NAVAL POSTGRADUATE SCHOOL Monterey, California

REPORT DOCUMENTATION PAGE	READ INTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVTACCESSION NO.

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abstract onsorod in Block 20, if difforont from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on roverso sldo tf nocessary and fdonllfy by block numbor)
hydrography, hydrographic surveying, confidence ellipse, confidence circle repeatability, hydrographic positioning
20. ABSTRACT (Continue on reverse alde ff noceseary and ldontfy by block numbor)

Two methods for evaluating the accuracy of hydrographic positioning data are presented. One method consists of classifying each position in a survey based on the radius of the 90 percent confidence circle. The second method involves classification of positions based on the parameters of the 90 percent confidence ellipse. Both methods are based on geometric and statistical relationships between intersecting lines of position.

Range-range, azimuth-azimuth, and range-azimuth positioning data are classified using both criteria. For noncritical positions, tne confidence circle method is found to be preferable due to its ease of interpretation. For positions of significant features, such as underwater hazards, tie confidence ellipse provides a more useful representation of the shape and orientation of the true error distribution.

The concept of presurvey positioning design is also presented. With the aid of computer graphic displays, the hydrographer can predict the accuracy of offshore positioning data prior to data acquisition. By analyzing accuracy lobes generated about shore stations, a survey can be designed to meet given specifications.

Affrcved for public release; distribution unlimited.

Criteria for the classification of Hydrcgraphic Eositioning Data

by

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN HYDROGRAPHIC SCIENCES from the

NAVAI POSTGRADUATE SCHOOL September 1984

ABSTRACT

Iwc methods for evaluating the accuracy of hydrografhic positioning data are presented. One method consists of classifying each position in a survey based on the radius of the 90 percent confidence circle. The second method involves classificaticn of positions based on the farameters of the 90 fercent confidence ellipse. Both methods are based on gecmetric ana statistical relationships $k \in t w \in \in$ intersecting lines of fosition.

Range-range, azimuth-azimuth, and range-azimuth fcsitioning data are classified using both criteria. For noncritical positions, the confidence circle method is found to be freferable due to its ease of interpretation. For positicns of significant features, such as underwater hazards, the confidence ellipse provides a more ustful representation of the shape and orientation of the true error distribution.

The concept of presurvey fositioning design is alsc fresented. With the aid of computer graphic displays, the hydrografher can predict the accuracy of offshore positioning data prior to data acquisition. By analyzing accuracy lobes generated about shore stations, a survey can be designed to meet given specifications.

TABLE OF CONTENTS

I. INTECDUCTION 9
A. BACKGROUND 9
B. ACCURACY STANDARDS FOR HYDROGRAPHIC POSITIONING 11
C. OBJECTIVES 12
II. NATURE OF THE FROBLEM 14
A. HYDROGRAPHIC POSITIONING GEOMETRIES 14

1. Range-Range 14
2. Hyper bolic-Hyperiolic 17
3. Range-azimuth 19
4. Azimuth-Azimuth 20
E. CLASSES OF ERRORS 21
5. Blunders 21
6. Systematic Errors 24
7. Random Errors 27
C. TREATMENT CF RANDCM ERRORS. 28
8. One-Dimensional Errors 28
9. Two-Dimensional Errors 30
10. Circular Precision Indexes 38
III. EXPERIMENT DESIGN AND IMPLEAENTATION 49
A. DATA ACQOISITION PRCCEDURES 49
IV. GESOLTS AND LATA ANALYSIS 52
A. DATA PROCESSING 52
E. ACCORACY ANALYSIS OF HYDROGRAPHIC POSITIONING DATA 53
C. ACCURACY EREDICTIONS 59
V. CCNCIUSIONS AND RECOMMENDATIONS 67
A. ACCORACY SEECIFICATIONS 67
B. JSES FOR ACCURACY FIGURES 71
APPENIIX A: SUBROJTINE FOR 90 PERCENT CONFIDENCE CIRCLE EAFAMETERS 74
APPENIIX E: ACCURACY CLASSIFICATION: 90 FERCENI CONFIDENCE CIRCLES 76
APPENLIX C: PROGRAM FOR 90 PERCENT CONFIDENCE ELIIPSE FARAMETEES 85
APPENEIX L: ACCORACY CLASSIFICATION: 90 PERCENT CONFIDENCE ELLIFSES 88
IIST OF FEFERENCES 91
INITIAI DISTRIBUTION IIST 93
I. Values of the constant K 34
II. Probabilities Associated With $\mathrm{d}_{\text {rms }}$. 42
III. Prokabilities, Given c and R. 44
IV. Radii of Circles Given C and P. 45
V. Coordinates of Control Stations 53
VI. Linear Approximations for K as a Function of c. . 55
VII. B Limits for Surveys • 68
VIII. Accuracy Figures for $\sigma_{1}=\sigma_{2}=1.3 \mathrm{~m}, \rho_{12}=0$. 69
IX. Accuracy Figures for $\sigma_{1}^{1}=\sigma_{2}^{2}=3 \mathrm{~m}, \rho_{12} \stackrel{12}{=} 0$. 70
X. Accuracy Figures for ${\underset{1}{1}}^{\text {f. }} \operatorname{\sigma }_{2}^{2}=10 \mathrm{~m}, \rho_{12}=0 . \operatorname{lo}$

LIST OF FIGURES

2.1 Gecmetry of a Range-Range Position 17
2.2 Gecmetry of a Hyper bolic-Hyperkolic Position 19
2.3 Gecmetry of an Azimuth-Azimuth Position 22
2.4 The Normal Listribution 29
2.5 Circular Normal Distribution 32
2.6 Error Ellipse Formed Ly Two Uncorrelated LCE's 33
2.7 Coordinate Iransformations for Correlated LOP's 362.82.93.1
Error Ellipses Around a Range-Range System 39
The drms Errcr Circle 41
Hydrographic Survey Area 50
4.1 Range-Range Accuracy Analysis 56
4.2 Azimuth-Azimuth Accuracy Analysis 57
4.3 Construction of a Reliability Curve 61
4.4 Keliability Contours: Range-Range Geometry 63
4.5 Reliability Contours: Azimuth-AzimuthGecmetry64
4.6 Range-Range Foint Accuracy Prediction 65
4.7 Azimuth-Aziruth Point Accuracy Prediction 66

I. INTRODOCTION

A. EACKGFCOND

A hydrographic record can be viewed as the resultant cf two indefendent measurements made at a discrete point cver a body of water. These measurements involve the determination of a vessel's positicn at a given time as well as the depth of water at that position. Of interest to the hydrographer and tc the user of hydrographic data is the accuracy of the position determinaticrs. Fundamental to the determination cf positional accuracy is the identification of the sources of errors in positicn measurements and the ultimate treatщent cf these errors.

A hydrcgraphic position can be determined by a number of methods all involving geometric relationships betweer known points and the vessel's unkncwn location. The known points may be fixed stations on shore, whose coordinates have $k \in \in n$ determined by geodetic survey methods, or they may be rapidly roving sateliites whose coordinates in time and space can $k \in d \in f i n e d ~ v e r y ~ p r e c i s e l y . ~ A ~ h y d r o g r a p h i c ~ p c s i-~$ tion is established $k y$ the intersection of two or more lines of position (LOP's) which are generated by the geometric relaticnships between the fixed points and the vessel's unknown location. The resultant accuracy of the vessel's position is therefore, in part, a function of the errors associated with the irtersecting LOP's.

Several measures cf accuracy can be used to evaluate the quality of a hydrografhic position. Predictability, or absolute accuracy, is the measure of accuracy with which the positioning system can define the location of the same foint in terms of geographic coordinates. Repeatability, cr
relative accuracy, is a measure with which a positionirg syster permits a user to return to a specific point on the earth's surface in terms of the LOP's generated ky the system [Fef. 1, p. 14]. With the elimination of all systematic cr 上ias errors, the terms repeatability and predicta-
 work toward this condition, although it is not always achievarle.

Heinzen [Ref. 2] and Burt [Ref. 3] have presented several techniques fcr quantifying the repeatable accuracy for offshore positions. These techniques have roots in the statistical treatment of randcm error. Although the methcds have $k \in \in$ well documented, no single criterion to classify the accuracy of a hydrographic position has been agreed ufon ky the internaticnal hydrographic community.

Freceding the development of automation in hydrografhic data acquisition and frocessing, the task of calculatirg an accuracy figure to attach to each position in a hydrographic survey was unthinkable. To ensure overall accuracy in a survey, certain generalizations were developed to act as guidelines. For example, the U.S. Coast and Geodetic Survey
 concerning the strength of a three-point fix:

> The fix is strong when the sum of the two angles is egual to or greater than 1800 and neither angle is than 3 co strcnger wilhe near ther the the fix.

Generalizations of this type frovided useful qualitative guidance for assuring a degree cf positional accuracy and many are still in existence today.
with the aid of computers, the hydrographer now has the capacity to evaluate the accuracy of positioning data fcr an entire survey. An accuracy figure can be computed for each gositicn in a survey and stored in a data base along with
cther survey information. This figure may provide useful information for users of the data, as well as a yardstick for the hydroyrapher to evaluate the quality of the work. Furtherycre, a presurvey accuracy analysis enables a survey to de designed to meet desired specifications.

E. ACCOFACY STANDARDS FOR HYDGOGRAPHIC POSITIONING

In 1982, the International Hydrographic organizaticn (IHO) putlished new recommendations for error standards concerning the accuracy of hydrographic positions. These standards [Ref. 5] arf:

Mcst statisticiars define the term "probable errcr" as that $\in I r c r$ occurring at the 50 percent probaicility level. However, the author cf the IHO standards, Commodore A.H. Cooper fan (Ret.) has stated that the term "probable error" was interded to have no statistical significance. Munscn interpreted the words "shall seldom exceed" to mean 10 percent of the time [fef. 6]. Using this interpretaticr, the first sentence of the specification might be written:

The position of soundings dangers and all other significant features should be determined with an accuracy such that any error in position measured relative tc shore control will fall within a circle with radius of the $\operatorname{ririmum~plottable~error~at~the~scale~of~the~survey~}$ (normally 1.0 ma. on paper). with 90 percent confidence.

The specification in this form could be evaluated quantitatively. The critericn for defining accuracy in terms of a fixed frobability is common in the field of surveying. For example, the standards of accuracy developed for geodetic
contrcl surveys have their origin in probability thecry. Procedures for obtaining first-crder geodetic positions require sixteen repeated theodolite observations of each direction. Lower order positions require fewer numbers of cbservations. Given the precision of one observation cf each direction, it can be demonstrated that increasing the number of observations coincides with increasing the frcbability $c f$ the direction falling within specified limits.

Fegarding accuracy determinations, there are several problems unique to hydrographic surveying. Whereas standards for other types of surveys rely on multiple observations of the same quantity, the accuracy of a hydrographic position must be evaluated in terms of a single observation (which may be the intersection of two or more LOP's). Diverse methods for oktaining a hydrographic position exist and these methods must all be evaluated using the same criterion. Also, there is a broad spectrum of equipment used in hydrographic fositioning and in many cases the precision of this equipment is not well defined.

C. CEJECTIVES

A $n \in \in d$ exists to give quantitative meaning to the accuracy specifications set forth by the IHO. One of the okjectives of this thesis is to demcnstrate that defining the specifications in terms of the fixed 90 percent confidence level is a valid interpretation. By defining what the specificatiors imply, procedures can be developed to meet the standards.

A second objective of this thesis is to apply the thecry of errcrs, associated with hydrcgraphic positioning, to a data set. This analysis involves classifying positicnirg data acquired in a survey based on the radii of circles of equivalent frobability. It will be demonstrated that this
method of classification is a useful index for quantifyirg the accuracy of fositions. The computed radii of the 90 percent confidence circles can serve as an accuracy figure that can be attached to each position in a survey and stored in a ciata base.

The third objective of this thesis is to demonstrate that a presurvey analysis can be used in designing positional accuracy to $m \in \epsilon t$ specifications. The existing general guidelines for planning can be ketter defined. For example, in planning a survey hydrographers usually lay out circles which delimit the 300 and 1500 koundaries that define the minimum and maximum allowable intersection angles ketw $\in \in$ two LOP's. As a means to meet accuracy requirements, it can be shown that these limits should vary based on the scale of the survey and the precision of the fositionirg equifment.

II. NATORE OE THE PROBLEM

The development cf an accuracy figure for offshcre fositions is inherently tied to the geometry of the fositiorirg methcd and the errors which are associated with the fositioning €quipment that is used. This chapter will discuss the gecmetric and statistical elements involved in deter-
 guantifying refeatable accuracy.

A. \quad Y Y FCGRAPHIC POSITIONING GEOMETRIES

An offshore fix can be determined by the intersecticn of two or more iop's. These LOP's may be gen erated by $\in l \in C^{-}$ tronic or visual means. Working toward the develofment of an accuracy index, it will be necessary to compute the angle of intersection of the LOP's associated with different fositioning geometries. The following sections discuss the geometry cf conventicral offshore positioning methods and ways to compute the argles of intersection. This thesis will not address the geometry involved in a three-point sextant fix.

1. Fange-Range

Establishing an offshore fix by range-range gecmetry involves measuring distances electronically from fixed fositions on shore to $t h \in$ vessel's unknown location. Ranges can ke determined by measuring the elapsed time between transmission and receipt of a radio pulse or by comparing the Fhase of the transmitted wave with the phase of the received wave [Ref. 2]. In each case, transmitters are set on stations on shore whose coordinates are determined by frecise land survey $\mathbb{I} \in$ thods.

An electronic pcsitioning system may be active cr passive. In an active system, a transmitter frow the survey launch keys the transmission of ranges from the shore staticn. In turn, the signals generated from the shcre staticns (slaves) are then received by the launch. An active system is limited to a finite number of users, usually not more than about four. The number of users cf a fassive system is unlimited as the survey launch requires only a receiver which is constantly listening for signals which are keing transiftted from shore. short-range, cr line-of-sight, positioning systems are used for nearshore hydrographic surveys. These systems operate in the microwave region of the electrcmagnetic spectrum (3 to 10 GHz). A distance is determined by observing the time needed for a fulse to travel from a master transponder located aboard the survey vessel to a remote transponder cn shore and back to the master transponder. Knowing the average velocity of the electromagnetic pulse, the distance D is $t h \in I$

$$
\begin{equation*}
D=\frac{c t}{2} \tag{2.1}
\end{equation*}
$$

where c is the group velocity of the wave packet and t is the two-way travel tire. Short-range systems which are in wide use today are Racal Decca's "Trisponder" and Motorcla's "Mini-Ranger." These systems have direct range readout and are readily interfaced into a navigational computer and a data acquisition system. Both systems are active and user linit \in 。

Medium-range positioning systems operate in the $1-$ to $5-\mathbb{M H z}$ frequency range of the electromagnetic spectrur. A distance is determined by measuring the phase relaticnship上etwefn transmitted and received waves. These systems are usually referred tc as continuous wave systems and the

Froblem of lane ambiguity must be addressed. Ranges are expressed in full and partial lane counts where a lane width w is

$$
\begin{equation*}
w=\frac{\lambda}{2} \tag{2.2}
\end{equation*}
$$

where λ is the wavelength of the transmitting frequency, f, and given by

$$
\begin{equation*}
\lambda=\frac{c}{f} \tag{2.3}
\end{equation*}
$$

Medium-range systems commonly in use today are Cubic Western's "ARGO," Hasting Raydist's "Raydist," and odom Cffshcre's "Hydrotrack."

The angle of intersection associated with a rangerange position is computed frcm a simpie trigorometric relationsbip. The vessel's position P (Fig. 2.1) is det $\in \mathrm{I} \mathbb{D}$ in $\in d$ by the intersection of the ranges from the left and right shore stations, R1 and R2 respectively. B is the base line distance computed between the two known shore stations. Since the range circles from the shore stations intersect at two points, it is necessary for the plotter to reccgnize which side of the base line the vessel is on in order to eliminate the ambiguity. The angle of intersection of the two LOP's (β) is given by the law of cosines

$$
\begin{equation*}
B=180^{\circ}-\operatorname{Arccos}\left(\frac{B^{2}-R 1^{2}-R 2^{2}}{2 R 1 R 2}\right) \tag{2.4}
\end{equation*}
$$

In qualitative terms, the fix is strongest when B approaches 900. Most hydrographic specifications limit the angle cf intersection fror a rinimum of 300 to a maximum of 1500 .

Figure 2.1 Gecmetry of a Range-Range Position
2. Hुyperbolic=팓erbolic

Hydrographic positioning by hyperbolic-hypertolic geometry utilizes the intersection of two hyperbolas each generated about a pair of shore control stations. A hyferbola is the locus of points in which the difference cf distarce from two fixed points is always constant. A threestaticn hyperbolic net is the most commonly usel hypertolic mode for offshore survey (Fig. 2.2). One family of hyferLolas ($\mathrm{R} \in \mathbb{d}$) are generated about a master station, M, and a slave, R; while a seccnd family of hyperbolas (Green) are generated with respect to the master and a second slave, G. For the first family of hyperbolas, the control foints u and R act as the foci, while points M and G act as the fcci for the second family.

Hyperbolic location methods can be divided into two groufs based on the electronic frinciples used to define the distance differences [Ref. 7. p. 87]. Loran is an example of a pulse system in which the differences in times cf arrival of pulses transmitted $k y$ the master-slave combinations are translated into distance differences. whe resultant position has no lane ambiguity and is easily resolved. The seccnd method of hyperbolic positioning involves measuring a chase differerce from two master-slave combinations at the vessel's position. The phase difference translates into a fractional lane count which in itself provides an ambiguous fosition. This amoiguity is resolved by using a whole-lane counter which is initialized at a known geografhical foint. In hyperbolic positioning, the ship is in a passive mode and the system can be used by many vessels.

The angle of intersection between the two hypertolas

S_{r} is the length of red base line,
S_{g} is the length of green base line,
R_{m} is the distance tetween master and vessel's pcsiticn P ,
R_{r} is the distance from red slave to point P,
R_{g} is the distance from green slave to point P,
α_{r} is the angle between lines $P M$ and $P R$, and
α_{g} is the angle between lines $P M$ and $D G$.
The spacing $t \in t w e e n$ lanes increases with distance from the master-slave pair. The lane widths along the base line are

$$
\begin{equation*}
w_{r}^{\prime}=\frac{\lambda_{r}}{2} \quad \text { and } \quad w_{g}^{\prime}=\frac{\lambda_{g}}{2} \tag{2.5}
\end{equation*}
$$

Then the lane widths at any point P are

$$
\begin{equation*}
w_{r}=\frac{\lambda_{r}}{2}\left(\frac{1}{\sin \left(\alpha_{r} / 2\right)}\right) \quad \text { and } \quad w_{g}=\frac{\lambda_{g}}{2}\left(\frac{1}{\sin \left(\alpha_{g} / 2\right)}\right) \tag{2.6}
\end{equation*}
$$

where $t b \in \operatorname{term} 1 / \sin (a / 2)$ is called the lane expansion factor．The angle of intersection B ，between the two hyperbolas is then given by

$$
\begin{equation*}
B=\frac{a_{r}+\alpha_{q}}{2} \tag{2.7}
\end{equation*}
$$

Figure 2．2 Geometry of a $⿴ 囗 十 一$ ferbolic－Hyperbolic position

3．Range－Azimuth
This positioning geometry is used for nearshore， line－cf－sight surveys．One LOE is generated by an alec－ tronic range originating from a transmitter located on a shore control station．A microwave system is commonly used
in this arrangement but systems employing a laser can alsc be used for short-range work. Another IOP is generated by fixing an azimuth frcil a shore control station to the vessel. A second control station is used for an initial azimuth $上 y$ the observer. Azimuth determinations can be made after cbserving directions with a theodolite as an observer tracks the moving vessel.

There are twc ways to determine a range-azimuth positicn. The most common way is to have the theodolite and the transmitter occupy the same shore control station. Hence, the angle of intersection. β. of the LOP's is always 900. This arrangement is commonly used by the National Ccean Service (NOS) fcr large-scale nearshore surveys.

The other way is to have the theodolite and the transmitter occupy two different control points. Then the geometry is similar to that of the range-range position. The angle of intersection, B, is computed by trigoncmetric relaticnshifs among the azimuth of a line between the shcre staticns, the observed direction to the vessel, and the measured range to the vessel.

4. Azimuth=Aziquth

Azimuth-azimuth positioning geometry is used for nearshore high-accuracy surveying. Theodolites are stt over two contrcl stations on shore. The vessel is sighted on simultaneously by the two theodolite observers, generating two visual LOP's whose intersection define the vessel's location. Initial azimuths are fixed by sighting cn control stations which are visible to the observers.

The angle of intersection for an azimuth-azirutr. position is dependent on the geometric relationships retween the cccupied stations, the initial stations, and vessel's position (Fig. 2.3). Assuming that theodolite observers
occupy stations 1 and 2, and initial on stations 3 and 4 , respectively, the observer at station 1 measures angle y_{1} ard the observer at staticn 2 measures γ_{2} to the vessel. The angle of intersection, B, is then computed by first $d \in t \in r-$ mining the forward azimuths, measured clockwise from the south. ficm stations 1 to $2\left(\alpha_{12}\right)$, 1 to $3\left(\alpha_{13}\right), 2$ tc 1 $\left(\alpha_{21}\right)$, and 2 to $4\left(\alpha_{24}\right)$. The interior angles, θ_{1} and θ_{2}, of triangle 12 P are

$$
\begin{equation*}
\theta_{1}=\left|\alpha_{13}+\gamma_{1}-\alpha_{12}\right| \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{2}=\left|\alpha_{24}+\gamma_{2}-\alpha_{21}\right| \tag{2.9}
\end{equation*}
$$

so the angle of intersection, β, at the vessel's location is

$$
\begin{equation*}
B=180^{\circ}-\left(\theta_{1}+\theta_{2}\right) \tag{2.10}
\end{equation*}
$$

E. CIASSES OF ERRORS

All hydrografhic positioning measurements are subject to error. The following sections discuss categories of errors and $m \in t h o d s$ used to treat these errors.

1. Elunders

Elunders are gross mistakes which are generally due to the carelessness of the observer. Blunders can vary in magnitude, ranging from large errors which are easily detected, to small errors which may be barely distinguished. They can be detected by making repeated observations cr by carefully checking the data in the processing phase. Blunders occur in various forms and most can re avoided by carefully planning tre data acquisition process.

Figure 2.3 Georetry of an azimuth-Azimuth Position

Consider the following as an example of a blunder associated with range-range geometry. An offshore fositicn is to $k \in$ determined $k y$ the intersection of two electronic IOP's generated from transmitters located on known shore staticns. The vessel is working west of a shoreline that runs generally in a north-south direction. As the hydrcgrapher faces the stations from sea, the southern shore station is mistakenly identified as left and the northern shore station as right. The resultant offshore positica will plot to the east of the base line. This blunder is readily detected and can be easily remedied.

Not all types of blunders are so easily detected. Suppose an offshore pcsition is to be determined ky a
range-azimuth fix. A range and an azimuth are generated from a kncwn control station to the vessel's position. A second control staticn is used to fix the initial azimuth; a third shore control station is located 10 meters from the initial station and its coordinates are mistakenly used for the initial station in plotting. The resultant hydrographic position is in error, but this error will not be easily distinguished.

Although most blunders have their origin ir human carelfssness, some can be attributed to equipment malfurction. Fcr example, microwave systems which gererate LOE's are known to become unsteady under certain conditiors. Spuricus range readings resulting from signal reflections can $t \in$ reccrded as true positioning data. In this case, the blunder may or may not be easily detected.

In automated data acquisition systems, software has keen $d \in v \in l o p e d t c d e t \in c t$ the occurrence of anomalous range readincs. By inputting a course and speed of a vessel traveling along a line, the computer can determine if the recorded fosition is valid based on the principle of dead reckoning. If the recorded position is found to be invaiid the hydrographer will be immediately alerted to the situation and can take action to remedy the problem. In nonautomated systems the principle of dead reckoning is applied manually. Given the course and speed of $t h \in v e s s e l, t h \in$ validity of the position can be checked with spacing dividers. This involves checking the spacing between fixes recorded before and after the position in question.

Eefore any tyfe of error analysis is to te ferfcrmed cn the hydrographic fcsitioning data, it is essential that all bluncers be identified and properly treated. In general, care£ul plancing coupled with thorough checking will wirimize the occurrence of blunders.
2. Systematic Errors

Systematic errcrs occur with the same sign, usually of similar magnitude, and can te expressed in terms of a matheratical model. Systematic errors follow a defined pattern and occur in a number cf consecutive related ckservations. Repetition cf measurements does nothing tc minimize their effect. Ir the case of hydrographic positionirg, systematic errors are identified and modeled by calikraticn of the measuring instrument against a known standard. The following is a brief discussicn concerning systematic errors and their treatment in relation to hydrographic positionirg equifrer.t.
a. Theodolites
 frimarily for range-azimuth and azimuth-azimuth positicning. Systematic errors asscciated with the theodolite can be classified into two groups: those associated with the physical design of the instrument and those involving the geometry of the positioning scheme. Some sources of systeratic errors [Ref. 8] associated with the physical characteristics cf a thecdolite are:
i. The horizontal circle may be eccentric.
ii. Graduations on the horizontal circle may not ke uniform.
iii. The horizontal axis of the telescope (about which it rotates) may not be perpendicular to the vertical axis of the instrument.
iv. The longitudinal axis of the telescope may not ke normal to the horizontal axis.
v. The telescope axis and the axis of the leveling kutble may not be parallel.

These errors are usually small in magnitude and can be $\in 1 i m-$ inated by proper adjustment of the instrument by $\in i t h \in r$ tre manufacturer or a qualified technician.

The field hydrographer has ultimate control over the gecmetric systematic errors associated with a theodclite. In range-azimuth positioning the theodolite and transwitter may cccupy the same horizontal control station. If the theodolite is rot set directly over the staticn a resultant systematic error will occur in all measurements. It can be shown that these errors are non-linear but do follow a mathematical relationship. Likewise, if the transmitter is not located directly over the station, a similar type cf lias occurs. Depending on the eccentricity of the theodclite, the vessel's range from the theodolite, and the scale of the survey--these errors can seriously affect the absolute accuracy of the offshcre positions.

> In a similar fashion, it is also imperative tc positicn the target directly over the horizontal control staticn used as an initial. Failure to do this will result in an error which will be propagated to offshore positicns. Many situations arise in the field where it is advantageous to set a transmitter and theodolice over a single hcrizontal control station. Frequently it is feasible to construct a platform to accommodate both instruments; in a case where it is not, the position of an eccentric horizontal contrcl station near the original staticn should be determined and that station used for the locaticn of one of the instruments. The theodolite and the transmitter then occupy the known stations and the geometric source of systematic error is eliminated.
b. Electronic Ranging Systems

The systematic errors associated with electronic positioning systems are complex in nature and functicns of
many variables. Munscn [Ref. 9. p. 4] addresses several probl $\in \mathbb{B} s$ associated with short-range systems used ir hydrographic surveys. The most ccmmon problems with short-range systems are variation in range and calibration drift with time. Variations in internal equipment time delays in the transmitter, the transfonder, or the receiver can induce errors in measured ranges. For pulse systems such variations can occur due to temperature dependence of components and fluctuations in signal strength at the transponder. Multipath effects are also a problem. Under some circumstances a reflected wave and the directly transmitted wave arrive with a phase difference of 1800. Cancellation cr fading of the directly transmitted signal can result.

NOS conducts base line calibrations of shortrange positioning systems periodically during the course of a survey to minimize cr eliminate systematic errcr. In this process, a transmitter and receiver are each placed over contrcl stations on shore and the measured range is compared to the true range. Ir this way the systematic error is eliminated by zeroing the instrument or by applying a constant correction tc raw data. System checks are ferformed daily to assure there is no drift from the original calibration. A check can be accomplished by comparing a positicn defined by the ranging system to a known fixedfoint position, to a sextant fix position, or ar intersection fosition.

Munson [Bef. 9. p. 5] also discusses sources of systematic errors associated with medium-range systems. The most significant systematic errors occur as a function cf position due to varying propagation velocity. The medium-
 surface conductivity and transmission path (over water, over land, or over different types of land). Because of this dependence, systematic errors as a function of position
 fropagation velocity to use, or the phase correction tc make as a function of range, is a problem. Sky wave and storm interfer€nce also pose problems. At extreme ranges of cperation, sky wave interference can affect the more predictable ground wave, especially during nighttime operations. Iane ambiguities are also a problem. Most systems are inherently ambiguous and must be zero set and continually monitcred for lane jumfs or loss of signal which results in the loss cf lane count.

NOS uses several techniques to determine the systematic error asscciated with medium-range positionirg systems. These techniques involve determining a whole and partial lane count for phase ccmparison systems. Two of the more widely used techniques are comparison of three-point sextant fix positions to positions determined by the electronic ranging system and calibration of the electronic system at a fixed pcint. In both techniques the whole lane counts are fixed by the calibration; correctors to the partial lane count are determined and applied to the raw ranging data.
3. Eandom Errors

Fandom errors are chance errors, unpredictable in magnitude or sign, and are governed by the laws of probability [Ref. 10, p. 1206]. They are errors which remain after blunders and systematic errors have been removed. Randcll errors result from accidental and unknown ccmbinations of causes and are beyond the control of the observer. Greenwalt [Ref. 12, E. 2] states they are characterized by:
i. Variation in sign; positive errcrs occur with equal frequency as negative ones.
ii. Small errors cccur more frequently than large errors. iii. Extremely larçe errors rarely occur.

Fandom errors are unigue to specific types of ccsitioning equipment and vary in magnitude depending on the precision of the instruments that are used. The following secticn cutlines statistical methods for their treatment.

C. IREATAENT OF RANLCA ERRORS.

1. Cne-Dimensional Errors

Certain basic statistical quantities must first be defintd in the analysis of random errors. Consider a vessel moored securely to a fixed offshore platform. A number of ranges, n, from a microwave transmitter located on a shore control station are recorded. The mean of these observations is

$$
\begin{equation*}
u_{x}=\sum_{i=1}^{n} \frac{x_{i}}{n} \tag{2.11}
\end{equation*}
$$

where x_{i} represents an individual observation. The stardard error, s, of the observations is then

$$
\begin{equation*}
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2}} \tag{2.12}
\end{equation*}
$$

where the quantity $\left(x_{1}-\mu_{x}\right)$ is referred to as the residual, cr true error, ∇_{i}, of a particular observation. As n gets very large, the factor $1 / n$ can be substituted for $1 /(n-1)$ in Equation 2.12. Iikewise, in treating the large sarfle, σ can $b \in$ substituted for s and μ for μ_{x}, where μ and σ are the $m \in a n$ and standard error of the entire population.

It is of interest to determine the probability of cccurrence of a particular observation. The normal cr Gaussian distribution equation relates the residual cf a particular random variable with the probability of its
cccurrence, and is given by

$$
\begin{equation*}
P(v)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{v^{2}}{2 \sigma^{2}}\right)} \tag{2.13}
\end{equation*}
$$

The plot of this equation $y i \in l d s$ the normal distri上uticn curve (Fig. 2.4). The height cf the curve above the vertical axis is proportional to the probability of a particular error occurring:

The probability of a residual falling between ary two residuals v_{1} and v_{2} can be computed by integrating Equation 2.13 as

$$
\begin{equation*}
P(v)=\int_{v_{2}}^{v} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(\frac{v^{2}}{2 \sigma^{2}}\right)} d v \tag{2.14}
\end{equation*}
$$

Figure 2.4 The Normal Distribution

Ihis integral is difficult to evaluate analytically so tables have been ccmpiled to aid in computations. Fcr $v_{1}=+\sigma$ and $v_{2}=-\sigma$, it can be shown that $P(v)=0.6827$. In cther words, the prolability that a particular observation will fall within $\pm 1 \sigma$ of the mean is 68.27 percent.

Feturning to the example of the vessel moored tc the offshore flatform, the mean and the standard errcr for the observations are easily computed. With this informaticn and Equation 2.14, the prcbability of a range error falling within sfecified limits can be computed. Conversely, $k y$ fixing a probability, the associated limits of the range error can te computed. In statistical terms, a particular observation willfall within sfecified limits with a certain confidence.

Actual values of one-dimensional standard errors for hydrografhic positioring equipment are a subject of dekate Letweer manufacturers and users. Some manufacturers of microwave positioning equipment claim standard errors of ± 1 meter. Cn the other hand, Munson [Ref. 9, p. 6] states that microwave systems demonstrate accuracies of 3 meters at short ranges but show larger errors at ranges of 15 km and greater. NOS assumes a 3-meter standard error in all of its short-range accuracy computaticns. It is apparent that further study is needed to adequately define the nature of єrrors associated with electronic positioning equifment.

Waltz [Ref. 13] performed an extensive study to
deteruine the pointing error of a Nild $T-2$ theodolite. His results showed that the pointing error associated with this instrument under hydrographic survey conditions was about 1.3 meters and was independent of distance.

2. Iwo-Dimensional Errors

The intent of this paper is to apply statistical methods developed by cthers tc a hydrographic data set containing two-dimensional errors which are defined by two randcal variables. Lengthly and complex derivations are not presented. Burt [Ref. 3] and Heinzen [Ref. 2] show adeguate derivaticns of formulas associated with two-dimensional errors and can be referenced for full details.

The following assumptions are made concerning twodimensicnal errors associated with intersecting Lop's:
i. The random errcrs of each Lop are normally distributed.
ii. Systematic or bias errors have been removed from the observaticns.
iii. The intersecting LOP's are coplanar.
iv. The error LOE's are parallel to the exact LOE's.
 deterrinations, the fcur assumptions hold to a high degree for all hydrografhic fcsitioning geometries.

Consider again the vessel moored to a fixed cifshcre platform. Assume two ranges are measured fron two different shore control stations at the same time and that the range readings are uncorrelated. The observation or this pair of ranges is repeated many times. After a large number of observations, the means and standard errors of the individual ranges are determined. Suppose the mean ranges, or the actual LOP's, intersect at an angle of 900 and that the computed standard errcrs are equal $\left(\sigma_{1}=\sigma_{2}\right)$. If each data pair (x_{i}, y_{i}) is plotted, the spread of points about the mean coordinates results in a circular cluster (Fig. 2.5). A higher density of points occurs near the intersection of the mean ranges and the density of points decreases outward from the intersection of the mean ranges.

In this special case, which is called a circular normal distribution, the probability of a point falling within a sfecified radius, R, from the intersection of the mean ranges is

$$
\begin{equation*}
P(R)=1-e^{-\left(\frac{R^{2}}{2 \sigma_{C}^{2}}\right)} \tag{2,15}
\end{equation*}
$$

where $\sigma_{1}=\sigma_{2}=\sigma_{c}$ and is defined as the circular standard error. ${ }^{1}$ osing ${ }^{2}$ Equaticr 2. 15, R can be computed by fixing $P(R)$, cr conversly, $E(R)$ can be computed by fixing R. Letting $R=\sigma_{1}=\sigma_{2}=\sigma_{c}$, then $P(R)=0.3935$. In other words. 39.35 percent $c f$ all errors in a circular normal distribution are not expected to exceed the circular standard errcr [Ref. 12, Ep. 25:26].

Figure 2.5 Circular Normal Distribution

In the case where the two uncorrelated LCP's intersect at ar angle other than 900 or $\sigma_{1} \neq \sigma_{2}$, the contcurs cf

Equal density are ellipses centered about the point defined Ly the irtersecting ICP's (Fig. 2.6). The two-dimensional frobability density function becomes [Ref. 1. p. 136]

$$
\begin{equation*}
P\left(v_{x}, v_{y}\right)=\frac{1}{2 \pi \sigma_{x} \sigma_{y}} e^{-\frac{k^{2}}{2}} \tag{2.16}
\end{equation*}
$$

Figure 2.6 Error Ellipse Formed by Two Uncorrelated LCP's

where

∇_{x} is the residual in the direction of the semi-major axis of the error ellifse,
∇_{y} is the residual in the direction of the semi-minor axis,
σ_{x} is the standard error in the direction of the semimajor axis,
σ_{y} is the standard error in the direction of the semiminer axis,
and

$$
\begin{equation*}
k^{2}=\frac{v_{x}^{2}}{\sigma_{x}^{2}}+\frac{v_{y}^{2}}{\sigma_{y}^{2}} \tag{2.17}
\end{equation*}
$$

The scluticn of Equation 2.16 with values of K for different p's yields the results in Table I [Ref. 12, p. 23]. For a 39.35 percent probability, the axes of the ellipse are $1.0000 \sigma_{x}$ and $1.0000 \sigma_{y}$; for a 50 percent probability, the axes are $e^{x} 1.1774 \sigma_{x}$ and $1.1774 \sigma_{y}$.

TABLE I

Values of the Constant K

RROEAEILITY

K

39.35%	1.0000
50.00%	1.1774
63.21%	1.4142
90.00%	2.1460
99.00%	3.0349
99.78%	

The error ellipse can ce used for accuracy computalions $k y$ developing relationships for σ_{x} and σ_{y} in $t \in r \| s$ of the initial information σ_{1}, σ_{2}, and B. Bowditch [Ref. 10, p. 1213] gives the following equations for independent lop's relating these quantities:

$$
\begin{equation*}
\sigma_{x}^{2}=\frac{1}{2 \sin ^{2} B}\left\{\sigma_{1}^{2}+\sigma_{2}^{2}+\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}-4 \sin ^{2} B \sigma_{1}^{2} \sigma_{2}^{2}}\right\} \tag{2.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}^{2}=\frac{1}{2 \sin ^{2} B}\left\{\sigma_{1}^{2}+\sigma_{2}^{2}-\sqrt{\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{2}-4 \sin ^{2} B \sigma_{1}^{2} \sigma_{2}^{2}}\right\} \tag{2.19}
\end{equation*}
$$

In these equations, B is assumed to be the acute angle between tbe IOR's.

In certain sfecial cases, the above equations tak on more manageable fcrms. In range-range and azimuthazimuth positioning it is often assumed that $\sigma_{1}=\sigma_{2}=0$. Equations 2.18 and 2.19 then $I \in d u c e$ to

$$
\begin{equation*}
\sigma_{x}=\frac{\sqrt{2}}{2 \sin \left(\frac{1}{2} B\right)} \sigma \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}=\frac{\sqrt{2}}{2 \cos \left(\frac{1}{2} \beta\right)} \sigma \tag{2.21}
\end{equation*}
$$

In the concentric range-azimuth case, $\sigma_{1} \neq \sigma_{2}$, ard β equals 90°. Equations 2.18 and 2.19 then simplify ${ }^{2}$ to

$$
\begin{equation*}
\sigma_{x}=\sigma_{1} \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}=\sigma_{2} \tag{2.23}
\end{equation*}
$$

Where $\sigma_{1}>\sigma_{2}$ and $\sigma_{x}>\sigma_{y}$.
The case for correlated LOP's is more complez. Tbe calculaticn of σ_{x} and σ_{y} involves a coordinate transformation from a linear skewed coordinate syster to an uncorrelated rectargular cocrdinate system. The following discussicn is taken from Heinzen [Ref. 2, pp. 49-53].

Assume a hydrographic position is establisbed by the intersection of two correlated LOP's (Fig. 2.7a). LOZ 1 ada

Figure 2.7 Coordinate Transformations for Correlated IOp's

IOP 2 are the coordinate axes in the skewed coordinate syster, with standard errors σ_{1} and σ_{2}. The semi-major and semi-凹iror axes of the error ellipse are not coincident with the skewed coordinate system axes. The correlation ccefficient $b \in t w \in n$ the $t \forall o$ LOP's is ρ_{12}. Assume $\sigma_{1}>\sigma_{2}$.

The standard errors and correlation coefficient in a correlated rectangular coordinate system with axes A and B must now be determined. A coordinate transformation from the skewed system to the correlated rectangular system wust be made yielding the standard errors along the new coordinate axes (Fig. 2.7b)

$$
\begin{equation*}
\sigma_{a}^{2}=\frac{1}{\sin ^{2} B}\left(\sigma_{1}^{2}+2 \rho_{12} \sigma_{1} \sigma_{2} \cos B+\sigma_{2}^{2}\right)-\sigma_{2}^{2} \tag{2.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{b}=\sigma_{2} \tag{2.25}
\end{equation*}
$$

The ccrrflation coefficient in the correlated rectangular system is

$$
\begin{equation*}
\rho_{a b}=\left(\frac{\sigma_{2}}{\sigma_{1}} \cos \beta+\rho_{12}\right)\left\{1+\rho_{12}\left(\frac{\sigma^{2}}{\sigma_{1}}\right) \cos \beta+\left(\frac{\sigma_{2}}{\sigma_{1}}\right)^{2} \cos ^{2} B\right\}^{-\frac{1}{2}} \tag{2.26}
\end{equation*}
$$

To deterfine σ_{x} and σ_{y}, a second coordinate transformation rust be performed frcir the correlated rectangular system to an uncorrelated rectangular system with ax $\in \mathbb{X}$ and Y (Fig. 2.7c). The semi-major and semi-minor axes of the error ellifse are then

$$
\begin{equation*}
\sigma_{x}=\sqrt{\frac{\sigma_{a}^{2}+\sigma_{b}^{2}}{2}} \sqrt{1+\sqrt{1-\frac{4 \sigma_{a}^{2} \sigma_{b}^{2}\left(1-\rho_{a b}^{2}\right.}{\left(\sigma_{a}^{2}+\sigma_{b}^{2}\right)^{2}}}} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}=\sqrt{\sigma_{a}^{2}+\sigma_{b}^{2}-\sigma_{x}^{2}} \tag{2.28}
\end{equation*}
$$

 simplified versions ir Bowditch [Ref. 10].

The orientaticn of the semi-major and semi-mincr axes relative to the intersecting LOP's is the third farameter which fixes the error ellifse. The angle θ (Figs. 2.6 and 2.7) is measured counter-clockwise from LOP 1 to the semi-rajcr axis of the error ellipse [Ref. 11] and is given by

$$
\begin{equation*}
\theta=\frac{1}{2} \arctan \left\{\frac{\sigma_{1}^{2} \sin (2 B)+2 \rho_{12} \sigma_{1} \sigma_{2} \sin (\beta)}{\sigma_{1}^{2} \cos (2 B)+2 \rho_{12} \sigma_{1} \sigma_{2} \cos (\beta)+\sigma_{2}^{2}}\right\} \tag{2.29}
\end{equation*}
$$

For the special case cf $\sigma_{1}=\sigma_{2}$ and $\rho_{12}=0$,

$$
\begin{equation*}
\theta=\frac{\beta}{2} \tag{2.30}
\end{equation*}
$$

The orientation of the error ellipse in an orthogonal cordinate system can be represented by ading or subtracting θ to the orientation of IOP 1. Care must be taken on determining the quadrant of the outcome. As a general rule, the error ellipse always lies within the acute angles formed ky the intersecting LOP ${ }^{\prime} \leq$.

The orientaticn and dimensions of the error $\in l l i f s e$ provide a useful index for evaluating the accuracy of a hydrographic position. Its greatest attribute is that it accurately represents the error distribution about the intersection of two ICP's in terms of a fixed probability. It is interesting to examine the variation in the relative dimensicns and orientations of error ellipses as they vary in a range-range configuration with $\sigma_{1}=\sigma_{2}=\sigma$ (Fig. 2.8). The dimersions of the ellipses are specified by Equaticns 2.20 and 2.21 and σ_{x} and σ_{y} are functions of β only for fixed σ. Therefore, the dimensions of the ellipses remain constant alorg a contour of constant β : only the orientation changes. A line of constant B is a circle which includes staticns L and F. Note that the dimensicns of the ellipses for β 's of 300 and 1500 are identical. The $\epsilon l l i p s \epsilon s$ about the 900 angle of intersection contour are circles and represent the strongest possible positions in this scheme. With varying β 's, the directional nature of the distribution can be noted.

3. Circular Precision Indexes

Although the error ellipse gives a true representation of the error distribution about a hydrograpric fcsition, its use has certain drawtacks. The characteristics of the ellifse must be sfecified ky the three quantities v_{x}, σ_{y}, and θ. A single figure for evaluating the positional accuracy cannot be used. Greenwalt [Ref. 12, p. 26] states that when σ_{x} and σ_{y} are not equal, a circular error

Figure 2.8 Errar Ellipses Around a Range-Range Systell
distributicn can be substituted for the elliptical districution. This substituticn can be satisfactory for error analysis within certain σ_{y} / σ_{x} ratios. However, when this ratio is small the distcrtion introduced by the circular distri上uticn may beccre misleading.
a. Foot Mean Square Error

The terms radial error, root mean square error, and ${ }_{\text {rms }}$ are identical in meaning when applied to twodimensicnal errors [Ref. 10, p. 1229]. The term drms is defined as the square root of the sum of the squares cf the standard errors along the major and minor axes of the error Ellipse. That is

$$
d_{r m s}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}
$$

where σ_{x} and σ_{y} are given by Equations 2.18 and 2.19. A more direct form of 2.31 is given by [Ref. 2, p. 54]

$$
\begin{equation*}
d_{\mathrm{mms}}=\frac{1}{\sin B} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2.32}
\end{equation*}
$$

for uncorrelated LOP's. For range-range and azimuth-azimeth positioning, with $\sigma_{1}=\sigma_{2}=\sigma$. Equation 2.32 reduces to

$$
\begin{equation*}
d_{\text {rms }}=\frac{\sqrt{2}}{\sin \beta} \sigma \tag{2.33}
\end{equation*}
$$

For range-azimuth positioning, $B=900$ and Equation 2.32 recomes

$$
\begin{equation*}
d_{r m s}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{2.34}
\end{equation*}
$$

The more general fori of Equation 2.32 for both correlated and uncorrelated Lop's [Ref. 2, p. 59] is

$$
\begin{equation*}
d_{\mathrm{rms}}=\frac{1}{\sin B} \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+20_{12} \sigma_{1} \sigma_{2} \cos B} \tag{2.35}
\end{equation*}
$$

where ρ_{12} is the correlation coefficient.

An error circle with a radius of one $d_{\text {rms }} c a n$ be constructed about the intersecting Lop's (Fig. 2.9). Two $d_{\text {rms }}$ is the radius cf the error circle obtained using two times the values of σ_{x} and σ_{y} in Equation 2.31. For an elliptical error distribution, the probability associated with a specific value of d varies as a function of the eccentricity of the error ellipse (Table II). The probability associated with one rms varies from 63.2 percent to 68.3 percent, while the probability associated with two arms varies between 95.4 percent and 98.2 percent.

Figure 2.9 The dims Error Circle

NOS uses arms as an accuracy specification. Umbach [kef. 14, p. 4-25] states that super high frequency direct distance measuring systems would be used only when the value cf rms is less than or equal to:
i. 0.5 mm at the scale of the survey for scales of 1:20,000 and smaller.
ii. 1.0 mm at the scale of the survey for $1: 10,000$ scaie surveys, or
iii. 1.5 mm at the scale of the survey for scales of 1:5,000 and larger.

The major advantage of using $\tilde{C}_{\text {rms }}$ as a precision index is its ease of computation. Some hydrographers draw analcgy between the varying probability associated with one $d_{\text {rms }}(63.2$ percent to 68.3 percent) and the fixed prorability associated with a one-dimensional standard errcr (68.3 percent). In fact, $d_{\text {rms }}$ has very little statistical reaning. The obvious problem with using ${ }^{\text {d ms }}$ as a precision index is the varying frobability associated with the error circle. For this reascn Greenwalt [Ref. 12, p. \#1] recommends against its use.

TABLE II

Probabilities Associated Mith $\mathrm{d}_{\text {rms }}$

			ㄹR으ABIIITY	
σ^{\prime}	σ_{x}	LENGTH $\underset{1}{\mathrm{~d}_{\text {rms }}}$	$1 \mathrm{drms}^{\text {cma }}$	2 drms
0.0	1.0	1.000	0.683	0.954
0.1	1.0	1.005	0.682	0.955
0.2	1.0	1.020	0.682	0.957
0.3	1.0	1.042	0.676	0.961
0.4	1.0	1.077	0.671	0.966
0.5	1.0	1. 118	0.662	0.969
0.6	1.0	1. 166	0.650	0.973
0.7	1.0	1. 220	0.641	0.977
0.8	1.0			0.980
0.9	1.0	1.345	0.632	O.981

Burt [Ref. 3] presents a method for translating elligses of equivalent probability into circles of equivalent Frobability. Tc utilize this method, it is first necessary to compute the eccentricity of the error ellifse, $c, b y$ the equation

$$
\begin{equation*}
c=\frac{\sigma_{y}}{\sigma_{x}} \tag{2.36}
\end{equation*}
$$

where $\sigma_{x}>\sigma_{y}$.
Harter [Hef. 15] compiled Tables III and IV
which are taken from Bowditch [Ref. 10, p. 1215]. Harter's data are given in teris of the eccentricity, $c, a \operatorname{faram\in t} \in$, K, and a frobability, P. The parameter, K, when multipiied by σ_{x} gives the value of the radius, R, of the circle of the corresponding probability shown in Table III. That is,

$$
\begin{equation*}
R=X \sigma_{x} \tag{2.37}
\end{equation*}
$$

The probarility of a point falling inside a circle cf specified radius car be computed by entering Iable III with c and K as arguments. Given a fixed probability, K is determined by entering Table IV using c and P as arguwents. The radius of the probability circle is $t h \in n$ computed using Equaticn 2.37.

Using confidence ellipses has certain advantaces cver confidence circles of equal probability. First, the directicnal nature of the true error distribution is not represented in the ccnfidence circle method even though both methods give an accurate measure of confidence. Seccnd, the area of the confidence ellipse is always less than or equal to the area of the confidence circle. The area of a

TABLE III
Probakilities, Given c and I

TABIE IV

Radii of Circles Given c and P

	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0. 8	0. 9	1. 0
. 5000	0. 67449	0. 68199	0. 70585	0. 74993	0. 80785	0. 87042	0. 93365	0. 99621	1. 05769	1. 11807	1. 17541
. 7500	1. 15035	1. 15473	1. 16825	1. 19246	1. 23100	1. 28334	1. 35143	1. 42471	1. 50231	1. $5 \hat{8} 271$	1. 66511
. 9000	1. 64485	1. 64791	1. 65731	1. 67383	1. 69918	1. 73708	1. 79152	1. 86253	1. 94761	2. 04236	2. 14597
. 9500	1. 95996	1. 96253	1. 97041	1. 98420	2. 00514	2. 03586	2. 08130	2. 14598	2. 23029	2. 33180	2. 44775
.9750	2. 24140	2. 24365	2. 25053	2. 26255	2. 28073	2. 30707	2. 34581	2. 40356	2. 48494	2. 38999	2. 21620
. 9900	2.57583	2. 3778	2. 58377	2. 39421	2. 60995	2. 63257	2. 66533	2. 71515	2. 79069	2. 39743	3. 03485
. 9950	2. 80703	2. 80853	2. 81432	2. 83289	2. 83830	2. 858.94			3. 00431	3. 11073	3. 25525
. 9975	3. 02334	2. 02500	3. 03010	3. 03898	3. 05234	3. 07144	3. 09871	3. 13969	3. 20586	3. 31099	3. ${ }^{16164}$
. 9990	3. 29053	3. 29205	3. 29673	3. 30489	3. 31715	3. 33464	3. 35949	3. 39647	3. 45698	3. 55939	3. 11692

confidence ellifse is

$$
\begin{equation*}
A_{e}=K_{\sigma_{x}}^{2} \sigma_{y}^{\pi} \tag{2.38}
\end{equation*}
$$

where K is the appropriate probability conversion factor (Table I). The area of the 90 percent confidence circle is

$$
\begin{equation*}
A_{c}=\pi R^{2} \tag{2.39}
\end{equation*}
$$

where R is given by Equation 2.37. For a condition where $\sigma_{1}=\sigma_{2}=3$ meters, and $\beta=300$, the area of the 90 percent confidence ellipse is 261 square meters, while the area of the confilence circle is 587 square meters. For both stan-
 confidence ellipse has an area of 921 square meters and the confidence circle has an area of 2894 square meters. From an oferaticnal ferspective, the difference in areas ketween ellifses and circles bave significant implications which will $k \in$ discussed in Chapter ∇.

The following examples are presented to deacn-
 ellipses ard confidence circles for several hydrograchic positicning geometries.

Example 1
A vessel is conducting a hydrographic survey using range-range georetry. The two Lop's generated ky microwave transmitters have standard errors of $\sigma_{1}=\sum$ meters and $\sigma_{2}=4$ meters. The anyle of intersection B at the vessel is 300. Assure the Lop's are uncorrelated. Compute the probability that the vessel's position will be within a circle of 10 -meter radius with the center at the intersection $c f$ the LOP's.

Recalling Equations 2.18 and 2.19, the values of σ_{x} and σ_{y} are found tc be 9.79 meters and 6.14 meters. respectively. From Equation 2.36

$$
c=\frac{\sigma_{y}}{\sigma_{x}}=0.633
$$

and frcm Equation 2.37, with $\mathrm{R}=10$ meters,

$$
K=1.032
$$

Entering Table III anc using interpolated values for c and K, the frobability that the vessel's position will be within a circle of 10 -meter radius centered at the intersecticn of the ICP's is

$$
P=53.2 \%
$$

Examele $\underline{2}$
A vessel is conducting a hydroyraphic survey
using range-azimuth cecmetry. The range LOP generated ly the micrcwave transmitter has a standard error of 3 meters. The azimuth Lop determined by theodolite observation has a standard error of 1.3 meters at all ranges. Compute the radius of the 90 percent confidence circle at the vessel's positior.

In the range-azimuth case $\beta=900$ and the ICP's are unccrrelated. Trerefore.

$$
\sigma_{1}=\sigma_{x}=3.0 \text { meters }
$$

and
then

$$
\sigma_{2}=\sigma_{y}=1.3 \text { neters }
$$

$$
c=\frac{\sigma_{y}}{\sigma_{x}}=0 .+33
$$

Table IV is entered with the values of $p=0.9$ and $c=$ 0.432. The value For K is found to be

$$
k=1.7117
$$

Using Eguation 2.37, the radius of the 90 percent probatility circle is fourd to be

$$
R=5.14 \text { meters }
$$

Ine probability that the vessel's position will be within a circle of 5.14-meter radius centered at the intersection of the ICP's is 90 percent.

Example 3

A. vessel is conducting a hydrographic survey using hyperbolic-hyperbolic gecmetry. The hyperbolic ic? generated by the $1.6-m H z$ electronic positioning system has a standarl error of $0.05-1 a n e$ on the base line. The correlation coefficient (ρ) between the two LOP's is known to be 0.4. Compute the radius of the 90 percent confidence circle at the vessel's position.

The rectangular plane coordinates of the master (ش), two slaves (G and P), and the vessel's position (P) are

X COORDINATE
(m)

172, 679.1
508,679.1
241,738.2
223,172.5

Y CDOPDTNAIE
(四)
$62,540.4$
-9,540.4
$21,325.4$
169.264.2

Given the frequency cf $1.6 \mathrm{MHz}, \lambda=187.37$ meters frcu Equation 2.3. The lare width alcng the base line is $w_{g}^{\prime}=w_{r}^{\prime}$ = 93. €8 meters from Equation 2.5. Using the law of ccsines from plare geometry, the subtended angles α_{g} and α_{r} are 32.470 and 43.250, respectively. The angle of intersection of the two hyperbolas at P is 37.86^{0} from Equaticn 2.7. The lane widths at P are $\mathbf{w}_{\mathbf{r}}=254.19$ meters and $w_{g}=335.06$ meters from Equation 2.6 . The standard errors of the green $\left(\sigma_{1}\right)$ and $r \in d\left(\sigma_{2}\right)$ hyferbolas, respectively are $\sigma_{1}=w_{g} \sigma_{b a s e}=$ 16.7 meters and $\sigma_{2}={ }_{i_{r}} \sigma_{\text {base }}=12.7$ meters. These standard errors are in a linear skewed coordinate system and must be transfcrmed to an unccrrelated rectangular system. Frcif Equations 2.18 and 2.19, the values of σ_{a} and σ_{b} are 36.9 meters and 12.7 meters, respectively. The correlaticn coefficiert in the correlated rectangular system ($\rho_{a b}$) is then 0.737 frcm Equation 2.26. The semi-major and semi-minor axes in the uncorrelated rectangular system are 38.1 meters and 8.3 reters, respectively, from Equations 2.27 and 2.2ε. The eccentricity is

$$
c=\frac{\sigma_{y}}{\sigma_{x}}=0.218
$$

Table IV is entered with the values of $P=0.9$ and $c=$ 0.218. The value for K is found to be

$$
K=1.6602
$$

From Equation 2.37, the radius of the 90 percent prokatility circle is found to $b \in$

$$
R=63.3 \text { meters }
$$

The probability that the vessel's position will be within a circle of 63.3-meter radius centered at the intersecticm of the LCP's is 90 percert.

III. EXPERIMENT DESIGN AND IMPLEMENTATION

The çoals of this chapter are to demonstrate that hydrographic fositioning accuracy can be classified based or the radii cf 90 percent ccnfidence circles determined by using Eurt's method and to show that, based on the same criteria, accuracy fredictions can be made for survey planning purfoses.

A. LAIA ACQOISITIOR EROCEDUBES

Ibe data used for analysis and prediction consisted of range-range, azimuth-azimuth and range-azimuth survey information. The data were acquired by Naval postgraduat Sch col (NPS) students in a Hydrographic Sciences course. Although the ccurse was structured as a training exercise, the data acquisiticn procedures utilized were neariy identical tc those which are fracticed by NOS.

A total of 453 hydrographic positions were recorded during the survey of a nearshore area in southern Monterey Bay, Califcrnia. Of the positions used for analysis, 292 were range-range, 81 were range-azimuth, and 80 were azimuth-azimuth. All survey information was recorded ky hand in sounding volumes. The vessel used was a 36-foot Uniflite with a fiberglass hull and twin engines. The survey was conducted on October 28, November 16,23 , and 30 , 1983. Electronic ccntrol and calibraticn stations used for the survey included $\mathbb{C E E}$ MON 1978, MUSSEL 1932, BEACH LAB 1982. MCNTEFEY AMERICAN CAN CCMPANY STACK 1932, MONTEREY RADIC STATION KMEY MAST 1962, MONTEREY HARBOR LIGHT 61978 , and MCNTEFEY BIDE LIGHTHOUSE (Fig. 3.1). With the exceftion of MCNTEFEY BLUE LIGHTHOUSE, which is a low-order fosition,

Figure 3.1 \#ydrographic Survey frea
all stations are of third-order or better and are putlished in the National Geodetic Survey Data Base.

For azimuth-azimuth and range-azimuth positioning. azimuths were measured with a dild $T-2$ theodolite. \quad n November 16, range-azimuth information was acquired y locating the theodolite over station MUSSEI and initialing cn OSE MCN. The initial direction was checked by sighting on KMEY MASI. Azimuth-azimuth Eositions were acquired on November 23. A theodciite was set over USE MON and an initial direction was to MUSSEI. A second theodolite yas set at MOSSEL using OSE MON for the initial direction.

Fange information was recorded using a Racal Decca Trisfcrder syster, a ficrowave system commonly used for nearshore, line-of-sight survey work. On October 28 and Novemter 30, range-range data were recorded $k y$ setting remote units over stations BEACH LAB and MUSSEL. Before and after the survey, the ranging system was calibrated $c v \in r$ the fixed rase line USE MCN to MUSSEL. Daily checks in the survey area were made to determine if the system was working properly. This was accomplished by maneuvering the survey vessel to a point where two known navigational ranges irtersected. One navigaticnal range was formed by stations MONTEFEY AMERICAN CAN COMPANY STACK and MONTEREY RADIO STATICN KMEY MAST. A second navigational range was formed Ly staticns MONTEREY EARBOR IIGHT 6 and MONTEREY BLUE IIGHTHOUSE.

Irack control for range-azimuth and range-range fositionswas accomplished by steering the vessel alcng range arcs. The spacing between range arcs for most lines was planned to be 40 meters. Distance between positions alcng a sounding line averaged approximately 200 meters. The azimuth-azimuth lines were controlled by steering a magnetic compass beading.

The data acquired under training conditions contained several deficiencies that would normally not be tolerated. For example, the quality of the line steering was generally Foor: the vessel wandered off the arc more than 10 meters in several instances. The quality of the sounding lines run using azimuth-azimuth control was extremely deficient; the position flot of these lines show a jagged path by the vessel. Jnder normal hydrographic procedures, these pcsitions wculd be rejected. Since the intent of this study is to demonstrate accuracy analysis technigues, these deficiencies prove to be inccnsequential; the acquired data are adequate to demonstrate the concepts.

IV. RESOLTS AND DATA ANALYSIS

A. LATA PROCESSING

Autcmated processing of the positional survey data was done on the NPS IBM $\equiv 70 / 3033$ AP computer system. Grafhic displays were constructed using the Display Integrated Software System and plotting language (DISSPLA) develofed by the Integrated Software Systems Corporation (ISSCO) [Ref. 16]. All computer programs involved in data processing were written in the WATFIV programming language. Ccmputations were made in an $X-Y$ coordinate system based on a Modified Transverse Mercator (MTi) projection. A MTM projecticn is essentially the same as a Universal Transverse Mercator (UTM) projection, the only difference being that in a MTM frcjection a central meridian is picked near the survey area instead cf being fixed at a particular meridian [Ref. 17].

The central meridian, controlling latitude, and false єasting values define the cocrdinate system used for computaticns. The central meridian for the projection was chosen to $b \in$ longitude $121^{\circ} 52^{\prime}$ 30" W which is approximately the mean lcngitude of the survey area. The controlling latitude, the distance in meters from the equator to a reference latitude, was chosen to be $4,050,000$ meters. A false easting of 5,000 meters was chosen as the value of the X-coordinate at the central meridian.

Three shore contrcl stations were used in the acquisition of survey data. The geodetic positions of these staticns were converted to the $X-Y$ coordinate system (Table v) using program UCOMFS, which is a hydrographic utility package available to students at NPS.

TABLE ∇

Coordinates of Control Stations

SIATICN NAME GECDETIC CGCORD. MT1 COORD.
USE MON

MUSSEI

EEACH LAB
$Y=1982.43 \mathrm{~m}$
$X=4853.36 \mathrm{~m}$
$Y=4247.42 \mathrm{~m}$
$X=2474.75 \mathrm{~m}$
$Y=2009.86 \mathrm{~m}$
$\mathrm{Y}=4914.75 \mathrm{~m}$.
B. ACCOFACY ANALYSIS OF HYDROGRAPGIC POSITIONING DAIA

The cbjective of this section is to illustrate how the accuracy of hydrografhic positioning data can be classified using Eurt's method of circles cf equivalent prodability. The radius of the 90 fercent confidence circle was ccmputed for $\in a c h$ pcsition; it frovides a quantitative measure cf repeatakle accuracy.

Fcr suksequent accuracy computations, the follcwing assumfticns were made:
i. The standard error Eor the microwave ranging system used in the range-range and rangeazimuth computations is 3 meters.
ii. For azimuth-azimuth and range-azimuth positions, the pointing error of the theodolite is 1.3 reters at all ranges.
iii. The two LOP's involved in all types cf positioning are independent ($\rho_{12}=0$).
iv. The data are free of systematic errors.

Raw range and azimuth data were hand logged into a data file for frocessing. A modification of program UCOMPS was
used to compute $\mathbb{X} Y$ ccordinates of all fositions. Based cn gecmetric relaticnshifs discussed earlier, angles of intersecticn cf the LCP's were then computed for range-range and azimuth-azimuth points. The angles of intersection for all range-azimuth positicrs are 900 .

The range-range and azimuth-azimuth data were then passed tc watriv subroutine $P F C B$ (Appendix A). As infut parameters, the subrcutine accepts two standard errors cf the LCP's and the corresponding angle of intersection. The output farameters include the semi-major and semi-minor axts cf the 90 fercent confidence ellipse, the radius of the 90 fercent confidence circle, and the areas covered by both figures.

Subrcutine P fob uses a linear approximation to determine the value of the function K for varying values of the eccentricity, c, in Burt's method. A linear interpolation was performed by first taking the eleven discrete values of c and K for a probability of 90 percent from Table IV and then constructing a series of relationshifs for K as a function cf c (Table VI).

Values of the radii of 90 percent confidence circles for range-range data were flotted at their respective positions (Fig. 4.1). The arcs of circles connecting the two control staticns BEACH LAB and MUSSEI represent lines of constant intersection angle (30°). Of the ranye-range data set, position 848 (Appendix B) --coordinates $X=4119.01$. $Y=$ 4735.c7--was found to have the smallest radius (strongest fosition) of 6.4 meters and an angle of intersection cf 90.20. Position 137--coordinates $X=3345.86, Y=$ 3873.34--represents the weakest position with radius value of 15.3 reters and an angle of intersection of 26.70 .

Ihe fositional accuracy degrades rapidly as the intersecticr angle approaches 300 ; the 300 arc represents a line of constant 13.7 meter radius. Hithin 400 meters of the $\Xi 00$

TABLE VI

Linear Approxizations for K as a Function of c

Interval of c	Linear Interpolation
$0.0-0.1$	$K=.0306 c+1.64485$
$0.1-0.2$	$\mathrm{K}=.0940 \mathrm{c}+1.63851$
$0.2-0.3$	$\mathrm{K}=.1652 \mathrm{c}+1.62427$
$0.3=0.4$	$K=.2535 \mathrm{c}+1.59778$
$0.5-0.6$	$\mathrm{K}=.5444 \mathrm{C}+1.46483$
$0.6-0.7$	$\mathrm{K}=.7101 \mathrm{c}+1.36546$
0.7-0.8	$K=.8508 \mathrm{c}+1.26697$
$0.8-0.9$	$K=.9475 c+1.18961$
$0.9-1.0$	$\mathrm{K}=1.0361 \mathrm{c}+1.10987$

intersection arc, the radius varies between 8 and 15 meters. The radii values charge slowly in the vicinity of the minimur value of 6.4 meters which corresponds to an angle of intersection of 900 .

The radii of 90 fercent confidence circles asscciated with the azimuth-aziauth positicns acquired using control staticns USE MON and NUSSEL were also plotted at their respective fositions (Fig. 4.2). The standard errcrs cf the LOP's are assumed to ke 1.3 meters; the resulting imfrcved accuracy is evident. The maximum value of the 90 percent confidence circle radii is 8.7 meters at position 637--coordinates $X=4327.25, Y=2818.39--w h i c h$ corresfonds to an angle of interstction of 159.80 (or in terms of the supplement, 20.20). Eosition 682--coordinates $X=4611.20$. $Y=4421.29--r e p r e s e n t s$ the strongest position recorded during the survey with a 90 percent confidence circle radius of 2.8 meters and an angle of intersection of 91.00 .

Again, the rapid degradaticn of accuracy is noted approaching $\beta=1500$. The arc of the 1500 intersecticr angle refresents a corstant radius of 5.9 meters. Discrete

SURVEY DATA ANALYSIS R/R

 RADII OF 90\% PROBABILITY CIRCLES STATIONS BEACH LAB AND MUSSEL

Figure 4.1 Range-Bange Accuracy Analysis

Figure 4.2 Azimuth-azimuth Accuracy Analysis
valu€s along the arc corfirm this qualitatively. A large area of strong positicnal accuracy surrounds the area where $B=900$. Numerous values of 2.8 meters are present near the tcf cf the plot.

Using the assumpticns stated at the beginning of this section, the values fcr all radii of 90 percent confidence circles for range-aziauth positions are 5.1 meters. This computation was carríd out in Example 2 of Chapter II. Since this case is trivial, the data are not displayed graphically.

Ecsitioning data were also classified based on the parameters of the 90 fercent confidence ellipse. WATFIV program EILIP (Appendix C) was used to generate the farameters cf the 90 percent confidence ellifse for range-range, azimuth-azimuth, and range-azimuth positioning data. The frogram was initialized by entering the coordinates of the control stations and standard errors of the LOP's. The fix number, hydrografhic position coordinates, and angle of intersection were $t h \in r$ read in from a data file. Sukroutine PROB was called to ccapute values for $K \sigma_{x}$ and $K \sigma_{y}$.

The angle of orientation of the major axis of the ellifse, measured clcckwise from north, was then computed. For range-range and azimuth-azimuth positions, the LCF generated from the left control station was used as the base IOP. FOr range-azimuth positions, the LOP formed by the theodolite was used as the base LOP. First, the oríntation of the base LOP in $t k \in$ coordinate system was determined. The orientation of t be major axis of the error ellipse relative to the base LOP (θ) was then computed using Equaticn 2.29. By adding or subtracting θ to the orientation of the base IOP, the orientation of the major axis of the error ellifse in the coordinate system was determined. This angle takes on values from 00 to 1800 . Appendix D consists $c f$ the confidence ellipse classification scheme for range-range,
azimutr-azimuth and range-azimuth data. Forty positiors for each positioning gecmetry are listed for comparison to the classification scheme fresented in Appendix 3 .

Afpendix B lists the data $上 y$ position number, $X-Y$ coordinate, angle of intersecticn, and radius of the 90 percent confidence circle. Afpendix D lists the data by positicn number, $X-Y$ coordinate, angle $c f$ intersection, $K \sigma_{x}, K \sigma_{y}$, and angle of orientation for the 90 percent confidence ellipse. These affendices are similar to hydrographic survey data bases and demonstrate accuracy classification schemes based on the tro criteria.

C. ACCORACY PREIICTICNS

The cverall positional accuracy of a survey can $k \in$ contrclled by computing accuracy values before data acquisition is kegun. For example, if the hydrographer is using radii cf 90 percent confidence circles as an accuracy critericn, the minimur allowable angle of intersecticn for two LCF's can be computed for meeting specifications. The nature of the survey area may allow the flexibility to change system gecmetry to maximize accuracy at a specific location or to maximize the area covered with a given accuracy. By raking accuracy computations before acquiring data, the hydrographer may also have the option of decidiny what tyfe cf positioring system is to be used to meet accuracy requirements.

The construction cf reliability contours is one method to display the expected positional accuracy. Reliability contours, lines of constant refeatable accuracy which are functions of the system geometry and standard errors cf the positicrirg equipment, can be constructed about shore staticns using the radii of 90 percent confidence circles critericn or the less desirable $d_{\text {rms }}$ value.

Consider the equations that have been developed in Chapter II for the determinaticn of radii of 90 fercent confidence circles using Burt's method. For uncorrelated IOP's in a range-range or azimuti-azimuth systen, the repeatable accuracy cf a hqdrographic pcsition is a function only of the angle of intersection, assuming the standard errors of the Lop's are constant throughout the survey area. The lccus of points which define a constant angle of intersecticn for two IOP's in a range-range or azimuth-azimuth system is a circle whici passes through both control staticns. Given the coordinates of the two control stations, the equations of these circles can be determined.

Construction of reliability contours involves several simple trigonometric relationships (Fig. 4.3). Let IR \quad (the line connecting the t wo shore control stations I and E_{1} in a rançerange system. The length of line IR is t. The circle through both stations defines a line of constant intersection angle for two Lop's. The radius of the circle is r. Tbe distance ϵ is measured along the perpendicular Lisector of the line $I R$ to the center of the circle at foint $O(h, k)$ and $i s$ given by

$$
\begin{equation*}
e=\frac{b}{2 \tan B} \tag{4.1}
\end{equation*}
$$

Knowing \in and the radius r, the coordinates of point 0 can be cciffuted. The equation of the circle is then

$$
\begin{equation*}
r^{2}=(x-h)^{2}+(y-k)^{2} \tag{4.2}
\end{equation*}
$$

These two equaticns were used to generate reliability contcurs for display on a computer graphics terminal. Using Eurt's method, the angles of intersection of tho LOF's were computed for discrete values of radii of 90 percent confidence circles. Reliability contours about stations EEACH

Figure 4.3 Corstruction of a Reliability Curve

IAB and yOSSEL for a range-range system ($\sigma_{1}=\sigma_{2}=3$ meters) were constructed (Fig. 4.4). Dsing Equation 4.2, X-Y ccordinates were generated for points laying on different reliability circles. A curve-fitting subroutine in the IISSPIA library was used to generate the circles through the computed pcints. The 13 -meter accuracy contour corresponds to an angle of intersection of 31.5°, while the 7 -reter accuracy contour corresfonds to an angle of intersection of 67.90. The best achievable accuracy of the system is 6.4 meters at 900.

FCr comparison furfoses, reliability contours were constructed about BEACH LAB and MUSSEL for azimuth-aziIuth geometry $\left(\sigma_{1}=\sigma_{2}=1 . \equiv\right.$ meters). The increased accuracy of this configuration is evident (Fig. 4.5). The $3-m e \pm \in I$
contour corresfonds tc an angle of intersection of $69.4 c$ while the 6 -meter contour corresponds to an angle cf intersection of 29.60. The best achievable accuracy at an intersecticn angle of 900 is 2.8 meters.

A second scheme was used tc display accuracy predicticns for the two positioning methods. Given the coordinates cf EEACH LAB and MUSSEI, a series of discrete points sfaced 800 meters apart, were generated throughout the survey area. The values for the radii of 90 percent confidence circies were then computed at each point with the use of subroutine FROB. Figures 4.6 and 4.7 illustrate this predicticn scheme. These figures present the same information as Figures 4.4 and 4.5 in a different manner. The 300 angle of intersecticn contour is shown on both figures.

Zigure 4.4 Beliaijity Contours: Range-Range Geometry

GENERATED RELIABILITY CONTOURS

AZIMUTH-AZIMUTH: BEACH LAB-MUSSEL

Figure 4.5 Reliability Contours: Azimuth-Azimuth Geometry

ACCURACY PREDICTIONS RA-RA RADII OF 90% PROBABILITY CIRCLES STATIONS BEACH LAB AND MUSSEL

Figure 4.6 Range-Bange Foint Accuracy Prediction

ACCURACY PREDICTIIONS AZ-AZ RADII OF 90\% PROBABILITY CIRCLES STATIONS BEACH LAB AND MUSSEL

Figure 4.7 Azimuth-Azimuth Point Accuracy Predicticn

V. CONCIDSIONS AND RECOMMENDATIONS

A. ACCURACY SPECIFICATIONS

Interpretation of the 1982 IHO positioning standards in terms cf 90 percent confidence circles yields some interesting results with respect to present day survey fractices. For example, for a 1:10,000-scale hydrographic survey, NOS usually uses microwave positicning systems in a range-range mode, and assumes a standard error of 3 meters for each ICP. Surveys are frequently conducted between the 300 to 1500 angle of intersectior limits. Using the 90 percent confidence circle critericr, the radius of the circle should act exceed 10 meters. However, the radius value for $\beta=300$ and 1500 is 13.7 meters. The values of $K \sigma_{x}$ and $K \sigma_{y}$ for the 30 percent confidence ellipse are 17.6 and 4.7 meters, respectively. To meet the 90 percent critericn for a 1:10,000scale survey, the B limits should be 420 to 138°.

Azimuth-azimuth fcsitioning is accurate enough for 1:5, 00 C -scale surveys, using B limits of 350 to 145°, assuming a standard error of 1.3 meters for each Lop. with the standard error assumptions used for range-azimuth, the 90 fercent radius is 5.1 meters for all positions. Given the uncertainties of the standard error figures, it is rational to assume that range-azimuth positions can mett the 5-आeter accuracy standard for 1:5,000-scale surveys. In fact, range-azimuth fcsitional accuracy can exceed azimuthazimuth accuracy wher the later's β is less thar 350. For a 3-巴et \boldsymbol{r} σ range-range configuration, it is impossible tc meet $1: 5,000$ specifications with any B.

As a general guideline, the 300 to 1500 angle of intersecticr limit is a gccd rule to use for uncorrelated lof's.

However, as mentioned for 1:10,000-scale surveys in a rangerange mode $\{\sigma=3$ met σ) , this rule does not always hold. On the other hand, it is possible to have β 's of less than 300 and still meet sfecificaticns. For example, azimuthazimuth fositioning can theoretically be used for β 's of 180 to 1620 for a $1: 10,000$-scale survey. However, the eccen-
 introduced by using ccnfidence circles can become misleading. In view cf this, eccentricities of less that 0.2 should not $b \in u s \in d$.
using the 90 percent radius criterion, a table has kefi ass $\in \mathbb{m} l \in d$ illustrating the β limit for various positioning geometries at different survey scales, using assumed stardard \in rrcrs (Table VII). The information in Table VII illustrates that the $\equiv 00$ to 1500 B limit $n \in e d$ not be fixed. The β limits should vary based on the scale of the survey and the frecision of the positioning equipment. Accuracy

TABLE VII

B Limits for Surveys

$\begin{aligned} & \text { Survey } \\ & \text { Scal } \end{aligned}$	$\begin{gathered} 90 \% \\ \text { Radius } \end{gathered}$	$\beta^{\left(\sigma_{L i m}^{R-R}=3\right)}$	$\begin{aligned} & \mathrm{R}-\mathrm{R} \\ & \left(\sigma_{\mathrm{L}}^{\mathrm{L}} \mathrm{=10} 10\right) \end{aligned}$	
	(m)	(deg)	(deg)	(deg)
1:2,500	2.5		------	
1: $1 \mathrm{C}, 000$	10.0	42-138		35-145 2 \%
1:2C,000	20.0	27-153		23-157*
1:40,000	40.0	23-157*	35-145	23-157*

* Eccentricity limit of 0.2
 assumed to be 5. 1 meters for $\sigma_{1}=3{\text { and } \sigma_{2}}_{=}=1.3$.
figures as a function of β for uncorrelated LCp's have been compiled using standard errors of 1.3 meters for azimuthazimuth (Table VIII), 3.0 meters for range-range short-range (Table $I X$), and 10 meters for range-range medium-range (Mable X) positioning systems.

TABLE VIII

Accuracy Figures for $\sigma_{1}=\sigma_{2}=1.3 \mathrm{~m}, 0_{12}=0$ Angle of $\quad K \sigma_{x} \quad K \sigma_{y} \quad$ Radius of Area of
Int \quad Area of

($\mathrm{d} \in \mathrm{g}$)	(m)	(II)	(m)	(SG m)	$(\mathrm{Sq}$ m)
$\begin{array}{r} 90 \\ 85 \\ 80 \\ 75 \\ 70 \\ 65 \\ 60 \\ 55 \\ 50 \\ 45 \\ 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \\ 5 \end{array}$	2.8 2.8 $3: 1$ $3: 2$ 3.4 3.7 $3: 9$ 4.7 $5: 1$ 5	2.8 2.7 2.6 2.5 2.4 2.4 2.3 2.3 2.3 2.2 2.1 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.0	2.8 2.8 $2: 8$ 2.9 $3: 0$ $3: 1$ $3: 3$ 3.5 $3: 8$ 4 4 4	$\begin{array}{r} 24 \\ 25 \\ 25 \\ 25 \\ 26 \\ 27 \\ 28 \\ 30 \\ 32 \\ 35 \\ 388 \\ 43 \\ 49 \\ 58 \\ 71 \\ 94 \\ 141 \\ 281 \end{array}$	$\begin{array}{r} 24 \\ 25 \\ 25 \\ 26 \\ 28 \\ 30 \\ 34 \\ 38 \\ 44 \\ 53 \\ 65 \\ 83 \\ 110 \\ 156 \\ 241 \\ 425 \\ 949 \\ 3,781 \end{array}$
K =	46 for	pr	litY		

TABLE II ${ }_{\text {accuracy figures for } \sigma_{1}=\sigma_{2}=3 \mathrm{a}, 0_{12}=0}$					
Angle In cr		${ }^{R} \sigma_{y}$	Radius of 90才Circ.	Area of Ellipse	$\begin{aligned} & \text { Area } C f \\ & C i r \subset \mathcal{e} \end{aligned}$
($\mathrm{d} \in \mathrm{g}$)	(m)	(1)	(m)	(sq a)	(sq m)
90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5	6.4 $6: 7$ $7: 1$ $7: 5$ 7.9 $8: 5$ $9: 1$ 909 10.8 11.9 3	6.4 $6: 2$ 6.00 5	6.4 6.5 6.5 6.7 6.9 7.2 7.5 8.0 8.7 9.4 10.5 11.8 13.7 16.3 20.2 40.8 80.1	130 131 133 135 139 144 150 159 170 184 203 227 260 308 381 503 750 1.494	130 131 135 141 149 162 179 203 235 280 345 440 588 832 1,284 2,262 5
$\mathrm{R}=2.146$ for 90\% probability					

B. OSES FOF ACCURACY FIGJRES

NCS is currently developing the Shifboard Data Systex III (SDS III), a hydrcgraphic data acquisition and processing system which will replace the present HYDROICG/ HYDRCFLOI system. SES III will revolutionize data acquisition and frocessing techniques with the capability tc perforI bigh-speed calculaticns and display color graphics. with this increased computer fotential, data manipulaticns-such as accuracy computations--can be performed.

Each position in a survey can be given a quality figure based on the radius of the 90 percent confidence circle. This figure is sufficient for non-critical positions of ordinary hydrographic data. Critical positions are thcse which are determined for significant features (i.e., wrecks, least depths, rocks, and other potential hazards). Fcr these fositions, the farameters of the 90 percent error ellifse can be computed, as well as the radius of the 90 fercent confidence circle.

Many schemes can te envisioned for the use of an accuracy figure. For exanple, suppose the position of a submerced pile was determined ky range-azimuth geometry in a prior survey. The radius of the 90 percent confidence circle is then 5.1 meters (Ex. 2, Ch. II). The chartirg agency now wishes to relocate the pile to determine if it still exists and is still a hazard to navigation. In lcw water visibility, a ccmmon technique used to resolve such an item would be to send divers down over the reported fositiou and conduct a circle search. One diver remains at the reported position, hclding a line, while the other diver swims a circumference holding the other end of the line. Theoretically, if the line is about 5 meters long and a hang does rot occur, it is 90 percent certain that the file has been remcved. For a bigher confidence, the line is
lengthened. In an investigation such as this, it is advisable tc be conservative and use the maximum length of line which is oferationally feasible to provide coverage cf an area as large as possible. The radius of the 90 percent confidence circle gives the hydrographer a rough figurefcr answering the guesticn: Does the submerged pile exist?

Knowing the farantters of the error ellipse could $t \in$ useful fcr conducting wire-drag, wire-sweef, and side scar sonar oferations. Fcr a position obtained with low frecision positioning equipment, the search to relocate a submerçd feature could cover a large area. Knowing the parameters of the error ellipse could reduce the area, time, and $\in f f o r t$ of the search. The search pattern could be planned to cover the desired confidence ellipse.

With the quantification of accuracy, a decision must be made concerning how uuch confidence is needed to delete a certain feature from the chart after a search has kefn π ade. The 90 fercent confidence level may be too low, whereas the C5 or 99 percent level may suffice. A balance must $k \in$ maintain $\in \mathbb{d}$ ktween confidence of disproval and time and effcrt spent on the search.

Accuracy predicticns in the form of reliability contours can $k \in$ displayed using computer graphic terminals. These displays will contritute to the efficient planning of surveys to meet specifications. Given the survey area, the availakle control, the positioning methods, and the precision of the positionirg equifment, the hydrographer can plan the accuracy of the survey before it is corducted. The survey area and the available control may be such that there is flexibility to change control stations to optimize accuracy cver an area of critical importance. This informaticn can be displayed graphically and plans for the survey can be made accordingly. Likewise, given an accuracy limit, such as a 10 -meter radius cf the 90 percent confidence circle, the area tc be coverєd at that accuracy can be maximized.

Many variables exist wher considering accuracy requirements fcr a hydrographic survey. In general, higher accuracy means more time, money, and effort. Azimuth-azimuth geometry is the most accurate method of positioning analyzed in this thesis. This method involves at least two feofle asnore and good shif-to-shore communications. Currently, NOS acquires these data manually, which minimizes the sfeed that the vessel can cferate and adds to processing tirf. on the otker hand, a survey using a medium-range system needs little shore support and the data acquisitior is autcmated. Accuracy predictions belp keep a balance between accuracy and effort. If the desired accuracy is attainable using a range-range system instead of an azimuth-azimuth syster, then the chcice is olvious.

Hydrcgraphic pcsitioning in the future will be dcmirated Ey two methcds. For cffshore surveys, the Global Positioning System (GFS) is expected to give positional accuracy to 10 meters or better. GPS is a satellite positioning system currently being deployed by the Department of Deferse and will provide near worldwide coverage for users. Since the full constellation of 18 satellites will not ke operational until 1988, it is not yet known if the expected accuracy of 10 meters will be met. Nearshore surveys may use multiple LOP's for establishing hydrographic pcsiticns. The principle of least squares is applied to redundant cbservations yielding the most probable position. Fcr koth GPS and least squares positioning, confidence ellipses an \bar{d} circles can be determined, although the techniques invclved are much mare complicated than those presented in this thesis.

The accuracy classification scheme presented in this thesis is fredicated cn the elimination of systematic errors. Much work is needed in identifying the sources of systematic errors asscciated with hydrographic positioning equipuert.

APPENDIX A

SUERCUTINE FOR 90 fERCENT CONFIDENCE CIRCLE PARAMETEFS

SUERCUTINE PROE (SIG1,SIG2,COR,TBETA, SGX90, SGY90, * RADIDS, ELAR, CIFAR)


```
LINES CF POSITION.
```

INEUT EAFAMETEES:

OUTEUT PAFAMETERS:
SGX90 AND SGYCO- SEMI-MAJOR AND MINOR AXES
$\begin{array}{ll}\text { RADIUS } & \text { OF } 90 \% \text { EFROR ELIIPSE } \\ \text { FLAR } \\ \text { CIOS OF }\end{array}$
CIRAR - AREA OF 90\% CONFIDENCE CIFCIE
WOKK WITH AN ANGLE IESS THAN 90 DEGREES
IF (TBETA GT-90.) BETA =180.-TBETA
C CHANGE DEGREES TO FADIANS
C RAC= $0174532 * B E T A$
C RECTANGULAR SYSTEM

SIGB=SIG2
C TRANSFORM CORREIATICN COEFFICIENT TO CORRELATED
C RECTANGOIAR COORDINATE SYSTEM
$A=((S I G 2 * \operatorname{COS}(R A D)) / S I G 1)+C O R$
$\mathrm{F}=1 / \mathrm{SQRT}(1+2 * \operatorname{CCF} * \operatorname{SIG} 2 * \operatorname{COS}(R A D) / S I G 1+(S I G 2 / S I G 1) * * 2 *$
*(CCS (RAD)) **2)
C TRANSFCRM TO UNCORRELATED RECTANGULAR

```
                                    AA=SCRT
*(SIGA**2+SIGB**2)**2)
    DD=SQFT(1+CC)
    SIGX=AA*DD
    SIGY=SQRT(SIGA**2+SIGB**2-SIGX**2)
```

C COMFOTE ECCENTRICITY OF ELIIESE
C COMFUTE C=SIGY/SIGX
FUIE BURT'S K FACTOR BY LINEAR INTERPCLATION

ELSE IF ((C.IE-0.8) -AND. (C.GT.0.7)) THEN ELSE IF ((C.IE.0.7).AND.(C.GT.0.6)) THEN

```
EISE IF ( \((C . I E .0 .6)\).
EISE IF ((C.IE.0.5).AND.(C.GT.0.4)) THEN
EISE IF ( (C.IE.0.4) AND. (C.GT.0.3)) THEN
ELSE IF ( \((C . I E \cdot 0.3) \cdot A N D .(C . G T .0 .2)) ~ T H E N\)
\(B=0.1652 * C+1.62427^{3}\) ( GT .0 .2\()\) ) THEN
ELSE IF ((C.IE.O.2).AND. (C.GT.O.1)) THEN
EISE
END IF
RADIUS=B*SICX
SGX90=2.146*SIGX
SGY90 \(=2.146 *\) SIG \(Y\)
CIRAR=3.1415c26*RADIUS**2
EIAR \(=3.1415926 * S G X 90 * S G Y 90\)
FETUKN
```

EN

CLASSIFIED RANGE-RANGE POSITIONS

Contrcl stations: BEACH LAB 1982 and MUSSEL 1932 Standard Error Used in Computations: 3 meters

RANGE-RANGE ACCURACIES (CONTINUED)

Fix
Nio.

Coord ${ }^{\text {Xinate }}$

Ccord \xlongequal{Y} inate Angle of
4776.5
4776.5
4647.6
4502.5
4487
momino
inout
mino

-场 №.

Coordinate

 Coordinate Angle of

Coordinate

Angle of

RANGE-RANGE ACCURACIES (CONTINTED)

Contrcl Stations: USE MON 1978 and MUSSEL 1932
Stanciard Error Used in Computations: 1.3 meters

$\begin{aligned} & \text { Fix } \\ & \text { Nog. } \end{aligned}$	$\begin{gathered} \text { X } \\ \text { Coordinate } \end{gathered}$	Coordinate	Angle of Intersection	$\begin{aligned} & \text { Radius of } \\ & \text { got } \underline{C} \text { Cincle } \end{aligned}$
682	4611.20	4421.29	91.0	2.8
683	4610.07	4315.24	94.1	2.8
684	4609.84	4204.66	97.4	2.8
685	4603.99	4098.63	100.7	2.8
686	4600.52	3992.16	104.0	2.9
687	4601.27	3883.40	107.3	2.9
688	4601.13	3780.02	110.4	3.0
689	4602.22	3675.49	113.5	3. 1
690	4601.48	3574.94	116.5	3. 1
691	4603.21	. 3458.09	120.0	3.3
692	4524.84	3728.78	114.8	3.1
695	4657.06	3506.75	116. 1	3.1
696	4648.60	3602. 24	113.7	3.1
697	4630.15	3696.13	111.8	3.0
698	4629.80	3793.39	108.9	3.0
699	4623.03	3889.32	106.3	2.9
700	4622.83	3978.70	103.7	2.9
701	4617.60	4071.98	101.1	2.8
702	4623.30	4163.73	98.2	2.8
703	4618.23	4256.25	95:7	2.8

Contrcl Stations: MOSSEL 1932 occupied, initial USE MON 1978 Standard Errors: Rarge--3 meters; $T-2-1.3$ meters

Fix
No. Cocridinate Ccor ${ }^{\text {Y }}$ inate

Angle of
Radius of
90\% Cincie

90.0
90.0
-
-
0.0
90.
90.
90.
9.
0.
9.
90.
0.
0.
0
0.0
-
0.
0.
-
0.0
0
,
0.
0
-
-
0.
0
0.
-
0
0
0
O
90.

RANGE-AZINUTH ACCUFACIES (CONTINUED)

$\begin{aligned} & \text { Fix } \\ & \text { Noㅇ. } \end{aligned}$	$\begin{gathered} \text { X } \\ \text { Conginate } \end{gathered}$	Yoordinat	Angle of Intersection	Radius of 90우 Circie
476	3317.64	3873.69	90.0	5.1
478	3366.64	3900.37	90.0	5.1
479	3335.51	3831.40	90.0	5.1
480	3303.12	3760.21	90.0	5.1
481	3258.28	3696.16	90.0	5.1
482	3212.24	3631.26	90.0	5.1
483	3165.13	3578.90	90.0	5.1
484	三129.45	3550.77	90.0	5.1
485		3499.37	90.0	
486	3214.10	3575.56	90.0	5.1
487 488	3280.84	3665.79	90.0	
488	3344.31	3753.54	90.0	5.1
489 490	3395.65 3420.41	3847.40	90.0	5.1
491	3466.94	3949.20	90.0	5.1
492	3439.67	3856.67	90.0	5.1
493	3395.38	3761.44	90.0	5.1
494	3335.71	3669.35	90.0	5.1
495	3275.38	3583.62	90.0	5.1
496 497	3197.78 3161.00	3504.04	90.0	5.1
497	3161.00	3465.96	90.0	5.1

APPENDIX C

PGOGEAM FOR 90 PERCENT CONFIDENCE ELIIPSE PATAMETEFS

 $D I=180 .-T D$
INC $=1$
30 CCNIINUE
C KEEF TANGENT FUNCTICN FROM GCING UNDEFINED IN A RARE CASE
C OF
C OFE

C CHANGE DEGREES TO FADIANS
BETA $=.0174532 \mathrm{C} * \mathrm{D} D$
C USE LEFT STATION AS BASIS FCR COMPOTATIONS
C ORIENTATION ANGLES WILI BE FIXED CITH RESPECT TO LEFT LOP
C FINL AZIMUTH FROM NCRTH BETKEEN HYDRO POSITION AND IFFT
C STATICN. AZIMUTH MILI EE DEFINED EETWEEN O-180 DEGREES
C MEASURD CLOCKHSE FROM NORTH. C MEASORED CLOCKWISE FROM NORTH. C THIS IS THE RANGE- A ANGE AZIMUTH DETERMINATION.

IF (INE.NE. 1 (PY. GE. GC IO 40
IF (PX.GE.XL) THEN
ELSE
END ALPHA $=A T A N((P Y-Y L) /(X L-P X))$
EISE
IF (PX.GE. XL) THEN
ELSE
END ALFEA $=P I-A T A N((Y L-P Y) /(X L-P X))$ END IF
C AZIMUTH GIXING FOR AZIMUTH-AZIMUTH POSITIONS C 40 CCNTINUE
C
C
IF(EY.GE.YL) TEEN

ELSE
$\underset{I F}{A L P H A}=P I-A T A N((X L-P X) /(P Y-Y L))$
EISE

ELSE
END $\frac{A L P H A}{I F} \operatorname{ATAN}((X L-P X) /(Y L-P Y))$
END IF

E2=SIGL**2*COS(2*BETA) + 2*RO*SIGL*SIGR*COS (BETA) +SIGR**2

C COMFUTFROTATION ANGE FROM IEFT LOP
90 CCNTINOE
C
C
C
C
C
C
DEFINE SEMI-MAJOR AXES ORIENTATION IN TERMS OF 0-180 LEGREES ROTATICN, CLOCKWISE FROM NOFIH
C RANGE-FANGE CASE

C AZIMUTE-AZIMUTH CASE

C
C
C
FIX RCTATION ANGLE FROM 0-180 DGREES
70 CCNTINUE
C CONLITICN FOR RANGE-AZIMOTH DATA
IF (IND. EQ.3) THETA=ALPHA
IF THETA.IT-O. THETA $=$ EI TTHETA
C DEG IS THE SEMI-MAJCF EILIPSE AXIS ORIENTATION IN DEGFEFS
C COMFUTE 90\%. SIGMAXAND SIGMAY OF ERROR ELLIPSE CALI PROB (SIGI,SIGR,RO,TD,SGX 90 SGY 90 RADIUS,FLAF, CIRAR)

900 CCNTINJE
STOF

APPENDIX D
 ACCURACY CLASSIFICAIION: 90 PERCENT CONFIDENCE ELIIPSES

CLASSIFIED RANGE-RANGE POSITIONS
Contrcl Stations: BEACH LAB 1982 and MUSSEL 1932
Standard Error Used in Computations: 3 meters

Contrci Stations：USE MON 1978 and MUSSEL 1932
Standard Error Used in Computations： 1.3 meters

 060 VOUIFWN $\rightarrow 060$ VOUIFWN -0600 VOUFWN $\rightarrow \infty$ VOUFIEWN $\rightarrow 06$	
EnCrnerafin	n
	$17 \times$
－．．．．．．．．．．．．	
．．．．．．．．．．	
VU－ANUINN IOUVWDOOODONOODWOFDGGUUNDNONWーNF 	
	上e
	問：
	｜x
NNNNNNNNNNNNNNNNNNNNANNNNNNNNNNNNNNN	
	1×4
E	
	10\％．
	\square
	＋

Contrcl Stations: USE MON 1978, MUSSEL 1932
Standard Errors: RANGE--3 meters; T-2--1.3

IIST OF REFERENCES

1. Kaclan, A. \quad.

2. Heinzen, M. R., Hydroqrafhic Surveys: Geodetic Ccntrcl criteria, M. S. Thesis, Cornell Univ̄ $\bar{T} 77$.
3. Naval Warfare Research Center Research Memorandur NWRC-RM34, Stanford Research Institute, Menlo Park,

4. Adams. K. T., Hydrographic Manual, U.S. Coast and Geodetic Survē., 1942.
5. International Hydrographic organizaticn Special Euklication No. 44 (2nd Fdition) International

6. Wallace, J. L., telephone conversation, National Oceanic and Atmcspheric Administration, National ccean Service, Rockville, MD, June 1984.

7. Davis, R. E. and others, Surveying Theory and Practice, MCGraw-Hill, 1981.
8. Munson, R. C. Eositioning Systems: Report on the
 Sw $\in \mathbb{d} \in \mathrm{n}_{\text {, }} 1977$.
9. Bowditch, N. American Practical Navigator, Defense

10. Hccver, W. E. Algorithms for Confidence Circles and

11. ACIC Technical Feport No. 96, USAF Aeronautical Chart

12. UmLach, H. J. Eydrographic Manual Fourth Edition, Naticnal oceanic and Atmospheric Administration, National ocean survey. 1976.
13. Harter, H. L., "Circular Error Probabiiities," Jcurnal

14. NPS Technical Ncte VM-12, USing DISSPLA at NPS, Naval Postgraduate School, Montē $\frac{1}{7}$ Jun $\frac{1}{1} \frac{1}{9} \frac{1}{4}$.
15. National Ocean Survey Technical Manual No. 1.

No. Copies
16. Defense Technical Information Center Cameron Station 22314
17. Iirrary, Code 0142Alexandria, va22314
Naval póstgraduate School Monterey, CA $9: 943$
18. Chairman. Department of OceanographyCod ϵ 6Mr Naval Postgraduate SchoolNaval Postgraduate School
Monterey,
19. NCAA Iiajson Officer
Fost office Box 8688Monterey, CA 93943
20. Erofessor Joseph J. von SchwindCode 68VsNaval Postgraduate SchoolNaval Postgraduate School
Mcnterey, CA $9 \equiv 943$
21. It. Nicholas E. Ferugini 1
NOAA Ship RAINIEF 1801 Fairvín Avenue, East Seattle, $W A \quad 981 \mathrm{C} 2$
22. Cffice of the Director
Naval Oceanograchy Divisicn (OP-952)1Department of the Navy
23. Ccmmander
Naval Cceanograchy Command NSTI. MS 395291
24. Ccmmanding officer1Naval Oceanografhic OfficeEay St. LouisNSII. MS 39522
25. Commanding Officer1Naval Ocean Research and Development ActivityEay St. LouisNSII, MS ${ }^{\text {EOUS }} 39522$
26. Chitf of Naval Research
q00 N. Quincy Street
Arlington, VA
2 217
27. Chairman, Oceanccraphy Department

Annafolis, MD
13. Chíf, Hydrograftic programs Division

Def
Euilding 56
O.S.Naval Observatory
14. Asscciate Deputy Director for Hydrography

Lefense Mapping Agency (Ccde DH)
Euilding 5 b
O.S. Naval Observatory

Washington, D.C. 20305-3000
15. Topcgraphic Sciences Department

Code TSD-MC
refense Mapping School
Ft. Belvoir, VA 22060-5828
16. Lirector Charting and Geodetic Services

1
N/CG, ROOM 1006, WSC-1
National Oceanić and Atmosfheric Administration Rockville, MD $2 C 852$
17. Chief, Nautical Charting Division

1 National Oceanic and Atmospheric Adminsitration Rockville, MD 20852
18. Chief Hydrografoic Surveys Branch

N/CG24, ROOM 404, WSC-1
National Oceanic and Atmospheric Administration Rockville, MD 20852
19. Frogram Planning \quad Liaison and Training Div.Fockville, MD 20852
20. Director, Pacific Marine Center

N/MCP
Naticnal Ocean Service NCAA
1801 Fairview A venue, East
Seattle, FA 98102
21. Dir $\epsilon c t o r, ~ A t l a n t i c ~ M a r i n e ~ C e n t e r ~$

N/MCA
National Ocean Service, NCAA
439 West York Street
Norfolk, VA 23510
22. Chief, Program Services Division

National Ocean Service, NOAA
439 West York street
Norfolk, VA 23510
23. It. Bruce Hillard NOAA
24. M工. Mark Faye
25. $\begin{aligned} & \text { Mry Jchn Rolesar } \\ & \text { Swoyersipilit Pa } 18704\end{aligned}$
26. Mr. 72 maltby A Ne. Perugini 2 Swoyersvilie, pa 18704

210521

Thesis
Perugini
c. 1

Criteria for the classification of hydrographic positioning data.
24 Јuト ह6
33218

210521

Thesis
P363 Perugini
c. 1 Criteria for the classification of hydrographic positioning data.

