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KEY AND SUPPLEMENT

ELEMENTARY MECHANICS.

Page 1, Article 1.—Motion is a change of position.

Motion is determined by the relative position of bodies

at different times. If bodies retain the same relative

position during successive times, they are said to have

no motion in reference to each other; in other words,

they are said to be at rest in reference to each other.

All bodies of which we have any knowledge are in

motion ; hence all motion is, so far as we know, rel-

ative. Absolute motion implies reference to a point

absolutely at rest, but as no such point is known, such

motion -has only an ideal existence.

Page 2, Art. 6.
—

"No definition of space will give a bet-

ter idea than that obtained by experience. Metaphysi-

cians have indulged in speculations in regard to its na-

ture, but they are able to assert with certainty only

that it has the property of extension. Descartes taught

that the properties of extension, known as length,

breadth, and thickness, were solely properties of mat-

ter, and hence when a body was removed no space

remained in the place formerly occupied by it. So

far as we know, no space exists which is perfectly de-

1
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void of matter. Perfectly void space is an ideality ;

still modem philosophy distinguishes between the

thing contained, and that which contains it-l^tween

matter and the place occupied by matter. It abstract,

(so to speak) space from matter, and, m a measure,

Liter from space. It seems impossible to conceive

of matter not occupying space, but it is not d.ftcult to

conceive of a given quantity of .natter as occupying

a very small or a very large space. We are able to con-

eider matter in the abstract without considering the

dimensions of the space it occupies ;
and also we may

consider space in the abstract as not including matter

The latter is called absolute space; it is conceived

as remaining always similar to itself and immovable

Time is duration. We gain a knowledge of it by

the order of events. Every event has its place in

time and space, and by means of memory we gain a

knowledge of the order in which events occur. \\ itli-

out memory we would gain by experience no knowl-

edge of time. Sir Isaac Newton considered mathe-

matical time as flowing at a uniform rate, unaffected

by the motions of material things. This idea induced

him to call his new calculus fluxions.

Rate refers to some unit as a standard. Thus, to

illustrate, rate of interest is a certain amount of money

paid for the use of one dollar; passenger rates refer

to the amount paid for one passenger ;
rate of shipping

per ton is the amount paid for carrying one ton
;
rate

of motion is the space passed over in one second, om

minute, one hour, one day, or one of any other umt.

The term velocity is simply the equivalent of the rati

of motion. Angular velocity is rate of angular motion
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(p. 4, Art. 12). Acceleration is the rate of change of

velocity, being the amount of change in the velocity

for one second, or one of any other unit (p. 10, Art.

22). Mechanical power is the rate of doing work (p.

55, Art. 99). Rates may involve two units. Thus,

rate per ton-mile implies a certain amount paid for-

one ton for one mile
;
passenger rates are often an

amount for one person for one mile ; mechanical power,

or rate of doing work, is the amount of work done in

one foot for one second, or by one pound for one sec-

ond, etc. Rate is a thing used for measuring quantities,

as a yard-stick is used for measuring cloth, a chain

for measuring land, the pound for weighing groceries,

ton for measuring merchandise, etc.

Page 4, Art. 12.—The definition here given for rotary

motion is applicable to the

case where the motion is in ^ _^~^/D
a curved path not circular, q ,

as CD. But the analysis

given in the text is not applicable to this case.

Page 6, Art. 14.—Just after Fig. 5, for If two ve-

locities, etc., read If two concurrent simultaneous

velocities, etc.

Page 8, Art. 20.—Speaking of the' rotation of the

moon, suggests an interesting question in practical

mechanics. If the wheel

B rolls around on the cir-

cumference of an equal
J

wheel A, will the former
'

turn once or twice on its

own axis?

Mark the point a which, initially, is in contact with
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the wheel A, and roll B half around A ; it will be
observed that the marked point will then be at the

left of the centre of B, as it was at the start. Con-
tinuing the rolling, the point a will again be at the

left of the centre when B has gone completely around
A ; hence it is sometimes asserted that the wheel B
has turned twice on its axis. But we wish to show
that it has turned but once on its own axis, and the

whole wheel has been rotated once about the axis of

the wheel A. Let the axis of the wheels be at right

angles with each other, then

it will be evident, from
mere inspection, that when
B has turned once on its

axis it will have gone once '

around A. Thus B will have

gone once around the axis of

A, and once about its own
axis. Xext, incline the axis

of B upward, so as to ap-

proach a parallelism to A,
and the same result will be
seen from mere inspection,

and it will continue to remain evident as it be-

comes nearer and nearer parallel, and when they
become actually parallel, the same condition will
hold true. Hence, in the former figure, the wheel
B will turn but once on its own axis in rolling once
around A. The same result may be shown in an-
other way. Let a block be placed at a facing a mark
on the axis of B, and conceive this axis to be rigidly
connected with the axis of A while the wheel B is
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free to turn on its own axis. In this way the axis of

B will be carried bodily about A. When B has rolled

half around A, it will be found that the block will

face the same direction in space—say towards the

east—but that it will not face the mark on the axis,

for the mark will be on the opposite side of the axis.

Continuing the rotation, it will be found that the

block will face the mark only once at each reyolution

about A.

Similarly, the moon turns but once on its own axis

in one reyolution about the earth, but the rotation

about the two centres are not exactly coincident ; for

it is found by observation, that in some parts of the

orbit more of the surface of the moon is seen on the

eastern (or western) side than in other parts of the

orbit ; thus showing that the rotation about the earth

is sometimes faster, and at other times slower than the

rotation of the moon about its own axis. This phe-

nomenon is called Libration.

exeecises.
Page 9.

1.
4-J-

miles.

2. The former.

3. 66 feet per second.

4. 17 feet ; 17n feet.

4U° 60 x 60 ~ T1 seconCls -

, 200 x 2* 200 x 360 1Qnn6. —— = 6§ 7t m arc ; or — = 1200

degrees.

7. V3" + 2
J ~ Vl3 =2 3-605 + miles per hour.
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Page 10.

i/i [~\ = £^3961 = 20-98 ft. per sec-

ond.

9. 0-00091.

10. See Article 14. v = Vo 2 + 10
J + 100 cos 60°

= Vl25 + 50 = V1T5 = 13-22 + feet ; hence

the distance between them in two seconds will

be 2 x 13-22 + = 26-44 + feet.

Page 10, Art. 22.—Observe that acceleration is not the

rate of change of motion, but the rate of change of

the rate of motion. It is the rate of change of a rate.

The rate of change is usually measured in the same

units as the rate of motion. If one is in feet per sec-

ond, the other is also. It is possible to conceive of

mixed units. Thus in the case of falling bodies, the

velocity at the end of the first second is 16TV feet, and

the acceleration is 643^ yards per minute.

Strive to get a clear conception of the meaning of

acceleration and of its measure. It is one of the ele-

ments of the absolute measure of force.

Page 13, Art. 26.—The expression " The locus of these

points will be a parabola," means

that if any number of points in

the path be determined in the

same manner, they will all be

in the arc of a parabola.

A parabola is a curve which

may be cut from a right cone

by a plane parallel to one of its

elements. (See Author's Coordinate Geometry.)
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EXAMPLES.

1. Space 250 feet ; velocity 50 feet per second.

Page 14.

2./ =25 feet; s = 12J- feet.

3. During 4 seconds the space will be .5 = -|- of 32

x 42 (Art. 14), and during 3 seconds the space

will be \ of 32 x 3
2

; hence during the 4th second

the space will be \ x 32 (4
2 - 3

2

) = 112 feet.

4. By means of equation (1), Art. 25, find 6J feet

per second.

5. t= V12-5 = 3-533 4- seconds.
^

6. /= (20 4- 120) 3-23 = 0-54| feet per second.

7. 321 _i_ 3.28 = 9-8 metres per second.

Page 15.

—

Matter and force are two grand realities of

the external world, and of these we know nothing

directly. Our knowledge of the former is confined

to its properties^ and of the other to its laws of action.

But we have no reason to believe that one exists in-

dependently of the other. In our earlier experiences

matter is conceived to be hard, gross, and unyielding

;

but later we find that it is yielding, and that many
solids, as iron and lead, may be changed to liquids by

heat, and that liquids may be changed to gases—so

that matter is proved to be more or less viscid or at-

tenuated. Solids are porous. Changes of form are

effected by forces, so that some metaphysicians have

reasoned that there may possibly be no gross matter,

but, instead thereof, those things which we consider

as bodies are only aggregations of forces. On the

other hand, all investigations in mechanics proceed

on the hypothesis that matter is in no sense a force,
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or an aggregation of forces, but that it is something

distinct from force, something upon which force nets.

In the case of attraction, the matter in two bodies

may remain constant, while the force exerted by each

upon the other will depend upon the distance be-

tween them. It is true, however, that we gain a

knowledge of matter only through the action of forces.

Every avenue to the mind through the senses is an

agent for transmitting the result of the action of cer-

tain forces, and the very act of transmission brings

into piay certain forces.

Page 16, Art. 28.—Mathematics applied to the laws of

physical science enables ns to determine magnitudes

which far transcend the powers of accurate measure-

ment or even of conception.

Sir Wm. Thompson gives four methods for ascer-

taining the mean distance between molecules.

Optical dynamics.

Contact electricity of metals.

Capillary attraction.

Kinetic theory of gases.

" Optical dynamics leaves no alternative but to admit

that the diameter of a molecule, or the distance from

the centre of a molecule to the centre of a contiguous

molecule in glass, water, or any other of our transpa-

rent liquids and solids, exceeds one ten-thousandth of

the wave length of light, or a two-hundred-millionth

of a centimetre"
( a 6oooW o<nr of a metre).

"However difficult it may be even to imagine what

kind of thing the molecule is, we may regard it as an

established truth of science that a gas consists of mov-

ing molecules disturbed from rectilineal paths and
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constant velocities by collisions or mutual influences,

so rare that the mean length of proximately rectilineal'

portions of the path of each molecule is many times

greater than the average distance from the centre of

each molecule to the centre of the molecule nearest

it at any time. If for a moment we suppose the mole-

cules to be hard elastic globes all of one size, influenc-

ing one another only through actual contact, we have

for each molecule simply a zigzag path composed of

rectilineal portions, with abrupt changes of direction.''

" If the particles were hard elastic globes, the aver-

age time from collision to collision would be inversely

as the average velocity of the particle. But Max-

well's experiments on the variation of the viscosities

of gases with change of temperature prove that the

mean time from collision to collision is independent

of the velocity, if we give the name collision to those

mutual actions only which produce something more

than a certain specified degree of deflection of the

line of motion. This law could be fulfilled by soft

elastic particles (globular or not globular), but not by

hard elastic globes." " By Joule, Maxwell, and Clau-

sius we know that the average velocity of the mole-

cules of oxygen, or nitrogen, or common air, at or-

dinary atmospheric temperature and pressure, is about

50,000 centimetres per second (500 metres per sec-

ond, or about 1,600 feet per second), and the average

time from collision to collision a five-thousand-

millionth of a second (jowfohit)' Hence the aver-

age length of path of each molecule between collis-

ions is about 1QQ
1
Q0Q of a centimetre "

(T „ 7o
1

ooou of a

metre).
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" The experiments of Cagniard de la Tour, Faraday,

Regnault, and Andrews on the condensation of gases

do not allow us to believe that any of the ordinary

gases could be made forty thousand times denser than

at ordinary atmospheric pressure and temperature

without reducing the whole volume to something less

than the sum of the volumes of the gaseous molecules,

as now defined.

" Hence, according to Clausius, the average length

of path from collision to collision cannot be more

than five thousand times the diameter of the gaseous

molecule ; and the number of molecules in unit of

volume cannot exceed 25,000,000 divided by the vol-

ume of a globe whose radius is that average length of

path. Taking now the estimated T o oWo" 0i? a centime-

tre for the average length of path from collision to

collision we conclude that the diameter of the gaseous

molecules cannot be less than
g o o uVo~ o o °^ a centime-

tre Goimo oinnroo" 0i? a metre) ;
nor the number of

molecules in a cubic centimetre of the gas (at ordi-

nary density) greater than 6,000,000,000,000,000,000,-'

000."

"The densities of known liquids and solids are

from live hundred to sixteen thousand times that

of atmospheric air at ordinary pressure and tempera-

ture : and, therefore, the number of molecules in a

cubic centimetre may be from 3 x 10 24 to 10 2 G (that is,

from three million million million million, to a

hundred million million million million). From
this the distance from center to nearest center in

solids and liquids may be estimated at from y^o-ffVinmF

{.° iTwwiwuo-o 0T" a centimetre
( 1Tjnni\t

-.
,

to
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innrolooooo of a metre). The four lines of argu-

ment lead all to substantially the same estimate of

the dimensions of molecular structure. Jointly they

establish with what we cannot but regard as a very

high degree of probability the conclusion that, in

any ordinary liquid, transparent, solid, or seemingly

opaque solid, the mean distance between the centers

of contiguous molecules is less than the hundred-

millionth, and greater than the two thousand-millionth

of a centimetre. To form some conception of the

coarse-grainedness indicated by this conclusion, im-

agine a rain drop, or a globe of glass as large as a pea,

to be magnified up to the size of the earth, each con-

stituent molecule being magnified in the same pro-

portion. The magnified structure would be coarser-

grained than a heap of small shot, but probably less

coarse-grained than a heap of cricket-balls." (Ex-

tracts from a paper by Prof. Sir ¥m. Thomson on

the size of Atoms, Am. Jour, of Science and Art.

1870, vol. ii., pp. 38-45.)

Mr. N. D. C. Hodges, in an article on the size of

molecules (Phil. Mag. and Jour, of Science, 1879,

vol. ii., p. 74), says :
" If we consider unit mass of

water, the expenditure on it of an amount of energy

equivalent to 636.7 units of heat will convert it from

water at zero into steam at 100°. I am going to con-

sider this conversion into steam as a breaking-up of

the water into a large number of small parts, the total

surface of which will be much greater than that of

the water originally. To increase the surface of a

quantity of water by one square centimetre requires

the use of .000825 metre gramme of work. The total
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superficial area of all the parts, supposing thcin spher-

ical, will be 4 re rN, the number of parts being X.

The work done in dividing the water will be 4 n r%

N x .000825. For the volume of all the parts we
have | 7T r*N. This volume is, in accordance with

the requirements of the kinetic theory of gases, about

3,000 of the total volume of the water. The volume

of the steam is 1,752 times the original unit volume

of water. Hence

—

A^/' 3 iT3000 = 1752

4 7t r
2
1ST.000825 = G3G.7423.

One unit of heat equals 423 units of work (in French

units); solving these equations for /' and iV, we get

r = .000000005 centimetre (or diameter = .00000001

centimetre = TWuoohowows metre), a quantity closely

corresponding with the previous results of Sir Win.

Thomson, Maxwell, and others ; and N equals 9000

(million)
3

, or for the number in one cubic centime-

tre 5 to 6 (million)
3 ."

The extreme tenuity of a gas is further shown by

the following extract taken from the Beiblatter zu

den Annalen der Phy&ik und Che?nt€, 1879, No. 2,

]>. 59. "At 0°C. and 760mm pressure a cubic cen-

timetre (.0G1 cubic inch) holds nearly one hundred

trillions of gas molecules. Under these conditions

the molecules themselves fill nearly the Tfn of the

space occupied by the gas. The absolute weight of a

15
hydrogen molecule is represented by —— g, ((/ in me-

tres)."

Mr. G. J. Stoney, in an article on Polarization on
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Stress in Gases {Phil. Mag. and Jour, ofScience, 1878,

vol. ii., p. 407), says that " the number of molecules in

a cubic millimetre of atmospheric air is about 10
18

( = 1,000,000,000,000,000,000),* and that the average

distance between them is about y-gij-W o o o o o °^ a metre.

The average striking distance (i. e. the average length

of path between encounters) of the molecules is about

T^ oo
1
ooft TT

°f a metre. The average velocity at ordi-

nary temperature may be taken as 500 metres per sec-

ond (1,600 feet per second), and the molecules meet

with so many encounters, that the direction of the

path of each is changed somewhere about 10,000,000,-

000 times every second." In one movement the par-

ticle travels 20 oirWtro- °^ a merre
)
or 20-0017 °f a milli-

metre ;t and it makes this movement in 10 ooo1)ooo inr

of a second. jSTow the wave length of a chemical

ray is about -g¥Vo °f a millimetre, hence we find that

the molecule of air travels through a distance which

is one-fourth as long as the length of this particular

wave in this fraction of a second. %

According to Pouillet, the mechanical energy of a

cubic mile of sun light at the earth equals 12,050 ft. lbs.

* Clausius's limit is 6,000 times this amount.

f Clausius's estimate is one-lialf this value.

\ Mr. E. H. Cook, in an article on the Existence of the Lumi-
niferous Ether {Phil. Mag. and Jour, of Science, 1879, vol. I, p.

235), after quoting the above figures from Mr. Stonev's paper,

adds : "Then in one moment the particle travels 2000000 of a

metre in tuouooottoutt of a second;" also in his deductions he

adds : "hence we find that the molecule of air travels through a

distance which is more than twice as long as the length of this

particular wave in this fraction of a second." The reader can

easily see that this deduction is erroneous.
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{Phil. Mag., 1855, vol. ix., p. 39) ; accepting which

Sir Wm. Thomson calculated the weight in pounds

of a cubic foot of the ether of space (that which is

instrumental in transmitting light, and called ether)

by the formula

:

83r/W =
r

where g — 32\ (acceleration per second of gravity),

J"— the velocity of light per second, being about

192,000 miles per second, and n = -fa,
being the ratio

of the greatest velocity of a rotating particle to the

velocity of light. Herr Grlan asserts that n is not

constant, that he found n — -^ in one case, and 53
1

(TI

in another. {Am. Jour, of Arts and Sciences, 1ST9,

vol. xviii., 404. Annalen der Physik und Cheinie,

No. S, 1S79, p. 5S4.) Assuming n — ^, we find that

a cubicfoot would weigh about

w 83 x 321 x 502

(52S0 x 192000)3

i- fi n i

=ioTo
lb - nearl.y;

and for the weight of a cubic mile pound. The

weight of a volume of the size of the earth would be

about 240 pounds. Admitting this result, it follows

that a sphere equal in diameter to the diameter of the

earth's orbit (or say 190,000,000 miles) will contain

an amount of ethereal matter nearly equal to j-^
of that of the mass of the earth.

Probable tension of tJie ether of space. The above
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results combined with one or two other plausible

assumptions enable us to find a probable value of

the tension of the light ether. As stated above,

the velocity of the particles of air producing a

pressure of 15 lbs. per square inch, is about 1,600

feet per second, which is about 50 per cent, more

than the velocity of sound in air. Assuming now
that the normal velocity of the ether particles is

somewhat more than the velocity of light—or, more

definitely, that it is 195,000 miles per second, and

that the tension is directly as the masses, and also as

the square of the velocities of the particles ; also that

the weight of a cubic mile of the ether is —— lb., asa 10°

found above, and observing that 100 cubic inches

of ordinary air weigh 31 grains, and 7,000 grains

make a pound, we have for the pressure P in pounds

of the ether upon a squa"re inch

1

n _ r /195000 x 5280 X 2 10 9

- ° X
\ 1600 J

X
31 1728

loo
x
7ooo

x(o^0)

= 0-00000185 = ^? lb. per inch of section.
10 6 x

A Mr. Preston, an English writer, in his work on the

Physics of Pike? 1

, estimates, or rather assumes, 500

tons per square inch as a probable inferior limit of

the pressure (p. 18), and, with this as a basis, he finds

the weight of a cubic mile of ether to be about 220 lbs.

(p. 120). But as he has used 56-5 grains for the

weight of a cubic foot of air when it is nearly ten
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times this amount, lie should have found for the

weight of a cubic mile of ether nearly one ton. His

assumption, however, in regard to pressure is quite

arbitrary, and does not seem to be well founded. It

seems improbable that there should be so much mass

in the ether of space. Even 240 lbs. for a volume

equal to that of the earth seems a high value when we

consider the amount that must be displaced by the

planets while moving about their orbits.

Temperature of the Sun. The following may be interesting-,

although it does not fall under the article above referred to.

" The effective temperature of the sun may he defined as that

temperature which an incandescent body of the same size placed

at the same distance ought to have in order to produce the same

thermal effect if it had the maximum emissive power. If we
consider the surrounding temperature during the observation to

have been about 240° Ave obtain . . . for the effective tempera-

ture in degrees centigrade 9,905.4'. . . I think, then, that I may
fairly conclude that the temperature of the sun is not very dif-

ferent from its effective temperature, and that it is not less than

10,000°, nor much more than 20,000° centigrade." Phil. Mag.,

1879, vol. ii., pp. 548-550. See also Am. Juiir. Sc. and Arts,

1870, vol. ii., p. 63.

Sir Win. Thomson calculates the mechanical energy of the

solar rays falling annually on a square foot of land in latitude 50'

to equal 530,000,000 foot pounds, or 396 H. P. per yard per day.

He finds tha*< the heat alone hourly given out by each square

yard of the solar surface is equivalent to 03,000 horse power, and
would require then the hourly combustion of 13,500 lbs. of coal.

Appleton's Cyclopedia, 186S, vol. ix. p. 2'-).

Page 16, Art. 29.—A better definition is

—

Force is an
action between oodies—for this form of the statement

recognizes the existence of at least two bodies in

every action. A force never acts upon one body
without producing an equal opposite action upon an-
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otlier body. We speak of the action of a force upon

a body because in most cases the second body is so

large, relatively, that the force produces little or no

perceptible effect upon it. But according to the law

of Universal Gravitation each particle in the universe

is attracted by every other particle with a force which

depends upon their masses and the distances between

them ; hence, in a highly refined sense, it may be said

that every force producing motion involves every

body in the universe. The entire universe of matter

is bound together by a something—an action—which

we call Force. Every phenomenon which we witness

in the physical world is the result of force , acting

through space, or during a certain time.

Force alone is stress. In other words stress is

force abstracted from time and space. The science

of Stress is the science of Statics. Stress is always

measured in pounds or its equivalent. If a force pro-

duces motion, that part of the phenomenon which is

abstracted from time and space is stress, so that the

attractive force between the earth and moon, or be-

tween the earth and sun, measured in pounds, is

stress.

When force is compounded with time or space the

result is work, or energy, or momentum, as will here-

after be shown.

The following are some definitions of force as given

by different authors

:

La Place says :
" The nature of that singular mod-

ification, by means of which a body is transported

from one place to another, is now, and alwa}T
s will

be, unknown ; it is denoted by the name of Force.
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We can only ascertain its effects, and the laws of its

action." (3£ecanique Celeste, p. 1).

"iforce is an action between bodies, causing or

tending to cause change in their relative rest or mo-

tion " (Bankings Applied Mechanics, p. 15).

u Force is that principle of which, considered sim-

ply as a mechanical agent, we know but little more

than that when it is imparted, that is, put into, a

body, it produces either motion alone ; or strain, with

or without motion." " What is called overcoming

inertia, is simply putting in force? (Tnuitwine's

Engineer }

s Pocket Book, p. 415 and p. 447). We
consider this as a misuse of terms. We cannot safely

say that force is put into a body. When force acts

upon a body free to move, energy is put into the

body, when force and space are involved in the result,

and time is abstracted (see text, p. 66) ; or momentum
when the elements involved are force and time, space

being abstracted (see Chap. V ). Although it is too

early in the text for a full discussion, we add a re-

mark for the benefit of those who have some knowl-

edge of the subject. When a constant force, F, acts

through a space, s, it does the work represented by

the product of F and s, or Fs. If the body upon

which it acts is wholly free, the entire work will be

stored in the body, and is then called energy, the

measure of which is \ Mv*; hence Fs —\Mtf. Elimi-

nating 8 by means of Eq. (2), p. 12, of the text, gives

Ft = 2fv, which is the measure of the effect of force

combined with time, and the .second member is the

measure of the momentum (text p. 78). It would be

better to say that force and time, or force and space,
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are put into a body than that force alone is put into

it. " .Nothing but force can resist force." " Matter,

in itself, cannot resist force " (ib. p. 445). Bjr 're-

sistance is here understood to be such a condition of

things as that motion will not result, and, in this

sense, these statements are correct.

"Force put into a body " is, properly speaking, put-

ting it under stress, and the body is said to be strained,

but no amount of internal stress will produce motion

of the body.

" Whatever changes the state of a body or the ele-

ments of a body, with respect to rest and motion, is

called force." (Bartlett's Analyt. Mech., p. 17).

" Force is detined as that which changes or tends

to change a body's state of rest, or motion, and any

given force may be measured by the acceleration it

imparts to a gramme." (Cumming's Theory of Elec-

tricity, p. 5).

" Force is whatever changes or tends to change the

motion of a body by altering either its dimension or

its magnitude ; and a force acting on a body is meas-

ured by the momentum it produces in its own direc-

tion in a unit of time." (Maxwell's Theory of Heat,

p. 83).

It will appear that the momentum produced in a

unit of time is the same as the acceleration, and hence

the two last definitions are equivalent. We, however,

deem it advisable to avoid the expression momentum
produced because it is liable to be confounded with the

actual momentum of a body, although it is not in-
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tended to even imply the latter. Acceleration is

specific and correct.

"Force is matter in motion, nothing more, nothing

less ; the abstract idea of force without matter is a

nonentity." (Nystrom On the Force of Falling Bodies

and Dynamics of Matter', p. 20).

The preceding remarks will show that this defini-

tion contains a misapplication of terms. Matter in

motion is either Energy or Momentum, according as

time or space is abstracted in considering the ele-

ments which enter into the combination.

" Force is a mere name, but the product of aforce

into tli e displacement of its point of application has

an objective existence."

" Force is the rate at which an agent does work

per unit of length."

" The mere rate of transference of energy per unit

of length of that motion is, in the present state of

science, very conveniently called force." (Lecture by

Prof. G. P. Tait, Nature, 1876, vol. xiv. p. 462).

In regard to these views, we observe that the name
applied to anything is a mere name. In a certain

sense it is an ideality, but generally the name stands

for a reality. In this case, if force is a mere name,

what is the sense of the remainder of the sentence l

How can a force have & point of application if the

force is a mere name? And granting that it may
have, how can the product have an objective exist-

ence?

In regard to the second definition, it is analytically

correct, but we consider it rather as a deduction than
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as a fundamental definition. It is shown on pages

52 and 67 that

or, in terms of the calculus,

Fds = d'(iJLf) = \Md{f) = dK.

From the former we have

JP_ jMv*

and from the latter

* ~~
ds >

hence, generally, force is the rate of doing work per

unit of length. But is force merely a rate ? What
shall be said of force as a stress, where no transfer-

ence of energy takes place ? That this definition is

not elementary, but a mere deduction, is not only evi-

dent, but may be more forcibly shown by means of

other deductions. Thus, from the former equation

we have

hence, space is the rate of doing work per unit of

force (per pound).

Or again,

v = \/\
2**
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lience velocity is the square root of twice the rate of

doing work.per unit of mass !

Or, again, in regard to momentum, page 78,

^Ft = Mo
;

hence, force is the rate of producing momentum per

unit of time.

Or, again,

. Mv

hence, time is the rate of producing momentum per

unit of force !

Now all of these are correct deductions ; but the

fundamental equations are established on the hypothe-

sis that all, except velocity, are substantial quantities.

The value of Fis fundamentally measured in pounds.
Indirectly it may be measured in a variety of ways as

shown above, and as will be still further shown in

Article 86 of the text.

Page 17, Arts. 31 and 32.-—Terrestrial Gravitation as

a force causes, or tends to cause, bodies to move to-

wards the earth, and when a spring balance or other

weighing machine is interposed to prevent any move-
ment, the intensity of the impelling force may be. de-

termined in pounds or an equivalent.

Page 19, Art. 35.—The fundamental idea of a point of

application of a force is that of a definite attachment,

like the attachment of a rope, or chain, or rod of iron,

to a body ; but it is certain, in regard to the forces of

nature—as gravity, chemical forces, etc.—that the

conception is erroneous, for there is no attachment.
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Still it may be conceived that the force acts upon a

particle which may still be considered as the point of

application, and thus the old term, with its gross as-

sociations, is useful in the most refined sense.

Page 20, Art. 36.

—

Inertia is a name merely to express

the fact that matter has not of itself power to put

itself in motion, or being in motion to bring itself to

rest, or even to change its rate of motion. Yet some

writers call Inertia a force, and others,- with little if

any more propriety, speak of theforce of inertia. M.

Morin, a French physicist, attempted to prove that

inertia is a force. He took a prism standing on its

base, and by a sudden pull or push applied to its base

caused the prism to fall backwards. He argued that

the falling over of the prism indicated the action of a

force. A force might have been applied at the top of

the prism which would have overturned it directly,

and Morin argued, that when it overturned by a sud-

den action at the base, there must have been a force

equivalent to one at the top, and this he called the

force of inertia. The fact is, any force applied to a

body, not acting in a line through its centre, tends to

rotate the body ; and in all cases where the body is

free, will cause it to actually rotate. If the prism

referred to, standing on its base, be acted upon by a

force applied at any point above the base, it will not

be overturned unless the moment of the force exceeds

the moment of the weight in reference to the point

about which it tends to turn. If the force applied at

the base be so intense as to produce a rotary mo-

ment exceeding the moment of the weight above re-

ferred to, it will cause the prism to fall by rotating
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backwards
; but if the force be less intense, it will

simply cause the body to slide on the plane.

Again, inertia does not fulfill any of the conditions
of a force. It is not an action between bodies. It is

not an action in any sense. It cannot be measured
by pounds. It is a negation—an entire lack of some-
thing—a lack of force. We repeat, it is not a force.

exercises.
Page 22.

1. The least force. One object of some of these
exercises is to enable the student to get a correct
idea of the relation between force and the result-

ant motions of bodies by the inductive method.
The student who has not correct notions of these
relations will doubtless insist that it requires more
force to move a large body than a small one;
and he may go so far as to say that it will take 10
pounds of pull or push to move a body weighing 10
pounds. But the fact must be perceived that the
smallest force (10 lbs. of push, for instance) will just

as certainly move 100 lbs. of matter free to move in

the direction of the push, as it will one pound. It will

not move the former as rapidly as the latter—or, in

other words, it will not move it as far in the same
time. In this way we get an idea of the fact that the

visible effect of a force depends conjointly upon the
mass moved, and the space through which it is moved
in a given time. If necessary make an experiment
by suspending different weights with equally long-

strings, and pull them sidewise by a string attached

to the body passing over a pulley—or edge of the
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table—and holding at the suspended end a small

weight. It will be found that any weight which is

. sufficient to overcome the friction of the string on the

pulley—or edge of the table—will pull the heaviest

weight sidewise. Observe that the experiment is

simply to show actual movement, and not the amount

of movement.

2. The least force. Also the least force would de-

flect it from its course. This shows that a force will

have the same effect upon a moving body as upon one

at rest.

Page 23.—3. Because it is opposed by an equal oppo-

site force.

4. 100 pounds. A man once pulled a spring bal-

ance so as to indicate, say, 100 pounds. Another gen-

tleman asserted that he could pull two balances at-

tached end to end so that each would indicate 100

pounds. This he did to the astonishment of the ob-

servers, but their astonishment ceased when they

found that it was no more difficult to pull two in that

way than one.

5. Yes. The fact that the boat is in motion, does

not affect the result. Hence we have the principle

that " action and reaction are equal and opposite."

6. J^o. To show it (should there be doubt) assume

that a string passes from each sled to the hand, then

will the tension on each be less than 10 pounds, but

on both strings it will be just 10 lbs. Conceive that

the strings become one back to the first sled—the ten-

sion on the one will be 10 lbs.—but on the part back

of the first, it will be the same as before—which

was evidently less than 10 lbs. If the two sleds are
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of equal weight the tension on the connecting cord

will be 5 lbs. I have heard students assert that

no tension could be produced unless there were a re-

sisting force—showing that they had not yet a correct

conception of the relation between forces and masses.

It requires force to move a free body. In such cases

I have asked them to conceive that a cord were at-

tached to the moon, and that they pulled upon it

;

when they will severally admit that a pull of ten or

more pounds may be easily exerted. If the sleds

were not very heavy, it would not be possible for the

boy to run sufficiently fast to maintain a constant pull

of 10 pounds for a long distance; but if it can be

done for a few feet only, it will answer the purpose

of the illustration.

7. ~No tension.

Page 23, Art. 48.—The so-called Three Laws of Motion
did not spring suddenly into philosophy. There was
a long period of darkness succeeded by twilight and
dawn before the truth shone out clearly. Theprin-
cijples of the three laws were known, and to a consid-

erable extent realized, before Newton's time, but per-

haps they had not been so clearly and sharply defined

by any preceding writer, and much less had they been
made the foundation of mechanical science ; hence
there is a certain propriety in calling them Newton's
Laws. Correct notions in regard to these principles

date from the time of Galileo. Prior to his day, the

leading philosophy was Aristotelian. Aristotle nour-

ished between 300 and 400 years before Christ. In
his philosophy there was no distinct idea offorce as a

cause, much less any idea of a relation between the
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cause of motion and the momentum produced. He
taught that a heavy body would fall faster than a

lighter one—that when a body is thrown by the hand

it ought to cease to move as soon as it left the hand

were there no surrounding impulses, but that it con-

tinued to move because the hand sets in motion the

air about the body, and that the air acted afterwards

in impelling the body. lie divided motions into

Natural and Violent ; the former of which is illustra-

ted by a falling body, in which the motion is constantly

increasing, and the latter by a body moving on the

ground, where the motion is constantly decreasing.

It must not, however, be inferred that philosophers

had no idea of cause and effect. Some general notions

of this kind have always been entertained.

Between the period of Aristotle and Galileo, many
important principles were established. Archimedes

(born 287 is. c.) developed some important properties

of the Centre of Gravity, established the principle of

the Lever, and some of the principles of Hydrostatics.

History seems to show that the advanced position se-

cured by this eminent philosopher was not main-

tained, and that little or no advance was made until

the time of Stevin—or Stevainus, as commonly writ-

ten (1548-1620). His determination of the condi-

tions of equilibrium of the inclined plane is so in-

genious, it is worth repeating. Consider two inclined

planes having a common vertex and horizontal base.

Conceive a uniform long chain to be placed on them,

and joined underneath so as to hang freely. He
showed that it would hang at rest without friction,

because any motion would only bring it into the same
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condition in which it was at first. The part hanging

below would evidently be in equilibrium by itself,

hence if that part be cut off the remaining part will

be at rest ; hence the condition of equilibrium is

—

the weights on each part must he exactly proportional

to the lengths of the planes. If one side becomes verti-

cal the same proportion holds true.

Galileo forms the grand connecting link between

the philosophers of the ancient and modern physical

sciences. He was born at Pisa, February 18th, 15G4,

39 years before the death of Michael Angelo, and 21

years after the death of Copernicus, and died on the

8th of January, 1642, the year in which Sir Isaac

Newton was born. The science of motion began with

him. He taught that motion was due to force—that

all bodies in a vacuum would fall with equal velocities

—that inertia of matter implies persistence of condi-

tion—he gave a satisfactory definition to momentum
—also stated with approximate precision the princi-

ple that " action and reaction are equal "—also estab-

lished the principle of " virtual velocities,'' which

was made by Lagrange to include all of mechanical

science in one expression. He made a mathematical

analysis of the strength of beams, of projectiles, of

the pendulum, of floating bodies, and of the inclined

plane. For his investigations in other fields of sci-

ence—see some biographical sketch.

Page 23, Art. 49.—First Law of Motion. Says Whew-
ell, in his History of the Inductive Sciences : "It

may be difficult to point out who first announced this

Law in a general form." We have already seen that

the facts involved in it were recognized by Galileo.
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It is equivalent to saying that every change is due to

a cause, and yet, to cover the entire ground, this state-

ment needs modification. Motion is due to a cause,

but when the cause ceases, the motion of a free body

does not cease, it simply becomes uniform. Change

ofposition is not then necessarily due to a coexisting

cause, but may be due to a cause remote in time.

Change of condition , however, requires a present act-

ing cause ; and the latter will produce either a change

in the rate of motion, or of the direction of motion or

of both.

The law cannot be proved by direct experiment,

for it is practically impossible to remove from the

body all acting forces, and hence uniform motion un-

der the action of no forces is not realized by experi-

ment. It may, however, be observed that the less the

resistance the more nearly uniform will be the motion,

and hence we are led to infer that if all resistance

could be removed, the motion would be strictly uni-

form. Similarly, it is observed that a body projected

on a very smooth plane moves so nearly in a straight

line that we are led to infer that if there were no de-

flecting causes the path would be exactly straight.

The law is the result of induction rather than of

proof, but it appears go perfectly reasonable that we
assent to it as soon as it is properly illustrated. The

strongest proof of its correctness lies in the fact that

deductions founded on this hypothesis agree with

the results of observation.

The process of induction consists in conceiving

clearly the law, and in perceiving the subordination

of facts to it.
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Page 23, Art. 50.—Second Law. Change of motion is

hi proportion to the acting force. If all bodies were

of equal size it would only be necessary to consider

their relative velocities in determining the effect of

forces. But a larger body requires more force than a

smaller one of the same substance to produce the same

velocity under the same circumstances ; in other words

—mass and velocity are both involved—and the term

motion here means momentum. This also agrees

with Newton's explanation of the term. It is better,

therefore, to word the law thus : Change of momen-
tum is in proportion to the actingforce. It must be

particularly observed that the law does not assert that

momentum varies as theforce • but that it is a change

of the momentum that varies as the force.

This law was clearly perceived by Galileo, and by

means of it and the first law, he determined that the

path of a projectile in a vacuum was a parabola. The
law, however, was not considered fully established

until the theory in regard to the motion of the earth,

involving both this law and the law of universal grav-

itation, was realized. The triumph of both laws was

complete at the same time.

Page 24, Art. 51.—Third Law. Action and Reaction

are equal and opposite. The first and second laws

refer to one body only ; this involves two bodies. It

asserts that an action between two bodies is of the

same intensity upon each, but that the direction of

action upon one is directly opposed to that upon the

other. Every action implies an equal opposite action

—one being called a reaction in reference to the

other. No force, acting in one direction only, exists
;
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it is always accompanied by an equal but opposite ac-

tion. Eo force is known to exist without the pres-

ence of matter. Force does not act in curved lines
;

the action and reaction between two particles is in

the right line adjoining them.

Kewton gave three examples illustrating this law

:

If any one presses a stone with his finger, his fin-

ger is also pressed by the stone.

If a horse draws a stone fastened to a rope, the

horse is drawn backward, so to speak, equally towards

the stone.

If one body impinges on another, changing the

motion of the other body, its own motion experiences

an equal change in the opposite direction.

It does not seem rational that the stone will push

the finger in the same sense that the finger presses

the stone. The finger appears to be an active agent

while the stone is inert. In the strictest sense we
should say that, in the attempt to press a stone a

force is developed between the finger and the stone,

which force acts equally in opposite directions ; in

one direction against the finger, in the other against

the stone.

Similarly, in regard to the horse and stone. In the

former example the condition is statical, but in this

the horse is supposed to move the stone. The horse,

evidently, is not actually pulled backward, although

there is an actual backward pull upon the horse by

the rope. The fact is, that, in the effort to draw the

stone, a force is developed wrhich produces tension in

the rope, which tension acts to pull the stone one

way, and the horse the opposite way. As the horse
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is able to take a footing on tlie earth, he is able to

exert a force on the rope equal to," or exceeding, that

necessary to overcome the friction of the stone, and

thus move the stone. The pressure between the horse

and the earth also acts in opposite directions.

In the third illustration another idea is presented.

Motion is used in the sense of momentum, as before

stated, and it should read, the cltange of momentum
in tiuo impinging bodies is the same in loth ladies

but in opposite directions. This is a necessary result

of the second and third laws. The forces being

measured by the change in the momentum, and the

pressures being equal between the impinging bodies,

it follows that the changes in their momenta must be

equal. Hence if one loses momentum the other must

gain, and the loss in one case must equal the gain in

the other.

Thus if the body whose mass is 2[x impinges upon

another whose mass is M2, vt and v2, their respect-

ive velocities before impact, and v\ and v'2 their re-

spective velocities at any instant after the first contact,

and assuming, as we will in establishing the formula,

that the velocities are in the same direction, in which

case it will only be necessary to change the sign of one

of the velocities if they move in opposite directions

;

then will the momentum of Mx before impact be

and after impact

and as 2T
1

is supposed to be the impinging body it

will lose velocity, and we have for the momentum
lost by Mt
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31{i\ — Mxv\.

Similarly, the momentum gained by M2 will be

3f2V
r

2 ~ -2^8)

which, according to the third law, must equal that lost

by the former body ; hence for all stages of the mo-
tion after the first contact, not only during compres-

sion, but also at and after separation, we have

Mfa - v\) =M2(y'%
- <y

2).

IfM2 be the impinging body, we have

which easily reduces to the former equation. If they

move in opposite directions before impact make i\ or

v2 negative, the impact is here supposed to be direct

and central, for which case the equations are true

whether the bodies be elastic or non-elastic. Several

cases are discussed on pp. 85-90 of the text.

(It appears that Whewell, in his History of the Inductive

Sciences, has not drawn a sufficiently clear distinction between

the second and third laws. He appears to hold that the third

law gives a measure of the pressure or force, whereas the sec-

ond law is the only one of the three that gives it).

Page 24, Art. 52.—We are not informed who first

gave the laws for the composition and resolution of

forces ; but Galileo was one of the first to make use

of them in explaining curvilinear motions. The

method was systematized by Descartes by the aid of

the systems of rectilinear axes.
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exeecises.
Page 26.

1. Because the force of gravitation draws it from
the rectilineal path in which it was projected.

2. The least force.

3. 500 pounds.

Page 27.

4. Midway between their initial positions.
5. He must aim to walk southwesterly. To find the

direction, draw a line, AB, of any
length to represent the one mile
due east, and a line, A C, perpendic-
ular to AB, and of such length
that the hypothenuse, BO, will be
three times as long as AB ; then
will the angle ^LB 6' represent the
required direction.

We have

cos B = i
;

3
'

.'. ABC = 40° 32°

Make AB = 3, the A
angle BBC = 45°,

and BC equal to

8; join AC, then
will AC represent

the resultant direc-

tion. A numerical

solution gives I)AC
= 33° 10' and the

course will be S. 56° 50' E.
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BD= DC=8 sin 45° = 8 x I V2 = 4 V~2

AD = 3 + 4 V2
'

nAn 4 a/2 32 - 12 V2
tan. i>^l U = — = =

3 + 4 \/2 23

0-6535; .-. Z?^<7= 33° 10'.

The velocity will be 10-34 miles per hour.

7. It will be 10 x cos 45° =
-J-
V% x 10 = 5 x

1.4142 + =7.0710 +.

8. Yes, and will move towards the rear end of the

car (First Law). Because it tends to preserve

the velocity which it had just before the col-

lision.

9. In the first edition F% was 30 lbs. It was in-

tended to be 20 lbs. so as to show that the re-

sultant of two velocities may be the same as

those producing it. In this case the triangle

of velocities will be equilateral, and hence

each of the angles will be 60°.

If 20 and 30 pounds be used, we have for

the diagonal of the parallelogram

E = V900 + 400 + 2 x 20 x 30 x 0-5

= 43-59 lbs.;

and for the angles 36° 35' 12", and 23° 24' 48"

respectively.

Page 27, > Arts. 59, 60.—The intensity of a force is

known only by its results.

Page 29.

Art. 63.—The case of a force acting normal to the

path of a body was a difficult one with the philoso-
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pliers living about Galileo's time, and is not the

easiest to explain by elementary processes at the

present time. It will be considered in Chap, xvi.,

p. 220 of the text.

Art. 64.

—

We say that gravity tends to draw bodies

towards each other ; but we only know that it

causes them to move towards each other when free.

It is quite as proper to speak of its pushing as of

drawing them towards each other.

Some attempts have been made to explain the

essential nature—or the cause—of gravitation. One
of the most celebrated of these theories was given

by one Le Sage. According to his theory, lines of

force acted in nil conceivable directions through

space, and as two bodies intercept those lines which

would pass through both bodies, there would be

more force to drive them towards than from each

other. (See Theories of Gravitation by ¥m. B.

Taylor, of the Smithsonian Institute, Washington,

D. C.) But no theory thus far suggested is con-

sidered sufficient to account for the fact of gravi-

tation.

Page 29, Art. 65.—The law of universal gravitation is

one of the discoveries which aided in immortalizing

the name of Sir Isaac Newton. He first conceived the

nature of the law, and then proceeded to prove it. He
assumed that if the law was correct it ought to explain

the circular motion of the moon about the earth—in

other words, that the pulling force (so to speak) of

gravity at the moon would be just sufficient to draw

it the required amount, from a tangent to the orbit
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If g be the acceleration of a pulling body at the sur-

. face of the earth, at the moon it will be g -i- D2—
where D is the number of diameters of the earth be-

tween the center of the earth and center of the moon,

and is about 60-3612 ; and as g = 32-216 ft., we
would have at the moon, the acceleration 32-246 -5-

(60-3612)2 = 0-0088 +. The force at the moon
which would produce this acceleration equals the cen-

trifugal force, and is given by the last equation of

Art. 315 of the text, and is

Force = m -w ,

where r is the radius of the orbit, T the time of a

complete revolution, and m the mass of the body.

But the force divided by the ?nass equals the accel-

eration—as is shown by the last of the equations of

Article 86

;

7 ,. Force 4:n2r
.'. acceleration = = __

,

m 1 2

which applied to the moon, and reduced, gives 0-0089

+ (see Art. 319). The two results should agree if the

law and data are both correct. It will be seen that

the value of the radius of the earth enters into the

computation, the correct value of which was not known
to Newton at the time of his first investigations.

Some fifteen years after he began the investigation,

while attending a lecture in London, he obtained the

correct value of the radius, with which he proved the

truth of his proposition.
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The analysis by which the above result is reached

is anticipated, but it will enable the reader to under-

stand why an error in the true value of the radius of

the earth vitiated the first result.

It is questionable whether the story—that ISfewton

conceived the law of gravitation by seeing an apple

fall from a tree—so often taught to juveniles, is not

purely fictitious. It is certain that he did not con-

sider the law established for fifteen years after he

first conceived it, during which time, it is said, he re-

viewed his work many times.

Page 30, Art. 67.—A history of pendulum experiments

would furnish material for a book. The mathematical

pendulum is an ideality, but a very useful one in dis-

cussing the subject. Compound pendulums are

necessarily used in making experiments. The most

practical method of determining the acceleration due

to gravity is by means of a pendulum ; and some of

the results thus found are given on p. 244 of the text.

The length of the seconds' pendulum has also been

used for determining the standard of linear measure.

Thus, the English law requires that the length of the

yard shall be to the length of the simple pendulum
vibrating seconds at the Tower of London reduced

to the level of the sea as 36 to 39-13908. (See Art.

328.)

Page 31, Art. 68.—The formula

g = 32-1726 - 0-08238 cos. 2Z,

is given in The Mecarvique Celeste, Tome iii. v., § 42,

[2,049].
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examples.

Page 35.

tf _
1. h = 2^ ••• v = Vsp = V2 x 32i x 100 =

80-20 feet.

2. t—-— —— = 9-3 seconds.
<7 oH

3. t = ^ = 3-109 seconds.

7* = vj- igt
2 = 100 x 3-109 - 1 x 32| x (3-109)

2 =
155-4 feet.

Page 36.

4. Acceleration = 32-J- ft. per sec.

= 32| x 60 = 1,930 ft. per minute!

5. Acceleration per second = 32-16666 feet, = 32-

1G6QQ -f- 3-28 = 9-807 + metres. For 4 sec-

onds, 9-807 x 4 = 39-228 metres.

6. h^=ig# + v t, (Eq. (6) p. 34.);

.-. 120 = \ x *??- £
2 + 25*.

Solving for £ we find

£ = 2-0627 + sec.

Also (Eq. (11) p. 13.)

v =v Q -f gt
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= 25 + ^ x 2-0627
D

= 91-35 feet.

7. 150 = i x =^p £
2 + 25* ;

.-. 25

150 i/1800 x 193 4- 22500
ffVQ " r

193 '

r
193a

150+608-19
193

= 2-37 seconds.

8. For the falling body (Eq. (2) p. 34)

and for the body projected (Eq. (8) p. 34)

h — vt— l(/l
2

.

Eliminating 7i gives

v = gt;

but

hence eliminating ? gives

v* = 2gh;

.'.v = V%h-g

9. The sound will be T——- seconds in returning;
1130

hence the time of falling will be
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4
li

1130"-t

f/|l5
(Eq.(4)p..34);

-:!*
7* \ 2

27*

ii3oy ~ <?

'

(1130)»(;
L130

+
16TV/

= 231-6 + feet.

-16 x(1130)2
;

10. Let x = the distance upward from the lower

point to the point of meeting ; then will the

point of meeting be a — x from the upper

point. If t be the time of meeting, we have

for the falling body

a — x = vt + ^gfi,

and for the body projected upward

x= Vt-\gi\

Adding we have

a= (F+ v) t;

,.t:
Cl

which in the second equation gives

a ( t-t a
-v^r-v V- l9 rT-v.
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The distance below the highest point will be

TTi(F+ *TTi)'

EXERCISES.

Page 36.—1. He will. To draw it at a uniform veloc-

ity he must overcome the friction only, but at

an increasing velocity he not only overcomes

the friction but also exerts additional force to

overcome the inertia of the mass (see Second

Law).

2. Attraction is more.

3. Because the air resists less.

4.
.j-ly-

ounce.

Page 37.

5. 10 inches.

6. More, for the force of gravity is less at the equa-

tor than at the poles.

7. It will neither gain nor lose in weight if weighed

with the same beam scales. It will lose in

weight if weighed with the same spring bal-

ance, for the resistance of the spring will re-

main constant, while the force of gravity will

be less.

8. 9-S07 + metres per second.

Page 38, Art. 78.—In the last two lines of the page

it is assumed that the attraction of a sphere upon an

external particle varies inversely as the square of the

distance from the center of the sphere. We here

submit a proof of the truth of the statement. New-
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ton, in his Principia, proved the proposition of the

statement geometrically ; we now use the calculus.

Let ABB be a spherical shell, center (7, radius a,

P the posi-

tion of an ex- / ____—

—

^\B
ternal parti-

c 1 e. Con- j»*-

ceive two

consecutive

radial lines" X>

drawn from P, cutting the shell in the points A
and B.

Proof. Let ds be an element of length of the circle at A,

PA = r, PC = c, CB = a, k = thickness of shell, 8 = den-
sity. Conceive a line joining Pand C, = APC, and y = per-

pendicular from A upon PC.
Then

2 TtyJcds = volume of shell generated by the

revolution of A about PC,
2 TtydJcds = mass thus generated

.

The attraction upon the particle will be

2 7c8kyds

r2
'

which resolved along the axis PC gives

2 nSkyds^— cos 0.

Let p = C'E = the perpendicular from C upon PB, then

p = c sin ; . \ dp = c cos Q d ;

also 7'- — 2rc cos Q + c
2 = a2

;

dr re sin Q

' dQ r — c cos Q
'

and
ds ar

dQ ~ r — c cos G
'

(for ds
2 = dr* + rW).
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Hence

2 Ttdkyd* r 2 itdku cos ar«M^— cos =
r — c cos

2 Ttdkyadp

cr (r — c cos 0)

2 7r£&<2 pdp
i— X

fV -
j

which gives the attraction for a circular element of the shell
;

hence for the entire shell we have

4 TtSka Ca pdp

r. Va2 - p*

4 TCdkar

hence for a constant radius a, the attraction varies inversely as

the square of the distance of the particle from the center of the

shell, which was to be proved.

If c = a, we have

4 rrdk,

hence the attraction of a spherical shell upon a particle in its

surface is independent of the dimensions of the shell.

To find the attraction of a homogeneous sphere upon an exter-

nal particle, make k = da and integrate, and we have

(ah
o

4 Ttd r« . . 4 Ttda*
a-aa = =

—

3 c-

8= volume X —
,

Page 39.

Art. 79.— Weight, to an uneducated person, is con-

ceived to be essential to matter. Such an one would

doubtless assert that a body falls to the earth because

it is heavy ; but to the student of mechanics, weight
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is nothing but the measure of a force, the magnitude

of which depends upon the quantity of matter con-

stituting the body.

Page 41.

Art. 83.—The unit of mass might be the piece of

platinum which is used as the standard pound (see

Art. 33), but as we have occasion to compare the

force of gravity at different places, and as the force

of gravity at London is assumed to be 32-1- feet, we
have chosen to consider the unit of mass as about

-—- of the weight at that place.
32|

& *

Page 42.

Art. 85.

—

Density is sometimes used in the sense

of specific gravity, and if the density of water be

taken as unity, the specific gravity of any substance

(compared with water) will equal its density. We
prefer to make the definition conform to the sense

used in mechanics. The following are the definitions

given by several authors :

By the density of a body is meant its mass or quantity of mat-

ter compared with the mass or quantity of matter of an equal vol-

ume of some standard body arbitrarily chosen.

—

Towne's Ele-

mentary OTiem.y p. 29.

Density is a term employed to denote the degree of proximity

of the atoms of a body. Its measure is the ratio arising from

dividing the number of atoms the body contains by the number
contained in an equal volume of some standard substance whose

density is assumed as unity. The standard substance usually

taken is distilled water at the temperature of 38°. 75 F.

—

Bart-

lett's Elements of Analytical Mechanics,^. 29.

Enfin si Ton represente par D la masse, sous Tunite de volume

du corps que Ton considere, D sera ce qu'on nomme la Densite
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de ce corps. On prend communement pour unite de densite celle

de l'eau destillee a cette derniere temperature (4° du therniome-

tre centigrade).— Poissox, Traite de Mecaniqae, jmge 108.

The quantity of matter in a body does not depend on the size

of the body only, but also on the closeness with which the par-

ticles are packed. This difference is defined as a difference of

density. Thus there is more matter in a cubic inch of lead than

in a cubic inch of oak, and this is expressed by saying that the

density of lead is greater than the density of oak.

—

Magnus, Les-

sons in Elementary Mechanics, p. 60.

Experiment shows that the weight of a certain volume of one

substance is not necessarily the same as the weight cf an equal

voluma of another substance. Thus seven cubic inches of iron

weigh about as much as five cubic inches of lead.

We say then that lead is denser than iron, and we adopt the

following definitions. When the weight of any portion of a body

is proportional to the volume of that portion, the body is said

to be of uniform density. And the densities of two bodies of

uniform density are proportional to the weights of equal volumes

of the bodies.—Todhunter, Mechanics for Beginners, p. 7.

The density of a body is the mass comprised under a unit of

volume.

—

Silliman, First Principles of Philosophy , p. 67.

Density is the quantity of matter contained in a unit volume ;

the absolute density or the closeness with which the particles are

packed being uniform throughout that unit volume. This def-

inition is directly applicable if a body is homogeneous ; but if it

is heterogeneous, and the density varies from point to point, the

density at any point is the quantity of matter contained in a

unit volume throughout which the density is the same as that at

the point. Density is usually measured by means of comparison

with some substance the density of which is assumed to be the

unit-density.

—

Price,. Infinitesimal Calculus, p. 164.

The quantity of matter in a body, or as we now call it, the

mass of a body, is proportional, according to Newton, to the vol-

ume and the density conjointly. In reality the definition gives

us the meaning of density rather than of mass, for it shows \xz
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that if twice the original quantity of matter, air for example, be

forced into a vessel of given capacity, the density will be doubled

and so on. But it also shows us that, of matter of uniform den-

sity, the mass or quantity is proportional to the volume or space

it occupies.

—

Thomson and Tait, Treatise on Natural Philoso-

phy, p. 162.

Heaviness (Fr., densite, Ger., dichtigkeit) is the intensity with

which matter fills space. The heavier a body is, the more mat-

ter is contained in the space it occupies. The natural measure

of heaviness is that quantity of matter (the mass) which fills the

unity of volume; but since matter can only be measured by

weight, the weight of a unit volume, e. g. of a cubic meter or

of a cubic foot of another matter, must be employed as a meas-

ure of its heaviness.

The product of the volume and the heaviness is the weight.

The heaviness of a body is uniform or variable according as

equal portions of the volume have equal or different weights.

—

Weisbach, Mechanics of Engineering, p. 160.

The density of a, body is the degree of closeness between its

particles. The term depends upon the hypothesis that the ulti-

mate particles of matter have weight, and therefore mass pro-

portional to their bulk. It coincides with specific gravity.

—

Peof. Nichol, Cyclopaedia of the Physical Sciences, page 177.

On sait que le poids d'un corps varie avec l'intensite de la

pesanteurmais que sa masse ne varie pas. Sous l'influence de la

menie pesanteur, par exemple en un meme lieu du globe, le

poids est evidemment proportiounel a la masse et le rapport des

poids de deux substances sous le meme volume sera precisement

celui de leurs masses sousle meme volume ; de la, la synonymie,

qui existe entre les mots poids specifique et densite, qui ex-

prime ses rapports.

—

Wtjrtz, Dictionnaire de Chimie. Sous Den-

site.

Tbe density of a body is the ratio of its mass to its volume.—

Smith, Elementary Treatise of Mechanics, p. 44.
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exercises.

Page 43.

1. The matter outside of one-half the radius would
produce no effect ; and that within would at-

tract as it* it were all at the centre. The sphere

of one-half the radius will contain one-eighth

the matter, and the inverse square of the dis-

tance will be 4 ; hence the weight will be

| x 4 x 10 = 5 lbs. We get this result more
directly by saying, as in Art. 78, that the at-

traction will be directly as the distance from
the centre.

2. 10 -T- 22 = 2J- lbs.

3. Nothing.

4. At a distance from the outside somewhat less

than half the thickness of the shell. The ex-

act distance cannot be found unless the thick-

ness of the shell be given. (If JR be the out-

side radius, rt the inside, and r the required

distance from the centre ; then

*g(/'-n8
) . frrCK

8 -*'!'
) .. -

. 10
P • —& •• 5

•
10

or

2B2 (rs— rfl = >'2 (7Z3 -n8
);

which is a cubic equation, and may be solved

by Cardan's method.)

Page 44.

5. Yes for the first answer ; No for the second.

6. On the opposite side. He could not stop at the
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centre by a mere effort of the will. Some entertain

the idea that the will of a person, causing a movement

of parts of the body, could, in a measure, control the

movement of the body as a whole ; but, as a fact, the

matter of the body is subject to the action of forces,

like any other matter. Xo part of the body can be

moved except in accordance with the three laws of

motion. If an arm is moved in one direction, some

other part of the body will be moved in an opposite

direction (the body being free). While passing across

the hollow referred to in the Exercise, the person

might throw his arms about, or kick, or perform the

evolutions of swimming, or rowing ; but as there is

supposed to be no matter, or no body, for him to act

against, he could not change his rate nor direction of

movement. In drawing his feet forward he would

necessarily pull some part of the body backward. It

is shown, by higher analysis, that the centre of gravity

of a moving system is unaffected by the mutual ac-

tions of internal forces—so, in this case, the motion

of the centre of gravity of the person would be en-

tirely unaffected by any contortions the person might

make.

7. At the centre of the sphere. At the same point.

Uniform.

Page 43.

8. The ball. If the ball were very small compared

with the person, the movement of the person might

be neglected compared with that of the ball
;
just as

the motion of the sun is neglected compared with

that of the planets. In the case of the planets, the

pulling force is dependent upon their masses and dis-

3
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tances, but in the case of the person this force is de-

pendent upon his muscular exertion.

9. He could not. In the effort to throw the ball

away, a force is developed between the hand and ball,

which acts equally between the ball and hand, but in

opposite directions in accordance with the third law;

and hence the ball would move one way and the per-

son the opposite way; and both would move in

straight lines in accordance with the first law, and

their relative velocities will be inversely as their

masses in accordance with the second law.

If the person were placed at rest in any position in

the hollow and unable to reach anything, he could not

turn over, nor change ends ; that is, if his head were

towards the north and his feet towards the south, he

could not so change as to have his head towards the

south and his feet towards the north. Should he at-

tempt to so turn as to bring his head towards the

south, he would cause his feet to approach his head,

and they would meet about half way. He might suc-

ceed in kicking his own head, or, if he were very

flexible, the head and feet might pass each other

;

but the body could not turn over so as to change ends.

Neither could he roll over. If one end of the body
turns one way, the other end necessarily turns the

opposite way.

If a cat be held with her back down two feet or

so from the floor, and dropped, she will strike on

her feet ; how does she do it ? According to the

principles of mechanics, if there were nothing for

her to act against it would be impossible for her

to turn, and she would necessarily strike on her back.
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While experimenting, I was surprised to find how
near the floor the cat might be held, and often

apparently perfectly unwatchful when dropped,

and yet alight on her feet. Now the movement of the

body should be accounted for on mechanical principles.

Instinct operates quicker than reason, and it appears

to be certain that the cat, instinctively, initiates

a rotation of her body at the instant she is dropped.

While it is difficult to see how muscular action can

be quick enough to produce this result, yet I see no

other way of accounting for the rotation. Suspend

the cat with a string at each foot, then suddenly cut

the strings, and she will rotate herself. It is also an

interesting fact that she will strike on her feet if let

fall several feet, say six or eight feet. Now if she had

the same initial rotation when falling six feet, as

when falling two feet, why would she not turn too

far in the former case and strike on her side ? To ex-

plain this, we here state a principle not yet proved in

this course. IfM rotating tody self-contracts, it will

rotate more rapidly, hut if it self-expands it will ro-

tate more slowly. The cat has the ability, within a

limited range, of expanding or contracting the trans-

verse dimensions of her body, and to that extent of

regulating the amount of her rotation.

Consider still further the relations of the man and

ball in the ninth exercise. He puts his hand in close

contact with the ball, but without grasping it, and

they move away from each other, until both strike

the walls of the hollow. Then suppose that the man

springs for the ball and seizes it, and then springs

towards the centre of the sphere, but before reaching
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the opposite side throws the ball in anger. If the

ball goes in a direction perpendicular to the line of

his body (or, generally, in any line not passing

through the centre of his body), the man will be

thrown into a rotary motion as well as a motion of

translation, and he will inevitably perform somer-

saults while backing away to the opposite side of the

hollow.

Page 44.

10. JOG ~ 32J- = 3tVj = 3.109.

1 1 n u M(is* 200 x 6
11. Density = -=- = — = 3-109.

Volume 193 x 2

1n ir 2-2 B> x 5 x (> nta
12. Mass = ™ = -342.

J. Jo

13. Density = \^ *

bJ =-00581.

14. If the resistance of the air be considered it

would. In the second case, it would not stop,

but would go from surface to surface with the

regularity of a pendulum. (See text, p. 249.)

In the third case the velocity would be greatest

at the centre, if the hole be a vacuum ; but if

it be filled with air, the greatest velocity

would be passed before tile ball reached the

centre.

Art. 86. The value of F— Iff is sometimes called

the absolute measure of force, but nothing is

gained by the term, except that it distinguishes it
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from the mere stress which it would produce if no

motion resulted. Some English writers call the

value of i^when thus expressed The Poundal, but

this term has not come largely into use.

Observing that acceleration is the rate of increase

of velocity (Key, p. 6), it follows that this value of

F is the same as that given by Newton's second law,

that the force is proportional to the change of mo-

mentum produced. But we are confident that the

constant use of the term acceleration for rate of

change of velocity possesses great advantage, since

rate of change is liable to be considered the same

as actual velocity. Indeed some text books assert

that the momentum of a body is a measure of the

force acting upon it—and call it the second law.

Now a body may have momentum when no force

is acting upon it. It is the rate of change of'mo-

mentum that measures the force producing the

change ; in other and better words, the mass into

the acceleration.

Observe that the establishment of this ecpiation

contains a very important principle. There is,

strictly speaking, no relation between pounds and

feet ; but the ratio of two weights may be the same

as the ratio of two linear measures. A ratio is an

abstract number, and often serves to connect con-

crete quantities, forming an equation. Thus, in

this case,

-777. = a ratio, a mere number, = —

.

IF g

The equation being established, it is operated upon
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algebraically. This use of ratio has many appli-

cations in physics.

answers to examples.

Page 47.

i ir 7 u :/ f2 x 200° x 193 x i\

% 1286-66 = 35-87 feet.

-1
6 x 2 x 500 12

SO-42 or 80 fV feet.

q ir
7

' u 1/ /2 x (25 - 10) x 193 x 100\
3. Ffeo* = |/

( 6x
;

500 ) =

^ 193 = 13-88 feet.

. w 100 x 100 01 OK _
4. /fyrce = ——-

—

j^r = 31 -2o R>s.
<32 x 10

solutions of problems.

Page 50.

4. The tension equals the weight, P, plus the force

W'— P
which will produce the acceleration. 7= ^ a is the

acceleration when P is raised vertically. The mass

multiplied by the acceleration is the moving force, or

p \y _ p w_ p— • jp p g ; hence the tension is P + ir -v, P
2 Tf'P= -rp= 73. Similarly, it equals IF minus the accel-
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. , 7r W-P^ 2WP
erating force, or II ^ ^- H =W+ P ~ W+P

5. The effective moving force is W — T, lience from

Prob. 2, W- T= --/.
9

Substitute/^ ig, and W-T=iW;

If ascending, f- W = —/, or T - W = I W;

T — W + the force which will produce the ac-

W
celeration = W -i %g = f IF.

exam p les.

Page 50.

2P — P
2

- * = * ZP +JT 9* = i x HA x 25 --= 134* ft.

H* x 25 + 2 x 10
Kft KO

'
-~ rk o? o

—

if 50 == 52-55 Its.J|-4 x 25 — 2 x 10

2 ° * = * TFT^^ or -P = 47-57 fts.

4 * - '
P - W

a* or a - 2s(P + TF
>
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= 2x6-8x9fr =64.6ft
i x 4

2xl0xP.
o. 1-—p--

-

10
-, -^-T.1D-

5 = ^104P ;

. p = 3 , lu

10 = f-^i_lil
; .-. p - 10 11)S .

P + 10

2 X 10 x P
iJ + 10

2 X 10 x 7J

»=-prnr' •*=»

If the tension exceeds 20 lbs. P will be nega-

tive.

,/2 x 1U x 22
' ^ 9. y JJJ.

= 2-G15 seconds
2 x

AXSWEIiS TO EXERCISES.

Page 51.

1. The balance will indicate no tension. This

question was given, because the author sometimes

found that, in a ease like Fig. 21, some students would

assert that the tension of the string ought to be P ;

but by taking an extreme case, like the one in the

exercise, the fallacy would be apparent. One of the

best conditions of mind for searching after truth is to

be convinced of one's error. When one admits that
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his position is erroneous, he is generally in a condi-

tion to admit the truth.

2. If the acceleration is increasing, the tension will

exceed the weight ; if uniform it will equal the

weight ; if decreasing it will be- less than the weight.

3. It will be less than his weight while descend-

ing, and greater if ascending. In both cases, if the

motion be uniform, it will equal his weight.

4. The tension will be less than his weight.

Page 52.

Art. 91.—It has already been stated that, in the

relations between force and motion, we have four

fundamental elements, force, space, time, and mass.

Force and matter are so intimately connected that it

is impossible to completely divorce them ; but force

may be abstracted from space and time—not in the

sense that it can exist without them, but in the sense

that it may be considered independently of them, and

when so considered it is called stress. But a force

acting upon a body may move it through space, and

the space may be considered independently of time.

The product of force and space both considered in the

same line, and abstractedfrom time, is work.

The term originated from the grosser ideas of labor,

but the definition given in the text is applicable to

the most refined actions in mechanics. All known

forces in nature are constantly working. . Thus, riv-

ers wear the beds of their streams ; wind drives the

sail, uproots trees, produces drifts of sand, etc. ; heat

expands bodies, and may overcome -their cohesion,

etc.

According to the definition, a man merely snp-
3*
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porting a weight cannot be said to work, and yet lie

soon becomes conscious of fatigue. But a more criti-

cal examination of his case shows that the weight is

not strictly at rest. The natural action of his organ-

ism, especially the beating of his heart, causes slight

elevations and depressions of his load, so that he is,

in the strictest sense, constantly laboring.

The following are some examples, of the average

work accomplished by a man under various condi-

tions.

WORK OF MAN AGAINST KNOWN RESISTANCES.

hrs per ft. lbs.

lbs. day. per day.

1. Raising his own weight up stairs or

ladder 145 8 2,088,000

2. Hauling up weights with rope, and

lowering the rope unloaded 40 6 648, 00J

3. Li fting weights by hand 44 6 522,720

4. Carrying weights up stairs returning

unloaded 143 6 399.600

5. Shoveling up earth to a height of

5 ft. 3 in... 6 10 230,800

6. Wheeling earth in barrow up slope

of 1 in 12, one-half horiz. veloc. 0.9

ft. per sec. , and returning unloaded. 132 10 356,400

7. Pushing or pulling horizontally (cap-

stan or oar) 26.5 8 1,526,400

8. Turning a crank or winch IS 8 1,296,000

9. Working pump 13.2 10 1,183,000

10. Hammering 15 8? 480,000

PERFORMANCE OF A MAN TRANSPORTING LOADS HORIZONTALLY.

In- pet lbs. con'd

lbs. day. 1 ft.

11. Walking unloaded, transport of own
weight 140 10 25,200,000
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hrs. per lbs. con'd

lbs. day. 1 ft.

12. Wheeling load in 2-wheel barrows,re-

turn unloaded 224 10 13,428,000

13. Wheeling load in 1-wheel barrow, re-

turn unloaded 132 10 7,920,000

14. Traveling with burden 90 7 5,670,000

15. Carrying burden, returning unloaded. 140 6 5,032,800

See Rankin e's Steam Engine, pp. 8-4-85, where the

rate of doing the above works is also given.

Morin and "Weisbach give 2,387 ft. lbs. per minute

as the work which a man is capable of doing when
working eight hours consecutively. This equals -££$fc

= 0.07 4-HP. nearly.

At an experiment made at Dresden in 1 880, men
working only 2 minutes at a time on a hand fire-en-

gine did 0-277 H.P.—or nearly four times that given

above.

Page 54, Art. 98.—Kystrom asserts in his writings,

that work is not independent of time, for it requires

time to move a body over space ; also that if one

horse drew twice the load over the same space as an-

other, he did twice the work and was twice as effi-

cient. But Ave hold, and trust we have clearly shown,

that time is properly abstracted in the idea of work-
that efficiency is very different from work. We have

also shown that if time is considered even implicitly,

the velocity must also be considered.

Art. 99.—The simple definition—Power is rate of

doing work—is coming more generally into use.

Page 56, Art. 104.—Friction is a force ; its value can

be measured in pounds. It does not directly produce

a positive acceleration, but a negative one. Its direct

office is to destroy motion ; not to produce it. But
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indirectly it may produce motion by produc ng Lent.

Heat produces motion, and the work of friction has

its equivalent in heat, and this heat if collected would
produce the same motion as that which it has de-

stroyed. But in practice it is so quickly dissipated

that, in most cases, it is apparently lost.

A smooth surface is one from which the idea of

roughness is abstracted.

Page 58, Art. 107.—The laws of Morin are only ap-

proximately correct. In machinery, the character of

the surfaces in contact, the mechanical execution of

the fitting up, and of the lubricants, are each and all

important elements. See practical treatises and arti-

cles upon the subject. Pankine, Steam Engine', pp.

14-18, Thurston, Friction and Lubrication.

Page 59, Art. 109.—The frictional resistance of rail-

road trains is principally rolling* friction under good

working conditions. A railroad train in good order,

and on a good road, will not be safe against starting

under the action of gravity alone, unless the gradient

is less than eighteen or twenty feet to the mile ; once

started it will continue in motion on gradients as low

as thirteen feet to the mile. The coefficient of rolling

friction for trains in good order is ¥|4o ^ 0-0025, or

less than six pounds per ton. The resistance at start-

1#ng is T||F = 0-0038 or %\ pounds per ton.

The resistance of a locomotive is about 12 pounds

per ton.

The resistances on railroads, under average condi-

tions, and including all forms of resistances, are given

by Clarke.
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AY lien the permanent way is straight, rails dry and

clean, he gives for trains only

for engine and train

*=* + $?>

where R is in pounds per ton gross, and v the velocity

of the train in miles per hour. (JSLanual of Rules, etc.,

p. 965.) A Mr. Hughes found on an English "tram-

way " a resistance of twenty-six pounds per ton.

On railroads, frictional resistances are sometimes

greatly increased by the resistance of the air, called

"head resistance," and amounts, in pounds per square

foot of front exposed, to 0-005 of the square of the

velocity in miles per hour with which the air meets the

head of the train. Side winds often increase the

flange resistance seriously.

The value of the coefficient of friction on ordinary

railroads is 0-003, on well laid railroad tracks 0-002,

on best possible railroad 0-001.

Mr. S. Whinery (Trans. Am. Soc. C. E., April,

1878) gives a formula for the total resistances of a

train running on curves,

where R = total resistance., D = degrees of curvature,

g = gauge of track, t = length of rigid wheel base, a
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and n are quantities expressing resistances due to ac-

cidental and irregular conditions. These resistances are

inversely as the radius of curvature, directly as the

load, and nearly independent of the velocity.

Mr. O. Chanute (Trans. Am. Soc. C. E., April,

1878) analyzes this increase of resistance as follows

:

Due to twist of wheel 0-001

" slip " 0-1713

" flange friction 0-2450

" loss of couplings 0-0213

Total 0-4386

Loose wheels reduce this loss 20 or 25 per cent. The
rigid form of wheel-base of European cars and loco-

motives doubles the increase due to curves as well as

increases the resistance 'on the straight line. Accord-

ing to Mr. Chanute the " coning " of wheels increases

the resistance from 0-125 to 0-25 pounds per degree

of curve per ton. (Thurston, Friction and Lubrica-

tion, pp. 13-18.)

Recent experiments on the New York and Erie

H. R. show that on a track of steel rails in first-class

condition, the friction of a train at low velocities may
be reduced to 3| or 4 pounds per ton on a horizontal

road ; and that the rolling resistance on such a track

in the summer may be safely taken at 5 pounds per

ton. (R. E. Gazette, March 24, 1882, or HaswelPs

Pocket-Bookfor Engineers, edition of 1882.)
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Page 63.

Example 3.—If /.i — 0, the expression /a?jW + h "IF be-

comes It TT, in which case the work equals that neces-

sary to raise the weight through the height of the

plane.

SOLUTIONS OF EXAMPLES.

Page 64.

1. It will raise 50 X 33,000 x CO ft. lbs. in 1 hour,

which divided by 500 x 62-5 will give the

cubic ft. = 3,168.

2. The average height to which the material is

raised will be 10 ft. Hence the work = 140
(i n x 32 x 20) x 10 =r 197,920-8. lbs.

Q F + F' 1000 + 200 1Q _ .

,.V = ~2F * =7 2000
X 12 = 7 ' 2 m '

4. 39-37 inches = 3-2808 ft. x 2-2 lbs. = 7-217

+ ft. lbs.

5. 43,333 x 7-217 + * (32;808)
2 = 29,057 ft. lbs.

6. Substituting in the answer to Prob. 2, p. 61, we
3

have H. P. = 0-9114 x 1 x 12* = 37-89.

7. Work of the fall = 2,000 x 8 = 16,000 ft, lbs.

Let x = the distance driven, then 10,000# =
16.000; .\x=l-6 ft.

8. Find the velocity in feet per minute. We have
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2 x 5280

00
The horse-power == Fv -s-

QQ AAA 200 x 2 x 5280 , .

83
'
000

'
01

' 00x33000
= 1*-

_ yftP - 2(P + TF).9 _ if1 x 9x8-2(8 + 40)4
y

- M -
,.# w ~ ~ i|3 x 9 x 40

_ 1
P - fiW

ft _ x
5 -25x0-15

' ^ "r ' "PTTr ** " *
X

5+25

x lp x 25 = 1206-25 + 72 = 10-75 ft.

ANSWERS TO EXERCISES.

1. One pound raised one foot. Work is a com-

pound quantity, compounded of stress and

space.

2. See preceding remarks, text, p. 56.

3. It is dependent upon time only implicitly, and

in the sense that motion requires time. But,

strictly, time should be abstracted.

4. Tang. 15° = 0-208.

5. 5 lbs.

G. Mechanical power is not work, but rate of doing

work—just as velocity is not space, but rate at

which space may be passed. Mechanical power

involves a unit of time, but work dues not.

Page 66.

Art. 41.—The doctrine of energy is the grand, gen-

eral principle of modern physics. All the changing
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phenomena of nature are but manifestations of the

transmutation o£. energy. Its principles are not de-

duced by any system of mathematics, but by a long

series of inductions. We accept its general principles

without attempting a general demonstration.

Even work in a higher sense is but a means of

transmitting energy. Thus, a horse works by draw-

ing a load, but it is simply a means of transmitting

the energy possessed by the horse, first into energy

stored in the mass of the load, and second into heat

by means of the friction overcome. Still, work is not

only a convenient, but a useful term. Work clone is

one idea, energy produced as its equivalent is another

—force and space are the elements of the former,

mass and velocity of the latter.

DEFINITIONS OF WORK AND ENERGY.

" Work is the overcoming of resistance continually

recurring along some path."

—

Bartlett's Elements

of Analytical Mechanics, p. 26.

" Work consists in moving against resistance. The

work is said to be performed, and the resistance

overcome."

—

Rankin e's Applied Mecha?iics, p. 477.

" Work is the effect of strain and motion combined.

—Traetwine's Engineers1

Pocket-Book, p. 445.

Remarks on above from p. 446 same book :
" Grav-

ity acting in a body falling freely in a vacuum, and

consequently unresisted, exerts no effort upon it, it

neither goes before, and pulls it along, nor behind,

and pushes it ; for there can be no pull or push except
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when there is some force to pull or push against.

But it simply, as it were, animates the body, or en-

dows it with the power of locomotion. As the body

falls, the force of gravity which gives it motion all

remains unimpaired, and stored up in it, ready to ex-

ert an effort against any other force which it may
chance to meet with. Therefore a body falling unre-

sistedly has no weight ; for gravity, which gives it

weight alone while at rest, now gives it motion

alone."

(The word strain in the above definition is improp-

erly used for stress.—Author.)

" A force is said to do work if its place of applica-

tion has a positive component motion in its direction;

and the work done by it is measured by the product

of its amount into this component motion."

—

Thomson

and Tait, Nat Philos., p. 176.

" Work done on a body by a force is always shown

by a corresponding increase of vis viva, or kinetic en-

ergy, if no other forces act on the body which can do

work or have work done against them. If work be

done against any force, the increase of kinetic energy

is less than in the former case by the amount of work

so done. In virtue of this, however, the body pos-

sesses an equivalent in the form of potential energy,

if its physical conditions are such that these forces

will act equally, and in the same directions, if the

motion of the system is reversed."

—

lb., p. 177.

" An agent is said to do work when it causes the

point of application of the force it exerts to move
through a certain space. Motion is essential to
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work."

—

Twisden, Elementary Introduction to Prac-

tical MecJianics, p. 18.

" Mechanical effect, or work done, is that effect

which a force accomplishes in overcoming a resist-

ance. It depends not only on the force, but also on

the space during which it is in action, or during

which it overcomes a resistance."

—

Weisbach's Me-
chanics of Engineering, p. 168.

" Work is the production of motion against resist-

ance."

—

Todhuntek, Mechanicsfor Beginners^. 337.

"Work, same as before. According to this defini-

tion, a man who merely supports a load does not

work; for here there is resistance without motion.

Also while a free body moves uniformly no work is

.

performed ; for here there is motion without resist-

ance."

—

Todhuntek, Nat. Philos. for Beginners.

p. 255.

" Whenever a body moves through any space in a

direction opposite to that in which a force is acting

on it, work is said to be performed. It is evident

that the application of force is necessary to overcome

resistance, and it is very often found convenient to

measure the work done by the amount of force ex-

pended, and the distance in the direction of the force

through which it has been employed."—Magnus's
Elementary Mechanics, p. 102.

" Thus the increase of vis viva, which is also the

work done by the acting forces on the body."

—

Price's Infinitesimal Calculus, vol. iii., p. 636.

" Work is done when resistance is overcome, and
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the quantity of work done is measured by the prod-

uct of the resisting force and the distance through

which that force is overcome."

—

Maxwell's Theory

of Heat, p. 87.

" Work is the overcoming of mechanical resistance

of any kind."

—

Nystrom's Pamphlet on Force of

Falling Bodies, etc., p. 25.

DEFINITIONS OF ENERGY AND YIS YIYA.

" Energy expresses power to do work, or force stored

and ready for use."

—

McCulloch's Treatise on Me-

chanical Theory of Heat, p. 40.

" Vis viva (energy) is a quantity which varies as

the product of Jthe mass of a particle and the square

of its velocity."—Prices Infinitesimal Calculus, vol. 3,

p. 380.—2d Ed. Oxford.

" Living force, or vis viva (or energy), is nothing

more than an expression referring to the quantity of

work (motion and strain combined) which the force

in a body at any given instant could perform, if left

to itself, without afterwards receiving any additional

force."—Trautwine, Civil Eng. Pocket Book, p. 446,

Ed. 1872.

" Energy measures the quantity of working power

of a moving body."

—

Bartlett, Elements of Aiuilyt.

Mech., 9fch Ed*, p. 116.

" The product of the mass of a body by the square

of its velocity is called its living force or vis viva"—
Mecanique Celeste, p. 99.
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"Energy means capacity for performing work."

—

Rankixe, Applied Mechanics, p. 477.

" Vis viva-, or living force (or energy), is the power

of a moving body to overcome resistance, or the

measure of work which can be performed before the

body is brought to a state of rest."

—

Silliman, Prin-

ciples of Physics, 2d Ed., p. 78.

"Energy is the capacity a body has, when in a

given condition, for performing a certain measurable

quantity of work."

—

Todhunter, Natural Philosophy

for Beginners, p. 264.

"Energy, of a body is power of doing work."

—

Magnus, Lessons in Elementary Mechanics, p. 110.

" Energy of a body is the capacity which it has of

doing work, and is measured by the quantity of work

which it can do. The kinetic energy of a body is the

energy which it has in virtue of being in motion."

—

Cumming, Theory of Electricity, p. 5.

" Kinetic energy or vis viva is denned as half the

product of the mass into the square of the velocity."

—

Ibd., p. 13.

" Energy is defined to be capacity for doing work."

" It is of two kinds—kinetic or actual when the

body is in actual motion. Potential or latent when

the body, in virtue of work clone upon it occupies a

position of advantage, so that the work can be at any

time recovered by the return of the body to its old

position."

—

Ibd., p. 14.

"Energy is the capacity of a body to perform



70 KEY AND SUPPLEMENT

work. Energy is said to be stored when this capacity

is increased, and to be restored when it is diminished.

The units of work and of energy are the same."

—

Weisbach, Meclt. and Fng. Translator's note, bottom

of page 168.

" If we adopt the same units of mass and velocity

as before there is particular advantage in denning

kinetic energy as half the product of the mass into

the square of the velocity."

—

Routh's Rigid Dynam-
ics.

Page 07.

Akt. 112.—If the body had an initial velocity v
,

the work done upon it in passing from a velocity

v to -y, or the work which would be given out by it

in passing from the velocity v to v , will be

lM?-lMK* = iM(* -»„*)

This may be deduced in another way, if we antici-

pate the equations for momentum.
Thus, Eq. (2), p. 78, of the text is

Ft - M{v - v
Q ).

The space over which F acts will be equivalent to

the average velocity into the time, or

s = l(v+v )t.

Multiplying these equations, member by member,

and canceling t, gives

Fs = \M(i? - v
Q%



TO ELEMENTARY MECHANICS. 71

as before. But we do not consider this method as

good as the h'rst, for when the velocity changes irreg-

ularly, it is not so evident that the space equals the

average of the extreme velocities into the time.

Art. 113.—Potential energy is relative. Thus if a

body whose weight is 10 lbs. is 40 feet above the

earth, its potential energy in reference -to the earth

is 10 x 40 = 400 ft. lbs. ; but if it be over a well 20

feet deep, the potential energy in reference to the

bottom of the well, will be 10 x 60 = 600 ft, lbs.

;

and in reference to its own position it is nothing. It

is the work which the body may do in reference to

some point—or condition—arbitrarily chosen.

Page 69.

Art. 115.—For the mathematical theory of heat,

see Poisson Traite des Gheleur, Fourier Theorie de

la Cheleur, Rankine on The /Steam Engine, Clausius

on The Theory of Heat, Hirn's investigations, Max-

well's Theory of Heat, McCulloch's Theory of Heat,

Tait's History of Thermodynamics, etc., etc.

Page 72.

Art. 117.—This is one of the most important phys-

ical constants which has been determined in recent

times. For a comprehensive and able review of the

methods by which it has been determined, as

well as for a description of that author's methods

and results, see Mechanical Equivalent of Heat, by

Professor H. A. Rowland. (Proceedings of the

American Academy of Arts and Sciences, 1879, p.

45.) Prof. Rowland's results differ by only a small

per cent, from those given by Joule. He states,
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p. 44, that the value found by Joule at 14°, agrees

with his results at 18° 0. The value 772 foot pounds

still stands as a practically correct one.

Page 73.

Art. 118.—In regard to energy generally, it appears

that all of it—or at least very nearly all—originates

with the -sun. It was a beautiful remark of John

Stephenson—as he saw a railroad train winding its

way through the country—" that train is drawn by

the heat of the sun." The heat and light of the sun

caused the growth of vegetation ; that vegetation in

time was gathered into great masses, which in time

became coal iii the mine. This coal was brought

forth and used as fuel in the locomotive; so that it

originated in the action of the sun. All energy on

the earth is due to the light and heat of the sun.

Activity in the commercial world is directly depend-

ent upon it ; for if the sun, on account of spots upon

it, or from other causes, does not dispense with its

usual heat, short crops will result, and thus affect all

the business of a country, if not of the world. In this

way the sun may be charged with causing—more or

less directly—depressions in trade, or activity in com-

merce, as the case may be ; and hence, in some cases

at least, of producing sadness or cheerfulness in the

home circle. Even the religious world is affected by

the action of the sun. In earlier times, on account

of the superstitions of the people, religious leaders

appealed more or less effectually to the fears of their

followers when the sun's rays were cut off by an

eclipse; and in modern times the feeling of depend-

ence upon the Creator is too often modified by the
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prosperity or depression caused by the circumstances

surrounding them, the conditions of which were de-

pendent upon the elements of nature, and these

caused, more or less directly, by the action of the sun.

The sun appears to be dispensing its energy to his

family of planets, and in this way wasting itself

away. Sir Isaac Newton realized this condition of

things and saw—or thought he saw—the necessity

of the sun's being replenished in order to maintain its

stock of energy ; and he conceived that this might be

done by one comet after another falling into the sun.

As the comets come from remote regions of space,

they would possess a large amount of energy when
they struck the sun, and by falling into it would pro-

duce intense heat. No comet, however, has within

historical times been known to fall into the sun ; but,

on the other hand, the most critical examination of

their orbits shows that their paths are nearly as well

defined—and nearly as fixed in position—as any of

the planets ; and no cause is known to exist that will

cause them to fall into the sun. It was formerly sup-

posed that the ether of space caused a resistance to

the motion of all bodies in space ; and if it did, not

only would the comets, but also the planets, ultimately

fall into the sun. However, nothing—absolutely noth-

ing—is Tcnown in regard to the effect of this ether

-

upon the motion of bodies in it. Comets and planets

have moved in their orbits for untold ages, and, for

aught we know, have maintained their relative posi-

tions. If the comets were destined to fall into the

sun, they must have been doing so for ages and ages,

and hence must originally have been comparatively
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very numerous. It would seem that sufficient time

had elapsed since the existence of the solar system

to have exhausted this stock of energy—still, at the

present time, comets are numerous. Similarly, in re-

gard to the planets, the most refined observations,

combined with the most refined analysis, have failed to

detect any modification of motion due to the ether

of space.

More recently, the late Professor Benj. Pierce, of

Cambridge, Mass., put forth the theory that the en-

ergy of the sun was supplied by meteorolites falling

from an immense distance directly into the sun. The
meteors are dark bodies, and it is assumed that there

may be multitudes of them scattered through space.

That there are many, is shown by the fact that they

frequently fall upon the earth. Admitting the truth

of this hypothesis, it seems inevitable that, in the

course of time, the supply will be exhausted—and then

the question, What will follow? becomes a serious

one to science.

Space, which, in our younger days, we conceived

to be void, is really filled with something, and there

may be vastly more inert matter scattered through

it than we have imagined.

A mere contraction of the volume of the sun,

caused by the mutual attraction of its own particles,

will produce heat. The author has shown that if the

earth contracted from twice its present diameter to its

present size, and all the energy thus produced be

changed into heat, and uniformly disseminated

throughout the mass, the temperature would be raised

44,655 degrees F., if it had the specific heat of water,
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or 357,240 degrees F., if it had the specific heat of

iron. (See Analytical Mechanics, p. 229, or Mathe-

matical Visitor, 1880, p. 134.)

We believe that the solar system is stable, that it is

not made to run down, that it has the elements of

self-preservation ; but we cannot prove it. Neither

can those who entertain the opposite view prove their

position. This problem is, at present, beyond the

reach of science.

solutions of examples.

Page 75.

25
1. —- = the mass, and as 32J is the acceleration

d2g-

in feet per second, the velocity should be in

the same units ; hence v — \%° =
-f

feet per

second, and the work will be

2. The work will vary as the depth, and the energy

as the square of the velocity ; hence,

depth = 2(V)
2 = 18feet.

Page 76.

3. Reducing the tons to pounds, we have

60 tons = 60 x 2000 lbs. = 120,000 lbs.

Similarly,

, A ., , 40 x 5280 -x ,

40 miles per hour = — —- it. per second
60 x 60
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The friction = 60 x 8 = 4S0 lbs.

Let x = the required distance in miles = 5280a;

feet, then the work will be 4S0 x 5280 x
;

hence we have

120000 /40 x 5280\ 2
.

480 x 5280* = i • -

3^ •

^ 6 x 60" ;
'

which solved gives

, v __i0^_ (™\ l = 2-M miles.

4 Let aj = the required number of pounds of wa-

ter ; then the energy put into water in raising

it from 32° F. to 212° will be

772 (212 - 32)# = 772 x 180.r.

The kinetic energy stored in the train will be

200000/20 x 5280V.

* ' ~32f \~60 x 60/ '

which, by the conditions of the problem, equals

the heat energy to be put into the water;

hence

200000 /88\ 2
.

772 x 180^ = \ x -321" \%) '

... «? = 19-2 lbs.

Page 76.

p _ ,iW 4 - 0-2 x 10 193 __ 193

5'/-pTT^ = IT"
- x -6"-"l2
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also for the velocity

v> = 2/s = 2 x 4-6 x 5 = 46.

The work will be

10 x /* x distance,

and the energy will be \Mv%
;

.-. 0-2 x 10 x distance = J x x 46
;

.*. distance = 3^- feet.

6. The friction = 200 x 0-2 = 40 lbs. Let the

velocity per minute be a?, then the work per

minute will be 40a?, and for 3 minutes it will

be 120a?. The energy of one pound of water

raised one degree F. is 772 ft. lbs., and of 5 lbs.

it will be 5 x 772, and for 50 degrees it will

50 x 5 x 772.

Hence

120® = 50 x 5 x 772

;

.*. a? = 1,608 ft. per minute.

• answers to exercises.

Page 76.

1. It is not; force is only one of the elements pro-

ducing energy.

2. Ability to do work. Work has, however, been

done.

3. It produces action of the stomach, thus in-
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volving energy
;
promotes action of the heart ; causes

the growth of the bone, muscle, and flesh, and these

enable the animal to move about—to do work—to

swallow more food—to lie down—to get up, etc., etc.

4. Because, in the first place it is not as concentra-

ted, and, in the second place, the heat is more quickly

conducted away.

5. It will. It is due to this cause that meteors are

visible. The meteorolites which fall upon the earth

have the appearance of having been partly melted,

and hence must have been subjected to great heat.

This is due to the compression of the air in front of

the meteor and of the friction of the air against its

sides as it passes swiftly through the air, and the heat

thus produced is so great that the meteor is heated to

redness, and thus appears like a shooting star, as it

really is. It is probable that the smaller meteorolites

become so nearly consumed by the great heat that

they could scarcely be found after they had fallen

upon the earth, but larger ones have been found

which struck the earth with such violence that they

nearly or quite buried themselves. It has been sug-

gested that the great iron deposit in the upper pen-

insula of Michigan, a short distance west of Mar-

quette, was probably a large meteor, and a similar

suggestion has been made in regard to the iron mount-

ain in the State of Missouri.

Page 77.

6. The friction of the water produced by moving
against the banks and bed of the stream produces

heat, which, escaping into the surrounding air, modi-

fies its temperature.
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7. First by the heat clue to the friction, and second,

by inducing a quicker circulation of the blood more

heat is supplied to the parts.

Page 77.

8. 8--50. This exercise is intended to draw atten-

tion to the fact that the value of wood for fuel de-

pends upon its capacity for producing heat ; or, in

other words, of its inherent heat energy. If the heat-

ing power of a given weight of hickory be 100, it has

been found that the heating power of the same quan-

tity of oak will be about 80, and of maple about 50.

The practical value, however, of fuel may be governed

largely by other circumstances. Thus, when a tire is

wanted for only a short time, as a kitchen fire in mid-

summer, or where steam must be raised quickly, etc.,

the cheaper fuel may be quite as valuable as the

more costly. •

Pages 78, 79.

Arts. 122-125.

—

Momentum, according to New-
ton's definition, is strictly quantity of motion. lie

says (P/'incipia B. 1, Def. II.) " The whole motion

is the sum of all its parts, and therefore in a body,

double in quantity, with equal velocity, the motion is

double; with twice the velocity it is quadruple." It

is said in the text that quantity of motion does not

fully express the desired meaning, but this is due sim-

ply to the fact that quantity had not been defined.

Including Newton's definition, it does express the,

meaning correctly and fully.

If a force of constant intensity acts upon a free

body moving from rest, the product of the force and
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time equals the momentum produced. Space is here

entirely abstracted from force and time. Although

the body cannot move without involving space, ^yet

all considerations of space must be discarded. It is

immaterial whether the space over which the body

must move in acquiring the velocity v be great or

small ;, and hence, so far as the momentum is con-

cerned, the space may vanish.

From the equation Ft — Mv, Ave have F— M-,

where —(or for a variable force, we have in the nota-

tion of the calculus —
]

is the rate of change of the

velocity, and hence, M — is the rate of change of mo-

mentum, which is, according to the second law, the

measure of the force F. "We thus reproduce the ex-

pression for that law.

The expression Ft is not the momentum, but sim-

ply its equal under the restrictions given above. It

has been proposed to give a special name to this prod-

uct, just as Miscalled the measure of work, while

its equal Jil/t'
2
, in case of a free body, is called energy.

Maxwell called Ft an impulse (Matter ami Ijfotion,

p. 44), to which we do not object, since the effect will

be the same whether it be produced in an impercep-

tibly short time, or in a longer time. But the prod-

. uct has no meaning except where the force moves

a body. If F be a mere stress, like the pressure of a

stone upon the earth where no motion is involved,

then Ft produces nothing. The time effect of a
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stress, is its effect in moving a body—producing

velocity.

Much has been written in regard to force, vis viva

(now called energy) and momentum. .For many years,

in the earlier history of the science of mechanics, there

were long and sharp discussions as to whether work
or momentum wTas the proper measure of force ; but,

as we have shown in what precedes, neither is the

proper measure, and hence theirs was merely a war of

words. One factor in the product Fs is the force

;

and one factor in the product Ft is also force. The
former placed equal to \Mv%

, and solved gives

F— 2-
; hence the measure of force is the rate of

s ' J

change of energy per unit of space; and we have

already shown that it is also the rate of change of mo-

mentum per unit of time.

Efforts are sometimes made to determine a relation

between momentum and energy ; but no physical re-

lation exists, and hence none can be found. In order

that there shall be a ratio between them, they must

have a common unit. Since one is compounded of

force and time in which space is excluded, and the

other of force and space in which time is excluded,

they have not a common unit.

Page 79.

We here note the three following statements from

different authors.

First, In Yan Nostrand's Engineering Magazine for

1877 and 1878 is a series of articles on momentum,
and Vis Viva by Prof. J. J. Skinner. On pp. 129,
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130, 131, it is stated that momentum which equals

MV represents the number of pounds pressure

which the mass M with the velocity V is capable of

exerting under the conditions that the pressure is con-

stant and capable of bringing the body to rest in one

second. This is numerically correct as a deduction,

but in the articles referred to there is apparently a

labored effort to show that momentum is pressure

only, and not quantity of motion (see also p. 137 of

the Eng. Mag.). Also on page 132 it is stated that,

" The unit of momentum, then, is a force of pressure

equal to one pound " (see also p. 210). In this defi-

nition, the element of time does not appear, but it is

not proper to drop it simply because it is one second.

The above-named writer corrected himself in a later

article, page 501 of the same Magazine.

To measure anything requires a unit of the same

kind considered as a standard. Strictly speaking, the

unit of momentum is the momentum of a unit of mass

moving with a unit velocity. Momentum cannot he

measured by pounds only. (See also article by the

author, Eng. Mag., vol. xviii., 1878, p. 33.)

Second, It is stated that Beaufoy determined that

a body of one pound weight, with a velocity of one

foot in a second, strikes with a pressure equal to

0-5003 lb. ; and hence to find the pressure produced

by the impact of any projectile, we have the general

formula, pressure = 0-5003 TFV (Silliman's Physics).

Now we assert that the formula is false. Admitting,

for the sake of the argument, that he did find such a

result when the projectile struck a hard body, like a

piece of iron, it would have been very much less
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had the body struck been more yielding, like a gas-

bag, or a sack of loose feathers, and so a great range of

values might be found depending upon the character

of the bodies.

Third, Professor Tait, in an interesting lecture upon

force, delivered before the British Association, 1876,

sa}T
s (see Nature, 1876, p. 462), " With a moderate

exertion you can raise a hundred weight a few feet,

and in its descent it might he employed to drive ma-

chinery, or to do some other species of work. But tug

as you please at a ton, you will not be able to lift it

;

and, therefore, after all your exertion, it will not be

capable of doing any work in descending again.

" Thus, it appears, that force is a mere name, and

that the product of the force into the displacement of

its point of application has an objective existence."

" Force is the rate at which an agent does workper
unit of length." . . .

These definitions have already been referred to on

p. 20 of the Key, and the remarks there made will be

more readily understood in this place, after having

passed over energy and momentum. Force, funda-

mentally, is a quantity instead of rate • just as inter-

est is a quantity—an amount of money—and not rate.

It is true that the amount of money paid for the use

of a hundred dollars is identical with the rate per

cent., but every one readily distinguishes between

rate per cent, and interest. Professor Tait made use

of interest in an illustration of this principle, but, we
think, used it improperly.
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Page 83.

Art. 131.—If X = I, and k = 1, we have E = F,

hence—as a deduction—the coefficient of elasticity

may be denned as the force (stress) necessary to

elongate a prismatic bar whose section is unity to

double its length, provided the original conditions

remain constant except that of length ; that is, the

elasticity and the cross section must both remain con-

stant. But these conditions are never realized, hence

this definition is highly ideal. In fact, the coefficient

of elasticity is constant for any material for an elonga-

tion of only a very small fraction of the length ; but

even with this limitation it is of untold importance

in certain physical sciences.

Page 90.

Art. 138.—Substituting from equations (1) and (2),

page 89, we have

Mv? + M'v? =

nr rMv + M'v' eM' . ,,-|2

|_ M + M' M + M v ]J

Mv? = /ly
J/

,,„ [MS? + IMM'm' + M' 2
c'

2

1 (M + MJ[_
- 2eMM'v2 - 2eM'2vv' + 2eMMvv' + 2eM'2

v'
2

4- e
2M'2v2 - 2e*M'2

vv' + e2M'-v 2l ;

or

= 1 \MH2 + 2MWW + MM'2v 2

(M 4- M'f L
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- 2eM2M'tf — 2eMM'2vv' + 2eM2M'vv' +

2eMMH'2 + (?MM'Hl - 2(?MM'2
vv' + #M

M'2v 2\ (2)

Similarly,

M'v\2 = flkr

M '

r , x,
\MH2 + 2MM'vv r + M"V2

+ 2eM 2v2 + 2eMM'm - 2eM2vv' - 2eMM'

v'
2 + <s*afV - 2e*MW+ <?Mh

= ^_L [~jfWV + 2MM"2W + JT3

(Jf + Jff
)

2 L

a'
2 2eM2M'v2 + 2eMM'2vv' - 2eM 2M'w' -

2eMM'2
v'

2 + JlPM'v2 - 2e2M 2M'vv' + e
2M2

JfV2

]. (3)

Adding equations (2) and (3) we have

Mv 2 + MV =
{M^MJ\MH2 - 2eM2M'v2

+ JMM'H2 + M*M'v2 + 2eM2M'v2 + e
2M2

M'v2 + 2M2M'm' - 2eMM'2
vv' + 2eM2M'

vo' - 2eLMM'2m' + 2MM'Hv' + 2eMM'2m'
- 2eM2M'vv' - 2e*M 23f'vv' + MM'2

v'
2 +

2eMMl2
v'

2 + <?MM'%
T)

2 + M'V - 2eMM ,V
+ e*M2M'v'2

~\
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A__|~(Jf + M')MH2 +

(J/ + M')JMM'tf + (J/ + M') 2J/J/W

(Jf + 3r)2^2i!.0/W + (J/+ 31) M' 2v* +

(j/ +ifcr>2JOf ,«'sl

= _J___f JfV + e
2MM'v2 +

2MM'vv' - 2e*MM'vv' + M*t>* + 6*JOf'

= *-—S.MW + J[fV2 + JO/7

(eV + 2vv' — 2e5W + <?v'
2
) I.

Adding and subtracting 3IJI'(v2
-f-

^'2
j we have :

+ M')3£'v 2 + MM\th* -v2 + 2jw'(1 - <?)+

eV2 — v'
2

)

= Mv2 + M'v'2 + J^,' [~(1 -M + M' L

e
!)(2w'-«2 -^)l

M+ M
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solutions of examples.

Page 91.

1. 5 x 5 = 25 lbs. sec.

, Fl 9000 x 10 x 12
ft n .KQQ ,

. ,

2
'

A =
27T= 1 x 26000000

a0°538 + mcheS -

3. J£= _^ = 2500x2x12 = 24j ^ 200 lb,

very nearly.

^ - TTV_ 120 - 120
4

*
K

TT+ W ~ 18

5. Eqs. (1) and (2), p. 89 of text, give

Wv + W'v' eW , ,.

20 x 100 + 50 x 40 | x 50

70 70

feet;

(60) = 35*

, 20 x 100 + 50 x 40 -x 20 CA
«i = — + ^—— x 60 =1

70 70

65\ feet.

Page 92.

6. Here v' — 0, and we have

2000 25 1AA n . f ,

v, = -yy - — x 100 = - 7\ feet,
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2000
+

10 xl00;=42|feet
70 70

7. Here v' = — 40 feet, hence

2000 - 2000 _ j x 50 x 140 __
: W 70

feet per second.

50

, 2000 - 2000 i x 20 x 40 _ on ,,

Vi= _ .+ 75---^ «

per second.

8. By Art. 132, p. 84, we have

9 It

6 =v
where h is the height of fall, and h' the height

of rebound. The sum of an infinite decreas-

ing progression is

_ first term

1 — ratio

1-6*

^ _h + he2
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9. If e = l, s = oo.

e = |, s = \h

e= I, s = \lh

e = 0, s — It.

10. Let M be the mass of one of the bodies, and v

the velocity of the impinging one ; its kinetic

energy will be

The kinetic energy of the two bodies after im-

pact will be least when both are non-elastic

;

in which case the common velocity after im-

pact will be (Eq. (1) p. 86),

T=iv;

and the kinetic energy will be

and the kinetic energy before impact will be

just twice that after, and cannot exceed that

ratio.

ANSWERS TO EXERCISES.

1. Yes.

2. No.

3. No.

4. By equation of work = energy.

5. They will, at the instant of impact.

6. Yes'

7. No.

8. No.
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9. By preventing so great a loss of energy. When
the wheels of a car strike " dead " against a

rail, it batters the rail, thereby doing an

amount of work which is lost to the train ; but

the springs, when in action, prevent such a

dead blow in the first place, and then by their

reaction restore a portion of the energy to the

train. In short, if all the parts were perfectly

elastic there would be no permanent battering

of the parts, and no energy would be lost by

the impact.

Page 94.

Statics is a limiting case of dynamics, in which the

applied forces mutually destroy each other, and leave

the bo^dy, so far as its condition in regard to rest or

motion is concerned, the same as if no forces were

acting. As such, its principles may be established in-

dependently of motion. Many writers hold that the

conditions of equilibrium should be determined inde-

pendently of all considerations of motion, and we
have accordingly given the usual proofs, although

the Newtonian method, given in Art, 52 of the text

is, to us, quite satisfactory.

We consider that the confirmation of the results,

flowing from the parallelogram of forces, is a stronger

confirmation of its truth than any formal demon,

stration ever made. Nearly all the formulas of me-

chanics are founded upon it. The principles of mech-

anism, and the places of planets and comets all

involve it. Such a proposition might be assumed

without proof, and its truthfulness be confirmed by

its leading to results confirmed by daily experience.
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Formerly a proof was considered so important, that

many different methods were devised, and one work

gave forty-five different proofs of the parallelogram

of forces.

solutions of examples.

Page 99.

1. Let P be one stress and J^the other, then we
have (Eq. on p. 97 of text),

B = VP2~T~F~~T~2PF cos 90° = VP2 + F2
.

If B= 0, then

R = VP2 + * 2 + WF = P + F.

If 6 = 180°, then

i? - VP2 + ^ 2 - 2PF = P - F.

2. Here the force 5 reversed will be the resultant

of the other two ; then

52 =32
4- 42 + 2.3.4 cos 0;

25-9-16
24

1 = 90°.

= 0:

3. We have

P2 = P* + P2 + 2BP cos 0',

.'. cos — — ^ •

.-. ^ = 120°.
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4. We have

P2 = 1002 + 1002 + 2 x 100 x 100 cos 60°

But cos 60° = |, hence

P2 = 3 x 1002
;

.-. R = 100 V3.

5 "We have

(P + Ff = F> + F2 + 2PFcos 0;

or,

P2 + 2PP + P2 = P2 + P 2 + 2PP cos 0;

.'. cos 0=1,

and

(9 = 0°.

6. We have

B* = (P- Ff = P2 + P 2 +2PP cos 0,

or,

P2 - 2PP+P 2 = P2 + i^ 2 + 2PP cos 0;

.;. cos = - 1
;

.-. 0= ISO 3
.

7. From the proportion on p. 9S of text we have

50 : F:: sin (P,P) : sin 115°,

50 : P :: sin (PP) : sin 35°,
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F: E : : sin 115° : sin 35°,

P : E : : sin 30° : sin 35°.

From these we have

sin 3o

B = ^J
ô x 50 = 57-35 lbs.

sin 30

.-. F= 90-63 lbs.

sin (^,7?) =
5
°g

7f3

n

6

85 = 0-5000

;

.*. angle (F,IZ) = 30°.

8. The string will make a right angle at the point

where the weight is applied, and the sides of

the triangle representing the forces will be as

3 to 4 to 5 ; hence we have

5:4 ::20 :x = 16;

5 : 3 : : 20 : % = 12.

Page 100.

9. The parallelogram representing the forces will

be a rectangle, of which the diagonal will be

a diameter of the circle.

ANSWERS TO EXERCISES.

1. It will be the resultant of two forces acting

ajvay from C, one of which will equal CA, the

other CD = AB.
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2. A line through A equal and parallel to a line

joining .2? and B.

3 They would not.

4. When acting upon the same particle, in opposite

directions, and equal in magnitude.

5. With 4, 5, and 9 they can, if 4 and 5 act opposite

to 9. But forces 3, 4, and 8 cannot, since two
of them, 3 and 4 together, do not equal the

third.

6. It will not. The resultant takes the place of

the other two.

Page 102.

Art. 158. It will be observed that, in Fig. 45, /3

is the complement of a ; hence cos /3 = cos

(90 — a) — sin a. hence the equations for Xand
Y become

X= Fx cos a\ + F 2 cos a
2 + etc. = 0,

Y= JF X sin a
2 + F% sin a

2 + etc. = ;

from which we see that the equation for Y
may be deduced directly from that of X by
writing sin in place of cos in the first equa-
tion.

solutions of examples.

Page 103.

1. We have

X =z 20 cos 30° + 30 cos 90° + 40 cos 150°

50 cos 180° = R cos a,
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T= 20 sin 30° + 30 sin 90°+ 40 sin 150° + 50

sin 180° = R sin a •

in which all the terms are written as positive,

and their essential signs made to depend upon

the trigonometrical functions.

Reducing gives

20 x iV3 + 0-40 x |V3 - 50 = R cos a,

10 4- 30 + 20 + = 72 sin a;

- 67-32 + = R cos a,

60 = R sin a.

Dividing gives

.7? cos a

R sina

67-32

60 '

cota= -1-122;

.*. a = 138° 17'.

Squaring and adding gives

722(cos2 a + sin2 a) = (67-32)
2 + (60)

2
.

But cos2 a + sin2 a — 1

;

72 = V8131-98

= 90-18 lbs.
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2. R cos a = 20 cos 180° + 10 cos 270°,

E sin a = 20 sin 180° + 10 sin 270°
;

hence

P cos a— — 20,

7? sin a = — 10.

Squaring and adding gives

i2= V500 = 22-36.

3. We have

P cosa = P cos 0° + P cos 90° + P cos 225°

+ P cos 270°,

R sin « = P sin 0° + P sin 90° + P sin 225°

+ P sin 270°
;

hence

R cos a ---- P (1 - |a/2 ),

Rsina =P(1 -iV2-l)
= - iV2P

Dividing the second by the first gives

-24162 +

.-. a = 292° 30'.
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Squaring and adding gives

_#2(sin2 a + cos2 a) = P*(l - IV 2)
2 + P2(- -|V2)

2
5

or

7? 2 = I»(2 - V2)

= 0-5S579P2
;

.-. #=0.765P.

Page 104, Art, 162.—A single force whose line of

action does not pass through the centre of a free

body, produces rotation as well as translation. The
. measure of the effect of a force in producing rotation

is proportional to the moment of the force; as is

shown from the fact that the moment is proportional

to the work done oy theforce.

The theory of moments is here discussed without

reference to the bodies upon which the forces act.

Page 110, Art. 176.—The cut, Fig. 55, should be as

here given ; that is, in the

typical figure the force should

be positive away from the

origin, and so placed that it

would produce positive rota-

tion about the origin, O, and

the angles a and f3 be acute,

as shown in Fig. 42 of the

text ; so that the signs of the terms in the analytical

expression for the moment will flow directly from

the trigonometrical functions. This being done the

5
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typical form of the expression for the arm of the

force will be

Oa = x cos fi -y cos a.

In the old Fig. 55, the' angle between the axis of a?

and the direction line of the force was, as shown

in Art. 157,

a = 180° + dOb
;

and similarly,

ft
= 180° + YOcl

;

.-. cos a = — cos dOb,

cos fi = — cos l
r
0d,

which values give for the arm

Oa — ycosa — x cos /?,

as given in the text. We call the former value the

typical one, and the latter a deduced one. The for-

mer should always be used in connection with the true

value of the angles a and §.

SOLUTIONS OF EXAMPLES.

Page 115.

1. We have

1 - IE w >

in which

TF= 20 lbs.,

AC = 24 inches, AB = 6 inches, AD = 4

inches.
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To findAE; in tlie right-angled triangle DAB
we have

tang B = ^g = i = 0-666 + ; .

\ B = 33° 41'.

Then

AE = AB sin B
= 3-327 + inches.

Substituting above gives

t=
"3^2T =

W4 ' 2 + lbS *

2. Taking the origin of moments at D we have

AE V

= 20x21 = 1201bg>

3. Taking the origin of moments at B we have

W.BO=\F.AB,

i^ 2±^601b,

Page 116.

4. If t = W. we have
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VV AE n
>

AE = AC.

From the right-angled triangle AEB we have

sin -io

substituting,

_ AC
. ~Vi

= V2AC.

5. Taking the origin of moments at A we have

t x AC=BEx W.

But from the example

DB = 2AB,0 = 45°, TF= 50 lbs.

From the figure

BE=ABsm4:5
= iV2AB= 0.l071AB.

BE AB sin 45°
sin cp = —=—-_ = _—

.

.-. <p. = 20° 42' 17 .

To find .4(7 we have from the figure

AC- AB win ABC
= AB sin (0 - cp)
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= AB sin 24° 17' 43"

= 04115 AB.

Substituting in the first equation above gives

0-7071 x 50
fc=-

04115

85-97 + lbs.

To get the compression on the bar, take the origin

of moments at D, in which case the moment of

the tension will be zero. The perpendicular

from D upon AB prolonged will be AD sin 6,

and from D perpendicular upon the vertical

through B will equal BE = AB sin 6 ; hence

we have—calling c the compression

—

. c.AD&m6= W. AB sin 0;

. . e - AD W.

To find AD we have

sin ABD : sin cp : : AD : AB ;

• AD - AB x °'4115

AB
m

0-8592 + '
•

which substituted above gives

c = 0-8592W >

= 42'96 lbs.
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Page 116.

*

6. Let fall a perpendicular^ from B upon AC, then

p = AB sin A.

Let 1) be directly under W, then taking the

origin of moments at B we have

fTp= W.BD ;

. BC cos CBD ^
AB sin yi

7. If * = IF,' then AB sin j^tf = ^7>, or BC will

bisect the angle ACD.

8. Take the origin of moments at ^. Let fall a

perpendicular from A upon CB produced; its

length will be

<p = AB sin CBD

Q
= 6 x

V±2 + 82

48
feet.~~

8-9442

Let c be the compression on BC, then the

equation of moments becomes,

c.p= W.AD;

/. c = W
p

10 x 8-9442

48
.

: 931-7 lbs.

500
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9. For equilibrium we have

~ Fi--p1
-

_2Pt

= go;

or there can be no <equilibrium

10. We will have

be = P°~ Pl
Ob

_ 2 x
~ Pi

= 0;

or the forces must act at the same point.

Page 118, Art. 187.—It is well to illustrate this article

still further. If the forces IP

constituting the couple be A c j? B
equidistant from the cen- ct

*

tre g of the body, it is suffi- |p

ciently evident, without a thorough demonstration,

that it will produce rotation only. But is it equally

evident that, if the same couple act upon the same
body in such a wTay that the ,p

points of application are

both on one side of the cen- ^ •-^ £?

tre, it will produce rotation

only, and the same amount
of rotation as in the preceding case ? According to
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-9

HP HP I

HP
61

HP I

the proposition it will, and we will prove it by a special

solution.

At a point d, such that do = cb, introduce two

equal a n d

opposite
forces, each

equal to|P,

and call the

upper |P, 1, and the lower half 4. Since these are

in equilibrium the problem will be the same as before.

Separate the force at b into two equal parts, and for

the sake of convenience call one part 2 and the

other 5. Now the resultant of 4 and 5 will be a

force equal to their sum, or P, applied at the centre

c—which force call 9. Combining 1 with 2 we have

a. couple whose arm is db, and the moment will be

\P.db = P.cb. Similarly at <?, at a distance ec =
ca, introduce two equal and opposite forces, each

equal to \P ; and separate the force at a into two

equal parts. Combining 4P at a with the \P above

e gives a resultant equal to P applied at c acting-

down, and marked — 9, which will equilibrate + 9,

and there will be no motion of translation. There

will remain the couple \P.ea, which will produce

rotation only about the centre c. Finally, the two

couples \P.db, and }P.ea, ench producing rotation

about the centre c, but in opposite senses, arc equiva-

lent to the single couple.

P(idb - \ea) = P{cb - cci) = P.al

;

hence, the body will rotate about its centre of gravity,
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and the rate of rotation will be independent of the

points of application of the forces, and dependent only

upon the moment of the couple.

Page 120, Art. 190.—This article contains all the prin-

ciples of the simple lever. In some works levers are

divided into three classes, but, mechanically, there is

no distinction between them. It is only necessary

for equilibrium that the sum of the moments be zero

—or that the moments of the forces which turn the

lever one way equals the moments of those which

tend to turn it the opposite way.

Page 121.

Art. 192.—The force F' and D produces equilib-

rium in the system ; hence a single force equal and

opposite to F at D will produce the same effect as

the three forces F, F, and P.

Art. 197.—Assume that any number of forces act

upon a body in any manner; they may produce both

translation and rotation. The measure of their effort

to produce rotation will be the sum of their moments,

wherever be the origin, and the sum of these mo-

ments will be equivalent to a single couple, Arts. 184

and 186. Hence, if there be no effort at rotation, the

sum of the moments will vanish for any and every

point assumed for the origin of moments. The only

other tendency to motion is that'of translation; in

which case there will be a single resultant passing

through the centre of the body. If there be a result-

ant, the moment will be zero when the origin of mo-

ments is on the line of the resultant, Art. 189 ; and

will have a finite value when the origin is not on the
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line of the resultant ; and if tliere be no resultant the

latter moment will also vanish.

solutions of examples.
Page 125.

1. For, according to the triangle of forces, the re-

sultant of two of them will equal in magnitude that

represented by the third side, but its direction of ac-

tion will be opposite to that represented by the third

side, and at a distance from it equal to the altitude of

the triangle. See Fig. 71 of the text, only in this

case the third force will actfrom A towards B.

2. Inscribe a circle in the triangle ; then will the

radius r be the common arm of the three forces in

reference to the centre of the circle, and we will have

the equation of moments

B.r = P.r + F.r
;

.:fi = P+F.
3. The point of application of the resultant of two

of them will be at the middle point of the side of the

triangle between them ; and the point of application

of this resultant and the third weight will be at two-

thirds the distance from the third weight on the line

joining them ; and this will be the required point. It

is at the intersection of the medians of the triangle

(Art. 222).

4. Let P and Pbe the respective amounts; then

taking the origin of moments at the weight we have

the relative moments %P and l.F\ hence

2P = F.

Also, since the sum of P and F equals the entire

weight.
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P + F= 175.

Substituting,

ZP = 175 pounds
;

.*. P = 5§} pounds,

- and

F = 116| pounds.

5. Let W = 500, the arm of which in reference

to the point B will be one-half of AB, or 1 foot

;

and the arm of K will be DB — 3 feet ; hence the

equation of moments will be

3i^=lTF
= 500 lbs.

;

.-. i^=166|lbs.

6. Let x = the required distance, then will the lever

arm of the weight be x, and of the man 8 — x ; hence

we have, taking the origin of moments at the fulcrum,

175 (S - x) = 4000a?,

or
'

(4000 + 175)x = 8 x 175;

r.x=m%feet
= ^ryf-y inches.

answers to exercises.

Page 126.

1. It is. Foot-pounds of rotary effort.

2. The resistance in pounds which is overcome

through a certain number of linear feet.

3. It is the momentum of a given number of
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pounds of mass moving at a given rate in feet

per second.

4. This question is defective, because velocity in-

volves a unit of time, which may be one sec-

ond, one minute, or any other unit. Assum-
ing that the velocity is feet per second, the

unit will be 1 pound of mass x 1 foot per

second x 1 foot for the arm.

5. It can, and will always <k> so in a free body if

the line of action of the force does not pass

through the centre of the mass.

(5. They cannot. Since neither couple acting sepa-

rately can produce translation, they cannot

produce it when acting together. The resultant

of two couples is a single couple, Arts. 185 and

186, and for this reason can produce rotation

only.

7. It will be 100 lbs. more. Pulling down with his

hands will add nothing to the pressure of his

feet, for that effort is resisted by an equal up-

ward push of his shoulder. A man by pulling

upward on the straps of his boots, does not,

thereby, diminish the pressure of the boot

upon the floor, although it increases the pressure

between his foot and the boot. No u perpet-

ual motion man" has yet thrown himself over

a fence by pulling on the straps of his boots.

8. If the cutting is uniform it is ; but if the timber

at one side of the hole is harder than at the
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other, there will be a side push, tending to

force the auger out of line.

9. It will.

solutions of examples.

Page 133.

1. Let R be the resultant, and x the distance of its

point of application from the force 6. Take

the origin moments at 6 ; then we have the

equation of moments

Rx = 11 x 5,

and of forces

R=6 + 11 = 17;

.*. x == yy
'=̂ - Oj y ieei.

2. "We have, using the same notation as before,

Rx = 11 x 5 = 55,

R = 11 - 6 = 5

;

.-. x — -5
f-
= 11 feet.

3. Take the origin of moments at the extremity of

the line near the weight 2, and retaining the

same notation as above, we have

Rx = 2-2 + 3-3 + 4-4 4- 5-5 = 54

5=2 + 3+4+ 5 = 14 lbs.;

.-. x = 54 + 14 = 3f feet.

4. Take the origin of moments at A, then we have
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i?z =3x0 + 4x3 + 5x7 + 6x5 = 77;

R = 3 +A + 5 + 6 = 18 lbs.;

/. aj = 77 -T- 18 = 4 feet 3^ inches.

Page 134.

5. Let as be distance from A where P is applied,

^to the point of application of the resultant;

take the origin of moments at the point of ap-

plication of the resultant, then will the arm

of P be x sin <p,and of F,(x + AB) sin <£/, as-

suming P > F; hence

Px sin cp = F{x + AB) sin <p ;

:.x =jr-—yAB;

which substituted in the preceding equation

gives

PF . PF
?. ri AB sin w — t5 T , AB sin ro.P — F ^ P — F

answers to exercises.

Page 134.

1. It has not. We may say that it has one at in-

finity, which is equivalent to saying that it has

none.

2. Iso. The sum of the forces must also be zero.

If the sum of the moments in reference to

three arbitrary points is zero, they will be in

equilibrium (see Art. 195 of the text).

3. When they form a couple.

4. Because the resultant is zero.

5. It will.

6. It will.
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7. It may vary directly as the distance from the

centre; or inversely as the distance ; or as any
power of the distance ; or any root of the dis-

tance ; or as any power for a part of the dis-

tance, and any root for the remaining distance
;

or in any other way, provided the concentric

shells comprising the sphere shall be of uni-

form density.

Page 135.—Many of the properties of the centre of

gravity were developed as long ago as in the days of

x\rchimedes. The properties are not only of great

importance in statics ; but when the principles of

dynamics were developed—after Galileo's time—they

were found to be no less important in that science.

We mention only one—A free rotating body rotates

about an axis through its centre of gravity ; or, more
strictly, through the centre of the mass.

answers to exercises.

Page 138.

1. The vertical through the centre of gravity of

the carriage and load must intersect the ground

between the wheels. In order that it shall over-

turn, the vertical must fall outside the base of

the wheels. A carriage in motion may. over-

turn when it would not if standing, on account

of the inertia of the mass. A sudden side-

"lurchj' may induce a rotary movement suffi-

cient to overturn it. ~
-

2. He can stand so long as the vertical through the

centre of gravity of his body falls within the

base occupied by his feet.
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3. Some parts of his body must move backward.

The space occupied by hfs feet being of Unite

size, he may move his head, or other parts of

his body, to some extent without endangering

his stability.

4. Because the base being so very narrow, with only

two legs, a small displacement will cause the

vertical through the centre of gravity to fall

without the support.

5. Because in Fig. 77 the centre of gravity must

be moved further than in Fig. 78, and also

must be raised through a greater height. Some
writers consider the height through which the

centre of gravity must be raised in order to

overturn a body, a measure of its stability.

6. Because the line through the point of support

and the centre of gravity of the book will be

inclined to the edges, and as the former will

be vertical, the latter must be inclined.

7. It may. Such will be the case with a cylinder

resting on its convex surface. It will be in

indifferent equilibrium in reference to rolling,

but stable in reference to a longitudinal mo-

tion.

8. The centre of gravity is below the top of the

post.

9. In both these exercises the balls are so much
heavier than the bodies to which they are at-

tached, that the centre of gravity of the whole

device is below the support.
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Page 140.

x is read " x dash"

solutions of examples.

Page 140.

1. Let I be the length of the line, and x the dis-

tance of the centre of gravity to the smaller

weight ; then will I — x be the distance to the

other, and the equation of moments gives

1.05 = n(l - x)
;

n
I

1

If n = 2, then x = \l.

If n = 3, then x — \l.

2. The middle of one side will be the centre of

gravity of two of them, and the centre of

gravity of the three will be in the line joining

this point with the vertex, and, according to

the preceding example, it will be at two-thirds

the distance from the apex. Hence the centre

of gravity will be at two-thirds the distance

from any apex, on a line drawn to the middle

of the opposite side.

3. The centre of gravity of the weights 1 and

2 will be in the line joining them, and at

two-thirds the distance from 1 ; and of the

three weights it will be in the line joining the

former point, and the weight 3, and at its
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middle point. The solution is the same whether

the triangle be equilateral or scalene.

4. The centre of gravity of the three weights at

the base will be at the centre of the base, and

of the four weights in a line joining the apex

with the centre of the base, and, according to

the first example, at three-fourths the distance

from the apex.

Art. 217.—A line, in mechanics, is a body from

which all dimensions are abstracted except

that of length.

Page 142, Art. 220.—This article is introduced here

—

in advance of its proof—partly to classify it with

lines, and partly to furnish exercises.

SOLUTIONS OF EXAMPLES.

1. Join the centre of gravity of one edge with that

of another, and the centre of this line with

the centre of another edge, and so on.

2. Half the diagonal of the base (a side being 1)

will be 1a/2, and the length of one of the lat-

eral edges will be V'l + (|^/2f - Vf = W§.
There are four edges, and hence the entire

lengths will be 2\/6. The lengths of the

sides of the base will be 4. The centre of

gravity of the four lateral edges will be at one-

half the altitude, and of the edges of the base

it will be at the centre of the base. Taking

the origin of moments at the apex, and x the

distance of the centre of gravity from the apex,

we have
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(2a/6 + 4) x = 2^6 x i + 4 x 1

,

'.\x = o-
,m +.

3. In the equation in Article 220, make BO = r,

AC = %r ; then arc ABC = nr, and we have

Q ^_
r.2r __2r

7tr n

Page 143.

4. We will have BO = r, AC = the chord of

60° = r, the radius, and AB — %nr ^% = Jtzt ;

hence

/i _ r.r _ 3^
~ \nr ~

?t'

5. We will have BO = r, AC — the side of an in-

scribed square == r^/2, and ABC = the arc of

a quadrant = -|7T^ ; hence

Akt. 221.—A surface is a body from which all di-

mensions are abstracted except length and

breadth.

solutions of examples.

Page 145.

1. It will not, for the moment of the part next to

the apex will be less than the part next to the

base.

' 2. When the sides adjacent to the vertical angle

are equal, the bisecting line will pass through
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the centre of gravity of the triangle. In other

cases it will not.

3. The altitudes will be the same, and the centre

of gravity will be at one-third the altitude from

the base.

4. The area of the larger circle will be nil2
;
of

the smaller nr* ; and of the remaining part

n{j& _ 7 -2). Taking the point A for the origin

of moments, we have

n(P - r2)Ac = 7t1l\R - nr\r
;

7l
3 — v

3

*

ii!
2 -/-2

'

_ R2 + Rr + r2

U + r

If r = Ji?,then

Ac = ifi.

Ifr= R, Ac ==-fff.

5. Let AF — AD — a ; then the diagonal AE =

aV%, CE — laV% and the equation of mo-

ments will be

\a2.AB = "A^V2 - ia
2(aVZ - Ja a/2) ;

.-. AB = &aV2 =H«V2 = $AC.

Page 146.

6. The centre of gravity of the triangle ABC will

be at i of CFfYomF', ot DOE, \ of CG from

G\ or from Fit will be FG + J-
676?. The tri-

angle ^£6' will be to triangle DCE as (FCf
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is to (GO)2
; and ACB: ADEB = (FC)2

:

(FCf-{GCf.

Taking the origin of moments at F we have,

ADEB x Fg = ACB x ±FC - DCF x

(FG + \CG).

From the proportions, we have,

ADEB = ACBJ^-
c\?^\

DCF= ACB x ^L.
(FC-) 2

Substituting,

^FCf - (GCf)Fg = \(FCf - (CG)\FG +

iCG).

From the figure we have

CG _DE
FC ~ AB'

and

FC= CG-{-FG;

CG - DE .

*'' CG + FG ~ ^i£ '

hence we find

Substituting above gives
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Reducing gives

(^5)' - (DEf __ r (^)3 _

,

(AB-DEf J

r(^g)
3 - SAB.jBEf + 2(DEY ~]_ij^— {AB-DEf

.'. ity = i^
r (AB f - %AB(DEf + %DEY "1

L("-A^ - DE)(AB - DE){AB + ZM')J

_,„ r (^^)3 - zAB.jDEy + 2(i>ff)3 i
-^ LC^^2 - 2AB.BE + DE2)(AB +1)E)A

*^ -JBT^E'

7. The slant height will be \A'2 + h2
, and the lat-

eral area, 27tr.IV>
2 + A2

;
and the centre of

gravity of the lateral area will be in the axis

at §h from the apex. Let x be the required

distance, then

(tzt2 + nrVr2 + A2
) x = nAh + TtrV? + h\\h

;

— 3 Vr2 + f$ 4- r 7
.*. a? = —

,
h.

V>* + h2 + r
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To find the centrePage 149, Art, 230.

—

Problem.

of gravity of a segment of a

sphere.

A segment of one base, GAIT,

is considered in the text.

To find the volume of the A
/

segment A GIF, we have from

geometry

±7z{GIIf + iGHx 7r(ABf

= nGH{\GH* + i{ARf).

We put this under another form—thus, in the right-

angled triangle AJ7C, we have

(AHf = (AC? - (ON? .

= (GGf- (CG-GIlf
= WG.GIT- (Gllf

- = GH(2CG-GHy

which, substituted, in the preceding expression, gives

for the volume of the segment,

7t{GH)\CG-lGH\

which is the value used in the text. If r be the radius

of the sphere, and h the altitude of the segment, the

expression becomes

7th2(r-^h\.

For the volume of the spherical sector ACG, we have,

from geometry,
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2n(CGf x^xiCG
= ^{GGf x GH
= |w%

which is also the value used in the text.

The volume of the cone the radius of whose base is

AH, and altitude HC, is

7T{AIIf x \CI1

= i7t(2r7i - h2)(r - h)

= i7r7<(2r-h){r-l<).

These values in the first equation of the article

gives

r , _ S(CG)\GTLCg - 3(AH)\(CIiy
9 "

12(GH)\CG-±G1I)

_ $(r\h.j(2r - It) - 3(;-
2 - (r - 7<)

2)(r - If
J2A2.(r-i/0

= 1
(2/' ~ W

To put this under another form, let the angle

ACG = 0, then

h ±z r — CH = r — r cos 6 = r(l — cos 6) ;

hence

2r — h = 2r - (r - r cos 6)

— 2r — r 4- r cos 6

= r (1 4- cos 6).
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From trigonometry

2 cos2
|-0 = 1 + cos

;

.-.(2r - l,f = 4=r
2 cos4 id.

Also we find

r-iA = r-i(CG-OII)
= r — ±(r — rco&6)

= |7>(2 + cos 0)

;

and these substituted above, give

3cosHfl

If A == 0, we have 0=0, and the segment will vanish,

and we have
ey = r,

as it should.

If h = %\ d = 180°, and we have

Cg'=0
y

hence the centre of gravity of the sphere will be at

its geometrical centre, as it should.

For the hemisphere, 6 = 90°, and we have

= fr.

If the segment has two bases, let 6 be the angle

subtended by the radius of the upper base, and <p the

angle subtended by the radius of the lower base, then

by taking the difference of the moments of both seg-

ments, and the segment on the upper base, we. find
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<v =
(1 - cos cpf. cos'ly - (

1 - cos Of. cos4 *i9

°
(1 — cos cpf{'& + cos cp) — (1 — cos 6>)

2
(2 + cos 6)

solutions of examples.

Page 150.

1. In Article 229, CG is the radius of a circle, and

by the conditions of the problem GIT will also

be a radius; hence we have

%(WG - Gil)

= |(2r-r)

= !>••

2. Let x be the required distance to the centre from

the common tangent point ; then, according to

Article 202, the moment of the difference of

the spheres will equal the difference of their

moments, and we have

(J?rR
3 - ±ni*)v =a \7iR\R - \nr*r

;

R" - ,
A

•*• x = Jga_ rz

B* + R2r + Rr + /-
3

R 2 + 7fr + **

If ?• = 0, we have

x = R,

and the centre of gravity will be at the centre

of the sphere.

If r — i?, we have

X = -3 XI,

which gives the centre of gravity when the
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thickness of the solid, opposite the tangent

point, is infinitesimal.

3. To find the versed-sine Gil, Fig. 94, we have

in this case OB — r, HB = \r
;

Cg'

.-. 011= vV -
Ty-

2 = J/V15

;

..-. GR=(l -iVl5)r.

In the equation of Article 230,

Cg = |[2r - (1 - iVl5)/-] = 1(1 + lVTB)r,

and we have

= 8/-(l-lVr5)/^I(l + iy/T5)/'-3(H2.(^Vi5)2

12(1 -WW x i* x [(r -i)(l - iyl5)r]

12(B - iVl5)(i + TVV15)
= 0-977 r nearly.

A

4. The centre of gravity will be J- of 8 inches, or

2 inches from the base, hence the line joining
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the point of suspension with the centre of

gravity forms a triangle of which the two sides

are each 2, and as the altitude is perpendicular

to the base, the oblique angles will each be

45 degrees, which will equal the required in-

clination.

5. In this case the angle between the perpendicu-

lar and the radius of the base will be' 30°, and

we have

tan 30° — \Alt. -± radius of base ;

Alt. of cone
A

• •
—

7 • * i
= ^ tau 30

radius of base

iV'S V3
= |V3
= 2-30940+.

solutions of examples.

Page 154.

1. In this case 6 — \it in the equation of Art. 235,

and sin 6 = 1 ; hence, by substitution, we have

<* = *£.

j
2. The area of the segment will equal the area of

the sector ACBG, minus the area of the trian-

gle ACB. Let be the angle ACG, then

ACB = 20, arc AGB = r.26 = 2r0, and the

area of the sector = }r.2r6 = r26 ; HB = r

sin 6, CH= r cos #, and area of the triangle

ACB = 7* sin 6 cos 6.



TO ELEMENTARY MECHANICS. 125

Hence

7s (6 - sin 6 cos ff)x = *»0.|?^? - r2 sin 6

cos #.§/• cos 0;

_ sin — sin cos
2
(9

•'• « = 1
' o - sin cos 6*

"
''

sin3

6/ — sin 6 cos

3. The sphere may be generated by the revolution

of a semicircle about a diameter. Area of the

semicircle = \iti2 . The circumference de-

scribed by the centre of gravity of the semi-

circle, will be (Ex.1), f- • 2tt — \r. Hence,

according to Art. 233, we have

volume = \ni*'\r — J

| 7r/ '
3

-

4. Referring to the solution of Example 2 above,

we hnd,

area of segment = (6 — sin cos 0)/-
2
,

which multiplied by 27tx, where x is the an-

swer to the 2d Example, gives the required re-

sult ; hence the required volume is

• %7tr% sin3

= volume of the sphere x sin3
0.

5. Following the method of Art. 233, and using

the values already found, Ave have
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volume = r26 x 27rCg

= 1 7T?'
3
Sill

= volume of the sphere x sin

= ft*r*.A£T
— area of great circle x %AIL

If = 90° we have *7T/ >3

, which is the volume

of a sphere, as it should be.

The volume generated as in Example 4 = vol.

in Ex. 5 x sin2
0.

Page 158, Art. 241.—In the first edition of this work,

the solution of this problem is erroneous. The line

EF will not generally be tangent to the curve MN

,

and hence the analysis founded on that supposition is

erroneous. They will be in equilibrium when the

point g is vertically under C.

Let EgC = <p, then the equation of moments will be

W\,Eg .sin cp — W%.gF. sin cp
;

.-.TFiJfr'.- Wt.gF.

From the figure we have

Eg + gF=EF=rl + r„

which combined with the preceding equation gives

also

CF=B-rii

CE=B-ru
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and as the three sides of the triangle EOF thus be-

come known, the angles i^and i^may be found; for

we have from trigonometry

4 ab

where s = \{a 4- h + c), a, b, c, being tlie sides of the

triangle, and is
7

the angle opposite the side <?, or OK
Similarly,

be

where i^is opposite a, or EO.
In the triangle EOg the two sides CE and Eg, and

the angle included by them becoming known, the

angle EOg — OgE may be found from the proportion

EO + Eg :EO - Eg : : tan i{EOg + OgE) : tan

i(EOg - OgE), -
.

and finally

EOg = i{EOg + OgE) + \{EOg - OgE).

solutions of examples.

Page 169.

1. P will move down. Solving for s in Equation (3),

p. 166 of text,, we have

__ P sin B - TFsin A
%

S ~ 2(P + W)
gt

5347-71 AQaf ,= —
YJ?)
— - 4:8-6 feet.
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2. If the weights be in equilibrium, v = and

Eq. (1), p. 105, becomes

A PsmB - Ws'mA a
° = P^rw %»

or

PsmB= TTsin^.

3. In this example the acceleration = \g ;

which in Eq. (3), p. 166 of the text, gives

1= itP+ W)
P sin 45° - TFsin30 3 '

or

P. x 0-7071 -iW= i(P + W)
;

... p = i.38 ir+.

4. From the conditions of the problem, and the

figure, we have

CA = 3 ft., AE= 1 ft, FB =
J

ft.

;

.-.OF=2 ft, CF=2ih.,EF=Uh.

The cylinders being of the same material,

their weights will be as the squares of their

radii ; hence

Wt = 4%
Take the origin of moments at g ; or since

gC is vertical, the moment will be the same if

the origin be anywhere on that line. The
arm of W\ will be the perpendicular from E
to the line Cg, which is
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Eg . sin EgC= Eg . sin cp.

Similarly, the arm of W2 will be

gF. sin g>.

Hence the equation of moments will be

Wi . Eg sin cp = W2 . ^i^sin <p,

or, substituting the value of Wi and cancelling

sin ^,

±W2.Eg = W2.gF,

.: \Eg = gF.

But
Eg + gF= l^ft.;

substituting,

5^ = 1|- ft.

;

s. Eg =& ft
and

9^=1 ft.

From trigonometry we have

cos CEF - (CZ?+{EF?-(CF)*C0S L^ ~
WE.EF

_ i + 2j- - 6}-
g

-o,

.-. CSF= 90°,

and "\ve have

tan i^= -^=4 = 0-15;

.*. ECg = S° 31' 50" +.

5. The mass moved remains the same, but the
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effective moving force is reduced by the

amount of the friction ; hence we have at

once

JVP — Wsin A- /*JFcos^ "1

—
p + W -^

p — lF(sin A + \x cosij)
^.

.]y

P + TF

._„/T

j

P + TF

IF(sin A i- m cos ^f) </ J

6. Let 72 = ^(7, r = AE = ,F5

;

.-. EC=P - r = CF, EF= 2r.

EF is bisected by a perpendicular from (7;

.-. sin CEF = -^— .

si — V

By moments, as in Example 4, we find

E
(/
= iFF=%r.

Since Cg is not perpendicular to EF, the tri-

angle is oblique, and we have

EC + Eg: EC- Eg : : tan ^Cy + ^C):
tim&ECg -EgC),

or

i2 - fr : i2 - fr : : tan J(180 - E) : tan \{ECg

- EgC)
;
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from which the angle ECg may be found. The
angle may be found by means of right-angled

triangles. Thus, let fall a perpendicular from

C upon EF, and let t\\a foot be represented

by G, which the reader can supply in the fig-

ure. Then

CG = V(£ - rf - r\

and

tan ECG =

.-. ECG = tan-1

/

r =-

Also

tan gCG — —^

V(B-r) 2 - r*
'

... gCG = tan-1
-

3Vi22 - %Rr
and, finally,

ECg - ^C# - gr<7^.

7. The velocity of discharge will be

v = Vtyh,

and the quantity discharged in one second will

be

k V2gh,

and in 'the time t the quantity of discharge

will be
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Id Vtyk]
hence

solutions of examples.

Page 179.

1. The formula, p. 171 of text, becomes

50

cos cp

sin 30°

cos (60° - 30°)

= 28-8 lbs.

2. We will have

cos (—45 )

3. We find

F= W^A- TF sin ^4 lbs.
cosO

4. We will have

_sin^_ = W tan ^ lbs.*
cos(-^)
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5. From Article 254 we have, in reference to mo-

tion down the plane,

F= ^-f-
2n (3

°? ^ 60 = 18-1 lb,.;
cos (— 5 ) — 0-2 sin (— 5

)

up the plane

F= ^O

- 2
;
o

;
30
; o 50 = 344 lbs.

cos 5 —0-2 sm 5

Page 180.

6. We will have, from the first value of F, p. 172

of the text,

F = iya - 0.15 x iV2
1Q0 = 6Q ]bg _

T. From Article 256 we have

sin A = Jf-

But from Example 4, p. 146 of the text,

where r — \R, we find (see solution in this

Key)

.*. sin A = ^ ;

.'.A=r 35' 40.

8. From the formula of Article 259 we have

Cc = if x 4 = a feet,

and, therefore, the three sides of the triangle

OCc become known ; hence, from trigonome-

try, we have



134 KEY AND SUPPLEMENT

ab

~ r
12

.-. 0=28° 51' 20."

9. The formula of Article 259 gives

P = w.

The triangle will be equilateral, hence each of

the angles will be 60°.

10. The equation on page 179 gives

F=CD = ==
2V1-A

= y'S feet.

answers to exercises.

Page 180.

1. It will.

2. It cannot without a force to hold it.

3. When the centre of gravity is highest the poten-

tial energy will be greatest, and least when
lowest. In Fig. 113 it is greatest.

4. In Fig. 114 the potential energy is a maximum.
In Fig. 115 the potential energy is least.

5. In Fig. 117 it is indifferent, for, since the weights

are in equilibrium at all points on the curve,
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if the weight W be moved from one position

to another on the curve, the weight P will be

raised or lowered so that their common centre

of gravity will remain at the same height.

The same general relations hold in Figs. 118

and 119 ; hence the potential energy is indif-

ferent in these also.

Page 181.

6. In this case they are in equilibrium in only one

position. If P > W, we will have e > 1, and

the value of y will be imaginary ; hence W
necessarily exceeds P.

7. They cannot, for the eccentricity would be less

than unity.

8. If the weight IF be at the upper extremity of

the axis, at A, there will be equilibrium.

9. The length will equal twice the diameter of tli£

bowl, and it w\\l rest on the edge F.

10. Horizontal.

11. It would rest on the horizontal plane.

Page 186.

The expression for the moment in the 4th line of

page 186 should be

F\{x\ cosA — y1 cos a j),

for reasons given in Article 176 of this Key. This is

the same as

Ft (a?! sin ax
— yx cos a^).

The signs of all the other expressions on that page

should also be changed from + to — and — to +.
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solutions of examples.

Page 192.

1. t = 9
]'*« 100 = 90-5 lbs.

2 x 0-bbS3

2. Let AB = x, BC = y,

AD = a, DC=v,
t = the tension of ^4i?,

£j = the tension of BC;
then

» + y = io, (l)

u + v = 5, (2)

* == 24

;

(3)

and the last formula of Article 269 of the

text gives

sec BAD = 2 sec j9CZ>,

or

- = a£. (4)

From the figure,

a? - ^2 = ?/
2 - f2 = j?Z>2

. (5)

Eliminating between equations (1), (2), and

(4) gives

Equations (1), (2), and (5) give
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T> - u2 = (10 - xf - (5 - uf,
or

4tx -2u= 15. (7)

Combining (6) and (7) gives

x = 4-47 + ft.,

t* -144 + ft.;

.-. y — 5-53 + ft.,

v = 3-56 + ft.

Page 193.

3. These conditions require that the points A and

C shall not be in the same horizontal ; and in

the values of t and tt,
page 188 of the text,

BAD — 0, and we have

t= W cot BCD,

ti= W cosec BCD
W

~ sin BCD '

4. The angle DAC will be 45°, and the last formu-

las on page 191 of the text give

c cos 45° = t

c sin 45° = 250 lbs.

;

250
' 0-7071

= 353-5. lbs.

250 n __
t =mn x0 - 7071

= 250 lbs.
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5. The last equation on page 191 of the text gives

WsinCA&^iW;
.--. sin CAD = £

;

hence
CAD = 30°,

and the depth CD will be one-half the length

of the rafter.

6. The equation

t = iW cot CAD,

page 191 of the text, gives

W=iWcoiCAZ>;
.-. cot CAD = 2

;

.-. CAD = 26° 33' 54".

answers to exercises.

Page 193.

1. They will not. The two added forces R and — R
will form a couple.

2. They will not, for the resultant of F and Fx

combined with — R will constitute a couple.

If the force equal to R were to act in a direc-

tion opposite to the resultant, then, in Exercise

1, there will be a resultant equal and oppo-

site to the fourth force, and in the 2d Exercise,

after the 3d force be removed, there will be a

resultant equal to 2R.

3. No modification is needed, for the moment of
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the components will equal the moment of the

single force.

4. It cannot—to do so would require an infinite

tension.

5. If the weight at B is free to adjust itself, the

tension on each will be equal, and each equal

tofTT.

6. The tension will remain the same. The tension

is dependent only upon the weight and slope

of the parts, as shown by the equations on

p. 188 of the text.

7. An ellipse for the sum of the distances from the

fixed points A and C will constantly equal the

length of the string.

8. Decreased—and the thrust at the lower ends

will be diminished. See the last equations of

Art. 271 in the text.

9. The thrust and stresses on the braces will both

be increased.

10. If the strut supports the weight, there will be

no stress on the rafters.

Page 197.

Galileo was the first writer, of whom we have any

knowledge, who established formulas for the strength

of beams. His work was published at Bologna in

1656. Although the hypotheses upon which the for-

mulas were founded were false, yet the law of variation

of strength which he deduced for rectangular beams

was correct. This law is—the strength varies directly
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as the first power of the breadth and the square of

the depth jointly, and inversely as the first power of

the length of the beam. But the factor used by him
for determining the value of the strength was three

times too large.

solutions of examples,

Page 201.

1. Let io = the load per unit of length of the

beam, I = the length of the beam, then will

W= wl

We have from the last equation on page 200

of the text,

= 3
500 x 8 x S x 12

" ¥ 1400 x 8 x 8

= Sj3^ inches.

Remark.—It is best to reduce all the dimensions

to inches, since the tabular value of JR, is given

per square inch.

2. From equation (2) of Art. 2S2, we have

7 72
GPl

But

d = 4b ;
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PI

_. ;l
1000 x 8 x 12

~ '

8 1200

= 30;

.-. lj = 3-10 + inches

;

and

(I = 12-43 + inches.

3. From Problem 3, p. 200, we have

d ~
2M

_3 8000 x 12 x 12
~/\

' 2 x 10000

= 864;

.-. d = 9-29 inches.

4. From the same equation as the preceding, we
have

M ~- 2
bcP

_ 3
20000 x 10 x 12_¥ 4x9x9

= 11111-1 + lbs.

5. The required stress will be the value of R found

from the equation above,
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. 7 _ 2
Eb&

_ 2
20000 x 1| x (3|)

2

~ 3
"

10000

= 24-5 inches.

6. Problem 4, p. 200 of the text, gives

Bbd*

A
12000 x 6 x 144

~ *~ 15 x 12

= 76,800 lbs.

7. The load will be uniform, and will equal the

weight of the beam. We have

W = 2 x 2 x I x i

-.1,

and the formula of problem 2, P. 199 of the

text, gives

1 =

.-.? =

fibd?
-3 w

1
30000

- 3

: 80,000;

x 2 x 4

I
?

and

Z == 282-8 inches

= 23 feet 6-8 inches.
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Page 205.

The straight line of quickest descent is not the line

of quickest descent. Curves of quickest descent are

called Brachistochrones. Their form depends upon

the conditions assumed. The forces may be assumed

to vary according to the inverse squares, or directly

as the distance, or inversely as the distance, or ac-

cording to some other law, and they may be assumed

to act in parallel lines or radiate from a point. If

they are constant and parallel, as in the case of terres-

trial gravitation, the curve will be a cycloid. It was

problems of this character that gave rise to the Cal-

culus of Variations—a very high order of analysis.

solutions of examples.

Page 208.

1. From the 3d equation, p. 203 of the text, we
have

9*

200

32i x 25

= •2487;

.-. cp =: 14° 24'.

Page 209.

2. From the 2d equation on p. 204 of the text we
' have

s = v
Q
t —\g$ sin cp

;

... s = 50t - 16^- xi^t2

= 50£-'8
s>W2^

sin cp -.
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Hence, in 3 seconds

s = 150 - 72|a/2 = 47-65 feet.

At the end of 5 seconds

s = 250 - 201A-V2 = - 34-3 ft.,

that is, it will have ceased to ascend the plane,

and returning, will, at the end of 5 seconds,

be 34-3 feet below the starting-point.

At the end of 10 seconds

s =1 500 - 804JV2 = - 637-3 feet below the

starting-point.

3. The required velocity will be the same as that

acquired by the body in sliding down half the

length of the plane ; hence the required veloc-

ity will be

v — Vgs sin <p

= a/321 x loo x T
2
¥°o

= 25-36 feet.

If a body starts from the middle of the plane

at the same time as the one at the upper end,

it will reach the foot in the same time that the

upper one reaches the middle; hence, if it be

projected upward with the velocity acquired,

at the instant the body starts from the upper

end, they will meet at the middle of the plane.

4. The point must be higher than the lower ex-

tremity of the diameter—otherwise the solu-

tion is not possible. The required line will be
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the distance from the point to where the line

cuts the circle when drawn to the extremity

of the diameter.

5. From equation (2), p. 208 of the text,

= i V22-4 x 5280

= 38-2 -f feet per second

= 26-05 + miles per hour.

(To reduce feet per second to miles per hour,

multiply the former by *£^? = J|.)

G. From the 5th equation we have

and from the 2d (writing s' for s so as to dis-

tinguish it from the preceding s)

v* = &(h - 17-6)*'

= h x 324 x 2640;

4-6 x 82-4 x 2640
''' s = a

= 4857-6 feet.

7. The time down the plane may be deduced from

the 3d equation of the text. We have

t :

^/~328^
h - 17-6

4/328 x 2640
" r

32-4
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Page 209.

= 163-4 sec.

= 2-72 minutes.

For this time on the horizontal, we have from

the 4th and 5th equations

< =^±
= 90/^

3 r a.a

/4858

4-6

= 303-3 seconds,

= 5-05 + minutes.

8. Equation (5) will give the velocity which it

must acquire in moving down the plane. We
have

2_ 8

= 1000

4-6

= 217-3 feet per second.

The required height will be given by equation

(2) ; we have

s

_ 81 x 217-3 + 17-6 x 1200

1200

= 32-27 feet.
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9. Equation (5), page 208 of the text, gives

v = V —r
4-6

y 4-6

= 13-19 ft. per sec.

Equation (2) gives

81^
h - 17-6

_ 81 x 173-91

7-4

= 1903-64 ft.

The author once had occasion to use the prin-

ciples of the last example in constructing the

approach to an ore dock at Marquette, Mich *

solutions of examples.

Page 217.

According to Article 299, the range will be

2A sin 2a,

where

hence the range will be

— siniJa
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= ?^! sin 90°

9

= 8041 feet.

The greatest height will be, (Art. 301)

h sin
2 a

= *- sin2 45°

=
" 6J- x 32i

= 201-04 + feet.

Page 218

2. 3C=%</h.y,

= 2a/15 x 12

= 26-8 + feet.

3. From Article 299, we have

sin 2<* (/

which in Article 300 gives

tf = — sin2 a,
A(j sin a cos <*

or solving for tan a gives

gt2

tan ar = £

—
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32|- x 225
~ 2 x 1000

= 3-6187

.-. a = 74° 33' 9''.

Page 218.

From Article 300, we have

v— ?r
4

—

A sin a

32|- x 15
~2 x -96387

= 250-29 feet.

From Article 301, we have

CD — It sin
2 a

_(250-29)%nc
B

- ^ yy „y„„ t j

= 901-69 feet.

:. From Article 299, we have

h - X - V%
•

2 sin 2a Zg'

i/2 x 32i x 25000
* *

V ~ y 2x1
= 896-8 + feet.

From Art. 301, we have

A = h sin2 a
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= 6,250 feet.

From Article 300, we have

_ 2# sin «r

9

_ 2 x 897 x W2

= 89 + seconds.

5. We have from Articles 299 and 301,

AB = WD,
or

4A sin a: cos a = 4h sin2 <*,

dividing by sin a cos a,

tan « = 1

;

.-. a = 45°.

6. In equation (3) page 214, make y = — 150,

which is negative, because in Fig. 139 y is

positive upwards, and the point where it will

strike the plane, in this example, is below the

point of starting, tan a = 1, and we have

- 150 = x - *f* , ,

2(7o) 2 x i

'

which solved for x gives

x= 271-5 feet.
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7. In this example

a= - 30°, y = - 25 feet.

The velocity with which the body will leave

the eaves will equal that of a body falling

through the vertical height of the ridge above

the eaves, and this value will be considered as

the velocity of projection. "We then have

v> = fyx7=Ug
y

and these substituted in equation (3), page 214,

give

-25= -0.57735*- ^ x^6Q3 ,

which solved gives

# = 17-6 + feet.

8. Substituting the values given in the example

for a and y in equation (3) page 214 gives

60 = 400 tan, -fj^f;

50 = 600tan «- 3
jy

60f .

2tr cos4 a

Multiplying the first by 9 and the second by

4, and subtracting the latter from the former,

gives

340 = 1200 tan a;

.-. tan oc= £J,

and
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a = 15° 49' 9".

Substituting this value in the first of the pre-

ceding equations gives

60 - 11 x 400 32i(400£__.
'2 x (0-96213)2 x tf

:

x 400
320(0'96213)2

= 228-2 feet per second.

exercises.

Page 219.

1. Zero.

2. The velocity of projection being the same, they

will strike the sea at the same time, and their

range from the point where the ship will be at

that time will be the same ; but not the same

if reckoned from the point of projection.

3. 15 miles per hour = 1fjxtf- feet per second

= 22 feet per second ; hence the actual veloc-

ity will be 11 feet per second in the direction

of motion of the ship in reference to the point

from which the projection is made.

4. In reference to the point on the earth, it will be

t
the same ; but not in reference to the point in

space from which the projection is made.

5. It will reach it in the same time. A horizontal

motion does not affect the time of descent due

to gravity. The projectile falls from the
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highest point of its path (in a vaeunm) in the

same time that it would fall vertical down-

wards.

6. They will ; for according to Article 304 of the

text, we have for equal ranges the angle a and

90° — a. Let a — 45° — 6
; then will the an-

gles be 45° - S and 90 - (45° - 6) = 45°

+ £; but 45° -f S is the complement of 45°

- &.

7. The lines will be the sides of an angle, and since

the velocities are uniform, they will be divided

into equal parts in equal times, by the motion

of the bodies; hence, by geometry, the lines

passing these equal divisions will be parallel.

Page 223.

The relation between centripetal and centrifugal

forces has been the subject of much discussion. In

an article which appeared some time since in "Na-
ture" it was asserted that the term centrifugalforce

had done much harm in mechanical science, and

ought not to be used. The basis of the trouble with

such writers is, they consider that centrifugal force is

to be applied to the same body as the centripetal ; but,

as stated in the text, such is not the case. Centripe-

tal force is generally conceived to be the action of the

ruling, or larger body, upon the smaller one, while

centrifugal force is the equal opposite action upon the

other body. Thus, if a nail holds one end of a string,

while a body attached to the other end is made to ro-

tate rapidly about it, the nail represents the ruling

body, and the centripetal force is the pull of the string

upon the rotating body, and the centrifugal force the
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pull of the string upon the nail. Similarly the at-

tractive force between the eartfi and sun is centripe-

tal if applied to the earth, and centrifugal if applied

to the sun. These are illustrations of the third Law
of Motion—that action and reaction are equal but

1 opposite.

A constant centripetal force, caused by uniform

motion in a circle, does not produce an acceleration,

for it does not act along the same line. The action

being constantly normal to the path, its effect is con-

stantly expended in deflecting the body from a recti-

lineal path. Should it cease to act as soon as the

deflection is made; the body would move in a right

line, in accordance with the First Law of Motion.

The analysis for determining the value of the cen-

trifugal force in the text is lengthy but strictly logical.

The following solution may be more acceptable. As-

sume that the body is moving around

the circle at a uniform rate ; then

will the centrifugal force be con-

I

stant, and at any point, as B, the

direction of motion will be that of

the tangent BD. The centripe-

tal force must be such as to draw

the body from the tangent BD a

distance equal to DC in the same time that it would
move over BD. Draw EC and CG, and a chord BC.
If now the point C be indefinitely near B, the limit

of the sine EC (or its equal BD), and of the chord

BC will be the arc BC.
Let BD be the space moved over in time t, and v

the constant velocity, then
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V

•since the motion in the arc is uniform ; and since the

centrifugal force is constant, the space BE will be

given by equation (2), p. 12 of the text, or

BE = }v%

where v' is the velocity which would be produced by

the centripetal force in passing over the space BE in

time t, if the force acted along the line BE. But

since the times are equal, we eliminate t, between

these equations, and find

, 2BE
v =~ec

v '

From the figure we have, since EC is a mean pro-

portional between BE and EG,

(EC)2 = BE(BG - BE),

which ultimately becomes

(EC)2 = BE.BG;

.-.BE--
(EC)2

BG '

Substituting this value above gives

, 2EC
* = !&»

EC
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since BG = 2/\ But ultimately the velocity along

i?2) or EC is that along the arc BC, and ultimately

^(7 = vt,

where n is tlie velocity along the arc. This substitu-

ted, gives

*2V _ Tf

1 ~~~r

or, multiplying by m,

mv' V2

But the left member is, according to Article 122, the

value of a constant force, hence

the required result.

Page 229, Articles 319, 320.—Sir Isaac Newton con-

ceived the fact that if the attraction of gravitation

varied as the inverse square of the distance from

the centre of the force, it ought to account for the

motion of the moon ; that is, the force of gravity ex-

erted by the earth should just equal that necessary to

cause the proper deviation of the moon from a tan-

gent to its orbit. His first efforts to prove this law

tailed, due to the fact that an erroneous value of 7?,

the radius of the earth, was used. Instead, however,

of abandoning the idea, and attempting to account

for the motion according to any other hypothesis, he



TO ELEMENTARY MECHANICS. 157

returned to his calculation from time to time, but

with no better results. Finally, while attending a lec-

ture in London, he obtained a corrected value of the

radius, which, when substituted in the equation he

had so often reviewed, established his theory. He
was so overcome by the grandeur of the problem as

the final proof was becoming apparent, that he was

unable to complete the numerical reduction, and

called a friend to do it for him.

It will be seen, in Article 319, that the radius of

the earth enters the formula, in determining the dis-

tance of the moon, in the expression 60-367?. The
value of R which he at first used was too small by

tV t° tt °^ ^s true value. See also remarks on pp.

36 and 37 of this Key.

The law of gravitation was not, at once, universally

accepted. Several times, especially in the history of

astronomy, certain phenomena appeared to conflict

with this law, when it was called in question, and its

truth assailed. But all opposition to it disappeared

after Laplace, by his truly wonderful analysis, ex-

plained all those paradoxes, and accounted for all the

motions of the solar system, on the simple law of

Universal Gravitation. It is now believed to be true,

not only for the solar system, but for every particle

of matter in the universe. Newton believed that the

ether of space, whatever it might be, was more dense

in the vicinity of the planets, than in remote space
;

that, indeed, it might be only air extremely rarefied.

To find the stress due to the attraction "between the

earth and moon.

It equals the centrifugal force, the value of which is
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moo2
r.

The mass m of the moon is about 3^ times that of a

mass of water of equal volume, and as a cubic foot of

water weighs 62£ lbs. when g = 32£ feet, and the

diameter of the moon is 2,160 miles, we have

m - 3i X ^(2160 x 5280)
3 X ?* lbs.

The time of the revolution of the moon about the

earth is about 27^ days ; hence the angular velocity

per second is

- 2tt
00 ~

27i X 24 x 3600

'

The mean distance between the centres of the moon
and earth is about 240,000 miles ; hence

r = 240,000 X 5280
;

all the magnitudes being in feet, and all the times

reduced to seconds. Hence we have

_ 3j x J7T
3 x (2160)

3 X (5280)4 X 240000 x 62

j

stress -
82^ x (2^ x 24 x 360Q

,

2

which reduced gives, approximately,

44,000,000,000,000,000,000 lbs.

= 44 x 1018
.

A steel rod one square inch of section will sustain a

pull of 120,000 lbs. ; hence it would require (approx-

imately)
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370,000,000,000,000

= 37 X 1013 square inches

of steel to bold the moon in her orbit if substituted

for the attraction between the earth and moon.

In one square mile are

4,014,489,600 sq. 'inches;

which, divided into the above, gives, for the equiva-

lent section in miles,

90,000 sq. miles nearly.

Since the radius of the moon is 1,080 miles, the area

of a great circle will be

3,660,000 sq. miles nearly,

which, divided by the solid section of the steel rod,

gives 40 -f- ; hence, if the rods were each one square

inch in section, and the great circle of the moon be

divided into inch-square spaces, the rods would cover

one space in 40.

The square of the diameter of the earth is nearly

15 times the square of the diameter of the moon, hence

such a steel rod would cover about
g-J-g-

of the merid-

ian circle of the earth.

If the material be iron instead of steel, and if

10,000 lbs. be taken to represent the tenacity, a value

quite commonly used 'in engineering structures, the

rod—or rods—would cover more than one-fourth the

cross-section of the moon, and about -fa of a great cir-

cle of the earth.

The same problem applied to the attraction between

the sun and earth gives
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5^ x -J7r
3(20500000)3 X 5280 X 92500000 X 62j ,.

321 x (365 X 24 X 3600)2 '

where it is assumed that the mean density of the

earth is 5-j- times that of water, the distance between

the centre of the sun and the earth 92,500,000 miles, the

radius of the earth 20,500,000 feet, and the time of

the revolution in the orbit 365 days. This reduced

gives, approximately,

912 x 1013
lbs.,

912,000,000,000,000,000,000 lbs.,

or more than 20 times that between the earth and

moon. According to this result it would require a

solid steel rod of a cross-section equal nearly to one-

half the great circle of the moon, the tenacity being

120,000 lbs. per square inch ; or if the rod be of iron,

and 10,000 lbs. be used for its tenacity, the section of

the rod will be about f of the area of a great circle of

the earth. These examples show the immense stress

of gravitation when large masses are involved.

The following examples will show that the same

force, under certain circumstances, is comparatively

weak.

Required the time that it will take two spheres of
the scone material as the earth, each onefoot in diam-

eter, placed 12}- inches from centre to centre, to come

together by their mutual attractions, in void space.
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According to one of Newton's laws of attraction,

the force varies as the mass. If the diameter of the

earth be 41,700,000 feet (p. 33 of the text), then will

the mass of the sphere 1 foot in diameter be

1

(41700000)*
of the earth,

and therefore the acceleration at the surface of the

earth due to the attraction of such a sphere placed at

the centre of the earth would be

<7

(41700000/

an inappreciable quantity.

According to another of Newton's laws, combined

with the analysis on pp. 33 and 34 of this Key, the

force varies inversely as the square of the distance

from the centre of the sphere ; hence at the distance

of one foot from the centre of the small sphere we
have

1»: (20850000)' : =

8(20J0000)
, :/;

v/ =
9

8 x 20850000 '

for tne acceleration of a particle one foot from the

centre of the sphere. This will also be the accelera-

tion of any uniform sphere whose centre is one foot

from the first sphere, if the diameter of the second

sphere does not exceed one foot ; or should it exceed

that diameter, it will still be true for the mass of the

sphere if reduced to a sphere whose diameter is less
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Page 229.

than one foot, and hence will be the acceleration pro-

duced upon an equal sphere. If the first sphere were

fixed in space, the second sphere would move the J of

an inch ; but as both are free each will move one-

half the distance between them, or £ of an inch.

In order to simplify the problem, we will assume

that the acceleration is uniform, while the spheres are

moving the \ of an inch, and is that due to the at-

traction at a distance of 12 inches from their centres

;

then will equation (i), page 12 of the text, be applica-

ble, and we have

Y%

V:
2 x i x Ty

8 x 20850000

= V108031

= 328-7 seconds, nearly,

or less than 5^ minutes.

This problem is in " The System of the World," by

Sir Isaac Newton, p. 527 of our copy of the Principia.

It is there stated that " the attraction of homogeneous

spheres near their surfaces are (Prop, lxxii.) as their

diameters. Whence a sphere of one foot in diameter,

and of a like nature to the earth, would attract a

small body placed near its surface with a force

20,000.000 times less than the earth would do if

placed near its surface, but so small a force could pro-

duce no sensible effect. If two such spheres were
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distant but J of an inch, they would not, even in

spaces void of resistance come together by the force of

their mutual attraction in less than a month's time."

We have sought for the source of the error in the

Principia, by determining the conditions necessary

for giving his result, but have not satisfied ourselves.

"We observe that he made an error in saying that the

force of attraction on the surface of the small sphere

is 20,000,000 times less than on the earth ; for, ac-

cording to his proposition—considering the radius of

the earth as 20,000,000 feet—it should be 40,000,000

times less ; and according to the inverse squares, at

the distance of one foot from the centre of the small

sphere, it would be 160,000,000 times less. If now
we assume that the particle is moved \ of afoot, un-

der the action of this force, we would have

>-y,
2x
32

160000000

= a/2,500,000 (nearly) seconds,

where the quantity under the radical is nearly the num-

ber of seconds in one month. "Whether this gives any

clue to the source of the error, we are unable to say.*

* The author presented the above result to the Physical Sec-

tion of the Am. Asso. for Ad. Sc, at Montreal, 1882. The genu-

ineness of " The System of the World, by Sir Isaac Newton," was

there called in question.- The work was originally issued in a

separate volume, but in the author's copy it is bound with the

Principle/,, and paged with it. But it evidently forms no part of

the Principia proper.
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Page 229.

The assumptions made in order to simplify the

problem, not being strictly accurate, we now propose

the following problem :

Assume that two equal spheres of the same material

as the earth, each onefoot in diameter', are reduced

in size to a mere point at their centres, andplaced
one foot from each other j required the time it would

takefor them to come together by their mutual attrac-

tion, they being uninfluenced by any externalforce.

We first make a general solution.

Let E = the mass of the earth,

m — the mass of one of the spheres,

m — the mass of the other sphere,

B = the radius of the earth,

r — the radius of one of the spheres,

t = the radius of the other sphere,

a = the acceleration due to gravity on the

earth,

jj. = the acceleration due to the attraction of a

sphere of mass unity upon another

sphere ot mass unity, the distance be-

tween their centres being unity,

a — the original distance between the centres

of m and m\ and

x = the distance between their centres at the

end of time t.

The values of units are determined by measure-

ments on the surface of the earth, and the unit mass

will be so taken as to correspond with the units in
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use. The acceleration produced by a mass E, con-

ceived to be reduced to a point, upon one of the units

of mass at a distance unity, will be E times as great

as that produced by the other unit, or

and at a distance H it will be

E_

which, according to the notation, will be the accelera-

tion on the surface of the earth due to gravity; hence

g = v-jp .
(i)

and

f = §ff, (2)

by means of which the numerical value of the unit of

acceleration may be determined.

Again, the acceleration produced by the attraction

of the mass m upon one of the units of mass at dis-

tance, unity will be

and at a distance, x, the acceleration will be

M_m
> (3)
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which will also be the acceleration produced upon m,

by the attraction between m and m! at the distance x

between them, since the result will be the same as if

both masses were concentrated at their centres of

gravity ; for all of m will exert the same force upon

each particle of m' as upon each particle of the unit.

But the pull in 2:>01in^s w^l equal the mass into the

acceleration (p. 44, Art. 86 of the text), or

mm' ...

./"3T- W
Similarly, considering the attraction of m' upon ra,

the acceleration produced upon m will be

*£ , (5)

and the pull in pounds will be ?n times this amount,

or

m'm /ax
M-jT> (6)

which is the same as (4), as it should be. Substitut-

ing jj. from (2) in (4) or (G) gives for the pull in

pounds (or their equivalent), of any two masses m and

m',

mm R2q 1 ,_.—*-•? ( '>

The origin of the axis of x being at the centre of

one of the masses and moving with it, and the total

mass moved by the stress being m + m', we have
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,
,,rPx m?n'Ji2

g 1 , .

(OT+W )_ = ___^._,
(8)

which integrated (Analyt. MecJi., pp. 33, 34), observ-

ing that for t = 0, x = 0, and v = 0, and that /* in

the reference equals -— —^ in this case, ffives

<=[fil^']
t4<--^ + "»-'© i

]/»>

which for the limits gives

f(m -f m')Ua~\i
' = **«[_ ZmmUPg J

*

If both spheres are of the same density, their masses

will be as the cubes of their radii ; or

IP

»'=Jr*;J

^ (10)

and Ave have

and if the spheres are equal, as in the problem, we
have

If a = 1 foot, i? = 20,850,000, r = £ foot, g = 32J,
we have
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- K7mQ /166800000\1
==1 '57079

x . 32466 )

= 3577 seconds, nearly

_ = 59-6 minutes, nearly.
Page 229.

' *

An exact solution of the former problem may be

made by means of equation (9), by substituting in it

a = 12t inches = 1-h feet, and making x — a for one

limit and 1 foot for the other. We would thus have

. (Ik x 20850QQ0\i r '

, / ISM n
~|

'=( rrrooT- (1^-1) + 1ACOS-1.- -0

= 384 seconds nearly,

or less than 6J minutes.

The following is the reduction of the preceding ex-

/ 12 \i
pression. To find the value of cos

-M ^-
J 5

we have

log. 12 =-1.079181

log. 12-25 = 1-088136

Dif. = 1-991045

Dividing by 2, 1-995523,

and log. 0-9S974 = f-995522,

or log. cos 8° 12' 46" = 9-995523.

The length of arc will be

8° 12' 46" -
lg

180° X 60 X 60
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29566 Q1/11A .

648000
8 'U16;

which may be reduced as follows

:

log. 29566 = 4470892

log. 3-1416 = 0-497150

ar. co. loff. 648000 = 4-188425

subtracting 10, log. 0-14337 = 1-156467

adding log. 1&, log. 1-02083 = 0-008951

gives log. 0-11636 = 1-165418
;

hence,

U- cos-1(j^-V = 0-14636.

We also have (lh - 1) 1 = -h = 0-02083 + which

added to the preceding result gives 0-16719 + for

the value in the brackets.

For the first parenthesis, we have

log. lh = 0-008951

log. 20850000 = 7-319106

log. 8 = 0-903090

log. 32i ar. co. = 8-492594

subtracting 10 and dividing by 2, 6-723741

log. 2300-7 = 3-361870.

Adding log. 0-16719 = 1-223209

gives log. 384-6 = 2-585079
;
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that is. the time will be 385 seconds nearly, or less

than 6^ minutes.

To find the stress in pounds which would be ex-,

erted by the mutual action of two such spheres at a

distance of one foot between their centres, we have

from equations (7) and (10), since m = m'9
and x = 1,

E
By

The mass of the earth is 5-j- times an equal mass of

water. The weight of a cubic foot of water is 62£ lbs.

at the place where g = 32-J-,
and the volume of the

earth is fnlP ; hence

e = 5* xm x \7tip,

which substituted above gives for the stress

fn x 5| x 62| ,,

20850000 x 321
bs''

= 0-00000215 + lbs.,

or less than TTrofo o o it
°*' a pound, a quantity inappre-

ciably small.

A would-be inventor once proposed to weigh the

varying force of gravity by means of very delicate

scales, and by using them on board a steamer, thus

determine whether the water underneath were deep

or shallow. Since the density of the solid earth ex-

ceeds that of water, the force of gravity at the sur-

face of deep Avater will be less than on shallow water,

but it is evident that the rocking and heaving of the

vessel would probably produce more effect upon such
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delicate mechanism than that due to the variations of

the force of gravity.

It is also stated that mariners have observed that

two ships at rest in a quiet sea tend to approach each

other, but it will be found that the gravitating stress

due to their mutual attractions is so small that it

might be more than neutralized by a very slight

breeze, or by the beating of very small waves.

To give some idea of the magnitude of this stress,

assume that the vessels are of equal mass, and each

equivalent to a sphere of the average mass of the

earth, each 30 feet in diameter, and 200 feet between

their centres.

Conceive that the masses are reduced to their cen-

tres, then since the mutual attraction of unit-spheres

at distance unity between them is tottitowo °^ a pound,

the attraction of the masses of the ships, reduced to

their centres, at the same distance (one foot) will be

imMm X 303 x 303 = 1471 pounds

;

and at the distance of 200 feet, it will be

1471_r z= 0.04 pound nearly.

If the distance between them be 500 feet, the stress

would be

5QQ2-
= tto of a pound, nearly.

If all external forces, such as the wind and action of

the sea were neutralized, this slight stress would be
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sufficient to cause the ships in question to collide in

a short time.

solutions of examples.

Page 233.

1. We have from equation (5), page 226,

tf TV v2

f=m-
r g r

Biat/ must equal 2TF;

.\2TT=
W v\

g r \

.'.v
— V2^F;

or the velocity must be that acquired by a

body falling freely through a distance equal to

the radius of the circle (see eq. (3), p. 36 of

the text).

2. If the tension is 3 TF, we have

g r

.w = VSgr.

Let n be the number of revolutions, then the

velocity will be the space (2?mi) divided by

the time, or 60 seconds, r must be reduced to

feet and the time to seconds, for g is given in

feet per second. Hence we have
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%nm nrn
30~'V ^"eo"^

nrn
"30" = Vs^;

»\n = 30/l
n r

30

3-1416
A

= 38-3.

Vi6Tv

3. The centrifugal force will equal the weight;

hence

v2 W v2 s*

W= m - = — • -
;

r g r

,\ v = ygr = -^- (see preceding example)

;

" 3-1416
y

t

= 38-3,

as in the preceding example.

4. When the body is at the lowest position its

weight will be added to the centrifugal force,
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but the tension due to the centrifugal force

equals the weight ; hence the tension will

equal 2 W.
5. The friction will be }x times the pressure due to

the centrifugal force, and must equal the

weight. Let n be the number of revolutions

per minute ; then will the angular velocity per

second be

Inr . n __ 27tn
m

and the centrifugal force will be (Art. 314)

and the friction will be

f_ »nh?WR _ w .V-
(30)V

~ W*

30 / g

The body is assumed to be in a radial groove,

and the string slightly elastic so as to allow the

body to move slightly along the groove, and

thus give the friction a chance to act.

The angular velocity per minute will be

2tt x 250:

and the centrifugal force will be
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f_ TF/5007r\ 2 30

g \ 60 J 12

The friction will be 0-15 of this amount, and

the tension of the string 0»85 of the same;

hence the tension will be

T= 0-85 x TVs X -6-fM3.1416)
2 TF

= 45-27 -f pounds.

Paqe 234.

7. The friction will be

1 W"
To VY '

The centrifugal force will be (Art. 313),

hence

Wi?

9 J?'

-git"™ w,

-.9%.
~;1G'

_ i/m -- 2500

10

= 89-675 feet per second

= 61 14 miles per hour.
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8. According to Article 322, we have

7i-- -~
g

' r

/30x5280 y
V 60 X 60 /

X 4a

321 x 3000

= 0-091 feet

= 1-12 inches.

9. The weight will be to the centrifugal force as

the length of the string is to the lateral move-

ment of the body ; or

W:f:: G:%;

.-,x= 6—W
To find/we have equation (5), Art. 313,

MO X 52S0\ 8

_ W\ 60 X 60 )

g 4000

which substituted above, gives

_ 6 /40 X 5280N
X ~ 321 x 4000 \ 3600 /

= 0-160 ft.

= 1-92 inches.
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The value is independent of the weight.

10. To find the time of making one revolution,

we have

T= 60 4- 100= |.

Then from p. 232 of the text, we have

COS <p :

4:7T
2 .AB

~ 5 x (3-1416)2

= 0-23166
;

.-. cp = 76° 25' 13".

Or by logarithms

log. 32^ = 1.50T406

log. (0.6)
2 =1.556303

1 063709.

log. 5 = 0.698970

log. (3. 1416) 2 = 0.994300

adding,

adding, 1.693270 which subtract-

ed from the above gives

log. cos cp =1.370439;

.-. <p = 76
=
25' 43

'.

If cos cp = 1, or cp = 0, a relation will be es-

tablished between AB and T, or we will have

AB--
'4tt2 '

and if AB is assumed to be less than the value

8*
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found by this formula, cos <p will exceed unity,

and hence cp will be imaginary, or, in other

words, the conditions will be impossible. We
also have

AC= AB cos cp

= 15 cos 76° 25' 43"

= 15 X 0-234:66

= 3*52 inches

;

and

BC = AB sin cp

== 15 X sin 76° 25' 43"

= 14-58 inches.

11. Let n = the number of revolutions per minute,

= n ~ 60 per second. The distance BC will be

.##= 14 sin 10° inches,

and the veloc'ty in feet per second will be

%7tn x If sin 10°
v = —

.

60

= T8o^^sinl0°.

Employing the equation at the bottom of page

232 of the text, making F = 4 lbs., and sub-

stituting the value of v given above, we have

(jloTtn sin 10°)2 = 32ir X tt X sin 10° tan 10° x

4x32|xl4sinl0°
.

5X12
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In
f

6 3 [> cos 10° ^5 sin 10° J

= 118-86.

The reduction is as follows :

180 _ 4/I55I / 1 1
=

7 X 3141(3 ' 9 U x 0-98481
+

5 x 0-17365
,

J^-y^ (0-25383+1 -l5lT4)
"21-9912 r

9

180 i/1351 H . •..„
; y -5- x l-405o7.

" 21-9912 Y 9

log. 1-40557 0-147852

log. 1351 3-130655

log. 9 ar. co. 9*045757

Dividing by 2, 2*324264

1 162133

log. 180 2-255273

log. 21-9912 a. c. 8 657750

log. 118 86 2-075055

12. The tenacity to be overcome will be that in a

section through the axis of the stone, and

hence will be

4.x 12 x 4 x 600 = 115200 lbs.

The centrifugal force producing rupture will

be that due to either half of the stone into

which it is divided by the plane section ; and

this will equal the mass of one-half multiplied
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by the distance of its centre of gravity from

the axis of rotation.

The centre of gravity of a semicircle is
-J

—

from the centre of the circle (Ex. 1, p. 154 of

the text).

If S he the weight of a cubic foot of the

stone, the weight of one-half will be

\nr% x thickness x §

= k x 4 x | x ^

and mass

If n be the number of revolutions per min-

ute, then the angular velocity per second will

be

n n it

and the centrifugal force will be

2
3

g?fe Xf-=llo200;

J 115200 X 9 X 302 x 193
: r

8 x 2 X (34416)2 X 6 X<$

13786-7
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exeecises.

Page 235.

1. It will not. The deviating force will be the

normal component of the force at the centre.

2. Because the centrifugal force causes a pressure

against the side of "the vessel, to balance which

requires an increase of height of the water.

The same tendency exists with other sub-

stances, but in order that any substance shall

actually be elevated at the outer surface, the

centrifugal force must overcome the friction

between its particles.

3. The diameter of the earth at the equator is

about 26 miles more than at the poles. If the

earth were chauged to a sphere, the polar

diameter would be increased about 13 miles,

and the equatorial decreased about the same

amount. The exact change in the dimensions

involves a knowledge of the volume of ellip_

soids.

4. It does. The angular velocity of the earth

being constant, the centrifugal force varies as

the distance from the centre.

5. It would come to rest on the surface of the hol-

low.

6. According to Article 318, if the earth revolved

in 84 m. 42T
6
T sec, bodies on the equator would

weigh nothing ; hence if it revolved in 84

minutes they would fly off if free, but if held
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by cohesion or otherwise, the holding force

must be overcome before they could fly off.

7. It would be nearer.

8. Because the velocity in their orbits is necessarily

greater in order to balance the attractive force

of the sun, and the circumference of the orbit

is less than those more remote. Kepler's law

is—the squares of the times of the revolutions

are as the cubes of the mean distances from the

9. The centrifugal force is not destroyed—it is only

equilibrated.

10. Tangentially.

11. It is proper to say that the centrifugal force

—

and hence the centripetal—is due to the veloc-

ity of the stone in the sling. Strictly speak-

ing, the centripetal force has nothing to do

with the velocity; but indirectly it has, for the

velocity could not be produced without the

centripetal force—and it is only in this sense

that it has something to do with it.

12. The centrifugal force causes the clothes to

press against the vertical inside surface of the

vessel.

13. They are not affected by the rotation ; but if

the earth should cease to rotate, the surface

at the poles would be elevated ; and hence

cause bodies there to weigh less by being at a

greater distance from the centre of the earth.
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14. There is. If the moment of the centrifugal

force in reference to the outer rail as an ori-

gin exceeds the moment of the weight of the

car in reference to the same point, they will

overturn.

Page 236.—The analysis of this chapter very properly

belongs to higher analysis ; but we have succeeded,

by means of curves and special artifices, in bringing it

within geometrical and algebraic analysis.

In the language of the calculus, if m be the mass and r] the

force at a unit's distance, we would have

cFx

Multiplying by da: gives

dx d-xm
2
= — tjx dx,

and integrating,

mfF=-w+io,
or

dx2

mdJ>=- VX + C'

Assuming for the

x = a, we have

initial conditions that the velocity is zero, and

= - r/a
2 + C,

and we have

.-. C= r]a\

dx2 V , «

dt2 m '

which is the square of the velocity, and is the same as equation

(2), page 233 of the text. From the last equation we have

-^dt:
^

which integrated gives
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a fin 1
x n>

t = {/ - sin"1 - + G .

v ?/ a

Assuming that t = for * = a, we have

r 7

.\t= y — (sin T
|3r)

?/ a

If a; = 0, we have

But we also have sin-1 = 7T, for which value, we have

f ?/

which is the same as Equation (4), page 241 of the text.

Page 243, Art. 328.—Captain Kater used the principle

of the convertibility of the centres of suspension and

oscillation for determining the length of a simple

seconds pendulum, and hence the acceleration due to

gravity.—Phil. Trans., 1818.

Let a body, furnished with a movable weight, be

provided with a point of suspension Ay and another

point on which it may vibrate, fixed as nearly as can

be estimated in the centre of oscillation B, and in a

line with the point of suspension- and the centre of

gravity. The oscillations of the body must now be

observed when suspended from A, and also when sus-

pended from B. If the vibrations in each position

should not be equal in equal times, they may readily
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be made so by shifting the movable weight. When
this is done, the distance between the two points A
and B is the length of the simple equivalent pendu-

lum. Thus the length L and the corresponding time

T of vibration will be found uninfluenced by any

irregularity of density or figure. In these experi-

ments, after numerous trials of spheres, etc., knife

edges were preferred as a means of support. At the

centres of suspension and oscillation there were two

triangular apertures to admit the knife edges on

which the body rested while making its oscillations.

Having thus the means of measuring the length L
with accuracy, it remains to determine the time T.

This is effected by comparing the vibrations of the

body with those of a clock. The time of a single

vibration or of any small arbitrary number of vibra-

tions cannot be observed directly, because this would

require the fraction of a second of time, as shown by

the clock, to be estimated either by the eye or ear.

The vibrations of the body may be counted, and here

there is no fraction to be estimated, but these vibra-

tions will not probably fit in with the oscillations of

the clock pendulum, and the differences must be esti-

mated. This defect is overcome by " the method of

coincidences." Supposing the time of vibration of

the clock to be a little less than that of the body, the

pendulum of the clock will gain on the body, and at

length at a certain vibration the two will for an in-

stant coincide. The two pendulums will now be seen

to separate, and after a time will again approach each

other, when the same phenomenon will take place.

If the two pendulums continue to vibrate with per-
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feet uniformity, the number of oscillations of the pen-

dulum of the clock in this interval will be an integer,

and the number of oscillations of the body in the

same interval will be less by one complete oscillation

than that of the pendulum of the clock. Hence by

a simple proportion the time of a complete oscillation

may be found.

The coincidences were determined in the following

manner : Certain marks made on the two pendulums

were observed by a telescope at the lowest point of

their arcs of vibration. The h'eld of view was limited

by a diaphragm to a narrow aperture across which the

marks were seen to pass. At each succeeding vibra-

tion the clock pendulum follows the other more

closely, and at last the clock-mark completely covers

the other during their passage across the field of view

of the telescope. After a few vibrations it appears

again preceding the other. The time of disappear-

ance was generally considered as the time of coinci-

dence of the vibrations, though in strictness the mean
of the times of disappearance and reappearance ought

to have been taken, but the error thus produced is

very small. (Ehcyc. Met., Figure of the Earth.)

In the experiments made in Hartan coal-pit in 1854,

the Astronomer Royal used Kater's method of ob-

serving the pendulum. {Phil. Trans., 1856.)

The value of T thus found will require several cor-

rections. These are called " Reductions." If the

centre of oscillation does not describe a cycloid, al-

lowance must be made for the alteration of time de-

pending on the arc described. This is called " the

reduction to infinitely small arcs." If the point of
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support be not absolutely fixed, another correction is

required {Phil. Trans.] 1831). The effect of the

buoyancy and the resistance of the air must also be

allowed for. This is the " reduction to a vacuum."

The length L must also be corrected for changes of

temperature.

The time of an oscillation thus corrected enables us

to find the value of gravity at the place of observa-

tion. A correction is now required to reduce this re-

sult to what it wTould have been at the level of the

sea. The attraction of the intervening land must be

allowed for by Dr. Young's rule {Phil. Trans., 1819).

"We thus obtain the force of gravity at the level of

the sea, supposing all the land above this level were

cut off and the sea constrained to keep its present

level. As the sea would tend in such a case to change

its level, further corrections are still necessary if we
wish to reduce the result to the surface of that sphe-

roid which most nearly represents the earth. (See

Camb. Phil. Trans., vol. x.)

There is another use to which the experimental de-

termination of the length of a simple equivalent pen-

dulum may be applied. It has been adopted as a

standard of length on account of being invariable and

capable at any time of recovery. An Act of Parlia-

ment (5 Geo. IV.) defines the yard to contain thirty-

six such parts, of which parts there are 39.1393 in the

length of the pendulum vibrating seconds of mean
time in the latitude of London, in vacuo, at the level

of the sea, at temperature 62° F. The commission-

ers, however, appointed to consider the mode of re-

storing the standards of weight and measure which
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were lost by fire in 1831, report that several elements

of reduction of pendulum experiments are yet doubt-

ful or erroneous, so tbat the results of a convertible

pendulum are not so trustworthy as to serve for sup-

plying a standard for length ; and they recommend

a material standard, the distance, namely, between

two marks on a certain bar of metal under given cir-

cumstances, in preference to any standard derived

from measuring phenomena in nature. (Report^ 1841.)

All nations, practically, use this simple mode of

determining the length of the standard of measure,

that of placing two marks on a bar, and by a legal

enactment declaring it to be a certain length.

For length of seconds pendulum see Mech. Celeste^

T. II., pp. 327, 313, 179.

solutions of examples.

Page 248.

1. From the equation on page 213 of the text we
have

but in the example t — 4- ; hence

.1 9 -
4?"4x (3.1116)2

= 0-827 feet.

= 9-77 inches.
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2. For this example we have

9

. 7
_±g _ 4 x 32|

*

tt
3 (3-1416)2

= 13-036 feet.

3. First find the time, in seconds, of one vibration.

In one day there are 24.X 60 X 60 = 86,400

seconds ; hence the time of one vibration will be

|§|flfl = 0-99976 seconds.

Let x be the required length, then from the

equation on page 243 (f being the time for

length x) we have

f : t'
%

: : x : I,

or

1 : (0-99976)
2

: : x : 39-1

;

•'• :e =(oW = 39 -1181 + inches;

hence it must be elongated

39-1181 - 39-1= 0-0181 + inches.

Page 249.

4. From the equation on page 246 of the textwe
have

45-5

86354-5

45-5

v

86354-5

= 11024-3 feet

20,923,161 feet,
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5. From the equation

9

we have

5t = 15-7080/A
= 3-9168 seconds.

6. From Eq. (2), page 246, we have

= a/32-0902 x 20,923,161

= 25911-93 feet per second

= 4-9 + miles per second.

7. We will have from Eq. (1), page 246 of the text,

1=^/1

= 3-1416 j/
30,923,161

K
32-0902

= 42 m. 17 sec.

8. From Equations (1) and (4), pages 247 and 248,

we have

Fl A/Ekq
^ =m v ft

y PEk
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= 3000 |/:

1000 x 28000000 x i

0-453 ft. per sec.

9. From Eq. (6) we have

9

a/pi

3-1416 r
29,1.

1000 x 5

32±- x 28000000 x J

== 0-0148 of a second.

solutions of examples.

Page 258.

1. In this example the weight of the fluid is ab-

stracted, and we have only to consider the

effect of the pressure of the piston. The area

of the piston is \nd? — 0-7854 inches ; hence

the pressure jp per square inch will be

Z>
= 20 ~ 0-7854 = 25-46 + lbs.

The area of the bottom of the box = 2 x 3 x

144 == 864 sq. inches. The area of the sides

= (2 x 1 x 2 + 2 x 1 x 3) 144. = 1440 sq.

inches. Hence the entire area of the bottom

and sides will be 2,304 sq. inches; hence the

pressure will be

P = 2304 x 25-46

= 58659-8 lbs.
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2. It will equal the weight of the water; hence

p=i8x62* lbs
-

,

= 1-736 lbs.

3. The area of the base will be 31416 x 16. The

pressure due to the liquid will equal the weight

of a cylinder of water whose base is 8 inches in

diameter and height 10 inches, or

3-1416 x 16 x 10 aQ1 1Q1Q11
* x 62| = 18-18 lbs.

1 i ~o

The pressure upon the base due to the exter-

nal pressure of 100 lbs. will be

?- x 100 = 177-777 lbs.

;

hence the total pressure will be

P = 18-208 + 177-777

= 195-96 lbs.

4. The upward pressure equals the weight of water

displaced—or 63 lbs. ; hence the pull on the

string will be the difference of the upward

pressure and the weight of the block, or

63 - 35 = 28 lbs.

5. We have from Article 86, p. 44 of the text,

F=Mf;
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. f_F_m _28 x 324

"Jf~35 y 35

And, from Eq. (3), p. 12 of the text,

v = V2fi

_ ,/28 X 64fr x 50~ y
35

= 50-73 ft. per sec.

Page 259.

6. We have, for the volume of the block (|)
3 = a

8
L

feet. Hence the weight = 5
8
x x 180 = 607-5

lbs. The upward pressure of the water will

be V- x 62J lbs. = 210-937 lbs., which, sub-

tracted from the weight, will equal the tension,

or 396-563 lbs.

7. Let a equal half the length of the bar, and x the

distance of the point of attachment from the

middle of the bar, which point will be in the

iron part. Let s be the ratio of the weight of

a given volume of wood to that of an equal

volume of water. If the weight of the water

displaced per unit of length of the bar be

called unity, then will the weight of the

wooden part of the bar be represented bj sa,

and of the iron part bv Ssa. The upward

pressure of the water will be 2a, since it equals

the volume displaced. The resultant upward

stress on the wooden part will be a — sa =
(1 — s)a ; and its moment will be (1 — s)a x

{a -f x). The resultant downward force of the
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bar between the middle of the beam and point

of attachment will be (8s — l)x, and the mo-

ment will be 4 (8* — l)x2
. The moment of the

remaining part will be i(Ss — l)(a — xf.

Hence we have the equation

i(Ss - \){a - xf = a(1 - s)(a + x) - i(S.y -\)x2

Is ± V- 111*2 + 68* -
='-f

= 16^2" -«

8. If one end is depressed 3 inches, the other will

be raised the same amount, hence the differ-

ence of level will be G inches, and the column

of water necessary to produce this difference

of level will be

6 x 1H = 81 inches.

ANSWERS TO EXERCISES.

1. It would not disperse, but would remain in the

same form.

2. The gas would till the hollow space.

3. If the sides of the pail were vertical, it probably

would ; but even in this case, if it were poured

in and run down the side, it would require

a short time to overcome the adhesion on the

side and permit the entire weight to be exerted

on the bottom of the vessel.

4. As much less as the weight of an equal volume

of air.

5. Of the same density of air—or the weight must

be the same as that of an equal volume of air.
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SOLUTIONS OF EXAMPLES.

Page 270.

o _ WrSS2

^S + 2VS2 — WS

substituting the value of s = 1-3077, we have

12 x 1-3077 x 11

34 x 11 + (12 - 31)1-3077
= h

w 32 32
iAA

* «7 - 10, 32-25 7 ~ % '

3. 5 = -== -1
. In this case wt = : .*. solving for

TF we have

^ ws -8 x 60 48 Q/lnW= „ = -q rr =--S- — 240 grains.
1 — s 1 — -o .2

°

4. A stone 5 ft. on each edge = 125 cu. ft. and will

displace 125 x 62-5 = 7812-5 Bbs. water, x 2-3

= 17968-75 lbs. = weight of stone.

w - w 40-32 8
s = " = Tn ^ = ~ = 1-6.w — u\ 40 — 35 o

c
_ w + v1s1 __ 35 + 18 _ 53 __*"«+«! ~ 5+2 ~T~ i

'b12"

w _ fe ~ «h ^ = (10-5 -14)19-3 x 10
1

(*-*i)« (10-5-19 3)14

— 675-5
K , QQ

^123^2
= 5

'
483 -
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(!?! - *)% _ (19-3 - 14)10-5 x 10 _
^-(.,

1

556-5

1232

(19-3

= 4-518.

-10.5)14

9.
1 _
n (V

• + ?V9i - 27 x 1 + 39-4915 >

(27 + 39-4915)1-

c 1-8485

6321

= 1
100

108-52
= 1 - -9215 = 0-0785.

10.
,-'' 4- 0-0013 (b2

- c) _
b\ + b2 — c

14 + 0-0013(10 -

14 + 10-7
7).

14-0039
0-8237.

17

ANSWERS TO EXERCISES.

Page 271.

1. It will not ; for water being more compressible

than the solid, will be relatively more dense

in the air than in a vacuum, and hence when
in air will force the body upward more than

when in a vacuum.

2. Because the smoke is lighter than the surround-

ing air; but if it be heavier it will fall in the

air.

3. See answer to Exercise 1.

4. This assumes that the weight of the bag—or

some other cause—causes the bag to sink, and

if it sinks at all it will go to the bottom of the

vessel. If now a pressure be exerted upon the

surface of the liquid, it will cause the bag (or
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gas) to condense more than the liquid, and

lience it will not rise. Toys have been made
involving this principle.

5. Water is more compressible than iron for the

same pressure, hence it seems possible, theoret-

ically, for water to be subjected to such a pres-

sure as to be as dense as iron at the same pres-

sure.

6. If both are incompressible, their relative densi-

ties will be unchanged by pressure, and hence

the heavier body will sink indefinitely. If the

body be compressible, it will become relatively

more dense, and hence there will be no limit.

7. If the brine be sufficiently " strong "—according

to popular language—it will float the egg. In

order that it may float between the top and

bottom, the brine must be more dense near the

bottom than at the top.

8. It will. It is related of Benjamin Franklin,

that he asked a company of savants why a pail

of water containing a fish would weigh no more

than without the fish. Several reasons were

given, and finally he was appealed to for the

reason. He thus replied :
" Are you sure it

will weigh no more?" They had been trying

to explain a false assumption.

* solutions of examples.

Page 276.

f 7?
1. The equation on page 273 gives us — = -^ =

tan cp\
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tan cp = ft =0-3
; .\ cp = 16° 41' 57".

2. f=gh\\\ cp. The section of the liquid will be

a triangle with a base of 3 ft. and a height of

2 ft., hence tan cp = §

;

.%/"= | x 32£ = 21f feet per second.

8. f=g-tan cp. In this case the slope of the free

surface will be 45°, and tan 45° = 1 ; .'./= g.

4. Let A be the edge of the vessel. From A con-

ceive a horizontal line drawn to XE, and mark
the foot with the letter Z. The volume gen-

erated by the revolution of the semi-parabola

is one-half the product of the base and altitude

(See Mensuration, or works on the Integral

Calculus). And as the volume of this parabo-

loid is the unoccupied portion of the cylinder,

the altitude Z^will be 2 x 3 = 6 inches. AZ
is 12 inches. From a property of the parabola,

we have

EZ : AZ : : AZ : the parameter,

(orxiyi: y : 2p) ;

122

.*. the parameter = -- = 24 inches.
6

This is known to be twice the subnormal DC;
hence DC = 12 inches, which, as shown on

p. 275 of the text, is <j -f- ca
2

, therefore

12
-
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Let n be the number of turns per minute

n nit
sought. Then 27T—- = —— will be the angular

velocity per second, and we have

?i7t\ 2 _ 32J- a

30/ " 12 '

.-. /i = 11-77 turns.

5. The angular velocity will be |^2^ = n, which is

the value of go in the value of DC, p. 275 of

the text ; hence DC = -4r. This is one-half

the parameter in the equation y
2 = 2j?x;

hence the equation becomes y
2 = 2 -— x.

71

solutions of examples.

Page 282.

1. To fulfill this condition we must have

\dW = idb(9 - A2

)

A2 = 4-5

h = 2-121 feet.

2. The area of each triangle will be
-J-

x 1-4 x 2-6

= 1-82. The centre of gravity of the triangle

whose base will be in the surface will be

i x 2-6 x sin 56° 35' below the free surface;

hence the pressure on it will be

62i x 1-82 x i x 2-6 x sin 56° 35' = 82-28 lbs.
;

and of the other triangle,
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62i x 1-82 x f x 2-G x sin 5G° 35' = 1G4-57 lbs.

3. Pressure on concave surface = ^SbJr, "but h =
27tr;

.-.jp = I- x G2-5 x 2 x 31416 x = 1767-15 lbs.

Weight of liquid = m* x h x 6 = 3-1410 x 3

x 62-5 =589-05 fts.

Pressure on base = weight of liquid = 589*05

lbs.

4. The weight of the liquid = \$m* = { x 62-5 x

3-1416 x 125 = 32725-0 lbs.

Normal pressure = 4#7r/'3 = 4 x 62*5 x 3-1116

x 125 = 98175 lbs.

5. Pressure on flood-gate = £d7>(Zf 2
2 — J<\) = £ x

62-5 x 2 x (l32 - 108) = 62-5 x 69 = 43125 ft»s.

6. Pressure on opposite side == iSl(7i'
2 — A"2

) = £ x

2 x 62-5(72 - I2
) = 62-5 x 33 = 2062-5,

and

4312-5 - 20G2-5 = 2250 fibs.

solutions of examples.

Page 287.

1. By Art. 372, the centre of pressures of rectangle

is at a distance from the top equal to J the

height, /. | of 3 = 2 feet.

2. By Art. 373, we have for the required depth,

35 1.5

/

y + 1Q\ 35 _ _5
. 1? _ 13G3 _ 9JL

6 3 \V + 5 /
~~

« " J8 " 13 ~ 234 ~ 234
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= 1^- = 5-427 ft.; or -427 ft. = 519 inches

below the top of the flood-gate.

3. To resist overturning we have

Sb2h = ^-hi substituting the values given,

and we have

_ 125 x 512 __ 64000
° ~6 xl80 x8~~ 8640 ~ IW *>

... I = V7-4074 = 2-72 ft. = 2 feet 8| inches.

4. In this case we have, p. 279 of the text, 31J&A2

lbs. for the pressure of the liquid. Its mo-

ment in reference to the edge of the wall will

be J x 31JM8
, and the wall must be capable

of resisting twice this amount. The moment
of the wall will be

ix4x8xl20xfof4 = 5120 lbs.

;

.-. f x 31J5A
3 = 5120

;

.-. h = 6-2 feet.

5. The pressures are proportional to the areas, and
" the areas are as (15)

2
-? (1'5)

2 = 100 to 1

;

.-. total pressure = 500 x 100 = 50,000 lbs.

solutions of examples.

Page 310.

2(g __ 2n?*h
1. t-

msV^g/i 0-62 x x(&)W64$ x 3
9*
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2 x i x 3 x 2301 4A1 Q „
'

a= = = 401-2 sec. = Cm. 41-2 sec.

0-62V193

2. Q = f/rc^ V^/A3 = | x 06-2 x 2(45 x GO)

= 13618-8 cubic feet.

3. The equation on p. 309 of the text is x —

—
2 if. But h = 24 inches, and r = 3 inches,

•i i
24

4 8 4hence we have a?= —^ = — y
4
.

To find the area of the orifice, we have on

p. 309 of the text,

Tt^c
,

A 2 1
ms = —=r^ , when c = —• = -— = -—

•

;

V2gh T GOO 300'

r ==
J ft, A = 2 ft.

;

3.14.1 fi v 1 v 1

/# , = ? 1*1" >< TIT X_3in7 _ . Q00931 ft
0-62 V04J x 2

-0 01341 sq. in.

4. From the equation on p. 303 of the text we have

25 - 0-025187 /£ = 0-0006769
1?~

a)
4

(w
2

((? + 0-141 724£G-)
2

)

or

25 - 32-64235Ql = 7895-36(<22 + 0-0039360
;

. ^ 81-076 Q _ J>5_.*' V
7928 V 7928'

.-. Q = 00542 cu. ft. per sec.

= 195-1 + cu. ft. per hour.
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answers to exercises.

Page 310.

1. The time will be the same for each.

2. It will not. The time will be less, for the head

producing the velocity will be equivalent

to what it would be if for the weight of the

water an equal weight of mercury be substi-

tuted.

3. It will not. The How of the water in this case

will exceed that of the mercury in the preced-

ing.

4. It will. It may be observed that when the pres-

sure producing the How of aliqnid is the weight

of the same liquid, the head equals the height

of the liquid above the orifice.

5. It will not, but the depth of submergence will

gradually increase. The block receives an ini-

tial velocity downward which is being gradu-

ally lessened as the surface of the liquid de-

scends.

6. It will be lowest near the orifice.

7. It will be greater ; for the acceleration upward

of the vessel will have the same effect as an

increased pressure on the surface.

8. It will be greater ; for the head over the orifice •

will be greater.

9. It is not ; a part of the pressure is engaged in

producing motion of the mass.
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Pages 326-329.—The expression for the pressure (or

rather the tension) of the air at any height, x, above

the earth, p. 326, reduces to

en

wherepQ
= 15 lbs., e = 2-71828 + , and H= 26214

feet, according to Rankine
;

15
.*. v =

(2.71828)2^4

If as = 20,000,000 feet, about the radius of the earth,

we have

p = wr&sr = 2^nW ,bs - per * incl1
'

near]}-.

But this expression gives too rapid a diminution

of the tension, since the effect of gravity is discarded.

Newton, in the Princijna, gives the following:

Proposition xxii., B. II.

—

Let the density of any

fluid he 'proportional to the compression, and itsparts

attracted downwards hy a gravitation reciprocally

proportional to the squares of the distana from the-

centre. I say, that if the distances be taken in har-

monic progression, the densities of the fluid at those

distances irill he in geometrical progression. In ac-

cordance with this proposition the following table

was computed in The System of the World by Sir

Isaac Newton

:
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COMPRESSION OF THE AIR.

HEIGHT IN MILFS. Initial pressure eql
a column of ava^er

AL
33

EXPANSION OF THE AIR, THE
INITIAL VOLUME BEING

FEET HIGH. UNITY.

33 1

5 17.1815 1.848G
10 . 9.6717 3.4151

20 2.852 11.571

40 0.2525 136.83

400 0.(10 17)1224 26956 x 10 15

4.000 0.(10 105
)465 73907 x 10' 02

40,000 0.(10 192)1628 20263 x 10 1 *9

400,000 O.(10210
)7895 41798 x 10207

4,000,000 0.(10
2J2

)9878 33414 x 10209

Infinite.

4

0.(10
2,2

)6041 54622 x 10209

where (10
17)1224, implies that there are 17 cyphers

before 1224 in the decimal, thus 000000000000000-

001224, and similarly for the others. The following

inference is drawn :
" But from this table it ap-

pears that the air, in proceeding upwards, is rare-

fied in such a manner, that a sphere of that air

which is nearest to the earth, of but one inch in

diameter, if dilated with that rarefaction which it

would have at the height of one semi-diameter of the

earth, would fill all the planetary regions as far as the

sphere of Saturn, and a great way beyond ; and at

the height of ten semi-diameters of the earth would
fill up more space than is contained in the whole

heavens on this side the fixed stars, according to the

preceding computation of their distance. And though,

by reason of the far greater thickness of the atmos-

pheres of comets, and the great quantity of the circum-

solar centripetal force, it may happen that the air in

celestial spaces, and in the tails of comets, is not so
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vastly rarefied, yet from this computation it is plain

that a very small quantity of air and vapor is abund-

antly sufficient to produce all the appearances of the

tails of comets, for that they are indeed of a very

notable rarity appears from the shining of the stare

through them." Similar remarks are made in the

Principia under Pjrop. xli.

solutions of examples.

Page 331.

1. In the first formula on p. 317 of the text, mak-

ing Vt = 2 V and a = 0-002039, we find

Page 332.

2. At the surface of the earth the pressure of the

air will balance a column of water 34 feet

high. The pressures will be inversely as the

amount of compression ; hence

1 : 30 : : 34 : x = 1020 feet of water.

But the first 34 is due to atmospheric pressure ;

hence the depth will be 1020 - 34 = i>8<> feet.

3. From the equation in Prob. 3, p. 323 of the text

we have

2y^ 2 V
'J {

;\ =2f f±-= :K'0-U041102J 34 + 1000 r
8272

- 0-322 of an inch.

4. Assuming that a cubic foot of air weighs 0-08<>7-

of a pound, 10,000 cubic feet will weigh 807-2
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lbs., and the weight of the gas will be 807-2 x

0-069 = 55-696 lbs. This subtracted from the

weight of an equal volume of air will give the

lifting capacity, or 807-2 - 55-696 ='741-504:

lbs.

5. From the last equation of Article 419, p. 317 of

the text, we have (tQ
being 32°)

F, 1 + a(t2 -tQ )

5 1 + 0-002039(400 - 32)
~~

5^5
X

1 + 0-002039(32 -32)

= 23-868 lbs.

Why will a wheel with nearly all the matter con-

centrated in the axle roll down a plane in less time

than if it be nearly all concentrated in the rim ?

Because, in descending the plane the entire work

is done by gravity, and the measure of that work is

the weight into the vertical descent of the centre of

the wheel ; and this work is changed into kinetic en-

ergy in the wheel. When the matter is concentrated

in the axle, the energy will be ^nv*, where m is the

mass, and v the final velocity of the centre ; but if it

be all concentrated in the rim its energy will be

\mvy + i?n(?'Gj)
2

:
where m is the same mass as before,

Vi the final velocity of the centre, & the final angular

velocity of the rim, and r the radius of the rim.

Since the total kinetic energy must be the same in

both cases, it is evident that v must exceed t\, and

hence the time of descent in the latter case will ex-
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eeed that in the former. It is shown in Analytical

Mechanics, p. 215, that if a given mass be entirely con-

centrated in the axle, or uniformly distributed as a disc,

or entirety concentrated in the rim, all having the

same radius, the times will be as V2 : V^ : V4.














