

NAVAL POSTGRADUATE SCHOOL

Monterey , California

THESIS

REAL TIME IMAGING AND INFRARED
BACKGROUND SCENE ANALYSIS USING
THE NAVAL POSTGRADUATE SCHOOL

INFRARED SEARCH AND TARGET DESIGNATION
(NPS-IRSTD) SYSTEM

by

Jean Daniel Bernler

September, 1 991

Thesis Advisor:

Co-Advisor

Alfred W. Cooper
Ron Pieper

Approved for public release; distribution is unlimited.

T253891

Unclassified
SECURITY CLASSIC/

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 07040188

la REPORT SECURITY CLASSIFICATION

Unclassified
1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6* NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(if applicable)

7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADDRESS (City, State, and ZIP Cod*)

Monterey, CO 93943-50OD

7b. ADDRESS (City, Stat*, and ZIP Cod*)

Monterey, Cfl O3043-5000

&>. NAME OF FUNDING /SPONSORING
ORGANIZATION

PMS-4Z1 and Naval Pottgriduiti
School Direct funded ratiarch

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, Stat*, and ZIP Cod*) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

11. TITLE (Includ* Security Classification)

REAL TIME IMAGING AMD INFRARED BACKGROUND SCENE ANALYSIS USING THE NAVAL POSTGRADUATE SCHOOL
INFRARED SEARCH AND TARGET DESIGNATION Inpi-irttdl SYSTEM

l"27 PERSONAL AUTHOR(S)
Jean Daniel Btrnii

13a. TYPE OF REPORT

Master's Thesis
13b TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

lOOl. September

15 PAGE COUNT

105

U5 SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

IRSTDi Frantgrabbtr , Thermal Imaging, 386 Protected Modi

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The imaging in real tine of infrared background scenes with the Naval Postgraduate
School Infrared Search and Target Designation (NPS-IRSTDI System was achieved through
extensive software developments in protected mode assembly language on an Intel 80386
oomputer

.

The new software processes the 512 by 48B pixel images directly in the extended memory an
of the computer where the DT-Z801 frame grabber memory buffers arm mapped. Direct interfacing!
through a JOR-PR10 prototype card, between the frame grabber and the host computer AT bus
enables each load of the frame grabber memory buffers to be effected under software control.
The protected mode assembly language program can refresh the display of a six degree
pseudo-oolor seotor in the soanner rotation within the two seoond period of the soanner.

A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on
image analysis and contrast enhancement of Infrared background scenes.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED D SAME AS RPT D DTIC USERS

22a NAME OF RESPONSIBLE INDI'

A.w. Cooper
NDIVIDUAL

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified
,

22b TELEPHONE (Include Area Code)

408-646-2452
22c OFFICE SYMBOL

PH/Cr

DO Form 1473. JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

Approved for public release; distribution is unlimited.

Real Time Imaging and Infrared Background Scene Analysis

using the Naval Postgraduate School Infrared Search and Target Designation

(NPS-IRSTD) System

by

Jean Daniel Bernier

Major, Canadian Forces

BEng, Royal Military College of Canada, 1984

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1991

ABSTRACT

The imaging in real time of infrared background scenes with the Naval

Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was

achieved through extensive software developments in protected mode assembly language

on an Intel 80386 33 Mhz computer.

The new software processes the 512 by 480 pixel images directly in the extended

memory area of the computer where the DT-2861 frame grabber memory buffers are

mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame

grabber and the host computer AT bus enables each load of the frame grabber memory

buffers to be effected under software control. The protected mode assembly language

program can refresh the display of a six degree pseudo-color sector in the scanner

rotation within the two second period of the scanner.

A study of the imaging properties of the NPS-IRSTD is presented with

preliminary work on image analysis and contrast enhancement of infrared background

scenes.

Ml

W5Z93
C.I

TABLE OF CONTENTS

I. INTRODUCTION 1

A. RESEARCH OBJECTIVES 1

B. NPS-IRSTD SYSTEM OVERVIEW 2

1. System Description 2

2. Summary of Past Developments 3

3. Preview of the Present Contribution 4

n. REAL TIME IMAGING 7

A. NATURE OF THE PROBLEM 7

B. HARDWARE DEVELOPMENTS 12

1. Frame Grabber Interface 12

2. JDR-PR10 Prototype Board 15

C. SOFTWARE DEVELOPMENTS 16

1. FORTRAN Subroutines 16

2. Assembly Language Subroutines 18

3. The PROT 386 DOS Extender 18

4. DT-2861 Frame Grabber Board Register Programming 22

a. External Port Input Programming 23

b. Output Look-up Table Programming 26

5. The LOADUP Protected Mode Assembly Language Program. 27

m. INFRARED BACKGROUND SCENE ANALYSIS 32

A. BACKGROUND 32

B. IMAGING PROPERTIES OF THE NPS-IRSTD 32

C. NPS-IRSTD IMAGE PROCESSING 34

1. Image Processing Software 38

a. VGAIPS 38

b. Pizazz Plus 38

c Publisher's Paintbrush 39

IV

2. Image Enhancement Techniques 39

a. Image Enhancement on the Frame Grabber Board 40

b. Image Enhancement Using VGAIPS 41

c. Summary 42

IV. CONCLUSIONS AND RECOMMENDATIONS 56

A. HARDWARE IMPROVEMENTS 57

B. SOFTWARE IMPROVEMENTS 58

APPENDIX A - PROTECTED MODE OPERATION ON A
386 COMPUTER 59

APPENDIX B - THE DISPLAY FORTRAN PROGRAM 66

APPENDIX C - DT-2861 FRAME GRABBER BOARD REGISTERS ... 75

LIST OF REFERENCES 95

INITIAL DISTRIBUTION LIST 97

ACKNOWLEDGEMENTS

I wish to thank my wife Margaret for the support she has given me and for her

patience during the long months I have spent working on this project. She gave me the

strength to carry on and friendly advise when I was frustrated. Without her help and care

this project would not have been completed.

I also wish to express my gratitude to my advisor, Prof. Alfred W. Cooper for his

guidance and for his trust in my abilities. He has taken the time to be my mentor and has

taken interest not only in my work on this thesis but also in my progress and

development as I strived to become a scientist. It is on his recommendation that I became

a member of Sigma Xi and I thank him for the support and encouragement he has

provided.

I wish to thank Mr. W.J. Lentz for all the time and effort he has invested in support

of my thesis. Jerry has gone out of his way on numerous occasions in order to make my

life easier so that I can bring this thesis to completion. This I will never forget and I hope

we will keep in touch and work together again in the future.

Finally I wish to thank Ms. Ludye Oppel-Block for taking a keen interest in my

work and for her support and assistance. I would have gone without eating on numerous

occasions was it not for her taking such good care of me.

This project was funded jointly by the Navy Electro-Optic Projects Office

(PMS-421), and the Naval Postgraduate School Direct Funded Research Program.

VI

I. INTRODUCTION

A. RESEARCH OBJECTIVES

The NPS-IRSTD is a locally modified version of the Advanced Demonstration

Model (ADM) of the Navy AN/SAR-8 infrared search and track system. It is a passive

scanning surveillance system which provides a 360 degree coverage of the horizon. As a

prototype for the Navy AN/SAR-8, the former ADM was designed to provide naval

platforms with the capability of passively detecting, identifying and tracking multiple

high-speed, low-flying targets in a maritime environment. Although the actual

deployment of a surface IRST in one form or another is still only under assessment, the

need for such a device to supplement other target detection and tracking systems on

board naval sea and air platforms is widely recognized. [Ref. 8]

An objective actively pursued since 1989 at the Naval Academic Center for Infrared

Technology (NACIT) is to display Infrared Search and Track (IRST) data in real time.

This has been the object of two MS-theses [Refs. 2 and 3] prior to this one and

preliminary results have already been presented in a number of papers [Refs. 5 and 6].

The ADM was designed for the detection and tracking of targets with low radar cross-

sections and sea skimming flight profiles. For this reason, the ADM detector arrays,

preamplifiers and optical assembly were designed to maximize the sensitivity of

detection of small angular extent targets at the expense of imaging resolution [Ref. 6].

Nevertheless, the ability to display real time IRSTD output data in image form is

motivated by the need to acquire and study the radiance characteristics of background

and target scenes with a goal to evaluate target discrimination techniques, clutter

suppression algorithms and range estimation methods, and to develop matched spatial

frequency filters for target detection, identification and tracking [Ref 8]. The collection

of both raw video and processed image files into a large IRSTD database is under way

and will provide an invaluable source of experimental data for the statistical analysis of

sea, air and land backgrounds in a variety of atmospheric conditions. In addition to

background measurement and analysis, proposals for research in the near future include

the study of two-color range estimation and target discrimination, and polarization effects

in target discrimination as well as an extensive comparison between IRST imaging and

data from a number of other electro-optic sensors [Ref. 8]. Specifically, comparative

studies of scene statistics between the NPS-IRSTD and the AGA-780 Thermovision

Camera are already in progress.

The NPS-IRSTD constitutes an ideal test bed for gathering raw IRST output data and

supports the role of NACIT in the continuing development and assessment of IRST

technology.

B. NPS-IRSTD SYSTEM OVERVIEW

1. System Description

The NPS-IRSTD is a passive infrared surveillance system which scans the horizon

with two parallel vertical arrays of 90 Indium Antimonide (InSb) detectors operating in

the 3 to 5 micrometer range. A full field of view of 360 degrees by 10.5 degrees (10

degrees above the horizon) is achieved through the rotation of the scanner assembly. The

rotating Scanner Assembly consists in the following components: the optics, detector

arrays, cryogenic cooler, Preamplifier Bandpass Assemblies (PBA), analog multiplexers,

slip rings and position-in-rotation signal generating hardware.

At the heart of the optical assembly is a 14 inch Schmidt F/l telescope with a 10

inch aperture aspherical corrector plate made of Germanium. The lead and lag arrays,

displaced by one-half degree, are suspended from the top of the telescope housing and

are positioned in the focal plane of the Schmidt telescope. The two arrays operate

independently and are covered by filters which pass selected bands of IR radiation in the

3 to 5 micrometer range. Each detector is 0.02 inches high and 0.003 inches wide and has

an instantaneous field of view of 2.0 by 0.3 milliradians [Ref 1].

The 90 detector channels are connected to six analog multiplexers each handling

15 detector channels. The outputs from the multiplexers come out of the scanner

assembly through a set of slip rings at the base of the rotating head and are routed via six

analog lines driven by the buffer power unit to the equipment room where they directly

feed six analog to digital converters (ADCs).

The scanning assembly rotational position and the infrared scene data are

correlated by means of two position-in-rotation signals. These signals are generated by a

gear-driven optical disc position sensor mounted on the base of the scanner assembly

giving 60,000 output pulses per revolution with an additional end-of-rotation (EOR)

marker.

The six analog data channels coming out of the scanner are digitized by six 8-bit

A/D converters and multiplexed by a digital multiplexer. Each detector is sampled

60,000 times per revolution. The rotation period of the scanner was increased by 8

percent to 2.16 seconds to produce an output data rate from the 180 detectors of 5.0

Megabytes per second (assuming that the lead array would eventually be operational).

The data is transferred via a coaxial cable to an HBR 3000i twelve channel tape

recorder for storage. A unique 5.0 MHz clock crystal drives the multiplexers in the

scanner assembly, the A/D converters and digital multiplexer as well as all the data

latching circuitry for the tape recorder. A phase-locked loop is necessary for data

recording because the clock input to the tape recorder must be exceptionally stable and

symmetric. Another timing signal of importance is obtained by dividing the fundamental

clock frequency by 180. The 1/180 pulse thus generated coincides with the sampling of

the first detector in the lead array and is recorded along with the data on a separate

channel. This pulse is used in the imaging process to indicate the top of the image. In

short, four timing signals are recorded along with the data; these are the fundamental

clock, the position-in-rotation pulses, the end-of-rotation pulses and the 1/180 clock [Ref

6].

2. Summary of past developments

The ADM received by NACIT in 1985 at the end of a period of sea trials was

inoperable. The scanner assembly and buffer power unit were reassembled, refurbished

and mounted on the roof of Spanagel Hall after the roof was cut off and replaced with a

reinforced concrete structure. The original Data Conditioner Unit (DCU) and power

control panels were installed in a room on the seventh floor of Spanagel. The rest of the

signal processing equipment including an HBR 3000i twelve channel tape recorder, and a

Masscomp 530 computer with an Optimem 1000 optical disc drive were positioned on

the second floor.

The defective Stirling pump cryogenic system was replaced with a liquid

nitrogen cooling reservoir by Crittenden and Cooper [Ref 4]. At the same time, the

vacuum dewar insulating system was replaced with a foam insulation system. This

modification necessitated changes to the optical system. The optical redesign for the

removal of a dewar window was made by Parker [Ref 9] using the Super-Oslo code. The

optical system was corrected and the individual detectors were calibrated by Ayers

[Ref 1].

The original ADM was designed to provide a YUK computer with tracking

information based on a reduced set of potential target data. A Background Normalizer

Unit (BNU) in the scanner assembly accepted the signals coming from the detector

pramplifier bandpass assemblies (PBAs) and provided suppression of all data patterns not

meeting predefined criteria. However this circuitry limited the imaging capability and

reduced the universality of the data for general use. In order to facilitate research, the

output channels from one of the arrays, the lag array, were routed to a breakout box to

allow direct access to each of the 90 channels. The outputs from the PBAs are digitized

using the original- system circuitry and six new analog multiplexers handling 15 detector

channels each. Similar modifications to the lead array remain to be done.

The rotation stabilization synchro- to-digital converter had at least three degrees

of slack in its gears. A position encoder based on two optical discs producing 60,000

pulses per rotation was included to provide a more precise angular reference signal.

The initial modification used playback from the Ampex HBR3000i into the

Masscomp 530 for storage on the Optimem 1 gigabyte optical disc. Transfers to the

optical disc were accomplished at l/40th of the data recording rate using software

developed by Cedar River Software [Ref 8]. It was tedious to record data and play it back

hours later to see if it was acceptable. The idea of using a frame grabber board capable of

accepting data at rates of up to 10 megabytes per second was advanced. The first step

toward this goal was made by Engel [Ref. 2] who used a digital Input/Output to retrieve

the data from the Masscomp computer and transfer it using a Direct Memory Access

(DMA) controller on an IBM AT computer to a DT-2861 Frame grabber. Although this

did not seem to speed up the display time significantly, it showed that the idea was

feasible, and FORTRAN software programs were developed to manipulate data on the

frame grabber using the FORTRAN support library functions provided by the

manufacturer.

The next step toward displaying data in real time was to build an interface circuit

board to handshake the data from the output of the Ampex tape recorder directly into the

DT-2861 frame grabber via the external input port. This interface card was designed and

built by Lentz and described by Baca [Ref. 3] who modified Engel's programs to

accommodate the new frame loading and unscrambling methods.

3. Preview of the present contribution

The above method fell short of achieving the real time display objective because

of inherent limitations in the speed and memory access capability of the FORTRAN

unscrambling subroutine. The frame grabber memory buffers are memory mapped into

the extended memory area of the 80386 computer. Because of limitations in the operating

system (DOS) which restricts the 80386 computer to operation in real mode, memory

addresses above 1 megabyte are not directly accessible. To access the memory buffers

from real mode with a 16-bit Microsoft FORTRAN program, one had to go through a

device driver by calling FORTRAN library routines provided by the frame grabber

manufacturer. This process was unnecessarily slow because of limitations in the library

routines provided. Blocks of frame buffer memory were transferred to FORTRAN arrays

into the first megabyte of computer memory via Direct Memory Access (DMA) transfers

controlled by a device driver. Since DMA transfers are limited to increments of 32

kilobytes, eight DMA transfers were necessary to download the data for a full frame.

Additionally, limitations in the size of FORTRAN arrays to 64 kilobytes made the

unscrambling process more difficult. Once unscrambled inside the FORTRAN arrays, the

image had to be uploaded back to the frame memory buffer using once again eight DMA
transfers. Using this process however, 3 degree frames were being unscrambled in

approximately 2.5 seconds [Ref. 3].

Another approach would have been to use a 32 bit FORTRAN compiler and a

DOS Extender however; there are a number of reasons why this was not done. First, the

DT-IRIS subroutine libraries have a unique calling interface and other language specific

dependencies [Ref. 12 p.4-1]. The DT-IRIS FORTRAN library specifically supports

Microsoft FORTRAN 4.1 and will not compile correctly with later versions. It is not

known that any available upgrade supports a 32-bit FORTRAN compiler. Second, the

conversion to a 32 bit FORTRAN compiler at an expense of $1000 would require to

either acquire a new FORTRAN support library at an additional cost of approximately

$1500 or to program locally in FORTRAN all the board initialization procedures. This

task however, is more appropriately done in assembly language since it consists mostly in

programming the frame grabber board registers. Third, there were some doubts on

whether or not converting the programs to 32-bit code would yield the desired real time

objective and instead of investing over a thousand dollars for a 32 bit FORTRAN

compiler and DOS Extender, it was decided to investigate the possibility of achieving the

same objective with a one hundred dollar assembler and a shareware DOS Extender

program.

The final step in displaying data in real time was accomplished during this thesis.

Two important goals were achieved. First, the FORTRAN software was completely

rewritten in assembly language and a DOS Extender was used to access the memory in

the frame grabber directly. Second, hardware modifications to the frame grabber

interface were implemented and software was written to control the start of data

acquisition relative to the end of rotation (EOR) by presetting 16 bits of counter offset

through an AT compatible interface board. The software involved in implementing these

tasks consisted of 18 pages of 32 bit assembly language code on a 33 MHz 80386

computer. This extensive software development eliminated the need for the Masscomp

530 computer and its obsolete optical disk, and it allowed the real time display of any

selected data within two seconds of its acquisition.

The ability to manipulate data in protected mode is essential to the acquisition

and display of unscrambled data in real time. Data from the frame grabber can now be

directly manipulated by the IBM compatible computer. Commercial display programs as

well as analysis programs can be used on any AT compatible computer as opposed to the

UNIX based Masscomp computer. This allows greater access and facility in data

acquisition and opens the floodgate for analysis.

II. REAL TIME IMAGING

A. NATURE OF THE PROBLEM

The designation of "Real Time" for the processing and display of IRSTD output data

requires some clarifications. Real time imaging in this context refers to the display of a

segment of a background scene taken from the scanner rotation with a refresh rate equal

to the scanner rotation speed. The above definition of real time imaging is not unique.

One could conceive for instance a system in which the output data would be processed

on-line and the image scrolled across the video screen at the scan rate. In such a system

the complete rotation could be monitored interactively and the image stopped at a desired

sector for better viewing of interesting features or targets of opportunity. This latter

method however would allow very little time for signal processing or data conditioning

prior to display because of the high data rates involved and would likely have to be

performed almost entirely by dedicated signal processing hardware. The first approach to

real time imaging was therefore adopted as a more feasible approach. Of course, as in all

engineering decisions, the availability of funds and the estimated development time also

weigh in the balance toward the more modest real time imaging scheme. Although

slower, software based imaging has the definite advantage of being flexible and easily

upgraded.

In order to qualify as real time display all image formation and processing tasks must

be performed in conjunction with the data acquisition itself as opposed to during

playback at a later time of recorded data.

The problem of real time imaging of the output data really consists of manipulating

the data into an image form within the available time period and being able to repeat the

process at every scanner rotation. A number of options are possible in determining which

real time image processing tasks are to be performed between image refreshes. One task

however is not optional. It consists of unscrambling the data into the image display order.

As pointed out by Engel [Ref. 2] the sampling order of the detectors constitutes the core

of the problem in imaging IRSTD output data. In short, the output data is out of order

and must be unscrambled prior to its display in image form. The sampling order for the

detectors in the two arrays starts with the second detector from each of the 12

multiplexers. This is in contradiction with the order presented by Engel [Ref. 2] and Baca

[Ref. 3]. The discrepancy is introduced by a time delay between the 1/12 pulses and the

sampling clock introduced by the different lengths of the lines going from the seventh

floor to the scanner on the roof. In addition, detectors 75 and 90 in the lag array were

found to be interchanged. The correct sampling order has been determined to be:

2.17.32.47.62.77, 92,107,122,137,152,167,

3.18.33.48.63.78, 93,108,123,138,153,168,

4.19.34.49.64.79, 94,109,124,139,154,169,

5.20.35.50.65.80, 95, 1 10, 125, 140, 155, 170,

6.21.36.51.66.81, 96,111,126,141,156,171,

7.22.37.52.67.82, 97,1 12,127,142,157,172,

8.23.38.53.68.83, 98,113,128,143,158,173,

9.24.39.54.69.84, 99,1 14,129,144,159,174,

10,25,40,55,70,85,100,115,130,145,160,175,

11,26,41,56,71,86,101,116,131,146,161,176,

12,27,42,57,72,87,102,117,132,147,162,177,

13,28,43,58,73,88,103,118,133,148,163,178,

14,29,44,59,74,89,104,119,134,149,179,164,

15,30,45,60,75,90,105,120,135,150,165,180,

1,16,31,46,61,76, 91,106,121,136,151,166.

Notice that 164 and 179 in the third row from the bottom are out of sequence. The

sampling order of the detectors as well as the sampling circuitry assumes that all 180

detectors from the two arrays are operational. The unscrambling of the output data prior

to its display is a time consuming task performed in software and can be singled out as

having been the most enduring obstacle in the way of achieving real time display of

IRSTD data.

The data presented at the input port of the signal processing interface arrives

sequentially in the same order as the sampling order of the 180 detectors. It is then routed

by an interface circuit to a frame grabber memory buffer. Each memory address on the

frame grabber board corresponds to a pixel on the color monitor screen. The first buffer

address corresponds to the top left corner of the screen and consecutive memory

addresses are mapped from left to right, row by row, to a pixel on the screen. Each of the

16 frame buffers on the DT-2861 frame grabber board occupies 256 kilobytes of on-

board memory. Thus a frame buffer can store 512 by 512 8-bit images. The frame

grabber displays images by sequentially converting the 8-bit data into an analog signal

8

which is presented to a standard RGB monitor. Each byte of memory corresponds to a

pixel on the display screen. The monitor in use only displays 512 by 480 pixels; thus a

frame window or active memory area on the frame grabber board must be defined with

the above dimensions.

Load operations of a frame grabber memory buffer are triggered by software and

occur an entire frame window at a time with a rate equal to the output rate from the tape

recorder and up to 10 megabytes per second. Bytes are loaded into increasing memory

locations on the frame grabber memory buffer and so a loaded frame appears scrambled.

The unscrambling process is illustrated in Figure 1. Figure la. shows a scrambled buffer.

Once unscrambled, the image consists of bands of 90 pixels high by 512 pixels wide as

can be seen in Figure lb. The 90 pixel dimension corresponds to an array of 90 detectors.

The 512 pixel width corresponds to the screen pixel width. Since there are 60,000

samples per 360 degrees, 512 pixels corresponds approximately to a 3 degree field. The

vertical field of view of an array is 10.5 degrees, thus each band represents a compressed

or squashed portion of the scanner rotation, showing a 10.5 degree high by 3 degree wide

field of view mapped into a 90 pixel high by 512 pixel wide band. Alternate unscrambled

90 degree bands belong alternatively to the two arrays. Every second band appears blank

due to the fact that only one array is operational. A maximum of four complete 90 by

512 pixel bands can fit on the display screen.

In order to present the unscrambled output in a more proportioned format, a six

degree image is formed by combining the data from two array bands and expanding the

vertical scale by a factor of five by copying each of the 90 rows of the unscrambled array

output to five rows on the display. An image with 450 by 512 pixels results as in Figure

lc. where the features are more easily recognizable. In order to fit the two bands on the

512 pixel wide screen, every second column in each band is deleted.

Better proportions are obtained however by displaying a 10.5 by 12 degree image

mapped into a 450 by 512 pixels display window. Twelve degree images can be

produced by selecting for display every fourth detector output. Another algorithm could

conceivably display the average value of pairs of pixels or groups of four samples.

However, negligible image degradation results by simply discarding the extra sample

values for the following reason. Each detector is sampled 60,000 times per revolution or

once every 0. 1 milliradian of the rotation. Since each detector has an instantaneous field

of view of 0.3 milliradian, it follows that each point in the image scene is sampled three

Figurt Xr. Th« Unscranbling Process
(a) 512 by 360 soranbled buffer
(b) 5L2 by 360 unsoranbled buffer
(o) Caabinetion of twa bands in fb] plus

vertical expansion by a factor of f iv

10

times during each scanner pass. As a result, discarding every second sample in the

production of six degree images does not degrade the image and although some

degradation occurs in the production of 12 degree images, the effect is imperceptible.

On the other hand, the advantages are twofold. First, more proportioned images can be

produced using a very simple algorithm in assembly language. Second, the process can

easily be implemented by dividing the latching clock frequency by two or four and using

a single algorithm to unscramble one band of data, 180 by 512, instead of two.

Since image unscrambling is essentially a byte manipulation operation, the idea of

performing this task in assembly language to speed up the process emerged. The task

seemed simple enough at first, the general scenario consisting in reading a byte from the

scrambled frame buffer and directly writing it in its proper place in the next frame buffer.

Conceptually, only one read and one write operation are required to unscramble an

image pixel. On a 33 Mhz 80386 computer, a 256 kilobyte frame buffer could be

unscrambled in approximately 32 msec assuming 2 clock cycles per operation. It quickly

became apparent, however, that the task would be more complicated than originally

expected. To access one byte of data in the extended memory area of the computer

(memory above 1 megabyte) requires a switch over to protected mode operation. This is

done with the use of a software program called a DOS extender. The issue is not trivial at

all. Being a relatively recent development, DOS extenders are still very much an area of

expertise reserved for software developers and professionals. Still, after long efforts at

trying to optimize the FORTRAN software, the key to achieving real time display was

found to be very much tied to the understanding of the protected mode operation of the

80386 computer. Because it detracts somewhat from the main subject of imaging IRSTD

data and image processing of infrared data in general, a complete section on the 80386

computer protected mode operation is presented separately in Appendix A. The assembly

language program itself will be described in detail in a separate section.

In summary, using an assembly language program compiled with a 386 DOS

Extender, the unscrambling of six degree images from high speed data playback was

achieved with a refresh time of approximately 1.5 seconds. It is to be noted that most of

the time between image refreshes during high speed playback is spent waiting for the

end-of-rotation signal to be detected.

11

A number of tasks can be performed during the extra time. In the context of imaging

IRSTD data in real time, signal processing tasks can be divided into three categories:

* the image processing tasks required prior to image display,

* the desired tasks to be performed in the available time left, and

* the signal processing functions which are better left to image

post processing.

In the first category we find tasks such as image unscrambling and display formatting

to obtain correct image proportions for either 3, 6 or 12 degree fields. The second

category comprises such operations as filling the dead detector bands or averaging

damaged detector outputs with the output from adjacent detectors and adjusting the

different offset values of the A/D converters which appear as bands of fifteen detectors

across the screen. The third category includes all post processing tasks such as Fast

Fourier Transforms, filtering and windowing etc.

B. HARDWARE DEVELOPMENTS

1. Frame Grabber Interface

The advantages of using commercial frame grabber technology to display Infrared

Search and Track data have been discussed in a number of references [Refs. 2 and 3].

Data rates of up to 10 megabytes per second can be achieved, permitting real time

processing and display. Frame grabber boards are computer extension cards which accept

standard analog video input (TV, VCR or other) and capture or digitize 512 X 512 8-bit

images at a real time rate of 30 frames per second for display on an RGB monitor. Each

captured image is stored in a 256 kilobyte memory buffer on the frame grabber board.

The DT-2861 frame grabber board has 4 megabytes of on board memory for a total of 16

frame buffers. Any frame buffer can be selected for display at any time. The architecture

of frame grabber boards is such that images can be displayed while operations are being

performed on other buffers. This is made possible through the use of multiple internal

data paths. Memory buffers on the board are memory mapped into the extended memory

area of the 80386 computer. The base address of the first frame buffer is selected by a

jumper to be OAOOOOOh so as to avoid conflicts with the 8 megabytes of computer RAM
in the present system. Only two addresses are fully decoded by the frame grabber board,

however. Pairs of memory buffers can be accessed via the computer bus by setting the

12

appropriate bits on the boards Output Control and Status Register (OUTCSR). The base

address of the low buffer is always OAOOOOOh and the high buffer is 0A40000h or 256

kilobytes higher. The DT-2861 has 13 registers which control its operation. The registers

are 16 bits long and occupy addresses 0250h to 025Fh. Some addresses serve for more

than one register depending on values set into a third register. A more detailed

description of the purpose of each register is necessary to understand how the assembly

language program works; this will be given in due time.

In addition to digitizing and displaying images, frame grabber boards can perform

frame- to-frame operations such as subtraction, addition, multiplication by a constant,

frame averaging, graphic overlays, zooming and panning. Other useful functions include

saving images to file, restoring images from files, programming color look-up tables,

copying images from one buffer to another, and more. Examples of a few of these

operations have been presented in Reference 6. All of these operations can be performed

interactively on the DT-2861 through the use of a software program called IRIS-Tutor.

Most operations can also be performed by calling FORTRAN library functions for a

Microsoft FORTRAN 4.0 program. A Microsoft C Support library is also available from

Data Translation [Ref. 13]. The frame grabber performs most operations in less than

l/30th of a second. More complex functions such as Fast Fourier Transforms (FFT),

convolutions, windowing and histograms take longer; however, a digital signal

processing (DSP) chip is available to speed these up. The present setup does not use a

DSP co-processor. The DT-2861 supports false color imaging with 256 colors through

the use of three look-up tables (LUT): the Input LUT, the Output LUT and the Result

LUT.

The DT-2861 Frame Grabber board in use supports a number of operating modes,

one of which allows high speed data transfers through an external data input port. This

mode of operation bypasses the standard video input mode of the frame grabber board

and needs to be interfaced to the data latching circuitry. The interface circuitry was

designed and built by W.J. Lentz and was described by Baca [Ref. 4]. Figure 2 shows a

diagram of this interface including the modifications added during this thesis. The

external port uses a two-way asynchronous handshaking protocol. Data acquisition from

the external port is enabled by software. This can be done with FORTRAN through the

DT-IRIS support library or by setting with assembly language the appropriate bit in the

Input Control Status Register (INCSR1) of the Frame Grabber board. Either way, the net

13

L
Ol

O
a
n
L
01

0)

e
IB

L
U.

0l

3
0»

•H

U.

14

effect is that the BUSY signal on the board is set. This signal is used to enable a flip-flop

on the interface circuit which then toggles on the first 1/180 pulse detected. The 1/180

pulse coincides with the sampling of the first detector in the array. In other words, it

indicates where the top of the image is. As soon as the flip-flop toggles, handshaking of

the data starts. The handshaking continues as long as BUSY is set. The Frame Grabber

board automatically clears this signal when the input buffer is full. This interface had the

shortcoming of loading images at random depending on where in the rotation the data

happened to come from when a load was requested. IRSTD image scenes by Engel

[Ref. 2] and Baca [Ref.3] have been obtained through the tedious process of playing back

recorded data tapes over and over until the desired frames were obtained. The first

modification brought to the interface circuitry was to trigger the load operations only at

the first 1/180 pulse after the end-of-rotation signal (EOR). This signal is provided by an

optical sensor which is used as a North reference for the scanner rotation. With this first

change the same image was loaded and refreshed rotation after rotation although it was

always pointing North. The next logical step was to delay the load operation with an

offset from the EOR signal which corresponds to a desired sector in the scanner rotation.

This could be done by interfacing the framegrabber circuitry with the PC AT bus so that

delay counters could be set by software.

2. JDR-PR10 Prototype Board

The interface circuitry was built on a JDR-PR10 prototype card and is mounted

inside the PC. The JDR-PR10 Prototype board is a PC breadboard card which provides

full interfacing with the computer's AT bus. Full address decoding and chip select signals

are provided by two programmable logic arrays (PLA) for port inputs and outputs. The

JDR-PR10 comes with all the required components including bus and data port latches.

The PLAs decode port addresses from 300h to 3FFh. These ports can be written to and

read from by software at any time and can support either 8-bit or 16-bit operations. Four

4-bit counters were interfaced to port 300h in the 16-bit mode. These counters are preset

by software before a frame load operation is triggered. The counters delay the beginning

of the data latching from the end-of-rotation (EOR) signal. They are preset with the delay

value and are decremented using the 1/180 pulses as a clock. Since there are 60000 1/180

pulses in one revolution, and the 16-bit countdown can count from 2^ or 65536, the

counters can select the sector to be displayed with pixel accuracy.

15

C. SOFTWARE DEVELOPMENTS

1. FORTRAN Subroutines

Efforts were made to optimize the speed performance of the existing FORTRAN

codes. Two separate programs, LOAD. for and UNSCRAMB.for [Ref. 3] performed the

frame buffer load operation and the buffer unscrambling. These programs were called in

sequence by a batch program. In order to speed up the process a FORTRAN Main

Calling program, DISPLAY.for was written. It was discovered that attempting to

unscramble a frame buffer immediately after the load operation was triggered invariably

caused the program to crash. This did not occur when the two operations were performed

by separate programs because of the time delay inherent to batch processing. An

assembly language subroutine called BUSY.asm was written to poll for the BUSY bit

(bit-5) in the Input Control Status Register 1 (INCSR1) of the frame grabber board to

ensure that the load operation was completed before calling the unscrambling subroutine.

In conjunction with this software addition, a slight modification to the hardware interface

to the frame grabber board was made to enable the handshaking clock during load

operations only if the BUSY NOT signal from the frame grabber board is clear and only

after the EOR pulse has been detected. This caused each load operation to fill a frame

buffer with the first 256 kilobytes of data after the EOR pulse. The unscrambling order in

the original UNSCRAMB.for program was found to be incorrect. The detector

digitization sequence described in references (2) and (3) to be 1, 16, 31 etc. as explained

earlier is not completely correct. In actuality, the detectors are sampled starting with the

third detector from each of the multiplexers. In other words the sampling order is correct

but the starting point for the digitizations is not. Engel [Ref. 2] did not document

explicitly this discrepancy; however, the NADDR array in the DMA.for program [Ref.2]

shows the right sequence. The UNSCRAMB.for subroutine [Ref.3] was rewritten to use a

look-up array instead of computing the ordering sequence and was expanded to

unscramble six degree images.

A number of subroutines by Engel [Ref. 2] were integrated into the DISPLAY.for

main calling program with few modifications. These routines performed the following

functions:

* COLORS.for builds the color output look-up table of the frame grabber board;

* SCALE. for builds a color scale at the bottom of the display screen;

16

* RESP.for corrects the detector outputs based on the detector responsivity

measurements by Ayers [Ref. 1]. It is to be noted that detectors are numbered 1

to 90 from the bottom in Ayers' thesis and 1 to 90 from the top in Engel's

Thesis [Ref.2]. The convention of numbering the detectors from the top was
adopted since this corresponds to the row numbering on the display screen.

However the responsivity values in the FORTRAN array XRES [Ref. 2] were
not reversed accordingly. Also Engel's program contains the values for the

LEAD array instead of the LAG array. At present, only the LAG array is

connected.

* OFFSET.for corrects the band offset due to the different gain of the third A/D
converter.

The final version of DISPLAY. for was able to display six degree pseudo-color

images with a refresh time of approximately 4.5 seconds. A complete listing of the

program can be found in Appendix B. The images displayed showed the first six degree

sector in the rotation with reference to the North. This program was the basis for the data

acquisition for the SPIE proceedings paper [Ref. 6].

It became apparent that no breakthroughs in speed would be achieved by

optimizing the FORTRAN coding. For this reason, the idea of pursuing the real time

display objective in FORTRAN was abandoned.

The FORTRAN library routines provided by Data Translation [Ref. 12] in support

of the DT-2861 frame grabber board have been found suitable for image post processing

applications. For -applications where the speed of calculations is not as critical as in the

real time imaging program, the ease of coding favors programming in FORTRAN rather

than in Assembly Language. Engel's BEGIN.for and IMAGE.for programs [Ref. 2] are

excellent examples of very useful utilities which have been modified and built upon. The

FORTRAN libraries provided are quite extensive and cover a wide variety of functions.

Examples of target enhancement by frame from frame subtraction are presented in

reference [Ref. 6] for instance. However, for applications specific to IRST imaging such

as specialized convolutionary filters and other image processing functions, the author is

of the opinion that programming in C with a 32-bit C Compiler and a commercially

available DOS Extender supporting both VCPI and DPMI standards for compatibility

with DESQView and Windows 3.0 is the route to follow. For instance, the MTF

corrections in FORTRAN as found in the IMAGE.for program take 3 to 5 minutes to

complete. Speed improvements of the same order as those obtained by going to

Assembly Language programs could be obtained with a 32-bit C program operating on

the memory buffers of the frame grabber board directly.

17

2. Assembly Language Subroutines

The task of translating the FORTRAN DISPLAY program into an assembly

language program was an ambitious project which spanned many months of writing an

debugging. The difficulties were twofold. First, the program required a knowledge of the

intricacies and the more obscure features of the 80386 computer and assembly language

programming with which the author was not completely familiar at the onset of this

thesis. Second, it required an understanding of the 80386 Protected Mode operation and

of the role of DOS Extenders. The above topics are the subjects of many books and

cannot possibly be covered in full detail in this thesis. All of the references from (14) to

(23) have been used extensively. Most references are difficult, however, and for this

reason, Appendix A on the 80386 Protected Mode Operation is included.

The objective of this section is to provide a coverage of the LOADUP.pm

Protected Mode Assembly language program in sufficient detail that the code could be

modified and recompiled by future thesis students or other potential users. For the

moment, only one array of detectors is in operation. It is anticipated that slight

modifications to the code will be required when the second array is made operational.

Since the LOADUP.pm program interacts closely with the frame grabber hardware

interface, the DT-2861 frame grabber board, the 80386 computer and the DOS 4.0

operating system, any changes to the present signal processing hardware might require a

modification to the code. The code was written using MASM 5.1 but porting to the

newer MASM 6.0 should be straightforward.

Before getting into the description of the LOADUP.pm program itself, some

background information on the use of the PROT 386 DOS Extender and on the DT-2861

Frame Grabber register programming is necessary.

3. The PROT 386 Dos Extender

The PROT 386 DOS Extender is an Assembly Language Shareware program

which first appeared in a two part installment in Dr Dobb's Journal - October and

November 1990 [Refs. 19 and 20]. Although it is not a commercially available and

supported software package, its publication in the Fall of 1990 coinciding with the

beginning of this thesis was a stroke of good fortune which led to rapid developments

toward achieving the desired goals. Of all the possible applications for which the PROT

386 DOS Extender was originally written, the one application for which it is especially

well tailored is the very object of the present thesis.

18

The program comes equipped with its own built-in debugging aids. Unfortunately,

source code debuggers such as Microsoft Codeview which is a standard utility for

debugging any of Microsoft's languages including MASM 5.1 does not function with

Protected Mode programs. Codeview does display the full 32-bit registers of the 386 but

that is all. The PROT 386 DOS Extender has a number of BREAKPOINT macros and

conditional breakpoints which when encountered, suspend the program execution,

display the content of all registers and dump the stack to the screen. Breakpoint macros

can be inserted anywhere in the source code and have proven to be a very efficient

diagnostic tool.

The one drawback to using PROT is in the sparce amount of documentation

which can be found on its use. It was written for software professionals and developers,

as are most programs published in Dr Dobbs, and therefore assumes that its potential

users are proficient with Assembly Language programming. In fact, one of the most

fruitful sources of information on some of the macro usages is the forty page source code

listing itself. This section attempts to remedy this problem by covering some of the most

useful functions performed by PROT and all the functions and macros utilized in the

LOADUP.pm program. It is not meant to provide a full description of the program and

its capabilities but rather to provide sufficient information to the reader to be able to

follow some of the functions performed in the LOADUP program and be able if need be

to go in and make modifications to the source code.

Assembly language programs compiled with the PROT 386 DOS Extender are

written in a file with a .PM extension. A batch file is provided to compile user programs.

The PMASM.bat batch program is used as follows: PMASM filename. For example, the

LOADUP.pm program is compiled by typing PMASM LOADUP at the DOS prompt.

The DOS Extender and the LOADUP program use a number of INCLUDE files and

libraries. It is important that the INCLUDE and LIBRARY environment variables be set

properly before attempting to compile assembly language programs. Also, since a

number of Microsoft languages are used on the system and different LINK.EXE files

exist for each different language, care must be taken in defining the PATH environment

variable so that the proper LINK utility is selected during compilation.

User programs generally have two segments: a DATA segment and a CODE

segment. With PROT, the source code is written in a procedure called USER and must

be inserted inside a template as shown below:

19

PROT.DATA

(place user data segment here)

PROT_DATA_END

PROT.CODE

USER PROC

PROT.STARTUP

(place user code segment here)

BACK2DOS

USER ENDP

PROT_CODE_END

The use of the PROT.CODE and PROT_DATA macros is very similar to the

simplified segment directives .CODE and .DATA found in MASM 5.1 and should not be

alien to assembly language programmers. The BACK2DOS macro ensures that the

program executes a safe return to real mode operation and DOS. Ctrl-C and Alt-Ctrl-Del

key combinations are ignored by default in PROT since rebooting in protected mode will

cause the system to crash. Other than that, the user's program and data can be written as

any other assembly language program using the normal instruction set of the 80386

computer. Because of the fact that some of the hardware interrupts used by the PC

conflict with the interrupts the 80386 uses for error handling in protected mode, DOS

and BIOS calls cannot function in that mode. PROT's strategy to circumvent this

problem is to run BIOS calls as a Virtual 86 mode task. As explained in Appendix A,

protected mode allows multitasking on the 386 computer. Therefore any number of

Virtual 86 tasks can be started. Some DOS Extenders by comparison implement BIOS

calls by returning to real mode temporarily to execute each system call. PROT emulates

troublesome instructions such as CLI, STI, PUSHF, POPF, INT and IRET while in

Virtual 86 mode. PROT actually runs DOS and the BIOS as a Virtual 86 task [Ref. 19].

A number of Virtual 86 calls can be found in the LOADUP program mostly for

reading characters from the keyboard or displaying characters to the screen using DOS

20

interrupt 2 lh functions 09h, OAh, 07h and OBh. A typical Virtual 86 task is accomplished

in the following manner:

PROT_DATA
db "Running in 386 Protected Mode", 13, 10,"$"

PROT_DATA_END

PROT.CODE
USER PROC

PROT.STARTUP
mov ax, 21h

mov PINTFRAME.VMINT, eax

mov edx, OFFSET message

mov ah, 9

mov ebx, OFFSET PINTFRAME
VM86CALL
BACK2DOS

USER ENDP
PROT_CODE_END

The above example is a complete program by itself and can be compiled with the

PMASM batch file. It uses the int 21h DOS function 09h to display the string "message"

to the screen. It follows the same procedure explained in the MASM user manuals for

executing the same function in real mode except that it is dressed up with macro

commands such as VM86CALL and a redirection to the protected mode interrupt

routine table (PINTFRAME).

PROT offers a number of routines which are very useful and easy to use. Among

the routines provided the following can be found in the LOADUP program:

Routine Purpose

CLS Clears page of the video display

OUCH Outputs the character in register AL to page of the

video display

CRLF Perform a carriage return/line feed

HEXOUT Outputs the byte in register AL in hex

HEXOUT2 Outputs the word in AX in hex to the screen

HEXOUT4 Outputs the double word in EAX in hex

21

As an example of the use of the above routines, the following code fragment is

given:

CALL32F sel_code32, CLS ;clear the PC screen

CALL32F sel_code32, CRLF ;CR/LF

mov al, 'P' ;output character P

CALL32F sel_code32, OUCH ;to the screen

A number of macros are provided with PROT to generate proper negative 32-bit

relative JUMPs. MASM 5.1 does not handle certain 32-bit references properly. The

LOADUP program uses the JMP32S macro to perform short negative jumps in a 32-bit

segment. The JUMP instructions are used in the same way as normal assembly language

jumps ie. JMP32S label. Other jump instructions include JMPABS to perform absolute

16 bit jumps, JMPABS32 to perform absolute 32 bit jumps and JCC32 which uses Intel's

condition codes to control 32 bit relative jumps.

3. DT-2861 Frame Grabber Board Register Programming

A set of thirteen registers control all operations and monitor the status of the DT-

2861 frame grabber board [Ref. 13]. These registers are accessed using 16 bit

input/output operations with the computers IN and OUT instructions. The registers are

accessed through eight consecutive input/output port locations with a base address

selectable with a jumper on the board. The base address is 0250h in the present setup. A

list of the DT-2861 registers with their corresponding port addresses is presented in

Appendix C. Note that some of the registers share the same port addresses. The actual

register being addressed depends on the value of certain bits in another register. In other

words, it depends on the current mode of operation of the board. The detailed function of

each of the 16 bits in all of the registers is described in detail in the DT-2861 Users

Manual [Ref. 13]. The DT-2861 can operate in seven different modes, only two of which

are of interest to this thesis: the output LUT programming mode and the external port

input mode. General programming sequences are presented in reference (13) giving each

of the steps to be performed. However, actual assembly language code sequences are not

given. The aim of this section is to present some of the key assembly language code

22

sequences and to point out some of the difficulties encountered in writing the LOADUP

program.

a. External Port Input Programming

This section describes ,\ow to initialize the DT-2861 frame grabber board

registers for loading data from the external input port. The following steps must be

performed prior to triggering a load operation:

(1) Program the input look-up table and the result look-up table to be used.

This step will be described in more detail in the next section;

(2) Program the ALU bits in the INCSR1 register. For External Port Input the

DT-2861 user's manual indicates use of the "F=A" mode; however, there

are three possible settings of the ALU bits which give this function

depending on whether the board is set to perform arithmetic operations

without carry, with carry or logic operations. These functions are selected

in turn by the ALUM bit (bit 3 of INCSR1) and CARRYIN bit (bit 4 of

INCSR1). The only mode which has worked successfully with the

LOADUP program was to set all the above bits to zero;

(3) Program the START and END registers to define the load window. A
window of 512 columns by 360 rows is loaded. The 360 rows give

sufficient room for four bands of 90 detectors or two bands from each

array. This loads enough data to unscramble a six degree image or a

twelve degree image depending on whether the hardware interface clock

rate is divided by two to select every second data byte or not. The START
register is set to OOOOh thus selecting the top left corner of the active

window to row pixel 0. The END register is set to 0B67Fh, thus

selecting the bottom right corner of the active window to row 360 pixel

512;

(4) Check the BUSY bit (bit 7 of INCSR1) and ensure that it is clear before

proceeding. If it is set, clear the PASS bit (bit 5 of INCSR1) to stop the

board operation normally at the end of the current operation. This step is

required because the INCSR2 register cannot be accessed while the board

is performing an operation;

(5) Set the mode bits (bits 4-6 of INCSR2) to 111 to select external port

input;

(6) Select the input buffer by setting the BUFSEL bits (bits 0-3 of INCSR2).

Buffer is the input buffer in LOADUP so that these bits are set to 0000;

(7) Clear the WP0, WP1, WP2 and WP3 bits (bits 12-15 of INCSR2) to

disable the write protect planes so that buffers can be accessed freely.

23

(8) Set the INSEL bits (bits 0-2 of INCSR1) to select the desired input look-

up table. These bits are cleared to select Input LUT in the LOADUP
program.

(9) Clear the TRGEN bit (bit 6 of OUTCSR) so that the load operation can be

started as soon as BUSY is set instead of being triggered by a low to high

transition on EXTTRG. This step is not included in the user's manual

programming sequence but is absolutely necessary.

(10) Clear the PASS bit (bit 5 of INCSR1) and set the BUSY bit (bit 7 of

INCSR1) to enable the load operation.

(11) Poll the BUSY bit until the load operation is completed.

The following assembly language example goes through the above sequence

except step 1 and would load a 512 by 360 window in frame buffer 0. It is a complete

program which can be compiled and linked with the MASM and LINK commands. Note

that the operations are all done in 16-bit arithmetic in Real Mode. Protected Mode

operation is only required in the unscrambling routine.

MODEL LARGE
.386

.DATA
;DT-2861 Registers

INCSR1 equ 0250h
INCSR2 equ 0252h
OUTCSR equ 0254h
STARTR equ 025Ch
ENDR equ 025Eh

;Operating Modes
EPORTI equ 0070h ;MODE=l 11, input buffer

ALU . equ OOOOh

;ALU=0000,CARRYIN=0,BUSY=0,PASS=0,ALUM=0
SLINE equ OOOOh ;start row 0, start pixel

ELINE equ 0B67Fh ;end row=360, end pixel=512

.CODE
PUBLIC load

load PROC
mov dx, INCSR

1

;Step (2) and (8)

mov ax, ALU
out dx, ax

24

mov dx, STARTR ;Step (3)

mov ax, SLINE
out dx, ax

mov ax, ENDR
mov ax, ELINE
out dx, ax

mov dx, INCSR1 ;Step (4)

in ax, dx

btr ax, 5

busy: mov dx, INCSR1
in ax, dx

bt ax, 7

jc short busy

mov dx, INCSR2 ;Step (5), (6) and (7)

mov ax, EPORTI
out dx, ax

mov dx, OUTCSR ;Step (9)

in ax, dx

btr ax, 6

out dx, ax

mov dx, INCSR1 ;Step(10)

mov ax, LOADBUF
out dx, ax

poll: mov dx, INCSR1 ;Step (11)

in ax, dx

bt ax, 7

jc short poll

mov ax, 4C00h ;Return to DOS

int 21h

load ENDP

END

The above example program is not a protected mode program and can be

compiled with MASM 5.1 as any ordinary assembly language program. It serves to

illustrate how the DT-2861 Frame Grabber Board registers can be used to control the

25

board operation. A portion of the LOADUP.pm protected mode code is identical to the

above sequence.

b. Output Look-Up Table Programming

Each pixel on the DT-2861 can have a value between and 255. Each pixel

value acts as an index or pointer into a look-up table (LUT) which contains sets of three

numbers between- and 255 representing RED, GREEN and BLUE intensity levels. Up

to 16,777,216 different color combinations can be obtained. Eight output look-up tables

(0-7) can be programmed with different selections of colors. When the board is

initialized after power up of the system, the output LUTs are set to display 256 gray

levels where is completely black and 255 is completely white. The output color look-up

table for the LOADUP program is stored in an ASCII INCLUDE file. Values in this

table can be determined by using the IRIS-Tutor program and experimenting with the

color palette. It is necessary to recompile the LOADUP program after changes to the

LUT.inc INCLUDE file.

The output LUT register programming sequence is given below:

(1) Check if the BUSY bit is cleared as in step (4) of the external port sequence

above.

(2) Save the values of the INCSR2 and OUTCSR.

(3) Set the MODE bits to 010 in the INCSR2.

(4) Select the output LUT to be programmed by setting the OSEL bits (bits 0-2

of OUTCSR). LOADUP only reprograms the output table so these bits

can remain clear.

(5) Select a table entry value and write it to the INDEX register.

(6) Write the corresponding RED and GREEN LUT values in the REDGRN
register with the RED value (0-FFh) in the low byte and the GREEN value

(O-FFh)in the high byte.

(7) Write the corresponding BLUE LUT value in the BLUE register with the

value (0-FFh) in the low byte.

(8) Repeat steps 4 through 7 for all 256 LUT INDEX values.

(9) Restore the original INCSR2 and OUTCSR registers.

26

Steps (1) to (5) are similar to steps found in the previous section. An assembly

language code fragment to execute steps (4) through (8) is presented below.

mov ecx, OOOOh ;index into LUT
lut: mov dx, OUTCSR

mov ax, OSEL ;Step(4),OSEL=000,BUSBUF=0,display off

out dx, ax

mov dx, INDEX ;Step (5)

mov ax, ex

out dx, ax

mov edi, ecx ;Step (6), red green and blue

mov ebx, OFFSET red ;are the base addresses

mov al, BYTE PTR ds:[ebx+edi] ; in the LUT.inc include

mov ebx, OFFSET gTeen ;file

mov ah, BYTE PTR ds:[ebx+edi]

mov dx, RGLUT
out dx, ax

mov ebx, OFFSET blue ;Step (7)

mov al BYTE PTR ds:[ebx+edi]

mov dx, BLUT
out dx, ax

inc ecx ;Step (8), repeat for 256 values

emp ecx, OFFh
jle lut

In the above code fragment, red, green and blue values are loaded from three

arrays of 256 bytes stored in an INCLUDE data file. The INCLUDE file LUT.inc is an

ASCII file which can be modified at will to give the desired pseudo-color output. The

LOADUP.pm program must be recompiled however for the changes to take place.

5. The Loadup Protected Mode Assembly language Program

The mechanics of the program have already been presented in the previous

three sub-sections on the PROT 386 DOS Extender, the DT-2861 external port

27

programming and output look-up programming. This section describes the LOADUP.pm

program as a whole through a set of flowcharts and covers some specific programming

difficulties encountered during coding. This section should be read in conjunction with

the program listing which can be found in Appendix D.

The program unscrambles a six degree frame for both the lead and lag arrays.

Each row of the lag array output is then expanded by five and the resulting 512 by 450

pixel image is displayed. As mentioned earlier, this same procedure would result in a 12

degree image if every second byte of data were to be skipped during the load operation.

The desired clock signal is selected by a toggle switch on the handshaking circuit board.

Figure 3 shows the overall program flowchart. The frame grabber is initialized

at the beginning of the program. The board initialization is done once and consists of the

the following steps:

(1) Clear the computer screen and display a welcome message;

(2) Turn on the frame grabber display;

(3) Set the display buffer to buffer 2;

(4) Stop the current board operation;

(5) Ask if programming of the output LUT is required, and

(6) Reprogram the output LUT if necessary.

During the program execution, scrambled buffers are loaded in buffer 0.

Buffer 1 is used by the unscrambling process and the unscrambled, expanded image is

formed back in buffer 0. Once an image is formed, it is then copied over to buffer 2.

Buffer 2 is displayed continuously throughout the whole procedure and is refreshed after

every scanner rotation. In the reset state the look-up tables are loaded with a

monotonically increasing grey scale. The initialization step requests a choice from the

user on whether or not to reprogram the output LUT for display in pseudo-color. The

output LUT programming then takes place according to the steps already described in the

previous section.
*

The load operation consists of two basic steps: the selection of the sector

counter offset for the desired sector to be displayed and the programming of the external

port input itself. The latter was already discussed in section C 3 (b).

28

START

Initialu* Fr:
Grabber Board

s
Load Frai
Buf-fmr O

Unscranbl* Buff»r 8
Expand image by 3
Copy -final image to
Butt-fmr 2

2XL
Image Processing

and
Display

NO
CONTINUE yi:inC

END

Figure 3. Flow chart of the LOflDUP.pn Protected
Mode Assembly Language Program

29

After initializing the active window in the input frame buffer, the program

prompts the user for an hexadecimal offset value in the range OOOOh to FFFFh. There are

60,000 sector pulses in one revolution corresponding to an hexadecimal offset of EA60h.

Thus a 16 bit offset covers a little more than a complete rotation. A six degree offset is

given by 0400h or 1024 sector pulses. The program does not check for the validity of the

number entered; however, four digits must be entered and can be amended with the

backspace key if necessary. This keyboard input is executed as a Virtual 86 call which

executes the DOS int 21h function OAh. Once the desired offset is echoed to the screen,

the string is input by pressing the enter key. The four digit ASCII string is then converted

to an hexadecimal number and stored in the CX register and saved on the stack. At this

point the program checks for keyboard inputs. The program recognizes the following

keys from the 101 key enhanced keyboard:

*Ctrl-break or End branch to the end of the program, print a program

termination string and return to DOS;

* Home branches to the prompt routine to enter a new sector offset;

* Left and Right arrows increment the sector count offset in the CX register

by 0400h which corresponds to a six degree shift to the left or right. The
offset value of 0400h is stored in the data segment under the label "rotate".

Once the final offset value is determined it is output to the JDR port to set the

delay counters. The hexadecimal value in the CX register is converted back to ASCII

characters and displayed to the computer screen and the load operation is triggered in the

manner described before.

The unscrambling portion of the program reads each byte of the scrambled

buffer (buffer 0) starting at address OAOOOOOh, looks up the correct unscrambling order

from the order array in the ORDER.inc include file and forms the correct linear offset

into the unscrambled buffer (buffer 1) starting at address 0A40000h. Every 180 bytes

read from the scrambled buffer forms a column in the unscrambled buffer. The first three

degree image is unscrambled when 512 columns are completed and fill the top part of

buffer 1. The second six degree image is unscrambled the same way except that the

image is stored in the bottom half of the active window in buffer 1. The expansion

routine essentially merges both three degree images by ignoring every second byte in

each row. The first row in the unscrambled buffer corresponds to the top detector in the

30

lead array. The lag array starts with an offset of 512x90 or 46,080 from the start of the

buffer. The second six degree image starts at an offset of 92,160 for the lead array and

138,240 for the lag array. Each row from the unscrambled lag array is copied over five

rows in buffer 0. The final unscrambled and expanded image in buffer occupies a

512x450 pixel window.

Image processing and display operations are then performed directly on buffer

0. An offset is added to the pixel values corresponding to the third A/D converter output

to correct for the different gain in its output. The starting row for the offset operation is

row 150 as specified by the "s_row" equate in the data segment. The offset operation is

performed over 75 rows.

Once all image processing functions permissible during the available time are

completed, the image is copied over to buffer 2 where it is displayed. This is a simple

operation in principle; however, its implementation was not as straightforward as it could

have been due to the ambiguity of the DT-2861 reference manual [Ref. 13]. Although

frame buffers can be accessed at any time, they can only be accessed in pairs as

determined by the BUSBUF bits in the Output Control Status Register (OUTCSR) of the

frame grabber board. The BUSBUF bits select the two buffers accessible from the

computer bus. This limitation is due to the fact that the board only decodes 18 address

lines from the computer bus. The two addresses at OAOOOOOh and 0A40000h are selected

by a jumper. The 18 address lines decoded give access to 256 Kbyte offsets from the base

address of each buffer. In order to copy bytes from buffer to buffer two, the following

sequence must be followed:

(1) read bytes from buffer 0;

(2) change the BUSBUF bits to select buffers 2 and 3;

(3) write the bytes to buffer 2; and

(4) change the BUSBUF bits back to buffer and 1.

The program then executes an absolute 16 bit jump using a macro provided by

the PROT DOS Extender to the start of the next frame load operation.

31

III. INFRARED BACKGROUND SCENE ANALYSIS

A. BACKGROUND
Real time imaging of the IRSTD output data has provided the ability to quickly

acquire, display and archive infrared scenes for the study of infrared background

radiance characteristics. Interesting scene features can be selected from any part of the

scanner rotation and targets can be located quickly and followed from one rotation to the

next. As a result, a large library of raw video IRSTD output data files has grown rapidly.

Focussing of the optical sub-assembly in real time is yet another important technical

advantage which was realized. The focus can be adjusted by monitoring a known heat

source on the frame grabber display screen. It was determined that image doubling in

earlier IRSTD recordings [Ref. 2] was due to misalignments in focus. A simple focus

adjustment can be achieved by removing image doubling of distant antennas for instance.

This section introduces representative infrared scenes from the NPS-IRSTD and

presents a number of key image processing and enhancement techniques employed.

B. IMAGING PROPERTIES OF THE NPS-IRSTD

The NPS-IRSTD is a scanning infrared sensor which is optimized for detecting and

tracking targets before they come within resolution or imaging distances [Ref.8].

Consequently, the images obtained from the IRSTD differ from those of other infrared

sensors specifically designed for imaging. This section explores some of the differences

between IRSTD imaging and the more usual radiometric FLIR imaging.

In order to increase the sensitivity of the detectors, it is possible to increase the

apparent infrared contrast by subtracting the average value of the background. This is

done by coupling the detector output to a preamplifier circuit which blocks low

frequency components of the detector signal. The NPS-IRSTD detector output is AC

coupled with a low frequency cut-on at at approximately 100 Hz. The lack of a DC

reference level in the detector output signal has direct repercussions on the type of

imaging possible with the IRSTD system. Because of it, the the IRSTD system is

intrinsically not radiometric. Radiometric infrared imaging systems display images in

either pseudo-color or grey scale indicative of the apparent temperature in the object

scene. By comparison, the IRSTD output signal fluctuates only for temperature

differences and contrast in the object scene. As a result, the color gradients of displayed

32

IRSTD scenes are only relative. For instance, since each detector in the array is scanned

horizontally across the object scene, the images displayed show color gradients only if

temperature differences exist along the horizontal scan path. The drop in the apparent

temperature of the sky with elevation angle is undetected by the IRSTD system.

Similarly, a clear sky and a uniformly hazy sky background would appear the same if

there were no temperature variations horizontally over the width of the displayed image

even though the actual apparent temperatures of the two backgrounds differ. An

advantage of having an AC coupled system for imaging on the other hand is that very

small temperature contrasts stand out readily.

There are a few more imaging features typical of IRST systems which are directly

linked with the way detectors are scanned horizontally across the object scene. Because

of the fact that the IRSTD is a multi-detector independent channel system, there are

bound to be differences in the responsivities of the detectors or in the gain of the

preamplifiers or in a multitude of other places along the independent signal paths. The

result is that the raw video display of IRST output data shows a horizontal band structure

across the image. Dead or damaged detectors stand out as dark bands across the screen.

Low responsivity detectors show up as strips with smaller pixel intensity offset values

then the average pixel offset of the image and with smaller variations in color gradients.

This effect can be corrected and smoothed out with image processing software prior to

display.

Another characteristic of IRST output which is worth mentioning before proceeding

with the system description is referred to as droop and undershoot response [Ref. 2].

Anomalies occur when a detector scans extended regions of high temperature (droop) or

when quickly scanning from a high to low temperature region (undershoot). Undershoot

appears in IRSTD images as a cold region or shadow lining the contour to the right of a

hot object. Droop is another side-effect of the AC coupling scheme which is caused by a

resetting of the reference level when detectors are scanned over extended regions of

uniform temperature. Undershoot is a second order linear filter behavior which depends

in this case on the gain of the detector preamplifiers.

Figure 4 shows a typical unprocessed twelve degree IRSTD image. It depicts the roof

of Hermann Hall as well as the top of some trees to the left and clouds above. The

bottom scale indicates the quantization into gray levels of the pixel intensity values

between and 255. The histogram of Figure 4 is shown in Figure 9a. In general, IRSTD

images have a very narrow histogram with a peak at pixel values of 124 and a standard

33

deviation of about 26. This means that using a uniform sampling [Ref. 10] or sampling

with equally spaced gray levels results in loss of information in the cloud structure.

The resulting picture shows most of the sky as a single gray level. Figure 5 shows the

same scene after histogram equalization has been performed. The bottom scale indicates

a rapid variation in the gray levels around the median at 125. Histogram equalization will

be discussed shortly. For the moment, Figure 5 can be used to illustrate some of the

typical features of IRSTD images. As a convention [Ref. 2] detectors are numbered from

top to bottom. The black row across the bottom half of the image corresponds to a dead

detector (detector 76). Low response detectors appear as horizontal lines across the

image. The low response or dead detectors in the lag array are detectors: 10, 13, 14, 15,

16, 30, 41, 45, 60, 61, 76, 82, 89 and 90, in agreement with the findings in the NPS-

Boeing experiment of 1989 [Ref. 7]. This fact only became evident after discovering the

correct starting point in the unscrambling sequence as explained earlier. The findings in

the NPS-Boeing experiment indicate that detectors 90 and 75 are switched. This is not

correct. The effect of sampling the detector array by starting with the first detector of

multiplexer 2 is to displace row 90 to row 75. Row 75 in turn was displaced to row 60;

row 60 to row 45; row 45 to row 30 etc.

Another troublesome feature becomes more evident with the contrast enhanced image

in Figure 5. The bottom 30 rows show a regular vertical noise pattern which is

introduced presumably by the last two multiplexers. This source of the noise pattern has

not been traced back and identified by the time of writing of this thesis.

C. NPS-IRSTD IMAGE PROCESSING

One of the most frustrating realizations of this thesis was the fact that the images

displayed on the 256 color frame grabber monitor could not be reproduced faithfully in

either color or gray scale in the final paper. There are many reasons why this is so. First,

the images must be processed using software packages which support 512 by 512 pixel

images in 256 colors which is not a standard VGA graphic mode. Secondly, a high

quality printer is needed to print in 256 colors or gray levels and printer drivers must be

available to support the image processing software. Thirdly, the pseudo-color IRSTD

images must be mapped to gray scale images for thesis or publication purposes. Although

the average human eye can easily distinguish thousands of color shades and intensities, it

can only detect a few dozen shades of gray [Ref. 10]. By nature, infrared background

scenes feature very small temperature differences which translate to very small contrast

34

5cmnc!<xxxA.Ti()(5CX*Jrj»jix«smiM»xxx3i!<»JiTxX5(^xxx)rT»TvxTK3rxxxTTX)rxTK>TTXTot -r :rTTXTrxxxrx-xx

ISCXX3CXW*

UVMBBy.-v. ^ ax jjjj rj
<• —

Figure 4. Unprocessed ±2 degree Image of Hermann Hall

35

LAO ARRAY

Figure 9 . Histogran Enhanced , 12 degree Inagi
Hermann Hall. Number's on the lrft indicate
the dead or low rcspansiwity detectors.

36

differences in the image. The mapping of small variations in temperature to contrasting

pseudo-colors is a powerful infrared imaging technique. There is no restriction on which

color to choose for a given temperature. The problem with gray scales, however, is that

they must follow rules: cold objects are darker (black) than hot objects (white) or vice

versa. Finally, even if a high quality print of an image is produced, further degradation is

introduced by the reproduction through photocopying of the original thesis pages.

Frame-grabbed image files are raw video data files meaning that each pixel in the

image is described by an 8-bit binary value which permits a range of 256 colors or gray

levels. The 8-bit binary values give only pixel intensity information; color information is

not stored in this file. Instead, the colors displayed on the DT-2861 Frame Grabber

monitor depend on the state of the Output LUT. The 512 by 512 pixel image is saved in a

file 256 KBytes long with a 512 byte header. The process of printing an image is a three

step process. First, the image file must be read by a program which recognizes the 8-bit

image data format and either skips over or decodes the file header. This program must

then convert the image data to a standard VGA display mode (640 by 480 pixels in 16

colors or 320 by 200 in 256 colors) and display it on the computer VGA screen. The

reason for this is that the computer VGA display screen is the only one which can be

accessed by commercial image processing software. Finally, a terminate and stay-

resident (TSR) program must run in the background which permits image capture for

printing or saving to one of many standard image file formats (TIFF, GIF, PCX etc.).

The advantage of converting image files to PCX or TIFF format is that they can easily be

read by the Publisher's Paintbrush or Windows Paintbrush programs and imported into

either the Word Perfect 5.1 or Word for Windows word processors. A variety of

programs also permit the conversion between the various image file formats. This three

step process introduces compatibility problems between the various image processing

software programs. A set of three programs must be found which all support the same

VGA graphics card. Although SuperVGA graphics cards exist which can support 1024

by 768 pixels in' 256 colors, very few programs support this mode of operation. To

complicate the problem further, each card manufacturer implements SuperVGA graphics

differently and although a standard (VESA) was developed by card manufacturers, a

large number of software vendors still have to upgrade their products to support this

standard. Therefore, the software packages used for image processing must all support a

specific card if SuperVGA is to be used. This reduces the portability of the final image

files produced. In other words, contrast-enhanced images in 256 colors produced with a

37

SuperVGA graphics mode and saved in a PCX file format are extremely unlikely to work

on a different SuperVGA card even if both cards are supported by the software package

generating the PCX file. Even if a high quality 256 color SuperVGA image were

produced, a major difficulty would still remain in printing it with the same resolution and

color or gray scale contrast. This problem is twofold: first a printer must be found which

produces high resolution 256 color or grey scale output and secondly a software program

or printer driver for Paintbrush must be found to support this printer. High quality color

laser printers are extremely costly and there are no guarantees that such a printer would

be supported by all or part of the software used. After many months of trying to produce

reasonably good printouts of IRSTD images for this thesis and other papers it has

become the author's opinion that the approach to follow is to acquire the hardware which

will do the job and develop custom-made software for it.

The images presented in the rest of this chapter were produced using three programs:

VGAIPS, Pizazz Plus and Publisher's Paintbrush. They were produced in 16 colors or

grey levels and printed on a HP PaintJet printer. The final result is a much degraded

image which does not do justice to the effort involved in displaying the original image in

real time.

1. Image Processing Software

a. VGAIPS

VGAIPS is an image display program which was designed specifically for

infrared imagery. It is used to display 8-bit binary image files from the LANDSAT and

EOSAT satellites, GL Flir, GL SAIRS and IRAMMP imaging flirs [Ref. 25]. It can read

any 8-bit image file such as TIFF files or frame-grabbed IRSTD files provided that the

number of header bytes to skip over is known. VGAIPS supports two standard VGA
modes: 640 by 480 in 16 colors (mode 12) or 320 by 200 in 256 colors (mode 13). The

former is used. It also supports other modes on specific graphic cards. The program is

completely menu driven. It can display images in either pseudo-color or gray scale and

features a number of useful functions such as histogram equalization and direct LUT

editing. Histogram plots can be displayed.

b. Pizazz Plus

VGAIPS must be used in conjunction with a memory resident utility to capture

the screen. Capture programs typically take over the Print Screen key on the keyboard

and allow any displayed image to be either printed directly or saved to disk with a

requested file format. Screen capture programs of various kinds exist including:

38

Grafplus, Graflasr, VGACAP, Pizazz Plus and Hijack to name a few. All of the above

support the VGA mode 12 used by VGAIPS. The last two support some SuperVGA

cards and a number of printers including the HP PaintJet. These programs run in the

background and necessitate the use of another program to display the image to the screen.

Unfortunately VGAIPS does not display images using any SuperVGA mode. Pizazz Plus

was used mostly because because it supports both the HP PaintJet and LaserJet Printers

and can save images from any graphics mode (VGA or Super VGA) to PCX format.

c. Publisher's Paintbrush

This program was used to read the PCX files produced by Pizazz Plus and do

the final editing on the images before printing. Publisher's Paintbrush and Windows

Paintbrush support an extensive list of printer drivers among which is an excellent HP

PaintJet driver. Paintbrush was used primarily to annotate the images and figures

throughout the thesis. It was also used to convert color images to gray levels and to

produce composite images using its cut and paste utilities.

2. Image Enhancement Techniques

As already pointed out, the images in this section are degraded compared with the

images displayed on the frame grabber video display. Nevertheless, important image

enhancement techniques and procedures can be demonstrated. The reader must bear in

mind that the actual image displayed on the screen is much better than can be reproduced

on paper with the current methods and that the contrast enhancements performed on the

same images also turn out better on the video display than they do here. Figure 6 is an

example of the kind of degradation inflicted on the image scenes by the printing process.

Figure 6a depicts a video camera recorded image of Hermann Hall captured in 256 gray

levels by the frame grabber board. This image is then saved to file, displayed by

VGAIPS in sixteen colors in VGA mode 12 and converted to a PCX file by Pizazz Plus.

The resulting sixteen color PCX image file was imported into Paintbrush along with

Figure 6b which shows a twelve degree IRSTD image scene which was obtained using

the same method. The cloud structure in the top image clearly shows the sampling effect

[Ref. 10] introduced by going from 256 gray levels to sixteen gray levels. Instead of

smooth or gradual changes from one gray level to the next, we observe abrupt or coarse

changes which are further aggravated by the choice of the hatching pattern selected by

the printer driver to represent a given gray level. Although they can be observed on the

video display and in the infrared image, the antennas on the roof of Hermann Hall do not

appear in Figure 6a due to the degradation just described.

39

The following two sub-sections will describe the techniques employed to

enhance the contrast of IRSTD images. The techniques fall in two categories: those

methods which can be performed directly on the frame grabber video display and the

methods which employ VGAIPS or potentially other image processing software. This

section describes only the practical approaches and the procedures for enhancing the

images; it does not provide a full theoretical coverage of all the methods used. A

complete review of digital image processing would extend beyond the scope of this

thesis; however, an excellent starting point for this is reference (10).

a. Image Enhancement on the Frame Grabber Board

The DT-2861 frame grabber board is supported by a FORTRAN support

library which includes a number of convolution filters which can be used for image

enhancement. The images shown in this section were obtained by applying the desired

filters to an image frame through the use of the IRIS-Tutor interactive frame grabber

board control program. The convolutionary filters used by IRIS-Tutor are 3 by 3 pixel

masks. A complete frame is convolved in three minutes on a PC/XT machine with a co-

processor according to the frame grabber documentation [Ref. 1 1]. On the 80386 33 Mhz

computer, the operation takes approximately 20 seconds to complete.

Figure 7 shows the result of applying four different masks to the scene in

Figure 4. Figure 7a shows the result of a Lowpass filter. The effect of this filter is to

remove the high spatial frequency components in the image. The net effect is to smooth

out some of the noise structure in the image. At the same time, it widens the histogram

slightly so that the clouds start to appear more contrasted. Figure 7b results from

applying a Highpass filter. This filter enhances all the high spatial frequency components

in the image. Although it brings out the noise in the sky portion of the image, it also

enhances well the contrast of the trees and Hermann Hall. Figure 7c is the output from

Laplacian edge enhancement and Figure 7d is the result of Vertical edge detection. Both

edge enhancement filters clearly show the vertical noise structure which appears in the

bottom third of the image as discussed earlier.

Figure 8 shows the effect of contrast enhancement through successive

applications of the Offset and Multiply operations on the frame grabber board. Figure 8a

is the original IRSTD image. Figure 8b was obtained by offsetting all pixel values in the

original image by -62 and multiplying the result by two. Figures 8c and 8d were obtained

by repeating this operation. The effect of the Offset and Multiply operation is essentially

to widen the histogram. Figure 9 shows the corresponding histogram of all four images.

40

The mean in the original image is about 124; thus an offset of half that value or -62 was

selected. By multiplying all the pixel values in the resulting image by two, the mean is

reestablished, but the standard deviation is increased. This method has proven to be quite

powerful since both Offset and Multiply operations on the frame grabber board take less

than l/30th of a second to perform on a full frame.

b. Image Enhancement using VGAIPS

VGAIPS provides a number of useful functions in its pull-down menus to

perform histogram manipulations. The contrast of an image can be enhanced through

histogram equalization or direct histogram specification or simply by editing the LUT

directly. LUTs can be saved to files and used on different images if necessary. Figure 10

shows two examples of histogram modification techniques. The original image appears

in Figure 10a. Figure 10b is the result of histogram equalization. The result of this

nonuniform sampling approach is to increase the contrast in the cloud structure. This

method works particularly well in the sky area which is relatively uniform to begin with.

However, the method is not as effective for enhancing ground features or more dense

areas in the image [Ref. 10]. The contrast of both trees and Hermann Hall is too high and

appears as if only two or three gray levels were used. It was found that direct LUT

editing yielded the best results in enhancing ground features, although most of the cloud

structure is lost. Figure 10c is an example of histogram specification through direct

editing of the LUT. The LUT used can be found in Figure 11. Pixel intensity values

from to 255 are mapped into sixteen gray levels ranging from (black) to 15 (white).

The gray levels are then mapped into 16 preselected colors by the software program.

Figure 12 depicts the first 72 degrees of the scanner rotation. It is a composite

of six histogram-equalized twelve degree images, put together using the cut and paste

utilities in Paintbrush. The hexadecimal offset to the beginning of each twelve degree

segment is annotated at the bottom of the figure. Figures 13 through 17 show a complete

scanner rotation. Each twelve degree image was enhanced by direct histogram

specification using the LUT in Figure 1 1 to enhance ground features. Once again, the

hexadecimal offset of the beginning of each 12 degree segment is indicated and should

be used as a reference to locate a position in the scanner rotation using the LOADUP.pm

display program. The inclusion of Figures 13 through 17 in this thesis is intended to

provide documentation on a complete scanner rotation to facilitate the location and

identification of background scene features during future data recordings. The real time

imaging program displays a six degree portion of the complete rotation. Viewing the data

41

through such a small window makes scene features difficult to locate and recognize. A

complete rotation already documented is paramount to the detection and tracking of an

aircraft in real time. With a complete rotation already documented, an observer

positioned on the roof could provide the operator on the second floor the accurate

angular positions of aircrafts approching the airport or taking off or of boats in the

harbour. Easily recognizable features have been labeled at the top of the figures and can

also be used as reference points.

Figure 18 is another composite picture put together using Paintbrush. It shows

a US Air PropJet passenger plane landing at the Monterey Airport. The full width of the

picture is approximately 15 degrees. The airplane flew slightly to the left of the scanner

position and followed a straight line path away from the scanner. It was followed in real

time for over eight scanner rotations. The image was reconstituted by capturing each

consecutive scanner pass during playback of the recorded tape. The individual airplane

images were then pasted together to produce this composite picture. The blurred

appearance of the airplane in position 1 and 2 is possibly due to the fact that the airplane

is closer to the scanner and is in motion as the IRSTD scans across it. During the

remainder of the landing the airplane is seen approximately from the tail aspect as it

moves away from the scanner. It appears as a pair of white, or high temperature, spots

which can possibly be recognized as the two propjet engines. Undershoot to the right of

the airplane is evident and is an artifact of the AC coupling on the analog bandpass

filters.

c. Summary

This section introduced a number of methods and developed some of the the

tools which will be useful for the analysis and study of infrared background scenes using

the NPS-IRSTD. Some of the key imaging properties of the scanner were pointed out

and explained. Basic image enhancement techniques using commercial image processing

software were described and typical infrared scenes were presented including a banner

showing a complete 360 degree rotation.

A composite picture made of eight consecutive scanner rotations showing an

aircraft landing at the Monterey airport was presented as an example of the newly gained

ability to selectively acquire and display IRSTD data using the LOADUP real time

imaging program.

42

til

Cbl
Figure O. Comparison between a VCR recorded image (a)
and mn unprocessed IRSTD image (b). Both images in 16
gray levels.

43

(Ml t*>l

(Of fdj

Figure 7. Examples of image enhancement techniques on th<
-frame grabber board, (a) Lowpass filtering, (b) Kighpass
filtering, (c) Laplacian edge enhancement, fd) Vertical
edge detection.

44

<mwu»mgu'/juxWuwgyyjygTmw«ww^utf^uuw st rmmn
MX««HX*><W^MI«*XtM«XMMS«MX^XM**HXX-*X>-«<WW1«M»MX*W«»»*»«»***-**WX»W«K-ltHIIMim

'xxxxxuxjtxxxarwuxuxirxxxxwxxxxTotxxx-'* -r<x**xxxx*xxxxxxx:-xx*xxx3nnixa
ANint«in»MMm4WMNWWM»«MWMXXM*IMMXMMMX^MA<«IW«fr«Xn«Xi4MXXMMMX>X«MNNXMin(KN
*JC^XXwCXXJLJtX>LkX4;MJLX<^Jt^kXAXXA^^A*XA^X^L)CM>w.*JXJ.)>^MA'

« * , » XJt .^KX ,,AX X* .A
:

.
;•

. :, :
.

::.. ,-.-....
.

.
/ :. : -. :•'. - -...... .. .).- .: .'

TiXXXtXT^XXXT<TTOCTXXXXXX^ A*MA<l*iJlXXXrXXXJCl >>_»llXXXrXXXX^r
^nrXK^(MM9Uf11K3tXNMIIMMMM)ra^rWXM3tmUIMHmMVMMMWMtUMMIVMMBIM*IVMMWHItXl

tjui * »»x%Ajt irryr-j

!

» in; *_** * t * cm 1 ui» wgargyonnwtanwcMH 1 * » xywrn
XMMXXXIIMKXWUXItMMKNHNXXX XWWXXJCXtCXXTUOWIXltJIXJW WUilXlW X"

-

gBBJWKwxxinqigijxannwiiinfjcraaegg^

w*

jlam<mxTmyij<

*ifl»wo(x s *.iTi *~-xxvxxx^ xr*swrv x **«f*jcorxr. xuixx* xPHOttlw«x *B * x w * ^ •« *-cy x x a
r»»itxat«xxrTy-.«wrwjfyTxx)ix«»M^JiJU>T*xx::xa«niXTC3nc^Mx»xTxxxx:jrxxxxTy^.

fa) lb)

E^SK

fa) (d)

Figure 8. Image enhancement using off»» t and multiply
operations on the -frame grabber board, (a) original
image, (b) offset by -02 then multiply by 2. to) Same
operation applied to (b). fd) Operation applied to (c)

45

-^ L *

(a]

J

Peak value = 64718 at 124
flininuM v* lue = 8
Muiaua value - 255
Histogram wean a 123.946
Histogram median s 125
Standard deviation - 26.456

Peak value = 64718 at 124
tllniMUM value - 8
ridxinwM value - 255
Histour** nean - 124.373
HlstoyraM Median * 126
Standard deviation = 33.782

(bl

(cl

Peak value = 64718 at 124
nintaum value = 8
haxiaun value = 255
HisluyraM mean - 125.836
Histogra» Median * 128
Standard deviation = 38.943

Peak value = 64719 at 124

Minihum value = 8
MaxiMum value 255
Histogram* nean = 126.531
Histogram Median = 132
Standard deviation = 44.48

tdl

Figure 9. Histograms for the pictures in figure 8,

The effect of the offset and multiply operation is

to widen the histogram.

46

jtjjjIjjjjjJlJjjgKKjj^

*±x±±£****-t £.kx.< . >m> A^a' • <j.**,

T«^nar<
' SEBS5 ne^rTS ^BJI *J**3CgX3r,-1 " JI XJ < T * x

%+ - . »** SMjuafigaauouoc

jJWMmr

a«^iM^Ha5ga«Bga«gaiaHgj^H^^aa^^asg^vjj

II
wis:

<bl
(0}

Figurt 19. Examples of image enhancement using Histogram
manipulation techniques, (a) unprocessed image, (b) Histogram
equalization. (c| Direct Look-up table specification.

47

8 a 9 9 9

—{Direct LUT Ed

9 9 9 9

m-

a a a 9 9 9

6 a e 9 a 9 8 a a a a a 9 9 a

9 9 a a 8 8 a a a a a a a

4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 9

6 6 6 9 6 6 6 6 9 9 6 9 9

9 6 6 a a a a a a 8 a a

8 8 8 8 8 8 8 8 8 8 8 8 12 12 1Z

13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14

14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15

IS IS 15 15 IS 15 15 15 15 IS 15 15 15 IS IS 15

15 15 15 15 IS IS IS IS 15 IS 15 IS IS 15 IS 15

IS IS 15 IS IS IS 15 IS 15 15 15 15 15 15 15 IS

IS 15 15 IS 15 15 15 15 IS IS IS 15 15 IS 15 IS

15 15 15 15 IS 15 15 15 15 15 15 15 15 IS 15 15

<E3C> to exit 9: H for he IP

Figure 11. VGA IPS screen showing the
look-up table used -for figure 18 fc 1

48

N

»:

rt

9
s
1%

- -

c
9

•* a
w L
• O
1 9
WO

M'

"D

2£
Q

« 11

u 9

«*.
o a
c
IV
r o
c
* 3

C
ft-H
*> c

c
"0-*

K 9
•H 9
i- J3

1
a 9

.*
*j

t w
w 9
•* a
rt *.

a v
3
II

*
e e
C -H

U Q
9 9

T3

J 1

*> X
•* 9
:i

49

50

x

51

52

3S JL-?TI>^

53

c

IB

ki

W
•n a

;«g

CD 2
ic;
»
s • o

CI"
»* -
«* L
C • *
«<

:-ftvc
Lot

• »

*

(DC
• a

4 • *
£ »
*" »

* 1*

nv
c*

** a
jcj
* C fl.

a o
a • e
a a it

% • 01

a

- j

« q c a
4

9 V u U
i. • a 2
3 a **

0* L 1
•»»% rt 9
i03*

54

•

a
w

L H-

• a
a
c >

»
• k.

» »
* *»

a. c

**s
«>» 11

a r
0-*
u
a. *>•

11

•-

*
a c

H-

a» T3

3 c
a

;•» _j

CD
T* **

+•

A
L L
3 U
a li.

•r* •H-

j. a

55

IV. CONCLUSIONS AND RECOMMENDATIONS

A number of hardware and software developments have been brought to the NPS-

IRSTD system which made possible the acquisition and display in real time of the output

data in image form. Improvements to the frame grabber interface circuitry now allow a

specific sector to be displayed and refreshed after each scanner rotation. Direct

interfacing between the frame grabber interface board and the host computer AT bus

enables each load operation of the frame grabber's memory buffers to be effected under

software control. In order to greatly increase the speed of all signal processing tasks

required prior to the video display of IRSTD images, the FORTRAN software was

completely rewritten in assembly language and compiled with a 386 DOS Extender so

that the extended memory buffers of the frame grabber board could be accessed directly.

The assembly language software in itself runs at a much faster speed than its FORTRAN

counterpart. In addition to improvements in speed, the assembly language program has

the additional advantage of controlling the board operations directly, without requiring a

device driver. Therefore, operations are not limited to those supported by the device

driver and can be optimized for speed. The FORTRAN program on the other hand must

deal with the frame grabber board via a device driver which is required by the DT-IRIS

FORTRAN support library. As a result, the assembly language software can display a six

degree pseudo-color sector in the scanner rotation with a refresh rate up to approximately

1.5 second during high speed data playback.

The ability to display IRSTD data in real time has opened the way to rapid

developments in data acquisition and analysis. Interesting scene features can be located

quickly anywhere in the rotation and targets can be followed from one rotation to the

next with the use of the arrow keys on the computer keyboard. What would previously

have taken hours to perform can now be done in a matter of seconds. A procedure for

acquiring, enhancing and printing the video output using commercial image processing

software packages has been described in detail.

A number of recommendations come to mind in order to improve the performance of

the LOADUP program and the hardware interface.

56

A. HARDWARE IMPROVEMENTS

First of all, the second array should be made operational. This would allow

comparisons between the images produced by the two arrays. The arrays are plagued by

a relatively large number of dead or low responsivity detectors. The lag array has the

unfortunate disadvantage of having a dead detector directly in line with the horizon. A

number of methods have been tried to enhance the image output of the low detectors with

limited success. One recourse in producing cleaner images would be to fill in the blank

stripes in the image with the output from the other array.

A second hardware improvement would be to install the fiber optic link between the

roof and the second floor. This will eliminate some of the crosstalk and noise in the

signals sent down from the roof and will improve the reliability of the recordings.

A number of minor improvements are needed to improve the image display of the

output data. As it stands now, the digitization rate is fixed to accommodate the recording

weaknesses of the AMPEX HBR3000i tape recorder. The rotation rate is set as close as

possible to the digitization rate, but the rotation rate of the mechanical device varies

greatly even during one revolution. For the moment, the playback of data is linked to the

digitization clock and the 1/180 pulses. This introduces jitter in the image display. To

compensate for this, the playback of data should be linked with the position sensor so

that the next position pulse gates the digitization signal. This would in effect prune the

data so that excessive digitizations when the scanner is lagging in speed are discarded

and that the number of digitizations analysed in a rotation is constant. This would allow

images to be compared from rotation to rotation without jitter in the number of

digitizations from the end of rotation pulse. Another possible source of jitter is the end of

rotation (EOR) pulse itself. The EOR is derived from a slow photocell, so the position of

the pulse edge varies. A modification to the circuitry is required to replace this pulse with

the next sector pulse after it.

The source of the noise structure in the bottom part of the image must be investigated

and the problem corrected. This is a prerequisite to further studies of infrared background

scenes using the NPS-IRSTD.

The 5 Mhz clock can be divided by 2 to allow digitization of data at one half the rate

of the original design. Since signals are oversampled by a factor of three, no information

would be lost. As a consequence, the recording time would be doubled and more

proportioned twelve degree images would be displayed in real time as opposed to six

57

degree images. An alternative would be to divide the clock on playback so that all the

data is recorded but only half of the data is sent for display.

The tape recorder allows digital control of its servo controls. Eventually, a hardware

interface and software program should be developed to control the playback of a desired

footage of tape from the computer.

B. SOFTWARE IMPROVEMENTS

The LOADUP program unscrambles the data from both arrays even though only one

of the arrays is connected. Only data from the lag array is displayed, however. A minor

change to the program needs to be made so that either one of the arrays can be displayed

at the pressing of a key on the computer keyboard.

The program can be expanded to perform more signal processing tasks such as filling

the dead or damaged detector bands. FORTRAN routines to correct the image from the

effect of the low responsivity detectors have only had limited success. More

developments in this area are needed before an assembly language routine can be

designed.

A protected mode assembly language program to transfer the data from a frame

buffer to the computer SuperVGA display in the 1024 by 768 pixel, 256 color mode

would greatly accelerate the image enhancement and analysis process. Saving images to

raw data 256 kilobyte files using IRIS-Tutor would no longer be needed. Images could

be captured from the computer screen using a commercial capture program and saved to

the more compressed PCX format thus saving enormous amounts of disk space. VGAIPS

would no longer be needed as an interim step to display the images to the computer

screen. The transfer routine could be built in the LOADUP program to permit real time

acquisition of image files without interruptions to the display of images by the frame

grabber.

Finally, the PROT 386 DOS Extender could be made compliant with DPMI and

VCPI standards so that it could be used inside multitasking environments such as

Deskview or Windows.

58

APPENDIX A

Protected Mode Operation on the 80386 Computer

A. BACKGROUND
The Intel 80386 and 486 computers are the most recent offsprings of a tremendous

cumulative investment in the 86 family of processors. This enormous investment by

computer and associated hardware manufacturers, and operating system and application

software designers has essentially guaranteed the compatibility of the 86 family as it

evolved from one generation to the next. One of the most compelling factors however

comes from the fact that more than 60 million computers are currently running

Microsoft software based on this family of processors. Perhaps the most striking

example of this can be found in the overwhelming popularity of the MS-DOS operating

system. The symbiosis which exists between Microsoft and Intel has not only impacted

on the software industry but has placed high demands on the hardware design of the

processors themselves. As a result, the 80386 features three modes of operation, Real

mode, Virtual 86 mode and Protected mode, the first two of which are only there to

ensure backward .compatibility with the software written for earlier processors in the

family.

Unfortunately, under the DOS paradigm the 80386 is restricted to Real mode

operation and some of its most advanced features are not available. These features

include flexible segmentation, privilege protection, multitasking and paging. Whenever

the 80386 is Reset or powered up, it begins executing in Real mode and to remain

compatible with the earlier 8086 processor, one of the address lines is disabled to

prevent memory access above 1 megabyte. In order to alleviate this problem and to

benefit from the full power of the 80386 processor while retaining compatibility with

software dependant upon MS-DOS and the BIOS, an increasingly popular recourse has

been to turn to DOS Extenders. As their name implies, DOS Extenders are extensions to

the operating system which allow application software for the 80386 to operate in

Protected mode. While doing so, DOS Extenders basically have to play the role of the

59

operating system and provide a mechanism for handling interrupt-driven input/outputs as

well as allowing calls to DOS and the BIOS until safe return to Real mode is reached.

In order to appreciate the advantage of running programs in Protected mode and the

role of DOS Extenders, a certain amount of background knowledge with its associated

terminology has to be presented. This section briefly covers some of the fundamental

concepts surrounding Protected mode operation on a 386 computer. The material in this

section comes mainly from the Intel 386 DX Programmer's reference manual [Ref. 14],

the voluminous book by Crawford and Gelsinger: Programming the 80386 [Ref. 15] and

the book by Turley: Advanced 80386 Programming Techniques [Ref. 16].

B. PROTECTION MECHANISMS

The 80386 has enough processing power to run several applications at once. This

ability is refered to as multitasking. Each program in a multitasking environment

constitutes a separate task. Although tasks appear to run simultaneously, they really only

share the processor in sequence. Tasks all share the same computer resources: processor,

memory space and peripherals. Therefore protection mechanisms must exist in order to

ensure that each task is protected from every other task. For example, two programs

running at the same time must occupy different address spaces; otherwise they would

interfere with each other. If protection were implemented in software, by the operating

system for instance, endless time-consuming checks would have to be made to ensure

that commonly shared resources are not requested simultaneously. This would greatly

impact on performance and application programs would appear to run sluggishly. To

facilitate the operating system's task, protection mechanisms are enforced in hardware.

Hardware protection and allocation of memory space is generally refered to as Memory-

Management whereas I/O-Management supports the allocation and protection of

peripheral devices.

1. Memory-Management

Memory-Management is a key protection mechanism. It consists of two parts:

protection and address translation. Protection is used to prevent different tasks from

accessing the memory space belonging to other tasks including the operating system.

Address translation consists of segmentation and paging.

a. Memory addressing

The memory space on a 80386 based computer is divided into segments.

Addresses are referenced by using a pointer which consists of two parts: a segment part

and a 32-bit offset. The segment part is loaded into one of six available segment registers

60

CS,DS,ES,FS,GS and SS and indicates where a segment begins. The offset part provides

a displacement to a specific byte within a segment. Since 32-bit offsets can be specified,

the maximum size of a segment can therefore be 4 gigabytes. Usually, programs work

with only a few segments, a Code segment with a base pointer in the CS register, a Data

segment with a base pointer in the DS or ES register and a Stack pointed to by the

SS register.

Addresses formed by combining the segment and offset parts are called virtual

or logical addresses. They are called so because they do not correspond directly to a

physical memory location but must be translated by a mapping function into an actual

physical address. Address translation provides a form of protection. The mapping

function can prevent certain physical locations from being accessed, deny memory access

to some tasks or detect invalid or non-existant physical address references. Additionally,

it can also map virtual addresses into a memory space much larger than the physical

memory available by redirecting the address references to disk; a technique known as

Virtual Memory Access.

b. Segmentation and Paging

Segments simplify the translation process by reducing the amount of

information required to address physical memory. Through segmentation, the mapping

function used for address translation can be defined for complete blocks of memory as

opposed to requiring information for individual bytes. Segments are defined by three

parameters: the base address, the segment limit which defines the size of the segment and

the segment attributes which indicate the level of protection, whether or not the segment

can be read from, written to or executed as a program. All segment information is

contained in Segment Descriptor Tables. There are two types: the Global Descriptor

Table (GDT) and the Local Descriptor Tables (LDTs). Each segment is defined by an

entry in one of the descriptor tables. Each task has its associated LDT. The operating

system sets up and maintains a GDT for the whole system. Segment information is stored

in the descriptor tables by loading the appropriate registers, GDTR or LDTR. The

descriptor tables are stored in a memory area protected by the operating system but

which can be accessed by the memory-management hardware to control memory access.

Paging differs from segmentation only in the way in which virtual memory is mapped.

The process of memory translation is a two step process. First, the virtual address is

converted into a linear address though segmentation. Then, the paging hardware

completes the process by mapping the linear address to a physical address. Paging

61

organizes memory in fixed blocks of 4 kilobytes called pages. When an address is issued

by a software program, it is translated into a linear offset into a page reference. If the

page exists in memory, the hardware accesses the physical address; otherwise it issues an

exception to the operating system. The operating system then responds to the exception

by loading the page from disk to memory. Paging can be disabled by the operating

system in which case segmentation translates the logical address to a physical address

directly.

c. Protection

Protection is a hardware mechanism by which the various tasks in a

multitasking environment can be physically separated from each other even though they

all share the same resources: processor, memory, display monitor, disks and other

periferals. This is accomplished in conjunction with segmentation and paging. There are

five protection checks:

(1) Type checking is used to verify if a segment is readable, writeable or

executable;

(2) Limit checking prevents programs from accessing memory outside their

assigned segments by attempting to form memory addresses with an offset

part that is larger than the segment size;

(3) Restriction on the addressable domain is imposed by ensuring that the

privilege level of the requesting task is equal or higher than the privilege

level of the segment to be accessed;

(4) Restriction on the procedure entry points is ensured through privilege

checking whenever control transfers between segments are requested by

JMP, CALL, RET, INT and IRET instructions. Control transfers are

executed by a procedure called task switching via one of four kinds of gates:

call gate, trap gate, interrupt gate, and task gate.

(5) Restriction on part of the instruction set is used to prevent privileged

instructions and certain sensitive input/output activities reserved for the

operating system from being used by tasks with insufficient privilege level.

Protection check information is stored in reserved fields in each segment

descriptor (GDT or LDT entries). The last three checks are performed via a mechanism

which recognizes four privilege levels numbered 0, 1 , 2 and 3.

62

2. I/O Management

Peripheral devices and communication serial interfaces are controlled through

Input/Output (I/O) ports. Because all tasks are liable to require access to these ports,

special mechanisms are in place in the 386 microprocessor to manage I/O operations.

There are two ways to address a port and the appropriate method for a given periferal

device is decided by its designer. The 386 microprocessor reserves a separate I/O address

space where I/O port addresses can be located. Port addresses in this reserved memory

space can be accessed by using the processor's IN and OUT instructions. These

instructions enable the M/IO# pin on the processor chip which is used in the decoding of

the port address. In this way, port addresses are kept distinct from the address space for

physical memory. A special field in the segment descriptor for the I/O address space is

used to prevent I/O pages from being relocated by the segmentation and paging

mechanisms. Protection is ensured by verifying a field in the processors EFLAGS

register and the I/O permission bit map in the Task State Segment (TSS) descriptor table.

A second method for accessing peripheral device ports is refered to as memory-mapped

I/O. Devices whose ports can respond to bus accesses in the same manner as memory

components can be mapped in the physical address space of the processor and be

accessed by any instructions which reference memory. In this case, the port addresses are

subject to all the protection mechanisms described earlier.

3. Exceptions and Interrupts

Whenever a peripheral device, (printer, disk controller, keyboard or other),

requires the attention of the processor, it triggers an interrupt signal which is immediately

attended to by the processor. The current procedure is suspended at the end of the

instruction being executed and control is transfered to a task or procedure called a

handler which handles the interrupt. Exceptions are similar to interrupts in that they are

handled in the same way. The difference is that interrupts occur randomly at the request

of a peripheral whereas exceptions are the direct outcome of an instruction being

executed. There are 16 different exceptions ranging from divide by zero error and

overflow errors to page faults and coprocessor errors. Exception 13 is for general

protection errors and acts as a catch-all for all errors which do not have their own

handler. Exceptions are further classified as faults, traps and aborts depending on how

they are handled. Software interrupts to DOS and the BIOS which make use of the INT

instruction are exceptions rather than interrupts.

63

In Real Mode, the address of the service routine is referred to as a vector and is

located in a table called a vector table. Exceptions and interrupts are handled by the

processor on a priority basis. In Protected Mode, the priority information, the interrupt

vector and the task which handles the interrupt/exception are specified in the Interrupt

Descriptor Table (IDT). Entries in the IDT are made by writing to the IDTR register.

4. 386 Protected Mode Initialization

Upon RESET, the 80386 begins executing in Real Mode. In Real Mode, all 32 bit

registers are available except the Task Register (TR) and the Local Descriptor Table

Register (LDTR) which are used for multitasking in Protected Mode. All of the 80386

enhanced instruction set can be used including all privileged instructions and I/O

instructions since -the only task which can be executed at a given time is given the highest

privilege level. Memory addressing in Real Mode is completely different from the

method described earlier for Protected Mode. In Real Mode, memory segment

descriptors are not used. Linear addresses are limited to 1 megabytes and logical offsets

cannot be greater than 64 kilobytes regardless of whether or not 16 bit or 32 bit registers

are used for addressing. The A20 address line is disabled for compatibility with the 8086

computer. Page translation, multitasking and page level protection are not implemented.

Furthermore, interrupt and exception handling is performed differently. In Real Mode the

interrupt vector consists in a segment:offset pair which points directly to the address of

the first instruction of the service routine. The interrupt vector table is at a fixed address

and cannot be relocated. In Protected Mode the IDT can be loaded anywhere by the

paging mechanism and its size and content can be changed.

The procedure for switching from the RESET state or Real Mode to Protected

mode is covered in a few paragraphs in the Intel literature [Ref. 14]. Technically,

Protected Mode is entered when the PE bit of the CRO register is set. The actual process

is quite complicated, however, and a very careful and much more detailed procedure

must be followed to ensure a successful transfer between the two modes [Ref. 16]. As a

minimum, the GDT and IDT must be created before entering Protected Mode. A number

of difficulties can arise if precautions are not taken. First, problems can occur between

the time the IDT is loaded and Protected Mode is enabled since during this short period

the interrupt table is inconsistent with the current operating mode. Second, arrangements

must be made to ensure that the code which performs the switch to Protected Mode

occupies the same linear space after enabling paging as it did before. Third, the

instruction queue must be flushed since instructions remaining in the queue after the

64

switch to Protected Mode were formed with the addressing mechanism consistent with

Real Mode operation and therefore are no longer valid. The complete initialization

procedure can be implemented in a few pages of assembly language code [Ref. 17];

however, once in Protected Mode, most assembly language applications require support

similar to that provided by DOS's interrupt services to access and control the hardware

and because of this, it is not advantageous to switch over to Protected Mode unless a

mechanism to handle hardware interrupts and exceptions is implemented at the same

time.

The above tasks are performed typically by Protected Mode operating systems

such as UNIX or OS/2. Because DOS Extenders are not fully fledged operating systems

they must deal with the additional complication of remaining compatible with the old-

style DOS and BIOS interrupt and exception handling mechanisms. Memory addressing

and interrupt handling in Protected Mode and in Real Mode differ drastically, to the point

of conflicting with each other. Because of this, the prospect of taking advantage of

Protected Mode features while retaining the services and exception handling routines

provided by the BIOS and DOS seems bleak. There are two avenues for success

however. One is to handle interrupts and BIOS calls by returning temporarily to Real

Mode at every occasion. The other is to enable multitasking and run BIOS calls as a

Virtual-86 Task. Virtual-86 Mode is the mode of operation of the earlier 8086

microprocessor. Virtual-86 tasks can run in a multitasking environment and can take

advantage of the hardware support provided for multitasking on the 80386. This is the

method employed by the PROT 386 DOS Extender used in this thesis. In fact the PROT

386 DOS Extender runs DOS and the BIOS as a Virtual-86 Task [Ref. 19].

65

APPENDIX B

The FORTRAN: DISPLAY.for program

C DISPLAY.FOR
CMS-FORTRAN 4.1

C by Maj. J.D. Bernier

C January 1991

C Last revision: 13 September 1991

$LARGE
COMMON IMGJBUFF

2 FORMAT(/)
WRITE(*,2)

C
CALL ISINTT

C
WRITE(*,*) 'CLEAR ALL BUFFERS'
DO200IBUF=l,15
CALL ISFCLR(IBUF)

200 CONTINUE

CALL COLORS
CALL SCALE

C
1 CONTINUE

DO100IBUFF = 5,15

C
C LOAD A FULL BUFFER

CALL LOAD

C UNSCRAMBLE 1ST 3 DEGREE IMAGE
IMG=2
CALL UNSCRB(IMG)
CALL OFFSET
CALL RESP

C UNSCRAMBLE 2ND 3 DEGREE IMAGE
IMG=3
CALL UNSCRB(IMG)

66

CALL OFFSET
C CALL RESP

C CREATE 6 DEGREE IMAGE
CALL SIXDEG

C DISPLAY FINAL RESULT
CALL ISFCOP(4,IBUFF)
CALL ISOTFR(IBUFF)
CALLISDISP(l)
WRITE(*,*) 'DISPLAYING RESULT IN BUFFER \IBUFF

C

100 CONTINUE
GOTO 1

CALL ISEND
END

q ************************ SUBROUTINES *******************************

C
C *** LOAD ***'

C
SUBROUTINE LOAD
EXTERNAL BUSY
WRITE(*,*) LOADING ONE FRAME INTO BUFFER 0'

WRITE(*,*) 'WAITING FOR EOR SIGNAL'

CALL ISINFR(O)

CALL ISSETR(0,0,512,512)

CALL ISRDEP
CALL BUSY
WRITE(*,*) 'BUFFER LOADED'
RETURN
END

C***UNSCRB ***

SUBROUTINE UNSCRB(IMG)
INTEGER*2 SCRAM(23040)
INTEGER*2'UNSCRAMB(23040),HALF(11520),ARRAY(90,128)
INTEGER IROW,IAROW,IBROW,ICROW,IDROW,IEROW
INTEGER IX,IAJA,KA,ISECT,IBUFF,IBUFM 1 ,IMG,IS,IE

INTEGER*2 A(5 12)3(5 1 2),C(5 1 2),D(5 1 2)3(5 1 2)

EQUIVALENCE(A3,C,D3)
COMMON IBUFF

67

C THE ORDER ARRAY CONTAINS THE UNSCRAMBLING SEQUENCE
DIMENSION ORDER(180)

DATA (ORDER(I),I=1,10) /2, 17,32,47,62,77,92, 107, 122, 137/

DATA (ORDER(I),I=2,20) /152,167,3,18,33,48,63,78,93, 108/

DATA (ORDER(I),I=3,30) /123, 1 38, 1 53, 168,4, 19,34,49,64,79/

DATA (ORDER(I),I=4,40) /94, 109,124,139,154,169,5,20,35,50/

DATA (ORDER(I),I=5,50) /65,80,95,1 10,125,140,155,170,6,21/

DATA (ORDER(I),I=6,60) /36,5 1 ,66,8 1 ,96, 1 1 1 , 1 26, 14 1 , 1 56, 1 7 1/

DATA (ORDER(I),I=7,70) /7,22,37,52,67,82,97,1 12,127,142/

DATA (ORDER(I),I=8,80) /157,172,8,23,38,53,68,83,98,113/

DATA (ORDER(I),I=9,90) /128, 143, 158, 173,9,24,39,54,69,84/

DATA (ORDER(I),I=10,100) /99,1 14,129,144,159,174,10,25,40,55/

DATA (ORDER(I),I=l 1,1 10) /70,85,100,1 15,130,145,160,175,1 1,26/

DATA (ORDER(I),I=12,120)/41,56,71,86,101, 116,131,146,161,176/

DATA (ORDER(I),I=13,130)/12,27,42,57,72,87,102,1 17,132,147/

DATA(ORDER(I),I=14,140)/162,177,13,28,43,58,73,88,103,118/

DATA (ORDER(I),I=15,150) /133,148,163,178,14,29,44,59,74,89/

DATA (ORDER(I),I=16,160) /104,1 19,134,149,179,164,15,30,45,60/

DATA(ORDER(I),I=17,170)/75,90,105,120,135,150,165,180,1,16/

DATA (ORDER(I),I=18,180) /3 1,46,6 1,76,91, 106,121, 136,151, 166/

CALL ISRSET
CALL ISSETR(0,0,512,512)

CALL ISOUTS(2)
CALL ISOTFR(4)
CALLISDISP(l)

ISECT =

IF (IMG.EQ.2) IS=0

IF (IMG.EQ.2) IE=135

IF(IMG.EQ.3)IS=180
IF(IMG.EQ.3)IE=315
IF (IMG.EQ.2) WRITE(*,*) 'UNSCRAMBLING 1ST 3 DEGREE IMAGE'
IF (IMG.EQ.3) WRITE(*,*) UNSCRAMBLING 2ND 3 DEGREE IMAGE'
DO 430 IROW = IS,IE,45

K =

CALL ISGETP(0,IROW,0,23040,SCRAM)
DO410J=0,23040,180
DO 420 1=1,180

K=ORDER(I)
M=I+J
N=K+J
UNSCRAMB(N) = SCRAM(M)

420 CONTINUE
410 CONTINUE

68

KA = 90

DO500IA= 1,128

DO510JA = 1,90

KA = KA + 1

ARRAY(JAJA) = UNSCRAMB(KA)
510 CONTINUE

KA = KA + 90

500 CONTINUE
C

KA =

DO610JA= 1,90

DO 600 IA= 1,128

KA = KA+1
HALF(KA) = ARRAY(JAJA)

600 CONTINUE
610 CONTINUE

CALL ISSETR(0,ISECT,90,128)

CALL ISPUTR(1,HALF)
ISECT = ISECT + 128

430 CONTINUE
C THIS SECTION EXPANDS THE DATA FROM 90 LINES TO 450 LINES.

C
IROW =

DO 800 IROW = 0,89

CALL ISGETP(1,IROW,0,512,A)
IAROW = 5*IROW
CALL ISPUTP(IMG,IAROW,0,512,A)
IBROW = 5*IROW + 1

CALL ISPUTP(IMG,IBROW,0,512,B)
ICROW = 5*IROW + 2

CALL ISPUTP(IMG,ICROW,0,512,C)
IDROW = 5*IROW + 3

CALL ISPUTP(IMG,IDROW,0,512,D)
IEROW = 5*IROW + 4

CALL ISPUTP(IMG,IEROW,0,512,E)
800 CONTINUE

WRITE(*,*) 'BUFFER UNSCRAMBLED'
RETURN
END

C
q *** OFFSET ***

SUBROUTINE OFFSET
COMMON IMG
CALL ISSETR(150,0,75,5 12)

69

CALL IS0FFC(IMG,-3,IMG)
CALL ISSETR(0,0,512,512)

RETURN
END

*** SCALE ***

SUBROUTINE SCALE
INTEGER*2 IBACK(15360), NUM(2), NUM1(3)

C
2 FORMAT (/)

WRITE(*,*) CREATE COLOR SCALE AT BOTTOM OF SCREEN'
C THIS SECTION ADDS LABELS AND A COLOR SCALE ACROSS THE
BOTTOM
C OF BUFFER 2.

C
IFR=2

DO 1101=0,29

DO 120 J=0,5 10,2

IBACK(I*512+J+l)=J/2

IBACK(I*512+J+2)=J/2

120 CONTINUE
110 CONTINUE

CALL ISPUTP (IFR,450,0,15360,IBACK)

CALL ISSFNT (0)

NUM(1)=50
NUM(2)=53
CALL ISGPOS (460,45)

CALL ISTEXT (IFR,2,NUM)
NUM(1)=53
NUM(2)=48
CALL ISGPOS (460,95)

CALL ISTEXT (IFR,2,NUM)
NUM(1)=55
NUM(2)=53
CALL ISGPOS (460,145)

CALL ISTEXT (IFR,2,NUM)
NUM1(1)=49
NUM1(2)=48
NUM1(3)=48
CALL ISGPOS (460,192)

CALL ISTEXT (IFR,3,NUM1)
NUM1(1)=49
NUM1(2)=50
NUM1(3)=53
CALL ISGPOS (460,242)

70

CALL ISTEXT (IFR,3,NUM1)

NUM1(1)=49
NUM1(2)=53
NUM1(3)=48
CALL ISGPOS (460,292)

CALL ISTEXT (IFR,3,NUM1)
NUM1(1)=49
NUM1(2)=55
NUM1(3)=53
CALL ISGPOS (460,342)

CALL ISTEXT (IFR,3,NUM1)

NUM1(1)=50
NUM1(2)=48
NUM1(3)=48
CALL ISGPOS (460,392)

CALL ISTEXT (IFR,3,NUM1)

NUM1(1)=50
NUM1(2)=50
NUM1(3)=53
CALL ISGPOS (460,442)

CALL ISTEXT (IFR,3,NUM1)
RETURN
END

C *** COLORS ***

SUBROUTINE COLORS
INTEGER*2ICOLBA,ICOLBB,ICOLGA,ICOLGB,ICOLRA,IRD,IGR,IBL
INTEGER*2 I,J,K,L,M,N,IBK,KRD

WRITE(*,*) 'GENERATE DEFAULT OUTPUT COLOR TABLE'
C

7 FORMAT (4(2X,I6))

C
OPEN (35,FILE='COLORS.DAT)

C
K=2
IBL=0
IGR=0
IRD=0
DO 20 1=0,79

J=255-I

CALL ISLDOV(KJ,IRD,IGR,IRD)
20 CONTINUE
DO 10 1=80,1-70

71

ICOLBA=INT((I-80)*7.5)

ICOLBB=INT((I- 140)* 10.8)*(- 1)

ICOLGA=INT((I-105)*6.7)
ICOLGB=INT((I- 160)* 1 8)*(- 1)

ICOLRA=INT((I-130)*4.3)

IF (I.GT.79 .AND. I.LE.115) IBL=ICOLBA
IF(I.GT.115.AND. I.LE.140) IBL=ICOLBB
IF (I.GT.140.AND. I.LE.170) IBL=0
IF (I.GT.79 .AND. I.LE.105) IGR=0
IF (I.GT.105.AND. I.LE.145) IGR=ICOLGA
IF (I.GT.145.AND. I.LE.160) IGR=ICOLGB
IF (I.GT. 160.AND. I.LE. 170) IGR=0
IF (I.GT.79 .AND. I.LE. 130) IRD=0
IF (I.GT. 130.AND. I.LE.170) IRD=ICOLRA
IF (IBL.GT.255) IBL=255
IF (IGR.GT.255) IGR=255

IF (IRD.GT.255) IRD=255
J=255-I

WRITE (35,7) JJRDJGRJBL
k=2

CALL ISLDOV(k,J,IRD,IGR,IBL)

10 CONTINUE
IRD=255
IBL=0
IGR=0
DO 30 1=171,255

J=255-I

CALL ISLDOV(K,J,IRD,IGR,IBL)
30 CONTINUE
CALL ISOUTS (2)

RETURN
END

SUBROUTINE RESP
DIMENSION XRES(90)
INTEGER*2 IROWl(l:512),IROW2(l:512)
INTEGER NFRAME

C
C THIS SECTION CORRECTS FOR THE DIFERENT RESPONSES OF THE
C DETECTORS
C IN THE ARRAY
C
C THIS DATA SET CONTAINS THE VALUES OF RESPONSIVITY MEASURED
C BY AYERS IN HIS EVALUATION OF THE AN/SAR-8 FOR THE LAG ARRAY.

72

C Caution:

C in Ayers Thesis, detectors are numbered starting at 1 from the bottom!!!

C
DATA XRES/2.2 19,2.840,2.952,3. 161,3.330,3.213,3.082,2.882,2.970,

*3. 142,2.480,2.580,2.613,3. 164,3.042,3. 160,3.219,3.299,3.340,0.015,

*3.1 10,3.267,3.149,3.101,3.031,3.141,3.055,3.102,2.91 1,3.058,3.231,

*3. 131,3.280,3. 109,3. 144,3.242,3.201,3.1 13,3.268,3.291,1.183,3.383,

*3.261,3.233,3.303,3.404,3.452,3.450,3.410,3.281,3.361,3. 150,3.030,

*3. 122,3. 120,3.322,3.000,3.050,2.475,3.050,0.030,0.600,0.600,0.022,

*0.020,3. 140,3.270,3.202,3.028,2.802,3.1 19,3.391,3.305,3.262,3.166,

*3. 180,3. 189,3.251,3.320,3. 132,3. 163,3.302,3.321,3.261,3.400,3.512,

*3. 189,3.382,3.433,0.020/

C COMPUTE THE AVERAGE OF THE RESPONSIVITY VALUES
C

NFRAME=2
AVGRES=0
DO 410 1=1,9.0

IF (XRES(I) .LT. 0.7*AVGRES/I) XRES(I)=AVGRES/(I-1)
AVGRES=AVGRES+XRES(I)

410 CONTINUE
AVGRES=AVGRES/90

C
C CORRECT EACH ROW OF VALUES BASED ON THE RELATIVE
RESPONSIVITY
C

DO 420 1=0,445,5

CALL ISGETP(NFRAME,I,0,512,IROW1)
DO430J=l,512
IROW2(J)=INT((IROW 1 (J)- 1 28)*AVGRES/XRES((I/5)+ 1)+ 1 28)

IF (IROW2(J) .GT. 255) IROW2(J)=255
430 CONTINUE

DO 440 K=0,4

CALL ISPUTP(NFRAME,I+K,0,5 12JROW2)
440 CONTINUE
420 CONTINUE
RETURN
END

C
C *** SDCDEG ***

C THIS SECTION BUILDS A 6 DEGREE HORIZONTAL IMAGE IN FRAME
C BUFFER 1 FROM THE 3 DEGREE IMAGES IN BUFFERS 2 AND 3.

C
C

73

SUBROUTINE SIXDEG
COMMON IBUFF
INTEGER*2IROW1(0:511),IROW2(0:511),ISIXA(0:255),ISIXB(0:255)

300 CALL ISDIVC(2,2,0)

CALLISDIVC(3,2,1)
DO310J=0,449,5

CALL ISGETP(0,J,0,512,IROW1)

CALL ISGETP(1,J,0,512,IROW2)

DO320K=0,511,2
ISIXA(K/2)=IROW 1 (K)+IROW 1 (K+ 1)

ISIXB(K/2)=IROW2(K)+IROW2(K+l)
320 CONTINUE

DO 321 K=0,4

L=J+K
CALL ISPUTP(4,L,0,256,ISIXA)

CALL ISPUTP(4,L,256,256,ISIXB)

321 CONTINUE
310 CONTINUE
RETURN
END

74

APPENDIX C

DT-2861 REGISTERS

INCSR1 Input 0250h Controls the

Control video input

Status

Register 1

INCSR2 Input 0252h Controls the

Control video input

• Status

Register 2

OUTCSR Output 0254h Controls the

Control video output

Status

Register

CURSOR Cursor 0256h Contains the

Register cursor and

INDEX

XPAN

INLUT

Index

Register

XPan

Register

Input Look-

up table

entry

register

0258h

0258h

025Ah

line pixel

position

Contains the

LUT Index

Controls X

direction

pans

Contains the

input LUT

entry

75

RLUT Result

Look-Up

table entry

register

YPAN Ypan

register

REDGRN Red/Green

Output

Look-Up

table

register

START Start

register

BLUE Blue Look-

Up table

entry

register

END End register

025Ah

025Ah

025Ch

025Ch

025Eh

025Eh

Contains the

result LUT

entry

Controls the

Y direction

pan

Contains the

Red &
green LUT

entry

Defines the

sailing line

and pixel

Contains the

Blue LUT

entry

Defines the

ending line

and pixel

76

APPENDIX D

The LOADUP Protected Mode Assembly Language Program

comment +

Subroutine load6.pm

by Maj. J.D.Bernier

MASM5.1
5 April 1991

Last Revision: 13 September 1991

This routine loads up, unscrambles and expands horizontally by a factor

of five, an image buffer on the DT-2861 Frame Grabber board.

Important:

loadup.pm switches to 386 Protected Mode and

will not run if other Extended memory managers such as QEMM.sys
or 386max.sys or if other DOS Extender programs are memory resident.

This routine is compiled and linked with the PROT Dos Extender

by Al Williams described in a two part article which appeared in

Dr Dobb's Journal, October and November 1990.

A few lines of example code are added for future reference

on the use of the PROT Dos Extender.

+

PROT.DATA

message db "Running in 386 Protected Mode", 13,10,"$"

rotmsg db "Enter offset angle :
",13,10,"$"

endmsg db "Program terminated normally by user", 13, 10,"$"

palette db "Do you wish to program the output LUT (y or n) ?",13,10,"$"

keybuf db 5 establish a keyboard input buffer with

msg db ? • ;length equal to 4 + CR
db 5 dup(?)

db 13 ;end buffer with a CR
hex db "0123456789ABCDEF"
sectmsg db "Rotation Sector Offset:

"

sector db?,?,?,?,"h
,,

,13,10,"$"

rotate equ 0800h ;moves displayed field by 6 degrees

;DT-2861 registers and buffer addresses

77

INCLUDE DT-2861.INC

JDRPR-10 port address

JDR equ 300h

;sort routine unscramble order

INCLUDE ORDER.INC

;LUT entries

INCLUDE LUT.INC

operating modes (See DT-IRIS Reference Manual)

EPORTI
LDINLUT
LDRLUT
OSEL
ALU
SLINE
ELINE
LOADBUF
DISBUF
BUS01
BUS23
s_row equ

height equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

150

75

0070h ;MODE= 111, input buffer

0020h ;MODE=010
0030h ;MODE=011
OOOOh ;OSEL=000, BUSBUF=000, DISPLAY OFF
OOOOh ;ALU=1 1 1 1,CARRYIN=0,BUSY=0,PASS=0,ALUM=0
OOOOh ;START LINE=0, START PIXEL=0
0B67Fh;END LINE=360,END PIXEL=512
0080h ;ALU= 1111 ,BUSY= 1 ,PASS=0,ALUM=0,CARRYIN=0
2000h ;set display buffer 2

0020h ;set active bus buffers and 1

0220h ;set active bus buffers 2 and 3

;A/D converter offet, start row
;A/D offset, height

PROT_DATA_END

PROT_CODE
USER PROC NEAR

PROT.STARTUP
pushad ;save all 32-bit registers on stack

;examples of some PROT functions

CALL32F sel_code32, CLS ;clear PC screen

CALL32F sel_code32, CRLF ;CR/LF
mov al, 'P' ;write characters to PC screen

CALL32F sel_code32, OUCH ;from protected mode
mov al, 'M'

CALL32F sel_code32, OUCH
mov al,

'

'

78

; CALL32F sel_code32, OUCH
; CALL32F sel_code32, CRLF

mov ax, 21 h

mov PINTFRAME.VMINT,eax ;BIOS call from protected mode
mov edx, OFFSET message ;This example uses DOS's call 09

mov ah, 9 ;to output a string to the screen

mov ebx, OFFSET PINTFRAME
VM86CALL

;fill frame buffer with data from the order array

;(Debugging aid!!! keep for future reference)

; mov ecx, 512 ;Fill up buffer with 180 rows of

;512 bytes taken form table "order"

mov eax, buffO

xor edi, edi

fill: mov ebx, OFFSET order

mov dl,BYTE FTR [ebx+edi]

mov BYTE PTR fs:[eax], dl

inc eax

inc edi

cmpedi, 180

jl short skip2

xor edi, edi

dec ecx

skip2: jnz short Fill

display First row of scrambled buffer

mov ebp, buffO

mov ecx, 512

showl: mov al, BYTE PTR fs:[ebp]

call32f sel_code32, HEXOUT
inc ebp

loopne short showl

breakpoint

initialize frame grabber board operation

mov dx, OUTCSR
in ax, dx

bts ax, 5 ;DISPLAY on

out dx, ax

mov ax, DISBUF ;set display buffer 2

mov dx, YPAN
out dx, ax

79

mov dx, INCSR1 ;stop current operation

in ax, dx

btr ax, 5 ;clear PASS bit to terminate current

out dx, ax operation at the end of next cycle

busyl: mov dx, INCSR1 ;poll BUSY bit til operation completed

in ax, dx

bt ax, 7

jc short busyl

;program the output look-up table if requested

;Display prompt message for input:

pal: movax, 21h

mov PINTFRAME.VMINT,eax
mov edx, OFFSET palette

mov ah, 9

mov ebx, OFFSET PINTFRAME
VM86CALL

;read yes (y) or no (n) answer

answer: mov ax, 2 In

mov PINTFRAME.VMINT,eax
mov ah, 07h ;read key, return value in al

mov ebx, OFFSET PINTFRAME
VM86CALL

mov bl, a\

cmp al, 'y'

je luts

mov al, bl

cmp al, 'n'

je load

jmp pal

;Beginning of Output LUT Programming

luts:

;save board operation mode

mov dx, OUTCSR
in ax, dx

push ax

mov dx, INCSR2

80

in ax, dx

push ax

;set board for LUT programming

mov ax, LDINLUT ;select MODE=010
out dx, ax

;load up output LUT

mov ecx, OOh

lut: mov dx, OUTCSR ;select output LUT
mov ax, OSEL
out dx, ax

mov dx, INDEX ;select index into LUT
mov ax, ex

out dx, ax

mov edi, ecx

mov ebx, OFFSET red

mov al, BYTE PTR ds:[ebx+edi]

mov ebx, OFFSET green

mov ah, BYTE PTR ds:[ebx+edi]

mov dx, RGLUT
out dx, ax

mov ebx, OFFSET blue

mov al, BYTE PTR ds:[ebx+edi]

mov dx, BLUT
out dx, ax

inc ecx

emp ecx, OFFh
jlelut

;restore board original operating mode
pop ax

mov dx, INCSR2
out dx, ax*

pop ax

mov dx, OUTCSR
out dx, ax

;End of LUT programming - show the result:

mov dx, OUTCSR ;set active bus buffers to buff 2 and 3

mov ax, BUS23
out dx, ax

mov ecx, 512

81

mov eax, buffO

xor edi, edi

xor edx, edx

fill: mov BYTE PTR fs:[eax], dl

inc eax

mov BYTE PTR fs:[eax], dl

inc eax

inc edi

cmp edi, 512

jl short endlut

xor edi, edi

inc edx

dec ecx

endlut: jnz short fill

;fill buff 2 with pattern

mov dx, OUTCSR
mov ax, BUS01
out dx, ax

;set active bus buffers to buff and 1

;define the input buffer's active window

load: mov dx, STARTR
mov ax, SLINE
out dx, ax

mov dx, ENDR
mov ax, ELINE
out dx, ax

;set buffer start line at

;set buffer end line at 360

;this is enough data for 6 degree field

;for both lead and lag array

;set operating mode

movdx, INCSR1
mov ax, ALU
out dx, ax

;set ALU values at 0000, NO CARRY
;keep BUSY and PASS clear

mov dx, OUTCSR
in ax, dx

btrax, 6

out dx, ax

;clear TRGEN bit.

;input offset angle count

;Display prompt message for input:

reset: mov ax, 2 lh

mov PINTFRAME.VMINT,eax
mov edx, OFFSET rotmsg

mov ah, 9

82

mov ebx, OFFSET PINTFRAME
VM86CALL

;read 4 input characters + CR and store in keybuf buffer

rd_buf:mov ax, 2 lh

mov PINTFRAME.VMINT, eax

mov edx, OFFSET keybuf

mov ah, OAh
mov ebx, OFFSET PINTFRAME
VM86CALL

;convert ASCII to hex and place in ECX register

xor ecx, ecx

xor edx, edx

mov eax, OFFSET msg
mov bx, WORD PTR [eax]

sub bh, 30h

mov bl, bh

and bx, OOFFh
emp bx, 9

jle skiphl

sub bl, 7

skiphl: mov cl, bl

shl ecx,

4

add eax, 1

mov bx, WORD PTR [eax]

sub bh, 30h

mov bl, bh

and bx, OOFFh
emp bx, 9

jle skiph2

sub bl, 7

skiph2: add cl, bl

shl ecx,

8

mov edx, ecx

xor ecx, ecx

add eax, 1

mov bx, WORD PTR [eax]

sub bh, 30h

mov bl, bh

and bx, OOFFh
emp bx, 9

jle skiph3

sub bl, 7

skiph3: mov cl, bl

shl ecx,

4

83

add eax, 1

mov bx, WORD PTR [eax]

sub bh, 30h

mov bl, bh

and bx, OOFFh
cmp bx, 9

jle skiph4

sub bl, 7

skiph4: add cl, bl

add ecx, edx

push ecx

;check for arrows key input

;inclement counter if right arrow

decrement counter if left arrow

nextfrm: ; entry point for next frame load

;check if arrow key was pressed (check status of keyboard buffer)

ck_key: mov ax, 21h

mov PINTFRAME.VMINT, eax

mov ah, OBh ;check keyboard input status

mov ebx, OFFSET PINTFRAME
VM86CALL ;set al to zero if no key pressed

cmp al, OOh

je nokey

rd_key: mov ax, 2 In ;read key if status set

mov PINTFRAME.VMINT, eax

mov ah, 07h ;read key, return value in al

mov ebx, OFFSET PINTFRAME
VM86CALL
mov ax, 2 In ;repeat function to get extended code

mov PINTFRAME.VMINT, eax

mov ah, 07h ;read key, return value in al

mov ebx, OFFSET PINTFRAME
VM86CALL
cmp al, 46h ;check for Ctl-Break

je quit

cmp al, 4Fh ;check for End Key
je quit

cmp al, 47h ;check for Home Key
je home
cmp al, 4Bh ;check for left arrow

je left

cmp al, 4Dh ;check for right arrow

84

je right

jmp nokey

home: JMP32S reset

left: pop ecx

mov ax, rotate

sub ex, ax

push ecx

jmp nokey

right: pop ecx

mov ax, rotate

add ex, ax

push ecx

nokey:

pop ecx

push ecx

;Display current sector count offset

;First convert Hex to ASCII

mov ax, ex

and al, 00001111b
emp al, 09h

jle skipal

add al, 37h

jmp displ

skipal: add al, 30h

displ: mov sector[3], al

mov ax, ex

shr ax, 4

and al, 00001111b
emp al, 09h

jle skipa2

add al, 37h

jmp disp2

skipa2: add al, 30h

disp2: mov sector[2], al

mov ax, ex

shr ax, 8

and al, 00001111b
emp al, 09h

jle skipa3 •

add al, 37h

jmp disp3

skipa3: add al, 30h

disp3: mov sector[l], al

mov ax, ex

85

shrax, 12

and al, 00001111b
cmp al, 09h

jle skipa4

add al, 37h

jmp disp4

skipa4: add al, 30h

disp4: CALL32F sel_code32, CLS ;clear PC screen

mov sector, al

mov ax, 21h

mov PINTFRAME.VMINT,eax
mov edx, OFFSET sectmsg

mov ah, 9

mov ebx, OFFSET PINTFRAME
VM86CALL

;write offset angle to JDR port

mov dx, JDR ;set delay counter

mov ax, ex

out dx, ax

;load up one frame in buffer

mov dx, INCSR2 ;set MODE for External Port Input

mov ax, EPORTI ;MODE= 111, Input Buffer

out dx, ax.

movdx, INCSR1
mov ax, LOADBUF ;set BUSY, keep PASS clear

out dx, ax ;start of load operation

poll: movdx, INCSR1 ;wait til load completed, poll BUSY bit

in ax, dx

bt ax, 7

jc short poll

unitialize pointers for the sort routine

xor eax, eax

xor edi, edi

xor ecx, ecx

;start unscrambling

;3 degree image:

86

mov ebx, buffO ;load base address of buffer

sort3: mov dl, BYTE PTR fs:[ebx] ;load scrambled byte from buffer

mov ebp, OFFSET order ;lookup offset value from order array

mov al, BYTE PTR ds:[ebp+edi] ;load offset value from order table

shl eax, 9

mov ebp, buffi

add eax, ebp

add eax, ecx

mov BYTE PTR fs:[eax], dl

;update pointers

xor eax, eax

inc ebx

inc edi

cmp edi, 180

jl short skipl

xor edi, edi

inc ecx

skipl: cmp ecx, 512

jl short sort3

;6 degree image:

;multiply row by 512 pixels/row

;load base address of buffer 1

;offset to unscrambled row

;offset to unscrambled column

;write byte at unscrambled linear address

;clear eax

;increment byte pointer in buffer

increment offset pointer in table order

;reached row 1 80?

;no, skip

;yes, reset pointer at zero and

;start new column

;last column?

;no, continue

xor eax, eax

xor edi, edi

xor ecx, ecx

sort6: mov dl, BYTE PTR fs:[ebx] ;load scrambled byte from buffer

mov ebp, OFFSET order ;lookup offset value from order array

mov al, BYTE PTR ds:[ebp+edi] ;load offset value from order table

shl eax, 9 ;multiply row by 512 pixels/row

mov ebp, buffi ;load base address of buffer 1

add eax, ebp ;offset to unscrambled row

add eax, 92 1 60 ;offset to second half of buffer

add eax, ecx ;offset to unscrambled column

mov BYTE PTR fs:[eax], dl ;write byte at unscrambled linear address

;update pointers

xor eax, eax

inc ebx

inc edi

cmp edi, 180

jl short skip2

xor edi, edi

inc ecx

skip2: cmp ecx, 512

;clear eax

increment byte pointer in buffer

;increment offset pointer in table order

;reached row 180?

;no, skip

;yes, reset pointer at zero and

;start new column

;last column?

87

jl short sort6 ;no, continue

;split up lead and lag arrays and expand each row
;by a factor of five, expanded image ends up in buffer

lead: mov ebx, buffi ;pointer to beginning of lead array

xomment out next line if lead array is wanted

lag: add ebx, 46080 ;pointer to beginning of lag array

mov eax, buffO

xor edi, edi

xor esi, esi

mov ecx, 256

expand: mov dl, BYTE PTR fs:[ebx]

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add ebx, 92160

sub eax, 1792

mov dl, BYTE PTR fs:[ebx]

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

add eax, 512

mov BYTE PTR fs:[eax], dl

sub ebx, 92158

sub eax, 2303

loopne expand

;loop control

mov ecx, 256

88

inc edi

mov edx, edi

shl edx,

9

imul edx, 5

mov eax, buffO

add eax, edx

cmp edi, 90

jl short expand

;branch back for lead array (have yet to figure out a way!!)

;for the moment this does lag array only!!

;remove third A/D converter offset

mov ebx, buffO

mov eax, s_row

shl eax,

9

mov ecx, height

shl ecx,

7

add ebx, eax

dc_off:mov eax, DWORD PTR fs:[ebx]

sub eax, 03030303h
mov DWORD PTR fs:[ebx], eax

dec ecx .

jecxz skip3

add ebx, 04h

jmp dc_off

skip3:

;copy final image in display buffer 2

mov ebx, buffO ;source buffer

mov edi, 57600

pipe: mov dx, OUTCSR
mov ax, BUS01 ;set active bus buffers and 1

out dx, ax

mov ecx, DWORD PTR fs:[ebx]

mov dx, OUTCSR
mov ax, BUS23 ;set active bus buffers 2 and 3

out dx, ax

mov DWORD PTR fs:[ebx], ecx ;buffer 2 is now new base address

add ebx,4 ;at OAOOOOOh
add ebp,4

mov ecx, edi

89

skip4:

subecx, 01 h

jecxz short skip4

mov edi, ecx

jmp short pipe

mov ax, BUS01
mov dx, OUTCSR
out dx, ax

;restore buffer at base address OAOOOOOh

;poll BUSY bit til operation completedbusy2: movdx, INCSR1
in ax, dx .

bt ax, 7

jc short busy2

;Perform absolute 16 bit jump (in a 16 bit segment)

JMP32S nextfrm

;End of program

quit: movax, 21h

mov PINTFRAME.VMINT,eax
mov edx, OFFSET endmsg ;display end of prog message

mov ah, 9

mov ebx, OFFSET PINTFRAME
VM86CALL

pop ecx

popad

BACK2DOS
USER ENDP

PROT CODE END

;clean up stack

;restore all 32- bit registers from stack

90

DT-2861.INC INCLUDE FILE

;DT-2861 registers

INCSR1 equ 0250h

INCSR2 equ 0252h

OUTCSR equ 0254h

INDEX equ 0258h

INLUT equ 025Ah
RLUT equ 025Ah
RGLUT equ 025Ch
BLUT equ 025Eh
OUTCSR equ 0254h

STARTR equ 025Ch
ENDR equ 025Eh
YPAN equ 025Ah
XPAN equ 0258h

ALIGN 4

buffO equ OAOOOOOh ;base addresses of frame buffers to 15

buffi equ 0A40000h

91

ORDER.INC INCLUDE FILE

;order look-up table lists the scramble order

;of each block of 180 consecutive bytes in buffer 1

ALIGN 1

order db 2,17,32,47,62,77,92,107,122,137,152,167

db 3,18,33,48,63,78, 93,108,123,138,153,168

db 4,19,34,49,64,79, 94,109,124,139,154,169

db 5,20,35,50,65,80, 95,110,125,140,155,170

db 6,21,36,51,66,81,96,111,126,141,156,171

db 7,22,37,52,67,82, 97,1 12,127,142,157,172

db 8,23,38,53,68,83, 98, 1 1 3, 128, 143, 158, 173

db 9,24,39,54,69,84, 99,114,129,144,159,174

db 10,25,40,55,70,85,100,1 15,130,145,160,175

db 11,26,41,56,71,86,101,116,131,146,161,176

db 12,27,42,57,72,87,102,117,132,147,162,177

db 13,28,43,58,73,88,103,118,133,148,163,178

db 14,29,44,59,74,89,104,1 19,134,149,179,164

db 0,15,30,45,60,75, 90,105,120,135,150,165

db 1,16,31,46,61,76, 91,106,121,136,151,166

92

LUT.INC INCLUDE FILE

;Output LUT entries.

;Values in all three tables: blue, green and red range from to 255 or OOh to OFFh

blue db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh

db OOh, OOh, OOh, OOh, OOh, 05h, OAh, lOh, 15h, lAh

db 20h, 25h, 2Ah, 30h, 35h, 3Ah, 40h, 45h, 4Ah, 50h

db 55h, 5Ah, 60h, 65h, 6Ah, 70h, 75h, 7Ah, 80h, 85h

db 8Ah, 90h, 95h, 9Ah,0A0h,0A5h,0AAh,0B0h,0B5h,0BAh
db 0C0h,0C5h,0CAh,0D0h,0D5h,0DAh,0E0h,0E5h,0EAh,0F0h
db 0F5h,0FAh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh

db OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH
db OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH,OFFH
db 0F0h,0E0h,0D0h,0C0h,0B0h,0A0h,090h,080h,070h,060h

db 50h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h, 40h

db 40h, 40h, 40h, 40h, 40h, 40H

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

256

green db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;10

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;20

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;30

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;40

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;50

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;60

db 05h, OAh, lOh, 15h, lAh, 20h, 25h, 2Ah, 30h, 35h ;70

db 3Ah, 40h, 45h, 4Ah, 50h, 55h, 5Ah, 60h, 65h, 6Ah ;80

db 70h, 75h, 7Ah, 80h, 85h, 8Ah, 90h, 95h, 9Ah,0A0h ;90

db 0A5h,0AAh,0B0h,0B5h,0BAh,0C0h,0C5h,0CAh,0D0h,0D5h ;100

db 0DAh,0E0h,0E5h,0EAh,0F0h,0F5h,0FAh,0FFh,0FFh,0FFh ;110

db 0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh,0FFh ;120

db 0FAh,0F5h,0F0h,0EAh,0E5h,0E0h,0DAh,0D5h,0D0h,0D0h ;130

db 0CAh,0C5h,0C0h,0BAh,0B5h,0B0h,0AAh,0A5h,0A0h, 9Ah ;140

93

db 95h, 90h, 8Ah, 85h, 80h, 7Ah, 75h, 70h, 6Ah, 65h ; 150

db 60h, 5Ah, 55h, 50h, 4Ah, 45h, 40h, 3Ah, 35h, 30h ;160

db 2Ah, 25h, 20h, lAh, 15h, lOh, OAh, 05h, OOh, OOh ;170

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 1 80

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;190

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;200

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;2 10

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;220

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;230

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;240

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;250

db OOh, OOh, OOh, OOh, OOh, OOH ;256

red db 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h ;10

db 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h ;20

db 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h ;30

db 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h, 30h ;40

db 30h, 31h, 32h, 33h, 34h, 35h, 36h, 37h, 38h, 39h ;50

db 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh, 42h, 44h, 46h, 48h ;60

db 4Ah, 4Ch, 4Eh, 53h, 56h, 59h, 5Dh, 64h, 69h,070h ;70

db 078h,080h,088h,08Bh,08Eh,092h,095h,098h,09Bh,09Eh ;80

db 0A2h,0A8h,0AAh,0B0h,0B5h,0BAh,0C0h,0C3h,0C6h,0C9h ;90

db 0CBh,0CEh,0D2h,0D5h,0DAh,0E0h,0E5h,0EAh,0F0h,0F5h ;100

db 0FAh,0FFh,0FFh,0F0h,0E0h,0D0h,0C0h,0B0h,0A0h,090h ;1 10

db 080h,070h, 60h, 50h, 40h, 30h, 20h, lOh, OOh, OOh ;120

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 1 30

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 140

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 1 50

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;160

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 170

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 1 80

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ; 1 90

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;200

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;2 1

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;220

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;230

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;240

db OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh, OOh ;250

db OOh, OOh, OOh, OOh, OOh, OOh ;256

94

LIST OF REFERENCES

1. Ayers, G.R. "Calibration and Initialization of the IRSTD System", MS Thesis,

Dec. 1987.

2. Engel, R.C. "A PC Based Imaging System for the Naval Postgraduate School Infrared

Search and Target Designation (NPS-IRSTD) System", MS Thesis, Sept. 1989.

3. Baca, M.J. "Real Time Imaging of Infrared Background Scene Data Generated by the

Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD)

System", MS Thesis, Sept 1990.

4. E.C. Crittenden Jr, A.W. Cooper "Modification, Testing and Calibration of Infrared

Search and Target Designation Hardware Received from NSWC", NPS Report

NPS61-89-011CR, May 1989.

5. Cooper, A.W. W.J. Lentz, R.C. Engel; "Background Measurements using the NPS-
IRST System", SPIE Proceedings Vol. 1311, "Characterization, Propagation and

Simulation of Infrared Scenes", 1990.

6. Cooper, A.W., W.J. Lentz, M.J. Baca and J.D. Bernier, "Image Display

and Background Analysis with the Naval Postgraduate School Infrared Search and

Track System", SPIE Proceedings, Vol. 1846, 1991.

7. Cooper, A.W., W.J. Lentz, E.D. Bloedel, L. Yee, R.R. Keever, M.A. Polehn, B.E.

Northon, R.N. Murrata; "Joint Naval Postgraduate School and Boeing Aerospace

Company AN/SAR-8 IRST Measurements, Experimental Results 20-22 Sept 1989.

8. Cooper, A.W. NACIT Proposal for Research for period 1 October 1991 to

30 September 1992. Naval Sea Systems Command, PMS-421.

9. Parker, G. "Development of Modified Detector/DEWAR Package for the ADM
IRSTD and Analysis of the Effect of the Optical Performance of the System

Using the SuperOsIo Computer Code", MS Thesis, Sept. 1986

10. R.C. Gonzalez, P. Wintz, "Digital Image Processing", 2nd ed., Addison-Wesley

Publishing Company, 1987.

11. IRIS Tutor User Manual, 3rd ed., Data Translation Inc., Marlboro, MA, 1987.

12. DT-IRIS User Manual, 3rd ed., Data Translation Inc., Marlboro, MA, 1988.

95

13. User Manual for the DT-2861 High Speed Arithmetic Frame Grabber, 1st ed., Data

Translation Inc. Marlboro, MA, 1987.

14. 386 DX "Microprocessor Programmer's Reference Manual", Intel Corporation,

Osborne McGraw-Hill, 1989.

15. J.H. Crawford, P.P. Gelsinger, "Programming the 80386", Sybex Inc., 1987.

16. J.L. Turley "Advanced 80386 Programming Techniques", McGraw-Hill, Berkeley,

CA, 1988.

17. Neal Margulis, "80386 Protected Mode Initialization", Doctor Dobb's Journal,

October 1988.

18. Al Williams, "DOS 5: A Developer's Guide", Advanced Programming Guide to

DOS,M&T Publishing, Inc., August 1991.

19. Al Williams, "Roll Your Own DOS ExtendenPart 1", Doctor Dobb's Journal,

October 1990.

20. Al Williams, "Roll Your Own DOS ExtendenPart 2", Doctor Dobb's Journal,

November 1990.

21. Neal Margulis, "Advanced 80386 Memory Management", Doctor Dobb's Journal,

April 1989.

22. Alan R. Miller, DOS Assembly Language Programming, Sybex Inc., 1988.

23. Michael J. Young, "Inside DOS:A Programmer's Guide", Sybex Inc., 1988.

24. Microsoft Macro Assembler Version 5.1, Macro Assembler for the MS-DOS
Operating System, Programmer's Guide, Microsoft Corporation, 1987.

25. Paul and Meg Noah, VGAIPS User's Manual, Disk file Accompanying the VGAIPS
Program.

96

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

Cameron Station

Alexandria, VA 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, CA 93943-5000

4. Chairman, Code PH
Department of Physics

Naval Postgraduate School

Monterey, CA 93943-5000

5. Professor A.W. Cooper, Code PH/Cr
Department of Physics

Naval Postgraduate School

Monterey, CA 93943-5000

6. Arthur Cote, Jr. , PMS-42

1

Naval Sea Systems Command
Washington, DC 20362-5101

7. S.K. Petropoulous, Code R42
White Oak Laboratory

Naval Surface Weapons Center Detachment

Silver Springs, MD 20903-5000

8. M.W. Zurasky, Code 6552

Naval Surface Weapons Center

Dahlgren, VA 22448-5000

9. Robert J.L. Corriveau

Director, Electro-Optics Division

Defence Research Establishment Valcartier

2459 Pie XI Blvd., North (P.O. Box 8800)

Courcelette, Quebec, Canada, GOA 1R0

97

10. Dr. Louis G. Gregoris

Spar Aerospace Limited

Director, Electro-Optical Technology

1235 Ormont Drive

Weston, Ontario, Canada, M9L 2W6

ll.R. Bloedel

Manager, Signal Processing Technology

Boeing Company
P.O. Box 3999

'

Seattle, WA 98124-2499

12. DLAEEM 4-3 Maj. J.D. Bernier

National Defence Headquarters

Major General R. Perkes Building

Ottawa, Ontario, Canada, KA1 0K2

</9 7- 7(o f

98

Thesis
B45295
c.l

Bernota
A model for the evalua-

tion of C 3CM effects on
an Integrated Air Defense
System.

29 JIW 92

14 APff <n

ine

al

at

80556
00556
58666

)

Thesis

B45293
c.l

Bernier
Real time imaging and

infrared background scene
analysis using the Naval

frared Search and Target
Designation (NPS-IRSTD)
System.

