divisions, J_{3}, three divisions, etc., and draw the curve through the points $\mathrm{I}, 2,3,4$,
etc. This curve may also be described with a piece of celluloid in a similar way to that explained for the cycloid.

It may not be out of place here to describe a few of the

MOULDINGS USED IN ARCHITECTURAL WORK,

since they are often found applied to mechanical constructions.
Fig. 86. To Describe the "Scotia."-i, i is the top line and 4,4 the bottom line. From I drop a perpendicular I, 4; divide this into three equal parts, as 1,2 , and 3 . Through the point 2 draw $a b$ parallel to I, I. With center 2 and radius 2 , I describe the semicircle $a \mathrm{I} b$, and with center b and radius $b a$ describe the arc $a 5$ tangent to 4,4 at 5 , draw the fillets I, I and $4,4$.

Fig. 86.

Fig. 87.

Fig. 87. To Describe the "Cyma Recta."-Join i, 3 and divide it into five equal parts, bisect 1,2 and 2,3 , and with radius equal to 1,2 and 2,3 respectively describe arcs I, 2 and 2,3 . Draw the fillets I, I and 3,3 and complete the moulding.

Fig. 88. To Describe the "Cavetto" or "Hol-LOw."-Divide the perpendicular 1 , 2 into three equal parts and make 2,3 equal to two of these. From centers I and 3 with a radius somewhat greater than the half of 1,3 , describe arcs intersecting at the center of the arc 1,3 ,

Fig. 89. To Describe the "Echinus," "Quarter Round," OR "Ovolo."-Draw 1,2 perpendicular to 2, 3, and divide it into three equal parts. Make 2, 3 equal to two of these parts. From the points 2 and 3 with a radius greater than half 1,3 , describe arcs cutting in the center of the required curve.

Fig. 88.
Fig 89.
Fig. 90. To Describe the "Apophygee."- Divide 3, 4 into four equal parts and lay off five of these parts from 3 to 2 . From points 2 and 4 as centers and radius equal to 2,3 , describe arcs intersecting in the center of the curve.

Fig. 90.

Fig. 91.

Fig. 9i. To Describe the " Cyma Reversa."- Make $4,3=4$, I. Join $\mathrm{I}, 3$ and bisect it in the point 2. From the points 1,2 and 3 as centers and radii equal to about two-thirds of 1,2 draw arcs intersecting at 5 and 6 . Points 5 and 6 are the centers of the reverse curves.

Fig. 92. To Describe the "Torus."-Let $\mathrm{r}, 2$ be the breadth. Drop the perpendicular 1,2 , and bisect it in the
point 3. With 3 as center and radius 3, I, describe the semicircle. Draw the fillets.

Fig. 92.

Fig. 93.

Fig. 93. An Arched Window Opening.-The curves are all arcs of circles, drawn from the three points of the equilateral triangle, as shown in the figure.

Fig. 94. To Describe the "Trefoil."- The equilateral triangle is drawn first, and the angle 1,2,3 bisected by the line 2,4 , which also cuts the perpendicnlar line $\mathrm{I}, 6$ in the point 6 . The center of the surrounding circles $\mathrm{I}, 2$ and 3 are the centers of the trefoil curves.

Fig. 95. To Describe the "Quatre Foil."-Draw the square $1,2,3,4$ in the position shown in the figure. The center of the surrounding circles, point 5 , is at the intersection of the diagonals of the square. Points $\mathrm{I}, 2,3,4$ of the square are the centers of the small arcs.

Fig. 96. To Describe the "Cinquefoil Ornament." The curves of the cinquefoil are described from the corners of a pentagon $\mathrm{I}, 2,3,4,5$. Bisect 4,5 in 6 and draw 2,6 , cutting the perpendicular in the point 7 , the center of the large circles.

Fig. 97. To Draw a Baluster.-Begin by drawing the center line, and lay off the extreme perpendicular height,
the intermediate, perpendicular, and horizontal dimensions, and finally the curves as shown in the figure.

DRAWING TO SCALE.

When we speak of a drawing as having been made to scale, we mean that every part of it has been drawn proportionately and accurately, either full size, reduced or enlarged.

Very small and complicated details of machinery are usually drawn enlarged; larger details and small machines may be made full size, while larger machines and large details are shown reduced.

When a drawing of a machine is made to a reduced or enlarged scale the figures placed upon it should always give the full-size dimensions, i.e., the sizes the machine should measure when finished.

Fig. 98. To Construct a Scale of Third Size or $4^{\prime \prime}=$ I Fоот.--Draw upon a piece of tough white drawingpaper two parallel lines about $\mathrm{I}^{\prime \prime}$ apart and about $14^{\prime \prime}$ long as shown by a, Fig. 98. From A lay off distances equal to $4^{\prime \prime}$ and divide the first space $A B$ into 12 equal parts or inches by Prob. 12. Divide $A E$ in the same way into as many parts as it may be desired to subdivide the inch divisions on $A B$,

Fig. 98.
usually 8. When the divisions and subdivisions have been carefully and lightly drawn in pencil, as shown by a, in Fig. 98 , then the lines denoting $\frac{1^{\prime \prime}}{8^{\prime}}, \frac{1^{\prime \prime}}{1^{\prime}}, \frac{1^{\prime \prime}}{}{ }^{\prime \prime}, \mathrm{I}^{\prime \prime}$, and $3^{\prime \prime}$ should be carefully inked and numbered as shown by (b). By a further subdivision a scale of $2^{\prime \prime}=1$ foot may easily be made as shown by (c) in Fig. 98.

CHAPTER III.

CONVENTIONS.

It is often unnecessary if not undesirable to represent certain things as they would actually appear in a drawing, espe: cially when much time and labor is required to make them orthographically true.

So for economic reasons draftsmen have agreed upon conventional methods to represent many things that would otherwise entail much extra labor and expense, and serve no particular purpose.

It is very necessary, however, that all draftsmen should know how to draw these things correctly, for occasions will often arise when such knowledge will be demanded; and besides it gives one a feeling of greater satisfaction when using conventional methods to know that he could make them artistically true if it was deemed necessary.

STANDARD CONVENTIONAL SECTION LINES.
Conventional section lines are placed on drawings to distinguish the different kinds of materials used when such drawings are to be finished in pencil, or traced for blue printing, or to be used for a reproduction of any kind.

Water-colors are nearly always used for finished drawings and sometimes for tracings and pencil drawings.

The color tints can be applied in much less time than it
takes to hatch-line a drawing. So that the color method should be used whenever possible.

Fig. 99.-This figure shows a collection of hatch-lined sections that is now the almost universal practice among draftsmen in this and other countries, and may be considered standard.

No. I. To the right is shown a section of a wall made of rocks. When used without color, as in tracing for printing, the rocks are simply shaded with India ink and a 175 Gillott steel pen. For a colored drawing the ground work is made of gamboge or burnt umber. To the left is the conventional representation of water for tracings. For colored drawings a blended wash of Prussian blue is added.

No. 2. Convention for Marble.- When colored, the whole section is made thoroughly wet and each stone is then streaked with Payne's gray.

No. 3. Convention for Chestnut.- When colored, a ground wash of gamboge with a little crimson lake and burnt umber is used. The colors for graining should be mixed in a separate dish, burnt umber with a little Payne's gray and crimson lake added in equal quantities and made dark enough to form a sufficient contrast to the ground color.

No. 4. General Convention for Wood.-When colored the ground work should be made with a light wash of burnt sienna. The graining should be done with a writing-pen and a dark mixture of burnt sienna and a modicum of India ink.

No. 5. Convention for Black Walnut.-A mixture of Payne's gray, burnt umber and crimson lake in equal quantities is used for the ground color. The same mixture is used for graining when made dark by adding more burnt umber.

No. 6. Convention for Hard Pine.-For the ground color make a light wash of crimson lake, burnt umber, and gamboge, equal parts. For graining use a darker mixture of of crimson lake and burnt umber.

No. 7. Convention for Building-stone.-The ground color is a light wash of Payne's gray and the shade lines are added mechanically with the drawing-pen or free-hand with the writing-pen.

No. 8. Convention for Earth.-Ground color, India ink and neutral tint. The irregular lines to be added with a writ-ing-pen and India ink.

No. 9. Section Lining for Wrought or Malleable Iron.When the drawing is to be tinted, the color used is Prussian blue.

No. Io. Cast Iron.-These section lines should be drawn equidistant, not very far apart and narrower than the body lines of the drawing. The tint is Payne's gray.

No. in. Steet.-This section is used for all kinds of steel. The lines should be of the same width as those used for castiron and the spaces between the double and single lines should be uniform. The color tint is Prussian blue with enough crimson lake added to make a warm purple.

No. 12. Brass.-This section is generally used for all kinds of composition brass, such as gun-metal, yellow metal, bronze metal, Muntz metal, etc. The width of the full lines, dash lines and spaces should all be uniform. The color tint is a light wash of gamboge.

Nos. 13-20.-The section lines and color tints for these numbers are so plainly given in the figure that further instruction would seem to be superfluous.

CONVENTIONAL LINES.

Fig. 100.-There are four kinds:
(1) The Hidden Line. - This line should be made of short dashes of uniform length and width, both depending somewhat on the size of the drawing. The width should always be slightly less than the body lines of the drawing, and the

length of the dash should never exceed $\frac{1^{\prime \prime}}{{ }^{\prime \prime}}$. The spaces between the dashes should all be uniform, quite small, never exceeding $\frac{1}{16}{ }^{\prime \prime}$. This line is always inked in with black ink.
(2) The Line of Motion.-This line is used to indicate point patlis. The dashes should be made shorter than those of the hidden line, just a trifle longer than dots. The spaces should of course be short and uniform.
(3) Center Lines.-Most drawings of machines and parts of machines are symmetrical about their center lines. When penciling a drawing these lines may be drawn continuous and as fine as possible, but on drawings for reproductions the blackinked line should be a long narrow dash and two short ones alternately. When colored inks are used the center line should be made a continuous red line and as fine as it is possible to make it.
(4) Dimension Lines and Line of Section.-These lines are made in black with a fine long dash and one short dash alternately. In color they should be continuous blue lines.

Colored lines should be used wherever feasible, because they are so quickly drawn and when made fine they give the drawing a much neater appearance than when the conventional black lines are used. Colored lines should never be broken.

CONVENTIONAL BREAKS.

Fig. ioi.-Breaks are used in drawings sometimes to indicate that the thing is actually longer than it is drawn, some-

Fig. ior.
times to show the shape of the cross-section and the kind of material. Those given in Fig. Ior show the usual practice.

CROSS-SECTIONS.

Fig. 102.-When a cross-section of a pulley, gear-wheel or other similar object is required and the cutting-plane passes through one of the spokes or arms, then only the rim and hub should be sectioned, as shown at $x x$ No. I and $z z$ No. 2, and the arm or spoke simply.outlined. Cross-sections of the arms may be made as shown at $A A$ No. 2. In working drawings of
gear-wheels only the number of teeth included in one quadrant need be drawn; the balance is usually shown by conventional lines, e.g., the pitch line the same as a center line, viz., a long

Fig. 102.
dash and two very short ones alternately or a fine continuous red line.

The addendum line (d) and the root or bottom line (b) the same as a dimension line, viz., one long dash and one short dash alternately or a fine continuous blue line. The end elevation of the gear-teeth should be made by projecting only the points of the teeth, as shown at No. 2.

CONVENTIONAL METHODS OF SHOWING SCREW-THREADS IN WORKING DRAWINGS.

Fig. 103.-No. I, shows the convention for a double V thread, U. S. standard; No. 2, a single V thread; No. 3, a single square thread; No. 4, a double left-hand V thread; No. 5, a double right-hand square thread; No. 6, any thread of small diameter; No. 7, any thread of very small diameter. The true methods for constructing these threads are explained on pages 99-10i, Figs. 99-101.

In No. 6. the short wide line is equal to the diameter of the thread at the bottom. The distance between the
longer narrow lines is equal to the pitch, and the inclination is equal to half the pitch.

The short dash lines in No. 7 should be made to corre-

Fig. io3.
spond to the diameter of the thread at the bottom. After some practice these lines can be drawn accurately enough by the eye.

CHAPTER IV.

LETTERING AND FIGURING.

This subject has not been given the importance it deserves in connection with mechanical drawing. Many otherwise excellent drawings and designs as far as their general appearance is concerned have been spoiled by poor lettering and figuring.

All lettering on mechanical drawings should be plain and legible, but the letters in a title or the figures on a drawing should never be so large as to make them appear more prominent than the drawing itself.

The best form of letter for practical use is that which gives the neatest appearance with a maximum of legibility and requires the least amount of time and labor in its construction.

This would naturally suggest a " free-hand " letter, but before a letter can be constructed "free-hand" with any degree of efficiency, it will be necessary to spend considerable time in acquiring a knowledge of the form and proportions of the particular letter selected.

It is very desirable then that after the student has carefully constructed as many of the following plates of letters and numbers as time will permit and has acquired a sufficient knowledge of the form and proportions of at least the "Roman" and " Gothic" letters; he should then adopt some one
style and practice that at every opportunity, until he has attained some proficiency in its free-hand construction.

When practicing the making of letters and numbers freehand, they should be made quite large at first so as to train the hand.

The " Roman" is the most legible letter and has the best appearance, but is also the most difficult to make well, either free-hand or mechanically. However, the methods given for its mechanical construction, Figs. 104 and IO5, will materially modify the objections to its adoption for lettering mechanical drawings.

The "Gothic" letter is a favorite with mechanical draftsmen, because it is plain and neat and comparatively easy to construct. (See Fig. 106.)

Among the type specimens given in the following pages the Bold-face Roman Italic on page 70 is one of the best for a good, plain, clear, free-hand letter, and is often used with good success on working drawings. Gillott's No. 303 steel pen is the best to use when making this letter free-hand.

The "Yonkers" is a style of letter that is sometimes used for mechanical drawings. It is easy to construct with either F. Soennecken's Round Writing-pens, single point, or the Automatic Shading-pen. But it lacks legibility, and is therefore not a universal favorite.

A good style for " Notes" on a drawing is the " Gothic -Condensed" shown on page 70.

When making notes on a drawing with this letter, the only guides necessary are two parallel lines, drawn lightly in pencil. The letters should be sketched lightly in pencil first,
and then carefully inked, improving spacing and proportions to satisfy the practiced eye.

FIGURING.

Great care should be taken in figuring or dimensioning a mechanical drawing, and especially a working drawing.

To have a drawing accurately, legibly, and neatly figured is considered by practical men to be the most important part of a working drawing.

There should be absolutely no doubt whatever about the character of a number representing a dimension on a drawing.

Many mistakes have been made, incurring loss in time, labor, and money through a wrong reading of a dimension.

Drawings should be so fully dimensioned that there will be no need for the pattern-maker or machinist to measure any part of them. Indeed, means are taken to prevent him from doing so, because of the liability of the workman to make mistakes, so drawings are often made to scales which are difficult to measure with a common rule, such as $2^{\prime \prime}$ and $4^{\prime \prime}=$ Ift.

The following books, among the best of their kind, are recommended to all who desire to pursue further the study of " Lettering"': Plain Lettering, by Prof. Henry S. Jacoby, Cornell University, Ithaca, N. Y.; Lettering, by Charles W. Reinhardt, Chief Draftsman, Engineering Newes, New York; Free-hand Lettering, by F. T. Daniels, instructor in C. E. in Tufts College.

Fig. 104.

Fig. 105.

Fig. io6.

18-Point Roman.

ABCDEFGHIJKLMNOPQRSTUV WX

YZ abcdefghijklmnopqrstuvwxyz 1234567890

18-Point Italic.
ABCDEFGHIJKLMNOPQRSTUV WXYZ abcdefghijklmnopqrstuvwxyz

12-Point Cushing Italic.
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghïklm nopqrstuvwxyz 1234567890

28-Point Boldface Italic.
ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijllilmnopqrstu vuxyz 1234568890

Two-Line Nonpareil Gothic Condensed. ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890

Three-Line Nonpareil Lightface Celtic.
ABCDEFGHIJKLMNOPQR STUVWXYZ abcdefghijkl
mnopqrstuvwxyz
1234567890

18-Point Chelsea Circular.
ABCDEFGHIJKLMNOPQRSTUVWX YZ abcdefghijkImnopqrstuvwxyz 1234567890

18-Point Elandkay.

ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890

18-Point Quaint Open.
ABCDEPGHITKLMMOPQRSTUY WXYZ 1234567890

28-Point Roman.

ABCDEFGHIJKLM NOPQRSTUVWXYZ abcdefghijklmnopqrstu vwxyz 1234567890

28-Point Old-Style Italic.
ABCDEFGHI7KLMNOP
QRSTUVWXYZ abcdefg hijklmnopqrstuvwxyz

$$
1234567800
$$

12-Point Victoria Italic.

ABCDEFGHIJKLMNOPQRSTU VWXYZ 1234567890

18-Point DeVinne Italic.

ABCDEFGHIJKLMNOPQRSTU VWXYZ abcdefghijklmnopqrst uVWXYZ 1234567890

22-Point Gothic Italic.
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuuwxyz 1234567890

Double-Pica Program.

ABCDFFGHIJKIMNO PQRSTUV WXYZ abcdefghijklmnopqrstuv wxyz 1234567890

24-Point Gallican.

ABCDEFGHIJKL MNOPQRSTUVW XYZ 1234567890

Two-Line Virile Open.
ABCDEFGHUKLIMMOPDRSTUVWYYZ
abdefeflijhimpoparistuwwyz

$$
12335567890
$$

22-Point Old-Style Roman.
ABCDEFGHIJKLMNOPQRST UVWXYZ abcdefghijklmnopqrst uvwxyz 1234567890

36-Point Yonkers.
 2iOpQzisclubw
ya abceetahijkimnopar
stuvwxyz 1234562890

CHAPTER V.

ORTHOGRAPHIC PROJECTION.

Orthographic Projection, sometimes called Descriptive Geometry and sometimes simply Projection, is one of the divisions of descriptive geometry; the other divisions are Spherical Projection, Isometric Projection, Shades and Shadows, and Linear Perspective.

In this course we will take up only a sufficient number of the essential principles of Orthographic Projection, Isometric Projection, and Shades and Shade Lines, to enable the student to make a correct mechanical drawing of a machine or other object.

Orthographic Projection is the science and the art of representing objects on different planes at right angles to each other, by projecting lines from the point of sight through the principal points of the object perpendicular to the Planes of Projection.

There are commonly three planes of projection used, viz., the H. P. or Horizontal Plane, the V. P. or Vertical Plane, and the Pf. P. or Profile Plane.

These planes, as will be seen by Figs. roł̆ and 109, intersect each other in a line called the I. L. or Intersecting Line, and form four angles, known as the first, second, third, and
fourth Dihedral Angles. Figs. 107 and 109 are perspective views of these angles.

An object may be situated in any one of the dihedral angles, and its projections drawn on the corresponding coordinate planes.

Problems in Descriptive Geometry are usually worked out in the first angle, and nearly all English draftsmen project their drawings in that angle, but in the United States the third angle is used almost exclusively. There is good reason for doing so, as will be shown hereafter.

We will consider first a few projection problems in the first angle, after which the third angle will be used throughout.

Fig. 107.
H.P., Fig. 107, is the Horizontal Plane, V.P. the Vertical Plane, and I.L. the Intersecting Line.

The Horizontal Projection of a point is where a perpendicular line drawn through the point pierces the H.P.

The Vertical Projection of a point is where a per. line drawn through the point pierces the V.P.

Conceive the point a, Fig. IO7, to be situated in space $4^{\prime \prime}$ above the H.P. and $3^{\prime \prime}$ in front of the V.P. If a line is passed through the point a per. to H.P. and produced until
it pierces the H.P. in the point a^{h}, a^{v} will be the Hor. Proj. of the point a.

If another line is projected through the point a per. to the V.P. until it pierces the V.P. in the point a^{v}, a^{v} is the vertical projection of the point a.

If now the V.P. is revolved upon its axis I.L. in the direction of the arrow until it coincides with the H.P. and let the H.P. be conceived to coincide with the plane of the drawing-paper, the projections of the point a will appear as shown by Fig. 108.

The vertical projection $a^{v} 4^{\prime \prime}$ above the I.L. and the horizontal projection $a^{h} 3^{\prime \prime}$ below the I.L. both in the same straight line.

In mechanical drawing the vertical projection a^{v} is called the Elevation and the horizontal projection a^{h} the Plan.

The projections of a line are found in a similar manner, by first finding the projections of the two ends of the line, and joining them with a straight line.

Let $a b$ be a line in space $3 \frac{1}{2}^{\prime \prime}$ long, parallel to the V.P. and perpendicular to the H.P. One end is resting on the H.P. $2 \frac{1}{2}{ }^{\prime \prime}$ from the V.P.

The points a and b will be vertically projected in the points a^{v} and b^{v}. Join $a^{v} b^{v}$. $a^{v} b^{v}$ is the vertical projection of the line $a b$.

When a line is perpendicular to one of the planes of projection, its projection on that plane is a point, and the projection on the other plane is a line equal to the line itself.
$a b$, Fig. 107, is perpendicular to the H.P., therefore its proj. on the H.P. when viewed in the direction $a b$ will be seen to be a point.

Conceive now the V.P. revolved as before, the V. proj. will be found to be at $a^{\nu} b^{v}$, Fig. 108, and the H. proj. at the point a^{h}.
$c d$, Fig. 107, is a line parallel to the H.P. and perpendicular to the V.P. Its elevation or V. proj. is the point d^{v}, Fig. 108, and its plan or H. proj. the line $c^{h} d^{h}$ perpendicular to the Intersecting Line and equal in size to the line itself.

Planes or Plane Surfaces bounded by lines are projected by the same principles used to project lines and points.

Let $a a^{v} b^{v} b$, Fig. 107, be a plane at right angles to and touching both planes of projection.

The elevation of the front upper corner a is projected in the point a^{v}. The elevation of the front lower corner b is projected in the point b^{v}. Join $a^{v} b^{v}$. $a^{v} b^{v}$ is the vertical projection of the front edge $a b$ of the plane. The plan of the front

Fig. io8.
upper corner is projected in the point b and the point a^{v} in the point b^{v}. A straight line joining $b b^{v}$ is the plan or horizontal projection of the top edge of the plane.

On the drawing-paper the plan and elevation of the plane $a a^{v} b a$ would be shown as a continuous straight line a^{v} to a^{h} Fig. 108.

Solids bounded by plane surfaces are projected by means of the same principles used to project planes, lines, and points.

C, Fig. 107, is a cube bounded by six equal sides or surfaces. The top and bottom being parallel to the H.P. and the front and back parallel to the V.P., the vert. proj. is a square above I.L. equal in area to any one of the six faces of the cube. The hor. proj. is a similar square below I.L.

These projections are shown at C, Fig. Io8, as they would appear on the drawing-paper.

The foregoing illustrates a few of the simple principles of projection in relation to points, lines, and solids when placed in the first dihedral angle, and we find that the plan is always below and the elevation always above the I.L.

Let us now consider the same problems when situated in the third angle. The point a, Fig. Iog, is behind of the V.P.

Fig. 109.
and below the H.P. Draw through a perpendiculars to the plane of projection. The Hor. proj. is found at a^{h} and the vert. proj. at a^{v}.

Conceive again the V.P. to be revolved in the direction of the arrow until it coincides with the H. P. The hor. proj.
will then appear at a^{h} above the I.L. and the vert. proj. at a^{v} below the I.L., Fig. IIO. And so with the lines, the planes, and the solids.

Fig. ifo.
In order to still further explain the use of the planes of projection, with regard to objects placed in the third angle, let us suppose a truncated pyramid surrounded by imaginary planes at right angles to each other, as shown by Fig. III.

Fig. III.
With a little attention it will easily be discerned that the pyramid is situated in the third dihedral angle, and that in addition to the V. and H. planes, we have passed two profile planes at right angles to the V . and H . planes, one at the righthand and one at the left.

When the pyramid is viewed orthographically through each of the surrounding planes, four separate views are had,
exactly as shown by the projections on the opposite planes, viz., a Front View, Elevation, or Vert. Proj. at F. ; a Righthand View, Right-end Elevation, or Right-profile Projection at R.; a Left-hand View, Left-end Elevation, or Left-profile Projection at L.; a Top View, Plan or H. Proj. at P.

If we now consider the V.P. and the right and left profile planes to be revolved toward the beholder until they coincide, using the front intersecting lines as axes, the projections of the pyramid will be seen as shown by Fig. II2, which when the

FIG. II2.
imaginary planes and projecting lines have been removed, will be a True Drawing or Orthographic Projection of the truncated pyramid.
NOTATION.

In the drawings illustrating the following problems and their solutions the given and required lines are shown wide and black. Hidden lines are shown broken into short dashes a little narrower than the visible lines. Construction or projection lines are drawn with very narrow full or continuous black lines.

When convenient very narrow, continuous blue lines are sometimes used.

The Horizontal Plane is known as the H.P., the Vertical Plane as V.P. and the Profile Plane as Pf.P.

A point in space is designated by a small letter or figure, their projection by the same letters or figures with small h or v written above for the horizontal or vertical projection respectively.

In some complicated problems where points are designated by figures their projections are named by the same figures accented.

Drawings should be carefully made to the dimensions given, the scale to be determined by the instructor.

The student should continually endeavor to improve in inking straight lines, curves, and joints.

In solving the following problems the student should have a model of the co-ordinate planes for his own use. 'This can be made by taking two pieces of stiff cardboard and cutting a slot in the center of one of them large enongh to pass the folded half of the other through it; when unfolding this half a model will be had like that shown by Fig. IO7 or 109.

All projections shall now be made from the third, dihedral angle.

Prob. I.-A point a is situated in the third dihedral angle, $I^{\prime \prime}$ below the H.P. and $3^{\prime \prime}$ behind the V.P.

It is required to draw its vertical and horizontal projections.

Draw a straight line $\alpha^{h} \alpha^{v}$, Fig. II3, perpendicular to I.L. and measure off the point $a^{v} \mathrm{I}^{\prime \prime}$ below I.L. and the point a^{h} $3^{\prime \prime}$ above I.L.
a^{v} is the vertical and a^{h} the horizontal projection in the same straight line $a^{v} a^{h}$.

The student should demonstrate this with his model.
Prob. 2.-Draw two projections of a line $3^{\prime \prime}$ long parallel to both planes, $\frac{3^{\prime \prime}}{4}$ below the H.P. and $2^{\prime \prime}$ behind the V.P.

As the line is parallel to both planes, both projections will be parallel to the I.L.

Draw $a^{v} b^{v}$ the vert. proj. of the line $3^{\prime \prime}$ long, Fig. I 14, parallel to I.L. and $\frac{3_{4}^{\prime \prime}}{4}$ below it. Draw the hor. proj. $2^{\prime \prime}$ above the I.L. and parallel to it, making it the same length as the

Fig. If3. Fig. ily. Fig. ilf. Fig. if6. Fig. ilif. vert. proj. by drawing lines perpendicular to I.L. from the points a^{v} and b^{v} to a^{h} and b^{h}.

Prob. 3.-To draw the hor. and vert. projs. of a straight line $3^{\prime \prime}$ long, per. to the vert. plane, Fig. ilf.

As the line is per. to the vert. plane the vert. proj. will be a point below the I.L. and the hor. proj. will be parallel to the horizontal plane and per. to I.L.

Prob. 4.-To draw the plan and elevation of a straight line $6^{\prime \prime}$ long making an angle of 45° with the vert. plane and and par. to the hor. plane, Fig. II^{5} \}

The plan or hor. proj. will be above the I.L. and make an angle of 45° with it. The elevation or vert. proj. will be below and par. to I.L.

Draw from the point a^{k} at any convenient distance from I.L. a straight line $a^{h} b^{h} 6^{\prime \prime}$ long, making an angle 45° with I.L.

Draw $a^{v} b^{v}$ par. to I.L. at a convenient distance below it. The length of the elevation or vert. proj. is determined by dropping perpendiculars from the end of the hor. proj. $a^{h} b^{h}$ to the points $a^{v} b^{v}$.

Prob. 5, Fig. il7.-To find the true length of a straight line oblique to both planes of projection and the angle it makes with these planes.
$a^{v} b^{v}$ and $a^{h} b^{h}$ are the projections of a straight line oblique to V.P. and H.P. Using a^{v} as a pivot, revolve the line $a^{v} b^{v}$ until it becomes parallel to I.L. as shown by $a^{v} b_{1}{ }^{v}$. From the point b_{1}^{v} erect a per. Through the point b^{h} draw a line par. to I.L. cutting the per. in the point $b_{1}{ }^{k}$.

The broken line $a^{h} b_{1}{ }^{h}$ is the true length of the line $a b$, and the angle o is the true angle which the line makes with V.P.

To find the angle it makes with H.P,:
Using b^{h} as a pivot, revolve the line $b^{h} a^{h}$ until it becomes par. to I.L. as shown by $b^{h} a_{1}{ }^{h}$. From the point $a_{1}{ }^{h}$ drop a per. Through the point a^{v} draw a line par. to I.L. intersecting the per. at the point $a_{1}^{v} o$ is the angle which the line $a b$ makes with H.P. and the broken line $a_{1}^{v} b^{v}$ is again its true length.

Prob. 6, Fig. il8.-To project a plane surface of given size, situated in the third angle and par. to the V.P.

Let $a b c d$ be the plane surface $3^{\prime \prime}$ long $\times 2^{\prime \prime}$ wide. If we conceive lines to be projected from the four corners of the
plane surface to the V.P. and join them with straight lines we will have its V. projection $a^{v} b^{v} c^{v} d^{v}$ and shown by Fig. in 8 . And as the plane surface is par. to the V.P. it must be per to the H.P. since the planes of projection are at right angles to each other. So the plan or H. projection will be a straight line equal in length to one of the sides of the plane surface.

At a convenient distance above I.L. draw a straight line, and from the points $a^{v} b^{v}$ project lines at right angles to I.L., cutting the straight line in the points $a^{h} b .^{h}$ The line $a^{h} b^{h}$ is the hor. proj. of the plane surface $a b c d$.

Prob. 7, Fig. ir8.-To draw the projections of a plane surface of given dimensions when situated in the third angle perpendicular to the H.P. and making an angle with the V.P.

Let the plane surface be $3^{\prime \prime} \times 2^{\prime \prime}$ as before and let the angle it makes with V.P. be 60°.

To draw the plan:
At a convenient distance above I.L. and making an angle of 60° with it, draw $a^{h} b_{1}{ }^{h}$, Fig. in $8,2^{\prime \prime}$ long. From $b_{1}{ }^{h}$ drop a per. cutting $a^{v} b^{v}$ in the point b_{1}^{v} and $c^{v} d^{v}$ in the point d_{1}^{v}, then the rectangle $a^{v} b_{1}^{v} d_{1}^{v} c^{v}$ will be the vert. proj. or elevation of the plane surface $a b c d$.

Prob. 8, Fig. ilg.-To draw the projections of the same plane surface (1) when parallel to the H.P., (2) when making an angle of 30° with H.P. and per. to V.P., (3) when making an angle of 60° with H.P. and per. to V.P., and (4) when per. to both planes.

Fig. II9 shows the projections; further explanations are unnecessary.

Prob. 9, FigS. il9 and i20.-To draw the projections of
the same plane surface when making compound angles with the planes of projection.

Let the plane make an angle of 30° with H.P., as in the second position of Prob. 8, Fig. II 9, and in addition to that, revolve it through at angle of 30°. First, draw the plane parallel to H.P., as shown by $a^{h} c^{h} b^{h} d^{h}$, Fig. II 9 , the true size of the plane.

Fig. ir 8.

Fig. if g.

Fig. 120.
Its elevation will be the straight line $a^{v} b^{v}$ parallel to I.L. Next revolve $a^{\nu} b^{v}$, using a^{v} as a pivot, through an angle of 30°, to the position $a^{v} b_{1}^{v}$, which is its vert. proj. when making an angle of 30° with H.P. Its plan is projected in $a^{h} b_{1}^{h} c^{h} d_{1}^{h}$.

Now as the plane is still to make an angle of 30° with H.P. after it has been revolved through an angle of 30° with relation to the V.P., its hor. proj. will remain unchanged.

With a piece of celluloid or tracing-paper trace the hor. proj. $a^{h} b_{1}^{h} c^{h} d_{1}^{h}$, lettering the points as shown, and revolve the
tracing through the angle of 30°, or, which is the same thing, place the tracing so that the line $a^{h} c^{h}$ will make an angle of 60° with I.L., and with a sharp conical-pointed pencil transfer the four points to the drawing-paper and join them by straight lines, as shown by Fig. I20.

And as the line $a^{h} c^{h}$ retains its position relative to H.P. after the revolution, its elevation will be found at $a^{v} c^{v}$, Fig. 120, in a straight line drawn through $a^{v} b^{v}$, Fig. I 19, intersecting perpendiculars from $a^{h} c^{h}$, Fig. 120. And the vert. proj. of the points $b_{1}^{h} d_{1}^{h}$ will be found at $b_{1}^{v} d_{1}^{v}$, Fig. 120, in a straight line drawn through $b_{1}{ }^{v}$, Fig. II 19 , parallel to I.L. and intersecting pers. from $b_{1}{ }^{h} d_{1}{ }^{h}$, join with straight lines the points $a^{v} b_{1}^{v} c^{v} d_{1}^{v}$.

Draw the projections of the plane when making an angle of 60° with H.P. and revolved through an angle of 30° with relation to V.P.

Draw the projections of the plane when making an angle of 60° with the V.P. and per. to the H.P., Fig. 120.

Рrob. io. - To draw the projections of a plane surface of hexagonal form in the following positions: (i) When one of its diagonals is par. to the V.P. and making an angle of 45° with the H.P. (2) When still making an angle of 45° with the H.P. the same diagonal has been revolved through an angle of 60°.

Draw the hexagon $I^{h} 2^{h} 3^{h} 4^{h} 5^{h} 6^{h}$, Fig. I2I, at any convenient distance above I.L., making the inscribed circle $=2 \frac{1^{\prime \prime}}{}$. This will be its hor. proj. and $2^{v} 4^{v} 6^{v} I^{v}$ its vert. proj., the diagonal $\mathbf{I}^{k} 2^{h}$ being par. to both planes of proj. With I^{v} as an axis revolve $6^{v} 4^{v} 2^{v}$ through an angle of 45°. Through the points $2_{1}{ }^{v} 4_{1}{ }^{v} \sigma_{1}{ }^{v}$ erect pers. to the points $\sigma_{1}{ }^{h} 5_{1}{ }^{h} 4_{1}{ }^{h} 3_{1}{ }^{h}$ and $2_{1}{ }^{h}$
and join them with straight lines. These are the projs. in the first position. Now trace the hor. proj, $\mathrm{I}^{h}, 2_{1}{ }^{h}$, etc., on a piece of celluloid or tracing-paper and revolve the tracing until the diagonal $\mathrm{I}^{h} 2_{1}{ }^{h}$ makes an angle of 60° with the I.L., Fig. 122. Next draw pers. from the 6 points of the hexagonal plane to intersect hors. from the corresponding points of the elevation in Fig. 12 I, join the points of intersection with

FIG. 12 I.
Fig. 122.
straight lines, and so complete the projections of the second position, Fig. 122.

Prob. il, Figs. 123 and i24.-Draw the projs. of a circular plane (I) when its surface is par. to the vert. plane, (2) when it makes an angle of 45° with the V.P., and (3) when still making an angle of 45° with the V.P. it has been revolved through an angle of 60°.

First position: Draw the circular plane $1^{v}, 2^{v}, 3^{v}, 4^{v}$, etc., Fig. 123, below the I.L. with a radius $=x^{\frac{17}{\prime \prime}}$ and divide and figure it as shown.

Since the plane is par. to V.P. its hor. proj. will be a straight line $\mathrm{I}^{h}, 2^{h}, \ldots \ldots$. etc.

For the second position revolve the said hor. proj. through the required angle of 45° to the position $a^{h} \ldots I_{1}{ }^{h}$, Fig. 123, and through each division in $\mathrm{I}^{h} \ldots a^{h}$ draw arcs cutting $a^{k} \ldots \mathrm{I}^{h}$ in points $2^{h} 3^{h} \ldots$ This is the hor. proj. of the plane when making an angle of 45° with the V.P.

The elevation is found by dropping pers. from the points in the hor. proj. $a^{h} \ldots I_{1}{ }^{h}$ to intersect hor. lines drawn through the correspondingly numbered points in the eleva-

tion and through these intersections draw the elevation or vert. proj. of the second position.

For the third position make a tracing of the elevation of the second position, numbering all the points as before, and place the tracing so that the diameter $7^{v} 7^{v}$ makes the required angle of 60° with the I.L. and transfer to the drawing-paper.

The result will be the elevation of the third position shown below the I.L., Fig. 124. Its hor. proj. is found by drawing pers. through the points $1,2,3,4 \ldots$ to intersect hors. drawn through the corresponding points in the hor. proj. of the 2 d position and through these intersections draw the plan or hor. proj. of the third position, Fig. 124.

Рrob. i2, Fig. 125.—Draw the projs. of a regular hexagonal prism, $3^{\prime \prime}$ high and having an inscribed circle of $4 \frac{5_{8}^{\prime \prime}}{}{ }^{\prime \prime}$ diam.: (I) When its axis is par. to the V.P. (2) Draw the true form of a section of the prism when cut by a plane passing through it at an angle of 30° with its base. (3) Draw the projection of a section when cut by a plane passing through $X X$, Fig. 125, per. to both planes of proj.

The drawing of the I.L. may now be omitted.
For the plan of the first part of this prob. draw a circle with a radius $=$ to $2 \frac{5^{\prime}}{16}$, and circumscribe a hexagon about it, as shown by a^{h}, b^{h}, b^{h}, etc., Fig. 125. To project the elevation, draw at a convenient distance from the plan a hor. line par. to $a^{h} d^{d^{k}}$, and $3^{\prime \prime}$ below it another line par. to it. From the points $a^{h} b^{h} c^{h} d^{h}$, drop pers. cutting these par. lines in the points $a^{v} b^{v} c^{v} d^{v}$, thus completing the elevation of the prism.

Second condition: Draw the edge view or trace of the cutting plane $I^{\prime} 4^{\prime}$, making an angle of 30° with the base of the prism, locating the lower end 4^{\prime} one-half inch above the base; parallel to $I^{\prime} 4^{\prime}$, and at a convenient distance from it draw a straight line 1,4 ; at a distance of $2 \frac{5^{\prime \prime}}{16}$ on each side of 1,4 draw lines 3,2 and 5,6 parallel to 1,4 , and through the points $I^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}$ let fall pers. cutting these three par. lines in the points $1,2,3,4,5,6$; join these points by straight lines
as shown, and a true drawing of the section of the prism as required will result.

For the third condition of the problem:
Let $X X$ be the edge view of the cutting plane and conceive that part of the prism to the right of $X X$ to be removed.

Fig. 125.
Fig. 126.
From the hor. proj. of the prism draw a right-hand elevation or profile proj., and through the points $X X$ draw the lines enclosing the section, and hatch-line it as shown.

Prob. 13.-To draw the development of the lower part of the prism in the elevation of the last problem.

To the right of the elevation in Fig. 125, prolong the base line indefinitely and lay off upon it the distances $a b, b c, c d$, etc., Fig. i26, each equal in length to a side of the hex. At these points erect pers., and through the points $I^{\prime} 2^{\prime} 3^{\prime} 4^{\prime}$ draw hor. lines intersecting the pers. in 4, 3, 2, 1, etc. At $b c$ draw the hex. $a^{h} b^{h} b^{h}, c^{h} c^{h}, d^{h}$ of the last prob. for the base, and at $\mathrm{I}, 2$ draw the section $\mathrm{I}, 2,3,4,5,6$ for the top.

Prob. i4, Fig. i27.-To draw the projs. of a right cylinder $3^{\prime \prime}$ diam. and $3^{\prime \prime}$ long. (1) When its axis is per. to the H.P. (2) Draw the true form of a section of the cylinder, when cut by a plane per. to the V.P. making an angle of 30° with the H.P. (3) Draw a development of the upper part of the cyl.

For the plan of the first condition, describe the circle I^{\prime}, 2^{\prime}, etc., with a radius $=\mathrm{I}_{2^{\prime \prime}}$ and from it project the elevation, which will be a square of $3^{\prime \prime}$ sides.

For the second condition: Let 1,7 be the trace of the cutting plane, making the point $7, \frac{1_{2}^{\prime \prime}}{}$ from the top of the cyl. Divide the circle into 12 equal parts and let fall pers. through these divisions to the line of section, cutting it in the points I, 2, 3, 4, etc. Parallel to the line of section $\mathrm{I}, 7$ draw $\mathrm{I}^{\prime \prime} 7^{\prime \prime}$ at a convenient distance from it, and through the points I, 2, 3, 4, etc., draw pers. to $\mathrm{I}, 7$, intersecting and extending beyond $I^{\prime \prime} 7^{\prime \prime}$. Lay off on these pers. the distances $6^{\prime \prime} 8^{\prime \prime}=$ $6^{\prime} 8^{\prime}$, and $5^{\prime \prime} 9^{\prime \prime}=5^{\prime} 9^{\prime}$, etc., and through the points $2^{\prime \prime}, 3^{\prime \prime}$, $4^{\prime \prime}$, etc., describe the ellipse.

For the development: In line with the top of the elevation draw the line $g^{\prime} g^{\prime \prime}$ equal in length to the circumference of the circle, and divide it into 12 equal parts a^{\prime}, b^{\prime}, etc., $a^{\prime}, b^{\prime \prime}$, etc. Through these points drop pers. and through the points

1, 2, 3, etc., draw hors. intersecting the pers. in the points 1, 2, 3, etc., and through these points draw a curve.

Tangent to any point on the straight line draw a $3^{\prime \prime}$ circle for the top of the cyl. and tangent to any suitable point on the curve transfer a tracing of the ellipse.

Prob. i5, Fig. 128.-Draw the projections of a right cone $7^{\prime \prime}$ high, with a base $6^{\prime \prime}$ in diam., pierced by a right cyl. $2^{\prime \prime}$ in

Fig. 127.
diam. and $5^{\prime \prime}$ long their axes intersecting at right angles $3^{\prime \prime}$ above the base of the cone and par. to V.P. Draw first the plan of the cone with a radius $=3 \frac{1}{2}^{\prime \prime}$.

At a convenient distance below the plan draw the elevation to the dimensions required.
$3^{\prime \prime}$ above the base of the cone draw the center line of the cyl. $C D$, and about it construct the elevation of the cyl., which will appear as a rectangle $2^{\prime \prime}$ wide and $2 \frac{1_{2}^{\prime \prime}}{}$ each side of the axis of the cone. The half only appears in the figure.

To project the curves of intersection between the cyl. and cone in the plan and elevation: Draw to the right of the cyl. on the same center line a semicircle with a radius equal that of the cyl. Divide the semicircle into any number of parts,

Fig. 128.
Fig. 129.
as $\mathrm{I}, 2,3,4$, etc. Through I , I draw the per. $A^{\prime \prime} \mathrm{I}^{\prime \prime}$ equal in length to the height of the cone, and through $A^{\prime \prime}$ draw the line $A^{\prime \prime} 4^{\prime \prime}$ tangent to the semicircle at the point 4, and through the other divisions of the semicircle draw lines from $A^{\prime \prime}$ to the line $1^{\prime \prime} 4^{\prime \prime}$, meeting it in the points $3^{\prime \prime} 2^{\prime \prime}$.

From all points on the line $1^{\prime \prime} 4^{\prime \prime}$, viz., $I^{\prime \prime} 2^{\prime \prime} 3^{\prime \prime} 4^{\prime \prime}$, erect
pers. to the center line of the plan, cutting it in the points $I_{1}{ }^{\prime \prime} 2_{1}^{\prime \prime} 3_{1}{ }^{\prime \prime} 4_{1}^{\prime \prime}$, and with $I_{1}{ }^{\prime \prime}$ as the center draw the arcs $2_{1}{ }^{\prime \prime}-2$, $3_{1}^{\prime \prime}-3,4_{1}^{\prime \prime}-4$ above the center line of the plan, and through the points 2, 3, 4 draw hors. to intersect the circle of the plan in the points $2^{\prime} 3^{\prime} 4^{\prime}$, and lay off the same distances on the other side of the center line of the plan in same order, viz., $2^{\prime} 3^{\prime} 4^{\prime}$. Through each of these points on the circumference of the circle of the plan draw radii to its center A^{\prime}, and through the same points also in the plan let fall pers. to the base of the elevation of the cone, cutting it in the points $2^{\prime} 3^{\prime} 4^{\prime}$; and from the apex A of the elevation of the cone draw lines to the points $2^{\prime} 3^{\prime} 4^{\prime}$ on the base: Hor. lines drawn through the points of division 2, 3,4 on the semicircle will intersect the elements $A-2^{\prime}, A-3^{\prime}$, $A-4^{\prime}$ of the cone in the points $2^{\prime} 3^{\prime} 4^{\prime}$; these will be points in the elevation of the curve of intersection between the cylinder and the cone.

The plan of the curve is found by erecting pers. through the points in the elevation of the curve to intersect the radial lines of the plan in correspondingly figured points, through which trace the curve as shown. Repeat for the other half of the curve.

Prob. 16, Fig. i29.-To draw the development of the half cone, showing the hole penetrated by the cyl.

With center $4_{1}{ }^{\prime \prime}$, Fig. 129, and element $A I^{\prime}$ of the cone, Fig. 128, as radius, describe an arc equal in length to the semicircle of the base of the cone. Bisect it in the line $4_{1}{ }^{\prime \prime} I$, and on each side of the point I lay off the distances $2,3,4$, equal to the divisions of the arc in the plan Fig. 128, and from these points draw lines to $4^{\prime \prime}$, the center of the arc. Then with radii $A-a, b, c, d, e$, respectively, on the elevation Fig. 128,
and center $4_{1}{ }^{\prime \prime}$ draw arcs intersecting the lines drawn from the $\operatorname{arc} X X$ to its center $4_{1}{ }^{\prime \prime}$. Through the points of intersection draw the curve as shown by Fig. 129.

Prob. i7, Fig. i30.-To draw the development of the half of a truncated cone, given the plan and elevation of the cone.

Fig. ${ }^{130}$.
Divide the semicircle of the plan into any number of parts, then with A as center and $A \mathrm{I}$ as radius, draw an arc and lay off upon it from the point I the divisions of the semicircle from i to 9 , draw $9 A$. Then with center A and radius $A B$ draw the $\operatorname{arc} B C . \quad \mathrm{I} B C 9$ is the development of the half of the cone approximately.

Prob. i8, Fig. i31.-To draw the curve of intersection of a small cyl. with a larger. To the left of the center-line of Fig. I3I is a half cross-section, and to the right a half elevation of the two cyls.

Draw the half plan of the small cyl., which will be a semicircle, and divide it into any convenient number of parts, say 12.

From each of these divisions drop pers.
On the half cross-section these pers. intersect the circumference of the large cyl. in the points $I^{\prime}, 2^{\prime}$, etc. Through

Fig. 132.
these points draw hors. to intersect in corresponding points the pers. on the half elevation. Through the latter points draw the curve of intersection C.

Рrob. 19.-To draw the development of the smaller cyl. of the last prob.

Draw a rectangle, Fig. I 32, with sides equal to the circum-
ference and length of the cyl. respectively, and divide it into 24 equal parts.

Make $A B$, $1 \mathrm{I}^{\prime}, 33^{\prime}$, etc., Fig. 132 , equal to $A B, \mathrm{I}^{\prime} \mathrm{I}^{\prime \prime}$, $2^{\prime} 2^{\prime \prime}, 3^{\prime} 3^{\prime \prime}$, etc., Fig. 13I, and draw the developed curve of intersection.

PROB. 20.-To draw the orthographic projections of a cylindrical dome riveted to a cylindrical boiler of given dimensions.

Let the dimensions of the dome and boiler be: dome $26 \frac{1^{\prime}}{}{ }^{\prime \prime}$ diam. $\times 27^{\prime \prime}$ high, boiler $54^{\prime \prime}$ diam., plates $\frac{1_{2}^{\prime \prime}}{}$ thick.

Apply to the solution of this problem the principles explained in Prob. No. 18, Fig. I3I.

When your drawings are completed, compare them with Figs. I33 and 134, which are the projections required in the problem.

Letter or number the drawing and be prepared to explain how the different projections were found.

Prob. 2 I .-To draw the development of the top gussetsheets of a locomotive wagon-top boiler of given dimensions.

First draw the longitudinal cross-section of the boiler to the dimensions given by Fig. 135 , using the scale of $\mathrm{I}^{\prime \prime}=$ Ift.

Then at any convenient point on your paper draw a straight line, and upon it lay off a distance $A B 35 \frac{\frac{1}{2}^{\prime \prime}}{}$ long = the straight part of the top of the gusset-sheet G, Fig. I 35 . With center A and a radius $=27 \frac{7}{8}^{\prime \prime}$ (the largest radius of the gusset) $+6^{\prime \prime}$ (the distance from the center of the boiler to the center of the gusset C, Fig. I35) $=33 \frac{7}{3}^{\prime \prime}$, draw arc 1 .

With center B and a radius $=26 \frac{7^{\prime \prime}}{8}$ (the smallest radius of the gusset) draw arc 2. Tangent to these arcs draw the
straight line I, 2 extended, and through the points A and draw lines 1, A and 2, B per. to 1, 2.

Take a point on the per. $1,2,6^{\prime \prime}$ from the point 1 as a center and through the point A draw an arc with a radius $=277^{\frac{7}{8}}$.

With point 2 as a center and $2 B$ as a radius $\left(26 \frac{7}{8}^{\prime \prime}\right)$ draw an are through B to meet the line $\mathrm{I}, 2$.

Divide both arcs into any number of parts, say 12, and through these divisions draw lines per. to and intersecting i A and $2 B$ respectively. Through these intersections draw indefinite hors. and on these hors. step off the length of the arcs, with a distance $=$ one of the 12 divisions as follows:

On the first hors. lay off the length of the arc $A \mathrm{I}^{\prime}$ and $B \mathrm{I}^{r}$ $=A_{\mathrm{I}}$ and B_{I} respectively. Then from I^{\prime} lay off the same distance to 2^{\prime} on the second hors. etc. Through these points draw curves $A_{1} 3^{\prime}$ and $B 12^{\prime}$. Join points 12^{\prime} and 13^{\prime} with a straight line. Then $A B_{\mathrm{I} 2}$, I3 will be the developed half of the straight part of the gusset.

On the two ends or front and back of the gusset we have now to add $\mathrm{I}^{\prime \prime}$ for clearance $+33^{\prime \prime}$ for lap $+\frac{1}{2}^{\prime \prime}$ allowance for truing up the plates, total $=5 \frac{1}{4}^{\prime \prime}$. And to the sides $2 \frac{5_{8}^{\prime \prime}}{}{ }^{\prime \prime}$ for lap $+\frac{1_{2}^{\prime \prime}}{}$ allowance for truing up, total $=3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$.

The outline of the developed sheet may now be drawn to include these dimensions with as little waste as possible, as shown by Fig. 136. Extreme accuracy is necessary in making this drawing, as the final dimensions must be found by measurement.

Prob. 22.-To draw the projections of a V-threaded screw and its nut of $3^{\prime \prime}$ diam. and $\frac{3}{4 \prime \prime}$ pitch.

Begin by drawing the center line C, Fig. I 37 , and lay off on each side of it the radius of the screw $\mathrm{I}_{\frac{1}{2}}{ }^{\prime \prime}$. Draw $A B$ and $6 D$. Draw $A 6$ the bottom of the screw, and on $A B$ step off the pitch $=\frac{34^{\prime \prime}}{4^{\prime}}$, beginning at the point A.

On line $6 D$ from the point 6 lay off a distance $=$ half the pitch $=\frac{g^{\prime \prime}}{8}$, because when the point of the thread has com-
pleted half a revolution it will have risen perpendicularly a distance $=$ half the pitch, viz., $\frac{p^{\prime}}{}{ }^{\prime \prime}$.

Then from the point $6^{\prime \prime}$ on $6 D$ step off as many pitches as may be desired. From the points of the threads just found,

Fig. 137.

Fig. 138.
draw with the 30° triangle and T -square the V of the threads intersecting at the points $b \ldots b \ldots$ the bottom of the threads.

At the point O on line $A 6$ draw two semicircles with radii $\|$ the top and bottom of the thread respectively. Divide these into any number of equal parts and also the pitch P into the same number of equal parts. Through these divisions draw hors. and pers. intersecting each other in the points as
shown by Fig. I37, which shows an elevation partly in section and a section of a nut to fit the screw. Through the points of intersection draw the curves of the helices shown, using No. 3 of the "Sibley College Set" of Irregular Curves.

Fig. I39.
PROB. 22.-To draw the proj. of a square-threaded screw $3^{\prime \prime}$ diam. and $\mathrm{I}^{\prime \prime}$ pitch and also a section of its nut.

The method of construction is the same as for the last problem, and is illustrated by Fig. 138.

PROB. 22.-To draw the projections of a square double threaded screw of $3^{\prime \prime}$ diam. and $2^{\prime \prime}$ pitch, and also a section of its nut.

The solution of this problem is shown by Fig. 139, and further explanation should be unnecessary.

Prob. 23.-To draw the curve of intersection that is formed by a plane cutting an irregular surface of revolution.

Fig. ${ }^{2} 40$.
Figs. 140, 141, and 142 show examples of engine connecting rod ends where the curve I is formed by the inter-

Fig. 141.
section of the flat stub end with the surface of revolution of the turned part of the rod.

The method of finding the curves of intersection are so plainly shown by the figures that a detailed explanation is deemed unnecessary.

Fig. 142.

SHADE LINES AND SHADING.
Shade Lines are quite generally used on engineering working drawings; they give a relieving appearance to the projecting parts, improve the looks of the drawing and make it easier to read, and are quickly and easily applied.

The Shading of the curved surfaces of machine parts is sometimes practiced on specially finished drawings, but on working drawings most employers will not allow shading because it takes too much time, and is not essential to a quick and correct reading of a drawing, especially if a system of shade lines is used.

Some of the principles of shade lines and shading are given below, with a few problems illustrating their commonest applications.

The shadows which opaque objects cast on the planes of
projection or on other objects are seldom or never shown on a working drawing, and as the students in Sibley College are taught this subject in a course on Descriptive Geometry, it is omitted here.

CONVENTIONS

The Source of Light is considered to be at an infinite distance from the object, therefore the Rays of Light will be represented by parallel lines.

The Source of Light is considered to be fixed, and the Point of Sight situated in front of the object and at an infinite distance from it, so that the Visual Rays are parallel to one another and per. to the plane of projection.

Shade Lines divide illuminated surfaces from dark surfaces.
Dark surfaces are not necessarily to be defined by those surfaces which are darkened by the shadow cast by another part of the object, but by reason of their location in relation to the rays of light.

It is the general practice to shade-line the different projections of an object as if each projection was in the same plane, e.g., suppose a cube, Fig. 143, situated in space in the third angle, the point of sight in front of it, and the direction of the rays of light coinciding with the diagonal of the cube, as shown by Fig. 144. Then the edges $a^{v} b^{v}, b^{v} c^{v}$ will be shade lines, because they are the edges which separate the illuminated faces (the faces upon which fall the rays of light) from the shaded faces, as shown by Fig. 144.

Now the source of light being fixed, let the point of sight remain in the same position, and conceive the object to be revolved through the angle of 90° about a hor. axis so that a
plan at the top of the object is shown above the elevation, and as the projected rays of light falling in the direction of the diagonal of a cube make angles of 45° with the hor., then with the use of the 45° triangle we can easily determine that the lower and right-hand edges of the plan as well as of the elevation should be shade lines.

This practice then will be followed in this work, viz. :
Shade lines shall be applied to all projections of an object,

Fig. 143.

Fig. 144.
considering the rays of light to fall upon each of them, from the same direction.

Shade lines should have a width equal to 3 times that of the other outlines. Broken lines should never be shade lines.

The outlines of surfaces of revolution should not be shade lines. The shade-lined figures which follow will assist in illustrating the above principles; they should be studied until understood.

SHADING.

The shade of an object is that part of the surface from which light is excluded by the object.

The ine of shade is the line separating the shaded from the illuminated part of an object, and is found where the rays of light are tangent to the object.

Brilliant Points.-" When a ray of light falls upon a surface which turns it from its course and gives it another direction, the ray is said to be reflected. The ray as it falls upon the surface is called the incident ray, and after it leaves the surface the reflected ray. The point at which the reflection takes places is called the point of incidence.
" It is ascertained by experiment-
" (a) That the plane of the incident and reflected rays is always normal to the surface at the point of incidence;
" (b) That at the point of incidence the incident and reflected rays make equal angles with the tangent plane or normal line to the surface.
" If therefore we suppose a single luminous point and the light emanating from it to fall upon any surface and to be reflected to the eye, the point at which the reflection takes place is called the brilliant point. The brilliant point of a surface is, then, the point at which a ray of light and a line drawn to the eye make equal angles with the tangent plane or normal line-the plane of the two lines being normal to the surface." -Davies: Shades and Shadozes.

Considering the rays of light to be parallel and the point of sight at an infinite distance, the brilliant point on the surface of a sphere is found as follows: Let $A^{v} C^{v}$ and $A^{h} C^{h}$, Fig.

145, be a ray of light and $A^{v} A^{h}$ a visual ray. Bisect the angles contained between the ray of light and the visual ray as follows: Revolve $A^{v} C^{v}$ about the axis A^{v} until it becomes parallel to the hor. plane at $A^{v} C_{1}{ }^{v}$. At C_{1}^{v} erect a per. to intersect a hor. through C^{h} at C_{1}^{h} join $C_{1}^{h} L^{h}(L$ may be any convenient

Fig. 145.
point on the line of vision), bisect the angle $L^{h} A^{h} C_{1}{ }^{h}$ with the line $A^{h} D^{h}$. Join $C^{h} L^{h}$ and through the point D^{h}, draw a hor. cutting $C^{h} L^{h}$ at $D_{1}{ }^{h}$, then $A^{h} D_{1}{ }^{h}$ is the hor. projection of the bisecting line. A plane drawn per. to this bisecting line and tangent to 'the sphere touches the surface at the points $B^{v} B_{1}{ }^{h}$ where the bisecting lines pierce it. Therefore $B^{v} B^{h}$ are the two projections of the brilliant point.

The point of shade can be found as follows:
Draw $A^{h} G$, Fig. 145, making an angle of 45° with a hor. Join the points E and F with a straight line $E F$. Lay off on $A^{h} G$ a distance equal to $E F$, and join $E G$. Parallel to $E G$

Fig. 148.
draw a tangent to the sphere at the point T. Through T draw $T P^{h}$ per. to $A^{h} G$. From the point P^{h} drop a per. to P^{v}. P^{v} is the point of shade.

РROB. 24.-To shade the elevation of a sphere with graded arcs of circles.

First find the brilliant point and the point of shade, and divide the radius $\mathrm{I}, 2$ into a suitable number of equal parts, and draw arcs of circles as shown by Fig. 146, grading them by moving the center a short distance on each side of the center of the sphere on the line $B^{h} 2$ and varying the length of the radii to obtain a grade of line that will give a proper shade to the sphere. It is desirable to use a horn center to protect the center of the figure.

Fig. 149 shows the stippling method of shading the sphere.

Fig. 149.

Fig. 150.

Prob. 25.-To shade a right cylinder with graded right lines.

Find the line of light B^{v} by the same method used to find the brilliant point on the sphere, except that the line of light is projected from the point B^{h} where the bisection line $A^{h} D$ cuts the circle of the cylinder.

The line of shade is found where a plane of rays is tangent to the cyl. at S^{v} and S^{h}.

Fig. 150 shows how the shading lines are graded from the line of shade to the line of light.

It will be noticed that the lines grow a little narrower to the right of the line of shade on Fig. 150; this shows where
the reflection of the rays of light partly illumine the outline of the cylinder.

Prob. 26, Fig. 148.-To shade a right cone with graded right lines tapering toward the apex of the cone.

Find the elements of light and shade as shown by Fig. I48, and draw the shading-lines as shown by Fig. 15 I, grading their width toward the light and tapering them toward the apex of the cone.

Fig. 15 I .

Fig. 152.

The mixed appearance of the lines near the apex of the cone on Fig. 5 I can usually be avoided by letting each line dry before drawing another through it, or as some draftsmen do, stop the lines just before they touch.

Prob. 27.-To shade the concave surface of a section of a hollow cylinder.

Find the element of light and grade the shading lines from it to both edges as shown by Fig. 152.

Fig. I53 shows a conventional method of shading a hexagonal nut.

Prob. 28.-To draw a front and end elevation of a rectangular hollow box with a rectangular block on each face, each
block to have a rectangular opening, and all to be properly shade-lined and drawn to the dimensions given on Fig. 154.

Fig. 153.
Draw the hor. center line first, and then the vertical center line of the end view. About these center lines on the end elFig: 154 .

Fig. ${ }^{5} 55$
evation construct the squares shown and erect the edges of the blocks. Next draw the hidden lines indicating the thickness
of the walls of the box and the openings through the blocks, measuring the sizes carefully to the given dimensions.

Draw the front elevation by projecting lines from the various points on the end elevation, and assuming the position of the line $A B$ measure off the lengths of the hor. lines and erect their vert. boundaries as shown by the figure.

Рrob. 29.-Given the end elevation of the last prob., cut by three planes A, B and C, Fig. 155. Draw the projections of these sections when the part to the left of the cutting plane has been removed, and what remains is viewed in the direction of the arrow, remembering that all the visual rays are parallel.

These drawings and all that may follow are to be properly shade-lined in accordance with the principles given above.

ISOMETRICAL DRAWING.

In orthographic projection it is necessary to a correct understanding of an object to have at least two views, a front and end elevation, or an elevation and plan, and sometimes even three views are required.

Isometric drawing on the other hand shows an object completely with only one view. It is a very convenient system for the workshop. Davidson in his Projection calls it the " Perspective of the Workshop." It is more useful than perspective for a working drawing, because, as its name implies ("equal measures ") it can be made to any scale and measured like an orthographic drawing. It is, however, mainly employed to represent small objects, or large objects drawn to a small scale, whose main lines are at right angles to each other.

The principles of isometrical drawing are founded on a cube resting on its lower front corner, I, Fig. 156, and its base
elevated so that its diagonal $A B$ is parallel to the horizontal plane. Then if the cube is rotated on the corner I until the diagonal $A B$ is at right angles to the vert. plane, i.e., through an angle of 90°, the front elevation will appear as shown at $\mathrm{I}, 2,3,4$, Fig. 156, a regular hexagon.

Now we know that in a regular hexagon, as shown by Fig. I56, the lines $1 A, A_{3}$, etc., are all equal, and are easily drawn

Fig. 156.
with the $30^{\circ} \times 60^{\circ}$ triangle. But although these lines and faces appear to be equal, yet, being inclined to the plane of projection, they are shorter than they would actually be on the cube itself. However, since they all bear the same proportion to the original sizes, they can all be measured with the same scale.

We will now describe the method of making an isometrical scale.

Draw the half of a square with sides $=2 \frac{1}{2}^{\prime \prime}$, Fig. 157 . These two sides will make the angle of 45° with the horizontal. Now the sides of the corresponding isometrical square, we have seen, make the angle of 30° with the horizontal, so we will
draw I 4, 34 , making angles of 30° with 1,3 . The difference then between the angle $2,1,3$ and the angle $4,1,3$ is 15°, and the proportion of the isometrical projection to the actual object is as the length of the line 3,2 to the line 3,4 . And if the line 3,2 be divided into any number of equal parts, and lines be drawn through these divisions par. to 2,4 to cut the line 3,4 in corresponding divisions, these will divide 3,4 proportionately to 3,2 .

Now if the divisions on 3,2 be taken to represent feet and those on 3,4 to represent 2 feet, then 3,4 would be an isometrical scale of $\frac{1}{2}$.

Fig. 157.

Since isometrical drawings may be made to any scale, we may make the isometrical lines of the object $=$ their true size. This is a common practice and precludes the need of a special isometrical scale.

The Direction of the Rays of Light. -The projection of a ray of light in isometrical drawing will make the angle of 30° with the horizontal as shown by the line 3,2 on the front elevation of the hex., Fig. 156. And the shade lines will be applied as in ordinary projection.

Prob. 30.-To make the isometrical drawing of a twoarmed cross standing on a square pedestal.

Begin by drawing a center line $A B$, Fig. 158, and from the point A draw $A C$ and $A D$, making an angle of 30° with the horizontal. Measure from A on the center line $A B$ a distance $=\frac{5^{\prime \prime}}{16}$, and draw lines par. to $A C, A D$; make $A C$ and $A D 2 \frac{5^{\prime \prime}}{8}$ long and erect a perpendicular at D and C, completing the two front sides of the base, etc.

Prob. 3I.-To make the isometrical drawing of a hollow cube, with square block on each face and a square hole through each block, to dimensions given on Fig. 159.

As before, first draw a center line, and make an isometrical drawing of a $2 \frac{1^{\prime \prime}}{}$ cube, and upon each face of it build the blocks with the square holes in them, exactly as shown in Fig. 159.

Рrob. 32.-To project an isometrical circle.
The circle is enclosed in a square, as shown by Fig. 160.

Draw the circle with a radius $=2^{\prime \prime}$ and describe the square 1, 2, 3, 4 about it.

Draw the diagonals $1,2,3,4$ and the diameters $5,6,7,8$ at right angles to each other.

Now from the points I and 2 draw lines $\mathrm{I} A, \mathrm{I} B$ and $2 A$, $2 B$, making angles of 30° with the hor. diagonal $\mathrm{I}, 2$. And

Fig. 159
through the center O draw $C D$ and $E F$ at right angles to the isometrical square.

The points $C D, E F$, and $G H$ will be points in the curve of the projected isometrical circle, which will be an ellipse.

The ellipse may be drawn sufficiently accurate as follows:
With center B and radius $B C$ describe the arc $C F$ and extend it a little beyond the points C and F, and with center A and same rad. describe a similar arc, then with a rad. which

Fig. 160.

Fig. 16 r.

Fig. 163.

Fig. i64.

Fig. 165.
may readily be found by trial, draw arcs through the points G and H and tangent to the two arcs already described.

Figs. $161,162,163,164,165$, and 166 are for practice in the application of the preceding principles, and at least one of these should be drawn, or it would be better still if the stu-

Fig. i66.
dent would attempt to make an isometrical projection of his instrument-box, desk, or any familiar object at hand. These figures may be measured with the $\mathrm{I}_{\frac{1}{2}}{ }^{\prime \prime}$ scale and drawn with the $2^{\prime \prime}$ scale.

WORKING DRAWINGS.

Working drawings are sometimes made on brown detailpaper in pencil, traced on tracing-paper or cloth, and then blue printed.

The latter process is accomplished as follows:
The tracing is placed face down on the glass in the print-ing-frame, and the prepared paper is placed behind it, with the sensitized surface in contact with the back of the tracing.

In printing from a negative the sensitized surface of the prepared paper is placed in contact with the film side of the negative, and the face is exposed to the light.

The blue-print system for working drawings has many drawbacks, e.g., the sectioned parts of the drawing require to
be hatch-lined, using the standard conventions already re ferred to for the different materials. This takes a great deal of time. The print has usually to be mounted on cardboard, although this is not always done, and unless it is varnished the frequent handling with dirty, oily fingers soon makes it unfit for use.

Changes can be made on the prints with soda-water, it is true, but they seldom look well, and when many changes or additions require to be made it is best to make them on the tracing and take a new print. And the sunlight is not always favorable to quick printing. So taking everything into consideration the system of making working drawings directly on cards and varnishing them is probably the best. It is the system used by the Schenectady Locomotive Works and many other large engineering establishments. In size the cards are made $9^{\prime \prime} \times 12^{\prime \prime}, 12^{\prime \prime} \times 18^{\prime \prime}, 18^{\prime \prime} \times 24^{\prime \prime}$; they are made of thick pasteboard mounted with Irish linen recordpaper. The drawings are pencilled and inked on these cards in the usual way, and the sections are tinted with the conventional colors, which are much quicker applied than hatchlines. The face of the drawing is protected with two coats of white shellac varnish, while the back of the card is usually given a coat of orange shellac.

The white varnish can easily be removed with a little alcohol, and changes made on the drawing, and when revarnished it is again ready for the shop.

We will now try to describe what a working drawing is and what it is for. In the hands of an experienced workman a working drawing is intended to convey to him all the necessary information as to shape, size, material, and finish to

enable him to properly construct it without any additional instructions. This means that it must have a sufficient number of elevations, sections, and plans to thoroughly explain and describe the object in every particular. And these views. should be completely and conveniently dimensioned. The dimensions on the drawing must of course give the sizes to which the object is to be made, without reference to the scale to which it may be drawn. The title of a working drawing should be as brief as possible, and not very large-a neat, plain, free-hand printed letter is best for this purpose.

Finished parts are usually indicated by the letter " f," and if it is all to be finished, then below the title it is customary to write or print " finished all over."

The number of the drawing may be placed at the upper left-hand corner, and the initials of the draftsman immediately below it.

A second-year course, entitled Mechanical Drawing and Elementary Machine Design, is in preparation, and will shortly be published.

Figs. 167 and 168 show working drawings of two shaftcouplings, fully figured, sectioned, and shade-lined.

INDEX.

A
PAGE
Angle, To bisect an 19
Angle, To construct an I 5
Anti-friction curve, " Schiele's" 50
Arched window-opening, To draw an 53
Arkansas oil-stones 5
B
Baluster, To draw a. 53
Board, Drawing. I
Bow instruments 2
Brass, Sheet of 6
Breaks, Conventional 61
Brilliant points 106

C

Celluloid, Sheet of thin 5
Center lines. 60
Cinquefoil ornament, To draw the 53
Circle, Arc of a, To find the center of an 32
Circle, Arc of a, To draw a line tangent to an. 33
Circle, To draw a right line equal to half the circumference of a 31
Circle, To draw a tangent between two 33
Circle, To draw tangents to two. 34
Circle, To draw an arc of a, tangent to two straight lines. 34
Circle, To inscribe a, within a triangle 35
Circle, To draw an arc of a, tangent to two circles. 36
Circle, To draw an arc of a, tangent to a straight line and a circle 37
Circle, To construct the involute of a. 45
Circle, To find the length of an arc of a, approximately. 47
PAGE
Cissoid, To draw the 49
Compass 2
Conventions 56
Conventions, Shading 104
Conventional breaks 61
Conventional lines. 60
Conventional screw-threads 62
Cross-sections 62
Curves, Irregular 3
Cycloid, To describe the 46
D
Dark surfaces 104
Development of the surfaces of a hexagonal prism 90
Development of the surface of a right cylinder. 92
Development of the surface of a cone. 93
Development of the surface of a cylindrical dome 96
Development of a locomotive gusset sheet. 97
Dihedral angles 75
Direction, The, of the rays of light 105
Dividers, Hair-spring 2
Drawing-board I
Drawing-pen 2
Drawing to scale 12, 54
E
Ellipse, To describe an 38
Ellipse, Given an, to find the axes and foci. 43
Epicycloid, To describe the 48
Epicycloid, To describe an interior 50
Equilateral triangle, To construct an 24
Examples of working drawings. 120
F
Figuring and lettering 66
Finished parts of working drawings 122
G
Geometrical drawing 16
Glass-paper pencil sharpener 4
Gothic letters. 69
H
PAGE
PAGE
Heptagon, To construct a 28
Hyperbola, To draw an 42
Hypocycloid, To describe the 48
I
Ink eraser. 4
Inks 4
Instruments 2
Intersection, The, of a cylinder with a cone 93
Intersection, The, of two cylinders 96
Intersection, The, of a plane with an irregular surface of revolution 102
Involute, of a circle, To construct the 45
Is ometrical cube. 113
Isometrical drawing 112
Isometrical drawing, Direction of the rays of light in 114
Isometrical drawing of a two-armed cross 115
Isometrical drawing of a hollow cube II6
Isometrical drawing, Examples of 117
Isometrical scale, The II4
L
Leads for compass. 13
Lettering and figuring. 64
Line of shade 106
Line, To draw a, parallel to another. 19
Line, To divide a 21
Line of motion 60
Line of section 60
M
Mechanical drawing and elementary machine design 122
Model of the co-ordinate planes 8I
Moulding, The "'Scotia" 51
Moulding, The "Cyma Recta" 51
Moulding, The "Cavetto" or "Hollow" 51
Moulding, The " Echinus, " "Quatrefoil," or "Ovolo ". 52
Moulding, The "Apophygee". 52
Moulding, The "Cyma Reversa" 52
Moulding, The "Torus" 52
N
PAGE
PAGE
Needles 6
Notation 80
0
Octagon, To construct an 28
Orthographic projection 74
Oval, To construct an 43
P
Paper 2
Parabola, To construct a 41
Pencil 2
Pencil eraser 4
Pencil, To sharpen the 8
Pen, Drawing 9
Pen, To sharpen the drawing 10
Pentagon, To construct a 28
Perpendicular, To erect a. 17
Planes of projection, The 75
Polygon, To construct a. 26
Projection, The, of straight lines 82
Projection, The, of plane surfaces 84
Projection, The, of solids 90
Projection, The, of the cone 93
Projection of the helix as applied to screw-threads 99
Proportional, To find a mean, to two given lines. 31
Proportional, To find a third, to two given lines. $3 I$
Proportional, To find a fourth, to three given lines 32
Protractor 6
ع
Quatrefoil, To draw the 53
R
Rays of light 104
Rays, Visual 104
Rhomboid, To construct the 21
Right angle, To trisect a 24
Roman letters 67
S
Scale guard AGE
Scale, Drawing to I2, 54
Scale, To construct a 55
Schiele's curve, To draw 50
Screw-threads, Conventional 62
Screw-threads, Regular 100
Section lines 56
Section lines, Standard 58
Shade lines and shading 103
Shade, To, the elevation of a sphere 108
Shade, To, a right cylinder 109
Shade, To, a right cone IIO
Shade, To, a concave cylindrical surface IIO
Sharpen pencil, To 8
Sharpen pen, To 10
Sheet brass 6
Sheet celluloid. 6
"Sibley College" set of irregular curves 3
"Sibley College" set of instruments 2
Source of light 104
Spiral, To describe the 44
Sponge rubber 5
Square, To construct a 25
Stippling 109
T
Tacks 5
T-square 2
Third dihedral angle. 75
Tinting brush 5
Tinting saucer. 5
Title, The, of a working drawing 122
Tracing-cloth. 6
Trefoil, To describe the 53
Triangles 3
Triangle, To construct a. 25
Triangular scale 3
Type specimens 70
Use of instruments. 7
Use of pencil 8
Use of drawing-pen.
PAGEUse of triangles9Use of T-squareIIII
Use of drawing-board II
Use of scale 12
Use of compasses 13
Use of dividers or spacers 13
Use of spring bows 14
Use of irregular curves 14
Use of protractor 14
V
Visual rays 104
Volute, To describe the "Ionic". 45
W
Water-colors 5
Water glass 5
Writing-pen 6
Working drawings 118
Working drawings, Method of making. II9
Working drawing, What is a II9
Working drawings, Examples of. II9
SHORT-TITLE CATALOGUE
of tue
PUBLICATIONS
of
JOHN WILEY \& SONS,
New York.
London: CHAPMAN \& HALL, Limited. ARRANGED UNDER SUBJECTS.
Descriptive circulars sent on application. Books marked with an asterisk are sold at net prices only. All books are bound in cloth unless otherwise stated.
AGRICULTURE.
Cat'rle Feeding-Dairy Practice-Dibeases of Animals- Gardening, Etc.
Armsby's Manual of Cattle Feerliug $\$ 175$
Downing's Fruit and Fruit Trees. 500
Grotenfelt's The Principles of Modern Dairy Practice. (Woll.) 12mo, 200
Kemp's Landscape Gardening 250
Lloyd's Science of Agriculture 400
Loudon's Gardening for Ladies. (Downing.). 150
Steel's Treatise on the Diseases of the Dog 350
" Treatise on the Diseases of the Ox. 600
Stockbridge's Rocks and Soils. 250
Woll's Handbook for Farmers and Dairymen 150
ARCHITECTURE.
Building-Carpentry-Stairs-Ventilation, Etc.
Berg's Buildings and Structures of American Railroads.....4to, 750
Birkmire's American Theatres-Planning and Construction.8vo, 300
" Architectural Iron and Steel. 350
" Compound Riveted Girders. 200
" Skeleton Construction in Buildings 300
" Planning and Construction of High Office Buildings.
8vo, 350
Carpenter's Heating and Ventilating of Buildings $\$ 300$
Downing, Cottages 250
" Hints to Architects 200
Freitag's Architectural Engineering. 250
Gerhard's Sanitary House Inspection 100
" Theatre Fires and Panics 150
Hatfield's American House Carpenter 500
Holly's Carpenter and Joiner. 75
Kidder's Architect and Builder's Pocket-book. . . . Morocco flap, 400
Merrill's Stones for Building and Decoration 500
Monckton's Stair Building-Wood, Iron, and Stone 400
Wait's Engineering and Architectural Jurisprudence 600
Sheep, 650
Worcester's Small Hospitals-Establishment and Maintenauce, iucluding Atkinson's Suggestions for Hospital Archi- tecture 12 mo , 125
World's Columbian Exposition of 1893 4 to, $\quad 250$
ARMY, NAVY, Etc.
Military Engineering-Ordnance-Port Charges-Law, Etc.
Bourue's Screw Propellers 500
Bruff's Ordnance and Guunery 600
Bucknill's Submarine Mines and Torpedoes. 400
Chase's Screw Propellers 300
Cooke's Naval Ordeance 8vo, 1250
Cronkhite's Gunnery for Non-com. Officers. 18mo, morocco 200
Davis's Treatise on Military Law .8vo, 700
11 \downarrow Sheep, 750
"، Elements of Law 250
De Brack's Cavalry Outpost Duties. (Carr.)....18mo, morocco, 200
Dietz's Soldier's First Aid 12 mo , morocco 125

* Dredge's Modern French Artillery .4to, half morocco 1500
Record of the Transportation Exhibits Building,World's Columbian Exposition of 1893..4to, half morocco, 1000
Durand's Resistance and Propulsion of Ships. 500
Dyer's Light Artillery 300
Hoff's Naval Tactics 150
Hunter's Port Charges .8 vo , half morocco 1300
Ingalls's Ballistic Tables $8 \mathrm{vo}, \$ 1.50$
" Handbook of Problems in Direct Fire 8vo, 400
Mahan's Advanced Guard. 150
". Permanent Fortifications. (Mercur.).8vo, half morocco, 750
Mercur's Attack of Fortified Places. $.12 \mathrm{mo}, 200$
" Elements of the Art of War. 8vo, 400
Metcalfe's Ordnance and Guunery 12mo, with Atlas, 500
Murray's A Manual for Courts-Martial 18 mo , morocco, 150
Infantry Drill Regulations adapted to the Springfield Rifle, Caliber . 45. .18mo, paper, 15
Phelps's Practical Marine Surveying. 8vo, 250
Powell's Army Officer's Examiner. 400
Reed's Signal Service. 50
Sharpe's Subsisting Armies 150
Very's Navies of the World. 350
Wheeler's Sicge Operations. 200
Winthrop's Abridgment of Military Law 250
Woodhull's Notes on Military Hygiene. 150
Young's Simple Elements of Navigation..12mo, morocco flaps, 200
ASSAYING.
Smelting-Ore Dressing-Alloys, Etc.
Fletcher's Quant. Assaying with the Blowpipe..12mo, morocco, 150
Furman's Practical Assaying. 300
Kunhardt's Ore Dressing 150
* Mitchell's Practical Assaying. . (Crookes.). 1000100
O'Driscoll's Treatment of Gold Ores. 200
Ricketts and Miller's Notes on Assaying. 300
Thurston's Alloys, Brasses, and Bronzes 250
Wilson's Cyanide Processes. 150" The Chlorination Process
150
ASTRONOMY.
Practical, Theoretical, and Descriptive.
Craig's Azimuth 350
Doolittle's Practical Astronomy 400
Gore's Elements of Geodesy $.8 \mathrm{vo}, \quad 250$
Hayford's Text-book of Geodetic Astronomy 8vo.
Michie and Harlow's Practical Astronomy 8vo, \$3 00
White's Theoretical and Descriptive Astronomy 12 mo , 200
BOTANY.
Gardening for Ladies, Etc.
Baldwin's Orchids of New England 150
Loudon's Gardening for Ladies. (Downing.) 150
Thomé's Structural Botany 225
Wentermaier's General Botany. (Schneider.) 200\%
BRIDGES, RO0FS, Etc.
Cantilever-Draw-Highway-Suspension.(See also Engineering, p. 6.)
Wo 9 sumb
Boller's Highway Bridges 200
* " The Thames River Bridge 500
Burr's Stresses in Bridges 350
Crehore's Mechanics of the Girder 500
Dredge's Thames Bridges. 125
Du Bois's Stresses in Framed Structures 1000
Foster's Wooden Trestle Bridges 500
Greene's Arches in Wood, etc. 250
4u "Bridge Trusses 250
AK " .Roof Trusses 125
Howe's Treatise on Arches 400
Johnson's Modern Framed Structures 1000
Merriman \& Jacoby's Text-book of Roofs and Bridges. $W_{0} \subseteq$ PartI., Stresses 250
Merriman \& Jacoby's Text-book of Roofs and Bridges.
250
th 12 Part II.. Graphic Statics 8vo.
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part III., Bridge Design 250
Merriman \& Jacoby's Text-book of Roofs and Bridges.Part IV., Continuous, Draw, Cantilever, Suspension, andArched Bridges8vo,250
* Morison's The Memphis Bridge Oblong 4to, 1000
Waddell's Iron Highway Bridges $8 \mathrm{vo}, \quad \$ 400$
De Pontibus (a Pocket-book for Bridge Engineers).
Wood's Construction of Bridges and Roofs, 200
Wright's Designing of Draw Spans 250
CHEMISTRY.
Qualitative-Quantitative- Organic-Inorganic, Etc.
Adriance's Laboratory Calculations. 125
Allen's Tables for Iron Analysis. 300
Austen's Notes for Chemical Students 150
Bolton's Student's Guide in Quantitative Analysis 150
Classen's Aualysis by Electrolysis. (Herrick and Boltwood.).8vo, 300
Crafts's Qualitative Analysis. (Schaeffer.) 150
Drechsel's Chemical Reactions. (Merrill.). 125
Fresenius's Quantitative Chemical Analysis. (Allen.). 600
" Qualitative " " (Johnson.).....8vo, 300 (Wells) Trans. 16th.
German Edition. 500
Fuerte's Water and Public Health 150
Gill's Gas and Fuel Analysis 125
Hammarsten's Physiological Chemistry. (Mandel.). 400
Helm's Principles of Mathematical Chemistry. (Morgan).12mo, 150
Kolbe's Inorganic Chemistry. 150
Ladd's Quantitative Chemical Analysis 100
Landauer's Spectrum Analysis. (Tingle.) 300
Mandel's Bio-chemical Laboratory. 150
Mason's Water-supply 500
" Aualysis of Potable Water. (In the press.)
Miller's Chemical Physics 200
Mixter's Elementary Text-book of Chemistry 150
Morgan's The Theory of Solutions and its Results....... 12mo, 100
Nichols's Water-supply (Chemical and Sanitary).............8vo, 250
O'Brine's Laboratory Guide to Chemical Analysis. 200
Perkins's Qualitative Analysis 100
Pinner's Organic Chemistry. (Austen.). 150
Poole's Calorific Power of Fuels. 300
Ricketts and Russell's Notes on Inorganic Chemistry (Non- metallic) Oblong 8vo, morocco, 75
Ruddiman's Incompatibilities in Prescriptions. 8vo, $\$ 200$
Schimpf's Volumetric Analysis 250
Spencer's Sugar Manufacturer's Handbook.12mo, morocco flaps, 200
" Handbook for Chemists of Beet Sugar House.12mo, morocco, 300
Stockbridge's Rocks and Soils 8vo, $\quad 250$
Troilius's Chemistry of Iron .8vo, 200
Wells's Inorganic Qualitative Analysis. 12 mo , 150
" Laboratory Guide in Qualitative Chemical Analysis, 8vo, 150
Wiechmann's Chemical Lecture Notes. 12 mo 300
Sugar Analysis 250
Wulling's Inorganic Phar. and Med. Chemistry 200
DRAWING.Elementairy-Geometrical-Topographical.
Hill's Shades and Shadows and Perspective 200
MacCord's Descriptive Geometry 300
" Kinematics. 500
" Mechanical Drawing 400
Mahan's Industrial Drawing. (Thompson.) 350
Reed's Topographical Drawing. (II. A.) 500
Reid's A Course in Mechanical Drawing 200
" Mechanical Drawing and Elementary Machine Design.8vo.
Smith's Topographical Drawing. (Macmillan.) 250
Warren's Descriptive Geometry 2 vols., 8 vo , 350
" Drafting Instruments. $12 \mathrm{mo}, 125$
". Free-hand Drawing 100
"، Higher Linear Perspective 350
"، Linear Perspective 12 mo 100
، Machine Construction. .2 vols., 8 vo , 750
" Plane Problems. 125
" Primary Geometry 75
" Problems and Theorems. 250
" Projection Drawing 150
". Shades and Shadows. 300
" Stereotomy-Stone Cutting 250
Whelpley's Letter Engraving 200
ELECTRICITY AND MAGNETISM.
Illumination-Batteries-Physics.
Anthony and Brackett's Text-book of Physics (Magie) 8vo, $\$ 400$
Barker's Deep-sea Soundings 8vo, 200
Benjamin's Voltaic Cell 300
History of Electricity 300
Cosmic Law of Thermal Repulsion 75
Crehore and Squier's Experiments with a New Polarizing Photo- Chronograph. 300
* Dredge's Electric Illuminations... . 2 vols., 4to, half morocco, 2500
Gilbert's De magnete. (Mottelay.). 250750
Holman's Precision of Measurements. 200
Michie's Wave Motion Kelating to Sound and Light, 400
Morgan's The Theory of Solutions and its Results. 100
Niaudet's Electric Batteries. (Fishback.) 250
Reagan's Steam and Electrical Locomotives.
Thurston's Stationary Steam Engines for Electric Lighting Pur- poses. 150
Tillman's Heat .8vo, 150

ENGINEERING.

Civil-Mechanical-Sanitary, Etc.
(See also Bridges, p. 4 ; Hydraulics, p. 8; Matertals of En- gineering, p. 9 ; Mechanics and Machinery, p. 11 ; Steam Engines and Boilers, p. 14.)
Baker's Masonry Construction 8vo, 500
" Surveying Instruments 300
Black's U. S. Public Works 500
Brook's Street Railwny Location. 150
Butts's Engineer's Field-book 250
Byrne's Highway Construction 750
" Inspection of Materials and Workmanship. 12mo, mor. Carpenter's Experimental Engineering 600
Church's Mechanics of Engineering-Solids and Fluids. 600
" Notes and Examples in Mechanics. 200
Crandall's Earthwork Tables 150
" The Transition Curve. 12 mo , morocco, 150

* Dredge's Peun. Railroad Construction, etc. . . Folio, half mor., $\$ 2000$
* Drinker's Tunnelliug 4to, half morocco, 2500
Eissler's Explosives-Nitroglycerine and Dynamite 8vo, 400
Fowler's Coffer-dam Process for Piers. 8 vo.
Gerhard's Sinitary House Inspection. $16 \mathrm{mo}, 100$
Godwin's Railroad Engineer's Field-book.12mo, pocket-bk. form, 250
Gores Elements of Geodesy 250
Howard's Transition Uurve Field-book.....12mo, morocco flap, 150
Howe's Retaining Walls (New Edition.). 125
Hudson's Excavation Tables. Vol. II. 100
Hutton's Mechanical Engineering of Power Plants. 500
Johnson's Materials of Construction 600
4 :" Stadia Reduction Diagram. . Sheet, $22 \frac{1}{2} \times 28 \frac{1}{2}$ inches, 50
Theory and Practice of Surveying. 400
Kent's Mechanical Engineer's Pocket-book. 500
Kiersted's Sewage Disposal 125
Kirkwood's Lead Pipe for Service Pipe, 150
Mahan's Civil Engineering. (Wood.) 500
Merriman and Brook's Handbook for Surveyors. . . .12mo, mor., 200
Merriman's Geodetic Surveying 200
Retaining Walls and Masonry Dams 200
Mosely's Mechanical Engineeriug. (Mahan.) 500
Nagle's Manual for Railroad Engineers.........12mo, morocco, 300
Patton's Civil Engineering. 750
" Foundations 500
Rockwell's Roads and Pavements in France 125
Ruffuer's Non-tidal Rivers $1 \cdot 25$
Searles's Field Engineering 300
12mo, niorocco flaps,
" "" Railroad Spiral 150
Siebert aud Biggin's Modern Stone Cutting and Masonry...8vo, 150
Smith's Cable Tramways 250
Wire Manufacture and Uses. 300
Spalding's Roads and Pavements. 200
Hydraulic Cement 200
Thurston's Materials of Construction 500
* Trautwine's Civil Engineer's Pocket-book...12mo, mor. flaps, 500
* " Cross-section. , Sheet, 25
Excavations and Embankments. 200
* Trautwiue’s Laying Out Curves 12mo, morocco, $\$ 20$Waddell's De Pontibus (A Pocket-book for Bridge Engineers).12 mo , morocco,300
Wait's Engineering and Architectural Jurisprudence 600
Sheep, 650
" Jaw of Field Operation in Engineering, etc 8vo.
Warren's Stereotomy-Stoue Cutting. 250
Webb s Engineering Instruments. 100
Wegmann's Construction of Masonry Dams 500
Wellington's Location of Railways. 500
Wheeler's Civil Engineering 400
Wolff's Windmill as a Prime Mover 300
HYDRAULICS.
Water-wheels-Windmills-Service Pipe-Drainage, Etc.
(See also Engineering, p. 6.)
Bazin's Experiments upon the Contraction of the Liquid Vein (Trautwine) 200
Bovey's Treatise on Hydraulics 400
Coftin's Graphical Solution of Hydraulic Problems. 12mo 250
Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. . .8vo, 400
Fuerte's Water and Public Health 150
Ganguillet \& Kutter's Flow of Water. (Hering \& Trautwine.).8vo, 400
Hazen's Filtration of Public Water Supply. 200
Herschel's 115 Experiments 200
Kiersted's Sewage Disposal 125
Kirkwood's Lead Pipe for Service Pipe 150
Mason's Water Supply 500
Merriman's Treatise on Hydraulics. 400
Nichols's Water Supply (Chemical and Sanitary) 250
Ruffner's Improvement for Nou-tidal Rivers. 125
Wegmann's Water Supply of the City of New York 4to, 1000
Weisbach's Hydraulics. (Du Bois.). 500
Wilson's Irrigation Engincering 400
Hydraulic and Placer Mining 200
Wolff's Windmill as a Prime Mover. 300
Wood's Theory of Turbines. 250
MANUFACTURES.
Aniline-Boilers-Explosives-Iron-Sugar-Watches - Woollens, Etc.
Allen's Tables for Iron Aualysis 300
Beaumont's Woollen and Worsted Manufacture. 150
Bolland's Encyclopædia of Founding Terms 300
Bolland's The Iron Founder 12 mo, 250
" Supplement $12 \mathrm{mo}, 250$
Booth's Clock and Watch Maker's Manual 12mo, 200
Bouvier's Handbook on Oil Painting 12 mo , 200
Eissler's Explosives, Nitroglycerine and Dynamite. 400
Ford's Boiler Making for Boiler Makers 100
Metcalfe's Cost of Manufactures 500
Metcalf's Steel-A Manual for Steel Users. $\$ 200$
Reimann's Aniline Colors. (Crookes.) 250
* Reisig's Guide to Piece Dyeing 2500
Spencer's Sugar Manufacturer's Handbook.... 12mo, mor. flap, 200Handbook for Chemists of Beet Houses.
12 mo , mor. flap, 300
Svedelius's Handbook for Charcoal Burners 150
The Lathe and Its Uses 600
Thurston's Manual of Steam Boilers 500
Walke's Lectures on Explosives 400
West's American Foundry Practice. 250
Moulder's Text-book 250
Wiechmann's Sugar Analysis 250
Woodbury's Fire Protection of Mills. 250
MATERIALS OF ENGINEERING.
Strength-Elasticity-Resistance, Etc.
(See also Engineering, p. 6.)
Baker's Masonry Construction 500
Beardslee and Kent's Strength of Wrought Iron 150
Bovey's Strength of Materials 750
Burr's Elasticity and Resistance of Materials 500
Byrue's Highway Construction 500
Carpenter's Testing Machines and Methods of Testing Materials. Church's Mechanics of Engineering-Solids and Fluids... .. 8 vo 600
Du Bois's Stresses in Framed Structures 4 to, 1000
Hatfield's Transverse Strains 500
Johnson's Materials of Construction 600
Lanza's Applied Mechanics 750
Merrill's Stones for Building and Decoration. 500
Merriman's Mechanics of Materials 400
Strength of Materials 100
Patton's Treatise on Foundations. 500
Rockwell's Roads and Pavements in France. 125
Spalding's Roads and Pavements 200
Thurston's Materials of Construction 500
Thurston's Materials of Engineering. 3 vols., 8vo, \$800
Vol. I., Non-metallic .8vo, 200
Vol. II., Iron and Steel 8vo, 350
Vol. III., Alloys, Brasses, and Brouzes .8vo, 250
Weyrauch's Strength of Iron and Steel. (Du Bois.) 8vo, 150
Wood's Resistance of Materials. 8vo, 200
MATHEMATICS.Calculus-Geometry-Trigonometry, Etc.
Baker's Elliptic Functions. 8vo, 150
Ballard's Pyramid Problem 150
Barnard's Pyramid Problem 150
Bass's Differential Calculus 400
Brigg's Plane Analytical Geometry 100
Chapman's Theory of Equations. 150
Chessin's Elements of the Theory of Functions.
Compton's Logarithmic Computations 150
Craig's Linear Differential Equations 500
Davis's Introduction to the Logic of Algebra 150
Halsted's Elements of Geometry 175
Synthetic Geometry 150
Johnson's Curve Tracing 100
" Differential Equations-Ordinary and Partial. 350
" Integral Calculus. 150
" " " Unabridged.Least Squares.150
Ludlow's Logarithmic and Other Tables. (Bass.) 200
Trigonometry with Tables. (Bass.) 300
Mahan's Descriptive Geometry (Stone Cutting) 150
Merriman and Woodward's Higher Mathematics 500
Merriman's Method of Least Squares 200
Parker's Quadrature of the Circle 250
Rice and Johnson's Differential and Integral Calculus,
2 vols. in 1, 12mo, 250
Differential Calculus 300
Abridgment of Differential Calculus 150
Searles's Elements of Geometry 150
Totten's Metrology 250
Warren's Descriptive Geometry 2 vols., 8vo, 350
" Drafting Instruments. 125
" Free-band Drawing. 100
" Higher Linear Perspective 350
" Linear Perspective 100
". Primary Geometry .12mo, 75
Warren's Plane Problems 12 mo , $\$ 125$
14| ". Problems and Theorems. 250
Projection Drawing. 150
Wood's Co-ordinate Geometry 200

1. .. Trigonometry 100
Woolf's Descriptive Geometry 300
MECHANICS-MACHINERY.
Text-books and Practical Works.
(See also Engineering, p. 6.)
Baldwin's Steam Heating for Buildings. 250
Benjamin's Wrinkles and Recipes 200
Carpenter's Testing Machines and Methods of Testing Materials 8vo.
Chordal's Letters to Mechanics 200
Church's Mechauics of Engineering 600
" Notes and Examples in Mechanics. 200
Crehore's Mechanics of the Girder. 500
Cromwell's Belts and Pulleys 150
Toothed Gearing 150
Compton's First Lessons in Metal Working 150
Dana's Elementary Mechanics 150
Dingey's Machinery Pattern Making. 200
Dredge's Trans. Exhibits Building, World Exposition, 4to, half morocco, 1000
Du Bois's Mechanics. Vol. I., Kinematics 350
"، " Vol. II., Statics. 400
Vol. III., Kinetics 350
Fitzgerald's Boston Machinist 100
Flather's Dynamometers 200
Rope Driving 200
Hall's Car Lubrication 100
Holly's Saw Filing 75
Johuson's Theoretical Mechanics. An Elementary Treatise. (In the press.)
Joues Machine Design. 8vo, 150
Part II., Strength and Proportion ofMachine Parts.
Lanza's Applied Mechanics 8vo, 750
MacCord's Kinematics 500
Merriman's Mechanics of Materials 400
Metcalfe's Cost of Manufactures. 500
Michie's Analytical Mechanics. 400
Mosely's Mechanical Engineering. (Mahan.) 500
Richards's Compressed Air. 12mo $\$ 150$
Robinson's Principles of Mechanism. 300
Smith's Press-working of Metals $: 00$
The Lathe and Its Uses. 600
Thurston's Friction and Lost Work 300
The Animal as a Machine 100
Warren's Machine Construction 750
Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 500
" Mechanics of Engineering. Vol. III., Part I., Sec. I. (Klein.)... 8vo, 5. 00
Weisbach' Mechanics of Engineering Vol. III., Part I., Sec. II. (Klein.) 500
Weisbach's Steam Engines. (Du Bois.) 500
Wood's Analytical Mechanics. 300
" Elementary Mechanics. 125
186 " Supplement and Key. 125
METALLURGY.
Iron-Gold-Silver-Alloys, Etc.
Allen's Tables for Iron Analysis. 8vo, 300
Egleston's Gold and Mercury. 50
Metallurgy of Silver. 750

* Kerl's Metallurgy-Copper and Iron 1500
Steel, Fuel, etc 1500
Kunhardt's Ore Dressing in Europe 150
Metcalf's Steel-A Manual for Sicel Users 200
O'Driscoll's Treatment of Gold Ores. 200
Thurston's Iron and Steel 350
Alloys 250
Wilson's Cyanide Processes 150
MINERALOGY AND MINING.
Mine Accidents-Ventilation-Ore Dressing, Ftc.
Barringer's Minerals of Commercial Value.... .oblong morocco, 250
Beard's Ventilation of Mines. 250
Boyd's Resources of South Western Virginia. 300
Map of South Western Virginia..... Pocket-book form, 200
Brusih and Penfield's Determinative Mineralogy 350
Chester's Catalogue of Minerals 125
Dictionary of the Names of Minerals. 30050
Dana's American Localities of Minerals 100
Dana's Descriptive Mineralogy (E. S.)8vo, half morocco, $\$ 1250$
[" Mineralogy and Petrography (J.D.). 12 mo , 200
" Minerals and How to Study Them. (E. S.). .12mo, 150
" Text-book of Mineralogy. (E. S.) 350
*Drinker's Tunuelling, Explosives, Compounds, and Rock Drills. 4to, half morocco, 2500
Egleston's Catalogue of Minerals and Synonyms 250
Eissler's Explosives-Nitroglycerine and Dynamite. 490
Goodyear's Coal Mines of the Western Coast 250
Hussak's Rock forming Minerals. (Smith.). 200
Ihlseng's Manual of Mining 400
Kunhardt's Ore Dressing in Europe. 150
O'Driscoll's Treatment of Gold Ores 200
Rosenbusch's Microscopical Physiography of Minerals and Rocks. (Iddings) 500
Sawyer's Accidents in Mines 700
Stockbridge's Rocks and Soils 250
Walke's Lectures on Explosives 400
Williams's Lithology 300
Wilson's Mine Ventilation 125
" Hydraulic and Placer Mining 12 mo .
STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.
Stationaliy-Marine-Locomotive-Gas Engines, Etc. (See also Engineering, p. 6.)
Baldwin's Steam Heating for Buildings. .12mo, 250
Clerk's Gas Engine 12 mo 400
Ford's Boiler Making for Boiler Makers 18mo, 100
Hemenway's Indicator Practice. 12 mo .200
Hoadley's Warm-blast Furnace. 150
Kneass's Practice and Theory of the Injector 150
MacCord's Slide Valve 200
* Maw's Mariue Engines. 1800
Meyer's Modern Locomotive Construction. 1000
Peabody and Miller's Steam Boilers. 400
Peabody's Tables of Saturated Steam 100
" Thermodynamics of the Steam Engine. 500
" Valve Gears for the Steam Engine. 250
Pray's Twenty Years with the Indicator 250
Pupin and Osterberg's Thermodynamics 125
Reagan's Steam and Electrical Locomotives. 200
Röntgen's Thermodyuamics. (Du Bois.) 500
Sinclair's Locomotive Running. 200
Thurston's Boiler Explosion 150
Thurston's Eugine and Boiler Trials. $\$ 500$
" Manual of the Steam Engine. Part I., Structure and Theory................................... .8vo 750
Manual of the Steam Engine. Part II., Design, Construction, and Operation 750
2 parts, 1200
" ~ Philosophy of the Steam Engine 12 mo , 75
Reflection on the Motive Power of Heat. (Carnot.) 12mo, 150
" Stationary Steam Engines 150
Steam-boiler Construction and Operation 500
Spangler's Valve Gears 250
Trowbridge's Stationary Steam Engines 250
Weisbach's Steam Engine. (Du Bois.) 500
Whitham's Constructive Steam Engineering 1000
Steam-engine Design 500
Wilson's Steam Boilers. (Flather.) 250
Wood's Thermodynamics, Heat Motors, etc. 400
TABLES, WEIGHTS, AND MEASURES.
For Actuaries, Chemists, Engineers, Mechanics-Metric Tables, Etc.
Adriance's Laboratory Calculations $12 \mathrm{mo}, \quad 125$
Allen's Tables for Iron Analysis 300
Bixby's Graphical Computing Tables 25
Compton's Logarithms 150
Crandall's Railway and Earthwork Tables 150
Egleston's Weights and Measures 75
Fisher's Table of Cubic Yards 25
Hudson's Excavation Tables. Vol. II. 100
Johnson's Stadia and Earthwork Tables 125
Ludlow's Logarithmic and Other Tables. (Bass.) 12 mo 200
Thurston's Conversion Tables 100
Totten's Metrology 250
VENTILATION.
Steam Heating-House Inspection-Mine Ventilation.
Baldwin's Steam Heating 12 mo 250
Beard's Ventilation of Mines 250
Carpenter's Heating and Ventilating of Buildings 300
Gerhard's Sanitary House Inspection 100
Mott's The Air We Breathe, and Ventilation 100
Reid's Ventilation of American Dwellings 50
Wilson's Mine Ventilation 16 mo , 125

MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language.................... Gilt edges, $\$ 500$
Bailey's The New Tale of a Tub. 75
Ballard's Solution of the Pyramid Problem. 150
Barnard's The Metrological System of the Great Pyramicl. .8vo, 150
Davis's Elements of Law 200
Emmon's Geological Guide-book of the Rocky Mountains. .8vo, 150
Ferrel's Treatise on the Winds 400
Haines's Addresses Delivered before'the Am. Ry. Assn...12mo. 250
Mott's The Fallacy of the Present Theory of Sound.. Sq. 16mo, 100
Perkins's Cornell University Oblong 4to, 150
Ricketts's History of Rensselaer Polytechnic Institute. . . . 8vo, 300
Retherham's The New Testament Critically Emphasized. 12 mo , 150
The Emphasized New Test. A new translation. Large 8vo, 200
Totten's An Important Question in Metrology 250
Whitehouse's Lake Mœris. Paper, 25

* Wiley's Yosemite, Alaska, and Yellowstone 4to, 300
HEBREW AND CHALDEE TEXT=BOOKS.
For Schools and Theological Seminaries.
Gesenius's Hebrew and Chaldee Lexicon to Olid Testament. (Tregelles.) Small 4to, half morocco, 500
Green's Elementary Hebrew Grammar 1.25
" Grammar of the Hebrew Language (New Edition).8vo, 300
". Hebrew Chrestomathy. 200
Letteris's Hebrew Bible (Massoretic Notes in English). 8 vo , arabesque, 225
Luzzato's Grammar of the Biblical Chaldaic Language and the Talmud Babli Idioms. 150
MEDICAL.
Bull's Maternal Management in Health and Disease....... .12mo, 100
Hammarsten's Physiological Chemistry. (Mandel.) 400
Mott's Composition, Digestibility, and Nutritive Value of Food.
Large mounted chart, 125
Ruddiman's Incompatibilities in Prescriptions................8vo, 200
Steel's Treatise on the Diseases of the Ox. 600
Treatise on the Diseases of the Dog 350
Woodhull's Military Hygiene. 150
Worcester's Small Hospitals-Establishment and Maintenance, including Atkinson's Suggestions for Hospital Archi- tecture. .12mo, 125

$$
=
$$

?

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed. This book is DUE on the last date stamped below.

\qquad
\qquad
 4.0; ©
\qquad

[^0] (2) -

113

5

110

[^0]:

