
A MICROCOMPUTER BASED GENERATOR OF
RECURRING OPERATIONAL REPORTS

John. —tlett Godley

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
A Microcomputer Based Generator of

Recurring Operational Reports

by

John Bartlett Godley

June 1977

The s is Advisor: S. L. Holl

Approved for public release; distribution unlimited

T179916

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Enft»d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtltla)

A Microcomputer Based Generator of
Recurring Operational Reports

S. TYPE OF REPORT k PERIOO COVERED
Master's Thesis;
June 1977

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf*;

John Bartlett Godley

S. CONTRACT OR GRANT NUMBER*"*;

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT, PROJECT, TASK
AREA « WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
June 1977

13. NUMBER OF PAGES
125

14. MONITORING AGENCY NAME a AOORESSf/f dlllarant Irom Controlling OHIca)

Naval Postgraduate School
Monterey, California 93940

15. SECURITY CLASS, (ol thla raport)

Unclass i f ied

15*. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thla Raport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol lha abatract antarad In Block 30, II dlllarant from Raport)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on rararaa aid* II naeaaaarr and Idantlty by block numbar)

Microcomputer
Report Generator

20. ABSTRACT (Contlnua on ravaraa alda 11 naeaaaarr and Idantlty by block numbar)

This thesis proposes a Report Originating System to provide
afloat and small commands with the capability of automatic data
processing assistance in report generation. The discussed
system is completely implemen table in small, inexpensive general
purpose microcomputer hardware. The principal benefit of the
system lies in its ability to prompt the user to solicit the

DD
FORM

1 JAN 73 1473 EDITION OF 1 NOV S3 IS OBSOLETE
S/N 0102-014- 6601 I

SECURITY CLASSIFICATION OF TMIS PAOe (Whan Data Kntarad)

fiiCuWTv CLASSIFICATION OF TmS PIGE'^m f>»t« f.i.r.;

information required to be submitted in the report and to
partially analyze the user's responses for correctness of form
and content. Such computerized assistance should result in
higher report quality and the concomitant reduction of
correcting message traffic. The Report Originating System
incorporates a line editing capability which lends itself
to any text editing process. Thus, frequently modified
locally prepared documents such as unit instructions and
directives can be originated and updated with this system.

1473DD Form
1 Jan 73

5 N 0102-014-6601 SECURITY CLASSIFICATION OF THIS P kGZf"**" Dmis Enffd)

Approved for public release; distribution unlimited

A MICROCOMPUTER BASED GENERATOR

OF

RECURRING OPERATIONAL REPORTS

by

John Bartlett podley
Lieutenant-Commander , United States Naval Reserve

B. S., New Mexico State University, 1964

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1977

ABSTRACT

This thesis proposes a Report Originating System

to provide afloat and small commands with the

capability of automatic data processing assistance in

report generation. The discussed system is completely

inplenentable in small, inexpensive general purpose

microcomputer hardware. The principal benefit of the

system lies in its ability to prompt the user to

solicit the information required to be submitted in

the report and to partially analyze the user's

responses for correctness of form and content. Such

computerized assistance should result in higher report

quality and the concomitant reduction of correcting

message traffic. The Report Originating System

incorporates a line editing capability which lends

itself to any text editing process. Thus, frequently

modified locally prepared documents such as unit

instructions and directives can be originated and

updated with this system.

TABLE OF CONTENTS

I. INTRCDOCTION 7

II. BACKGROUND 9

III. REPORT ORIGINATING SYSTEM

CONCEPTS AND CONSTRUCTS 12

A. CONCEPTS 12

B. CONSTRUCTS 15

1. Data Element Directory 15

2. Data Elements 16

3. End Of File 17

C. IMPLEMENTATION 18

IV. SOFTWARE DESIGN FEATURES 20

A. RCS PROGRAM ORGANIZATION 21

1. Operating System Interface Module 21

2. Initialization Module 25

3. Editing Module 29

4. Errcr Module 33

5

.

Output. Module 37

B. CREATE PROGRAM ORGANIZATION 39

1. Initialization-Interface Module 39

2. Input- Editing Module 4 1

3. Finish Module 46

V. RECOMMENDATIONS 49

A. SINGLE LINE INSERTIONS 49

B. OPERATING SYSTEM AND PROGRAMMING LANGUAGE.... 50

C. EXPANSION OF THE CREATE PROGRAM EDITOR 50

D. IMPLEMENTATION IN ANOTHER

MICROCOMPUTER ARCHITECTURE 51

E. ERROR ANALYSIS EXPANSION 52

F. TESTING AND DEBUGGING 52

VI. CONCLUSIONS 53

Appendix A: ROS PROGRAM USER'S MANUAL 55

Appendix E: LINE EDITOR USER'S MANUAL 69

Appendix C: CREATE PROGRAM USER'S MANUAL 79

ROS PROGRAM LISTING 91

CREATE PROGRAM LISTING 111

BIBLIOGRAPHY 123

INITIAL DISTRIBUTION LIST 124

I. INTRODUCTION

With the increased use of computers in military

communications, command and control, a trend towards highly

formatted message reports has occurred. A high degree of

formatting in a report is conducive to machine processing of

the report without the need for human intervention. This,

in turn, allows processing a greater amount of data than was

feasible in a manually oriented environment.

Although the advent of machine processable reports has

been a boon to report recipients it has generated problems

for the report originator. To be useful, a formatted report

must be precise; there is no room for either syntax or

content errors. While in manually processed reports, the

originator was granted some degree of compositional freedom,

the great variety exhibited by ordinary prose is

incompatible with contemporary automated report processing.

Reports intended for direct computer consumption must be

strictly formatted and the computer is intollerent of errors

in syntax or content. Satisfying the computer's demand for

precise formatting is a difficult and time consuming task.

With the advent of machine readable formatted reports this

odious burden has been exported from the staff or the

command center to the report writer in the field.

To reduce the submission of erroneous formatted reports,

a great deal of attention is given to the preparation of

these messages. For example, the Department of Defense

provides a mobile instructional team to present a two week

course to middle management officers on Force Status

Reporting. This emphasis has increased the burden of the

shipboard administrator and has detracted from his other

professional duties. Needless to say, computer acceptable

report formats have not been popularly received in the

fleet.

The computer can be used to help the shipboard manager

write error free reports more quickly. This thesis proposes

the implementation of a Report Originating System to provide

such a function. The Report Originating System was

initially developed by LCDR J. G. Holyoak [4]. That system

was tailored specifically to the Naval Force Status Reort.

The goals of the present work ware to broaden the

applicability of the Report Originating System to encompass

all formatted and partially formatted reports, to strengthen

the system's error detecting capabilities, and to simplify

and fully document the user's command repertoire. A great

portion of the original code remains intact and the original

data structures are largely unchanged. The major coding

modifications dealt with improving the editing facilities,

providing the ability to handle multiple lines of text,

extending the error analysis capability and expanding the

system to handle larger size documents. The software

documentation was expanded considerably, not only to

facilitate maintenance bat also to serve as a design

document in the event that the Report Originating System is

rewritten in another language for another computer.

In the next chapter, the events leading up to formatted

reports are discussed. The Report Originating System

concepts and constructs are examined in Chapter III while

the programmatic details of the system are discussed in

Chapter IV. Recommendations for further development and

conclusions are considered in Chapters V and 71

respectively. The three appendices provide detailed

guidance to users of the system.

II. BACKGROUND

The information reporting requirements levied upon the

commanding officer of a naval ship have increased markedly

in recent years. This phenomenon is primarily due to two

factors: the ability to communicate reliably to almost any

point on the earth and the ability to handle and condense an

enormous vclume of information zo a succinct and

comprehensible quantity. Reliable communications stem from

the technological strides in communications electronics made

during the last three decades. The ability to process large

quantities cf information is a result of the digital

computer. Knowing that it is possible to receive and

correlate data from units deployed around the world, the top

echelons cf command have found it very easy to demand new

reports frca subordinate units for areas of high level

interest

.

In recent years, there have been attempts to reduce the

amount of paperwork generated within the Department of

Defense. In 1972, Secretary of Defense Melvin E. Laird

directed that all DOD activities review and eliminate

paperwork that was counterproductive to efficient management

efforts. A year earlier, the Vice Chief of Naval Operations

solicited the aid of the Naval Audit Service to perform an

audit on fleet reporting requirements. The Naval Audit

Service was in the midst of its audit when the Laird policy

was decreed. Although there was considerable motivation to

reduce the problem, the Naval Audit Service's findings

shewed that the situation had worsened rather than improved.

Of 147 specific reporting requirements analyzed, 24 percent

were redundant. 3y 1973 the 147 required reports had grown

to 160 [9]. The best that can be said about our progress in

reducing reports is that our efforts may have slowed the

rate of growth.

When discussing the enormous reporting problems within

the Department of Defense, one often loses sight of the

origin of the information. While the plethora of

information readily available to the highest echelons of

command may often allow top management to respond quickly

and accurately to impending crises, this information is not

gathered without cost. In today's Navy, the originators of

this information, the units of the fleet, usually must

operate without the benefit of automated information

processing. This means that each bit of data processed in

the Pentagon's information system was introduced into the

data base by laborious means. Time spent gathering,

collating and preparing data for submission was not spent on

improving operational readiness. Although we have not

reduced the operational responsibilities of commanding

officers, we have greatly increased their administrative

responsibilities. This additional administrative burden has

been added usually without a commensurate strengthening of

the capability to deal with increased paperwork.

One attempt by the Navy to reduce reporting requirements

was the Composite Reporting (COMPRSP) study concluded in

June 1975. The goal of this study was to devise one

composite report that would combine the information

requirements of the Naval Force Status Report (NAVFORSTAT)

,

Movement Report (MOVREP) , Casualty Report (CASREPT) and

Emergency MILSTRIP (Military Standard Recquisit ioning and

Issue Proceedures) . The study developed the reporting

structure, training and software necessary to accomplish

this goal. Based on the results of this study, the Naval

Electronics System Command recommended that the COMPREP

10

system be implemen ted using a dedicated microprocessor to

support the system [6].

At the shipboard level, an originator or "drafter" of a

report usually works in the following manner. The last

example of the submitted report is reviewed to determine

what in that report remains pertinent. The information that

is unchanged since the last submission is copied into the

new report along with other data reflecting changes in the

current status. This process of selective plagiarism is

almost universal. Selection of a pragmatic model upon which

to base the report assists the drafter in spending the least

amount of his time in report generation while affording the

greatest confidence that the report will be accepted. The

goal of acceptability frequently competes with the goal of

accuracy. This method of report generation is particularly

adaptable to data processing assistance.

Since efforts to reduce have not been successful,

alternate approaches to reducing the reporting burden on

fleet units is indicated. If we can not eliminate, at least

we can assist. The preceding paragraph inferred that the

computer, whose appetite for data partially created the

report problem, may also be a key to a solution. 3y

transferring the reported information from paper to a medium

that can be accessed by computer, modern data processing

methods can be applied to the problem. The information that

remains unchanged between individual reports could be

rapidly included in the new report; other information could

be edited to reflect the modified situation. The commercial

world is well on its way towards automated reporting and

information processing. The computer industry has responded

with the development of hardware and software appropriate to

the task. These capabilities can now be provided to the

small military command at a moderate cost.

11

III. REPORT ORIGINATING SYSTEM CONCEPTS AND CONSTRUCTS

The Report Originating System is composed of two

computer programs, CREATE and ROS, written in the PL/M

programming language for an 3080 based microcomputer. The

equipment used to implement the Report Originating System

consisted of an Intellec-8 HCS microcomputer with 16,000

bytes of random access memory, a Shuggart dual floppy disk

drive and a Datamedia Elite 2500 CRT display and entry

terminal. Many host computer configurations were feasible;

this hardware was selected because it was inexpensive and

was available in the U. S. Naval Postgraduate School's

Computer Laboratory. The CREATE program consists of

approximately 4500 bytes of machine code while ROS consists

of approximately 7200 bytes. These program sizes resulted

in 7000 and 4000 bytes of memory available as a work area

after the program and the operating system were loaded.

A. CONCEPTS.

Reports are typically subdivided into data elements

which correspond to a paragraph or formatted line. Each

data element generally has associated with it a data label

which may be a paragraph heading or an acronym used to

describe the information that follows. The data element has

been chosen to be the building block upon which the Report

Originating System is based. Originally, [4] the Report

Originating System was intended to assist in generating

highly formatted recurring operational reports such as the

Naval Forces Status Report (NAVEORSTAT) , the Movement Report

12

(MCVREP) , the Casualty Report (CASREPT) and RAINFORM report.

These reports are very common, very cryptic and highly prone

to format errors. Inclusion of a "format free" formatting

convention broadened the range of application of the Beport

Originating System to include generation of any report or

document whether primarily formatted or textual.

Every report, whether' formatted or textual, is

considered to be composed of data elements. This is easy to

envision for highly formatted reports but it also can be

applied to unformatted reports or documents. These usually

adhere to the pattern or the naval letter or directive

that is, they are divided into various sections, each with

an identifying paragraph heading followed by text. These

headings maxe natural data labels in the Report Originating

System. The concept, of the basic report information is

expanded from the single line of the NAVFORSTAT or M0V3EP to

the section or paragraph of a unit instruction. This

expansion allows a broader range of applicable documents.

An individual data element is composed of a data label,

the basic report information, error analysis information,

and prompting information. These segments of the data

element always appear in this order. A collection of one or

more data elements, preceded by a directory to the data

element location and terminated by an end of file marker,

forms a "DAT" (for data base) file. A DAT file is the end

product of the CREATE program. Figure 1 shows a graphical

representation of the contents of a DAT file.

13

CO
ho

fA 4" LPi CO

CO
CO

Q_
<

Q
en
o
o
LU

CO
CO
o_
CO

CSI

CO
CO

co

CO

en
o

QO
CJ

CO
•—

«

CO
>-
-J
<
<
Cn
o
en

&-S

B-5
CN

o: 0£
CJ CJ

1
1—

1

—r-

<c
00 <c
QC cl-
LU ot> 1

UJ <
T^ ^:

<c
CO sz
00

B-5
QC
LU
CO

6-5

&-S Q_ -

cn. CO -

LU ^=^ -

CO 1—

1

—
<c CO en
LU CJ
nr CO H-
6^ 1

—

CQ

O
UL

I-
Q.

o

w
.O
1—

1

PL,

E-
<Q
<

. Ph
- O
_ 2
- O
- 1—

1

- H
<

en H
CJ 2
CO W
LU CO
CO w
CO oi
LU Cl,

QC W
CO ei
CO
<c UJ

<^ U
CO hH—

1

X
h- Oh
<c <^" Qh
QC
CO
u_ <
TZ*-

1—

1

1

CO rH

<̂c CD

5-.

s: 3
CO 00
1——

1

•H
1— Ph
CO
<c

cm

CO
ct:
Q_
Q_

CO

14

3. CONSTRUCTS.

A DAT file contains all the necessary information used

by the ROS program to generate a specific report. The

composition and construction of the DAT file sections are

described below.

1 • Data Element Directory

Each DAT file commences with a directory section

called a RECORD MAP. This map indicates the initial disk

address of each of the data elements contained within that

report. The RECORD MAP section occupies the first twelve

128 byte records within the DAT file and provides enough

space for 96 separate entries. Each RECORD MAP entry is 16

bytes (characters) long. The first 14 bytes contain the

data label while the last two bytes point to the disk

location of the described data element. To provide for

variable data label lengths, a data label is preceded by and

followed by a delimiter. Thus, the RECORD MAP can

accommodate data labels containing twelve or fewer

characters. 3ytes not required to store characters or disk

location pointers are filled with binary zeros. A byte

containing binary zeros would look like 00000000 while a

byte containing the character zero would look like 00110000,

the ASCII "zero" character code.

15

2 • Oat

a

Elements.

The primary information content of a DAT file is

included in the data element section of the file. This

section contains one or more data elements, up to a maximum

of 96 . A data element should be included for each possible

data label in a report. Each data element occupies at least

three 128 byte records; one for the basic report

information, one for error analysis information and one for

prompting information.

a. Easic Report Information.

The basic report information section of a data

element is also referred to as the "code area" or "code

information area". The initial entry in the coded area is

the data label bracketed by the delimiters "%" or "!". The

percentage symbol indicates that the data label is not to be

included in the final report while the exclamation symbol

indicates inclusion. The remainder of the coded area

contains the actual information to be included in the

report. If this information requires more space than

initially provided, additional 123 byte records are

allocated. The coded area may be subdivided into subfields

by using virgules or braces to facilitate error analysis.

This function is described more completely in Appendix C.

The end of the code area is represented by the end of code

delimite r (|
) .

16

b. Error Analysis Information.

The next logically sequential area of the DAT

file is occupied by records used for error analysis. This

arsa contains error analysis commands separated by virgules

or braces to correspond to the subfields of the coded area.

The error analysis area is terminated by the end of error

delimiter (->) .

c. Prompting Information.

The third area of a data element is used to

store prompting information. Each data element should have

associated with it a prompting question which indicates to

the ultimate user the information required by that data

element. Prompting questions should explicitly ask for the

sought information and may contain exemplary or amplifying

information as well. The prompting information contains as

many records as required and is terminated by the end of

prcmpt character (4) .

The sequence of coded area, error analysis

information and prompting information is repeated for each

data element included in the RECORD MAP.

3 . End Of File.

After all information has been entered regarding the

specific data elements of the report, the end of file

character, a back slash, is used to denote the end of the

report. When encountered, this symbol will cause any report

information resident in memory to be written to the disk and

17

will close the DAT file. The DAT file may be reopened and
modified using the ROS program.

The basic repeating structure of the DAT file allows
initial creation of a report through the CREATE program and

subsequent definition and modification of the report by the

ROS program. The DAT file is composed of logically

sequential 128 byte records used to store the information.

Only 90 bytes of each of these records are used to store the

actual information; this space is adequate to store a single

line of text. Most of the remaining bytes are unused except

for the bytes used to point to the storage location cf the

next logically sequential record. These pointers allow

insertion of data in the middle of an existing file.

C. IMPLEMENTATION.

Sines both the CREATE program and the ROS program are

based on the data structure of the DAT file, both contain

similar data handling structures. The structures in the ROS

program are more powerful since it is intended that the ROS

program be used to modify the DAT files. In a typical

application, the CREATE program would be used to build an

initial "draft" or DAT file. This initial file is composed

of sequential records analagous to the sequential lines of a

rough draft. Limited editing facilities are provided in the

CREATE program since most changes during the CREATE

execution would correct incut errors. The ROS program

provides more elaborate editing facilities to allow

insertion and deletion of text, rapid accessing of specific

records within the DAT file as well as modifying the current

line. This capability requires the use of the record

pointer system incorporated at the end of each record.

18

Amplification of the functioning of each subroutine in

SOS and CHEATS is provided in the next chapter. This

information is provided to assist in further program

development and maintenance. The three appendices

ennumerate the use of ROS and CREATE and of the line editor

incorporated in each.

19

IV. JO FTEASE DESIGN FEATURES

The Report Originating System is composed of two

independent software programs. The principal program, ROS,

is the nucleus of the system and generates the desired

report using previously stored data as a basis of

information. The CREATE program produces the data base for

a specific report from which the ROS program may generate

reports.

The CREATE program is a general software tool used to

produce a data base named a DAT file. Each DAT file is

specifically tailored to the requirements of the ultimate

user and to the format of a specific report. Therefore,

each user will have several DAT files available on

individual diskettes to meet his varying reporting needs. A

specific DAT file is composed by inputting information

concerning base-line information for the report, error

analysis criteria and prompting questions. The details of

the CREATE program concepts and operation are explained in

detail in Section B and in Appendix C.

The ROS program uses the information contained within

the individual DAT files as input. The ROS program contains

the necessary data handling structures to allow the system

user to make appropriate modifications to this initial data

so that it will reflect the currently reported status. The

ROS program will output a new file named a Message (MSG)

file as well as modifying the composition of data within the

DAT file. This MSG file contains all the required report

information in a format suitable for transmission to the

20

requesting authority. ROS program details may be found in

the next section and in Appendix A.

The software as described in the following pages

significantly reflects the microcomputer system in which

these programs were implemented. Again, the specific

microcomputer system used was chosen primarily because it

was available. Many suitable new commercial microcomputer

systems have appeared since the inception of this project.

The following discussion of program structure is intended to

assist any further development or maintenance of the Report

Originating System on the Intel lec-8 system or the

development of a comparable software package on another

system.

A. ROS PBOGEAM ORGANIZATION.

The BOS program is the instrument used by report

drafters to originate reports required by higher authority.

A copy of the program appears at the end of this thesis.

The Report Originating System is written in the PL/M high

level programming language, compiled on an IBM-360/67

computer and executed on an Intellec-8 (8080 based)

microcomputer using the CP/M monitor control program. The

program is divided into five modules: Operating System

Interface; Initialization; Editing; Error Analysis and

Output. Each of these modules will be discussed in turn.

1 • Oper atin g Sv.st em Interface Module.

The Operating System Interface Module provides the

interface between the ROS program and the CP/M monitor

control program. Principally, this module provides the

21

Input/Output (I/O) operations necessary for the program.

The module consists of 18 subroutines most of which

crypticly pass a "function number" and an "information

address" frorr the ROS program to the CP/M via a system entry

point named "ENTRY". Varying the function number provides

various capabilities such as reading from and writing to

peripheral devices, opening, closing and searching files and

transferring . data between memory and diskette storage.

Altogether there are 23 distinct I/O operations that may be

performed by the CP/M system. These are covered in detail

in the CP/M INTERFACE GUIDE [2]. The subroutines comprising

the Operating System Interface Module fall into three

functional groups discussed below.

a. Console Input/Output.

(1) CRTIN - Defines the input port number for

the console and extracts ASCII coded information from that

port representing characters displayed on the console.

(2) RSADC - Calls for another character to be

read from the console and then translates lower case ASCII

characters to upper case ASCII for internal representation.

(3) PRINTCHAR - Transmits ASCII character from

memory location, through the computer output port, to the

console for display.

(**) PRINTCKARI - Determines when a control

character is encountered and transmits the character from

memory to the console. Character will be preceeded by an

up-arrow

.

(5) CRL? - Displays a carriage return and a

line feed (i.e. goes to the beginning of the next line).

22

(6) PRINT - Displays the string of ASCII

characters that commences at the given location in memory
and is terminated with a "$".

b. Diskette Input/Output.

("•) IISKREAD - Reads the next 128 byte record

frcm the file that is being accessed. The contents are

placed in the 128 byte area of memory as specified by the

Direct Memory Access (DMA) pointer.

(2) DISK SHITS - Writes the 128 bytes following

the address specified to the next available record in the

file being accessed.

(3) OPEN - Opens the file specified by the

address passed to this procedure. If the file is not

located in the directory, a diagnostic message is returned.

Opening the file allows further transactions with that file

to occur.

CO CLOSE - Closes the file specified by the

address passed to this procedure. If the file is not

located in the directory, a diagnostic message is returned.

Closing the file updates the directory entry for the file

and terminates further processing of that file.

(5) SEARCH - Searches the directory to match

the <filenarce> <filetype> contained in the File Control

Block (FCB) passed to this procedure. If no match is made,

a diagnostic message is returned; otherwise the address of

the first occurrence of <filename> <filetype> is returned.

23

(6) MAO " Creates a directory entry for

<filename> <filetype> as represented by the FC3 passed to

this procedure. The file created is initialized to empty.

(7) MOVE - Moves the number of bytes

(characters) from the source location to the destination

location. Source address, destination address and number of

bytes (length) are passed as parameters.

c. Dtility Functions.

(1) M0N_1 - A monitor procedure which passes the

function number and the address of the information to the

CP/M. This procedure does not return a value. It is called

by many of the previously mentioned subroutines.

(2) M0N2 - A monitor procedure providing the

same function as M0N1 except that a return value is

expected

.

(3) H0N3 - A monitor procedure providing the

same function as M0N2 except that the returned value is an

"address" type rather than a "byte" type.

(4) SETS DM A - Sets the Direct Memory Access

(DMA) address to the address of the 128 byte DMA buffer

specified. Subsequent disk I/O operations will take place

starting with the memory location specified.

(5) LIOJiJIAD - Lifts the read/write head from

the diskette drive currently in use.

(6) 2RR0R - This procedure is called from other

procedures and prints diagnostic messages to the operator.

2U

2 • Initialization Module^

The initialization module consists of 14 subprograms
which open the appropriate DAT file, create a MSG file in

which t-o store the output and create working maps to include

those data elements selected for modification and those data

elements which are to appear in the resultant MSG file.

These workirg maps are derived from the responses to data

element queries initiated by this module. The module

sutroutines may be classified in three functional groups.

a. File Operations.

(1) MAKE3MSG$FILE - This procedure creates a

MSG file control block (FC3) and creates and opens a MSG

file. First the procedure inserts the <filetype>, "MSG"

into the MSG file control block. Next the "extent" and the

"next record" fields of the DAT FC3 are zeroed. A search of

the directory is made to determine if a MSG file already

exists; if so, an error message is returned. Next, a

directory entry for <f ilename>. MSG is made and finally, the

file is opened.

(2) INIT - This procedure opens the DAT file

and MSG file. First <filename> is moved into the FC3 and

then the procedure calls MAKEMSGFILE to create and open a

MSG file. Next, the <filetype>, "DAT", is moved to the DAT

?CE and the "extent" and "next record" fields of this FCB

are zeroed. The file <f ilename>. DAT is opened and then

checked to see if the file was successfully opened.

25

(3) INC$RM - Increments the record map pointer.

(4) INCSWM - Increments the working map

pointer.

(5) ESIMMilAIE - This procedure displays the

data element labels associated with a DAT file in order that

selection of the data elements may be accomplished. This

procedure walks sequentially through the record map area,

strips the data label delimiters (% or !) from the data

label and displays them. The process is repeated until

either the last data label has been displayed or a flag has

been set which ceases the display.

(6) SAVESEXHNNH - This procedure calculates

the location of a data element and also calculates the

number of records associated with the data element. The

location is comprised of its "extent" and "record number".

The extent is the first byte in the directory entry, the

record number is the next byte and the length is calculated

by computing the difference between the record number of the

next data element and of the present data element.

(
7

)
PEINT £PACE - Prints blanks equal to the

length of the data label.

(8) CHKSRESPONSE - Goes sequentially through

all data elements checking for responses to queries. If a

"Y" response is given, SAVEEXRN$NR is called, if " N" is

given the next data element is processed and if "S" is given

in response, the interrogation process is stopped for the

remaining data labels and the program continues execution.

(9) SEL$WE - This procedure locates the

WORKSMAP area in memory, defines the number of data labels

26

to be printed on one CRT line, prints out the query, "SELECT
DATA ELEMENTS TO WORK WITH", displays data labels and checks

the responses. If the data elements to be modified have

been selected, the procedure prints out the query, "SELECT

DATA ELEMENTS TO BE INCLUDED IN THE REPORT". The selection

process is repeated with a continuation of the workinq map

area being constructed.

(10) RE^SELECT - This procedure sets the

logical flags which allow SEL$WE to create the working map

area for the data elements to be included in the report.

(11) SETSMEM - The limits of available memory

are defined and the workinq map area is set up. The next

record number to read is entered in the DAT FCB, the number

of records occupied is determined and a counter for the

number of records read is set to zero.

(12) OPENSEXT - Sets the "extent" field in the

DAT FC3 and if the DAT FC3 is not found in the directory, a

diagnostic error messaqe is returned.

(13) READSDSRSC - Checks to see if the system

is in the proper extent and if not, opens the proper extent,

finds the appropriate record to start with. Reads in the

128 byte record and checks to see if it was read in

properly. The number of records read counter is incremented

and the data area pointer is moved to the beqinninq of the

next record. The next record to be read is set to the

beqinning of the TBUFF area which contains the names of the

files loaded into the transient proqram area of memory.

(14) R EADSD AT - Checks to see if the available

memory has been consumed and if the number of records read

is equal to the number of records in that data element. If

so, the readinq of records is completed. If a new data

27

element is being accessed, the location and number of

records information is reset. If all records have not been

read, the next record is read. Finally, the extent and

record number fields of the DAT FCB are set to the current

values.

(15) READ$X0R2 - The current location of the

working map is updated and the extent and the next record

fields of the DAT FCB are reset. The pointer to the data

area currently used is saved and the subsequent record is

read. The location of -che working map is saved and the next

location of data is updated. This procedure continues to

read records of multiple record data elements.

(16) AL LOC ATE - Allocates an empty record from

the freelis-c area of the diskette to allow insertion of a

line in an existing file. Bookkeeping operations of

maintaining freelist pointers and of identifying the

appropriate extent and record for reading and writing

operations are accomplished.

O 7
) Z^S5 - Releases a record after an entire

line has been deleted from an existing file. The released

record is placed on tne front of the freelist queue.

(18) DIG3T0$NUM - Converts a string of ASCII

digits to a numerical value so that they may be used in

arithmetic operations.

(19) long - Determines the number of characters

in a specific data label.

28

3 • Editing Module_.

The Editing Module provides the capability to modify

the information contained within the DAT file. There are

two modes of operation for this module, the prompted mode

and the non-prompted mode. The prompted mode performs the

editing operations without the user being directly aware

that they are being accomplished; the non-prompted mode

requires that the user explicitly invoke each of the desired

editing commands. The Editing Module is composed of 27

subroutines which manipulate characters in the old and new

buffer areas and implements updating the information stored

in "Che DAT file. The subroutines are divided into two

functional groups; those associated with the line editing

functions and those associated with updating the information

contained in the DAT file. The use of the line editor in

manipulating information between the old buffer and the new

buffer is discussed in Appendix B.

a. Line-Editing.

{1) EA CKSU P - This procedure affects the new

line buffer. The new buffer pointer is backspaced one space

and a blank is printed followed by a backspace to allow

insertion of a new character. If the line is backspaced to

the beginning position, a bell is sounded.

(2) MOVSTO OLD - The contents of the new

buffer area are moved to the old buffer area and the old and

new buffer pointers are reset to zero.

(3) CLDTONEW - The next character in old

buffer is moved into the new buffer and inserted after the

29

current position of the new buffer pointer. Both old and

new buffer pointers are incremented.

(4) SCHOSCN - Moves the next character from the

old buffer to the next position in the new buffer. The

character is displayed on the console CRT. Both the new and

old buffer pointers are incremented.

(5) COPYSONE - If the end of the old buffer has

not been reached, then the procedure ECHO$ON is called.

Otherwise, a bell is sounded.

(6) P$HOVE$ON - .loves the contents of the old

buffer tc the new buffer up to the character indicated in

the old buffer.

(7) ENTER - This procedure displays either the

"<" or ">" character and resets the flag "INSERT".

(8) PRIN1$Q LD - Displays the contents of the

old buffer, including control characters, followed by a

carriage return and a line feed.

(9) EElUlMiX " Displays the contents of the

new buffer including control characters.

(10) PRIN1$B0TH - Displays the contents of the

old buffer followed by the contents of the new buffer.

(11) COPY$ P.M$0 $N - Copies the remaining

characters frcm the old buffer to the new buffer. Displays

the "+" character when completed.

(12) BSj>0$N - Backspaces both the old and new

buffer pointers by one character position. If either

pointer is in the initial buffer position then a bell rings.

30

(13) COPY$ON - Searches the old buffer from the

current position of the old buffer pointer until the first

occurrence of the character passed to this procedure. If no

match occurs, a bell is sounded. Otherwise, the characters

from the current position of the old buffer pointer up to

the identified character are copied to the new buffer and

displayed on the screen.

(14) DELETE - This procedure searches the old

buffer for the first occurrence of the identified character.

If this character is not found, a bell is sounded.

Otherwise, all characters are deleted up until the first

occurrence of the specified character and a "%" character is

displayed in the position of each deleted character. The

old buffer is finally compressed to remove the empty spaces

resulting frcm the deletions.

(15) DELSN - Resets the old buffer pointer and

the new buffer pointer to zero and displays the end of file

character (back slant) on the console CRT.

(16) DISPLAY$ RM$OSN - This procedure will print

blanks up until the current position of the old buffer

pointer and then will display the remaining characters in

the old buffer. The cursor moves to the beginning of the

next line on the CRT and the contents of the new buffer are

displayed.

(17) DELIO - The characters from the current

position of the old buffer pointer up to the end of the old

buffer are deleted. Percentage signs are displayed in place

of the deleted characters. If there are no characters in

the old buffer, a bell is sounded.

31

(18) E SCAP E - This procedure turns off any

special meaning of the character to follow and enters the

character into the new buffer. This procedure may be us^d

to override the action of extended line editor commands.

(19) PRINT1IAB - Enters the special tab

character as the next character in the new buffer and

displays the tab character on the console. If the tabulation

will exceed the allowed size of the new buffer, a bell is

sounded.

(20) BEGIN3WRD - This procedure backspaces to

the first character of a word.

b. Updating Procedures.

C) IHSIM - Increments the pointer in the

current DAT file that points to the character accessed.

(2) INCSCA - Increments the pointer to the

record containing the information base in the DAT file.

(3) INC SB R - Increments the pointer to the

record containing the error analysis information in the DAT

file.

(4) MOVEDLNEW - Moves the data label frcm the

old buffer to the new buffer. If the fully prompted mode is

in effect, the characters are merely moved to the new

buffer; if the non-prompted mode is in use, the characters

are moved to the new buffer and are also displayed on the

console.

32

(5) MOVE$CODE$OLD - The data base information

is moved from the DAT file to the old buffer for editing.

Characters are moved singularly until the end of code

character (|) is encountered. If the non-prompted mode has

been selected, characters are echoed as they are moved.

When all characters have been moved to the old buffer,

BOYEDLHEH is called and the data label is moved to the new

buffer.

(6) SSTSPTF. - This procedure sets pointers to

the beginning of the error analysis section and the

beginning of the prompting question area.

(7) NEXTSDE - This procedure sets up the system

to edit a data element. First HOVE$CODE$OLD is called

followed by INC$DA and SETSPI3.

(8) OPDATESDAT - Updates the information to be

included in the DAT file. Characters are transferred from

the new buffer to a holding area called CODE$A, starting

with the character following the data label up to the end of

the new buffer. The end of code delimiter (|) is inserted

at the end of the transferred data. This routine

repetitively calls the subroutine INS$INC which transfers

the data one character at a time.

4 • Error Module.

The error module checks for possible error

conditions and performs the error analysis operations en the

edited data. Error commands contained in the error command

records of the DAT file are interpreted and determine the

comparative procedures to be executed. Procedures which

accomplish the desired error checking process are

33

incorporated within this module. Utility functions, such as

typing individual characters as alphabetic or numeric, are

included and error warning diagnostic messages for display

to the operator are available. The Error Module also

contains the procedure LEDIT which provides the line editing

capability. The module is divided into the Interpretation,

Error Checking, Utility and Editing groups.

a. Utility Group.

(1) HE$ENTER - The contents of the new buffer

are moved to the old buffer and the updated contents of the

old buffer are displayed followed by the contents of the new

buffer. This confirms that the updating process has been

accomplished without error.

(2) WARNING - Displays various warning messages

when an erroneous condition occurs.

(3) UCSNE - Increments a character pointer in

the new buffer.

(4) SPPDCOM - Used to identify the

punctuation characters, space, period and comma.

(5) ALPHA - Defines alphabetic characters to be

letters A - Z, the characters CTRL A - CTRL Z or a period,

space or coima.

(6) NUMERIC - Defines numeric characters as the

digits 0-9, the minus sign (-) or space, period or comma.

34

(7) NSX?$SF - Walks through the DAT file to get

the next subfield of a data element. Pointers to the

information area and data analysis area are incremented
appropriately.

b. Interpretation Group.

(1) DO$CMD - Checks for a null error command

which returns control to the calling statement. Otherwise,

error commands are identified by the first letter of the

command and the appropriate error checking procedure is

called.

c. Error Checking Group.

C) CHKSALPHA - Checks the contents of the new

buffer up to the next error analysis delimiter (virgule or

brace) for alphabetic characters. A warning message is

returned if ether characters are encountered.

(2) CHKSNUMERIC - Checks the contents of the

new buffer up to the next delimiter for numeric characters.

A warning message is displayed on an exception basis.

(3) CHKSPSRCSNT - Compares the revised

numerical contents of a subfield against the previous

contents. If the difference exceeds a specified amount, a

warning message is displayed.

(U) CHK$ SEQUENCE - Checks if the contents of

the new subfield are sequential to the contents of the old

subfield. May be used to check report serial numbers.

35

(5) CHK$L2NGTH - Checks if the contents of the
new subfield occupy the same number of character positions
as the old subfield.

(6) CHKjJERR - Walks through the error analysis
record of the DAT file one subfield at a time until the end

of error character (->) is encountered. Individual error

commands are interpreted through calls on DO$CMD. The

pointer in the error analysis record is incremented.

(7) ASK$£UESTION - Displays the prompting

guestion applicable to the subfield under consideration.

(8) CKKSANSWER - Checks the response given

under the prompted mode for compliance with error commands.

Performs the same function as CHKSERR.

(9) ENDSIP - Checks if the contents of the new

buffer will overwrite the error analysis section of the DAT

file, places a virgule after the response to the prompted

guestior. and accomplishes error analysis for that response.

d. Editing.

(1) LEDIT - Acts as an input interpreter while

in the edit mode. Input strings are first checked for basic

line editor commands, then for extended line editor

commands. The appropriate editing routines are called in

these cases. If a rubout character is entered, the new

buffer pointer is backspaced. If none of the above special

characters are encountered, input characters are echoed

until the new buffer is filled. When this occurs, a bell is

sounded.

36

5 • Qut£ut Module^

This module performs the actual updating of the

edited information in the DAT file and also incorporates

this information into the MSG file. Included are routines

to perform the necessary file operations and an EDIT

procedure which controls the editing process.

a. VSG File Operations.

(1) INC$H_S3 - Creates a buffer to be used to

transfer data between the absolute addresses 80 - 100

hexadecimal. The diskette directory is checked to see if a

MSG file' exists and returns a warning if it does. A pointer

in this buffer is incremented with each call.

(2) MOVS$MSG - Copies the edited information,

character by character, into the DAT file. A check is made

to see if the data label is to be included in the report.

Characters are moved from the DAT file to the MSG file until

an end of code delimiter (|) is encountered. The MSG file

line is ended with a carriage return and a line feed.

(3) WRITE3MSG - Writes the record currently

accessed zo the MSG file.

(4)
CLOSESFILES - Closes the MSG file and saves

the appropriate extent and record information.

37

b. EAT File and Utility Operations.

(1) 3LANK$3UF - Blanks out the contents of the

old and new buffers.

(2) EASE$NEXT$DE - Brings in the information
concerning the next selected data element into the transfer

buffer. Working map pointers are incremented to indicate

the next data element.

(3) UPDATESDATS FILE - Coordinates the actual

updating of the DAT file by calling MOVE$MSG. DAT file

extent and record entries in the DAT FCB are updated. This

process is continued for all data elements.

c. Editing Coordination.

H) EDIT - Coordinates the editing process for

the prompted and non-prompted modes. If in the prompted

mode, prompting questions are displayed and then LEDIT is

called to handle the response and the response is checked.

This sequence continues for all subfields for that data

element. In the non-prompted mode, LEDIT is called to

process the desired changes and the entered data undergoes

error analysis. If a warning has resulted from error

analysis, the same data element is reprocessed. Otherwise,

the DAT file is updated, the old and new buffers are blanked

out and the next data element is processed. This pattern is

continued until the end of file character (back slant) is

encountered and then the MSG file is created and closed.

38

B. CREATE PROGRAM ORGANIZATION.

The CREATE program is used by commands requiring reports

from their subordinates to develop a DAT file with its data

base of reporting information. The CREATE program is also

available to the general user to provide a local capability

of generating DAT files for unique reports or DAT files for

interim use. In order to assure report uniformity and

content reliability, it is imperative that standardized DAT

files be produced and distributed by the highest possible

level in the chain of command. A copy of the CREATE program

is included at the end of this thesis. The program was

written in the PL/M programming language, compiled on an

IBM-360/67 computer and designed for execution on an

Intellec-8 microcomputer using the CP/M operating system.

The program is divided into three main modules:

Initialization-Interface; Input-Editing and Finish. Many of

the subroutines discussed in the following sections are also

included in the ROS program software.

1 • Initialization-Interface Module.

The Initialization-Interface Module includes

subprograms to provide an interface between the CREATE

program data structures and the CP/M control monitor

program. The module opens a DAT file if one has not already

been opened under that particular <filename> on the diskette

in use.

39

a. Console Input/Output.

(1) CRTIN - Defines the input port number for

the console and extracts ASCII coded information from that

pert representing characters displayed on the console.

(2) READC - Calls for another character to be

read from the console and then translates lower case ASCII

characters tc upper case ASCII for internal representation.

(3) PHIN1CHAR - Transmits ASCII character from

memory location, through the computer output port, to the

console for display.

(4) PRINTCH ARI - Determines when a control

character is encountered and transmits the character from

memory to the console. Character will be preceeded by an

up-arrow

.

(5) C_RL_F - Displays a carriage return and a

line feed (i.e. goes to the beginning of the next line).

(6) PRI NT - Displays the string of ASCII

characters that commences at the given location in memory

and is terminated with a "$".

b. Diskette Input/Output.

(1) MOV 5 - Moves the number of bytes

(characters) from the source location to the destination

location. Source address, destination address and number of

bytes (length) are passed as parameters.

40

(2) glLL - Used to fill the destination record
with a particular character passed to this routine. FILL
may be used to pad out a record with blanks or zeros.

(3) MONJ. - A monitor procedure which passes the

function number and the address of the information to the

CP/M. This procedure does not return a value. It is called

by many of the previously mentioned subroutines.

(4) IJ0N2 - A monitor procedure providing the

same function as M0N1 except that a return value is

expected

.

(5) M0N3 - A monitor procedure providing the

same function as M0N2 except that the returned value is an

"address" type rather than a "byte" type.

(6) EFROR - This procedure is called from other

procedures and prints diagnostic messages to the operator.

(7) DIGSTOSNUM - Converts a string of ASCII

digits to a numerical value so that they may be used in

numeric operations.

2 • Input^Edit inq ?lo d

u

1 e .

The Input- Editing Module accepts entered information

and builds the DAT file opened by the

Initialization-Interface Module. The contents of a DAT file

are a repetitive sequence of data base or "code

inf orma ticn" , "error commands" and "prompt information".

These three categories of information are required for each

data element included in the report. Although null or empty

categories are allowed (but not recommended) , at least one

41

128 byte record is allocated for each. If the input

information exceeds the initial 128 byte allocation,
additional seguential records are provided. Since the order

of these three types of information is the keystone of the

Report Originating System software, it is imperative that

data entered during the creation of a DAT file conform to

this sequence.

a. Input.

(1) PROMPT - Displays to the operator a

prompting message to input coded information, error commands

or prompt information.

(2) INC$RM - Increments the record map pointer.

(3) GOSNEXTSREC - Increments the storage

pointer to the next even record boundary and increments the

counter for the number of records utilized. For every 128

records used, the extent counter is incremented and the

record number counter is reset to zero. The number of

remaining records is decremented.

(4) MQVSSDL - Moves the data label into the

record map area and moves the extent and record numbers into

the two bytes following the data label.

b. Editing.

(1) BACKSUP - This procedure affects the new

line buffer. The new buffer pointer is backspaced one space

and a blank is printed followed by a backspace to allow

insertion of a new character. If the line is backspaced to

the beginning position, a bell is sounded.

42

(2) MOVESTOSOLD - The contents of the new

buffer area are moved to the old buffer area and the old and

new buffer pointers are reset to zero.

(3) ECHOSON - Moves the next character from the

old buffer tc the next position in the new buffer. The

character is displayed on the console CRT. Both the new and

old buffer pointers are incremented.

(4) COPY$ONE - If the end of the old buffer has

not been reached, then the procedure ECHO$ON is called.

Otherwise, a bell is sounded.

(5) P$MOVE$ON - Moves the contents of the old

buffer tc the new buffer up to the character indicated in

the old buffer.

(6) ENTER - This procedure displays either the

••<" or ">" character and resets the flag "INSERT".

(7) PRINTSOLD - Displays the contents of the

eld buffer, including control characters, followed by a

carriage return and a line feed.

(S) PRINTSNEW - Displays the contents of the

new buffer including control characters.

(9) PRINT$BOTH - Displays the contents of the

old buffer followed by the contents of the new buffer.

(10) COPY3RM50SN - Copies the remaining

characters from the old buffer to the new buffer. Displays

the "+" character when completed.

43

(11) BSSOSN - Backspaces both the old and new

buffer pointers by one character position. If either

pointer is in the initial buffer position then a bell is

sounded.

(12) COPYSON - Searches the old buffer from the

current position of the old buffer pointer until the first

occurrence of the character passed to this procedure. If no

match occurs, a bell is sounded. Otherwise, the characters

from the current position of the old buffer pointer until

the identified character are copied to old buffer pointer up

to the identified character are copied to the new buffer and

displayed on the screen.

(13) DELETE - This procedure searches the old

buffer for the first occurrence of the identified character.

If this character is not found, a bell is sounded.

Otherwise, all characters are deleted up until the first

occurrence of the specified character and a ••%" character is

displayed in the position of each deleted character. The

old buffer is finally compressed to remove the empty spaces

resulting frcm the deletions.

(14) DEL$N - Resets the eld buffer pointer and

the new buffer pointer to zero and displays the end of file

character (back slant) on the console CRT.

(15) DISPLAYRMQ$N - This procedure will print

blanks up until the current position of the old buffer

pointer and then will display the remaining characters in

the old buffer. The cursor moves to the beginning of the

next line on the CRT and the contents of the new buffer are

displayed.

44

(16) DEL$0 - The characters from the current

position of the old buffer pointer up to the end of the old

buffer are deleted. Percentage signs are displayed in place

of the deleted characters. If there are no characters in

the old buffer, a bell is sounded.

(17) ESCAPE - This procedure turns off any

special meaning of the character to follow and enters the

character into the new buffer. This procedure may be used

to override the action of extended line editor commands.

(18) PRINTS TAB - Enters the special tab

character as the next character in the new buffer and

displays the tab character on the console. If the tabulation

will exceed the allowed size of the new buffer, a bell is

sounded.

(19) LEDIl - Acts as an input interpreter while

in the edit mode. Input strings are first checked for basic

line editor commands, then for extended line editor

commands. The appropriate editing routines are called in

these cases. If a rubout character is entered, the new

buffer pointer is backspaced. If none of the above special

characters aie encountered, input characters are echoed

until the new buffer is filled. When this occurs, a bell is

sounded.

(20) CONTSFILL - Stores the contents of the old

buffer into the appropriate record in memory and moves the

display cursor to the beginning of the next line.

45

3 • Finish Module^

The Finish Module performs the necessary storing,

writing and other file handling operations required when the

data for a particular information category has been entered.

If available memory has been consumed, the memory image of

the edited data is written to the diskette and memory

pointers are reset to allow further input. Upon

encountering an end of code, end of error command or end of

prcmpt delimiter, the contents of the old buffer are

transferred to the appropriate record in memory. When an

end of file delimiter is encountered, the necessary storage

and file closing operations are accomplished.

a. Data Transfer.

P) iL£ITE - Writes all records in memory our to

the diskette, makes the appropriate directory entry, checks

if the records were properly written to the diskette, resets

the counter for the number of remaining records and resets

the storage pointer to the appropriate memory address.

(2) IJiCSSTORE - Increments the storage pointer

and writes records in memory to the diskette if a memory

overflow is possible.

(3) M0VES3T0RE - Stores input information into

the appropriate record in memory.

46

b. End of Segment.

(1) FILL$CODE$ZERO - Fills the remainder of the

record currertly in use with binary zeros.

(2) END5DL - When an end of code delimiter (|)

is encountered in input r the next available record is

allocated by a call to GOSNEXTSREC, the directory entry is

made, the input information is stored in the record, the

storage pointer is incremented and the end of code delimiter

is appended to the input information. The remainder of the

record is filled with binary zeros. The prompt message to

input error commands is displayed.

(3) END3REC - When an end of prompt delimiter

(4) is encountered, the input prompt information is stored

in the record in use, the storage pointer is incremented,

the end of prompt character is written into the record and

the prompt message for additional code information is

displayed

.

(4) ENDS ERR - When an end of error command

delimiter (^) is encountered, the error commands are stored

in the record allocated, the storage pointer is incremented,

the end of error command character is written into the

record and the prompt message for prompting information is

displayed.

(-) ENDSF - Called when the end of file

character (back slant) is entered. Any input information is

stored in the record in use followed by the end of file

delimiter. The storage pointer is incremented, the records

in memory are written to the diskette, the record map

pointer is incremented and the end of code character (j.) is

U7

placed following the last entry in the record map. The

extent and record number

stored and the DAT file is closed.

48

V. RECOMMENDATIONS

The goal cf this thesis was to present a method by which

computer assistance in report generation could be achieved.

The project development was implemented using hardware and

software assets at the Naval Postgraduate School. While

that equipment was suitable, small computers supporting

commercially-available text processing systems are now

available. It is envisioned that, virtually any general

purpose microcomputer could form the nucleus for the

implementation of the Report Originating System in the

fleet. This chapter discusses some of the known limitations

of the Intellec-8 oased Report Originating System.

A. SINGLE LINE INSERTIONS

The editing facilities of the ROS program require

separate insertion and filing of each additional line of

data. The line editor would be more convenient for

preparation cf lengthy textual material such as instructions

and directives if it provided the capability to insert

multiple lines of text prior to the filing operation. Such

a feature would prove particularly beneficial in the

revision cf lengthy textual material.

49

3. OPERATING SYSTEM AND PROGRAMMING LANGUAGE.

When this project was started, the PL/M programming

language and the CP/M operating system were one of the more

powerful and higher level combinations available for the

8080 family of microcomputers. Since then, 8080 based

systems have become more widely used for general purpose

computing and have influenced the development of more

advanced software support for this architecture. One aspect

in the evolution of these microcomputers has been the

implementation of self hosted compilers for a variety of

high level programming languages. A similar evolutionary

process has occurred in the area of microcomputer operating

systems. State of the art commercial software could enhance

the Report Originating System in two ways. The use of a

higher level language (compared to PL/M) could broaden the

capabilities of the system by improving file handling and

data manipulation. Additionally, implementation of a more

popular language would simplify software maintenance efforts

because it would not be necessary to train system

development programmers in a new language. One candidate

for a programming language would be the Extended Basic

language. This language provides a good balance of

programming potential and ease of use. Whatever choice is

made, it is recommended that the compiler be hosted in the

microcomputer to facilitate development and maintenance.

C. EXPANSION OF THE CREATE PROGRAM EDITOR.

The CREATE program currently does not provide the data

structures capable of supporting the editing facilities of

50

the ROS program. As a result, the basic line editor

commands in the CPEATE program are limited. Incorporation

of expanded data structures in CREATE could support a larger

set of basic line editor commands equivalent to those found

in the ROS program. The addition of such structures would

require major revision of the CREATE program; it may be

determined that such revision is unfeasible.

D. IMPLEMENTATION IN ANOTHER MICROCOMPUTER ARCHITECTURE

Although the 8080 family of microcomputers enjoys great

popularity in the commercial world, this architecture is not

common in the military. Implementation of the Report

Originating System in another microcomputer architecture may

enhance the system's appeal in the Navy. The system could

be recoded to be implemented in existing military computers

such as the AN/UYK-7, AN/UYK-14 and AN/UYK-20. New computer

architectures offered by Digital Equipment Corporation

(LSI-11) and by Texas Instruments (TI-9900) should be

investigated as possible candidates. Another area of

available hardware that should be investigated is the

blossoming arena of word processing equipment [10]. This

has become a very dynamic and competitive area in data

processing development with new products being announced

constantly. One of these off-the-shelf systems could

accommodate the Report Originating System. One projection

is that by 1986 word processing system hardware will be

available for $150, plus the cost of a typewriter [1].

51

E. ERROR ANALYSIS EXPANSION

Additional error checking capabilities could be easily

developed and incorporated in the system. The ability to

check special number and character sequences such as

Date-Time Groups, Social Security Account Numbers and

National Stock Numbers would open the areas of application

of the system. For example, Date-Time Groups could be

checked to see if the date is compatible with the month and

that the time is a valid 24-hour clock time. Social Security

Account Numbers could be checked for the appropriate number

of digits irrespective of whether hyphens are incorporated

in the forirat. A pattern for valid National Stock Numbers

could assist in error detection in supply documents. The

error analysis capability could be broadened to allow the

user of the CREATE program to define his own error analysis

commands for special applications. Statistical information

concerning the most prevalent types of errors in formatted

reports should be gathered as a guide to future development

of standard error analysis.

F. TESTING AND EEEUGGING

Before the Report Originating System could be

implemented outside a laboratory environment, extensive

testing and debugging efforts must be accomplished. It is

inevitable that programming inconsistencies exist hidden in

ROS and CREATE. These need to be detected by an extensive

testing program.

52

VI. CONCLUSIONS

Although this study has focused on a single application

of computer assistance to the shipboard manager, many

management areas besides report generation could benefit

from data processing assistance. In the area of training, a

general purpose microcomputer system could be used to

uniformly administer training courses and to automate the

maintenance of individual training records. Such a system

could also enhance record keeping functions in personnel

administration and supply accounting. Computation of

navigational equations to determine ship's position could be

performed quickly and accurately by a general purpose

computer. All of these potential applications point to the

desirability for a non-tactical computer system aboard naval

vessels.

There has been a trend in the military to automate

report handling at the higher levels of command. Format

free reports are being replaced by highly formatted, machine

processable reports. To be useful, these reports must be

checked for inconsistencies in content and form before being

processed by the recipient. The optimal time for such error

checking is before the report is released by the originator.

The Report Originating System provides the framework that

can reduce errors during report generation by incorporating

precise prompting questions and can perform error analysis

to identify format irregularities. This latter capability

may be readily expanded to include a variety of analyses.

During the development of the Report Originating System,

an attempt was made to make the system easy to use by an

53

operator with no prior computer experience. Simplicity of

operation is the keystone to such a system's success; the

most ingenious data processing system will fail if it is not

easier to use than the current manual method. Development

of any such system must adhere to this basic tenet.

The rapid technological progress in the area of

microcomputers and the commensurate reduction in

microcomputer hardware system cost has made Navy-wide

implementation of such a system a realizable goal. Since

the preponderance cf " computer hardware in the fleet is

dedicated tc specialized tactical systems and since the

hardware associated with the Reucrt Originating System is

modest in cost, it is desirable that the system, if

implemented, be based on a standard microcomputer

architecture which could support a variety cf other

computational and information management systems. The use

of standard architecture and of an easy to use high level

programming language will facilitate program development and

system software maintenance.

In summary, the Report Originating System advocated by

this thesis demonstrates that computer assistance in

information processing and management is readily supported

by currently available computer systems and can be

implemented at a modest cost. Such a tool could reduce the

administrative burdens of the shipboard manager and free him

to develop his nautical and naval warfare specialty skills.

54

APPENDIX A

ROS PROGRAM

User's Manual

1. Introduction.

The priiiary tool used by the message originator in the

fleer to prepare the required report will be the ROS

program. It is through the ROS program that the user

interfaces with the data stored within the microcomputer

system and the ROS program provides assistance to the user

in the actual generation of the report text. In order to

generate reports, there is little need for the user to

understand the details of the program logic; instead he

merely need know how to use this basic tool to format the

desired report. Therefore, it is the purpose of this manual

to provide the ultimate user with a step by step process by

which he can use the ROS program. This manual describes the

process implemented on the Intellec-8 microcomputer system.

2. Setting Up the System.

To use the ROS program to generate a report, the user

must have available a DAT file for that particular report.

Under normal circumstances, the authority requiring a

specific repert will provide all users with a diskette

containing the necessary DAT file. It is incumbent on this

authority to maintain the distributed DAT files so that

current revisions to reporting procedures will always be

available to the general user.

55

The fleet user will select the appropriate DAT file,

insert the diskette into the drive mechanism and initiate

the system by typing

EOS <filename> <cr>

where <filename> is the name of the report to be generated,

such as FORSTAT or MOVREP, and <cr> denotes a carriage

return.- It is important that the <filename> be exactly the

same as the name given to the DAT file by the originator.

The system will now be ready to execute the report

generation.

3. Execution.

After calling the desired DAT file by means of the

above convention, the appropriate file will be opened, if in

fact it exists on that diskette. If a file by the name of

<filename> dees not exist on that diskette, then an error

message, "DAT FILE NOT PRESENT", will be displayed. This

indicates to the user that either the wrong diskette is in

use or that no DAT file for that specific report name exists

and that the program CREATE should be used to create a DAT

file. Creation of a DAT file is explained in the CREATE

program user's manual, Appendix C.

When the appropriate DAT file has been opened, the

system will respond by displaying the data labels contained

within the file. Data labels are names given to a section

of a report which allow the user to directly access that

section. A data label usually represents an information

element of the required report. For example, in a

NAVFORSTAT, there are many data labels such as COMDR which

represents information concerning the commanding officer and

PERSN which represents information concerning personnel.

The user will respond to the display of the data label by

typing either a "Y" or "N" under the label; "Y" indicates

56

the user wishes to modify the information under that label,

"N" indicates that data label should not be modified. Next

the system will query which data labels are to be included

in the report generated. Again the user will type a "Y" or

"N" under the data label to indicate inclusion or exclusion,

respectively. This feature is added since many formatted

reports require inclusion of only changed data elements for

most reports but require periodic submission of all data

elements to verify the data base.

The next system query will concern whether prompting is

desired. An affirmitive response (Y) by the user will cause

entry into the fully instructional mode where the user is

prompted by questions, the answers to which will be the

required report information. A negative response (N)

bypasses the prompting questions and allows the user to

directly edit the information associated with the data

label. This optional prompting provides instructional

assistance to the unfamiliar user but does not encumber the

experienced user with the slowness of the prompted mode.

After these preparatory questions have been answered,

the ROS program is ready to formulate the desired report.

As a basis, the program uses the information generated and

modified in previous reports; this information is updated by

the operator by using the facilities of either the basic

line editor or the extended line editor, both explained in

the Line Editor User's Manual, Appendix B. Both of the

editors have the capability to perform the necessary data

modification and the final choice of line editors is

fundamentally operator preference.

If the user has opted for the instructional mode of

operation, specific questions concerning each of the fields

for the selected data elements will be written on the

console's CRT screen. It is intended that the command

57

authority requiring the report (the originator of the DAT

file) make individual questions unambiguous so the operator

can respond with the correct answer in the required format.

If form as well as content is critically important for the

report's usefulness, then it must be made perfectly obvious

that the response to a particular question must, for

example, be four digits while the response to another

question may require a two letter input. Careful wording of

the prompting questions will allow the operator to respond

rapidly and accurately.

While the operator enters the information sought, the

ROS program analyses the entered data for errors. This

analysis may be as simple as checking whether the response

was alphabetic or numeric or may be so complex as to check

for the r eascnability of the answer. For example, it may

suffice ro check that the answer is "10" rather than "ten";

on the ether hand, the operator may need to be cautioned

after entering information that shows the number of assigned

personnel increased 500 percent since the last report. If

the error analysis indicates an error has occurred, a

diagnostic message will be displayed to the operator who

will then have the opportunity to make an appropriate

correction. In the case of a question of reasonability, the

second response will be considered authentic. When working

in the prompted mode with the selected data element, most of

the line editor's commands are implied. After receiving a

response from the operator, the system will make the

appropriate modifications to the data after the responses

have been received for all queries concerning that

particular data element. The newly submitted information is

retained in a buffer until a command is given to update the

old data. The operation of this process is explained more

fully in the Line Editor User's Manual. When the

information regarding a selected data element has been

properly updated, the editing process will continue with the

53

next selected data element. The sequence of instructional

questions, response, error analysis and information updating

will continue for each data element selected. After all of

these data elements have been processed, the DAT file will

be updated to reflect the current information and a message

file, which can be referenced by <filename>. MSG, will be

created on the diskette. The message file will contain all

the required information in the appropriate format for

submission to the requesting organization.

The alternate method of ROS program execution is the

non-instructional mode. This mode is intended for the

experienced operator who understands the reporting

requirements and who desires to rapidly edit the report

information. The non- instructional mode is also prefaced by

the system queries about data elements. During the editing

process, the existing information for each data element will

be sequentially displayed and directly edited with the line

editor's facilities. The significant difference between

this mode and the formerly described mode is the omission of

prompting questions. This mode also provides the error

analysis feature provided by the fully prompted mode. If

errors are made, the same diagnostic messages will be

displayed to the operator. It is assumed that the operator

is intimately familiar with the proper format. In the

non-instructicnal mode the editing process is explicit and

not implied. Regardless of which line editor is in use, the

operator must issue the necessary editing commands to modify

and file the desired data and to quit the edit mode. After

changes have been filed for a particular data element, the

next selected element may be accessed by using the "NEXT"

command (SNX) . Again, input information will undergo the

same degree of error analysis. As data element responses

are filed, the next selected data element will be processed.

59

Upon completion of the updating process, the DAT file will

reflect the latest changes of information and a message file

will have been created.

A report origination session is shown below. Both the

fully instructional and non-instructional modes are depicted

to contrast their use. Only the basic line editor's

facilities have been exercised in each case. Explanation of

the action of the tasic line editor's commands may be found

in the Line Editor User's Manual.

4. Sample Report Originating Session.

The following sessions represent the origination of a

typical Naval Force Status (NAVFORSTAT) report. The first

example sho*s the updating process using the instructional

mode of operation. The second example implements the same

changes but uses the non-instructional mode available in the

ROS program. In both examples, the basic line editor

facility is used. Lines displayed by the ROS program are

bracketed by asterisks (*) ; lines input by the operator are

ended with a carriage return (<cr>) . Amplifying comments

are parenthesized and follow the line they pertain to.

A. Instructional Mode.

A> (System is ready)

ROS FORSTAT <cr> (FORSTAT is name of DAT file)

SELECT DATA ELEMENTS YO0" DESIRE TO WORK WITH*

HEADER IBENT TSKCD OPCON ADCON *

Y Y Y N N<cr>

*HQGEO CCMDR ACTIV PERSN NE *

60

N N Y Y<cr>

(The system would continue to display the remainder of the

elements in the system, expecting "Y 11 or M N" responses for

each.

)

SELECT DATA LABELS TO BE INCLUDED IN THE REPORT*

HEADER IDENT TSKCD OPCON ADCON *

Y Y Y N N <cr>

*HCGEO CCMDR ACTIV PERSN NE *

N N Y Y<cr>

(Again the system would continue to display the remaining

elements)

D0 YOU WISH TO BE PROMPTED?

Y <cr>

FM USS NEVERSAIL (First line of HEADER)

SNX<cr> (Go to next line.)

(Refer to Line Editor User's Manual for command meanings)

T0 CINCPACFLT MAKALAPA HI

SNX<cr>

CCMNAVSURFP5C SAN DIEGO CA*

5N2<cr>

CTU 77.7.7

SIN CTU 76.1.2<cr> (Add another addressee)

<CTD 76.1.2>

&FKcr> (Files the insertion)

CTU 76. 1 .2

61

SQD<cr> (Finished with changes to HEADER)

NAVFORSTAT 012 AS OF 012345Z HAY 77*

(First line of IDENT section)

SCB /012/014/<cr>

ERROR: NUMBER 15 NOT IN SEQUENCE. RE-ENTER CHANGE*

5CH /012/013/ <cr> (Increment report number)

<NAVFORSTAT 013 AS OF 012345Z MAY 77>

5CH /012345/100200/<cr> (Now change the DTG)

<NAVFORSTAT 013 AS OF 100200Z MAY 77>

SFI <cr> (File the change)

NAVFORSTAT 013 AS OF 100200Z MAY 77

&QU<cr> (Finished with changes to IDENT)

WHO IS YOUR TASK ORGANIZATION CCMMANDER?

RESPOND IN THE FORM CTA NNN.N.N*

CTU 076.1.2<cr> (TSKCD data has been changed)

WHAT IS YOUR CURRENT EMPLOYMENT?

RESPOND WITH 2 LETTER CODE*

OP<cr> (ACTIV data has been changed)

NAVY ENLISTED PERSONNEL-RESPOND WITH 4 DIGITS

STRUCTURED STRENGTH?*

0240<cr>

AUTHORIZED STRENGTH?*

0221<cr>

ASSIGNED STRENGTH?^

62

0198<cr>

(This is the last of the selected data elements)

A>

(The above changes have been made, a message file has been

created and the system is ready.)

B. Non-instructional Mode.

A> (System is ready)

EOS F0RS7AT <cr> (FORSTAT is name of DAT file)

SELECT DATA ELEMENTS YOU DESIRE TO WORK WITH

HEADER IEENT TSKCD OPCON ADCON *

Y Y Y N N<cr>

*HOGEO CCMDR ACTIV PERSN NE *

N N Y Y<cr>

SELECT DATA LABELS TO BE INCLUDED IN THE REPORT*

HEADER IDENT TSKCD OPCON ADCON *

Y Y Y N N <cr>

*HOGEO CCMCR ACTIV PERSN NE *

N N Y Y<cr>

(Again the system would continue to display the remaining

elements)

DO YOU WISH TO BE PROMPTED?

N <cr>

FM US5 NEVERSAIL (First line of HEADER)

SNX<cr>

63

TC CINCPACFLT MAKALAPA HI

SNX<cr>

CCMNA7S0RFPAC SAN DIEGO CA

5NX<cr>

CTU 77.7.7

SIN CTO 76.1.2<cr> (Add this addresse)

<CT0 76. 1.2>

5FKcr> (File the insertion)

CTO 76. 1 .2

5Q0<cr> (Finished with changes to HEADER)

NAVFORSTAT 012 AS OF 012345Z MAY 77

(First line of IDENT section)

&CH /012/013/ <cr> (Increment the report number)

<NA7FORSTAT 013 AS OF 012345Z MAY 77>

&CH /012345/10C200/<cr> (Change the DTG)

<NAVFORSTAT 013 AS OF 100200Z MAY 77>

&FI <cr> (File the change)

NAVFORSTAT 013 AS OF 100200Z MAY 77

&QU<cr> (Finished with changes to IDENT)

&NX<cr> (Want next data element)

TSKCD CIU C77.7.7 (First line of next data element)

&CH /077. 7. 7/076.1 .2/<cr>

<TSKCD 076. 1 .2>

&FKcr>

64

TSKCD CTU 076. 1 .2

SIN TSKCD CTU 077. 7 .7/DELETE<cr>

<TSKCD CTU 077.7. 7/DELETE>

6FKcr>

TSKCD CTU 077.7.7/DELETE*

5NX<cr>

ACTIV IP

5CH /IP/OP/<cr>

<ACTIV OP>

&FKcr>

ACTIV OP

&NX<cr>

PERSN NE/0240/0221/0195

&CH /0195/0198/<cr>

<PERSN NE/0240/0221/0198>

6PI<cr>

PERSN NE/0240/0221/0198

&QU<cr>

(Editing session is terminated and appropriate files

created)

A> (System is ready for new task)

65

The resulting message file would look like this for

both examples:

FM DSS NEVERSAIL

TO CINCPACFLT MAKALAPA HI

COMNAVSURFPAC SAN DIEGO CA

CTO 77.7 .7

CTO 76. 1 .2

BT

NAVFORSTAT 013 AS OF 100200Z MAY 77

FF 1234 NEVEESAIL/N09999

PART I

TSKCD CTO 076. 1 .2

TSKCD CTU 077.7.7/DELETE

ACTIV OP

PERSN NE/C2U0/0221/0198

BT

66

SUMMARY FOR ROS OSERS

1. Turn on power to the microcomputer, diskette drive and

terminal. (Diskette out!!)

2. Select proper diskette and insert into "A" slot.

3. Load the computer program by depressing the "RESET"

switch. An "A>" should appear on the terminal screen.

4. Confirm that the appropriate DAT file is present on the

diskette in use by typing "DIR <filename>. DAT <cr>". If so,

"<filename>. EAT" will appear on the screen. If not, repeat

Steps 2 through 4 with other available diskettes until the

DAT file is found. If the DAT file does not exist, the

CREATE program may be used to produce a DAT file.

5. Remove previous report's MSG file by typing "ERA

<filename>.MSG <cr>". Alternatively, if a back-up file is

desired, type "ERA <filename>. 3AK <cr>" to erase the

previous back-up file followed by "REN

<filename>.BAK=<filename>. MSG <cr>" to rename the MSG file

as a BAK file.

6. Execute RCS program by typing "ROS <filename> <cr>"

.

Answer system queries and select data elements. Make

appropriate modifications to data elements as they appear

using the line editor facilities.

67

7. When processing of the selected data elements is

complete, " A>" will appear on the screen.

8. The MSG file may be viewed by typing "TYPE <filename> . aSG

<cr>".

9. ' If additional corrections must be made, repeat Steps 5

through 8.

68

APPENDIX B

LINE EDITOR

User's Manual <

1 . Introduct ion.

ROS and CREATE users may create and change the contents

of the ROS and CREATE files by using the features of the

"line editor".

The LEDIT procedure functions with two lines of

information, the "old line" containing the data as it exists

in the file and the "new line" acting as a recepticle for

additional or modified data. Data may be manipulated

between the two lines by using a series of basic editing

commands which are described below. In order to provide an

editing capability which would prove useable by an operator

of limited experience, the basic line editor's commands are

succinct and limited in number. It is hoped that this

philosophy will allow the ultimate user in the fleet to

rapidly master the basic line editor's capabilities and to

use the basic line editor without reference to a command

list or user's manual. An expanded line editor is also

available within the LEDIT framework which allows greater

control over the line editing process. This expanded editor

is intended for the more experienced user or programmer who

requires this greater capability. Either the basic or the

expanded line editor may be invoked by the user without any

change to the ROS or CREATE programs. Discrimination

between the two editors is by means of command format; each

69

editor has its distinct command set. These commands are

structured in such a way that there should be no possibility

of accidentally invoking a line editor command.

The line editor uses a series of commands, composed of

an ampersand (&) followed by two characters, and possibly by

amplifying information in an "argument list". The end of

the line editor command sequence is denoted by a carriage

return. The commands operate on the "old line" contents

which are the last line displayed at the console. The

resultant changes are held in the "new line" area until an

explicit command is given to replace the "old line" contents

with the "new line" contents. This requirement should

prevent inadvertent modification of existing data. The

following section enumerates the commands available to the

user and defines the action they cause.

2. Basic Line Editor Commands.

The following commands are used with the basic line

editor:

COMMAND PARAMETERS DESCRIPTION

SPR <numeral> "PRINT"

Displays the number of lines

indicated by numeral. After

displaying lines, the contents

of the "old line" are the last

line displayed. If no para-

meter is present, one line

will be displayed.

70

COMMAND PABAMETEES DESCRIPTION

5NX <numeral> "NEXT"

Displays the ith line follow-

ing the current line where i

is equal to the numeral

indicated. Only one line will

be displayed which will be the

contents of the "old line". If

no numeral is specified, the

next line will be displayed.

&DP <numeral> "UP"

Displays the ith line before

the current line where i is

equal to the numeral indicated.

Only one line will be displayed

which will be the contents of

the "old line". If no numeral

is specified, the previous

line will be displayed.

&CH /<S1>/<S2>/ "CHANGE"

Copies all characters from "old

line" to "new line" until the

first occurrence of string 1;

string 2 is substituted in the

"new line" in place of string 1

and the remaining characters of

the "old line" are copied into

the "new line". Contents of the

"new line" are displayed between

broken brackets (<>) . String 2

may be a null string indicated

by consecutive virgules (//)

.

71

COMMAND PARAMETERS DESCRIPTION

SDE NONE "DELETE"

Deletes the contents of the

"old line".

SIN <string> "INSERT"

Inserts the string indicated

after the current line but

before the next line. Insert

mode is terminated by a carri-

age return. Added lines are

displayed between broken

brackets (<>) .

&FI NONE "FILE"

Replaces the contents of "old

line" with the contents of "new

line" and clears "new line".

SQD NONE "QUIT"

Terminates the edit session.

Will not incorporate changes

unless a previous file command

has been given.

6PC NONE "PROMPT ON"

Turns the prompt mode on.

&NF NONE "NO PROMPT"

Turns prompt mode off.

3. Dse of Basic Line Editor Commands.

In order for a command to be recognized it is necessary

that the ampersand (5) be in the first input character

position. The alphabetical characters of the ccmmand must

immediately follow the ampersand with no spaces between

them. A blank space between the command and any parameters

72

is necessary; a single carriage return denotes the end of a

command and its associated string.

Whenever a command other than those listed above is

used, an error condition will exist and the message "INVALID

LINE EDITOR -COMMAND" will be displayed. The LEDIT procedure

will then await a corrected command input for a change or

for termination of the input session.

An example of a line editing session is shown below to

demonstrate use of the LEDIT commands. For the purpose of

illustration, all lines displayed by the LEDIT procedure are

bracketed- by asterisks (*) ; for user input lines, a carriage

return is shewn as <cr>.

In this example, a textual file is used to demonstrate

the basic line editor.

&PR 5<cr> (Prints 5 lines of the file)

THIS FILE CONTAINS TEXTUAL MATERIAL TO

DEMONSTRATE THE USE OF THE LINE*

EDITOR'S OPERATION. THE OPERATOR CAN USE*

THESE EDITOES TO MODIFY FILES ONE*

LINE AT A TIME. CHANGES MUST BE*

6NX<cr> (Prints the next line)

FILED FOR EACH LINE SEPARATELY IF THEY

SUP 3<cr> (Eacks up three lines)

THESE EDITOES TO MODIFY FILES ONE

&CH /ONE/A SINGLE/<cr>

<THESE EDITORS TO MODIFY FILES A SINGLE>

73

6FKcr> (Files the change)

&PR<cr> (Print out current line)

THESE EDITORS ™ MODIFY FILES A SINGLE

SNX 4<cr> (Goes down four lines)

ARE TO EE INCLUDED IN THE FINAL FILE.

&CH /IN/ON/<cr> (Change the first occurrence of "IN")

<ARE TO BE CNCLUDED IN THE FINAL FILE.>

&NX<cr> (Gets next line, above change not filed)

THIS IS AN EXTRANEOUS LINE ;-

5DE<cr> (Remove current, line)

6FKcr> (File the deletion)

&UP<cr> (Assumes up one line)

ARE TO BE INCLUDED IN THE FINAL FILE.

SIN THIS IS AN ADDITIONAL LINE OF TEXT<cr>

<THIS IS AN ADDITIONAL LINE OF T?XT>

&FKcr> (Files the insertion)

&UP<cr>

AEE TO EE INCLUDED IN THE FINAL FILE.

&PE 2<cr>

ARE TO 3E INCLUDE" IN THE FINAL FILE.

THIS IS AN ADDITIONAL LINE OF TEXT

&QU<cr> (Ends the edit session)

74

It should be kept in mind that all modifications to

lines affect only the "new line" area until a "FILE" command
(SFI) is given; the file command causes modification of the

"old line" area which represents the contents of the

resulting file. This convention provides the user with the

ability to make several temporary modifications to a line

before making these modifications to the original file. By

reguiring the user to give an explicit "FILE" command, he

has the opportunity to see the effect of the modification

before it is entered; this will reduce erroneous

modification of good files. The operator must also remember

that the "QUIT" ccmmand (SQU) merely terminates the edit

session and that any desired changes must be filed prior to

ending the session.

4. The Extended Line Editor.

The extended line editor uses the same "old" and "new

lines" as the basic line editor but allows more explicit

control ever the editing operation by invoking commands from

a different command set. Extended line editor commands

consist cf a control character, i.e. simultaneously

depressing the CTRL key and an alphabetical character key on

the console keyboard. Since twenty-four different commands

exist and the distinction between similar commands is very

subtle, it is recommended that the basic line editor be used

whenever possible. Table 1 summarizes the commands

available in the extended line editor and describes the

action these commands cause. Because of the cumulative

complexity of these commands, an example session is not

given. Potential users of the extended line editor are

encouraged to practice using the various commands on a dummy

file in order to gain an understanding of the ramifications

of each ccmmand. Particularly useful members of this editor

are the control characters A, B, D, E, F and W.

75

CONTROL

CHARACTER DEFINITION

A Acts as a backspace and rub-out command on the

new line only. (Same as the rub-out on many

terminals) .

B Replace the "old line" with the contents of the

"new line", empties the "new line". (Equivalent

to SFI) .

C Copy one character from the "old line" to the

"new line".

D Copy the remaining characters from the "old line"

to the "new line" echoing each character.

Eguivalent to &FI followed by &QU.

E Toggle the insert mode. Begin insert prints "<",

end insert prints ">". Position of the old

pointer does not change during insert.

F Delete the new line without updating the old

line, then "quit".

G Display contents of the "old" and "new lines"

with control characters interpreted.

H Ccpy remaining characters from the "old line" to

"new line", echoing each. Wait for additional

edit ccmmands.

I Tab. A tab stop is defined for every four

characters. Same as TAB on many terminals.

76

CONTROL

CHARACTER DEFINITION

J Line feed. Editing of that line is ceased.

K (not used)

L Copy the remaining characters of "old line" to

"new line" without echoing. Wait for additional

commands.

M Carriage return. Editing of that line is ceased.

N Backspace "old line" and "new line" one space.

Copy characters from the current position of old

pointer to the next character typed.

P Delete characters from the current position of

eld pointer to the next occurrence of the next

character typed. Echoes a "%" for each

character deleted. (The V s do not become part

of the new line)

.

Q Delete the "new line" and reset the old pointer

to the start of the "old line".

R Display the remaining contents of the "old line"

and all of the "new line".

S Delete one character from the "old line". Echo a

"%" for the deleted character.

T Only used in CREATE to transmit information in

"new line" to storage in memory. Used when input

from the console exceeds one CRT line.

77

CONTROL

CHARACTER DEFINITION

Copy characters from the "old line" to the "new

line" up to the next TAB character.

V Escape character. Turns off any special meaning

of the character which follows, enters the

character into the "new line" and echoes the

character (e.g. "CTRL V CTRL M" will echo | M) .

W Backspace up to the beginning of the last word.

X Deletes characters from the current position of

"old line" through next character typed.

Y Ccpy the remaining characters from the "old line"

to the "new line" echoing each, replace the old

buffer with the "new line". Wait for additional

commands.

Z Copy characters from the "old line" to the "new

line" through the next occurrence of the next

character typed.

NOTE: The control character is ertered by depressing

the CTRL key and then simultaneously depressing the

desired function key.

TABLE 1

EXTENDED LINE EDITOR FEATURES

78

APPENDIX C

CREATE PROGRAM

User's Manual

1. Introduction.

The CREATE program is designed to allow the operator to

create a data base for a specific report. The CREATE

program is the primary tool used by the report requiring

authority to produce the DAT files that are supplied to the

ultimate fleet user. The same CREATE program is also

available to the shipboard user to produce DAT files for

reports that are currently not supported by a distributed

DAT file. This situation could arise if a new reporting

requirement is levied on the fleet unit and the requiring

authority has not distributed the appropriate DAT file or if

some damage has been inflicted upon the diskette containing

the required DAT file. It is the guiding intention of this

report generating systec that the ultimate user be provided

with this capability as an interim measure only; the

responsibility to provide and maintain DAT files properly

lies with the authority requiring the report.

A DAT file is comprised of three different categories

of information: the report data base as represented in the

last submitted report; the prompting questions to which the

operator responds in order to update the report data base;

and the error analysis directives which are used by the ROS

program to check input data. The report data base contains

not only the information associated with each of the data

labels but also incorporates the required message header

79

information and perhaps some trailing information that may

be required for some message reports. Thus, using a

NAVFORSTAT for an example, the data base would contain the

addressees in the naval message format, the subject and

Standard Subject Identification Classification (SSIC) lines,

the PART I information, i.e. the data labels and their

associated data, and PART II and PART III narrative

information as required.

A DAT file can be subdivided into lines each of which

can contain up to 128 characters or symbols and it may

consist of as many lines as are necessary to represent the

coded information , the error analysis directives and the

prompting questions. Each of these categories will consist

of at least one line. Therefore, as a minimum, a data

element will consume at least three lines. If the report

material is primarily textual and self-explanatory, the

error analysis and prompting sections may be left empty.

This is accomplished by entering the appropriate record

delimeter as explained in Section 3.

2. Setting Up the System.

In order to originate a DAT file for a required report,

the user locates a diskette with ample space remaining which

contains a copy of the CREATE program. Auxiliary diskettes,

containing the necessary system programs and the ROS and

CREATE programs but without specific DAT files will be

provided as part of the initial equipment allowance or may

be obtained from higher authority. Each diskette contains

sufficient space to hold several DAT and HSG files for

different reports. Since the shipboard user is creating a

DAT file only as an interim measure until the appropriate

diskette is provided by the report requiring authority, the

interim DAT file may co-occupy a diskette with another DAT

file and then may be erased after the officially distributed

DAT file is received.

80

After the diskette is inserted in the drive mechanism,
the CREATE program is invoked by typing

CREATE <filename> <cr>

where <filename> consists of eight characters, or less, and

is the name cf the DAT file to be created. This <fiiename>

should have mnemonic value so that it can be easily recalled

or identified by the user when originating a report. For

example, the <filename>, "FORSTAT" would be appropriate for

the Naval Forces Status Report (NAVFORSTAT) . (Note thac

"NAVFORSTAT" was not used because it exceeds the eight

character limitation on <filename>.)

3. Execution.

Upon receipt of the CREATE command, the system will be

ready to commence building the DAT file and will respond

with the prompting message, "EXPECTING CODE INFORMATION".

This is a reguest that the user type in the appropriate data

label followed by the information to be associated with that

data label. To identify the data label, it should be

bracketed by a pair of one of the following specific

symbols; bracketing the data label with exclamation points

(!) indicates that the laoel itself is to be included in

the final report while bracketing with percent signs (%)

indicates the label is not to be included in the report.

Any information following the bracketed labels is considered

to be part of the data base information for that data

element. After all the appropriate coded information has

been entered, the end of the coded information section is

marked by inputting the bar character (|)

.

Now the system will respond by displaying the prompt,

"EXPECTING ERROR COMMANDS". Error commands are applicable

to individual fields within the coded information line. For

example, fields in the NAVFORSTAT data element, COMDR, are

81

denoted by virgules (/) separating the fields. The data
line "ACT 17 IP" contains one field whose contents are "IP";
the data line "COMDR CDR/JONES J . P ./000 1 1 1- 10" contains
three fields containing "CDR", "JONES J.P" and "000111-10"
respectively. Notice that the data label is not considered
to be a field. Data labels may be analyzed in different
ways by either checking their content or by comparing the

revised information to what was previously reported. The

specific errcr commands are:

ALPHA Checks the field to ensure all

characters are alphabetic.

NUM Checks the field to ensure all

characters are numerals.

FCT<number> Checks the field to see if

it is within <number> percent

of the previously reported value.

The <number> should be two digits

between "01" and "99", inclusive.

SEQ Checks the field to see if it is

sequential to the last reported

value.

LNG Checks the field to see if it

contains the same number of digits

as the previously reported value.

Error commands are separated using the same delimiter as the

coded information. If a report contains defined fields

separated by virgules, the fields for error analysis will be

defined using virgules. If no defined fields exist in the

report then a field may be denoted by using braces ({}) as

delimiters in both the coded information section and the

errcr command section. These braces will not appear in the

final report format. If a specific field of a data element

is not to be checked, then two consecutive delimiters are

entered, indicating no error command. If error analysis for

one field of a data element is desired, all fields for that

82

particular data element must have error analysis, i.e.

either one of the five commands above or the null command.
The end of the error analysis section is marked by the tilde

(-.) character. If no error analysis is desired for a data

element, a solitary tilde should be the response to the

prompt message. Thus, for the data element, "COMDR"

previously shown, an error command response might be

//ALPHA/NUM-t

which would be interpreted as meaning no error analysis is

desired for the field containing "CDR" ; the characters in

the name field should be alaphabetics; and the characters in

the final field should be numerals.

The system will now respond by displaying, "EXPECTING

PROMPT INFORMATION". Prompting information consists of

questions and explanatory statements which are to be

displayed to the user during report origination. This

prompting information should be concise and unambiguous. 3y

reading the prompting information, the user should know

specifically what information is being sought and in what

format it should be entered. Again there is a

correspondance between data element fields and prompting

information fields. During ROS program execution, prompting

questions are displayed individually for each field of the

data element with responses to each question being entered

before continuing on to the next question. Unlike the error

analysis section, each field of the data element should have

an appropriate prompting question; if it is decided that a

data element need no prompting questions, then a null

prompting area should be entered. However, it is strongly

recommended that every data element have associated

prompting questions, even if the questions appear obvious.

The end of the prompting area is denoted by entering an

up-arrow (<f) .

The process will continue to seek code information,

error analysis information and prompting questions until the

83

end of file is entered. This is accomplished by typing a

back slant character in response to the "EXPECTING CODE

INFORMATION" query. At this time, execution of the CREATE

program ceases and a DAT file exists. This file may be

referenced by <f ilename>. DAT and can be utilized by the ROS

program as a data base.

It is recommended that the DAT files produced be as

comprehensive as possible to ensure that they will be useful

for all possible situations. When working with a highly

formatted report such as NAVFORSTAT, all data labels that

could possibly apply to a unit should be included in the DAT

file; if, at the time of creation, a particular data label

is not pertinent, the label itself may be included in the

file along with a null code area (the data label followed by

a bar) , the error analysis area and the prompting questions.

If this is done, when that particular data element becomes

applicable tc the unit, the system need not be modified to

include the information in the report. By using the report

inclusion feature of the ROS program, as explained in

Appendix A, the generated report content may be tailored by

data element selection.

U. Sample CREATE Session.

An example of the beginning of a CREATE session for a

NAVFORSTAT is shown below. Reiteration of the complete

session wculd be excessively lengthy and redundent. It is

hoped that this example will provide enough insight to DAT

file creation to allow the ultimate user to produce a usable

file after a short experimentation session. Lines displayed

by the system are bracketed by asterisks (*) ; lines input by

the operator are ended with a carriage return <cr> or do not

start and end with asterisks. In these cases, it is not

necessary for the operator to enter a carriage return.

84

A> (System is ready)

CREATE FORSTAT<cr> (FOFSTAT is the name of the DAT file

produced)

EXPECTING CCDE INFORMATION* (Prompt message)

^HEADERS FH DSS NE VERS AIKcr

>

TO CINCPACFLT MAKALAPA HKcr>

CCMNAVSORFPAC SAN DIEGO CA<cr>

CTU 77.7.7<cr>

CTO 76. 1 .2<cr>

BT<cr>

|
(Indicates the end of the code area for HEADER)

EXPECTING ERROR COMMANDS*

-i (No errcr commands are appropriate for this data element)

EXPECTING PROMPT INFORMATION*

LIST APPROPRIATE ACTION AND INFORMATION ADDRESSEES IN <cr>

STANDARD NAVAL MESSAGE FORMAT ENDING WITH THE "BT" LINE.*

EXPECTING CCDE INFORMATION*

(Ready for the next data element)

SIDENTS NAVFORSTAT {000} AS OF {000000} Z JAN 00<cr>

FF 1234, NEVERSAIL/N09999 <cr>

PART I|

EXPECTING ERROR COMMANDS

{SEQ} {LNG}/-.

(Indicates that the report number field is tc be checked for

sequence and the DTG field is to be checked for 6 digits.

85

All other fields have null commands)

EXPECTING PROMPT INFORMATION*

MODIFY THE REPORT NUMBER AND "AS OF" DTG APPROPRI ATELYf

EXPECTING CCDE INFORMATION*

ITSKCD! CTD 077. 7. 7|

EXPECTING ERROR COMMANDS*

i (No appropriate error commands)

EXPECTING ERCMPT INFORMATION*

WHO IS YOUR TASK ORGANIZATION C CMMANDER?<cr>

RESPOND IN THE FORM CTA NNN.N.N+

EXPECTING CCDE INFORMATION*

•OPCON! CTU 077.7.7|

EXPECTING ERROR COMMANDS*

-» (No appropriate error commands)

EXPECTING PROMPT INFORMATION*

WHO IS YOUR OPERATIONAL COMM ANDER?<cr>

RESPOND IN TEE FORM CTA NNN.N.N+

EXPECTING CCDE INFORMATION*

IHOGEO! SAN DIEGO CA|

EXPECTING ERROR COMMANDS*

ALPHA-. (Alphabetic characters only)

EXPECTING PROMPT INFORMATION*

WHERE IS YOUR HOMEPORT?*

EXPECTING CODE INFORMATION*

86

JCCMDR! CDR/F.ATCH W . T . /01 2 34 5-6 0|

EXPECTING ERROR COMMANDS*

ALFHA/ALPHA/NDM-.

(Alphabetic characters in the first

two fields, numeric in last)

EXPECTING PROMPT INFORMATION*

WHAT IS YOUR COMMANDING OFFICER'S RANK7/HIS NAME? LAST NAME

FOLLOWED EY INITIALS/HIS LINEAL NUMBER?*

EXPECTING CCDE INFORMATION*

•ACTIV! IP|

EXPECTING ERROR COMMANDS*

ALPHA^

EXPECTING PROMPT INFORMATION

WHAT IS YOUR CURRENT EMPLOYMENT?*

EXPECTING CODE INFORMATION*

IXFERR! NCC0C/000000/00-00.0N, 000-00 . OE/000000

j

EXPECTING ERRCR COMMANDS*

LNG/LNG/LNG/LNG-. (Checks all fields for proper numbsr of

characters)

EXPECTING PROMPT INFORMATION*

TO WHAT ACTIVITY ARE YOU TRA NSFERRING?/<cr>

WHEN DO YCU TRANSFER? YYMMDD/<cr>

WHERE DOES TRANSFER TAKE PLACE? XX-XX.XN, XXX-XX. XE/<cr>

WHEN DO YCU DEPART FOR TRANSFER POINT? YYMMDDf

87

EXPECTING CCDE INFORMATION*

!ARRDT!| (Null code area)

EXPECTING ERRGR COMMANDS*

LNG-i

EXPECTING FECMPT INFORMATION*

WHAT IS YCUR ARRIVAL DATE AFTER TRANSFER?<cr>

GIVE IN FORM YYMMDDf

ZXPECTING CCDE INFORMATION

IFADDD! 1|

EXPECTING ERROR COMMANDS*

NDM-^

EXPECTING PROMPT INFORMATION*

WHAT IS YOUR FORCE ACTIVITY DIGIT?*

EXPECTING CCDE INFORMATION*

IPERSN NE!/0240/0221/0195|

EXPECTING EFRCR COMMANDS*

/PCT10/PCT10/PCT10-1

(Check each field for 10% changes)

EXPECTING PRCMPT INFORMATION*

NAVY ENLISTED PERSONNEL-RESPOND WITH 4 DIGITS/<cr>

STRUCTURED STRENGTH7/AUTHORI ZED STRENGTH?/<cr>

ASSIGNED STRENGTH?*

EXPECTING CCDE INFORMATION*

88

(The CREATE program will continue to request the three

categories cf information. After all desired data labels

have been included in the DAT file r a back slant should be

entered in response to "EXPECTING CODE INFORMATION" .

)

Again, it is emphasized that prompting guestions and

error commands be as comprehensive and unambiguous as

possible. If, before composing these guestions, the drafter

anticipates the guestions of the ultimate user, a much

better product will result. During execution of the CREATE

program, the features of either line editor may be used. It

should be remembered that modifications filed during the ROS

program execution are incorporated not only in the MSG file

but are also reflected in the code information area of the

DAT file.

89

SUMMARY FOR CREATE USERS

1. Turn en power to the microcomputer, diskette drive and

terminal. (Diskette out!!)

2. Select appropriate diskette and insert into the "A" slot.

3. Load the computer program by depressing the "RESET"

switch. An "A>" should appear on the screen.

4. Confirm that the required DAT file is present en the

diskette by typing "DIR *.DAT <cr>". This will list all DAT

files present on that diskette. If necessary, repeat Steps

2 through 4 for all diskettes.

5. Execute CREATE program by typing "CREATE <filename>

<cr>". Respond to the system queries until the last

applicable data element has been entered, then close the

file.

Delimiter symbols are:

|

- End of data code area.

-i - End of error command area.

t
- End of prompt area.

\ - End of file.

6. After closing the file, "A>" will appear on the screen.

Verify that the DAT file is present by typing "DIR

<filename>.DAT <cr>".

7. Execute the ROS program if desired.

90

/* *****************
* *
* ROS PROGRAM *
* *
***************** */

/* ****************** ****** ******************************

A REPORT ORIGINATION SYSTEM DESIGNED FOR SHIPBOARD
USE IN THE GENERATION OF REQUIRED RECURRING REPORTS.
-THE SYSTEM USES AS INPUT A OATA BASE (DAI) FILE AND
PRODUCES AS OUTPUT A MESSAGE (MSG) FILE. THE
SOFTWARE SYSTEM CONSISTS OF TWO PROGRAMS: ROS AND
CREATE. CREATE IS USED TO CREATE A DAT FILE AND ROS
IS CSED TO UPDATE THE DAT FILE AND CREATE A MESSAGE.

THE ROS PROGRAM IS MADE UP ON THE FOLLOWING MODULES:

1. OPERATING SYSTEM INTERFACE
2. INITIALIZE
3. EDITING
U. EFROR
5. OUTPUT

THE CREATE PROGRAM IS MADE UP OF THE FOLLOWING
MODULES:

1. INITIALIZE
2. INPUT-EDITING
3. FINISH

BOTH PROGRAMS WERE DESIGNED FOR EXECUTION ON THE
INTZLLSC-8 MICROCOMPUTER SYSTEM, WITH CROSS COMPILATION
BEING DCNE ON AN IBM 360/65.

100H: /* FROGRAM TO BE LOADED INTO MEMORY STARTING HERS */

/ * ******** ******************************** **************

OPERATING SYSTEM INTERFACE DECLARATIONS.

** */

DECLARE
LIT
BOOT
ENTRY
TRUE
FALSE
FOREVER
CR
LF
CTI
CTS
DCNT
3DOSA
SBDOS

LITERALLY •LITERALLY'

,

/* ENTRY POINT TO OS */
LIT '0',
LIT '0005H'
LIT ' 1 •

,

LIT '0'
LIT WHILE TRUE'

,

LIT 'ODH',
LIT '0AH',
LIT »0»,
LIT • 1'

,

BYTE,
ADDRESS INITIAL (0006H)

,

BASED BDOSA ADDRESS;

/* **

INITIALIZE DECLARATIONS

** */

DECLARE
EROMPT
RM
RMPTR
DLSLZN

BYTE INITIAL(FALSE) ,

BASED RM BYTE
ADDRESS INITIAL (30H) ,

BASED RM BYTE.
BYTE INITIAL (0)

,

91

NUMSB
WORKS
WMPTR
EXTSR
NUMSE
ERA
ER
NR$RE
NR
SAVES
SAVES
DATSA
DAT E
BASES
TSDAT
CODES
CODE
ESCOD
TOPSM
MSGSA
MSG
SAVSE
SAVSE
OLDSE
CLDSB
MORE
STOP
MODIF
HOLDS

EC
MAP

N
LEME

B
AD
BYT

EXT
RN

BYT

BAS
BAS

NTS

ASED
BY

E,

E,
ADDRESS,

ED WORKSMA?
ED WORKSMAP

BYTE
ADDRESS,

ESR3A BYTE,
TE,

BYTE,
ADDRESS,

DAT
AREA
A

ASED
DATS
SABE
A
BASED CO
ESA
EM
RE A
BASE
XT
N
XT
N

3
BYTE
Y BY
WM

D MS
BYT
BYT
BYT
BYT

YTE
INI

TE I
AD

B
B
A

$AR

A
A

DE$
A
A
A

GSA
E,
E,
E,
E,
INI
TIA
NIT
DRE

YTE
YTE
DDR
EA
ADD
DDR
DDR

DDR
DDR
DDR
REA

ESS,
BYT

RESS
ESS,
ESS,
BYT

ESS,
ESS,
ESS
BYT

E,
i

E,

INITIAL (80H),
E,

TIAL (FALSE)
L (FALSE),
IAL (TRUE),
SS ;

/* ****** **

EDITING DECLARATIONS

** */

DECLARE
EUF
SIZ
NEW
NBU
NPT
OLD
OBO
OPT
NB
IN
03
INS
INS
PER
BS
EEL
TAB
EOP
EOC
ERR
CTL
RUB
END
BLA
AMP
SLA
LER
RBR
CHA
EDS
(ED
FRE
FRE
EBO

FER (1
ESNBUF
SFUF
F BA
F
SBUF
F 3A
P.

BASED

EBT
ERTION
CENT

80)
LIT

SED

CUT
SFILE
NK
ERSAND
SH
ACE
ACE
B
EUFSPT
SEUF 3
ELISTS
SLISTS
MPTSAR

SED

ADD
N3 B
ADD
BYT
BYT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
BYTE
R AD
ASED
EXT
RN
EA

NEWS
BY

OLDS
BY

RESS
YTE,
RESS
E IN
E IN

BYTE,
•90',

ADDRESS,
BUF BYTE,
TE,

ADDRESS,
BUF BYTE,
TE,

ITI
ITI

• ?
•2
'2
'7
•7

OH «

6H'
FH
BH'
DH •

AL (

AL (

25H
08 H
07H
09H
5EH
7CH
7EH
1 AH
7FH
5CH

FALS
FALS

t

i

II:

/* BACKSPACE */

, /* UP-ARROW; END OF PROMPT */
/ /*8ARj _END_0? CODE */

/* TILDE; END OF ERROR */

/BACK SLANT /

6ress.
edsbufsptr)

byte initial
byte initial

ADDBESS;

100)

o ,

BYTE,

92 /

/* ************************** ****************************

ERROR DECLARATIONS
*********** *** *^

DECLARE
SRRA ADDRESS.
ECMD BASED ERRA BYTE,
EERRA ADDRESS.
WARN BYTE INITIAL (FALSE) ;

/* **

OUTPUT DECLARATIONS
********************* ********************** *********** *

/

DECLAR E
DATSrCB ADDRESS INITIAL (5CH)

,

DFCE BASED DAT3ECS BYTE.
MSG$FCB(33) BYTE,
PRINTSLA3EL BYTE INITIAL (FALSE)

;

/* **

OPERATING SYSTEM INTERFACE MODULE

FUNCTION: SERVES AS AN INTERFACE TO THE RESIDENT
OPERATING SYSTEM. IT ALLOWS INPUT/OUTPUI OPERATIONS
TO BE HANDLED 3Y SYSTEM CALLS.

*$*********&** *

/

CRTIN: PROCEDURE BYTE;
DO WHILE INPUT (CTS) ;

END;
RETURN NOT INPUT (CTI) AND 07FH;
END CRTIN;

READC: PROCEDURE BYTE;
DECLARE C 3Y T E*
IF (C:=CRTIN)" >= 110S00013 /* LOWER CASE A */

AND C <= 011U1010B /* LOWERCASE Z */ THEN
C = C AND 10 1511113; /* BECOMES UPPER CASE */

RETURN C;
END READC;

HOH1: PFOCEDURE (FUNC, INFO);
DECLARE PONC BYTE, INFO ADDRESS;
GO TO ENTRY;
END 30N1;

MON2: PROCEDURE (FUNC,INFO) BYTE;
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON2;

MON3: PROCEDURE (FUNC, INFO) ADDRESS;
DECLARE FUNC BYTE, INFO ADDRESS;

GO TO ENTRY;
END HON 3;

PRINTCHAR: PROCEDURE (B) ;

DECLARE B BYTE;
CALL MON1 (2,3) ;

END PRINTCHAR;

PRINTCHARI: PROCEDURE (C) ;

IF
C]

(C
E
AND 011030000B) = /* CONTROL CHAR */ THEN

93

PRINT CHAR
PRINT CHAR

DO;
CALL
CALL

END;
ELS E
CALL PRINTCHAR(C)
END PRINTCHARI;

[FIV 40H)

CRLF: PROCEDURE;
CALL PRINTCHAR (C
CALL PRINTCHAR L
END CRLF;

PRINT: PROCEDURE (A) ; .

DECLARE A ADDRESS;
CALL MON1 (9, A) ;

CALL CRLF;
END PRINT;

SETlDMA: FROCSDURS(A)
;

DECLARE A ADDRESS;
CALL MON1 (26, A) ;

END SETSDMA;

DISKREAD: PROCEDURE (A) BYTE
DECLARE A ADDRESS;
RETURN MON2(20,A)

;

END DISKREAD:

DISKWRITE: PROCEDURE (A)
DECLARE A ADDRESS;
RETURN iiON2(21,A) ;

END DISORITE:

BYTE;

OPEN: PROCEDURE (A) BYTE;
DECLARE A ADDRESS;
RETURN MON2 (15, A) ;

END OFEN;

CLOSE: FROCSDURE(A) BYTE;
DECLARE A ADDRESS;
RETURN MON2(16, A) ;

END CLOSE;

SEARCH: PROCEDURE (FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN M0N2 (17, FCB) ;

END SEARCH;

MAKE: PROCEDURE (FCB) BYTE;
DECLARE FCB ADDRESS;
RETURN MCII2 (22, FCB) ;

END MAKE;

LIFTHEAD: PROCEDURE;
CALL MON1 (12,0) ;

END LIFTHEAD;

MOVE: PROCEDURE (SOURCE ,DEST,N);
DECLARE (SOURCE, DEST) ADDRESS,

(S BASED SOURCE, D BASED DEST, N) BYTE
DO WHILE (N:=N-1) <> 255;

E=S; 50URCE=S0URCE+1 ; DSST=DEST+1;
END;
END MOVE;

ERROR: I-ROCEDURE(I) ;

DECLARE I BYTE;
DO CASE I;

; /* CASE NULL ERROR STATEMENT */
CALL PRINT(.'DISK READ ERROR $');
CALL PRINT (.' ERROR COMMAND NOT DE]:rror command not defined J')

9U

CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT
CALL PRINT

END:
GO TO BOOT;
END ERROR;

•A MESSAGE FILE EXISTS $') ;

'DISK WRITE ERROR $')
;

•OUT OF DIRECTORY SPACE S»);
•DAT FILE NOT PRESENTS''
'MSG FILE NOT PRESENTS' I!

/* **

INITIALIZE MODULE

FUNCTIONS: TO OPEN THE APPROPRIATE DAT FILE, MAKE
A MESSAGE FILE AND ALLOW THE USER TO SELECT A SET OF
DATA ELEMENTS TO WORK WITH. IT THEN INITIALIZES
MEMORY WITH THE SELECTED DATA ELEMENTS.

* *** ******* ********:?***************** ****** ********** * */

MAKEMSGFILS : PROCEDURE;

CALL ERROR(3)
.

IF MAKE (. MSGSFCB) = 255 THEN
CALL ERROR(5) ;

IF OPEN (. MSGSFCE) = 255 THEN
CALL ERROR (7)

END MAKEiMSGSFILE;

INIT: PROCEDURE;
CALL MOVE [5DH..MSGSFCB+1 ,8) ;

CALL MAKESMSGSFILE;
CALL MOVE (. 'DAT' , DA TSFCB + 9 , 3) ;

DFC2 (12) , DFC3 (32) =0
£

IF CPEN (DATSFCB) =255 THEN
CALL ERROR (6)

;

IF (DCNT:=DISKRSAD (DATSFCB)
CALL ERROR (1) ;

CALI LIFTHEAD;
END INIT;

0;

) <> THETI

INCSRM: PROCEDURE;
5M = RM + 1

;

!HD INCSRM;

INCSWM: PROCEDURE;
WORKSMAF = WORKSMAP + 1;
END INCSWM;

PRIN1SDATASE: PROCEDURE;
DECLARE (I, J) BYTE:
DO I = 1 TO NUMSELEMENTS:

IF RMPT? = EOC THEN /* END OF RECORD MAP */
DO;
STOP = TRUE;

RETURN;
END;
CALL INCSRM;

DO
$
WHILE (RMPTR <> »!«) OR (RMPTR <> PERCENT);

CALL PRINTCHAR (RMPTR) ;

CALL INCSRM:
DLSLEN = DLSLEN + 1 ;

END;
CALL INCSRM;
CALL PRINTCHAR (' ') ;

DO WHILE RMPTR = '0'
;

CALL INCSRM;

95

END;
RM = RM + 2;
END;

END PRINT$DATA$E;

SAVEEXEN3NE: PROCEDURE;
WMPTE = ER; /* EXTENT */
CALL INCSWM:
WMPTR = ER(1); /* RN */
CALL INC$WM:
WMPTR = ER(17) - ER(1); /* NUMBER OF RECORDS */
CALL INCSWM

;

END SAVEEXRN$NR;

PRINTSPACE: PROCEDURE;
DECLARE I BYTE:
DO I = 1 TO DLSLEN;

CALL PRINTCHAR (• ') ;

END;
END PRINTSPACE;

CHKSRESEONSE: PROCEEURE;
DECLARE (I,C) BYTE;
DO I = 1 TO NUM3SLEMENTS;

CALL PRINTCHAR (C: = READC)
;

I? C = »Y» THEN
CALL SAVESEX3RNSNR;

ELSE
I? C = ' S' THEN

DO;
STOP = TRUE;
RETURN;
END;

ESR$A = ESRSA + 16;
CALL PRINTSPACE;

END;
END CKKSRESPONSE;

SEL3WE: PROCEDURE;
WCRK3MA? = .MEMORY + 1536;
NUM3ELEMENTS=5;
IF (MODIFY = TRUE) THEN

CALL PRINT (. "SELECT DATA ELEMENTS TO WORK WITH3 1

);
ELSE

DO;
CALL PRINT (.» SELECT DATA ELEMENTS TO BE

INCLUDED IN THE REPORT $');
WORK3MAP = .MEMORY + 1792;
END;

ESRSA = RM + 14;
DO WHILE (RMPTR <> EOC) AND (STOP = FALSE)

;

DO WHILE RM < 100H;
CALL PRINTDATA3E;
CALL CRLF;
CALL CHKSEESPONSE;
END;
IF (DCNT: = DISKREAD (DAT$FCB)) <> THEN

CALL ERROR (1) ;

END;
END SELSWE;

RE3SELECT: PROCEDURE;
STOP = FALSE;
MODIFY = FALSE;
CALL SEL$WE;
END EESSELECT;

SET3MSM: PROCEDURE;
DAT3AREA, E ASEDAT AREA = WORK$MAP;
TOPSMEM = SBDOS - 1 ;

WORKSMAP = . MEMORY;

96

DFCE (32£ = WMPTR(I) ; /* RN TO START READ */

NRSREAD = 0:
END SETSKEM;

OPENSEXI: PROCEDURE;
DFCE (12) = WMPTR;
IF OPEN (DATSFCE) = 255 THEN

CALL ERROR (1) ;

END CPENSEXT;

READSDSREC: PROCEDURE;
IF EFCBM2) <> WMPTR THEN
CALL OPENSEXT;
CALL SSTSDMA (DATSAREA)

;

IF (DCNT:=DISKREAD (DATSFCB)) <> THEN
CALL ERROR (1) ;

NRSREAD = NRSREAD + 1;
DATSAREA = DAT3AREA + 128;
CALL SETSDMA (30H)
DFCE (12) = DAT (126) ;

DFCE (32) = DAT 127) ;

END READSDSREC;c;

READ3DAT: PROCEDURE;
CO WHILE DAT$AREA+128 < TOPSMEM;

IF NRSREAD = NR THEN
IF (W0RKSMAP:=W0RK$MAP+3) >= BASESDATS AREA- 1 THEN

DO; /* FINISHED */ MORE = FALSE; RETURN; END;
ELSE

CO; DFC3(32) = WMPTR(1); NRSREAD = 0;
NR = WMPTR (2) ; END;

CALL READSDSREC;
END;
MORE = TRUE;
5AVSSEXT = DFC3M2) ;

5AVE3RN = DFCB(32) ;

HOLE3WM = WORXSMAP;
END READSDAT;

READSMORE: PROCEDURE;
DECIARS HOLD ADDRESS:
HOLD,WORKSMA? = HOLDSWM;
DFCE (12) = SAVESEXT;
DFCE (32) = SAVESRN;
DATSAREA = B A SESDATSAREA

;

CALL READSDAT;
WORKSMAP = HOLD;
TSDATSARSA = DATSAREA;
EATSAREA = 3 A SESDATSAREA

;

END READSMORS;

ALLOCATE: PROCEDURE;
SAVSEXT = DFC3M2) ;

SAVSRN = DFCB(32) ;

DAT (126) = FREELISTSEXT;
DAT (127) = FREELISTSRN;
OLDSEXT = DAT (252) ;

OLDSRN = DAT (253):
DFCE (12) = FREELISTSEXT;
DFCB(32) = FREELISTSRN;
CALL READSDSREC;
FREELISTSEXT = DAT (126);
FREELISTSRN = DAT(T27) ;

DAT (124) = OLDSEXT;
CAT (125) = OLDSRN;
DAT (126) = SAVSEXT;
DAT (127) = SAVSRN;
END ALLOCATE;

FREE: PROCEDURE;
DFCB (12) = DAT (126) ;

97

DFCE(32) = DATM27)
;

DAT (252) = DAT 124 ;

DAT (253 = DATM25
DAT (126 = FREELISTSEXT;
DATJ127) = FREELISTSRN;
DATSAREA = DATSAREA - 128:
FREELISTSEXT = DAT (126);
FREELISTSRN = DATU27);

126) = DFCBM2)
;

DAT
DA
CA
END FREE;

lT (126) = D
A (127} = D
iLL READSDS

CB(32J ;

REC;

DIGSTOSNUM: PROCEDURE (STR) BYTE*
/* CONVERTS A STRIN3 OF ASCII DIGITS

DECLARE
STR ADDRESS,
STR1 BASED STR BYTE,

TO A DECIMAL NUMBER */

DO

I BYTE INITIAL (C) ,
M BYTE INITIAL (0 ;

IILE STR1 (I) = BLANK;

CR THEN

OR (STR1 (1+1) <> CR) ;

whil:
i =

END;
IF STR1 (I) = C

RETU P.N 1
*

DO WHILE (STR 1(1+1) <> BLANK)
M= (M*10) + (STR1 (I)-48) ;1=1+1;

END;
RETURN M;
END DIGSTOSNUM;

LONG: PROCEDURE BYTE;
DECLARE L BYTE INITIAL (0);

IF (RM(0) = '!') OR (RM(0) = ' ') THEN

L = L + 1;
DO WHILE (RM(L) <> '!') OR

(RM (L) <> • ') ;

L = L + 1 ;

END;
RETURN L;
END;

ELS E
RETURN DLSLEN;
END LONG;

/ * **

EDITING MODULE

FUNCTION: TO ALLOW ENTRY OF DATA AND EDITING OF
ENIFRED DATA BY USE OF LINE EDITING FUNCTIONS. THE
USER MAY SELECT TO ENTER DATA DIRECTLY INTO THE
CODED AREA OR BE PROMPTED AS TO WHAT INFORMATION IS
REQUIRED.

** */

/* PROCEDURES OF THE LINE EDITOR */

3ACKSUP: PROCEDURE;
IP NPTR > THEN

DO;
NPTR = NPTR - 1;
CALL PRINTCHAR (BS) ;

CAL]

ELSE

•> ;PRINTCHAR ('

CALL PRINTCHAR (BS) ;

*ND;

98

CALL PRINTCHAR (BELL)

;

END BACKSUP;

MOVESTOSOLD: PROCEDURE:
CALL MOVE (NEW5BUF+1 ,OLD$BUF+1 , (OBUF:=NPTR)) ;

OPTR =0: NPTR =0;
END MOVESTOSOLD;

OLDSTCSNEW: PROCEDURE;
NBUF (NPTR : = N?TR+1) = OBUF (OPTR: =OPTR+ 1) ;

END OLDSTO$NEW;

ECKOSON: PROCEDURE;
CALL PRINTCHAR (NBU? (NPTR : = NPTR + 1) := (OBUF (OPTR : =OPTR+ 1))) ;

END ECHOSON;

COPYSONE: PROCEDURE;
IF OPTR <= OBUF THEN

CALL ECHOSON;
ELSE CALL PRINTCHAR (3ELL) ;

END CCPYSONE;

PSMOVESCN: PROCEDURE; /* PARTIAL MOVE OLD TO NEW */
DO WHILE OPTR < 03UF;
CALL ECHOSCN;
END;
END P$MOVE$ON;

ENTER: PROCEDURE;
IF INSERT THEN

CALL PRINTCHAR (' >•)

;

ELS E
CALL PRINTCHAR (' <•) ;

INSERT = NOT (INSERT) ;

END ENTER;

PRINTSOLD: PROCEDURE;
DECLARE I BYTE;
DO 1= 1 TO OBUF;
CALL PRINTCHARI (OBUF(I)) ;

END;
CALI CRLF:
END PRINTSOLD;

PRINTSNEW: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO NPTR;
CALL PRINTCHARI (NBUF (I)) ;

END;
END PRINT $NEW;

PRINTSECTH: PROCEDURE;
CALL PRINTSOLD;
CALL PRINTSNEW;
END PRINTSBOTH;

"^^olfJ^A^N^CHARACTERS FOP. OLD TO NE» BUFFERS V
DO WHILE OPTR <= 03UF;

CALL OLDSTOSNEW;
END •

CALL PRINTCHAR(' + M ; /* INDICATES WHEN DONE */HAR('
SOSN;END COPYSRMS

3S$
°JS

!

ES!Ksi2?i
E
6LD ?TR AND NEW PTR 1 CHAR V

IF (OPTR > 0) AND (NPTR > 0) THEN
DO;
OPTR = OPTR - 1 ;

NPTR = NPTR - 1

;

OBUF = OBUF - 1;

99

END;
ELSE

CALL PRINTCHAR (BELL) ;

END BSSOSN;

COPYION: PROCEDURE (C) ;

DECLARE (C,I) BYTE;
I=OPTR:
DO WHILE OBUF(I: = I+1) <> C;

IF I > OBUF THEN /* NO MATCH */
DO *

CALL PRINTCHAR(3ELL) ;

RETURN;
END*

END; /* DO WHILE "*/
DC WHILE OPTR < I;

CALL ECHOSON;
END;
END COPYSON;

DELETE: PROCEDURE (ECHO) ;

DECLARE (I, J,P1,CHAR1,ECH0) BYTE;
P1=CPTP;
CHAR1 = READC;
DO WHILE (OBUF(P1 : = P1+1) <> CHAR1);

IF_P1 > OBUF THEN /* NO MATCH */
uO;

CALL PRINTCHAR(BELL)

;

RETURN;
END;

END; /* DO WHILE */
IF ECHO THEN

DO I = OPTR+1 TO P1 ;

CALL PRINTCHAR (PERCENT) ;

END;

/* NOW CONDENSE THE BUFFER */
J=OPTR;
I=P1;
DO WHILE I <= OBUF;

OBUF(J:=J+1) = OBUF (I:=I + 1) ;

END;
OBUir = OBUF - (P1-OPTR+1);
END DELETE;

DEL$N: EROCEDURE:
OPTR,NPTR = 0;
OBUF = 0;
CALL PFINTCHAR(END$FILE) ;

CALL CRLF;
END DELSN;

DISPLAY3RMSOSN: PROCEDURE;
DECLARE I BYTE;
1 = 0;
CALL CRLF;
DO WHILE (I:=I+1) <= OBUF;

IF I <= OPTR THEN /* EVEN LINE */
CALL PRINTCHAR (

f ') ;

ELSE CALL PRINTCHAR (OBUF (I)) ;

END;
CALL CRLF;
CALL PRINTSNEW;
END DISPLAYSRMSD5N;

DSL JO: PROCEDURE;
IF CPTR > THEN

DO;
DECLARE I BYTE;
I •= OPTR-1;
DO WHILE (I:=I+1) < OBUF;

OBUFtI) = OBUF (1+1) ;

100

END *

CALL' PFINTCHAH (PERCENT) ;

CBUF = OBUF - T

;

END;
ELSE CALL PRINT CHAR (BELL)

;

END DELSO;

ESCAPE: PROCEDURE*
/**TURNS OFF^SPSCIAL MEANING OF CHARACTER TO FOLLOW

AND ENTERS CHARACTER IN NEW BUFFER */

CALL FRINTCHARI (CH AR :=R EADC) ;

NBUF(NPTR :=N?TR+1) = CHAR;
END ESCAPE;

PRINTSTAE: PROCEDURE;
IF (NPTR + 5) > SIZESNBUF THEN

CALL PEINTCHAR (3ELL) ;

ELSE
NBUF (NPTR: =NPTR+ 1) = TAB;
CALL PRINTCHAR (TAB) ;

END PPINTSTAB;

BEGINSWRD: PROCEDURE;
DO KHILE NEW$BUF(NPTR-1) <> » •;

' CALL BACKSUP;
END;
END BEGIN$WRD;

/* END OF PROCEDURES CALLED FROM THE LINE EDITOR */

INC3DA: PROCEDURE;
DATSAREA = DATSAREA +1;
END INC$DA;

INCSCA: PROCEDURE:
CODESA = CODESA + 1 ;

END INCSCA;

INC3ER: PROCEDURE;
ERR A = ERRA + 1;
END INCSER;

MOVEIDL3NEW: PROCEDURE;
DO WHILE NPTR <= DLSLEN;

IF PROMPT THEN CALL OLDTONEW;
ELSE CALL ECHOSON;

2ND;
NB = NEWSBUF + NPTR + 1 ;

OPTR = NPTR:
END MOVESDLSNEW;

MOVESCCDESOLD: PROCEDURE;
DECLARE DEST ADDRESS, D BASED DEST BYTE;
DEST = OLDS3UF+1

;

OFTR, NPTR , OBUF = 0;
DO WHILE DAT <> EOC;

D = DAT:
IF NCT (PROMPT) THEN CALL PRINTCHAR (D)

;

CALL INCSDA;
DEST = DEST +1 ;

OBUF = OBUF +1 ;

END;
CALL CRLF

:

CALI MOVESDLSNEW;
END MOVESCODESOLD;

SETSPTR: PROCEDURE;
DO WHILE DAT <> ERR;

CALL INCSDA;

101

END;
CALL INC$DA; \
EEREA,ERRA = DATSAREA;
CALL INCSDA;
DO WHILE DAT <> ERR;

CALL INC$DA;
END;
CALL LNC$DA;
PROMPTSARES. = DATSAREA;
END SET$PTR;

NEXTSDE: PROCEDURE:
CALL MOVE$CODE$OLD:
CALL INCSDA;
CALL SETSPTR;
END NEXTSDE;

DPDATZSCAT: PROCEDURE;
DECLARE T ADDRESS. (I. A) BYTE;
INSSINC: PROCEDURE;

CODE = NBUF (I) ; 1= I + 1

;

CALL LNC3CA;
END IHSSIHC;

CODESA = BSCODEJA + DLSLEN;
I = DLSLZN+1

;

DO WHILE (A:=L <= NPTR) AND (I <= 03UF) ;

CALL INSSINC;
END *

17 A THEN /* CODE LLNE HAS GROWN */
DO;

DO WHILE I < = NPTR+1

;

IF CODE = ERR THEN /* AT ERROR CMOS */
CALL ERROR (0) ;

E LS E
CALL INSSINC;

END;
CODE = EOC;

END;
ELSE

DO *

CODE = EOC; T = OLD$BUF+OBUF+ 1

;

DO WHILE (CODESA :=CODE$A +1) <= T;
CODE = 0;

END;
END;

END UPDATESDAT;

/* ****************** ************************************

ERROR MODULE
FUNCTION: TO CHECK FOR POSSIBLE ERROR CONDITIONS.
ERROR COMMANDS ARE DEFINED IN DO$CMD PROCEDURE.

** */

RESSNTER: PROCEDURE;
CALL MOVESTOSOLD;
CALL PRINTSOLD;
NPTR = NB - NEWSBUF;
CALL PRINTSNEW;
END RESENTER;

WARNING: PROCEDURE (I);
DECLARE I BYTE;
WARN = TRUE;
DO CASE I:

CALL PRINT (.'WILL DESTROY OLD INFORMATION $');
CALL PRINT (. 'EXPECTING ALPHABETIC CHARACTER S«);
CALL PRINT (.' EXPECTING NUMERIC CHARACTER $');
CALL PRINT (. 'CHANGE GREATER THAN SPECIFIED

102

PERCENTAGE $')
;CALL PRINT(. 'INPUT NUMBER OUT OF SEQUENCE $');

CALL PRINT {.' NUMBER OF CHARACTERS NOT
THE SAME AS ORIGINAL FIELD $') ;END; '

'

CALI CRLF;
END WARNING;

INCSNE: PROCEDURE;
NB = NB + 1

;

END INCSNE;

SPSPDSCOM: PROCEDURE BYTE;
DECLARE SPACE LIT • 20H',

PERIOD LIT '2EH',
COMMA LIT »2CH' ;

RETURN ((TN = SPACE) OR (TN = PERIOD) OR (TN = COMMA));
END SPSPDSCOM;

ALPHA: PROCEDURE BYTE:
DECLARE LCA LIT '61H', LCZ LIT '7AH';
RETURN (((TN >= « A') AND {TN <= ' Z')) OR ((TN >= LCA)

AND ('IN <= LCZ)) OR SPSPDiCOM)

;

END ALPHA;

CHKSALPHA: PROCEDURE;
DO WHILE (TNOSLASH) OR (TNOLBRACE) OR (TNORBRACE) ;

IF NOT (ALPHA) THEN
DO;

CALL WARNING(1) ;

RETURN;
END;

CALL INC$NB;
END;
END CHKSALPHA;

NUMERIC: PROCEDURE BYTE;
RETURN I] (TN - '0') <= 9) OR (TN = 2DH /* MINUS */)

OR SPSPDSCOM) ;

END NUMERIC;

CHKSNUMEEIC: PROCEDURE;
DO WHILE (TNOSLASH) OR (TNOL3RACE) OR (TNORBRACE) ;

IF NOT (NUMERIC^ THEN
DO: CALL WARNING(2); RETURN; END;
CALL INCSNB;

END;
END CHK3NUMERIC;

NSXT3SF: PROCEDURE;
DO WHILE (CODEOSLASH) OR (CODEOL3RACE)

OR (CODEORBRACE) ;

CALL INCSCA;
END:
CALL INCSCA:
DO WHILE -(DATOLBRACE) OR (DATOSLASH)

OR (DATOR3RACE) ;

CALL INCSDA;
END;
CALL INC$DA;
CALL INCSNB;
CALL INCSER;
END NEXTSSF;

CHKSPERCENT: PROCEDURE;
DECLARE (X, Y, 2, M, PCT) BYTE;
CALL INCSER;
CALI INCSER;
M = DIGTONUM(ECMD) ;

X = DIGSTOSNUM(IN) ;

Y = DIGTONUM(DAT) ;

103

IF X>Y THEN Z=X-Y;
ELSE Z=Y-X;
IF (Z/Y) > a THEN

CALL WARNING (3) ;

END CKK$?ERCENT;

CHKSSEQUENCE: PROCEDURE:
DECLARE (X.Y) BYTE;
X = DIGTONUB(TN)

;

Y = DIGSTOSNUM DAT)

;

IF (X-Y) <> 1 THEN
CALL WARNING (4) ;

END CHK$SEQUENCE;

CHK-SLENGTH; PROCEDURE;
DECLARE (X, Y) BYTE INITIAL (1) ;

DO WHILE (DATOLBRACE) OR (DATOSLASH)
OR (DATORBRACE ;

CALL INCSDA;
X = X + 1;

END;
DO WHILE (TNOSLA5H) OR (TNOLBRACE) OR (TNOEBRACE) ;CALL INCSNB;

Y = Y + 1;
END;
IF X <> Y THEN

CALL WARNING (5) ;

END CHKSLENGTH;

DOSCMD: EROCEDURE:
IF ECMD = »0* THEN RETURN; ELSE
IF ECKD = 'A' THEN

DO;
CALL CHKSALPHA;
DO WHILE (ECMD <> SLASH) OR (ECaD <> L3RACE)

OR (ECBD <> RBRACE)

;

CALL INCSER;
END; END; ELSE

IF ECilD = »N« THEN
DO:
CALL CHKSNUaSRIC;
DO WHILE (ECaD <> SLASH

OR (ECaD <> RBRACE
OR (ECaD <> LBRACE)

CALL INCSER;
END; END; 2LSE

IF ECaD = •?' THEN
DO;
CALL CHK5PERCENT;
DO WHILE (ECaD <> SLASH) OR

OR (ECMD <> RBRACE)

;

CALL INCSER;
END; END; ELSE

IF ECaD = 'S' THEN
DO;
CALL CHKSSEQUSNCE;
DO WHILE (ECaD <> SLASH) OR

OR (ECMD <> RBRACE)

;

CALL INC$SR;
END; END; ELSE

IF ECaD = 'L 1 THEN
DO;
CALL CHKSLENGTH;
DO WHILE (ECaD <> SLASH) OR

OR (ECaD <> RBRACE)

;

CALL INCSER;
END; END; ELSE

CALL ERROR (2)

;

END COSCaD;

CHKiEER: PROCEDURE;
WARN = FALSE;
DO WHILE ECaD <> ERR;

(ECaD <> LBRACE)

(ECaD <> LBRACE)

(ECMD <> LBRACE)

104

IF (EC
,n2r.M

SLASH
) 0R (SCMD=LBRAC2) OR (ECMD=RBRACE)

r n EN
CALL NSXT$SF;

CALL DOSCMD;
IF WARN THEN RETURN;
CALL INCSER;
END;

END CHK$ERR;

ASKSQUESTIGN: PROCEDURE;
DO WHILE (DAT <> SLASH) OR (DAT <> LBRACE) OR

(DAT <> RERACE)
;

;

CALL PRINTCHAR (DAT) ;CALL INCSDA;
END;
END ASK$QUESTION;

CHKSANSWER: PROCEDURE;
WARN = FALSE*
DO WHILE (ECMD <> SLASH) OR (ECMD <> LBRACE) OR

(ECMD <> R3RACE) ;

CALL DOSCMD;
IF WARN THEN RETURN;
CALL INC$ER;

END;
END CHKSANSWER;

ENDSIP: PROCEDURE;
OB = CLDSEUF + DLSLEN + 1;
IF (NB:= NEWSBUF+DLSLEN+1) > NEWSBUF + NPTR THEN

DO;
CALL WARNING (0) ;

RETURN;
END *

NBUF (NPTR+1) = V 1
;

CALL CHKSERR;
END ENDSIP;

LED IT: PROCEDURE;
DECLARE

I EYTE,
LTP. EYTE,
FOUND EYTE INITIAL (FALSE)

,

M BYTE;

DO WHILE NPTR < SIZE3NBUF;
IF (CKAR:=RSADC) = AMPERSAND THEN
/* BASIC LINE EDITOR COMMAND */

DO;
CALL PRINTCHAR (EDSBUF (0) :=AHPEESAND) ;1=1:

DO WHILE (CHAR :=RE ADC) <> CR

;

CALL PRINTCHAR (ED$BUF(I) :=CHAR)

;

1=1+1;
END;

IF (ED$BUF(1) = 'C') AND (ED$BUF(2) = » H») THEN
/* CHANGE COMMAND */

DO;
1=3;
DO WHILE EDSBUF(I) = BLANK;1=1+1;
END;
IF EDSBUF (I:=I+1) <> SLASH THEN
/* VIRSULE EXPECTED */

CALL ERROR (8) ;

LTR = (I: =1+1)

j

CALL CCPYSON (EDS3UF (LTR)) ;

DO WHILE FOUND = FALSE;
DO WHILE (EDSBUF(I) <> SLASH) AND

(ED$BUF(I) = OBUF(OPTR));
1 = 1+ 1 ;

IF (OPTR:=OPTR+1) > OBUF THEM

105

CALL ERROR (9) ;

END;
IF (ED$BUF(I) <> OBUF(OPTR)) THEN
/* LOOK FOR NEXT OCCURRENCE */

DO;
I = LTR;
CALL COPYSON (ED$3UF(I))

;

END;
ELS E

FOUND = TRUE;
END;
CALL ENTER*
DO WHILE ED$BUF(I+1) <> SLASH;

NBUF (NPTR:=NPTR+1) = ED$BUF (I: =1+ 1) ;

END ;

CALL "ENTER:
CALL P$'10VE$ON;

END;
IF(ED$BUF(1) = »D f

) AND (ED$BUF(2) = 'E') THEN
/* DELETE COMMAND */

CALL DELETE (FALSE) ;
r\n w r\tn prtin nsDruuii SIGN * //* DELETE OLD BUFFER. DO NOT ECHO PERCENT

IF(ED$BUF(1) = «F') AND (ED$3UF(2) = 'I') THEN
/* FILE COMMAND */

CALL MOVESTOSOLD;
IF (EDSBUFM) = '0') AND (EDSBUF(2) = •U«)
/* QUIT COMMAND */

GO TO ENDEDIT2;
IF (EDSBUFM) = 'IF') AND (ED3BUF(2) = 'X')

PROMPT = FALSE;
IF (ED$BUF(1) = 'I') AND (ED$BUF(2
/* INSERT COMMAND */

DO;
CALL ENTER;
INSERTION = TRUE;
END;

END
'lF (CHAR) <= CTLZ THEN /* CONTROL CHAR */

DO CASE CHAR;
/* CAS NULL */
t

/* CASE 1 CONTROL A */
CALL BACKUP;

/* CASE 2 CONTROL B */

106

THEN

THEN
/* NEXT COMMAND */

DO;
M = DIGSTO$NUM (ED BUFPTR+3) ;

DO 1=1 TO M;
CALL READSMORE;

END *

CALL MOVESCODESOLD;
CALL PRINTSOLD;
OPTR , NPTR = 0;
END"

IF (EDSBUFM) = -IP) AND (ED$BUF(2) = 'P') THEN
/* UP COMMAND */

DO;
M = DIGSTOSNUM (EDSBUF3PTR+3) ;

DO 1=1 TO M;
DATSARSA = DATSAREA - 128;
END;
CALL MOVESCODESOLD;
CALL PRINTSOLD;
OPTR , NPTR = ;

END

'

IF (EDSBUFM) = 'P') AND (ED$BUF(2) = '0') THEN
/* PRO MPT -ON COMMAND */

PROMPT = TRUE;
IF (EDSBUFM) = f N l

) AND (ED$3UF(2) = -P-) THEN
/* NO-PROMPT COMMAND */

) = »N') THEN

CALL MOVETOOLD;

/* CASE 3 CONTROL C */
CALL COPYSONE;

/* CASE 4 CONTROL D */
DO:
CALL PSKOVESON;
GO TO ENDEDIT1

;

END;

/* CASE 5 CONTROL E */
CALL ENTER;

/* CASE 6 CONTROL F */
GO TO ENDEDIT2;

/* CASE 7 CONTROL G */
CALL PRINT$BOTH;

/* CASE 8 CONTROL H */
CALL P$a0VE$0N;

/* CASE 9 CONTROL I */
CALL PRINTSTAB;

/* CASE 10 CONTROL J */
GO TO ENDEDIT1

;

/* CASE 11 CONTROL K */

/* CASE 12 CONTOL L */
CALL COPY3RK30SN;

/* CASE 13 CONTROL M */
GO TO CARRIAGESRETURN;

/* CASE 14 CONTROL N */
CALL BS0N;

/* CASE 15 CONTROL */
CALL COPYSON (READC)

;

/* CASE 16 CONTROL P */
CALL DELETE (TRUE) ;

/* CASE 17 CONTROL Q */
CALL DELSN;

/* CASE 18 CONTROL R */
CALL DISPLAYRM0$N;

/* CASE 19 CONTROL S */
CALL DEL30;

/* CASE 20 CONTROL T */

/* CASE 21 CONTROL U */
CALL COPY SON (TAB) ;

/* CASE 22 CONTROL V */
CALL ESCAPE;

/* CASE 23 CONTROL W */
CALL 3EGIN$WRD;

/* CASE 24 CONTROL X
CALL DELETE (FALSE) ;

/*CASE 25 CONTROL Y */

/

107

DO;
CALL P$MOVE$ON;
CALL MOVESTOSOLD;

END;

/* CASE 26 CONTROL Z */
CALL COPYSON (READC) ;

END;
ELSE /* CHECK SPECIAL CASES */

CARRIAGESRETURN:
IF (CHAR = CR) AND INSERTION THEN

DO;
CALL PRINT(. 'EXPECTING A FILE OR QUIT COMMAND $');
CALL ENTER; '

INSERTION = FALSE;
END;

IF CHAR = RUBOUT THEN
CALL BACKUP;

ELSE
DO;

CALL PRINTCHAR(CHAR)
;

N3UF(NPTR:= N?TR+1)=CHAR;
IF NPTR = 72 THEN CALL PRINTCHAR (BELL)

;

IF NOT (INSERT) THEN OPTR = OPTR + 1;
END;

END; /* DO WHILE */

/* ARRIVE HERE IF BUFFER FULL */

CALL PRINTCHAR (BELL)

;

ENDEDIT1:
ENDEDIT2: CALL CRLF;
END LEDIT;

/* **

OUTPUT MODULE

FUNCTION: TO UPDATE THE DAT FILE AND THE
INFORMATION JUST EDITED TO THE MESSAGE FILE.

** */

INC3MSG: PROCEDURE;
IF (MSG$AREA:= MSGSAREA + 1) < 100H THEN

RETURN;
IF DISKWRITS (.MSGSFCB) <> THEN

CALL ERROR(U) ;

MSGSAREA = 80H;
END INCSMSG;

MOVE3M5G: PROCEDURE;
IF DAT = ' !' THEN

DO;
CALL INC$DA;

DO WHILE DAT <> » ! '
;

CALL INC3DA;
END:

CALL INCSDA;
END;

DO WHILE DAT <> EOC;
IF (DAT = L3RACE) OR (DAT = RBRACS) THEN

CALL INC$DA;
ELSE

IF DAT = PERCENT THEN
CALL INCSDA;

ELSE
MSG = DAT;

CALL INCSMSG;
CALL INCSDA;

108

END;
MSG = CR;
CALL INCSMSG;
MSG = LF:
CALL INCSMSG;
END MOVESMSG;

WRITSSMSG: PROCEDURE;
MSG = CTL Z *

IF DISKWRITE (.MSG$FCB) <> THEN
CALL ERROR(U)

END WRITESMSG;

CLOSESFILES: PROCEDURE
IF CLOSE (.MSGSFCB

CALL ERROR
DFCB(12) = SAVE^
DFCB(32) = SAVS$RN

CB|

SEX

= 255 THEN

T;

IF CLOSE(DATSFCB) = 255 THEN
CALL ERROR (6)

-

END CLOSESFILES;

BLANKSBUF: PROCEDURE;
DECLARE A ADDRESS, (B BASED A.I) BYTE;
A = .EUFFER;
DO I = 1 TO 180;

B = 0; A = A + 1;
END;
END BLANKSBUF;

3ASE$NEXT$DE: PROCEDURE;
DECLARE I BYTE;
DC I = 1 TO WMPTR (2) ;

B$CODE$A = BSCODESA + 128;
END;
WORKSMAF = WORK$MAP + 3;
END EASSSNSXTSDE;

UPDATESEATSFILS: PROCEDURE;
WORKS MAP = . MEMORY;
BSCODESA = BASESDATSAREA;
DO WHILE ESCODESA < TDATARSA;

CALL MOVESSS3;
DFCB (12) = WMPTR;
DFC3 32) = WMPTR (1) ;

CALL SETDMA (3SC0DESA) ;

IF DISKWRITE {DATSFC3) <> THEN
CALL ERROR (4);

CALL BASESNEXTSDE;
END *

CALL SETSDMA (80H) :

END UPDATESDATSFILE;

EDIT: PROCEDURE;
CONTINUE:
DO WHILE (DATSARSA < TDATAREA) ;

CALL NEXTSDE;
IF PROMPT THEN

DO WHILE DAT <> EOP;
CALL ASKSQUESTION;
WARN = TRUE;
DO WHILE WARN;

CALL L EDIT *

NBUF(NPTR:= NPTR+1)='/'
CALL CHKSANSKER;

END;
CALL NEXTSSF;

END;
ELSE

DO;
CALL LEDIT;

109

CALL END$IP;
END:

IF WAPN THEN CALL RE$ENTER:
ELSE
DO;

CALL UPDATE$DAT;
CALL 3LANKSBUF:
CALL BASE$NEXT$DE;
DATSAREA,CODESA = B$CODE$A;

END;
END; /* DO WHILE */

CALL UPDATEDATFILE;
IF MORE THEN

DO;
CALL READSMORE;
GO TO CONTINUE;

END;
CALL WRITESMSG;
CALL CLOSE$FILS5;
GO TO BOOT;
END EDIT;

/******* START MAIN PROGRAM HERE ****** */

OLD3BUF = (NEWSBUF := . BUFFER) +90

;

OBUF = 0;
CALL INIT;
CALL SELSWE;
CALL RE5SELECT;
CALL SETSMEM;
CALL READ3DAT;
CALL LIFTHEAD;
TDATAPEA = DAT$AREA;
fl$CODE$A,CODEA,DATAREA = BASE3DATS AREA

;

WORK3MAE = . MEMORY;
CALL CRLF;
CALL PRINT(.'DO YOU WISH TO BE PROMPT ED?$ ')

;

CALL PRINTCHAR (CHAR:= READC);
CALL CRLF;
IF CHAR = ' Y 1 THEN PROMPT = TRUE;
CALL EDIT;
EOF

110

/* *****************
* *
* CREATE PROGRAM *
* *
***************** */

/* **************************** **************************

PROGRAM DESIGNED TO CREATE DAT EXECUTABLE FILES USED
IN CONJUNCTION WITH REPORT ORIGINATION SYSTEM (ROS)

.

ROS IS DESIGNED TO GENERATE FORMATTED REPORTS.

** */
100H:

/* **

INITIALIZE DECLARATIONS

** */
DECLARE

lALLY 'LITERALLY 1
,

•0005H»,
1 1'f
•0',
' WHILE TRUE'

,

0DH»,
'OAH ',
BYTE,
•o; f

/* **

INPUT AND EDITING DECLARATIONS

** */

/* BACKSPACE */

LIT LIT
BOOT LIT
ENTRY LIT
TRUE LIT
FALSE LIT
FOREVER LIT
CR LIT
LF LIT
DCNT
CTI LIT
CTS LIT

SCLARE
BS LIT
PERCENT LIT
BELL LIT
TAB LIT
EOP LIT
ENDSFILE LIT
EOC LIT
ERR LIT
CTLZ LIT
BLANK LIT
AMPERSAND LIT
SLASH LIT
LBR ACr. LIT
RERACE LIT
RUBOUT LIT
DATSFC3
DFCE BASED D
NUMSREC
TMEM
RECCRDSMAP
RMPTR BAS ED R
EXT BYT
SAVESEX BYT
SAVE3RN BYTE
STORE
3P BASE D ST
BSTORE
SPTR
BUFFER J
SIZSSNBUF

180)
LIT

/* UP-ARROW; END OF PROMPT */
/*BACK SLANT */
/BAR: END OF CODE */
/* TILDE; END OF ERROR

newsbu:

•03H» ,

•25H«,
'CPH '

,

•09H' ,

'5EH« ,

•5CH' ,

•7CH',
'7EH •

,

»1AH»,
•20H ',

•26H»,
'2FH' ,

•73H •
,

•7DH» ,
' 7 PH '

ADDRESS INITIAL
ATSFCB (33) BYTE,

BYTE,
ADDRESS,

ADDRESS,
ECORDSMAP BYTE,
E INITIAL (0),
E INITIALJO)

,

INITIAL(O) ,

ADDRESS,
BYTE,
ADDRESS,
ADDRESS,
BYTE,
•90« ,

ADDRESS,

*/

(5CH)

ORE

11 1

NBUF BASED NEW$BUF BYTE,
NPTR BYTE,
CLDSBUF ADDRESS,
OBUF BASED OLDSBUF BYTE,
OPTE BYTE,
INSEF.T BYTE INITIAL (FALSE) ,CHAR BYTE,
MODS1283MASK LIT '0FF80H', /* GIVES MEMORY SIZE

IN MULIPLES OF 123 BYTE BLOCKS */
3DOSA ADDRESS INITIAL (0006H) ,SBDOS BASED 3D0SA ADDRESS,
(LABEL3MOVED, REC3MA?$WRITTEN) BYTE INITIAL (FALSE)

,

EDBUFPTR ADDRESS,
(EDSBUF EASED ED$3UF$PTR) (100) BYTE,
RECSMAPSEXT BYTE INITIAL (0) ,

REC3MAPSREC RYTE INITIAL (0) ;

CRTIN: PROCEDURE BYTE;
DO WHILE INPUT(CIS) ;

END;
RETURN NOT INPUT (CTI) AND 07FH;
END CRTIN;

READC: PROCEDURE BYTE;

/* GET A CHARACTER FROM THE CONSOLE AND TRANSLATE TO
UPPER CASE */

DECLARE C 3YTE*
IF (C:=CRTIN) >= 110S0001B /* LOWER CASE A */

AND C <= 111 101 OB /* LOWER CASE Z */ THEN
C = C AND 10 IS 1 1 1 1 B; /* BECOMES UPPER CASE */

RETURN C;
END READC;

MON1: PROCEDURE (FUNC, INFO):
DECLARE FUNC BYTE, INFO ADDRESS;
GC TO ENTRY;
END MON1;

MON2: PROCEDURE (FUNC, INFO) BYTE;
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON2;

MON3: PROCEDURE (FUNC, INFO) ADDRESS;
DECLARE FUNC BYTE, INFO ADDRESS;
GO TO ENTRY;
END MON3;

PRINTCHAR: PROCEDURE (B)

;

DECLARE 3 BYTE;
CALL MON1 (2,B) ;

END PRINTCHAR;

PRINTCHARI: PROCEDURE (C)

;

n

P

C T ARE C BYTE*
IF (C AND 110$60003) = /* CONTROL CHAP */ THEN

DO *

CALL PRINTCHAR (EOP) ;

CALL PRINTCHAR (C OR 40H) ;

END;
ELSE CALL PRINTCHAR (C) ;

END PRINTCHARI;

CRLF: PROCEDURE:
CALL PRINTCHAR (CR) ;

CALL PRINTCHAR (LF) J

END CRLF;

PRINT: PROCEDURE (A) ;

112

DECLARE A ADDRESS:
CALL M0N1 (9, A) ;

CALL CRLF;
END PRINT;

MOVE: PROCEDURE (SOURCE ,DEST, N) ;DECLARE (SOURCE, DEST) ADDRESS,

Do
(

§ H"iV282?,
E
'<S 5H?

D DEST
' " >

BrTE:

D=S; SOURCE=SOURCE+1
;

' DEST=DEST+1;
END;
END MOVE;

FILL: PROCEDURE(START, DEST, CHAR) ;DECLARE (START, DEST) ADDRESS,
(S BASED START, CHAR) BYTE;

DO WHILE START < DEST;
S = CHAR;
START = START + 1;

END;
END FILL;

ERROR: FROCEDURE(I) ;

DECLARE I 3YTE;
DO CASE I;
CALL PRINT(.'LACK ERROR COMMAND SPACE $ ') ;CALL PRINT?. 'DISK WRITS ERROR $');
CALL PRINT(.'FILE NOT PRESENT SM ;

END;
CALI CRLF;
GO TO BOOT;
END ERROR;

DIG.STOSNUM: PROCEDURE (SIR) BYTE;
/* CONVERTS A STRING OF ASCII DIGITS TO A DECIMAL NUMBER */
DECLARE

STR ADDRESS,
STR1 BASED STR 3YTE

,

I BYTE INITIAL (0) ,

M BYTE INITIAL (0) ;

DO WHILE STR1 (I) = 3LANK;
1 = 1+ 1;

END;
IF STE1 (I) = CR THEN

RETURN 1;
DO WHILE STR1(I + 1) <> (BLANK OR SLASH);

M = (M*10) + (STRT (I)-48) ;

1 = 1+ 1;
END;
RETURN M;

END DIGTONUM;

/* ************ ************** ****************************

INPUT AND EDITING MODULE

** */

PROMPT: PROCEDURE(I) ;

DECLARE I BYTE;
CALL MON1 (9, . 'EXPECTING $');
DO CASE I;

CALL PRINT (.'CODE INFORMATION $');
CALL PRINT (. 'ERROR COMMANDS £•)

;

CALL PRINT (. 'PROMPT INFORMATION $');
END *

END'PRCMPT;

INC3RM: PROCEDURE;
RECORDSMAP = RECORD$MAP + 1;
END INCSRM;

113

G0$NEXT3REC: PROCEDURE;
/* INCREMENTS STORAGE POINTER TO NEXT EVEN

RECORD SECTOR */
DO WHILE SPTR < STORE:

SPTR = SPTR + 128;
NUM$REC=NUM$REC+1

;

IE NUMSREC = 128 THEN
DO;

EXT = EXT + 1

;

NUMSREC = 0;
END;

END;
STORE = SPTR-1;
END G03NEXTSRSC;

KOVESDL: PROCEDURE;
DECLARE A ADDRESS, I BYTE, DELIMIT BYTE;
IE (LABELSMOVED = TRUE) THEN

RETURN;
1=1;
A = RECORDSMAP 4-14;
RMPTR, DELIMIT = OBUE(I) ;

CALL INCSRM;
1 = 1+ 1 ;

DO WHILE (RMPTR:=03U7(I)) <> DELIMIT;1=1+ 1;
CALL INCSRM;

END;
RMPTR = DELIMIT;
DO WHILE (RECORDSMA?:=RSCORDSMAP +1) < A;

RMPTR = '0'
;

END;
RMPTR = EXT;
CALL INCSRM:
RMPTR = NUMSREC;
CALL INCSRM;
LABELSMOVED = TRUE;
END MOVESDL;

WRITE: PROCEDURE:
DECLARE A ADDRESS;
IF RECSMAPSWRITTEN = FALSE THEN

DO;
A = .MEMORY - 128:
SAVESSX = DFCB(12) ;

SAVESRN = DFCBp2) ;

DFCB(12) = REC5MAPSEXT;
DFC3(32[= RECSMAPSREC:
DO WHILE (A:=A+128) < BSTORE;

CALL MOVS(A, 80H, 128) ;

IF (DCNT:=MON2 (21,DATSFCB)) <>0 THEN
CALL ERROR(O)

;

END;
CALL MON1 (12, 0) :

DFCBM2) = SAVESEX;
DFCB(32) = SAVESRN;
END;

A = BSTORE - 128:
DO WHILE (A:=A+128) < STORE;

CALL MOVE(A. 80H, 128);
IF (DCNT: =M0N2 (21,DAT$FCB)) <> THEN

CALL ERROR(O) ;

END;
STORE = BSTORE;
CALL MON1 (12,0) ;

END WRITE;

INCSSTORE|
c
PROCEDURE^

oRy 0VERFL0W INCREMENTS STORAGE PTR */

IF (STORE :=STORE+1) > TMEM THEN
DO *

IF' (LABELSMOVED = FALSE) THEN

114

CALL MOVESDL;
CALL WRITE;

. RECSMAPSWRITTEN = TRUE:
END;

END INCSSTORE;

MOV2SSTCRE: PROCEDURE;
<?^?T25E ? i££2RJ1ATI0N FR0M INPUT TO FILE MEMORY AREA */DECLARE I BYTE;
DO 1=1 TO OBUF;

CALL INCSSTORE;
S? = OBUF(I)

;

END;
END MOVESSTORE;

FILL$CODE$ZERC: PROCEDURE;
DECLARE (A,T) ADDRESS, B BASED A BYTE;
A = STORE; T = SPTR + 128;
DO WHILE (A:=A+1) < T

;

E = 0;
END;
END FILLSCODESZERO;

ZEFOSBUF: PROCEDURE;
DECLARE I BYTE;
DO I = TO 89;
N3UF(I) , OBUF(I) = '0'

;

END;
END ZERCSBUF;

END5IINE: PROCEDURE;
/* CHARACTER IS A
CALL GOSNEXTSREC;
CALL MOVESDL;
CALL MOVESSTORE;
CALL INCSSTORE;
CALL ZER0S3UF;
SP = CR;
CALL CRLF;
END ENDSLINE;

CARRIAGE RETURN */

SNDSDL: PROCEDURE;
/* CHARACTER IS A 3AR (|) INDICATES END 0? CODE AREA */
CALL GOSNEXTSREC;
CALL MOVESDL;
CALL MOVESSTORE;
CALL INCSSTORE;
SP = EOC;
CALL FILLSCODESZERO;
CALL INCSSTORE;
CALL ZEROSBUF;
CALL CRLF;
CALL PROMPT (1) ;

END ENDSDL;

ENDSREC" PROCEDURE*
/* CALL WHEN A* UP-ARROW IS ENTERED FROM THE KEYBOARD.

INDICATES END OF DECODED INFORMATION */

CALL GOSNEXTSREC;
CALL MOVESSTORE;
CALL INCSSTORE;
SP = EOP*
LABELSMOVED, RECSMA PSWRITTEN = FALSE;
CALL FILLSCODESZERO;
CALL INCSSTORE;

CALL ZEROSBUF;
CALL CRLF;
CALL PROMPT (0) ;

END ENDSREC;

ENDSERR: PROCEDURE;

115

/* CALLED WHEN (TILDE) ENTERED AT KEYBOARD
INDICATES END OF ERROR CHECKS */

CALL GOSNEXTSREC;
CALL MOVESSTORE;
CALL INCSSTORE;
SP = ERR;
CALL FILLSCODES^ERO;
CALL INCSSTORE;

CALL ZEROSBUF;
CALL CRLF;
CALL PROMPT (2)

;

END ENDSERR;

ENDSF: PROCEDURE:
/* CALLED WHEN END FILE () BLACKSLA3H ENTERED INDICATES

END OF FILE */
DECLARE (EX,NR) 3YTE;
CALL MOVESSTORE;
CALL INCSSTORE;
SP=ENDSFILE;
CALL WRITE;
C^LL INCSRM'
RMPTR = HOC; /* MARK END OF RECORDSMAP */
RECORDSMA? = RSCORDSMAP + 14; /* SAVE EXT AND RN OF

NEXT RECORD TO BE WRITTEN */
RMPTR = DFCB (12) ;

CALL INCSRM:
RMPTR = DFCB (32) ;

EX = DFCB (12); NR = DFCB(32);
DFCE (32) .DFCB (12) = 0;
CALL MOVE(. MEMORY. 30H, 128) ;

IF (DCNT := MON2 (21 , DATSFCB)) <> THEN
CALL ERROR (1) ;

DFCE (12) = EX: DFCB (32) = NR;
IF MON2(16, DATSFCB) = 255 THEN /* CLOSE FILE V

CALL ERROR (2) ;

GO TC 300T;
END ENDSF;

BACKSUP: PROCEDURE:
IF NPTR > THEN

DO;
NPTR = NPTR -1 ;

CALL PRINTCHAR (3S) ;

CALL PRINTCHAR (' ') ;

CALL PRINTCHAR (SS) ;

END;
ELSE

CALL PRINTCHAR (BELL)

;

END BACKS UP;

MOVESTOSOLD: PROCEDURE:
CALL MOVE (NEWSBUF+1 ,OLD$BUF+1 , (OBUF: = NPTR)) ;

OPTR = 0; NPTR = 0;
CALL CRLF

;

END MOVESTOSOLD;

ECPOSON* PROCEDURE"
'cALL'pRINTCHAR (NBUF (NPTR:=NPTR+1) := (OBUF(OPTR:=OPTR+1))) ;

END ECHOSON;

CCPYSONE: PROCEDURE;
IF CPTR < ObUF THEN

CALL ECHOSON;
ELSE CALL PRINT CHAR (BELL) ;

END COPYSONE;

PSMOVESON: PROCEDURE; /* PARTIAL MOVE OLD TO NEW */
DO WHILE OPTR < OBUF;
CALL ECHOSON;
END;
END PSMOVESON;

116

ENTER: PROCEDURE;
IF INSERT THEN

CALL PRINTCHAR (•>')
;

ELSE
CALL PRINTCHAR (» <M

;INSERT = NOT (INSERT):
END ENTER;

PRINT$OLD: PROCEDURE;
DECLARE I BYTE;
DO 1= 1 TO 03UF;

CALL PRINTCHARI (03UF(I)) ;

END;
CALL CRLF:
END PRINT50LD;

PRINTSNEW: PROCEDURE;
DECLARE I BYTE;
DO I = 1 TO NPTR;

CALL PRINTCHARI (NBUF(I)) ;

END;
END PRINTSNEW;

PRINTSBCTH: PROCEDURE;
CALL PRINTSOLD;
CAI.I PRINTSNEW
END PRINT$30TH;

COPYRM0$N: PROCEDURE;
/* COPIES REMAINING CHARACTERS FOR OLD TO NEW BUFFERS */

DO WHILE OPTR <= 03UF;
NBUF (NPTR:=NPIR+1) = OBUF (OPTR : =OPTR +

1) ;

END;
CALL PRINTCHARC +') ; /* INDICATES WHEN DONE */
END COPYSRMSOSN;

3S30SN: PROCEDURE;
/* EACKSPACE OLD PT R AND NEW PTR 1 CHAR */
IF (OPTR > 0) AND (NPTR > 0) THEN

DO;
OPTR = OPTR - 1 ;

NPIR = NPTR - 1 :

OBUF = OBUF - 1;
END;

ELSE
CALL PRINTCHAR (BELL)

;

END 35$0$N;

C0PY3CN: PROCEDURE (C,NEXT)

;

DECLARE (C,I, NEXT) BYTE;
I=OPTR;
DO WHILE OBUF(I:=I+1) <> C;

IF I > OBUF THEN /* NO MATCH */
DO;

CALL PRINTCHAR (BELL) ;

RETURN;
END;

END: /* DO WHILE */
IF NOT(NEXTJ THEN 1=1-1;
DO WHILE OPTR < I;

CALL ECHOSON;
END *

END'COPYSON;

DELETE: PROCEDURE (ECHO) ;

/* ECHO TRUE INDICATES TO START FROM THE CURRENT
POSITION OF OLD BUFFER AND ECHO A % (PERCENT) FOR THE
DELETED CHARACTER. ECHO FALSE INDICATES TO START AT
THE BEGINNING OF THE OLD BUFFER AND DON'T ECHO FOR

117

THE DELETED CHARACTERS. */

DECLARE (I,J,P1,CHAR1,ECH0) BYTE;
IF ECHO THEN P1 = ;

ELSE P1 = OPTR;
CHAR1 = READC;
D0 Si 1 ?;! (0BUF(P1:=P1 + 1) <> CHAR1);

IF P1 > 03UF THEN /* NO HATCH */
DO; '

CALL PRINTCHAR (3ELL)

;

RETURN;
END;

END; /* DO WHILE */
IF ECHO THEN

DO I = OPTR+1 TO P1 ;

CALL PRINTCHAR(PERCENT)
;END;

/* NOW CONDENSE THE 3DFFER */
J=OPTR;
I=P1 ;

DO WHILE I <= OBUF;
OBUF(J:=J+1) = OBUF (I:=I + 1) ;

END *

OBUF = OBUF - (P1-OPTR+1)

;

END DELETE;

DELSN: PROCEDURE;
NPTR=0; OPTR=0;
CALL PRINTCHAR(ENDSFILE)

;

CALL CRLF;
END DELSN;

DISPLAYSRiMCN: PROCEDURE;
DECLARE I BYTE;
I = 0;
CALL CRLF;
DO WHILE (I:=I+1) <= OBUF;

IF I <= OPTR THEN /* EVEN LINE */
CALL PRINTCHAR (» ') ;

ELSE
CALL PRINTCHAR (OBUF (I)) ;

END
;

CALL CRLF;
CALL PRINTSNEW;
END DISPLAYSRMSO.SN;

DELSO: PROCEDURE;
IF OPTR > THEN

DO:
DECLARE I B'fTE;
I = OPTR - 1

;

DO WHILE (I:=I+1) < OBUF;
OBUF(I) = 03UF (1+1) ;

END;
CALL PRINTCHAR(PERCENT) ;

C3UF = OBUF - T;
END;

ELSE CALL PRINTCHAR (BELL) ;

END DELSO;

^SCAPE* PROCEDURE*
/* 'TURNS OFF SPECIAL MEANING OF CHARACTER TO FOLLOW

AND ENTERS CHARACTER IN NEW BUFFER */

CALL PRINTCHARI (CHAR:=READC) ;

NBUF (NPTR:=NPTR+1) = CHAR;
END ESCAPE;

CONTSFILL: PROCEDURE;
CALL MOVESSTORE;
CALL CRLF;

118

END CONTSFILL;

PRINTSTAS: PROCEDDRE
IPTR + 5) >
,LL PRINTCHAR (BELL) ;

if (nptr + 5) > sizesnbuf then
ca:~

i .

ELSE
NBOF (NPTR:=NPIR+1) = TAB
CALL PRINTCHAR (TAB)

;

END PRINT $T A3;

BEGINSWPD: PROCEDURE;
DO WHILE NEW$BUF(NPTR-1) <>

CALL BACK$UP;
END;
END BEGIN $WRD;

LEDIT: PROCEDURE;
DECLARE
I BYTE,
LTR EYTE,
FOUND 3YTE INITIAL (FALSE)

,

M BYTE;

/* READS CHARACTERS FROM THE CONSOLE AND ALLOWS EDITING
USING THE PROCEDURES OF A LINE EDITOR */

OPTR = 0; NPTR = 0;
DO WHILE NPTR < SIZESNBUF;
IF (CHAR:=RSADC) = AMPERSAND THEN
/* BASIC LINE EDITOR COMMAND */

DO *

CALL PRINTCHAR (EDSBUF (0) :=AMPERSAND)

;

1=1;
DO WHILE jCHAE:=READC) <> CR

;

CALL PRINTCHAR (ED$BUF (I) : = CHAR) ;

1 = 1 + 1

;

END;
IF (ED$BUF(1) = 'C f

) AND (ED$BUF(2) = 'H') THEN
/* CHANGE COMMAND */

DO;
1 = 3;
DO WHILE ED$BUF(I) = BLANK;

I = I + 1 ;

END;
IF ED$BUF(I:=I + 1) <> SLASH THEN

/* VIR3ULE EXPECTED */
CALL ERROR (8) ;

LTR = (I:= I + 1) ;

CALL COPY$ON (EDS3UF (LTR) , FALSE);
DO WHILE FOUND = FALSE;

DO WHILE (EDSBUF(I) <> SLASH) AND
(SDSEUF(I) = OBUF(OPTR));1=1+1;
IF (OPTR:=OPTR + 1) > OBUF THEN

CALL ERROR (9)

;

END;
IF (ED$BUF(I) <> OBUF(OPTR)) THEN
/* LOOK FOR NEXT OCCURRENCE */
DO;

I = LTR;
CALL COPYSON (ED3BUF(I) , FALSE);
END;

ELSE
FOUND = TRUE;

END;
CALL ENTER;
DO WHILE EDSBUF(I+1) <> SLASH;

NBUF(NPTR:=NPTR+1)=ED$BUF (I: = I + 1) ;

END;
CALL ENTER:
CALL P$MOVE$ON;

END;

119

IF (ED$BUF(1) = 'D') AND (ED$BUF(2) = 'E') THEN
/* DELETE COMMAND */

CALL DELETE (FALSE) ;

/* DELETE OLD BUFFER, DO NOT ECHO PERCENT SIGN */
IF (EDSBUFM) = 'F') AND (ED$BUF(2) = 'I') THEN
/* FILE COMMAND */

CALL MOVETOOLD;
IF (EDSBUFM) = »Q«) AND (ED$BUF(2) = 'U') THEN
/* QUIT COMMAND */

GO TO ENDEDIT2;
IF (EDSBUFM) = 'N») AND (ED$BUF(2) = »X') THEN
/* NEXT COMMAND */
CALL PRINT (.'NEXT COMMAND IS NOT IN CREATE PROGRAM

EDITOR $')

;

IF (EDSBUFM) = »P«) AND (ED$BUF(2) = ' R •) THEN
/* PRINT COMMAND */
CALL PRINT]. 'PRINT COMMAND IS NOT IN CREATE PROGRAM

EDITOR $')
;

IF (EDSBUF(1) = «U') AND (ED*EUF(2) = 'P') THEN
/* UP COMMAND */
CALL PRINT (.'UP COMMAND IS NOT IN CREATE PROGRAM

EDITOR $')

;

IF (EDSBUFM) = »P») AND (ED$BUF{2) = '0') THEN
/* PROMPT ON COMMAND */
CALL PRINT (.' PROMPT-ON COMMAND IS NOT IN CREATE

EDITOR $')
;

IF (EDSBUFM) = 'N') AND (ED$BUF(2) = 'P') THEN
/* NO PROMPT COMMAND */
CALL PRINT (. 'NO-PROMPT COMMAND IS NOT IN CREATE

EDITOR S')

;

IF (ED$BUF(1) = 'I') AND (ED$BUF(2) = 'N') THEN
/* INSERT COMMAND */ J

CALL PRINT (. 'INSERT COMMAND IS NOT IN CREATE
EDITOR S') ;

^ND *

IF CHAR <= CTLZ THEN /* CONTROL CHAR */
BO CASE CHAR;

/* CAS NULL */
t

/* CASE 1 CONTROL A */
CALL BACKUP;

/* CASE 2 CONTROL B */
CALL MOVESTOSOLD;

/* CASE 3 CONTROL C */
CALL COPYSONE;

/* CASE 4 CONTROL D */
DO;
CALL PSMOVSSON;
GO TO ENDEDIT1 ;

END;

/* CASE 5 CONTROL E */
CALL ENTER;

/* CASE 6 CONTROL F */
GO TO ENDEDIT2;

/* CASE 7 CONTROL G */
CALL PRINT3B0TH;

/* CASS 8 CONTROL H */
CALL PSMOVESON;

120

/* case 9 Control i */
call print$tab;

/* cass 10 control j */
go to ehdedit1;

/* case 1 1 control k */
t

/* CASE 12 CONTOL L */
CALL COPYRM0$N;

/* CASE 13 CONTROL H */
DO;
CALL MOVESTOSOLD:
CALL ENDSLINE;
END;

/* CASE 14 CONTROL N */
CALL BSSOSN;

/* CASE 15 CONTROL */
CALL CO?Y$ON (READC, FALSE)

/* CASE 16 CONTROL P
CALL DELETE (TRUE) ;

/* CASE 17 CONTROL Q
CALL D3LSN;

/* CASE 18 CONTROL R
CALL DISPLAYRM0$N;

/* CASS 19 CONTROL S
CALL DELSO;

/* CASE 20 CONTROL T
CALL CONTSFILL;

V
*/

*/

*/

*/

/* CASE 2 1 CONTROL V */
CALL COPYSON (TAB, FALSE)

;

/* CASE 22 CONTROL V */
CALL ESCAPE;

/* CASE 23 CONTROL W */
CALL BEGINIWRD;

/* CASE 2 4 CONTROL X */
CALL DELETE (FALSE) ;

/*CASE 25 CONTROL Y */
DO:
CALL P$MOVE$ON;
CALL MOVESTO$OLD;
END;

/* CASE 26 CONTROL Z */
CALL COPYSON (READC,TRUE) ;

ELSE
IF C

C
ELSE
IF C

END *

/* CHECK SPECIAL CASES */
HAR = RUBOUI THEN
ALL BACKUP;

HAR = EOC THEN
DO;
CALL PRINrCHAR(CHAR)

;

CALL MOVETOOLD;
CALL ENDSDL;

/* INDICATES END OF CODED IMFO */

121

20 F

END;
ELSE
IF CHAP. = ERR THEN

DO;
CALL PRINrCHAR(CHAR)

;CALL MOVESTOSOLD;
CALL ENDSERR;
END;

ELSE
IF CHAR = EOP THEN /* END OF PROMPT INFORMATION */

DO;
CALL PRINTCHAR (CHAR) ;CALL MOVESTOSOLD;

. CALL ENDSREC;
END;

ELSE
IF CHAR = END$FILZ THEN /* END OF FILE */

DO;
CALL PRINTCHAR (CHAR) ;CALL MOVESTOSOLD;
CALL ENDSF;
END;

ELSE
DO;

CALL PRINTCHAR (CHAR)
;

HB0F(NPTR:=NPTR+1)=CHAR;
IF NOT (INSERT) THEN OPTR = OPTR + 1;
IF NPTR = 72 THEN CALL PR INTCHAR (BELL)

;

END; '

END; /* DO WHILE .*/

/* ARRIVE HERE IF BUFFER FULL */

CALL PRINTCHAR(BELL)

;

ENDEDIT1: CALL MOVESTOSOLD;
SNDEDIT2:
END LEDIT;

/* START MAIN PROGRAM HERE */

OLDSEUF = (NEWSBUP : = .BUFFER) +90;
OBUF = 0:
CALL MOVE (.'DAT 1

, DATSFCB + 9 , 3) ;

EFC3.DFC3 (12) .D?CB (32) = 0:
IF MCN2(17, DATSFCB) <> 255 THEN /*FILE EXISTS */

DO;
CALL PRINT(.' FILE ALREADY EXISTS $•);
GO TC BOOT;

END;
IF MCN2(22, DATSFCB) = 255 THEN

DO;
CALL PRINT(.' OUT OF DIRECTORY SPACE $');
GO TO BOOT;

END;
IF (DCNT: =MON2(15, DATSFCB)) = 255 THEN /* CAN'T OPEN */

CALL ERROR(2)

;

CALL MON1 (12,0); /* LIFT READ WRITE HEAD */
/* ARRIVE HERE WITH NEW FILE CREATED */
DFCE(32) = 1 ; /* RESERVE FIRST RECORD FOR RECORD MAP */
TMEM = (SBDOS - 1) AND MOD128MASK;
CALL FILL (.MEMORY, TMEM. 0) ;

SPTP, RECORD$MAP = .MEMORY;
3STORE = .MEMORY + (128 * 12) ;

STORE = 3ST0RE;
SPTR = STORE - 128;
NUMSREC = 12:
CALL PROMPT (0);
DO FOREVER;

CALL LEDIT;
END;

122

BIBLIOGRAPHY

1. Burns, J- C, "The Evolution of Office Information

Systems," Datamation, v. 23, p. 60-64, April 1977.

2. Digital Research, CP^M Interface Guide, 1976.

3. Digital Research, An Introduction to CP/M Features and

Facilities, 1976.

4. Holyoak, J. G., LT, DSN, A Shipboard Report Origination

System Utilizing a Microcom pute r, M. S. Thesis, Naval

Postgraduate School, 1976.

5. INTEL Corporation, 30M and 8080 PL^M Programming

Manual, 1975.

6. Naval Electronics System Command, Test and Evaluation

IS22I1 X/C 13 Increment I ICO MP RE PJ., 30 June 1975.

7. Office ot the Chief of Naval Operations, NWIP 10-1 (S) ,

0££I^!i5I!§.l Reports, 1 September 1974.

8. Office of the Chief of Naval Operations Instruction

C3 501.6 6A, NA VFORSTAT Reporting Guide 1U)_, 5 January

1976.

9. Tollefsen, T. S., LCDR, USN, "Reports or Readiness: A

Dilemma," Naval Jjar College Review, v. 26, p. 74-82,

May-June 1974.

10. Wohl, A. D., "What's Happening in Word Processing,"

Datamation, v. 23, p. 65-71, April 1977.

123

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station

Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School

Monterey, California 93940

3. Chairman, Code 52 2

Computer Science Department

Naval Postgraduate School

Monterey, California 93940

4. LCDR S. L. Holl, Code 52H1 1

Computer Science Department

Naval Postgraduate School

Monterey, California 93940

5. Assoc Professor U. R. Kodres, Code 52Kr 1

Computer Science Department

Naval Postgraduate School

Monterey, California 93940

6. LCDR J. A. Dollard, Code 306 1

Naval Personnel Research and Development Center

San Diego, California 92152

7. MAJ 5. J. Muller, Code MCC 010 1

Headquarters Battalion

Headquarters, United States Marine Corps

Washington, District of Columbia 20380

124

8. LCDR J. B. Godley

USS Shasta (AE-33)

Fleet Post Office

San Francisco 96601

125

Thesis i Ti 9 r: q
G5235 God ley " ' '" ~ J

c *l A microcomputer based
generator of recurring
operational reports.

S FEB80
I 4 »Q¥ eo

MAY 25 85
OCT 25 35

20556
257!
260i_
26 36
26 14 7-
2 7 3 11
2 7 4 5 5
303 00
3 3 188

Thesis 17125)
G5235 God ley

c.l A microcomputer based
qenerator of recurring
operational reports.

thesG5235

A microcomputer based generator of recur

3 2768 002 13053 6
DUDLEY KNOX LIBRARY

